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Abstract 

In order to survive and reproduce, every animal needs to run accurate and diverse visual 

processes efficiently. However, understanding how they see is limited by our lack of insight 

into how evolution optimises resource- and area-constrained neural machinery. 

It was shown recently in Drosophila that its photoreceptor cells, corresponding to individual 

“pixels” of the scene, react photomechanically to these light changes by generating an 

ultrafast counter-motion, a photoreceptor microsaccade. Each photoreceptor moves in a 

specific direction at its particular location inside the compound eye, transiently readjusting 

its own light input. These mirror-symmetrically opposing microsaccades cause small timing 

differences in the eye and the brain networks’ electrical signals, rapidly and accurately 

informing the fly of the 3D world structure. Remarkably, it has been shown that the 

Drosophila can resolve angles finer than 1°, five times less than what the optic laws would 

predict in a static fly eye.  

The results presented in this thesis demonstrate that hyperacute visual information is 

transmitted from the photoreceptors to the visual pathway and I report a deep learning 

approach for discovering how the Drosophila compound eyes' biological neural network 

(BNN) samples and represents hyperacute stimuli. 

Using in vivo two-photon calcium imaging on a transgenic fly, I recorded the responses of 

17 flies’ L2 neurons, OFF neurons in the early visual pathway, while presenting fine 

resolution visual patterns. I showed that the Drosophila’s visual hyperacute information is 

transmitted from the photoreceptors to the medulla layer (2nd layer in the visual system). 

Additionally, I found that the L2 neurons show direction-specific acuity and proved that this 

is a consequence of the photoreceptors’ microsaccades.  

Next, I show that an artificial neural network (ANN), with precisely-positioned and 

photomechanically-moving photoreceptors, shaping and feeding visual information to a 

lifelike-wired neuropile, learns to reproduce natural response dynamics. Remarkably, this 

ANN predicts realistic stimulus-locked responses and synaptic connection weights at each 

eye location, mapping the eyes' experimentally verified hyperacute orientation sensitivity. 

By systematically altering sampling dynamics and connections, I further show that without 

the realistic orientation-tuned photoreceptor microsaccades and connectome, 

performance falters to suboptimal. My results demonstrate the importance of precise 

microsaccades and connectivity for efficient visual encoding and highlight the effect of 

morphodynamic information sampling on accurate perception.  
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Chapter 1: General introduction 

1.1 Motivation and objectives 

Human curiosity leads us to try to understand better the beauty of the world we live in. Its 

harmony is present from atomic structure to planetary motion through the mystery of living 

organisms. This thesis deals with a small branch of this complex sophistication: brain 

cognition and, more specifically, visual encoding. An animal's perception of its surrounding 

world is an interpretation of its brain that receives limited sensory inputs. Yet, this 

interpretation must be accurate enough to survive and reproduce. Evolution presumably 

organised and tuned the animal brains to find a compromise between their world 

interpretation accuracy and energy consumption. Using the well-studied and highly 

tractable genetic model Drosophila melanogaster, we can investigate how a brain 

perceives the visual world. Deciphering its brain's encoding mechanisms gives us insight 

into how animals perceive the visual world.  

It was long thought that insect photoreceptors remain immobile (static) as they sample 

visual information (Land, 1997). However, recent studies using Drosophila have shown 

that photoreceptors are not static. Instead, light intensity changes make them move 

dynamically, enhancing a fly's visual capabilities beyond the optical limitations of its 

compound eyes (Juusola et al., 2017). These ultrafast photomechanical photoreceptor 

microsaccades enable Drosophila to see the world in hyperacute detail (Juusola et al., 

2017). These results demonstrated that the fly brain's neural algorithms to perceive the 

world differ from the general idea. Moreover, parts of the algorithm enhancing its 

hyperacuity remain unknown.  

In this thesis, I aim to show that the Drosophila visual pathway encodes the world neurally 

in high resolution and that the morpho-dynamism discovered at the photoreceptor level 

plays an important role in this efficient and powerful encoding. Furthermore, to help the 

science community regarding fly vision analysis, I present the custom-written stimuli and 

analysis algorithms, as well as the experimental techniques, all described in detail in each 

Chapter's material and methods section. Finally, I hope the model built and described in 

Chapter 3 will give insight into computer vision algorithms in general and robotic 

paradigms. 

My PhD study consisted of two main parts, each of which took about two years. The first 

part entailed intense experimental learning and recordings, and response analysis. During 
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the second half of my PhD, I profited from my data science background/knowledge to 

model the responses recorded during the first two years.  

1.2 Outline of the thesis 

This thesis presents findings, reviews and discussions about how the visual world is 

perceived and encoded in the fly visual pathway. It consists of a general introduction 

chapter, followed by four result chapters in which specific questions are addressed, 

methods are detailed, and findings are discussed. 

In the remaining, I summarise each result chapter and provide a brief literature review to 

contextualise and present relevant information for the performed research. 

In Chapter 2, I measure and analyse if and how the Drosophila visual hyperacuity, as 

discovered previously at the photoreceptor level (Juusola et al., 2017), is maintained at 

the first neuropile, lamina, and, specifically, at the input layer of the second neuropile, 

medulla. I performed two-photon Ca2+-imaging in transgenic flies expressing GCaMP6f-

calcium-indicator in the first visual interneurons, L2 monopolar cells (L2 LMCs). The output 

of these neurons emphasises environmental dark-contrast changes. L2 axon terminals' 

calcium activity was recorded in the medulla input layer-2 while visually stimulating the fly 

with ultra-fine moving patterns. The results revealed how visual hyperacuity was 

maintained in the lamina and medulla neural responses. Additionally, L2 medulla terminals 

showed orientation sensitivity correlating with the corresponding photoreceptor 

microsaccade directions. These results indicate that microsaccades play an important role 

in the high-resolution visual encoding in the fly brain. 

Chapter 3 describes a model of the Drosophila visual pathway's first two processing layers, 

which uniquely includes a realistic, dynamically-operating photoreceptor microsaccade 

sampling matrix (made by Dr Jouni Takalo, a senior researcher in our laboratory). This 

combined model is a connectome-constrained artificial neural network trained on the 

recorded L2 responses (Chapter 2) to fit them. The model highlights the importance of 

specific bio-physical properties and synaptic interactions of the fly visual pathway, such as 

the saccades and the local circuitry, for accurate neural network functions and predicting 

individual neural responses in the lamina and medulla input layers (at the L2 axon 

terminals). Furthermore, it is possible that this model can be used as an encoder for 

computer vision paradigms that are similar to the tasks solved by flying animals, such as 

visual processing in drones or general high-resolution video compression.  
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Chapter 4 attempts to extend the findings in the previous chapters to the whole visual 

pathway, using a pan-neuronal GCaMP6f-expression in the Drosophila brain. Visual 

stimulation with ultra-fine moving patterns while two-photon calcium imaging neural activity 

revealed hyper-acuity at every recorded layer of the visual pathway, which in these 

recordings encompasses at least the complete lamina and medulla network. Automatic 

response-clustering showed differences in directional and orientation sensitivities between 

the lamina and medulla neurons. These results open the door for discussions about the 

possible mechanisms enabling the most efficient and high-resolution visual encoding in 

the fly brain. In addition, this Chapter brings about ideas on tackling the challenging issues 

of pan-neuronal response analysis.  
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1.3 The visual pathway of the Drosophila 

To study and make sense of how neural activity represents visual stimuli in the fruit fly 

brain, one needs to understand how its visual pathway is structured. An accurate 

connectivity map of its different processing layers enables one to choose where to study 

visual information processing, identify the neurons, and interpret their activity a posteriori. 

Many animals' visual pathways, particularly those of genetic model organisms, such as 

Drosophila, have been precisely dissected, and a wealth of published details are available. 

As shown below, these connectomes provide useful 3D circuit diagrams of where light 

information is converted to neural signals and how such neural activity may drive visual 

behaviours.  

Moreover, modern genetics has enabled detailed investigations into synaptic connectivity 

and its role in local circuit computations. For example, neuronal photoactivation allows 

desired input from a group of neurons so that an investigator can identify their axonal 

branching and pathways to route information (Sun et al., 2017a).  

Three types of fly eyes sample light coming from the surrounding environment. Each of 

the two principal eyes, the left and right compound eye, is made of about 800 small lens-

capped modules (ommatidia) that contain the light sensors, the retinal photoreceptor cells. 

Together, the ommatidia map a panoramic visual field covering almost every direction 

around the fly's head. Four synaptic processing layers, called optic neuropils, further 

process information captured by the photoreceptors: the lamina, medulla, lobula and 

lobula plate (Figure 1) (K. F. Fischbach & Dittrich, 1989; S. Y. Takemura, 2015). As in the 

mammalian brain, the fly visual pathway is hierarchically layered: information is first 

processed locally before being integrated more complexly as it goes through each layer 

(A. Borst & Egelhaaf, 1990; Reichardt, 1987). The fly visual pathway is also retinotopically 

structured (Braitenberg, 1967): each point in the visual space stimulates only a column 

(aka module or cartridge) of neurons. Such a module is repeated across the eye, and 

electron microscopy cross sections have enabled detailed connectome reconstructions for 

the first layers.  
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Figure 1: Diagram of a horizontal section of the fly's brain and visual system. 

 A fly's optic lobe consists of four retinotopically organised neuropils: the lamina, medulla, lobula 
and lobula plate. Scale bar = 100 µm. Image from (S. Y. Takemura, 2015). 

The first layer, made of photoreceptors, samples light through their light-sensitive protein 

called rhodopsin. The outer R1-R6 photoreceptors (Figure 2) express green-sensitive 

rhodopsin (Rh1) and UV-sensitive 'antenna pigment'. The inner R7-R8 photoreceptors 

express slightly different rhodopsin variants, responding to yellow, pale and can be 

sensitive to light polarization (Clandinin & Zipursky, 2002; Wardill et al., 2012; Wernet et 

al., 2003). 

 

Figure 2: Fly eye description. 

 A) Schematic structure of the compound eye. Figure from (Land and Nilsson, 2002). (B) Electron 
micrograph (left) and schematic structure (right) of an ommatidium in the fly eye. Inside an 
ommatidium under a faceted lens, eight photoreceptors (R1-R8) align in seven different directions. 
R7 and R8 photoreceptors lie on top of each other in the centre and share the same axis Images 
from (Elyada, 2009). 
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The photoreceptors connect to the second layer following the neural superposition 

principle (Braitenberg, 1967; K. Kirschfeld & Franceschini, 1968). This arrangement 

means that the eight photoreceptor cells (R1-R8) inside each ommatidium share the same 

facet lens (Figure 2A) but point in seven different directions (Figure 2B; R7 and R8 share 

the same receptive field). On the other hand, neural signals of eight different 

photoreceptors (R1, R2, R3, R4, R5, R6 and R/8), belonging to the seven neighbouring 

ommatidia looking at the same point in space, are pooled together at one neural cartridge 

in the next two neuropils: the lamina and medulla (Figure 3). While the six outer 

photoreceptors R1-R6 project their axon terminals to neural columns in the lamina (Figure 

3), R7 and R8 cells bypass this layer and make synaptic contacts with their corresponding 

medulla column (Karl Friedrich Fischbach & Hiesinger, 2008; Kuno Kirschfeld, 1967; 

Morante & Desplan, 2005). 

 

Figure 3: Wiring diagram of the retinotopic mapping in the fly lamina. 
Six outer photoreceptors R1-R6 - belonging to six neighbouring ommatidia but point in the same 
direction - send their neural signal downstream to the same lamina column. Figure from Morante 
and Desplan, 2005. 
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Neural superposition wiring may benefit the fly visual system in different ways. For 

example, single photoreceptor light stimulation can evoke unstable oscillations at the 

postsynaptic target neurons, the large monopolar cells (LMCs), to the detriment of 

transmission (van Hateren, 1987). In contrast, having six simultaneous inputs from the 

superimposed R1-R6s of the neighbouring ommatidia deliver a more stable response (van 

Hateren, 1987). The results further suggested that this layout, together with synaptic 

feedbacks (Dau et al., 2016; Nikolaev et al., 2009; Zheng et al., 2006), may prevent over-

excitation of the LMCs, normalising transmission in variable conditions. Furthermore, 

intracellular R1-R6 and LMC recordings suggest that presynaptic membrane properties 

(Weckstrom et al., 1992) and synaptic feedback interactions accelerate and accentuate 

synaptically transmitted information about light contrast changes through balancing the 

synaptic loads (Dau et al., 2016; Nikolaev et al., 2009; Zheng et al., 2006). Besides these 

advantages, I will show below that neural superposition is also involved in enhancing visual 

acuity. 

The outer R1-R6 photoreceptors feed motion information to the LMCs (L1-L3), whilst the 

inner R7-R8 photoreceptors innervate specific medulla neurons, subserving colour vision 

(Heisenberg & Buchner, 1977; Pichaud et al., 1999; Troje, 1993; Yamaguchi et al., 2008). 

Interestingly, however, R7 and R8 also form gap junctions with R1 and R6 in the lamina, 

broadening the spectral range of motion vision (Wardill et al., 2012).   

Serial electron microscopy has revealed the connections distributing photoreceptor 

information in the lamina, the most peripheral neuropil in the fly eye (Meinertzhagen and 

O'Neil, 1991; Rivera-Alba et al., 2011). Each lamina cartridge contains twelve cell types: 

seven narrow‐field elements (5 types of monopolar cell, L1–5; 2 centrifugal neurons C2, 

C3), two wide-field feedback neurons (Lawf1 and Lawf2), lamina intrinsic amacrine 

neurons (Lai) and the T1 basket cell and a wide‐field intrinsic or amacrine cell. Laterally, 

L4 cells provide inputs from two neighbouring cartridges (posterodorsal and 

posteroventral), contributing to the local connection matrix (Meinertzhagen and O'Neil, 

1991).  

In the lamina, L1, L2 and L3 LMCs start segregation in the visual information processing 

through parallel ON and OFF pathways (Joesch et al., 2010b; Reiff et al., 2010). These 

pathways contain visual neurons in which responses selectively amplify bright or dark 

moving edges. Whilst the relations between ON and OFF pathways and the questions 

about their utility are still actively debated, the current consensus is that the correlation of 

signals coming from these two pathways with different temporal dynamics enables visual 
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motion detection (Behnia et al., 2014; Alexander Borst et al., 2020; Alexander Borst & 

Helmstaedter, 2015; Clark et al., 2011). Additionally, studies on these pathways show that 

their specific structural segregation is crucial for high-contrast stimuli but essential for low-

contrast stimuli (Joesch et al., 2010a; Rister et al., 2007). 

L1 and L2 are the two main inputs to the ON and OFF pathways, respectively. Targeted 

expression of genetically encoded calcium indicators has revealed these cell types do not 

carry information about motion direction yet, but rather respond to light 

increment/decrement respectively (Reiff et al., 2010). Furthermore, genetic manipulations 

have demonstrated that L2 neurons provide inputs to a pathway specialised for detecting 

moving dark edges (Clark et al., 2011; Joesch et al., 2010a; Rister et al., 2007). Finally, 

some studies on L2 neurons showed that they are inhibited laterally in an 'antagonist-

centre-surrounding' way from their input photoreceptors (Dubs, 1982; Freifeld et al., 2013a; 

Järvilehto & Zettler, 1973; Laughlin & Hardie, 1978; van Hateren, 1992). 

The subsequent processing layer, the medulla, also has a well-studied connectome 

(Campos-Ortega & Strausfeld, 1972; K. F. Fischbach & Dittrich, 1989; Rein et al., 2002; 

S.-Y. Takemura et al., 2008; S. Y. Takemura et al., 2013) and contains the T4 and T5 cells 

that receive inputs from the specific parallel ON and OFF pathways, respectively 

(Shinomiya et al., 2019). The current evidence suggests that these two neuron types 

(projecting axons onto Lobula Plate layers) are the first direction-selective neurons in 

Drosophila's visual system (Schilling et al., 2019; Strother et al., 2017). Strikingly, they 

also respond strongly to static features orthogonal to their preferred axis of motion (Fisher 

et al., 2015). 

Finally, in the fourth layer, the local motion stimuli of the previous layers are integrated and 

non-linearly filtered by lobula plate cells that are stimulated primarily by global motion 

stimuli (Barnhart et al., 2018; A. Borst & Haag, 2002; Joesch et al., 2008; Schnell et al., 

2010). 

To understand the physiology of the visual pathway, some researchers focused on the 

communication between neurons and the pathways they reveal. The primary inhibitory 

neurotransmitters in the visual pathway are histamine and gamma-aminobutyric acid 

(GABA) (Raghu et al., 2013), whilst glutamate, acetylcholine and serotonin provide the 

excitation in the network. Photoreceptors release histamine (R. C. Hardie, 1987) in the 

LMCs and amacrine cell synapses. GABA is a major inhibitory neurotransmitter widely 

present in the visual pathway, creating centre-surrounding receptive fields and separating 
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the ON and OFF pathways (Freifeld et al., 2013a). L1s release glutamate and L2s 

acetylcholine in their medulla terminals (S. Y. Takemura et al., 2011), and serotonin is 

used as a neuromodulator in the lamina (Gschweng et al., 2019). Moreover, to optimise 

the visual information flow, balancing the synaptic loads at the photoreceptor-LMC 

synapses, the major feedback connections to the photoreceptor axon terminal are 

excitatory (Nikolaev et al., 2009; Zheng et al., 2006). 

1.4 Recording neural activity 

The brain of every living organism comprises neurons that form networks via synapses 

and gap junctions. Their electrochemical communication is enabled by a controlled 

transfer of potassium, calcium, and sodium ions across their plasma membranes through 

specific ion channels. Hence, one can measure a neuron's membrane potential with 

intracellularly placed microelectrodes. It is also possible to record the neural activity by 

measuring the related ion concentration changes via specific genetically-encoded or 

pharmacologically-introduced indicators. These two main methods are electrophysiology 

and calcium imaging, respectively.  

Although microelectrode penetrations invariably damage the cells, transiently changing 

the ion concentrations across its membrane, the cells typically recover within seconds as 

the membrane seals to the electrode. Electrophysiology is arguably the most precise 

recording method, enabling accurate recordings of ultrafast neural activity, including action 

potentials. However, visualising more than one neuron at the same time is difficult with this 

method.  

Conversely, calcium imaging is an advantageous technique for investigating activity 

across neuron ensembles. It visualises Ca2+ concentration changes within (a) neuron(s) 

by using specific calcium indicator molecules that evoke concentration-dependent 

fluorescence changes. Hence, the brighter the image, the higher the local calcium 

concentration. So, more calcium ions are concentrated inside the observed intracellular 

cell compartment at a given time. Using well-established standard techniques, calcium 

indicators can be genetically expressed in many model organisms, such as fruit flies. The 

first genetically encoded calcium indicators (GECI), called Cameleons, were generated in 

1997 (Miyawaki et al., 1997). Since then, this method has dramatically improved, and there 

are now tens of new GECIs available, differing in several aspects, such as colour, reactivity, 

or brightness. Review articles explain in detail how GECIs work and discuss a large panel 
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of the different GECIs used today, with their advantages and drawbacks (Grienberger & 

Konnerth, 2012). 

Although synthetic dyes have better temporal resolution and kinetics, only GECIs enable 

targeting specific neurons by restricting their expression using the Gal4-UAS approach, a 

well-established genetic method for investigating gene expression and function in 

Drosophila (Brand & Perrimon, 1993). 

One can visualise activity-dependent fluorescence in neurons using charge-coupled 

devices (CCD-cameras based upon complementary metal-oxide-semiconductors, CMOS) 

coupled to a fluorescence microscope. However, it is also possible to excite the GECI to 

generate fluorescence using a two-photon laser (using the 2-photon excitation principle 

(Wilson, 1985)), using x/y/z-laser scanning with highly-sensitive photomultiplier tubes 

(PMT) (Denk et al., 1990). This method is precise, and when the laser power is not too 

high, it does not damage the visualised cells.  

Nowadays, genetic tools on Drosophila enable us to generate flies in which specific 

neurons express a particular gene. Moreover, this gene can be engineered or taken from 

another species (transgene). Hence, it is possible to have flies expressing GECI(s) almost 

wherever we want within the brain so that we can analyse only specific neurons and neural 

regions. Or, we can express the selected GECI in all neurons (pan-neural expression) (e.g. 

Russell, 2011). 

Well-detailed protocols are openly available for two-photon calcium imaging in the 

Drosophila brain. These explain what transgenic mutant flies to choose, the preferred age 

of the fly, how to tether it properly, and the experimental conditions for robust and clean 

recordings (Chiappe & Jayaraman, 2012; Seelig et al., 2010) 

When using two-photon calcium imaging to measure neural activity, one must ensure 

calcium transients correlate well with the neural responses. For example, it has been 

recently shown how serotonin is involved in calcium transient as a response to visual 

stimuli in L2 neurons (Gschweng et al., 2019). Although these results indicate that calcium 

indicators are a good approximation for neural activity measurements, novel genetically 

encoded voltage indicators appear to measure neural processing in vivo at a faster 

resolution (Yang et al., 2016). Hence, this method could be relevant to investigating fast 

responses induced by hyperacute visual stimuli. 
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The problem of experimental artefacts, such as muscle- or photomechanically-induced 

brain movements (Kemppainen et al., 2022) inside the head capsule, can be a real issue 

affecting calcium imaging. Indeed, it is difficult to prevent the fly brain from moving, with 

these movements resulting in fluorescence changes regardless of the local calcium ions 

concentration. Some specific preparation protocols have been developed to reduce these 

effects. One way to reduce brain movements is to cut the muscles inside the head capsule 

during dissection (Chiappe & Jayaraman, 2012; Seelig et al., 2010). Unfortunately, this 

procedure may eliminate essential aspects of the fly's active vision, potentially leading to 

massively underestimated signalling performance. Strikingly, activity-independent dyes 

are not usually used to monitor how the brain moves, although these would precisely 

highlight the presence of motion artefacts. For this purpose, two-colour two-photon calcium 

imaging could be used in the appropriate setup (having enough PMT channels). Such a 

system can also be used to visualise neural activity simultaneously in two different neural 

regions (Sun et al., 2017b) 

Moreover, one can also correlate brain motion with other physiological processes, in which 

activity can be conveniently recorded, such as respiration or heartbeat (Paukert & Bergles, 

2012). Various motion correction algorithms have been used to tackle these issues 

(Dombeck et al., 2010). 

