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Abstract

Digital holographic microscopy is a broadly used technique for tracking cells in three

dimensions. This methodology consists of the recording of holograms using a spe-

cial experimental setup designed to record the diffracted light of a weakly scattering

sample illuminated by a coherent light source. Localisation in three dimensions is

done by refocusing the recorded images at different axial positions to then apply a

Sobel-type kernel to localise the cells by looking into intensity changes in the axial

direction. The next step of the process is to detect individual trajectories using a

coordinate-stitching algorithm, usually a “search sphere” algorithm. The entire pro-

cess can be computationally expensive.

This work presents alternatives to the steps of this process in order to improve its

throughput. First, a modified propagator is presented as an alternative to using the

Rayleigh-Sommerfeld/Sobel scheme to localise Archaea, strain Haloarcula (HGSL)

in three dimensions by combining both steps of the process into just one. It is shown

that the modified propagator is computationally faster by up to 21%, while maintain-

ing axial precision that lies within 1.75 µm from Rayleigh-Sommerfeld/Sobel scheme.

Track metrics such as track mean speed and angle change also lie within 1 µms−1

and 1◦ respectively from the values obtained the Rayleigh-Sommerfeld/Sobel locali-

sation. Also, an alternative localisation technique based on image cross-correlation

is presented to track Escherichia coli. Two alternatives, GPU and Optical, for comput-

ing the image cross-correlations are discussed. The GPU approach uses a Graph-

ical Processing Unit to perform the calculations while the optical approach utilises

a sophisticated system based on a 4-f optical correlator to compute image cross-

i



correlations using light. These GPU and Optical approaches have been found to be

faster in localising cells than the usual Rayleigh-Sommerfeld/sobel scheme by up to

70% and 1000% respectively. Localisation with GPU lies within 2.5 µm while optical

localisation lies within 7.3 µm with respect to the usual method.

Finally, cell tracking using density-based spectral clustering of applications with

noise (DBSCAN) machine learning clustering algorithm is compared against the

usual search sphere algorithm. It is shown that this proposed algorithm is up to

57.76 times faster than the search sphere algorithm. Track metrics such as track

mean speed and angle change also lie within 0.002 µms−1 and 0.06◦ respectively

from the values calculated from search sphere detected tracks. The proposed meth-

ods for particle localisation using image cross correlation calculated with a GPU or

an ”optical computer”, and for bacterial 3D tracking using machine learning, present

advances in achieving the desired results more quickly than the methods currently in

use.
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learning alternative. Finally, it provides results and discussion regarding correlation

tracking (GPU and Optical) as an alternative to typical digital holographic microscopy

particle localisation.

Chapter 6 provides the conclusions of this work and explores possible future

work.



Chapter 1

Introduction

Microorganisms, often known as microbes, are life forms that are too small for the

naked eye to see. They live in every area on Earth that supports life and are diverse

in both shape and function. Although bacteria are undifferentiated single-celled crea-

tures, they come together to build complex structures.

Microorganisms are everywhere and their actions have a huge impact on every-

thing in our biosphere. Microbial life affects our daily interactions with the outside

world, for better or worse. In fact, the human body is the host to hundreds of billions

of microorganisms to digest our meals [1]. The microbiome, which refers to the full

complement of microbial cells in and on your body, contains thousands of species,

each of which is suited to develop most effectively in a certain area of your body. For

instance, your gut microbiome contains enzymes that aid in food digestion and the

synthesis of vitamins that are essential for good health. Our genes, nutrition, health,

and medications all have an impact on how our microbiome is made up. Even while

our microbiome is critically necessary for our health and well-being, we are only just

starting to comprehend the variety of ways in which we rely on our gut microbes.

They are important in many processes that are present in life, for example, nutrient

cycling, food production and preservation, disease, decomposition, and photosyn-

thesis are undertaken by unicellular organisms. This is why it is so important to
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study these microorganisms. It is not easy to study these microorganisms because

we cannot see them with our own eyes. That is the reason scientists have developed

tools that allow us to see such tiny organisms.

