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Abstract

One of the most important tasks faced by police agencies concerns the strategic deployment of

patrols in order to respond to calls whilst also deterring crime. Current deployment strategies

typically lack robustness as they are often based on tradition. As police agencies are encouraged

to improve the effectiveness and efficiency of their services, it is essential to devise advanced

patrol deployments that are based on recent scientific evidence.

Most existing models of patrol deployments are too simplistic, and are thus unable to provide

a realistic representation of the complexity of patrol activities. Furthermore, past studies have

tended to focus on individual aspects of patrol deployment such as efficiency, reactive effec-

tiveness or proactive effectiveness, rather than consider them all together as part of the same

problem.

This thesis proposes to develop a decision-support tool for informing better patrol deployment

designs. This tool consists of a simulation-based optimisation approach combining two key

components: (1) an agent-based model (ABM) of patrol activities used to evaluate the perfor-

mance of the system under a given deployment configuration and (2) a genetic algorithm (GA)

which seeks to speed up the search for optimal deployments. While the developed framework

is designed to be applicable to any police force, a case study is provided for the city of Detroit

in order to demonstrate its potential.

The developed decision-support tool shows considerable potential in informing more cost-effective

patrol deployments. First, the ABM of patrol activities allows for exploration of the impact

of various deployment decisions that police agencies are unable to experiment with in the real

world. Second, the GA makes it possible to optimise patrol deployments by identifying ‘good’

solutions, which provide faster responses to incidents and deter crime in key areas, in reasonable

time.
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Chapter 1

Introduction

Police agencies are tasked with deploying patrols across the force in order to meet demand.

Their performance in doing so is often evaluated on the basis of two metrics: efficiency and

effectiveness. A key objective of a police force is thus to deploy patrols in a cost-effective

manner. Current deployment strategies are often not optimised and instead rely on tradition.

Furthermore, randomised field trials are often not practical for police agencies to implement, as

they present logistical and ethical challenges.

This thesis proposes to build a decision-support tool to explore the problem of patrol deployment

optimisation. Key to this tool is a simulation model which is able to emulate patrol activities

across the force and evaluate their performance. In order to automate the search through many

deployment alternatives, the tool is composed of a search-optimisation algorithm that is able

to find better deployment designs in reasonable time.

This chapter provides the introduction to this dissertation. In it, the background to, and

motivation behind this research are first described. Then, the aim and objectives are defined,

followed by an overview of the general structure of the thesis.

1.1 Background

Policing: an overview

At a high level, policing involves maintaining public order and safety as well as investigating

and preventing crime. Modern policing was established in the 19th century as a response to
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the inadequacy of traditional forms of law enforcement, such as private security forces and

citizen militias. Policing has a centralised command structure with a hierarchical organisation,

uniformed officers, and police stations as bases of operation. Patrol and investigation are critical

functions of policing.

The basic structure and organisation of policing have remained largely unchanged since its

establishment. Policing has expanded to include activities such as community policing and

social services, but the organisation is still focused on maintaining public order and safety

through a centralised and professional law enforcement agency.

This thesis focuses mainly on the model of policing that is implemented in the UK and the US.

While the basic structure and organisation of policing are similar across many countries, some

principles of policing may not apply universally. Factors such as the role of police officers, the

organisation of police forces, and cultural and social factors can all contribute to differences in

policing practices.

The pressure on police agencies

Police agencies have reported struggling to balance supply and demand due to the pressure

of recent funding cuts (College of Policing, 2015). With less money to spend on resources, a

more cost-effective approach to how police services are provided is needed (NPCC, 2017), as

inefficient solutions can mean poor performance, wasted money, and loss of lives and property.

As such, police agencies have been encouraged to optimise the use of their existing workforce

by implementing processes that are both effective and efficient (Home Office News Team, 2017;

NPCC, 2017; Winsor, 2019).

There is no universal definition of ‘police demand’ in the literature (Laufs et al., 2020). Instead,

the term has been defined in various ways in different studies (Davies and Bowers, 2019). In

simple terms, police demand essentially consists in the need for police resources or the “actions

expected of the police with the goal of maintaining safety and public order” (Laufs et al., 2020,

p. 9). This thesis is concerned with external demand received from the public. This typically

includes reactive demand – i.e. responding to arising incidents, and proactive demand – i.e.

preventing crime (College of Policing, 2015; NPCC, 2017).
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Patrol deployment

One key area where improvements could drastically enhance the efficiency and effectiveness

of police agencies relates to the deployment of patrols. Patrol units are deployed across the

force to prevent and reduce crime through the act of patrolling as well as respond to arising

emergencies and disasters. Although foot patrols may be used in the context of community

policing, most patrol units that are tasked with responding to incidents are motorised to provide

faster responses, with one or two officers on board.

While on patrol, police officers must balance intersecting responsibilities. First, they are required

to proactively patrol a designated area to prevent disorder (Fleming and Grabosky, 2009). A

number of studies have shown that visible patrols to key high-crime areas can effectively deter

crime via raising the perception of risk of potential offenders (see e.g. Braga, 2002; Braga and

Weisburd, 2010; Braga, 2001; Braga et al., 1999; Cook, 1980; Eck, 1997; Eck, 2002; Ratcliffe

et al., 2011; Sherman and Weisburd, 1995; Skogan and Frydl, 2004; Weisburd and Eck, 2004)

as well as promote perceptions of safety (Bradford et al., 2009b; Hawdon and Ryan, 2003) and

reduce citizen fears concerning local neighbourhood crime (Zhao et al., 2002).

Second, patrol units are tasked with responding to real-time incidents with the view to stopping

crime and anti-social behaviour as it happens, as well as apprehending and bringing offenders

to justice (HMICFRS, 2019). An average police force in England and Wales receives approxi-

mately 338 ‘999’ calls a day, for reasons ranging from noise complaints to significant emergencies

(College of Policing, 2015). These calls typically undergo a process of triage at a police force’s

command and control room. Emergency calls (i.e. dangerous in-progress crime or linked with

life-threatening injuries) require immediate response from the closest and most appropriate

available unit, while lower-priority calls (e.g. reporting of stolen goods, traffic and parking

disputes) may be held in a queue (Edleston and Bartlett, 2012).

Considering both the reactive and proactive aspects of police responsibilities, a key problem

for police agencies relates to the strategic deployment of patrol units across the force so as to

maximise the effectiveness of their services at a minimal cost. It is this problem, here called the

Police Deployment Optimisation Problem (PDOP), that is the focus of this thesis.

Current methods of police patrol deployment tend to be based on tradition rather than evi-

dence. With the recent growth of computational techniques and data collected, new data-driven
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approaches can be used to inform a more efficient and effective service. Various studies have

identified spatial (see e.g. Clarke and Harris, 1992; “Hot spots of predatory crime: routine ac-

tivities and the criminology of place” 1989; Hunter and Jeffrey, 1992; Pease, 1991; Weisburd,

2015), temporal (Boulton et al., 2017; Tompson and Bowers, 2013; Vaughan et al., 2018) and

spatiotemporal (Polvi et al., 1991; Ratcliffe, 2002; Sagovsky and Johnson, 2007) patterns in po-

lice demand. This suggests that preempting when and where demand will arise and deploying

patrols to these specific areas and times may yield a more cost-effective service. In doing so,

police can improve (1) their effectiveness by positioning patrols in a configuration which is most

suited to meet proactive and reactive demand and (2) their efficiency by reducing the number

of patrols required.

Limitations of existing research on patrol deployment

Research on police patrol deployment has increased in recent years. However, these efforts

feature a number of limitations which can be summarised around two points:

First, while a number of models of patrol activities have been developed, these have tended to

be too simplistic to fully emulate the complexity of police patrols and thus provide meaningful

insights into the problem of patrol deployment. These models are typically equation-based

(see for instance Chaiken and Dormont, 1978b; Curtin et al., 2010; Edleston and Bartlett, 2012;

Green and Kolesar, 1984; Leigh et al., 2019) or low-fidelity simulations of police patrol activities

(e.g. Birks and Townsley, 2018; Bosse and Gerritsen, 2009; Reis et al., 2006).

Second, most of the existing research relevant to the PDOP has tended to focus on one of the

following aspects of the problem:

• efficiency : minimising the number of officers required on a given shift to provide the service

(e.g. Chaiken and Dormont, 1978b; Edleston and Bartlett, 2012; Green and Kolesar, 1984;

Taylor and Huxley, 1989),

• reactive effectiveness: minimising travel distance to Calls For Service (CFS) (see for in-

stance Chow et al., 2015; Curtin et al., 2010; Mitchell, 1972) or

• proactive effectiveness: maximising crime deterrence through patrolling (e.g. Chen et al.,

2018; Chen et al., 2015; Chen et al., 2017; Reis et al., 2006).

These aspects of police deployment designs are arguably all interdependent parts of the same
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problem and should as such be considered alongside each other when seeking to optimise patrol

deployment (Leigh et al., 2019). An in-depth literature review on the existing research related

to the problem of police deployment is provided in Chapter 2 of this thesis.

1.2 Research aim and objectives

The idea for this research emerged from the need to explore a version of the PDOP which explic-

itly considers efficiency, reactive effectiveness and proactive effectiveness together. Therefore,

the main aim of this work is to develop a decision-support tool for informing efficient police

patrol deployments that effectively deter crime while also providing timely responses to arising

incidents.

This aim is broken down in this thesis into several smaller objectives, which can be summarised

as follows:

1. Defining and formulating the Police Deployment Optimisation Problem.

2. Designing and validating a high-fidelity model (agent-based model) of police patrol activi-

ties in which the performance of various deployment strategies can be accurately evaluated.

3. Applying the model to explore the outcome of various deployment designs for the case

study of a real police force.

4. Designing an efficient metaheuristic algorithms (genetic algorithm) from which to derive

high-quality solutions to the Police Deployment Optimisation Problem in an acceptable

time.

5. Applying the resulting optimisation tool to the case study of a real police force.

1.3 Thesis structure

This thesis is organised into seven chapters. The contents of the chapters are as follows:

Chapter 2 introduces the challenges of police deployment and formulates the PDOP central to

this thesis. The chapter then provides a review of the existing studies on police deployment and,

in the process, justifies the methodology chosen in this thesis: a simulation-based optimisation

approach which combines an Agent-Based Model and a Genetic Algorithm. Having highlighted
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a number of methodological and theoretical gaps in the literature, the chapter ends with a list of

key areas in which this thesis contributes to the body of research on police patrol deployment.

Chapter 3 describes in details the ABM built in this thesis which simulates the activities of mo-

torised police patrols throughout their shift. The chapter follows the popular “Overview, Design

concepts and Details” (ODD) protocol (Grimm et al., 2020) to enable model reproducibility.

Chapter 4 introduces the exemplar police force of Detroit Police Department (DPD) on which

the decision-support tool built in this thesis is applied. The chapter presents the various data

sources obtained for Detroit and the steps undertaken to pre-process them prior to using in the

models. Finally, examining the content of the data, the chapter provides various visualisations

of the temporal and spatial aspects of supply and demand in Detroit.

In Chapter 5 the ABM is applied to the city of Detroit. First, the sensitivity of the ABM to

perturbations in the values of some key chosen parameters is assessed. Then, the Agent-Based

Model (ABM) is validated by comparing the population-level patterns of incident dispatch and

travel time produced by the model against those observed in the real system (Detroit). Finally,

a series of simulation experiments are conducted in which the ABM is used to explore the impact

of several deployment designs on the performance of the system. These experiments highlight

the potential of ABM as a computational laboratory in which various deployment decisions can

be tested and their consequences anticipated away from logistical and ethical constraint.

Chapter 6 introduces the need to employ a metaheuristic search-optimisation algorithm to

greatly speed up the search for optimal solutions to the PDOP. The chapter introduces Genetic

Algorithms (GAs) – the chosen metaheuristics in this thesis – including their key concepts,

advantages and limitations. Then, the design decisions that were made when designing the

GAs in this thesis are detailed. The chapter ends by introducing the logistical decisions that

were put in place to monitor performance and prevent over-fitting. The resulting tool is a

simulation-based GA in which an ABM is used by the GA to evaluate the performance of

solutions at each step of the learning process.

In Chapter 7 the simulation-based GA is applied to the case study of Detroit. The chapter

presents results from two GA variants proposed to address two distinct versions of the PDOP.

The first one is a single-objective GA which seeks to identify the best deployment design to

minimise response time given a maximum number of available patrols. The second one is a
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multi-objective GA. It searches for solutions to the PDOP which satisfy multiple conflicting

objectives around reactive effectiveness, proactive effectiveness and efficiency.

Chapter 8 summarises the findings presented in previous chapters and highlights their implica-

tions with regards to the PDOP. The chapter concludes by discussing a number of limitations

to the chosen methodology and proposes potential paths for future enquiry.
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Chapter 2

Literature review: police patrol

deployment

2.1 Introduction

Police agencies need to deploy on-duty patrols so that they may both respond to calls and deter

crime before it takes place. It is this problem, here called the Patrol Deployment Problem, that

is the focus of this thesis.

Section 2.2 begins this chapter by introducing the objectives of effectiveness and efficiency in-

herent to the police as a public service. Then, Section 2.3 formalises the Patrol Deployment

Problem and introduces the concept of ‘hotspot patrolling’ commonly used to deploy patrols

based on historical demand. Importantly, the section introduces a variant of the Patrol De-

ployment Problem, called the Patrol Deployment Optimisation Problem (PDOP) in this thesis,

which will be explored in later chapters. Section 2.4 highlights existing research on the problem

of patrol deployment and introduces the methodology chosen in this thesis. Finally, Section

2.5 discusses how this thesis contributes to the field of patrol deployment studies by addressing

some of the theoretical and methodological gaps identified in the literature.

2.2 Objectives of police agencies

A primary goal of police agencies is to safeguard the public by preventing crime and providing

rapid responses to calls for service, despite increasingly constrained resources. The police have
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two main performance concerns: (1) effectiveness and (2) efficiency, which translate in a variety

of performance metrics (see Davis, 2012 for a report of international performance evaluation),

some of which are detailed below.

As previously stated, this thesis focuses primarily on UK and US models of policing. While

there are commonalities in how policing is organised across countries, it is important to recognise

that there can be differences in how policing is done in different parts of the world, and that

some principles may not apply universally.

Effectiveness

Evaluating effectiveness consists in assessing whether the provided services fulfil their goal in

reducing crime or increasing security (Cordner, 1989; NPCC, 2017). There are two distinct

aspects to consider when assessing police effectiveness: (1) reactive effectiveness (calls are ef-

fectively responded to) and (2) proactive effectiveness (crimes are effectively prevented).

One possible metric that applies to both reactive and proactive policing is the public’s perception

of the police. Policing is a public service and as such, the public’s perception of police work

is often seen as an indicator of police effectiveness (Fielding and Innes, 2006). Survey data

offer valuable insights into citizen’s satisfaction. In England and Wales for example, the levels

of public satisfaction are quantified at the national level by the anonymous Crime Survey for

England and Wales (Office for National Statistics, 2019) and at the borough level in London by

the Metropolitan Police Public Attitude Survey (METPAS) (BMG Research, 2014).

Nonetheless, public satisfaction alone does not suffice in assessing the effectiveness of a police

system. In recent years, harm-focused policing approaches have emerged, seeking to provide a

range of criteria – based on estimated harm – that can be used to prioritise the response to or

prevention of certain incidents or crimes (Ratcliffe, 2015; Sherman, 2013). Ideally, the assess-

ment of reactive and proactive effectiveness would directly relate to the prevention of harm, by

prioritising certain calls (reactive effectiveness) or patrolling certain areas (proactive effective-

ness). However, measuring the harm that may have been prevented as a direct consequence of

police actions is not a trivial task. As such, studies on patrol deployment have instead focused

on surrogate performance measures. For reactive effectiveness, for instance, one commonly used

metric is the response time (Leigh et al., 2019; Mukhopadhyay et al., 2016; Surkis et al., 1970).

Reactive effectiveness (response time)

9



2.2. Objectives of police agencies

Response time is defined as the time interval between the call coming in and responders arriving

at the scene (D’Amico et al., 2002; Stevens et al., 1980; Zaki et al., 1997). It thus encompasses

both (1) the dispatch time of the calls – i.e., the time from receiving the call to dispatching a

unit, and (2) the travel time to the location of the call (Chen et al., 2019).

Rapid response to CFS has long been an integral part of the toolkit used by police forces (Karn,

2013). A quick response can (1) provide immediate lifesaving intervention, (2) increase the

likelihood of catching the offender at the scene or nearby (3) improve the chances of identifying

and locating witnesses (4) provide immediate gathering of physical evidence, (5) create citizen

satisfaction with the police, and (6) enhance the reputation of the police department (Karn,

2013). In fact, police response time has been identified as the strongest predictor of citizen

satisfaction with police actions (Spelman and Brown, 1984). In turns, satisfied citizens are

more likely to quickly report a crime to the police (Bradford et al., 2009a; Bradford et al.,

2009c; Spelman and Brown, 1984), which ultimately increases the odds of a subsequent arrest

and reinforces a positive citizen satisfaction with police services. All in all, response time

provides a tangible measure of reactive effectiveness which relates to both harm prevention and

citizen satisfaction (Bodily, 1978; Green and Kolesar, 1984).

Police agencies are often evaluated against response time targets, as it is one of the easiest met-

rics to review and compare either within a single jurisdiction or between jurisdictions (Goldberg,

2004). For instance, guidelines in England and Wales suggest that an emergency incident should

be attended within 15 mins in urban area or 20 mins in rural settings (NPCC, 2017). This means

that a response unit is required to reach the scene of emergency incidents within the target time,

or the response will be classed as ‘failed’ (NPCC, 2017). Police forces are assessed and ranked

annually based upon the percentage of calls they received which have met these targets. As

such, minimising response time to meet national standards is a key goal in designing police

effective patrol deployments (Winsor, 2019).

Response time can be assessed using data produced by Computer Aided Dispatch (CAD) sys-

tems, which monitor the location and status of units in the field using GPS trackers on vehicles

(McEwen et al., 2004). The produced data includes the time and location of each incident as

well as information about the response, such as the time of dispatch, time of arrival, and time

completed. The availability of such data can ultimately provide evidence of the success or failure

of a deployment plan (Church et al., 2001). In the absence of CAD data, response distance is
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sometimes used as a proxy for response time. This assumption is based on studies that showed a

correlation between response times and response distances in the US (Priest and Carter, 1999).

However, while this assumption may hold true for cities with grid-like road networks, it may

not apply elsewhere.

Proactive effectiveness

Within the field of policing, researchers agree that the presence of police is particularly impor-

tant in the prevention of criminal activities (see Kelling et al., 1974; Koper, 1995). In their

literature review, Dau et al. (2021) identified 49 studies that examined the effects of police

presence or evaluated its measurement, and found that police presence had a positive impact

on crime reduction, particularly for motor theft, property, violence, and guns.

However, assessing whether a preventative programme has been effective is challenging. Al-

though studies have historically looked at metrics such as call volume, crime rate, or number

of arrests, the interpretation of these statistics with regards to proactive effectiveness can be

ambiguous (Davis, 2012; Kelling, 1992). For example, a high number of arrests could either

indicate that (1) the police are engaging in aggressive enforcement or that (2) they are not

being proactive and are allowing crimes to occur. Similarly, crime rates may not provide an

exact picture of the crime landscape as a decrease in the crime rate of a certain area may be

the result of the displacement of crime to another area. Furthermore, an apparent decrease in

call volume may be linked to the decrease in the public’s trust in the police (under-reporting),

as opposed to a true reduction in crime. As previously mentioned, patrolling officers can ef-

fectively increase the safety of citizens by deterring crime (Cook, 1980). As such, the amount

of officer time spent on their patrol routes represent another possible metric of proactive effec-

tiveness. Finally, crime rates may also change for reasons that are unrelated to policing, due to

environmental or socio-economic factors for example.

Efficiency

While effectiveness is the priority, police forces in England and Wales have reported struggling

to meet demand with the resources at hand (College of Policing, 2015). Police funding has

decreased by 19% between 2010/2011 and 2018/2019 (Winsor, 2019) and police officer numbers

have fallen by 19,569 (14%) since the peak in 2009 (Home Office, 2020). As per 2017/2018,

there was approximately one officer per 480 members of the public (Home Office, 2020; Winsor,
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2019), which is 50 more than in 2010 (Winsor, 2019). This places high pressure on police forces

to balance supply and demand and meet their increasing responsibilities with fewer resources

per member of the public (College of Policing, 2015).

Police efficiency can be interpreted as the cost effectiveness of the service provided, i.e. the

correct utilisation of available resources (NPCC, 2017; Sun, 2002). Since the cost of manpower

is the single largest cost factor in providing emergency services, it is also one of the central

elements in service efficiency. In other words, efficiency can be evaluated by looking at the total

number of officers on duty at a given time.

With less money to spend on resources, a more efficient approach to how policing services are

provided is needed (NPCC, 2017), as inefficient solutions can mean poor performance, wasted

money, and loss of lives and property. Police forces have been encouraged to improve the

performance of their processes by optimising the use of their existing workforce (Home Office

News Team, 2017; Winsor, 2019). According to Her Majesty’s Inspectorate of Constabulary and

the Fire Service (HMICFS), police forces have to understand the resources available to them

(supply) and the demand they need to meet (Winsor, 2019). They should know what they can

achieve within a particular budget; i.e. what level of service they can provide within current

resources and be able to assess the level of service they could provide with more resources – or

less (Winsor, 2019).

Summary

Finding a unifying metric for assessing the performance of a police system is a significant chal-

lenge. To quantify effectiveness, researchers have turned to a variety of metrics, as summarised

in Table 2.1. However, with the reduction of resources, police agencies seek more efficient

operations to provide the best possible service with the resources at hand.

Table 2.1: Possible performance measures of a police reactive and proactive effectiveness.

Type of effectiveness Metrics Possible datasets

Reactive Response time CAD data

Proactive
Call volume CAD data
Crime rate Crime data
Time spent on patrol CAD data

Proactive and reactive Citizen satisfaction Survey data (METPAS or
CSEW)

Police effectiveness and efficiency are conflicting interdependent measures (Taylor and Huxley,
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1989). For example, having too many officers on duty (surpluses) may waste resources, while

having too few (shortages) increases response times and over-burdens officers. As such, when

designing police deployment strategies, effectiveness and efficiency should not be looked at in

isolation to assess police performance. Instead, a multifaceted measurement system of police

performance – one that assesses both reactive and proactive effectiveness as well as overall

efficiency – can arguably provide policy makers with a more complete understanding of the

quality of their service (Davis, 2012; Moore and Braga, 2003).

All in all, police agencies are concerned with providing a cost-effective service which keeps the

public safe at a minimum cost. A key consideration when achieving this goal relates to the

deployment of patrols. This task, here called the Patrol Deployment Problem is detailed in the

next section.

2.3 The Patrol Deployment Problem formulation

2.3.1 Patrol deployment

In the policing model adopted in Western societies, a police force is commonly divided into

police command areas (e.g. precincts, districts, divisions, etc.). These are the largest areas of

a police force which typically contain a police station and a number of small patrol beats – or

sectors (Larson, 1978). Units typically patrol the streets of designated beats and are dispatched

in response to incidents arising within the boundaries of their districts. The various geographical

boundaries of a police force intrinsically shape patrol activities and as such, they are inherent

to police deployment decisions.

Patrol deployment encompasses the many important decisions associated with the patrol func-

tion, including where, when, and in what number patrol officers should be deployed to both

deter crime and provide timely responses to emergency calls. Patrol deployment issues are in-

herently complex because police agencies must make a wide range of long-term, short-term and

live decisions, the outcome of which is often not easily anticipated (Goldberg, 2004).

Long-term deployment decisions concern the overall design of the force such as the location of

stations, the boundaries of the districts and the shift rosters. Although these decisions ultimately

influence both effectiveness and efficiency, they rarely undergo changes due to obvious logistical

challenges. Indeed, moving a police station or completely redesigning district boundaries can
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be highly disruptive for police agencies.

Shorter-term decisions, on the other hand, tend to be made on a daily basis. They include

for example the number of on-duty patrols that should be deployed to a given area of the

force during a particular shift. Finally, some decisions are made on the fly and involve moving

resources around the force during the course of a shift or deciding which unit to dispatch to a

given call. While live dispatching decisions are generally aided by CAD systems, there is less

guidance available to police agencies to inform them on shift-by-shift short-term deployment

decisions.

The Patrol Deployment Problem defined in this thesis is solely concerned with the short-term

decisions involving the assignment of resources to a fixed geography. It does not seek to address

long-term decisions such as designing better beat boundaries or patrol routes. More specifically,

the Patrol Deployment Problem seeks to improve the cost-effectiveness of the service through

designing better patrol deployments.

The problem encompasses two interconnected questions. The first one relates to staffing and

scheduling and involves identifying the number of units required in each district of the force to

provide a timely response to emergency calls. The second question relates to the positioning

of these units within each district by asking where they should be deployed to provide faster

responses (reactive) while deterring crime (proactive). The Patrol Deployment Problem is thus

concerned with the number of patrols as well as their spatial positioning across the patrol beats

of the force.

In an attempt to formalise the Police Deployment Problem, this thesis introduces the concept

of deployment configuration, which represents the staffing of the patrol beats of a police force

for a given shift. In the model developed in this thesis, patrol beats are staffed with at most

one patrol unit. A deployment configuration thus encompasses both aspects of the Patrol

Deployment Problem: (1) the number of deployed units and (2) the patrol beat that each unit

is deployed to. An example of random deployment configuration for the example police force of

Detroit Police Department is provided in Figure 2.1.
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Figure 2.1: Example of deployment configuration for the city of Detroit. The blue patrol beats
are staffed with a car.

The traditional approach to patrol deployment design is often based on empirical evidence

(i.e. using datasets showing historical demand) and complex historical or political factors.

Specifically, many police departments choose where to deploy resources using an approach called

‘hotspot policing’, based on the evidence that crimes cluster in space and time. The subsequent

section highlights the evidence pertaining to the clustering of demand in space and time.

2.3.2 Spatial and temporal clustering of demand

Spatial clustering

In recent decades, empirical research has demonstrated that most types of crime are clustered

in specific areas (Brantingham and Brantingham, 1993; Brantingham and Brantingham, 1984;

Brantingham et al., 1976; Pyle, 1976; Pyle and Hanten, 1974; Rengert, 1980), which can range in

size between entire neighbourhoods, particular streets (Rosser et al., 2017), or certain facilities

(Bichler et al., 2013; Bowers and Johnson, 2005; Wilcox and Eck, 2011). These are areas, often
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referred to as crime hotspots or hot-places (Block and Block, 1995; Braga, 2005; Brantingham

and Brantingham, 1982; Eck et al., 2005; “Hot spots of predatory crime: routine activities and

the criminology of place” 1989; Weisburd et al., 1992), feature “a greater than average number

of criminal or disorder events” (Eck et al., 2005, p. 2). This uneven distribution of crime within

specific neighbourhoods has been reported in studies of a variety of crime types including drug

selling (Weisburd and Green, 1994), burglary (Pease, 1991), robbery (Hunter and Jeffrey, 1992),

and auto theft (Clarke and Harris, 1992). In their work on Minneapolis (USA), “Hot spots of

predatory crime: routine activities and the criminology of place” (1989) found that 50% of calls

for service originated from 3.3% of the city’s addresses or intersections. This empirical piece is

one of the first and most notable in identifying the concentration of crime at micro places within

the larger area. These results were supported by a more recent study from (Weisburd, 2015),

which identified that 50% of crime in several sampled cities (including Seattle) is consistently

generated by around 5% of addresses in those cities.

Temporal clustering

Crime also exhibits temporal fluctuations, with clusters observed at several levels of granularity

over time (NPCC, 2017; Polvi et al., 1991; Sagovsky and Johnson, 2007). At the lowest level,

the concentration of crime varies by time of day (Ratcliffe, 2002; Tompson and Bowers, 2013)

as a result of changes in typical activity patterns. In addition to daily trends, crime can also

cluster in weekly patterns dictated by the way in which routine activities differ between days

of the week (Felson and Poulsen, 2003). For instance, alcohol-related disorders are more likely

to occur on Friday and Saturday nights, as more potential victims and offenders are brought

together in bars and nightclubs. Over a longer scale, many crimes also exhibit seasonality (Cohn

and Rotton, 2000; Farrell and Pease, 1994; Hipp et al., 2004; Landau and Fridman, 1993; Perry

and Simpson, 1987), with certain months of the year featuring a disproportionate number of

offences. For example, Hird and Ruparel (2007) found that 25 of the 29 crime types they studied

experienced a level of seasonal trend.

With regards to calls for service, in their study of calls for service in Surrey, BC, Vaughan et al.

(2018) identified distinct temporal patterns between types of calls. In particular, they found

that mental health calls were shown to peak during in the mid-afternoon in the middle of the

week, while Intimate Partner Violence (IPV) calls peak on Saturday and Sunday between 6:00

pm and 2:00 am. Similarly, Boulton et al. (2017) found that Lancashire Constabulary (UK)
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typically receives the most calls for service in the time window between 11am and 8pm.

2.3.3 Hotspot patrolling

Hotspot policing involves the deployment of police resources to demand hotspots (see “Hot

spots of predatory crime: routine activities and the criminology of place” 1989; Ratcliffe, 2004;

Weisburd, 2005). Areas that have experienced more crime or CFS demand in the past may be

identified using hotspot mapping techniques such as kernel density distribution (see for instance

Chainey et al., 2008; LeBeau, 2001; Leigh et al., 2019) or statistical tests inspired from the field

of epidemiology (Johnson et al., 2009).

Amongst the various types of hotspot policing interventions, perhaps the most important in-

novation in policing in recent years concerns hotspot patrolling (Weisburd and Eck, 2004).

Hotspot patrolling ‘focuses on small geographic places or areas where crime is concentrated’

(Koper, 2014) with the view to deterring crime. The idea is to preempt where demand is likely

to arise and position officers with access to high demand areas.

The Minneapolis Hot Spots Patrol experiment (Sherman and Weisburd, 1995) was the first

to offer compelling evidence about the effectiveness of policing at identified crime hot spots.

It showed that roughly doubling the level of patrol in crime “hot spots” resulted in modest,

but statistically significant, reductions in total calls for service, ranging from 6% to 13%, in

treatment places relative to control places (Sherman and Weisburd, 1995). Since then, a growing

body of research has provided evidence that hotspot patrolling can indeed produce significant

crime prevention gains at high-crime “hot spots” (see, e.g., Braga, 2002; Braga and Weisburd,

2010; Braga, 2001; Braga et al., 1999; Eck, 1997; Eck, 2002; Ratcliffe et al., 2011; Skogan and

Frydl, 2004; Weisburd and Eck, 2004).

Alongside deterring crime, officers on patrol should arguably also be positioned in a configuration

which allows them to effectively respond to possible arising CFS. Although CFS are usually

considered to belong to reactive policing, there is a proactive element in preempting where they

will arise so units can provide a faster response. Those emergency incidents which take place

outside of patrolled areas need to be reached by units within response time targets. As such,

there is a need for patrol deployment designs that take into account both (1) crime deterrence

through patrolling crime hotspots and (2) timely response to arising CFS.
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2.3.4 The Patrol Deployment Optimisation Problem (PDOP)

Hotspot policing mainly addresses the positioning of a predetermined number of patrols to key

areas of the force with the view to providing an effective service. However, with efficiency in

mind, it is critical for police agencies to also keep the number of officers low as they incur a

considerable cost to the agency. In this context, the Patrol Deployment Problem can be inter-

preted as a multi-objective optimisation problem which seeks to identify the optimal number

and spatial positioning of patrols across the patrol beats of a police force – i.e. a deployment

configuration – to maximise effectiveness at a minimal cost. This formulation of the problem is

called the Patrol Deployment Optimisation Problem (PDOP) in the rest of this thesis, and is

detailed in this section.

Optimisation problems definition

The goal of an optimisation problem is to find the best parameters that either minimise or max-

imise a desired objective function. The choice of objective function depends on the optimisation

problem at hand. Depending on the number of objectives considered, the optimisation problem

can be described as single-objective or multi-objective.

In a single-objective variant of the PDOP, the problem is simplified to optimising a specific

metric exclusively – such as the average response time – given a maximum number of available

patrols to deploy.

The multi-objective variant of the PDOP, on the other hand, seeks to optimise various conflicting

metrics. As the PDOP is concerned with both reactive and proactive performance as well as

effectiveness and efficiency, its objective function may include any of the following objectives:

• minimising the average response time.

• minimising the number of ‘failed’ responses. As previously explained, these are the re-

sponses where the response time exceeded a predefined threshold (e.g. 15 mins).

• maximising the crime deterrence using patrol time as a proxy, or better yet a crime

deterrence score that takes into account historical crime levels on patrolled street segments

(see Chapter 3 for details about how this is calculated in this thesis).

• minimising the number of patrols deployed.
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The search space of an optimisation problem consists of all the possible parameter values (Eiben

and Smith, 2015) and can be very large depending on the problem. The aim is to find a point

(or a set of points) in this search space which gives the optimal solution; i.e., which satisfies all

the chosen objectives. The search space of the PDOP contains the set of all possible deployment

configurations. The PDOP is a constrained problem, as police agencies are understandably lim-

ited in the number of units they are able to deploy on a given shift, due to financial constraints.

As such, the number of agents deployed cannot exceed this constraint, which is specific to the

chosen police force.

A problem’s search space may be composed of one or more local and global optima, i.e. solutions

which optimise the problem’s objectives. Single-objective optimisation problems are typically

unimodal, i.e. the desired outcome is the single best solution called the global optimum. Multi-

objective optimisation problems, however, tend to be multimodal ones. The preferred outcome

is composed of multiple ‘good’ feasible solutions (local optima) as opposed to a single best

solution (global optimum), since the latter may not always be implementable in the real world.

For instance, some police agencies may only have a certain number of officers available on a

particular day, or they may have obligations to keep the average response time below a certain

threshold.

The need for models

Searching for ‘better’ deployment configurations, in the context of the PDOP, involves evalu-

ating the performance of many candidate configurations. Although police agencies can assess

the performance of their system under the current patrol deployment, they are unable to de-

termine whether better alternatives exist without first implementing these through randomised

controlled trials. This is the idea behind ‘evidence-based policing’, a concept first introduced

by Sherman in 1998. The core idea of this approach is that police practice can be made far

more effective by repeated controlled field experiments.

While field experiments are often considered to be the ‘gold standard’ method of determining

effectiveness, there have been very few such experiments in police agencies due to the challenges

they present (see for instance Ratcliffe et al., 2011). First, the costs and logistics of the trials may

dissuade police agencies who already have their resources stretched. Second, field experiments

come with some ethical concerns, as some citizens will not receive the same level of service as
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others. Furthermore, anticipating the consequences of patrol deployment in the real world –

e.g. predicting the possible delays or shortage of staff that might arise over time or result from

moving resources around the force – is a difficult task. As a result, experimenting with a poor

configuration may bring potential risk to people’s lives (Goldberg, 2004; Miller and Knoppers,

1972).

In addition to implementation challenges, field trials show limitations when solving optimisation

problems such as the PDOP. First, depending on the size of the police force, the number of

possible configurations may be far too great for them all to be tested in vivo. Second, it is

impossible to directly compare the performance of two configurations implemented in trials

conducted on different days. This is because every day is different and as such it is not possible

to control for either the fluctuation in demand, or the impact of environmental or societal

aspects.

All in all, these challenges dramatically hinder the optimisation of police deployment, and as a

result, agencies tend to resort to what they know rather than experimenting with new configu-

rations. The advent of computer models brings a new prospect into police experimentation for

the PDOP.

A model represents a simplified version of a real system, built to inform decisions about the

system in question. With a model, many alternative deployment configurations may safely

be evaluated in silico, something that would be very time consuming or even impossible for

police agencies to implement in the real world. Furthermore, unintended consequences can be

discovered within a model before deployment configurations are implemented in the real world.

The next section highlights relevant existing research on modelling and optimising police patrol

deployment.

2.4 Existing research on modelling and optimising patrol de-

ployment

This section provides a review of past studies focusing on the modelling of police patrol deploy-

ment. Existing models typically fall into two categories: they are either deterministic (used

for planning purposes) or stochastic/probabilistic (used in operational scenarios). Additionally,

models are either (1) descriptive – they help understand the real-world system and evaluate
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its performance under certain conditions, or (2) prescriptive – they conduct an optimisation

analysis and propose better deployment solutions.

2.4.1 Equation-based models

Equation-based mathematical models have been widely used to optimise emergency services

such as the ambulance and fire services. There has been extensive research in this area, some

of which is relevant to the PDOP, as other emergency services are faced with similar problem

when positioning their resources to meet demand.

Queuing models (probabilistic)

Queuing models, are mathematical models based on probabilities which aim to capture the

fundamental characteristic that emergency units may be unable to intervene in some cases as

they may be already occupied. Queuing models are capable of measuring the proportion of

times that a server is busy and are typically used to plan the number of resources needed to

provide a service.