1.5 Drosophila's visual acuity 

1.5.1 Photoreceptor light activation 

Phototransduction is the process in which a biochemical reaction cascade converts a 

photon's energy into a photoreceptor's electrical response. This cascade has been a topic 

of intense research for a long time (R. C. Hardie & Postma, 2008). A Drosophila R1-R6 

photoreceptor's light-sensitive part, the rhabdomere, contains ~30,000 tightly packed 

tubular microvilli, each of which houses the whole phototransduction cascade reactions 

(Figure 4), characterised in detail by Hardie and Juusola, 2015. Each microvillus 

expresses light-sensitive proteins, rhodopsin, the most populous of the molecules involved 

in the transduction cascade. Once a photon activates a single rhodopsin molecule in a 

microvillus, it takes 8-30 ms (latency distribution) before the phototransduction cascade 

has fully amplified this signal into a small electrical response of variable size (amplitude 

distribution), called the quantum bump (Mikko Juusola & Hardie, 2001). These reactions 

also take a little time to recover in the light-activated microvillus. Thus, it cannot respond 

to another photon for about 20-300 ms, remaining in the state of refractoriness (refractory 

distribution) as part of light adaptation (M. Juusola et al., 1994; Song et al., 2012). 
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Meanwhile, quantum bumps from different microvilli sum up the photoreceptor's 

macroscopic voltage response to light contrast changes. Experiments and simulations 

indicate that evolution has tuned the microvilli numbers and their refractory photon 

sampling dynamics to visual behaviours, to be particularly effective in maximising 

information from bursty saccadic natural stimuli (Mikko Juusola et al., 2017; Song & 

Juusola, 2014). 

 

Figure 4: Photoreceptor structure. 

 In Drosophila, as in other dipteran photoreceptors, the photoreceptive membrane is organised into 
thousands of tightly packed, tubular microvilli. Each is 1–2 µm long and ~60 nm in diameter, forming 
a 100- µm -long rhabdomere. At the microvilli base, submicrovillar cisternae (SMC) systems are 
presumed to represent smooth endoplasmic reticulum Ca2+

 stores endowed with Ins(1,4,5)P3 

receptors. However, the SMC may have a more important role in phosphoinositide turnover. The 
inset shows an electron micrograph of one rhabdomere (scale bar, 1 µm).Figure from Hardie and 
Raghu, 2001. 

1.5.2 Old theory: a static eye for a poor resolution 

Visual acuity is defined as the minimum angle that the eye can resolve. For a long time, 

because the compound eyes are an extension of the rigid cuticle, it was believed that their 

inner workings would also be static. Their visual acuity would then be limited by the 

photoreceptor spacing, as set by the interommatidial angle, and further affected by the 

photoreceptors' finite integration time and receptive field sizes (Mikko Juusola & French, 

1997; Land, 1997; Srinivasan & Bernard, 1975). Hence, we could calculate an upper limit 

of the compound eye's spatial resolution from the following logical statements. 

Since each ommatidium forms the primary sampling unit, the upper limit of a compound 

eye's spatial resolution is set by the density of its ommatidial array, the eye's 'pixel density' 

(Snyder et al., 1977). Suppose a regular pattern of black and white stripes is presented to 

the fly. According to this theory, and following the Nyquist–Shannon sampling theorem, 
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the maximum spatial frequency that the fly can resolve, s, is achieved when one 

ommatidium points to a black stripe and its adjacent ommatidium points at the next white 

stripe (Figure 5A). Thus, the interommatidial angle  is the critical parameter in 

determining s (Snyder et al., 1977). For compound eyes with a hexagonal layout, as in 

the case of most flies, the effective interommatidial angle e (Figure 5B) can be 

calculated by the following equation:  

      Δ𝜙𝑒 = cos(30°) Δ𝜙 =
√3

2
Δ𝜙    eq. 1-1 

Thus, the upper limit of the fly eye's visual acuity is given by:  

𝛼 = 2Δ𝜙𝑒 = √3Δ𝜙            eq. 1-2 

 

Figure 5: Interommatidial angle.  

(A) The minimum angle a compound eye can resolve is its interommatidial angle. (B) The effective 

interommatidial angle of the fly eye with hexagonal layout, e, is smaller than its actual 

interommatidial angle . Their geometrical relation is described by equation (1-1). Images are 
redrawn from (Land, 1997) 

 

On the other hand, whether this limit is achieved or not depends on the spatial performance 

of a single photoreceptor (Snyder et al., 1977). Several factors are considered in the 

sophisticated estimation of a photoreceptor's receptive field, which is quantified by its width 

at half-maximum, or acceptance angle  (Warrant & McIntyre, 1993). Firstly, since the 

lens of ommatidium and rhabdomere of the photoreceptor are very small, optical quality is 

strongly affected by the diffraction of light, of which airy pattern is a function of light 

wavelength , lens diameter D, rhabdomere diameter, d, and focal distance, f. For 

theoretical estimation, the blurring functions at the ommatidium lens and rhabdomere tip 
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are broadly Gaussian and, therefore, can be combined to yield a simple approximation of 

 (Snyder et al., 1977):  

Δ𝜌 = √(
𝜆

𝐷
)

2
+ (

𝑑

𝑓
)

2
    eq. 1-3 

      

However, this formula could not be safely applied in many cases, owing to the complication 

of waveguide theory in small-diameter structures. (Stavenga, 2003; van Hateren, 1984) 

found that along the rhabdomere of fly photoreceptors, only a limited number of light 

patterns (modes) could be formed and that this number depends on the incident angle of 

light, leading to a smaller actual  than what equation (1-3) implies.  

Spatial cross-talk is another phenomenon to be considered: a photon escaping the 

rhabdomere first travels in and enters an adjacent rhabdomere (Warrant and McIntyre, 

1991). Such an effect is likely to happen when the cross-talk index of the 

ommatidia/rhabdomere structure is less than three (Wijngaard & Stavenga, 1975). Indeed, 

this was found to be the case in Drosophila (Gonzalez-Bellido et al., 2011). Therefore, the 

static resolution of their neural images could be potentially lower than theoretically 

calculated. 

1.5.3 New theory: A saccadic sampling for a high acuity 

However, a new dynamic theory of visual acuity considers the Drosophila photoreceptors' 

photomechanical microsaccades. According to this theory, the microsaccades could 

improve visual acuity about four times over the static compound eyes' expected optical 

constraint, the interommatidial angle (Mikko Juusola et al., 2017). Optomotor behaviour, 

intracellularly recorded photoreceptor voltage responses and theoretical simulations 

matched the predictions of this theory. The phototransduction reactions (PIP2 cleavage in 

and out of the rhabdomere membrane) directly cause the microsaccades, physically 

moving the photoreceptors whenever activated by photon flux changes (Roger C. Hardie 

& Franze, 2012; Mikko Juusola et al., 2017). The microsaccades' movement directions 

have been since mapped across the whole compound eye (Kemppainen et al., 2022). 

They occur mirror-symmetrically in the left and right eyes and follow the optic flow of a 

forward-flying fly. Simultaneously, the light changes make the photoreceptor contract also 

axially, away and towards the ommatidium lens, narrowing and broadening their receptive 
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fields (Kemppainen et al., 2022). Solid behavioural evidence, lamina 2-photon imaging and 

modelling effectively prove that microsaccades enable hyperacute-3D vision. 

Moreover, a theoretical analysis using machine learning implies that Drosophila's 

hyperacuity is necessary and sufficient to visually distinguish its conspecifics (Schneider 

et al., 2018). Their calculations show that hyperacuity, combined with current convolutional 

neural networks similar to the Drosophila visual system, allows us to accurately re-identify 

other flies. 

Visual acuity has been estimated in different insects using various combinations of 

experimental and theoretical approximations. These studies' general trends indicate that 

compound eye architecture has evolved to process visual information according to the 

species' ecological demands (Gonzalez-Bellido et al., 2011; Land, 1997). 

In Queensland fruit flies (Lawson & Srinivasan, 2020), optomotor behaviour to sinusoidal 

gratings in a flight simulator revealed that they have an acuity of about 1.9° inter-bar 

distance, from which they inferred the acceptance angle. They also inferred the 

interommatidial distance using the aliasing angle (grating wavelength that induces a 

reverse in the optomotor responses). However, those values only match the Drosophila 

eye optics if photoreceptors' microsaccadic receptive field movements are considered.  

Classic studies in Locusta and two species of Diptera showed visual acuities around 0.3°. 

These estimates are 3-to-4-times smaller than the static eye optics' prediction (Burtt & 

Catton, 1954). 

Furthermore, higher-order neurons such as LC18 in the Lobula columnar neurons can 

detect objects smaller than the lens resolution (Klapoetke et al., 2022). However, 

theoretically, this would not necessarily mean that the photoreceptors' resolution is smaller 

than the lens resolution because integrating visual information, if processed layer by layer, 

could potentially improve acuity through some diffraction phenomenon (E. T. Burtt and W. 

T. Catton, 1962). 
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1.6 Modelling neural activity in the fly brain 

Behavioural experiments, calcium imaging or electrophysiology in living organisms' brains 

have enabled researchers to investigate neural activity and synaptic connectivity. To 

understand the findings more thoroughly, it is usually relevant to make a model based on 

the data and predict future data. The resulting models not only give a better insight of 

visualised behaviours or dynamics but are sometimes a way to answer questions when 

the modelled behaviour was able to solve them without us understanding why. 

As an example of computer vision, many models for motion predictions have been made 

using information about the Drosophila visual pathway. Its characteristic ON/OFF pathway 

structure was used in some models such as the Hassenstein-Reichardt Correlator (HRC) 

(Clark et al., 2011) or non-linear enhancers/suppressors microcircuits (Ramos-

Traslosheros et al., 2018), which can predict very well the behaviour of neurons in the 

medulla layer. However, HRC models for motion prediction struggle to predict T4-T5 

responses to static orientations (Fisher et al., 2015). A possible reason for this is that such 

simple models lack some properties of the fly vision, such as microsaccadic eye movement. 

One of the most recent models (Fu & Yue, 2020) successfully decodes local motion 

direction in front of a cluttered background. Moreover, the model reproduces the 

responses of all the layers, from the photoreceptors to the lobula plate layer. More 

specifically, they use, at the lamina layer, a variant of the 'difference of gaussian' spatial 

mechanism to enhance the motion edge selectivity and maximise the transmission of 

useful information from visually cluttered environments.  

Another example in Artificial Intelligence (AI): electrophysiology in the cat cortical neurons 

has shown that some neurons respond to bar stimuli moving in a specific direction (Hubel 

& Wiesel, 1962). This experiment is one of the preliminary findings for hierarchical 

convolutional neural networks, widely used in artificial neural networks (ANN)  (Y. Lecun 

et al., 2015). 

This new era of AI has been used more and more in neuroscience, which inspired it. An 

ANN is a function approximation algorithm made of artificial neurons connected (or not) to 

each other as an oriented graph with weighted connections. The input of the model is 

carried by some neurons of the ANN. Each neuron sends its output to the neurons that 

are connected to them. The input of the intermediate neurons (those not connected to the 

input directly) is the weighted sum of all connected 'presynaptic' neurons passed through 
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a non-linear function (see Figure 6). To approximate a function, an ANN optimises some 

of its parameters (usually the weighted connections) using optimisation algorithms (usually 

derived from the gradient descent technique) (Amari, 1993). Thus, ANNs are made of units 

that individually have a simple rule (aggregating values and sending an output) but 

collectively can solve complex problems, i.e. converge to a highly intractable function (e.g. 

image recognition, speech generation). The similarity they have with the animal brain 

motivated researchers to infer biological properties of the brain by measuring the resulting 

parameters of trained ANNs, usually after biologically constraining them. In a sense, 

modelling the brain using ANNs is a way to focus attention on the combinatorial and 

distributed function of the brain rather than on a single neuron as an independent unit. 

 

Figure 6: A neural network's unit. 
In an artificial neural network, a neuron (centre) integrates the weighted outputs of the connected 
neurons (left), which, added to a bias, are passed through a non-linear function (activation function) 
to create the output. 

 

These biological constraints enable shaping the ANN structure before training it. To do so, 

researchers use the connectome of the Drosophila brain, which, as discussed above, is 

well known. Many studies have described the wiring diagrams of different Drosophila brain 

centres, which show important properties that a biologically constrained ANN should have 

(Scheffer, 2020). 



18 

 

An anatomically-constrained ANN, trained to detect motion, learns some functional 

properties of the neurons in the Drosophila visual pathway, such as the ON and OFF 

pathways (Mano et al., 2021). Furthermore, biologically-constrained ANN training also 

revealed that the Drosophila visual pathway is robust to noise by artificially adding it to 

training visual scenes 

As another example, training ANNs to reproduce the diversity of colour-coding in the bee 

ganglia showed that their presynaptic connections are likely to be randomly wired 

(MaBouDi et al., 2020).  

Some models based on the lamina wiring diagrams in Drosophila (Rivera-Alba et al., 2011) 

have been proposed for natural scene object tracking. Studies testing the connectome-

constrained convolutional networks against randomly-initialised convolutional networks 

showed that well-known neuronal output properties of medulla layers could not be 

discovered automatically if the network were initialised randomly. They concluded that the 

function of a biological neural network could be understood from its structure alone 

(Tschopp et al., 2018). 

When the connectome is poorly known, or the parameters needed to describe it are not 

trivial, biologically-constraining ANNs become more difficult. Some researchers proposed 

a technique using Generative Adversarial Networks (GAN) to fit circuit models such as 

ANNs to recorded neural responses. GANs generate a circuit from latent variables (such 

as individual synaptic connections or single-cell biophysical properties) that are inferred 

by the adversarial training process (Creswell et al., 2018) instead of being given highly 

computationally expensive calculations (Arakaki et al., 2019). 

Besides, training ANNs to solve a problem can be seen as a way to find the best 

combination of weights (parameters) to outputs; i.e., the best possible solution given the 

constraints (hyper-parameters). For example, Tseng et al., 2021 found the best way to 

produce a high-quality image using ultra-thin lenses. We follow this idea in Chapter 4, as 

we aimed to reproduce hyperacuity at the Lamina level, given the complex biological 

constraints of the fly visual pathway. 

Sometimes, it is impossible to do experiments in animals' brains at the level of single 

neurons. Such is the case for many cognitively more complex animals than Drosophila, to 

have neural activity modelled from limited electrophysiological or imaging recordings. 

Indeed, electrophysiology or calcium imaging on bigger brains enables monitoring of only 
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a small proportion of their neurons. These approaches give too little information if we 

believe the brain processes information as a vast interdependent and coordinated group 

of neurons, not as a stack of independent neurons. Moreover, because of technical and 

ethical reasons, most big animals are harder to modify genetically, needed for monitoring 

the brain activity at the level of single neurons. In these cases, people have used more 

macroscopical data to model the brain. For example, fMRI gives less accurate (Logothetis, 

2008) but broader information about brain activity, yet it has enabled us to understand 

more sleep phases or emotions in the human brain (Greene et al., 2001; Redcay et al., 

2007). Furthermore, animal behaviour data can indirectly enable brain modelling: 

MaBouDi, Marshall and Barron, 2020 showed that bees' cognitive strategy suggests 

particular central brain structures. 

 

1.7 A virtual reality environment for the fly to enhance the 

responses 

The animal preparation and its brain has to be healthy for one to record consistent neural 

activity. But it is also thought that the impression of being in a natural environment may 

enhance neural activity. For example, researchers found that the behavioural state of 

Drosophila modulates how sensory neurons (such as photoreceptors) and motor neurons 

are coupled (Ache et al., 2019), which implies that fly vision might be affected by the act 

of walking on a trackball.  

More specifically, 2-photon calcium imaging showed that lobula plate tangential neurons 

respond with higher intensity when the fly is walking and that their peak intensity correlated 

to the walking speed (Chiappe et al., 2010). Additionally, whole-cell patch clamp 

electrophysiology and extracellular field potential recordings revealed that these neurons 

respond with a higher gain in the visual motion processing when the Drosophila is flying 

(Maimon et al., 2010; Tang & Juusola, 2010). The patch-clamp recordings further revealed 

some neuron types gated by flight behaviour through the octopamine neurotransmitter. 

Fujiwara and colleagues also showed that, during locomotion, global motion processing 

neurons in the fly brain responded even without visual stimuli. The same dynamic was 

seen in blind mutant flies (Fujiwara et al., 2017).  

Additionally, Paulk and colleagues showed that a closed-loop system, which is more 

similar to a real (i.e., interactive) environment than an open-loop, also enhanced the 
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coherence between different brain regions in a fruit fly (Paulk et al., 2015). More precisely, 

they used electrophysiology on the optic lobe and central brain neurons in closed- and 

open-loop visual environments and compared the coherence for each result. It has also 

been shown (Taylor et al., 2015) that the responses of insects in a closed-loop 

environment were significantly different according to the realism of the stimulus feedback 

(fast feedback and accurate sensor). They compared two methods: one with a computer 

mouse sensor and the other with a computer vision algorithm (called 'FicTrac'). They also 

measured the general difference in the behaviour between both cases. Hence, several 

researchers have developed techniques to display good virtual reality stimulation for insect 

experiments (Lott et al., 2007; Takalo et al., 2012). 

However, some findings suggest that behaviour-dependent neural activity is not always 

positively correlated. Indeed. in some parts of the fly brain, visual responses have been 

shown to diminish during flight (Seelig & Jayaraman, 2013). 

The behavioural state has also been found to alter the baseline activity levels and the 

temporal tuning of neurons in the medulla layers (downstream to lamina) (Strother et al., 

2018). These results show that fly visual acuity could depend on whether the fly is active 

or not. 
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Chapter 2: Hyperacuity in the medulla input 

layer 

2.1 Introduction 

Having discovered that Drosophila sees the world in super-resolution (Juusola et al., 2017), 

one could wonder if and how this super-resolution is neurally encoded to maintain an 

accurate perception of the visual world. Furthermore, it was recently found that the fly's 

photomechanical photoreceptor microsaccades make their receptive fields trace the 

direction of a forward-flying fly optic flow. Therefore, I ought to test directly whether such 

optic-flow-tuned microsaccadic sampling improves the acuity of moving stimuli 

directionally, as suggested experimentally (Kemppainen et al., 2022) and predicted 

theoretically (Juusola et al., 2017). To do so, I recorded neural responses of specific large 

monopolar cells (LMC), L2 interneurons, to a novel stimulus consisting of panoramic black-

and-white dynamic-wavelength gratings, in which velocity and direction were changed 

systematically. These recordings were primarily done in so-called ultraviolet (UV) flies, 

using a bespoke two-photon Ca2+-imaging system while presenting UV stimuli in an 

ultrafine spatiotemporal resolution to a fly walking on a trackball.  

I first show that Drosophila's hyperacute photoreceptor information is transferred to this 

visual brain layer. Additionally, I show that the L2 neuron terminals' visual acuity is 

orientation-specific. This orientation strongly correlates with the corresponding presynaptic 

photoreceptor micro-saccades orientations, showing the importance of morpho-dynamic 

sampling for acutely encoding the visual field. Finally, I found that the L2 neurons move 

similarly to the photoreceptors; these movements correlate with their activity. 

 

2.2 Materials and methods 

2.2.1 Two-photon system 

I used a 2-photon resonance-scanning microscope (TrimScope, La Vision Biotech, 

Germany) with 40XW objective of numerical-aperture=1 (Zeiss C Achroplan 83 NIR 

40x/0.8 w, ∞/0.17, Germany). The 2-photon excitation source was a mode-locked 

Ti:Sapphire Mai Tai SP Laser tuned to 920 nm. Fluorescence was collected by a 

photomultiplier (Hamamatsu H7422-40-LV, Japan) after bandpass filtering by a 525/50 nm 

emission filter. Images (approximately 150 x 1024 pixels) were acquired with 
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ImSpectorPro software (La Vision Biotech, Germany), typically 20-25 frames/s. Besides, 

when imaging smaller areas (e.g. 32 x 512 pixels), the used sampling rates were 

considerably higher (~50-200 frames/s). The laser intensity was kept below 240 mW 

(measured at the back aperture) to avoid heat-induced artefacts. 

2.2.2 Fly genetics 

The UV-flies were generated using rhodopsin ninaE8, also known as Rh1, with rescued 

UV-rhodopsin (Rh3) insertion. The ninaE8 (ninaEP334) mutation reduces the expression 

of the rhodopsin ninaE to 0.0004% of wild-type levels (Wardill et al., 2012; Washburn & 

O’Tousa, 1989). This particular mutation was chosen as some level of expression of ninaE 

is required for normal rhabdomere development (Kumar & Ready, 1995). The UV-fly 

genotype used in 2-photon Ca2+-imaging was UAS-GCaMP6f/CyO; L2-Gal4, UV/TM6B 

and UAS-GCaMP6; L2-Gal4, UV/TM6B. Origins of its different parts: R1-R6 photoreceptor 

UV-sensitivity resulted from P(Rh1:Rh3)[4303],ninaE[8]/TM6B, see supplementary 

material (Wardill et al., 2012). L2-Gal4 was 21D-Gal4, a gift from Martin Heisenberg 

(Washburn & O’Tousa, 1989). 21-Gal4 insertion was recombined to chromosome III 

together with the UV genetic set P(Rh1:Rh3)[4303],ninaE[8], using my UV-line stock and 

the 21D-Gal4 insertion line. The resulting lines were crossed to UAS-CD8-GFP and tested 

for GFP presence in L2 neurons using fluorescence microscopy. The presence of the UV 

genetic set was verified in positive lines by ERG testing for UV sensitivity (Wardill et al., 

2012). UAS-GCaMP6f was BS46747 P[20xUAS-IVS-GCaMP6f] at P40 2L. Their eyes' 

structural integrity and photoreceptor microsaccade dynamics were within the normal 

range. 

2.2.3 Drosophila preparation 

2-to-4-day-old cold-anaesthetised flies (usually males) were prepared for the experiments 

much as described in (Chiappe & Jayaraman, 2012). A fly was waxed to a 0.001-inch-thick 

folded stainless steel shim holder, allowing access to the head's back through a 0.8 mm 

opening (Figure 7B). The head was tilted forward approximately 60°, exposing its back at 

the opening, and left the retina below the shim (Figure 7A). I cut a small hole at the back 

of the head cuticle with a fine tungsten needle and removed connective tissue, including 

the g trachea, to obtain optical access to the left and/or right medulla L2 axon terminals 

(Figure 7A). The fly was positioned over an air-suspended 6.13 mm  polypropylene ball 

within the 2-photon imaging system, facing panoramic visual stimulation screens to enable 

motor activity recording (Figure 7C). Closed-loop temperature-controlled (25 oC) 

oxygenated fly ringer solution (containing mM: 120 NaCl, 5 KCl, 10 TES, 1.5 CaCl2, 4 
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MgCl2, and 30 sucrose) was perfused over the back of the head, keeping the preparation 

alive/healthy for hours-long experiments. 