Microscopy is the technical field of using certain techniques, optical, electron, and

scanning probes, to see objects that cannot be seen by the naked eye. Optical and

electron microscopy involve the diffraction, reflection, or refraction of electromag-

netic radiation/electrons that interact with the sample. These scattered radiations

are then collected and processed to create images. There are many ways to do that,

for example, by wide-field irradiation of the sample (standard light microscopy and

transmission electron microscopy) or by scanning a fine beam over the sample (con-

focal laser scanning microscopy and scanning electron microscopy). Atomic force

microscopy involves the interaction of a scanning probe with the surface of the ob-

ject of interest [2].

(a) (b)

Figure 1.1: Sample microscopy images: (a) A scanning electron microscopy (SEM)
image of human blood cells and (b) a confocal laser scanning microscopy image of
fish blood cells. Images obtained from [3] and [4] respectively.

The development of microscopy revolutionised the study of biology. This is be-

cause now the study of biological samples are made with tools that work with physical

phenomena. The ability to image microorganisms is central to understanding how
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they navigate their complex physical and chemical environments. There are many

studies of microbial motion in three dimensions like the seminal work of Berg et al.

[5] which used a microscope with a moving stage to keep the cell in focus and cen-

tred as it swims. These are discussed in more detail in Chapter 4

1.1 Project Motivation

As antibiotic resistance is becoming increasingly common, the idea of using com-

petitive and predatory microorganisms to treat infections is gaining attention. As

mentioned by the World Health Organisation: ”Antibiotic resistance is rising to dan-

gerously high levels in all parts of the world” [6]. New resistance mechanisms are

emerging and spreading globally, threatening our ability to treat common infectious

diseases. Microbiological and genetic approaches have helped scientists to explain

the lifestyles of these predatory therapeutic agents, but many questions about their

hunting methods will only be answered by developing new physical methods.

Bdellovibrio bacteriovorus is a predatory bacteria that has been proposed as a

new antibiotic replacement and has been receiving increasing amounts of attention.

The idea is that giving a patient a dose of Bdellovibrio will cure an antibiotic-resistant

infection. Because of this, the study of these microorganisms is crucial to solving

this world problem. However, the mechanisms of predation and how to use them

intentionally to remove pathogens are still under study [7, 8]. Holography will help

give insights into how these predatory bacteria find and attack their prey, resulting,

maybe, in the development of new therapies to treat infectious diseases [9]. The

main motivation for this work is the idea of, can we harness predatory bacteria motil-

ity to be able to treat infections? How can we do this? It is evident that to be able

to do this, we need an understanding of how these bacteria move and explore their

surroundings. The development of techniques that enable us to study these bacteria,
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and to try to understand the mechanisms behind their movement is imperative. This

work focuses in proposing and further developing techniques to allow the study of

these bacteria and try to unravel their mysteries.

Holography is a technique that has been used for some years to track microor-

ganisms, however, it is computationally expensive. Because of this, new methodolo-

gies, modifications, and tracking techniques have to be developed in order to provide

more precise and faster tracking [10]. By accurately studying bacterial motility (run

length, run speed, turn angle, etc), insights about bacterial chemical sensing can be

obtained to potentially use this knowledge to develop infection-treating therapies. I

have chosen to develop this method in order to improve its throughput and broaden

its applicability.

1.2 Low Reynolds Number

The Navier-Stokes equation is used to describe the evolution of fluid flow with mass

density ρ and viscosity η that flows with velocity v. However, this equation only

works for typical values of the ratio of inertial and viscous forces when inertial forces

dominate. This ratio is called Reynolds Number and is defined as

Re =
Finertial

Fviscous
= ρ

vD
η

(1.1)

where ρ and η are the mass density and the viscosity of the fluid respectively, and D

is the diameter of the object affecting the flow. For example, the diameter of the pipe

restricts the flow. When talking about microorganisms, D is typically the diameter of

the cell moving in the fluid.

A Low Reynolds number can be the result of small diameters and/or high vis-

cosity. As an example, for microbes in water D = 10 µm, v = 10 µm s−1, Re ∼ 10−4
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[11]. To illustrate how viscous forces dominate in this regime, imagine you push a

microbe and reach a velocity of 30 µm s−1, and then suddenly stop pushing. The

time it will take to slow down will be about 0.6 µs. This makes it pretty clear that

inertia plays no role in this regime making movements time-independent (present

state is not defined by past movements) [12]. This is the essence of Purcell’s scallop

theorem [13]: “swimmers deforming their shapes in a time-reversible manner (re-

ciprocal motion) cannot swim.” In order to move through a viscous environment, the

movement should be asymmetrical by cyclic deformations of the microbe body [12].

