
RoboArch: Architectural Modelling for
Robotic Applications

William Barnett

PhD

University of York

Computer Science

September 2022

Abstract

Robotic systems are being employed in a diverse range of applications,
with both the scale and complexity of their software increasing through
having to operate in unstructured environments and to provide higher
levels of autonomy. In addition, the need for robotic systems to be
verified grows as robots are used in applications where they can have
significant safety implications.

Verification of even small robotic systems software is a challenging
problem. Therefore, additional techniques are required to enable the
practitioners to produce verified robotic systems. The use of model-
driven engineering and domain-specific languages (DSLs) have proven
useful in the development of complex systems in other areas so applying
them to the field of robotics can contribute to the goal of building reliable
and safe systems.

In this thesis we present RoboArch, a notation for describing the ar-
chitectures and patterns of robotic systems software supported by the
formally defined semantics of RoboChart. RoboChart is a DSL for model-
ling the behaviour of robot software controllers using state machines.

We describe RoboArch from the top-down. First, we examine the role
of robotics software architectures in the development of robotic systems
by reviewing five robotics architectures, and five DSLs. Next, for the
layered architectural pattern, the RoboArch notation is introduced; we
provide a metamodel, well-formedness conditions, and transformation
rules to RoboChart. Further, we characterise two patterns: reactive skills
and subsumption, which can be used by a layer.

Finally, we discuss a tool and its implementation for the evaluation of
RoboArch and automation of the rules as model transformations. We
use a case study of a small obstacle avoidance system to demonstrate:
the application of the reactive skills pattern using RoboArch and the
expected properties of the architecture that can be proven using the
generated RoboChart model CSP semantics.

iv

Contents

Abstract iii

List of Tables vii

List of Figures vii

Acknowledgements xi

Declaration xiii

1 Introduction 1
1.1 Motivation . 1

1.2 Objectives and Contributions 4

1.3 Document Structure . 6

2 Modelling Robotics Software Architectures 8
2.1 Robotics Software Architectural Patterns 9

2.2 Patterns of Robotics Software Layers 24

2.3 Domain Specific Languages 31

2.4 Modelling Robotic Systems Using RoboChart 41

2.5 Final Considerations . 49

3 Architectural Patterns for Robotics 51
3.1 RoboArch: Layers . 51

3.2 Rules . 65

3.3 Approaches Used by Layers 73

3.4 Final Considerations . 74

4 Patterns in RoboArch 75
4.1 RoboArch: Patterns . 75

4.2 Reactive Skills . 77

4.3 Subsumption . 83

v

Contents

4.4 Rules . 87

4.5 Final Considerations . 120

5 Evaluating RoboArch 121
5.1 Tool . 121

5.2 Obstacle Avoidance Case Study 133

5.3 Final Considerations . 151

6 Conclusion 152
6.1 Adding Patterns to RoboArch 152

6.2 Summary of Contributions 154

6.3 Future Work . 156

Appendices 157

A Lawn-Mowing System 158
A.1 Assertions . 158

A.2 Results . 160

B RoboArch Rules 161
B.1 Top-Level . 161

B.2 Reactive Skills Pattern . 164

B.3 Functions . 170

C Mail Delivery Case Study 180
C.1 Types . 180

C.2 Reactive Skills: Types . 181

C.3 Reactive Skills: Move D-Skill Machine 182

C.4 Reactive Skills: ColourVision D-Skill Machine 182

C.5 Reactive Skills: MoveToLocation C-Skill Machine 183

C.6 Reactive Skills: SkillsManager Machine 183

D Obstacle Avoidance Case Study 184
D.1 Module . 185

D.2 Skill Explore Assertions . 186

D.3 Skill Proximity Assertions 187

D.4 Skill Move Assertions . 187

D.5 Skills Manager Assertions 188

E Reactive Skills Properties 190
E.1 Skills . 190

vi

E.2 C-Skills . 195

E.3 D-Skills . 196

E.4 Skills Manager . 200

Acronyms 207

References 209

List of Tables

2.1 The patterns identified from the literature. 10

2.2 Robotics architectural pattern summary 22

2.3 The primary concepts of the reactive skills pattern. 26

2.4 The related concepts of reactive skills. 26

2.5 The primary concepts of subsumption. 28

2.6 The related concepts of subsumption. 29

2.7 Feature comparison of robotics DSLs 39

4.2 Mapping of the primary architectural concepts of the re-
active skills pattern to RoboChart. 90

4.3 Mapping of the reactive skills pattern related concepts to
RoboChart. 91

5.1 Summary of verification results for the reactive skills prop-
erties. 150

5.2 Summary of verification results for the reactive skills prop-
erties simplified. 150

vii

List of Figures

List of Figures

1.1 Document overview . 7

2.1 The LAAS architectural pattern layer diagram. 12

2.2 The CLARAty architectural pattern layer diagram. 14

2.3 The CARACaS architectural pattern layer diagram. 16

2.4 The IRSA architectural pattern layer diagram. 18

2.5 The SERA architectural pattern layer diagram. 20

2.6 The environment of the lawnmower robot. 43

2.7 The inputs and outputs of lawnmower robot’s controller
software. 43

2.8 The interfaces and the data types of the lawnmower robot. 44

2.9 The module of the lawnmower robot. 45

2.10 The controller of the lawnmower system. 46

2.11 The state machine of the lawnmower robot. 47

3.1 The inputs and outputs of the mail delivery robot’s con-
troller software. 52

3.2 System metamodel . 61

3.3 Layers metamodel . 63

3.4 MailDelivery RoboChart Module 70

3.5 DeliveryRobot RoboChart Platform 70

3.6 Pln RoboChart Controller 71

3.7 Minimal RoboChart State Machine 71

3.8 Exe RoboChart Controller 72

3.9 Ctl RoboChart Controller 73

4.1 Pattern types metamodel . 76

4.2 Reactive skills metamodel 81

4.3 Ctl RoboChart Controller 95

4.4 C-Skill Determine Location RoboChart Machine 96

4.5 D-Skill Proximity RoboChart Machine 97

4.6 SkillsManager RoboChart overview 98

4.7 SkillsManager DoNextSkill state RoboChart overview . . . 99

5.1 Components of RoboArch and their technological depend-
encies. 122

viii

List of Figures

5.2 RoboArch to RoboChart rule transformation workflow. . . 124

5.3 Component test coverage. 130

5.4 Workflow of a system test. 131

5.5 RoboChart Platform . 140

5.6 RoboChart Module overview 140

5.7 Explore Skill Compute State 141

5.8 RoboChart Control Layer 142

5.9 RoboChart Executive Layer 143

5.10 Skill CSP process input and output events. 145

5.11 D-Skill CSP process input and output events. 147

5.12 Skills Manager CSP Process input and output events. . . . 149

6.1 Workflow for adding a pattern to RoboArch. 153

ix

List of Figures

x

Acknowledgements

I would like to thank my supervisors, Ana Cavalcanti and Alvaro
Miyazawa, for their dedication and guidance throughout this journey.
Furthermore, I would like to thank my colleagues in the RoboStar group
and examiners Leandro Soares Indrusiak and Andrew Butterfield. I
would also like to express gratitude to the UK’s Engineering and Physical
Sciences Research Council (EPSRC) and the Royal Academy of Engin-
eering (RAEng) for the funding they have provided, without which this
work would not have been possible.

Last but by no means least, my friends and family for their continuous
support each in their own individual ways.

xi

xii

Declaration

I declare that this thesis is a presentation of original work and I am the
sole author, except where otherwise stated. This work has not previously
been presented for an award at this, or any other, University. All sources
are acknowledged as references. The material from Chapters 2, 3, and 4

has been accepted for publication as the following work.

[1] W. Barnett, A. Cavalcanti and A. Miyazawa, “Architectural modelling
for robotics: RoboArch and the CorteX example,” Frontiers in Robotics and AI,
vol. 9, 2022. [Online]. Available: https://www.frontiersin.org/articles/10.3389/
frobt.2022.991637

xiii

https://www.frontiersin.org/articles/10.3389/frobt.2022.991637
https://www.frontiersin.org/articles/10.3389/frobt.2022.991637

xiv

1 Introduction

Robotic systems are being used in an increasingly diverse range of applic-
ations, and deployed into more dynamic and unstructured environments.
With autonomy and the ability to operate in close proximity to humans,
there is an increased risk of these systems causing harm. Furthermore,
robotic systems and their software are becoming more complex. We
contribute to the verification of robotic systems using a domain-specific
language with a formal semantics, namely, RoboChart.

We propose an approach to model in RoboChart control software
that employ architectures of wide interest in the robotics community. It
is based on novel domain-specific notation that we call RoboArch. It
embeds architectural concepts and enables the generation of RoboChart
model sketches through model transformations.

This chapter details the motivation and objectives of our work and is
structured as follows. Section 1.1 explains the motivation behind our
work, Section 1.2 specifies the main objectives of our work, and finally
Section 1.3 lays out the structure of this document.

1.1 Motivation

Advances in technology are enabling the development of robotic systems
for an increasingly diverse range of applications. For instance, man-
ufacturing robots that work alongside humans are being used in the
workplace [2], and robots that assist with care for the elderly in the home
are being developed [3].

Additionally, there is a rising demand for more autonomous systems
with the ambition to increase productivity, reduce cost, and improve
safety. For example, in the transportation sector, driverless vehicles [4]
and automated goods delivery robots [5] are being developed.

As these new types of robotic systems become more widespread,
interactions between humans and robots will become routine. Safety is a
principal concern for any such system, and the more capabilities robotic
systems are given to physically interact with their environment, the

1

1 Introduction

greater the risk of hazardous situations and hazardous events resulting
in harm there will be. Therefore, it is important that robotic systems react
to these hazardous situations and events as designed.

Software plays a crucial role in robotic systems for the flexibility it
affords, providing many of the desired dynamic features that define the
system’s behaviour. Therefore, as robotic systems capabilities grow, the
software used to control them becomes increasingly complex.

Verifying complex robotic systems at design time for all possible scen-
arios is a significant challenge, as the system may encounter situations
that have not been considered during design [6]. Complete design time
verification of these types of systems is not feasible using existing meth-
ods alone [6]. To enable the successful realisation of forthcoming robotic
systems, techniques and associated tools are required to assist developers
in managing the complexity, and ensure that design requirements can be
met.

As the scale of software systems has grown, a beneficial technique
has been the definition of a system’s architecture during its design. The
description of a system’s architecture provides a structural represent-
ation that enables the evaluation of different system attributes by its
stakeholders [7, p. 5]. The use of views to represent a subset of related
architectural structures facilitates communication between stakeholders
of the system, and enables evaluation of alternative system designs and
modifications [7, p. 10].

From experience, practitioners have identified structures and relation-
ships within system architectures that solve recurring problems. These
solutions have been generalised as architectural patterns that are re-
useable in the design of new systems. Some examples of well-known
architectural patterns include the client-server pattern used in internet ap-
plications, and the layered pattern [8, p. 31] used in embedded systems.
There has also been the development of standardised domain-specific
architectural patterns to ease the integration of system components and
promote reuse of outputs. One notable example of a standardised archi-
tectural pattern is Autosar from the automotive industry [9].

For the robotics domain, many projects still choose to design a custom
architecture. This means that there have been many proposals, but there
is no single widely adopted architectural pattern. On the other hand,
some common patterns have emerged: notably, the use of layers for robot
control [10, pp. 286–289]. In order for notations and tools that target the
robotics domain to be widely accepted and provide the maximum benefit
to developers, they must be flexible and support the range of approaches

2

1.1 Motivation

and architectural patterns that are used by developers.
In many other complex multidisciplinary domains, such as, aerospace

and automotive, Model Driven Engineering (MDE) is being used success-
fully to mitigate complexity [11], [12]. The core principle of MDE is to use
abstract models of a system as the primary artefact(s) of its development
process. This promotes identification of the underlying concepts free
from specific implementation dependencies. The use of abstract models
also facilitates the automation of the software development process. In
this way developers can devote their time to understanding and solving
the domain-specific problems.

The flexibility of the MDE approach means that it can be applied to any
domain. With such potential diversity, a single language that is general
enough to describe all of the required concepts leaves the domain-specific
concept definitions to each development team, resulting in duplication of
work, and hindering the reusability of designs.

Domain-Specific Languages (DSL) address this issue by describing the
core concepts required by the target domain, and provide a concise shared
representation that is understood by the practitioners of the domain. Over
the last twenty-five years, there have been considerable developments
in MDE for robotics, with the creation of many DSLs for its different
subdomains [13].

Some examples of DSLs for robotics include: BCM [14], RoboML [15],
and SmartSoft [16]. These DSLs, like the majority that are available, do
not have formally defined semantics. Therefore, the support for formal
verification of robotic systems is limited.

A recent literature survey [17], over the last ten years, found sixty-
three examples of the application of formal methods within the robotics
domain. Formal methods enable the proof of properties of a system’s
specification through the use of unambiguous mathematical notation [18,
p. 41], and so they can play an important role in verification of robotic
systems.

RoboChart is a DSL for modelling robotics software controllers using
state machines [19] that makes innovative use of formal methods for
automated verification. The associated tool, RoboTool, provides features
of MDE, which include a graphical interface for creating models, and
automatic generation of source code and mathematical descriptions.
Additionally, RoboChart supports automatic verification of properties
such as deadlock and livelock freedom using model checking, along with
semi-automatic verification techniques using theorem proving.

RoboChart’s formally defined semantics coupled with its graphical

3

1 Introduction

notation mean that formal models can be automatically generated from a
RoboChart model. This means that developers only require a minimal un-
derstanding of formal methods to take advantage of the verification cap-
abilities provided by RoboChart. Consequently, RoboChart can provide
a multitude of benefits for the development of robotics software, most
significantly, a contribution towards rigorously proving that a system
satisfies key properties of interest.

To date, RoboChart has been used to model nineteen proof-of-concept
case studies, which include an autonomous vehicle implemented in
ROS [20]. All of these case studies have facilitated the development of
RoboChart, however, they only represent a small subset of the many
diverse robotic systems being developed. None of them adopt or de-
scribe an elaborate software architecture, beyond straightforward use of
parallelism.

So that RoboChart can have a significant impact on to the wider veri-
fication of robotic systems, it must be widely accepted by developers.
Therefore, RoboChart and its associated tools must be able to effectively
support the modelling of software controllers of real robotic systems. For
larger robotic systems, support for modelling taking advantage of com-
monly used architectural patterns can enable explicit modelling of the
structure of systems with potential impact on reuse and compositional
design and reasoning.

The RoboChart component model does not directly include concepts
from the robotics architectural patterns. A key advantage of DSLs is their
close correspondence to terminology and concepts of the target domain
and the ability to be able to generate code instructions in a selected
language from the domain concepts specified by the DSL [21, p. 3].

This motivates the primary research question for our work.

What are the architectural patterns commonly used in robotics
and how can they be used in behavioural models of robotic
systems for verification?

In the following section the main objectives for the proposed work are
specified.

1.2 Objectives and Contributions

The goal of our work is to contribute to the advancement of software
modelling and verification for robotics, to support the creation of robotic

4

1.2 Objectives and Contributions

systems that are safe and robust. In order to achieve this goal, we have
the following objectives:

• to identify architectural patterns that are used by robotic systems
software;

• to contribute to the practice of modelling using RoboChart by
providing automated support and guidance for modelling using
common architectural patterns;

• to enrich the facilities for architectural modelling in RoboChart
via the design of a new language that can be used to describe the
architecture of control software in terms of concepts adopted by the
robotics community;

• to describe precisely the design of the new language: metamodel,
well-formedness conditions, and RoboChart semantics;

• to enable the generation of partial RoboChart models via model
transformation.

Via a comprehensive study of the literature, the commonly used layered
architectural pattern has been identified as a common option in the
robotics community. We have also identified a number of architectural
patterns used in the design of one or more layers. We describe the main
concepts in all these architectural patterns.

To facilitate the modelling of systems that use these architectures, we
have designed an architectural language: RoboArch. The definition of
RoboArch formalises the concepts adopted in the various architectures.
This provides guidance for the design of systems.

Additional architectures can be identified and characterised via ex-
tensions of RoboArch. Here we give a precise characterisation of an
architectural pattern that can be used for the design of a particular layer.
Others can be captured in a similar way. The pattern’s characterisation
incudes a description of its fundamental concepts, a metamodel that
forms the foundation of the RoboArch notation, and well-formedness
conditions.

A RoboArch model is an instance of one or more architectural pat-
terns that are defined by the RoboArch metamodel and well-formedness
conditions. The RoboArch semantics define how such an instance can
be described directly in RoboChart. The semantics is given by a set

5

1 Introduction

of model-transformation rules. The automation of the model trans-
formations provide a mechanism that can be used to the advantage of
practitioners. They can describe software controllers in RoboArch. This
amounts to describing an instance of an architectural pattern formalised
by RoboArch. From that, they can obtain a partial RoboChart model that
can be completed and used as a basis for verification and for generation
of simulations and tests.

The experience gained using RoboChart has been reflected in the
models that RoboArch generates helping to establish the pragmatics of
RoboChart and assist developers in its use.

1.3 Document Structure

Figure 1.1 shows the structure of the document its chapters, main subsec-
tions, and the relationships between them. The document is structured
as follows.

Chapter 2 surveys the role of software architecture in robotic systems
development, and domain-specific languages (DSL) for robotics.
The chapter ends by introducing RoboChart’s graphical notation
and verification facilities, and demonstrating how robotic systems
can be modelled using RoboChart.

Chapter 3 outlines the approach used to characterise layered robotics
architectural patterns as a metamodel and well-formedness condi-
tions that define the RoboArch notation. We also discuss a selection
of patterns that can be used by each of the layers. In this chapter
we also define the metanotation used to specify the rules for trans-
lating from RoboArch to RoboChart. Finally, we give the core
transformation rules for the layered architectural pattern.

Chapter 4 presents an analysis of the structural components of the control-
layer reactive-skills pattern and how it can be modelled using
RoboChart. We define the pattern’s fundamental concepts, via the
metamodel and well-formedness conditions for the elements of
RoboArch that capture the pattern. We also formalise the pattern
by specifying how its instances can be transformed using the rule
definitions.

Chapter 5 evaluates RoboArch demonstrating how the architectural struc-
ture of robotic systems can be described and sketches of RoboChart

6

1.3 Document Structure

Figure 1.1: Document overview

Chapter 2: Modelling Robotics Software Architectures

Chapter 3: Architectural Patterns for Robotics
Chapter 4: Patternsin RoboArch

Chapter 5: Evaluating RoboArch

Chapter 6: Conclusion

2.1 Architectural Patterns

Chapter 1: Introduction
2.2 Patterns of Layers 2.3 DSLs 2.4 RoboChart Modelling

3.1 Layers

Rob
oArc

h
Rob

oArc
h

3.2 Rules
3.3 Approaches Used by Layers

4.1 Patterns
4.2 Reactive Skills
4.3 Subsumption

4.4 Rules

5.1 Tool 5.2 Case Study

6.2 Contributions 6.3 Future WorkKey: primary background
6.1 Adding to RoboArch

models automatically generated. We present a tool that automates
our transformation rules and enables their automatic application.
We describe its architecture, and justify its role in evaluating Ro-
boArch and its semantics as defined by the rules. Finally, we present
a case study on the use of the reactive skills pattern. The verification
of its RoboChart model provides evidence that RoboArch captures
key properties of the reactive-skills patterns.

Chapter 6 concludes with a discussion of the contributions made, includ-
ing assumptions made and future work.

7

2 Modelling Robotics Software
Architectures

DSLs for robotics that can describe the architecture of a system provide a
mechanism for development of increasingly complex robotic systems.

There have been many definitions for architecture put forward over
the last thirty years [22]. We adopt the definition given by ISO 42010:2011

since it summarises the common themes of structure and relationships:

“architecture <system> fundamental concepts or properties of
a system in its environment embodied in its elements, relation-
ships, and in the principles of its design and evolution.” [23]

The evolving definition has contributed to discrepancies between related
terminology, namely, architectural patterns and styles. These terms are
closely related in that they describe a general solution to a recurring
problem and so they have been used interchangeably [24].

Clements et al. distinguish these terms, stating patterns additionally
must include details on the problem and its context [25]. This distinction
means architectural patterns mirror object-oriented software design pat-
terns [26] albeit their concern is the higher system level of abstraction
[8, p. 12]. Here, we adopt the term architectural patterns to describe
general solutions. Our work with RoboArch formalises some patterns
and provides a framework for the formalisation of others.

Achtelik et al. use the term architectural styles when discussing robot-
ics system architecture in the handbook of robotics [10, Ch. 12] indicating
that there is scope to refine styles into more precise and well-defined
patterns.

In the robotics community, there are no widely accepted architectural
patterns. Many different robotics architectures have been proposed with
no single architecture fitting all applications [10, p. 283]. Instead, domain
experts propose architectures that solve problems for their robotic system
of interest.

In order to evaluate robotics DSLs support for modelling architectural
patterns it is necessary to understand the structures and relationships

8

2.1 Robotics Software Architectural Patterns

used in robotics software architectures. What constitutes a good ar-
chitecture depends on the system being developed and its application.
Therefore, developing architectural principles that can be widely applied
to various domains, such as those in which robotics has a role to play, is
a particular challenge in its own right and one which we are not going to
address.

Instead, we cover several architectural patterns, and contribute an
approach that can be used to consider others in the future. Section 2.1
presents robotics architectures that have been used over the last twenty
years. In particular, we focus on those that have been put forward as
a solution to general problems, and, therefore, we recognise them as
patterns. Section 2.2 gives a detailed account of some patterns, for each
the identifies the concepts for each. Section 2.3 reviews a selection of
DSLs for robotics. In doing so, we justify the suitability of RoboChart
for our work and consider its wider applicability to other notations.
Since RoboChart is the DSL being used in this work, it is important
to understand how RoboChart can be used to model a robotic system.
Section 2.4 presents an example of how a robot can be modelled using
RoboChart. We conclude in Section 2.5, with some final considerations.

2.1 Robotics Software Architectural Patterns

Robotic systems are often complex and typically use software as the basis
for their control and coordination. Over the last 30 years, many different
software architectural patterns for robotic systems have been developed.

Historical architectural patterns include Sense Plan Act (SPA) [10,
p. 285] and subsumption [27]. SPA is an example of a pattern that is
deliberative: time is taken to plan what to do next, and then the plan is
acted out with no sensing or feedback during acting. A robot using SPA
in a dynamically changing world can be slow and error prone in response
to environmental change and can, therefore, be potentially dangerous.

Conversely, subsumption is an example of an architectural pattern
that is reactive, where the environment is constantly sensed and used to
directly shape the robot’s actions. A robot using subsumption responds
rapidly to a changing world; however, complex actions are difficult to
achieve.

More recent hybrid architectural patterns combine the principles from
SPA and subsumption to benefit from both the deliberative and reactive
properties.

9

2 Modelling Robotics Software Architectures

In order to determine the important architectural patterns that DSLs
for robotics should support, the characteristic features of robotics ar-
chitectures need to be identified. For that, we consider the following
architectural aspects for a selection of robotics architectures: structure of
the software elements and the relationships between them [7, p. 4], and
control approach.

In total, twenty-two architectural patterns used by robotics systems
have been identified from the literature; these are listed in Table 2.1. Five

Table 2.1: The patterns identified from the literature.
Pattern Focus Year
CoSiMA [28] Safe real-time robots 2018

◆ IRSA [29] Autonomous robots 2018

◆ SERA [30] Decentralised teams 2018

◆ CARACaS [31] Autonomous robots 2011

Aerostack [32] Autonomous unmanned aerial systems 2017

EFTCoR [33] Service robot control 2006

Syndicate [34] Autonomous teams 2006

DDX [35] Distributed robot controllers 2004

◆ CLARAty [36] Autonomous robots 2001

HARPIC [37] Autonomous robots 2001

◆ LAAS [38] Autonomous robots 1998

Remote Agent [39] Autonomous robots 1998

ORCCAD [40] Robot control 1998

Planner Reactor [41] Autonomous robots 1995

Reactive Skills [42] Autonomous robots 1994

CIRCA [43] Real-time intelligent robots 1993

ATLANTIS [44] Autonomous robots 1992

Layered Competencies [45] Autonomous robots 1991

Motor Schema [46] Robot control 1989

NASREM [47] Autonomous robots 1989

AuRA [48] Autonomous robots 1987

Subsumption [27] Autonomous robots 1986

Legend: ◆ Selected for further discussion.

have been selected for discussion based upon evidence of application,
reuse, and activity of development. The collective publications that focus
on an architectural pattern have been used to find evidence of application,
with the scale of any documented application used to give preference

10

2.1 Robotics Software Architectural Patterns

patterns that have been used in large deployments in the real world. The
number of publications where an architectural pattern was used in a new
application has been used to assess reuse. Preference has been given to
patterns with recent activity, determined by the date and frequency of
publications where the pattern has been used.

Sections 2.1.1 to 2.1.5 presents the selected architectural patterns, and
provides a review of the discussed important aspects. Finally Section 2.1.6,
evaluates the state of architectural patterns for robotics and their struc-
ture.

2.1.1 LAAS

The LAAS architectural pattern was developed at LAAS1 in 1998 for
autonomous robots. A fundamental goal of LAAS is to provide both
deliberative and reactive capabilities required for autonomy [38].

The LAAS pattern is made up of the following three layers:

Functional Layer provides basic robot actions that are organised into mod-
ules consisting of processing functions, task loops, and monitoring
functions for reactive behaviour.

Execution Control Layer selects functions from the functional layer to
carry out sequences of actions determined by the decision layer.

Decision Layer plans the sequence of actions necessary to achieve mission
goals and supervises the execution of the plans.

The functional layer, shown in Figure 2.1 as the bottom layer, consists of
a network of modules that can be either synchronous or asynchronous.
Each module of the functional layer provides a service that relates to a
particular sensor, actuator, or data resource of the robot [38]. An example
of a data resource is a map or image. All modules have a fixed generic
structure made up of a controller and execution engine. Because the
structure of modules is fixed, a tool generator of modules (GenoM) can
be used to generate module source code. To generate a module’s source
code, GenoM combines a formalised description of the module along
with pieces of code (codels) describing the module’s algorithm.

The services provided by the modules are accessed by the executive
layer above and other modules from the functional layer through the use
of a non-blocking client-server communication model. The client-server

1Laboratory for Analysis and Architecture of Systems CNRS

11

2 Modelling Robotics Software Architectures

Figure 2.1: The LAAS architectural pattern layer diagram.

Supervisor

Modules

Key:
 Layer Layer segment

 Allowed to use

Functional

Decision

Execution
Control

Executive

Planner

model is well-supported by middleware that uses network protocols;
therefore, the implementation of the functional layer can directly corres-
pond to the modelled design.

The execution control layer, shown in Figure 2.1 as the middle layer,
bridges the slow, high-level, processing of the decision layer, and the fast,
low-level, control of the functional layer. The execution control layer’s
executive takes sequences of actions from the decision layer, and selects
and triggers the functions that the functional layer must carry out. The
executive receives replies from the functional layer and reports activity
progress back up to the decision layer. To enable prioritisation and
interruption of functional layer modules, a local execution state database
is maintained so that conflicts between modules can be managed.

The decision layer, shown in Figure 2.1 as the top layer, is separated
into a supervisor and a planner. The planner creates a sequence of actions
to achieve a goal. The supervisor takes the generated sequence of actions
and manages their execution by communicating them to the execution
control layer, and responding to reports received from the execution
control layer.

12

2.1 Robotics Software Architectural Patterns

Along with the sequences of actions, the supervisor also passes down
situations to monitor and associated responses that are within the con-
straints of the plan. For example, for a robot whose mission is to travel
from point A to point B in a hospital environment, the mission constraint
could be to keep out of areas where the robot is not allowed to go. One
situation to monitor would be obstacles blocking the route, and the as-
sociated response would be to avoid the obstacle. On encountering an
obstacle, the executive can allow the robot to deviate from the planned
path to navigate the obstacle. However, if the obstacle is positioned such
that the only way to avoid it involves violating the mission constraints,
the executive has to notify the supervisor and obtain an updated plan.

These responses enable the lower layers to react without the need
for involvement of the decision layer, therefore, improving response
time and reducing unnecessary replanning. The decision layer itself can
contain multiple supervisor-planner pairs, for example, Mission, Task,
and Coordination, with the coordination layer taking into account other
robots [38].

LAAS has been used in the implementation of the ADAM rough terrain
planetary exploration rover [49], and of three Hilare autonomous environ-
ment exploration robots as part of the MARTHA European project [50].

More recently, Behaviour Interaction Priority (BIP) models have been
used to verify the functional layer of the LAAS pattern [51]. Functional
layers described using GenoM can be automatically translated into a BIP
model. The BIP model can then be checked for deadlock freedom and
other specified safety properties using BIP’s associated tools.

2.1.2 CLARAty

Coupled Layer Architecture for Robotic Autonomy (CLARAty) was de-
veloped at JPL in 2001 for planetary surface-exploration rovers. CLARAty
is designed to be reusable and to support multiple robot platforms; it
consists of two-layers formed by combining the planning and executive
layers from a three-layer architecture [36]. A key concept defined by the
CLARAty architectural pattern is granularity, which reflects the varying
levels of deliberativeness available to the robotic system.

13

2 Modelling Robotics Software Architectures

The CLARAty pattern is made up of the following layers:

Functional Layer is the interface to the system’s hardware capabilities.

Decision Layer decomposes mission goals into task sequences and then
into commands for the functional layer.

Figure 2.2: The CLARAty architectural pattern layer diagram.

Executive

Capabilities

Planner

Key:
 Layer Layer segment

 Allowed to use

Functional

Decision

The functional layer, shown in Figure 2.2 as the bottom layer, provides
a software interface to the hardware capabilities of the robot, and it is
structured using an object-oriented hierarchy. At the top of the hierarchy
is the Robot superclass from which everything inherits. At subsequent
levels down the hierarchy, classes are less abstract and each provide
functionality for a piece of the robot’s hardware. At the bottom of the
hierarchy, each class provides access to a specific piece of hardware
functionality and its current state.

Classes can provide functionality that requires minimal input from
the decision layer, therefore, this type of class can be considered more
reactive. For example, the class for a rover may offer a method for
obstacle avoidance. Alternatively classes can provide functionality that

14

2.1 Robotics Software Architectural Patterns

requires regular input from the decision layer, therefore, the class can be
considered more deliberative. For example, the class for a robotic arm
may offer a method for setting the position for one of its five motors.

The object-oriented hierarchy of the functional layer allows for a logical
mapping onto the robot’s physical structure. This complementary rela-
tionship assists developers because a correspondence between the robot’s
hardware and the software is created, reinforcing their understanding.
However, the inclination towards the functional view for the lower layer
means that the system’s behaviours are not emphasised by the pattern.

The decision layer, shown in Figure 2.2 as the top layer, decomposes
mission goals into tasks, then into commands that access the capabilities
of the functional layer using a client-server model [52]. The structure of
the functional layer means that the decision layer has a choice between
selecting more reactive or more deliberative functions from the available
capabilities. Use of the more reactive functions means that the planning
effort required by the decision layer is reduced. By comparison, more
deliberative functions provide access to low-level hardware functional-
ity; therefore, more planning effort is required by the decision layer to
accomplish a task using them.

The single decision layer enables state information between planner
and executive to be shared, which means that the planner becomes tightly
integrated with the executive. Consequently, discrepancy between the
planner and the functional layer’s state is minimised. The CLARAty
pattern has been used for a variety of robot platforms: Rocky 8, FIDO,
ROCKY 7, K9 Rovers, and ATRV Jr. COTS platform [53]. The differ-
ent platforms have a variety of deployment architectures, from a single
processor requiring hard real-time scheduling, and distributed micropro-
cessors using soft real-time scheduling.

2.1.3 CARACaS

Control Architecture for Robotic Agent Command and Sensing (CARA-
CaS) is an architectural pattern developed at JPL2 in 2011 for control
of autonomous underwater vehicles (AUV), and autonomous surface
vehicles (ASV) [31]. CARACaS allows operation in uncontrolled envir-
onments ensuring the vehicles obey maritime regulations for preventing
collisions. It supports cooperation between different vehicles and it
makes use of dynamic planning to adapt to the current environmental

2NASA Jet Propulsion Laboratory

15

2 Modelling Robotics Software Architectures

conditions and mission goals.
The five main elements of the CARACaS pattern are as follows:

Actuators interfaces the actuators of the vehicle.

Behaviour Engine coordinates and enables the composition of behaviours
acting on the vehicles actuators.

Perception Engine creates maps for safe navigation and hazard percep-
tion from the vehicles sensors.

Dynamic Planning Engine chooses activities to accomplish mission goals
while observing resource constraints.

World Model contains vehicle state information including mission plans,
maps, and other agents.

Figure 2.3: The CARACaS architectural pattern layer diagram.

Dynamic Planning
Engine

Behaviour Engine Actuators
Perception

Engine

World
Model

Key:
 Layer Layer segment

 Allowed to use

The Behaviour Engine makes use of behaviour composition and co-
ordination methods developed as part of a previous multi-agent control
architectural pattern CAMPOUT [54]. Control of the vehicle is achieved

16

2.1 Robotics Software Architectural Patterns

using algorithms activating and deactivating behaviours. The arbitra-
tion mechanisms controlling the enabling and disabling of behaviours
supported are subsumption, voting, and interval programming (IvP).

In order to achieve the mission goals, the Dynamic Planning Engine
uses Continuous Activity Scheduling Planning Execution and Replanning
(CASPER) [55]. CASPER decides on the activities that must be carried
out in order to accomplish any mission goals, taking into consideration
current resource constraints and rules. The activities are then executed by
issuing commands to the Behaviour Engine to enable the behaviours as-
sociated with the activity. In the case of plan conflicts, CASPER supports
dynamic replanning allowing the system to react to changing events.

CARACaS uses the R4SA real-time embedded system, which runs on
real-time operating system QNX [31]. R4SA provides abstractions of the
low-level hardware into devices and manages the synchronisation and
scheduling of all elements of CARACaS.

Layers are not strictly defined by [31]; however, CARACaS can be
partitioned into two layers as shown in Figure 2.3. At the lowest level,
we have a behavioural layer consisting of the Behaviour Engine and
Perception Engine elements. The example UAV from [31] uses a stereo
vision system and sonar as the main inputs to the Perception Engine
for map creation. The second higher level layer consists of the Dynamic
Planning and the World Model elements.

Although CARACaS is targeted at autonomous water-based vehicles,
it contains all of the required elements to be applied more generally as a
pattern for the control of robots.

A notable example of the application of CARACaS is its use as part
of an automated patrol demonstration system to the U.S. Navy [56].
The automated patrol system consists of four unmanned boats working
together to patrol an area of sea four square miles in size.

2.1.4 IRSA

The Intelligent Robotics System Architecture (IRSA) was developed at
JPL in 2018 to streamline the transition of robotic algorithms from devel-
opment onto flight systems, by improving compatibility with existing
flight software architectures [29]. The IRSA architectural pattern uses
concepts from the other patterns: CARACaS and CLARAty.

The main elements of the IRSA pattern are as follows:

Primitive provides low-level behaviours that can have control loops.

17

2 Modelling Robotics Software Architectures

Behaviour provides the autonomy of the robot, transitioning between
multiple states during execution.

Executive receives and executes a sequence of instruction commands
from the planner or other input.

Planner uses the system state from the world model to produce the
sequence of command instructions to be executed.

Sequence contains the instructions that the robot must perform.

Verifier verifies the sequence is valid, which can include checking that
the robot stays in a safe state.

Robot World Model maintains a model of the robot that is made up of
local and global state information.

Figure 2.4: The IRSA architectural pattern layer diagram.

Planner

Behaviour

Key:
 Layer Layer segment

 Allowed to use

Executive

Primitive

World
Model

Sequence

18

2.1 Robotics Software Architectural Patterns

Although the IRSA pattern does not strictly define layers, it can be
mapped onto a three-layer architectural pattern with a common world
model accessible to all layers, as shown in Figure 2.4.

The IRSA pattern is behaviour focused, with the low-level architectural
primitive and behaviour elements responsible for providing the robot’s
behaviours. The primitive element provides fundamental behaviours
that control the robot’s hardware. The behaviour element provides
hierarchical behaviours composed of those provided by the primitive.
Both the behaviour and the primitive elements provide control over the
robot; therefore, these two elements can be placed in the bottom layer, as
shown in Figure 2.4.

The executive receives sequences of commands and manages command
execution using the behaviours from the lower layer. Therefore, the
executive is placed in the middle layer of Figure 2.4.

Sequences of commands can come from a variety of sources. The
primary source for an autonomous robot would be automated planning
and scheduling, depicted as the planner in Figure 2.4. The planner uses
the state of the system from the world model to create a sequence of
commands that achieves the system’s goals. The verifier performs verific-
ation checks on the sequence, for instance, ensuring the robot maintains
a safe state. The resulting command sequence held by the sequence
element is communicated to the executive for execution. Therefore, the
planner, sequence, and verifier elements can be placed in the layer above
the executive: the top layer in Figure 2.4.

The IRSA architectural pattern has been deployed on a variety of test
beds (comet surface sample return, Europa lander sampling autonomy,
Mars 2020 Controls and Autonomy for Sample Acquisition) and the
RoboSimian DARPA challenge. Implementations have used custom mid-
dleware (RSAP), which enables inter-process communication via the TCP
and UDP network protocols. Time driven and non-time driven tasks are
supported, with task execution driven by messages received via inter-
process communication. Hierarchical state machines for behaviours and
control have been used. The use of ROS2 as an alternative to RSAP is
being explored [29].

2.1.5 SERA

The Self-adaptive dEcentralised Robotic Architecture (SERA) has been
developed at the Chalmers University of Technology in 2018 [30]. SERA’s

19

2 Modelling Robotics Software Architectures

primary goal is to support decentralised self-adaptive collaboration
between robots or humans, and it is based on the 3-layer self-management
architectural pattern [57]. SERA has been evaluated in collaboration with
industrial partners participating in the Co4Robots H2020 EU project [30].
The layers of the SERA pattern are as follows:

Component Control Layer provides software interfaces to the robot’s
sensors and actuators, grouped into control action components
responsible for particular areas of functionality.

Change Management Layer receives the local mission and creates a plan
in order satisfy its goals. It executes the plan by calling appropriate
control actions from the component control layer.

Mission Management Layer manages the local mission for each robot and
communicates with other robots in order to synchronise and achieve
the global mission.

Figure 2.5: The SERA architectural pattern layer diagram.

Local Mission
Manager

Control Actions

Communication &
Collaboration Manager

Key:
 Layer Layer segment

 Allowed to use

Component
Control

Mission
Management

Plan Executor

Change
Management

Information
Manager

Adaptation
Manager

The component control layer, shown in Figure 2.5 as the bottom layer,
interfaces to the robot’s sensors and actuators through control action

20

2.1 Robotics Software Architectural Patterns

components. These components enable autonomous control of the ro-
bot through motion planning, object perception, and localisation and
mapping.

The change management layer, shown in Figure 2.5 as the middle layer,
receives the local mission. Its adaptation manager creates a plan to satisfy
the mission goals. If a plan satisfying the mission goals can be created,
a plan executor calls the relevant control actions to execute the plan. If
it fails to find a plan that satisfies the mission goals, the higher-level
mission manager is notified.

The mission management layer, shown in Figure 2.5 as the top layer,
receives a local mission specification from a central station in the form of
timed temporal logic formulae. The local mission manager checks the
feasibility of the received mission and, if it is feasible, passes the mission
to the adaptation manager in the layer below. If the mission is infeas-
ible, a communication and collaboration manager communicates and
synchronises with the other robots involved in the mission. During the
synchronisation, an updated achievable mission that meets the original
mission specification is computed.