 

Figure 7: in vivo Drosophila preparation for 2-photon Ca2+-imaging.  
(A) Using a bespoke stereomicroscope/preparation micromanipulation system, I fixed a fly in the 
predetermined position and orientation to a 0.001-inch-thick folded stainless steel shim (of a disk-
shaped fly-holder) to access the back of the head through a 0.8 mm gap, comparable to (Chiappe 
et al., 2010). A small opening was cut at the head's back cuticle through an oxygenated fly ringer 
bath that covered the back of the head only, giving a visual view of the left or right medulla L2-
terminals. (B) The fly's positioning inside the portable disk-shaped fly-holder. The fly-holder was 
transported to the 2-photon imaging system and rotationally adjusted by hand to centre the fly facing 
the panoramic visual stimulation (Figure 8D). Notice the semi-transparent beeswax droplet 
underneath the fly's eyes, immobilising its proboscis. (C) A tested fly could walk on a trackball during 
the 2-photon imaging of its L2-terminals' neural responses (Ca2+ fluorescence signals). In the 
experiments, the fly faced the visual stimulation screen inside a black-fabric chamber, which 
blocked outside light leakage and minimised scatter and internal reflections.   

2.2.4  Visual stimulation 

Figure 8 shows the method of how ultrafine, 7.5-11.25-times finer than the Drosophila 

eyes' ~4.5° interommatidial angle, video-stimulation was presented to Drosophila during 

their medulla L2-terminal's 2-photon Ca2+-imaging. I used a digital light projector 

(EKB DLP® LightCrafter™ Fiber-E4500MKII™ development module, EKB Technologies, 

Israel), equipped with a powerful 380 nm UV-LED, to provide 360 Hz UV-video stimulation 

with native 912 x 1140 pixel resolution to flies (Figure 8A). The UV-video images were 

projected on a back-projection (diffuser) screen. The whole system was inside a black, 

fluffy-fabric enclosed cage (Figure 8B) to block outside light and minimise internal 

reflections and scattering. Three short focal length achromatic doublet camera lenses (ref: 

MVL6WA, Thorlabs, USA) were then used to focus the projected images onto one end of 

three 7 x 7 mm coherent bundles of optical fibres (IB ASSY QA x 24", Schott, USA), with 

~108 x 108 pixels (as the counted average) projecting onto each bundle (Figure 8C). The 

images were transmitted and magnified on the other end of the bundles by three optical 

tapers (Schott, USA). The tapers formed three Parafilm-capped panoramic fibre-optic 

screens (virtual reality stimulation screens) surrounding a tested fly frontally (Figure 8D). 
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Parafilm diffused light and damped reflections related to the numerical aperture of the 

taper/bundle fibres. The three fibre-optic screens accurately reproduced the video images 

into three angled vertical sections, positioned 38 mm from the fly eyes, filling large central 

parts of their left and right visual fields (total area: 135° x 45°). Therefore, with 108 x 324 

pixels spread across the three screens, the angular resolution was ~0.6° at the point 

closest to the eyes and ~0.4° near the corners. 

 

Figure 8: The bespoke high-resolution UV-video-display system (attached to the 2-photon 
imaging system) used for stimulating L2 neurons visually.  
(A) The optical path, from the high-speed UV-projector to three high-resolution fibre-optic screens 
(taper ends), for presenting Drosophila with UV-video stimuli. (B) UV-stimuli were projected on a 
UV-preserving back-projection screen. Three camera lenses sampled the focused back-projected 
video images on three high-resolution ordered fiberscope bundles. This optical path was kept inside 
a light-proof cage (covered by a thick, fluffy black fabric) to minimise light scatter and internal 
reflections. (C) One fiberscope bundle end, with the highlighted fibre count for one of its rows. (D) 
The panoramic visual stimulation screen assembly was made of three high-resolution optical tapers 
(fibre-optic-screens), in which angles and position could be precisely and freely adjusted and fixed 
around the tested fly (by the instrument design). (E) The video-display system's spectral output as 
directly measured at the visual stimulation screen facing the tested Drosophila. The visual 
stimulation was dominated by UV light, peaking at 388 nm. 

Visual stimuli were created using custom-written Matlab code, partly using the 

Psychophysics toolbox, in which the renderer updated images at 360 Hz, with a nominal 

8-bits of DLP intensity at each pixel, and accurately projected them onto the three taper-
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screens. Additional UV-band-pass filters (Semrock, USA) and adjustable apertures, 

interposed between the back-projection screen and the bundles, allowed me to cut-off long 

(non-UV) tail wavelengths of the images and adjust their overall intensities. The spectrum 

used in experiments is shown in (Figure 8E). By integrating it, one can estimate that R1-

R6 photoreceptors that faced the optic taper screens were presented with 105-106 UV-

photons/s, causing moderate-to-high light adaptation. Notice that because of the refractory 

photon sampling and intracellular pupil, which cause a dramatic drop in quantum efficiency 

(Hardcastle & Krapp, 2016; Juusola et al., 2017; Song & Juusola, 2014), most photons are 

lost during light adaptation. Consequently, an R1-R6 photoreceptor's effective photon 

absorption rate is actively maintained at ~1.5-8.0 x 105 to maximise its information transfer 

rate for high-contrast stimuli (Juusola et al., 2017). 

2.2.5 Measuring L2-terminals' activity 

The images about medulla L2-terminal fluorescence responses were analysed by custom-

written python-scripts. The fluorescence intensity variations were quantified after 

background subtraction. Ca2+-signal variations were obtained by subtracting the basal 

fluorescence, F0, calculated as the mean intensity before the visual stimulation, from the 

observed intensity, F, (∆𝐹 = 𝐹 − 𝐹0) and giving this difference as the relative fluorescence 

change (∆𝐹/𝐹0). 

2.2.6 Measuring L2-terminals' resolvability 

L2 neurons' medulla terminals respond strongly to light-OFF stimuli (Courgeon & Desplan, 

2019; Freifeld et al., 2013). Therefore, a bright moving bar crossing an L2 neuron's 

receptive field (RF) evokes a transient response. Here, I used two types of moving stimuli 

to measure L2 speed and orientation sensitivity. 

One stimulus type contained two parallel bars crossing an L2 neuron's RF. These bars 

induced a two-peaked change in the observed L2-terminal calcium fluorescence as a 

response. I can measure how well this intraneural calcium response resolved the two 

moving stimuli using the Rayleigh criterion: 

 

𝑅 =
𝑃𝑚𝑖𝑛−𝑇

𝑃𝑚𝑎𝑥
       eq. 2-1 
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, where 𝑇, 𝑃𝑚𝑖𝑛and 𝑃𝑚𝑎𝑥 are the trough, smallest peak and highest peak, respectively. 

 

We further measured single L2 neurons' resolvability to dynamically narrowing bar gratings 

(of continuously decreasing wavelength; Figure 9A) using a novel four-parameter bar-

grating stimulus, as constructed in Matlab. The stimulus parameters were the speed, 

motion direction, initial wavelength and final wavelength (𝑠, 𝜃, 𝜆0 and 𝜆1, respectively). 

The inter-bar wavelength, which entered the tested Drosophila's field of view, followed the 

geometric sequence update: 

 

 𝜆(𝑡 + 𝑑𝑡)  = (
 𝜆1

 𝜆0
)

1

𝐷𝜆(𝑡)       eq. 2-2 

 

, where 𝐷 was the duration of the stimulus (Figure 9BC). This way, the wavelength was 

divided by a constant factor, frame after frame, enabling an accurate estimate of the 

wavelength/time point when the L2 neuron could no longer resolve the adjacent moving 

bars. A more intuitive formula representing the wavelength over time is the following: 

𝜆(𝑡) = 𝜆0 (
𝜆1

𝜆0
)

𝑡

𝐷
      eq. 2-3 

Importantly, this spatiotemporal stimulation enabled me to simultaneously monitor how the 

neighbouring L2-terminals encoded the same directional motion stimulation in different 

angular resolutions. 

Like the moving two-bar stimulation, the dynamically narrowing bar grating stimulation 

induced a Ca2+-fluorescence signal, showing a succession of peaks. To each pair of peaks, 

I can attribute a resolvability. Since this stimulus induces a response with a dynamic 

baseline (e.g., Figure 10A or Figure 14C), I applied the Rayleigh criterion to the relative 

peak heights: 

 

𝑅 =
𝑃𝑚𝑖𝑛−𝑇

𝑃𝑚𝑎𝑥−𝑇
               eq. 2-4 
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Figure 9: Description of the 4-parameters narrowing grating.  
Description of the 4-parameters narrowing grating. (A) Grating design. The wavelength narrows 
from λ0 to λ1. Red rectangle: Screen (what is seen by the fly). Red arrow: Grating motion direction, 
speed is constant. (B) Wavelengths at each dark bar. (C) Wavelength over time. 

  

2.2.7 Smallest resolvable angle (SRA) calculation 

Given the resolvability of individual L2-terminals for every inter-bar distance, I want to 

compute the SRA. To make a consistent estimation of it and free of human observer bias, 

I built a six hyper-parameter algorithm in Python that takes the Ca2+-fluorescence signal 

as input and returns the SRA (Figure 10). Two of the parameters enable accurate peak 

detection, considering the noise in the data (calculated either on the last 5 s of the stimulus 

during which the stimulus is comparable to a grey frame (Figure 10A); or on the first five 

seconds if the stimulus starts with 5 s of a grey frame (Figure 10B)). One parameter is the 

noise threshold: 𝑅 = 0, if 𝑃𝑚𝑖𝑛 − 𝑇 is smaller than the threshold. The other parameter is 

the inter-peak noise threshold: 𝑅 = 0, if the inter-peak noise is higher than the threshold. 

Two separate parameters were used to detect false negatives. The last pair of peaks 

where 𝑅 ≠ 0 is taken as the SRA. In separate tests, the algorithm generated highly similar 

resolvability estimates to those provided by trained experimentalists. 
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Figure 10: Two examples of smallest resolvable angle automatisation. 
 (A) Noise calculated on the last 5 s of stimulation (the angle is small enough, so I can assume that 
the stimulus is comparable to a grey frame). Close-up window: R = 0 because a peak is smaller 
than the noise level. (B) Noise calculated in the first five seconds, during which a grey frame was 
displayed to the fly. Close-up window: R = 0 because of a significant 'inter-peak' (located between 
two stimulus-locked peaked). (A) and (B) Vertical grey bars: times of a bright bar leaving the L2-
terminal's RF. Red traces: noise margin (displayed only for the expert to check if the noise 
calculation is consistent or not). Vertical green bar: time of the smallest resolvable angle. 

For each recording, I could simultaneously monitor several (between 1 and 12) L2-terminal 

responses (Figure 11B). The stimuli were presented multiple times to the fly by varying 

the speed (usually 𝑠 = 20, 30, 60°/s) and the motion direction (usually every 15° or 30°, 

covering 360°). Hence, this gave me an SRA polar heat map (acuity map) for each 

recorded neuron in the fly preparation (Figure 11A).  

 

 

2.2.8 L2 preferred orientations' calculation 

These SRA polar heat maps almost always suggested the best-resolved orientation (the 

orientation of highest acuity; or the stimulus orientation for which SRA is smallest). To 

calculate it accurately and quantify the accuracy, I fitted the SRA (modulo 180°) using a 

180° fixed-wavelength sine-function with the Levenberg-Marquardt iteration algorithm (see 

examples in Figure 12A). The reason for this choice is that I expect periodic SRA values 

with minima at an angle 𝛼 and 𝛼 + 180°, and a maximum at 𝛼 + 90° and 𝛼 − 90°. The 

phase (subtracted by 45°) of the fitting gives me the "preferred" highest-acuity orientation. 

  

   

     

 mallest resolvable angle automati ation
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I used the Levenberg-Marquardt error values as error margins (Figure 20B, D). I also 

evaluated these fits with the R2 value (Figure 20A, C). Given that Gaussian noise 

sinusoidal fitting has an R2 distribution with the mean = 5.8% and rarely reaches 15%, I 

considered that a clear preferred orientation for L2 SRA fitting was when 𝑅 > 25% 

(~𝐸𝑟𝑟 < 12°).  
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Figure 11: Images of L2 axons terminals with their acuity heat maps.  
(A) Acuity heatmap calculated from 16 different stimulus directions and 2 different stimulus speeds. 
(B) 16 recordings of different flies' ROIs. Labels: day of recording.  
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Figure 12: Determining L2-terminal's highest-acuity orientation by sinusoidal fitting 
(examples from four healthy flies). 
 (A) The obtained SRA is plotted against the stimulus orientation for each recorded L2-terminal. 
Red curves indicate 180°-wavelength sinusoidal fitting, shown for each L2-terminal (rows) of the 
four flies (columns), one column per fly. Blue arrows are the "preferred" highest-acuity orientations; 
chosen as the sinusoidal fits' minima. Heat maps (SRA acuity maps) are shown for the #1 fly every 
L2-terminal. (B) The minima of each fit for the consecutive (neighbouring) L2-terminal, plotted per 
fly. Error bars give the Levenberg-Marquardt error margin for each fit. 

 

2.2.9 L2 receptive fields' locations calculation 

We calculated each recorded L2 neuron's receptive field location using two stimuli: a single 

light bar moving back and forth horizontally and another vertically. I considered that the 
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peak responses of each terminal were induced by the bar leaving its receptive field 

(characteristic of an OFF-response). This approach enabled me to reconstruct a good 

approximation of the receptive field boundaries. 

Hence, for each fly, I have a map of the L2 terminals' most sensitive orientation positioned 

at the corresponding receptive field location. 

2.2.10 Motion cancelation technique 

Both photomechanical photoreceptor microsaccades and spontaneous intraocular muscle 

contractions can move the fly brain during 2-photon imaging. I used a computer vision and 

machine learning library (open-cv) to write a stabilisation algorithm in Python. Two main 

functions were needed: one (goodFeaturesToTrack) finds the most prominent corners in 

the image or the specified image region, as described in a proposed algorithm that uses 

Newton-Raphson style search methods (Shi & Tomasi, 1994). The other 

(calcOpticalFlowPyrLK) calculates an optical flow for a sparse feature set using the 

iterative Lucas-Kanade method with pyramids.  
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2.3 Results 

I performed 2-photon Ca2+-imaging from L2 monopolar cells in UV or transgenic flies, which 

had wild-type photoreceptor pigments (Figure 14A-right). The fly's walking behaviour was 

also tracked on an air-floating ball. The visual stimuli were shown on three screens, 

spanning about 50°x150° as seen by the walking fly (Figure 14A-left). Simultaneously, 

GCaMP6f was expressed selectively in L2 neurons, and activity changes (fluorescence 

signals) to visual motion stimuli were imaged at L2 medulla terminals using a two-photon 

laser. 

I used UV flies because their R1–R6 photoreceptors express only Rh3 (UV rhodopsin) and 

therefore see UV but not green (Wardill et al., 2012), while their L2 neurons express the 

green-fluorescent Ca2+-reporter GCaMP6f. Critically, UV flies show normal 

photomechanical microsaccades (Figure 13). And as their L2 green-fluorescence Ca2+ 

responses cannot activate the UV-sensitive R1–R6s through orthodromic green-light 

transmission, UV flies enable naturalistic low-noise conditions for recording high-precision 

neural signals (Figure 14C and D). Even so, the wild-type eye L2-GCaMP6f controls' Ca2+ 

responses showed consistently similar general dynamics; thus, both results were pooled 

(Figure 14E). 

 

Figure 13: UV flies show standard photoreceptor microsaccade directions across their eyes.  
The left (red arrows) and right eye (blue) photoreceptor microsaccade movement trajectories of 
wild-type (left) and UV-flies (right) flies match. The trajectories were calculated through image 
cross-correlation from light-triggered high-speed deep pseudopupil motion video recording. 
Average directions are shown; data were recorded from five tethered flies. 
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2.3.1 L2 neurons' highest acuity can be measured with high accuracy 

L2 neurons receive inputs from 7 photoreceptors (R1-R6 synaptically + R7/R8 via cap-

junctions; Wardill et al., 2012) branching in the lamina and transmitting their output in the 

medulla (Figure 14B). Initiating the OFF pathway, they depolarise when their receptive 

fields (RF) luminance decreases (Joesch et al., 2010b). Hence, I can measure their visual 

acuity by making two light bars cross their RF (Figure 14C-top). The resolvability of the 

two peaks of fluorescence induced tells me what the neurons' acuity is for a specific 

stimulus. To be more efficient and accurate, I built a wavelength-dynamic grating that 

narrows in time (Figure 14C-bottom) as a stimulus. This stimulus induced wavelength-

dynamic oscillations in the neuron's response. I could calculate the resolvability for each 

pair of peaks (Figure 14D). The smallest resolvable inter-bar distance then becomes the 

smallest resolved angle (SRA). Given that one SRA corresponded to a single orientation 

and speed of stimulus, I repeated this experiment over a range of orientations and speeds. 

This approach gave me a sensitivity map, for which one example is shown in Figure 14F. 

 

Figure 14: L2 neurons show hyperacuity and have a directional sensitivity 
 (A) Two-photon imaging setup (the holder is not presented here). The fly head was fixed within a 
holder. (B) L2 neuron (green and red) anatomy. Each neuron is connected to 7 photoreceptors (R1-
R6 synaptically and R7/R8 via gap-junctions; yellow) from 7 different ommatidia that roughly see 
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the same point in space. I visualise the L2 axon terminal (bottom-right). (C) Responses to (top) 2 
moving bars or (bottom) dynamic-wavelength moving gratings. (C-D) Red arrow: highest inter-bar 
distance with null resolvability (or the peaks and trough are smaller than the average noise) gives 
the finest resolved inter-bar distance. (D) Resolvability of each pair of peaks for the dynamic grating 
response. (E) Each dot represents the minima of the recorded neurons' finest resolved inter-bar-
distances over all the responses to all stimuli directions at one speed for one fly. (F) A neuron's 
sensitivity map shows all the finest resolved inter-bar distances for every stimulus direction and 
speed. Black bar: best sensitivity(preferred) orientation.  

2.3.2 L2 neurons are hyperacute 

I managed to record 101 neurons over 17 flies (Figure 15A). Most of the SRA measured 

are in the hyperacuity range (lower than the inter-ommatidial distance) (Figure 14EF, 

Figure 15AC). I found that L2 neurons robustly respond to hyperacute 1 to 4° moving 

gratings. Thus, by encoding spatial information in time, akin to photoreceptors Juusola et 

al., 2017), L2s can transmit finer image details than the compound eye's optical limit, 4.5° 

interommatidial angle (Gonzalez-Bellido et al., 2011), improving vision. 

 

Figure 15: L2-terminal Ca2+-fluorescence responses show hyperacute speed and orientation 
sensitivity to moving bar-grating stimulation. 
 (A) The figure presents the collective motion direction sensitivity maps (i.e. acuity maps) of 20 flies, 
tested with the four-parameter bar-grating stimulation protocol. Each fly displayed at least one and 
at most twelve actively responding neighbouring L2 medulla terminals. Each fly's maps are shown 
in their physical order, following their terminals' medulla positions, plotted on the same grey 
background. The L2-terminals closest to the edge of the imaging window, bordering the dissected 
tissue area, typically showed the least sensitive responses (from cyan to blue). Whilst the L2-
terminals in the centre showed the highest sensitivity and hyperacute stimulus resolvability (from 
light-green to dark-red), with many neurons encoding less than 1.5o apart bars moving along a 
specific direction(s). (B) Each point represents the median value of a single L2-terminal's smallest 
resolved angle (SRA) map vs its relative position in the recording window. The values are 
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normalised within each fly. The red line shows a quadratic fitting of the points, with 95% confidence 
and prediction intervals (red and pink areas, respectively). Two possible reasons for a better acuity 
in the centre than on the edges: the peripheral terminals might be closer to the dissected tissue, 
implying health issues; the recording plane and the neural plane are not parallel, and the local 
fluorescence signal-to-noise ratio (SNR) along the axon is not constant: implying that only the 
central axons can be sectioned at the highest SNR region. (C) Distribution of all the L2-terminal' 
minimum SRA (highest acuity). The mean (dot) and median (line) are shown. Box range: 25-75%. 
The pink background indicates the hyperacute stimulus motion resolvability range (<4.5o). 

 

 

2.3.3 L2 neurons show orientation-specific hyperacuity 

Surprisingly, these 2nd-3rd layer visual interneurons do not show the same acuity for all 

stimulus directions. We can see that some directions are resolved better as the acuity 

heatmap are not symmetric by rotation. In Figure 14F, for example, vertical stimuli induced 

much smaller SRAs than horizontal ones. However, for most of the recorded terminals, we 

can see symmetry with respect to the centre of the corresponding acuity heatmap. This 

result shows that, for each L2 neuron, there is an orientation for which the neuron responds 

with higher acuity. I will call those orientations the L2 preferred orientations. I assessed 

the strength of this orientation specificity using the residuals of a sinusoidal-fitting algorithm 

(See material and methods (Figure 12) and discussion (Figure 20)). 