These considerations dominate motion and life at low Reynolds numbers.

1.3 Brownian Motion

Brownian motion refers to the random motion of particles suspended in a fluid. It was

discovered in 1927 by Robert Brown noticing how small particles of pollen immersed

in water move in seemingly random trajectories [14]. This motion is caused by ther-

mal energy, which causes random movements in any random direction (translational

diffusion) as well as random rotation around any axis (rotational diffusion). This mo-

tion is a critical randomising force for microorganisms so requires examination in

more detail.

1.3.1 Diffusion

Diffusion is the movement of particles from a region of high concentration to a region

of low concentration. A substance undergoing diffusion spreads from the location

of higher concentration. For example, if a perfume bottle is in a closed room, and

suddenly it is opened, the perfume’s particles will spread (in time) all over the room.
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1.3.2 Einstein’s Theory

In 1905, Albert Einstein modeled the motion of pollen particles being moved by wa-

ter molecules [15]. This movement is the result of thermal energy, resulting in the

random movement of a particle in any direction. He showed that in an ensemble of

particles (regardless the size) at temperature T , on average, each particle has kinetic

energy associated with translational movement along each axis of

⟨K⟩=
〈

mv2
x

2

〉
=

kBT
2

(1.2)

where m and vx and the mass and the velocity of the particle and ⟨⟩ denotes the

average over time. The magnitude of this effect can be computed as a diffusion co-

efficient (Dt). As the interaction between an ensemble of particles cannot be solved

by a model accounting for every particle, only probabilistic and statistical models can

be applied, hence the appeal to an average quantity.

1.3.3 Translational and Rotational Diffusion

The diffusion coefficient is given by Einstein’s equation as

Dt =
kBT

f
(1.3)

where k = 1.38× 10−23 m2kgs−2K−1 is Boltzmann constant, T is the absolute tem-

perature and f is the frictional coefficient of the particle. In low Reynolds number

regime, the viscous forces dominate. The drag force acting on a spherical object is

calculated as

FDt = 6πηDv (1.4)

where ν is the dynamic viscosity of the fluid, D is the radius of the object, and v is

the velocity. The frictional coefficient f can be then calculated as
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f =
F
v
= 6πηD. (1.5)

Therefore, by combining equations (1.3) and (1.5) the diffusion coefficient becomes

Dt =
kBT

6πηD
. (1.6)

This result is known as the Stokes-Einstein diffusion coefficient for translational

diffusion of a sphere.

The interaction between the particles within an ensemble not only produces changes

in position but also produces random rotational movement. Similar to translational

diffusion, a rotational diffusion coefficient describes this phenomenon. It is calculated

as follows

Dr =
kBT

8πηD3 . (1.7)

1.4 Random Walk

In probability theory, a random walk is a process to determine the location or proba-

ble location of an object subject to random motion. This process can be described by

assuming a probability (the same for each step and for every direction) that the parti-

cle will move in a given direction [16]. This model is often used to describe Brownian

motion and allows us to predict how far the object is likely to be found from where it

began at a certain time [14].

1.4.1 One Dimension

Recapitulating Berg’s argument [16], lets consider some particles moving in one di-

mension (a straight line). The particles start at time t = 0 at position x= 0 and perform
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a random walk according the following rules: 1) Each particle moves to the left or to

the right once every τ seconds with constant velocity v a distance δ = |vτ|. In prac-

tice τ and v are not constants and depend on the size of the particles, the fluid, the

temperature T , and the diffusion coefficient Dt . 2) The probability of taking a step

to the right and taking a step to the left is 1/2 for both cases. Successive steps are

statistically independent. 3) Particles do not interact with each other.

Figure 1.2: Random walk in one dimension. Particle starts at position x = 0. At each
step, the particle has the same probability of moving to the right or to the left.
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Figure 1.3: Random walk in one dimension. Total displacement vs step. The Red
line represents the starting position.