Based on spatially distributed queuing theory, the Hypercube Queuing Model (HQM) (Larson,

1974) is the first probabilistic model developed for facility location problems. The model is able

to estimate both numbers of vehicles needed and their posting patterns by calculating selected

performance measures for individual vehicles (travel time to incidents, workload, and proportion

of dispatches outside its assigned beat). The HQM has been widely applied to problems such as

ambulance locationing (Batta et al., 1989; Daskin, 1983) and police patrol beat design (Kwak

and Leavitt, 1984; Sacks, 2000). The Rand Corporation also supported a series of research

publications on a HQM for police deployment (Larson, 1975). The HQM is a non-optimising

model. While it is able to evaluate a variety of performance measures given the locations of

vehicles, it cannot prescribe an optimal configuration for the system. The HQM is also unable

to handle call priorities or to use time-dependent rather than steady-state input data.

Green (1984) proposed a multi-priority queueing model for dispatching multiple police units in

response to emergency incidents. This queuing model provides a more detailed representation

of the police system than the HQM and is particularly useful for cities in which multiple-car

responses are prevalent. However, much like the HQM, it remains a descriptive tool. While

these descriptive models are useful for informing police on how a change in patrol deployment
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may impact system performance, they are not able to assist in solving the PDOP.

Some queuing models were developed in order to fulfil a prescriptive function. Perhaps the most

popular of these models is the Patrol Car Allocation Model (PCAM) developed by Chaiken and

Dormont (Chaiken and Dormont, 1978a; Chaiken and Dormont, 1978b). These queuing models

can calculate the number of units needed to satisfy predetermined efficiency objectives set by

a police department. For instance, the models can estimate how many patrol units would be

needed to achieve an average travel time of five minutes to all CFS. Alternatively, the model

can also estimate how many units would be needed to assure a predetermined patrol time

objective for preventing crime or always having a predetermined minimum number of patrol

units available to respond to emergency calls.

There are a number of limitations to the PCAM as a prescriptive tool. First, the model does not

incorporate some of the complex policing behaviour such as intersector dispatching, in which

command centres may dispatch units to respond to incidents across district boundaries in case of

shortage in a particular district. In the PCAM, districts are taken into consideration in isolation.

The model would recommend the deployment of x units in district y based on the number of

historic calls received for this particular district. Furthermore, the recommended deployment

does not specify which exact patrol beats within the district units should be deployed to. Finally,

the PCAM can only solve single-objective variations of the PDOP. Indeed, the model’s objective

is to minimise the number of units to deploy. Other metrics such as response time, patrol time

or minimum number of patrols are all fixed to a predetermined value. This means that the

response time itself, for instance, cannot be minimised. Overall, while the PCAM is a useful

tool for police agencies to quickly determine the number and placement of required patrols,

it features an over-simplistic model of the police system and cannot address multi-objective

versions of the PDOP.

Linear Programming (deterministic)

Within the field of Operations Reasearch (OR) – a discipline that began in the mid 1960’s and

that deals with the application of advanced analytical methods for optimisation – there have

been many formulations of the resource allocation problem for emergency services. In particular,

a very large body of OR literature has emerged around the use of Linear Programming (LP) –

a type of mathematical modelling for solving optimisation problems featuring a linear objective
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function.

One particular type of LP problem relevant to the PDOP is concerned with location optimi-

sation. These include p-median problems and Maximum Coverage problems. p-median models

locate p facilities (or vehicles) over n demand areas such that the average distance between

the facilities and the demand areas is minimised (ReVelle and Swain, 1970). The Maximum

Covering Location Problem (MCLP) seeks to deploy a fixed number of facilities (or vehicles) to

maximise their coverage over a given number of demand centroids (Church et al., 1974).

Location optimisation models have been widely applied to the problem of police deployment.

Mitchell (1972) employed a formulation of the p-median problem to select optimal police patrol

beats in Anaheim (California) that minimises travel distance to expected calls. Aly (1979) used

a distance minimisation formulation for locating two new police stations in Oklahoma. Chow

et al. (2015) used both p-medians and MCLP along with Geographic Information Systems (GIS)

techniques to identify the optimal locations of police facilities in the Greater London Area.

In order to help design optimal police patrol beats, Curtin et al. (2010) proposed the Police

Patrol Area Covering (PPAC) model combining GIS and the MCLP, that minimises the travel

distance between patrol beat centroids and incidents. However, as previously discussed, the use

of travel distance as a metric of response effectiveness presents limitations compared with that

of response times. Furthermore, the deployment decision is solely made based on CFS incidents

and as such, it ignores the proactive impact of police patrols.

In their study on the design of Leicester police patrol, Leigh et al. (2019) looked at planning

patrol routes in a manner that would effectively deter crime whilst also providing quick incident

response. To this end, they first identified a list of high crime hotspots using a kernel-density

approach. Having determined the hotspots they then solved a MCLP by identifying the best

configuration of these hotspots to allocate resources to, in order to meet possible demand within

the emergency response time targets.

Another application of linear programming, which is also relevant to the PDOP, concerns the

problem of scheduling. Taylor and Huxley (1989) developed an optimisation-based decision

support system for San Francisco Police Department called the Police Patrol Scheduling System

(PPSS). The system attempted to minimise both the number of officers and the number of

shortages at the hourly level. In return, the system prescribed a minimum number of officers
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needed each hour of the week for a given district of the force, which produced approximately a

50% reduction in shortages and surpluses. More recently, Edleston and Bartlett (2012) devised

a linear programming optimisation tool to the staffing roster problem applied to Leicestershire

police force. The tool aims to (1) create demand profiles that quantify the demand on staff

members and (2) to minimise the number of staff required in order to meet expected demand

across a series of shifts.

For simple problems with few spatio-temporal components, LP offers an easy implementation

and a fast optimisation framework. This is why they have been widely used methods in OR

for emergency services, in particular for ambulance and fire services where vehicles only travel

to and from the stations in response to incidents. However, there are several limitations to the

LP approach which makes it not suited to the PDOP explored in this thesis. These limitations

relate to its over-simplistic representation of police systems.

First, LP is based on the assumption that relationships between factors in the real world are

linear. However, this is not always the case. In policing specifically, increasing the number

of vehicles in service does not necessarily increase the deterrent effect in a linear fashion. For

instance, according to the Koper Curve Principle (Koper, 1995), which emanated from the

Minneapolis Hot Spots Policing experiment, while deterrence may be optimised by conducting

random 10-15 minute patrols at least every two hours in hot spots, longer presences showed

diminishing effects.

Second, LP is a deterministic approach, unlike the queuing models previously described. As

such, LP models do not take into account the stochasticity of call arrival, and the increase of

demand throughout the day.

Limitations of equation-based models and the need for simulation models

Table 2.2 summarises the strengths and weaknesses of LP and queuing models. Overall, while

equation-based models offer a fast implementation, they can be contrived to make a number of

simplifying assumptions in order to adapt the intricate dynamic processes of complex systems

into mathematical formulae. This can create an undesirable level of abstraction that sets the

model too far apart from the real system being studied (Epstein and Axtell, 1996).

The police dispatching system features unique properties which make it particularly challenging

to model using statistical and mathematical approaches. First, police activities show numerous

24



CHAPTER 2. LITERATURE REVIEW: POLICE PATROL DEPLOYMENT

Table 2.2: Strengths and weaknesses of queuing and LP models

Method Strengths Weaknesses

Queueing models Include stochasticity of call
arrival
Good performance evaluation
tools

Limited optimisation capacity
Limited spatial granularity
(district level)

LP models Fast optimisation tool for sim-
ple linear models

Assumes system linearity
No stochasticity

micro-level spatio-temporal interactions between multiple heterogeneous actors who are con-

nected at multiple scales, and whose actions are interdependent. Such actors may be the various

specialised police units on duty, or response units engaged in different tasks (e.g. patrolling,

responding, filling in paperwork etc.).

Second, the police system, much like other emergency services, is dynamic, with the location

of actors changing over time. Police services, however, differ from other emergency services in

the travelling patterns of patrols which must be visible to deter crime and improve the public’s

feeling of safety. Patrol vehicles spend much of their shift driving along the road network, with

which they interact as they estimate the shortest route, and obey traffic rules (in non emergency

situations). As such, the state of police units is constantly changing in space and time, making

it difficult to model with static closed-form equations (Zhang and Brown, 2013).

Third, the police system is complex, with entities interacting in non-linear and non-deterministic

ways (Axelrod, 2006; Holland, 2006). This complexity can be explained, in part, by the following

properties of police dispatching activities:

• Feedback : the outputs of one system entity (e.g. police unit) may directly or indirectly

influence the inputs of another. Indeed, police units usually need to coordinate their

decision-making in order to achieve optimal performance of the group as a whole. For

instance, police units interact with each other through radio channels, and they make

decisions and adapt their behaviours accordingly. Once an incident is allocated to a

response unit, it is removed from the queue and consequently becomes unavailable for

further dispatches.

• Path dependence: The system exhibits collective memory where future system states are

constrained by previous ones. This happens when one model decision leads to other

events or decisions. For instance, a unit is dispatched to incident i instead of j, and
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upon resolving the incident, it finds itself close to incident k, to which it is dispatched.

The latter dispatch was only possible because of the first one. These series of events and

decisions are difficult to anticipate without modelling the individual-level behaviours of

the system (e.g. behaviour of individual units, or the state of individual incidents).

• Non-linearity: entities of the system interact dynamically and in rich non-linear ways.

In other words, the relationship between inputs and outputs is not simple. For example,

tipping points may occur where the build up of individual actions result in a backlog

of unattended incidents. The system may also show signs of diminishing returns. For

example, in their 1965 Beat Patrol Experiment, Bright (1969) observed that increasing

the number of patrolling officers from none to one officer led to a significant drop in crime

rates while further increases in officer numbers did not show any significant improvement.

Similarly, a minimum number of units may need to be deployed in a given district for

there to be any visible effect on response time.

All in all, equation-based models arguably require levels of abstraction that limit their utility

in certain applications. Because they operate at an aggregate level, they are unable to account

for individual-level behaviours pertaining to individual patrols or individual incidents. Instead,

modelling the police system requires new ways of thinking and new methodological approaches,

ones that are able to represent the real-world of police deployment by explicitly considering the

heterogeneity, dynamics and complexity of police activities. With the advance of computing,

an important body of research has turned to the use of simulations to model the police system

(see Eck and Liu, 2008, for a literature review of the use of simulation in crime prevention

interventions).

Simulation models present many advantages over equation-based models with regards to mod-

elling the complexity of police system. First, simulation models are capable of developing

dynamic models in which factors are able to change over time (Bonabeau, 2002; Epstein, 1999).

Second, simulation models are constructed using programming languages, which are commonly

less abstract and more expressive than mathematical equations. This allows for the decomposi-

tion of system complexity into manageable sub-processes. Additionally, computational models

can be parameterised with empirical data (Hedstrom, 2005) instead of using arbitrary values.

This is particularly useful with non-linear systems (Bonabeau, 2002).

Capturing all elements of a complex system at fine levels of granularity may initially be over-
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whelming (Gilbert and Troitzsch, 2005). Simulation models allow for the exploration of systems

at multiple levels of abstraction, an approach called hierarchical decomposition. They may ini-

tially be built from high orders of abstraction, and details incrementally added, thus allowing

effective management of model complexity (Jennings, 2001).

Simulation provides a number of strengths that overcome some of the weaknesses associated

with more traditional attempts to understand complex dynamic social systems (Epstein, 1999;

Epstein and Axtell, 1996). Nonetheless, as will be discussed in details in Chapter 5 of this

thesis, simulation models are notoriously challenging to validate (Eck and Liu, 2008), that is, to

determine if a simulation’s results are valid depictions of reality. Table 2.3 provides a summary of

the strengths and weaknesses of both static (equation-based) and dynamic (simulation) models.

Table 2.3: Strengths and weaknesses of mathematical and simulation models

Method Strengths Weaknesses

Mathematical models Simpler and fast to implement Too abstract (oversimple and
static)

Simulation models High-fidelity modelling
Complexity modelling
Hierarchical decomposition
Dynamic modelling

More complex and computa-
tionally demanding
Difficult to calibrate and vali-
date

One particular simulation technique called Agent-Based Modelling (ABM) affords the ability

to effectively model systems at the individual level, thus dealing with the aforementioned het-

erogeneity aspect of the police system. The next section will provide a description and review

of the literature related to applications of this method to police deployment problems.

2.4.2 Agent-based modelling

Definition

Agent-based modelling is a simulation technique that seeks to capture how individual be-

havioural units interact with each other and with their environment, allowing for the emergence

of aggregate behaviour from their interactions (Epstein and Axtell, 1996). With Agent-Based

Models (ABMs), researchers construct synthetic environments and populate them with virtual

decision makers (referred to as agents) designed to represent key system actors. According to

the definition of Wooldridge and Jennings (1995), an agent is a computational system interact-

ing with an environment, in which it is capable of flexible, autonomous action in order to meet
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its design objectives.

With ABM, researchers have access to individual-level information; for example, the travel time

of individual units or the time they spend tending to an individual incident. ABMs thus allow

researchers to explore phenomena from the bottom-up (Macy and Willer, 2002). They combine

the detailed description of microscopic processes (i.e. individual behaviours of the patrol units)

with the observation of their macroscopic effects. In the specific context of police deployment,

ABMs allow to emulate the behaviour of individual patrol units and observe the overall average

response time at the end of a shift.

ABMs are able to model large numbers of agents, which can be heterogeneous and autonomous

in nature (Epstein, 1999; Epstein and Axtell, 1996). These agents may be imbued with different

characteristics (e.g. various specialised response units) and behavioural rules (e.g. dispatchers

versus patrol units). This ability to model heterogeneous agents is of great importance, as there

are no other methods able to capture the heterogeneity inherent in social systems. Further-

more, these agents can be autonomous; each agent in the simulation perceives, reasons and

acts individually. While agents may exchange information directly or indirectly through the

environment, no centralised controller regulates their behaviour.

Advantages of ABMs

ABMs are a natural metaphor for heterogeneous, dynamic and complex systems such as the

police system (Zhang and Brown, 2013). One important advantage of ABM over other analyt-

ical methods is its ability to provide policymakers with a unique scenario-testing environment

(Axelrod, 1997; Groff and Birks, 2008). ABM allows for experiments to be performed that

would otherwise be impossible due to ethical or logistical constraints (Gilbert and Troitzsch,

2005). With ABMs, researchers can prototype, test, and refine proposed intervention prior to

carrying out field testing (e.g. increase/decrease in number of patrols deployed on a given shift).

Once a model is constructed, its parameters calibrated and its level of realism validated, it can

be used to conduct simulated experiments whereby populations of agents are instantiated in

some particular configuration. Then, researchers can observe the outcome patterns (e.g. aver-

age response time) which result from the unpredictable aggregation of the repeated actions and

interactions of the agents (Epstein, 1999).

ABM offers social scientists something similar to controlled experiments used to study social

28



CHAPTER 2. LITERATURE REVIEW: POLICE PATROL DEPLOYMENT

phenomena. Researchers can manipulate any number of influencing factors otherwise outside

their control in traditional experimentation (Eck and Liu, 2008), thus allowing the exploration

of dose-response relationships in endless configurations (Townsley and Birks, 2008; Townsley

and Johnson, 2008). Furthermore, ABM experiments can manipulate single characteristics

of a model while holding all other characteristics static. This is important because of the

‘fundamental problem of causal inference’ (Holland, 1984), according to which it is impossible

to observe the effect of two rival treatments on the same experimental unit. ABMs allow

repeated experiments under identical conditions, save for differences selected by the researcher.

As such, ABMs have been widely applied to test seminal environmental criminology theories

(Birks and Davies, 2017; Birks et al., 2012; Bosse and Gerritsen, 2010; Brantingham and Tita,

2008; Groff, 2007; Groff, 2008; Malleson et al., 2010; Marchione et al., 2014; Wang et al., 2008;

Weisburd et al., 2017).

Finally, ABMs can be performed en masse relatively easily and quickly. Once the model has

been built, minor adjustments are simple to perform (Gilbert and Troitzsch, 2005; Townsley

and Birks, 2008). Conducting simulations that are equivalent to randomised controlled trials is

far simpler and cheaper than in the real world. It is generally well worth the cost of building

and running a model rather than trying to experiment on the actual system (Goldberg, 2004).

ABM for police deployment

A number of studies have focused on the use of ABMs for police intervention strategies. Bosse

and Gerritsen (2009) proposed an ABM approach to comparing various crime prevention strate-

gies such as moving guardians to a new location based on the density of criminals at that lo-

cation, or based on the assault rate in that location, for example. The strategies were tested

under different scenarios and the resulting rate of non-prevented assaults was compared. While

this study provided insights into the preventative effect of moving resources throughout the

force, only 9 potential strategies were tested. Birks and Townsley (2018) built a simple ABM to

illustrate the potential use of such models for prototyping police deployment strategies. They

conducted a series of simulated experiments using the model, including quantifying the impact

of various call prioritisation strategies, numbers of responders, and idling strategies when not

responding to calls. Their work aimed to demonstrate how ABM can be productively used in

the field of crime science as a means to support decision-making in complex systems.
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Overall, the ABMs implemented in these studies fulfil a purely descriptive function instead of

prescribing better patrol deployments. In addition, these studies are simplistic in nature. In

Birks and Townsley (2018) for instance, the environment is represented as a grid-based matrix.

This type of environment carries a number of shortcomings when modelling patrol activities

(see details below). Instead, network-based environments are arguably preferable to the study

of patrol deployment.

Generally speaking, the movements of patrols are dictated by the locations to which they go, and

the routes that they take to reach these locations. As a result, the street network constitutes an

essential part of the urban space and is likely to play a key role in both shaping patrol movement

patterns and influencing the distribution of demand itself (Davies and Bowers, 2019).

First, since streets vary substantially in terms of location and usage type, it is to be expected

that relationships may be observed between their properties and travel times. For instance,

motorways allow vehicles to traverse vast distances in a short amount of time while one-way

roads may force cars to take longer detours. As such, although response distance – the distance

between the incident and the patrol vehicle at time of dispatch – is sometimes used as a proxy for

travel time, it may not be applicable to all urban settings. Because they allow for the movement

of patrols along real road configurations to be modelled, network-based environments provide

a more accurate estimation of travel times than grid-based ones (Davies and Bowers, 2019).

Second, street networks have been shown to influence short-term dynamics of crime (Davies

and Bishop, 2013; Johnson and Bowers, 2014) as well as long-term crime patterns (Davies and

Johnson, 2015; Summers and Johnson, 2017). Steenbeek and Weisburd (2016) demonstrated

that 58-69% of the variability of crime could be explained at the street level. As such, two

streets in the same arbitrary areal unit (e.g. grid cell) may in fact experience very different

crime risks. Network-based models enable the study of demand at the street level. In the

context of police deployment, this can help in designing effective patrol routes that visit those

streets with the highest risk, instead of deploying units to randomly patrol broader perimeters.

Despite the advantages of network-based ABMs for modelling patrol deployment, few studies

have sought to use streets as the basic units (e.g. Chen et al., 2015; Chen et al., 2017; Wise and

Cheng, 2016). Of relevance to this thesis, Wise and Cheng (2016) built a network-based ABM

of police response to CFS in the London borough of Camden. Their goal was to offer a way to

accurately model the movement of officers by taking into account the complexity of daily tasks
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(e.g. patrolling, responding, transporting convicts back to station, etc.). Using the GPS data of

real police vehicles in Camden, they demonstrate that their model is better able to represent the

deterrent effect of patrols vehicles along the road network compared with a random patrolling

model. The model developed in this thesis (which is described in detail in Chapter 3) is inspired

in part by the results of this study, especially with regards to the changing roles of patrol units

throughout their shift – i.e. either patrolling (available), responding (unavailable), at the scene

(unavailable), returning to patrol beat to resume patrolling (available).

Summary

By allowing to incorporate the complexity and the dynamic aspect of policing, ABMs hold much

potential as a decision-support tool for designing police deployment in a scientific, evidence-

based manner. With ABMs, researchers can alter factors normally beyond their control, imple-

ment new interventions, and explore dose–response relationships beyond logistic and financial

constraints. However, merely using simulation models for descriptive purposes does arguably

not alone justify the effort to build them.

ABM provides a means for answering many ‘what-if’ questions, i.e. what happens with the

model behaviour when some parameters are changed. For instance, policy makers can observe

the effect on average response time of increasing/decreasing the number of deployed patrols. The

task of exploring a model’s parameter space and discovering the impact of different parameter

settings can be difficult and time-consuming. Exhaustively running the model with all combi-

nations of parameter settings is generally infeasible, but assessing model outcome by varying

one parameter at a time risks overlooking complex nonlinear interactions between parameters.

To find solutions to the PDOP, the exploration of model parameters needs to be automated with

a search algorithm. Such an approach, called simulation-based optimisation, involves combining

(1) a search algorithm used to guide the search for solutions with (2) a simulation model (an

ABM in the case of this thesis) used at each step to evaluate system outcome.

2.4.3 Simulation-based optimisation

The automated search algorithms which can be combined with a simulation model range from

exact methods, seeking to find the true optimal solution, to heuristic ones, aiming to instead

find ‘good’ solutions in a shorter amount of time.
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Exact algorithms

The most intuitive method to find optimal solutions is to exhaustively explore the search space

using a linear search (also called ‘brute force’). In a linear search, each of the parameters

associated with a solution (e.g. the number of patrols deployed to a given beat) is incremented

across the entire possible range of values to find the value leading to the best outcome. Because

they always find the optimal solution, these algorithms are referred to as ‘exact’ algorithms.

Exact algorithms guarantee to find the optimal solution in a finite amount of time. However,

it is noteworthy that such ‘finite amount of time’ may increase exponentially depending on the

dimensions of the problem (i.e. number of parameters). The PDOP is combinatorial, with

a large and complex parameter space as well as highly non-linear objectives and constraints.

This makes it too computationally expensive to run exact algorithms, as enumerating the entire

solution space would be infeasible in polynomial time (see Pham and Karaboga, 2000, for a

detailed discussion).

In such cases, a better approach to determine the optimal parameter values is to use heuristic

algorithms to conduct a guided search of the solution space rather than try all possible values.

Heuristic algorithms

Heuristic methods aim to find a good solution faster than their exact counterparts, in cases

where the latter are too slow or fail in solving the problem. Because they trade accuracy for

speed, they are particularly useful in solving computationally demanding problems. Heuristic

algorithms are thus well suited to the PDOP. Unlike exact algorithms, heuristics do not have

the guarantee of finding the optimal solution in a finite amount of time. Instead, they generally

find ‘good’ solutions in a ‘reasonable amount of time’ rather than finding the optimal solution.

In conventional heuristic search algorithms – such as the ‘hill climbing’ algorithm, new solutions

that are worse than the current best are usually rejected outright. However, by doing so, these

algorithms often get stuck in local optima as they always choose the best option available at

each step, even if that option may not lead to the best overall solution. As a result, they would

always miss a better solution separated from the current solution by a ‘hill’ (see illustration in

Figure 2.2). A sophisticated optimisation algorithm has to include a technique for temporarily

accepting a candidate solution worse than the current best solution. To this end, more recent

developments in police deployment problems will now be highlighted that have have focused on
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Figure 2.2: Diagram illustrating the difference between local and global optima in a problem’s
search space

the use of a type of heuristic algorithms called metaheuristics.

Metaheuristics algorithms

Unlike other heuristic techniques, metaheuristic algorithms are not greedy, i.e. they can accept

a temporary deterioration of the solution. This allows them to explore more thoroughly the

solution space, and thus reach a better solution without getting trapped in a local optimum.

As such, metaheuristics are well-suited to tackling computationally demanding problems such

as the PDOP.

Metaheuristics are general purpose algorithms that make few or no assumptions about the

problem being optimised (Talbi, 2009). They may be viewed as upper level general methods

that can be used as a guiding strategy in designing underlying heuristics (Talbi, 2009). Examples

of metaheuristics algorithms include simulated annealings (Kirkpatrick et al., 1983; Metropolis

et al., 1953), tabu searches (Glover, 1986), particle swarm filters (Kennedy and Eberhart, 1994;

Shi and Eberhart, 1998) and evolutionary algorithms (Holland, 1984).

Tabu search algorithms avoid being trapped in local optima by building a tabu list that forbids

the selection of already visited solutions and their neighbourhoods (similar solutions). Intro-

duced by Metropolis et al. (1953), then first applied to optimisation problems by Kirkpatrick

et al. (1983), simulated annealing is a stochastic search method analogous to the annealing tech-

nique in metallurgy. Evolutionary algorithms are a family of population-based metaheuristics

inspired by Darwinian evolutionary theory. They are typically designed to mimic the phe-

nomenon of natural selection using mechanisms such as reproduction, mutation, recombination,
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and selection. The most popular type of evolutionary algorithm is the Genetic Algorithm (GA),

which is the chosen metaheuristics in this study (see Chapter 6 for details).

Much of past research on police deployment has focused on the application of metaheuristics for

equation-based problems. In solving LP locationing problems, studies have used tabu searches

(Adenso-Dı́az and Rodŕıguez, 1997; Berman et al., 2009; Chen et al., 2018; Gendreau, 1997;

Hansen and Mladenović, 1997; Leigh et al., 2019; Mladenović et al., 2003; Rolland et al., 1997),

simulated annealings (Chiyoshi and Galvão, 2000; D’Amico et al., 2002; Murray and Church,

1996), or GAs (Alp et al., 2003). GAs have also been combined to GIS to optimally locate

ambulance facilities in Niigata, Japan (Sasaki et al., 2010) and hospitals in Hong Kong (Li and

Yeh, 2005), for example.

Of relevance to the spatial positioning aspect of the PDOP, Chen et al. (2018) formulated

the problem of patrol route design as a Min-Max Multiple-Depot Rural Postman Problem

(MMMDRPP) and developed a tabu-search-based algorithm to solve it. However, the study

only considers individual aspects of the PDOP described in this thesis, which is composed of

both (1) a staffing problem (how many patrols to deploy) and (2) a spatial positioning problem

(where to deploy them). Furthermore, the study relies on an equation-based model, and as a

result, lacks the high-fidelity modelling that can be gained by using an ABM.

The methodology chosen in this thesis is a simulation-based optimisation one, combining an

ABM with a metaheuritic search algorithm. This combination harnesses both (1) the fidelity of

individual-level modelling and (2) the efficiency of a metaheuristic search for optimal solutions to

the PDOP. In what follows, the simulation-based optimisation approach is introduced alongside

examples of relevant studies in which this methodology has previously been used.

Simulation-based optimisation of police deployment

The simulation-based optimisation approach has gained wide acceptance among researchers.

Outside of the policing context, Baesler et al. (2015) applied a simulation-based optimisation

approach to operating room scheduling using simulated annealing. A multi-objective simulation-

based optimisation approach using simulated annealing was also presented by Mattila and Virta-

nen (2014) for the maintenance schedule problem of a fleet of fighter aircrafts. Simulation-based

optimisation approached using GAs specifically have been applied to a variety of problems such

as scheduling problems (Castiglione et al., 2007; Geyik and Dosdoğru, 2013; Korytkowski et al.,
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2013), designing a hospital management system (Helm et al., 2010), a shop floor layout (Tomp-

kins and Azadivar, 1995), or a process plant (Faccenda and Tenga, 1992), as well as optimising

steelworks (Paul and Chanev, 1998).

In the policing world, the simulation-based optimisation approach has primarily been employed

in studies that seek better designs of patrol routes. Reis et al. (2006) developed a program called

GAPatrol to assist in the planning of patrol routes. The program finds hotspots iteratively

through the construction of visual maps and proposes various sets of routes. Each set of routes

gives rise to a series of simulation executions using a grid-based ABM to evaluate the crime

prevention performance of the routes. In the ABM, a set of criminals frequently try to commit

crimes while officers try to prevent crimes. A GA is employed that seeks to optimise the patrol

routes by minimising the number of crimes occurring throughout the force. To the extent

of this author’s knowledge, their study is the only one in the field of police deployment to

utilise a simulation-based optimisation approach combining a GA and an ABM. However, their

program evaluates a set of patrol routes through a simplistic grid-based models. As previously

mentioned in this section, these models, unlike network-based ones, are unable to fully emulate

the police system in a realistic manner. Furthermore, their study only focuses on the proactive

effectiveness aspect of the PDOP and does not consider the reactive aspect of policing nor the

question of efficiency that is key when deploying patrols.

Chen et al. (2015) developed a strategy called BAPS combining Bayesian methods and an ant

colony algorithm to solve the problem of police patrol routing. They devises a process to design

a patrol route organically using a Bayesian method to determine which hotspot to patrol in the

next stage. This decision relies partly on a measure of pheromone level in order to stop repeat

hotspot visiting within short spaces of time whilst also tracking when another visit is required.

Finally, they use a simple network-based ABM to assess the system performance. However, the

model could only optimise the patrol route of a single agent at a time. Chen et al. (2017) thus

proposed an improvement upon Chen et al. (2015) by including multiple agents to the ABM

and tested an emergency scenario in which patrols in the neighbourhood of an emergency are

required to interrupt their patrolling to respond to it.

The above studies have primarily focused on the design of patrol routes that are beneficial to

deterring crimes. However, this only constitutes one aspect of the PDOP, that is the proac-

tive element of policing previously mentioned in Section 2.3. These studies do not consider
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minimising the number of patrols to deploy (i.e. efficiency) or positioning these patrols in a

manner that also minimises response time to arising incidents. To the extent of this author’s

knowledge, the questions of staffing and positioning patrols with regards to reactive demand

have primarily been studied with LP (see part on equation-based models above), and have often

been the subject of individual studies rather than being considered together.

Figure 2.3: Methodology of this thesis: a simulation-based optimisation combining a GA and
an ABM

In this thesis, a simulation-based optimisation approach is developed to explore the PDOP. GA is

amongst the few metaheursitic algorithms capable of handling the complexity and requirements

of simulation-based optimisation, and it has proven particularly useful for multidimensional

optimisation problems where there are several variables to be optimised (Reeves and Rowe,

2002). As such, it is the GA that is the chosen optimisation method in this thesis. As illustrated

in Figure 2.3, in the methodology chosen in this thesis, the GA conducts a search of the problem

space by repeatedly evaluating candidate deployment configurations through the ABM and

selecting those with the best performance. Further insights into the algorithm details will be

provided in Chapter 6.

2.4.4 Summary: existing research on modelling and optimising patrol de-

ployment

This section has introduced the various techniques that have been developed to study police

patrol deployment problems and has listed the studies in which these techniques have previously
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been employed. Table 2.4 summarises the 6 studies that are most relevant to this research and

highlights their contribution(s) to the exploration of the PDOP.

Overall, previous relevant studies have either (1) created a realistic modelling of police activities

(Wise and Cheng, 2016) but without seeking to optimise police deployment or (2) sought to

optimise police deployment but (a) considered only some aspects of the PDOP such as patrol

route planning (Chen et al., 2018; Chen et al., 2015; Chen et al., 2017; Curtin et al., 2010; Reis

et al., 2006) or staff rostering (Edleston and Bartlett, 2012) and (b) used simplistic models of

police activities such as equation-based models (Chen et al., 2018; Edleston and Bartlett, 2012;

Leigh et al., 2019) or ABMs with a grid-based environment (Reis et al., 2006). Additionally,

these optimisation models were often concerned with either proactive or reactive policing (with

the exception of Leigh et al. (2019)) and their objective function only included either efficiency

or effectiveness as the sole goal. Considering these gaps in the literature, the next section

highlights the contribution of this thesis in exploring the PDOP.
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2.5 Contributions of this thesis

In this section, the specific contributions of the research will be outlined. These can be divided

into three categories: 1) theoretical contributions to police patrol deployment problems with

the formulation of the PDOP, 2) methodological contributions to modelling police patrol and

response activities 3) methodological contributions to optimising police patrol deployment.

2.5.1 Theoretical contributions to police patrol deployment problems with

the PDOP

Previous studies have typically considered individual aspects of police deployment in isolation.

For example, how many officers are required (queuing models), where to send officers to provide

the best coverage of reactive demand (coverage models, p-median models) or which patrol routes

provide the best deterrence (Chen et al., 2018; Chen et al., 2015).

However, police effectiveness and efficiency are conflicting interdependent measures which should

arguably not be considered in isolation when making police deployment decisions. Additionally,

most studies (apart from Leigh et al., 2019) have focused on optimising either reactive effec-

tiveness or proactive effectiveness. These two metrics are also conflicting and interdependent

as officer time is limited and split between either responding to calls or patrolling.

This study proposes a new formulation of the problem of police deployment which takes into

considerations these conflicting interdependent metrics. The formulated PDOP is concerned

with minimising operational costs (efficiency) while optimising system performance (effective-

ness). More specifically, the PDOP seeks to identify the best deployment configuration(s) to (1)

minimise the number of patrols, (2) optimise reactive effectiveness (e.g. response time, number

of ‘failed’ responses) and (3) optimise proactive effectiveness (e.g. deterrence score).

2.5.2 Methodological contributions to modelling patrol activities with an

ABM

To the extent of this author’s knowledge, the few existing studies that have attempted to consider

the multiple aspects of police deployment have done so using equation-based LP models (in

particular Leigh et al., 2019). There is thus a gap in the literature relating to building models

that accurately capture the complexity of patrol activities (apart from Wise and Cheng, 2016).

In an attempt to further work in exploring the police patrol deployment problem – a context for
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which simulation (of the like of ABM) offers much greater flexibility and realism than closed-

form models – this thesis proposes to build a high-fidelity model of patrols activities.

In order to emulate the real behaviour of police patrols, the ABM built in this thesis features:

1. the real road network for a spatially explicit model in which the driving time can be

realistically estimated

2. individual agents for modelling heterogeneity and individual-level behaviours: e.g. pa-

trolling, responding to emergency incidents

This ABM, which provides complete control and flexibility over the behaviour of individual

agents, is designed for the prototyping and assessment of police deployment strategies in a

realistic-looking world environment, and allows researchers to evaluate their likely performance

under various demand scenarios.

2.5.3 Methodological contributions to optimising police patrol deployment

In order to explore solutions to the PDOP in acceptable time, this thesis proposes a simulation-

based optimisation approach which combines an ABM with a GA. This approach, which is

novel in the field of policing, harnesses the high-fidelity modelling offered by ABMs along with

the high-efficiency of GA searches in complex multimodal problems of the likes of the PDOP.

There is a gap in the methodological literature relating to the combined application of these

two powerful techniques to the problem of police deployment.

The aspiration is to work towards a decision-support tool which offers much flexibility, provid-

ing any police agency with a portfolio of configurations from which to choose based on their

particular priorities. Policy makers may thus choose tradeoffs between proactive versus reactive

effectiveness or between effectiveness and efficiency.
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Chapter 3

Building an agent-based model of

patrol activities

3.1 Introduction

Chapter 2 introduced the challenges of police deployment and formulated the PDOP, which

is the problem that this thesis focuses on. As was demonstrated in Chapter 2, agent-based

modelling is arguably amongst the best suited methods available to explore patrol deployment,

as it allows for the complexity of police patrol activities and responsibilities – i.e. patrolling

and responding to calls – to be modelled at the individual level.

This chapter describes how the ABM central to this thesis was designed and built. The model

– developed in the Python language – aims to simulate the activities of motorised police patrols

throughout the course of their shift, with the view to exploring the effect of various deployment

configurations on police performance. The code for this ABM is available at https://github.

com/mednche/police-deployment-optimisation/src/ABM.

A visit to a command and control centre at Durham Constabulary provided a firsthand look at

how police agencies typically operate (in a UK context), allowing for a deeper understanding of

the workflows and challenges faced by dispatchers. This qualitative research was instrumental in

shaping the design of the model, as it provided a foundation for the incorporation of real-world

scenarios and considerations.

The ABM will be described according to the latest guidance from the “Overview, Design con-
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cepts and Details” (ODD) protocol (Grimm et al., 2006; Grimm et al., 2020) which is one of the

most popular methods for outlining and documenting ABMs. The aim of such a protocol is to

allow researchers to share and reproduce their models via a standardised format. The protocol

consists of three main components:

1. Overview : providing an overview of the model (see Section 3.2).

2. Design concepts: detailing which of the common ABM design concepts are relevant to the

model (see Section 3.3).

3. Details: elaborating on the internal mechanics of the model (see Section 3.4).

3.2 Overview

3.2.1 Aims

The ABM simulates a fleet of motorised police units, which patrol along designated routes and

are dispatched by a centralised system in response to incoming calls for service. The model was

built to serve as a performance evaluation tool for police resource deployment configurations,

with the view to comparing multiple configurations over the same demand scenarios.

More specifically, the purpose of the ABM is to study how deployment configurations impact

police reactive and proactive effectiveness. The effectiveness can be assessed using various met-

rics (as discussed in Chapter 2) depending on the type of policing being considered. For reactive

policing, the metrics used in this model are the average response time and percentage of ‘failed’

responses (those for which response time was greater than a threshold). For proactive policing,

a score of crime deterrence through patrolling is created to evaluate proactive effectiveness (see

details below).