 

2.3.4 L2 neurons' hyperacute motion sensitivity and microsaccade directions show 

a similar shift 

I used data from the best-dissected (or healthiest) fly preparations in Figure 14, which 

displayed at least eight consecutive neurons with consistent activity (See discussion). I 

found that the preferred motion orientations shifted systematically about 5° from neighbour 

to neighbour (Figure 16, B to D), similar to the gradual shifting of the photoreceptor motion 

directions (Figure 16C). This assessment excluded the most peripherally recorded 

terminals. Such outliers typically showed inconsistent responses (see discussion for more 

details). Collectively, these results indicate that directional motion information from 

microsaccadic photoreceptor sampling is retained at the medulla input layer.   
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Figure 16: In healthy fly preparations, L2-terminals' motion orientations with the highest 
acuity shift similarly to their photoreceptors' microsaccade directions. 
(A) Two-photon GCaMP6f-fluorescence images of L2 axon terminals from four Drosophila (#1-4) 
that provided long-lasting stable recording conditions. Next to each terminal is its corresponding 
acuity map, with a black line indicating its "preferred" highest-acuity motion orientation. (B) L2-
terminals' preferred motion orientations shift gradually and systematically across their 
retinotopically organised medulla layer. Only a few peripheral terminals (red), closest to the 
surgically prepared recording window's edge, showed inconsistent, possibly dissection-affected 
responses. The error bars give the Levenberg-Marquardt error range for each fitted highest-acuity 
orientation; see Figure 20 below). (C) The locations of the L2 receptive fields (RF; shown for the 
fly's right eye) with their respective highest-acuity motion orientations (black lines) aligned broadly 
with the corresponding photoreceptor microsaccades' biphasic motion directions (blue arrows; cf. 
Figure 17 below). (D) L2-terminals' highest-acuity motion orientations aligned regarding their RF 
locations. 
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2.3.5 L2 neurons' hyperacute orientation sensitivity is collinear with the connected 

photoreceptors' microsaccade directions 

I mapped those preferred axes across the whole eye. To know where the receptive field 

of an L2 neuron is, I make a single light bar across the visual field. I consider that the 

maximum of the neural response corresponds to the bar leaving the neuron's receptive 

field. By making the bar stimulus cross back and forth horizontally and vertically gave me 

a good approximation of the neuron's receptive field boundaries. Their preferred 

orientations mostly aligned with the photoreceptors' micro-saccades directions that share 

the same RF locations (Figure 17B and C). This finding indicates angular conservation of 

synaptic information from R1–R6 to L2, consistent with preserving the downstream optic 

flow processing (Krapp & Hengstenberg, 1996). Future experiments need to test whether 

this is also true for L1 (ON-channel) and L3 (Fisher et al., 2015; Joesch et al., 2010b; Silies 

et al., 2013) LMCs, as asymmetric microanatomical adaptations (Meinertzhagen & O'Neil, 

1991; Rivera-Alba et al., 2011; Tuthill et al., 2013) may further influence local motion 

computations. These results demonstrated that L2s collectively convey a high-resolution 

neural representation of the moving world, maximising visual information. 
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Figure 17: L2's preferred orientations align with the photoreceptor microsaccades. 
(A) Sensitivities for 8 neighbouring neurons of one fly plotted with the photoreceptors' receptive 
fields' saccadic movements. Red/Blue: Left/Right eye, respectively. (B) Comparison between L2 
preferred orientation and their connected photoreceptors' microsaccade directions. Left: distribution 
of neurons according to their alignment with the photoreceptor motion. Right: Location of each L2's 
receptive field with their preferred orientations and the photoreceptors' motion directions. (C) View 
(from the inside) of the whole eyes' photoreceptors' microsaccades. Grayscale bars show the L2's 
receptive field with their preferred orientations. The darker the bars are, the more colinear the L2's 
preferred orientation with the motion direction of the photoreceptor microsaccades. Dotted 
rectangle: photoreceptors whose receptive field overlaps with the screens in front of the fly. 

2.3.6 L2 axon terminals physically move in synchronisation with the stimulus 

We used a motion artefact correction technique on recordings where the motion artefacts 

moved the L2-terminal away from the region of interest (ROI) window (typically ~2µm). 

This technique enabled the ROI fluorescence average to be coherently correlated with the 

neural activity and not affected by physical displacement. (Figure 18) shows the resulting 

displacements for some cases. Interestingly, the displacements were sometimes stimulus-

locked: Figure 18B shows slower displacement at the beginning but faster around the end 

of the stimulus. A high sampling rate (~85 Hz) showed a robust synchronisation between 

the displacement and the stimulation (Figure 18A). These fast stimulus-locked L2-terminal 

displacements are likely induced by the photoreceptor microsaccades, analogous to the 

photomechanical tissue displacement recorded during the X-ray imaging experiments. 

Indeed, photoreceptors move photomechanically back and forth along the central axis 

each time a bar crosses their receptive fields (Kemppainen et al., 2022). Such a motion 

could similarly drive L2-terminal displacement in Figure 18A.  
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Figure 18: During 2-photon imaging, L2-terminals can show mechanical stimulus-
synchronised jitter. I used a stabilisation algorithm to subtract this jitter from the 
fluorescence video recordings if it was deemed too large. 
 (A) An L2-terminal (ROI; region of interest) displacement during 85 fps imaging. In the inset, the 
L2-terminal's position is projected in the principal direction (blue line). Given the regularity and size 
of these small movements (<<1 µm), they likely resulted from the photoreceptor microsaccades 
bouncing the optic lobes in a stimulus-synchronised manner. Similar optic-lobe-displacement 
dynamics were seen during the X-ray imaging (see Kemppainen et al., 2022) (B) Two examples of 
larger mechanical displacements of the medulla L2-neuron terminals, obtained with low (~20 Hz) 
sampling rates (20 fps). The larger movements (>1 µm) are likely caused by intraocular muscle 
activity (3) that can move the retina in slow bursts. The smaller movements (<<1 µm) superimposed 
on the bursts are likely caused by the stimulus-synchronised photoreceptor microsaccades moving 
the retinal tissue. The three images depict the studied ROI pixels' standard deviation, i.e. showing 
how the L2-terminal physically moved during the dynamically narrowing bar grating stimulation. The 
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red vertical lines in A and B indicates the GCamp6f resolvability limit, as obtained from separate 
flash-stimulation tests. 

So far, I have focussed on the synchronisation between the L2 axon terminals' physical 

movement amplitudes and the stimulus dynamics. This correspondence implies that 

photomechanical photoreceptor contractions induce tissue movement downstream in the 

lamina. One can ask if the direction of the movement is random or follow a specific 

direction (within limits of the recorded 2D plane). I hypothesised that if the microsaccades 

caused the L2 axon terminal motion, these movements could follow the same axis as their 

connected photoreceptors. I present below one fly's L2 axon-terminal motion directions as 

stimulated by dynamic gratings moving in different directions and speeds (every 23° at 20 

or 30°/s).  

I found that the movement direction is not random but consistently around an average 

value of 33° (circular standard deviation: 0.29) (Figure 19AB). In the first two layers of the 

visual pathway inside each optic lobe, the cartridges connect the photoreceptors to the 

lamina terminals following a chiasma structure (cf. the section about the visual pathway in 

Chapter 1). The centre of the chiasma is roughly in the centre of each optic lobe. Thus, in 

the 2D-recording plane, a photoreceptor located at an angle 𝛼 is connected to the L2 

neuron located at the angle 90 − 𝛼 (see the transformation in Figure 19C). Hence, by 

applying this transformation to the average axon-terminal movement direction value, I find 

the expected L2 axon-terminal alignment if their movement was induced by their 

connected photoreceptors (Figure 19C). This conclusion assumes that the photoreceptor 

microsaccades occur mostly tangent to the eye sphere, as seen in high-speed X-ray 

imaging (Kemppainen et al., 2022). Accordingly, I found this predicted movement 

alignment very close to the L2 terminal movement alignment in the 2-photon imaging data 

(Figure 19DE). This result confirms that the L2 terminals in the medulla neuropile move 

along their connected photoreceptors' microsaccade movement direction axis and 

provides further evidence that the photoreceptor microsaccadic movements are mostly 

tangential to the eye sphere. Interestingly, the orientation of these L2 terminal movements 

slightly correlates to the stimulus direction. Indeed, Figure 19B shows that visual stimuli 

moving more towards 180 ° (i.e. right) induce L2 terminal movements, whose orientation 

is slightly more toward the forward axis. In contrast, stimuli moving in the opposite direction 

(i.e. left) cause L2 terminals to move slightly more longitudinally. 
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Figure 19: L2 axon terminals' movement orientation axis aligns with their connected 
photoreceptors' microsaccade direction. 
 (A) Each point represents the displacement vector of each frame with respect to the stabilisation 
algorithm reference frame for all stimuli presented to the fly. Each blue bar is the Principal 
Component Analysis (PCA) orientation of a single stimulus' displacement points. Blue arrow: 
angular mean of all PCA orientations. (B) A plot of the PCA orientations for each of the 32 stimuli. 
Blue bar: angular mean. Red line: Levenberg-Marquardt 360°– wavelength sinusoidal fitting (middle 

point: 167° ; 𝑅2 = 0.31). (C) Black curves show the theoretical alignments of the photoreceptors 
and the axon lamina terminals. The black line is the 45° symmetry line splitting the optic lobe into 
two equal parts. The bottom red crosse shows where the L2 axon terminals' movement orientation 
(blue arrow) is tangential to the eye circle. The top red cross shows the location of the bottom red 
cross transformation after chiasma symmetry (shown with the red dotted curves between the 
photoreceptor and axon terminals curves. Green lines represent the actual recorded L2 axon 
terminals alignment axis. (D) Close-up of the recorded L2 axon terminals with their physical 
movement orientation (blue arrow), predicted alignment (red line) and actual alignment (green line). 
(E) Distribution of the L2 axon terminals alignment predictions for every stimulus. Green bar: actual 
alignment. 
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2.4 Discussion 

The difference between 'healthy flies' and the other 12 flies 

I call healthy flies all the flies where I could simultaneously record Ca2+ signals to simple 

flashes from more than 8 L2 terminals. Thus, when only a few L2s responded, those were 

next to an inactive neuron (probably due to dissection imperfections). I suspect such tissue 

damage would affect how they respond, explaining the outliers (acuity and orientation wise) 

at the edges of the recorded windows. In Figure 15, I presented all the recorded terminals' 

preferred stimulus movement orientations (for the finest resolvability as SRA maps) and 

displayed the error of their sinusoidal fittings. 

However, another possible reason for the edges being outliers can be that because the 

recording plane and the L2 plane are not parallel, I cannot record the same areas of each 

L2 neuron. This nonconformity could induce a difference in noise-to-signal ratio and hence, 

outliers at the edges. 

Figure 15B quantifies the outliers' issue by fitting quadratically the normalised medians of 

all the SRA maps: the neurons at the centre of the recorded screen tend to resolve better 

than those at the edges. 



44 

 

 

Figure 20: All the measured right eye L2-terminals' highest acuity orientations, plotted 
regarding their receptive field (RF) locations. 

 (A) R2 of the sinusoidal fits are shown in a linear grayscale: the lightest 0%; the darkest 100%. The 
darker the line, the better the reliability and predictive value of the estimated highest-acuity 
orientation. Red: peripherally recorded L2-terminals (possible outliers). Blue arrows: the 
photoreceptor micro-saccade directions at their corresponding RF locations. (B) R2 of the sinusoidal 
fits shown with the same reliability-dependent colouring as in A. The error of the sinusoidal fits is 
shown with their orientation margins. (C) L2-terminals' highest acuity orientations when the 
sinusoidal fits' R2 is >25%. (D) L2-terminals' highest acuity orientations when the sinusoidal fitting 
error is <12°. 

 

Some neurons do not show a preferred orientation 

Almost half of the L2 terminals showed no apparent orientation specificity (Figure 20AB). 

Several possibilities could contribute to this conundrum. First, the orientation specificity 

arises from responses to very fine patterns when the grating moves to a specific orientation. 

Hence, the resulting fine pattern responses cannot be resolved if they do not have a high 

enough signal-to-noise ratio. This limit, which directly reflects the combined imaging and 

Ca2+-fluorescence system sensitivities, makes it harder to see the preferred orientation in 
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the fly preparation is suboptimal. Moreover, this limit might be further degraded by motion 

artefacts, decreasing the observed neural activity resolution. 

Notice that I expected L2 neurons to have a direction (instead of orientation) specific 

hyperacuity. Indeed, each connected photoreceptor moves fast in one direction and slowly 

in the opposite direction. Why this asymmetry does not appear in the L2 acuity properties 

remains unknown. However, I suspect this characteristic might underlie a presynaptic 

mechanism that encodes photoreceptors' directional stimulus motion resolvability in a way 

that needs to be studied in the future. 

 

The locations of the receptive fields cover a small portion of the fly eye 

The combined receptive fields of the healthy flies' L2 neurons span roughly 15°x15°, which 

is very small compared to the fly's panoramic visual field. Several possible reasons can 

explain these limitations. First, the optic cables used to display the stimuli to the fly do not 

distribute the light intensity uniformly across each screen. Instead, the centre of each 

screen is slightly brighter than near the edges. Hence, L2 neurons with receptive fields 

around the centres of the screens might respond better than the others. This predicament, 

however, does not explain why the L2 neurons with receptive fields at the centres of the 

left and right screens do not show clear responses. This issue could be related to 

dissections imperfections. Because the chiasma twists the photoreceptor axons, the L2 

terminal activity measured at the top part of the brain is actually driven by the 

photoreceptor receptive fields at the centre. Since the lateral parts of the fly head are lower 

than the top part of the head, this part of the fly brain is more in contact with hot wax, which 

might damage the tissue and consequently induce weaker responses to this area of the 

visual space.  

Hence, more investigation into other parts of the visual field is required to conclude with 

more confidence that their preferred orientations follow the whole eye's photoreceptor 

microsaccade orientations. 

Sampling aliasing issue 

I used relatively low frame rates of 20-25 fps to concurrently image many L2-terminals with 

a high signal-to-noise ratio (i.e. each complete image frame was sampled at ~20 Hz).  

Such sampling could be prone to aliasing; if the actual light-stimulus-induced fluorescence 
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changes happened faster than the sampling. However, several factors ensured that 

aliasing effects on the data were minimal: 

Each image frame is not an instant snapshot but is built up by scanning its pixels line-by-

line at ultra-high speed (each pixel in ~50 ns). Thus, both the used resonant scanner's line 

scan rat and the recorded local Ca2+-signals' (pixel-wise) spatiotemporal correlations are 

much faster than the full image frame rate and the underlying Ca2+-fluorescence dynamics. 

The Shannon-Nyquist sampling theorem states that no information is lost if the sampling 

rate is higher than twice the signal's maximum frequency. Hence the minimum consistent 

value for SRA (smallest resolvable angle) follows the rule: 

 

𝛼𝑚𝑖𝑛 >
𝜔

𝑓𝑠
      eq. 2-5 

 

, where 𝛼𝑚𝑖𝑛, ω and fs are the minimum inter-bar distance used for the SRA, stimulus 

motion speed and sampling rate, respectively. Those minimum values for the SRA were 

rarely reached, so the risk of aliasing was minimal.  

The sampling rate was never kept constant in the recordings, thus minimising any 

systematic aliasing effects. Theoretically, aliasing causes central symmetrically spreading 

patterns in the recorded images, such as fake rigs or harmonic ringing (Juusola et al., 

2017), which never occurred in the SRA maps.  

Control experiments with much higher frame rates (85-145 fps) generated even higher L2-

terminal acuity maps than those with 20 fps sampling. Yet, these showed similar 

orientational selectivity trends, showing clear hyperacuity and specific highest acuity 

motion orientations.  The acuity map trends for the 20 fps and >85 fps sampling started to 

differ only at the highest tested velocity stimuli (60o/s). One acuity map for 85 fps sampling 

was included in Figure 15A. Overall, I found a suggestively higher L2-terminal hyperacuity 

for the higher sampling rate data Figure 21B:  

• High fps: 2.20° ±  0.25° (mean ± SD); SRA = 1.93°, Median = 2.17°, Max = 2.5° 

(n = 6 L2-terminals) 

• Low fps: 2.53° ± 0.82° (mean ± SD); SRA = 1.09°, Median = 2.31°, Max=6° (n = 

117 L2-terminals) 
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Therefore, in light of all this evidence, together with Drosophila's striking hyperacute visual 

behaviours in a flight simulator system (Juusola et al., 2017) and faster intracellular voltage 

responses (Nikolaev et al., 2009; Zheng et al., 2006), I am confident that I present reliable 

and conservative estimates (lower bounds) of the L2-terminals' orientation-selective 

hyperacuity (for the given experimental conditions, instrumental noise and sampling 

limitations). In further predictable support of these findings, behavioural experiments in a 

classic flight simulator system demonstrate hyperacute Drosophila vision (Juusola et al., 

2017; Kemppainen et al., 2022). A freely flying Drosophila's visual acuity can only be better 

in natural environments and could even be significantly higher.   

 

Figure 21: Using a higher imaging frame rate (i.e. Ca2+-signal sampling rate) increases the 
recorded L2-terminals' resolvability for fast-moving stimuli. 
 (A) Average of 4 repeats of the same L2-terminal (ROI) responses at 20 fps to a 60°/s narrowing 
(13° to 0.65°) grating stimulus moving upwards following 5 s of a grey frame. (B) Average of 4 
repeats of the same L2-terminal (ROI) responses at 100 fps to the same stimulus as in A. Grey 
margins: ± SD. Red arrows: the first pair of peaks with null resolvability, edging the smallest 
resolved angle (SRA). Gray vertical bars: times when a dark bar of the stimulus crosses the L2's 
receptive field. 

 

The use of "UV-flies" minimise antidromic sampling artefacts. 

Because the basement membrane between the lamina and retina lacks screening 

pigments, photoreceptors can be stimulated antidromically by shining light through the fly 

brain ( Juusola & Hardie, 2001). Equally, during Ca2+-imaging, fluorescence signals from 

the brain circuits propagate toward the photoreceptors. Therefore, in Drosophila with wild-
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type spectral sensitivities, the green-light-activated R1-R6s and R8y photoreceptors 

inadvertently multiplex light stimuli from the world with the L2 green-fluorescence signals 

from the lamina, potentially obfuscating downstream visual processing (as recorded by 

two-photon imaging). I used "UV-flies" (see material & method section) to overcome this 

problem. 

Time adaptation 

We believe that neural responses, despite the low order of L2 neurons, are not stationary. 

Hence, because of the small number of recordings (compared to the conclusion I want to 

make), I must be aware that this dynamism can affect the acuity of the cell over time. One 

solution is to randomise the stimuli order, which is what I have done. Another way would 

be to check whether there is any correlation between the neural responses and time. 

L2 displacement 

We should bear in mind that the stimulus-induced fluorescence variations themselves may 

fool the stabilisation-algorithm by faking a motion. However, this phenomenon is unlikely 

because applying the stabilisation-algorithm on the stabilised video only resulted in small 

and noisy motion residuals. Hence, even though the collective evidence from separate 

experiments using different assays is already compelling, an additional displacement 

analysis on activity-independent fluorescence (such as Tomato dye) can be done in the 

future for conclusive proof. Note that the small L2-terminal displacements, such as the one 

seen in Figure 18, had no real effect on the recorded fluorescence signals, so subtracting 

them made no difference in the analyses. 

Our analysis regarding the L2 terminals' movement orientations is limited because my 

prediction is valid only if the photoreceptors connected to the recorded terminals move on 

the vertical cylinder surface. Otherwise, the projection of their movement on the recording 

section (a horizontal plane) would incorporate a non-null component that would mislead 

the prediction through the 45°-axis symmetry. For example, a photoreceptor located at the 

bottom of the eye (and nearest to the centre of the head) would move roughly towards the 

back (according to Figure 7, left). The 45°-axis symmetry transformation shown in Figure 

13C would then consider photoreceptors on the side of the head and predict L2 terminals 

near the centre. This simplification might be a reason for my prediction error (51° instead 

of 57°). However, since the screen viewed by the fly is located only a little below (<10°) 

the recorded section (see Figure 22), considering the photoreceptors moving within a 

vertical cylinder is not an aberration.  
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Figure 22: The photoreceptors stimulated by the screen are roughly in a vertical cylinder. 
 In blue is the saline covering the brain above which the cuticle was opened and removed.  

The terminals movement orientation is slightly different for a grating stimulus moving 

towards the left compared to a grating moving towards the right was not expected. I have 

not found any reasonable explanation for this phenomenon so far. Notice that I analysed 

the terminals' movement directions only on one fly for the sake of time limitations. Further 

analysis should be done on the other flies to confirm the related results and conclusions.   
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Chapter 3:  Biologically-constrained deep-

learning model of the L2 neurons’ output 

3.1 Introduction 

The world we live in is too complex to be understood thoroughly. Instead, we build our 

knowledge and take decisions based on models of this reality, such as models of the forces 

of nature, chemical interactions, or living things. They help us understand the mechanisms 

underlying the reality we observe, predict future events, and improve our intuition for 

designing novel technologies. Modelling living organisms has, for a long time, sparked our 

interest. From the idea of souls controlling bodies to cells containing DNA, our curiosity 

regarding what/who we are has always persisted. The concept of Artificial Intelligence 

emerged especially with the advent of computers, in which input/output systems many 

scientists considered to be analogous to our brain. In the last century, these analogies 

became more apparent with the emergence of artificial neural networks (ANN) that solved 

many human-level tasks and outclassed humans in complex games such as Chess or Go. 

Based on how our brain is structured, this last generation of AI owes a lot to neuroscience 

research. However, ANNs are still very limited compared to our brains’ good sense and 

sound judgement in practical matters, task generalisation, or energy efficiency.  

Understanding the brain by modelling the neural activity of the preferred model organisms, 

such as Drosophila, has been a common approach to improving this branch of AI. For 

example, most Drosophila brain connectome has been mapped to the details of individual 

synapses (see the General Introduction chapter), providing a plausible wiring diagram of 

neural information flow. This motivated building connectome-constrained ANN to get 

insight into the usefulness of their brain structure by playing with hyper-parameters. 

In this chapter, I propose an ANN model of Drosophila's photoreceptor and lamina layers. 

This ANN is inspired by the anatomy of the real biological neural network (BNN). Some of 

its parameters, such as synaptic strengths, threshold values, receptive field locations, etc., 

are learnt during a training process, during which the ANN tweaks them so that the output 

resembles the recorded L2-axon-terminals calcium fluorescence of a real fly. I think the 

similarity with the BNN helps untangle the complexity and cleverness of the mechanisms 

happening in the fly brain beyond the well-known simplified high-order models for fly vision, 

such as the Hassenstein-Reichardt correlator model for motion estimation. Additionally, 
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this ANN brings insights into the role of particular connections or mechanisms and enables 

predicting neural behaviour and synaptic strengths. 

 

3.2 Material and methods 

3.2.1 Sampling by photoreceptors: neural network inputs 

The ANN model inputs pass first through a layer of photoreceptors that sample light 

information in four possible ways:  

1. A static (positionally-fixed and non-moving) photoreceptor sampling model. 

A naive fully-connected layer in which every screen ‘pixel’ connects to a 

static photoreceptor with a learnable weight. 