There are two consequences that the rules for random walks produce [16]. The

first one is that on average, the particle’s net displacement is zero. The second one

is that the root-mean-square displacement is proportional to the square-root of the

time as

xrms =
〈
x2〉1/2

=
√

2Dtt. (1.8)

Therefore, the mean squared displacement is

〈
x2〉= 2Dtt (1.9)
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1.4.2 Higher Dimensions

The rules mentioned above apply for each dimension assuming the motion in each

direction is statistically independent. Therefore, according to the equipartition of

energy, the mean squared displacements in each orthogonal direction (x,y,z) sum.

In two dimensions, the square of the distance from the origin to the point (x,y) is

r2 = x2 + y2 so

〈
r2〉= 4Dtt, (1.10)

Figure 1.4: Random walk in two dimensions. At each step, the particle has the same
probability of moving to the right, left, up, and down directions. The red marker is the
starting position while the green marker is the ending position.

and in three dimensions r2 = x2 + y2 + z2 so
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〈
r2〉= 6Dtt. (1.11)

Figure 1.5: Random walk in three dimensions. At each step, the particle has the
same probability of moving right, left, up, down, front, and back. The red marker is
the starting position while the green marker is the ending position.

In this thesis, the three-dimensional mean squared displacement is the most

salient quantity, the result can be generalized for n dimensions as

〈
r2〉= 2nDtt. (1.12)

The mean squared displacement becomes very useful when studying cell motility

because it is a tool that is used to determine if a cell is swimming or undergoing

Brownian motion (see Figure 1.6). If the mean squared displacement is obtained

from a cell’s trajectory, it is compared with the mean squared displacement of a
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particle undergoing Brownian motion (Eq.1.12). By plotting these, if the gradient

of the obtained mean squared displacement is proportional to Dt, then the cell is

undergoing Brownian motion. On the contrary, if the gradient is greater than unity

(for a sufficiently large sample size), then the cell is motile. On the other hand, if the

mean squared displacement is smaller than unity, the cell is in confined motion.

Figure 1.6: Discrimination of motile and non-motile cells. When the mean squared
displacement is bigger than 6nDt, the cells are motile. When the mean squared
displacement is equal or lower than 6nDt, the cell is non-motile. Figure taken from
[17].

This methodology has been applied to study particle diffusion in a bacterial bath

were 10 µm polystyrene beads, freely suspended in soap film present superdiffusion

in short times and normal diffusion in long times [18]. This technique was used in

this work to discriminate between motile and non motile cells.
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1.4.3 Gaussian Random Walk

As seen before, simple random walks must satisfy with a couple of conditions. One

of them is that in every time step, the subject moves a finite distance. A Gaussian

random walk is a random walk having a step size that varies according to a Gaussian

distribution. For a random walk, we have

P(x)dx =
1

(2πσ2)1/2 e−x2/4Dt tdx (1.13)

where P(x)dx is the probability of finding a particle between x and dx [16]. This

function is equivalent to a Gaussian distribution with zero mean and σ =
√

2Dtt.

Figure 1.7: Example of a simulated Gaussian random walk trajectory of a spherical
particle with a radius of 1 µm. The simulation parameters are: 10 minutes at 50
samples per second, starting at the origin, suspended in pure water at 22 ◦C . The
red marker is the starting position while the green marker is the ending position.
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1.5 Swimming Bacteria

Bacteria swim to seek nutrients and a suitable environment in which to grow and

multiply. Like any other organisms, bacteria must be sensitive and respond to their

environment and adjust to any complications they may find; bacteria must be able

to sense their surroundings. Although bacteria are unicellular organisms and among

the simplest forms of life, they have a remarkable ability to sense their environment.

They are attracted towards regions containing substances they need and repelled

by dangerous or harmful ones. This ability is called ”taxis”. Theodor Engleman

(1843-1909) developed a method for tracing the photosynthetic oxygen production

of unicellular plants by means of bacterial chemotaxis [19]. He confirmed that oxy-

gen production is dependent on chlorophyll and on light. He observed the movement

of bacteria towards algae and proposed that their motion was in response to the oxy-

gen generated by the algal chloroplasts [19].

Although all bacteria are unicellular organisms, they can be divided into two

groups: gram-positive and gram-negative. This differentiation is based on the struc-

ture of bacterial walls. While Gram-negative bacteria have an outer lipid mem-

brane and a thin peptidoglycan layer, Gram-positive bacteria have a thick peptido-

glycan layer. Details on this can be found elsewhere [20]; this thesis focuses exclu-

sively on Gram-negative bacteria, which comprise some of the most serious bacterial

pathogens [21].