Patterns for model usefulness

As mentioned in Chapter 2, accurately measuring response time is key to improving reactive

effectiveness. As such the model’s usefulness is here evaluated by its ability to produce realistic-

looking patterns of response time. This is done by comparing patterns produced by the ABM

with those observed in real-world data collected for a given police force (Detroit Police Depart-

ment in the case of this thesis). The following simple and general population-level patterns are

used:
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• Pattern 1: The simulated average incident dispatch time throughout a time period aligns

with the average incident travel time observed in the real system.

• Pattern 2: The simulated average incident travel time throughout a time period aligns

with the observed average incident travel time observed in the real system.

More details on the validation of the ABM using these patterns are provided in Chapter 5.

3.2.2 Entities and state variables

To represent the context in which police patrol activities are conducted, the model is made up

of the following four entities:

• The environment: this is the static model environment for a given police force in which

agents patrol and respond to CFS incidents. It is made up of:

– the police precincts in which agents respond to CFS;

– the police patrol beats to which agents are deployed for patrolling;

– the road network, represented in the model as a graph along which agents move,

accompanied by a dataset describing each road segment (type of road, maximum

speed limit, etc.).

• The agents: these entities represent the motorised police patrol units.

• The dispatcher: this entity represents the centralised police command and control centre

where calls are received, triaged and assigned to available patrol units.

• The occurring CFS incidents

The road network

The model is designed to be extensible to any urban environment and allows the user to choose

a specific locality. The road network for this chosen locality is downloaded from OpenStreetMap

and automatically converted to a simplified NetworkX graph using the Python package OSMNX

(Boeing, 2017). In graph theory, a graph is a collection of points, called nodes (or vertices), and

lines connecting those points, called edges. In the NetworkX graph, the nodes correspond to

intersections and the edges represent segments of uninterrupted road between two intersections.

When downloading a road network in OSMNX, specifying the option network type = ‘drive’
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creates a directed graph in which edges can only be used in a certain direction. In such a graph,

one-way roads can be represented as a single unidirectional edge, while two-way roads require

two unidirectional edges (one for each direction).

OpenStreetMap was chosen in this thesis as it is an open source dataset in comparison to other

alternatives (e.g. the Integrated Transport Network). Although the crowd sourced nature of

the dataset means it is harder to control for a consistent quality, its free accessibility brings

significant reproducible benefits in a research environment, especially when combined with the

convenience of the OSMNX package.

In a typical graph, nodes are not spatially bounded, but defined in relation to their neighbouring

nodes. As a result, the graph does not contain information concerning the spatial location of

the real world intersection that are represented by the graph nodes. In order for the graph to

be embedded into 2-D space, OSMNX couples the graph with two datasets: one for its nodes

and one for its edges (see details in Table 3.1 for nodes and Table 3.2 for edges).

The attributes of the graph nodes that are relevant to the model are summarised in Table 3.1.

In particular, the node dataset contains information pertaining to the spatial location of the

corresponding road intersections in the form of a pair of spatial coordinates. This attribute is

used in the model to identify the closest graph node to each occurring CFS incident.

Variable name Type Description

osmid Integer Unique OpenStreetMap id for the node
geometry Point Pair of lat-lon coordinates representing the road intersection cor-

responding to the graph node

Table 3.1: Attributes of the graph nodes.

The road network is represented in the model as a directed graph. In this type of graph, an

edge runs from a start node (called u in OMSNX) and an end node (called v in OSMNX).

Table 3.2 summarises the attributes of the graph edges – and the road network segments they

represent – that are relevant to this research. Those attributes are composed of information

extracted from the OSMNX edge dataset (osmid, u, v, geometry, oneway, length, speed kph), to

which the attributes patrol beat and density hist inc are added prior to running the model (see

Section 3.4.1 for details on how these are calculated).
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The geometry attribute of each edge allows one to faithfully recreate the true spatial shape

and location of the road segment represented by each edge. This attribute takes the form of a

linestring object: a list of at least 2 points (which are themselves pairs of latitude and longitude

coordinates). This attribute is used in the model to identify the patrol beat that each edge of

the road network belongs to.

Variable name Type and units Description

osmid Integer Unique OpenStreetMap id for the edge
u Integer The osmid of the edge’s start node
v Integer The osmid of the edge’s end node
oneway Boolean Whether the road segment is a one-way road
geometry Linestring List of points (which are themselves pairs of lat-lon

coordinates) spatially representing the road segment
length Float; m Length of the road segment
speed kph Float; km/h Free-flow travel speed limit on the road segment

travel time mins Float; mins Driving time required to travel along the road segment
based on length and speed kph

patrol beat String Name of the patrol beat in which the street segment
is located

density hist inc Float Density of historical crimes that occurred on the road
segment (see details in Part 3.4.2)

Table 3.2: Attributes of the graph edges. Top: attributes directly extracted from OSMNX edge
dataset. Bottom: attributes manually added to the dataset.

The precincts

In addition to the road network, the model environment is compartmentalised in a number

of areas called precincts. These areas, which are sometimes called districts or divisions by

some police agencies, are the main unit of police organisation within which response units are

contacted (typically over the radio) and managed (see Chapter 2) in the context of dispatching.

In the model, precincts represent exclusive areas within which agents may be dispatched to

occurring incidents. In this intra-dispatching context, agents are not dispatched to incidents

occurring in neighbouring precincts, even if there are no available agents in that precinct.

Precincts are not represented as explicit entities in the model. Instead, they are implied through

other entities such as incidents and patrol beats. In the data sources provided to the model

(see Subsection 3.4.1), incidents and patrol beats come with a precinct column indicating the

precinct in which they are located. As such, when an agent is assigned to a patrol beat upon
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initialisation, they indirectly get assigned the corresponding precinct for the duration of the

shift.

The patrol beats

While precincts stand as the main unit of police organisation, it is the patrol beats – which are

comprised within precincts – that represent the geographical unit at which deployment decisions

are typically made by police agencies ahead of each new shift starting. As discussed in Chapter

2, police deployment decisions involve deciding which patrol beats should be patrolled, given a

number of available responding units. Patrol beat areas are typically designed to be patrolled

by one unit. As such, in the model, a maximum of one agent may be assigned to each patrol

beat.

Variable name Type Description

name String Name of the patrol beat
precinct String Name of the precinct the patrol beat belongs to
geometry Polygon List of linestring objects spatially representing the

shape of the beat
centroid node Integer The osmid of the node closest to the spatial centroid

of the beat
patrol route List of node osmids Ordered list of node osmids in the beat to be visited

by a patrolling agent

Table 3.3: Attributes of the police patrol beats

In the model, patrol beat entities are composed of a number of attributes (summarised in Table

3.3). These attribute include the geometry of the beat (a polygon shape) and a patrol route

visiting a number of pre-defined streets (see Subsection 3.4.2 for how these streets are selected),

amongst others.

CFS incidents

The model was built with the view to being used to evaluate the performance of various police

deployment configurations for a particular demand scenario. A demand scenario is here modelled

by a dataset of CFS incidents occurring in the police force during the user-specified time period

(e.g. Friday 3rd December, 2019 between 3pm and 12am). These incidents, which can be

historical or synthetic ones (emulating future demand for example), occur as events during the

simulation, which trigger the dispatching of agents.
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Variable name Type and units Description

call datetime Date-time Date and time for the call for service coming in
node Integer The osmid of the graph node that is closest to the

incident location
precinct String Name of the precinct in which the incident occurred
resolution time Float; mins The time period required to resolve the incident
time being tended Float; mins The current time spent by at least one agent at the

scene of the incident
dispatch time Float; mins The current time interval between the incident’s

call datetime and the moment an agent is dispatched
to the incident

travel time Float; mins The current time interval between the moment an
agent is dispatched to the incident and the moment
an agent arrives at the scene

status Integer The current status of the incident. As part of its life
cycle, an incident evolves through 4 sequential sta-
tuses: (1) ‘unallocated’; (2) ‘allocated unattended’;
(3) ‘being attended’; (4) ‘resolved’

agent Agent object The agent (if any) currently dispatched to the inci-
dent. ‘None’ otherwise.

Table 3.4: Attributes of the CFS incidents

The attributes pertaining to the CFS incidents are summarised in Table 3.4. Among these

attributes, some are static (their value is fixed throughout the simulation) such as call datetime,

node, precinct, resolution time, while others are dynamic (their value changes as the simulation

runs) such as dispatch time, travel time, status and agent. Prior to running the model, the

spatial coordinates indicating the discrete location of each incident (pair of lat-long coordinates)

are translated into the nearest graph node. This allows for incidents to be fully embedded into

the road network so that routing calculations can be performed more efficiently while the model

runs. As will be shown for the example of Detroit (see Chapter 4), graph edges segments tend

to represent small road segments in urban settings and as such, this procedure is not expected

to impact model validation nor the results of the experiments.

Incident response time is a key performance metrics in the model for evaluating police reactive

effectiveness. It is made up of the following two components, as illustrated in Figure 3.1 showing

an incident’s life cycle:

1. the incident dispatch time: the time taken to dispatch an agent from the moment the

call is received. By measuring the dispatch time from the moment the call comes in (as

opposed to when it ends), the model seeks to emulate the fact that real dispatchers may
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send resources while the call is still ongoing.

2. the incident travel time: the time taken by an agent to reach the scene of their assigned

incident from the moment they are dispatched.

Figure 3.1: Time intervals in the incident’s life cycle from call to resolution

The model described in this chapter is concerned with emergency incidents only (highest priority

grade). It would not be appropriate to model incidents of multiple priorities in this early

version of the model, as it would introduce too much complexity through incident hierarchy.

Different incident priorities require different types of police response, with lesser priority ones

often not involving police dispatch as they are often resolved via phone call. Furthermore, when

responding to these lesser priority incidents, police vehicles are subject to traffic congestion and

rules (e.g. traffic lights) as they are not able to use blue lights and sirens. For these reasons,

non-emergency incidents are not included in this version of the model.

As a direct consequence of excluding non-emergency incidents from the model, the workload of

patrols will be lower in the model than they would be in the real world and as a result. As a

result, it is worth noting that performance metrics outputted by the model cannot be directly

compared to those from the real world, but instead are intended to be compared across multiple

configurations simulated in vitro.

48



CHAPTER 3. BUILDING AN AGENT-BASED MODEL OF PATROL ACTIVITIES

The agents

The ABM is composed of artificial agents representing motorised police units that patrol and

are dispatched to occurring CFS incidents. An agent in the model thus represents a vehicle

rather than an individual officer. As previously mentioned in Chapter 2, the behaviour and

movement of real police patrols are constrained by the environment (road network, precincts

and patrol beats). The model assumes that agents move along the road network at the speed

limit allowed on each road segment. They patrol within the boundaries of their designated

patrol beat (assigned upon initialisation) and may only be dispatched to incidents occurring in

their precinct.

Variable name Type Static/dynamic Description

patrol beat String Static Name of the patrol beat in which
the agent should patrol.

precinct String Static Name of the precinct in which the
agent should respond to CFS.

pos Integer Dynamic The osmid of the graph node on
which the agent is currently lo-
cated.

status String Dynamic Whether the agent is idle, travel-
ling to an incident or already at the
scene of an incident.

incident Incident object Dynamic The incident that the agent is cur-
rently responding to (if any).

route List of nodes Dynamic The current route along which the
agent is travelling (either to an inci-
dent node or along a patrol route).

time on node Float Dynamic The time the agent has spent on
current node (either a node along
their route or the incident’s node
when at the scene).

crime deterrence Float Dynamic The agent’s score of crime deter-
rence through patrolling.

Table 3.5: Attributes of the agents

Agents are characterised by a number of attributes as summarised in Table 3.5. One important

attribute of the agents is their status which dictates which actions they perform when activated.

An agent’s status can take up one of three values:

• ‘idle’: the agent is patrolling and is available to be dispatched to occurring incidents;
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• ‘travelling’: the agent has been dispatched and is currently travelling to an incident;

• ‘at scene’: the agent has reached the scene of the incident and is currently tending to

it. Agents stay at the scene of an incident for the duration of the incident’s attribute

resolution time. While the dispatcher may dismiss a travelling agent (whose status is

‘travelling’), it cannot do so once the agent has reached the scene (agent status is ‘at scene’)

as they are already tending to an incident.

Chapter 8 will discuss how the model might be extended in future versions to represent indi-

vidual officers – rather than vehicles – in order to examine the staffing implications associated

with varying numbers of officers onboard vehicles.

The dispatcher

The command and control room where dispatching decisions are made in real-world policing

is simplified in the model as a single dispatcher whose role is to dispatch available agents to

each incident that remains unattended. The dispatcher seeks to match allocated incidents to

available agents (i.e. agent’s status is ‘idle’). The attributes of the dispatcher are summarised

in Table 3.6 and further details on the dispatching mechanism are provided in the submodels

in Subsection 3.4.2.

Variable name Description

incident queue Ordered list of unallocated incidents
avail agents List of available agents throughout the force

Table 3.6: Attributes of the dispatcher

3.2.3 Model scales

Spatial scale

Building the model environment for a given police force requires importing the road network

and the boundaries of the patrol beats into the model. The road network of any locality of

choice can easily be imported as a NetworkX graph using the OSMNX package, as previously

described. This means that, providing adequate patrol beat boundaries are available, the model

can be used to emulate any chosen police force. As such, the spatial scale of the model is not

fixed but instead depends upon the chosen police force.
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In the real world, the real road network, patrol beats and incidents are all two-dimensional

spatial elements (i.e. they possess latitude and longitude coordinates). Prior to running the

model, however, these entities are incorporated into the NetworkX graph as nodes and edges (see

Subsection 3.4.1 for details). In this process, the real road network becomes a graph of nodes

(intersections) and edges (road segments); the patrol beats are incorporated as their centroid

(graph node) and a subset of streets to patrol within them (graph edges); and the location of

each incident is converted to the closest node on the graph. As such, once running, the ABM

operates entirely at the graph scale, independently of spatial coordinates.

Temporal scale

The model runs at a discrete time step of one minute (although this value can easily be changed).

For instance, one time step would represent the time between 14:00-14:01. The time period for

which to run the model is specified by the user through the start datetime, and end datetime

variables (see details in Subsection 3.4.1). Thus, there is no absolute concept of temporal scale

in the model. As an example, in the analyses conducted in this thesis on the case study of

Detroit, the model is run for a length of time equivalent to a police shift (typically 9 to 10

hours).

3.2.4 Process overview and scheduling

Figure 3.2: Three-step model scheduling

51



3.2. Overview

As illustrated in Figure 3.2, the scheduling of each model step is composed of three consecutive

processes:

1. Dispatcher’s step:

(a) The dispatcher receives a list of incidents that occurred during the time step and

adds them to the incident queue (the queue of unallocated incidents).

(b) The dispatcher executes the “distribute incidents” submodel (detailed in Subsection

3.4.2), in which it distributes each incident in the incident queue to the closest avail-

able agent. When an incident gets assigned to an agent through this submodel, its

agent attribute is updated accordingly and its status is changed from ‘unalloacted’

to ‘allocated unattended’.

(c) For each agent chosen for dispatch in step (b), the dispatcher executes its “dispatch

agent to incident” submodel (detailed in Subsection 3.4.2), in which the agent’s

attributes route and incident are updated and their status becomes ‘travelling’.

2. Agents’ step: all agents are activated as illustrated in Figure 3.3. Agents start each step

with a time allowance equal to the step time that they can use to perform one or multiple

actions in the following order, depending on their status:

• status is ‘travelling’: travelling agents execute their “move” submodel (detailed

in Subsection 3.4.2) in which they move along their route towards the node of their

assigned incident. As they move along the route, their attribute pos and route get

updated. If they reach the scene of the incident in this model step, the status of the

incident becomes ‘being attended’ and their own status is updated to ‘at scene’.

• status is ‘at scene’: agents at the scene of their assigned incident execute their

“stay at the scene” submodel (detailed in Subsection 3.4.2) in which they remain

on the incident node until the incident has been attended for the duration of the

incident’s resolution time. When that is the case, their status is updated to ‘idle’.

• status is ‘idle’: idle agents execute their “patrol” submodel (detailed in Subsection

3.4.2) in which they move (using the “move” submodel) along the patrol route of their

designated patrol beat. As they do so, their attributes pos and route are updated.

3. Incidents’ step: the incident’s dispatch and travel times are updated based on its status:
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• status is ‘unallocated’: incident dispatch time increases by one step time unit (i.e.

one minute), since it has not been allocated to an agent by the dispatcher in this

time step.

• status is ‘allocated unattended’: incident travel time increases by one step time

unit (i.e. one minute), since no agent has reached the scene in this time step.

Figure 3.3: Flow diagram of an agent’s activation step

The order of these steps is important. At each step of the model, the dispatcher activates
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first to distribute incidents to available agents. This is done prior to activating the agents,

because subsequent agent actions depend on the agent’s status which may be updated through

the dispatcher’s step. The status of an agent is updated in a cyclic fashion as illustrated in

Figure 3.4.

Figure 3.4: Flow diagram of the life cycle of an agent’s status

As later detailed in Subsection 3.4.2, the dispatcher distributes incidents in order of First In

First Out (FIFO). This means that the dispatcher first attempts to dispatch an agent to the

oldest incident in the queue (looking at the incident attribute call datetime).

Agents only interact with each other via the intermediate of the dispatcher whose decisions

regarding incident distribution ultimately affect the status of the agents (see Section 3.3). As

such, once the dispatcher has performed its step (distributed the incidents), the agents have no

interactions with each other. There is thus no need to shuffle the agents before their activation

in the agents’ step. Consequently, agents are activated by a basic scheduler: one at a time, in

the order they were added.

When activated, each agent may perform a series of actions (depending on their current status),

in an order that mimics the behaviour of real police responders. For instance, if a travelling

agent reaches the scene of their assigned incident within the time step, they can start to engage

in the “stay at scene” submodel for the duration of their remaining time allowance (see details

in Subsection 3.4.2). Similarly, if an agent whose status was ‘at scene’ resolves their assigned

incident within the time step, they can start to engage in the “patrol” submodel (detailed in
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Subsection 3.4.2).

Finally, in the incidents’ step, the dispatch time and travel time for each incident is updated

depending on the status of the incident. This step is performed last, as both dispatcher and

agents may update the status of some incidents in their respective steps. The status of an

incident is updated through four consecutive stages, beginning with the call coming in and

ending with its resolution (as illustrated in Figure 3.5).

When an incident occurs, its status is set to ‘unallocated’ and its dispatch time - i.e., the time

duration until the dispatcher finds at least one available agent to dispatch to the incident (see

Figure 3.1) - begins to increase in increments of one minute every step. If no dispatch is ever

made in the simulated time period, the dispatch time keeps on increasing until the end of the

simulation.

Figure 3.5: Flow diagram of the life cycle of an incident’s status

As soon as at least one agent is dispatched to the incident, the incident’s dispatch time stops
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increasing. The travel time – i.e. the time duration until an agent reaches the scene of the

incident (see Figure 3.1) – begins to increase in increments of one minute per step until an

agent reaches the scene.

To illustrate, consider the following example: a call comes in at 16:24 but since no agents are

available in the precinct, no dispatch is made yet. After 6 model steps (i.e. simulation time is

now 16:30), an agent becomes available and is dispatched to the incident by the dispatcher. The

final dispatch time for the incident is thus recorded as 6 minutes. It takes the agent 3 model

steps to reach the scene, starting from the current model step at 16:30. When they arrive at the

scene at 16:33, the incident’s travel time is logged in as 3 minutes. The agent is then required

to stay at the scene for the incident’s resolution time duration, which is determined by the

incident (e.g. 20 minutes).

3.3 Design concepts

Following the standard ODD structure, the following section outlines the key design concepts

which underlie the model developed.

3.3.1 Basic principles

Dispatcher’s method of incident distribution

As previously mentioned, the policing model that this thesis focuses on is that which is used in

the UK and the US. As a result, the specific operational details described in this section may

vary between countries.

In real-world policing, the severity of each incident (call) arriving to a command and control

centre is first assessed by a call handler in order to assign a priority level to the incident. In

England and Wales, this assessment is based on a protocol called THRIVE (Threat, Harm,

Risk, Investigation opportunities, Vulnerability of the victim and Engagement level required to

resolve the issue) and includes a number of factors such as whether the call relates to a crime,

whether the individuals involved are vulnerable and whether there is a risk to public safety

(College of Policing, 2021). Lower-priority calls, which include the reporting of stolen goods,

traffic and parking disputes, and other less dire matters, may be held in queue (Edleston and

Bartlett, 2012). Emergency calls, i.e. dangerous in-progress crime or linked with life-threatening
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injuries, on the other hand, require immediate response from the closest and most appropriate

available unit (Edleston and Bartlett, 2012).

In most police agencies, dispatchers are assisted by a CAD system, which monitors the location

and status of units in the field using GPS trackers on vehicles (McEwen et al., 2004). The

CAD system provides dispatchers with recommendations on units for assignment based upon

the event location, call type, and unit availability. Calls are then dispatched first by priority

and then by the time received.

In the model developed for this thesis, the behaviour of the dispatcher revolves around the

objective of keeping response time to individual incidents as low as possible, with the view to

avoiding ‘failed responses’ (i.e. where response time is longer than a defined threshold). Since

response time is composed of (1) dispatch time and (2) travel time (as explained in Section 3.2),

the dispatcher aims to keep both attributes as low as possible for all incidents when executing its

“distribute incidents” submodel (see Subsection 3.4.2). First, incident dispatch time is reduced

by processing incidents in a First In First Out fashion so that no incident stays in the queue for

an excessive length of time. Second, the dispatcher minimises incident travel time by choosing

to dispatch the available agent that is closest (in terms of driving time) to the incident.

Patrolling hotspots

In real-world policing, patrol units which are not currently dispatched to an incident do not

remain idle but instead typically patrol an area with the view to preventing crime. Expert

consultation with a UK police force revealed that most police organisations in England and

Wales use a targeted patrolling approach – as opposed to random patrolling. As such, although

several idle agent behaviours were explored upon building the model – such as agents remaining

stationary and returning to their police station – it is the ‘patrol’ behaviour that was eventually

chosen, as it is more in alignment with real-world policing practices.

As mentioned in Chapter 2, hotspot patrolling has been shown in several studies to bring

tangible benefits in reducing crime (see, e.g., Braga, 2002; Braga and Weisburd, 2010; Braga,

2001; Braga et al., 1999; Eck, 1997; Eck, 2002; Ratcliffe et al., 2011; Skogan and Frydl, 2004;

Weisburd and Eck, 2004). Indeed, in their study on The Hague, Steenbeek and Weisburd (2016)

found that 58–69% of the variability of crime can be attributed to individual street segments,

with most of the remaining variability at the district level. As such, in the model, agents patrol
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specific ‘hot’ streets in their assigned patrol beat with the view to providing the most crime

deterrence. These streets form part of a patrol route along which agents drive when idle. Details

on how these streets are identified and on the agent patrolling behaviour are provided in the

submodel descriptions in Subsection 3.4.

3.3.2 Emergence

There are three main outcomes of the model:

• the average response time across all incidents that were reached by an agent during

the simulation;

• the percentage of ‘failed’ responses: the percentage of all incidents that were unre-

solved or were resolved but for which the response time exceeded a pre-defined threshold;

• the total crime deterrence score produced by agents throughout the simulation in

their idle time.

The percentage of ‘failed’ responses emerges from prolonged dispatch times and travel times to

individual incidents. As explained below, these times are themselves affected by the combination

of two factors: (1) the initial deployment configuration (i.e. how many agents are deployed and

to which patrol beats?) and (2) the CFS demand (i.e. the volume of occurring CFS events).

In particular, the dispatch time of each incident emerges from:

1. The cumulative number of agents which are deployed (in the precinct and more generally

in the force if using inter-sector dispatching): more agents deployed equates to a higher

likelihood to find an available agent to dispatch to a given incident, ultimately leading to

a shorter dispatch time.

2. The number of incidents occurring in the precinct: more incidents lead to a bigger queue

of incidents to distribute to available agents.

Similarly, the travel time of each incident emerges from:

1. The geometry of the precinct: larger precincts (and those with odd shapes) may result in

longer travel times.

2. The initial deployment configuration: an idle agent patrolling nearer to a CFS demand

hotspot may get to the scene faster when dispatched, thus leading to a shorter incident
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travel time.

3. The infrastructure of the road network (edge’s attributes oneway and travel time mins).

Some road networks may require the agent to take a detour due to one-way roads, or drive

at a slower speed (due to speed limit on the segment), leading to a longer incident travel

time.

Finally, the amount of crime deterrence performed by an agent emerges from:

1. The initial deployment configuration: an idle agent patrolling a patrol beat featuring more

historical crimes will have a higher crime deterrence score than one deployed to a patrol

beat with fewer crimes, provided that they patrolled for the same amount of time.

2. The amount of time the agent spent patrolling (idle) versus responding to calls in the rest

of the precinct. This depends upon the precinct in which the agent operates; in particular,

the level of supply (number of other agents) and CFS demand (volume of calls received)

in the precinct. For instance, an agent operating within a precinct alongside many other

agents (high supply) and where the CFS demand is low will have more idle time to patrol

than one in a high-demand precinct with limited supplies.

3.3.3 Adaptation & Objectives

The dispatcher is driven by its objective to keep the number of ‘failed’ responses as low as

possible. As previously mentioned in Chapter 2, a response is counted as ‘failed’ when its

response time exceeded a predefined threshold. To reduce the number of ‘failed’ responses,

the dispatcher seeks to keep the response time to individual incidents as low as possible. The

response time to an incident is the direct result of the dispatch time and travel time, both of

which are maintained as low a level as possible by the dispatcher through adaptive behaviours

arising from the following two decisions:

1. Which incident to process first? In its “distribute incidents” submodel (see Subsection

3.4.2), the dispatcher reduces incident dispatch time by processing incidents in a First

In First Out fashion, so that no incident stays in the queue for an excessive length of

time. This behaviour is modelled as indirect objective seeking: it reproduces observed

behaviours in real police system and assumes that such behaviour leads to shorter dispatch

times.
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2. Which available agent to dispatch? Through its “find nearest available agent” sub-

submodel (see Subsection 3.4.2), the dispatcher seeks to always dispatch the closest avail-

able agent (in terms of driving time) to each unallocated incident in its incident queue

within each precinct. This adaptive behaviour is modelled as direct objective seeking:

the dispatcher chooses to dispatch the agent with the fastest route to the incident. To

do so, the dispatcher first estimates the time it would take each candidate agent on their

fastest route to reach the incident. This is done by first calculating the fastest route to the

incident for each candidate agent. This is in itself a direct objective seeking behaviour:

for each candidate agent, the dispatcher selects a route that minimises the edge attribute

travel time mins. Then, once a fastest route has been selected for each candidate agent,

the corresponding driving time is calculated as
∑n

i=1 ti where ti is the travel time mins

attribute for the ith edge of the route and n is the number of edges on the route. Finally,

the dispatcher engages in another direct objective seeking behaviour in which it selects

for dispatch the agent whose total driving time is the shortest. More details about the

“find nearest available agent” sub-submodel are available in Subsection 3.4.2.

In the model, agents make very few decisions themselves. Most routing calculations are per-

formed either upon model initialisation or by the dispatcher (see above). To some degree,

this likely reflects the roles and interactions between real police dispatchers and patrols. One

situation where agents make routing calculations themselves is when ‘idle’ agents return to

their designated patrol beat to resume patrolling after responding to an incident. Patrol routes

in beats are pre-defined upon initialisation. However, when travelling to the start of the pa-

trol route, agents perform a direct objective seeking routing in which they select a route that

maximises the edge attribute density hist inc.

3.3.4 Learning

In this thesis, the model simulates police dispatching over a period of time typically chosen

as multiple hours, but no more than a day. In such a short time period, it is not expected

that a police agency would change the way it operates. As such, no learning was used in

the model. Instead, the adaptive behaviour of the dispatcher and the agents described above

remains constant throughout the simulated time period.
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3.3.5 Prediction

At each step of the model, the dispatcher executes its “find nearest available agent” sub-

submodel for each unattended incident in its incident queue (see details in Subsection 3.4.2). In

order to find the nearest candidate agent, the dispatcher predicts (1) the fastest route to the in-

cident for each candidate agent and (2) the corresponding driving time for each candidate agent

on their fastest route. Similarly, in their “patrol” submodel, agents returning from responding

to an incident predict the crime deterrence that may be produced by choosing a particular path

to the start of their patrol route (see details in Subsection 3.4.2).

3.3.6 Sensing

In this model, the dispatcher and the agents are assumed to possess an accurate knowledge of

the information that they require. This information includes some of their own attributes, as

well as attributes from other entities in the model.

Dispatcher

At each step, incidents enter and exit the dispatcher’s incident queue. Then, the dispatcher

senses the status of all agents in the model in order to update its avail agents list with agents

whose current status is ‘idle’. When executing its “find nearest available agent” submodel for

each incident (see details in Subsection 3.4.2), the dispatcher senses the following information

about other entities:

• where the incident took place: node and precinct for the incident;

• where each available agent is currently located: pos and precinct of available agents;

• the road network information: the travel time mins for its edges and the osmid for its

nodes (used to estimate the driving time to the incident for each candidate agent);

• whether there was already an agent dispatched to the incident: incident’s agent attribute.

Although precincts are not explicit entities in the model, they are sensed by the dispatcher

via the precinct attribute of both the incidents and the agents when distributing incidents to

available agents in the precinct.
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Agents

In their “move” submodel (see details in Subsection 3.4.2), agents sense the road network; in

particular the travel time mins attribute of its edges and the osmid of its nodes. Agents use this

information to evaluate how far they can travel along their current route within their remaining

time allowance for the model step. When their remaining time allowance is not sufficient to allow

them to reach the next node along their route (time on node attribute), agents can ‘memorise’

the time spent on the furthest node reached so that they can resume their travelling where they

left it at the next model step (see Subsection 3.4.2 for details).

In their “stay at the scene” submodel (see details in Subsection 3.4.2), agents sense the current

value of the incident attribute time being tended. This value keeps track of the length of time

since the agent first arrived at the scene and allows the agent to determine whether they are

required to stay at the scene for yet another time step.

In their “patrol” submodel, agents can sense the patrol route for their designated patrol beat.

Additionally, they sense the road network; in particular, the density hist inc of its edges and

the osmid of its nodes. Agents use this information when resuming their patrolling behaviour

after responding to an incident as they plan a route of maximum crime deterrence to the start

of their designated patrol route (see Subsection 3.4.2 for details).

3.3.7 Interaction

There are two kinds of interactions in this model: (1) direct interactions between the dispatcher

and the agents and (2) mediated interactions between the agents themselves. The dispatcher

interacts directly with agents by updating their status, incident and route attributes when

dispatching or dismissing them. Since the status of an agent dictates their behaviour (patrolling

if ‘idle’, moving towards incident if ‘travelling’, staying at the scene if ‘at scene’), the dispatcher’s

behaviour has a direct effect on the behaviour of the agents.

The direct interactions between the dispatcher and agents result in mediated interactions be-

tween the agents themselves, particularly between dispatched agents and available ones. When

an agent is dispatched to a given incident, they take precedence over other available agents that

could be dispatched to the same incident. As a result, the status of the other available agents

that were not chosen for dispatch remain ‘idle’. These interactions are local given the chosen

intra-sector dispatching framework in this model: they only take place between agents of the
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same precinct.

3.3.8 Stochasticity

In its current version, the model is deterministic, i.e. it features no stochasticity. This means

that the same outcome is yielded for multiple runs of the model with identical inputs. These

inputs, detailed in Subsection 3.4.1, consist in the deployment configuration, time period, CFS

incidents and historical crimes.

3.3.9 Collectives

There are no collectives in the model.

3.3.10 Observation

As previously mentioned, the dispatch time and travel time attributes of each incident dynam-

ically increase during the simulation as a result of the actions of the dispatcher and the agents.

The dispatch time of an incident is incremented at each time step while the status of the inci-

dent is ’unallocated’. The travel time of an incident is incremented at each time step while the

status of the incident is ’allocated unattended’.

At the end of the simulation, the model outputs the dispatch time and travel time for each

incident. Then, the overall reactive effectiveness of the police force under the chosen deploy-

ment configuration and demand scenario can be quantified by combining these outputs into the

following summary statistics:

• Average incident response time:
∑n

i=1(DTi+TTi)
n where DTi and TTi are the dis-

patch time and travel time for the ith incident and n is the number of incidents that

occurred in the simulated time period.

• Percentage of ‘failed’ responses: the percentage of responses for which the incident

response time was greater than a threshold, which is here arbitrarily set at 15 minutes.

In order to evaluate the proactive effectiveness of the police force under the chosen deployment

configuration and demand scenario, the model also outputs the crime deterrence score for each

agent over the time period. This score is calculated by summing the density hist inc attribute of

all edges visited by a given agent while patrolling (i.e. status is ‘idle’). The scores of individual

agents are then summed into an overall crime deterrence score for the police force. In its current
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form, this deterrence score is merely a direct function of the time agents spend patrolling (idle).

Indeed, it assumes that deterrence is a linear function of police presence and is not subject

to any effects such as diminishing returns. As a result, in this current version, the deterrence

score calculation merely fulfils the role of a ‘placeholder’, and what officers do when patrolling

is fairly inconsequential for the model. This limitation as well as avenues to explore in order to

improve the deterrence calculation are further discussed in Chapter 8.

All three of the aforementioned metrics (average response time, percentage of ‘failed’ responses

and overall crime deterrence score) are emergent model behaviours resulting from the rules of

the ABM. As such, their value cannot be predicted prior to running the model.

3.4 Details

3.4.1 Initialisation

This part details the steps to undertake to initialise the model prior to running it. The ini-

tialisation of the model is performed in two steps, and follows a stage of pre-processing of the

data sources, as illustrated in Figure 3.6. The model initialisation itself is split in two steps: (1)

initialising the model environment and (2) initialising the agents and dispatcher. It was ensured

that as many pre-processing actions as possible were performed ahead of model initialisation,

and that those initialisation steps that do not rely on the deployment configuration inputted by

the user (initialisation of the road network, patrol beats and CFS incidents) were all performed

in a first instance. Doing so saves considerable time by conducting upfront as many of the com-

putationally expensive tasks as possible. Then, many simulations can be run in parallel in the

rest of this thesis, all modelling the same time period but different deployment configurations.

Pre-processing the model environment

The ABM is designed to be generally applicable to any police force. Creating the model envi-

ronment thus requires to separately load and pre-process the data sources for the chosen police

force. These include the road network, the patrol beats, the CFS incidents (used to simulate

reactive demand), and the historical crimes (used to simulate proactive demand).

The first step when building the model environment is to import the road network for the chosen

police force using the OSMNX package, prior to initialising the model. This can be done by

either specifying the name of the locality of interest or by providing a lat-long bounding box. In
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Figure 3.6: Three-step initialisation of the model and user inputs

OSMNX, the network type should be set to ‘drive’ so as to contain drivable public streets that

preserve one-way directionality. Particularly complex road networks may result in dense graphs

in which routing calculations may be computationally demanding. As such, a simplified graph

is essential to ensure a low running time. When importing the road network with OSMNX,

the ‘simplify’ option should be selected. This simplifies the topology of the imported graph by

removing all nodes that are not intersections or dead-ends.

The edge dataset for the road network produced by OSMNX is pre-processed to add two columns

travel time mins and patrol beat. For each edge, the patrol beat within which the road segment is

contained is identified using the geometry attribute of both the patrol beats and the graph edges.

In cases where the geometry of the edge overlaps multiple patrol beats, the beat containing the

centroid of the edge (i.e. the ‘midpoint’ of the shape) is chosen.

Another key data source when building the model environment consists in a shapefile con-

taining the patrol beats of the police force. This dataset should contain the attributes name,

precinct and geometry (a polygon). Additionally, the patrol beats are pre-processed to add the

centroid node column. This is done by identifying the closest equivalent node to the spatial

centroid of each patrol beat polygon (i.e. the ‘center’ of the shape).

A dataset of CFS incidents simulating reactive demand over the time period is also required to

65



3.4. Details

initialise the model environment (see input parameters below). Each incident will be converted

to an incident entity in the first step of initialisation. As such, the following columns are

required in the dataset (see list of incident attributes in Table 3.4): call datetime, spatial location

(latitude and longitude), precinct and resolution time. Incidents are pre-processed to add the

node column used to embed the incidents in the road network graph. This is done by identifying

the closest equivalent node to the spatial location of each incident.

Finally, the dataset of historical crimes is used in the first step of initialisation to update the

density hist inc attribute for the edges of the road network (see details on how the attribute

is calculated below). In pre-processing, the column edge index is added to each crime, which

indicates the graph edge on which the incident occurred. This is done by finding the closest

graph edge to the location of the crime (using the geometry of the crime point).

Initialising the model environment

Once its sources have been pre-processed, the entities that make up the model environment are

initialised. These entities are the road network graph, the patrol beats and the CFS incidents.

This first part of the initialisation process requires that the user inputs a time period for the

simulation, as illustrated in Figure 3.6. The inputed time period takes the form of 2 date-times

symbolising the start and the end of the simulated time period.