2. A static (positionally-fixed and non-moving) photoreceptor sampling model. 

A microsaccade-less learnable multivariate gaussian filter layer. 

3. A simplified version of the microsaccadic model (photomechanically 

moving photoreceptors; Kemppainen et al., 2022) with one photoreceptor 

per ommatidium. 

4. A simplified version of the microsaccadic model (photomechanically 

moving photoreceptors; Kemppainen et al., 2022) with seven 

photoreceptors per ommatidium. 

For the 1st and 2nd static photoreceptor sampling models, I pixelate the screen by 

3°resolution. The screen values are normalised. The sampling rate is 80 ms. The time step 

is 2 s. 

For microsaccadic photoreceptor sampling (the 3rd and 4th models), I use the full-screen 

resolution of 0.13° and a 1 ms sampling rate. These values match those used in the 

differential equations (Kemppainen et al., 2022). Finally, I chose a time step of 50 ms. 

Photoreceptor microsaccade 

For the latter ANN models, I simulated the observed photoreceptor microsaccade 

mechanisms.  

At each time step 𝑡, each photoreceptor input results from a fixed size gaussian filter 

applied on the current frame, multiplied by a scaling factor of 700.  
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For the model, this input represents the number 𝑁𝑝(𝑡)  of photons absorbed by the 

photoreceptor’s microvilli. The number of photons absorbed by each microvillus is 

determined by a uniform stochastic sampling with a repetition process. 

Following a photon absorption (by rhodopsin) and being light-activated, the microvillus 

goes through three phases before it can be light-activated again. First, it enters an 

absorption state for a stochastic number of time steps that follows a gamma distribution of 

parameters 𝑘 = 9.9891 and 𝜃 = 1.7160. It then proceeds into a quantum bump state, 

generating a unitary elementary electrical response, as described further below. Finally, it 

reaches a refractory state for a stochastic number of time steps that follows a gamma 

distribution of parameters 𝑘 = 3.4710 and 𝜃 = 12.6873. Only at the end of this third state 

can the microvillus be light-activated again. 

At each time step, the number 𝐴(𝑡) of microvilli generating a quantum bump contributes to 

the lateral (sideways) rhabdomere movement. The rhabdomeres move along one axis. On 

this axis, position 𝑥 of the rhabdomere relative to its initial position follows this differential 

equation: 

𝑑2𝑥

𝑑𝑡2 (𝑡) =  
𝐴(𝑡)

𝐴ℎ

𝐴𝑛
+ 𝐷𝑐(𝐷𝑏

−𝐷𝑒
𝑑𝑥

𝑑𝑡
(𝑡)

− 1) − 𝑆(𝑡)𝑥(𝑡)    eq. 3-1 

with the spring function: 

𝑆(𝑡) = 𝑆0 + 𝑆𝑐
𝐴(𝑡)

𝑆ℎ

𝑆𝑛
,      eq. 3-2 

where the constants are: 

 𝐴𝑛, 𝐴ℎ , 𝐷𝑐 , 𝐷𝑏, 𝐷𝑒 , 𝑆0, 𝑆𝑐 , 𝑆𝑛, 𝑆ℎ = {2,9500,8 × 10−5, 2,2100,1 × 10−4, 1.15 × 10−5, 1.3, 200}.  

The total light intensity driving the photoreceptor is: 

 𝐿𝐼(𝑡) = 𝑚𝑖𝑛(𝐿𝐼𝑚𝑎𝑥 , 𝐿𝐼0 + 200 × ∑ 𝑁𝑝(𝑡)𝑡
𝑘=0 ),     eq. 3-3 

where 𝐿𝐼𝑚𝑎𝑥  =  1.11 × 107 is the maximum light intensity that a photoreceptor can get and 

𝐿𝐼0 = 4 × 106. 

𝐵𝑠𝑐𝑎𝑙𝑒(𝑡) = 3.62 − 0.51 × 𝑙𝑜𝑔10(𝐿𝐼(𝑡))    eq. 3-4 

𝐵𝑝𝑒𝑎𝑘(𝑡) =
𝛤(𝐵𝑠𝑐𝑎𝑙𝑒(𝑡)+1)2

𝛤(4)2 ×
22×𝐵𝑠𝑐𝑎𝑙𝑒(𝑡)+1

𝛤(2×𝐵𝑠𝑐𝑎𝑙𝑒(𝑡)+1)
×

27

𝛤(7)
      eq. 3-5 



53 

 

𝐵𝑡(𝑡′) =
𝐵𝑝𝑒𝑎𝑘(𝑡)×(

𝑡′

𝜏
)

𝐵𝑠𝑐𝑎𝑙𝑒(𝑡)

𝛤(𝐵𝑠𝑐𝑎𝑙𝑒(𝑡)+1)
×

1

𝜏
𝑒−

𝑡′

𝜏       eq. 3-6 

The duration 𝐵𝑑(𝑡) of the quantum bump state (the second state of a microvillus after 

absorbing a photon) is the time needed for the bump function to come back close to zero. 

Precisely: 

𝐵𝑡(𝐵𝑑(𝑡)) > 𝜀 and ∀𝑡′ > 𝐵𝑑(𝑡), 𝐵𝑡(𝑡′) < 𝜀    eq. 3-7 

I chose 𝜀 = 0.02. 

The number of photoreceptors per ommatidia: 

I either used a simplified model with one photoreceptor per ommatidium or a model with 

seven photoreceptors per ommatidium. In the latter model, each of the 7 photoreceptors 

is responsive to different locations in the visual space (Figure 23). In the same way, owing 

to the eye’s spherical geometry, 7 photoreceptors from different neighbouring ommatidia 

are responsive to roughly the same location in the visual space. The photoreceptors within 

the same ommatidium move as a group at the same speed vector. I calculated this 

grouped microsaccade using the sum of the 7 photoreceptor inputs as the microsaccadic 

model input. 

 

Figure 23: Exact receptive field location per photoreceptor compared to the cartridge 
approximated receptive field location.  
Right: the blue dots represent the photoreceptors’ receptive field locations. The orange dots 
represent the approximate centre receptive field for a cartridge (e.g. light blue and red are two 
different cartridges). Middle: Location of the photoreceptors within the fly eye. 7 different ommatidia 
of one cartridge (e.g. light blue or red) respond to one centre receptive field and feed to one L2 
neuron (left). 
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Note that the 7 neighbouring ommatidia pattern is not symmetric by rotation and flips. 

Hence, I chose the pattern that best matches the experimentally measured patterns of the 

deep pseudo-pupils (Kemppainen et al., 2022) (Figure 24). 

 

Figure 24: Axis of neighbouring ommatidia feeding the same cartridge.  
(A) Axis of the 7 neighbouring ommatidia feeding into the same lamina cartridge across the whole 
eye. Black circles: estimation of the recorded L2 receptive field locations. Green rectangle: 
orientation of the 7 neighbouring ommatidia near the recorded L2 receptive field locations. Data 
from Kemppainen et al., 2022. (B) Four examples of all the possible orientations of the 7 
neighbouring ommatidia. Green rectangle: Best matching orientation with the deep-pseudopupils’ 
axis at the recorded L2 receptive field locations.  

Initialisation: 

I chose three possibilities of initialisation for the Gaussian positions. 

The first is a stochastic position for each Gaussian that follows a uniform distribution 

around the centre of the screen (I disallowed the positions less than 120 pixels from the 

corner).  

The second is the positions measured experimentally (see Chapter 2). 

The final one uses the fact that each receptive field is shared between the 7 photoreceptors 

located in different ommatidia and feeding the same cartridge (Figure 23). That is why, for 

the 7-photoreceptor-per-ommatidium model, I added the surrounding ommatidia, in which 

at least one photoreceptor outputs to a recorded L2 neuron. I also added the receptive 

fields of every photoreceptor in the same ommatidia as one of the 7𝑛 photoreceptors that 

feed to the 𝑛recordedL2 neurons, since they contribute to the total ommatidial rhabdomere 

movement. In this arrangement, the 7 photoreceptors of the same ommatidium move 

together along one direction (at the average amplitude of their contractions). Inversely, the 

photoreceptors of one cartridge (sharing roughly the same receptive field but different 
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ommatidia) contribute similarly to different ommatidia that move in different directions 

(Figure 25 ). 

 

Figure 25: toy example of the 7-photoreceptor model's contractions.  
The yellow circle represents a transient light input change. The red photoreceptors contract 
photomechanically to the light change; moving (as a collective) in a particular direction (as set 
developmentally for this eye location). Because of the ommatidium lens (which acts as a ‘lever’) 
and the photoreceptor rhabdomeres' asymmetric positioning around it, the photoreceptors’ 
receptive fields move in the opposite direction (of their microsaccade), even if they did not directly 
experience the light stimulus. Here, I only consider the red and light blue photoreceptors as toy 
examples. 

Thus, I needed two layers of receptive fields around the 𝑛 receptive fields: this increased 

the number 𝑛 (8 for the fly I used) of receptive fields to (𝑛 + 4) × 5 − 1 (59 for the fly I 

used). Since I only have the experimental values of the recorded L2 neurons’ receptive 

fields, I inferred the initial receptive field positions for the 59 receptive fields using the 

following technique. I computed the centre of mass (COM) of the 𝑛 experimental receptive 

fields. I calculated the principal vector of the distribution of these 𝑛 receptive fields using 

the Principal Component Analysis (PCA) algorithm from the sklearn Python package. I 

then computed the average distance �̅� =
1

𝑛−1
∑ 𝑑𝑖

𝑛−2
𝑖=0  where 𝑑𝑖 was the distance between 

the receptive field 𝑖 and the receptive field 𝑖 + 1. Next, I placed the 𝑛 new receptive fields 

along a line. This line is the space generated by the eigenvector corresponding to the 

biggest eigenvalue of the covariance matrix of the experimental receptive fields. I placed 

these new receptive fields to have the same COM as the experimental receptive fields. 

The distance between each new receptive field is �̅�. Finally, if necessary, I added the 

surrounding receptive fields around the new receptive fields so that each photoreceptor in 
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the same ommatidium as a photoreceptor inputting one of the recorded L2 neurons has 

its receptive field (Figure 26). This is why I end up with 5 × (𝑛 + 4) − 1 new receptive fields. 

 

Figure 26: Hexagonal lattice of ommatidia inferred from the experimental receptive fields.  
Blue points: recorded L2 receptive field locations, numbered from 0 to 7, in the order of their position 
in the brain. Orange points: Inferred receptive field locations calculated from the PCA eigenvector, 
the average distance between two neighbouring L2 neurons’ receptive field locations and the 
experimental receptive fields’ centre of mass. 

In reality, the 7 photoreceptors of one cartridge have slightly different receptive field 

locations and half-widths (Figure 23). 

The 7 locations are 

{(−1.89, −0.722), (−1.56,1.00), (0,0), (0.39,1.4), (2.05, −1.50), (1.89,0.19), (2.39,2.28)}. 

The 7 half-widths are, in degrees: {5.1,4.6,3.12,4.5,5.2,4.6,4.8}. 

Figure 27 describes the matrix used in the Tensorflow script for the photoreceptors’ 

connections with the cartridges. 

𝑑0 
𝑑4 

�̅� 

COM 

PCA(0) 
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Figure 27: Matrix describing the photoreceptors' receptive fields in the ommatidia. 
 (A) Orange circles: Receptive fields organised in a hexagonal lattice numbered from 0 to 58. Blue 
and green: ommatidia placed at their R7 photoreceptor receptive field location, numbered from 0 to 
29. Green: ommatidia for which the R7 photoreceptor feeds a recorded L2 neuron. Red: all the 
ommatidia containing a photoreceptor that feeds the most-left L2 neuron. (B) Photoreceptor 
positions within one ommatidium, ordered from 0 to 6. (C) The number of the recorded L2 neurons' 
receptive fields. (D) The matrix describes the receptive field number for each photoreceptor (row) 
of each ommatidium (column). 

Note that this 7-photoreceptor-per-ommatidium model requires a 
7×28

8
= 24.5 times more 

computation than the 1-photoreceptor model. Since the computation of a contraction is 

heavy, I decided to reduce the amount of them by only taking into account the 

photoreceptors that feed the recorded L2 neurons (leaving aside the photoreceptors of the 

same ommatidia). This simplification makes the 7-photoreceptor-per-ommatidium model 

require only 7 times more computation. 

The output of the photoreceptors was considered to be the dot product of the input and 

the filter. 

 

3.2.2 Lamina: recurrent neural network 

The photoreceptors’ output feeds a ‘reservoir type’ recurrent neural network. The 

network's output is the value of the L2 neurons, which are part of the reservoir. The network 

is trained on the recorded L2 terminals’ calcium signals. Based on the lamina connectome 
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(Rivera-Alba et al., 2011), 7 neurons are connected to both the photoreceptors and the L2 

neurons (Figure 28). Hence, I chose the number of neurons equal to 7 × 𝑁𝐿2 where 𝑁𝐿2 is 

the number of imaged L2 neurons, which also corresponds to the number of cartridges. 

Five different artificial connectomes, including the real-like connectome, are proposed 

below. For every connectome, I add self-connections that I assume are relevant since 

neurons’ activities depend on their past activities. 

 

Figure 28: Number of synaptic connections between neurons in the lamina. 
 (A) Heatmap representing the number of synapses between presynaptic cells (column) and 
postsynaptic cells (row). Data from Rivera-Alba et al., 2011. 

For each connectome 𝐶, instead of showing the whole adjacency matrices, I present the 

graph representation 𝒢(𝐶)  of their canonical part. This contains the intra-cartridge 

connections, the postsynaptic connections to the left (or right) neighbouring cartridge and 

the presynaptic connections from the right (or left) neighbouring cartridge. 𝒢(𝐶) contains 

the sufficient and necessary information to describe the whole connectome 𝐶 since each 

cartridge is a replicate of its neighbours. However, for the sake of simplicity, I will not show 

the self-connections since they are all present in every connectome. Moreover, I will not 

show the large wide-field cells’ connections since they output on every neuron, which 

would make the graphs less digestible. 

𝐶𝑟𝑒𝑎𝑙 is based on the detailed lamina connectome (Rivera-Alba et al., 2011), describing 

the number of synapses between the presynaptic and postsynaptic neurons. In this 

publication, the connectivity is described in 2 dimensions to infer it across the whole fly 
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eye. For our case, 2-photon imaging only enables monitoring of a lamina surface section 

corresponding to one line. Hence, to avoid any ambiguity regarding the L4+x and L4-y 

inter-cartridge connections in Figure 28, I considered two possible ‘real-like’ connectomes: 

𝐶𝑟𝑒𝑎𝑙
𝐿  and 𝐶𝑟𝑒𝑎𝑙

𝑅  where the “+x“ inter-cartridge connection goes respectively towards the left 

only and towards the right only. For the sake of simplicity, I considered one artificial 

photoreceptor, instead of the six rhabdomeres (R1-R6), that regroups all the 

pre/postsynaptic connections to/from. I have: 

𝒢(𝐶𝑟𝑒𝑎𝑙
𝐿 ): 

 

𝐶𝑟𝑎𝑛𝑑𝑜𝑚 is a stochastic connectome where the number of connections is the same as in 

𝐶𝑟𝑒𝑎𝑙 and the input and output neurons are randomly shuffled. In other words, each intra-

cartridge-connection is a random permutation of its corresponding adjacency matrix. In 

addition, each lateral cartridge connection is a random permutation of the presynaptic 

connections to L4+x and the postsynaptic connections from L4+x combined.  

𝐶𝑐𝑜𝑙𝑢𝑚𝑛𝑠 is a cartridge connectome with synaptic connections between every neuron and 

without inter-cartridge connections. 
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 𝒢(𝐶𝑐𝑜𝑙𝑢𝑚𝑛): 

 

 𝐶𝑑𝑒𝑛𝑠𝑒 is the connectome where every neuron of every cartridge is connected to each 

other. 

𝒢(𝐶𝑑𝑒𝑛𝑠𝑒): 
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The BNN-like ANN, proposed to reproduce the recorded calcium responses at the L2 axon 

terminals, is the combination of the microsaccadic photoreceptor layer and the 𝐶𝑟𝑒𝑎𝑙  

lamina layer.  

3.2.3 Training dataset 

Content: Out of the 50+ flies I had imaged the L2 neurons’ calcium activity, I selected the 

fly whose responses met several important criteria: healthy preparation, high signal-to-

noise ratio, a high number of neurons imaged, clear preferred directions, and clear 

hyperacuity. The dataset used for training this model contains two-photon calcium time 

series responses of this transgenic fly showing activity at the L2 neuron (accentuated light-

OFF responses in the lamina layer - 2nd layer - of the fly's visual pathway) axon terminals 

located in the medulla (3rd layer). It comprises 32 moving grating stimuli that have a 

narrowing wavelength over time. The stimuli span 16 regularly distributed orientations at 

two speeds (20 and 30°/s). 

Scaling: I first subtracted the recording plane’s background from each neuron’s raw 

fluorescence intensity variations. I then subtracted the basal fluorescence, F0, calculated 

as the mean intensity before the visual stimulation, from the observed intensity, F, (∆𝐹 =

𝐹 − 𝐹0) and giving this difference as the relative fluorescence change (∆𝐹/𝐹0). To prevent 

weight saturation (Y. A. Lecun et al., 2012), I scaled the latter value between 0 and 1. Note 

that scaling, unlike normalising, enables having a control on the extreme values which 

might change significantly over time because of the unavoidable signal-to-noise decrease 

(see Discussion). 

Flattening: Finally, because of calcium-indicator induced baseline raise (mostly happening 

at the beginning of each recording), I flattened the baseline by subtracting each value to a 

moving minimum with a window of 1 s. This procedure should make it easier for the model 

to learn the neural responses. Figure 29 shows an example of relative fluorescence pre-

processing (normalisation followed by baseline flattening). Note that this technique aims 

to mimic the input given to a calcium indicator filter. 
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Figure 29: Data pre-processing fed to the model as training data. 
 (A) Relative fluorescence of an L2 axon terminal as stimulated by a dynamic wavelength grating 
(Figure 30D). (B) Trace after normalisation followed by baseline flattening (1s-window moving 
minimum). 

 

3.2.4 Hyper-parameters 

Initialisation: The weights’ initial values follow a uniform distribution between -0.05 and 

0.05, multiplied with the mask of the connectome used (1 [or 0] if there is [or isn’t] a 

connection). 

Loss function: The loss function, which the training process aims to reduce using the 

optimiser below, is the Euclidean distance between the model output and the experimental 

calcium response of the L2 axon terminals. 

Optimiser: As a well-studied optimiser, I use the Adam optimiser for the ANN’s learning 

rule. 

Activation functions: For the photoreceptor layer, the screen input is normalised (or only 

centred around zero for the microsaccadic sampling) and then passed into a sigmoid 

function. The activation function for the lamina layer (the reservoir) is the non-linear 

rectified Linear Unit commonly used in machine learning. 
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Batch size: When trained on the whole dataset of 32 recordings, I used batches of 4 

recordings. 

Noise: For ANNs, in which the photoreceptor layer is a fully connected layer or a 

microsaccade-less multivariate gaussian filter, I added gaussian white noise (𝜎 = 0.02). 

Number of neurons: As explained above, I chose 56 neurons (7 neurons per cartridge, for 

8 cartridges). 

Trainable parameters: The parameters that the model optimises to reduce the loss function 

are the followings: 

• The photoreceptor output scale that balances the photoreceptor output for a 

coherent input to the reservoir model. 

• The model output scale that balances the model output before passing it to the loss 

function. 

• The microsaccade two-dimension vector that tells where the photoreceptor moves. 

• The cartridge’s centre receptive field location. 

• The reservoir’s connection weights and biases. 

Recurrent state: This recurrent neural network has an internal state, which is a list of 5 

tensors (note that only the first tensor is used as an internal state for the static model): 

• A tensor ([Batch x 56]) represents the values of the neurons in the reservoir. 

• A tensor ([Batch x 8 x 2]) or ([Batch x 30 x 2]) represents the position and speed of 

the rhabdomere with respect to the corresponding ommatidial lens (the second 

dimension changes depending on whether I consider one or 7 photoreceptor(s) per 

ommatidium). 

• A tensor ([Batch x 8 x 2]) or ([Batch x 56 x 2]) represents two characteristics of the 

photoreceptor microsaccade model. The 1st is the number of photons entering the 

photoreceptor. The 2nd is the number of microvilli that have absorbed a photon 

since the beginning of the recording (the second dimension changes depending on 

whether I consider one or 7 photoreceptor(s) per ommatidium). 

• A tensor ([Batch x 8 x Recording_length x 2]) represents two characteristics of the 

photoreceptor microsaccade model that need storage across the entire recording. 

The 1st is the photoreceptors’ after-latency activation times. The 2nd is the 

photoreceptors’ refractoriness end times. 
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• A tensor ([Batch x 1]) represents the frame index used for the previous two tensors 

to update the photoreceptor numbers at the end of their activation latencies or 

refractoriness. 

Output: The model output is the value of the artificial L2 neuron, multiplied by the trainable 

output_scale parameter. 

3.3 Results 

L2 neurons’ Ca2+-activity was measured at their medulla axon terminal levels (Kemppainen 

et al., 2022). A head-fixed fly saw moving dynamic-wavelength gratings while I recorded 

its resulting L2 Ca2+-dynamics with a 2-photon imaging system. The recordings revealed 

direction-specific hyperacuity.  

I made an ANN model trained to reproduce these responses. This model consisted of two 

compartments: a photoreceptor layer and a lamina layer. The photoreceptor layer was 

inspired by the actual fly eye anatomy and physiology (Figure 30AB). The light sampling 

was photomechanical (Kemppainen et al., 2022): photoreceptors generated 

microsaccades (moving and contracting underneath the ommatidial lens) and showed light 

adaptation and refractoriness. This layer outputs to the lamina layer, which is a bio-

constrained ANN. Its connectome was based on the number of synapses within one 

lamina cartridge layer and the lateral inter-cartridge connections (Rivera-Alba et al., 2011)y 

(Figure 30C). I used this model and its several variants (e.g. naïve connections, 
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microsaccade-less photoreceptors etc.) to assess the usefulness of different connectome 

aspects in reproducing the recorded responses, including hyperacuity (Figure 30D).  