This pattern places more functionality in the lowest component control
layer, such as, low-level motion planning, mapping, and object detec-
tion. The higher level layers are responsible for ensuring the mission is
followed. A key feature of the SERA pattern is communication among
robots, which takes place at the mission management layer. The com-
munication among robots provides greater flexibility in achieving the
mission goals, because, if a mission cannot be completed by an individual
robot, a combination of other robots that are able to satisfy the mission
can be utilised.

2.1.6 Evaluation

Table 2.2 summarises the primary features of the surveyed robotics archi-
tectural patterns. Generally no particular pattern or selection of patterns
are widely used across different robotic systems. There is a tendency
for each project to establish its own pattern. Between research groups,
however, there is some reuse of patterns; for example, IRSA is being used
for a variety of space testbeds and the RoboSimian robot.

Layers are a common theme among many of the recent architectural
patterns. Even when layers have not been explicitly specified, the ele-
ments of a pattern are structured such that they can be mapped onto a
layered architectural pattern. All patterns have a functional layer that in-

21

2 Modelling Robotics Software Architectures

Table 2.2: Robotics architectural pattern summary
Pattern No. Layers Control Layers

CARACaS 2 Behavioural

Decision

Functional

CLARAty 2* Service

Decision

Functional

LAAS 3 Service

Decision

Execution

Functional

IRSA 3* Behavioural

Decision

Execution

Functional

SERA 3 Service

Mission

Decision

Functional
Legend: *Mapped onto a layered architectural pattern.

teracts with the robots sensors and actuators. The upper layers following
the functional layer vary in number and purpose.

The functional layer is required by all architectural patterns because
every robot requires a means to sense and interact with its environment.
From the patterns surveyed, two categories of control approach are
used by the functional layer: service or behavioural. Both of the terms
functional and behavioural have had varying definitions in the context of
robotics software. For our purposes here, that is, the identification and
modelling of patterns, we distinguish them as follows. A service-based
control approach provides an interface with a close correspondence to the
services provided by the robotic platform. A behavioural-based control
approach provides an interface that offers services that can be composed
of other services. CLARAty, LAAS and SERA are all examples of patterns
that have a service-based functional layer, whereas, CARACaS and IRSA
have behavioural-based functional layers.

Patterns that use a service approach for the functional layer isolate the
functional layer from the system state. This has the benefit of simplifying
the functional layer and means the state of the system is managed by
the upper layers. However, this means that the decision layer must

22

2.1 Robotics Software Architectural Patterns

manage a large number of states. In CLARAty the decision layer holds a
representation of all states, and goals are used as constraints to create the
plan to be executed.

Patterns that use a behavioural approach for the functional layer rely
on responding to environmental changes primarily using the functional
layer. This has the benefit of reducing the number of states that the
upper layers must manage. However, the functional layer must then
arbitrate among the behaviours to share the robotic platform’s resources,
thereby, increasing the code complexity of the functional layer. The
CARACaS pattern supports three techniques to arbitrate behaviours,
whereas IRSA does not specify any arbitration mechanisms, leaving it
open for developers decide for each project.

Examples of behavioural control patterns that can be used for func-
tional layer include subsumption [27] and reactive skills as used by the
control layer of 3T [58].

It is common for the decision layer to be placed directly above the func-
tional layer; for instance, CARACaS, CLARAty, and SERA are structured
in this way. They combine the decision and execution layers, therefore,
the decision layer generates commands for the functional layer. In con-
trast LAAS and IRSA have a dedicated executive layer in-between the
decision and functional layers that records the state of the system.

Patterns that do not use an executive layer take different approaches
to managing the system’s state. For instance, SERA and CLARAty
use information in the decision layer to hold system state. Whereas,
CARACaS uses a world model layer that is accessible by all other layers
to hold system state.

Having a separate execution layer provides no significant differences
with regard to functionality, because in either case the functional layer is
sent the commands for control and the status from the functional layer is
passed to the layer above. Therefore, the primary difference is where the
emphasis of concepts used by each architectural pattern is placed.

Some patterns such as SERA have an additional social layer for collab-
oration between teams of robots. Similarly LAAS supports this through
adding supervisor planner pairs, but considers this to be an extension of
the decision layer rather than a new layer. Generally the layered pattern
lends itself to the addition of new layers for extending the level of system
capability.

The review of architectural patterns discussed in this section, provides
details on the structure and control techniques used in robotics software.
This insight will be used as a foundation to guide the design of RoboArch

23

2 Modelling Robotics Software Architectures

to support use of RoboChart to model robotic systems.
The power of architectural patterns is their ability to be reused and

applied as required to solve similar problems in the design of systems.
The widespread use of layers is very clear. All of the layered patterns
surveyed, however, have been proposed without, offering much insight
or flexibility into alternative pattern choices for the layers. In contrast,
Achtelik et al. [10, Sec. 12.3] describe an almost compositional view
where patterns can be mixed and matched. We take this view and build
upon it in RoboArch to enable the precise descriptions of patterns used
by the robotics community and facilitate the use of different combinations
of these patterns.

The next section examines some patterns in detail and describes their
concepts and relationships.

2.2 Patterns of Robotics Software Layers

The review of robotics software architectural patterns in the previous sec-
tion and its focus on the structure of software elements and relationships
identified the common use of the layered pattern. In order to provide
support for modelling systems that use these patterns, we must examine
patterns in greater detail and precisely identify and describe the concepts
and relationships of each pattern.

Section 2.2.1 and Section 2.2.2 each describe and provide an over-
view including the history and key concepts for the reactive skills and
subsumption patterns, respectively.

2.2.1 Reactive Skills

The reactive skills pattern is used by the control layer of a three layer
architecture [58] and is part of eight years of work by P. Bonasso et. al.
that resulted in the architecture known as 3T. Reactive skills combine
deliberation and reactivity to improve the robustness of tasks carried
out by robotic systems. The pattern has been used for the control layer
of a variety of different applications: a robot to identify people and
approach them [59], a trash collecting robot [60], a robot that navigates
a building [61], and in the automation of remote manipulation system
procedures for the space shuttle [62].

The reactive skills pattern does not have its own programming lan-
guage. Instead there is a framework [42] that allows skills to be implemen-

24

2.2 Patterns of Robotics Software Layers

ted using other languages: C, C++, Pascal, LISP and REX. The framework
allows skills implemented in different languages to be integrated and
executed together.

No advice on development processes for developing a control layer
using reactive skills has been published; it is left to the system designer
to determine the skills that their system requires.

For our purposes here, that is, modelling, the reactive skills pattern is
characterised by the following two concepts.

Skill Performs an operation using its input values, which can be from
sensors or the outputs of other skills. A set of skills can be used
together to accomplish a task that achieves the robot’s current goal.
An example of a skill is moving a hand towards a target [58].

Skills Manager Coordinates communication between skills and provides
an interface for the executive layer to: activate the skills that are
required to achieve the robot’s current goal, receive notifications
from monitored events, and set and get parameter values of skills.

Skills can be categorised as one of two types: C-Skill or D-Skill [42].
D-Skills interface physical devices, such as sensors and actuators, with
the other skills of the control layer; their input values are actuation
commands and their output values are sensor data. C-Skills compute a
computational transform using the skill’s inputs to determine the skill’s
outputs.

By the monitoring of skills outputs, the skills manager triggers events
on desired conditions becoming true.

Table 2.3 summarises the primary architectural concepts of the reactive
skills pattern and identifies related concepts using italicised text. The
related concepts of the reactive skills concepts are defined in Table 2.4.

25

2 Modelling Robotics Software Architectures

Table 2.3: The primary concepts of the reactive skills pattern.

Concept Description
Skill Made up of inputs, outputs, and a computational transform.

Every skill has an enable function and a disable function
that provide a means for the skill manager to enable and
disable the skill. An initialisation routine runs at system
startup that prepares the skill for first use.
There are two categories of skill: C-Skill and D-Skill.

Skill manager Interfaces the executive layer by providing the communic-
ations required to coordinate the skills and capability for
event monitoring.

Table 2.4: The related concepts of reactive skills.

Element Description
Initialisation
routine

When the system starts the skill initialises itself, for ex-
ample, set up communication ports.

Startup When a skill is enabled it performs any required startup
procedures each time it is enabled.

Reply Response from the control layer to the executive layer.
Cleanup When a skill is disabled cleanup actions are performed.
Parameter A variable that allows a skill’s behaviour to be adjusted

for different contexts by the executive layer.
Input Receives the value of a data type
Output A resulting value that contributes to the robot’s behaviour.
Computational
transform

Once enabled the skill continually computes its outputs
from its inputs.

Enable func-
tion

Allows a skill to be enabled in the appropriate context
causing its computational transform to be continuously
computed.

Disable func-
tion

Allows a skill to be disabled when it is no longer required
causing the computation of its computational transform to
cease.

26

2.2 Patterns of Robotics Software Layers

2.2.2 Subsumption

The subsumption pattern described in [27] was one of the first approaches
for the control of robots to promote the concept of reactivity using
minimal state to reduce lengthy deliberation time. It has been used in the
control of complete robotic systems, for example, a six legged walking
robot [63], a three wheeled robot with an arm that navigates an office
collecting cans [64], and a garbage collection robot that operates in a
swarm [65]. The key concepts of the subsumption pattern have been used
as part of the control layer of layered architectures to arbitrate between
behaviours [31].

The Behaviour language [66] is a programming language that adopts
the subsumption pattern to make the state machines that define beha-
viours easier to manage.

The layered structure of the subsumption pattern is designed to enable
developers to use an incremental development process with each layer
building upon the functionality of the last until the required system
behaviour is achieved. These layers, however, do not relate to the layers
of the three-layer architecture.

To facilitate the development of robotic systems according to the sub-
sumption patterns, Brooks defines an informal numbering called compet-
ence which is based on his own experiences in developing mobile robots;
it classifies the desired behaviours of the robot in its environment [27].
For example the lowest level 0: avoid objects, up to the highest level
7: reason about the behaviour of objects and modify plans accordingly.
Each layer of the system is then designed to accomplish each level of
competence creating a correspondece between layer and competence
level.

For our purposes here, that is, modelling, the subsumption pattern is
characterised by the following concepts.

Modules Comprised of a finite state machine that has the ability to hold
data structures in variables. Modules also have inputs and outputs
that enable communication among modules. All modules have a
have a special input that resets a module to its initial state. Option-
ally modules can have an interface to the sensors and actuators of
the robot enabling the finite state machine to utilise sensor values
and set the actuators. We note here that the term module does not
refer to a RoboChart module.

Inhibitors Comprised of two inputs and an output. When a message

27

2 Modelling Robotics Software Architectures

is received on the first input it is relayed to the output. When a
message is received on the second input, the relaying of messages is
prevented for a period of time. Inhibitors do not modify the inputs
provided to them, therefore, they relate to the communication of
messages that could be provided by a middleware.

Suppressors Comprised of two inputs and an output. The messages
received on each input are relayed to the output. However, mes-
sages received on the second input are given priority and there is a
minimum time delay that following the reception of a message on
the second input no messages from the first input are relayed. Sup-
pressors do not modify the inputs provided to them, therefore, they
relate to the communication of messages that could be provided by
a middleware.

Layers Comprised of the modules, inhibitors, suppressors, and the con-
nections among them that specify the source and destination of
messages. The collection of the components that the layer contains
specifies a subset of the required robot’s behaviour.

Table 2.5: The primary concepts of subsumption.
Concept Description
Layer Formed of modules, inhibitors, suppressors, and con-

nections.
Module Contain a finite state machine and instance variables. To

communicate modules can have input lines and output
lines. All modules have a reset input. Modules that
receive sensor data or set actuators use a robot com-
munication interface that controls the robot’s physical
devices.

Inhibitor Consist of two inputs and an output. The signal from
the first input is relayed to the output until a signal
is received on the second input, when for a prede-
termined amount of time no signal is relayed to the
output.

Continued on next page

28

2.2 Patterns of Robotics Software Layers

Table 2.5 – Continued from previous page
Concept Description
Suppressor Consist of two inputs and an output. The signal from

the first input is relayed to the output until a signal
is received on the second input, when for a predeter-
mined amount of time only the second signal is relayed
to the output.

Table 2.5 summarises the primary concepts of subsumption and identifies
related concepts using italicised text. The related concepts are defined in
Table 2.6.

RoboArch enables the description of a layer’s pattern using the termin-
ology of subsumption. We extend the control layer of the mail delivery
system that was presented in Chapter 3 to include the structure of beha-
viours as subsumption. Because subsumption is being used for only the
control layer of the mail delivery system, the higher competence levels
are fulfilled by the approaches used by the executive and planning layers.

For the movement control aspect of the system, we define the compet-
ence levels as follows:

Level 0 – Stop when an object becomes too close.

Level 1 – Move down a hallway while avoiding obstacles.

Level 2 – Identify the current location of the delivery robot, move to
a specified location, find office numbers and doors.

Table 2.6: The related concepts of subsumption.
Element Description
Finite State Ma-
chine

Finite State Machine

Reset of a module, special input that sets module
to its initial state.

Output line Sends a message
Input line Receives a message and has a single element

buffer. Latches that indicate the arrival of a
new message.

Continued on next page

29

2 Modelling Robotics Software Architectures

Table 2.6 – Continued from previous page
Element Description
Robot Communic-
ation

Modules can, if required, communicate with
the physical robot to get sensor values or set
actuator values. The actual communication
mechanism is unspecified.

Signal The message as it travels along connections
between modules.

Message A data value that is communicated between
modules.

Instance Variable Variable of module that hold data struc-
tures.

Input Buffer Holds the most recently arrived message
from an input line.

Event The occurrence of a message on an input
line.

Delay Time delay
Connections Output lines from one module can be con-

nected to one or many module input lines.
(Brooks mentions these can be thought of as
wires.)

The competence levels defined for the office delivery system have been
specified by decomposing the task of ‘moving to different locations while
searching for an office number’ into behaviours that the executive layer
can use. A standard robotics ontology [67] was used to identify the
concepts of each behaviour. The behaviours were placed into levels so
that each provided part of the system’s behaviour and the number of
concepts a behaviour used was considered.

As a guide the number of concepts increases for higher levels of
competence: level 0 requires only the concept of distance to accomplish
its behaviour, level 1 the concepts of distance and velocity, and level 2

distance, velocity, location and office number.

2.2.3 Evaluation

The descriptions given for the reactive skills and subsumption patterns
is a step towards their formalisation in order to provide support for
modelling systems that use them.

30

2.3 Domain Specific Languages

The next section provides a review of DSLs for robotics and justifies
the use of RoboChart for our work.

2.3 Domain Specific Languages

Modelling languages can either be general purpose or domain specific [68,
p. 59]. General Purpose Languages (GPLs) can be used to model a wide
range of domains. An example of a GPL is Unified Modelling Language
(UML) [69] for modelling software systems.

Domain-specific languages, on the other hand, target an individual
domain. This means that DSLs contain only the constructs necessary to
represent concepts from the domain of interest. Therefore, the number
of semantic elements that users of the language have to remember is
reduced [68, p. 70], and the widely used domain-specific concepts can
be represented in a common way [68, p. 70]. An example of a DSL is
VHDL [70] for modelling electronic hardware.

There is an increasing number of DSLs for robotics [13], each offering
features for different aspects of the robotics domain. We consider the
features of interest provided by a selection of DSLs and present an
evaluation of each. The features are as follows: the notation types
supported, whether the semantics is formally specified, the aspects of the
system that can be modelled, and the artefacts that can be derived from
the model.

A documented metamodel provides a means to analyse and com-
pare the syntactic structure of DSLs. Because code generation plays an
important role in MDE for improving software quality and reducing
development time, the artefacts that a DSL produces can provide an
indication of its primary purpose. For DSLs to be widely adopted and
used by practitioners they must be accessible and maintained to include
the latest concepts from the target domain, therefore, there should be
evidence of ongoing support.

The DSLs have been selected from one hundred and thirty-seven
different robotics DSLs outlined by a survey [13] conducted by Nordmann
et al. and a further six from a search of the literature for recent DSLs.
The survey covers DSLs published between the years of 1980 and 2015,
with our search covering from 2015 and onwards. Seven DSLs have been
selected for discussion: six based upon having a documented metamodel,
providing support for code generation, and evidence of ongoing support,
the seventh, WRIGHT, for being related work but for general software

31

2 Modelling Robotics Software Architectures

architecture not specific to robotics.
Evidence for each of the selection criteria has been found using col-

lective publications for each DSL and associated documentation from
the DSL’s website (where available). Sections 2.3.1 to 2.3.5 present the
selected DSLs and provide a review of the discussed important aspects.
Finally section Section 2.3.8 evaluates the DSLs.

2.3.1 RoboChart

RoboChart is a notation for modelling robot software controllers using
state machines [19]. A notable feature is RoboChart’s formally defined
semantics, which enables automated and semi-automated verification.
RoboChart’s semantics is defined using CSP. This is a notation for de-
scribing a system in terms of communicating processes while ignoring
the computations internal to each process [71]. The CSP notation along
with theories of concurrency enable concurrent systems to be analysed,
and as a result, properties such as determinism, deadlock, and livelock
can be verified [71].

The main structural elements of RoboChart are as follows:

Module is the top-level component representing the robot control soft-
ware, made up of a robotic platform and controller(s).

Robotic Platform represents observable interactions between the robot
and its environment, providing the variables, events, and operations
to represent facilities required by the control software.

Controllers are composed of at least one state machine and represent
parallel behaviour.

State Machines represent predominantly sequential behaviour.

RoboChart encourages reusability through modularity using its struc-
tural elements [72]. For instance, robotic platforms are independent of
controllers. Therefore, a robotic platform in a model can be interchanged,
providing that the replacement robotic platform has corresponding vari-
ables, events, and operations the controllers from the model require.
Similarly, controllers and state machines are self-contained components
that can be independently analysed and developed. This is beneficial for
the development of large systems, helping multiple developers work on
different areas simultaneously.

32

2.3 Domain Specific Languages

CSP has a Unified Theory of Programming [73] making it possible
for RoboChart to support reasoning about additional aspects of robotic
systems, such as, for example, probabilistic and continuous behaviour
using semi-automated theorem proving [19]. The artefacts that can be
generated from a RoboChart model include: a CSP model for model
checking and verifying system properties, a probabilistic model for ana-
lysis in the probabilistic model checker PRISM [74], and a controller
implementation in C++ for simulation and deployment onto the target
robotic system.

RoboChart models can be created and modified graphically using the
Integrated Development Environment (IDE) RoboTool. The ability of
RoboChart to automate aspects of system verification utilising formal
methods, combined with its graphical modelling capabilities act to widen
the application of formal methods. This enables users with minimal
expertise in formal methods to make use of the benefits they provide,
such as, automated testing and defect detection [75].

2.3.2 RobotML

RobotML is a notation that can be used to address the challenge of
interoperability of robotics software to improve reusability [15]. RobotML
achieves this by abstracting the low-level platform-specific hardware
and software implementation details, and automatically generating the
system’s executable code. This allows the developers of a robotic system
to focus on the design of the high-level system functionality.

A notable feature of RobotML is the domain model at its core, which
is based on an ontology [76] developed as part of the PROTEUS3 project.
The ontology covers all aspects of robotic systems, and is used to extend
the UML metamodel. Therefore, RobotML can be used to model a com-
plete system from its mission through to deployment platform. However,
there is only an informal correspondence between RobotML and the
ontology it uses, therefore, the semantics of RobotML is not precisely
defined.

RobotML models are component-based with ports and connectors
representing communication between components. They can be created
and modified graphically using an Eclipse Papyrus4 based IDE.

The main structural elements of RobotML are as follows:

3Plateforme pour la Robotique Organisant les Transferts Entre Utilisateurs et Scienti-
fiques - https://anr.fr/Project-ANR-09-SEGI-0010

4https://www.eclipse.org/papyrus/

33

https://anr.fr/Project-ANR-09-SEGI-0010
https://www.eclipse.org/papyrus/

2 Modelling Robotics Software Architectures

Robotic Architecture The top-level package describing the robotic system
using Robotic Behaviour and Robotic Communications.

Robotic Behaviour The behaviour of components are modelled using
finite state machines or algorithms.

Robotic Communications The communications between robotic systems
are modelled as either DataFlowPorts (publish/subscribe) or Servi-
cePorts (request/reply).

Robotic Deployment The constructs used in the assignment of the robotic
system to the target platform, used for code generation.

RobotML’s Platform Independent Model (PIM) is made up of three parts
that describe a robotic system: sensors, actuators, and the robot control
system. Each of the three parts contains one or more components. For the
robot control system, the components represent behaviours of the system
and each have an associated finite state machine or algorithm defining
their behaviour, for example, obstacle detection. The communication
between all of the components in the system is represented graphically
as edges between component ports.

By definition, the PIM does not specify implementation-specific mid-
dleware or simulators. Therefore, in order to generate executable code,
RobotML uses a Deployment Platform Model (DPM) to map components
from the PIM to implementation-specific middleware and simulators.

2.3.3 SmartMARS

SmartMARS (Modelling and Analysis of Robotic Systems) is the notation
for the SmartSoft component-based approach to robotics software devel-
opment. The SmartSoft approach addresses the reusability of robotics
software between developers by separating the development process into
two activities: component building and systems integration [16]. To
enable software components to be integrated in a compositional manner,
strictly defined communication patterns are enforced by the compon-
ent model [77]. These communication patterns informally define the
semantics of SmartMARS.

SmartSoft system-level models are component-based with ports and
connectors representing provided and required services between com-
ponents. They can be created and modified graphically using the Eclipse
and Papyrus-based SmartMDSD toolchain.

The main elements of SmartSoft system-level models are as follows:

34

2.3 Domain Specific Languages

Component A software element that offers and requires services.

Service The instantiation of one of the enforced interaction patterns by a
component.

The behaviour of the components is not described by SmartMDSD models.
Instead, a component’s behaviour is determined by its source code. The
SmartMDSD toolchain enables a component developer to graphically
create the structure of the component for the system-level model, and then
generate a code outline to implement the behaviour of the component.

Other DSLs are available that can be used in conjunction with Smart-
MARS to provide additional functionality: for example, task decom-
position using SmartTCL (Task Control Language) [78]. Dynamic re-
configuration at runtime is supported by dynamic state charts [79], an
extension to state charts [80].

2.3.4 BCM

The BRICS5 Component Model (BCM) is a collection of notations and
an associated design methodology to promote model-driven software
development in robotics [14]. In particular the BCM defines a component-
based structure that maintains the separation of five concerns; that is,
the four concerns defined by Radestock and Eisenbach [81] (communica-
tion, computation, configuration, and coordination) with the addition of
composition.

BCM models are component-based with ports and connectors rep-
resenting data-flow, services, events, or properties. The semantics of
BCM are informally defined following concepts from other component-
based approaches that have been used to develop robotic systems. The
BRIDE Eclipse based IDE provides a graphical interface for creating BCM
models.

The key elements of BCM are as follows:

Component is the top-level element that represents a module of a ro-
botic system. A component has ports and represents a function or
behaviour.

Services are provided or required by a component to perform its func-
tion; they are represented as a port of a component.

5Best Practice in Robotics - http://www.best-of-robotics.org/

35

http://www.best-of-robotics.org/

2 Modelling Robotics Software Architectures

Events are provided or required by a component for coordination; they
are represented as a port of a component.

Data Flow is the data provided or required by a component to perform
its function; they are represented as a port of a component.

Properties are configuration parameters required by a component to
perform its function; they are represented as a port of a component.

The Component Port Connector (CPC) platform-independent notation
supports composability by describing the structure of the software without
relying on specific middleware or frameworks.

The BCM provides specialisations of the CPC notation for middleware
or framework-specific models. The platform-specific models are created
using model-to-model transformations. The resulting platform-specific
model is used to generate source code for implementation of the robotic
system. Because BCM does not provide a means to model the behaviour
of its components, only partial source code can be generated.

2.3.5 V3CMM

The three-view component metamodel (V3CMM) addresses the need for
improved processes and tools for the development of robotic systems
with increasing levels of functionality, while reducing overall develop-
ment time and cost [82]. V3CMM uses a platform-independent model
and a component-based approach to increase the reusability of robotics
software. V3CMM ’s notation is a subset of UML selected from Alonso,
Vicente-Chicote, Ortiz et al. experiences developing robotic systems. It
adopts the semantics of UML; as a result, some aspects of the language
are left open. V3CMM models are created using a textual notation with
an Eclipse based IDE for model-to-model transformations and source
code generation.

A notable feature of V3CMM is its concept of three distinct views,
each responsible for a particular part of the system model. The three
views are as follows:

Structural View describes the system’s structure using components.

Coordination View describes the event-driven behaviour of components
using state machines.

Algorithmic View describes the algorithms executed during a state from
a state machine using activity diagrams.

36

2.3 Domain Specific Languages

There are two types of component in the V3CMM structural view: com-
plex and simple. Simple components can be associated with a behaviour
from the coordination view, as opposed to complex components, which
can only act as containers for simple components. This means that the
behaviour of complex components is defined by the simple components
within it.

The behaviour of simple components is defined through the coordina-
tion view using the concepts of UML state machines. The state machines
for each component provide concurrent event-driven behaviour. The
states of the state machines are defined through the algorithmic view,
which uses the concepts of UML activity diagrams restricted to sequential
execution.

V3CMM focuses on modelling platform-independent behaviour of
a robotic system and does not provide views that require additional
platform-specific details such as tasks [82]. For the same reason, model-
to-model transformations for middleware are not provided. Features that
require platform-specific details can instead be supported by appropriate
model transformations [82].

2.3.6 RsaML

The Robotic Software Architecture Modelling Language (RsaML)[83]
is a modelling language for robotics software architecture to promote
software engineering methods and techniques in robotics. RsaML is
based on Monthe et al. review of robotics software architectures from the
literature. The concepts of the architectures surveyed are consolidated
and captured as a metamodel that defines RsaML. To date there are no
notations available for RsaML, instead it makes use of Eclipse Modeling
Framework (EMF) utilities for the creation of models from its metamodel.
However, RsaML defines well-formedness conditions using the Object
Constraint Language (OCL), which enables some validation of the created
models.

The key structural concepts of RsaML are as follows:

System is the top-level concept that represents a robotic system that has
both software and hardware elements.

Layers are the level in the hierarchy of the architecture and are made up
of modules.

37

2 Modelling Robotics Software Architectures

Modules represent a software component and they communicate through
ports to other modules.

Functions implement the processing of a module as a set of actions.

A notable feature of RsaML is its comprehensiveness covering goals to
time constraints and scheduling. This also means that there is direct
representation for concepts of robotics architectural patterns, for example,
layers and suppression and inhibition of communications from subsump-
tion [27].

RsaML promotes separation of the robotic platform from the architec-
ture by having the system composed of software and hardware. It helps
the reuse of architectures with different applications. There is no support
for modelling behaviour so only partial source code could be generated
from an RsaML model.

2.3.7 WRIGHT

WRIGHT is a notation for describing software architecture in a precise and
unambiguous way in order to address the informal approaches typically
used to specify software architecture [84]. WRIGHT’s semantics is defined
using CSP. It formalises component and connector communication al-
lowing software structure to be modelled. Because WRIGHT extends
CSP, behaviour of components can be specified using CSP processes.
This means that properties of the software given by a description can be
verified. There is support for automatic verification of some properties,
for example, consistency and deadlock freedom.

The main elements of WRIGHT are as follows:

Style defines shared properties of configurations.

Configurations are a collection of component instances combined via
connectors.

Components describe a localised independent computation. They are
composed of an interface and a computation that is the behaviour
of the component.

Connectors represent interactions among collections of components.

The interface of a component defines the component’s ports that it uses to
communicate. The computation of a component specifies the components

38

2.3 Domain Specific Languages

behaviour and how the component makes use of its interface ports. A
configuration defines a system’s architecture and can reference styles to
reuse their definitions.

A notable feature of WRIGHT is its ability to be able to describe
architectural patterns using styles. Styles are made up of parametrised
components and connectors plus a set of constraints that all members of
the style must satisfy.

There is no support for time so it is not possible to verify properties
that include time constraints.

2.3.8 Evaluation

Table 2.7 summarises the features of the DSLs discussed in the previous
sections. All of the DSLs reviewed are robotics specific with the exception
of WRIGHT which is for general purpose software development. All of
the DSLs reviewed use a component-based approach that can be used
to model the software structure of robotic systems and facilitate the
reusability of robotics software. Graphical modelling capabilities for
creating and modifying models are either available or planned, with the
exception of WRIGHT.

Table 2.7: Feature comparison of robotics DSLs

D
SL

D
om

ai
n

Em
ph

as
is

C
om

po
ne

nt
-B

as
ed

G
ra

ph
ic

al
M

od
el

li
ng

M
od

el
s

B
eh

av
io

ur
C

od
e

G
en

er
at

io
n

Fo
rm

al
ly

Sp
ec

ifi
ed

A
ut

om
at

ic
V

er
ifi

ca
ti

on
Si

m
ul

at
io

n

RoboChart Controllers ✓ ✓ ✓ ✓ ✓ ✓ ✓

RobotML Systems ✓ ✓ ✓ ✓ ✗ ✗ ✓

SmartMARS Communications ✓ ✓ ✗ Partial ✗ ✗ ✓

BCM Structure ✓ ✓ ✗ Partial ✗ ✗ ✗

V3CMM Components ✓ Planned ✓ ✓ ✗ ✗ ✗

RsaML Systems ✓ Planned ✗ Planned ✗ ✗ ✗

WRIGHT Components ✓ ✗ ✓ ✗ ✓ ✓ ✗

Each robotics DSL emphasises a different part of the domain, with each

39

2 Modelling Robotics Software Architectures

taking a unique approach to address challenges in the development of
robotics software. RoboChart models capture the behaviour of controllers
with respect to services provided by a robotic platform. RobotML which
is based on an ontology and RsaML models both capture a complete
system. SmartMARS models capture software components structure
and the communications patterns used between components. BCM
models capture the software components structure. Finally, V3CMM and
WRIGHT models capture the software components structure including
their behaviour; additionally, WRIGHT can describe the more general
structure of components and connections as patterns. As a result of these
approaches, distinct features are offered that we now consider.

Three of the DSLs do not model the behaviour of the software com-
ponents. For both SmartMARS and BCM the source code provided by
developers instead defines the components behaviours , whereas, for
RsaML behaviour cannot be defined beyond the outline of functions. The
other four DSLs do model the behaviour of components, all providing
state machines for this purpose except WRIGHT which relies on behaviour
defined as CSP processes. DSLs that do model component behaviour can
generate more complete source code.

RoboChart is prominent in that it is the only robotics DSL that has a
formal semantics. This means that properties of the modelled system
can be mathematically verified using different techniques, for example,
model checking and theorem proving. Furthermore, some parts of the
verification is automated through the use of an MDE approach.

The WRIGHT DSL does have some similar characteristics to Rob-
oChart for automatic verification and being formally specified. However,
WRIGHT does not support the specification of time or probabilistic prop-
erties which are important for modelling robotic systems.

RobotML is the most comprehensive DSL and aims to cover all as-
pects of robotics software development. Consequently this means that
it is the largest DSL containing the most elements. BCM is the least
comprehensive DSL; therefore it is the most concise and has the fewest
elements.

RoboChart’s formal semantics and support for automatic verification
are distinguishing features that make it particularly suitable for our work.
Combined with all of the other features in support of an MDE approach,
RoboChart provides a foundation for contributing to the verification of
robotic systems.

The next section introduces RoboChart using a simple autonomous
lawnmower robot example.

40

2.4 Modelling Robotic Systems Using RoboChart

2.4 Modelling Robotic Systems Using RoboChart

This section introduces RoboChart’s graphical notation through a simple
example of a robotic lawnmower. Section 2.4.1 explains the structure
and elements of a RoboChart model for the robot lawnmower, and
Section 2.4.2 demonstrates the verification of some properties of the robot
lawnmower using the RoboChart model.

2.4.1 Modelling

The diverse and often specialised designs of robotic systems mean that
many different controller configurations and communication methods
are used across the domain. RoboChart provides a selection of features
and structural elements that make it well suited to modelling robotic
systems.

RoboChart models specify the controller software of a robotic system
as a module element that contains three other main types of element:
controllers, state machines, and the robotic platform.

Controller elements of a RoboChart model represent controllers from a
robotic system.

State machine elements define the behaviour of the RoboChart con-
trollers in a notation typically used by the developers of robotic
systems.

Robotic platform is the element which represents the services provided
by a particular hardware and associated embedded software that
can be used by the controller software.

A RoboChart module can have several controllers that define the con-
current behaviour of the robotic system. Similarly, the behaviour of
a controller can be given by one or more state machines that execute
concurrently within a controller. State machines define predominantly
sequential behaviour, however, in some cases concurrent behaviour is
possible, for example, via during actions in composite states. To create a
RoboChart model of a robotic system it is important to understand the
foundational concepts of RoboChart that relate its elements.

RoboChart models are event-based: events can be related to the result
of a stimulus from the environment detected by a sensor or to a request

41

2 Modelling Robotics Software Architectures

from the software to use an actuator. Events can communicate values, so
they can have an associated type.

RoboChart operations take parameters and return no value; instead
they can affect the state of the robotic system. Operations can be used to
represent API calls to the robotic platform, or they can be defined using
state machines and provided by controllers.

RoboChart controllers, state machines, and robotic platforms can have
variables. Variables can optionally be defined as constant preventing them
being modified. Many commonly used primitive types are supported
including: natural numbers, strings, integers, booleans, and real numbers.
Custom primitive types can be created. Other types supported are
enumerations, product types, and datatypes that are made up of fields of
types. Finally sets and sequences are also supported.

Related events, operations, and variables can be grouped into an inter-
face. RoboChart platforms, controllers and machines can declare three
types of interface: provided, required, and defined. Required interfaces
indicate functionality that a controller requires from the robotic platform
in order to perform its function and can only contain variables and op-
erations. Provided interfaces indicate the functionality that the robotic
platform provides to controllers. Similarly required interfaces can contain
only variables and operations. Defined interfaces indicate the events and
variables that an element uses to perform its function.

The support RoboChart provides for interfaces makes the services a
controller requires from the platform in order to operate clearly visible.
Additionally, the support provided by defined interfaces to group to-
gether related events and variables further contributes to the structure of
RoboChart models and their comprehensibility.

The lawn-mower is four wheeled, differentially driven and battery
powered. The battery is charged using a solar panel on top of the robot.
Additionally, the robot has a cutter, which can be switched on or off, for
performing its main function of cutting the grass.

The lawn-mowing system is expected to operate autonomously in a
typical residential garden as shown in Figure 2.6. To keep the robot
within a specific area of grass, the user must install a boundary wire.
Inside the robot’s area of operation there could be obstacles that the robot
must avoid. To enable autonomous operation in its environment the
robot features two types of sensor: a Very Low Frequency (VLF) sensor
for detecting the boundary wire, and ultrasonic sensors for obstacle
detection.

The software controllable inputs and outputs of the lawnmower robot

42

2.4 Modelling Robotic Systems Using RoboChart

Figure 2.6: The environment of the lawnmower robot.

Key:
Robot
Obstacle
Obstacle Det-
ection Range
Boundary

are shown in Figure 2.7.

Figure 2.7: The inputs and outputs of lawnmower robot’s controller soft-
ware.

Boundary
Detection Power

Status

Motors Cutter

Controller Software

Obstacle
Detection

Inputs to the robot’s controller software originate from two places: either
from the environment via the robot’s sensors, or internal state information
provided by the robot’s hardware. All of the inputs to the controller
software can be modelled using events.

The events from the environment include: a boundary event that occurs
when the lawnmower reaches the boundary wire, and an obstacle event
that occurs when an obstacle has been detected along the robot’s path.

43

2 Modelling Robotics Software Architectures

The internal events from the robot’s hardware include a lowPower event
that occurs when the battery level is too low to cut grass, and a fullPower
event that occurs when the battery has been fully charged by the solar
panel. Because both the lowPower and fullPower events relate to power,
they are defined together in an interface.

The lawnmower robot software API provides methods for controlling
the robot’s cutter and motors. The methods from the software API can be
modelled using operations and organised into two interfaces MotorCon-
trol and CutterControl, which reflect the robot’s actuators. The interface
definitions can be found in Figure 2.8. Events are depicted within inter-
faces as the event name prefixed with a lightning symbol (). Operations
and constants are similarly shown, but with operations prefixed with
an O symbol () and constants prefixed with a pi symbol ().

Figure 2.8: The interfaces and the data types of the lawnmower robot.

To minimise the cost of the lawnmower it has a single embedded
microcontroller. Therefore, it can be modelled as a single controller
which we call Mower. Because there is only a single controller in this
system it must handle all events and require all of the interfaces from the
robotic platform in order to fulfil its lawn-mowing function.

Figure 2.9 shows the RoboChart module for the lawnmower system;
it is made up of the Lawnmower robotic platform and the single control-
ler Mower. Events of the controllers and platforms are depicted as square
boxes on their boundary labelled with the event name.

The flow of events is depicted by the connections between the robotic
platform, controllers, and state machines. This is useful when modelling
more complex systems, particularly where there are multiple control-
lers and state machines. RoboChart supports both synchronous and
asynchronous connections that follow the commonly used communica-

44

2.4 Modelling Robotic Systems Using RoboChart

tion approaches of the robotics domain. Asynchronous connections are
labelled as ‘async’ whereas synchronous connections are unlabelled.

The directionality of the events is indicated by the connection arrows
between events of the controller and the state machine. It is worth noting
that the event names for connected events between the elements can
be different, however, the types associated with connected events must
match.

Figure 2.9: The module of the lawnmower robot.

A notable feature of RoboChart state machines is the support for the
specification and verification of time properties. The timed features
include the concept of clocks, budgets, and deadlines. Clocks record the
number of time units that have passed since the clock was last reset; they
are represented with an identifying name prefixed with the symbol.
The budgets and deadlines provide a way to specify how long an action
can take or the amount of time required for a transition trigger to occur.

State machines define behaviour using states, junctions, and the pos-
sible transitions among them. Actions of states can be specified as being
executed on entry, during, or on exit of the state. Actions are defined
using a simple action language which contains among other things: op-
eration calls, conditionals, event input and output, and assignments [85,
Sec. 2.1.6]. States can also be composite and so contain a state machine
that is executed when that state is entered.

Transitions connect states and junctions and they can have any combin-

45

2 Modelling Robotics Software Architectures

ation of triggers, guards, or action statements. Triggers cause a transition
to be taken on the occurrence of a particular event. Optional deadlines
can be given to triggers supporting the specification of time properties of
the system. The guards are boolean expressions that only allow a trans-
ition to be taken when it evaluates to true. The action statement enables
any required actions to be executed on the occurrence of a transition.

Because the behaviour of the lawn-mowing system is simple and
consists of managing the cutter and movement that requires no concurrent
control, a single state machine can be used to define the behaviour of the
Mower controller. Figure 2.10 shows the Mower controller and the its state
machine which has been called MowManager.

An overview of the lawnmower’s behaviour is as follows. When the
charge in the battery is sufficient the robot moves forward with the cutter
enabled. When a boundary is reached the robot turns around to cut the
next strip of grass parallel to the last. If the robot encounters an obstacle
it turns to avoid the obstacle and then continues moving forward. For
safety the lawnmower has bumper switches on each side that, if activated,
disconnect the power; this requires a user to reset and is not under control
of software.

Figure 2.10: The controller of the lawnmower system.

The MowManager machine requires all of the interfaces and must handle
all of the events of the system, because, a single controller and a single
state machine are being used to model the system. The behaviour of the
lawnmower robot can be modelled using four states: Charging, Mowing,
AvoidingObstacle, and Turning. Figure 2.11 shows the MowManager state
machine that implements the systems behaviour.

In addition to the required and defined interfaces a constant named

46

2.4 Modelling Robotic Systems Using RoboChart

AVOID ANGLE defines a constant of type Angle. The AVOID ANGLE
constant is used as the angle for obstacle avoidance; its exact value is not
specified in this model.