This first part of the initialisation process is composed of the following steps (as summarised in

Figure 3.7):

1. Initialise the road network: this step comes first in the initialisation process because

the graph nodes and edges are required in the subsequent initialisation of other entities

such as incidents, agents and patrol beats. The “calculate historical crime density” sub-

model (see details in Subsection 3.4.2) is executed which calculates the density hist inc

on each edge of the graph.

2. Initialise the patrol beats: the values for name, precinct and centroid node are directly

taken from the shapefile of patrol beats. In the “select streets to patrol in beat” submodel

(see details in Subsection 3.4.2), the ‘hottest’ road segments (i.e. those with the highest

density hist inc) are selected to be later patrolled by idle agents during the simulation. If

no dataset of historical crimes was provided by the user, the streets to patrol are selected

arbitrarily in each beat (see Figure 3.7). Then, a shortest route is planned in the “plan
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patrol route in beat” submodel (see details in Subsection 3.4.2) that visits all selected

streets to patrol and weighs edges based on deterrence.

3. Initialise the CFS incidents: CFS incidents are events that will occur as the simulation

runs. Each incident within the inputted time period is initialised with the following

attribute values:

• call datetime, precinct, time on scene and node are directly extracted from the pre-

processed dataset of CFS incidents (see pre-processing step above)

• status is initialised as ‘not yet occurred’

• dispatch time and travel time are both set to 0 minutes. These values will be incre-

mented automatically during the simulation once the incident has occurred, depend-

ing on the status of the incident (as explained in Section 3.2.4).

Initialising the dispatcher and the agents

Once the model environment – including the incidents that will occur during the simulation –

are initialised, the second initialisation step takes place in which agents are initialised according

to a specific deployment configuration as specified by the user. The user of the model specifies

the patrol beats that will receive an agent, to a maximum of one agent per beat. A deployment

configuration is represented by an array of n binary values where n is the number of patrol

beats in the force. The possible values for each patrol beat are: 0 if the beat is un-staffed and

1 if the beat is staffed with an agent, as illustrated in Figure 3.8.

Agents are initialised with the corresponding patrol beat and precinct values. Their pos attribute

is set to the centroid node of the patrol beat, and their status is set to ‘idle’. Their route is an

empty list and they have no assigned incident. Their crime deterrence is set to 0. Finally, the

dispatcher entity is initialised with empty lists for its incident queue and avail agents attributes.

3.4.2 Submodels

“Calculate historical crime density”

This submodel is executed upon initialisation of the road network (see Section 3.4.1). Its

purpose is to calculate the level of historical crimes that occurred on each road segment (if a

dataset of historical crimes was provided by the user) and add a density hist inc attribute to
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Figure 3.7: Illustration of the layers required to initialise the model environment and the agents
within it

the corresponding edges of the road network. As previously mentioned, the road network is

represented in the model by a NetworkX graph alongside two datasets describing its nodes and
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Figure 3.8: Illustration of the encoding of a deployment configuration as an array of binary
values in the model. Patrol beats in blue are staffed with an agent.

edges.

The density hist inc attribute is here calculated as the ratio n
l , where: n is the number of

historical crimes in the provided dataset that occurred on the road segment and l is the length

of the segment (in meters). Dividing by the segment length l accounts for the fact longer road

segments are intrinsically more likely to feature more crimes.

The number of historical crimes n on each edge is calculated by summing those crimes that

occurred in the dataset on that edge on similar time periods to that inputted by the user (e.g.

all weekdays 08:00 to 16:00 when the inputted time period is Monday 08:00 to 16:00). This

calculation is performed using the edge index column – the index of the edge on which the crime

took place – which was added to the historical crime dataset in pre-processing. The decision

to group similar time periods together based on the demand they experience will be detailed

in Chapter 5. It is expected that, with a crime dataset spanning at least a year’s time, there

should be enough historical crimes having occurred during similar time periods. However, in

cases where fewer than 500 historical crimes are found on similar time periods in the provided

dataset, the edge attribute density hist inc is instead calculated by counting crimes across the

entire dataset, regardless of time periods. If the user does not provide any historical crime
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dataset, the density hist inc attribute of all graph edges is set to zero.

The newly calculated density hist inc attribute is subsequently used in two places in the model.

First, it is used in the initialisation of patrol beats when selecting a set of streets to patrol based

on historical demand (see submodel “select streets to patrol in beat” below). Second, it is used

in the simulation itself by agents who resume patrolling after responding to an incident. These

agents calculate the route back to their patrol beat that produces the most crime deterrence

using the density hist inc attribute of the graph edges (see “Patrol” submodel below).

“Select streets to patrol in beat”

This submodel is executed when initialising each patrol beat. The streets to be patrolled by

idle agents are selected amongst all graph edges in the beat. As mentioned in Chapter 2, there

are many sophisticated techniques to identify crime hotspots in the literature (see Chainey

et al., 2008 for a review). However, in the version of the model presented here, ‘hot’ road

segments are identified by simply choosing the 5 segments with the highest historical crime

density (density hist inc). The number of road segments selected may be changed in future

versions of the model. If no edge in the beat has a density hist inc greater than 0 (either

because the user did not provide a dataset of historical crimes or because no historical crime

took place in this specific beat), 5 road segments are selected arbitrarily. This is done using

a random state seed so as to prevent introducing stochasticity in the model. The reader may

refer back to Figure 3.7 for an illustration of the process of selecting the streets to patrol in

each beat.

“Plan patrol route in beat”

In policing operations, a high-level strategy of hotspot patrolling needs to be turned into detailed

patrol routes. This submodel is executed when initialising each patrol beat, after first executing

the “select streets to patrol in beat” submodel (see above). Once the road segments to patrol

in each beat are selected in the model initialisation, a patrol route is planned that visits all the

pre-defined segments to patrol in the beat and weighs edges based on deterrence.

Finding the optimal route between graph nodes is a NP-complete problem known as the trav-

elling salesman problem. There have been different approaches in the literature in designing

police patrol routes (see for instance Chawathe, 2007; Chen et al., 2015). In an attempt to keep

70



CHAPTER 3. BUILDING AN AGENT-BASED MODEL OF PATROL ACTIVITIES

computing time as low as possible as part of this initial proof of concept, a simple routing solu-

tion is implemented following the procedure detailed in Figure 3.9. Starting from the centroid

node of the patrol beat, the patrol route is built incrementally by repeatedly finding to the next

closest road segment until all streets to patrol have been visited exactly once. Calculating this

patrol route ahead of running the model (as opposed to every time an agent resumes its idle

behaviour) saves considerable computational time, as routing calculations in dense graphs are

computationally expensive.

“Distribute incidents”

This submodel is executed by the dispatcher at each model step. Incidents automatically enter

the dispatcher’s queue of unallocated incidents (incident queue) when the call takes place (at

incident’s call datetime). If two incidents occur at exactly the same time, they enter the queue

in an arbitrary order (according to their order of occurrence in the CFS dataset). Importantly,

incidents remain in the queue until an agent reaches the scene. This means that incidents with

an ‘allocated unattended’ status continue to be considered for allocation in this submodel, in

case a newly available agent find themselves closer to the incident compared with the already-

dispatched agent. Further details about this process of on-the-fly re-dispatching are provided

in sub-submodel “find nearest available agent” below.

Keeping the response time to incidents low is a priority for police agencies. In the model, the

dispatcher thus seeks to minimise incident response time when distributing incidents to available

agents. More specifically, the dispatcher aims to reduce both components of incident response

time: namely dispatch time and travel time.

In order to keep incident dispatch time low, and given that all incidents in the queue have the

same priority (emergency), the dispatcher processes the incidents in a First In First Out (FIFO)

fashion. Incidents are thus processed by the dispatcher in order of occurrence.

Once an incident has been chosen for processing from incident queue, the next step for the

dispatcher is to identify the available agents in the precinct of the incident as part of the

intra-sector dispatching approach chosen here. If no agents are available in the precinct, no

dispatch is made and the incident remains in the queue. If some agents are available in the

precinct, the dispatcher executes its “find nearest available agent” sub-submodel, in which it

seeks to find the agent whose driving time to the incident is minimal. Figure 3.10 illustrates
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Figure 3.9: Flow diagram explaining the algorithm used in the “plan patrol route in beat”
submodel executed upon model initialisation.

the way in which the dispatcher distributes unattended incidents to available agents. Finally,

the dispatcher dispatches the chosen closest available agent by executing the “dispatch agent

to incident” sub-submodel (see details below).
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Figure 3.10: Flow diagram illustrating the dispatcher’s “distribute incidents” submodel executed
at each model step.

“Find nearest available agent (sub-submodel)”

This sub-submodel is executed by the dispatcher for each incident processed in the “distribute

incident” submodel (see details above). Its aim is for the dispatcher to select the nearest avail-

able agent to dispatch to a given incident with the view to minimising the incident travel time.

In order to identify the nearest agent, the dispatcher first calculates the fastest route to the

incident for each candidate agent in the precinct. This fastest route is one that minimises the

travel time mins attribute for each edge along the route. The route takes into consideration the

road network infrastructure (one-way roads etc.) in order to simulate realistic travel itineraries

for the agents.

The dispatcher then estimates the time it would take each candidate agent along their fastest

route to reach the incident. This estimated driving time for a candidate agent is calculated as∑n
i=1 ti where ti is the travel time mins for the ith edge of the route and n is the number of

edges on the route.

Finally, after estimating the driving time to the incident for all candidate agents, the dispatcher

selects the agent with the smallest driving time. If the incident has no agent already assigned

to it, then the dispatcher executes its “dispatch agent” submodel in which the selected agent is
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dispatched to the incident. Figure 3.10A illustrates the process of finding the nearest available

agent by the dispatcher.

Figure 3.11: Illustrations of the dispatcher’s “find nearest available agent” submodel. A: The
dispatcher compares the fastest routes of all available agents in the precinct. B: the dispatcher
re-dispatches a newly available agent in the precinct to replace the existing en-route agent.

When calculating the agents’ fastest routes and the corresponding driving times, the dispatcher

assumes that the agents are able to drive at the speed limit allowed on each road segment.

In the real world, the speed of responding vehicles may be slower than the speed limit due

to a range of environmental factors such as traffic or weather conditions. Conversely, police

responding vehicles may also drive faster than the speed limit – providing it is safe to do so –

by deploying blue lights and sirens. As such, it seems a reasonable modelling compromise to

assume that responding units dealing with emergencies are able to travel on each road segment

at the allowed speed limit.

“Dispatch agent to incident (sub-submodel)”

This sub-submodel is executed by the dispatcher for each agent chosen to be dispatched to an

incident through the “find nearest available agent” sub-submodel (see details above). Having

selected an agent for dispatch, the dispatcher updates the incident’s agent attribute with that

agent’s entity. Additionally, the following attributes of the chosen agent are updated by the

dispatcher:

• Agent’s status is changed to ‘travelling’, which means they become unavailable for further

dispatching.

• Agent’s incident takes up the incident entity
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• Agent’s route takes up the fastest route that was calculated by the dispatcher upon ex-

ecuting the “find nearest available agent” submodel. As previously mentioned, routing

calculations bear a computational cost in the model that may increase considerably with

the size of the road network. As such, given that the dispatcher already pre-calculates

the fastest route for each agent, it is preferable for the dispatcher to pass on that route to

the chosen agent instead of the agent re-calculating the fastest route at each step of the

simulation.

“Move”

Agents execute the “move” submodel when they are either travelling to an incident (status is

‘travelling’) or patrolling (status is ‘idle’). In this submodel, agents traverse the road network

by moving from node to node along their route attribute, which is made of a list of connected

graph nodes.

As previously stated, an agent begins each model step with a time allowance equal to the model

step time (e.g. one minute). At each model step, moving agents evaluate the furthest node they

can reach on their route within the model time step, based on the drive time mins attribute of

the graph edges. Once again, this assumes that agents drive at the maximum speed limit allowed

on each road segment (see discussion in the “find nearest available agent” sub-submodel). At

the end of each step, their pos attribute is updated to the furthest node reached during this

model step and the nodes that were visited during this time step are removed from their route.

In order to simulate realistic driving times, agents in the model ‘memorise’ the portion of their

time allowance that is spare at the end of each time step and add it to their time allowance at

the next step. Figure 3.12A illustrates the movement of agents along a hypothetical route, with

a one-minute time allowance at each step. This approach also accounts for particularly long

edges where the driving time for the edge exceeds the step time (e.g. an edge with a driving

time of 2 minutes when the step time is 1 minute) as illustrated in Figure 3.12B. With this

approach, agents remain on the same node for the necessary number of simulation steps until

they can reach the other side of the graph edge. For instance, an agent would be able to travel

across an edge which requires 2 minutes of driving time after 2 one-minute time steps.

Due to the nature of the model environment, the road network is truncated around the periphery

of the police force. As a result, segments of one-way roads situated near the periphery are
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Figure 3.12: Illustration of 2 hypothetical scenarios of the movement of an agent along their
route. The agent starts each step with a one-minute time allowance. A: Agent travels as far
as their time allowance permits and uses their spare time from step 1 to reach the final node
in step 2. B: Agent cannot travel across the long edge in one model step. They remain on the
same node for step 1 in order to reach the next node in step 2.

either not reachable, or agents are unable to leave them. To circumvent the issue, agents

are temporarily allowed to drive up one-way roads until they are able to either reach their

destination or regain access to the main road network. Although not possible in the real world,

this behaviour remains a rare occurrence and should thus not affect the overall pattern of

response time.

When an agent reaches the scene of their assigned incident within a given time step, their status

is updated to ‘at scene’. They may then proceed to executing the “stay at scene” submodel

(see below) in the same step, provided there is spare time in their step time allowance.

“Stay at scene”

This submodel is executed by all agents whose status is ‘at scene’. Those are agents that

have reached the scene of their assigned incident and are tending to it. Agents remain on the
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node corresponding to the scene of their incident until the incident attribute time being tended

becomes equal to the incident attribute resolution time.

Figure 3.13 provides a flowchart to illustrate the “stay at scene” submodel process from the

moment the agent reaches the scene to the incident being resolved. At each model step, agents

check whether the incident will be resolved within the time step (i.e. an agent has been tending

to it for the duration of resolution time). If so, their status is updated to ‘idle’ and they may

then proceed to executing the “patrol” submodel (see below) in the same step, providing there

is spare time in their step time allowance. These agents will be available for dispatch at the

beginning of the next time step, when the dispatcher executes its “find nearest available agent”

sub-submodel. The status of resolved incidents is updated to ‘resolved’. Conversely, if the

incident cannot be resolved within this time step, the agent remains on the incident’s node for

another step.

Figure 3.13: Flow diagram of the “stay at scene” submodel from the moment an agent arrives
at the scene to the moment the incident is resolved.
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“Patrol”

When agents are not responding to an incident, their status is ‘idle’. As previously explained

in Section 3.3, idle agents in the model engage in a patrolling behaviour in order to simulate

patrol vehicles attempts to deter crime. Implementing this behaviour in the model allows for

the measurement of the potential gain in crime prevention that could be brought by deploying

agents to particular patrol beats.

In the model, each ‘idle’ agent is aware of the patrol route of their designated patrol beat

(see submodel “plan patrol route in beat” for details on how the patrol routes are designed).

Upon becoming idle, the agent first calculates the shortest path (with edges weighted by crime

deterrence using the edge attribute density hist inc) from their current location to the start of

the patrol route of their assigned beat. The agent’s route is then updated to be a concatenation

of (1) the calculated path to the start of the patrol route and (2) the patrol route itself (see

Figure 3.14 for illustration).

Figure 3.14: Agent routing to the start of their assigned patrol route

Once their route attribute is defined, agents execute the “move” submodel (see details above)

in which they move along their route until they reach the last node. When the agent reaches

the last node of the patrol route, they have completed a patrol ‘round’. They may then start

a new round, providing they have spare time on their step time allowance. Similarly to their

initial routing to the start of patrol route (as shown in Figure 3.14), agents calculate a path

from their current position (i.e. the last node of the route) to the start of the patrol route, as

illustrated in Figure 3.15.
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Figure 3.15: Flow diagram illustrating the “patrol” submodel executed by idle agents at each
step. Agents start each step with a one-minute time allowance.

3.5 Conclusion

This chapter has specified in details the ABM built in this thesis following the ODD protocol.

This ABM was designed to be applied to any police force context, and as such, the description

of the model remained generic. The ABM simulates a fleet of motorised patrol units performing

various activities throughout their shift, including responding to CFS incidents and patrolling

to deter crime. The outcome of the model includes a number of performance metric such as

average response time, percentage of ‘failed’ responses and total crime deterrence score.

The purpose of the ABM is to evaluate various deployment configurations with the view to

identifying optimal solutions to the PDOP. In order to ensure that the model is fit for this

purpose, it needs to undergo a process of validation which compares the outcomes of the model

against equivalent outcomes observed in the real police system emulated by the model. The

next chapter provides a validation of the model along with a series of model experiments using
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the case study of Detroit, Michigan (US).
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Chapter 4

Analysis of Detroit Police

Department’s data

4.1 Introduction

The previous chapter has provided a detailed description of the ABM developed in this thesis.

The aim with this ABM is to build a portable modelling platform capable of rapidly simulating

patrol activities and dispatch for different police forces. In this thesis, the ABM is applied to

the exemplar police force of Detroit Police Department (DPD) for the purpose of illustration

and model validation against real world data (see Chapter 5 for model validation).

This chapter introduces the police force of DPD and provides visualisations of its supply and

demand levels. In Section 4.2, the city of Detroit is briefly introduced along with its police force.

Section 4.3 presents the data sources from Detroit that are used in the ABM and the various

pre-processing steps that were performed on the data. Then, spatial and temporal visualisations

of the reactive demand from the CFS data (Section 4.4) and of the proactive demand from the

reported crime data (Section 4.5) are provided. Finally, Section 4.6 provides visualisations of

DPD’s existing reactive effectiveness looking at incident response times in the CFS dataset.

4.2 Description of the force

4.2.1 The city of Detroit

Geography

81



4.2. Description of the force

Figure 4.1: The city of Detroit and the two enclosed cities of Hamtramck and Highland Park.

The city of Detroit (Michigan, US) has an area of about 143 square miles (370 km2) and in

2019, its total population was estimated at 670,031. As shown in Figure 4.1, the city surrounds

the two enclave cities of Highland Park and Hamtramck.

History

The relocation of the automobile industry that had been the reason behind Detroit’s rapid

boom in the 1920s caused a significant population decline and urban decay. This led to a rise

in unemployment, poverty and crime, building up to Detroit filing of a municipal bankruptcy

case in 2013 – the largest case in US history.

Since its bankruptcy case, Detroit has undergone significant transformation, however these

have been mostly directed towards the gentrification of the downtown area. This has led to an

increasing divide between Detroit’s downtown area and its neighbourhoods, an issue commonly

referred to as the Two Detroits.

Crime

Known in the 1970s and 1980s as the “murder capital of America”, Detroit has struggled with

high crime for decades. In 2019, Detroit’s violent crime rate was 1,965.3 per 100,000 (Federal
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Bureau of Investigation - Uniform Crime Reporting (UCR) Program, 2019); one of the highest

in the United States. While the crime rate remains very high in most of the city, its downtown

area has seen a significant decline in crime in recent years, exhibiting even lower crime than

national and state averages (Metzger and Booza, 2005).

4.2.2 The police force

The city of Detroit is serviced by Detroit Police Department (DPD). The force is divided into

11 precincts (see Figure 4.2), each subdivided into 131 patrol beats (called scout car areas),

as shown in Figure 4.3. Scout car areas are subdivisions of precincts to which officers can be

assigned for patrol (see Chapter 2).

Like most Western police agencies, calls are centrally received and, since 2013, dispatching

decisions are aided by a Call And Dispatch (CAD) system (see Chapter 2 for details on CAD).

Private security forces such as Downtown PD or Wayne State University PD are also in service

in precinct 3. These private forces patrol areas around downtown and midtown, alleviating the

demand faced by the precinct.

Figure 4.2: DPD’s precincts and police stations
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Figure 4.3: DPD’s scout car areas

Detroit has lost nearly half its patrol officers since 2000 as officers retired or left for other

police departments amid the city’s bankruptcy and cuts to pay and benefits. Currently, there

are 448 citizens for every officer, as opposed to in the 1970s, when the citizen-to-officer ratio

was around 380 (Hunter, 2015). This emphasises the need to deploy available patrols in a

cost-effective manner; a problem that is a the core of this research.

4.3 Data pre-processing

4.3.1 The data sources

The city of Detroit (Michigan, US) was chosen as it is one of the few worldwide cities for which

all data sources needed to build the model are publicly available online. Having provided an

overview of the city of Detroit and its police force, the following section outlines the various

datasets used to run and validate of the model for the case study police force.
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Road network

The road network for the city of Detroit was downloaded using the python library OSMNX. As

previously detailed in Chapter 3, this produces a directed graph comprised of nodes (representing

network intersections) and edges (representing road segments). An edge is a line or curve

segment connecting two nodes at its ends. In the case of Detroit, the acquired network graph is

composed of 59,696 edges and 20,719 nodes. The road network in Detroit is tightly connected,

with few long edges between intersections. Indeed, only 0.3% of the edges (131 of them) are

so long as to necessitate a driving time longer than 1 minute. Given that the step time in the

model built in this thesis is of 1 minute, this means that most nodes in Detroit can be reached

from an adjacent node within one model step.

Figure 4.4: A portion of the street network in Detroit, illustrating nodes and edges

Patrol beats

As discussed previously, patrol beats (called scout car areas in Detroit) are used to delineate

individual patrolling areas for patrol vehicles. The shapefile representing the boundaries of

Detroit’s patrol beats was drawn from the City of Detroit Open Portal (https://data.detroitmi.

gov/datasets/dpd-scout-car-areas). For each patrol beat, the shapefile contains all the necessary

information to describe patrol beats in the ABM (see Chapter 3), in particular its geometry, its

name as well as the precinct of which it is a subdivision.
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CFS incidents

To simulate reactive demand, the model requires a dataset of historical CFS. A historical CFS

dataset spanning a three-year period (2017-2019) was obtained from the City of Detroit Open

Data Portal (https://data.detroitmi.gov/datasets/911-calls-for-service). The data contains in-

formation about each incident needed to run the ABM, in particular its call datetime, spatial

location, priority, as well as dispatch time, travel time and time responders spent at the scene.

The incident’s spatial coordinates (lat-lon) had been spatially perturbed by DPD prior to mak-

ing the dataset public. This process consisted in moving the location of each incident to the

nearest road intersection (e.g. ‘Promenade Ave & Roseberry St’). This process of perturbation

allows for the confidentiality of offenders and victims to be preserved while sharing the data

with researchers.

According to the OSM data, the average (median) street in Detroit is 100 meter long. This

indicates that Detroit – alike many other US cities – features a well connected grid-like street

network and as such, the perturbed locations offer a reasonable proxy for real incident locations.

Prior to running the model, the spatially perturbed incident’s coordinates were translated into

their nearest graph node in order for routing calculation to be performed in the simulation. As

the spatial perturbation process had already converted incident locations to the nearest road

intersection, the nearest node here corresponds to the node representing that intersection.

Reported crimes

In order to evaluate the crime deterrence score (as a result of agent patrolling) for a given

deployment configuration, the model required a dataset of historical reported crimes. Such a

dataset was obtained from the City of Detroit Open Data Portal (https://data.detroitmi.gov/

datasets/rms-crime-incidents) spanning the same three-year period (2017-2019) as the historical

CFS dataset. For each crime, the data contains the date at which the crime was reported and the

spatial coordinates at which it occurred. Much like the CFS incident dataset, the crime locations

had been spatially perturbed by DPD. As such, these perturbed locations were translated into

their nearest graph node in a pre-processing step.
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4.3.2 Data preparation

CFS incidents

Since the ABM is concerned with modelling the dispatching of patrol vehicles to emergency

incidents specifically, those incidents with a priority code value different from 1 (emergency) were

excluded from the dataset. Between January 1, 2017 and December 31, 2019, DPD recorded

approximately 238,692 emergency calls (priority 1), representing 9.8% of the CFS for the period

(see Table 4.1).

Incident priority Number of incidents % of incidents

1 238,692 9.8
2 742,085 30.4
3 1,305,943 53.4
4 130,978 5.4
5 24,746 1.0
P 395 0.01
None 1,182 0.05

Table 4.1: Number and percentage of incidents for each priority type in the un-processed CFS
dataset

Furthermore, additional filtering steps were performed in order to remove incidents from the

dataset according to the following criteria:

• The incident location coordinates, dispatch time, travel time or time at the scene were

missing (14,547 incidents removed).

• The incident took place outside of Detroit’s boundaries, or was not resolved by DPD but

by Detroit’s fire department or by the police department of nearby cities Highland Park

or Hamtramck (2,346 incidents removed).

• The incident was initiated by an officer or the call duration was zero minutes (43,741

incidents removed).

• No dispatch was made; i.e. the travel time was zero (12,333 incidents removed). This

happens if the incident is resolved during the call or if the call was a hoax for example.

• Response time exceeded 100 minutes (341 incidents in the three-year period). These

incidents are likely to be recording mistakes where, for instance, an officer forgot to indicate

the incident had been resolved. These outliers have the potential to skew the validation

of the model as this type of behaviour is impossible to reproduce in the model.
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The final processed dataset contained 165,384 emergency incidents (January 1st, 2017 to Decem-

ber 31st, 2019), down from 238,692 emergency incidents in the initial dataset. This corresponds

to an average of 151 daily emergency calls throughout the force or 13.7 daily incidents per

precinct.

The dataset came with a scout car area column composed of a concatenation of the precinct

number and the scout car area number. This column had been entered by DPD as free text and

as such, trailing white spaces had to be removed. Then, the column was split into two separate

columns (precinct and patrol beat) for analysis. In addition, using the road network imported

in OSMNX (see above), a column was added that contains the closest node to the location of

each incident in the dataset.

Reported crimes

Similarly to the CFS dataset the reported crime dataset underwent a process of filtering to

remove those crimes that took place outside of the boundaries of Detroit. This resulted in a

dataset of 247,018 reported crimes for the three-year time period (January 1st, 2017 to December

31st, 2019).

Reported crimes are used in the model to estimate the crime deterrence score for each agent

throughout the simulation, which are summed into a total crime deterrence score for the chosen

deployment configuration. In its initialisation step, the model thus needs to count the number of

historical crimes that took place on each street segment (graph edge). This is usually achieved

by first identifying the graph edge on which each crime took place (edge index column). Then,

during the initialisation of the ABM, the density of historical crimes (density hist inc) on each

graph edge is calculated. This is typically done using the n
l formula, where n is the number

of historical crimes that occurred on the edge on similar past time periods (e.g. other Monday

night shifts), and l is the edge’s length.

However, as previously mentioned, the crime locations for Detroit have been spatially perturbed

and thus point to the nearest road intersection to the original location of the incident. This

road intersection is converted to its equivalent graph node in a pre-processing step. The number

of historical crimes is thus provided per node, instead of the required number per edge. To

circumvent the issue and still obtain estimated crime density values for the graph edges, the

historical crimes on each node were distributed to adjacent edges in proportion to their length.
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A density hist inc value is thus calculated for each edge according to the following formula:

density hist inc = Num of crimes on node × Edge length

Total length for node’s adjacent edges

Figure 4.5: Diagram explaining the process of distributing historical crime counts from nodes
to adjacent edges.

To illustrate the process by which node-level crime counts are distributed to edges of the graph,

consider a node on which 120 historical crimes occurred, and with 4 adjacent edges, two of

which are of size 100 meters and 2 of size 50 meters (as shown in Figure 4.5). Through this

process, the edges of size 100 meters will get a density hist inc value of 33 (a third of the 100

crimes on the node) while those of size 50 m will get a value of 16.5 (a sixth of the 100 crimes

on the node). This process relies on the assumption that all adjacent edges to a given node

experience an equal number of crimes per meter. Longer edges inherit a higher proportion of

the crime incidents that took place on the node they are adjacent to than shorter ones.

The calculated graph attribute density hist inc is used in the initialisation of the model to

identify which road segments to patrol and plan patrol routes accordingly (see model ODD in

Chapter 3). In each patrol beat, the 5 graph edges with the highest attribute density hist inc

are selected to be patrolled. To illustrate, Figure 4.6 shows the selected streets for an example

eight-hour shift in Detroit (16:00 to midnight on Monday, 3rd Sept 2018).
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Figure 4.6: ‘Hottest’ streets to patrol for exemplar time period (16:00 to midnight on Monday,
3rd Sept 2018).

4.4 Reactive demand (CFS) in Detroit

As detailed in Chapter 2, previous research has shown that crime of various types (Branting-

ham and Brantingham, 1993; Brantingham and Brantingham, 1984; Brantingham et al., 1976;

Pyle, 1976; Pyle and Hanten, 1974; Rengert, 1980)) and calls for service (e.g. Boulton et al.,

2017; Vaughan et al., 2018) concentrate both spatially and temporally. Having introduced and

pre-processed both the CFS and crime datasets, this section provides an exploration and visu-

alisation of the spatial and temporal patterns of reactive demand in Detroit. Understanding

the spatial and temporal distribution of reactive demand in the exemplar force chosen here is

key to interpreting model outcomes. Indeed, the simulation may show varying levels of reactive

effectiveness on different time periods (e.g. Friday night shifts) or in different precincts due to

variations in reactive demand.
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Call description category Daily count % of all calls

Other 33 25.98
FELONIOUS ASSAULT IP 29 22.83
BURGLARY OCCUPIED RESD I/P 16 12.60
SHOTS FIRED IP 15 11.81
DV A/B I/P-J/H 13 10.24
DISTURBANCE 11 8.66
HOLD UP ALARM AND MOW 10 7.87

Table 4.2: Number and percentage of incidents for each call category in the pre-processed CFS
dataset (January 1, 2017 - December 31, 2019)

Temporal variations in reactive demand

Existing literature suggests a heterogeneous distribution of crimes by time of the day, day of the

week and month of the year (see Chapter 2). Here, we investigate whether this is true for CFS

in Detroit. As discussed in Chapter 2, there exist various metrics of reactive demand, from call

volume to officer time. In a first instance, reactive demand is here quantified using the volume

of calls received.

Emergency incidents in the CFS dataset are classed in 176 different description categories. Table

4.2 summarises the average number of daily emergency calls received for these category. The

figures suggest that in-progress felonious assaults are the most common type of emergency calls

(about 23% of all calls).

Figure 4.7 displays the hourly call volume received by DPD on weekdays (Monday to Friday)

and weekends (Saturdays and Sundays). Generally speaking, the volume of emergency calls

fluctuates through the day with a peak reached around 02:00 (between 9 and 10 calls an hour

on average) and a dip between 10:00 and 11:00 (about 3 calls an hour on average). The

volume of emergency calls thus triples between 10:00 and 02:00 the next day. The difference

between weekends and weekdays is most striking between midnight and 11:00, with a longer

peak observed on weekends. These results suggest that reactive demand in Detroit fluctuates

based on the time of the day and day of the week and is highest on time periods most popular

for their night life (Friday and Saturday nights).

In this thesis, days are divided into three 8-hour time periods on which to run simulations

independently: (1) day : 08:00 - 16:00, (2) late: 16:00 - 00:00, (3) night : 00:00 - 08:00. These

time periods loosely align with the typical design of police shifts, although the latter tend to
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Figure 4.7: Hourly call volume received by DPD on weekdays and weekends (January 1, 2017 -
December 31, 2019). The curves show the mean and 95% confidence intervals around the mean
(using the bootstrap method).

overlap to ensure continuous servicing.

With these 3 daily shifts in mind, a two-way ANOVA was conducted to determine the effect

of both shift and day of week on the volume of emergency calls. A statistically-significant

difference was found in the number of calls received between shifts (f(2)=1430.277, p<0.001)

and between days of the week (f(6)=13.990, p<0.001), as well as between interactions of these

terms (f(12)=5.497, p<0.001). The effect size of these differences was calculated using the

eta-squared (η2) measure. The general rule of thumb given by Cohen (1988) for analysing eta-

squared is provided in Table 4.3. The differences between shifts produced a large effect size

(η2=0.456), while those between days of the week and between interactions of the two terms

produced a small effect size (η2=0.013 and η2=0.010 respectively).

Table 4.3: Quality of effect size based on the value of eta squared

η2 value Quality

∼ 0.01 Small
∼ 0.06 Medium
> 0.14 Large

A further Tukey post-hoc test on the 3 shifts revealed significant pairwise differences between:

• day and late shifts (+23 calls on late shifts),

• day and night shifts (+30 calls on night shifts),
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Call description category
Time on Scene (mins)
Mean Std Daily count

Other 73.00 80.00 33
FELONIOUS ASSAULT IP 68.47 78.20 29
BURGLARY OCCUPIED RESD I/P 57.79 62.58 16
SHOTS FIRED IP 48.84 71.12 15
DV A/B I/P-J/H 56.83 67.09 13
DISTURBANCE 29.43 35.95 11
HOLD UP ALARM AND MOW 21.31 22.27 10

Table 4.4: Average and standard deviation for time on scene by call category in the pre-processed
CFS dataset (January 1, 2017 - December 31, 2019)

• late and night shifts ( +7 calls on night shifts)

With regards to days of the week, a Tukey post-hoc test revealed significant pairwise differences

between weekends and weekdays (+5 calls on weekends). In addition, night shifts on weekends

also appeared significantly different from those on weekdays.

Taken together, results suggest that, in accordance with the literature, DPD experiences signif-

icant differences in terms of emergency call volume based on the shift and the day of the week,

with the highest volume experienced on shifts popular for their night life (i.e. night shifts on

Saturdays and Sundays).

Spatial variations in reactive demand

While call volume is an informative metric to quantify reactive demand, it fails to account for

the amount of time that officers are required to spend at the scene of each incident. Indeed,

some categories of incidents require a longer time at the scene than others (see Table 4.4). For

instance, an in-progress felonious assault requires on average 68 minutes of officer time at the

scene while an average disturbance incident only requires about half that amount of time (29

minutes). As such, an arguably better way of quantifying reactive demand is to consider the

officer workload, here defined as the cumulative amount of time that officers are required to

spend at the scene of incidents during a given time period. This metric is used in the exploration

of spatial patterns that follows.

Figure 4.8 shows the spatial disparities in reactive demand workload between precincts of DPD.

For instance, precincts 8 and 9 both require about 20 hours a day of officer time, while precincts

3, 4 or 7 require less than 10 hours a day. Reactive demand workload is thus more than twice
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as high in precincts 8 and 9 than it is in precincts 3, 4, or 7. Considering these results, one

potentially desirable deployment configuration may involve positioning more agents in those

precincts 8 and 9 that typically exhibit a higher reactive demand workload. Such a configuration,

when simulated in the ABM, is expected to yield a smaller response time than alternative ones

with fewer agents deployed to these precincts.

Figure 4.8: Daily number of officer hours spent on scene across DPD’s precincts (January 1,
2017 - December 31, 2019).

Summary: reactive demand in Detroit

All in all, the exploration of the CFS dataset suggests that DPD experiences spatial and tem-

poral variations in its reactive demand. With regards to temporal demand, more calls are

received on weekend night shifts than on other shifts. Reactive demand is also spatially un-

evenly distributed across the force, with some precincts accounting for twice as much reactive

demand workload as others. Although not investigated in this chapter as it is beyond the scope

of this thesis, there are likely some interactions between these spatial and temporal patterns.

For instance, the downtown area may experience more reactive demand on weekend night shifts
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compared with the rest of the week. Overall, these variations in reactive demand are bound to

impact the reactive effectiveness of DPD when responding to calls.

In addition to responding to calls, officers on duty are required to deter crime through patrolling

in their designated patrol beat. The next section provides an overview of the proactive demand

experienced by DPD, by exploring the spatial and temporal patterns of reported crimes across

the force.

4.5 Proactive demand (crime) in Detroit

In the model, the density of historical crimes on patrolled road segments is used to estimate

the potential deterrent effect of proactive patrolling. This section provides an exploration of

the spatial and temporal patterns of reported crimes in Detroit. Although reported crime does

not depict an exact picture of crime (due to high rates of unreported crime in some areas), it

provides a useful estimation of the quantity and location of crime across time and space. Table

4.5 shows the percentage of daily crimes for the main categories of reported crime. The most

common type of reported crime relates to assaults (18.4% of daily crimes) followed by larceny

(16.98% of daily crimes).

Crime category Daily count % of all crimes

ASSAULT 39 18.40
LARCENY 36 16.98
OTHER 32 15.09
DAMAGE TO PROPERTY 27 12.74
AGGRAVATED ASSAULT 22 10.38
BURGLARY 21 9.91
STOLEN VEHICLE 18 8.49
FRAUD 17 8.02

Table 4.5: Number and percentage of reported crimes per category in the reported crime dataset
(January 1, 2017 - December 31, 2019)

Temporal variations in volume of reported crimes

Figure 4.9 shows the hourly variations in number of reported crimes (from January 1, 2017 to

December 31, 2019). It suggests that, much like CFS, the number of reported crimes fluctuates

throughout the day from around 4 crimes an hour at 14:00 to about 15 crimes an hour at 08:00.