 

Figure 30: Comparing connectome-based ANN with static vs dynamic photoreceptor inputs.  
(A) The fly compound eyes were used as visual sampling constraints for the model. (B) A zoom-in 
on the ommatidium (top) and rhabdomeres (bottom). (C) The connectome-based ANN with one 
artificial cartridge shown (Left). The red unit (P) was connected to the inputs. The green unit (L2) 
was the output. The blue units formed a reservoir, in which connections were based on the real 
lamina connectome (Right). (D) Backpropagation through time of the dynamic/static photoreceptor 
ANN. The training was done on the L2 neurons#39 (see Chapter 2); Ca2+-imaging data. 

 

3.3.1 The static case - BNN-like ANN is better suited to reproduce the experimental 

data 

I first studied the static sampling models, asking whether the BNN-like ANN reproduces 

the experimental data better than other more naïve ANNs or ANNs used in computer vision. 

To answer this question, I trained ten different static sampling models: two possible 

photoreceptor layers (either a naive fully connected layer or a microsaccade-less gaussian 

filter layer); and five possible lamina layers (𝐶𝑟𝑒𝑎𝑙
𝑅 , 𝐶𝑟𝑒𝑎𝑙

𝐿 , 𝐶𝑟𝑎𝑛𝑑𝑜𝑚, 𝐶𝑐𝑜𝑙𝑢𝑚𝑛 , 𝐶𝑑𝑒𝑛𝑠𝑒). I call 

training the process during which a model changes its parameters following an optimizer 

method in order to reduce the loss function (see Material and methods section). In Figure 

31, I show some examples of how the loss value evolves during training. We can see that 

20 epochs (which we constantly used) is enough for a complete training, as the loss stops 

reducing after that. To analyse the resulting models, I used two metrics to evaluate each 

model's capacity to reproduce the experimental data. One was the root-mean-square error 
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(RMSE) between the visual acuity prediction of the model and the visual acuity measured 

on the experimental data. The other metric was the mean error between the preferred 

orientation prediction of the model and the preferred orientation inferred from the 

experimental data. On both metrics, the results suggested that dense lamina layers best 

reproduce the experimentally observed acuity characteristics (Figure 32). This finding was 

expected since this model's number of parameters was eight times larger.  

 

Figure 31: Loss is minimal after 20 epochs. 
(A), (B), (C), (D): loss (mean square error between real and predicted L2 fluorescence) evolution 

for static (n=4), 𝐶𝑟𝑎𝑛𝑑𝑜𝑚 (n=5), 𝐶𝑟𝑒𝑎𝑙
𝑅  (n=3), and 𝐶𝑟𝑒𝑎𝑙

𝐿  (n=7) models, respectively. 

The results also suggested that the lamina layer with random connectivity is the worst to 

reproduce the experimental visual acuities. More interestingly, microsaccade-less 

Gaussian filter photoreceptor layers generally approximated the experimentally observed 

acuity characteristics better than the naive microsaccade-less fully connected 

photoreceptor layer. This finding implies that for a static eye (or imaging system), Gaussian 

sampling at the photoreceptor level will likely be the mechanism by which a fully connected 

layer will converge. Strikingly, this difference in performance is even significant when the 
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lamina layer is 𝐶𝑟𝑒𝑎𝑙
𝑅  or 𝐶𝑟𝑒𝑎𝑙

𝐿 , which shows that the fly connectome is specifically tuned to 

receive inputs from a Gaussian sampling.  

 

Figure 32: Static models’ acuity predictions.  
(A) Experimental acuity maps of the 8 L2 axon terminals from one fly, chosen for the model training 
set. (B) Acuity maps were predicted by a static-Gaussian input model with a real-like connectome. 
(C) Absolute mean error of the predicted preferred orientations compared to the real preferred 
orientations. Each bar corresponds to a different Lamina connectome. Blue bars: fully connected 
screen to photoreceptors. Orange bars: gaussian inputs to photoreceptors. 
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3.3.2 The photoreceptors microsaccades help the small fly connectome to 

reproduce single stimulus L2 responses. 

I next asked whether the photoreceptor microsaccades had any utility for the ANN to 

reproduce the experimental data, and if so, which ANNs? Notably, it has been suggested 

that microsaccades would help to resolve moving objects (Juusola et al., 2017). To answer 

these questions, I used this time a dynamic gaussian which contracts, translates (learnable 

parameter) and shows refractoriness, in a similar way as in Kemppainen et al., 2022 (See 

Figure 33, and Material and methods section). I trained microsaccadic photoreceptor 

ANNs having three possible lamina connectomes (𝐶𝑟𝑒𝑎𝑙
𝑅 , 𝐶𝑐𝑜𝑙𝑢𝑚𝑛, 𝐶𝑑𝑒𝑛𝑠𝑒). Each ANN was 

trained on a single stimulus, which consisted of a dynamic grating moving towards a 

specific direction at 20deg/s. For each ANN, I trained 16 models (each model being trained 

with one stimulus moving towards one of the 16 directions used for the global dataset 

training in the models above).  

 

Figure 33: The bio-inspired ANN: A saccadic-gaussians layer feeds eight cartridges. 
Layout of the final Bio-inspired ANN model of the photoreceptor/lamina layers. The visual input (top-
centre) feeds a dynamic gaussian filter that mimics the biological fly micro-saccades. The output of 
this layer feeds then the artificial neural network mentioned above and described in details in the 
Material and methods section. Note that it contains eight cartridges, since it was trained on a fly on 
which eight L2-terminals were recorded (top-left). 

I found that the ANNs’ microsaccades tend to converge to the direction of the moving 

stimulus the ANN was trained on (Figure 34). More interestingly, I found that the 

microsaccades converged more consistently (𝑆 = 0.60, 𝑅2 = 0.31, 𝑆 being the slope of the 

linear fitting) to this direction when the lamina connectome is 𝐶𝑟𝑒𝑎𝑙
𝑅  (BNN-like ANN) (Figure 

34A). A strong correlation also appeared with the connectome 𝐶𝑐𝑜𝑙𝑢𝑚𝑛 (𝑆 = 0.53, 𝑅2 =
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0.28) (Figure 34B). On the contrary, dense lamina layer ANNs’ trained microsaccades had 

almost a random direction (𝑆 = 0.02, 𝑅2 ≪ 0.01) (Figure 34C).  

One possible explanation of these results is that the microsaccades helped resolve fine 

patterns by going towards the main direction of their movement. However, when the 

number of parameters was large enough (𝐶𝑑𝑒𝑛𝑠𝑒), the ANN did not need the help of these 

microsaccades. Hence, those results showed that photoreceptor microsaccades could 

play a role in fine-pattern resolving in an efficient, energy-saving way. 

 

Figure 34: Single-stimulus trained microsaccade directions.  
(A) Trained microsaccades for a model with a real-like connectome. Top: Each red dot corresponds 
to a model trained on a grating moving to the direction of the position of the red dot (relatively to 
the centre of the red dots). Each arrow starting from a red dot is a trained microsaccade of a 
photoreceptor of the corresponding model. Bottom: Average (across the eight L2 neuron 
microsaccades) direction of the trained microsaccades vs the direction of the stimulus used for 

training. Error bars: standard deviation. Red line: linear fitting ( 𝑅2 = 0.31 ). (B) Trained 

microsaccades for a model with disconnected columns. Linear fitting: 𝑅2 = 0.28  (C) Trained 

microsaccades for a model with inter-and-intra-connected neurons. Linear fitting: 𝑅2 ≪ 0. (A), (B) 
and (C) Blue line: y=x. 

Hence with much fewer parameters than the naïve ANN, this BNN-like ANN can reproduce 

well the experimental data. 
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3.3.3 The real photoreceptor microsaccades help reproduce the real L2 responses. 

Kemppainen et al., 2022 measured the photoreceptor microsaccades across the whole fly 

eye. These are mirror-symmetric between the left and right eye and follow the optic flow 

of a flying fly (Figure 35A). I asked whether such microsaccadic sampling play a role in 

higher-order visual information encoding. To do so, I trained the microsaccadic-

photoreceptors model to reproduce the experimental L2 responses to stimuli going in 

every chosen direction at 20 and 30°/s and let the model learn the microsaccade directions.  

I found that the model predicted microsaccades were very similar to the real ones (Figure 

35BC). To quantify this, I compared the results with random microsaccades and found the 

difference significant (Figure 35D). Hence, I can conclude that the microsaccades (as 

measured experimentally across the fly eye) play a role in the L2 axon terminal level 

activity. 

For the rest of this chapter, I will only deal with models whose connectome is the BNN-like 

𝐶𝑟𝑒𝑎𝑙
𝐿 . 

3.3.4 The trained photoreceptor microsaccades match best the real microsaccades 

on the BNN-like ANN. 

Interestingly, BNN-like models’ predicted microsaccades are more similar to real ones than 

models with randomised connections and separate cartridges. Typically, there was no 

significant difference between the disconnected-cartridge models’ predicted 

microsaccades and the random ones. These results suggest that the measured 

photoreceptor microsaccades are used in a process involving cartridge interconnections 

(Figure 35D). 
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Figure 35: Comparison of the trained microsaccades with the real microsaccades. 
 (A) Photoreceptor microsaccade directions across the whole fly eye. (B) Microsaccades of the right 
eye’s photoreceptors in which receptive fields are in the black rectangle of (A) (centre of the screen). 
(C) Predicted microsaccades of the BNN-like model (green) and the disconnected-columns model 
(red). The null point refers to the centre of the screen. (D) Root-mean-square errors between the 
trained microsaccade vector and the real microsaccade vectors at the corresponding receptive 
fields. Green: BNN-like model. Red: Random-connections/Disconnected-columns model. Gray: 
Random vectors. 

I then asked whether the model can reproduce the hyperacuity and orientational selectivity 

of the experimental recordings and whether these estimates worsen when the 

microsaccades are blocked. I also assessed the 7-photoreceptor model on the same 

criteria, hypothesising that the ommatidial 7-photoreceptor structure might play a role in 

hyperacuity. I trained each model twice (two different initialisations) on the whole 32-

recording dataset (apart from the 7-photoreceptor model, which was trained only once 

because of its prolonged processing time).  
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3.3.5 The multi-photoreceptor model reproduces better the experimental acuity 

I found that the single-photoreceptor models (with and without microsaccades) generate 

L2-responses that have similar acuities regardless of the speed and direction of the input 

grating, performing very differently than the real lamina BNN calcium signals. On the 

contrary, the 7-photoreceptor model’s L2-outputs have a broader acuity spectrum, which 

appears to be more similar to the experimental acuities (fig. Figure 36A). This 

characteristic did not change when fine-tuning (i.e. training again the pre-trained models) 

on only the hyperacute part of the dynamic grating as input (Figure 36B). 

Additionally, this model could generate nearly as acute responses as the most acute 

responses measured experimentally (on the fly used for training these models), as shown 

in Figure 36C. 

3.3.6 Microsaccades help to produce hyperacuity 

When comparing the microsaccade-less and microsaccadic models, I found that about 

half of the neurons did not show hyperacuity when the microsaccades were blocked. 

However, when microsaccades were allowed, almost all the neurons showed hyperacuity 

(see Figure 36C). In particular, when fine-tuning the models on hyperacute data only, 

every L2 neuron of the microsaccadic models showed hyperacuity. 

3.3.7 Microsaccade-less models struggle to reproduce the experimental orientation 

specificity 

Models with blocked microsaccades (i.e. static sampling) showed poorer acuity than 

microsaccadic models (i.e. dynamic sampling) , and their highest-acuity orientations were 

very unaligned with the experimental orientations (Figure 36E). The other models showed 

the highest-acuity orientations slightly closer to the experimental orientations but without 

significance. 

3.3.8 Multi-photoreceptor models show naturalistic orientation-specificity when 

fine-tuned 

Surprisingly, fine-tuned models gave some unexpected results. Firstly, the acuity was 

worse for the 7-photoreceptor model when fine-tuned, while its orientation-specificity 

settled very close to the experimental orientations (Figure 36DF). I suspect the model had 

found a better overall combination of its parameters (Figure 41), representing the 

experimental data more naturally (hence the very realistic orientation-specificity). Still, 

more training would be needed to show hyperacuity as well. Secondly, while the single-
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photoreceptor microsaccadic model has a better acuity after fine-tuning, the orientation-

specificity gets further from the experimental orientations. 

 

 

Figure 36: Role of microsaccades and neural-superposition to reproduce the experimental 
acuities and orientation-specificities. 
 Left column: models trained on the 32-dynamic-grating dataset. Right column: models of the left 
column after an extra training (fine-tuning) on the hyperacute part (only) of the dynamic gratings. 
(A,B) Acuity distributions of all the responses for all the single-photoreceptor-saccade-less, single-
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photoreceptor-saccadic and 7-photoreceptor-saccadic models (ordered from left to right). Red 
dotted line: hyperacuity limit (4.5°). Light-red region: Hyperacute region. (C,D) Same as above, but 
showing the highest acuity for each model’s L2 neuron. Hori ontal bar: mean. Error bar: standard 
deviation. (E,F) Absolute differences between the experimental highest-acuity orientations and the 
models’. Error bars: standard deviation. 

3.3.9 Multi-photoreceptor model’s responses are shaped realistically 

Since the multi-photoreceptor model is the only model capable of showing naturally (i.e. 

without additive fine-tuning training) similar acuities as the real acuities (Figure 36C), I 

asked whether the shape of this model’s response resembled more accurately the real 

responses. To answer this question, I compared the responses of each of the three models 

to the first three bars of the dynamic gratings going to the four cardinal directions (Figure 

37ABC) with the real responses measured experimentally (Figure 37D). I chose these first 

peaks explicitly as their shapes are easier to distinguish (as they are the biggest). I found 

that: 

• When the model is more realistic (Figure 37 top to bottom), the peaks show a more 

pointy shape, similar to the actual response shape. 

• The model detects the bar stimuli earlier.  

• The model’s peak responses match more accurately the experimentally recorded 

real peak times. I quantified these time differences in Figure 38. 

 



75 

 

 

Figure 37: The 7-photoreceptor model predicts the most accurate shape of L2-response. 
 (A) Single photoreceptor static model responses to seconds 1 to 5 of the dynamic grating stimulus 
going towards 4 different directions (shown at the top). The line is the mean response of four L2 
neurons. The margin shows the standard deviation. (B) and (C) Same as (A) but for the single 
photoreceptor microsaccadic and 7-photoreceptor microsaccadic models, respectively. (D) Calcium 
fluorescence variation of the actual fly to the same stimuli. Red lines: times of experimental peaks 
in the responses. Blue bars: times of the first peak in the models’ responses. 
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Figure 38: The peaks in the 7-photoreceptor model match most accurately the experimental 
peaks.  
Distributions of relative (to the local wavelength) differences between model output peaks and 
experimentally observed peaks shown for the single-photoreceptor static (left), saccadic (middle) 
and 7-photoreceptor models (right). Here, the first three peaks for each response are examined. 
Positive/negative values mean the peak is late/early compared to the actual peak. Box: quartiles. 
Line: Median. Dot: Mean. Bar: Standard deviation. 

These results show microsaccades of multiple photoreceptors (cf. Chapter 1) in neural 

superposition accentuating LMC responses. Moreover, photoreceptor movements can be 

induced by microsaccades of other photoreceptors sharing the same ommatidium but not 

the same receptive field (Figure 25). Thus, some photoreceptors can move even before 

receiving light input. 

3.3.10 The BNN-inspired ANN can predict synapses strengths and types 

The model learnt the ANN’s connection weights during training. Their values were real 

numbers, which can be as large or small as needed, negative or positive (see the Material 

and Methods section). Hence, the model learnt each connection's strength and type 

(excitatory or inhibitory). I allowed the ANN to learn independent values across different 

cartridges and synapses of the same neuron. Then, I measured the resulting learnt 

weights after averaging them across 8 models sharing the same connectome (although 

different photoreceptor models) to see if some weights consistently converged to the same 

type and strength. To do so, Figure 39A shows the averaged connection weights with their 

coefficient of variation (the latter value gives an idea of the relative variations of each 
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weight value across all models). As the lamina is retinotopically (and its cartridges 

stereotypically) structured, I would expect connections to be the same from one cartridge 

to another (when ignoring any side-flank effects). Hence, Figure 39B shows the average 

of cartridges across all cartridges of all models.  

 

Figure 39: Learnt weights across all models. 
 (A) Left: schematic of the 8 cartridges with the connections used in the ANN. Middle: Connection 
matrix of the ANNs weights averaged across all the models. Right: Connection matrix of the ANNs 
weights’ coefficient of variation across all the models. Each matrix's coordinates (modulo 7) 
represent the neuron name when assigned following this order (P, C3, C2, L4, Am, Lawf, L2). (B) 
Same as above but calculated across single cartridges. 
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3.3.11 Synaptic type prediction 

Neurons communicate by exciting or inhibiting each other, with both functions needed to 

balance the network’s synaptic load. Table 1 summarises the Drosophila lamina neurons’ 

neurotransmitters (considered in the current literature). Histaminergic photoreceptors and 

GABAergic C2 and C3 neurons inhibit their postsynaptic neurons, while L4 and the Large 

Wide-Field neurons release the excitatory acetylcholine (Kolodziejczyk et al., 2008). L2 

and L4 release Glutamate, which can be either excitatory or inhibitory. However, current 

evidence implies that Glutamate is excitatory in the early visual pathway (Deng et al., 2019; 

Zheng et al., 2006). 

I asked whether the BNN-based ANN models showed synaptic connection signs (or 

polarity) consistent with the known Drosophila neurotransmitters. As I allowed the network 

to learn the connection weights and signs for each synapse, some of the final weight signs 

differed across different cartridges and different postsynaptic neurons. Thus, I compared 

real neurotransmitter types after averaging the signs of the postsynaptic connection 

weights of each neuron learnt across all BNN-based ANN models. 

Generally, the model weights seemed primarily inhibitory (Figure 39 shows mostly blue 

colours). L2 monopolar cells were the only ones with positive postsynaptic connections. 

This finding is consistent with their Glutaminergic excitatory feedback (Table 1).  However, 

L4 and the Large Wide-Field neurons showed negative postsynaptic weight signs that did 

not match the real transmitters released by those cells. Additionally, the model makes Am 

and C2 postsynaptic weights converge to zero, giving less importance to these cells. The 

caveat here is that 2-photon Ca2+-imaging can only track relatively slow (integrative) 

synaptic events. Thus, this method is unlikely to resolve fast (derivative) synaptic dynamics 

accurately, including the polarity of signals driving the dominant voltage transients (Zheng 

et al., 2006, 2009). 

Figure 15 shows that nearly all connection weights consistently converged to somewhat 

similar values across different model initialisations. In particular, 3 connections were learnt 

with strong consistency:  

• Photoreceptors to L4 

• L2 to L4+ (i.e. L4 of the neighbouring cartridge) 

• L4+ to the photoreceptors 

In contrast, significant variations after convergence were seen in: 
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• The connections from/to Amacrine cells 

• Almost all the connections to L2  

• The connection from C2 to the Large Wide-Field neurons  

Overall, the BNN-based ANN model found combinations of connecting weights that 

differed from the real connection types (with some additional high-variation convergences). 

Hence, this finding indicates that multiple combinations of neurotransmitters can generate 

responses similar to the L2 responses to the dynamic gratings, as long as the 

photoreceptor outputs and L2 feedback match the actual neurotransmitters. 

 

Table 1: Neurotransmitter predictions.  
The prediction is the average postsynaptic weight from Figure 39B. Second column. References: 
Kolodziejczyk et al., 2008;Deng et al., 2019; Zheng et al., 2006. 

 

3.3.12 Synaptic strength prediction 

A more accurate and quantifiable way to compare the learnt connectome with the actual 

connectome is to compare the relative ANN weight values within one cartridge with the 

relative number of synapses available (Rivera-Alba et al., 2011). Figure 40 compares both, 

attributing light colours to large absolute weight values or many synapses for the ANN and 

real connectome. 

Overall, the connections the ANN values the most after training seem to be very different 

from the actual number of synapses in the real connectome. For example, among the 

connections going to the ANN’s L2 neuron, the photoreceptor inputs were by far the 

strongest, whilst the rest of the neurons had much weaker connections (Figure 40B). 
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However, the model learnt the importance of the Large Wide-field neurons and the 

neighbouring L4, as in the real connectome (Figure 40BC). 

 

Figure 40: Learnt weights' strengths compared with the real connectome. 
 (A) The connection matrix of the ANNs weights averaged across all the models, for which the 
colour shows the absolute weight value. Each matrix's coordinates (modulo 7) represent the neuron 
name when assigned following this order (P, C3, C2, L4, Am, Lawf, L2). (B) Same as above but 
calculated across single cartridges. (C) The number of synapses in the lamina. Data retrieved from 
the Material and Methods section of Rivera-Alba et al., 2011.  

In Figure 39 and Figure 40, we can see the lateral L4 connections’ side-flank effects and 

the photoreceptors’ postsynaptic connections. Indeed, on the sides, the lateral L4 

connections (particularly L4+ to photoreceptors and L2- to L4) were weaker than in the 

7 14 21 28 35 42 49 56

7

14

21

28

35

42

49

56

P

L4

C3
A

mC2

L2

P

L4

C3
A

mC2

L2

P

L4

C3
A

mC2

L2

P

L4

C3
A

mC2

L2

P

L4

C3
A

mC2

L2

P

L4

C3
A

mC2

L2

P

L4

C3
A

mC2

L2

P

L4

C3
A

mC2

L2

P

L4

C3
Am

C2

L2

P
o

s
t-

s
y
n

a
p
ti
c
 n

e
u
ro

n

Pre-synaptic neuron

Average weights accross models

-0.9

-0.5

-0.2

0.2

0.5

0.9

Weight value

A

B

C P

C3

C2

L4

Am

Lawf

L2

Pre-synaptic neuron

-0.9

-0.5

-0.2

0.2

0.5

0.9

Weight value

Average weights across cartridges VS Real synaptic numbers

P
-

C
3

-
C

2
-

L
4
-

A
m

-
L

a
w

f-
L
2
- P

C
3

C
2

L
4

A
m

L
a

w
f

L
2

P
+

C
3

+
C

2
+

L
4
+

A
m

+
L

a
w

f+
L
2
+

P

C3

C2

L4

Am

Lawf

L2

P
o
s
t-

s
y
n
a
p
ti
c
 n

e
u
ro

n

0

2

4

6

8

10

# of synapses



81 

 

centre, whereas the photoreceptors generated stronger responses. Hence, L4 seemed 

essential to reproduce the experimental data (as long as the corresponding cartridge is 

encapsulated between other cartridges). 