The Charging state from Figure 2.11 is the initial state indicated by
the special junction with an i. On entering the Charging state, the cutter
is disabled using the enableCutter operation; subsequently the robot is
stopped using the moveForward operation.

Figure 2.11: The state machine of the lawnmower robot.

The Charging state from the MowManager machine in Figure 2.11 trans-
itions to the Mowing state when a fullPower event occurs. Similarly, when
in the Mowing state and a lowPower event is received, the machine trans-
itions back into the Charging state. The complete behaviour of the Mow-
Manager machine can be summarised as follows:

• The robot is stationary with the cutter switched off in the Charging
state, until the fullPower event is triggered.

• On triggering of the fullPower event the Mowing state is entered, the
cutter is enabled and the robot begins moving forward.

• If the robot is in the Mowing state and a boundary event is triggered,
the robot enters the Turning state. When the turn has completed the
Mowing state is entered.

• If the robot is in the Mowing state and an obstacle event is triggered,
the robot enters the AvoidingObstacle state. Once the obstacle has

47

2 Modelling Robotics Software Architectures

been avoided the Mowing state is entered.

• If the charge runs low when in the Mowing state then the Charging
state is entered, the cutters are switched off and the robot stops.

The next section discusses the proof of some of the properties that can be
verified using the RoboChart model of the lawnmower.

2.4.2 Verification

The RoboTool IDE automatically generates a CSP model from the Robo-
Chart model enabling verification of the software’s properties. Basic
properties can be automatically verified and other properties of interest
can be included in the verification following their specification in CSP.
For the lawn-mowing software the generated CSP model consists of 54

files and 1,813 lines of code. The CSP model in combination with a
set of assertions can be used to automatically verify the following basic
properties.

Determinism The behaviour of a module, controller or state machine only
depends on the inputs provided to it.

Divergence Freedom A module, controller or state machine does not enter
an infinite sequence of internal actions.

Deadlock Freedom A module, controller or state machine does not get to
a point where it is unable to progress refusing all interactions.

Termination An operation, state machine, or controller can successfully
complete reaching a final state.

Reachablilty That it is possible to enter the state of a machine with some
combination of input events.

The set of assertions to be verified are specified using RoboTools’s asser-
tion language, which is a controlled natural language based on English.
For example, to check that the MowManager machine is deterministic the
corresponding statement in the RoboTool assertion language is:

assertion MM 1: mower::MowManager is deterministic

Keywords are highlighted in boldface and MM 1 is a user-defined label
given to the assertion for easy identification. The full specification for the
assertion language format is given in [85, Sec. 6].

48

2.5 Final Considerations

From the set of RoboChart assertions RoboTool automatically generates
corresponding CSP assertions. The generated CSP assertions along with
the CSP model can then be used to verify the specified software properties
using the model checker FDR [86].

In addition to the basic properties, a property of interest can be verified
by specifying it as a CSP process, and then using refinement checking
to verify the CSP process against the CSP model. For example, the
lawnmower should avoid an obstacle when it is detected; this can be
expressed by the following process named Property Avoid Obstacle
(PAO).

PAO =2 ev : waitevents • (ev −→ PAO)

2

Mower :: MowManager :: obstacle. in −→
Mower :: MowManager :: avoidCall −→ PAO

PAO is a CSP process that accepts all of the events from the MowMan-
ager machine given in Figure 2.11. All of the events that do not relate
to the property of interest are in the set waitevents. When any of the
waitevents occur the process recurses and waits for another event. On
a mower MowManager obstacle. in CSP event occurring, representing the
RoboChart event obstacle, the avoid operation should be called, indic-
ated by the CSP events avoidCall. Afterwards, the process goes back to
accepting all events from the MowManager machine.

The assertion can be now be specified as a refinement check against the
MowManager machine that can be expressed using the assertion language
as:

assertion MM 9: mower::MowManager refines
PAO in the failures model

The complete assertions file used for verifying the lawnmower robot and
untimed results can be found in Appendix A.

2.5 Final Considerations

This chapter has surveyed some robotics specific architectures and DSLs.
It has found that RoboChart stands out for its formally defined semantics

49

2 Modelling Robotics Software Architectures

and support for automated and semi-automated verification. Coupled
with support for simulation and modelling timed and probabilistic beha-
viours of robotic systems, RoboChart provides a basis for their improved
verification utilising formal techniques.

From our study of architectural patterns used within the robotics
community, the use of the layered pattern is evident. The layers separate
high-level planning and decision-making from the lower-level functional
layer. The layered structure of robotics architectures vary in number
and composition. Furthermore, different control techniques are used by
the functional layer’s of robotics architectures. Out of the architectures
reviewed, either a service-based or a behavioural-control technique is
used by the functional layer. It needs to be possible to model these
different functional layer control techniques using RoboChart, to ensure
real robotic systems can be modelled and verified.

The next chapter outlines an approach for characterising layered robot-
ics architectural patterns as a metamodel and well-formedness conditions
that define RoboArch. It examines a selection of patterns that can be
used by each of the layers. Finally, it introduces rules for translating from
RoboArch to RoboChart.

50

3 Architectural Patterns for Robotics

The preceding chapter has identified the common use of layered archi-
tectures in robotics and analyses the structure and function of each layer.
In this chapter we introduce RoboArch, a notation for describing archi-
tectures, and examine how architectural patterns can be characterised as
a metamodel and well-formedness conditions. For the layered pattern
we define its key concepts and present a metamodel and transformation
rules from RoboArch to RoboChart.

The presented metamodel and transformation rules give a precise
characterisation of the layered architecture and identifies several patterns
that we study. These have, so far, been given just an informal account
in the literature, with, in some cases, several variations considered by
different authors. Our metamodel and rules form the basis for our
tool to automatically generate sketches of RoboChart models from an
architectural description of layers.

Section 3.1 provides an overview of the RoboArch notation and how
it can be used to model a layered architectural pattern. It introduces
the robotic mail delivery system used as a running example. Section 3.2
presents the transformation rules and the resulting RoboChart model
structure. Section 3.3 provides a detailed analysis of the approaches
for the control layer and how they can be modelled. We conclude in
Section 3.4, with some final considerations.

3.1 RoboArch: Layers

Layers provide structural organisation to software. In robotics architec-
tures they have been used to help manage the large volumes of data
produced by sensors and actuators while being able to reason about and
plan for dynamic environments. First, we show how a layered pattern
can be described using RoboArch without specifying the patterns used
for each of the layers. Later, in Chapter 4, an example of a pattern for
the control layer is given demonstrating how a pattern for a layer can be
characterised.

51

3 Architectural Patterns for Robotics

3.1.1 Overview

RoboArch enables the description of the architectural structure and pat-
terns used by a robotic system to be captured. We will use an office
delivery robot example from the handbook of robotics [10, Sec. 12.3] to
introduce RoboArch’s notation.

The goal of the robot is to deliver items within a typical office building,
transporting items of post from a central mailroom to each of the offices
within the building. To achieve its goal the robot must safely navigate
along the corridors of the building while avoiding any obstacles such as
people and furniture. The robot is given a map of the building so that it
does not have to construct a map by exploring the environment.

For our example we assume a robot that comprises of the following
sensors and actuators: a two-wheel differential driven base, a loudspeaker,
a forward-facing 2D ranging sensor, and a stereoscopic imaging sensor.
Figure 3.1 shows the software controllable inputs and outputs of the
robot. The inputs originating from the environment via the robot’s

Figure 3.1: The inputs and outputs of the mail delivery robot’s controller
software.

Stereo
Camera

Base Loudspeaker

Controller Software

2D
Ranging

sensors can be modelled as events. The outputs from the software API
of the base and loudspeaker can be modelled as operations. However,
before defining the robotic platform, the system and its types for these
events and operations must first be declared.

The system clause of RoboArch gives a name to a model that describes
the architectural elements of a system, namely layers and a robotic
platform. For our example, Listing 3.1 declares the system with the
name MailDelivery.

RoboArch adopts the type system of RoboChart, which itself is based
on that of Z [87]. RoboChart’s libraries provide support for core types
including: real, nat, boolean, and string and types from the Z mathemat-
ical toolkit like sequences. Listing 3.2 adds the type declarations to the
system from lines 3 to 33.

52

3.1 RoboArch: Layers

Listing 3.1: The system declaration
1 system MailDelivery

Listing 3.2: A system and its type declarations.
1 system MailDelivery
2

3 type Velocity
4 type Coordinate
5

6 datatype Office {
7 number:nat
8 location:Coordinate
9 }

10

11 datatype Velocities {
12 linear:Velocity
13 angular:Velocity
14 }
15

16 type Time
17 type ColourPoint
18

19 datatype PointImage {
20 header: Time
21 width: nat
22 height: nat
23 points: Seq(ColourPoint)
24 }
25

26 datatype Scan {
27 header: Time
28 startAngle: Angle
29 stopAngle: Angle
30 timeBetweenMeasurements: Time
31 Ranges: Seq(Range)
32 Intensities: Seq(Intensity)
33 }

Examples of abstract type definitions, characterised just by its name,
include Velocity on line 3 and Coordinate on line 4. One example
of a record type is Office on line 6 that has two fields. The first
field, number, of type nat, and the second field, location, of type
Coordinate.

53

3 Architectural Patterns for Robotics

The robotic platform determines the possible interactions with the
environment, therefore, the capabilities of the robotic platform are often
an important consideration made by developers early on in a system’s
design. RoboArch supports modelling of the platform by adopting
RoboChart’s robotic platform concept that abstracts the services the
physical robot’s software provides as events, operations, and variables.

The robotic platform for our example is given in Listing 3.3. The
robotic platform clause on line 53 declares a platform with name
DeliveryRobot that references interfaces named Base, Audio,
PointCloud, and EnvColourPoints which are declared in Listing 3.4.
The interfaces in our example logically group platform services related
by sub-module capability of the robot’s hardware.

Listing 3.3: Platform declaration
1 system MailDelivery

. /* Type Declarations */

. /* Interface Declarations */

53 robotic platform DeliveryRobot {
54 provides Base
55 provides Audio
56 uses PointCloud
57 uses ColourPointCloud
58 }

The hardware module relating to Base is the core that the robot is built
around and it is the means for moving around the environment. The
module relating to Audio can produce sound for announcing its arrival
notifying recipients of their mail. The module relating to PointCloud
senses the environment providing information on the position of obstacles
as series of points. The module relating to EnvColourPoints senses the
environment providing images that are used for locating and navigating
the robot.

The interfaces are referenced using provides and uses clauses. The
provides clauses on lines 54 and 55 reference provided interfaces
Base and Audio that contain operations and variables. The uses
clauses on lines 56 and 57 reference defined interfaces PointCloud
and ColourPointCloud that contain events.

54

3.1 RoboArch: Layers

The Base interface declared on line 35 of Listing 3.4 models the in-
teractions that control movement. There is one operation Move and
two constants. The Move operation has one argument request of type
Velocity and when called, results in the linear and angular velocities of
the robot being adjusted to match the passed in parameters. The two con-
stants ZERO LINEAR VELOCITY and ZERO ANGULAR VELOCITY define
the zero named values for readability and maintainability.

Listing 3.4: Interface declarations for the platform.
1 system MailDelivery

. /* Type Declarations */

35 interface Base {
36 Move (request : Velocities)
37 const ZERO_LINEAR_VELOCITY : Velocity
38 const ZERO_ANGULAR_VELOCITY : Velocity
39 }
40

41 interface Audio {
42 Announce (request : String)
43 }
44

45 interface PointCloud {
46 event envPoints : Scan
47 }
48

49 interface ColourPointCloud {
50 event envColourPoints : PointImage
51 }

The Audio interface declared on line 41 models interactions that
provide feedback to users; it has one operation Announce. The Announce
operation has one argument of type string and when called, the passed
in string is converted into audio and played via a loudspeaker.

The PointCloud interface declared on line 45 models obstacle sensor
data, for instance, from a type of laser scanning device. The interface
contains one event envPoints with a value of type Scan that is a record
containing a sequence of ranges to obstacles from a scan. For the delivery
robot the value of an envPoints event represents the current obstacles
surrounding the robot; it is used to safely stop if the planned path is
obstructed.

The ColourPointCloud interface declared on line 49 models vision
sensor data, for instance, from a colour camera. The interface contains

55

3 Architectural Patterns for Robotics

one event envColourPoints with a value of type PointImage that is
a record containing a sequence of colour points. For the delivery robot
the value of an envColourPoints event represents a colour image of
the environment; it is used for object recognition and verifying progress
of actions.

Following the platform in a RoboArch model the next important
concept is the layers. For our example here, we specify a typical three-
layer architecture with planning, executive, and control layers. Layers
model the architectural structure of a system’s software. Every layer
must have a unique descriptive name that identifies it within the system.
Optionally layers can have a type, a pattern, inputs and outputs.

The three specific layer types that can be specified using RoboArch are
ControlLayer, ExecutiveLayer, and PlanningLayer. Providing
a type enables the greatest level of validation of the patterns used by a
system’s layers. On the other hand, the possibility of not providing a
type means a more customised architectural structure, rather than the
standard three-layer architecture, can be used.

The input and output events that layers define make a layer’s services
accessible to others without specifying the behaviour of the layer. Instead,
the behaviour is left to be defined by a pattern and by customising the
generated RoboChart model.

Later in Section 3.3 we explore specific patterns that can be used for
each layer. The planning layer for our example is given in Listing 3.5.
The layer clause on line 60 declares a layer with name Pln and type
PlanningLayer.

Listing 3.5: A custom planning layer.
1 system MailDelivery

. /* Type Declarations */

. /* Interface Declarations */

. /* Platform Declaration */

60 layer Pln: PlanningLayer {
61

62 inputs= deliveryComplete,
63 pickupFailed;
64

65 outputs= deliverMail: Office ;
66 } ;

56

3.1 RoboArch: Layers

There is one output deliverMail with value of type Office that re-
quests the number of the office to which mail is currently being delivered.
There are two inputs deliveryComplete and pickupFailed that
have no associated value type; their occurrence indicates an outcome of
the currently requested delivery. The occurrence of a deliveryComplete
input event indicates that delivery to the specified office has been suc-
cessful. The occurrence of a pickupFailed input event indicates that
pickup of a delivery has failed. The Pln layer inputs and outputs are
used to communicate with another layer; in our example, an executive
layer type.

The executive layer for our example is given in Listing 3.6. The
layer clause on line 69 declares a layer with name Exe and type
ExecutiveLayer. The inputs and outputs communicate either with the
planning layer or control layer. The connections are defined later in the
RoboArch model.

Listing 3.6: A custom executive layer.
1 system MailDelivery

. /* Type Declarations */

. /* Interface Declarations */

. /* Platform Declaration */

. /* Planning Layer Declaration */

69 layer Exe: ExecutiveLayer {
70

71 inputs= deliverMail:Office,
72 destinationReached,
73 location:Coordinate,
74 doorFound,
75 mailPickedUp;
76

77 outputs= deliveryComplete,
78 pickupFailed,
79 destination:Coordinate,
80 doorToFind:nat,
81 getLocation,
82 speak:string;
83 } ;

57

3 Architectural Patterns for Robotics

The Exe layer declares six outputs. One of which is destination
with value of type Coordinate that requests the control layer to move
the delivery robot to the location given by the coordinate while avoiding
obstacles. The doorToFind output with associated nat type requests
the control layer to search for the given door number within the robot’s
visual field. The getLocation output with no value type requests the
control layer to return the current location the robot is determined to be.
The speak output requests the control layer to announce the given text
string using the robot’s loudspeaker.

The remaining outputs deliveryComplete and pickupFailed in-
form the Pln layer of the status of the delivery. A deliveryComplete
event is triggered once the mail has been picked up by the recipient and
a pickupFailed event is triggered when the mail is not collected.

The Exe layer declares five inputs. One of which is deliverMail with
value of type Office that informs the layer of the given office to deliver
mail to. The other inputs provide feedback on the delivery it is executing.
The occurrence of a destinationReached input event indicates that
the robot has reached the requested destination. The occurrence of a
location with value of type Coordinate gives the current location
of the robot. The occurrence of a doorFound input event indicates that
the requested door is visible. The occurrence of a mailPickedUp input
event indicates the mail item has been taken. The executive layer uses
services of the control layer.

A layer that is of a control type shares all of the aforementioned features
of layers. In addition, control layers directly communicate with a robotic
platform, therefore, they reference platform interfaces. The control layer
for our example is given in Listing 3.7. The layer clause on line 86

declares a layer with name Ctl and type ControlLayer. The inputs
and outputs between lines 93 to 101 communicate with the executive
layer. The requires and uses clauses between lines 88 to 91 reference
interfaces that are used by the control layer.

The requires clauses on lines 88 and 89 reference required inter-
faces Base and Audio that contain operations and variables. The uses
clauses on lines 90 and 91 reference defined interfaces PointCloud and
ColourPointCloud that contain events.

The Ctl layer declares four inputs. The first is destination with
value of type Coordinate that informs the layer of the given coordinate
to navigate to. The doorToFind with value of type nat that informs
the layer of the office door number to look for in the field of view. The
occurrence of a getLocation input event is a request for the layer to

58

3.1 RoboArch: Layers

Listing 3.7: A custom control layer.
1 system MailDelivery

. /* Type Declarations */

. /* Interface Declarations */

. /* Platform Declaration */

. /* Planning Layer Declaration */

. /* Executive Layer Declaration */

86 layer Ctl: ControlLayer {
87

88 requires Base
89 requires Audio
90 uses PointCloud
91 uses ColourPointCloud
92

93 inputs= destination:Coordinate,
94 doorToFind:nat,
95 getLocation,
96 speak: string;
97

98 outputs= location:Coordinate,
99 destinationReached,

100 doorFound,
101 mailPickedUp;
102 } ;

return the current location by triggering an output event with its value
set to the coordinate of the current location. The speak with value of
type string takes the input that is communicated to the platform to be
announced via loudspeaker.

The Ctl layer declares four outputs. The first is location with
value of type Coordinate that provides the current coordinate of the
robot within the building in response to a getLocation input. The
destinationReached occurs when the robot has reached its requested
destination. The doorFound occurs when the requested door number
is within the visual field of the robot. The mailPickedUp occurs when
the mail item being delivered has been collected by the recipient.

The inputs destination, doorToFind, getLocation, and speak
from the executive layer use services of the platform to produce designed

59

3 Architectural Patterns for Robotics

behaviours. For example, destination input requests to move the
robot to the given location with the implemented behaviour of the control
layer invoking the Move() operation of the platform declared in the
Base interface.

The outputs location, destinationReached, doorFound, and
mailPickedUp provide feedback to the executive layer on the status of
its requests to the control layer.

Listing 3.8 declares the connections for our mail delivery example.

Listing 3.8: Connection declarations
1 system MailDelivery

. /* Type Declarations */

. /* Interface Declarations */

. /* Platform Declaration */

. /* Planning Layer Declaration */

. /* Executive Layer Declaration */

. /* Control Layer Declaration */

105 connections=
106 Pln on deliverMail to Exe on deliverMail,
107 Exe on deliveryComplete to Pln on deliveryComplete,
108 Exe on pickupFailed to Pln on pickupFailed,
109

110 Exe on destination to Ctl on destination,
111 Exe on doorToFind to Ctl on doorToFind,
112 Exe on getLocation to Ctl on getLocation,
113 Exe on speak to Ctl on speak,
114

115 Ctl on location to Exe on location,
116 Ctl on destinationReached to Exe on

destinationReached,
117 Ctl on doorFound to Exe on doorFound,
118 Ctl on mailPickedUp to Exe on mailPickedUp,
119

120 DeliveryRobot on envPoints to Ctl on envPoints,
121 DeliveryRobot on envColourPoints Ctl on

envColourPoints
122 ;

60

3.1 RoboArch: Layers

The connections between the layers and robotic platform connection
nodes are defined under a system’s connections clause. Each connec-
tion is unidirectional and connects an input or output on a node (layer
or platform) to another node’s output or input. Lines 105 to 121 of

Line 106 declares a connection from the Pln layer’s deliverMail
output event to the Exe layer’s deliverMail input event.

We have now introduced all parts of the textual notation for describing
the layered structure of the mail delivery example. Next we describe the
RoboArch metamodel.

3.1.2 Metamodel

The structure of RoboArch models is determined by a metamodel that
specifies the available concepts and how they relate to one another. In
this section, we focus on the top-level structure of RoboArch models: the
systems, layers, robotic platforms, and connections.

A RoboArch model is organised in a system. Figure 3.2 defines a
RoboArch System that can include declarations of layers, platforms, con-
nections, definitions, functions, and interfaces.

Figure 3.2: System metamodel

The NamedElement parent means that Systems have a name attribute
for uniquely identifying each System instance. Systems contain at least
one layer and must have a robotic platform.

The robotic platform concept is reused from RoboChart. RoboticPlat-
forms have a name attribute for identification and they can declare events

61

3 Architectural Patterns for Robotics

and variables as well as reference interfaces that have operations or events
for modelling the services of physical robots.

A Layer can have inputs and outputs that are, via connections, the
means of interacting with a layer’s services. They can optionally have a
pattern that defines their behaviour using the pattern-specific terminology
and concepts. A detailed characterisation of patterns and their metamodel
are presented in the next chapter. The inputs and outputs are RoboChart
events that can have a type and if present defines the values that can be
communicated.

The structure of a system comprises of a number of connection nodes
and connections. The ConnectionNode class characterises elements that
can be connected through their events; they are Layers and RoboticPlat-
forms.

Connections are between two events, a source efrom and a target eto that
belong to their respective to and from ConnectionNodes. The Connections
of a System establish a relationship among its Layers and RoboticPlatform.
The metamodel does not restrict the events and types that can be connec-
ted so not all of the possible connections are meaningful, for example,
if the connected events are of different types. Well-formedness condi-
tions, presented later, are used to restrict models to only those that are
meaningful.

Systems declare type definitions, functions, and interfaces that are used
for modelling layers, robotic platforms, and patterns. The collections of
TypeDecl attribute named definitions, Function attribute named functions,
and Interface attribute named interfaces are as in RoboChart.

Subclasses of TypeDecl define: an abstract type without definition that
only has a name, an enumeration type that contains a collection of literals
which associate a name with a type, and record type called data type
similar to UML and Z schema types. RoboArch supports the use of
the RoboChart’s library that provides a set of core types: for example,
real, nat, int, boolean, char, and string. The Z mathematical toolkit
from RoboChart is also supported, it provides data types for sequences,
functions, and relations.

Layer is an abstract class that is further specialised; Figure 3.3 shows the
metamodel of layers. GenericLayer is the most general kind of layer and
represents a layer without a type, offering flexibility to model systems
with minimal restrictions. GenericLayers are able to communicate with the
RoboticPlatform; therefore, they are a subclass of PlatformCommunicator.

The required and defined interface attributes of PlatformCommunic-
ator are rinterfaces and interfaces, respectively. They enable the platform
services a layer requires to be specified.

62

3.1 RoboArch: Layers

Figure 3.3: Layers metamodel

The three other kinds of layers, ControlLayer, ExecutiveLayer, and Plan-
ningLayer, allow models to be validated according to the layered pattern.
The ControlLayer Layer can communicate with the RoboticPlatform therfore
is a subclass of PlatformCommunicator.

Layers optionally can have a pattern that define its own set of concepts
for modelling structure and behaviour. Examples of patterns of include:
reactive skills, subsumption, hierarchical task network, and planner
scheduler, each represented by a subclass of Pattern. In Chapter 4 we
characterise and present the metamodel, well-formedness conditions, and
rules for the reactive-skills pattern.

Not all models that can be created obeying the metamodel can be given
a semantics translated to RoboChart. For example, it is not possible to
give reasonable meaning to layers with connections between events of
the same direction, input to input or output to output. Therefore, we use
well-formedness conditions to ensure only valid models can be created.

3.1.3 Well-formedness Conditions

Well-formedness conditions restrict the models allowed by the RoboArch
metamodel to only those that are meaningful. Here we focus on condi-
tions relating to the top-level system.

S1 A System must have one or more connections that relate a single
Layer to a RoboticPlatform or there must be a Layer that has at least one
or more rinterfaces.

This ensures that it is possible for there to be some interaction with the
platform which describes the services provided by the hardware. If there

63

3 Architectural Patterns for Robotics

was no interaction with the platform the robot would do nothing.

S2 For Systems with more than one Layer, each Layer must have at
least one input or output event.

Because a layer must provide a service that forms part of the overall
system behaviour and itself may rely on services of another layer they
cannot exist in isolation. Therefore, a layer must provide a means for
external interaction as input or output events.

S3 For Systems that have a ControlLayer, ExecutiveLayer, and a Plan-
ningLayer, Connections must associate the ExecutiveLayer layer with
both the ControlLayer and the PlanningLayer.
The three-layer robotics architecture defines control, executive and plan-
ning layers and establishes their responsibilities and the order in which
the layers are allowed interact. If a system has all three layers, the exec-
utive layer must be the middle intermediate layer between the planning
and control layers with no direct communication between them because
the executive layer decomposes requests it receives from the planning
layer.

S4 Connections efrom and eto event types must match.

This ensures that the communications carried out via the connections are
well typed.

S5 Connections must only connect Layer inputs to outputs or vice versa.

This ensures that data is sent from an output and received by an input.

S6 Connections must only associate a Layer with at most two other
Layers.

In the layered architecture a layer can use the services of one other
layer and the same layer can provide its services to at most one other.
Therefore, a layer can have up to two immediate neighbours that they
can communicate with, shielding them from direct communication with
any other layer.

64

3.2 Rules

S7 Connections involving the ControlLayer must only associate it with
at most one other Layer.

Because the control layer uses the services of the platform, it means that
it can only accept requests from one other layer for similar reasons to
those described above for S6.

S8 The connections of a System must only associate events defined by
interfaces of GenericLayers and ControlLayers with events of the Robot-
icPlatform.

The interfaces of RoboArch layers are only used to define communication
between layers and a robotic platform’s, therefore, their connections must
only be made between that layer and the a robotic platform.

The description captured by the notation of RoboArch forms a model that
allows the application of model-driven techniques to reason about and
analyse the system being developed. In the next section we introduce the
transformation rules that are used to generate RoboChart models.

3.2 Rules

From the RoboArch description of a model via model transformation
a RoboChart model can be generated. RoboChart’s formally defined
semantics underpins RoboArch because of the rules that link them, and
allow properties of the systems described using RoboArch to be verified.

Semi-formal transformation rules map concepts of RoboArch to Rob-
oChart and consist of five parts presented in tabular form. A name a
uniquely identifies the rule and broadly follows the convention of [Ro-
boArchConcept]to[RoboChartConcept]. The parameter b are the RoboArch
concepts that are the inputs to be transformed. The result c are the
RoboChart concepts that will be created upon the rule being applied. The
optional Precondition d that must be satisfied in order for the rule to
be applicable. The definition e is the main body of the rule that uses
a Z-like notation to define the RoboChart output result in terms of the
RoboArch input parameter.

The top-level RoboArch element is the system that contains all other
elements that model the architecture of the robotic system being de-
veloped. Therefore, the transformation rule that calls all others takes the
System as its parameter and is named SystemToRCModule.

65

3 Architectural Patterns for Robotics

The SystemToRCModule Rule 3.2.1 takes a RoboArch System and
produces a RoboChart RCModule along with a set of type declarations
and a set of interfaces. This rule applies further rules to define a valid
RoboChart model that can be used as a basis for verification.

Rule 3.2.1:

a Name SystemToRCModule

b Parameter
name:type amsys:System

c Result
name:type

rcdefs: Set(TypeDecl), rcfuns: Set(Function) , rcifcs:
Set(Interface), rcmod: RCModule

e Definition

rcdefs = amsys.definitions
∪⋃

{lyr: amsys.layers • LayerToTypes(lyr)}

rcfuns = amsys.functions
∪⋃

{lyr: amsys.layers • LayerToFunctions(lyr)}

rcifcs = amsys.interfaces
∪⋃

{lyr: amsys.layers • LayerToInterface(lyr)}

rcmod =
⟨| name = amsys.name,

nodes =
LayersToControllers(amsys.layers)
∪
roboticPlatform,

connections = amsys.connections
|⟩RCModule

where
cLayer = {lyr: amsys.layers | lyr ∈ ControlLayer}

Continued on next page

66

3.2 Rules

Rule 3.2.1 – continued from previous page
if ((# amsys.robot.operations > 0) ∨

(# amsys.robot.interfaces > 0) ∨
(# amsys.robot.pinterfaces > 0) ∨
(# amsys.robot.variableList > 0)) then

roboticPlatform = amsys.robot
else

roboticPlatform = ControlLayerToRoboticPlatform(
cLayer)

The resulting RoboChart type definitions rcdefs are the union of Ro-
boArch system type definitions amsys.definitions and the generalised
union of the result of the application of Rule B.1.1 LayerToTypes for
each layer of the RoboArch layers amsys.layers. The RoboArch system
definitions are adopted from RoboChart so directly map across to the Ro-
boArch model with no modification therefore do not require additional
rules. The results from applying the LayerToTypes rule add additional
types that arise from a layer’s pattern, the details of which will be given
in Chapter 4 that looks at patterns in detail.

The specification of the RoboChart function definitions rcfuns follows
the same structure as for rcdefs. Directly declared amsys.functions are
included with no modification and a generalised union that calls a rule
for each of the layers. However, this time it is LayerToFunctions Rule B.1.2
that adds additional functions that are required by a layer’s pattern.

The resulting specification of the RoboChart interface definitions rcifs
follows the same structure as rcdefs. Directly declared amsys.interfaces
are included with no modification and a generalised union that calls
the LayerToInterface Rule B.1.3 for each of the layers adds additional
interfaces required by a layer’s pattern.

The resulting RoboChart module definition rcmod is specified by a
binding (object or record definition) using the notation ⟨| S |⟩T where T
indicates the type of the element being defined. This binding notation is
used throughout the rules to describe elements of the generated model.
Each attribute of the type is defined by statements S. For the module the
attributes defined are name, nodes and connections. The name of the
module is simply the RoboArch system name amsys.name. The nodes of
the module are controllers that result from calling LayersToControllers
Rule 3.2.2 taking the system’s layers as a parameter and a roboticPlatform
as defined by the where clause. The connections of the module are the

67

3 Architectural Patterns for Robotics

connections defined directly by amsys.connections.

Rule 3.2.2:

a Name LayersToControllers

b Parameter
name:type amlyrs: Set(Layer)

c Result
name:type rcctl: Set(Controller)

e Definition

rcctl = { l:amlyrs •
⟨| name= l.name,

events= l.inputs ∪ l.outputs,

machines=
PatternToMachinesAndConnections(l.pattern).1,

connections=
PatternToMachinesAndConnections(l.pattern).2,

if (l.pattern ∈ GenericLayer ∨
l.pattern ∈ ControlLayer) then

interfaces= l.interfaces,

rinterfaces= l.rinterfaces

else
interfaces= ∅,

rinterfaces= ∅
|⟩Controller }

The where clause of the SystemToRCModule rule defines the robotic-
Platform and cLayer. If the robot attribute of a System has any operations,
interfaces, or variables, the roboticPlatform is amsys.robot; this means
that the platform is directly mapped to the RoboChart model because
RoboArch adopts the platform concept of RoboChart and requires no
transformation. If the robot operations, interfaces, or variables are all
empty, the roboticPlatform is the result of calling the Rule B.1.4 Control-
LayerToRoboticPlatform that takes the control layer cLayer. The cLayer
is defined as a a set comprehension that filters the control layers from

68

3.2 Rules

the system’s layers amsys.layers. This definition of the roboticPlatform
allows the platform to be generated or defined by the developer offering
multiple ways to approach modelling.

We will use the mail delivery example from Section 3.1 and apply the
rules to demonstrate the resulting RoboChart model that is generated.

The structure of the generated RoboChart model so far from examining
the SystemToRCModule rule will be a single module with the system
name MailDelivery. See Figure 3.4 for the RoboChart representation.
One of the module’s nodes will be the robotic platform the others are
defined by the by the LayersToControllers rule.

The LayersToControllers rule takes a set of layers and produces a set
of controllers. The resulting set of controllers rcctl is given by a set
comprehension that binds each RoboArch layer l given as input to the
attributes of the type Controller: name, events, machines, connections,
interfaces, and rinterfaces.

The name of each controller is the name of a layer l.name. The events
of each controller are defined by union of the layers inputs and outputs.
The machines and connections for each controller are the result of calling
Rule 4.4.1 PatternToMachinesAndConnections. The respective machines
or connections of the tuple are selected by the dot operator. The details
of the PatternToMachinesAndConnections rule will be given in Chapter 4

where we analyse a pattern that is used in the control layer of robotic
systems.

Only control layers and generic layers in RoboArch can communicate
with the robotic platform and have interfaces. Interfaces they define are
directly mapped across to the layer’s corresponding controller. For the
other executive and planning layers the interfaces of the resulting con-
troller are defined as the empty set as a consequence of well-formedness
condition S8.

Figure 3.4 shows the three controllers and a robotic platform for
MailDelivery. There is a controller for each of the layers with match-
ing names from the model Pln, Exe, and Ctl from Listings 3.5 to 3.7.
The robotic platform has the name of the platform from the model
DeliveryRobot from Listing 3.3. The connections between the layers of
the model from Listing 3.8 map to the connections between the controllers
in the RoboChart model. We will now examine the structure of each of
the generated components in turn.

69

3 Architectural Patterns for Robotics

Figure 3.4: MailDelivery RoboChart Module

Figure 3.5: DeliveryRobot RoboChart Platform

The platform of the RoboArch model as we have seen in the rules is
directly reused in the RoboChart model. Figure 3.5 shows RoboTool’s
graphical representation of the platform of our mail delivery example.
The types from the RoboArch model are based on RoboChart’s so they
can be directly reused by the generated RoboChart model. These types

70

3.2 Rules

are used throughout the RoboChart model’s controllers, platforms, and
state machines. RoboTool’s graphical representation of the types can be
found in Appendix C.1.

The provided interfaces Base and Audio and the defined interfaces
PointCloud and ColourPointCloud are within the platform. The defined
interface events are visible as the boxes on border of the platform.

Figure 3.6 shows the planning layer Pln. The inputs and outputs events
appear along the border of the controller. Inside the controller is a single

Figure 3.6: Pln RoboChart Controller

minimal machine because in our mail delivery example no pattern is
specified by the RoboArch description. The PatternToMachinesAndCon-
nections Rule 4.4.1 defined in the next chapter characterises this machine.
The minimal machine acts as a placeholder to be customised by the user
to specify their required behaviour.

The minimal machine consists of a single initial junction, a state s0, and
a transition that leads from the initial junction to s0. Figure 3.7 shows
RoboTool’s graphical representation of the minimal machine.

Figure 3.7: Minimal RoboChart State Machine

71

3 Architectural Patterns for Robotics

Figure 3.8 shows the executive layer Exe; it follows the same structure
as the Pln layer. The input and outputs of the layer are along the border
of the controller. Inside is the minimal state machine, to be elaborated
with custom behaviour, because no pattern has been specified by the
RoboArch description.

Figure 3.8: Exe RoboChart Controller

The final controller is the control layer Ctl shown in Figure 3.9. Again it
follows the same structure as the previous two layers Pln and Exe with the
inputs and outputs and the minimal machine as a placeholder. However,
it additionally communicates with the robotic platform to make use of
its services that ultimately allow the physical robot to be controlled.

Inside the top-half of the Ctl controller are the required and defined
interfaces Base and Audio that declare services provided by a platform; for
our example this is the DeliveryRobot. Events from the defined interfaces
envPoints and envColourPoints are visible along the edges of the controller.

72

3.3 Approaches Used by Layers

Figure 3.9: Ctl RoboChart Controller

We now have seen the most abstract RoboArch description of a mail
delivery system that specifies a three-layer architecture without defining
a layer’s pattern or behaviour. Even without these, a RoboChart model
is generated that a developer can use as a starting point for modelling
their own custom behaviour. This abstract example demonstrates the
top-level structure that is used for all RoboArch models, including those
with layers when they use a pattern. We now give an overview of some
patterns from the literature for each of the layers.

3.3 Approaches Used by Layers

Different approaches have been used to realise the functionality of the
different kinds of layers resulting in a number of patterns that can be
selected.

For control layers, examples of behavioural-based control patterns
include reactive skills [42] and subsumption [27]. Examples of service
based control patterns include CLARAty [36], and GenoM [38].

73

3 Architectural Patterns for Robotics

For executive layers, the hierarchical task decomposition pattern is
widely used [10, p. 294]. This is because hierarchical decomposition is ef-
fective at reducing complexity as each level in the hierarchy has a smaller
number of activities available to it compared to no hierarchy. Executive
languages such as RAPs [88], PRS [89], TDL [90], and PLEXIL [91] all
choose to represent their tasks in this way. Architectural patterns vary in
how much, if at all, their executive layer decomposes tasks.

For planning layers to determine the actions that are required to accom-
plish goals, hierarchical task networks and integrated planner-scheduler
patterns have been used [10, Sec. 12.3.4]. The hierarchical task network
pattern performs planning and scheduling as distinct phases, using a
hierarchical structure that resembles the task hierarchy of the executive
layer. However, the task hierarchy used by the planning layer contains
tasks that are more abstract and, additionally, resource usage is taken
into account. Examples of hierarchical task network planners include
O-Plan [92] and HATP [93].

The integrated planner-scheduler pattern combines planning and
scheduling so that additional properties such as time can be considered
during planning, resulting in a plan that can better utilise the resources
available. The integrated approach also enables detailed planning to be
deferred or brought forward, therefore, reducing the overall comput-
ing resources required since an entire plan does not have to be found
each time re-planning occurs. Examples of planner-schedulers include
HSTS [94] and CASPER [55].

The different patterns for each layer outlined here can be accommod-
ated in RoboArch as shown in the next chapter.

3.4 Final Considerations

We have introduced the textual notation of RoboArch for capturing
descriptions of software architectures for robotics. The metamodel that
underpins RoboArch models has been presented and the well-formedness
conditions have been defined so that meaningless models can be flagged.
Transformation rules from RoboArch to RoboChart give a semantics to
RoboArch layers. For an architecture using layers that do not have a
pattern, the resulting RoboChart model and its structure for the top-level
rules has been demonstrated.

In the next chapter we examine the reactive skills layer pattern to
demonstrate in detail how patterns can be used to add further structure
and behaviour to layers.

74

4 Patterns in RoboArch

In this chapter, we present the RoboArch notation for patterns, their
metamodel, and the transformation rules to RoboChart.

Section 4.1 introduces the notation f.2or patterns of a layer and the
metamodel for the pattern types. Section 4.2 presents the notation for
the reactive skills pattern and our characterisation as a metamodel and
well-formedness conditions. Section 4.3 presents the notation for the
subsumption pattern. Section 4.4 presents the transformation rules for
the patterns and the generated RoboChart model for the mail delivery
example. We conclude in Section 4.5 with some final considerations. First,
we give the general notation that each pattern further defines.

4.1 RoboArch: Patterns

Patterns define further internal structure to the layers; they also define
behaviours and contribute to the resulting software functionality. We
now examine the structure of patterns and how they are modelled us-
ing RoboArch including the encoding of behaviour they define within
transformation rules. The RoboArch model and rules enable the auto-
matic generation of partial RoboChart models (or sketches) that include
structural and behavioural components as specified by the pattern. The
generated partial models can be completed by the developer to add the
remaining implementation specific details for the verification of system
properties.

Here we present the general RoboArch notation for a layer that is
defined by a pattern. Listing 4.1 shows the structure of a RoboArch layer.
Line 1 declares a layer named lptn of generic type. I, O, PTyp, and PDef
are statements defined by the developer for their system. In Chapter 3

we have seen how the layers inputs I on Line 3 and outputs O on Line 5

can be defined.
The pattern clause on Line 7 declares the pattern of the layer by

its type PTyp that can be ReactiveSkills, Subsumption, Htn, or
PlannerScheduler. Dealing with additional patterns is future work

75

4 Patterns in RoboArch

but the examples shown here describe how this can be done.