1.5.1 Escherichia coli

Escherichia coli or E. coli is a gram-negative, rod-shaped bacteria. It is frequently

found in warm-blooded species’ lower intestines [22]. It was discovered by Theodore

von Escherich in 1884 when he studied the microbes that were found in child feces

to establish their role in digestion and disease [23]. The majority of E. coli strains
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are safe, but some can cause food poisoning, which occasionally results in food con-

tamination that forces manufacturers to recall their products [24]. There are some

beneficial strains, which are typically found in the gut’s microbiota and have a mutu-

alistic relationship with their hosts, sometimes preventing infections [25, 26]. Being

a rod-shaped bacterium, E. coli it measures 1.0-2.0 µm long with a width of about

0.5 µm [27]. E. coli is propelled by several flagella located around its body, and

swims with average speed ranging from 16.0-30.0 µm/s [28, 29] with a run and tum-

ble swimming strategy [30, 31] (see Fig. 1.8b). This run-and-tumble (RT) approach

to exploring their surroundings is a cornerstone of quantitative modeling of bacterial

transport. Bacteria in this paradigm swim straight during a run, undergo a reorien-

tation process during a tumble, and then pursue the following run in a new direction

[32]. E. coli has been the subject of extensive research for more than 60 years due

to its close association with people as well as the ease with which it can be grown,

mutated, and used in the laboratory [33].
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(a)

(b)

Figure 1.8: (a) Coloured scanning electron micrograph (SEM) of Escherichia coli.
Image width is 7.14 µm.. (b) Run and tumble swimming behavior of E. coli. When
rotating its flagella counterclockwise (CCW), it is propelled forward (runs). When
rotating its flagella clockwise (CW), the cells present little net displacement (tumbles).
Images taken from [34] and [35] respectively.
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1.5.2 Bdellovibrio Bacteriovorus

The World Economic Forum (WEF) stated that “probably the greatest risk to human

health comes in the creation of antibiotic-resistant microorganisms.” New ideas to

complement the use of antibiotics are needed more than ever [36]. Bacterial pre-

dation has been pointed out as an alternative therapy to cure infections, however,

this approach is in the early stages of development. From literature, it was reported

that Bdellovibrio Bacteriovorus is capable to predate on different gram-negative bac-

teria and some gram-positive bacteria [37, 38, 39]. It is important to mention that

Bdellovibrio has been found in the human gut of individuals without any health reper-

cussions. Details on the predation process can be found elsewhere [39]. Bdellovib-

rio is a curved-rod shaped, and is approximately 0.2-0.5 µm x 0.5-1.4 µm in size.

Bdellovibrio is propelled by a single polar flagellum, and it swims at an average speed

of 160 µm/s in a linear rotating fashion [40, 37].

Figure 1.9: Electron micrograph, 50,000x of Bdellovibrio Bacteriovorus. Figure
adapted from [38].
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1.6 Tracking Bacteria

Chemotaxis is the response of motile bacteria to various substances. However, this

raises a number of queries. How do microorganisms, for instance, recognize chem-

icals? How are the flagella moved and how is sensed information transformed into

action? Studying bacterial motion gives insight into these internal processes. For ex-

ample, the rotational behavior of several E. coli strains with missing genes required

for chemotaxis towards amino acids, peptides, and certain sugars were studied to

find insights about how molecular motors propel bacteria[41]. Studying how these

bacteria navigate (run length, run speed, turn angle, etc) help understand the signal

transduction pathway for bacterial chemotaxis [42]. In bacterial predation, changes

in behavior around prey cells tell us whether predators can sense prey. If this is

found, can we “harness” this behavior to direct bacteria in a specific direction to po-

tentially develop therapies by targeting predation.
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Chapter 2

Microscopy

2.1 Brightfield Microscopy

As the human eye is not capable of visualising objects smaller than 0.5 mm, sam-

ples must be magnified through the employment of optical microscopes. Antoine van

Leeuwenhoek (1635-1723) invented the first optical microscopes. He created over

500 single lens microscopes [43], which consisted of a single, biconvex magnify-

ing glass mounted between two small apertures [44]. His observations were mostly

about biological samples and chemical components such as fungi, insects, plants,

blood, feathers, scales, spermatozoa, hair, minerals, metals, etc, and were the first to

detail the shape and structure of the samples [45]. In 1976, by using his invention on

a droplet of water, van Leeuwenhoek discovered thousands of small living organisms

moving with their own proper motion. There organisms are now known as Bacteria

[42].