This is likely because victims tend to report crimes that occurred during the night in the next

morning. While the difference between weekends and weekdays is subtle, there appears to be
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more crimes reported between 06:00 and 14:00 on weekends than on weekdays but fewer crimes

between 14:00 and 06:00 the next day on weekends compared with weekdays.

Figure 4.9: Hourly variations in number of reported crimes (January 1, 2017 - December 31,
2019).

Note: the curves show the mean and 95% confidence intervals around the mean (using the bootstrap
method).

Spatial variations in volume of reported crimes

Figure 4.11 shows the daily density of reported crime across the scout car areas of DPD (from

January 1, 2017 to December 31, 2019). Reported crime appears highest in Detroit’s downtown

and midtown areas (scout car areas 312, 311 and 309) with a density of 2 crimes per day per

km2. Other hot spots include scout car area 303, and wider areas such as the north east part of

precinct 9 (around scout car area 907), the border between precinct 8, 2 and 12 (around scout

car area 201) as well as the south east corner of precinct 6 (around scout car areas 607 and

610).

As ever with crime, the available data only describes partial aspects of a much complex picture.

For instance, as previously mentioned, private security forces are in service in precinct 3, such

as Downtown PD or Wayne State University PD. These private forces patrol areas around

downtown and midtown, alleviating the demand faced by the precinct. As such, although these

areas appear to receive an abnormally low number of CFS given the high density of reported

crimes in the locality, this is likely due to the fact that the calls assigned to these other police

departments were excluded from the dataset.
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Figure 4.11: Daily number of historical crimes per km2 across scout car areas (January 1, 2017
- December 31, 2019).

Summary: proactive demand in Detroit

Overall, the proactive demand faced by DPD seems to exhibit spatial and temporal patterns.

The number of reported crimes is low on day shifts and high on night shifts and some scout

car areas feature a higher density of crimes than others. These patterns of reported crime

suggest that a potentially desirable deployment configuration – one that yields a high proactive

effectiveness – may involve the targeted deployment of patrols to those areas with the highest

density of historical incidents (scout car areas 312, 311, 309, 303, 907, 201, 607, 610 etc.), and

to those times where there is most crime occurring (weekend night shifts).

4.6 DPD’s reactive effectiveness

This section provides a visualisation of DPD’s reactive effectiveness, evaluated based on the

incident response times provided in the CFS dataset. Importantly, the patterns of response

observed in this section form a benchmark against which the realism of the behaviour of the
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ABM agents is validated in the next chapter.

4.6.1 Distribution of incident response times

Figure 4.12 shows the overall distribution of DPD’s response times to incidents. As previously

mentioned, this is the time between the call coming in and the first responder reaching the scene

of the incident. The average response time across the studied time period was 10.2 minutes,

the median was 8.1 minutes and the standard deviation was 8.6 minutes. As expected, the

distribution is highly positively skewed, due to rare responses with longer response times.

Figure 4.12: Distribution of incident response times at DPD (January 1, 2017 - December 31,
2019)

4.6.2 Temporal variations in reactive effectiveness

Figure 4.13 shows the evolution throughout the day of (1) the average inter-arrival time – i.e.

the average time (in minutes) between the arrival of two consecutive calls, (2) response time

and (3) time on scene. The inter-arrival time for each incident in the dataset is calculated as

the time elapsed (in minutes) since the previous call. Then, these incident inter-arrival times

are grouped by hourly period of the day and their values averaged. The resulting average inter-

arrival time is shown here to represent reactive demand. Its value decreases from a maximum

of 25 minutes at 10:00 to a minimum of 7 minutes at 02:00, when the frequency of calls is

the highest. Incident response times remain relatively constant throughout the day (around 10

minutes on average), with two small peaks at 19:00 and 02:00 (around 12 minutes on average).
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Figure 4.13: Temporal evolution of DPD’s average inter-arrival time, response time and time
at the scene throughout the day (January 1, 2017 - December 31, 2019).

Note: the curves show the mean and 95% confidence intervals around the mean (using the bootstrap
method).

While the latter peak appears to match the peak of reactive demand observed in Figure 4.7, the

former does not. Instead, it may result from a variety of causes internal to DPD such as their

deployment configuration or the design of their staff rota. Time on scene oscillates throughout

the day between 50 and 65 minutes. Overall, these results suggest that, while the volume of

emergency calls fluctuates throughout the day, DPD’s response to these calls remains relatively

constant.

Figure 4.15 provides a more detailed picture by breaking down the response time into its dispatch

time and travel time components. Dispatch time exhibits two peaks during the day at 19:00 and

between 02:00 and 03:00, which matches the two peaks observed for response time in Figure 4.13.

Similar dispatch times can be observed between weekdays and weekends, with the exception

of the period between 05:00 and 11:00 in which weekends feature a higher average dispatch

time. Travel time, on the other hand, appears to remain relatively constant throughout the day

(between 6 and 8 minutes on average), with a slight decrease between 20:00 and 10:00, possibly

linked to a more fluid traffic at night. Travel times appear to be relatively similar on weekdays

and weekends.

A two-way ANOVA was conducted in order to determine the effect of the shift (day, late and

night) and day of week on response times. No statistically significant differences were found in
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Figure 4.15: Temporal evolution of DPD’s dispatch and travel times throughout the day on
weekends versus weekdays (January 1, 2017 - December 31, 2019).

Note: the curves show the mean and 95% confidence intervals around the mean (using the bootstrap
method).

DPD’s response times between days of the week. Although a statistically significant difference

in response times was found between shifts (f(2)=17.056, p<0.001) and for the interactions

between shifts and days of week (f(12)=3.243, p<0.001), the magnitude of these effects was

found to be negligible through a Eta-squared calculation. As such, it may be concluded that

there is no significant difference in emergency incident response times based on the shift and

day of the week. Instead, response times remain consistent with an average of 10.2 minutes.

This seems to indicate that DPD’s existing deployment is designed to match the variations

in reactive demand (for emergency calls): in other words, they likely deploy a higher level of

supply on high-demand shifts.

4.6.3 Spatial variations in reactive effectiveness

Having analysed the temporal patterns in DPD’s reactive effectiveness, this part now looks

into its spatial variations across the force. Figure 4.17 provides a visualisation of the spatial

distribution of response time summary statistics (mean, median and standard deviation) on the

map of Detroit. While it appears that the mean response time is highest in precinct 8 and 9 –

both of which exhibit the most reactive demand workload as seen in Section 4.4, this pattern

is less striking when looking at the median. The median for response times ranges from 6.7

minutes (in precinct 3) to 8.8 minutes (in precinct 8 and 12) and the standard deviation is

constant across precincts. There thus appears to be little spatial variation in response time
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across DPD.

Figure 4.17: Summary statistics for incident response times across DPD’s precincts (January
1, 2017 - December 31, 2019).

The statistical significance of the null hypothesis (i.e. no significant difference in the average

response time between precincts) was determined with pairwise Kruskal-Wallis non-parametric

ANOVAs at p = 0.01. This statistical test, which is a non-parametric equivalent of the one-way

analysis of variance (ANOVA) was used because the data is not guaranteed to follow a normal

distribution. The results indicate a significant difference between precincts (H = 2847.345,

p<.01). Given the abundance of statistical power provided by the large number of incidents,

analysis of the magnitude of difference in response time replaces conventional post hoc tests

of statistical difference. The effect size, was evaluated by calculating the epsilon squared value

(Kelley, 1935). Table 4.6 indicates the chosen interpretation of quality of the effect size based

on epsilon squared values (Rea and Parker, 1992). The effect size was found to be weak (ε2 =

0.017). Overall, there appears to be no significant differences in DPD’s reactive effectiveness

(with regards to emergency calls) across its 11 precincts.

Table 4.6: Quality of effect size based on the value of epsilon squared

ε2 value Quality

[0, 0.01) Negligible
[0.01, 0.04) Weak
[0.04, 0.36) Relatively strong
[0.36, 0.64) Strong
[0.64, 1) Very strong

4.6.4 Summary DPD’s reactive effectiveness

All in all, DPD’s response times to emergency calls (for the studied period) appear relatively

constant in space and time. This suggests that DPD have designed their deployment strategies
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so as to provide a relatively uniform response to emergency CFS both across time and across

all precincts of the force. The patterns of response times identified in this section are used in

Chapter 5 to compare against those produced by the ABM, with the view to validating the

model.

4.7 Conclusion

The ABM developed in Chapter 3 is designed to be applied to any police force. For the purpose

of demonstration and model validation, the ABM is applied to the case study of Detroit Police

Department (Michigan, US), which is chosen for its publicly available datasets. This chapter

introduced DPD as a police force (Section 4.2), and listed the data sources used in the model as

well as the processing steps undertaken to prepare them for the ABM (Section 4.3). These data

sources include the real road network, the boundaries of the patrol beats, the historical CFS

incidents and the historical reported crimes for the three-year study period. Then, a description

of the spatial and temporal patterns which are present in the data was provided for both the

CFS dataset (Section 4.4) and the crime dataset (Section 4.5). Finally, Section 4.6 provided a

brief analysis of the existing reactive effectiveness of DPD based on the response times provided

in the CFS data.

Taken together, the observations made in this chapter suggest that both reactive and proactive

demand faced by DPD are unequally distributed in space and time. Some deployment config-

urations implemented in the ABM may thus yield better response times on certain shifts and

worse ones on others. Similarly, for the same shift, certain deployment configurations may fare

better than others because they position agents in strategic patrol beats that are close to arising

CFS demand. It may thus be necessary for deployment configurations to be tailored to each

shift and day of the week, as will be discussed in the next chapter. Going back to the ABM,

the next chapter uses DPD’s case study to perform a sensitivity analysis, validate the model

and run a range of simulation experiments to showcase the potential of the ABM as a tool to

explore and quantify the impact of various deployment decisions.
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Chapter 5

Model analysis, validation, and

simulation experiments for the case

study of Detroit

5.1 Introduction

George Edward Pelham Box famously coined the phrase ‘all models are wrong, but some are

useful’. While models always fall short of the complexities of the real system that they are

emulating, they can still be informative. However, for a model to be usable in an applied

context, it needs to achieve a sufficient level of realism. This is typically verified through model

validation against real-world data. Amongst all types of models, ABMs are notoriously difficult

to validate.

Chapter 3 detailed the design decisions made when building the ABM. This was followed by

Chapter 4, which provided an overview of the spatial and temporal patterns of reactive and

proactive demand in DPD, the exemplar police force for this thesis. Using the case study of

DPD, this chapter conducts a series of analyses and experiments using the ABM, and establishes

the validity of the ABM as a representation of patrol activities.

This chapter begins with this section which describes the range of supply and demand values

that were tested throughout the analyses of the chapter. This range aims to account for the

potential differential impact of supply or demand values on the performance of the system.
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Then, a sensitivity analysis is performed in Section 5.2 to assess the sensitivity of the ABM to

perturbations in the values of some key chosen parameters. Next, the ABM is validated against

real-world data in Section 5.3 using the exemplar police force of DPD. This is first achieved

with a simple face validation in which individual agents are followed throughout the simulation.

Following this face validation, a population-level validation is conducted by comparing the

validation patterns defined in Chapter 3 – i.e. distribution of dispatch and travel times – that

were produced by the ABM with those observed in DPD’s dataset (see Chapter 4). Finally,

a series of simulation experiments are conducted in Section 5.4 in which the ABM is used to

explore and quantify the impact of various deployment decisions on the performance of the

system.

5.1.1 Modelling low and high demand

As shown in Chapter 4, demand for proactive and reactive policing in Detroit fluctuates between

time of day and day of week. It was shown for instance that a Friday or Saturday night shift

typically experiences more demand than a Monday afternoon/late shift. The chosen time period

on which the ABM is run is thus likely to affect model outcome. As such, running the ABM

for a single time period (e.g. one Saturday night shift) risks skewing the interpretation to that

particular time period and limit generalisation.

To alleviate the bias that comes with running the model on a single time period whilst also

taking into account the variations in demand between shifts, two sets of time periods were

created to represent two distinct demand scenarios:

• Low-demand scenario: day shifts (from 08:00 to 16:00) on weekdays (Monday to Friday)

• High-demand scenario: night shifts (from 00:00 to 08:00) on Saturdays and Sundays

A demand scenario is represented by (1) its ‘training set’ of 100 randomly selected time periods

from the year 2018 and (2) its ‘test set’ of 100 randomly selected time periods from the year

2019. To illustrate, the ‘training set’ and ‘test set’ of the low-demand scenario are both made

of 100 randomly selected weekday day shifts (08:00 - 16:00) from 2018 and 2019 respectively,

while those of the high-demand scenario are composed of 100 randomly selected ‘weekend’ night

shifts (00:00 - 08:00 on Saturday and Sunday) from the same two years. These four sets (two

per scenario) are used throughout the rest of this thesis to evaluate the performance of the

system as part of various experiments. The time periods from which the sampling is done are
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summarised in Table 5.1.

Table 5.1: Time periods sampled to make up the training and test sets for both low-demand
and high-demand scenarios

Scenario Days Times Set Year

Low-demand Monday to Friday 08:00 to 16:00
Training 2018
Test 2019

High-demand Saturday, Sunday 00:00 to 08:00
Training 2018
Test 2019

Running the model for both low and high-demand scenarios is important because a particular

deployment configuration may have little effect on model outcome on a low-demand shift but a

strong one on a high-demand one (or vice-versa).

5.1.2 Modelling low and high supply

The number of agents in the simulation is also likely to affect the overall performance of the

simulated police force (see emergent outcomes detailed in Chapter 3). It is to be expected

that the more agents deployed to a precinct, the more available agents may be dispatched to

incidents. This ultimately results in shorter dispatch times (to a minimum dispatch time of 1

minute, i.e. the time step for the ABM). Travel times are also affected by the chosen deployment

configuration, as an agent deployed to a patrol beat with a high density of historical incidents is

more likely to find themselves in the proximity of arising incidents. To account for various levels

of supply, the analyses and experiments in this chapter were conducted on several configurations

of 10, 20, 30, 40, 50 and 60 agents deployed across the force. In addition, these agents are

positioned either at random or in a targeted fashion based on historical demand (details are

provided throughout the chapter).

5.2 Sensitivity analysis

It is common for ABMs to undergo a process of calibration, which involves identifying the

parameter values that lead to the expected system behaviour (Grimm et al., 2020). Typically,

the parameters most suitable for calibration are those to which model results are highly sensitive

and for which there is little basis, other than calibration, for selecting values (Grimm et al.,

2020).

Most of the model parameter values used in this ABM are based on data from the real world.
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For instance, for a given police force, the model environment is composed of (1) the real road

network: with information concerning the speed limit on each road segment and oneway roads

and (2) the real police administrative areas: including precincts and patrol beats. In addition

to the model environment, the ABM also relies on real historical CFS and reported crime data

for the chosen police force.

Nonetheless, there are several arbitrarily chosen parameter values, in particular (1) the number

of streets to be patrolled in each patrol beat (currently set to 5), and (2) the agent’s driving

speed on each road segment (currently the maximum speed limit on each road). To identify

how sensitive the model is to perturbations in these parameter values, a One-Factor-at-A-

Time (OFAT) sensitivity analysis was performed. In an OFAT sensitivity analysis, a nominal

set of parameters is selected, then one parameter is varied at a time while keeping all other

parameters fixed (ten Broeke et al., 2016). An important use of OFAT is to reveal the form of

the relationship between the varied parameter and the output, given that all other parameters

have their nominal values. For example, it shows whether the response is linear or nonlinear,

or whether there are tipping points where the output responds drastically to a small parameter

change. By showing these relationships, OFAT can yield understanding of model mechanisms

(ten Broeke et al., 2016).

As mentioned above, the sensitivity analyses were conducted on several configurations of 10,

20, 30, 40, 50 and 60 agents that are randomly deployed across the force. These random

configurations provide a benchmark to compare the impact of different numbers of deployed

agents on the system. Examples of these random deployment configurations for various numbers

of deployed agents in DPD are displayed in Figure 5.1. Later in this chapter, in order to validate

the ABM, the model is instead run for deployment configurations which target patrol beats

with a high density of historical crimes, as it is more likely to resemble the real configuration

implemented by DPD.
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Figure 5.1: Examples of random deployment configurations for various numbers of deployed
agents in DPD.

5.2.1 Driving speed of agents

In the model, agents drive along the road network at the maximum speed limit of each road

segment. However, in the real world, the speed of responding vehicles may differ from that

value based on various external factors such as traffic fluidity. In fluid traffic, vehicles may be

able to drive faster than the speed limit as they deploy their blue light and siren. In congested

traffic on the other hand, they may have to drive slower than the speed limit.
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In order to evaluate how patterns of travel time are affected by variations in the driving speed

of the agents, a sensitivity analysis is performed in which 6 modifiers are tested for the driving

speed of agents: an increase of 10%, 20%, and 30% as well as a decrease of 10%, 20% and 30%

from the speed limit on each road segment. Given that the ABM is deterministic (see ODD

in Chapter 3), multiple runs of the model with the same parameters yield identical outcomes.

As such, it is not necessary to conduct multiple runs of the model for a given time period.

Considering both low and high demand scenarios as well as the aforementioned various supply

levels, a total of 1,200 ABM runs were evaluated for each parameter value (see Table 5.2 for a

breakdown of the supply and demand values used in this analysis).

Table 5.2: Values used in the sensitivity analysis of the driving speed of agents

Variable Number of values Values

Driving speed modifiers 7 -30%, -20%, -10%, 0%, +10%, +20%, +30%
Demand scenarios 2 Low-demand, high-demand
Time periods 100 From scenario’s ‘test set’ (2019)
Number of agents 6 10, 20, 30, 40, 50, 60
Deployment type 1 Random

The overall distributions for the average response time outputted by the model for each travel

speed modifier value are displayed in Figure 5.2. A Kruskal-Wallis test was conducted to

determine whether the travel speed of the agents had an effect on the average response time. The

results indicate a significant difference between groups for the low-demand scenario (H=311.509,

p<.05) with a moderate effect size (ε2 =0.074) and for the high-demand scenario (H=97.619,

p<.05) with a weak effect size (ε2 =0.023), possibly due to high variability across time periods.

These results suggest that, while the driving speed of agents may affect the average response

time in a low-demand scenario, the model’s sensitivity to the agent’s travel speed remains

relatively low. As such, the value arbitrarily chosen in the model, which corresponds to the

maximum speed limit on each road segment (0% modifier), appears to be a sensible one.

5.2.2 Number of streets to patrol per beat

During the initialisation of the model, 5 streets in each beat are chosen to be visited as part of

a patrol route (see details in Chapter 3). This selection is made either at random or based on

the streets’ density of historical crimes – when a dataset of historical crimes is provided upon

model initialisation. This number of streets to patrol in each beat is arbitrary and may affect

the overall crime deterrence score, which is an emergent outcome of the model. In order to
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Figure 5.2: Distribution of incident travel times for various agent travel speed modifier values
for low and high-demand scenarios.

explore the impact of this number on the overall crime deterrence score, a sensitivity analysis

was performed for 2, 5 and 10 streets to patrol per beat. Much like for the previous analysis, a

total of 1,200 ABM runs were conducted for each parameter value (see Table 5.3 for a details).

Table 5.3: Values used in the sensitivity analysis of the number of streets to patrol in each beat.

Variable Number of values Values

Number of hot streets 3 2, 5, 10
Demand scenarios 2 Low-demand, high-demand
Time periods 100 From scenario’s ‘test set’ (2019)
Number of agents 6 10, 20, 30, 40, 50, 60
Deployment type 1 Random

Figure 5.3: Distribution of total crime deterrence score for 2, 5 and 10 streets to patrol per beat
for low and high-demand scenarios.

The overall distributions of total deterrence scores that were outputted by the model for each

parameter value is displayed in Figure 5.3. A Kruskal-Wallis test was conducted to determine

whether the number of hot streets to patrol in each beat had an effect on the total crime

deterrence score. The results indicate no significant difference between groups (low-demand
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scenario: H=0.465, p>.05; high-demand scenario: H=0.265, p>.05). These results suggest that

the total crime deterrence score is not affected by the chosen number of streets to patrol in each

beat. The model does not appear to be sensitive to the value of this parameter. As such, the

value of 5 streets chosen for the model appears to be a reasonable choice.

This result further evidences that the patrol behaviour implemented in this first version of the

model is fairly inconsequential in terms of crime deterrence. Indeed, the calculation of the crime

deterrence score is here merely a function of agents’ idle time. Several improvements on the

implemented patrolling behaviour and the deterrence score calculation are suggested in Chapter

8.

5.2.3 Summary: sensitivity analysis

In this section, a One-Factor-at-A-Time (OFAT) sensitivity analysis was performed using DPD’s

case study for the following 2 parameters: (1) the driving speed of the agents on each road

segment and (2) the number of streets to patrol in each beat. Results suggest that, in the case

of DPD, the model is not highly sensitive to the values of these parameters. As such, these

parameters do not require calibration; instead, the chosen values appear reasonable. In the next

section, the model’s outputted performance metrics are validated against real data for DPD.

5.3 Model validation

Having established that the model is not overly sensitive to arbitrary parameter values, the

next step is to assess whether the model achieves the required level of realism to be useful for

its purpose – a process known as validation (North and Macal, 2007).

5.3.1 Challenges in validating a model of the police system

According to Axtell and Epstein (1994), there are 4 levels of model validation. Table 5.4 adapts

this framework to the problem of patrol deployment studied in this thesis.

As mentioned in Chapter 2, police patrol activities are complex due to the spatio-temporal in-

teractions of units with their environment. Patrol units engage in an array of different activities

throughout their shift. Furthermore, real-world travel time to incidents is dictated by highly

unpredictable factors such as the location of patrols when dispatched, the speed at which they
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Table 5.4: The 4 levels of validation applied to the patrol deployment problem

Level Model type Validation approach

Level 0 Caricature of reality Simple visualisations verify that agents behave as ex-
pected

Level 1 Qualitative agreement
(population level)

The distribution of simulated dispatch and travel times
visually matches that of times observed in the data

Level 2 Quantitative agreement
(population level)

Statistical tests demonstrate that simulated and real dis-
patch and travel times are statistically similar

Level 3 Quantitative agreement
(individual level)

Longitudinal analysis of individual incidents show that
the dispatch and travel time for the incident is similar to
that observed in the data.

drive to the incident, the route they take, as well as the status of the traffic lights and the

fluidity of the traffic on their route.

Knowing the exact whereabouts of individual patrols at a given time is thus challenging, with

past decisions constraining later ones (a concept known as path-dependence). While a few

studies have attempted to realistically model the whereabouts of real police vehicles, these have

been achieved at a relatively small scale and relied on the availability of GPS data (see Wise

and Cheng, 2016). Such data, which track the precise spatial movement of police vehicles,

are difficult to obtain for research purposes. One strength of the ABM developed here is its

ability to model the patrol activities of any given police force, while requiring minimal external

data sources. Although the absence of GPS data prevents a level-three validation based on

individual-level comparisons between simulated and observed response time to each incident, it

allows the model to be flexibly used on a wider range of contexts.

Importantly, the essence of any model is to simplify reality. For instance, equation-based models

sacrifice realism for speed and simplicity. While a major strength of ABMs is their ability to

incorporate some of the real world complexity (see discussion in Chapter 2), a level of abstraction

is key to focusing on relevant behaviour. As such, modelling the exact whereabouts of police

patrols may arguably result in over-fitting the model to the fuzzy movement of these individual

units.

A good practice when modelling complex systems is to incrementally introduce complexity in

model versions (Townsley and Birks, 2008). The model described in this thesis stands as a first

version in which simplifications have been made. As such, the principle aim when building this

ABM was to strike a balance between (1) the sufficient inclusion of real data for the model

to be meaningful (i.e. usable for testing and comparing deployment configurations) and (2)
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abstracting away from the complex and superfluous details of real world policing.

Given that the model is to be used solely to compare deployment configuration alternatives

against each other (and not against existing police deployment configurations), it is not nec-

essary to produce a model with a level of fidelity that exactly matches that of the real world

system. As such, the model is validated by abstracting away from individual responses with

a face validation (level 0) and a qualitative validation (level 1) which verifies that the model

produces the population-level patterns defined in Chapter 3. As a reminder, those validation

patterns concerned the overall distribution of incident travel and dispatch times compared with

that observed for incidents in DPD’s CFS dataset.

5.3.2 Face validation (level 0)

It is critical for replication efforts to ensure that the implemented model matches the conceptual

model – that is, that the code generated as part of this work correctly executes the processes

defined in Chapter 3 (North and Macal, 2007). The verification process is necessary for sharing

models, as without this step the generated outcomes may merely be the result of some peculiarity

of the code (Galán et al., 2009; North and Macal, 2007).

To achieve the first level of validation, an animated visualised simulation of the model applied

to DPD was produced with the view to assessing the general realism of the modelled system. In

this visualisation, agents can be seen moving along the road network to patrol their designated

beat and respond to incidents which appear on the map of DPD.

Furthermore, the model was manually inspected and verified to ensure that the dynamic at-

tributes of model entities are appropriately updated throughout the simulation in response to

occurring events. This was achieved by following individual agents, and ensuring that their

behaviour was as designed. To give an example taken from an actual run of the simulation ap-

plied to DPD, the activities of one simulated agent are detailed in Table 5.5. The agent begins

the simulation (08:00) patrolling their patrol beat. They are then dispatched to an incident at

10:19, when the first incident occurs in their precinct (precinct 6). Travelling to the scene of the

incident takes them 6 minutes, after which they begin to tend to the incident. After 10 minutes

at the scene, the incident is resolved and they route back to their assigned patrol beat where

they resume patrolling until they are dispatched to the next incident almost 2 hours later.

The corresponding trail representing the nodes visited by this agent during the time period is
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Table 5.5: Evolution of an agent’s status throughout the simulated time period (2019-03-19
08:00:00 to 2019-03-19 16:00:00)

Time Agent status

08:00:00 Patrolling
10:19:00 Travelling
10:25:00 At the scene
10:35:00 Patrolling
12:33:00 Travelling
12:37:00 At the scene
13:00:00 Patrolling
13:42:00 Travelling
13:48:00 At the scene
15:41:00 Patrolling
15:42:00 Travelling
15:48:00 At the scene

shown in Figure 5.4. Upon initialisation, the agent is deployed to patrol the 5 ‘hot’ streets (red

segments) of patrol beat 612 (red-coloured area) and is dispatched to respond to incidents (red

dots) throughout the precinct. This behaviour is consistent with the rules implemented for the

movement of agents.

Knowledge acquired through a Detroit News article (Hunter, 2015) suggests that DPD generally

operate in a similar fashion to forces in England and Wales with regards to dispatching. As

such – and in the absence of detailed information regarding DPD’s dispatching practices – the

simulation was demonstrated to Durham Constabulary’s call and dispatch team (UK) to review

model assumptions and model outputs for a limited number of cases. They confirmed that the

behaviour of the model was consistent with the activities of their police officers.

5.3.3 Population-level qualitative validation (level 1)

With a level-one validation, the model’s usefulness is evaluated by the degree of qualitative agree-

ment between simulated and observed population-level patterns. The goal here is to evaluate

the level of general realism of dispatch and travel times produced by the model by comparing

their values with those observed in DPD’s CFS dataset for the same incidents over the same

time period.

As previously highlighted in Subsection 5.1.2, dispatch and travel times are likely dependent

upon the chosen deployment configuration – i.e. how many agents are deployed and to which

patrol beats. As such, when validating the model against DPD’s real system, it is important

to ensure the model is run on a deployment configuration resembling as closely as possible that
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Figure 5.4: Trail of nodes visited by an agent patrolling in patrol beat 612 and responding to
incidents in the precinct (precinct 6) throughout the simulated time period (2019-03-19 08:00:00
to 2019-03-19 16:00:00).

which was actually implemented by DPD for the considered time period. This is so that any

potential difference in the distribution of simulated and observed dispatch and travel times can

be solely attributed to the behaviour of the dispatcher and the agents.

According to the aforementioned Detroit News article (Hunter, 2015), DPD deploys between

2 and 7 squad car units in each precinct and their deployment decisions are based on recent

crime trends, suggesting a targeted-patrolling type of behaviour. However, there is no publicly

available information that precisely describes the deployment configuration chosen by DPD on

a given shift; specifically with regards to the number of agents deployed across the force and

their assigned patrol beat.

To cover a range of possible configurations, six configurations were implemented representing the

deployment of 10, 20, 30, 40, 50 and 60 agents. To better mimic the deployment configuration

implemented by DPD, the agents in these deployments were deployed to targeted patrol beats

based on historical crime, in contrast with the random deployments used in the sensitivity

114



CHAPTER 5. MODEL ANALYSIS, VALIDATION, AND SIMULATION EXPERIMENTS
FOR THE CASE STUDY OF DETROIT

analysis in Section 5.2.

The design of these targeted deployments were based on the number of historical crimes that

took place in each patrol beat during the 100 time periods that make up each demand scenario’s

training set (2018). To illustrate, the number of historical crimes across patrol beats for both

demand scenarios is shown in Figure 5.5. The spatial patterns of historical crime demand

observed in these maps align with results from Section 4.5 of Chapter 4 which identified a high

volume of reported crimes in patrol beats around the downtown area. However, the results of

Chapter 4 related to the entire dataset of historical crimes spanning three years, while the ones

shown here focus on the year 2018 (training set).

The training set (2018) is used here as it corresponds to the year prior to that chosen for the

testing set (2019). This aims to represent how targeted deployments are usually made by police

officers based on historical demand. First, crimes from time periods in the testing set are used

to identify a targeted configuration based on historical demand. Then, the performance of each

of those targeted configurations is evaluated using the ABM.

Figure 5.5: Number of historical crimes in the ‘training set’ time periods (2018) across the
patrol beats of DPD. In targeted deployments, the n ‘hottest’ beats are staffed with an agent
(where n is the number of deployed agents in a given configuration).

Having counted the number of historical crimes in each demand scenario’s training set (2018)

for each patrol beat, all beats were then ranked and the top n beats were staffed with an agent,

where n is the number of deployed agents in a given configuration. The resulting targeted

deployments configurations are displayed in Figures 5.6 (low-demand scenario) and 5.7 (high-

demand scenario). While it may be the case that none of these configurations exactly equate to

that implemented by DPD on a given time period, it is nonetheless informative for validation

purposes to compare the system’s performance for each of these configurations with DPD’s
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performance as observed in the CFS dataset.

Figure 5.6: Targeted deployment configurations for a given number of deployed agents (based
on historical crimes under a low-demand scenario)
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Figure 5.7: Targeted deployment configurations for a given number of deployed agents (based
on historical crimes under a high-demand scenario)

For each demand scenario, all six deployment configurations were evaluated, totalling 600 ABM

runs for each demand scenario (see Table 5.6 for a summary of the range of values used for

model validation).

Validation pattern 1: distribution of dispatch times

The first validation pattern of interest concerns the distributions of observed versus ABM-

generated dispatch times. Figure 5.8 shows the distribution of dispatch times observed in
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Table 5.6: Values used in the population-level qualitative validation of dispatch and travel times.

Variable Number of values Values

Deployment type 1 Targeted based on historical reported crimes
Demand scenarios 2 Low-demand, high-demand
Time periods 100 From scenario’s ‘test set’ (2019)
Number of agents 6 10, 20, 30, 40, 50, 60

DPD’s dataset as well as those generated by the model for the various targeted configurations

under the low-demand scenario (left-hand side) and the high-demand scenario (right-hand side).

Figure 5.8: Comparison of the distribution of observed (real) versus ABM-generated incident
dispatch times.

In the low-demand scenario, the distribution of DPD’s observed dispatch times appears to

resemble the distribution of dispatch times produced by targeted deployment configurations

of 30 and 40 agents. In high-demand time periods however, it is the targeted deployment of

50 agents that appears to best match the distribution of DPD’s actual dispatch times. These

numbers are in accordance with DPD’s statement indicating that they typically deploy between

2 and 7 agents per precinct, hence an average of 50 agents across all 11 precincts. Interestingly,

it appears that deploying 40 agents instead of 30 produces very little improvement in dispatch

time under both low and high-demand scenarios.

The 10-agent configuration was excluded from the graph as it is too unrealistic and distorted the

scale of the y axis. In both scenarios, this deployment appeared to create a considerable backlog

of unassigned incidents. With these 10-agent deployments the dispatcher’s FIFO behaviour

yielded an median dispatch times of 50 minutes in the low-demand scenario and 130 minutes

in the high-demand one. Although this deployment configuration is likely too different from

DPD’s actual one, its outcome makes sense given the low number of agents dispatched. Indeed,
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dispatch times are expected to increase drastically when resources are stretched – i.e. there are

fewer agents deployed than are needed to meet the CFS demand.

In contrast, for configurations with enough agents to service the force, the median generated

dispatch time was closer to 1 minute (above 50 agents in both scenarios). In other words, with

targeted deployments of 50 agents, there is always at least one available agent in the force to

be dispatched immediately to an incoming incident.

Overall, when applied to the specific context of DPD, the model is able to produce realistic

looking dispatch times for targeted deployments of 30 agents in a low-demand scenario and 50

agents in a high-demand scenario. These results validate the behaviour of the dispatcher, in

particular its FIFO approach to dispatching agents to arising incidents.

Validation pattern 2: distribution of travel times

The second population-level validation pattern relates to the distribution of travel times. Figure

5.9 shows the distribution of observed travel times to incidents as well as that of travel times

generated by the model for the various targeted configurations under the low-demand scenario

(left-hand side) and the high-demand scenario (right-hand side). The figure shows a general

trend by which the more agents are deployed, the quicker they reach the incident they are

dispatched to. This pattern is expected, as more agents mean that the ‘closest available agent’

chosen for dispatch is more likely be in closer proximity to the incident than in a configuration

with fewer agents. Interestingly, there is no clear improvement in travel times between a targeted

deployment of 10 versus 20 agents under both the low-demand and the high-demand scenario.

Figure 5.9: Comparison of the distribution of observed (real) versus ABM-generated incident
travel times.

119



5.3. Model validation

Once dispatched to an incident, DPD’s response cars appear to take slightly longer to arrive at

the scene than the agents in the model do. Furthermore, observed travel times tend to fluctuate

more than generated ones. This can be explained by the unpredictable nature of the following

real-world factors:

• the speed at which responding vehicles drive: model agents always drive at the maximum

speed limit on each road segment whereas real response cars may drive at any speed;

• the flow of traffic: the model assumes a completely fluid traffic but in the real world,

traffic congestion may impede the driving speed of response cars;

• the behaviour of responders: model agents start driving towards the incident instanta-

neously when dispatched whereas it may take some time for real officers to get in their

car and start driving to the incident.

Overall, the small differences between observed and generated travel times appear reasonable

when considering the unpredictable nature of the real-world system. Furthermore, these small

differences are unlikely to prevent the model from fulfilling its purpose in comparing deployment

configurations against each other. These results thus validate the travelling behaviour of the

agents when responding to incidents, in the context of Detroit.

5.3.4 Summary on model validation

This section attempted to validate the model, in particular the behaviour of the dispatcher

and agents. Results from the population-level qualitative validation (level 1) applied to DPD

showed that the model appears to be able to broadly reproduce the dispatch and response times

observed in DPD’s dataset. Indeed, the distribution of generated dispatch and travel times for

a realistic deployment configuration (30 or 40 agents in low-demand scenario, 50 agents in

high-demand) resembles that observed in the data.

Given the complexity of the real police system, it is impossible for any model – as a necessary

simplification of the real world – to be perfectly realistic. Furthermore, the relative lack of data

against which to validate the model means that the validation performed in this section can

only confirm the realism of the model in a broad sense.

Nonetheless, the purpose of the model is not to compare its outcome to the real police system

but instead to compare the outcomes of various deployment configurations against each other.
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As such, this section showed that the level of realism of the model is sufficient for its intended

purpose. The next section presents the results of a series of simulation experiments for the case

study of Detroit conducted using the ABM.

5.4 Simulation experiments for model analysis

Section 5.2 demonstrated that the model is not overly sensitive to parameters and Section

5.3 validated that the dispatcher and agents in the model behave in a sufficiently realistic

manner. The ABM developed in this thesis is thus fit for its purpose, that is, to evaluate the

performance of the studied police system under particular deployment configurations with the

view to comparing configurations. In doing so, the ABM represents a powerful tool in exploring

the impact of a given deployment configurations on system performance, ultimately providing a

form of evidence-based approach to police deployment decisions making, as discussed in Chapter

2.

As defined in Chapter 2, the PDOP is concerned with identifying where to send available

resources to meet both reactive and proactive demand at a minimal cost. This problem can be

further broken down into specific questions to be explored such as:

1. What is the performance gain (if any) of deploying additional cars for a particular demand

scenario (e.g. a Friday night)?

2. What are the consequences of a given deployment configuration on reactive effectiveness

(as measured here by average response time and rate of ‘failed’ responses) versus proactive

effectiveness (as measured here by the total crime deterrence score)?