Listing 4.1: Layer with pattern.
1 layer lptn {
2

3 inputs= I;
4

5 outputs= O;
6

7 pattern= PTyp;
8

9 PDef
10

11 } ;

The pattern definition that describes the structure of the modelled system
in terms of its concepts are given by PDef on Line 9. This form for layers
that include a pattern provides the means to specify further details for
a given pattern. We will now describe the metamodel for RoboArch
pattern types.

4.1.1 Metamodel

Figure 4.1 defines a RoboArch pattern as an abstract class that is the
parent class of all the supported patterns. Each pattern extends the

Figure 4.1: Pattern types metamodel

Pattern class with its own concepts that form the pattern’s definition.
This metamodel structure allows interchangeability of a layer’s pattern
giving developers the flexibility to select a pattern. We introduce no well-
formedness conditions for the Patterns, for example, restricting the layer
in which a pattern can be used. Instead, these conditions are included in
the well-formedness conditions for the individual patterns.

76

4.2 Reactive Skills

In the next section we examine the reactive skills pattern and its
corresponding ReactiveSkills class.

4.2 Reactive Skills

The reactive skills pattern is a pattern that can be used for the control
layer and means that it interfaces the robotic platform with another layer.
Here we provide our characterisation of the pattern and elaborate the
mail delivery example of Chapter 3 showing how RoboArch can be used
to model a layer that uses reactive skills.

RoboArch enables the description of a layer’s pattern using the con-
cepts of reactive skills. We extend the control layer of the mail delivery
system that was presented in Chapter 3 to include the structure of be-
haviours as reactive skills. Our example for the reactive skills pattern
models the behaviours responsible for moving the delivery robot to a
given target location. Listing 4.2 shows the RoboArch model for our
reactive skills example. The listing instantiates the pattern type PTyp and
pattern definition PDef introduced earlier in this chapter.

The type of pattern a layer uses is specified by the pattern clause of
RoboArch and it determines the subsequent clauses that can be declared
in the pattern definition PDef . For reactive skills the clauses available are
skills, connections, and monitors. Line 1 of the listing declares
PTyp as a pattern type of ReactiveSkills. The remaining lines 3

to 35 define the pattern definition PDef .
Skills are a fundamental concept to the pattern and the structure it

provides. Every skill must have a unique descriptive name that identifies
it within its layer. Optionally skills can have parameters, a priority, inputs,
and outputs.

The skills clause on Line 3 declares the skills of the layer. There
are separate clauses for defining each type of skill: dskill for D-
Skills and cskill for C-Skills. In our example there are three D-
Skills that have names Move, ColourVision, and Proximity declared
on lines 4, 8, and 12, respectively. There are also two C-Skills that
have names MoveToLocation and DetermineLocation declared on
Lines 16 and 23, respectively.

In the reactive skills pattern D-Skills interface physical devices so
the outputs of D-Skills are from sensors and inputs are to actuators.
RoboArch dskills declare ouputs using the outputs clause and inputs
using the inputs clause. In our example, the Move D-Skill has one input,

77

4 Patterns in RoboArch

declared on Line 5, with name velocity and type Velocities.

Listing 4.2: Reactive skills movement
1 pattern= ReactiveSkills;
2

3 skills=
4 dskill Move {
5 inputs= velocity:Velocities;
6 },
7

8 dskill ColourVision {
9 outputs= envColourPoints:PointImage;

10 },
11

12 dskill Proximity {
13 outputs= envPoints:Scan;
14 },
15

16 cskill MoveToLocation {
17 parameters= target: Coordinate;
18 inputs= current:Coordinate,
19 hazards:Scan;
20 outputs= velocity:Velocities;
21 },
22

23 cskill DetermineLocation {
24 inputs= image:PointImage;
25 outputs= location:Coordinate;
26 };
27

28 connections=
29 ColourVision on envColourPoints to DetermineLocation

on image,
30 Proximity on envPoints to MoveToLocation on hazards,
31 DetermineLocation on location to MoveToLocation on

current,
32 MoveToLocation on velocity to Move on velocity ;
33

34 monitors= (DestinationReached |
35 DetermineLocation::location == MoveToLocation::target

);

A skill communicating a value to a dskill’s input results in the
physical state of the device that the dskill represents being affected by

78

4.2 Reactive Skills

the given value. In our example, a value communicated to the Move skill’s
velocity input results in the velocities of the motors in the robot’s base
being set.

A skill receiving a value from a dskill’s output represents the state
of the environment the robot is currently situated, as sensed by the
device the dskill represents. In our example, a value received from
the Proximity skill’s envPoints output gives a set of ranges that are
distances to surfaces in the delivery robot’s field of view.

In the reactive skills pattern a C-Skill uses its inputs to compute its
outputs resulting in behaviour that can be used to accomplish parts of
a task. A cskill’s inputs and outputs in RoboArch are declared using
inputs and outputs clauses.

In our example, the DetermineLocation skill takes a colour image of
the environment and by an image based localisation technique calculates
the coordinates the delivery robot is located. Therefore, to perform
its function DetermineLocation has one input with name image
of type PointImage, declared on Line 24, and one output with name
location of type Coordinate, declared on Line 25. The computational
transform that specifies the behaviour of C-Skills is left to be defined by
customising the generated RoboChart model.

The MoveToLocation skill calculates the velocities required to move
the delivery robot to the target location, stopping if any obstacles are
encountered. The inputs the skill require are the current location of the
delivery robot named current and the distance of objects in the field
of view named hazards defined on Lines 18 and 19, respectively. The
target location is provided as parameter target defined on Line 17 and
is set by another layer. The calculated output from the given inputs is
called velocity and defined on Line 20.

Skills can communicate among themselves via the skills manager. The
source and destination of the skills’ inputs and outputs are determ-
ined by connections. The connections between skills are defined in the
connections clause. Each connection is unidirectional and connects
an input of one skill to an output of another. Lines 28 to 32 declare skill
connections for our mail delivery example.

Line 29 declares a connection from the ColourVision skill’s
envColourPoints output to the DetermineLocation skill’s image
input.

Layers that depend on a reactive skills layer may want to monitor for
particular conditions becoming true. In order to minimise the frequency
the dependant layer needs to check conditions, the reactive skills pattern

79

4 Patterns in RoboArch

provides events that are asynchronously triggered to notify the dependant
layer on the occurrence of any monitored conditions.

The monitors clause on Line 34 declares the monitors for the layer.
Monitors must have a descriptive name for identification and define the
logical condition that is to be monitored in terms of skill outputs and
parameters. For our example, a condition that is useful to monitor is the
arrival of the delivery robot at the target location. Line 34 and 35 define
a condition named DestinationReached whose condition evaluates
to true when the location output of the DetermineLocation skill is
equal to the target parameter of MoveToLocation skill.

We have now introduced all parts of the textual notation for describing
the movement of the mail delivery example using the reactive skills
pattern. Next we describe the RoboArch metamodel for reactive skills.

4.2.1 Metamodel

The structure of the RoboArch model for a pattern is determined by
a metamodel that specifies the available concepts and how they relate
to one another. In this section we focus on the reactive skills pattern
of RoboArch models: the skills, skills manager, skill connections, and
monitors.

The reactive skill pattern ReactiveSkills is naturally a subclass of the
RoboArch Pattern and extends it to include the concepts of reactive skills.
Figure 4.2 defines a RoboArch ReactiveSkills pattern.

There must be at least two Skills and exactly one skills manager for
the model to be meaningful. Additionally, out of the skills there must
be at least one C-Skill and at least one D-Skill which is enforced by
well-formedness conditions in the Section 4.2.2.

Skills can have inputs, outputs, and parameters that they use to perform
their operation all represented by Variables. Skills can be asynchronous
and have a priority value indicated by a boolean attribute async and an
integer attribute priority.

Skill is an abstract class and its subclasses are CSkill and DSkill. They do
not further specialise their parent Skill because they are structurally sim-
ilar. However, CSkills and DSkills have distinct behaviours and therefore
their own well-formedness conditions and so must be distinguishable.

A SkillsManager manages inter-skill connections and event monitoring
so they can have Monitors and at least one SkillConnections. Monitors have
a name for identification and a condition that when satisfied a corres-
ponding event alerting the dependant layer is triggered. The condition

80

4.2 Reactive Skills

Figure 4.2: Reactive skills metamodel

attribute is a RoboChart expression.
Lastly, SkillConnections determine the source of the input values for

Skills that the skills manager coordinates. SkillConnections are between
two Variables, a source startOutput and a target endInput that belong
to the respective start and end Skills. The metamodel does not restrict
the Variable and types that can be connected so not all of the possible
connections are meaningful, for example, if the connected Variables are
both inputs. Well-formedness conditions are used to restrict models to
only those that are meaningful.

4.2.2 Well-Formedness

Well-formedness conditions restrict the models allowed by the RoboArch
metamodel to only those that are meaningful. Here we focus on condi-
tions relating to the reactive skills pattern.

RS1 A Layer that has a pattern of type ReactiveSkills must be a Gen-
ericLayer or ControlLayer.
This is because the reactive skill pattern provides the fundamental be-
haviours that interact with the sensors and actuators via the services of
robotic platform, which other layers depend on to carry out the robot’s

81

4 Patterns in RoboArch

tasks. Therefore, the reactive skill pattern can only be used by layers that
can communicate with the robotic platform.

RS2 For a Layer with pattern type ReactiveSkills, at least one of the
System’s connections is from that layer to a RoboticPlatform or that layer
has at least one rinterface.

The reactive skill pattern provides behaviours to other layers that they
use to control the robot in order to carry out their tasks. Therefore, a
layer using the reactive skills pattern must communicate in some way
with the robotic platform either by events, variables, or operations.

RS3 For each event of ReactiveSkills Layer’s interfaces, there must be a
DSkill input with a matching name.

Establishes a relationship between the input of a D-Skill and events of the
robotic platform that have the same names. This means that connections
between the D-Skills and events of the robotic platform can be defined in
the transformation rules to RoboChart.

RS4 ReactiveSkills must contain a CSkill and a DSkill.
A C-Skill or D-Skill in isolation can perform no meaningful function
that alters the state of the robot or its environment. A C-Skill requires a
D-Skill in order to interact with a sensor or actuator via the services of
the robotic platform.

RS5 A CSkill must have at least one output.

A C-Skill that does not provide an output does not contribute to the
behaviour of the system and is therefore redundant and can be removed.

RS6 A DSkill must have at least one output or input.

A D-Skill interfaces the other skills with a robot’s sensors and actuators
via the services of the robotic platform. Therefore, a D-Skill with no
inputs or outputs cannot communicate values to or from any skills to be
able to use the platform and any of the services it provides.

82

4.3 Subsumption

RS7 The start and end Skill of a SkillConnection must be distinct.

A skill’s output must communicate values to another skill and not to
itself. A skill should use its own variables for any of its intermediate
values.

RS8 The startOutput of a SkillConnection must be an output of its start
Skill.
This is because the skill connection’s start attribute specifies the context
of allowable variable for the skill connection’s startOutput.

RS9 The endInput of a SkillConnection must be an input of its end Skill.
This is because the skills connection’s end attribute specifies the context
of allowable variable for the skill connection’s endInput. In combination
with RS8 this ensures only an input can be connected to an output and
vice versa.

RS10 The types of the startOutput and endInput of a SkillConnection
must match.

This ensures that the communications carried out via skill connections
are well typed.

RS11 A Monitor’s condition must only refer to parameters, inputs, and
outputs of the Skills.

Because expressions allow comparisons across variables of a system, the
only conditions that can be monitored by a skills manager are those that
include the attributes of skills.

In the next section we introduce subsumption pattern and its RoboArch
notation.

4.3 Subsumption

The subsumption pattern is a pattern that can be used for the control layer
and means that it interfaces the robotic platform with another layer. Here
we provide an overview of the pattern and elaborate the mail delivery
example of Chapter 3 showing how RoboArch can be used to model a
layer that uses subsumption.

83

4 Patterns in RoboArch

4.3.1 Overview

Listing 4.3 and Listing 4.4 show the RoboArch model for our subsump-
tion example. The listing instantiates the pattern type PTyp and pattern
definition PDef introduced earlier in this chapter.

Listing 4.3: Subsumption movement
1 pattern= Subsumption;
2

3 modules=
4 module Move {
5 inputs= velocity:Velocities, halt, go;
6 states= Moving, Halted;
7 },
8

9 module DetermineLocation {
10 inputs= image:envColourPoints;
11 outputs= location:Coordinate;
12 },
13

14 module Collide {
15 inputs= hazards:Scan;
16 outputs= halt, go;
17

18 },
19

20 module Avoid {
21 inputs= hazards:Scan, velocity:Velocities;
22 outputs= adjustedVelocity:Velocities;
23 states= NoObstacle, Avoiding
24 },
25

26 module MoveAlongCorridor {
27 inputs= image:EnvColourPoints;
28 outputs= velocity:Velocities;
29 states= Following, NoCorridor;
30 },
31

32 module MoveToLocation {
33 inputs= target: Coordinate, current:Coordinate;
34 outputs= velocity:Velocities, arrived;
35 states= Moving, Waiting;
36 } ;

84

4.3 Subsumption

Listing 4.4: Subsumption movement connections
37 connections=
38 connect Collide on go to Move on go,
39 connect Collide on halt to Move on halt,
40 connect Avoid on adjustedVelocity to Move on

velocity,
41

42 connect Ctl on envPoints to Collide on hazards Avoid
on hazards,

43

44 connect Ctl on envColourPoints to MoveAongCorridor
on image DetermineLocation on image,

45 connect MoveAlongCorridor on velocity to Avoid on
velocity,

46 connect DetermineLocation on location to
MoveToLocation on current,

47 connect MoveToLocation on velocity to (suppress
Avoid on velocity 50),

48 connect Ctl on destination to MoveToLocation on
target,

49 connect MoveToLocation on arrived to Ctl on
destinationReached,

50 } ;

As mentioned the type of pattern a layer uses is specified by the
pattern clause of RoboArch and it determines the subsequent clauses
that can be declared in the pattern definition PDef . For subsumption the
clauses available are modules and connections. Line 1 of the listing
declares a pattern type of Subsumption.

Modules are a fundamental concept to the pattern and the structure
it provides. Every module must have a unique descriptive name that
identifies it within its layer. Optionally modules can have inputs, outputs,
variables, and states.

The modules clause on line 3 declares the modules of the layer. In our
example there are six modules that have names Move, Collide, Avoid,
DetermineLocation, MoveAlongCorridor, and MoveToLocation
declared on lines 4, 9, 14, 20, 26, and 32, respectively.

Modules are state machines that apply functions to their inputs to
produce outputs. In our example the DetermineLocation module has
one input image and one output location. The function of the module
is to, on receiving an image value, calculate the location via an image
recognition function not specified here and output the coordinate via the

85

4 Patterns in RoboArch

location output.
States can be defined for a module using the states clause. In

our example the Avoid module declares two states NoObstacle and
Avoiding on line 23 that make up the behaviour of the module for later
elaboration by the developer.

In the subsumption pattern modules can communicate with the phys-
ical robot however no mechanism is defined to do this. RoboArch’s
characterisation of subsumption utilises the robotic platform so events
that connect the robotic platform via the Ctl layer represent events from
the robot’s sensors and actuators.

The other means that a module can use to communicate with the
robot is through operations and variables of platform via the controllers
required interfaces in the module’s state definitions.

Modules can communicate among themselves; connections determine
the inputs and outputs that are connected. Additionally, connections
specify the subsumption pattern’s characteristic suppression and inhib-
ition and shape the resulting behaviour of the combined skills. The
connections between modules are defined under a layer’s connections
clause. Each connection is unidirectional and asynchronous and connects
an input of one skill to the output of another. Lines 37 to 49 of Figure 4.4
declare connections for our mail delivery example.

Line 38 defines a connection from the source go output of the Collide
module to the destination input go of the Move module. Connections
can have multiple destination inputs where the source event output is
received by all of the destinations. Line 42 is an example of a connection
with two destinations hazards of the Collide module and hazards
of the Avoid module.

The destinations of a connection can optionally specify suppression
or inhibition to suppress or inhibit connections to a module for a given
number of time units. In our example Line 47 specifies a suppressing
connection of the velocity destination on the Avoid module for 50
time units following an event being output by the source.

The description captured by the notation of RoboArch forms a model
that allows the application of model-driven techniques to reason about
and analyse the system being developed. In the next section we introduce
the transformation rules that are used to generate RoboChart models for
the reactive skills pattern.

86

4.4 Rules

4.4 Rules

The transformation rules presented in this section extend the rules from
Chapter 3 to include the patterns. They follow the same five part structure
of name, parameters, result, optional precondition, and definition.

We have seen previously how each layer of a RoboArch model corres-
ponds to a controller in the RoboChart model. Now we introduce the
rule that transforms the different patterns into machines and connections
which populate the controllers defining their behaviour.

4.4.1 Patterns

RoboArch supports a selection of patterns that can be used by its layers.
The PatternToMachinesAndConnections Rule 4.4.1 is responsible for
applying the rules that handle each of the patterns. The rule takes a set
of RoboArch patterns containing no or just one pattern and produces a
set of state machines and a set of connections.

Layers that have no pattern defined, result in amptn being empty and
are the most abstract specification of a layer that RoboArch allows. For
these layers, the resulting machines rcstms is a single minimal machine
minimalsm and as such has no connections so rccns is empty.

The minimalsm is specified by the where clause of the rule definition
as an initial junction named initial, state named s0, and transition named
initialTos0 that transitions immediately from initial to s0. The minimal
state machine serves as a placeholder that the user customises with their
own behavioural specification.

Rule 4.4.1:

a Name PatternToMachinesAndConnections

b Parameter
name:type amptn: Set(Pattern)

c Result
name:type rcstms: Set(StateMachine), rccns: Set(Connections)

Continued on next page

87

4 Patterns in RoboArch

Rule 4.4.1 – continued from previous page

e Definition

if (#amptn = 0) then
rcstms= { minimalsm }
rccns= ∅

else
rcstms=

⋃
L stmscons M.1

rccns=
⋃

L stmscons M.2

where
stmscons=

⋃
{

{ p: amptn | p ∈ ReactiveSkills •
ReactiveSkillsPatternToMachinesAndConnections(p) },

{ p: amptn | p ∈ Subsumption •
SubsumptionPatternToMachinesAndConnections(p) },

{ p: amptn | p ∈ Htn •
HtnPatternToMachinesAndConnections(p)},

{ p: amptn | p ∈ PlannerScheduler •
PlannerSchedulerPatternToMachinesAndConnections(p) }

}

minimalsm= ⟨|
nodes= { ⟨| name= "initial" |⟩Initial,

⟨| name= "s0" |⟩State }

transitions= {

⟨| name= "initialTos0",
source= ref("initial", Initial) ,
target= ref("s0", State)

|⟩Transition }
|⟩StateMachine

For layers that have a defined pattern, the resulting machines, rcstms, are
given by the generalised union of the first component of relational image
of stmscons. The connections, rccns, are similarly defined but are given
by the second component of the relational image of stmscons.

The where part of the rule definition specifies the machines and con-
nections stmscons by applying for each type of pattern in amptn a rule of

88

4.4 Rules

the form [PatternType]PatternToMachinesAndConnections. For example,
if the pattern is a ReactiveSkills type the ReactiveSkillsToMachinesAnd-
Connections is applied with the pattern passed in as a parameter. These
rules return a tuple containing a set of machines and a set of connections
for the pattern specified by the RoboArch model.

In addition to the rules that specify the behaviour of patterns there
are others responsible for providing supporting types, functions, and
interfaces: Rule B.1.1 LayerToTypes, Rule B.1.2 LayerToFunctions, and
Rule B.1.3 LayerToInterfaces which can all be found in Appendix B.

Rules B.1.1 to B.1.3 are applied by the top-level Rule 3.2.1 and are
similar to Rule 4.4.1 because they apply rules specific to each pattern,
however, for the supporting definitions they add. Because these rules
simply apply others based on pattern type they will not be discussed
in detail here, instead, the pattern specific rules they apply will be
introduced in the upcoming sections for the pattern type. Next we take
a detailed look at each the rules for the reactive skills pattern used for
generating RoboChart models.

4.4.2 Reactive Skills

From a RoboArch description a RoboChart model can be generated via
model transformation. The transformation rules presented in this section
cover the reactive skills pattern. We will use the mail delivery example
from Section 4.2 to demonstrate the resulting RoboChart model that is
generated by application of the rules.

A summary of the concepts of the reactive skills pattern from Sec-
tion 2.2 and how they map to concepts of RoboChart along with the
respective rules is given in Tables 4.2 and 4.3. The rule that applies the
rules from the tables is Rule 4.4.2 ReactiveSkillsPatternToMachinesAnd-
Connections.

89

4 Patterns in RoboArch

Table 4.2: Mapping of the primary architectural concepts of the reactive
skills pattern to RoboChart.

Reactive Skills RoboChart
Concept Concept Mapping Rule
Skill → State ma-

chine
A state machine with -
Events: for each of the inputs,
outputs, and any parameter val-
ues that the skill uses.
Variables: for each input (to
hold received corresponding
event values), parameter val-
ues, and any other necessary
intermediary results as part of
the skill’s computational trans-
form.

4.4.4

Skill man-
ager

→ State ma-
chine

A state machine that interfaces
the skills to the executive layer
with -
Events: To manage the ac-
tivation and deactivation of
skills, receive parameter val-
ues, and communicate monitor-
event and information replies.
Variables: for each input and
any other necessary for the co-
ordination of skills execution.

4.4.7

90

4.4 Rules

Table 4.3: Mapping of the reactive skills pattern related concepts to Rob-
oChart.

* = Modelled using a combination of RoboChart concepts.
Reactive Skills RoboChart
Element Concept Mapping Rule
Initialisa-
tion
routine

→ * A state named initialise of a
skill state machine that ex-
ecutes before all other states
of the skill.

4.4.5
(C-Skill),
4.4.6
(D-Skill)

Startup → * A state named startup of a
skill state machine that is
entered after the skill has
been enabled.

4.4.5
(C-Skill),
4.4.6
(D-Skill)

Reply → * An output event of the skill
manager to the executive
layer.

4.4.7

Cleanup → * A state named cleanup of
a skill state machine that is
entered when the skill has
been disabled.

4.4.5
(C-Skill),
4.4.6
(D-Skill)

Parameter → * Event and a variable, whose
value is received from the
skills manager, of a state ma-
chine that represents a skill.
The event is connected to the
skill manager.

4.4.5
(C-Skill),
4.4.6
(D-Skill),
4.4.3

Input → * Event and a variable, which
is used to receive a value, of a
state machine that represents
a skill. The event is connec-
ted to the skill manager.

4.4.5
(C-Skill),
4.4.6
(D-Skill),
4.4.3

Output → Event Event of a state machine that
is used to output a value. The
event is connected to the skill
manager.

4.4.5
(C-Skill),
4.4.6
(D-Skill),
4.4.3

Continued on next page

91

4 Patterns in RoboArch

Table 4.3 – Continued from previous page
Reactive Skills RoboChart
Element Concept Mapping Rule
Computati-
onal
transform

→ * The combination of functions
or operators that the enabled
state applies to the input
events resulting in the skill’s
output events.

4.4.5 (C-
Skill)

Enable
function

→ * A RoboChart event of a state
machine representing a skill
that triggers the enabled state
to be entered.

4.4.5
(C-Skill),
4.4.6
(D-Skill)

Disable
function

→ * A RoboChart event of a state
machine representing a skill
that triggers the disabled
state to be entered.

4.4.5
(C-Skill),
4.4.6
(D-Skill)

Rule 4.4.2:

a Name ReactiveSkillsPatternToMachinesAndConnections

b Parameter
name:type amptn: ReactiveSkills

c Result
name:type rcstms: Set(StateMachine), rccns: Set(Connections)

e Definition

rcstms =
{skl: amptn.skills • SkillToStateMachine(skl)}
∪
{SkillsManagerToStateMachine(

amptn.skillsManager, amptn.skills)}

rccns = SkillsManagerToConnections(
amptn.skillsManager, amptn.skills)

The ReactiveSkillsPatternToMachinesAndConnections rule takes a Re-
activeSkills pattern amptn and produces a set of machines and a set of
connections. The specification of the resulting set of machines rcstms is

92

4.4 Rules

given by the union of machine representations for each skill of amptn
and the skills manager.

The machines representing the skills are defined by the set comprehen-
sion that applies the SkillToStateMachine rule for each skill of amptn. The
machine representing the skills manager is defined by the application of
the SkillsManagerToStateMachine rule taking the pattern’s skills manager
and skills as parameters.

The resulting set of connections rccns of the ReactiveSkillsPatternToMa-
chinesAndConnections rule specify the connections among the machines.
The specification of the rccns connections are given by applying the
SkillsManagerToConnections rule taking the pattern’s skills manager and
skills as parameters.

The SkillsManagerToConnections Rule 4.4.3 specifies connections that
connect the skills and skills manager machines. The rule returns a set
of connections rcsmc that is specified as the generalised union of the set
comprehension over each skill. The expression part of the comprehension
applies the GetConnectionsForCommonInterface Function B.3.1 that takes
four parameters: connection node a (target), connection node b, the name
of the interface, the input events, and the output events.

The function returns a set of connections that connect the events of the
named interface that each of the nodes share. The directionality of the
connections is specified by the input and output events with respect to
the target node a.

The input and output event parameters determine the direction of the
connections to the events of the skills manager, smstm, target node. The
where clause of the rule specifies smstm as the reference to the skills
manager machine. This results in the rule connecting each skill and its
interface to the corresponding interface of the skills manager and allows
the skills manager to coordinate skills communication. The events of
the skills interface are explained when the skill to machine rules are
introduced.

The generated RoboChart controller for the mail delivery example
given by Listing 4.2 that uses the reactive skills pattern is shown in
Figure 4.3. The minimal machine of the Ctl layer from Chapter 3 where
no pattern was specified is replaced with the machines and connections
defined by Rule 4.4.2.

There are six machines created, one for the skills manager and each of
the skills. The skills events are connected to the SkillsManager machine
that coordinates communication among skills and are defined by the

93

4 Patterns in RoboArch

Rule 4.4.3:

a Name SkillsManagerToConnections

b Parameter
name:type amsm: SkillsManager, skls: Set(Skills)

c Result
name:type rcsmc: Set(Connection)

e Definition

rcsmc =
⋃

{ sk : skls •
GetConnectionsForCommonInterface(

smstm,

ref(sk.name, StateMachine),

SkillInterfaceName(sk.name),

ref(SkillCompleteEventName(sk.name), Event)
∪

{ o: sk.outputs •
ref(SkillEventName(sk.name, o.name), Event) },

{ ref(SkillActivateEventName(sk.name), Event),
ref(SkillDeactivateEventName(sk.name), Event),
ref(SkillExecuteEventName(sk.name), Event) }
∪

{ i: sk.inputs •
ref(SkillEventName(sk.name, i.name), Event) }

∪
{ p: sk.parameters •

ref(SkillParameterEventName(
sk.name, p.name), Event) }

)
}

where
smstm= ref(SkillsManagerName(), StateMachine)

SkillsManagerToConnections rule. The connections that connect dskills
platform events to the controller platform events are specified by the
LayersToControllers Rule 3.2.2. The connections between the layer Ctl con-

94

4.4 Rules

Figure 4.3: Ctl RoboChart Controller

troller and the SkillsManager machine must be completed by the designer
to adapt the interface that they defined for the layer and the interface
the layer’s pattern specifies. Next we present the rules that specify the
behaviour of the skills and skills manger machines.

Figure 4.4 shows the RoboChart machine for the mail delivery move-
ment DetermineLocation C-Skill of Listing 4.2. A C-Skill state ma-
chine starts at the state Initialise, where it accepts a priority for the skill via
an event: in our example, DetermineLocation. When that input is taken,
the variable priorityParamInitialised is updated to record that. Once that
variable has value true, a transition to the state Deactivated becomes en-

95

4 Patterns in RoboArch

Figure 4.4: C-Skill Determine Location RoboChart Machine

abled, and is taken. In Deactivated, the priority can still be updated, until
the skills manager raises an activate event (activateDetermineLocation in
the example), when the machine moves to the state Startup.

Typically, the designer needs to enrich the state Startup to add the
actions that the skill carries out at start up, perhaps via an entry action
or a machine, making Startup a composite state. When those actions are
completed, DetermineLocation moves to the state Ready.

In Ready, a new priority and inputs from the skills manager may be
received. In the example, the value image may be received from the skills
manager via an event determineLocationImage. This can go on until the
skills manager raises a deactivate or execute event (deactivateDetermine-
Location or executeDetermineLocation, in the example).

On an execute event occurring, the machine moves to the state Compu-
teOutputs. Actions there, defined by the designer, specify the calculations
to be carried out by the skill and communicates new output values to the
skills manager. After the user defined actions, the machine flags that the
skill has completed its task (completeProximity) and goes back to Ready.

On a deactivate event occurring the machine moves to the Cleanup state
which similarly to the Startup state the designer can enrich to perform
actions required to prepare for deactivation. When those actions are
completed, DetermineLocation moves to the state Deactivated.

96

4.4 Rules

Figure 4.5 shows the generated Proximity D-Skill machine of the
mail delivery movement example from Listing 4.2. Initially a D-Skill

Figure 4.5: D-Skill Proximity RoboChart Machine

behaves in the same way as a C-Skill until the Ready state is entered,
where the skill can receive priority event values and platform event
values. The transitions taken when an event is received from the platform
include an action that sets a corresponding boolean variable to true. In
the example, on a platformEnvPoints event occurring the received value is
stored in the envPoints variable and the envPointsReceived variable is set
to true.

This can go on until the skills manager raises an execute event (ex-
ecuteProximity, in the example) when the machine moves to the state
HandleActuationCommands. Actions there, defined by the designer, might
deal with buffering, for example. If, however, no input has been re-
ceived (just not envPointsSenseReceived in Proximity), the machine flags
that the skill has completed its task (completeProximity) and goes back to
Ready.

If an input has been received, the machine moves to HandleSensorData.
In general, HandleSensorData may deal with several pieces of data coming
from the platform. All those that have been received may be commu-
nicated to another skill, together with its priority. In our example, we

97

4 Patterns in RoboArch

have just envPoints, which is output via proximityEnvPoints. When that
happens, the value of envPointsSenseReceived is updated back to false.
When all data has been communicated, a D-Skill machine moves back to
Ready.

Variations of the D-Skill state-machine definition take into account D-
Skills that can output to the platform, and also D-Skills that have several
inputs or several outputs. The remaining Skill machines for the mail
delivery movement example Move, ColourVision, and MoveToLocation
can be found in Appendix C.3 to C.5.

The complete machine for our example MailDelivery system skills
manager can be found in Appendix C.6.

Figure 4.6 sketches the machine for the skills manager. In the sketch,
we show that a skills-manager machine starts in the state Initialise, in
which it sets local variables, such as cycleSkills, recording the skills to
execute in the next cycle. Afterwards, the skills-manager machine moves
to HandleRequests.

Figure 4.6: SkillsManager RoboChart overview

In the state HandleRequests, for each request, there is a transition
triggered by an event that represents a request from the dependant layer,
whose transition action provides the required information, or updates
variables to record the request: activate or deactivate skills, initiate event
monitor, stop event monitor, or set skill parameters. Once the amount of
time defined by the cycle of the skill manager is past, the machine moves
to DoNextSkill. The cycle time is defined by a constant, whose value can
be defined by the designer or left unspecified (until simulation or code
generation).

98

4.4 Rules

DoNextSkill, shown in the sketch of Figure 4.7, is a composite state that
uses two variables. The first, cycleSkills used to start all skills that are to
execute in the current cycle. The second, executingSkills is used to record
skills that have been started. In the DoNextSkill machine, there is a state

Figure 4.7: SkillsManager DoNextSkill state RoboChart overview

for each skill named “Execute” + [Skill Name] that in its entry action sends
the skill’s input values and raises the event that starts its execution (such
as executeDetermineLocation). After a skill has been started the transition
to a junction is taken and its action updates executingSkills adding the
skill’s enumerated value to the set. When cycleSkills is not empty the
transition to the Next state is taken. On entering Next, the machine
updates the cycleSkills variable removing the next skill that is going to
be executed. When all skills are started, cycleSkills gets empty, and the
transition to ExecutingSkills is taken.

The state ExecutingSkills accepts the outputs of skills while they are
executing. When an output is received, the machine moves to the state
UpdateRecord, where the inputs to which the received output is connected
are updated. This is done using an UpdateValue function (omitted here)
that only updates the input if it is the first update of the cycle or if the
new value comes from a skill with higher priority. After each update, the
machine moves back to ExecutingSkills.

The state ExecutingSkills also accepts completion events from the
skills (such as completeDetermineLocation), updating the executingSkills

99

4 Patterns in RoboArch

variable after each such event. When all skills have completed execution,
executingSkills is empty and the transition to CheckMonitors is taken.

In CheckMonitors, there is a transition for each monitor. If a monitor
condition occurs, a corresponding event notifies the depending layer.
When all monitors are checked, the machine moves back to the state
HandleRequests, after reinitialising variables such as cycleSkills.

The SkillToStateMachine Rule 4.4.4 takes a skill amsk and produces
a machine rcsk representing the skill. The rcsk machine is the result of
applying the appropriate rule CSkillToStateMachine or DSkillToStateMa-
chine for the given skills subtypes cskill or dskill.

Rule 4.4.4:

a Name SkillToStateMachine

b Parameter
name:type amsk: Skill

c Result
name:type rcsk: StateMachine

e Definition

amskl ∈ CSkill ⇒
rcsk = CSkillToStateMachine(amsk)

amskl ∈ DSkill ⇒
rcsk = DSkillToStateMachine(amsk)

The CSkillToStateMachine Rule 4.4.5 specifies interfaces, variables,
nodes, and transitions that make up the C-Skill’s machine. The name
of the machine, rccsk.name, equals the name of the skill. The inter-
faces, rccsk.interfaces, that define the machine’s events is the interface
referenced by the ref function taking the name of the interface and the
type to reference as parameters. The name of a skill’s interface is given
by the function SkillInterfaceName that takes the name of the skill as
a parameter and is used in conjunction with ref to reference the skills
interface without applying the rule directly.

The interface that is referenced is a result of applying the SkillToInt-
erface Rule B.2.6. A skill’s interface has events for its control and com-
munication of its input, output, and parameter values. The events for
the control of a skill include activate, deactivate, execute, and complete,
each named as the skill’s name prepended with the control action, for
example, "activate"+[amskl.name]. For the communication of values each

100

4.4 Rules

input, output, and parameter has an event named as its source name
prepended with the skill’s name, for example, [amskl.name]+[inp.name].

Rule 4.4.5:

a Name CSkillToStateMachine

b Parameter
name:type amcsk: CSkill

c Result
name:type rccsk: StateMachine

e Definition

rccsk.name = amcsk.name

rccsk.interfaces =
ref(SkillInterfaceName(amcsk.name) , Interface)

rccsk.variableList =
{ ⟨| modifier = VariableModifier::VAR,

vars= { par: amcsk.parameters •
⟨| name = SkillParamVariableName(

par.name),
type = par.type |⟩Variable }

∪
{ inp: amcsk.inputs •

⟨| name = inp.name,
type = inp.type |⟩Variable }

∪
{ out: amcsk.outputs •

⟨| name = out.name,
type = out.type |⟩Variable }

∪
{ par: amcsk.parameters •

⟨| name =
SkillParamGuardConditionName(

par.name),
type = ref(boolean, PrmitiveType),
initial = BoolExp(false)
|⟩Variable }

|⟩VariableList }

Continued on next page

101

4 Patterns in RoboArch

Rule 4.4.5 – continued from previous page

rccsk.nodes = }
⟨| name = "Initial" |⟩Initial,

⟨| name = "Initialise" |⟩State,

⟨| name = "Deactivated" |⟩State,

⟨| name = "Startup" |⟩State,

⟨| name = "Ready" |⟩State,

⟨| name = "ComputeOutputs" |⟩State,

⟨| name = "Cleanup" |⟩State }

rccsk.transitions = {
⟨| name = "InitialToInitialise", source = ref("Initial",

Initial),
target = ref(Initialise, State) |⟩Transition ,

⟨| name = "InitialiseToDeactivated",
source = ref("Initialise", State),
target = ref("Deactivated", State),
condition = initGuardCondition |⟩Transition ,

⟨| name = "DeactivatedToStartup",
source = ref("Deactivated", State),
target = ref("Startup", State),
trigger = ⟨| type = TriggerType.SIMPLE,

event = ref(SkillActivateEventName(
amcsk.name) , Event)

|⟩Trigger |⟩Transition ,

⟨| name = "StartupToReady", source = ref("Startup",
State),

target = ref("Ready", State) |⟩Transition ,

Continued on next page

102

4.4 Rules

Rule 4.4.5 – continued from previous page
⟨| name = "ReadyToComputeOutputs",

source = ref("Ready", State),
target = ref("ComputeOutputs", State),
trigger = ⟨| type = TriggerType.SIMPLE,

event = ref(SkillExecuteEventName(
amcsk.name) , Event)

|⟩Trigger |⟩Transition ,

⟨| name = "ComputeOutputsToReady",
source = ref("ComputeOutputs", State),
target = ref("Ready", State),
action = ⟨| trigger =

⟨| type = TriggerType.SIMPLE,
event = ref(SkillCompleteEvent(

amcsk.name),
Event) |⟩Trigger

|⟩SendEvent
|⟩Transition ,

⟨| name = "ReadyToCleanup", source = ref("Ready",
State),

target = ref("Cleanup", State),
trigger = ⟨| type = TriggerType.SIMPLE,

event = ref(SkillDeactivateEventName(
amcsk.name) , Event)

|⟩Trigger
|⟩Transition ,

⟨| name = "CleanupToDeactivated",
source = ref("Cleanup", State),
target = ref("Deactivated", State) |⟩Transition ,

}
∪

Continued on next page

103

4 Patterns in RoboArch

Rule 4.4.5 – continued from previous page
{ inp: amcsk.inputs •
⟨| name = "ReadyReceive" + inp.name,

source = ref("Ready", State),
target = ref("Ready", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(SkillEventName(amcsk.name,
inp.name),

Event),

parameter= ref(SkillVariableName(
inp.name),

Variable)
|⟩Trigger

|⟩Transition }
∪
{ par: amcsk.parameters •

⟨| name = "InitialiseReceive" + par.name + Param,
source = ref("Initialise", State),
target = ref("Initialise", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(SkillParamEventName(
amcsk.name,

par.name),
Event),

parameter= ref(SkillParamVariableName(
par.name),

Variable)
|⟩Trigger

action = ⟨| left = ref(SkillParamGuardCondition-
Name(

par.name),
Variable),

right = BoolExp(true) |⟩Assignment
|⟩Transition }

∪

Continued on next page

104

4.4 Rules

Rule 4.4.5 – continued from previous page

{ par: amcsk.parameters •
⟨| name = "DeactivatedReceive" + par.name + Param,

source = ref("Deactivated", State),
target = ref("Deactivated", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(SkillParamEventName(
amcsk.name,

par.name),
Event),

parameter= ref(SkillParamVariableName(
par.name),

Variable)
|⟩Trigger

|⟩Transition }
∪
{ par: amcsk.parameters •

⟨| name = "ReadyReceive" + par.name +
SkillParamPostfix(),

source = ref("Ready", State),
target = ref("Ready", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(SkillParamEventName(
amcsk.name,

par.name),
Event),

parameter= ref(SkillParamVariableName(
par.name),

Variable)
|⟩Trigger

|⟩Transition }

Continued on next page

105

4 Patterns in RoboArch

Rule 4.4.5 – continued from previous page

where
#amcsk.parameters = 1 ⇒

initGuardCondition =
⟨| ref= ref(SkillParamGuardConditionName(

(µ p: amcsk.parameters • p.name)),
Variable) |⟩RefExp

#amcsk.parameters > 1 ⇒
initGuardCondition = AndExp(

seq({ par: amcsk.parameters •
ref(SkillParamGuardConditionName(par),

Variable) })
)

To support the use of skills’ priority for the resolution of conflicts over
resources, the event type for a skill’s outputs are a product type that
includes a nat type in addition to the type of the output.