3.3.13 The role of Amacrine cells is particularly well described with the multi-

photoreceptor model 

Finally, I asked whether the learnt weights varied between different photoreceptor model 

types. I used the same 3 different photoreceptor models as the ones used in Figure 41. I 

found that the weights learnt are very similar between the two single-photoreceptor models 

(Figure 41BD). However, the 7-photoreceptor model learnt slightly different weights, most 

of them being closer to the number of synapses we observe in the actual connectome 

(Figure 41FH). For example, Amacrine cells seem to have a lot of presynaptic connections, 

which the latter model seemed to reveal more than the other two models. The 7-

photoreceptor model is also the only one that gives a higher value to the lateral L4 to L4 

connections, as it happens to be in the real connectome. The single-photoreceptor models 

both showed a stronger lateral L2 to L4 connection, which is also true in real flies. 

 

Figure 41: Comparison of the learnt weights between different photoreceptor models.  
(A) Single-photoreceptor-saccade-less model. (B) Connection matrix of the weight values averaged 
across single cartridges, for which the colour shows the absolute value. (C) Single-photoreceptor-
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saccadic model. (D) Same as in (B) but using the models in (C). (E) 7-photoreceptor-saccadic 
model. (F) Same as in (B) but using the models in (E). (G) Experimental data. (H) The number of 
synapses in the lamina. Data retrieved from the Material and Methods section of Rivera-Alba et al., 
2011. 

Overall, the BNN-like 7-photoreceptor model best reproduces the experimental acuity, 

orientation specificities and synaptic distribution when trained on the experimental L2 

responses to dynamic gratings. 
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3.4 Discussion 

Initially, I made a straightforward model of L2 neurons using a weighted sum of increasing 

and decreasing exponentials to try and reproduce the experimental responses of the L2 

axon-terminals.  

• 𝐿2(𝑡) = ∑ 2𝑓𝑖[𝑒−(𝑡−𝑖)𝜆𝑑 − 𝑒−(𝑡−𝑖)𝜆𝑟]𝑡
𝑖=1 , 

• Where 𝑓𝑖 = (𝑃(𝑖) − 𝑃(𝑖 − 1))
(1+𝑠)𝑑+1−𝑠

2
, 

• With 𝑠 = 𝑠𝑖𝑔𝑛(𝑃(𝑖) − 𝑃(𝑖 − 1)) 

I had several problems related to this model. Firstly, the responses seemed to contain a 

low-frequency sinusoid which I do not have in the real L2 responses. Secondly, the 

resolvability dropped much faster than for real L2 neurons. I thought that using 

photoreceptors’ receptive field motion could improve the results. But our current findings 

invalidated this idea. These discrepancies were the primary reasons I used a BNN-inspired 

ANN to model the data. 

Even though the final model follows mechanisms that are far more similar to the actual fly 

brain workings compared to the previous photoreceptor/lamina models, I have still 

simplified much of what is observed in the real world. First, the photoreceptor model I used 

is inspired by the photomechanical microsaccadic movement model (Kemppainen et al., 

2022), which, for instance, involves 3D Gaussians receptive fields instead of 2D 

Gaussians used here. Second, I did not consider the 8 photoreceptors inside each 

ommatidium. The reason for this was that R7 and R8 have the same receptive fields and 

are mostly feeding the colour-involved channel. Third, the ANN I use to model the lamina 

layer also strongly simplifies the mechanisms occurring there. For example, the model did 

not consider the propagation time of information between two neurons, although we know 

that the fastest communication happens in gap junctions at ~120 m/s (Saint Marie & 

Carlson, 1985). Accordingly, R7 and R8 gap-junctions channel information to R1 and R6 

photoreceptor axon terminals, accentuating their responses, just before the LMC synapses 

(Wardill et al., 2012). Finally, the model’s hyper-parameters (such as activation functions, 

optimiser and weight initialisation) are the traditional ones used in current artificial 

intelligence (e.g. reLU and sigmoid, Ding et al., 2018). These simplifications mean that I 

must be careful about the conclusions I draw on the resulting weights when I compare 

them with the neurotransmitters and the number of synapses observed in the lamina. 
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However, those simplifications enabled faster model training and evaluations, making the 

model more usable and adaptable for neuroscience/AI-related purposes. Typically, we 

used 20 epochs (Figure 31) which took about 6 hours for the single-photoreceptor model, 

and 2 days for the 7-photoreceptor-model. 

A simplification, which might have a big impact on the model outputs and overall 

conclusions, is that the junction between the photoreceptor model and the lamina model 

is made through the artificial neurons P (Figure 30D). In my model, one artificial neuron P 

gathers all the inputs from the photoreceptors. Hence, in the case of the 7-photoreceptor 

model, I lose some information (maybe crucial) by sending the aggregation of the 7 

photoreceptors output passed through the P neuron’s activation function instead of going 

directly to each of the connected lamina neurons. This simplification was done because of 

training constraints. 

The models used in the first figures are much more simplified than the ones used in the 

last figures. This difference was because the latest models were not fully implemented at 

the beginning and were also very time-hungry when training adequately. Nevertheless, I 

kept the first figures as they brought about interesting insights to compare the different 

connectomes. 

For the 7-photoreceptor model, I had to choose the initial photoreceptor receptive field 

positions based on a hexagonal lattice (see Figure 24B). Many issues arise from this 

constraint. Firstly, I chose a pattern that matched best the pattern on the measured 

positions of the photoreceptors inside every ommatidium of both eyes (Figure 24A). 

Because the recorded L2 axon terminals were next to one another, I assumed their 

connected photoreceptors would be in neighbouring ommatidia too. However, since the 

two-photon recording plane can only be a section of the L2 axon-terminal population, it is 

unclear whether the alignment is along the hexagon's long or short axis (see Figure 42). 

I went for the second option, as it seemed more intuitive to me, but also because it saved 

50% of computation time for training and evaluation. Next, the experimental receptive field 

positions do not look like they are aligned (see Figure 26). Thus, I had to infer an 

approximation for the hexagonal lattice using a Principal Component Analysis (PCA) 

method. I understand that this technique is questionable as, for some flies, it creates a 

hexagonal lattice with a PCA direction far from expectations. An alternative could have 

been to use the average position of the experimental receptive fields and draw the lattice 

following the pseudo-pupil alignment mapping in Figure 42A. However, the receptive field 
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positions do not remain the same during training, so I considered those approximations to 

be fixed naturally during learning. 

 

Figure 42: Multiple options for ommatidia-pattern choice. 
 (A) Axis (black arrow) of the 7 neighbouring ommatidia feeding to the same cartridge, located near 
the recorded-L2 receptive field locations. Black circles: ommatidia pattern experimentally measured 
from the pseudo-pupil imaging (Kemppainen et al., 2022). (B) One option of ommatidia-pattern 
choice is that the alignment of the L2s’ feeding ommatidia is along the short hexagon axis (option 
used in the model). (C) Another option is to align them along the long hexagon axis. 

 

As an output for the model, I used the value of the artificial L2 neuron, normalised between 

0 and a learnt positive value. Unfortunately, this procedure lacks the GCaMP Ca2+-

indicator component used when collecting the experimental L2 responses. Hence, it may 

create a gap that the model cannot fill when trying to reduce the loss. However, I showed 

in chapter 2 that the used GCaMP Ca2+-indicator was fast enough to measure a fly’s whole 

acuity range.  

To model the lamina layer, I used an ANN, in which the connectome was similar to the 

real lamina (Figure 28) (Rivera-Alba et al., 2011). However, the lamina connectome is not 

an isolated closed system but should theoretically involve the whole fly brain. One has to 

draw the limit somewhere, and it could well be that more neurons in other optic lobes are 

strongly involved in the L2 activity (Wei et al., 2020). I used every neuron directly 
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connected to both the photoreceptors and the L2, as it is believed that indirectly connected 

neurons usually have only a weak influence on each other. 

The ANN connectome follows the published description of the lamina layer (Rivera-Alba 

et al., 2011). However, one must remember that these connections have been inferred 

from a single cartridge. Hence, the model’s connectome could be missing some contacts 

that, by chance, were missing on this single cartridge. In particular, lateral connections 

across distant cartridges are necessarily missed in this paper. Besides, the number of 

synapses (used as a final comparison in Figure 40 and Figure 41) could vary from one 

cartridge to another (S. Y. Takemura et al., 2015). 

When comparing the models’ performances to reproduce the experimental data, one must 

remember that the number of parameters is not the same across all models. For instance, 

𝐶𝑑𝑒𝑛𝑠𝑒 has a much higher amount of parameters than 𝐶𝑟𝑒𝑎𝑙. Typically, heavy models could 

struggle to converge to the global minima (e.g. higher chances to converge into local 

minima because of the higher dimensional parameter combination space, overfitting, etc.). 

Note that 𝐶𝑐𝑜𝑙𝑢𝑚𝑛𝑠 also had more parameters than 𝐶𝑟𝑒𝑎𝑙. Also, the photoreceptor models 

had variations in their parameter numbers; for example, the microsaccade-less models 

lacked the trainable microsaccade vector, unlike the microsaccadic models. However, the 

number of parameters remained small (<400) compared to the dataset given to the model. 

The only times this issue can be significant is when I used the fully connected 

photoreceptor to the screen or when using 𝐶𝑑𝑒𝑛𝑠𝑒, as the number of parameters is more 

than 1,800. To avoid any comparison issues between 𝐶𝑟𝑒𝑎𝑙 and 𝐶𝑟𝑎𝑛𝑑𝑜𝑚, I attributed the 

same number of parameters 𝐶𝑟𝑎𝑛𝑑𝑜𝑚  as there are in 𝐶𝑟𝑒𝑎𝑙  (see Material and Methods 

section). 

The dataset used for training the models was relatively small (only 32 recordings), and no 

repetitions were made for each stimulus (only one recording per stimulus). In contrast, the 

responses of the L2 terminals are subject to fast dynamic adaptation/processing (that can 

be [mis]interpreted as noise) and maybe some random processes, which make them 

imperfectly repeatable. Additionally, I used only two flies (but mainly one fly) for the training 

dataset. Hence, the model I created might be very specialised to the used dataset. 

To avoid too strong data specialisation, I pre-processed the data before passing it on to 

the model. Two major modifications were the normalisation (in the sense of scaling 

between 0 and 1) and the flattening (see Material and Methods section). Firstly, the 
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variations in amplitude measured in the actual L2 responses depend strongly on the 

GCaMP fluorescence strength, which decreases over time. Because this phenomenon 

cannot be explained with the type of model I have, I normalised the data. Secondly, light 

adaptation and/or calcium indicator time-constant induce an initial substantial calcium rise 

in the L2 responses. Since our model was not designed to reproduce it, I artificially 

flattened the data. These two methods made the data more standardised and acuity-

focused. However, we need to bear in mind that I might have lost some important L2-

physiological properties through this process. 

The batch size was chosen empirically, such that:  

• the training process did not take too much time (which happens in the case of too 

large batch size) 

• the model did not overfit (which happens in the case of too large batch size) 

• the training loss value was not subject to strong fluctuations (which happens in the 

case of too small batch size) 

• the training loss value did not diverge (which happens in the case of too small batch 

size) 

(Y. A. Lecun et al., 2012; Pape et al., 2007) 

Because the model is a recurrent neural network, its response depends on the inputs and 

a state (Jain & Medsker, 2000; see Material and Methods section). Since the state was 

empty at the beginning of the model evaluation, the initial response is incoherent. Hence, 

during the training process, the loss did not consider a warmup period corresponding to 

the first 0.04 s of the input time series. 

All the models do not show OFF responses at the L2 level. Several factors might be 

involved in this particularity. One is that the receptive field locations are learnt during the 

training process. Thus, the model might sometimes learn to move the receptive field 

instead of changing the weights’ polarities. Hence, I do not want to conclude with 

confidence that the sign of the resulting averaged weights of the models means that the 

model learnt neurotransmitters’ types. Instead, I put more importance on the relative 

differences between the signs of the weights (see, for example, the explanation for Figure 

39). 
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As seen in Figure 39 and Figure 40, the model final weights (and probably output) are 

subject to side-flank effects caused by lateral interactions. Hence, it could have been more 

sensible to train the model on the central neurons only. To a larger extent, I can imagine 

that every model neuron is subject to side-flank effects along the axis perpendicular to the 

L2 alignment. Thus, one could think of adding surrounding neurons along both axes to 

avoid side-flank effects (the more, the fewer side-flank effects). 

I aimed to have a realistic photoreceptor model to feed the lamina model because the 

lamina model's weight combination was likely to depend on it. Typically, when fed by an 

unrealistic photoreceptor model, the lamina model would not represent the actual lamina 

physiological structure. For example, the fully connected photoreceptor filters are very 

parameter-heavy, implying that, in reality, the photoreceptors do part of the jobs previously 

considered for the lamina only. For instance, the centre-surrounding mechanism in the 

lamina layer (Freifeld et al., 2013b) is explained with a ‘Mexican hat’ type of receptive field 

for fully connected photoreceptor filters (see Figure 43). 

 

Figure 43: Fully connected photoreceptor layer learns centre-surrounding mechanism. 
 (A) An example of the learnt weights of a fully connected photoreceptor model that resembles a 
Mexican hat. (B) An example of a learnt multivariate-Gaussian photoreceptor model in which the 
centre-surrounding mechanism cannot be learnt. 
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More repetitions would need to be done (requiring maybe a more optimised algorithm for 

less time processing) to increase the confidence in the conclusions I made regarding the 

importance of the different static lamina models (Figure 32) and the significance of 

microsaccades for the final model (Figure 36). In particular, only one training was done 

for the 7-photoreceptor microsaccadic model. 

The microsaccades of the two 𝐶𝑐𝑜𝑙𝑢𝑚𝑛𝑠  models in Figure 35 show very similar learnt 

directions, whereas the other models showed variations across trials. This unexpected 

result likely implies that only lateral connections enable multiple microsaccade 

combinations to reproduce the experimental data. In particular, the photoreceptor 

microsaccades influence the lateral cartridges as well. 

A considerable proportion of the trained models (around 10%) showed high-frequency 

fluctuations in the responses (see Figure 44). I usually saw this phenomenon happening 

before divergence. However, some models stabilised whilst keeping these fluctuations in 

the responses. Since these strongly affected the resolvability analysis, I discarded these 

models. 

 

Figure 44: Example of fluctuations in a model's response. 
 (A) Response of a model (in black) to a dynamic-grating stimulus. Green traces: experimental data 
used for training. (B) close-ups of fluctuation periods. Y-axis is from 0 to 1 for A and B-left. Y-axis 
is from 0 to 0.5 for B-right. 

The L4 asymmetrically connects lateral cartridges: it receives inputs from the L2 of a 

neighbouring cartridge (along an axis, say x) and from the L4 of the neighbouring cartridge 

(along a perpendicular axis, say y). It outputs to the photoreceptors (R1, R3, R4, R6), L2, 
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L4, and Am of the opposite neighbouring cartridge (along x) and to L4 of the opposite 

neighbouring cartridge (along y) (Figure 45). However, these are only relative axis. 

Because of difficulties in determining the orientation of the x and y axis corresponding to 

the recorded L2 cells, I arbitrarily chose only one axis (x) and two possible models: 𝐶𝑟𝑒𝑎𝑙
𝐿  

for x, and 𝐶𝑟𝑒𝑎𝑙
𝑅  for opposite-x. Note that the Lamina connectome (Rivera-Alba et al., 2011) 

shows almost a 90° symmetry in the lateral L4 connections (particularly for the neurons 

used in our model). Thus, choosing the x or y axis should not matter. 

 

Figure 45: L4 lateral connections depend on axis orientations.  
(A) Table of synaptic connections in the Lamina layer (Rivera-Alba et al., 2011), where L4 lateral 
connections are highlighted. (B) Representation in 2-dimension space of the L4 lateral connections. 
It displays only the connections coming from/to the L4 of the central cartridge. Red dotted arrows: 
arbitrarily chosen axis for x and y (used in table A). 

I display below the weights learnt from different models (Figure 46). 
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Figure 46: Learnt weights of the 3 different photoreceptor models. 
 (A) Connection matrix of the weights averaged across all the single-photoreceptor-saccade-less 
models. (B) Same for the single-photoreceptor-saccadic models. (C) Same for the 7-photoreceptor-
saccadic models. Each matrix's coordinates (modulo 7) represent the neuron name when assigned 
following this order (P, C3, C2, L4, Am, Lawf, L2). 
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To push the model to learn stronger hyperacuity, I also trained it on a fly which hyperacuity 

was one of the strongest I have measured during this PhD (1.96±0.13deg). In this case, I 

see that the single-photoreceptor models learn stronger acuity than the one measured in 

Figure 36 (Figure 47). Yet, surprisingly, the 7-photoreceptor model’s acuity drops heavily. 

One possible explanation is that I used the same hexagonal-lattice pattern in Material and 

Methods (Figure 24B, Figure 27A) when training the model on data pooled from the right 

eye of a fly (e.g. Figure 47). In contrast, this fly’s recorded neurons were located in the left 

hemisphere. This simplification was done assuming that the model could learn the 

symmetry. As another unexpected result, when flipping the hexagonal-lattice pattern for 

the left hemisphere, the model always converged to the local minimum that corresponds 

to the averaged training data. 

 

Figure 47: Visual acuity of the models trained on experimental L2 responses of a fly showing 
strong hyperacuity.  
(A) The acuity distributions of all the responses for all the single-photoreceptor-saccade-less, 
single-photoreceptor-saccadic and 7-photoreceptor-saccadic models (ordered from left to right). 
Red dotted line: hyperacuity limit (4.5deg). Light-red region: Hyperacute region. (B) Same as above, 
but showing the highest acuity for each model’s L2 neuron. Hori ontal bar: mean. Error bar: 
standard deviation. 
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Notably, random connections impacted several aspects of model training (see Figure 32 

and). Firstly, for static models, trained acuities and orientations seem to be further from 

the experimental data when the connectome was random (Figure 32). Secondly, for 

microsaccadic random-connectome models, the learnt microsaccades were less similar to 

real microsaccades (Figure 35). Hence, one can ask if microsaccadic random-

connectome models showed worse acuities and orientations. Figure 48B below shows 

one answer to this question, using the reduced single photoreceptor and the multi-

photoreceptor microsaccade model as the test cases. 

Interestingly, their acuity distributions did not differ from the real-connectome models. 

Additionally, the preferred orientations were not better with random-connectome models 

but slightly worse (Figure 48C). Overall, I did not see a significant effect in the 

microsaccadic model training when the connectome was randomised. Thus, this finding 

suggests that the high-precision visual encoding already happens at the level of 

photoreceptors. 



94 

 

 

Figure 48: Random connections do not affect the model's acuities and preferred 
orientations. 

(A) Acuity distributions of all the responses for the real-connectome and random-connectome 
single-photoreceptor and multi-photoreceptor saccadic models. Red dotted line: hyperacuity limit 
(4.5deg). Light-red region: Hyperacute region. (B) Same as above, but showing the highest acuity 
for each model’s L2 neuron. Hori ontal bar: mean. Error bar: standard deviation. (C) Absolute 
differences between the experimental highest-acuity orientations and the models’. Error bars: 
standard deviation. 
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Finally, the model built in this chapter can significantly improve the current AI used in 

computer vision. Indeed, this model makes a low-parameter (because constrained by the 

structure of the Drosophila visual pathway) representation of visual stimuli in a way that 

maintains the acuity at its best. Hence, this model can be seen as a low-parameter video 

compressor inspired by the fly's long-evolved mechanisms to encode its visual 

surroundings in space and time.  

This thesis was funded by the EP RC program grant ‘Brains on Board’ that aims to build 

artificial autonomous-low-energy drones using the new knowledge from insect vision 

research. This model can be integrated (after some tweaks) into this kind of prototype, 

especially because the compression is likely to be optimised for robots behaving like flies 

(https://brainsonboard.co.uk/). 
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Chapter 4: Hyperacuity in the visual pathway 

4.1 Introduction 

A handful of techniques exist that can improve understanding of how the brains work. In 

the mammalian model systems, for example, fMRI is widely used to record the activity of 

broad regions in the brain. However, for smaller brains, such as those of insects, recording 

techniques like electrophysiology enable more accurate activity estimates at the single 

neuron level. In the previous chapters, I showed how to use 2-photon Ca2+-imaging to 

indirectly measure the activity of multiple individual neurons of the same type (L2 neurons), 

which were first genetically targeted to express a calcium indicator. This approach enabled 

me to infer some of their properties regarding visual encoding and orientation-sensitivity 

shifts between neighbouring neurons. But arguably, measuring the activity of a single type 

of neuron, even as an ensemble, restrains the amount of knowledge one can obtain. 

Indeed, a neuron cannot act independently in the network it is part of, and it is crucial to 

consider the whole network simultaneously as a multi-sensory combinatorial encoder to 

understand the underlying neural communication and computations.  

In this chapter, I aim to unravel (in some detail) how the visual world is encoded throughout 

the whole visual pathway of the Drosophila, using a pan-neural expression of GCaMP. 

Specifically, I will trace how visual acuity information passes through different visual 

neuropils. I will first show that hyperacute communication occurs in every recorded layer 

in this fly strain. Secondly, I will present orientational and directional visual sensitivity 

results in the lamina and medulla circuits and compare these with the corresponding 

photoreceptor microsaccade directions, like in the previous chapter. I want to emphasise 

that this kind of pan-neural analysis is challenging and thus has been attempted here only 

in a limited sense. Issues such as neuron identification, neural activity mixing or functional 

alterations must be clarified in the future. These issues are discussed in the material and 

methods and discussion sections below.  
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4.2 Material and methods 

I performed whole brain 2-photon Ca2+-imaging in flies that express GCaMP6f across the 

entire brain (elav Gal4-line). Neural activity changes (fluorescence signals) to visual image 

motion were imaged using the same 2-photon microscope system and stimulus 

characteristics as for the L2 experiments above. The fly preparations were made as before, 

apart from the bigger cuticle opening, enabling the whole visual pathway imaging. 