3. What is the performance gain (if any) of deploying resources based on historical demand

instead of randomly?

This section explores ways in which the model can provide answers to the above questions.

Through the conducted simulation experiments, it is possible to assess whether and how per-

formance is affected by various deployment configurations.

5.4.1 Experiment setup

The simulation experiments were conducted as per the OFAT principle, in a similar fashion to

the sensitivity analysis (see Section 5.2). By turning certain mechanisms on and off, one can gain
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a better understanding on how model outputs emerge. For a number of agents n (where n takes

the sequential values 10, 20, 30, 40, 50, and 60), the outcomes of two deployment configurations

were compared: (1) a targeted deployment configuration based on historical CFS demand and

(2) a random deployment configuration. The latter was used to provide a benchmark against

which to evaluate the benefits, if any, of a targeted deployment.

In the model validation analysis (see Section 5.3 above), the targeted deployments were based

on the number of historical reported crimes because the aim was to mimic the design choices

made by DPD. In comparison, a different approach is chosen for these experiments, one that

uses historical CFS instead of historical crimes to design the targeted deployments. This is so

that the performance of the targeted configurations, as evaluated in these experiments, may be

directly related and compared to that of the optimum deployment configuration(s) suggested

by the single-objective GA in Chapter 7. Indeed, this GA converges towards an optimum

configuration based solely on average response times to CFS (which it attempts to minimise).

With the GA, a minimal average response time is achieved through a configuration in which

agents are placed within short driving time to arising CFS. This equates to deploying agents

based on historical CFS demand (assuming that past demand is a good predictor for future

demand), as opposed to historical crimes.

The design of targeted deployments for a given number of available agents (n) is based on the

number of historical CFS incidents that took place in each patrol beat during the 100 time

periods that make up each scenario’s training set (2018). To illustrate, Figure 5.10 shows the

number of historical CFS incidents in the training set of each demand scenario.

Figure 5.10: Number of historical CFS incidents in the ‘training set’ time periods (2018) across
the patrol beats of DPD. In targeted deployments, the n ‘hottest’ beats are staffed with an
agent (where n is the number of deployed agents in a given configuration).
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In a similar fashion to Section 5.3, all patrol beats are ranked based on their number of historical

CFS incidents from each scenario’s training set and the top n beats are staffed with an agent.

The resulting targeted deployments for various numbers of deployed agents are displayed in

Figures 5.11 (low-demand scenario) and 5.12 (high-demand scenario).

Figure 5.11: Targeted deployment configurations for a given number of deployed agents (based
on historical CFS incidents under a low-demand scenario)
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Figure 5.12: Targeted deployment configurations for a given number of deployed agents (based
on historical CFS incidents under a high-demand scenario)

As previously mentioned in Chapter 4 the spatial distribution of CFS in Detroit differs from

that of reported crimes. In particular, while patrol beats around the downtown area exhibit

the highest number of historical reported crimes, they do not generate a high volume of CFS.

As a result, the targeted deployments based on historical CFS demand (reactive demand) differ

quite significantly from those based on historical crimes (proactive demand) (see Figure 5.5 in

Section 5.3 above for comparison).

In contrast to targeted deployment configurations, the random configurations are generated by
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sampling n random patrol beats to be staffed. A new random configuration is created and

evaluated for each run to account for the stochasticity that comes with randomly choosing

configurations.

Each configuration (targeted or random, with n agents) was evaluated on the 100 time periods

that make up each demand scenario’s ‘test set’ (2019). A total of 1,200 ABM runs were thus

executed for each demand scenario (see Table 5.7 for a summary of the range of values used

in this simulation experiment). For each configuration, the performance of the system was

evaluated on the three performance metrics outputted by the ABM: (1) average response time

(2) rate of ‘failed’ responses and (3) total crime deterrence score.

Table 5.7: Values used in the simulation experiment

Variable Number of values Values

Number of agents 6 10, 20, 30, 40, 50, 60
Deployment types 2 Random, targeted based on historical CFS
Demand scenarios 2 Low-demand, high-demand
Time periods 100 From scenario’s ‘test set’ (2019)

The statistical significance of the null hypothesis (i.e. no significant difference between number

of agents or between deployment types for a given number of agents) was determined with a

Kruskal-Wallis test at p=0.01 and the effect size of each test was evaluated by calculating the

epsilon squared value (refer to Table 4.3 for equivalence between epsilon squared values and

effect quality).

5.4.2 Results

The first question explored in these experiments concerns the impact of the total number of

deployed agents on system performance (response time, rate of ‘failed responses’ and crime

deterrence score). The second question explored relates to the importance of the placement of

these agents – i.e. in which way does deploying a given number of agents to targeted patrol

beats affect the system performance compared with a random deployment? The mean and

standard deviation for all 3 performance metrics are shown in Table 5.8. In what follows, the

impact of deployment configurations on each metric is considered individually.
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Average response time

Figure 5.13 shows the distribution of average response times across number of agents and type

of configuration (random versus targeted) under both demand scenarios. The results suggests

that, overall, the average response time decreases as the number of deployed agents increases.

Furthermore, the higher the number of deployed agents, the more consistent the response times.

These trends, which were anticipated, can be observed in both low-demand and high-demand

scenarios. In the low-demand scenario, the most striking improvement of the targeted deploy-

ment over a random one appears to be achieved with targeted deployments of 20 agents.

A Kruskal-Wallis test was conducted to determine whether the number of deployed agents had

an effect on the average response time. The results indicate a significant difference between

numbers of agents for both scenarios (low-demand scenario: H = 710.621, p<.01; high-demand

scenario: H = 735.261, p<.01). The observed effect size was strong for both scenarios (low-

demand scenario: ε2 = 0.593; high-demand scenario ε2= 0.613).

Figure 5.13: Average response time by number of deployed agents for random versus targeted
deployments and both low-demand (top row) and high-demand (bottom row) scenarios. The
curves show the mean and 95% confidence intervals around the mean (using the bootstrap
method).

Additional pairwise Kruskal-Wallis tests were conducted to determine whether, for a given

number of deployed agents, the chosen deployment type (i.e. targeted versus random) had an

effect on the average response time. Results are displayed in Table 5.9 (low-demand scenarios)

and Table 5.10 (high-demand scenarios). In the low-demand scenario, the only noteworthy

difference in average response time between targeted and random deployments was observed for

configurations of 20 agents. Responses were 51% faster on average with a targeted deployment

of 20 agents compared with a random one for the same number of agents. For deployments
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involving any other number of agents, the targeted deployment did not bring any considerable

improvement in response time. In the high-demand scenario, the targeted deployment yielded

significantly faster response times for configurations of 10 agents (40% faster responses on

average) and 20 agents (30% faster responses on average).

Table 5.9: Mean difference in response time between targeted and random deployment in low-
demand scenarios.

Num. of
agents

Mean response time (mins) % change P-value Effect size

Random Targeted Diff.

10 14.17 16.16 +1.99 +14.07 % 0.11 Weak
20 10.67 5.18 −5.49 −51.47 % <0.01 Strong
30 7.56 6.67 +0.89 −11.79 % 0.62 Negligible
40 5.54 5.64 +0.10 +1.83 % 0.18 Negligible
50 4.26 4.30 +0.04 +0.90 % <0.01 Weak
60 3.94 3.74 −0.19 −4.93 % <0.01 Moderate

Note: the values in bold are those showing a sizeable and statistically significant difference in mean response
time with a moderate to strong effect size.

Table 5.10: Mean difference in response time between targeted and random deployment in
high-demand scenarios.

Num. of
agents

Mean response time (mins) % change P-value Effect size

Random Targeted Diff.

10 31.47 18.88 −12.59 −40.01 % <0.01 Relatively strong
20 19.15 13.35 −5.79 −30.27 % <0.01 Moderate
30 11.86 11.13 −0.73 −6.16 % 0.59 Negligible
40 8.58 7.31 −1.27 −14.78 % 0.14 Weak
50 5.74 5.27 −0.47 −8.26 % 0.02 Weak
60 4.54 4.82 +0.28 +6.18 % 0.19 Negligible

Note: the values in bold are those showing a sizeable and statistically significant difference in mean response
time with a moderate to strong effect size.

These results suggest that a targeted deployment may be particularly beneficial for reducing

the average response time in Detroit when resources are stretched – e.g. under high-demand

scenarios when only 10 to 20 agents are deployed. In the high-demand scenarios tested in the

model, targeted deployments have the potential to yield responses that are up to 40% faster

than with a random equivalent configuration. In deployments where the number of agents is

sufficient to meet demand, on the other hand, a targeted deployment does not yield faster

responses than a random one.
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Percentage of ‘failed’ responses

Figure 5.14 shows the distribution of the percentage of ‘failed’ responses across number of agents

and type of configuration (random versus targeted) under both demand scenarios. As previously

explained, a response is considered ‘failed’ if its response time is greater than 15 minutes. The

figure suggests that, similarly to the related average response time, the percentage of ‘failed’

responses tends to decrease when the number of deployed agents increases.

Results from the Kruskal-Wallis test indicate a significant difference in percentage of ‘failed’

responses across numbers of deployed agents (low-demand scenario: H = 424.201, p<.01; high-

demand scenario: H = 642.880, p<.01). The effect size was relatively strong for the low-demand

scenario (ε2= 0.354) and strong for the high-demand scenario (ε2= 0.536).

Figure 5.14: Percentage of ‘failed’ responses by number of deployed agents for random versus
targeted deployments and both low-demand (top row) and high-demand (bottom row) scenarios.
The curves show the mean and 95% confidence intervals around the mean (using the bootstrap
method).

Additional pairwise Kruskal-Wallis tests were conducted to determine whether, for a given

number of deployed agents, the chosen deployment type (i.e. targeted versus random) had an

effect on the percentage of ‘failed’ responses. Results are displayed in Table 5.11 (low-demand

scenarios) and Table 5.12 (high-demand scenarios).

Results are similar to those observed for the average response time (see above). Here too, the

only noteworthy difference in percentage of ‘failed’ responses between targeted and random

deployments under the low-demand scenario was observed for deployments of 20 agents. For

this configuration, the number of ‘failed’ responses dropped by almost 6%. For deployments

involving any other number of agents, the targeted deployment did not bring any considerable

reduction in percentage of ‘failed’ responses compared with the random one.
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In the high-demand scenario, the targeted deployment lead to significantly fewer ‘failed’ re-

sponses for configurations of 10 agents (5% fewer) and 20 agents (6% fewer). As previously

shown for the average response time, these results suggest that a targeted deployment is partic-

ularly beneficial for reducing the average response time in Detroit when resources are stretched

(high-demand scenarios with 10 to 20 agents).

Table 5.11: Mean difference in percentage of ‘failed’ responses between targeted and random
deployment in low-demand scenarios.

Num. of
agents

Percent. failed responses (%) P-value Effect size

Random Targeted Diff.

10 8.02 10.13 +2.10 0.02 Weak
20 7.09 1.40 −5.69 <0.01 Relatively strong
30 4.43 3.56 −0.87 0.48 Negligible
40 1.93 2.68 +0.74 0.03 Weak
50 0.55 1.13 +0.58 0.04 Weak
60 0.58 0.46 −0.12 0.64 Negligible

Note: the values in bold are those showing a sizeable and statistically significant difference in mean response
time with a moderate to strong effect size.

Table 5.12: Mean difference in percentage of ‘failed’ responses between targeted and random
deployment in high-demand scenarios.

Num. of
agents

Percent. failed responses (%) P-value Effect size

Random Targeted Diff.

10 17.33 12.63 −4.69 <0.01 Moderate
20 15.38 9.58 −5.80 <0.01 Moderate
30 10.28 8.59 −1.69 0.08 Weak
40 5.68 4.60 −1.08 0.32 Negligible
50 2.98 2.49 −0.49 0.69 Negligible
60 1.32 2.04 +0.72 <0.01 Moderate

Note: the values in bold are those showing a sizeable and statistically significant difference in mean response
time with a moderate to strong effect size.

Crime deterrence score

Figure 5.15 shows the distribution of the total crime deterrence score across number of agents

and type of configuration (random versus targeted) under both demand scenarios. The results

suggest that, for both demand scenarios, the total crime deterrence increases with the number

of deployed agents. Results from the Kruskal-Wallis test indicate a significant difference in

crime deterrence across numbers of deployed agents (low-demand scenario: H=1163.284, p<.01;

high-demand scenario: H=1162.838, p<.01). The effect size is very strong for both scenarios

(low-demand scenario: ε2 =0.970; high-demand scenario: ε2 =0.970).
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Figure 5.15: Total crime deterrence score by number of deployed agents for random versus
targeted deployments and both low-demand (top row) and high-demand (bottom row) scenarios.

The observed increase in crime deterrence when the number of agents increases for a given

demand scenario is directly linked to the increase in agent patrolling time, as shown in Figure

5.16. As more agents are deployed, each agent is less likely to be dispatched to incidents and thus

may spend more time patrolling their designated beat. As previously explained, the patrolling

behaviour presently employed in this iteration of the model is merely the direct outcome of

agents’ idle time. Subsequent versions may enhance this behaviour to generate more realistic

evaluations of the crime deterrence carried out by agents during their patrols.

Figure 5.16: Average agent patrolling time under a low-demand and high-demand scenario.
The curves show the mean and 95% confidence intervals around the mean (using the bootstrap
method).

A noteworthy result here relates to the fact that the total deterrence score is greater in high-

demand scenarios than it is in low-demand ones. This is because, although agents spend less time

patrolling in a high-demand scenario than in a low-demand one, their preventative potential is

greater according to the deterrence score defined in this thesis. Indeed, the number of historical
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crimes on the streets patrolled by agents is greater in high-demand scenarios (e.g. Saturday

00:00 to 08:00) than in low-demand ones (e.g. Monday 08:00 to 16:00).

Additional pairwise Kruskal-Wallis tests were conducted to determine whether, for a given

number of deployed agents, the chosen deployment type (i.e. targeted versus random) had an

effect on the total deterrence score. Results are displayed in Table 5.13 (low-demand scenarios)

and Table 5.14 (high-demand scenarios).

Table 5.13: Mean difference in total deterrence score between targeted and random deployment
in low-demand scenarios.

Num. of
agents

Total deterrence score % change P-value Effect size

Random Targeted Diff.

10 402.82 390.52 −12.30 −3.05 % 0.26 Negligible
20 837.19 832.69 −4.50 −0.54 % 0.81 Negligible
30 1263.93 1334.55 +70.62 +5.59 % <0.01 Moderate
40 1696.92 1763.77 +66.85 +3.94 % <0.01 Moderate
50 2129.93 2239.68 +109.75 +5.15 % <0.01 Relatively strong
60 2576.11 2712.32 +136.21 +5.29 % <0.01 Relatively strong

Note: the values in bold are those showing a sizeable and statistically significant difference in mean response
time with a moderate to strong effect size.

Table 5.14: Mean difference in total deterrence score between targeted and random deployment
in high-demand scenarios.

Num. of
agents

Total deterrence score % change P-value Effect size

Random Targeted Diff.

10 725.23 718.74 −6.49 −0.89 % 0.63 Negligible
20 1554.12 1592.37 +38.25 +2.46 % 0.09 Weak
30 2425.48 2470.95 +45.47 +1.87 % 0.17 Negligible
40 3316.87 3380.65 +63.78 +1.92 % 0.05 Weak
50 4178.57 4229.28 +50.71 +1.21 % 0.14 Weak
60 5024.84 5063.92 +39.08 +0.78 % 0.42 Negligible

Note: the values in bold are those showing a sizeable and statistically significant difference in mean response
time with a moderate to strong effect size.

Under the low-demand scenarios tested in the model, a significant difference in crime deterrence

score between targeted and random deployments was observed with deployments of 30, 40, 50

and 60 agents. In these scenarios, the targeted deployment yielded 4 to 5% more crime deter-

rence than random ones. Under the high-demand scenarios however, there was no noteworthy

difference between the two types of deployment.

These results suggest that a targeted deployment is particularly beneficial for increasing the

time that agents are able to spend on patrol in low-demand scenarios (e.g. weekday day shift)
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and when supply is high (30 agents or more). However, the benefits of a targeted deployment

on agent idle time appear to be less tangible when the demand is high (e.g. weekend late shift)

and/or when supply is stretched, presumably because agents spend more time responding to

incidents in such situations. It is worth reminding the reader that the targeted deployment

configurations evaluated here are based on the number of historical CFS incidents in beats,

instead of the number of historical crimes in those beats. Higher crime deterrence scores are

expected to be achieved with targeted deployments based on historical crime. However, as

previously mentioned in this chapter, it is the targeted configurations based on historical CFS

that are studied in this experiment, so that they can be compared with those identified by the

GA in Chapter 7.

Summary

Overall the number of deployed agents has a significant impact on the performance of the

system, both in terms of proactive and reactive response. In the scenarios tested in the model,

increasing the number of deployed agents yielded (1) a reduction in average response time, (2) a

smaller percentage of ‘failed’ responses and (3) more ‘idle’ time for agents to patrol hot streets,

thus deterring more crime.

Additionally, a deployment type which targets patrol beats based on historical CFS demand may

bring benefits compared to a random deployment. When resources are stretched, the targeted

deployment implemented in the model yields a better average response time and a smaller

percentage of ‘failed’ responses. On the other hand, when supply is sufficient to meet CFS

demand, a targeted deployment does not bring significant improvements in reactive effectiveness,

yet may lead to more crime deterrence as agents have more ‘idle’ time to patrol.

5.5 Summary: model analysis, validation and simulation exper-

iments

This chapter proposed a series of analyses and experiments using the ABM built in this thesis

applied to the exemplar police force of DPD. Section 5.1 began by introducing the manner in

which various levels of demand and supply were tested in the model. With regards to demand,

the CFS data for DPD was split into a training and test set for two distinct demand scenarios

(low versus high). In terms of supply, various deployment configurations were tested throughout
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the chapter featuring different numbers of agents positioned either randomly or in a targeted

fashion based on historical demand. Then, a sensitivity analysis was proposed in Section 5.2,

followed by a validation of the ABM in Section 5.3. The purpose of the model is to explore

the potential impact of various deployment configurations on system performance. As such,

a series of simulation experiments were conducted on DPD’s system in Section 5.4 to answer

questions concerning (1) the total number of agents deployed and (2) the specific positioning of

these agents across the patrol beats of the force.

The ABM built in this this thesis constitutes a safe environment in which various deployment

configurations can be explored and their potential real-world consequences may be anticipated.

Simulation experiments such as those conducted in this chapter can thus provide policy makers

with insights regarding deployment decisions. For instance, such experiments can help quantify

the performance gain or loss of deploying an additional car on a particular shift, or that of

deploying agents to particular patrol beats.

One particular question of relevance to police deployment decisions concerns identifying the

optimal configuration for a particular shift, which is an optimisation problem (see the definition

of PDOP in Chapter 2). For instance, the police may wish to find the deployment configuration

that minimises average response time and/or maximises crime deterrence through patrolling.

Although very informative, the simulation experiments conducted using the ABM in this chapter

are unable to answer optimisation questions on their own as they can only be conducted on a

small number of configurations, e.g. 10, 20, 30, 40, 50, 60 agents with a small number of different

deployment types (e.g. random versus targeted). To answer such an optimisation question, the

search for solutions needs to be automated to cover a wide range of possible configurations in

order to ensure finding the optimal one. The next chapter will describe how genetic algorithms

can help automate the search for solutions to the PDOP.
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Chapter 6

Designing Genetic Algorithms for

the PDOP

6.1 Introduction

The ABM developed in this thesis simulates the activities of patrols across the force with the

view to evaluating the impact of a given deployment configuration (model input) on system

performance (model outcome). The goal of the ABM is to evaluate multiple deployment con-

figurations in order to identify optimal solutions to the PDOP. Chapter 5 explored ways in

which this ABM tool can be utilised to better estimate the performance of various deployment

configurations, using the exemplar police force of Detroit. Although insightful, these ABM

experiments are somewhat limited in their ability to answer the PDOP as there are too many

configurations to be tested. In itself, the ABM is a descriptive tool rather than a prescriptive

one.

This chapter brings forth the value of the methodology chosen here to explore the PDOP: a

simulation-based optimisation approach using the ABM as an evaluating tool within a Genetic

Algorithm (GA) which automates the search for solutions. Specifically, this chapter focuses on

detailing the general design of the GA framework developed in this thesis, while the next chapter

will present results obtained from applying this framework to the case study of Detroit. The

code for the GAs is available at https://github.com/mednche/police-deployment-optimisation/

src/GA.
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6.2. The need for metaheuristics

First, Section 6.2 introduces the need to combine the ABM with a metaheuristic search algorithm

that is able to scan the parameter space in an efficient manner. In the specific simulation-based

optimisation approach explored in this thesis, the search for optimal solutions to the patrol

deployment problem is guided by a GA. After presenting the key concepts of GAs as well as

their advantages and limitations in Section 6.3, Section 6.4 presents the design decisions that

were made in this thesis to build GAs for the PDOP. Finally, Section 6.5 provides an overview

of the logistical decisions made to run the GAs including ways to monitor model performance

and prevent over-fitting.

6.2 The need for metaheuristics

The concept of search space in optimisation problems was introduced Chapter 2. The size of

a problem is grounded in (1) the dimensionality of the problem at hand (i.e. the number of

parameters) and (2) the number of different values for the problem parameters (Eiben and

Smith, 2015). Depending on the size of the chosen police force, the search space for the PDOP

may become very large. In the case study of Detroit, the force is composed of 131 patrol beats

which can each take up one of two values (0: unstaffed or 1: staffed). As such, there are a total

of 2131 possible solutions to the PDOP in Detroit.

Roughly speaking, a problem is considered easy if there exists a fast solver for it, and hard

otherwise. The running-time of an algorithm is the number of elementary steps, or operations,

it takes to terminate. Assuming it takes one minute to run a single ABM for a candidate

solution, finding the exact optimal solution to the PDOP in Detroit would take approximately

1.4e45 years. It is thus clearly impossible to exhaustively explore all deployment configurations

when searching for solutions to the PDOP in the context of Detroit.

In such a scenario, metaheuristic search optimisation algorithms prove to be an efficient tool

to provide usable near-optimal solutions in a short amount of time. Although metaheuristic

algorithms are not mathematically guaranteed to find the optimal solution, they are able to

scan the search space in an efficient manner, trading completeness for speed. They provide an

approximate solution where classical optimisation techniques fail to find any exact solution due

to their iterative approach. The following section will introduce genetic algorithms and outline

their their main components.
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6.3 Genetic Algorithms

The approach chosen in this thesis uses a specific type of metaheuristics called Genetic Algo-

rithms (GAs). First developed by John Holland and David E. Goldberg in the 1970s (Goldberg

and Holland, 1979; Holland, 1975), the GA is a search optimisation technique inspired by the

principles of genetics and natural selection. While this section provides a generic introduction

to GAs, further details about how the concept translates to solving the PDOP will be provided

in the following section (Section 6.4).

This section begins with a brief introduction to the process of natural evolution and how GAs

relate this phenomenon to the solving of optimisation problems. Then, a detailed description of

the key components of GAs is provided. Finally, this section ends with a list of the advantages

and limitations of GAs as a search optimisation technique.

6.3.1 Natural selection and GAs

The process of natural evolution

The concept of natural evolution explains how an individual’s ability to survive in its environ-

ment (fitness) is determined by both its phenotype (traits) and genotype (DNA). An offspring

inherits traits from both parents as well as new traits that the parents may not have, due to

mutation and cross-overs in their own genotype. These traits may increase an offspring’s fitness,

yielding a higher probability of survival and passing the traits on to the next generation. Over

time, the best individuals survive and reproduce and so evolution progresses, with the average

fitness of the population improving.

Each individual is a dual entity: its phenotypic (macroscopic) properties are encoded at the

genotypic (microscopic) level. At the macroscopic level, individuals exhibit a combination of

behavioural and physical features called phenotypic traits (e.g. big ears, white fur etc.) which

determine their fitness by directly affecting their response to the environment. During the

reproduction stage, small random variations in phenotypic traits lead to the production of new

combinations of traits.

At the genotypic (microscopic) level, natural evolution is governed by molecular genetics. Genes

are arranged in several chromosomes. During the reproduction stage, these genes may be altered

by two independent random phenomena: (1) small localised mutations and (2) cross-overs (or
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recombinations) whereby whole sections of DNA are swapped at once. These alterations of the

genes result in an alteration in the phenotype, which gets evaluated by the environment as part

of the ‘survival of the fittest’ process.

Collectively, parent selection and gene alteration are the two driving forces of natural evolution.

New individuals are created which exhibit some of their parents’ traits as well as new traits,

and their fitness is evaluated by the environment.

The metaphor of GAs

The fundamental metaphor of GAs relates this powerful natural evolution to a particular style

of problem solving – that of trial-and-error (Eiben and Smith, 2015), also known as ‘generate-

and-test’. In a GA, an analogy is made between an individual and a candidate solution. Each

solution is composed of a set of model parameters (or features) that equates to an individual’s

genes. Unlike in nature, GAs typically represent all the genes of a given individual on a single

chromosome. The evaluation function provides a heuristic estimate of solution quality, and the

search process is driven by selection and variation operators. Table 6.1 provides a summary of

the equivalence of terms between natural evolution and GAs. A concrete example, applied to

the PDOP, will be later provided in Section 6.4 of this chapter.

Table 6.1: Equivalence between genetic algorithms and natural evolution

Natural evolution Genetic algorithms

Evolution Trial-and-error problem solving
Individual Candidate solution
Gene Solution parameter
Fitness Solution quality

6.3.2 Components of a GA

Generally speaking, a GA features a population of individuals (i.e. the candidate solutions),

all of which are evaluated at each generation through the evaluation function and assigned a

fitness value. ‘Fitter’ individuals are given a higher chance to mate and seed the next genera-

tion. During the mating phase, random crossovers and mutations give rise to new individuals

(offspring) to be tested. Thus, as the generations pass, there is a change in the constitution

of the population. The individuals in the population become fitter and fitter until a stopping

criterion is reached. The flowchart presented in Figure 6.1 provides a summary of the general

scheme of a GA, which is now described in details.
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Figure 6.1: Flowchart of the general scheme of a GA.

Population

In a GA, the population is composed of individuals representing possible candidate solutions.

As previously explained in Chapter 2, in the case of the PDOP specifically, candidate solutions

represent deployment configurations (i.e. which beats are staffed by a patrol unit).

Upon initialisation, the population is seeded with µ randomly generated individuals, and this

size typically remains constant throughout the generations. Population diversity is measured

by the number of different individuals it contains. Technically speaking, it is the population

itself that changes and adapts over time, rather than the individuals which are static objects.

In other words, while individuals form the units of selection, the population forms the unit of

139



6.3. Genetic Algorithms

evolution.

Evaluation function

The role of the evaluation function is to calculate an individual’s fitness – i.e, the quality of a

solution – based on the objective function(s) of the problem. The resulting fitness determines an

individual’s chance of survival and of multiplying. The evaluation function is commonly called

the fitness function in GAs. This sometimes causes a counter-intuitive terminology when the

original problem requires minimisation (e.g. average response time), because the term fitness

is usually associated with maximisation.

Parent selection

The role of the parent selection mechanism is to choose individuals to seed the next generation

based on their fitness. This, together with the survivor selection mechanism (see below), is

responsible for pushing quality improvements in the population. Parent selection is typically

probabilistic, thus high-quality individuals have more chance of becoming parents than those

with low quality. Nevertheless, low-quality individuals are still given a small chance to breed in

order to prevent the search from becoming too greedy and thus getting stuck in a local fitness

optimum.

Variations (mutations and crossovers)

The role of variation operators is to create new individuals from old ones. From the generate-

and-test search perspective, variation operators perform the ‘generate’ step. Similarly to the

process of natural evolution, there are two types of variation operators: crossovers and muta-

tions.

Crossovers are applied between two or more parents, producing one or more offspring. Crossovers

are stochastic: the choices of what parts of each parent are combined, and how this is done,

depend on random decisions. This is the primary mechanism by which solutions evolve. With

crossovers, offspring inherit a number of genes from each parent. Mutations may then be ap-

plied to an offspring to create a slightly modified mutant. Like crossovers, a mutation operator

is always stochastic: its output depends on the outcomes of a series of random choices.
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Population replacement and survivor selection

A cycle of population replacement unfolds as follows. Each generation begins with a population

of size µ, from which a mating pool of parents is selected. Every member of the pool is a

copy of an individual in the population, but more copies of the ‘better’ parents tend to be

more represented, as the process is probabilistic. Next, λ offspring are created from the mating

pool by the application of variation operators, and are evaluated. Amongst the offspring there

may be copies of some parent individuals that survived crossover and mutation without being

modified (depending on the probabilities of mutation and crossover chosen for the GA).

The survivor selection mechanism – often called the replacement strategy – takes place after

the evaluation of the offspring generated from the selected parents. At the end of each model

generation, the whole population is replaced by a new population of µ individuals. As such,

a choice needs to be made with regards to which individuals are allowed in to the next gener-

ation. In contrast to parent selection, which is typically stochastic, survivor selection is often

deterministic.

Replacement strategies can be categorised according to whether they discriminate on the basis

of the fitness or the age of individuals. A wide number of strategies based on fitness or age have

been proposed for choosing which µ of the (µ parents and λ offspring) should go forward to the

next generation. Amongst them, the most common strategies are:

• (µ, λ) selection: when λ ≥ µ, the λ offspring undergo a fitness-based selection and the

µ fittest individuals are chosen for the next population. When λ = µ, all the offspring

replace the parents without selection.

• (µ + λ) selection: the λ offspring and µ parents are merged and ranked according to

their fitness, then the top µ are kept to form the next generation. This scheme prevents

accidentally losing some of the best individuals through the generations.

Termination criteria

The GA process is iterated over several generational steps until a termination criterion is met.

Typical termination criteria include:

• the maximally allowed CPU time elapses;

• the fixed number of generational steps is reached;
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• the fitness improvement remains under a threshold value for a given period of time (i.e.,

for a number of generational steps);

• the population diversity drops under a given threshold.

6.3.3 Advantages and limitations of GAs

Much like any computational method, GAs present both advantages and limitations, which are

here summarised in Table 6.2. GAs are computationally expensive for some problems due to

the repeated calculation of fitness values. As such, they are not best suited for simple problems.

Furthermore, GA hyper-parameters (e.g. population size, mutation rate etc.) are notoriously

difficult to tune (Eiben and Smith, 2015) and the stochastic nature of metaheuristics means

there is no guarantee of the quality of the solution(s) as they may not always reach optimality.

Table 6.2: Advantages and limitations of GAs

Category Advantages Limitations

Implementation
• Concept easy to understand
• Parallel distribution possible
• Works with ABM

• Difficult to tune hyper-
parameters

Exploration
of the search
space

• Efficient search
• Balanced exploration versus

exploitation

• Computational cost of re-
peat fitness calculation

• No guarantee of optimality

Despite these limitations, GAs provide a number of advantages compared with other techniques.

First, they offer considerable flexibility in their design and their concept is intuitive and easy to

grasp. Additionally, they can be combined with other techniques such as ABM (see for instance

Choi et al., 2001; Stonedahl and Wilensky, 2011) which is the chosen approach in this thesis.

Second, GAs are particularly efficient in searching complex and large search spaces (Choi et al.,

2001; Srinivas and Deb, 1994, see for instance), allowing them to quickly rule out large parts

of the search space and identify solutions in reasonable time. As such, they are amongst the

best suited techniques for complex nonlinear optimisation problems (Mangla et al., 2021, see

e.g.), as well as combinatorial optimisation problems (Stonedahl and Wilensky, 2011, see e.g.).

Additionally, GAs are parallel in nature: the fitness of each individual in the population can

be evaluated independently. as such, advances in modern computing – e.g. multiprocessing

techniques – can be harnessed to considerably reduce computing time.
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Third, GAs are noted for their robust solution quality when searching large search spaces. As

defined in Chapter 2, the PDOP is a multimodal problem which also features multiple ob-

jectives. A multimodal problem has multiple solutions or multiple optima, which makes the

optimisation problem more complex. Multi-objective optimisation problems involve the optimi-

sation of multiple objective functions, and there may be multiple optimal solutions representing

trade-offs between the objectives. When a problem is both multimodal and multi-objective,

finding the set of Pareto-optimal solutions can be challenging, and special techniques such as

GAs are often employed (Deb, 2001; Goldberg, 1989; Holland, 1992; Michalewicz, 1996; Pham

and Karaboga, 2000; Srinivas and Deb, 1994), in order to locate the global optimum or to iden-

tify a number of high-fitness solutions corresponding to various local optima. This is because

their search strategy based on random choice allows them to balance exploration of the feasible

domain and exploitation of ‘good’ solutions.

6.3.4 Summary: Genetic Algorithms

This section presented the generic framework that forms the common basis for GAs. In broad

terms, this framework always involves a population of candidate solutions that are manipulated

by selection, re-combination, and mutation operators. Although the general principles of GAs

are common to all GA applications, there is no generic GA, and the user has to custom-design

the algorithm for the problem at hand. The next section provides a detailed description of

the design decisions that were made for the GAs implemented in this thesis to be specifically

applied to the PDOP.

6.4 Designing GAs for the PDOP

This thesis explores two variants of the PDOP, each requiring a custom-designed GA. In the first

variant of the problem, there is only one objective: to minimise the average incident response

time. With this GA variant, there is no optimisation of the number of agents itself. As such,

the single-objective PDOP aims to optimise the response time given a current level of staffing.

In the second GA variant, multiple objectives are considered simultaneously (e.g. average

response time, percentage of ‘failed’ responses, total deterrence score) and the GA seeks to

identify a number of ‘good’ solutions that provide a trade-off between these objectives (see

Chapter 7 for details). Both GA variants built in this thesis share the same foundational
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design, varying only on some aspects related to the specific objective(s) of the problem. As

such, the remainder of this section details the design decisions and parameter values that are

shared across both GAs. The specific differences will be detailed in the next chapter (Chapter

7).

6.4.1 Problem representation

As previously explained in Chapter 2, the approach chosen in this thesis is that of a simulation-

based optimisation in which a GA utilises the ABM as a tool to evaluate the fitness of its

individuals. At each generational step, the GA is responsible for (1) generating new individuals,

(2) evaluating the fitness of individuals using the ABM, (3) selecting parents based on their

fitness, (4) applying variation operators to create a population of offspring and (5) selecting

survivors among the offspring to create the new population.

Since the GA relies on the ABM for fitness evaluation, the individuals need to be encoded in

the GA in the same manner they are inside the ABM itself. As such, the individuals, which

here represent deployment configurations are encoded as array of n binary values (where n is

the number of patrol beats in the police force). As explained for the ABM in Chapter 3, a

binary values in the array indicates whether the corresponding patrol beat is staffed with an

agent (1) or not (0).

The fitness of each individual is calculated using a fitness function which is composed of the

objective function(s) of the problem. Fitness functions are thus typically problem specific and

as such, they differ between the two GA variations implemented in this thesis. For instance, the

single-objective GA only utilises the average response time outputed by the ABM to calculate

fitness. The fitness function of the multi-objective GA, on the other hand, combines multiple

performance weighted metrics. Details on how fitnesses are calculated in these fitness functions

are provided in the next chapter (see Chapter 7). A summary of the representation of the

PDOP chosen in the GAs developed in this thesis is provided in Table 6.3.

Table 6.3: Summary of the GA representation of the PDOP.

GA term Police term Encoding

Individual Deployment configuration Vector
Feature Staffing indicator Binary
Fitness Performance metric(s) Vector
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6.4.2 GA parameters

The GAs were built with the DEAP Python library (Fortin et al., 2012) and were run using

multiprocessing on ARC4, part of the High Performance Computing (HPC) facilities at the

University of Leeds, UK. This HPC facility offers 40 CPU nodes with a maximum available

CPU run time of 48 hours. Although the design of a GA is viewed by some as an optimisation

problem itself (Eiben and Smith, 2015), the values of the hyper-parameters were not tuned

in this early version of the algorithm. Instead, much of the design decisions were inspired by

recommendations in the literature (Eiben and Smith, 2015, in particular), or constrained by

the computational limitations of the platform used to conduct the research.

Population

According to the literature, the population size µ in GAs tends to vary between 1 and 100 in-

dividuals, depending on the computational resources available (Eiben and Smith, 2015). Here,

a population of size µ = 40 was chosen in order to match the number of nodes available on the

HPC facility (40 nodes). Upon seeding the initial population, each generated individual repre-

sents a deployment configuration with a random number of agents. In the case of Detroit, this

number of agents is randomly sampled between 1 and 60 for each individual as per information

gathered in the Detroit News article mentioned in Chapter 5 (Hunter, 2015). Then, k bits of

the individual’s sequence are sampled at random and their value set to 1, while the remaining

bits are set to 0.