The variables that specify rccsk.variableList are used during the op-
eration of the machine for storing the values received by a skills inputs;
variables with a matching name are defined for each input and parameter.
For convenience of specifying a skill’s custom user behaviour in the
RoboChart model, a variable for each of the outputs is similarly defined.
The last category of variable defined is a Boolean type for recording the
initialisation of Parameters; their name is given by the SkillParamter-
GuardConditionName function taking the name of the parameter.

The nodes that specify rccsk.nodes are the states and junctions of
the machine. There is an initial junction that is compulsory for all
machines and six states a C-Skill has according to the reactive skills
pattern: Initialise, Deactivated, Startup, Ready, Compute, Outputs, and
Cleanup.

The transitions that specify rccsk.transitions make up the remainder
of the rule’s definition. They give the conditions that must occur for the
transition to be taken and another state entered. The naming of transitions
generally follows the convention [source state name]+"To"+[target state
name]. The source and target nodes of the transitions are referenced
using the ref function. Each transition can also have trigger and condition
that describe when the transition takes place and an action that describes

106

4.4 Rules

the effect of the transition.
The transition named InitialiseToDeactivated is an example of a trans-

ition whose source is the Initialise state, target is the Deactivated state,
and has a condition given by initGuardCondition. The initGuardCondi-
tion is specified by the where part of the rule and references the boolean
parameter initialisation flags for each of a skill’s parameters. When there
is a single parameter, an expression referring to the unique object is
obtained using the definite description µ-notation: (µ x : α • e) where x
is the object, α is the set, and e is the expression involving the object x
from α . When there are multiple parameters, a generalised conjunction
expression is defined so that the InitialiseToDeactivated transition is only
taken when all of a skill’s parameters have been initialised.

The DSkillToStateMachine Rule 4.4.6 specifies the interfaces, variables,
nodes, and transitions that make up the D-Skill’s machine. Because
D-Skills share many similarities with C-Skills we present the parts of the
rule that are unique to D-Skills.

In addition to the skills interface specified by rcdsm.interfaces a D-
Skill’s machine representation has events for communicating sensor val-
ues from, and actuation values to, the platform. These make up the
machines events, rcdsm.events, where for each D-Skill input and output
a corresponding platform event is defined by a set comprehension over
the union of the skill’s inputs and outputs. The name of the platform
events is given by the DSkillPlatformEvent name function that takes a
name of the input or output and adds the platform prefix.

D-Skills receive sensor data values from the platform and must handle
their communication to the skills manager. A D-Skill’s machine uses
a boolean variable for each received sensor value from the platform
to indicate when new values have been received and enable them to
be communicated when the skill is next executed. These variables are
specified in rcdsm.variableList as the set comprehension over a skill’s
output sensor data amdsk.outputs that defines a boolean variable for each
output whose initial value is false. The name of the boolean variables are
given by the DSkillSenseGuardConditionName function that takes the
name of the output.

Rather than computing values, D-Skills interface sensors and actuators,
so instead of a ComputeOutput state a D-Skill machine has two states:
one for handling actuation commands and another for handling sensor
data. These states are part of the specification of rcdsm.nodes and
are named HandleActuationCommands and HandleSensorData. The
handle HandleActuationCommands state defines an action specified by

107

4 Patterns in RoboArch

sendActuationCommands in the where clause. The action is an entry
action that outputs the skill’s input values via the corresponding platform
events.

Rule 4.4.6:

a Name DSkillToStateMachine

b Parameter
name:type amdsk: DSkill

c Result
name:type rcdsm: StateMachine

e Definition

rcdsm.name = amdsk.name

rcdsm.interfaces =
ref(SkillInterfaceName(amdsk.name), Interface)
∪
ref(DSkillActuationInterface(amdsk.name), Interface)
∪
ref(DSkillSensingInterface(amdsk.name) , Interface) ,

rcdsm.events =
{ io: (amdsk.inputs ∪ amdsk.outputs) •
⟨| name= DSkillPlatformEventName(io.name)

type= io.type |⟩Event } ,

rcdsm.variableList =
{ ⟨| modifier = VariableModifier::VAR,

vars= { par: amdsk.parameters •
⟨| name = SkillParamVariableName(

par.name),
type = par.type |⟩Variable }

∪
{ sdt: amdsk.outputs •

⟨| name = sdt.name,
type = sdt.type |⟩Variable }

∪

Continued on next page

108

4.4 Rules

Rule 4.4.6 – continued from previous page
{ act: amdsk.inputs •

⟨| name = act.name,
type = act.type |⟩Variable }

∪
{ par: amdsk.parameters •

⟨| name =
SkillParamGuardConditionName(

par.name),
type = ref(boolean, PrmitiveType),
value = BoolExp(false)
|⟩Variable },

∪
{ sdt: amdsk.outputs •

⟨| name =
DSkillSenseGuardCondition-

Name(
sdt.name),

type = ref(boolean, PrmitiveType),
value = BoolExp(false)

|⟩Variable }

|⟩VariableList }

rcdsm.nodes = {
⟨| name = "Initial" |⟩Initial ,

⟨| name = "Initialise" |⟩State ,

⟨| name = "Deactivated" |⟩State ,

⟨| name = "Startup" |⟩State ,

⟨| name = "Ready" |⟩State ,

⟨| name = "HandleActuationCommands",
actions = { ⟨| action= sendActuationCommands

|⟩EntryAction }
|⟩State,

⟨| name = "HandleSensorData" |⟩State,

⟨| name = "Cleanup" |⟩State }

Continued on next page

109

4 Patterns in RoboArch

Rule 4.4.6 – continued from previous page

rcdsm.transitions = {
⟨| name = "InitialToInitialise", source = ref("Initial",

Initial),
target = ref(Initialise, State) |⟩Transition ,

⟨| name = "InitialiseToDeactivated",
source = ref("Initialise", State),
target = ref("Deactivated", State),
condition = initGuardCondition |⟩Transition ,

⟨| name = "DeactivatedToStartup",
source = ref("Deactivated", State),
target = ref("Startup", State),
trigger = ⟨| type = TriggerType.SIMPLE,

event = ref(SkillActivateEventName(
amdsk.name) , Event)

|⟩Trigger |⟩Transition ,

⟨| name = "StartupToReady", source = ref("Startup",
State),

target = ref("Ready", State) |⟩Transition ,

⟨| name = "ReadyToHandleActuationCommands",
source = ref("Ready", State),
target = ref("HandleActuationCommands", State),
trigger = ⟨| type = TriggerType.SIMPLE,

event = ref(SkillExecuteEventName(
amdsk.name) , Event)

|⟩Trigger |⟩Transition ,

⟨| name = "HandleActuationCommandsToHandle-
SensorData",

source = ref("HandleActuationCommands", State),
target = ref("HandleSensorData", State),

|⟩Transition ,

Continued on next page

110

4.4 Rules

Rule 4.4.6 – continued from previous page

⟨| name = "HandleSensorDataToReady",
source = ref("HandleSensorData", State),
target = ref("Ready", State),
condition = sensorDataGuardCondition
action = ⟨| trigger =

⟨| type = TriggerType.SIMPLE,
event = ref(SkillCompleteEvent(

amdsk.name),
Event) |⟩Trigger

|⟩SendEvent
|⟩Transition ,

⟨| name = "ReadyToCleanup", source = ref("Ready",
State),

target = ref("Cleanup", State),
trigger = ⟨| type = TriggerType.SIMPLE,

event = ref(SkillDeactivateEventName(
amdsk.name) , Event)

|⟩Trigger
|⟩Transition ,

⟨| name = "CleanupToDeactivated",
source = ref("Cleanup", State),
target = ref("Deactivated", State) |⟩Transition ,

}
∪
{ sdt: amdsk.outputs •

⟨| name = "HandleSensorDataReceive" + sdt.name,
source = ref("HandleSensorData", State),
target = ref("HandleSensorData", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(DSkillPlatformEventName(
sdt.name),

Event),

parameter= ref(SkillVariableName(
sdt.name),

Variable)
|⟩Trigger

Continued on next page
111

4 Patterns in RoboArch

Rule 4.4.6 – continued from previous page
action =

⟨| statements =
⟨ ⟨| left = ref(DSkillSenseGuardCondition-

Name(
sdt.name),

Variable),

right = BoolExp(true) |⟩Assignment ,

⟨| type= TriggerType.OUTPUT,
event= ref(SkillEventName(

amdsk.name,
sdt.name),

Event),

parameter= ref(SkillVariableName(
sdt.name),

Variable)
|⟩Trigger ⟩

|⟩SeqStatement
|⟩Transition }

∪
{ act: amdsk.inputs •

⟨| name = "ReadyReceive" + act.name,
source = ref("Ready", State),
target = ref("Ready", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(DSkillPlatformEventName(
act.name),

Event),

parameter= ref(SkillVariableName(
act.name),

Variable)
|⟩Trigger

|⟩Transition }
∪

Continued on next page

112

4.4 Rules

Rule 4.4.6 – continued from previous page

{ par: amdsk.parameters •
⟨| name = "InitialiseReceive" + par.name + Param,

source = ref("Initialise", State),
target = ref("Initialise", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(SkillParamEventName(
amdsk.name,

par.name),
Event),

parameter= ref(SkillParamVariableName(
par.name),

Variable)
|⟩Trigger

action = ⟨| left = ref(SkillParamGuardCondition-
Name(

par.name),
Variable),

right = BoolExp(true) |⟩Assignment
|⟩Transition }

∪

Continued on next page

113

4 Patterns in RoboArch

Rule 4.4.6 – continued from previous page

{ par: amdsk.parameters •
⟨| name = "DeactivatedReceive" + par.name + Param,

source = ref("Deactivated", State),
target = ref("Deactivated", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(SkillParamEventName(
amdsk.name,

par.name),
Event),

parameter= ref(SkillParamVariableName(
par.name),

Variable)
|⟩Trigger

|⟩Transition }
∪
{ par: amdsk.parameters •

⟨| name = "ReadyReceive" + par.name +
SkillParamPostfix(),

source = ref("Ready", State),
target = ref("Ready", State),
trigger = ⟨| type= TriggerType.INPUT,

event= ref(SkillParamEventName(
amdsk.name,

par.name),
Event),

parameter= ref(SkillParamVariableName(
par.name),

Variable)
|⟩Trigger

|⟩Transition }

where

Continued on next page

114

4.4 Rules

Rule 4.4.6 – continued from previous page

#amdsk.inputs = 1 ⇒
sendActuationCommands =

⟨| trigger=
⟨| type= TriggerType.OUTPUT,

event= ref(DSkillPlatformEventName(
(µ s: amdsk.inputs • s.name)),

Variable)
value =
⟨| values =

{ ref(SkillVariableName(sdt.name),
Variable) }

∪
{ ref(SkillParamVariableName(

PriorityParamName()) , Variable)
}

|⟩TupleExp

|⟩Trigger
|⟩SendEvent

#amdsk.inputs > 1 ⇒
sendActuationCommands = SeqStatement(seq(

{ act: amdsk.inputs •
⟨| trigger =

⟨| type= TriggerType.OUTPUT,

event= ref(DSkillPlatformEventName(
act.name),

Event),

parameter= ref(SkillVariableName(act.name),
Variable)

|⟩Trigger
|⟩SendEvent

}))

#amdsk.parameters = 1 ⇒
initGuardCondition =

⟨| ref= ref(SkillParamGuardConditionName(
(µ p: amdsk.parameters • p.name)

),
Variable) |⟩RefExp

Continued on next page

115

4 Patterns in RoboArch

Rule 4.4.6 – continued from previous page

#amdsk.parameters > 1 ⇒
initGuardCondition = AndExp(

seq({ par: amdsk.parameters •
ref(SkillParamGuardConditionName(par),

Variable) })
)

#amdsk.outputs = 1 ⇒
sensorDataGuardCondition =

⟨| ref= ref(DSkillSenseGuardConditionName(
(µ s: amdsk.outputs • s.name)),
Variable) |⟩RefExp

#amdsk.outputs > 1 ⇒
sensorDataGuardCondition = AndExp(

seq({ sdt: amdsk.outputs •
ref(DSkillSenseGuardConditionName(sdt),

Variable) })
)

Finally the transitions specified by amdsk.transitions give the condi-
tions that must occur before another state is entered.

The last node that makes up the controller of the RoboChart model
for a reactive skills model is the skills manager machine. The SkillsMan-
agerToStateMachine Rule 4.4.7 specifies the interfaces, variables, clocks,
nodes, and transitions that make up the skills manager machine. The
name of the machine, rcskm.name, equals the result of the function
SkillsManagerName which returns the string “SkillsManager”.

The interfaces rcskm.interfaces that define the machine’s events are
referenced by the ref function taking the name of the interface and
type as parameters. There is an interface for controlling skills and an
interface for each skill that the skills manager uses to coordinate skill
communication. The referenced interfaces are specified as the union
between the skills manager’s given by the SkillsManagerToInterfaceName
function and the skills’ given by the set comprehension over each skill
skls for SkillInterfaceName that takes the skills name as a parameter.

The referenced skills manager interface is the result of applying the

116

4.4 Rules

Rule 4.4.7:

a Name SkillsManagerToStateMachine

b Parameter
name:type amskm: SkillsManager, skls: Set(Skills)

c Result
name:type rcskm: StateMachine

e Definition

rcskm.name= SkillsManagerName()

rcskm.interfaces = ref(SkillsManagerInterfaceName(),
Interface)

∪
{ s: skls •

ref(SkillInterfaceName(s.name),
Interface) }

rcskm.variableList = {
⟨| modifier = VariableModifier::VAR,

vars = {
SkillsManagerBaseVariables()
∪
SkillsManagerNewSkillInputFlagVariables(skls)
∪
SkillsManagerParameterVariables(skls)
∪

SkillsManagerInputOutputVariables(skls)

}
|⟩VariableList ,

⟨| modifier = VariableModifier::CONST,
vars = SkillsManagerConstants()

|⟩VariableList
}
rcskm.clocks = { ⟨| name = SkillsManagerClockRe-
questHandlingName() |⟩Clock }

Continued on next page

117

4 Patterns in RoboArch

Rule 4.4.7 – continued from previous page
rcskm.nodes = SkillsManagerPatternStates(skls,

amskm.interskillconnections,
amskm.stateMonitors)

∪
{ ⟨| name =

SkillsManagerJunctionEmptyCycleSkillsName()
|⟩Junction }

rcskm.transitions = SkillsManagerPatternTransitions(skls)

ReactiveSkillsLayerToInterface Rule B.2.3. The rule specifies the interface
as the union of the result of applying two further rules one for the
inputs SkillsManagerInterfaceInputs Rule B.2.4 and one for the outputs
SkillsManagerInterfaceOutputs Rule B.2.5 that both take the reactive skill
layer as a parameter.

The skills manager control interface inputs include events for request-
ing: the activation and deactivation of skills, the currently active skills,
initiation and stopping of monitoring conditions, setting and getting of
parameters, and getting the latest value of a skill’s output. The skill activ-
ation and deactivation events have a Skills enumeration value to indicate
the skill to be modified. Similarly the monitoring condition initiation
and stopping events have an Events enumeration value to indicate the
conditions the skills manager will monitor. The parameter set request
events have a value that is the new value to replace the current parameter
value with.

The skills manager control interface outputs include events for replying
to requests of: the currently active skills, each of a skill’s parameter
value, and the latest value for each of a skills output. Additionally, the
interface has an event for notifying when one of the conditions being
monitored occurs. The active skills reply has a value of type set of
skills enumerations that indicates all of the currently active skills. The
parameter and value reply event each have the corresponding type of
the skill’s parameter or output. The monitored event notification has an
Events enumeration type that occurs when one of the actively monitored
conditions becomes true.

The other referenced skills’ interfaces have been previously discussed

118

4.4 Rules

with the skill rules. They are specified by the SkillToInterfaceRule
Rule B.2.6. The skills manager uses the skills interfaces to coordin-
ate communication between skill and complete control requests from the
dependant layer.

The variables that specify rcskm.variableList are used during operation
of the machine for storing the values received by skill control requests and
for holding skills parameter, input, and output values for communication.
The variables are defined as the generalised union over four functions
that each return a set of variables. The functions group together variable
that are loosely related by their usage.

The variables for the base operation of the machine are the result of
the SkillsManagerBaseVariables Function B.3.2. The function defines
variables of set types for Skills and Events that are used to keep track of
the currently active skills and monitored conditions, respectively. Also
defined, are variables of sequence types for recording the skills that are
to be executed in the next cycle of the skills managers execution.

The variables for tracking the occurrence of new inputs are the result
of the SkillsManagerNewSkillInputFlagVariables Function B.3.3. The
function defines variables of boolean type that is set to true when a new
input values of a skill’s input has been received. These variables are
named “new” + [skill name] + [skill input/output name].

The variables for received parameter values are the result of the Skill-
sManagerParameterVariables Function B.3.4. The function defines vari-
ables for each skill parameter with a matching type and named [skill
name] + [parameter name].

The variables for received skill input and output values are the result of
SkillsManagerInputOutputVariables Function B.3.5. The function defines
variables for each skill input and output with a matching type and named
“current” + [skill name] + [input/output name].

The constants that specify rcskm.variableList are used at the start of the
machine’s operation to initialise private variables to known starting val-
ues and are the result of SkillsManagerConstants Function B.3.6. The func-
tion defines two constants: the first defines the handling delay given to
handle requests before executing skills named REQUEST HANDLING
DELAY. The second is a sequence of elements whose type is Skills enu-
meration, that is, a list of the asynchronous skills named ASYNCHRON-
OUS SKILLS.

The clock that specifies rcskm.clocks is used to control the time spent
handling requests before the skills manager begins executing skills. Its
name is the result of the function SkillsManagerClockRequestHandling-

119

4 Patterns in RoboArch

Name Function B.3.10 and is “requestHandling”.
The nodes that specify rcskm.nodes are the states and junctions of

the machine defined as the union of the result of the SkillsManager-
PatternStates Function B.3.7 and a junction. The function takes three
parameters for specifying the behaviour of the states: a System’s skills
and the SkillsManager’s interskillconnections and monitors. The six
states the function defines are Initialise, HandleRequests, DoNextSkill,
ExecutingSkills, UpdateRecord, and CheckMonitors.

The junction is named using the result of the SkillsManagerJunc-
tionEmptyCycleSkillsName Function B.3.8, that is, “JunctionEmptyCycle-
Skills”. It is used to allow the HandleRequests state to be re-entered on
the condition that the current cycle skills is empty because there would
be no skills to execute.

The transitions that specify rcskm.transitions make up the remainder
of the rule’s definition and are the result of the function SkillsManagerPat-
ternTransitions Function B.3.9. The skills manager transition naming and
structure follows the skill transitions previously described. An overview
of the transitions can be seen in Figure 4.6 for all skills managers.

The rules that have been specified here are supported by a tool that
automates the transformation of RoboArch models, as shown in the next
Chapter.

4.5 Final Considerations

We have expanded the RoboArch notation to include pattern definitions
and presented two patterns: reactive skills and subsumption. For both
patterns, we have demonstrated the RoboArch notation for the mail
delivery example. For the reactive skills pattern a further metamodel
and well-formedness conditions have been presented. We concluded the
chapter by presenting the transformation rules of RoboArch to RoboChart
that give RoboArch its semantics. The presented rules include the top-
level rule that applies further pattern specific rules and the complete
set of rules for the reactive skills pattern. Finally, as part of the reactive
skills rules presentation we saw the generated RoboChart model for the
reactive skills mail delivery example.

In the next chapter we evaluate RoboArch and present a tool that
automates the transformation of RoboArch models. Finally, we present a
case study including its verification using the reactive skills pattern for a
robot that explores its environment.

120

5 Evaluating RoboArch

Chapters 3 and 4 introduced RoboArch and its notation, metamodel,
and well-formedness conditions, in this chapter we evaluate RoboArch
through a tool implementation and a case study.

There are three objectives to our evaluation of RoboArch: can architec-
tural patterns be modelled using the notation, do generated RoboChart
models correspond to the semantics defined by the rules, and can the
resulting RoboChart models be used to verify properties of architectural
patterns.

For the evaluation a tool was developed developed that implements the
RoboArch metamodel and well-formedness conditions and automates
the generation of its RoboChart semantics. The tool enables experience
of using RoboArch to be accumulated and the automation of transforma-
tions that facilitate further study. Section 5.1 presents the tool’s design
and architecture including measures such as unit testing to ensure its
correctness and validate the transformation rules.

The case study of a robot that explores its environment while avoiding
obstacles including the verification of its properties using the tool is
presented in Section 5.2. To aid repeatability both the unit tests and
examples are included in the tool’s package which can be found on
the following website1. We conclude in Section 5.3 with some final
considerations.

5.1 Tool

Our tool has three components. One that is responsible for the Ro-
boArch language and its textual notation including its grammar and
parser, another for the model-to-model transformation from RoboArch to
RoboChart, and the third for the model to text generation of RoboChart
models. These components and their relationships to one another are
shown in Figure 5.1 as RoboArchTextual, RoboArch2RoboChart, and
RoboChart2Text.

1https://ghithub.com/UoY-RoboStar/roboarch-textual

121

https://ghithub.com/UoY-RoboStar/roboarch-textual

5 Evaluating RoboArch

Figure 5.1: Components of RoboArch and their technological dependen-
cies.

RoboArch
Textual

RoboArch
2RoboChart

RoboChart
2Text

EMF ETL EGLXtext
Epsilon

Key: Component Artefact Uses Depends

RoboArch
description

text
RoboChart

text
RoboChart

model
RoboArch

model

This structure promotes a loose coupling between the main elements of
the tool and allows access to the models and text artefacts for further
processing, verification, or analysis. Furthermore, modularity of well
defined components improves extensibility; for instance, a module that
generates another notation from a RoboArch model can be created to
support additional verification methods with no changes to the other
modules. We now discuss the selection of key technologies for each of
the components indicated by the dependencies in Figure 5.1.

There are two main approaches used for the development of DSLs.
Internal DSLs that are defined in terms of a general purpose language
and external DSLs that define their own language. Recently, language
workbenches have emerged such as Xtext [95] and Meta Programming
System (MPS) [96] that provide specialised tools and frameworks to
support development of external DSLs.

For the RoboArchTextual component of the tool, Xtext was selected
because of its use of model-based parse trees that allow the direct ap-
plication of model-based techniques. The choice of Xtext means that
RoboArch falls under the external category of DSL. Collective experience
of the RoboStar2 research group on Xtext’s use in RoboTool and reuse
of a subset of the RoboChart metamodel also motivated the selection of
Xtext.

Xtext closely integrates with the well established eclipse IDE. Eclipse
itself was first released in 2001 as an open source language-neutral
platform for software application development [97]. Throughout this time
support for programming languages via plug-ins on top of the original

2https://robostar.cs.york.ac.uk/

122

https://robostar.cs.york.ac.uk/

5.1 Tool

Java have been added; for example, there are plug-ins C, C++, Haskell,
and Python. This means that there is substantial existing infrastructure
that can be utilised for the development of the RoboArch tool.

The key parts that have been implemented in the RoboArchTextual
component of the tool are metamodel, grammar, and checks for scoping
and validation. The metamodel presented in Chapters 3 and 4 has
been implemented using the EMF [98]. The resulting implementation is
compiled into an executable library form; the classes it contains are used
throughout the RoboArchTextual module implementation.

The grammar for the textual notation presented in Chapters 3 and 4

is defined using Xtext’s grammar language which closely resembles
Extended Backus-Naur Form (EBNF) [99]. The grammar establishes
the relationship between the metamodel and text, and Xtext uses it to
generate the parser.

As we have previously discussed the metamodel alone is not enough
to ensure only meaningful models are created. The well-formedness
conditions are implemented as scoping and validation checks and ensure
that only meaningful models can be created. When a condition is violated,
for example, connecting an input to another input, an error is raised to
notify the user of the issue and that it needs to be corrected before any
outputs are generated.

The RoboArch2RoboChart component contains the model-to-model
transformation rules. Model-to-model transformations can be imple-
mented either using a general purpose language such Java or using a
DSL, for example, ETL [100], ATL [101], and QVT [102]. For our trans-
formation from RoboArch to RoboChart, we selected the DSL approach
because the structure of a DSL allows the implemented rules to have
a close correspondence to the rules we defined, therefore, assisting in
their implementation and validation of the rule definitions. As explained
and illustrated in Section 5.1.1, our implementation is in direct corres-
pondence with our specification of the rules in Chapters 3 and 4, and in
Appendix B.

Epsilon Transformation Language (ETL) was selected because it is part
of a wider family of languages like EUnit [103] that provide support for
unit testing during Model Driven Development (MDD).

The last component of Figure 5.1 generates RoboChart text from an in-
stance of the RoboChart metamodel. It is the least significant component
technologically and uses a well known template based text generation
approach. The templating language selected is Epsilon Generation Lan-
guage (EGL) to ease integration because other Epsilon languages are

123

5 Evaluating RoboArch

being used for the transformations in the RoboArch2RoboChart compon-
ent.

Now we have introduced the tool and its modules, we will examine
the rule implementation because of the pivotal role they have in giving
RoboArch semantics.

5.1.1 Rule Implementation

As we have seen the RoboArch2RoboChart component is responsible for
transforming a source RoboArch model, which has been parsed from a
RoboArch description, to a target RoboChart model. This is achieved
using model transformation rules implemented in ETL. Figure 5.2 shows
the workflow of the transformations.

Figure 5.2: RoboArch to RoboChart rule transformation workflow.

RoboArch
Metamodel

RoboChart
Metamodel

RoboArch2RoboChart

Key: Component Artefact Uses Depends

RoboChart
model

RoboArch
model

Rules

Task

The Rules are made up of the ETL implementation of the RoboArch
rules presented in Chapters 3 and 4 they relate elements of the RoboArch
metamodel to elements in the RoboChart metamodel. This means that the
Rules have clear dependence on the source and target metamodels. The
Task coordinates and executes the model transformation; it is responsible
for loading the source model, initialising the target model, and executing
the Rules that populate the target model. The Task is realised as an
Ant [104] build build script. Next we present the ETL implementation
for the SystemToRCModule rule.

Listings 5.1 to 5.3 show the rule implementation for the SystemToR-
CModule Rule 3.2.1 that was presented in Chapter 3. There are five

124

5.1 Tool

parts to RoboArch rules: name, parameters, result, precondition, and
definition. The start of a rule and its name is declared using the rule
clause. For our example, Line 1 of Listing 5.1 declares a rule with the
name SystemToRCModule.

Listing 5.1: Rule implementation for SystemToRCModule: declaration
and where.

1 rule SystemToRCModule
2 transform amsys: RoboArch!System
3 to rcsysPkg: RoboChart!RCPackage,
4 rcdefsPkg: RoboChart!RCPackage{
5

6 //Where
7 var cLayer = amsys.layers.select(lyr |
8 lyr.isTypeOf(RoboArch!ControlLayer));
9

10 if ((amsys.robot.operations.size() > 0) or
11 (amsys.robot.interfaces.size() > 0) or
12 (amsys.robot.pinterfaces.size() > 0) or
13 (amsys.robot.variableList.size() > 0)) {
14

15 var roboticPlatform = amsys.robot.equivalent();
16

17 } else {
18 var roboticPlatform = roboticPlatform.add(
19 ControlLayerToRoboticPlatform(cLayer));
20 }

The second part of a rule is its parameters that specify the input
elements of the RoboArch model to be transformed, and corresponds
to the transform clause in the implementation. Line 2 specifies the
System of a RoboArch model as the target class and is assigned the
name amsys. Because the transformation language selected supports
multiple metamodels, in the implemented rules the metamodel has to be
specified when referring to each class from a metamodel in the format
[metamodel]![class].

The third part to a rule is its result that specifies the output elements of
the RoboChart model, and corresponds to the to clause in the implement-
ation. Lines 3 and 4 specify the result of the transformation as being two
RoboChart packages rcsysPkg and rcdefsPkg. The use of packages

125

5 Evaluating RoboArch

is one difference between the rules as defined and their implementation.
Because a RoboChart package’s only function is to contain elements of a
RoboChart model, and they do not affect a model’s meaning they are not
specified in our rule definitions. However, packages need to be defined
as part of the implementation to contain the results of the application
of the rule. The rcsysPkg contains the module rcmod of the rule, and
the rcdefsPkg contains the definitions, functions, and interfaces rcdefs,
rcfuns, and rcifcs.

The fourth part of a rule is the precondition; the SystemToRCmodule
rule does not have one, however one can be specified in the implementa-
tion using a guard clause in the format guard: [boolean expression].

The final part of a rule is its definition that specifies the result in
terms of the input parameters. An important aspect of model-to-model
transformation is resolving target model element, or elements, for a given
source model element. This resolution can involve creating any necessary
child model elements and therefore calling additional transformation
rules. Furthermore, what has already been transformed has to tracked so
that duplicates in the target model are not created. For this purpose ETL
provides the equivalent operation that when called for a given source
element the target model elements are returned.

So far the structure of an implemented rule closely follows the rules
definition, however a difference in the implementation is that terms
introduced in a rule definition’s where section have to be declared first.
This is because the where terms are implemented as variables that must
be declared before they can be used, compared to, the rule where they
are specified at the end of the rule definition. In our example the where
definitions are declared from Lines 7 to 20.

The rule’s where section specifies two terms cLayer and roboticPlat-
form. The cLayer is a set comprehension with a predicate to select
layers of type control layer from amsys.layers; Line 7 of our example
implements this using the select operation of collections. The robotic-
Platform term is defined as a conditional statement that can be directly
implemented with only minor syntactic differences; see Lines 10 to 20.
The most significant difference is the use of the size operation of a
collection compared to the cardinality operator #.

The remaining part of a rule’s definition are the results rcdefs, rcfuns,
rcifs, and rcmod; their implementation is shown in Listing 5.2. The
structure of the rule and the order of definition of the results is mirrored
in the implementation. A variable is used to hold the result with a
matching name until it is later added to the returned package. For our

126

5.1 Tool

example the rule definition’s rcdefs implementation on Lines 22 to 26

declares a variable rcdefs.

Listing 5.2: Rule implementation for SystemToRCModule: definition.
21 //Definitions
22 var rcdefs = amsys.definitions.equivalent();
23

24 for (lyr: RoboArch!Layer in amsys.layers){
25 rcdefs.addAll(LayerToTypes(lyr));
26 }
27

28 //Functions
29 var rcfuns = amsys.functions.equivalent();
30

31 for (lyr: RoboArch!Layer in amsys.layers){
32 rcfuns.addAll(LayerToFunctions(lyr));
33 }
34

35 //Interfaces
36 var rcifs = amsys.interfaces.equivalent();
37

38 for (lyr: RoboArch!Layer in amsys.layers){
39 rcifs.addAll(LayerToInterface(lyr));
40 }
41

42 //Module
43 var rcmod = new RoboChart!RCModule;
44

45 rcmod.name = amsys.name;
46

47 rcmod.nodes = LayersToControllers(amsys.layers);
48 rcmod.nodes.addAll(roboticPlatform);
49

50 rcmod.connections = amsys.connections.equivalent();

The variable is assigned the definitions as specified in the RoboArch
description. Because RoboArch reuses RoboChart’s types, the definitions
are directly assigned in the rule. However, the rule implementation in ETL
uses the object oriented paradigm where both the source RoboArch and

127

5 Evaluating RoboArch

target RoboChart models are objects. This means that the implemented
rules must clone the definitions in the RoboArch model and assign them
to the RoboChart model so that there are no references between the
source and target models. The cloning is achieved using the ETL
equivalent function that returns the cloned RoboChart elements.

The remaining part of the implementation of the definition of rcdefs
is the union of the set comprehensions that applies the LayersToTypes
rule for every layer lyr in amsys.lyr. This is implemented as a for loop
calling the LayerToTypes function.

ETL Rules cannot be directly called; however, we use a wrapper func-
tion that calls equivalent on the provided metamodel object with the
rule name for the wrapper function passed in as a parameter.

The addAll operation of the collection type combines the collections
in the rcdefs variable similar to the union in the rule.

The implementation of the specifications of rcfuns and rcifs in Lines 29

to 40 follow a very similar pattern to the implementation of the rcdefs
definition but for type definitions and functions.

The rcmod result defined by the rule introduces the definition of a new
element in the RoboChart model. Line 43 of the implementation uses the
new keyword to create the RCModule that is then populated mirroring
the structure and order of the rule.

The final part of our example rule implementation is shown in List-
ing 5.3. This part of the implementation is not present in the rule because
it deals with populating the packages with the results produced earlier
in the rule’s definition. Lines 52 to 54 remove empty sets from rcdefs,
rcifs, and rcfuns.

128

5.1 Tool

Listing 5.3: Rule implementation for SystemToRCModule: package.
51 //Populate types package
52 rcdefs.remove(null);
53 rcifs.remove(null);
54 rcfuns.remove(null);
55

56 rcdefsPkg.name = DefinitionsName();
57 rcdefsPkg.types = rcdefs;
58 rcdefsPkg.interfaces = rcifs;
59 rcdefsPkg.functions = rcfuns;
60

61 //Populate system package
62 rcsysPkg.name = amsys.name;
63 rcsysPkg.imports.add(
64 getPackageImport(DefinitionsName())
65);
66

67 rcsysPkg.imports.add(
68 getPackageImport(PlatformName())
69);
70

71 for(lyr: RoboArch!Layer in amsys.layers){
72 rcsysPkg.imports.add(
73 getPackageImport(
74 lyr.name.toLowerCase().firstToUpperCase()
75)
76);
77 }
78

79 rcsysPkg.modules.add(rcmod);
80 }

Lines 56 to 59 populate the package types, interfaces, and function
by direct assignment of rcdefs, rcifs, and rcfuns to the respective
package attribute. Lines 62 to 79 populate the system’s package by
adding the module and specifying the package imports which the system
package depends.

In the next section we, outline the test strategy used to verify the tool.

5.1.2 Verification

To demonstrate that our tool meets its specifications (RoboArch metamodel,
well-formedness conditions, and translation to RoboChart rules) it is im-

129

5 Evaluating RoboArch

portant that it is adequately tested. This section provides the details of
the testing strategy used in the development.

Figure 5.3 shows the components of the tool and the scope of the tests
described by the strategy. Each component is a step to get to a RoboChart
textual model representation from a given RoboArch description of a
system. The first step creates a model by parsing and validating the input

Figure 5.3: Component test coverage.

Key: Component Artefact Uses Coverage

RoboArch
Textual

RoboArch
2RoboChart

RoboChart
2Text

RoboArch
description

text
RoboChart

text
RoboChart

model
RoboArch

model

RoboChart2Text

RoboArch2RoboChart System

RoboArch2RoboChart Unit

RoboArch Textual

text. The second step, RoboArch2RoboChart, creates a RoboChart model
by applying transformation rules to the input RoboArch model. The
third step, RoboChart2Text, creates RoboChart text by using templates
and the input RoboChart model.

RoboArchTextual

The aspects that are tested for the first component are the parsing and
well-formedness conditions to verify features of the textual language.
Unit tests cover the parsing of each class in the RoboArch metamodel,
and, for every well-formedness condition, which when violated raises
the appropriate error message.

In total, 20 tests have been implemented. They use JUnit supported by
Xtext convenience functions that facilitate the parsing of text and they
can be found at the following website3.

3https://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual.
tests/src/circus/robocalc/roboarch/textual/tests

130

https://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual.tests/src/circus/robocalc/roboarch/textual/tests
https://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual.tests/src/circus/robocalc/roboarch/textual/tests

5.1 Tool

RoboArch2RoboChart

The transformation rules of RoboArch2RoboChart module are tested as
system tests and unit tests. Wherever possible rules are tested as system
tests in order to exercise the integrated toolchain. Rules producing
RoboChart model fragments that cannot be tested by system tests are
unit tested instead. The combination of system tests and unit test ensures
the coverage of every rule.

Figure 5.4 shows the workflow of a system test. The Tests are defined
using Epsilon EUnit [103] that aids model-based testing by providing a set
of assertions for comparing models and support for model reuse against
different tests. The Task coordinates and executes the Tests and is realised

Figure 5.4: Workflow of a system test.

Key: Component Artefact

 Uses Depends

Tests

Task

Test
RoboArch

Description
Text

 Expected
RoboChart

Text

Generated
RoboChart

Text

Epsilon

EUnit

as an Ant [104] build script; for each test it is responsible for parsing
and loading the required models from the RoboArch description and
the corresponding expected RoboChart text. After loading the models,
the Task runs the test that includes executing the transformation rules
and text generators of the RoboArch2RoboChart and RoboChart2Text
components to create the RoboChart text for the test. Finally, the Test
parses the generated RoboChart text and loads it as a model for evaluation
of the test’s assertion.

131

5 Evaluating RoboArch

The unit tests of the RoboArch2RoboChart component follow a similar
workflow to the one shown in Figure 5.4, but rather than the generated
RoboChart text being parsed for evaluating the test’s assertion, the model
output by RoboArch2RoboChart is used for the evaluation instead.

There are two kinds of goals a test can have: verify that valid RoboChart
models are generated for given RoboArch text and verify that domain
knowledge concepts of robotics architectures are represented as expected
in the RoboChart model.

The validity tests can be implemented as a system or unit test. The
RoboChart model validity test as a system test takes a RoboArch model
as input. The test first runs the RoboArch parser and validator for the
input RoboArch text to obtain the RoboArch instance of the metamodel.
Next, the test runs a RoboArch2RoboChart transformation rule on the
result to generate a RoboChart instance of its metamodel. Finally, the
test runs the RoboArch2Text generator to output the RoboChart text for
the input RoboArch model. Using the RoboChart parser and validator
the test verifies that the generated RoboChart text is free from errors if a
complete model is expected as the rule’s output, or for the presence of
expected errors if the rule produces a partial model.

The RoboChart model validity as a unit test takes a RoboArch model
and the expected RoboChart model fragment as its inputs. The test
follows the first two steps of the system test running the RoboArch
parser and validator for the input RoboArch text, followed by, the Ro-
boArch2RoboChart transformation rule to output a RoboChart model.
The test verifies that the generated RoboChart model matches the expec-
ted RoboChart model fragment.

The domain unit tests take a RoboArch text and run the parser and
validator, followed by the RoboArch2RoboChart transformation rule
for the target feature that is being tested. The test checks the output
RoboChart model objects using assertions that capture the expected
domain knowledge.

In total, 5 validity and 19 domain tests have been implemented. They
can be found at the following website4.

RoboChart2Text

The code templates of the RoboChart2Text are tested as unit tests, a test
for each element of the RoboChart metamodel. There is one kind of

4https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.
roboarch2chart.tests/eunit

132

https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.roboarch2chart.tests/eunit
https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.roboarch2chart.tests/eunit

5.2 Obstacle Avoidance Case Study

test goal: for a given input RoboChart model the expected RoboChart
text is generated. These tests have a RoboChart model and the expected
RoboChart text as inputs. A test runs the RoboChart2Text generator for
the input RoboChart model and outputs the generated RoboChart text.
The test verifies that the generated RoboChart text matches the expected
RoboChart text.

The text comparison used is a relaxed comparison that ignores white-
space characters to reduce the fragility of the code template tests. This
means that some errors in the text generated by RoboChart2Text will not
be detected. Validation tests that check generated RoboChart text using
the RoboChart parser are completed as part of the RoboArch system level
testing.