4.2.1 Stimulus 

In the visual pathway, different neurons respond to visual stimuli differently. Hence, 

different stimulus/response analysis combinations will be relevant for different neurons to 

infer whether they show hyperacute responses to ultra-fine visual patterns. The dynamic-

wavelength grating used for L2 acuity monitoring is well suited to monitor the acuity 

responses in many neurons in the visual pathway. It leads to local luminance changes 

(stimulating most of the lamina/medulla neurons) and local/global motion stimuli 

(stimulating most of the lobula/lobula plate) neurons. A coarse wavelength should trigger 

a significant response at each layer. In contrast, if the wavelength is small enough, it 

should trigger similar responses (noise and spontaneous activity) as a grey frame. Hence, 

visual acuity can be estimated by characterising the smallest wavelength triggering a 

response distinguishable from noise. 

 

We chose accordingly a growing, dynamic wavelength, in which properties follow equation 

(11) of chapter 2, but with 𝜆0 < 𝜆1 (Figure 49). This way, the wavelength is multiplied by a 

constant factor frame after frame, enabling an accurate estimate of the point where the 

grating starts to induce a response in the visual pathway. 
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Figure 49: Description of the 4-parameters widening grating.  
(A) Grating design. The wavelength widens from λ0 to λ1. Red rectangle: Screen (what is seen by 
the fly). Red arrow: Grating motion direction, speed is constant. (B) The wavelength at each dark 
bar. (C) Wavelength over time. 

 

4.2.2 Neuron activity segmentation 

Since the Elav flies express the calcium indicator in every brain cell, I built a Python 

algorithm to detect and classify neuronal activity across the recording plane. Like the L2 

activity analysis, I tiled the recording plane with arbitrary-sized square ROIs (I chose 16x16 

pixels squares, Figure 50EF).  

For each ROI, the fluorescence intensity variations 𝐹 were quantified after subtracting the 

background (mean intensity of a corner of the recording plane) from the mean intensity of 

the ROI. Ca2+ variations were then calculated according to the following equation: 

Δ𝐹

𝐹
=

𝐹−𝐹0

𝐹
,      eq. 4-1  

where 𝐹0 is the mean intensity before the visual stimulation. 

I selected an arbitrary number of squares with the highest Ca2+-variations standard 

deviations. I then grouped the ROI activities (Figure 50C and E) using a clustering 
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algorithm that utilises the function TimeSeriesKMeans of the Python package 

tslearn.clustering. The number of clusters chosen was 20. The maximum number of 

iterations was 50, and the metric used was Euclidean. 

I monitored 250 ROIs' activities for each recording, clustered in 20 different groups. The 

stimuli were presented multiple times to the fly by varying the speed (usually 𝑠 =20, 30, 

60°/s) and the motion direction (usually every 15 or 30°). 

 

4.2.3 Response analysis 

For the sake of smoothness in the response, I constantly analysed the mean response for 

each cluster. The shape of the response differed regarding the type of cluster. As seen in 

the L2 experiments, this grating usually induced a succession of peaks in the lamina and 

medulla layer. For these responses, one can use the same method as for the L2 neurons 

to assess the time when the observed ROI starts resolving the grating. In the lobula and 

lobula plate layers, the responsive neurons raise calcium concentration as soon as the 

grating is resolved. However, for several reasons discussed at the end of this chapter, the 

ROI calcium variations in the lamina and medulla also followed an up-trend when the 

grating was resolved. Therefore, I built an algorithm in Python that detects the time of this 

rising. To do so, it first measures the response baseline 𝑏 and its noise level 𝑛 (standard 

deviation of the first 10 s). The algorithm outputs the last time the response is below 𝑏 + 𝑛 

(Figure 50C). 
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Figure 50: Acuity measurement across the optic lobe. 
 (A) Dynamic grating as seen by the fly through three screens spanning 150° x 50°. (B) Stimulus 
value over time. It starts with 5 s of the grey frame, followed by the widening grating explained in 
Figure 49. (C) ROIs' responses to the stimulus. These are clustered into eight groups according to 
the response shape. Colour bars: the colour of the cluster used in E. Red bars: the time the cluster 
starts responding to the widening grating. Grey margin: standard deviation over the cluster. (D) The 
standard deviation of each pixel over the 45 s of recording. (E) The 100 highest average ROIs from 
the tiled D. Each colour of an ROI is in the cluster of the same colour in C. (F) Acuity of each ROI. 
Red circles: tracking of an ROI in its cluster. 

The grating is dynamic, meaning that at a given time, the wavelength is different from one 

point on the screen to another (Figure 50A). Hence, one needs the receptive field location 

to infer the visual acuity given the first time of grating resolving. 

 

4.2.4 Receptive fields location 

Similar to the L2 activity analysis, I calculated each recorded neuron's receptive field 

locations using two stimuli: a single light bar moving back and forth horizontally (e.g. 

Figure 51AB) and another vertically. As an approximation, I considered that the peak 

responses of each ROI (Figure 51C) correspond to the bar reaching the centre of its 
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receptive field. This approach allowed me to reconstruct a good approximation of the 

receptive field boundaries.  

 

Figure 51: Receptive field (RF) measurement across the optic lobe (an example of using 
horizontal bars). 
 (A) A fly sees a single bar through three screens spanning 150° x 50°. (B) Bar motion direction 
over time. The bar takes 15 s to cross the 150° screens. (C) ROIs' responses to the stimulus as 
clustered in eight groups according to the response shape. Colour bars: the colour of the cluster 
used in E. Red bars: the two first times when the bar crosses the cluster's RF. Grey margin: 
standard deviation over the cluster. (D) The standard deviation of each pixel over the 40 s of 
recording. (E) The 100 highest average ROIs tiled over D. Each ROI colour matches the cluster in 
C. (F) Top: each ROI's RF location is represented by colour at the bottom. Note that the stimulus 
in this example only enables horizontal assessment of the RF locations. Red circles: tracking of an 
ROI in its cluster. 

Hence, I have a set of visual acuity heatmaps corresponding to individual neurons in the 

visual pathway, and for these neurons, we know the receptive field location on the screen 

(Figure 51F). Note that this only applies to neurons responsive to the dynamic grating and 

the horizontal/vertical single bars. Many other neurons were only responsive to one of 

those two sets of stimuli and therefore had to be discarded. 
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4.2.5 Most sensitive directions / orientations 

I calculated two values for each heatmap: the most sensitive direction and the most 

sensitive orientation. To do so, I used the same fitting algorithm as for the L2 analysis. 

Hence, for each fly, I have a map of the most sensitive orientations/directions positioned 

at the corresponding receptive field location. 

4.2.6 Identifying the neurons 

Since the Elav-flies express the calcium indicator GCaMP6f in every brain cell, it is 

impossible to identify the monitored neurons accurately. However, specific cues provided 

information about the layer of the visual pathway they are in and sometimes more of their 

properties.  

Certain visual stimuli, such as a fixed wavelength alternating grating (Figure 52AB), 

enabled functional categorisation of the recorded neurons. I used a clustering algorithm 

on the time series to identify neurons' properties and locate them in the tissue. Figure 52C 

shows that some neurons respond to the luminance changes, signifying a low-order visual 

neuron whose dendrites branch in the lamina layer, like the L2 neurons, analysed in 

chapter 2. Others respond selectively to a direction of grating motion, most likely getting 

input from the medulla or lobula layers (these functional properties are reviewed in Borst 

et al., 2010). For example, the third and fourth clusters in Figure 52 show (opposite) 

preferred directions, which suggests that their dendrites reside in the medulla or lobula. 

The second cluster responded to a moving grating, suggesting the medulla location. The 

first cluster responded to each bar crossing the receptive field, characteristic of the lamina 

neurons. These suggestive dynamics matched the neurons' physical tissue locations 

(Figure 52F and Figure 53). 
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Figure 52: ROI functional identification with traditional gratings. 
 (A) A fly sees a single bar through three screens spanning 150° x 50°. (B) Grating motion direction 
over time. (C) ROIs' response to the stimulus was clustered in eight groups according to the 
response shape. Colour bars: the colour of the cluster used in E. Grey margin: standard deviation 
over the cluster. (D) The standard deviation of each pixel over the 40 s of recording. (E) The 100 
highest average ROIs tiled over D. Each ROI colour matches the cluster colour in C. (F) Rough 
estimate of the location of in the lamina and medulla using the characteristics and locations of the 
clusters in C and E. Red circles: tracking of an ROI in a cluster likely to be in the medulla. 

Figure 5 shows three different alignments of terminals, whose locations are consistent 

across the four flies. Therefore, in line with their response shapes in Figure 52, they likely 

indicate the separation between the retinal photoreceptors, lamina, medulla and lobula 

layers.  
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Figure 53: Spatial segregation between the lamina and medulla in 4 flies using tissue cues. 
 Each of the four ROIs represents the calcium activity's standard deviation during 40 s recordings 
in the fly brain, expressing GCaMP pan-neuronally. Each heatmap is a visual acuity heatmap 
corresponding to roughly one neuron. Orange circle: cluster in the Medulla layer. Blue circle: cluster 
in the Lamina layer. 

Note that one cannot conclude whether a neuron is in the OFF- or ON-pathways when 

using grating stimuli. This is because a neuron responsive to a positive edge shows the 

same response as a neuron responsive to a negative edge, shifted by the size of the 

grating bar. Hence, the only way to find this out is to use flashing stimuli. 
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4.3 Results 

 

Figure 54: Pan-neuronal GCaMP6f expression visualised in the optic lobe. 
 A piece of tissue at the back of the fly head is removed to enable 2-photon-imaging of the calcium 
activity. The image shown here is the standard deviation of the calcium activity of a 40 s recording. 

4.3.1 Visual hyperacuity overall in the visual pathway 

I presented to a fly dynamic gratings moving in 16 different directions (evenly spanning 

360°) at either 20 or 30°/s. The wavelength gradually widened with time, starting at less 

than 1° and ending at more than 10° (Figure 49). Such stimuli induce a response in multiple 

low- and high-order neurons in the visual pathway (Figure 50). Indeed, for a long enough 

wavelength, some low-order neurons respond to the luminance change induced by the 

moving grating and some higher-order neurons to its local or global motion. For all the 

recorded neuron activities, I noticed that the calcium level either rose at a particular time 

(a sign of a responsive neuron) or did not show any obvious correlation. For the responsive 

neurons, I could infer the time when the neurons start to resolve the grating. 
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Figure 55: Visual acuity in the optic lobe for stripes moving in 8 directions at 20 °/s.  
Each ROI shows the acuity of multiple pixelated regions to a specific stimulus. Arrows: direction of 
the stimulus. 

I also presented horizontal and vertical bar-stimuli, crossing the screen at 5 °/s back and 

forth. These stimuli induced either two peaks in the calcium signal or no obvious correlation 

(Figure 51). I could infer the receptive field position for the responsive neurons by knowing 

the screen location to which they were responding. 

Hence, for the neurons responding to both the dynamic gratings and single bar stimuli, I 

could accurately infer their visual acuity (the smallest inter-bar distance resolved) for all 32 

directions/speeds used (Figure 55). Thus, as in Chapter 2, each neuron corresponds to a 

visual acuity heatmap (example of one fly in Figure 56A). I defined the acuity of a neuron 

as being the highest visual acuity for each ROI across responses to all stimuli.  

I noticed that the monitored neurons typically gathered in two separate groups. 

Considering the visual cues and the types of responses (see Figure 52 and Figure 53), I 

could conclude that one group was in the lamina and the other in the medulla. 
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I collected data from 4 flies, of which more than 100 ROIs were responsive to all stimuli. 

The average acuity in the lamina and medulla across all flies was in the hyperacute range, 

with slightly finer acuities in the lamina. However, there was no significant difference 

between the two layers (Figure 56Figure 56B). Individually, I found that each fly showed 

<4.5° mean acuity (i.e., less than the average interommatidial angle) (Figure 56C), with 

some ROIs responding to <2° inter-bar-distances. Therefore, I can conclude that visual 

hyperacuity also readily occurs within the visual pathway's deeper layers. 

 

Figure 56: Visual acuity in the Lamina and Medulla.  
A. Example of a visual acuity heatmap. The SRA is the minimum value of the heatmap (darkest 
red). B. Average of the SRAs across all the neurons of the four flies per layer. C. Average of the 
SRAs across all the neurons per fly, in the Lamina layer (left) and the Medulla layer (right). Note 
that Fly 4 only has recorded neurons in the lamina (see Figure 53). 

4.3.2 Most sensitive directions/orientations for the whole visual pathway 

Alike the earlier L2 neuron analyses, I then asked whether the recorded neurons showed 

a finer visual acuity for stimuli going in specific directions and if those directions aligned 

with the photoreceptors' saccades directions. 

For each fly, I calculated visual sensitivity heatmaps for about 500 ROIs. By fitting the 

sensitivity with a sinusoidal function, I found that the finest visual acuity orientation (i.e., 
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the smallest fitted visual acuity) was uncorrelated to the photoreceptor microsaccade 

directions (Figure 57A left) and the preferred orientation (Figure 57B left). When 

considering only the fits for which the error was < 12°, I noticed that only about a 5th of the 

ROIs showed a clear preferred orientation (Figure 57A right). Interestingly, these 

orientations primarily aligned with the corresponding photoreceptor microsaccade 

orientations (i.e., their back-and-forth moving directions). However, half of the ROIs 

showed orientations misaligned more than 30° with the microsaccade orientation. I 

obtained similar results when considering the directions instead of orientations, with still 

half of the ROIs showing preferred directions pointing more than 60° away from the 

microsaccade directions (Figure 57B right). Note that, for directions, I considered fitting 

errors < 24° (Figure 57B, right) because I measured the absolute direction differences, 

which span twice as much space (180°) compared to orientations' orthogonality (90°). 

 

Figure 57: Preferred directions and orientations of all recorded neurons compared to 
photoreceptor microsaccades. 
 A. Distribution of the orthogonality between the preferred orientations and the corresponding 
microsaccade orientations. Left: all orientations. Right: orientations for which the fitting error is 
smaller than 12°. B. Distribution of the absolute angular differences between the preferred and 
corresponding microsaccade directions. Left: all directions. Right: directions for which the fitting 
error is smaller than 24°. 
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4.3.3 Most sensitive directions/orientations per layer 

When only considering the preferred directions and orientations (for which the fitting error 

< 12°), I noticed that the lamina layer showed preferred orientations close to the 

photoreceptor microsaccades orientations. In contrast, the directions seemed 

uncorrelated (Figure 58). Conversely, in the medulla layer, the preferred orientations 

appeared uncorrelated with the photoreceptor microsaccades orientations, whereas the 

directions seemed similar. 

 

 

 

Figure 58: Comparing the preferred orientations/directions to the photoreceptor 
microsaccades in the lamina and medulla.  
A and B (left and middle). Similar distributions as in Figure 57, but within the lamina and medulla 
layers, for which the fitting error <12° (orientations) or 24° (directions). A and B (right). The 
distributions are shown in box plots. 
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4.4 Discussion 

Unlike the L2 analysis, I selected ROIs after tiling the standard deviation plane with 16 x 

16-pixel squares and taking the top 100 squares. For the L2 analysis, I used a more 

accurate algorithm that continuously finds the highest standard-deviation squares in the 

standard-deviation plane. However, in this chapter, the field of view was too large, making 

the latter computationally too costly. Hence, the method I used had some drawbacks. 

Since the used fly line expressed the GCaMP6f-calcium indicator in every neuron, the 

response generated in an ROI is likely to be a mixture of different sections of neurons 

responding differently to the stimulus. However, this was a minor issue as the 

macroscopical responses of nearby neurons were easily analysable using the first raise 

point method (instead of a peak-to-peak resolvability), as explained in detail below. 

Besides the conclusions I make out of this, the macroscopical analysis remained 

conservative for three reasons: 

• The signal-to-noise ratio can only be underestimated, as we might have only 

portions of neurons in each ROI. 

• ON and OFF pathway neurons can cancel each other out when averaged together. 

• Two non-hyperacute neurons averaged together cannot result in a hyperacute 

response. 

Lamina neurons are low-order visual neurons that do not respond to the dynamic-

wavelength grating with an increase in calcium concentration but rather a succession of 

peaks. As shown in Figure 59C, I still measured these neurons' acuity using the first-raise 

point, unlike the L2 analysis done in chapter 2, where I calculated the resolvability of each 

pair of peaks. This is because the analysed ROIs contain mixed activities of several 

antagonist neurons at once, with smaller raise time constants than decay time constants. 

In practice, this gives the succession of peaks an up-trend (see Figure 59C) and enables 

using the first-raise point algorithm. 

In this chapter, we decided to infer the visual acuity of neurons using a widening dynamic-

wavelength grating instead of a narrowing one as previously used in Chapter 2. In the 

previous chapter, using a widening or narrowing stimulus would not have made a 

significant difference: L2 neurons respond symmetrically to widening or narrowing gratings 

since they respond to light decrement, which induces a succession of peaks in the calcium 

response (Joesch et al., 2010b). However, most ROIs chosen in the Elav-flies showed a 

raising point whenever the grating is resolved, where the raise time constant is shorter 
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than the decay time constant (Figure 59A). Some exceptions exist, especially for the ROIs 

located in the medulla layer (see Figure 50C). Overall, it is still easier and more accurate 

to measure the point when the grating starts to be seen than when the grating is not seen 

anymore. 

 

Figure 59: Widening gratings advantages and ROI limits. 
 (A) Two examples of cluster calcium responses to a narrowing grating (top) and widening grating 
(bottom). Gray vertical bar: the point when the grating becomes unresolved. Red bar: the point 
when the grating becomes resolved. The grey bar calculation is less accurate than the red bar 
calculation because the raising time constant is higher than the decay time constant. (B) Example 
of an ROI selection where some ROIs (e.g., those in the red rectangle) share the calcium activities 
from parts of two or more distinct neurons. (C) Two examples of calcium responses of clusters 
showing low-order visual stimulus responses (presence of oscillations). The oscillations follow an 
increasing trend, which enables a valid calculation of the first-time raise point (red and grey vertical 
bars). (D) Location (red circles) in the brain of the two clusters used in C. The images confirm that 
the clusters are in the layer following the photoreceptors, probably the lamina. Note that the gratings 
shown in A and C do not represent the exact pixel value over time but rather give the type of grating 
used. 

As seen in Figure 57, more than 75% of the recorded ROIs did not show a clear preferred 

orientation/direction (i.e., the fitting error > 13% of the space size). This phenomenon also 

occurred in (Kemppainen et al., 2022) but to a lesser extent, where the most sensitive L2 

orientations were calculated. I separately measured the number of clear preferred 
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orientations and directions within the lamina and medulla. Figure 60 shows that the 

medulla neurons usually show a stronger direction and orientation sensitivity than the 

lamina ones. This finding is consistent with the idea that the medulla is the first layer 

housing direction-selective neurons (such as T4 and T5 cells) (Strother et al., 2017; Tuthill 

et al., 2013b). Within the lamina layer, I recorded from ROIs that showed a stronger 

orientation than a direction sensitivity, concurring with the findings of Kemppainen et al., 

2022. These hotspots likely included the photoreceptor, L2, L4, Lawf and amacrine cell 

terminals, with the largest fluorescence changes demarcating Ca2+-dependent synaptic 

transmission. However, the reasons why most neurons did not show a clear 

directional/orientational sensitivity remain unclear. A high signal-to-noise ratio might be 

necessary to measure such directional or orientational sensitivity. Hence, since the signal-

to-noise ratio of the ROIs was lower than in Kemppainen et al., 2022 (as discussed above), 

the hyperacute orientational or directional sensitivity, if there is one, might be hidden in the 

noise. The fact that some ROIs might share the activity of different neurons (Figure 59B) 

can also be a factor in mixed directional sensitivities. 

 

Figure 60: Proportions of good direction/orientation sensitivity fits. 
 Each bar shows the number of ROIs analysed across the four flies per neuropile. In green is the 
amount of ROIs that show a clear (fitting error <13% of the angular space) directional (right) or 
orientational (left) sensitivity. The percentage of green is labelled in the green regions. 
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One needs to measure the RF locations of the recorded neurons to infer visual acuity or 

to compare the direction/orientation sensitivities with the photoreceptors of the same 

cartridges. The stimulus I used to calculate it is limited to the neurons in question. Indeed, 

a single bar does induce RF luminance changes (stimulating lamina neurons) and local 

motion (stimulating medulla), but not global movement (stimulating the lobula). Hence, the 

analysis used in this chapter cannot test the lobula neurons. To be more rigorous, we can 

also ask if the moving bar is relevant for local motion neurons, which are supposed to be 

direction-selective and not respond to the bar in both directions of motion. One can see 

that, even if the clustering algorithm finds some groups of ROIs that show slight direction 

preferences (Figure 51), the average activities of antagonist neurons induce responses to 

both directions. Once one knows the peak response times, an approximation can be made 

regarding the location. Indeed, for L2 neurons, a peak response corresponds to the bar 

leaving the neuron's RF, whereas, for L1, it corresponds to the bar entering the RF. Again, 

since I average multiple antagonist neurons, I considered the peak response as the bar 

reaching the centre of the cluster's RF. Note that inferring the visual acuity of lobula 

neurons is more challenging with the dynamic wavelength grating I used as they do not 

have a local receptive field but respond to the whole grating at once. Since this grating is 

always different spatially at a specific time, it is not known how to measure the acuity in 

such cases. 



114 

 

Conclusion 

The work done during this PhD resulted in novel discoveries regarding the visual acuity of 

some specific interneurons in the Drosophila visual pathway, the L2 neurons. I confirmed 

the recent findings of Juusola’s lab on fly hyperacuity, by showing that these neurons 

respond to hyperacute patterns, respond surprisingly better to specific orientation, and that 

these saccades are mostly aligned with their connected photoreceptor’s microsaccade 

directions. I extended this work to the whole visual pathway using a pan-neuronal calcium 

indicator expression, which confirmed again that hyperacuity is transmitted and encoded 

throughout the whole fly brain. I hope this latter work is going to be beneficial for the brave 

scientists who will dare studying pan-neuronal expressions, which unavoidably are a great 

challenge.  

To make a more concrete use of my findings, I made an Artificial Neural Network, which 

structure is based on the bio-physical properties of the photoreceptor and the lamina layer 

in the Drosophila. This model, trained on the data that I recorded myself during my PhD, 

can predict neural activity at the initial layers of the fly visual pathway and encode ultra-

fine details with low energy requirements. Furthermore, it proved that photoreceptor 

microsaccades are involved in direction specificity and hyperacuity, and that neural 

superposition is likely to be involved in hyperacuity by inducing sharp and fast responses 

to moving edges. Eventually, I hope this model can inspire for computer vision, robotics 

and neuroscience. 
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A Drosophila - drawn by Léïla Roebben  
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