Brightfield Microscopy is the most fundamental microscopy technique, and it was

used by van Leeuwenhoek during his experiments. This setup has been modified

extensively, but the concept remains the same. In their most basic form, these mi-

croscopes use two lens assemblies to form an image: an objective lens that gener-

ates a magnified image of the sample at an infinite distance, and a lens that focuses
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the image onto the eyepiece of the microscope [46]. These two lenses are mounted

between the sample and an eyepiece to form the basic setup of a light microscope

(see Fig. 2.1).

Figure 2.1: Optical pathway for a simple brightfield microscope.

The function of the microscope is to render microscopic objects visible. However,

this spatial resolution is limited by the wave nature of light. The resolution of the mi-

croscope is defined as the shortest distance between two points within a specimen

that can accurately be distinguished as separate entities [46], and it is determined by

the numerical aperture of the lens and the wavelength of the light used. The numer-

ical aperture is a dimensionless number that characterizes a lens or a microscope

objective by the range of angles over which the system can collect or emit light. The

higher the numerical aperture and the shorter the wavelength, the greater the reso-

lution. This is characterized by the Rayleigh criterion defined by Lord Rayleigh [47]

with equation
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d = 1.22
λ

2NA
, (2.1)

where d is the feature resolution as a distance, λ the wavelength of the light, NA is

the numerical aperture of the objective lens, and NA = nsinθ where n is the index

of refraction of the medium and θ is the half angle of the cone of light that can

enter or exit the lens. For example, for a microscope objective of 20x with NA=0.5

in air (n=1), illuminated light with a wavelength 0.642 µm, the resolution would be

d = 1.22 ∗ 0.642/(2 ∗ 0.5) = 0.78µm. For a 40x with NA=0.75 in the same conditions,

the resolution would be d = 1.22 ∗ 0.642/(2 ∗ 0.75) = 0.52µm. For axial resolution, it

can be calculated as

dz =
λ ∗n
NA2 , (2.2)

and it is defined as the total distance than can be considered ”in focus” at the

same time. For the examples above, the resolution in the axial direction would be

∆zz = 2.56µm and ∆zz = 1.14µm respectively. These considerations determine the

resolution of the microscope, but for biological samples, contrast is another important

consideration. Many microbial samples are colourless and weakly scattering. Image

enhancement methods such as phase contrast [48] can help to render subjects more

visible. However, weakly scattering subjects convey some advantages, which I show

how to exploit in the next section.

2.2 3D Microscopy

Traditional cell visualization techniques such as bright-field or dark-field microscopy

give accurate information about the cell’s position. However, this information is just

two-dimensional. Other visualization techniques had to be developed so that three-

dimensional information can be obtained.
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In the 1970s, Howard Berg [5] created a 3D tracking microscope that locked and

followed a single bacterium in three dimensions. The disadvantage was that it was

only capable of tracking a single organism. Over time, a variety of 3D techniques

have been developed in order to image several microorganisms in real-time. One

example is defocused particle tracking (DPT) which uses the size of diffraction rings,

caused by spherical lens aberration, surrounding defocused fluorescently labeled

cells to measure their axial position. The radius of the produced ring is found to be

dependent solely on the distance of the particle to the lens [49]. As this technique

probes a volume at each measurement, it allows a higher acquisition rate than a con-

focal microscope (discussed afterward). However, it only works with dilute samples

[49].

All techniques have advantages and disadvantages, but many modern techniques

are more computationally expensive as they require to record series of 2D images

and then reconstruct the 3D environment. For example, confocal microscopy modi-

fies a typical fluorescence microscope (see Fig. 2.2) to be able to reconstruct three-

dimensional images. A conventional fluorescence microscope illuminates the spec-

imen with a specific wavelength which is absorbed by the fluorescent molecules,

causing them to emit light of a longer wavelength, which is separated from the illumi-

nating light by filters. This light is then collected by a camera.
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Figure 2.2: Confocal microscopy principle. Laser light is used to illuminate the sam-
ple at different focal planes. Fluorescent light is then collected in the detector. A
pinhole is placed in the conjugate image plane of the specimen, in front of the de-
tector. The pinhole blocks the out-of-focus light from entering the detector, allowing
only the light from the focal plane to pass through, allowing the creating of sharp and
high-resolution images. Figure obtained from [50].