Constraining the number of agents

Evidently, in the real world, resources are not unlimited and although minimising response

time is a priority for police agencies, they have to do so with a finite amount of resources,

which represents a fixed constraint. The PDOP considered in this thesis is thus a Constrained

Optimisation Problem (COP). The most common way to handle such a constraint within a GA

is to add a penalty function which gives a fitness disadvantage to individuals that violate it

(Eiben and Smith, 2015). In the case of Detroit, ‘unfeasible’ individuals are those featuring a

number of agents outside of the arbitrary range [1, 60]. A penalty would thus be applied to

a candidate individuals featuring 65 agents, for example. In order to save on computational

time, ‘unfeasible’ individuals do not go through the process of evaluation – which relies on the

running of an ABM. Instead, their fitness is immediately set to a very poor value (see Chapter
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7 for details) and are thus unlikely to be selected by the GA for the next generation.

This penalty handling approach is used in both the single-objective and multi-objective GA

variants to avoid exploring unfeasible solutions which cannot be implemented in the real world.

However, the value of the penalty differs between the two variants and will be detailed in the

next chapter (see Chapter 7 for details).

Tournament parent selection

Although several methods exist for selecting parents, the tournament selection is perhaps the

most widely used selection operator in GAs due to its conceptual simplicity and ease of control

(Eiben and Smith, 2015). The tournament selection involves running several ‘tournaments’, each

opposing k individuals chosen at random from the population. The winner of each tournament

– i.e. the individual with the best fitness – is selected for breeding.

In practice, λ tournaments are conducted, leading to the selection of λ parents from the initial

population of µ individuals. The larger the tournament size k, the greater the chance that the

resulting breeding population will contain individuals of above-average fitness, and the less that

it will consist entirely of low-fitness individuals. Hence a higher value of k tends to create a

higher selection pressure.

In the single-objective GA developed in this thesis, it is this tournament selection method that is

chosen for the parent selection. As per the literature (Eiben and Smith, 2015), the tournament

size is set to k = 3 and the selection is conducted with replacement. As such, each tournament is

independent, and the same parent individual may be present in multiple copies in the resulting

breeding pool. In the multi-objective GA, parent selection uses a modified tournament operator

(see Chapter 7 for details).

Bit flip mutation

Although a few other schemes have been occasionally used, the most common mutation operator

for binary encoded individuals – and the one used in this thesis – is the ‘bit flip’ (Eiben and

Smith, 2015). In this mutation process, each individual in the population has a probability

mutpb to undergo a process of mutation. Then, within individuals themselves, each feature is

allowed to flip (i.e. from 1 to 0 or 0 to 1) with a small probability pm, as illustrated in Figure

6.2. The actual number of values changed in an individual is thus not fixed, but depends on the
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sequence of random numbers drawn. For instance, for a mutated individual with an encoding

of l features, on average l × pm features will be mutated.

Figure 6.2: Bitwise mutation for binary encodings

A high pm value tends to increase population diversity, leading to a better coverage of the search

space (Eiben and Smith, 2015). However, when pm becomes too high, the GA is reduced to a

random search (Eiben and Smith, 2015). As such, a higher pm is often coupled with a more

aggressive selection process to ensure the best solutions are not lost.

GA studies typically recommend a mutation rate pm of between 1/l (where l is the number of

features) and 1/µ (where µ is the population size) (Eiben and Smith, 2015), with values smaller

than 0.5 typically used. Here pm (the probability of each bit/feature to be flipped) is set to 0.1

and mutpb (the probability of each individual to undergo mutation) is set to 1/µ = 0.025.

Two-point crossover

There are typically two types of crossovers (as shown in Figures 6.3): one-point and two-point

crossovers. In one-point crossovers, a point on both parents’ chromosomes is picked randomly

in the range [1, l − 1] (where l is the number of features), and designated a ‘crossover point’.

The tails to the right of that point are swapped between the two parents. This results in two

offspring, each carrying some genetic information from both parents (Eiben and Smith, 2015).

In two-point crossovers, two crossover points are picked randomly from the parent chromosomes

and the chromosome sections in between the two points are swapped amongst the parents (Eiben

and Smith, 2015).

Early GA literature recommends a crossover probability pc of between 0.5 and 0.9 (Eiben and

Smith, 2015). As such, the GAs developed here feature two-point crossovers with an arbitrary

crossover probability pc = 0.9.

Survivor selection and population replacement

The survivor selection and population replacement approach differ between the single-objective

and the multi-objective GA variants, although in both cases, λ = µ = 40. More details about
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Figure 6.3: One-point crossover (top) and two-point crossover (bottom) for binary encodings

this parameter can be found in the next chapter (see Chapter 7).

6.5 Running the GAs

The previous section described the problem representation and parameters chosen for the design

of the two GA variants built in this thesis. This section presents information related to the

running of the GA itself. This includes the data sources required to run the GA, the metrics

used to measure the performance of the GA learning and the method implemented to prevent

over-fitting.

6.5.1 Data

As previously mentioned, the GA relies on the ABM to evaluate the fitness of the individuals

and as such, it necessitates the same data sources as the ABM itself. Those data sources, first

described in Chapter 3, are related to (1) the model environment (precincts, patrol beats and

road network), (2) the CFS incidents used to simulate a particular demand scenario and (3) the

reported crimes used to quantify the crime-deterring effect of agents patrolling. Note that the

latter is not needed in the single-objective variant of the problem because crime deterrence is not

amongst the problem’s objectives. Omitting this dataset when running the single-objective GA

greatly speeds up the ABM initialisation step. As mentioned in Chapter 3, when the user does

not provide a historical crime dataset, the density of historical incidents on all road segments

is null (density hist inc = 0). As a result, upon initialisation, the patrol route in each beat is
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planned by arbitrarily sampling 5 streets. Idle agents thus patrol these streets but this action

does not generate any crime deterrence (since the density of historical crime is null).

Much like in the ABM experiments conducted in Chapter 5, the GAs were run separately for

both a low-demand and a high-demand scenario. Each scenario is composed of a pair of training

and test sets, each containing 100 time periods from the year 2018 and 2019 respectively (see

Section 5.2 in Chapter 5 for details on how these sets are produced).

The training sets are used by the GAs to evaluate the fitness of each individual at each gener-

ational step throughout the learning. The test sets, on the other hand, are used at the end of

the training process to provide a fair evaluation of all those individuals which remained in the

final population. Indeed, some of these individuals may have been selected during a particular

generation because they yielded a good fitness when evaluated against the particular subset

of time periods that was sampled at that generation. Evaluating individuals on the test set

allows the level of generalisability of these solutions to previously-unseen data to be assessed.

To this end, it is crucial that the test-set time periods be different from those of the training

set. Although CFS demand in 2019 may differ from that of 2018, separating the two years for

training and test sets arguably better reflects the manner in which the model would be used in

real-world policing. Indeed, police agencies would typically train the model on historical data

before using what the model has learned about past demand to make deployment decisions.

6.5.2 Measuring GA performance

Broadly speaking, there are two basic performance measures for a GA: (1) its effectiveness

(i.e. solution quality) and (2) its efficiency (i.e. algorithm speed). The performance measure

used in this thesis to monitor how well the GAs have learned is based solely on effectiveness,

due to the limitations imposed on CPU running time by the HPC facility. In other words, the

performance of the GA is here defined as the fitness of the best individual at termination, where

the termination criteria is reached after a predetermined number of generations.

Monitoring population diversity throughout the learning process is another useful performance

assessment tool for GAs. As the generations pass, population diversity tends to drop as a

result of the same fittest individuals breeding with one another. This is a commonly observed

phenomenon which results in many individuals in the population bearing identical features. It

is important to prevent a premature convergence – i.e. a drop in diversity happening early in
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the learning process – so as to ensure the exploration of a wider search space. This is typically

achieved by carefully selecting of the selection and variation operators (refer to the chosen values

in Section 6.4).

As the population diversity naturally drops throughout the learning process, the number of

identical copies of the same individuals increases in the population. To minimise the number

of ABM runs – thus speeding the algorithm, only unique individuals in the population were

evaluated with an ABM and the resulting fitnesses were then passed on to other identical copies

for these individuals. This is made possible by the deterministic nature of the ABM developed

in this thesis.

6.5.3 Preventing over-fitting

One of the most important goals of any machine learning approach is to find solutions that

perform well not only on the cases used for learning but also on cases never seen before (Mitchell,

1997). This is known as generalisation. When the solution performs well on the training cases

but poorly on the new (test) cases, the model is described as ‘over-fitting’. This indicates that

the underlying relationships of the whole data were not learned, and instead a set of relationships

existing only in the training cases were learned, yet these have no correspondence over the whole

possible set of cases. Over-fitting in GAs and the related field of Genetic Programming (GP)

is a common issue in the literature (see a review in O’Neill et al., 2010).

Liu and Khoshgoftaar (2004) introduced a method called Random Sampling Technique (RST)

for improving model generalisation in GP and reduce running time. With RST, the training

set is never entirely used in the search process. Instead, at each generation, a random subset

of the training data is chosen and evolution is performed taking into account the fitness of the

solutions on this subset only.

When using the RST approach, two parameters are specified: (1) the Random Sampling Subset

(RSS) which represents the percentage of training set used to evaluate solutions and (2) the

Random Subset Reset (RSR) which represents the frequency at which to re-sample a new subset

of the data (e.g. at every generation or every 5 generations etc.).

Experiments in GP conducted using the RST suggest that using a small and frequently changing

subset of the training data (low RSS and low RSR) is most effective in reducing over-fitting

and improving generalisation (Langdon, 2011; Silva and Gonçalves, 2011). The idea is that,
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while using more learning cases (a bigger training sample size) intuitively facilitates the learning

process, it also aggravates the over-fitting issue. These studies found that having a low RSS

value does not tend to damage the training fitness as long as the changes on the random subset

occur often enough (low RSR value). In particular, even using only a single training instance

and changing it every generation was shown to be able to achieve the same learning outcomes

(Gonçalves et al., 2012; Langdon, 2011; Silva and Gonçalves, 2011).

With RST, only those individuals that perform well on various different subsets will remain

in the population. As a result, it is expected that, since these surviving individuals perform

reasonably well on different subsets, they have captured the underlying relationships of the data

instead of over-fitting it.

If the results from these studies can translate to the field of GA and be applied to the context

of the PDOP, then this would mean that the overall CPU time for training the GAs could be

dramatically reduced by the use of a smaller training subset at each generation. In Chapter

7 that follows, an experiment is conducted for the single-objective GA which confirms that

a low-RSS-low-RSR setup does not indeed deteriorate the quality of the final solutions. The

implication of the results from this experiment are discussed in Chapter 7.

6.6 Summary: designing GAs for the police deployment opti-

misation problem

This chapter started by justifying the need for a metaheuristic algorithm to automate the search

for optimal solutions to the PDOP (see Section 6.2). More specifically, it is a type of metaheuris-

tics called the Genetic Algorithm that is chosen in this thesis for its flexible implementation and

ability to be combined with an ABM. Section 6.3 introduced the concepts of natural evolution

and how GAs relate this phenomenon to the solving of optimisation problems. Then, Section

6.4 listed the design choices that were made in this thesis to apply GAs to the police deploy-

ment optimisation problem. Finally, Section 6.5 presented the logistical considerations involved

when running the two GA variants developed in this thesis. These considerations included ways

to monitor model performance and prevent over-fitting. The next chapter details results from

running the single-objective and multi-objective GA variants for the exemplar city of Detroit.
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Chapter 7

Applying the GAs to finding

solutions to the PDOP in Detroit

7.1 Introduction

The chapter begins in Section 7.2 by describing results from a single-objective GA concerned

with a simplified version of the PDOP featuring only one objective: to minimise the average

incident response time. The section details the specific implementation of this single-objective

GA and its results applied to the city of Detroit.

In the real world, however, police agencies are faced with more objectives than merely minimising

response time. Importantly, they are concerned with meeting both reactive and proactive

demand while keeping the cost of operation as low as possible. Section 7.3 explores the use

of a multi-objective GA to solve a version of the PDOP which features multiple conflicting

objectives, including maximising crime deterrence score, minimising number of deployed agents,

minimising percentage of ‘failed’ responses in addition to minimising the average response time.

The section highlights the parameters of the multi-objective GA and presents the results from

its implementation on the case study of Detroit.

7.2 Single-objective GA applied to Detroit

In the first instance, the PDOP is simplified as a single-objective optimisation problem solely

concerned with finding the deployment configuration(s) that minimise the average response time
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to incidents. This section first details the GA parameters that are specific to this variant of

the PDOP. Then, an experiment is conducted to demonstrate the applicability of the Random

Sampling Technique (RST) technique introduced in Chapter 6 to the GA developed in this

thesis in order to prevent over-fitting. Finally, the section highlights the results of the learning

process of the single-objective GA and presents the optimal deployment configuration that were

identified for the case study of Detroit.

7.2.1 Parameters of the single-objective GA

Fitness function

As discussed previously in Chapter 6, at each generation, the GA evaluates all individuals using

a fitness function. In the single-objective variant of the PDOP, the fitness of an individual

(representing a deployment configuration) is defined as the average response time to incidents

across all k time periods considered for evaluation (where k is the Random Sampling Subset

(RSS) introduced in the previous chapter). The choice of value for k used in this study is justified

in the RSS-tuning experiment below. The average response time is estimated by running the

ABM detailed in Chapter 3.

A penalty is placed on individuals which feature a number of agents outside of the predefined

range, as previously explained in Chapter 6. For Detroit, this range is arbitrarily set to [1, 60],

as previously mentioned. As part of the penalty, ‘unfeasible’ individuals are given an arbitrary

fitness value of 1000 (representing an average response time of 1000 minutes), to significantly

lower their probability of making it into the next population.

As previously mentioned, there is no need to provide the ABM with a dataset of historical

crimes in this instance, as the deterrence score is not a metric of interest in the single-objective

variant of the GA. When provided, this dataset is normally used upon the initialisation of the

ABM to determine the hottest streets to visit as part of the patrol route of each beat (see

Chapter 3). In the absence of historical crime dataset, the model instead initialises the patrol

routes of each beat to visit a set number of randomly selected streets. Omitting this dataset

greatly speeds up the initialisation of the ABM, ultimately leading to much faster generations

of the GA.
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Parent and survivor selection

In the GAs developed in this thesis, a simple setup is chosen in which µ = λ = 40 (where µ is the

population size and λ is the number of offspring). In the single-objective GA, at each generation,

µ parents are selected through repeat tournaments, each involving k = 3 individuals. Because

the tournaments are conducted with replacement, highly fit individuals in the population have

a higher chance of being present in multiple copies among the selected pool of parents. The

parents then breed to create λ offspring; a process which involves the application of mutation

and crossover variations.

Finally, through the (µ, λ) generational population replacement (see description in Chapter

6), all λ offspring enter the next population without survivor selection. Parents thus do not

remain in the next population and are entirely replaced by the offspring. However, as previously

mentioned in Chapter 6, there may be individuals that are identical to their parents in the next

generation, provided that no recombination or mutation has taken place.

Summary

Table 7.1 provides a summary of the parameters used in the single-objective GA applied to

the case study of the PDOP in Detroit. Much of the values for these parameters have been

previously discussed in Chapter 6 as they are shared between both GA variants.

Table 7.1: Parameters of the single-objective GA for the case study of Detroit

Parameter Value

Runs 1

Population size µ 40

Generations 40

Parent selection Tournament (rank based) of size k = 3 with replacement

Crossover operator Two-point crossover between two parents, pc = 0.9

Mutation operator Bit flip, pm = 0.1, mutpb = 0.025.

Offspring size λ 40

Survivor selection None

Replacement (µ, λ) with λ = µ: the parents are replaced by all offspring at
each generation

Penalty handling Fitness set to 1000 for individuals with a number of deployed
agents outside of the predefined range (e.g. [1, 60] for Detroit)
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7.2.2 RSS-tuning experiment

Experiment setup

As discussed in Chapter 6, studies from the field of Genetic Programming suggest that a low

Random Sampling Subset (RSS) – as low as RSS = 1 – may prevent the GA from over-fitting

without hindering the learning of the GA, as long as it is combined with a frequent re-sampling

(every generation for instance).

An experiment is conducted to confirm the validity of these results when translated to a GA

(instead of GP), specifically in the case study of the PDOP in Detroit. In the context of the

PDOP, the RSS parameter represents the number of randomly sampled time periods on which

each individual is evaluated in the GA at every generation. Each time period corresponds to

one simulation run through the ABM.

The following values were tested for the RSS parameter: 1, 2, 5 and 10 time periods from the

low-demand scenario training set. In a similar fashion to Gonçalves and Silva, 2013, for each

RSS value, 4 runs of the GA were executed. The GA parameters used in this experiment are

for the most part identical to those described in Table 7.1 above. However, in this experiment,

the GA was only trained for 20 generations instead of 40 (due to constraints of computational

power).

These experiments are highly computationally expensive. As such, an exhaustive experimen-

tation with higher RSS values (e.g. 15, 20 etc. time periods) would be impractical given the

limited computational power available. For the same reason, the experiment was not repeated

for the high-demand scenario.

Performance measure

As illustrated in Figure 7.1, for each run, a generation proceeds according to the following three

steps. First the GA evaluates the fitness of all individuals (deployment configurations) in the

population using k randomly sampled time periods from the training set (where k is the RSS

value). In other words, the ABM is run k times to simulate a given deployment configuration

over k distinct time periods from the low or high demand scenario. Then, the average response

time across all k time periods is calculated as the fitness of the individual. Second, the individual

with the best fitness – i.e. the deployment configuration yielding the lowest average response
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Figure 7.1: Diagram detailing one run of the RSS tuning experiment for a given RSS value

time – is selected and the corresponding fitness is logged as ‘training fitness’. Third, this best

individual is evaluated on 20 random unseen time periods from the test set (2019) and the

resulting fitness is logged as ‘test fitness’.

Because the training fitness is calculated as the average response time across only a few time

periods (RSS is 1, 2, 5 or 10), it is expected to fluctuate more between generations than the

test fitness, which is calculated as the average response time across n = 20 time periods.

At the end of the 4 runs, the median for both training and test fitnesses are calculated across

individuals and runs. The median was chosen over the mean in all the evolution plots shown in

the next section as it is more robust to outliers.
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Experiment results

Figure 7.2 displays the evolution of training and test fitness for the best individual selected

at each generation. The graphs show that all four values of the RSS parameter produce an

overall constant gap between the training and test fitness values, with only minor variations.

A widening gap between training and test fitness usually indicates that over-fitting is taking

place. As such, the results from this experiment suggest that no over-fitting occurs for values

of the RSS parameter ranging from 1 to 10.

Figure 7.2: Evolution plots for different values of the RSS parameter. The y axis represents the
fitness (average response time in mins) of the best individual (deployment configuration). Note:
the curves show the mean and 95% confidence intervals around the mean (using the bootstrap
method).

The evolution of population diversity displayed in Figure 7.3 indicates that all four values of

the RSS parameter result in a gradual decline in population diversity throughout the learning.

This indicates that the GA did not converge too quickly towards a local optima and instead

continued to explore the wider parameter space.

Considering these preliminary results, the RSS value is set too k = 1 in the single-objective GA

developed in this thesis. As such, at every generation, a single time period is randomly sampled

from the training set (for a given demand scenario) on which all individuals in the population

are evaluated. This time period is randomly re-sampled at each generation from the training

set (2018).
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Figure 7.3: Population diversity throughout the learning for various values of the RSS parame-
ter. Note: the curves show the mean and 95% confidence intervals around the mean (using the
bootstrap method).

7.2.3 Results

Visualising the learning

Figure 7.4 provides an overview of the learning of the single-objective GA under both demand

scenarios. The graphs on the left-hand side show the increase in the average number of agents

featured in individuals as well as the simultaneous decrease of the median response time across

individuals in the population. The median is used here instead of the mean because the penalty

on fitness for ‘unfeasible’ individuals (response time = 1000 mins) makes the mean response

time fluctuate in ways that do not represent the true average across individuals. The individuals

(i.e. deployment configurations) that make up the population may differ from one generation

to the next, as the GA learns and selects better individuals.

The graphs on the right-hand side show the decrease in population diversity throughout the

learning. As previously mentioned, this is an expected behaviour which indicates the conver-

gence of the model towards a small subset of highly-fit individuals (i.e. high quality deployment

configurations). From the first generations onward, the GA learns that configurations with more

agents produce faster response times. Through the selection and breeding of better individuals

(mostly those with more agents), the GA eventually converges towards a smaller number of

fitter individuals featuring 60 agents – the maximum number of agents as per the constraint.
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Figure 7.4: Visualisation of the learning of the single-objective GA on low (top) and high
(bottom) demand scenarios throughout the generations. Left: evolution of median and min
response time (fitness) as well as average number of agents across individuals. Right: evolution
of population diversity throughout the generations.

Interestingly, although the GA eventually converges towards 60-agent solutions under both

demand scenarios, it does so more quickly under the high-demand scenario (within about 22

generations) than under the low-demand one (within about 37 generations). This may be

due to the higher pressure applied in the high-demand scenario. Indeed, as the system is more

stretched under high-demand, small changes to configurations may lead to considerable increases

in response time (as seen in the ABM experiments produced in Chapter 5).

An equilibrium is found when a handful of 60-agent individuals become present in multiple

copies (clones) and thus take over the population. As these individuals breed, the crossovers

become more likely to produce ‘unfeasible’ offspring which get assigned the aforementioned

fitness penalty. Since these ‘unfeasible’ individuals have a low chance to reproduce, the rest of

the search space is thus no longer explored and the learning slows down.
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The most striking improvement in the learning for both scenarios happens in the first two

generations. After these two generations, the individuals in the population appear to already

produce satisfactory average response times (below 5 minutes). Although the GA has not yet

converged and continues to fine-tune the individuals, the subsequent improvements to response

time are unlikely to make a significant difference for police agencies. Technically speaking, this

means that randomly sampling an individual (i.e. deployment configuration) from the popula-

tion at generation 2 – or better still, choosing the individual with the minimum response time

– should already provide the police with a deployment configuration that yields fast response

times (below 5 minutes).

In order to confirm that the GA continues to explore the parameter space throughout the

learning, a Hamming distance is calculated between each pair of individuals in the population

at each generation. The Hamming distance, which represents the number of positions in which

two individuals differ, is a commonly used measure of similarity between individuals of a GA

population and is particularly useful when the individuals are represented as binary vectors,

as is the case for the PDOP. Figure 7.5 shows the evolution of the mean Hamming distance

between individuals in the population throughout the learning. The figure seems to confirm

that the GA continues to explore the search space until the maximum number of agents is

reached (40 generations in low-demand scenario and 20 generations in high-demand scenario)

after which the population quickly becomes saturated with identical individuals that are no

longer ‘improvable’.

Figure 7.5: Evolution of the mean Hamming distance between individuals in the population
throughout the generations.
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Visualising the GA-identified solutions

Figure 7.6: Best deployment configuration identified by the single-objective GA trained on
low-demand scenarios. The configuration features 60 agents.

After 40 generations of training, the unique ‘feasible’ individuals present in the final population

are evaluated one last time on the test set – composed of 100 time periods from the year 2019.

This is done for both demand scenarios. The overall-fittest individual with the lowest response

time is chosen and here forth called the GA-identified solution.

Coincidentally, in this instance, the final population for each scenario contained one unique

‘feasible’ individual present in multiple copies, alongside ‘unfeasible’ ones. After the final eval-

uation on the test set, the GA-identified configuration under the low-demand scenario yielded

an average response time of 3.5 minutes while that under the high-demand scenario produced

an average response time of 3.8 minutes. The GA-identified deployment configurations are

displayed in Figures 7.6 (low-demand scenario) and Figure 7.7 (high-demand scenario).
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Figure 7.7: Best configuration identified by the single-objective GA trained on high-demand
scenarios. The configuration features 60 agents.

Comparing results with a targeted deployment based on historical CFS

Having used the single-objective GA to find the best configuration under each demand scenario

– i.e. that which yields the lowest average response time, it is now pertinent to compare these

GA-identified configurations with their equivalent targeted deployment configurations that were

introduced in Chapter 5. As a reminder, these consisted in a targeted deployment based on

the number of historical CFS incidents that took place in each patrol beat during the 100 time

periods that make up each scenario’s training set (2018). In essence, a comparison is here made

between a GA-derived solution and one that might be designed by police analysts based on

historical demand. The GA-identified configurations for both scenarios feature 60 agents. As

such, it is the corresponding 60-agent targeted deployment configurations – first introduced in

Chapter 5, that are used for direct comparison.

The questions that are explored here concern (1) whether there are similarities in the staffing

of both the GA-identified and the targeted configurations and (2) whether they yield similar

average response time. In other words, the idea is to assess whether the GA is able to prescribe a
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Figure 7.8: Comparison of the targeted and GA-identified deployment configurations for a
low-demand scenario

configuration that yields a better response time than the simple targeted configuration designed

in Chapter 5.

The two deployment configurations are directly comparable. Throughout the learning, the GA

evaluates the response time yielded by configurations based on the CFS events that arise in

the selected time periods from the training set (2018). This is the same set used to count

historical CFS incidents in the algorithm used to design the targeted deployment configuration

(see Chapter 5). As such, the GA-identified and the targeted deployment configurations are

thus, in some ways, both targeted towards specific patrol beats based on historical CFS demand

from 2018.

The staffed beats in each configuration as well as the overlap between them are shown in Figure

7.8 (low-demand scenario) and in Figure 7.9 (high-demand scenario). For both scenarios, the

main difference between the configurations is that the GA-identified deployment appears to

be more homogeneous than the targeted one. A heterogeneous level of staffing may lead to an

unbalanced coverage with some entire precincts being over-staffed while others are under-staffed
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Figure 7.9: Comparison of the targeted and GA-identified deployment configurations for a
high-demand scenario

(e.g. precinct 4 under the targeted deployment configuration).

In order to compare the performance of the targeted and GA-identified configurations, both

configurations were evaluated on the same 100 time periods from each demand scenario’s test

set (from the year 2019). The resulting distributions of average response times under both

low-demand and high-demand scenarios are displayed in Figure 7.10.

The figure suggests that, while both configurations appear to produce similar average response

times, the values yielded by the GA-identified deployment tend to be more consistent than

those produced by the targeted one. This seems to be true under both demand scenarios. For

instance, the targeted configuration – featuring an unbalanced level of staffing – produced an

average response time as high as 9 minutes on some low-demand time periods and as high as

15 minutes on some high-demand time periods. In comparison, the average response times

yielded by the GA-identified configuration fluctuated less. The highest average response time

value observed was around 4 minutes for some low-demand time periods and 5 minutes for

some high-demand ones. One potential explanation is that the GA is better at generalising its
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solutions to any time period, as it was trained on a single randomly sampled time period at

each generation, as explained earlier in this section.

Figure 7.10: Distribution of the average response time for the targeted and GA-identified de-
ployment configurations

To verify whether the average response times yielded by both configurations were statistically

significantly different, a Kruskall-Wallis test followed by an effect size calculation were performed

in a similar fashion to Chapter 5. The results for both demand scenarios are displayed in Table

7.2. The results suggest that, for a 60-agent configuration under a high-demand scenario, the

GA-identified deployment brings a significant improvement in response time over the simple

targeted one, with a moderate effect size. Specifically, responses were on average 22.08% faster

with the GA-identified deployment under the high-demand scenario. However, the difference in

average response time between GA-identified and targeted configurations was negligible under

the low-demand scenario.

Table 7.2: Mean difference in response time between GA-identified and targeted deployment
under low-demand and high-demand scenarios. Both configurations featured 60 agents.

Scenario Mean response time (mins) % change P-value Effect size
Targeted GA-identified Diff.

Low-demand 3.74 3.54 −0.20 −5.46 % 0.85 Negligible
High-demand 4.82 3.76 −1.07 −22.08 % <0.01 Moderate

Note: the values in bold are those showing a sizeable and statistically significant difference in mean response
time with a moderate to strong effect size.

Similarly, a Kruskall-Wallis test and effect size calculation were performed in order to verify

whether there is a statistically significant difference between the percentage of ‘failed’ responses

yielded by both types of deployment. The results, displayed in Table 7.3, suggest that, for
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a 60-agent configuration under either demand scenario, the GA-identified deployment brings

a significant reduction in percentage of ‘failed’ responses over the simple targeted one. The

effect size was moderate under the low-demand scenario and strong under the high-demand

one. Specifically, the GA-identified deployment lead to an average reduction of 0.46% in ‘failed’

responses under the low-demand scenario and 1.89% under the high-demand one.

Table 7.3: Mean difference in percentage of ‘failed’ responses between GA-identified and targeted
deployment under low-demand and high-demand scenarios. Both configurations featured 60
agents.

Scenario Percentage of ‘failed’ responses P-value Effect size
Targeted GA-identified Diff.

Low-demand 0.00 0.46 −0.46 <0.01 Moderate
High-demand 0.16 2.04 −1.89 <0.01 Strong

Note: the values in bold are those showing a sizeable and statistically significant difference in percentage
of ‘failed’ responses with a moderate to strong effect size.

Further work may explore whether the GA remains beneficial for configurations featuring a

lower number of agents. This could be achieved by lowering the range for the constraint on

number of agents (e.g. 40 agents instead of 60 in Detroit).

Summary

In this section, a GA was trained for each demand scenario to find solutions to the single-

objective version of the PDOP applied to the city of Detroit. Results suggested that the GA

identified a generalised configuration of 60 agents which yields more consistent response times

than an equivalent targeted deployment configuration merely based on count of historical CFS

incidents.

However, despite occasional longer responses, in the majority of cases, the targeted configuration

yielded similar response times to those produced by the GA-identified one – i.e. the means were

similar. As a police agency, DPD may find the results produced by the targeted deployment

configuration sufficient. The pursuit of further reducing response times could arguably yield

diminishing returns given the computational cost of training a GA.

As seen in this section, the single-objective version of the GA has a tendency to become ‘greedy’

and converge towards configurations which feature the maximum number of agents possible

(within the constraint). This is of course not realistic as real-world resources represent a sig-

nificant cost to police agencies. The number of deployed agents is arguably itself a metric to
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minimise. Additionally, as mentioned in Chapter 2, response time is not the only criteria to

be considered in the PDOP. Other objectives include: (1) minimising the percentage of ‘failed’

responses (where the response time exceeded a threshold), (2) maximising crime deterrence

through patrolling and (3) minimising the number of officers on duty (thus reducing cost).

When including these additional metrics, the PDOP becomes a multi-objective one. It is when

faced with the complex nature of multi-objective problems that the true benefits of the GA

come to light. The next section presents the results of a multi-objective GA and the benefits of

presenting police agencies with a selection of optimal configurations from which to choose.

7.3 Multi-objective GA applied to Detroit

This chapter has thus far focused on a single-objective GA variant. Hopefully this variant

has served as an effective introduction to applying this approach to the PDOP. However, as

briefly discussed above, devising deployment strategies in the real world is a task which requires

satisfying multiple constraints. The following section explores the use of a multi-objective GA

to solve a version of the problem which features multiple conflicting objectives. The section

begins with an introduction to multi-objective optimisation problems, including two important

notions namely that of dominance and the Pareto front. Then, the design decisions specific to

the multi-objective GA are listed. Finally, the results of the GA applied to the city of Detroit are

presented, which prescribe a portfolio of configurations from which policy makers can choose.

7.3.1 Multi-objective optimisation problems (MOOPs)

When including several performance metrics – instead of only the average response time as was

the case in the previous section, the PDOP becomes a multi-objective optimisation problem

(MOOP). In this thesis, the PDOP is concerned with the four objectives summarised in Table

7.4.

Table 7.4: Objectives of the multi-objective version of the PDOP

Metric Objective

Average response time (mins) Minimise
Percentage of ‘failed’ responses Minimise
Total deterrence score Maximise
Number of deployed agents Minimise
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Conflicting objectives

In the ABM built in this thesis to simulate real-world patrol activities, agents can either be

deterring crime through patrolling (proactive policing) or responding to CFS incidents (reactive

policing). Since time is a finite resource, the more time an agent spends responding to incidents

during their shift (driving or at the scene), the less they are able to patrol to deter crime.

The objectives of minimising response time (reactive policing) and maximising deterrence score

(proactive policing) are thus directly conflicting.

Additionally, it was shown in the ABM experiments conducted in Chapter 5 that deploying

more agents yields better performance metrics: (1) faster incident response times (which was

confirmed by the results of the single-objective GA), (2) a smaller percentage of ‘failed’ responses

and (3) more crime deterrence through patrolling. As such, minimising the number of deployed

agents is also in conflict with optimising these three performance metrics.

While one configuration can best satisfy one objective, it might not be optimal for another.

As such, a single configuration does not exist that optimises all conflicting criteria (Eiben and

Smith, 2015). Instead, it is typically desirable in MOOPs to present a diverse set of possible

solutions representing a range of different trade-offs between objectives. Given that the priorities

of police agencies may differ from one agency to the next or vary throughout the year based,

for instance, on the currently available resources, it makes sense to allow practitioners to choose

their preferred configuration based on their needs.

Dominance and Pareto front

In single-objective optimisation problems, the superiority of a solution over other solutions is

easily determined by comparing their objective function values. In multi-objective optimisa-

tion problems, on the other hand, the goodness of a solution is determined by the concept of

dominance (Eiben and Smith, 2015).

According to the dominance test (Eiben and Smith, 2015), solution x1 dominates solution x2 if

(1) solution x1 is no worse than solution x2 in all objectives and (2) solution x1 is strictly better

than x2 in at least one objective. For conflicting objectives, there exists no single solution that

dominates all others. However, there may be multiple solutions that are called non-dominated,

i.e. that are not dominated by any other (Eiben and Smith, 2015). All non-dominated solutions

possess the attribute that their quality cannot be increased with respect to any of the objective
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Figure 7.11: Illustrative Pareto dominance for the minimisation of two objective functions

functions without detrimentally affecting one of the others (Eiben and Smith, 2015).

The ‘Pareto-optimal’ front (or Pareto front), as illustrated in Figure 7.11 is the boundary defined

by the set of all non-dominated solutions – or Pareto-optimal solutions (Eiben and Smith,

2015). Unlike in single-objective GAs where the outcome is a few highly fit diverse solutions,

often present in multiple copies in the population, multi-objective GAs seek to distribute the

population evenly along the Pareto front (Eiben and Smith, 2015). In other words, the goal of

multi-objective GAs is to converge along the Pareto-optimal front whilst maintaining as diverse

a distribution as possible.

An optimisation problem which requires to identify multiple local optima instead of a single

global one is referred to as a multimodal problem (see Chapter 2). As previously mentioned,

GAs are particularly well suited to solving multimodal problems, because they are able to

promote and preserve diversity within the population while searching the parameter space.

One of the first genetic algorithms proposed for multi-objective optimisation was Srinivas and

Deb’s Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1994). In order

to converge towards the Pareto-optimal front, the GA needs to balance breeding and selecting

non-dominated solutions, whilst maintaining diversity in the population. To that end, Deb and

colleagues proposed the revised NSGA-II (Deb et al., 2000), which improves upon the initial idea

of non-dominated fronts by incorporating the concept of ‘crowding’ for diversity maintenance
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and ‘elite-preservation’ for faster convergence (Eiben and Smith, 2015). These two concepts are

now detailed.

The crowding distance metric is defined for each point as the average side length of the cuboid

defined by its nearest neighbours in the same front (Deb et al., 2000). The larger this value, the

fewer solutions reside in the vicinity of the point. When selecting individuals, it is the dominance

rank that is typically first considered, then, in the case of co-dominance, the crowding distance

is used to select individuals that are ‘distant’ from each other (Deb et al., 2000). Practically

speaking, this process aims to guide the GA towards solutions that are uniformly spread-out

along the Pareto-optimal front, ultimately providing a more diverse portfolio of solutions.

Elite-preservation is a commonly used approach to speed up the convergence of GAs (Eiben

and Smith, 2015). In essence, at each generation, the best individuals – called elites – are

automatically inserted into the next population without undergoing any change (crossover or

mutation). In a multi-objective framework, any non-dominated solution can be considered an

elite. Elite-preservation can very rapidly increase the performance of GAs, because it prevents

losing the current fittest members of the population (Eiben and Smith, 2015). To achieve

elite-preservation, the NSGA-II is combined with a (µ + λ) survivor selection strategy (see

details below). In this type of survivor selection approach, the µ individuals from the current

generation’s population are combined with the λ offspring resulting from the mating process.

The new population is then obtained by accepting individuals from progressively inferior fronts

until it is full. This approach allows for elite non-dominated individuals to remain unchanged

in the population from one generation to the next.

Summary: MOOPs

In multi-objective optimisation, multiple objective functions need to be optimised simultane-

ously. Usually, this means that there is no single optimal solution that satisfies all objective

functions, but multiple ‘Pareto optimal’ solutions. The NSGA-II is amongst the most com-

monly used multi-objective GA algorithms for its ability to preserve diversity in the population

throughout the search while converging towards the Pareto front of non-dominated solutions.

It is this algorithm that is chosen for the multi-objective GA developed in this thesis. The next

section introduces the design decisions and parameter values used specifically for the multi-

objective GA.
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7.3.2 Parameters of the multi-objective GA

Much like for the single-objective GA variant, individuals in the initial population of the multi-

objective GA are randomly generated with a number of agents n. In the case of Detroit, this

number of agents n is randomly sampled between 1 and 60 for each individual, where 60 is the

maximum number of patrol vehicles to be deployed across the force.