In total, 27 unit tests have been implemented. They use EUnit tests and
are coordinated using the Ant execution language. The tests can be found
at the following website5. While the unit tests verify the implementation
of the tool they do not validate the RoboArch semantics; to do this we
use a case study presented in the next section.

5.2 Obstacle Avoidance Case Study

For the obstacle avoidance case study, we use RoboArch to specify the
software architecture of a puck robot whose goal is to move through its
environment avoiding any obstacles that are present. We explore useful
properties of the architecture that can be proven using the RoboChart
model generated from the RoboArch description of the system.

The robot for the system is two wheeled and cylindrically shaped. For
movement the robot has a pair of motors and for sensing its surroundings
there is a forward facing proximity sensor. The sensor measures the
distance between itself and objects that are in its line of sight.

The environment the robot is expected to operate within is any typical
room indoors that has a flat surface. The behaviour of the robot is to move
forwards until an obstacle is less than a predetermined fixed distance
away and stop. After stopping, the robot rotates until it is no longer
blocked by the obstacle and moves forwards in the new direction. Next
we present the RoboArch description followed by the RoboChart model.

5https://github.com/UoY-RoboStar/robochart2text-epsilon/tree/thesis/circus.robocalc.
robochart2text.gen/tests

133

https://github.com/UoY-RoboStar/robochart2text-epsilon/tree/thesis/circus.robocalc.robochart2text.gen/tests
https://github.com/UoY-RoboStar/robochart2text-epsilon/tree/thesis/circus.robocalc.robochart2text.gen/tests

5 Evaluating RoboArch

5.2.1 RoboArch Description

For our obstacle avoidance robotic system we specify a two layer software
architecture that consists of a control and an executive layer. The control
layer uses the reactive skills pattern to define the robot’s behaviours.
Because the desired behaviour is purely reactive and it can be accom-
plished by the control layer alone, the function of the executive layer is to
initialise the control layer and put it into its operating state exploring the
environment. Listing 5.4 to 5.9 show the RoboArch description of this
two layer structure.

Listing 5.4 defines the system, types, interfaces, and platform. The
system named ObstacleAvoidance that holds the rest of the system’s
definitions is declared on Line 1. A record type named Velocities is

Listing 5.4: Obstacle avoidance definitions and platform declarations
1 system ObstacleAvoidance
2

3 datatype Velocities {
4 linear:real
5 angular:real
6 }
7

8 interface Motors {
9 event move: Velocities

10 }
11

12 interface Sense {
13 event proximity: int
14 }
15

16 robotic platform PuckRobot {
17 uses Motors
18 uses Sense
19 }

declared on Lines 3 to 6 it has two fields named linear and angular
both of type real. The information held by Velocities represents a
trajectory of the robot. The interfaces Motors and Sense are declared on
Lines 8 to 14 they specify events move and proximity. The interfaces
Motors and Sense are declared on Lines 8 to 14. They specify events
move and proximity. Proximity events are used to communicate in-

134

5.2 Obstacle Avoidance Case Study

tegers representing the distance of an obstacle from the robot’s sensor.
Move events are used to communicate the velocities the robot’s motors
should be set to. The robotic platform named PuckRobot is declared on
Lines 16 to 19; it uses the Motors and Sense interfaces.

Listing 5.5 defines the layer named Executive; it is given no type be-
cause its function is to initialise the fully reactive control layer. The inputs
and outputs defined on Lines 24 to 44 match those of the control layer but
with inputs and outputs swapped for well-formedness of communication.
No pattern for the Executive layer is given so the generated RoboChart
model is a minimal machine and will be customised.

Listing 5.5: Obstacle avoidance executive layer
22 layer Executive {
23

24 inputs= eventReply:Events, activeSkills:Set(Skills),
25 ProximitygapValue:int, exploreVOutValue:Velocities,
26 explorePriorityParameter:nat,
27 proximityPriorityParameter:nat,
28 exploreMaxSpeedParameter:real,
29 exploreSafetyDistanceParameter:int,
30 movePriorityParameter:nat;
31

32 outputs= activate:Skills, deactivate:Skills,
33 getActiveSkills, initiateEventMonitor:Events,
34 stopEventMonitor:Events, getProximityGapValue,
35 getExploreVOutValue, getExplorePriorityParameter,
36 setExplorePriorityParameter:nat,
37 getProximityPriorityParameter,
38 setProximityPriorityParameter:nat,
39 getExploreMaxSpeedParameter,
40 setExploreMaxSpeedParameter:real,
41 getExploreSafetyDistanceParameter,
42 setExploreSafetyDistanceParameter:int,
43 getMovePriorityParameter,
44 setMovePriorityParameter:nat;
45 } ;

Listings 5.6 and 5.7 define the layer named Control that is of type
ControlLayer. Because the layer interacts with the platform it uses the
Motors and Sense interfaces as shown on Lines 50 and 51.

135

5 Evaluating RoboArch

Listing 5.6: Obstacle avoidance control layer
48 layer Control: ControlLayer {
49

50 uses Motors
51 uses Sense
52

53 inputs= activate:Skills, deactivate:Skills,
54 getActiveSkills, initiateEventMonitor:Events,
55 stopEventMonitor:Events, getProximityGapValue,
56 getExploreVOutValue, getExplorePriorityParameter,
57 setExplorePriorityParameter:nat,
58 getProximityPriorityParameter,
59 setProximityPriorityParameter:nat,
60 getExploreMaxSpeedParameter,
61 setExploreMaxSpeedParameter:real,
62 getExploreSafetyDistanceParameter,
63 setExploreSafetyDistanceParameter:int,
64 getMovePriorityParameter,
65 setMovePriorityParameter:nat;
66

67 outputs= eventReply:Events, activeSkills:Set(Skills),
68 ProximitygapValue:int,
69 exploreVOutValue:Velocities,
70 explorePriorityParameter:nat,
71 proximityPriorityParameter:nat,
72 exploreMaxSpeedParameter:real,
73 exploreSafetyDistanceParameter:int,
74 movePriorityParameter:nat;

Line 76 declares the reactive skills pattern which can have skills,
connections, and monitors. Lines 78 to 91 defines three skills: Move,
Proximity, and Explore. Move is a D-Skill with one input move of
type Velocities that sets the speed of the robot’s motors enabling
its direction to be controlled. Proximity is a D-Skill with an output
proximity. Explore is a C-Skill that has parameters safetyDistance
of type int and maxSpeed of type real, an input obstacleDistance
of type int, and an output vOut of type velocities. When proximity
values are greater than the safetyDistance, Explore outputs a non-
zero linear velocity and zero angular velocity. When proximity values
are lower than the safetyDistance, Explore outputs zero linear ve-
locity and a non-zero angular velocity.

136

5.2 Obstacle Avoidance Case Study

Listing 5.7: Obstacle avoidance control layer pattern
76 pattern= ReactiveSkills;
77

78 skills=
79 dskill Move {
80 inputs= vIn:Velocities;
81 },
82

83 dskill Proximity {
84 outputs= gap:int;
85 },
86

87 cskill Explore {
88 parameters= safetyDistance: int, maxSpeed: real;
89 inputs= obstacleDistance: int;
90 outputs= vOut:Velocities;
91 } ;
92

93 connections=
94 Proximity on gap to Explore on obstacleDistance,
95 Explore on vOut to Move on vIn;
96

97 monitors= (SafetyDistanceReached |
98 Proximity::gap < Explore::safetyDistance);
99

100 } ;

Lines 93 to 95 declare the connections that connect the inputs and
outputs of the skills. They enable values from the platform to be used by
the Explore C-Skill and the velocities it outputs to set the robot’s velocity
via the platform. There are two connections: one from Proximity to
Explore and the other from Explore to Move.

A monitor named SafetyDistanceReached that checks for the con-
dition proximity being less than the safetyDistance is defined on
Line 97. On the condition occurring, the Executive layer will be noti-
fied.

Listings 5.8 and 5.9 declare the system’s connections connecting the lay-
ers and platform. For our example the inputs and outputs between
the Control and Executive layers that have matching names are
connected and the two events of the platform are connected to their
corresponding input or output events of the Control layer.

137

5 Evaluating RoboArch

Listing 5.8: Obstacle avoidance layer connections executive to control
103 connections=
104 Executive on activate to Control on activate,
105 Executive on deactivate to Control on deactivate,
106 Executive on getActiveSkills to Control on

getActiveSkills,
107 Executive on initiateEventMonitor to Control on

initiateEventMonitor,
108 Executive on stopEventMonitor to Control on

stopEventMonitor,
109 Executive on getProximityGapValue to Control on

getProximityGapValue,
110 Executive on getExploreVOutValue to Control on

getExploreVOutValue,
111 Executive on getExplorePriorityParameter to Control on

getExplorePriorityParameter,
112 Executive on setExplorePriorityParameter to Control on

setExplorePriorityParameter,
113 Executive on getProximityPriorityParameter to Control

on getProximityPriorityParameter,
114 Executive on setProximityPriorityParameter to Control

on setProximityPriorityParameter,
115 Executive on getExploreMaxSpeedParameter to Control on

getExploreMaxSpeedParameter,
116 Executive on setExploreMaxSpeedParameter to Control on

setExploreMaxSpeedParameter,
117 Executive on getExploreSafetyDistanceParameter to

Control on getExploreSafetyDistanceParameter,
118 Executive on setExploreSafetyDistanceParameter to

Control on setExploreSafetyDistanceParameter,
119 Executive on getMovePriorityParameter to Control on

getMovePriorityParameter,
120 Executive on setMovePriorityParameter to Control on

setMovePriorityParameter,

138

5.2 Obstacle Avoidance Case Study

Listing 5.9: Obstacle avoidance layer connections control to executive
and platform

122 Control on eventReply to Executive on eventReply,
123 Control on activeSkills to Executive on activeSkills,
124 Control on ProximitygapValue to Executive on

ProximitygapValue,
125 Control on exploreVOutValue to Executive on

exploreVOutValue,
126 Control on explorePriorityParameter to Executive on

explorePriorityParameter,
127 Control on proximityPriorityParameter to Executive on

proximityPriorityParameter,
128 Control on exploreMaxSpeedParameter to Executive on

exploreMaxSpeedParameter,
129 Control on exploreSafetyDistanceParameter to Executive

on exploreSafetyDistanceParameter,
130 Control on movePriorityParameter to Executive on

movePriorityParameter,
131

132 Control on move to PuckRobot on move,
133 PuckRobot on proximity to Control on proximity;

The description of the obstacle avoidance system we have seen is used
to generate a RoboChart model and verify some properties of the reactive
skills pattern. In the next section we present the RoboChart model that is
used for verifying properties of the reactive skills pattern.

5.2.2 RoboChart model

Using the tool to apply the transformation rules from Chapters 3 and 4 to
the RoboArch description of the obstacle avoidance case study, a sketch
of a RoboChart model of the system is generated. Here we present the
complete RoboChart model and highlight the customisations made to
complete the sketch so that it can be used for verification of properties.

The SystemToRCModule Rule 3.2.1 previously discussed is the rule that
calls the other rules and specifies the structure of the top-level RoboArch
Module, Layers, and Platform.

The ObstacleAvoidance system’s definitions and interfaces are de-
clared in the RoboArch description. These declarations are directly
assigned to rcdef, rcifcs, and rcmod in the rule, therefore, they are re-
used in the RoboChart model. Figure 5.5 shows the type, interfaces, and
platform declarations of the RoboChart model.

139

5 Evaluating RoboArch

Figure 5.5: RoboChart Platform

PuckRobot

Motors
Sense

move: Velocities

proximity: int
Velocities

 linear: real
 angular: real

Motors

move: Velocities

Sense

proximity: int

The SystemToRCModule rule specifies the RoboChart module named
ObstacleAvoidance. The nodes of the module in the RoboChart
model are controllers created by the LayersToControllers Rule 3.2.2. This
means that for our example there are two controllers named Executive
and Control. Figure 5.6 sketches the generated RoboChart module; the
complete module showing all connections can be found in Appendix D.1.
The module contains the two controllers Executive and Control and the
platform PuckRobot.

Figure 5.6: RoboChart Module overview

ObstacleAvoidance

ref Control::Control

ref Platform::PuckRobot

ref Executive::Executive

The connections of the module are declared in the RoboArch descrip-
tion and are directly assigned to the module’s connections of the Rob-
oChart model. The connections appear in Figure 5.6 between the control-

140

5.2 Obstacle Avoidance Case Study

lers and the robotic platform.
For the detail of the layer Control the LayersToControllers Rule 3.2.2

specifies a controller with matching name. The controller’s events are
given by the layer’s inputs and outputs. The layer’s machines and connec-
tions are specified by the PatternToMachinesAndConnections Rule 4.4.1;
because the layer’s pattern is declared as ReactiveSkills Rule 4.4.2 is
called. Figure 5.8 shows the details of the generated controller. There are
four machines, one for each skill Move, Proximity, and Explore plus
a machine for the skills manager.

The dskill machines follow the structure specified by Rule 4.4.6 and
shown in Figure 4.5. The generated behaviour forwards values received
from the platform sensor event, platformProximity, to the Proximity
skill’s output event proximity, and forwards the calculated values received
from the Explore skill to the platform event platformMove.

The cskill machine follows the structure specified by Rule 4.4.5 and
shown in Figure 4.4. The ComputeOutputs state was customised to model
the obstacle avoidance behaviour on the distance dropping below the
safetyDistance. Figure 5.7 is the customised state for our example.
The avoidance behaviour is modelled using a conditional as an entry
action.

Figure 5.7: Explore Skill Compute State
ComputeOutputs

entry if (obstacleDistance>safetyDistanceParam) then nextMotorsVelocity.linear = maxSpeedParam;
nextMotorsVelocity.angular = 0; exploreVOut!(|nextMotorsVelocity, PriorityParam|) else nextMotorsVelocity.
linear = 0; nextMotorsVelocity.angular = maxSpeedParam; exploreVOut!(|nextMotorsVelocity, PriorityParam|)
end

The skills manager machine follows the structure specified by Rule 4.4.7
and shown in Figure 4.6. No customisation of the skills manager is ne-
cessary because its behaviour is established by the reactive skills pattern.

The last thing that had to be customised in the Control controller gen-
erated RoboChart model was the connections between the SkillsManager
and the events on the boundary of the Control controller.

For the layer Executive, Rule 3.2.2 LayersToControllers specifies a
Controller with matching name. The controllers events are given by the
layer’s inputs and outputs. The layer’s machines and connections are
specified by the PatternToMachinesAndConnections Rule 4.4.1.

141

5 Evaluating RoboArch

Figure 5.8: RoboChart Control Layer
Control

IControl
Motors
Sense

ref Move = Move

activateMove

deactivateMove

executeMove

movePriorityParam: nat

moveVIn: Velocities

completeMove

platformMove: Velocities

ref Proximity = Proximity

activateProximity

deactivateProximity

executeProximity

proximityPriorityParam: nat

proximityGap: int*nat

completeProximity

platformProximity: int

ref Explore = Explore

activateExplore

deactivateExplore

executeExplore

exploreMaxSpeedParam: real

exploreSafetyDistanceParam: int

explorePriorityParam: nat

exploreObstacleDistance: int

exploreVOut: Velocities*nat

completeExplore

ref SkillsManager = SkillsManager

getExploreMaxSpeedParameter

setExploreSafetyDistanceParameter: int

deactivate: Skills

setExplorePriorityParameter: nat

activate: Skills

getProximityPriorityParameter

getProximityGapValue

setMovePriorityParameter: nat

getActiveSkills

getExploreSafetyDistanceParameter

setExploreMaxSpeedParameter: real

getExploreVOutValue

getMovePriorityParameter

setProximityPriorityParameter: nat

getExplorePriorityParameter

initiateEventMonitor: Events

stopEventMonitor: Events

exploreVOutValue: Velocities

movePriorityParameter: nat

explorePriorityParameter: nat

exploreSafetyDistanceParameter: int

proximityPriorityParameter: nat

proximityGapValue: int

activeSkills: Set(Skills)

eventReply: Events

exploreMaxSpeedParameter: real

activateMove

deactivateMove

executeMove

movePriorityParam: nat

moveVIn: Velocities

activateProximity

deactivateProximity

executeProximity

proximityPriorityParam: nat

proximityGap: int*nat

activateExplore

deactivateExplore

executeExplore

exploreMaxSpeedParam: real

exploreSafetyDistanceParam: int

explorePriorityParam: nat

exploreObstacleDistance: int

exploreVOut: Velocities*nat

completeMove

completeProximity

completeExplore

getExploreMaxSpeedParameter

setExploreSafetyDistanceParameter: int

deactivate: Skills

setExplorePriorityParameter: nat

activate: Skills

getProximityPriorityParameter

getProximityGapValue

setMovePriorityParameter: nat

getActiveSkills

getExploreSafetyDistanceParameter

setExploreMaxSpeedParameter: real

getExploreVOutValue

getMovePriorityParameter

setProximityPriorityParameter: nat

getExplorePriorityParameter

initiateEventMonitor: Events

stopEventMonitor: Events

exploreVOutValue: Velocities

movePriorityParameter: nat

explorePriorityParameter: nat

exploreSafetyDistanceParameter: int

proximityPriorityParameter: nat

proximityGapValue: int

activeSkills: Set(Skills)

eventReply: Events

exploreMaxSpeedParameter: real

move: Velocities

proximity: int

142

5.2 Obstacle Avoidance Case Study

As no pattern for the Executive layer is declared, the PatternToM-
achinesAndConnections Rule4.4.1 defines a minimal machine and no
connections in the generated model’s Controller. We customise the
Executive layer to model the initialisation of the Control layer. Fig-
ure 5.9 shows the customised Executive controller.

Figure 5.9: RoboChart Executive Layer
Executive

IControl

Simple

currentlyActiveSkills: Set(Skills) = {}, monitor: Events
EXECUTIVE_CYCLE_TIME: int = 2
IControl

InitialiseSkills

entry setProximityPriorityParameter!0; setExplorePriorityParameter!0; setMovePriorityParameter!0;
setExploreSafetyDistanceParameter!1; setExploreMaxSpeedParameter!2; activate!Skills::PROXIMITY;
activate!Skills::EXPLORE; activate!Skills::MOVE

InitialiseMonitors

entry initiateEventMonitor!Events::
SAFETYDISTANCEREACHED

Exploring

CheckMonitor

WaitForAllSkills

getExploreMaxSpeedParameter

setExploreSafetyDistanceParameter: int

deactivate: Skills

setExplorePriorityParameter: nat

activate: Skills

getProximityPriorityParameter

getProximityGapValue

setMovePriorityParameter: nat

getActiveSkills

getExploreSafetyDistanceParameter

setExploreMaxSpeedParameter: real

getExploreVOutValue

getMovePriorityParameter

setProximityPriorityParameter: nat

getExplorePriorityParameter

initiateEventMonitor: Events

stopEventMonitor: Events

exploreVOutValue: Velocities

movePriorityParameter: nat

explorePriorityParameter: nat

exploreSafetyDistanceParameter: int

proximityPriorityParameter: nat

proximityGapValue: int

activeSkills: Set(Skills)

eventReply: Events

exploreMaxSpeedParameter: real

getExploreMaxSpeedParameter

setExploreSafetyDistanceParameter: int

deactivate: Skills

setExplorePriorityParameter: nat

activate: Skills

getProximityPriorityParameter

getProximityGapValue

setMovePriorityParameter: nat

getActiveSkills

getExploreSafetyDistanceParameter

setExploreMaxSpeedParameter: real

getExploreVOutValue

getMovePriorityParameter

setProximityPriorityParameter: nat

getExplorePriorityParameter

initiateEventMonitor: Events

stopEventMonitor: Events

exploreVOutValue: Velocities

movePriorityParameter: nat

explorePriorityParameter: nat

exploreSafetyDistanceParameter: int

proximityPriorityParameter: nat

proximityGapValue: int

activeSkills: Set(Skills)

eventReply: Events

exploreMaxSpeedParameter: real

[sinceEntry(WaitForAllSkills)
>=EXECUTIVE_CYCLE_TIME]/getActiveSkills

eventReply?monitor

[currentlyActiveSkills=={Skills::PROXIMITY,
Skills::EXPLORE, Skills::MOVE}]

activeSkills?currentlyActiveSkills

[sinceEntry(WaitForAllSkills)
>=EXECUTIVE_CYCLE_TIME]
[sinceEntry(WaitForAllSkills)
>=EXECUTIVE_CYCLE_TIME]

eventReply?monitor

[currentlyActiveSkills=={Skills::PROXIMITY,
Skills::EXPLORE, Skills::MOVE}]

activeSkills?currentlyActiveSkills

[sinceEntry(WaitForAllSkills)
>=EXECUTIVE_CYCLE_TIME]/getActiveSkills

143

5 Evaluating RoboArch

There is one machine called Simple that has five states: InitialiseSkills,
WaitForAllSkills, InitialiseMonitors, Exploring, and CheckMonitors.

The machine enters the InitialiseSkills on startup and performs the entry
action that sets the parameters to starting values, for example, Explore’s
safetyDistance using the setExploreSafetyDistance event. The entry action
also activates all three skills using the activateSkills event after which the
transition to the WaitForAllSkills is taken and the state entered.

After an amount of time given by EXECUTIVE CYCLE TIME the trans-
ition back to WaitForAllSkills is taken. The entry action requests the
currently active skills by triggering the getActiveSkill event. Next the
WaitForAllSkills is re-entered. While in the WaitForAllSkills state, responses
from the Control controller activeSkills event can be accepted and the value
stored in the currentlyActiveSkillsVariable. When all the skills are reported
as being active (currentlyActiveSkills) then the transition to InitialiseMonitors
is taken and the state entered.

On entering InitialiseMonitors the entry action enables the
SafetyDistanceReached monitor and the transition to Exploring, and
the state is entered. After EXECUTIVE CYCLE TIME time units since
entering the state have elapsed the transition to the CheckMonitor state
is taken and the state is entered. On an eventReply being accepted, the
value is stored in the monitor variable, and the transition to the Exploring
state is taken.

In summary once the Control has been initialised the Executive peri-
odically stores any received notifications of the safety distance being
violated.

From the RoboChart model of the obstacle avoidance system, the CSP
model can be generated enabling properties of reactive skills to be verified
via model checking.

5.2.3 Properties

In this section we specify the properties that models using the reactive
skills pattern have. Because the RoboChart semantics is formalised using
CSP and models can be verified using a refinement model checker, the
expected properties are specified as CSP processes. The corresponding
CSP for each description can be found in Appendix E.

The two kinds of skill in the reactive skills pattern C-Skill and D-Skill
share some common properties. Figure 5.10 shows the inputs and outputs
of the CSP processes and defines sets of events that are used to specify
the common properties in both their description and corresponding CSP.

144

5.2 Obstacle Avoidance Case Study

The boxes in Figure 5.10 represent processes and the arrows channels.
The direction of an arrow points to the destination process where events
are input. Bold arrows show channels that can have a multiplicity greater
than one and they are grouped by metamodel attribute; the exact number
depends on the number of attributes defined in the RoboArch model.

Figure 5.10: Skill CSP process input and output events.

Skill

Skills Manager

completeactivate

deactivate

execute

Inputs
{si

1
, si

2
, si

3
}

Parameters
{sp

1
, sp

2
, sp

3
}

Outputs
{so

1
, so

2
, so

3
}

skillControlEvents = {activate, deactivate, execute, complete}
skillParameterEvents = {|sp1, sp2, sp3...|}
skillInputEvents = {|si1, si2, si3...|}
skillOutputEvents = {|so1, so2, so3...|}

allSkillEvents = skillControlEvents ∪ skillParameterEvents∪
skillInputEvents ∪ skillOutputEvents

where spw, six, soy are channels

External behaviour common to all skills is specified by the following
properties.

EB-S1 A skill initially accepts a value for any of the parameters.

145

5 Evaluating RoboArch

EB-S2 After accepting one of each parameter value the skill accepts an
activate event and any of its parameter values.

EB-S3 After accepting an activate event a skill accepts any of its para-
meter values, input values, an execute event or deactivate event.

EB-S4 After accepting an execute event a skill must output a com-
plete event before any of the other skill control events.

EB-S5 After accepting a deactivate event a skill can only accept its
parameter values or an activate event.

EB-S6 No skill outputs are communicated until the skill’s priority para-
meter event is accepted. After accepting a priority parameter event, the
skill’s output value always includes the most recently accepted priority
value.

C-Skills compute values for their outputs from their input values and
communicate the new values to the skill manager. They have an addi-
tional property:

EB-CS1 After accepting an execute event the skill communicates
zero or more output value(s) before communicating a complete event.

C-Skill events and communication structure are the same as those defined
for Skills.

D-Skills communicate with the robotic platform so they additionally
can receive values as inputs from the platform’s sensors and output
values to the platform that alter the robot’s state. Figure 5.11 shows the
inputs and outputs of the CSP processes and defines sets of events that
are used to specify D-Skill properties.

146

5.2 Obstacle Avoidance Case Study

Figure 5.11: D-Skill CSP process input and output events.

D-Skill

Robotic Platform

Skills Manager

completeactivate

deactivate

execute

Platform Sensing
{sps

1
, sps

2
, sps

3
}

Inputs
{si

1
, si

2
, si

3
}

Parameters
{sp

1
, sp

2
, sp

3
}

Outputs
{so

1
, so

2
, so

3
}

Platform Actuation
{spa

1
, spa

2
, spa

3
}

skillControlEvents = {activate, deactivate, execute, complete}
skillParameterEvents = {|sp1, sp2, sp3...|}
skillInputEvents = {|si1, si2, si3...|}
skillOutputEvents = {|so1, so2, so3...|}

skillPlatformActuationEvents = {|spa1, spa2, spa3...|}
skillPlatformSensingEvents = {|sps1, sps2, sps3...|}

allSkillEvents = skillControlEvents ∪ skillParameterEvents∪
skillInputEvents ∪ skillOutputEvents∪
skillPlatformActuationEvents ∪ skillPlatformSensingEvents

sppriority ≡ sp1

where spu, siv, sow, spax, spsy are channels

In addition to the common skill properties D-Skills have three further
properties:

EB-DS1 After accepting an execute event and before communicating
a complete event, a D-Skill can communicate zero or more platform
actuation value(s) and zero or more output value(s).

147

5 Evaluating RoboArch

EB-DS2 After accepting an activate or complete event followed by
an execute event, the latest input event(s) values that were accepted
since the last activate or complete event, if any, are communicated to
the skill’s corresponding platform actuation output.

EB-DS3 After accepting an activate or complete event followed by
an execute event, the latest platform sensing event(s) values that were
accepted since the last activate or complete event, if any, are commu-
nicated to the corresponding output(s).

The skills manager coordinates the communication between skills and
provides an interface that enables the execution of skills to be controlled
and monitored. Figure 5.12 shows the inputs and outputs of the CSP
processes that are used to specify the Skills Manager properties. The
complete skills manager set definitions can be found in Appendix E.4.
The skill channels indicated by the ‘...’ symbol in Figure 5.12 are given
by the C-Skill and D-Skill from Figures 5.10 and 5.11

External behaviour for the Skills Manager is specified by the following
properties.

EB-SM1 After accepting a getActiveSkills handling request the response
is communicated via an activeSkills event.

EB-SM2 After accepting a get[skill.name][param.name]Parameter
handling request the response is communicated via a
[skill.name][param.name]Parameter event.

EB-SM3 After accepting a set[skill.name][param.name]Parameter
handling request the new parameter value is communicated via a
[skill.name][param.name]Param event.

EB-SM4 No handling response can happen until a handling request has
been accepted.

148

5.2 Obstacle Avoidance Case Study

Figure 5.12: Skills Manager CSP Process input and output events.

Skill

Skills
Manager

activate

deactivate

getActiveSkills

initiateEventMonitor

stopEventMonitor

getSkillParameter
{gsp

1
, gsp

2
, gsp

3
}

...

Skill
Skill

activeSkills

eventReply

skillParameter
{sp

1
, sp

2
, sp

3
}

setSkillParameter
{ssp

1
, ssp

2
, ssp

3
}

getSkillValue
{gsv

1
, gsv

2
, gsv

3
}

skillValue
{sv

1
, sv

2
, sv

3
}

This account of the skills manager properties is not exhaustive and fur-
ther properties can be specified to increase the coverage of the verification
of the reactive skills pattern.

In the next section, we summarise the results of verifying these proper-
ties for the obstacle avoidance model.

5.2.4 Verification Results

The fourteen reactive skills properties previously specified were checked
using FDR to ensure that each property is refined by the RoboChart
obstacle avoidance model from Section 5.2.2. Table 5.1 summarises the
results of verification on the RoboStar test server that has two terabyes
of memory and two physical CPUs each with 32 physical cores with a
2.0 GHz base clock.

The table shows the skills properties for EB-S1 to EB-S6, EB-CS1, and
EB-DS1 to EB-DS3 all passed in the untimed and timed models with
an average execution time of 6 seconds. However, the Skills Manager

149

5 Evaluating RoboArch

properties EB-SM1 to EB-SM4 could not be verified because the resources
of test machine were exhausted after running for 6 hours 42 minutes.

Table 5.1: Summary of verification results for the reactive skills properties.
Property Untimed Timed
EB-S1 ✓ ✓

EB-S2 ✓ ✓

EB-S3 ✓ ✓

EB-S4 ✓ ✓

EB-S5 ✓ ✓

EB-S6 ✓ ✓

EB-CS1 ✓ ✓

EB-DS1 ✓ ✓

EB-DS2 ✓ ✓

EB-DS3 ✓ ✓

EB-SM1 ∗∗∗ –
EB-SM2 ∗∗∗ –
EB-SM3 ∗∗∗ –
EB-SM4 ∗∗∗ –

key: ✓=Pass, ✗=Fail, –=Not tested,
∗∗∗=Ran out of resources

Table 5.2: Summary of verification results for the reactive skills properties
simplified.

Property Untimed Timed
EB-SM1 ✓ ✓

EB-SM2 ✓ ✓

EB-SM3 ✓ ✓

EB-SM4 ∗∗∗ –
key: - ✓=Pass, ✗=Fail, –=Not tested

∗∗∗=Ran out of resources

In order to prove some properties for the skills manager, the obstacle
avoidance model was simplified to remove the proximity D-Skill. This
meant the simplified model had one D-Skill Move and one C-Skill Ex-
plore. The explore D-Skill was modified to have one output that output
a constant velocity to the move D-Skill. The results of verifying the
simplified model are shown in Table 5.2.

For the untimed and timed models EB-SM1 to EB-SM3 could be verified

150

5.3 Final Considerations

and had an average execution time of 342 seconds however EB-SM4,
although executed, again exhausted the resources of the test machine so
the property could not be verified.

The assertions used for for property verification can be found in Ap-
pendices D.2 to D.5.

5.3 Final Considerations

In this chapter, we have discussed the evaluation of RoboArch based
on a supporting tool. We have presented the architecture of the tool
and its verification. We have shown the close correspondence of the
implementation of the rules and their definitions in Chapters 3 and 4 that
enabled the rules correctness to be evaluated. This was achieved through
the implementation of the rules and then running the transformations
on test models so that errors, for instance in the usage of types, could be
identified and corrected.

We have seen RoboArch used in the obstacle avoidance case study to
describe a complete system’s software architecture that is layered and
uses the reactive skills pattern to achieve some simple target behaviours.
The RoboChart model automatically generated from the RoboArch de-
scription and its customisation that specify remaining application specific
details were presented.

Finally, some properties of the reactive skills pattern were specified and
verified using the completed RoboChart model of the obstacle avoidance
system. The successful verification of these properties demonstrates the
expected behaviours of the system’s model and contributes to the valida-
tion of RoboArch’s semantics. However, there were issues of scalability;
for the larger components like the skills manager not all properties could
be verified by model checking. Simplifying the model of the case study
helped but does not solve the problem of scalability. This highlights the
need for additional approaches and techniques for verification.

In the next chapter, we conclude by identifying the contributions of
RoboArch including its limitations and future work.

151

6 Conclusion

In this chapter we present the steps for adding patterns to RoboArch
in Section 6.1, summarise our contributions in Section 6.2, and outline
future work in Section 6.3.

6.1 Adding Patterns to RoboArch

Figure 6.1 shows the steps to add a new pattern to RoboArch. The boxes
with square corners indicate the tasks necessary for characterising a
pattern. The boxes with rounded corners are the tasks for extending the
RoboArch tool to support a pattern. Dashed lines from a characterisation
task indicates the related tool extension tasks. The arrows between tasks
indicate the next suggested task to complete in the workflow. As each
task is completed, from the insights gained through further elaboration
of the pattern, it may become apparent that an earlier assumption made
from a previous task is no longer correct and needs to be updated; this is
shown by arrows pointing to an earlier task.

Once the pattern to be characterised has been selected the first task
is to identify the pattern’s concepts from the available description. A
starting point is to find keywords their meaning and determine what
elements they contribute to the pattern. For each identified element
try to answer: is it composed of other elements? how do each of the
elements interact and what elements do they interact with? are there
any restrictions on interaction? how does this element relate to other
elements and are there any common categories? Record these elements in
a table summarising the description defining each; these are the concepts.
Finally, identify primary concepts of the pattern that depend on other
concepts for their definition. Separate the primary concepts out into their
own table. Examples of concept identification tables for reactive skills
and subsumption can be found in Section 2.2.

The second task is to create the pattern metamodel. The concepts
identified in the first task need to be translated into classes, attributes,
and relationships of a metamodel. The understanding of the pattern from

152

6.1 Adding Patterns to RoboArch

Figure 6.1: Workflow for adding a pattern to RoboArch.

1. Identify pattern concepts (2.2)

2. Create pattern metamodel (4.2.1)

3. Design the notation (4.2, 4.3)

4. Specifiy the well-formedness
conditions (4.2.2)

5. Define the transformation rules
(4.4.2)
a. mapping to RoboChart
b. rules

i. EMF metamodel (a)

ii. Xtext Grammar (b)

iii. RoboArch pattern de-
scription examples (c)

iv. Validation rules (d)
– junit tests (e)

v. Expected RoboChart
models (f)

vi. ETL transformation
rules (g)
– eunit tests (h)

ahttps://github.com/UoY-RoboStar/roboarch-metamodel/blob/thesis/circus.robocalc.roboarch/
model/roboarch.ecore

bhttps://github.com/UoY-RoboStar/roboarch-textual/blob/thesis/circus.robocalc.roboarch.textual/
src/circus/robocalc/roboarch/textual/RoboArch.xtext

chttps://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/RoboArch_Test_Text
dhttps://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual/

src/circus/robocalc/roboarch/textual/validation]
ehttps://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual.

tests/src/circus/robocalc/roboarch/textual/tests
fhttps://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/RoboChart_Test_Models
ghttps://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.

roboarch2chart.erules/erules
hhttps://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.

roboarch2chart.tests/eunit

153

https://github.com/UoY-RoboStar/roboarch-metamodel/blob/thesis/circus.robocalc.roboarch/model/roboarch.ecore
https://github.com/UoY-RoboStar/roboarch-metamodel/blob/thesis/circus.robocalc.roboarch/model/roboarch.ecore
https://github.com/UoY-RoboStar/roboarch-textual/blob/thesis/circus.robocalc.roboarch.textual/src/circus/robocalc/roboarch/textual/RoboArch.xtext
https://github.com/UoY-RoboStar/roboarch-textual/blob/thesis/circus.robocalc.roboarch.textual/src/circus/robocalc/roboarch/textual/RoboArch.xtext
https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/RoboArch_Test_Text
https://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual/src/circus/robocalc/roboarch/textual/validation
https://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual/src/circus/robocalc/roboarch/textual/validation
https://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual.tests/src/circus/robocalc/roboarch/textual/tests
https://github.com/UoY-RoboStar/roboarch-textual/tree/thesis/circus.robocalc.roboarch.textual.tests/src/circus/robocalc/roboarch/textual/tests
https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/RoboChart_Test_Models
https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.roboarch2chart.erules/erules
https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.roboarch2chart.erules/erules
https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.roboarch2chart.tests/eunit
https://github.com/UoY-RoboStar/roboarch2chart-epsilon/tree/thesis/circus.robocalc.roboarch2chart.tests/eunit

6 Conclusion

completing the first task make this a modelling exercise. The related tool
step i, is to create the EMF metamodel.

The third task is to design the pattern’s RoboArch notation. There are
two related tool implementation tasks ii to create the grammar and iii to
create example RoboArch descriptions that are valid with respect to the
grammar. The descriptions created at this stage can be used for testing
later on in the tool development.

The fourth task is to specify the well-formedness conditions. These
ensure that only meaningful models can be created. The related tool
implementation task is to create the validation rules that enforce the
well-formedness conditions when the pattern’s RoboArch description is
being parsed.

The fifth task is to define the transformation rules. This is divided into
two parts: part one is to map the concepts from the first task to their
RoboChart concept representation, and part two is to define transform-
ation rules that precisely describe the mappings. There are two related
implementation tasks: v to create a set of expected RoboChart models
that correspond to the RoboArch descriptions from the notation design,
and vi to create the transformation rules in ETL so that descriptions using
the newly characterised pattern can be automatically generated.

6.2 Summary of Contributions

It is evident from our literature review of software architecture for robot-
ics in Chapter 2 that there has been little reuse of architectural patterns
with most projects tending to establish their own. However, one com-
monality is the use of layers. The patterns reviewed were all informally
defined leading to ambiguity in the behaviour they describe. Therefore,
there was a need for a more precise way to define patterns that support
the creation of safe and robust robotic systems.

In the existing DSLs for robotics, the main architectural elements are
the components themselves with few constraints on how they are used
together. The use of architectural patterns as enabled and encouraged
by our work has been useful in other areas some examples are commu-
nication protocols [105] and embedded systems, to abstract application
functions from the hardware. Our results may be useful in the context
of other notations, beyond RoboChart, and in other application areas.
Contributions of the work presented in this thesis are in three main areas.

The first is the characterisation of patterns in Chapter 3. For each

154

6.2 Summary of Contributions

pattern their concepts and definitions are recorded and a metamodel and
well-formedness conditions are specified. These characterisations form
the foundation of the RoboArch language.

The second contribution is the RoboArch language and its notation
given in Chapter 3 and Chaper 4. They specify the format for RoboArch’s
textual description for describing the software architecture of robotic
systems and the model transformation rules to RoboChart that give
RoboArch its semantics.

Compared to the DSLs reviewed in Chapter 2, RoboArch specifically
targets architectural patterns used in robotics software and has special-
ised components with semantics given by model transformations to
RoboChart. The transformations to a formalised language is a novel
feature of our work supporting precision and rigour through the use of
mathematical techniques for verification and proof.

RoboArch is not related to the homonym in [106], which is a tool
to support the development of mobile robots. The focus in [106] is on
implementation, not modelling, of hardware-software co-designs based
on hardware and software components, and code generation for FPGA,
not software architectures. Moreover, there is no semantics or support
for verification beyond simulation for the notation adopted by RoboArch
to define the compositions.

The closest relevant work is the WRIGHT architecture description lan-
guage [84] where CSP is used to give a formal semantics to its component
and connectors for analysing architectures by verification of properties.
While the use of CSP is common with RoboArch, WRIGHT does not define
any patterns for robotics.

More recent work RsaML [83] is an architectural modelling language to
describe robotic systems. RsaML has a similar scope to RobotML in that
its metamodel captures a complete system but with additional support
for some of the patterns used in the robotics domain, for example, layers
and parts of subsumption: suppressors and inhibitors. RsaML is similar
to RoboArch in its support for architectural patterns, but differs in not
having a formal semantics.

Finally, the third contribution of the RoboArch tool and framework
means that there is automated support to describe robotic system archi-
tectures for the patterns presented. The facilities provided by the tool,
for example, unit tests for testing subsets of transformation rules, can
be used by others to validate new patterns as extensions to RoboArch.
Therefore, allowing RoboArch to act as a library of precisely specified
patterns that roboticists can draw upon when designing systems.