There are, however, some differences in the design of the multi-objective GA, to account for the

multiple conflicting objectives. These differences are now described.

Fitness function

The fitness function is composed of 4 objective functions, one for each of the four chosen

metrics: (1) minimising the average response time (mins), (2) minimising the percentage of

‘failed’ responses, (3) maximising the total deterrence score and (4) minimising the total number

of deployed agents.

All four metrics are given equal weights in the fitness function. When two solutions are co-

dominant, they are ranked by the selection algorithm based on a secondary metric called a

weighted crowding distance. This metric considers the specified weights to calculate the density

of other solutions surrounding each solution in the frontier. For example, the algorithm considers

an increase of 1 unit in response time to be as valuable as an increase of 1 unit in deterrence

score. By adjusting the relative importance of different objectives, weights are used in the fitness

function to compute the fitness of each individual, allowing the GA to combine the performance

on different objectives into a single value. Ultimately, the weights in the fitness function balance

the trade-offs between different objectives being optimised and guide the search towards a set

of Pareto optimal solutions.

For each individual, the four metrics are calculated across all k time periods considered for

evaluation at each generation (where k is the RSS value, i.e. the number of time periods on

which each deployment is evaluated). If an low-quality individual is evaluated on a single time

period featuring a low number of CFS incidents, it may yield a low response time and low

percentage of failed responses, thus being considered a non-dominated solution. To prevent too

many poor solutions from being counted as non-dominated by chance while maintaining a low

computational cost, the RSS value is raised to k = 2 (instead of k = 1 in the single-objective

GA).
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Since the deterrence score was not relevant to the single-objective GA, it was not necessary

to provide the model with a dataset of historical crimes. However, since crime deterrence is

amongst the objectives of the multi-objective GA, it is essential to provide the model with such

a dataset, so that agents may be given specific patrol routes that deter the most crime within

their beat, and to calculate the total deterrence score achieved by the agents at the end of

each ABM simulation. For details about the historical crime dataset used for Detroit – which

contains all the relevant time periods for the demand scenario for the year 2017 – see Chapter

4.

Much like for the single-objective GA, a penalty is applied to individuals featuring a number of

agents outside of the predefined range ([1, 60] for Detroit). When penalised, individuals have

(1) their average response time set to 1000 mins, (2) their percentage of ‘failed’ responses set

to 100% and (3) their deterrence score set to 0. This is so as to set a very poor overall fitness

across performance metrics for these ‘unfeasible’ individuals, and ultimately save computational

time by not evaluating those deployment configurations that cannot be implementable in the

real world due to supply constraints.

Parent and survivor selection

As mentioned earlier in this section, the chosen parent selection uses a modified tournament

operator that first considers the dominance rank between two individuals, or crowding distance

if the two individuals do not inter-dominate. Unlike the tournament technique used in the single-

objective GA, this tournament algorithm does not use replacement. Instead, each individual

can only be selected once at most. Through this tournament method, a subset of the whole

population – called the breeding pool – is selected. Here the size of the breeding pool was

arbitrarily set to 12 individuals out of the 40 that make up the population, so as to provide

some selective pressure without risking to lose too many good solutions in the process.

The use of elitism is important to ensure that good solutions are not lost in the learning, due

to the stochastic nature of the parent selection, crossovers and mutations. To that end, a

(µ+λ) survivor selection approach is used with NSGA-II as the selection algorithm (see details

provided earlier in this section).

172



CHAPTER 7. APPLYING THE GAS TO FINDING SOLUTIONS TO THE PDOP IN
DETROIT

Hall of fame archive

Keeping a ‘hall of fame’ is an additional approach to prevent good solutions from disappearing

due to the stochastic nature of the selection process. An archive was here kept of the non-

dominated solutions encountered throughout the learning. As the learning progresses, new

non-dominated solutions are discovered and added to the archive. At each generation, the

individuals in the archive are ranked based on domination and those individuals which are

dominated are removed from the archive.

Summary: parameters of the multi-objective GA

All in all, while the multi-objective GA proposed in this thesis was designed with the same basis

as the single-objective one, a few additional decisions were made to account for the presence of

multiple metrics to optimise. These decisions mainly revolve around the design of the fitness

function and the choice of parent and survivor selection algorithms. Table 7.5 provides a

summary of the parameters used for the multi-objective GA applied to the PDOP in Detroit.

Table 7.5: Parameters of the multi-objective GA for a given demand scenario in Detroit

Parameter Value

Runs 1

Population size µ 40

Generations 60

RSS 2 time periods

Parent selection Tournament based on dominance between two individuals, or on
crowding distance if the two individuals do not inter-dominate.
Selects 12 parents without replacement.

Crossover operator Two-point crossover between two parents, pc = 0.9

Mutation operator Bit flip, pm = 0.1, mutpb = 0.025

Offspring size λ 40

Survivor selection NSGA-II algorithm

Replacement (µ+λ) selection: selecting µ individuals for the next generation

Penalty handling For individuals outside of the predefined range ([1, 60] for De-
troit): response time set to 1000 mins, percentage of ‘failed
responses set to 100% and deterrence score set to 0.

7.3.3 Results

Visualising the learning

Unlike for a single-objective GA, where the success of the learning can be visualised by the

steady decline in population diversity towards a single final solution, the performance of the
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learning in a multi-objective GA is less straightforward to assess, as a set of diverse solutions is

expected to be maintained in the population throughout the learning. Because the true Pareto

front for the PDOP is unknown, it is not possible to evaluate whether the set of non-dominated

solutions identified by the GA at the end of the learning is indeed optimal.

One way to assess the quality of the learning is to visualise the number of non-dominated

solutions that are identified by the GA throughout the learning. Figure 7.12 shows the steady

increase in the number of non-dominated individuals present in the archive throughout the

learning. In total, throughout the learning, the GA evaluated a maximum of 40 individuals x

60 generations = 2,400 configurations. As new individuals were evaluated, the non-dominated

ones entered the archive. The observed steady increase in archived non-dominated solutions

suggests that the GA continued to learn throughout the entire training phase. This increase

appears to slow down in both scenarios when approaching 60 generations.

Figure 7.12: Steady increase in number of non-dominated solutions identified by the multi-
objective GA throughout the learning

Visualising the non-dominated solutions

At the end of the training phase, a population of unique individuals is created for each demand

scenario by combining the all-time-best individuals in the archive alongside the individuals in

the last population. Then, much like for the single-objective GA, this population is evaluated

one last time using the 100 time periods of the test set of the corresponding demand scenario.

This is essential to provide a fair evaluation of these individuals that may have been added

to the archive because they obtained a good fitness on the particular time period(s) on which

they were evaluated during the learning process. This final evaluation on the test set allows for
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the identification of the true non-dominated individuals that form the Pareto front. The final

evaluation returned 124 unique non-dominated solutions for the low-demand scenario and 91

for the high-demand one.

Because the multi-objective GA developed in this thesis considers four metrics, the Pareto front

– which joins of all the non-dominated solutions identified by the GA – is a four-dimensional

entity. In order to visualise the Pareto front in two dimensions, the non-dominated solutions

are displayed according to pairs of metrics in Figure 7.13 (low-demand scenario) and Figure

7.14 (high-demand scenario).

Low-demand scenario

The performance of the 124 non-dominated solutions identified by the multi-objective GA for

the low-demand scenario is displayed in Figure 7.13, showing one pair of metric at a time.

On the whole, results show that deployment configurations featuring more agents tend to lead to

lower response times as well as produce more crime deterrence. These results are in agreement

with those described in the experiments of Chapter 5 and those derived from the single-objective

GA in Section 7.2.

The relationship between number of agents and crime deterrence score appears to follow a clear

positive linear relationship. This finding is consistent with the experimental outcomes presented

in Chapter 5. As previously stated, the current version of the model establishes the deterrence

score as a direct function of the time that agents spend patrolling while idle. Therefore, the

observed increase in crime deterrence score associated with deploying additional agents can be

interpreted as a direct outcome of the increase in patrol time.

There is, however, no clear relationship between the number of agents and the percentage of

‘failed’ responses. There is nonetheless a clear positive relationship between the average response

time and the percentage of ‘failed’ responses: a higher average response time correlates with a

higher percentage of ‘failed’ responses, which is to be expected.

Looking at specific solutions along the Pareto front, it becomes clear that all non-dominated

solutions offer performance trade-offs between metrics. For instance, while the cost of imple-

menting solution 1 is minimal (only 1 agent deployed), it unsurprisingly yields the worst average

response time (around 34 minutes) and the worst deterrence as a direct consequence of the low

number of agents deployed (i.e. the single agent has little time to patrol). Additionally, 4% of
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Figure 7.13: Performance of the 124 non-dominated solutions identified by the multi-objective
GA under a low-demand scenario, displayed according to pairs of metrics. In particular, the
performance of 3 selected solutions is highlighted across metrics.

responses end up ‘failed’ with that configuration. Solution 3, on the other hand, produces a

high deterrence (i.e. much idle time for the agents), the lowest average response time (around 3

minutes), the lowest percentage of ‘failed’ responses but involves the deployment of 59 patrols,

which may be very costly. Solution 2 offers a midpoint with 20 agents, an average response

time of around 10 minutes, around 3.5% of responses ‘failed’ and an intermediate workload for

the agents (which converts into time patrolling).

High-demand scenario

The performance of the 91 non-dominated solutions identified by the multi-objective GA for

the high-demand scenario is displayed in Figure 7.14, showing one pair of metric at a time. The

observed patterns are similar to those produced under the low-demand scenario. However, the
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negative relationship between number of agents and percentage of ‘failed’ responses appears

to be clearer under the high-demand scenario. The relationship suggests that configurations

featuring more agents tend to more consistently produce low percentages of ‘failed’ responses.

Figure 7.14: Performance of the 91 non-dominated solutions identified by the multi-objective
GA under a high-demand scenario, displayed according to pairs of metrics. In particular, the
performance of 3 selected solutions is highlighted across metrics.

The interpretation of the selected individual solutions is similar to that of the low-demand

scenario. While the cost of implementing solution 3 is minimal (only 1 agent deployed), it

unsurprisingly yields the worst average response time (40 minutes) and the worst deterrence

as a direct consequence of the low number of agents deployed (i.e. the agent has little time to

patrol). Additionally, 4% of responses end up ‘failed’ with that configuration. On the other

end of the spectrum is solution 1, which produces the most deterrence (i.e. most time idle for

the agents), the lowest average response time (around 3 minutes), a very low percentage of

‘failed’ responses but involves the deployment of 60 patrols, which may be very costly. Solution
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2 offers a midpoint with 24 agents, an average response time of just above 10 minutes, around

11% of responses ‘failed’ and an intermediate workload for the agents (which converts into time

patrolling).

Overall, for both scenarios, the non-dominated solutions appear to be evenly spread along the

Pareto front, which highlights the success of the learning. In addition, the observed performance

patterns for configurations featuring a varying number of agents are aligned with those described

in Chapter 5.

A portfolio of solutions

As previously mentioned, the GA identified 124 solutions for the low-demand scenario and 91

for the high-demand scenario. This may represent too many solutions for policy makers to

choose from. As such, a portfolio of 20 diverse configurations is here extracted from the Pareto

front for each scenario. The solutions are chosen based on crowding distance, thus offering a

diverse range of performance (as summarised in Table 7.6 for low demand and Table 7.7 for

high demand) depending on the priorities of the police agency.

Low-demand scenario

For the low-demand scenario (see Table 7.6), consider the example of the proposed 60-agent

configuration. With such a configuration, for which the spatial placement is displayed in Figure

7.15, the simulation results suggest that DPD might expect an average response time of 3.77

mins, 0.24% of ‘failed’ responses and a deterrence score as high as 2775.14. This average

response time seems coherent with previous results from the single-objective GA for a 60-agent

configuration. On the other end of the spectrum is the suggested 5-agent configuration (see

corresponding spatial placement in Figure 7.15), which, according to the GA, yields an average

response time of 20.85 mins, 6.67% of ‘failed’ responses and a deterrence score as low as 239.04.

Importantly, the spatial placement of patrols may differ considerably between each of the pre-

scribed solutions, even when these feature a similar number of agents. Consider for instance

the 47-agent and 48-agent configurations. As shown in Figure 7.15, their spatial placement do

not overlap completely. As a result, even though the number of deployed patrols is higher in

the 48-agent configuration than in the 47-agent one, the average response time is higher for the

48-agent one (6.28 mins compared with 4.08 mins). This is because the 48-agent configuration

did not make it to the non-dominated front because of its average response time but instead
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Table 7.6: Performance metric values for 20 configurations in the portfolio of chosen solutions
for the low-demand scenario

Num. of agents Avg. resp. time (mins) % ‘failed’
responses

Deterrence score

A 5 20.85 6.67 239.04
9 13.34 3.71 446.56

B 10 14.44 4.32 549.01
13 9.13 1.57 682.38
16 10.68 5.73 780.35
20 7.80 4.29 868.66
22 10.62 6.80 1069.50
26 7.06 2.80 1209.14
28 6.72 2.91 1312.47

C 30 11.27 9.04 1453.00
33 8.09 3.68 1641.35
35 10.04 7.04 1722.63
37 4.58 1.04 1654.06
39 5.10 1.39 1812.90

D 47 4.08 0.48 2194.83
E 48 6.28 3.17 2296.49

50 7.60 4.59 2362.22
52 4.26 0.72 2469.26
56 4.05 0.67 2588.39

F 60 3.77 0.24 2775.14

was chosen by the GA for its dominance with regards to the deterrence score. Indeed, the latter

is better in the 48-agent solution (2296.49) than in the 47-agent one (2194.83).

These differences in spatial placement between configurations of a portfolio make it difficult

to interpret trends resulting from the multi-objective GA. Instead, the portfolios provided in

this thesis aim at informing policy makers on the potential performance they may expect from

various deployment configurations. These configurations were identified by the GA for their

‘dominant’ character over others. Depending on a police agency’s number of available resources

on a particular shift (e.g. 30 patrols), or on their current performance priority (e.g. minimising

the percentage of ‘failed’ responses), they may wish to implement a particular configuration from

the portfolio. In the case of DPD, for instance, the 13-agent configuration could, according to

the model, yield an average response time of 9.13 mins, 1.57% ‘failed’ responses, and a deterrence

score of 732.48. This configuration thus seems advantageous when response time and percentage

of ‘failed’ responses are the main priorities, but resources are in short supply.
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Figure 7.15: Example of the spatial placements for 6 configurations in the portfolio of 20
configurations prescribed by the GA for a low-demand scenario

High-demand scenario

Table 7.7 summarises the values of the three performance metrics for the 20 configurations pre-

scribed under a high-demand scenario. Additionally, Figure 7.16 shows the spatial placements

of some example configurations in this high-demand portfolio. According to the results, the

prescribed 60-agent configuration may yield an average response time of 3.83 mins, a percent-

age of ‘failed’ responses of 0.36% and a deterrence score as high as 5040.38. This corresponds
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to almost twice the deterrence score that was yielded by the 60-agent configuration prescribed

under the low-demand scenario. This result aligns with those obtained through the ABM ex-

periments of Chapter 5 which revealed that agents are able to deter twice as much crime in a

high-demand scenario because the density of historical crime on each segment is higher on these

time periods. However, it is important to remind the reader that, unlike in the experiments of

Chapter 5, the spatial placements of the 60-agent configurations prescribed for each scenario do

not necessarily overlap and as such, their performance cannot be directly compared (see Figure

7.15 for low demand and Figure 7.16 for high demand).

Table 7.7: Performance metric values for 20 configurations in the portfolio of chosen solutions
for the high-demand scenario

Num. of agents Avg. resp. time (mins) % ‘failed’
responses

Deterrence score

1 39.22 2.60 60.80
A 5 5.95 0.45 458.24

8 32.42 9.20 684.06
9 5.15 0.52 815.05
13 18.84 5.84 1112.47

B 15 16.03 10.96 1324.49
18 10.31 6.00 1585.13
22 13.11 10.01 1924.14
26 8.26 5.92 2231.78
27 15.64 13.73 2361.79

C 31 6.13 3.88 2730.38
33 5.58 2.50 3015.37
38 6.24 4.16 3356.18
39 7.80 6.25 3469.99

D 46 5.68 2.39 3870.10
47 4.83 2.06 4080.92
49 4.63 1.39 4114.12

E 51 4.50 1.43 4399.18
54 3.92 0.36 4464.30

F 60 3.83 0.36 5040.38

181



7.4. Summary: applying the GAs to finding solutions to the PDOP in Detroit

Figure 7.16: Example of the spatial placements for 6 configurations in the portfolio of 20
configurations prescribed by the GA for a high-demand scenario

7.4 Summary: applying the GAs to finding solutions to the

PDOP in Detroit

This chapter provided the results of a single-objective and a multi-objective GA applied to the

PDOP in the city of Detroit. The sole objective in the single-objective GA was to minimise the

average response time. Results showed that, if left to learn for long enough, the GA converges

towards an optimal solution (deployment configuration) featuring the maximum number of
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agents possible (60 in the case of Detroit). The deployment configuration prescribed by this

single-objective GA was statistically significantly more effective in terms of response time than

a deployment strategy devised using only historical CFS.

In the proposed multi-objective GA, additional metrics are included into the fitness function

such as the percentage of ‘failed’ responses, the total deterrence score achieved by patrolling

agents, and the number of deployed agents, which comes with a financial cost for real-world

police agencies. Results from this multi-objective GA showed a steady learning process towards

non-dominated solutions on the Pareto front. For a given demand scenario, the GA was able

to identify a portfolio of 20 diverse solutions from which policy makers may choose depending

on their specific priorities (e.g. a set number of patrols available to be deployed, minimising

response time, maximising deterrence etc.).

The next chapter summarises the results of this thesis and highlights their implications for

the modelling and optimising of police patrol deployment. The chapter will also discuss some

limitations of the methodology and suggest potential avenues of investigations to take this

research further.
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Chapter 8

Discussion

This chapter concludes the thesis. It begins with Section 8.1 which summarises the main research

findings and highlights the extent to which the project objectives – as outlined in Chapter 1,

have been met. Several potential limitations of the research are discussed in Section 8.2, and a

series of prospective avenues for further research are set out in Section 8.3. Finally, Section 8.4

provides concluding remarks.

8.1 Summary of research findings and their implications

A key challenge for police agencies concerns the strategic deployment of patrol units in order

to provide an effective service at a minimal cost. As such, the overarching aim of this research

was to develop a decision-support tool for supporting the design of efficient patrol deployment

configurations that effectively deter crime while also providing timely response to incoming

CFS.

Defining and formulating the Police Deployment Optimisation Problem

Patrol deployment is a complex issue due to the multiple interdependent responsibilities related

to reactive and proactive policing. Past research on the topic of police deployment either

included over-simplistic models of the patrol activities (namely equation-based models or ABMs

with abstract environments), or considered only individual aspects of the police deployment

problem (see Chapter 2 for a review of the literature). For instance, studies concerned with

effectiveness focused on designing patrol routes to optimise crime deterrence, or on positioning
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a preset number of patrols to provide optimal CFS coverage. Other studies focusing solely on

efficiency have sought to identify the minimum number of patrols required to achieve a desired

service quality. This thesis addresses these gaps in past literature through proposing a new

formulation of the Police Deployment Optimisation Problem (PDOP) which seeks to identify

optimal deployment configuration(s) while also incorporating efficiency, reactive effectiveness

and proactive effectiveness. Specifically, it considers the four following interconnected objectives:

• minimising the number of cars deployed (efficiency)

• minimising the average incident response time (reactive effectiveness)

• minimising the percentage of ‘failed’ responses (reactive effectiveness)

• maximising the deterrence score while patrolling (proactive effectiveness)

Through taking a more holistic and all-encompassing approach, this thesis aims to create a

model that better represents the types of real-world deployment challenges faced by police

agencies.

Designing and validating a high-fidelity model (agent-based model) of police pa-

trol activities in which the performance of various deployment strategies can be

accurately evaluated.

To explore solutions to the PDOP, this thesis implemented a novel simulation-based optimisation

approach comprised of (1) a realistic ABM which acts as an evaluation tool for deployment

configurations, and (2) a GA which performs an efficient search for solutions.

The ABM takes a deployment configuration as input and simulates the individual-level activities

of motorised police patrols throughout their shift, including their movement along the road

network as they patrol and respond to incidents. At the end of the simulation, the model

returns a series of aggregated metrics (e.g. average response time, deterrence score etc.) to

help assess the performance of the simulated deployment configuration. Elements of the ABM

were informed through discussions with UK police and calibrated and validated using publicly

available data from Detroit Police Department (Michigan), as an exemplar force.

Typically, evidence-based policing relies on the implementation of randomised field trials. As

discussed in Chapter 2, while the importance of empirical experimentation cannot be overstated,

field experiments are rarely implemented by police agencies for a number of reasons. First,
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some types of complex policing problems – such as the PDOP – present logistical challenges

as they feature too many candidate solutions which cannot feasibly all be implemented in the

field. Another shortcoming of field experiments is their inability to ‘rewind time’ to provide a

controlled comparison of multiple strategies under the exact same conditions. For instance, one

cannot compare the outcome of two different deployment strategies on the same evening shift.

In contrast, the ABM built in this thesis allows for the comparison of the simulated outcome

of many deployment strategies by controlling for all other factors. It is the hope of this author

that the evidence generated in these experiments could be considered useful for evidence-based

policing, as suggested by other studies (Groff and Birks, 2008; Groff and Mazerolle, 2008). In

this way, the ABM acts as a computational laboratory in which to cheaply and rapidly evaluate

the performance of many alternative deployment configurations and explore their consequences

free from logistical and ethical constraints.

Although other models of police deployment have been devised in the past, they have typically

relied on simplifications that restricted their ability to accurately represent real-world police

systems. The ABM used in this thesis however was built with high fidelity in mind, achieving

a more accurate representation of real-world policing through two key considerations. First,

it models the behaviour of police patrols at the individual patrol vehicle level – rather than

providing a general force-wide approximation. Second, the ABM considers the real road network

as part of a police force environment, rather than using an abstract grid-like representation.

With these two considerations, the ABM is able to produce more accurate estimations of the

performance of the system under a given patrol deployment configuration.

Applying the model to explore the outcome of various deployment designs for the

case study of Detroit Police Department.

To test and illustrate the usefulness of the developed ABM, the model was used to conduct

a series of deployment experiments for the case study of Detroit Police Department. These

experiments explored the impact of various aspects of police deployment decisions (i.e. number

of patrols, random deployment versus one targeted towards historical CFS) on system perfor-

mance.

Results from these experiments showed that, under both a low and a high-demand scenario,

increasing the number of deployed patrols significantly improves the performance of the system,
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both in terms of proactive and reactive effectiveness. Interestingly, the relationship between

number of deployed patrols and average response time is not linear but instead shows signs of

diminishing returns after deploying about 40 patrols for the low-demand scenario and 50 patrols

for the high-demand one. In contrast, the relationship between number of patrols and crime

deterrence score appears to be completely linear, as deploying more patrols leads to more idle

time for each individual patrol.

Additionally, the experiments revealed that, when resources are stretched (high-demand and

low-supply), a targeted patrol deployment based on historical CFS could yield a better reactive

effectiveness compared with a random one (up to 40% faster responses and up to 6% fewer

‘failed’ responses). In a low-demand-high-supply scenario, on the other hand, a targeted de-

ployment does not bring significant improvements in reactive effectiveness, yet leads to more

crime deterrence as agents spend less time travelling and more time patrolling.

These results demonstrate that the ABM built in this thesis is able to inform police agencies on

what performance they can expect with any particular patrol deployment. As such, the ABM

tool has clear potential to assist police agencies in designing more effective and efficient deploy-

ment strategies, which would help address their dual goals of reducing crime whilst providing

increased value to taxpayer funding.

Designing efficient metaheuristic algorithms (genetic algorithms) from which to

derive high-quality solutions to the PDOP in an reasonable time.

As discussed in Chapter 7, the PDOP is a NP-hard problem for which it is impossible to

exhaustively evaluate every single candidate solution. In order to automate and speed up the

search for optimal solutions to the PDOP, this thesis employed a simulation-based optimisation

approach. In this approach, a GA is used to generate new candidate solutions and select those

which yield the best performance. The ABM is utilised by the GA to evaluate the performance

of each candidate solution created during the search.

Two GA variants were built, each exploring a different version of the PDOP. First, a single-

objective GA was developed which solely sought to minimise the average response time. This

was followed by the development of a multi-objective GA seeking to optimise multiple conflicting

objectives related to efficiency (number of agents), reactive effectiveness (average response time

and percentage of ‘failed’ responses) and proactive effectiveness (deterrence score).
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The GAs developed in this thesis allow for an efficient search of the parameter space to be

conducted. This makes it possible to identify a set of good solutions to the PDOP in reasonable

time. The benefit of this cannot be overstated; finding the best deployment configuration for

only an average-sized metropolitan police force such as that of Detroit (population 639k) without

this GA would take one quattuordecillion, four hundred tredecillion years of simulation runtime.

Put another way, that is one hundred and one decillion, four hundred and forty-nine nonillion,

two hundred and seventy-five octillion, and three hundred and sixty-two septillion times longer

than the current estimated age of the universe. In contrast, using good computational resources

this thesis’ GAs can find the best deployment configuration in under 48 hours.

Applying the resulting optimisation tool to the case study of Detroit Police De-

partment.

The simulation-based optimisation tool built in this thesis was applied to the case study of

Detroit Police Department (Michigan). Results suggested that, when seeking to deploy 60 patrol

units across the force, the single-objective GA is able to prescribe a deployment configuration

which produces significantly better response times overall compared with one that is designed

solely based on historical CFS data. This is because the optimal configuration identified by the

GA prescribes a more balanced coverage of the force – with patrol units present in every precinct

– ultimately leading to consistently lower response times. In contrast, the basic algorithm

which devises configurations based on historical CFS demand operates in a greedy fashion

by prioritising the staffing of beats that are historically hottest. As a result, this algorithm

prescribes configurations in which entire areas of the force may be unstaffed. Consequently,

this can yield excessively long response times for incidents taking place in those under-staffed

precincts – which could have catastrophic implications in a real-world scenario.

The multi-objective GA applied to the PDOP in Detroit converged towards a shortlist of Pareto-

optimal configurations. These suggested configurations provide trade-offs between various ob-

jectives related to efficiency, reactive effectiveness and proactive effectiveness. This could be of

particular value to police forces, empowering them with a suite of applicable deployment op-

tions from which a solution can be chosen to best address current supply levels and/or policing

priorities.
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8.2 Limitations and methodological critiques

The results of this study should be interpreted in the context of several potential limitations of

the methodology. These limitations, relating to both the ABM and the GAs, are summarised

in this section.

8.2.1 Limitations of the ABM

Design simplifications

Although the ABM developed in this thesis is amongst the most comprehensive and realistic

built to date for modelling the behaviour of police patrols, some necessary simplifications were

made throughout its design.

First, agents in the model are solely tasked with responding to emergency calls. However,

real patrol units spend an important proportion of their time responding to non-emergency

calls. Studies have shown that between 80% and 90% of police calls are related to non-criminal

behaviour complaints such as welfare or nuisance (Boulton et al., 2017; College of Policing, 2015;

Hill and Paynich, 2014; Johnson et al., 2009). In 2015 for instance, mental health incidents were

estimated to account for 20% of police time in England and Wales (College of Policing, 2015).

People with mental health issues often end up calling the police more than once. Repeat or

frequent callers can generate a disproportionately high level of demand. For example, the

Metropolitan Police Service (MPS) receives each year about 13,000 calls from mental-health-

specific premises such as hospitals and mental health suites (HMICFRS, 2018), 4,000 of which

result in officers being dispatched. This represents a call every 40 minutes and a dispatch every

two hours to repeat callers from mental-health-specific premises. Overall, by focusing solely

on emergency incidents, the current version of the model may not provide a complete picture

of the workload that non-emergency calls place on patrol officers. This simplification of police

response was necessary in keeping the model within manageable complexity. Future versions

may further improve the realism of the simulate system by allowing agents to also respond to

non-emergency calls when available.

Second, the agents in the ABM are tasked with patrolling and responding to incidents. Al-

though these tasks are central to their day-to-day shift, officers may have many intersecting

responsibilities as policing is a complex and culturally specific process. Apart from patrolling
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and responding to calls, officers are also expected to help with finding missing persons, fulfil

administrative work (e.g., report writing), engage in informal face-to-face interactions with cit-

izens (e.g., casual encounters, public relations contacts), bringing offenders back to the police

station, amongst other tasks (Stinson et al., 2014). Therefore, these tasks should arguably be

taken into account in order to derive an even more realistic model of police patrol activities.

Nevertheless, while these assumptions are likely to have influenced model outcomes, they do

not reduce the viability of the model as a decision-support tool nor its ability to support the

design of patrol deployments.

A further assumption made in designing the model relates to the deterrent effect that the act

of patrolling has on crime. In the model, patrolling agents drive at the maximum allowed speed

limit on each road segment. According to Koper (1995), intermittent patrol of micro-hot spots

(street segments or blocks) of 10-16 minutes at least every two hours extends deterrence. In the

real world, patrols drive at a much slower speed, or stop the vehicle to maximise their visibility

and deterrence effect. In addition, the deterrence score calculation in this thesis does not

take into account residual deterrence – i.e. the continuing deterrent effect that police presence

has on disorderly and criminal behaviour after police depart from a location (Sherman, 1990).

Finally, the calculation does not consider that frequent re-visits to the same streets may yield

diminishing returns (Williams and Coupe, 2017). Ultimately, although the deterrence score

calculation in the model could be improved, the impact of patrolling on crime deterrence is a

complex and much studied topic that is beyond the scope of this research.

Validation

The police system is an open system influenced by external factors which, for the most part,

are unknown to the researcher building the model. As such, it has been argued that numerical

models of open systems are impossible to validate (Oreskes et al., 1994). A model that would

exactly reproduce real-world empirical data would be “suspicious” (Polhill and Salt, 2017).

As a result, it is widely recognised that ABMs, like most simulation models, cannot be fully

validated, in the sense of knowing that they are a completely adequate representation of some

real system (Crols and Malleson, 2019; Groff et al., 2019).

As discussed in Chapter 5, an incident-level validation is simply impossible given the complexity

of the interactions between patrols themselves and their environment. As such, the ABM built
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in this thesis was instead validated through a population-level validation approach using data

from the city of Detroit. This approach compared the overall distribution of real dispatch and

travel times in Detroit to those generated by the model. Such a process allowed us to establish

with confidence that the simulation was appropriate for its intended use, i.e. to evaluate the

performance of a given deployment configuration. However, this validation was performed in

the specific context of the city of Detroit: an urban environment featuring a dense grid-like

road network. While this was not tested in the research presented here, it would be beneficial

to also validate the model on a police force in a more rural setting.

Overall, as with all simulation research, one should interpret model results with the acknowl-

edgement that they can only seek to evaluate system outcomes rather than measure them with

exactitude, as would be possible in a real-world experiment.

Computational cost

One obvious limitation of the ABM technique is its computational cost. As the scale of the

model increases (either the size of the environment or the number of agents), so do the required

computational resources (Bonabeau, 2002). Given the significant number of deployment config-

urations that need to be evaluated in the context of the PDOP, the use of ABM as the model

of choice may render the tool computationally expensive.

Nonetheless, ABMs are much easier to interpret by social scientists and policy-makers, making

it an attractive option for this thesis. Furthermore, the ABM approach is currently the most

appropriate available technique for modelling dynamic and complex systems such as the police

system. The technique allows for much more realistic models than equation-based alterna-

tives to be built. Finally, as previously mentioned, supercomputing clusters and parallelisation

techniques were leveraged in this research to limit computing time.

8.2.2 Limitations of the GA

Tuning

The outcome of the GA learning is inherently dependent on any number of hyper-parameters

(not to be confused with ABM parameters), such as the population size, mutation rate, crossover

rate, elitism, etc. Poorly chosen hyper-parameters could lead to worse performance than ran-

dom search, and should thus be avoided. While we attempted to choose reasonable values for
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these search parameters, it is likely that the efficiency of the algorithm could be improved by

undergoing a thorough tuning process of these parameters.

Computational cost

GAs are computationally expensive to run, especially for large police forces containing a high

number of patrol beats. In the computer environment used in this research, which uses a

supercomputing cluster (HPC) and parallelisation techniques, the GA learning took about 6.5

hours per demand scenario and the subsequent final evaluation phase for that scenario took

approximately 11 hours. The computational capacity constraints limited the extent of the

exploration of the parameter space. As such it is acknowledged that allowing the GA to learn

for longer would lead to further explorations of the parameter space, ultimately leading to the

identification of better solutions.

Additionally, GAs are stochastic in nature, which means that multiple runs with the same

hyper-parameters are likely to generate different outcomes. To circumvent this issue, it is

common practice to combine the outcomes of multiple runs of the same GA. Unfortunately, as

computational resources were limited for this thesis, it was not possible to conduct multiple

runs of the GAs. However, it is acknowledged that doing so would lead to a more robust search

for optimal solutions.

8.3 Recommendations for further research

Many of the limitations due to model assumptions mentioned in the previous section are merely

shortcomings of the current version of the ABM. Townsley and Birks (2008) argued that sim-

ulation experiments should incorporate complexity in an incremental fashion. The models

presented in this thesis represent a proof of concept upon which subsequent iterations may built

and expand. Some improvement suggestions for future versions of the model are now proposed.

8.3.1 Explore dispatching consequences

Inter-sector dispatching

The version of the ABM developed in this thesis features absolute district integrity (also called

intra-sector dispatching). In such a setup, patrol units are not dispatched across district bound-

aries. If no unit is available in the district, the incident enters a queue until a unit becomes
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free. However, many police departments use relative district integrity. For instance, in a 1971

study of the New York Police Department more than half of all dispatches were inter-sector

dispatches (between districts). Usually, it is the nearest patrol unit that is dispatched to each

CFS incident, and in doing so, they may cross the district boundaries. Further versions of the

model could investigate the impact of inter-sector dispatching on system performance.

Multi dispatch

The current ABM models the dispatching of a single agent to each incident. However, it is

common for emergency incidents to require the dispatch of multiple patrol units. As such,

improvements to the current ABM version may aim to incorporate the ability to dispatch

multiple agents and explore how this affects the performance of the system over the course of a

shift.

8.3.2 Explore staffing level consequences

It is common for police agencies to assign one-officer cars to low-crime areas and two-officer cars

elsewhere, or one-officer cars during day shifts and two-officer cars during night shifts. Since

the model agents represent police vehicles, an additional attribute could be added to them that

describes the level of staffing of that vehicle. This would allow to explore and better understand

the impact of various staffing levels on system costs (efficiency).

8.3.3 Include other objectives in the PDOP

Further research into the PDOP may consider additional objectives. For instance, coverage

equity – i.e. the balance between the level of service provided in all districts of the force

(Goldberg, 2004) – is an equally important metric. It may not be acceptable to have districts

that are poorly serviced while others receive an outstanding police coverage (see Marsh and

Schilling, 1994, for a review of coverage equity issues in ambulance and fire services).

Another key objective to police agencies is workload equity – i.e. the balance between officer

workload across districts. First, an imbalanced system decreases officer moral (Goldberg, 2004).

Second, if the patrol car or officer is always busy responding to a call when another incident

occurs, a car from a neighbouring district would have to respond. This leads to a domino

effect in which cars pulled from their assigned districts would leave the district unattended, and

therefore more vulnerable to criminal incidents
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This being said, the GAs built in this thesis appear to naturally prescribe homogeneous deploy-

ment configurations that avoid the under staffing of entire districts and thus provide a balanced

coverage.

8.3.4 Explore future demand

This study has focused on identifying better deployment configurations under a low-demand

and high-demand scenarios. These scenarios were based on historical demand. Further research

could investigate how robust these configurations would be under future demand. For instance,

police forces face growing pressure to prevent and respond to large-scale emergencies such as

terrorist attacks. Despite these being rare, the police are expected to anticipate the pressure

that such demand would place on the system (HMICFRS, 2018). As a computational laboratory,

the ABM built in this thesis lends itself well to exploring such questions.

8.4 Concluding remarks

Ultimately, this thesis has created a novel decision-support tool for exploring the problem

of patrol deployment optimisation. The approach chosen here is that of a simulation-based

optimisation combining an agent-based model with a genetic algorithm. The tool harnesses

the power of ABM to produce a comprehensive model of patrol activities that can be used to

evaluate the performance of the system under various deployment configurations. Meanwhile,

the developed GA efficiently guides the search for optimal solutions in a very wide parameter

space, and is able to identify a portfolio of deployment configurations each with their own

strengths from which policy makers may choose.

Through its flexible framework designed to be applied to any police agency, the developed

decision-support tool shows considerable potential in informing more cost-effective patrol de-

ployments – ones that better use the resources at hand whilst helping to keep the public safe.
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