155

6 Conclusion

6.3 Future Work

To maximise the value RoboArch can offer to the robotics community
additional patterns need to be characterised. In particular, patterns for
the executive and planning layers so that systems designed to perform
diverse tasks with increasing autonomy can be supported. A pattern
that is popular for the executive layer and has been used in the planning
layer is the Hierarchical Task Network (HTN) [10, p. 295]. The pattern
has tasks, actions, and monitors that can be visualised as nodes of a tree
diagram. They can be mapped to machines in a RoboChart model.

Further case studies should be conducted to investigate the expected
properties of patterns and verify them. Another avenue for further work
is comparative studies that review previous RoboChart case studies [20]
and recreate them in RoboArch using patterns to study the effect of
architecture on the system. This could give insights that enable detailed
guidelines for patterns use to be established.

Another area of required work is the interface between layers and
their pattern. The input and output events of layers and the connections
defined among them specifies the layers’ interfaces. The pattern used
by a layer can have different interfaces, therefore, adaptors between
the pattern and a layer’s interface will be required. Currently the user
must define their own adaptor by customising the generated RoboChart
model. Being able to support the automatic generation of these adaptors
is the expectation, however, this is not trivial because all combinations of
patterns and layers have to be considered. Future standardisation may
play a part in easing this situation.

Development of new verification techniques can also contribute to im-
proved system verification. For instance, reverse transformations would
allow static verification to ensure changes to the generated RoboChart
model do not violate the specified system architecture.

Identifying properties of patterns and recording them in transformation
rules to RoboChart assertions would mean that checks for a pattern’s
common properties can be automatically generated. Developers can
verify these properties, assisting them in evaluating their system and the
architecture they select.

Software architecture is often documented diagrammatically and there
is general consensus among robotics DSLs to have a graphical notation.
Therefore, giving RoboArch its own graphical notation and visual short-
hands for connections would be worthwhile to complement the textual
notation.

156

Appendices

157

A Lawn-Mowing System

A.1 Assertions

1 a s s e r t i o n MM_1 : mower : : MowManager i s determinis t i c
2

3 a s s e r t i o n MM_2 : mower : : MowManager i s divergence−free
4

5 a s s e r t i o n MM_3 : mower : : MowManager i s deadlock−free
6

7 a s s e r t i o n MM_4 : mower : : MowManager does not terminate
8

9 a s s e r t i o n MM_5 :
10 mower : : MowManager : : Charging i s reachable in mower : :

MowManager
11

12 a s s e r t i o n MM_6 :
13 mower : : MowManager : : Mowing i s reachable in mower : : MowManager
14

15 a s s e r t i o n MM_7 :
16 mower : : MowManager : : AvoidingObstacle i s reachable in mower : :

MowManager
17

18 a s s e r t i o n MM_8 :
19 mower : : MowManager : : Turning i s reachable in mower : : MowManager
20

21 a s s e r t i o n MM_9 :
22 mower : : MowManager r e f i n e s PAO in the f a i l u r e s model
23

24 a s s e r t i o n MM_10 :
25 mower : : MowManager r e f i n e s PTB in the f a i l u r e s model
26

27 a s s e r t i o n M_1 : mower : : Mower i s determinis t i c
28 a s s e r t i o n M_2 : mower : : Mower i s divergence−free
29 a s s e r t i o n M_3 : mower : : Mower i s deadlock−free
30 a s s e r t i o n M_4 : mower : : Mower does not terminate
31

32 a s s e r t i o n LMS_1 : lawnmower_system : : Lawnmower i s determinis t i c
33 a s s e r t i o n LMS_2 : lawnmower_system : : Lawnmower i s divergence−free
34 a s s e r t i o n LMS_3 : lawnmower_system : : Lawnmower i s deadlock−free
35

36

158

A.1 Assertions

37 // MM_9 − Property Avoid Obstacle (PAO)
38 csp PAO csp−begin
39

40 PAO =
41 l e t
42 waitevents = {| mower_MowManager : : boundary. in ,

mower_MowManager : : f u l l P o w e r . i n , mower_MowManager : :
lowPower. in, mower_MowManager : : e n a b l e C u t t e r C a l l ,
mower_MowManager : : moveForwardsCall, mower_MowManager : :
a v o i d C a l l , mower_MowManager : : turnCal l |}

43

44 PAO = [] ev : waitevents @ (ev −> PAO)
45 []
46 mower : : MowManager : : o b s t a c l e . i n −>
47 mower_MowManager : : avoidCal l −> PAO
48 within
49 PAO
50

51 csp−end
52

53

54 //MM_10 − Property Turn at Bundary (PTB)
55 csp PTB csp−begin
56

57 PTB =
58 l e t
59 waitevents = {| mower_MowManager : : o b s t a c l e . i n ,

mower_MowManager : : f u l l P o w e r . i n , mower_MowManager : :
lowPower. in, mower_MowManager : : e n a b l e C u t t e r C a l l ,
mower_MowManager : : moveForwardsCall, mower_MowManager : :
a v o i d C a l l , mower_MowManager : : turnCal l |}

60

61 PTB = [] ev : waitevents @ (ev −> PTB)
62 []
63 mower : : MowManager : : boundary.in −>
64 mower_MowManager : : turnCal l −> PTB
65 within
66 PTB
67

68 csp−end
69

159

A Lawn-Mowing System

A.2 Results

Table A.1: The untimed results for the lawn-mowing system
Assertion States Transitions Result

mower MowManager is deterministic
(MM 1) [failures divergences model]

14 17 true

mower MowManager is divergence free
(MM 2) [failures divergences model]

14 17 true

mower MowManager is deadlock free
(MM 3) [failures divergences model]

14 17 true

mower MowManager does not terminate
(MM 4)

14 17 true

mower MowManager Charging is reachable
in mower MowManager (MM 5)

6 6 true

mower MowManager Mowing is reachable
in mower MowManager (MM 6)

15 15 true

mower MowManager AvoidingObstacle is
reachable in mower MowManager (MM 7)

30 32 true

mower MowManager Turning is reachable in
mower MowManager (MM 8)

30 32 true

mower MowManager is refined by PAO
(MM 9) [traces model]

14 17 true

mower MowManager is refined by PTB
(MM 10) [traces model]

14 17 true

mower Mower is deterministic (M 1) [failures
divergences model]

14 17 true

mower Mower is divergence free (M 2) [fail-
ures divergences model]

14 17 true

mower Mower is deadlock free (M 3) [fail-
ures divergences model]

14 17 true

mower Mower does not terminate (M 4) 14 17 true
lawnmower system Lawnmower is determin-
istic (LMS 1) [failures divergences model]

14 17 true

lawnmower system Lawnmower is diver-
gence free (LMS 2) [failures divergences
model]

14 17 true

lawnmower system Lawnmower is deadlock
free (LMS 3) [failures divergences model]

14 17 true

160

B RoboArch Rules

This thesis presents the key rules; the complete rule reference can be
found on the following website:

https://robostar.cs.york.ac.uk/publications/reports/roboarch rules.pdf

B.1 Top-Level

Rule B.1.1:

a Name LayerToTypes

b Parameter
name:type amlyr: Layer

c Result
name:type rctyp: Set(TypeDecl)

e Definition

amlyr.pattern ∈ ReactiveSkills ⇒
rctyp = ReactiveSkillsLayerToTypes(amlyr)

amlyr.pattern ∈ Subsumption ⇒
rctyp = SubsumptionLayerToTypes(amlyr)

amlyr.pattern ∈ Htn ∧ amlyr ∈ ExecutiveLayer ⇒
rctyp = HtnExecutiveLayerToTypes(amlyr)

amlyr.pattern ∈ Htn ∧ amlyr ∈ PlanningLayer ⇒
rctyp = HtnPlanningLayerToTypes(amlyr)

amlyr.pattern ∈ PlannerScheduler ⇒
rctyp = PlannerSchedulerLayerToTypes(amlyr)

161

https://robostar.cs.york.ac.uk/publications/reports/roboarch_rules.pdf

B RoboArch Rules

Rule B.1.2:

a Name LayerToFunctions

b Parameter
name:type amlyr: Layer

c Result
name:type rcfuns: Set(Function)

e Definition

amlyr.pattern ∈ ReactiveSkills ⇒
rctyp = ReactiveSkillsLayerToFunctions(amlyr)

amlyr.pattern ∈ Subsumption ⇒
rctyp = SubsumptionLayerToFunctions(amlyr)

amlyr.pattern ∈ Htn ∧ amlyr ∈ ExecutiveLayer ⇒
rctyp = HtnExecutiveLayerToFunctions(amlyr)

amlyr.pattern ∈ Htn ∧ amlyr ∈ PlanningLayer ⇒
rctyp = HtnPlanningLayerToFunctions(amlyr)

amlyr.pattern ∈ PlannerScheduler ⇒
rctyp = PlannerSchedulerLayerToFunctions(amlyr)

162

B.1 Top-Level

Rule B.1.3:

a Name LayerToInterface

b Parameter
name:type amlyr: Layer

c Result
name:type rclyri: Set(Interface)

e Definition

amlyr.pattern ∈ ReactiveSkills ⇒
rclyri = ReactiveSkillsLayerToInterface(amlyr)

amlyr.pattern ∈ Subsumption ⇒
rclyri = SubsumptionLayerToInterface(amlyr)

amlyr.pattern ∈ Htn ∧ amlyr ∈ ExecutiveLayer ⇒
rclyri = HtnExecutiveLayerToInterface(amlyr)

amlyr.pattern ∈ Htn ∧ amlyr ∈ PlanningLayer ⇒
rclyri = HtnPlanningLayerToInterface(amlyr)

amlyr.pattern ∈ PlannerScheduler ⇒
rclyri = PlannerSchedulerLayerToInterface(amlyr)

Rule B.1.4:

a Name ControlLayerToRoboticPlatform

b Parameter
name:type amcl: Set(ControlLayer)

c Result
name:type rcrpr: Set(RoboticPlatform)

Continued on next page

163

B RoboArch Rules

Rule B.1.4 – continued from previous page

e Definition

#amcl = 1 ∧ (µ l : amcl • l.pattern) ∈ ReactiveSkills ⇒
rcrpr = {ReactiveSkillsLayerToRoboticPlatform(

(µ l : amcl • l)
)}

#amcl = 1 ∧ (µ l : amcl • l.pattern) ∈ Subsumption ⇒
rcrpr = {SubsumptionLayerToRoboticPlatform(

(µ l : amcl • l)
)}

#amcl ̸= 1 ⇒
rcrpr = ∅

B.2 Reactive Skills Pattern

Rule B.2.1:

a Name ReactiveSkillsLayerToTypes

b Parameter
name:type amrsl: Layer

c Result
name:type rctyp: Set(TypeDecl)

d Pre
condition amrsl.pattern ∈ ReactiveSkills

e Definition

rctyp =
{ SkillsToSkillEnumeration(amrsl.pattern.skills),
MonitorsToEventEnumeration(amrsl.pattern.skills) }

164

B.2 Reactive Skills Pattern

Rule B.2.2:

a Name ReactiveSkillsLayerToFunctions

b Parameter
name:type amrsl: Layer

c Result
name:type rcfun: Set(Function)

d Pre
condition amrsl.pattern ∈ ReactiveSkills

e Definition

rcfun = {
⟨| name= SkillsManagerFunctionUpdateValueName(),
type= ref("boolean", PrimitiveType),
parameters=

⟨ ⟨| name= "value", type= anyNatProduct |⟩Parameter ,
⟨| name= "newValue", type= anyNatProduct

|⟩Parameter ⟩
|⟩Function }

where
anyNatProduct =

⟨| types = ⟨ ⟨| identifier= "X" |⟩AyType ,
ref("nat", PrimitiveType) ⟩ |⟩ProductType

165

B RoboArch Rules

Rule B.2.3:

a Name ReactiveSkillsLayerToInterface

b Parameter
name:type amrsl: Layer

c Result
name:type rcrsi: Set(Interface)

d Pre
condition amrsl.pattern ∈ ReactiveSkills

e Definition

rcrsi =
{⟨| name = SkillsManagerInterfaceName()

events =
SkillsManagerInterfaceInputs(amrsl)
∪
SkillsManagerInterfaceOutputs(amrsl)

|⟩Interface}
∪
{ skl : amrsl.pattern.skills • SkillToInterface(skl) }

Rule B.2.4:

a Name SkillsManagerInterfaceInputs

b Parameter
name:type amrsl: Layer

c Result
name:type ips: Set(Events)

d Pre
condition amrsl.pattern ∈ ReactiveSkills

Continued on next page

166

B.2 Reactive Skills Pattern

Rule B.2.4 – continued from previous page

e Definition

ips =
{⟨| name = ActivationRequestName(),

type = ref(SkillsEnumName(), Enumeration) |⟩Event ,

⟨| name = DeactivationRequestName(),
type = ref(SkillsEnumName(), Enumeration) |⟩Event ,

⟨| name = ActiveSkillsRequestName() |⟩Event ,

⟨| name = "initiateEventMonitor",
type = ref(EventsEnumName(), Enumeration) |⟩Event

,

⟨| name = "stopEventMonitor",
type = ref(EventsEnumName(), Enumeration) |⟩Event

}

∪⋃
{ skl:amrsl.pattern.skills •

{ par : skl.parameters •
⟨| name = SkillParameterSetRequestName(

skl.name, par.name)
type = par.type |⟩Event ,

⟨| name = SkillParameterGetRequestName(
skl.name, par.name)

|⟩Event
}

}
∪⋃

{ skl : amrsl.pattern.skill •
{ out : skl.outputs •

⟨| name= SkillValueRequestName(skl.name,
out.name)

|⟩Event
}

}

167

B RoboArch Rules

Rule B.2.5:

a Name SkillsManagerInterfaceOutputs

b Parameter
name:type amrsl: Layer

c Result
name:type ops: Set(Events)

d Pre
condition amrsl.pattern ∈ ReactiveSkills

e Definition

ops =
{⟨| name = ActiveSkillsReturnName(),

type = ⟨| domain =
ref(SkillsEnumName(), Enumeration)

|⟩SetType
|⟩Event ,

⟨| name = MonitoredEventReturnName(),
type = ref(EventsEnumName(), Enumeration) |⟩Event

}
∪⋃

{ skl : amrsl.pattern.skills •
{ par : skl.parameters •

⟨| name= SkillParameterReturnName(
skl.name, par.name),

type = par.type |⟩Event
}

}
∪⋃

{ skl : amrsl.pattern.skills •
{ out : skl.outputs •

⟨| name= SkillValueReturnName(skl.name,
out.name),

type= out.type |⟩Event
}

}

168

B.2 Reactive Skills Pattern

Rule B.2.6:

a Name SkillToInterface

b Parameter
name:type amskl: Skill

c Result
name:type rcskl: Interface

e Definition

rcskl rcskl.name=amskl.name

rcskl.events=

{⟨| name= "activate" + amskl.name |⟩Event ,
⟨| name= "deactivate" + amskl.name |⟩Event ,
⟨| name= "execute" + amskl.name |⟩Event ,
⟨| name= SkillCompleteEventName(amskl.name)

|⟩Event }
∪
{ par: amskl.parameters •

⟨| name= amskl.name + par.name + "Param",
type= par.type |⟩Event }

∪
comSkillEvents

where
comSkillEvents =

{ inp: amskl.inputs •
⟨| name = SkillEventName(amskl.name,

inp.name),
type = inp.type |⟩Event }

∪
{ out: amskl.outputs •

⟨| name = SkillEventName(amskl.name,
out.name),

type = ⟨| types = { out.type,
ref("nat", PrimitiveType) |⟩ProductType

|⟩Event}

169

B RoboArch Rules

B.3 Functions

Function B.3.1

a Name GetConnectionsForCommonInterface

b Parameter
name:type

lctla: Controller, lctlb: Controller, intnm: Name,
intin: Set(Event), intout: Set(Event)

c Result
name:type rccon: Set(Connection)

d Pre
condition

(∃1 i : lctla.interfaces • i.name = intnm ∧
(i.events = intin ∪ intout))

∧ (∃1 i : lctlb.interfaces • i.name = intnm)

e Definition

rccon =
{ ev: commonInterface | ev ∈ intin •

⟨| from = ref(lctlb.name, Controller),
efrom = ev,
to = ref(lctla.name, Controller),
eto = ev,

|⟩Connection

}
∪
{ ev: commonInterface | ev ∈ intout •

⟨| from = ref(lctla, Controller),
efrom = ev,
to = ref(lctlb, Controller),
eto = ev,

|⟩Connection

}

where
commonInterface =

(µ i : lctla.interfaces |
i.name = intnm • l.events)

170

B.3 Functions

Function B.3.2

a Name SkillsManagerBaseVariables

b Parameter
name:type -

c Result
name:type smbvs: Set(Variable)

e Definition

smbvs =

{ ⟨| name = SkillsManagerVarCurrentActiveSkills-
Name(),

type = ⟨| domain = ref(SkillsEnumName(),
Enumeration) |⟩SetType

|⟩Variable ,

⟨| name = SkillsManagerVarActivationRequestName(),
type = ref(SkillsEnumName(), Enumeration) |⟩Variable

,

⟨| name = SkillsManagerVarExecutingSkillName(),
type = ref(SkillsEnumName(), Enumeration)

|⟩Variable ,

⟨| name =
SkillsManagerVarCurrentActiveMonitors-

Name(),
type = ⟨| domain= ref(SkillsEnumName(),

Enumeration) |⟩SetType
|⟩Variable ,
⟨| name = SkillsManagerVarMonitorRequestName(),

type = ref(EventsEnumName(), Enumeration) |⟩Variable
,

⟨| name = SkillsManagerVarCycleSkillsName(),
type = ⟨| domain = ref(SkillsEnumName(),

Enumeration) |⟩SeqType
|⟩Variable

171

B RoboArch Rules

Function B.3.3

a Name SkillsManagerNewSkillInputFlagVariables

b Parameter
name:type skill: Name

c Result
name:type smifvs: Set(Variable)

e Definition

smifvs =⋃
{ sk: skls | sk ∈ CSkill •
{ inp: sk.inputs •

⟨| name = SkillsManagerNewInputFlagName(
sk.name, inp.name),

type = ref("boolean", PrimitiveType) |⟩Variable }
∪
{ otp: sk.outputs •

⟨| name = SkillsManagerNewInputFlagName(
sk.name, ot.name),

type = ref("boolean", PrimitiveType) |⟩Variable
}

}
∪⋃

{ sk: skls | sk ∈ DSkill •
{ act: sk.inputs •

⟨| name = SkillsManagerNewInputFlagName(
sk.name, act.name),

type = ref("boolean", PrimitiveType) |⟩Variable
}

}

172

B.3 Functions

Function B.3.4

a Name SkillsManagerParameterVariables

b Parameter
name:type skill: Name

c Result
name:type smpvs: Set(Variable)

e Definition

smpvs =⋃
{ sk: skls •
{ pm: sk.parameters •

⟨| name = SkillsManagerVarParameterName(
sk.name, pm.name)

type = pm.type
|⟩Variable

}
}

Function B.3.5

a Name SkillsManagerInputOutputVariables

b Parameter
name:type skill: Name

c Result
name:type smiovs: Set(Variable)

e Definition

smiovs =⋃
{ sk: skls | sk ∈ CSkill •
{ inp: sk.inputs •

⟨| name = SkillsManagerInputOutputVariable-
Name(

sk.name, inp.name),

Continued on next page

173

B RoboArch Rules

Function B.3.5 – continued from previous page
type =

⟨| types = { inp.type, ref("nat", PrimitiveType) }
|⟩ProductType

|⟩Variable }
∪
{ otp: sk.outputs •

⟨| name = SkillsManagerInputOutputVariable-
Name(

sk.name, otp.name),
type =
⟨| types = { otp.type, ref("nat", PrimitiveType) }
|⟩ProductType

|⟩Variable }
}
∪⋃

{ sk: skls | sk ∈ DSkill •
{ sdt: sk.outputs •

⟨| name = SkillsManagerInputOutputVariable-
Name(

sk.name, sdt.name),
type =
⟨| types = { sdt.type, ref("nat", PrimitiveType) }
|⟩ProductType

|⟩Variable }
∪
{ act: sk.inputs •

⟨| name = SkillsManagerInputOutputVariable-
Name(

sk.name, act.name),
type =
⟨| types = { act.type, ref("nat", PrimitiveType) }
|⟩ProductType

|⟩Variable }
}

174

B.3 Functions

Function B.3.6

a Name SkillsManagerConstants

b Parameter
name:type -

c Result
name:type smcs: Set(Variable)

e Definition

smcs =
{ ⟨| name =

SkillsManagerConstRequestHandlingDelay-
Name(),

type = ref("nat", PrimitiveType)
|⟩Variable ,

⟨| name= SkillsManagerConstAsyncSkillsName(),
type = ⟨| domain = ref("Skills", Enumeration) |⟩SeqType

|⟩Variable }

Function B.3.7

a Name SkillsManagerPatternStates

b Parameter
name:type

skls: Set(Skill), scons: Set(SkillConnection),
smons: Set(Monitor)

c Result
name:type smps: Set(State)

Continued on next page

175

B RoboArch Rules

Function B.3.7 – continued from previous page

e Definition

smps =

{ ⟨| name = "Initial" |⟩Initial ,

⟨| name = SkillsManagerInitialiseName(),
actions = {
⟨| action= SkillsManagerInitialiseStatements(skls)
|⟩EntryAction }

|⟩State ,

⟨| name = SkillsManagerHandleRequestsName()|⟩State,

SkillsManagerDoNextSkillState(),

SkillsManagerUpdateRecordState(skls, scons),

SkillsManagerCheckMonitorsState(smons) }

∪
SkillsManagerExecutingStates(skls)

Function B.3.8

a Name SkillsManagerJunctionEmptyCycleSkillsName

b Parameter
name:type -

c Result
name:type jname: Name

e Definition jname = "JunctionEmptyCycleSkills"

176

B.3 Functions

Function B.3.9

a Name SkillsManagerPatternTransitions

b Parameter
name:type skls: Set(Skill)

c Result
name:type smpt: Set(Transitions)

e Definition

{ ⟨| name = SkillsManagerInitialName() + "To" +
SkillsManagerInitialiseName(),

source = ref(SkillsManagerInitialName(), State),
target = ref(SkillsManagerInitialiseName(), State)
|⟩Transition ,

⟨| name = SkillsManagerInitialiseName() + "To" +
SkillsManagerHandleRequestsName() ,

source = ref(SkillsManagerInitialiseName(), State),
target = ref(SkillsManagerHandleRequestsName(),

State)
|⟩Transition ,

⟨| name = SkillsManagerHandleRequestsName() +

"To" + SkillsManagerDoNextSkillName(),
source = ref(SkillsManagerHandleSetParameterName(),

State),
target = ref(SkillsManagerDoNextSkillName(),

State),
condition=

SkillsManagerHandleTimeGuardExpression(),
action= SkillsManagerResetRequestClock()
|⟩Transition ,

Continued on next page

177

B RoboArch Rules

Function B.3.9 – continued from previous page

⟨| name = SkillsManagerUpdateRecordName() + "To"
+

SkillsManagerCheckMonitorsName() ,
source = ref(SkillsManagerUpdateRecordName(),

State),
target = ref(SkillsManagerCheckMonitorsName(),

State),
condition =

ref(SkillsManagerVarUpdateRecordCompleteName(),
Variable)

|⟩Transition ,

⟨| name = SkillsManagerCheckMonitorsName() + "To"
+

SkillsManagerCleanupName() ,
source = ref(SkillsManagerCheckMonitorsName(),

State),
target = ref(SkillsManagerCleanupName(), State)
condition =
⟨| left = ref(SkillsManagerVarCycleSkillsName(),

Variable),
right = ⟨| values = ⟨⟩ |⟩SeqExp

|⟩Equals
|⟩Transition ,

⟨| name = SkillsManagerCheckMonitorsName() + "To"
+

SkillsManagerDoNextSkillName() ,
source = ref(SkillsManagerCheckMonitorsName(),

State),
target = ref(SkillsManagerDoNextSkillName(), State)
condition =
⟨| function= ref("isNonEmpty", Function) ,

args= ref(SkillsManagerVarCycleSkillsName(),
Variable) |⟩CallExp

Continued on next page

178

B.3 Functions

Function B.3.9 – continued from previous page
action =

⟨| left= ref(SkillsManagerVarCycleSkillsName(),
Variable)

right=

⟨| function= ref("tail", Function) ,
args= ref(SkillsManagerVarCycleSkillsName(),

Variable) |⟩CallExp
|⟩Assignment

|⟩Transition ,

⟨| name = SkillsManagerCleanupName() + "To" +
SkillsManagerHandleValueQueriesName() ,

source = ref(SkillsManagerCleanupName(), State),
target = ref(SkillsManagerHandleValueQueriesName(),

State),
action = SkillsManagerResetRequestClock()

|⟩Transition }
∪
SkillsManagerExecutingSkillsTransitions(skls)
∪
SkillsManagerHandlerTransitions(skls)

Function B.3.10

a Name SkillsManagerClockRequestHandlingName

b Parameter
name:type -

c Result
name:type vname: Name

e Definition sname = "requestHandling"

179

C Mail Delivery Case Study

C.1 Types

180

C.2 Reactive Skills: Types

C.2 Reactive Skills: Types

181

C Mail Delivery Case Study

C.3 Reactive Skills: Move D-Skill Machine

C.4 Reactive Skills: ColourVision D-Skill Machine

182

C.5 Reactive Skills: MoveToLocation C-Skill Machine

C.5 Reactive Skills: MoveToLocation C-Skill Machine

C.6 Reactive Skills: SkillsManager Machine

Fold the following page and adhere here as a foldout.

Folded size: (12cm, 8cm)

183

D Obstacle Avoidance Case Study

The RoboArch description and the RoboChart and CSP models used for
property verification of the assertions in Sections D.2 to D.5 can be found
at the following website https://github.com/UoY-RoboStar/roboarch-examples.

184

https://github.com/UoY-RoboStar/roboarch-examples

D.1 Module

D.1 Module

Fold the following page and adhere here as a foldout.

Folded size: (12cm, 15cm)

185

ObstacleAvoidance

ref Control::Control
getExploreMaxSpeedParameter

setExploreSafetyDistanceParameter: int

deactivate: Skills

setExplorePriorityParameter: nat

activate: Skills

getProximityPriorityParameter

getProximityGapValue

setMovePriorityParameter: nat

getActiveSkills

getExploreSafetyDistanceParameter

setExploreMaxSpeedParameter: real getExploreVOutValue

getMovePriorityParameter

setProximityPriorityParameter: nat

getExplorePriorityParameter

initiateEventMonitor: Events stopEventMonitor: Events

exploreVOutValue: Velocities

movePriorityParameter: nat

explorePriorityParameter: nat

exploreSafetyDistanceParameter: int

proximityPriorityParameter: nat

proximityGapValue: int

activeSkills: Set(Skills) eventReply: Events

exploreMaxSpeedParameter: real

move: Velocitiesproximity: int

ref Platform::PuckRobot

move: Velocitiesproximity: int

ref Executive::ExecutivegetExploreMaxSpeedParameter

setExploreSafetyDistanceParameter: int

deactivate: Skills

setExplorePriorityParameter: nat

activate: Skills

getProximityPriorityParameter

getProximityGapValuesetMovePriorityParameter: nat

getActiveSkills

getExploreSafetyDistanceParameter

setExploreMaxSpeedParameter: real

getExploreVOutValue

getMovePriorityParameter

setProximityPriorityParameter: nat

getExplorePriorityParameter

initiateEventMonitor: Events stopEventMonitor: Events

exploreVOutValue: Velocities

movePriorityParameter: nat

explorePriorityParameter: nat

exploreSafetyDistanceParameter: int

proximityPriorityParameter: nat

proximityGapValue: int

activeSkills: Set(Skills) eventReply: Events

exploreMaxSpeedParameter: real

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async async async

async

async

async

asyncasync

async

async

async async

async async async async async async async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

async

D Obstacle Avoidance Case Study

D.2 Skill Explore Assertions

1 csp E x p l o r e S k i l l E v e n t s csp−begin
2 . . . See 5.2.3 for skill events
3 csp−end
4

5 csp EBS1 csp−begin
6 . . . See E.1 for EBS1 process
7 csp−end
8

9 csp EBS2 csp−begin
10 . . . See E.1 for EBS2 process
11 csp−end
12

13 csp EBS3 csp−begin
14 . . . See E.1 for EBS3 process
15 csp−end
16

17 csp EBS4 csp−begin
18 . . . See E.1 for EBS4 process
19 csp−end
20

21 csp EBS5 csp−begin
22 . . . See E.1 for EBS5 process
23 csp−end
24

25 csp EBS6 csp−begin
26 . . . See E.1 for EBS6 process
27 csp−end
28

29 csp EBCS1 csp−begin
30 . . . See E.2 for EBCS1 process
31 csp−end
32

33

34 a s s e r t i o n EBS1 :
35 Control : : C S k i l l : : Explore : : Explore r e f i n e s EBS1 in the f a i l u r e s

model
36

37 a s s e r t i o n EBS2 :
38 Control : : C S k i l l : : Explore : : Explore r e f i n e s EBS2 in the f a i l u r e s

model
39

40 a s s e r t i o n EBS3 :
41 Control : : C S k i l l : : Explore : : Explore r e f i n e s EBS3 in the f a i l u r e s

model
42

43 a s s e r t i o n EBS4 :

186

D.3 Skill Proximity Assertions

44 Control : : C S k i l l : : Explore : : Explore r e f i n e s EBS4 in the f a i l u r e s
model

45

46 a s s e r t i o n EBS5 :
47 Control : : C S k i l l : : Explore : : Explore r e f i n e s EBS5 in the f a i l u r e s

model
48

49 a s s e r t i o n EBS6 :
50 Control : : C S k i l l : : Explore : : Explore r e f i n e s EBS6 in the f a i l u r e s

model
51

52 a s s e r t i o n EBCS1 :
53 Control : : C S k i l l : : Explore : : Explore r e f i n e s EBCS1 in the

f a i l u r e s model

D.3 Skill Proximity Assertions

1 csp P r o x i m i t y S k i l l E v e n t s csp−begin
2 . . . See 5.2.3 for skill events
3 csp−end
4

5 csp EBDS1 csp−begin
6 . . . See E.3 for EBDS1 process
7 csp−end
8

9 csp EBDS3 csp−begin
10 . . . See E.3 for EBDS3 process
11 csp−end
12

13 a s s e r t i o n EBDS1 :
14 Control : : DSk i l l : : Proximity : : Proximity r e f i n e s EBDS1 in the

f a i l u r e s model
15

16 // EBDS2 − not a p p l i c a b l e to Proximity as i t r e c e i v e s no
a c t u a t i o n command values from the s k i l l s manager.

17

18 a s s e r t i o n EBDS3 :
19 Control : : DSk i l l : : Proximity : : Proximity r e f i n e s EBDS3 in the

f a i l u r e s model

D.4 Skill Move Assertions

1 csp MoveSkillEvents csp−begin
2 . . . See 5.2.3 for skill events

187

D Obstacle Avoidance Case Study

3 csp−end
4

5 csp EBDS1 csp−begin
6 . . . See E.3 for EBDS1 process
7 csp−end
8

9 csp EBDS2 csp−begin
10 . . . See E.3 for EBDS2 process
11 csp−end
12

13

14 a s s e r t i o n EBDS1 :
15 Control : : DSk i l l : : Move : : Move r e f i n e s EBDS1 in the f a i l u r e s

model
16

17 a s s e r t i o n EBDS2 :
18 Control : : DSk i l l : : Move : : Move r e f i n e s EBDS2 in the f a i l u r e s

model
19

20 // EBDS3 − not a p p l i c a b l e to Move as i t r e c e i v e s no sensor
values from the p l a t f o r m .

21

22

D.5 Skills Manager Assertions

1 csp Skil lsManagerEvents csp−begin
2 . . . See 5.2.3 for skills manager events
3 csp−end
4

5

6 csp EBSM1 csp−begin
7 . . . See E.4 for EBSM1 process
8 csp−end
9

10 csp EBSM2_ExplorePriority csp−begin
11 . . . See E.4 for EBSM2 process
12 csp−end
13

14 csp EBSM3_ExplorePriority csp−begin
15 . . . See E.4 for EBSM3 process
16 csp−end
17

18 csp EBSM4 csp−begin
19 . . . See E.4 for EBDS4 process
20 csp−end
21

188

D.5 Skills Manager Assertions

22 a s s e r t i o n EBSM1 :
23 Control : : Ski l lsManager : : Ski l lsManager r e f i n e s EBSM1 in the

f a i l u r e s model
24

25 a s s e r t i o n EBSM2_ExplorePriority :
26 Control : : Ski l lsManager : : Ski l lsManager r e f i n e s

EBSM2_ExplorePriority in the f a i l u r e s model
27

28 a s s e r t i o n EBSM3_ExplorePriority :
29 Control : : Ski l lsManager : : Ski l lsManager r e f i n e s

EBSM3_ExplorePriority in the f a i l u r e s model
30

31 a s s e r t i o n EBSM4 :
32 Control : : Ski l lsManager : : Ski l lsManager r e f i n e s EBSM4 in the

f a i l u r e s model

189

E Reactive Skills Properties

This appendix presents the CSP processes described in Section 5.2.3
that were used for verifying the properties of the generated reactive
skills RoboChart models. Section E.1 contains the process definitions
for properties common to all skills. Section E.2 contains the process
definitions for properties of C-Skills. Section E.3 contains the process
definitions for properties of D-Skills. Finally, Section E.4 contains the
process definitions for properties of the Skills Manager.

The process definitions of the properties, unless straightforward, have
a three-part structure: PRE, POS, and CON. The PRE portion specifies the
events that can occur before the property of interest. The CON portion
specifies the events that can occur at the time the property of interest
occurs. The POS portion specifies the events that can occur after the
property of interest has concluded. This means that the process defining
a property will initially behave as PRE. When the condition of interest
occurs, the process then behaves as CON. Once the condition of interest’s
behavior has been fulfilled, the process behaves as POS, where any event
is permissible.

E.1 Skills

EB-S1

A skill initially accepts a value for any of the parameters.

EBS1 =2 ev : skillParameterEvents • ev −→ CHAOS(allSkillEvents)

EBS1 ⊑F Skill

190

E.1 Skills

EB-S2

After accepting one of each parameter value the skill accepts an activate
event and any of its parameter values.

EBS2 = let

PRE({}) =2 ev : skillParameterEvents • ev −→ PRE({ev})

PRE(evs) = if((evs ∩ {|sp1|} ̸= ∅) ∧ (evs ∩ {|sp2|} ̸= ∅) ∧ (evs ∩ {|sp3|} ̸= ∅)) then

CON

else

2 ev : skillParameterEvents • ev −→ PRE({ev} ∪ evs)

CON =2 ev : skillParameterEvents • ev −→ CON

2

activate −→ POS

POS = CHAOS(allSkillEvents)

within PRE({})

EBS2 ⊑F Skill

EB-S3

After accepting an activate event a skill accepts any of its parameter val-
ues, input values, an execute event or deactivate event.

EBS3 = let

PRE =⊓ ev : (allSkillEvents\activate) • ev −→ PRE

⊓ activate −→ CON

CON =2 ev : (skillParameterEvents ∪ skillInputEvents) • ev −→ CON

2

191

E Reactive Skills Properties

execute −→ POS

2

deactivate −→ POS

POS = CHAOS(allSkillEvents)

within PRE

EBS3 ⊑F Skill

EB-S4

After accepting an execute event a skill must output a complete event
before any of the other skill control events.

EBS4 = let

PRE =⊓ ev : (allSkillEvents\{execute}) • ev −→ PRE

⊓

execute −→ CON

CON =⊓ ev : (allSkillEvents\skillControlEvents) • ev −→ CON

⊓

complete −→ POS

POS = CHAOS(allSkillEvents)

within PRE

EBS4 ⊑F Skill

192

E.1 Skills

EB-S5

After accepting a deactivate event a skill can only accept its parameter
values or an activate event.

EBS5 = let

PRE =⊓ ev : (allSkillEvents\{deactivate}) • ev −→ PRE

⊓ deactivate −→ CON

CON =2 ev : (skillParameterEvents) • ev −→ CON

2

activate −→ POS

POS = CHAOS(allSkillEvents)

within PRE

EBS5 ⊑F Skill

EB-S6

No skill outputs are communicated until the skill’s priority parameter
event is accepted. After accepting a priority parameter event, the skill’s
output value always includes the most recently accepted priority value.

sppriority ∈ skillParameterEvents

EBS6 = let

PRE =⊓ ev : (allSkillEvents\(skillOutputEvents ∪ {|sppriority|})) •

ev −→ PRE

⊓

sppriority?p −→ CON(p)

193

E Reactive Skills Properties

CON(priority) =⊓ ev : (allSkillEvents\(skillOutputEvents ∪ {|sppriority|})) •

ev −→ CON(priority)

⊓

⊓ ev : {v : Tvop1
• op1.(v, priority)} • ev −→ CON(priority)

⊓

⊓ ev : {v : Tvop2
• op2.(v, priority)} • ev −→ CON(priority)

⊓

⊓ ev : {v : Tvop3
• op3.(v, priority)} • ev −→ CON(priority)

...

⊓

sppriority?p −→ CON(p)

within PRE

EBS6 ⊑F Skill

194

E.2 C-Skills

E.2 C-Skills

EB-CS1

After accepting an execute event the skill communicates zero or more
output value(s) before communicating a complete event.

EBCS1 = let

PRE =⊓ ev : (allSkillEvents\{execute}) • ev −→ PRE

⊓ execute −→ CON

CON =⊓ ev : (skillOutputEvents) • ev −→ CON

⊓

complete −→ POS

POS = CHAOS(allSkillEvents)

within PRE

EBCS1 ⊑F Skill

195

E Reactive Skills Properties

E.3 D-Skills

EB-DS1

After accepting an execute event and before communicating a com-
plete event, a D-Skill can communicate zero or more platform actuation
value(s) and zero or more output value(s).

EBDS1 = let

PRE =⊓ ev : (allSkillEvents\execute) • ev −→ PRE

⊓ execute −→ CON

CON =⊓ ev : (skillPlatformActuationEvents ∪ skillOutputEvents) • ev −→ CON

⊓

complete −→ POS

POS = CHAOS(allSkillEvents)

within PRE

EBDS1 ⊑F Skill

EB-DS2

After accepting an activate or complete event followed by an execute
event, the latest input event(s) values that were accepted since the last
activate or complete event, if any, are communicated to the skill’s
corresponding platform actuation output.

EBDS2 = let

PRE =

⊓ ev : (allSkillEvents\{activate, complete}) • ev −→ PRE

⊓

activate −→ PRE′(⟨⟩, ⟨⟩, ⟨⟩)

196

E.3 D-Skills

⊓

complete −→ PRE′(⟨⟩, ⟨⟩, ⟨⟩)

PRE′(ac1, ac2, ac3) =

⊓ ev : (skillParameterEvents ∪ skillPlatformSensingEvents) •

ev −→ PRE′(ac1, ac2, ac3)

⊓

in1?ac −→ PRE′(seq ac, ac2, ac3)

⊓

in2?ac −→ PRE′(ac1, seq ac, ac3)

⊓

in3?ac −→ PRE′(ac1, ac2, seq ac)
...

⊓

execute −→ CON(ac1, ac2, ac3)

⊓

deactivate −→ POS

CON(ac1, ac2, ac3) =

(OUT1(ac1) ||| OUT2(ac2) ||| OUT3(ac3)); POS

OUT1(ac1) = if(ac1 ̸= ⟨⟩) then

spa1!head(ac1) −→ SKIP

else SKIP

197

E Reactive Skills Properties

OUT2(ac2) = if(ac2 ̸= ⟨⟩) then

spa2!head(ac2) −→ SKIP

else SKIP

OUT3(ac3) = if(ac3 ̸= ⟨⟩) then

spa3!head(ac3) −→ SKIP

else SKIP

POS = CHAOS(allSkillEvents)

within PRE

EBDS2 ⊑F Skill

EB-DS3

After accepting an activate or complete event followed by an execute
event, the latest platform sensing event(s) values that were accepted since
the last activate or complete event, if any, are communicated to the
corresponding output(s).

EBDS3 = let

PRE =

⊓ ev : (allSkillEvents\{activate, complete}) • ev −→ PRE

⊓

activate −→ PRE′(⟨⟩, ⟨⟩, ⟨⟩)

⊓

complete −→ PRE′(⟨⟩, ⟨⟩, ⟨⟩)

PRE′(sd1, sd2, sd3) =

⊓ ev : (skillParameterEvents ∪ skillInputEvents) •

198

E.3 D-Skills

ev −→ PRE′(sd1, sd2, sd3)

⊓

sps1?sd −→ PRE′(seq sd, sd2, sd3)

⊓

sps2?sd −→ PRE′(sd1, seq sd, sd3)

⊓

sps3?sd −→ PRE′(sd1, sd2, seq sd)
...

⊓

execute −→ CON(sd1, sd2, sd3) ⊓

deactivate −→ POS

CON(sd1, sd2, sd3) =

(OUT1(sd1) ||| OUT2(sd2) ||| OUT3(sd3)); POS

OUT1(sd1) = if(sd1 ̸= ⟨⟩) then

⊓ ev : {p : core nat • so1.(head(sd1), p} • ev −→ SKIP

else SKIP

OUT2(sd2) = if(sd12 ̸= ⟨⟩) then

⊓ ev : {p : core nat • so2.(head(sd2), p} • ev −→ SKIP

else SKIP

OUT3(sd3) = if(sd2 ̸= ⟨⟩) then

199

E Reactive Skills Properties

⊓ ev : {p : core nat • so3.(head(sd3), p} • ev −→ SKIP

else SKIP

POS = CHAOS(allSkillEvents)

within PRE

EBDS3 ⊑F Skill

E.4 Skills Manager

handlingEvents = Union(\{ \{| activate, deactivate, getActiveSkills,
initiateEventmonitor, stopEventMonitor |\},

skillParameterRequestEvents,
skillValueRequestEvents

\})

skillParameterRequestEvents = \{| getS1P1parameter,
getS1P2parameter,
getS2P1parameter,
...
setS1P1parameter,
setS1P2parameter,
setS2P1parameter,
...

|\}

skillValueRequestEvents = \{| getS1V1value,
getS1V2value,
getS2V1value,
...

|\}

responseEvents = \{| activeSkills,
eventReply,

200

E.4 Skills Manager

S1P1parameter,
S1P2parameter,
S1V1value,
...

S2P1parameter,
S2V1value,
...

S3P1parameter,
...
|\}

handlingResponseEvents = diff(responseEvents, \{|eventReply|\})

handlingOutputEvents = Union(cSkillS1Parameters,
cSkillS2Parameters)

cskillInputs = \{| S1in1, S1in2,
...
S2in1,
...

|\}

cskillOutputs = \{| S1ou1, S2ou1,
...

|\}

dskillInputs = \{| S3ac1,
...

|\}

dskillOutputs = \{| S3_sd1,
... |\}

skillControlEvents = \{ skillActivateEvents, skillDeactivateEvents,
skillExecuteEvents, skillCompleteEvents \}

skillActivateEvents = \{ activate_s1, activate_s2, activate_s3 ... \}
skillDeactivateEvents = \{ deactivate_s1, deactivate_s2,

deactivate_s3 ... \}

201

E Reactive Skills Properties

skillExecuteEvents = \{ execute_s1, execute_s2, execute_s3 ... \}
skillCompleteEvents \{ complete_s1, complete_s2, complete_s3 ... \}

allSkillsManagerEvents = Union(\{ handlingEvents, responseEvents,
cskillInputs, cskillOutputs,
dskillInputs,
dskillOutputs,
skillControlEvents

\})

202

E.4 Skills Manager

EB-SM1

After accepting a getActiveSkills handling request the response is com-
municated via an activeSkills event.

EBSM1 = let
PRE = getActiveSkills -> CON

|~|
|~| ev: diff(allSkillsManagerEvents,

\{|getActiveSkills|\}) @ ev -> PRE

CON = |~| ev: \{|activeSkills|\} @ ev -> POS

POS = CHAOS(allSkillsManagerEvents)

within PRE

EBSM1 [F= SkillsManager

203

E Reactive Skills Properties

EB-SM2

After accepting a get[skill.name][param.name]Parameter handling
request the response is communicated via a
[skill.name][param.name]Parameter event.

EBSM2_s1p1 = let
PRE = getS1P1Parameter -> CON

|~|
|~| ev: diff(allSkillsManagerEvents,

{|getS1P1Parameter|}) @ ev -> PRE

CON = |~| ev: {|S1P1Parameter|} @ ev -> POS

POS = CHAOS(allSkillsManagerEvents)

within PRE
.
.
.

** Additional rules for each skill and parameter.

EBSM2_s1p1 [F= Skill

204

E.4 Skills Manager

EB-SM3

After accepting a set[skill.name][param.name]Parameter handling
request the new parameter value is communicated via a
[skill.name][param.name]Param event.

EBSM3_s1p1 = let
PRE = setS1P1Parameter?v -> CON(v)

|~|
|~| ev: diff(allSkillsManagerEvents,

{|setS1P1Parameter|}) @ ev -> PRE

CON(v) = S1P1Param!v -> POS

POS = CHAOS(allSkillsManagerEvents)

within PRE
.
.
.

** Additional rules for each skill and parameter. \\

EBSM3_s1p1 [F= SkillsManager

205

E Reactive Skills Properties

EB-SM4

No handling response can happen until a handling request has been
accepted.

EBSM4 = let
CON = ([] ev : handlingEvents @ ev -> CON’)

|~|
(|~| ev: diff(allSkillsManagerEvents,

Union({handlingEvents,
handlingResponseEvents,
handlingOutputEvents})

) @ ev -> CON)

CON’ = (|~| ev: union(handlingResponseEvents,
handlingOutputEvents) @

ev -> CON |~| CON)

within CON

EBSM4 [T= SkillsManager

206

Acronyms

API Application Programming Interface. 42, 44, 52

CPU Central Processing Unit. 152

CSP Communicating Sequential Processes. 32, 33, 38, 40, 48, 49, 147, 148,
151, 158

DSL Domain-Specific Languages. 3, 31, 32, 39, 40, 49, 123, 124, 157–159

EBNF Extended Backus-Naur Form. 124

EGL Epsilon Generation Language. 124

EMF Eclipse Modeling Framework. 37, 124, 157

ETL Epsilon Transformation Language. 124, 125, 127–129, 157

HTN Hierarchical Task Network. 159

IDE Integrated Development Environment. 33, 35, 123

MDD Model Driven Development. 124

MDE Model Driven Engineering. 3, 40

MPS Meta Programming System. 123

OCL Object Constraint Language. 37

SPA Sense Plan Act. 9

VLF Very Low Frequency. 42

207

Acronyms

208

References

[1] W. Barnett, A. Cavalcanti and A. Miyazawa, “Architectural mod-
elling for robotics: RoboArch and the CorteX example,” Fron-
tiers in Robotics and AI, vol. 9, 2022. [Online]. Available: https :
//www.frontiersin.org/articles/10.3389/frobt.2022.991637.

[2] A. M. Zanchettin, E. Croft, H. Ding and M. Li, “Collaborative
robots in the workplace,” IEEE Robot. Autom. Mag., vol. 25, no. 2,
pp. 16–17, 2018.

[3] T. Vandemeulebroucke, B. Dierckx de Casterlé and C. Gastmans,
“The use of care robots in aged care: A systematic review of
argument-based ethics literature,” en, Arch. Gerontol. Geriatr., vol. 74,
pp. 15–25, Jan. 2018.

[4] Guidehouse Inc., Guidehouse insights leaderboard: Automated driv-
ing vehicles, Accessed: 2020-9-26, 2020. [Online]. Available: https:
/ /guidehouseinsights.com/ reports /guidehouse- insights - leaderboard-
automated-driving-systems.

[5] T. Hoffmann and G. Prause, “On the regulatory framework for
Last-Mile delivery robots,” en, Machines, vol. 6, no. 3, p. 33, Aug.
2018.

[6] S. A. Redfield and M. L. Seto, “Verification challenges for autonom-
ous systems,” in Autonomy and Artificial Intelligence: A Threat or
Savior? W. F. Lawless, R. Mittu, D. Sofge and S. Russell, Eds.,
Cham: Springer International Publishing, 2017, pp. 103–127.

[7] L. Bass, P. Clements and R. Kazman, Software Architecture in Prac-
tice, en. Pearson Education, Sep. 2012.

[8] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad and M.
Stal, Pattern-Oriented Software Architecture: A System of Patterns, en.
Chichester: Wiley, 1996, vol. 1.

[9] AUTOSAR, AUTOSAR, https://www.autosar.org/, Accessed: 2019-4-
26, Apr. 2019.

209

https://www.frontiersin.org/articles/10.3389/frobt.2022.991637
https://www.frontiersin.org/articles/10.3389/frobt.2022.991637
https://guidehouseinsights.com/reports/guidehouse-insights-leaderboard-automated-driving-systems
https://guidehouseinsights.com/reports/guidehouse-insights-leaderboard-automated-driving-systems
https://guidehouseinsights.com/reports/guidehouse-insights-leaderboard-automated-driving-systems
https://www.autosar.org/

References

[10] M. W. Achtelik et al., Springer Handbook of Robotics, 2nd ed., B. Sicili-
ano and O. Khatib, Eds. Gewerbestrasse 11, 6330 Cham, Switzer-
land: Springer International Publishing, 2016.

[11] J. Södling, R. Ekbom, P. Thorngren and H. Burden, “From model
to rig – an automotive case study,” in Proceedings of the 4th In-
ternational Conference on Model-Driven Engineering and Software
Development, 2016.

[12] T. Franz, D. Lüdtke, O. Maibaum and A. Gerndt, “Model-based
software engineering for an optical navigation system for space-
craft,” CEAS Space Journal, vol. 10, no. 2, pp. 147–156, 2018.

[13] A. Nordmann, N. Hochgeschwender, D. Wigand and S. Wrede,
“A survey on domain-specific modeling and languages in robotics,”
en, Journal of Software Engineering for Robotics, vol. 7, no. 1, pp. 75–
99, Jul. 2016.

[14] H. Bruyninckx, M. Klotzbücher, N. Hochgeschwender, G. Kraet-
zschmar, L. Gherardi and D. Brugali, “The BRICS component
model: A model-based development paradigm for complex ro-
botics software systems,” in Proceedings of the 28th Annual ACM
Symposium on Applied Computing, ACM, Mar. 2013, pp. 1758–1764.

[15] S. Dhouib, S. Kchir, S. Stinckwich, T. Ziadi and M. Ziane, “Ro-
botML, a domain-specific language to design, simulate and deploy
robotic applications,” in 3rd International Conference on Simulation,
Modeling, and Programming for Autonomous Robots, SIMPAR 2012,
vol. 7628 LNAI, Tsukuba, 2012, pp. 149–160.

[16] C. Schlegel, A. Steck and A. Lotz, “Robotic software systems:
From Code-Driven to Model-Driven software development,” in
Robotic Systems - Applications, Control and Programming, A. Dutta,
Ed., InTech, Feb. 2012.

[17] M. Luckcuck, M. Farrell, L. Dennis, C. Dixon and M. Fisher,
“Formal Specification and Verification of Autonomous Robotic
Systems: A Survey,” Jun. 2018. arXiv: 1807.00048 [cs.FL].

[18] G. O’Regan, Concise Guide to Formal Methods: Theory, Fundamentals
and Industry Applications, en. Springer, Aug. 2017.

[19] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis and J.
Woodcock, “RoboChart: Modelling and verification of the func-
tional behaviour of robotic applications,” Software & Systems
Modeling, Jan. 2019.

210

https://arxiv.org/abs/1807.00048

References

[20] A. Cavalcanti, W. Barnett, J. Baxter et al., “Robostar technology: A
roboticist’s toolbox for combined proof, simulation, and testing,”
in Software Engineering for Robotics, A. Cavalcanti, B. Dongol, R.
Hierons, J. Timmis and J. Woodcock, Eds. Cham: Springer Inter-
national Publishing, 2021, pp. 249–293, isbn: 978-3-030-66494-7.
doi: 10 .1007 /978 - 3 - 030 - 66494 - 7_9. [Online]. Available: https :
//doi.org/10.1007/978-3-030-66494-7_9.

[21] S. Kelly and J.-P. Tolvanen, Domain-Specific Modeling: Enabling Full
Code Generation (Domain-Specific Modeling: Enabling Full Code
Generation). Hoboken, New Jersey: John Wiley and Sons, 2008.

[22] What is your definition of software architecture? Dec. 2010. [Online].
Available: https://resources.sei.cmu.edu/asset_files/FactSheet/2010_
010_001_513810.pdf.

[23] “ISO/IEC/IEEE systems and software engineering – architecture
description,” ISO/IEC/IEEE 42010:2011(E) (Revision of ISO/IEC
42010:2007 and IEEE Std 1471-2000), pp. 1–46, Dec. 2011. [Online].
Available: http://dx.doi.org/10.1109/IEEESTD.2011.6129467.

[24] J. McGovern, S. W. Ambler, M. E. Stevens, J. Linn, E. K. Jo and
V. Sharan, A Practical Guide to Enterprise Architecture (Professional
Technical Reference), en. Upper Saddle River, NJ: Prentice Hall,
2004.

[25] P. Clements, F. Bachmann, L. Bass et al., Documenting Software Ar-
chitectures: Views and Beyond, second. Addison-Wesley Professional,
2011.

[26] E. Gamma, R. Helm, R. Johnson, R. E. . Johnson and J. Vlissides,
Design Patterns: Elements of Reusable Object-Oriented Software (pro-
fessional computing series), en. London: Addison-Wesley, 1995.

[27] R. Brooks, “A robust layered control system for a mobile robot,”
IEEE Journal on Robotics and Automation, vol. 2, no. 1, pp. 14–23,
Mar. 1986.

[28] D. L. Wigand, P. Mohammadi, E. M. Hoffman, N. G. Tsagarakis, J. J.
Steil and S. Wrede, “An open-source architecture for simulation,
execution and analysis of real-time robotics systems,” in 2018 IEEE
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), May 2018, pp. 93–100.

211

https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-66494-7_9
https://doi.org/10.1007/978-3-030-66494-7_9
https://resources.sei.cmu.edu/asset_files/FactSheet/2010_010_001_513810.pdf
https://resources.sei.cmu.edu/asset_files/FactSheet/2010_010_001_513810.pdf
http://dx.doi.org/10.1109/IEEESTD.2011.6129467

References

[29] P. Backes, K. Edelberg, P. Vieira et al., Eds., The intelligent robotics
system architecture applied to robotics testbeds and research platforms,
vol. 2018-March, IEEE Computer Society, 2018.

[30] S. García, C. Menghi, P. Pelliccione, T. Berger and R. Wohlrab, “An
architecture for decentralized, collaborative, and autonomous ro-
bots,” in 2018 IEEE International Conference on Software Architecture
(ICSA), Apr. 2018, pp. 75–7509.

[31] T. Huntsberger and G. Woodward, “Intelligent autonomy for
unmanned surface and underwater vehicles,” in OCEANS’11 MT-
S/IEEE KONA, 2011, pp. 1–10.

[32] J. L. Sanchez-Lopez, M. Molina, H. Bavle, C. Sampedro, R. A.
Suárez Fernández and P. Campoy, “A Multi-Layered Component-
Based approach for the development of aerial robotic systems: The
aerostack framework,” J. Intell. Rob. Syst., vol. 88, no. 2, pp. 683–
709, Dec. 2017.

[33] B. Álvarez, P. Sánchez-Palma, J. A. Pastor and F. Ortiz, “An ar-
chitectural framework for modeling teleoperated service robots,”
Robotica, vol. 24, no. 4, pp. 411–418, Jul. 2006.

[34] B. Sellner, F. W. Heger, L. M. Hiatt, R. Simmons and S. Singh,
“Coordinated multiagent teams and sliding autonomy for large-
scale assembly,” Proc. IEEE, vol. 94, no. 7, pp. 1425–1443, 2006.

[35] P. Corke, P. Sikka, J. M. Roberts and E. Duff, “DDX : A distributed
software architecture for robotic systems,” in Proceedings of the
2004 Australasian Conference on Robotics & Automation, N. Barnes
and D. Austin, Eds., Australian National University Canberra:
Australian Robotics & Automation Association, Dec. 2004.

[36] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras and H. Das, Eds.,
The CLARAty architecture for robotic autonomy, vol. 1, Big Sky, MT,
2001.

[37] D. Luzeaux and A. Dalgalarrondo, “HARPIC, an hybrid architec-
ture based on representations, perceptions, and intelligent control:
A way to provide autonomy to robots,” in Computational Science -
ICCS 2001, Springer Berlin Heidelberg, 2001, pp. 327–336.

[38] R. Alami, R. Chatila, S. Fleury, M. Ghallab and F. Ingrand, “An
architecture for autonomy,” Int. J. Rob. Res., vol. 17, no. 4, pp. 315–
337, 1998.

212

References

[39] N. Muscettola, P. P. Nayak, B. Pell and B. C. Williams, “Remote
agent: To boldly go where no AI system has gone before,” Artif.
Intell., vol. 103, no. 1-2, pp. 5–47, 1998.

[40] J.-J. Borrelly, E. Coste-Manière, B. Espiau et al., “The ORCCAD
architecture,” Int. J. Rob. Res., vol. 17, no. 4, pp. 338–359, Apr. 1998.

[41] D. M. Lyons and A. J. Hendriks, “Planning as incremental ad-
aptation of a reactive system,” Rob. Auton. Syst., vol. 14, no. 4,
pp. 255–288, Jun. 1995.

[42] S. T. Yu, M. G. Slack and D. P. Miller, “A streamlined software
environment for situated skills,” en, ser. volume 1, Houston TX:
NASA, Mar. 1994, pp. 233–239.

[43] D. J. Musliner, E. H. Durfee and K. G. Shin, “CIRCA: A cooperative
intelligent real-time control architecture,” IEEE Trans. Syst. Man
Cybern., vol. 23, no. 6, pp. 1561–1574, Nov. 1993.

[44] E. Gat, “Integrating planning and reacting in a heterogeneous
asynchronous architecture for controlling real-world mobile ro-
bots,” in Proceedings of the Tenth National Conference on Artificial
Intelligence, ser. AAAI’92, San Jose, California: AAAI Press, 1992,
pp. 809–815.

[45] R. P. Bonasso, “Integrating reaction plans and layered competences
through synchronous control,” in Proceedings of the 12th interna-
tional joint conference on Artificial intelligence - Volume 2, Morgan
Kaufmann Publishers Inc., Aug. 1991, pp. 1225–1231.

[46] R. C. Arkin, “Motor schema — based mobile robot navigation,”
Int. J. Rob. Res., vol. 8, no. 4, pp. 92–112, Aug. 1989.

[47] J. S. Albus, R. Lumia, J. Fiala and A. J. Wavering, “NASREM –
the NASA/NBS standard reference model for telerobot control
system architecture,” in Industrial Robots, Oct. 1989.

[48] R. C. Arkin, “Towards cosmopolitan robots: Intelligent naviga-
tion in extended Man-Made environments,” Ph.D. dissertation,
University of Massachusetts, 1987.

[49] R. Chatila, S. Lacroix, T. Simeon and M. Herrb, “Planetary explora-
tion by a mobile robot: Mission teleprogramming and autonomous
navigation,” Auton. Robots, vol. 2, no. 4, pp. 333–344, 1995.

[50] R. Alami, S. Fleury, M. Herrb, F. Ingrand and F. Robert, “Multi-
robot cooperation in the MARTHA project,” IEEE Robot. Autom.
Mag., vol. 5, no. 1, pp. 36–47, Mar. 1998.

213

References

[51] S. Bensalem, L. de Silva, F. Ingrand and R. Yan, A verifiable and
Correct-by-Construction controller for robot functional levels, 2013.
[Online]. Available: http://arxiv.org/abs/1309.0442.

[52] I. A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, T. Estlin
and W. S. Kim, “CLARAty: An architecture for reusable robotic
software,” in Unmanned Ground Vehicle Technology V, ser. SPIE,
vol. 5083, Florida, Sep. 2003.

[53] I. A. D. Nesnas, R. Simmons, D. Gaines et al., “CLARAty: Chal-
lenges and steps toward reusable robotic software,” Int. J. Adv.
Rob. Syst., vol. 3, no. 1, pp. 023–030, 2006.

[54] T. Huntsberger, P. Pirjanian, A. Trebi-Ollennu et al., “CAMPOUT:
A control architecture for tightly coupled coordination of multiro-
bot systems for planetary surface exploration,” IEEE Transactions
on Systems, Man, and Cybernetics - Part A: Systems and Humans,
vol. 33, no. 5, pp. 550–559, 2003.

[55] S. Chien, R. Knight, A. Stechert, R. Sherwood and G. Rabideau,
“Using iterative repair to improve the responsiveness of planning
and scheduling,” in Proceedings of the Fifth International Conference
on Artificial Intelligence Planning Systems, AAAI Press, Apr. 2000,
pp. 300–307.

[56] J. Hsu, U.S. navy’s drone boat swarm practices harbor defense - IEEE
spectrum, https://spectrum.ieee.org/automaton/robotics/military-robots/
navy-drone-boat-swarm-practices-harbor-defense, Accessed: 2019-5-16,
Dec. 2016.

[57] J. Kramer and J. Magee, “Self-Managed systems: An architectural
challenge,” in Future of Software Engineering (FOSE ’07), May 2007,
pp. 259–268.

[58] R. Peter Bonasso, R. James Firby, E. Gat, D. Kortenkamp, D. P.
Miller and M. G. Slack, “Experiences with an architecture for
intelligent, reactive agents,” J. Exp. Theor. Artif. Intell., vol. 9, no. 2-
3, pp. 237–256, 1997.

[59] C. Wong, D. Kortenkamp and M. Speich, “A mobile robot that re-
cognizes people,” in Proceedings of 7th IEEE International Conference
on Tools with Artificial Intelligence, Nov. 1995, pp. 346–353. [Online].
Available: http://dx.doi.org/10.1109/TAI.1995.479652.

214

http://arxiv.org/abs/1309.0442
https://spectrum.ieee.org/automaton/robotics/military-robots/navy-drone-boat-swarm-practices-harbor-defense
https://spectrum.ieee.org/automaton/robotics/military-robots/navy-drone-boat-swarm-practices-harbor-defense
http://dx.doi.org/10.1109/TAI.1995.479652

References

[60] R. J. Firby, R. E. Kahn, P. N. Prokopowicz and M. J. Swain, “An
architecture for vision and action,” in Proceedings of the 14th inter-
national joint conference on Artificial intelligence - Volume 1, Morgan
Kaufmann Publishers Inc., Aug. 1995, pp. 72–79. [Online]. Avail-
able: http://dl.acm.org/citation.cfm?id=1625855.1625865.

[61] R. J. Firby, M. G. Slack and C. Drive, “Task execution: Interfacing
to reactive skill networks,” in Lessons Learned from Implemented
Software Architectures for Physical Agents: Papers from the 1995 Spring
Symposium, K. D. Hexmoor Henry, Ed., ser. Technical Report SS-
95-02, Menlo Park, CA, 1995, pp. 97–111.

[62] R. P. Bonasso, R. Kerri, K. Jenks and G. Johnson, “Using the 3T
architecture for tracking shuttle RMS procedures,” in Proceedings.
IEEE International Joint Symposia on Intelligence and Systems (Cat.
No.98EX174), May 1998, pp. 180–187. [Online]. Available: http :
//dx.doi.org/10.1109/IJSIS.1998.685440.

[63] R. A. Brooks, “A robot that walks; emergent behaviors from a care-
fully evolved network,” in Proceedings, 1989 International Confer-
ence on Robotics and Automation, May 1989, 692–4+2 vol.2. [Online].
Available: http://dx.doi.org/10.1109/ROBOT.1989.100065.

[64] J. H. Connell, “A colony architecture for an artificial creature,”
Ph.D. dissertation, Massachusetts Institute of Technology, 1989.

[65] J. C. Posso, A. T. Sampson, J. Simpson and J. Timmis, “Process-
Oriented subsumption architectures in swarm robotic systems,”
in 33th Communicating Process Architectures Conference, CPA 2011,
organised under the auspices of WoTUG, Limerick, Ireland, June 19th,
2011, 2011, pp. 303–316. [Online]. Available: https://doi.org/10.3233/
978-1-60750-774-1-303.

[66] R. A. Brooks, “The behavior language; user’s guide,” Massachu-
setts Institute Of Technology Artificial Intelligence Lab, Tech. Rep.,
Apr. 1990. [Online]. Available: http://people.csail.mit.edu/brooks/
papers/AIM-1227.pdf.

[67] “IEEE standard ontologies for robotics and automation,” IEEE Std
1872-2015, pp. 1–60, Apr. 2015. [Online]. Available: http://dx.doi.org/
10.1109/IEEESTD.2015.7084073.

[68] M. Brambilla, Model-driven software engineering in practice (Syn-
thesis lectures on software engineering), eng. San Rafael, Calif.:
Morgan & Claypool Publishers, 2012.

215

http://dl.acm.org/citation.cfm?id=1625855.1625865
http://dx.doi.org/10.1109/IJSIS.1998.685440
http://dx.doi.org/10.1109/IJSIS.1998.685440
http://dx.doi.org/10.1109/ROBOT.1989.100065
https://doi.org/10.3233/978-1-60750-774-1-303
https://doi.org/10.3233/978-1-60750-774-1-303
http://people.csail.mit.edu/brooks/papers/AIM-1227.pdf
http://people.csail.mit.edu/brooks/papers/AIM-1227.pdf
http://dx.doi.org/10.1109/IEEESTD.2015.7084073
http://dx.doi.org/10.1109/IEEESTD.2015.7084073

References

[69] OMG® Unified Modeling Language® (OMG UML®), Dec. 2017.
[Online]. Available: https://www.omg.org/spec/UML/2.5.1/.

[70] “IEEE standard VHDL language reference manual,” IEEE Std
1076-2008 (Revision of IEEE Std 1076-2002), Jan. 2009.

[71] A. W. Roscoe, The Theory and Practice of Concurrency, en. Prentice
Hall, 1997.

[72] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti and J. Timmis,
“Automatic property checking of robotic applications,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2017, pp. 3869–3876.

[73] C. A. R. Hoare and H. Jifeng, Unifying Theories of Programming, en.
London; New York: Prentice Hall, 1998.

[74] M. Kwiatkowska, G. Norman and D. Parker, “PRISM 4.0: Veri-
fication of probabilistic Real-Time systems,” in Computer Aided
Verification, Springer Berlin Heidelberg, 2011, pp. 585–591.

[75] J. Woodcock, P. G. Larsen, J. Bicarregui and J. Fitzgerald, “Formal
methods: Practice and experience,” ACM Comput. Surv., vol. 41,
no. 4, 19:1–19:36, Oct. 2009.

[76] S. Dhouib, N. Du Lac, J.-L. Farges et al., “Control architecture
concepts and properties of an ontology devoted to exchanges in
mobile robotics,” in 6th National Conference on Control Architectures
of Robots, 2011, 24–p.

[77] C. Schlegel, A. Steck, D. Brugali and A. Knoll, “Design abstraction
and processes in robotics: From Code-Driven to Model-Driven
engineering,” in Lecture Notes in Computer Science, 2010, pp. 324–
335.

[78] A. Steck and C. Schlegel, “SmartTCL: An execution language for
conditional reactive task execution in a three layer architecture for
service robots,” in International Workshop on Dynamic languages for
RObotic and Sensors systems (DYROS), Darmstadt, 2010, pp. 274–
277.

[79] D. Stampfer and C. Schlegel, “Dynamic state charts: Composition
and coordination of complex robot behavior and reuse of action
plots,” Intelligent Service Robotics, vol. 7, no. 2, pp. 53–65, Apr. 2014.

[80] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 3, pp. 231–274, Jun.
1987.

216

https://www.omg.org/spec/UML/2.5.1/

References

[81] M. Radestock and S. Eisenbach, “Coordination in evolving sys-
tems,” in Trends in Distributed Systems CORBA and Beyond, Springer
Berlin Heidelberg, 1996, pp. 162–176.

[82] D. Alonso, C. Vicente-Chicote, F. Ortiz, J. Pastor and B. Álvarez,
“V3CMM: A 3-view component meta-model for model-driven
robotic software development,” Journal of Software Engineering for
Robotics, vol. 1, no. 1, Jan. 2010.

[83] V. M. Monthe, L. Nana and G. E. Kouamou, “A Model-Based
approach for common representation and description of robotics
software architectures,” Applied Sciences (Switzerland), vol. 12, no. 6,
2022. [Online]. Available: https://www.scopus.com/inward/record.uri?
eid=2-s2.0-85126939928&doi=10.3390%2fapp12062982&partnerID=
40&md5=c5421118f364765efcf362c840f13b5c.

[84] R. J. Allen, “A formal approach to software architecture,” Ph.D.
dissertation, Carnegie Mellon University, May 1997. [Online].
Available: http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-
97-144.pdf.

[85] A. Miyazawa, A. Cavalcanti, P. Ribeiro, W. Li, J. Woodcock and
J. Timmis, RoboChart and RoboTool: Modelling, verification and sim-
ulation for robotics, https : / /www.cs.york .ac .uk /circus /publications /
techreports/reports/robochart-reference.pdf, Accessed: 2019-6-14.

[86] E. Ábrahám and K. Havelund, Eds., FDR3 — A Modern Refinement
Checker for CSP, vol. 8413, Lecture Notes in Computer Science,
2014, pp. 187–201.

[87] J. Woodcock and J. Davies, Using Z: Specification, Refinement, and
Proof, en. Prentice Hall, 1996. [Online]. Available: https://play.google.
com/store/books/details?id=ua1QAAAAMAAJ.

[88] R. J. Firby, “Adaptive execution in complex dynamic worlds,”
Ph.D. dissertation, New Haven, CT, USA, 1989. [Online]. Available:
https://dl.acm.org/citation.cfm?id=916113.

[89] F. F. Ingrand, M. P. Georgeff and A. S. Rao, “An architecture for
real-time reasoning and system control,” IEEE Expert, vol. 7, no. 6,
pp. 34–44, Dec. 1992. [Online]. Available: http://dx.doi.org/10.1109/64.
180407.

217

https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126939928&doi=10.3390%2fapp12062982&partnerID=40&md5=c5421118f364765efcf362c840f13b5c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126939928&doi=10.3390%2fapp12062982&partnerID=40&md5=c5421118f364765efcf362c840f13b5c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126939928&doi=10.3390%2fapp12062982&partnerID=40&md5=c5421118f364765efcf362c840f13b5c
http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-144.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1997/CMU-CS-97-144.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://www.cs.york.ac.uk/circus/publications/techreports/reports/robochart-reference.pdf
https://play.google.com/store/books/details?id=ua1QAAAAMAAJ
https://play.google.com/store/books/details?id=ua1QAAAAMAAJ
https://dl.acm.org/citation.cfm?id=916113
http://dx.doi.org/10.1109/64.180407
http://dx.doi.org/10.1109/64.180407

References

[90] R. Simmons and D. Apfelbaum, “A task description language for
robot control,” in Proceedings. 1998 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems. Innovations in Theory, Practice
and Applications (Cat. No.98CH36190), vol. 3, Oct. 1998, 1931–1937

vol.3. [Online]. Available: http://dx.doi.org/10.1109/IROS.1998.724883.

[91] V. Verma, T. Estlin, A. Jónsson, C. Pasareanu, R. Simmons and
K. Tso, “Plan execution interchange language (plexil) for execut-
able plans and command sequences,” 2005, pp. 81–88. [Online].
Available: https:/ /www.scopus.com/inward/record.uri?eid=2- s2.0-
28744443249&partnerID=40&md5=a059d1fe9b60c539dbf5a8671c36acc1.

[92] K. Currie and A. Tate, “O-Plan: The open planning architecture,”
Artif. Intell., vol. 52, no. 1, pp. 49–86, 1991. [Online]. Available:
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026255231&
doi=10.1016%2f0004-3702%2891%2990024-E&partnerID=40&md5=
750964de11b121495bc1c68be8cc470c.

[93] R. Lallement, L. De Silva and R. Alami, “Hatp: Hierarchical agent-
based task planner,” cited By 0, vol. 3, 2018, pp. 1823–1825. [On-
line]. Available: https://www.scopus.com/inward/record.uri?eid=2-s2.0-
85054746485&partnerID=40&md5=abfbe1ecad8797e6d3fd9b1f93c20b57.

[94] N. Muscettola, “HSTS: Integrating planning and scheduling,”
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU-RI-
TR-93-05, Mar. 1993. [Online]. Available: https://www.ri.cmu.edu/pub_
files/pub3/muscettola_nicola_1993_1/muscettola_nicola_1993_1.pdf.

[95] S. Efftinge and M. Spöenemann, Xtext - language engineering made
easy! https://www.eclipse.org/Xtext/, Accessed: 2022-9-NA. [Online].
Available: https://www.eclipse.org/Xtext/.

[96] JetBrains, MPS: The Domain-Specific language creator by JetBrains,
https : / / www. jetbrains . com / mps/, Accessed: 2022-9-NA. [Online].
Available: https://www.jetbrains.com/mps/.

[97] Eclipse Foundation, “Eclipse project briefing materials,” Apr. 2003.
[Online]. Available: https : / /www.eclipse.org /eclipse /presentation /
eclipse-slides.pdf.

[98] D. Steinburg, F. Budinsky, M. Paternostro and E. Merks, EMF:
Eclipse Modeling Framework (Eclipse), en, second, E. Gamma, L.
Nackman and J. Wiegand, Eds. Addison-Wesley, 2008.

218

http://dx.doi.org/10.1109/IROS.1998.724883
https://www.scopus.com/inward/record.uri?eid=2-s2.0-28744443249&partnerID=40&md5=a059d1fe9b60c539dbf5a8671c36acc1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-28744443249&partnerID=40&md5=a059d1fe9b60c539dbf5a8671c36acc1
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026255231&doi=10.1016%2f0004-3702%2891%2990024-E&partnerID=40&md5=750964de11b121495bc1c68be8cc470c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026255231&doi=10.1016%2f0004-3702%2891%2990024-E&partnerID=40&md5=750964de11b121495bc1c68be8cc470c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-0026255231&doi=10.1016%2f0004-3702%2891%2990024-E&partnerID=40&md5=750964de11b121495bc1c68be8cc470c
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054746485&partnerID=40&md5=abfbe1ecad8797e6d3fd9b1f93c20b57
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85054746485&partnerID=40&md5=abfbe1ecad8797e6d3fd9b1f93c20b57
https://www.ri.cmu.edu/pub_files/pub3/muscettola_nicola_1993_1/muscettola_nicola_1993_1.pdf
https://www.ri.cmu.edu/pub_files/pub3/muscettola_nicola_1993_1/muscettola_nicola_1993_1.pdf
https://www.eclipse.org/Xtext/
https://www.eclipse.org/Xtext/
https://www.jetbrains.com/mps/
https://www.jetbrains.com/mps/
https://www.eclipse.org/eclipse/presentation/eclipse-slides.pdf
https://www.eclipse.org/eclipse/presentation/eclipse-slides.pdf

References

[99] Information technology — Syntactic metalanguage — Extended BNF,
ISO/IEC 14977:1996. Geneva: International Organization for Stand-
ardization, 1996.

[100] D. S. Kolovos, R. F. Paige and F. A. C. Polack, “The epsilon trans-
formation language,” in Theory and Practice of Model Transforma-
tions, Springer Berlin Heidelberg, 2008, pp. 46–60. [Online]. Avail-
able: http://dx.doi.org/10.1007/978-3-540-69927-9_4.

[101] F. Jouault, F. Allilaire, J. Bézivin, I. Kurtev and P. Valduriez, “ATL:
A QVT-like transformation language,” in Companion to the 21st
ACM SIGPLAN symposium on Object-oriented programming systems,
languages, and applications, ser. OOPSLA ’06, Portland, Oregon,
USA: Association for Computing Machinery, Oct. 2006, pp. 719–
720. [Online]. Available: https://doi.org/10.1145/1176617.1176691.

[102] Object Management Group (OMG), Meta object facility (MOF) 2.0
Query/View/Transformation specification, Jun. 2016. [Online]. Avail-
able: https://www.omg.org/spec/QVT/1.3/PDF.

[103] A. García-Domínguez, D. S. Kolovos, L. M. Rose, R. F. Paige
and I. Medina-Bulo, “EUnit: A unit testing framework for model
management tasks,” in Model Driven Engineering Languages and
Systems, Springer Berlin Heidelberg, 2011, pp. 395–409. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-24485-8_29.

[104] The Apache Software Foundation., Apache ant - welcome, https :
//ant.apache.org/, Accessed: 2023-02-NA. [Online]. Available: https:
//ant.apache.org/.

[105] Information technology — Open Systems Interconnection — Basic
Reference Model: The Basic Model, ISO/IEC0 7498-1:1994. Geneva:
International Organization for Standardization, Nov. 1994.

[106] V. Bonato and E. Marques, “RoboArch: A component-based tool
proposal for developing hardware architecture for mobile robots,”
in 2009 IEEE International Symposium on Industrial Embedded Sys-
tems, Jul. 2009, pp. 249–252. [Online]. Available: http://dx.doi.org/10.
1109/SIES.2009.5196221.

219

http://dx.doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1145/1176617.1176691
https://www.omg.org/spec/QVT/1.3/PDF
http://dx.doi.org/10.1007/978-3-642-24485-8_29
https://ant.apache.org/
https://ant.apache.org/
https://ant.apache.org/
https://ant.apache.org/
http://dx.doi.org/10.1109/SIES.2009.5196221
http://dx.doi.org/10.1109/SIES.2009.5196221

	Abstract
	List of Tables
	List of Figures
	Acknowledgements
	Declaration
	Introduction
	Motivation
	Objectives and Contributions
	Document Structure

	Modelling Robotics Software Architectures
	Robotics Software Architectural Patterns
	Patterns of Robotics Software Layers
	Domain Specific Languages
	Modelling Robotic Systems Using RoboChart
	Final Considerations

	Architectural Patterns for Robotics
	RoboArch: Layers
	Rules
	Approaches Used by Layers
	Final Considerations

	Patterns in RoboArch
	RoboArch: Patterns
	Reactive Skills
	Subsumption
	Rules
	Final Considerations

	Evaluating RoboArch
	Tool
	Obstacle Avoidance Case Study
	Final Considerations

	Conclusion
	Adding Patterns to RoboArch
	Summary of Contributions
	Future Work

	Appendices
	Lawn-Mowing System
	Assertions
	Results

	RoboArch Rules
	Top-Level
	Reactive Skills Pattern
	Functions

	Mail Delivery Case Study
	Types
	Reactive Skills: Types
	Reactive Skills: Move D-Skill Machine
	Reactive Skills: ColourVision D-Skill Machine
	Reactive Skills: MoveToLocation C-Skill Machine
	Reactive Skills: SkillsManager Machine

	Obstacle Avoidance Case Study
	Module
	Skill Explore Assertions
	Skill Proximity Assertions
	Skill Move Assertions
	Skills Manager Assertions

	Reactive Skills Properties
	Skills
	C-Skills
	D-Skills
	Skills Manager

	Acronyms
	References