On the other hand, a confocal microscope illuminates the sample at just one point

at a time by focusing the illuminating light via a microscope objective, collecting just

the fluorescent light that comes from the objective’s focus. It uses pinholes to exclude

out-of-focus light. This is repeated at different positions on the sample in the same

axial position, allowing to create a 2D image out of it. If the process is repeated at

different axial positions, a stack of 2D images is created, which then is processed to

produce a 3D image of the sample. This allows labeling and identification of complex

biological structures at the cost of a slow acquisition rate, making this technique not

able to capture real-time events. Also, there is a need of biochemistry knowledge

to select fluorescent dyes without modifying the biological behavior of the subject of

study while also avoiding alterations of the fluorophores that make them unable to

23



fluoresce (photobleaching) [51, 52]. On important limitang factor of confocal/fluores-

cent microscopy is the damage that may be caused to living cells when subjected

to light, also known as phototoxicity. This can be caused by a number of factors,

including the wavelength and intensity of the light used, the exposure time, and the

sensitivity of the cells being imaged. It is well known that shorter wavelengths, from

blue to UV can cause this. Appropriate choosing of this can reduce phototoxicity

effects in the sample. In this work, a diode laser with a wavelength of 642 nm was

used to minimise this effect.

Another example is the work of Taute et al. [53] who performed 3D tracking of

cells using an image correlation approach for use in standard phase contrast mi-

croscopy. They relieve the trade-off between performance and technical simplicity

that governs existing 3D bacterial tracking methods. They track bacteria in 3D by

comparing their out-of-focus diffraction patterns to a reference library.

Essentially, they created a reference library of diffraction rings obtained with 1

µm silica beads at different positions in the axial direction with respect to the focal

plane. Next, they compared the diffraction rings from a recorded video (Fig. 2.3) with

the ones from the reference library. The best match for each ring will determine its

position in three dimensions. After performing the object identification for each frame

of the recorded images, they can now apply a tracking algorithm for each swimming

cell by comparing the position of objects in neighboring frames.
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Figure 2.3: Correlation tracking method. (a) A vertical slice through a reference
library was created by combining 73 aligned image stacks obtained for 1 µm silica
beads. (b) Horizontal slices from the reference library at positions marked in (a).
(c) Images of swimming E. coli bacterium at the corresponding positions. (d) A
reconstructed 3D trajectory of the bacterium in (c). Figure adapted from Taute et. al.
[53]

2.3 Super Resolution Microscopy

Usual light microscopy techniques have certain limitations regarding their methodol-

ogy or hardware. However, most techniques have their imaging resolution limited by

the diffraction limit to ∼ 200 nm in the lateral dimensions [54]. Considering that many

intracellular organelles and molecular structures are smaller than this limit, they are

left unresolved. The diffraction limit (not the same as Rayleigh Criterion) formulated

by Ernst Abbe nearly 150 years ago reads

∆Xmin,∆Ymin =
λ

2nsinα
≈ λ

2
(2.3)

where λ is the wavelength of the light, n is the index of refraction of the medium and

α is half the aperture angle of the objective lens.

Recently, some new techniques have been developed in order to resolve features
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beyond that limit. In 2014, the Nobel Prize in Chemistry was awarded to Erick Betzig,

Stefan Hell and William E. Moerner ”for the development of super-resolved fluores-

cence microscopy”. With super-resolved fluorescence microscopy, researchers are

able to follow the trajectory of individual molecules inside a living cell, enabling them

to investigate molecules as they create synapses between brain cells, or image how

proteins aggregate in Parkinson’s and Huntington’s diseases patients [55].

Figure 2.4: A PSF is formed when photons are detected from a single molecule. (a)
PSF of a single YFP molecule in a bacteria cell. (b) Detected PSF with the camera.
(c) Gaussian fit to the PSF. (d) Accurate localisation of the emitter by analysing the
PSF fit. Figure adapted from [55].

When light is detected by a single emitter, it forms a diffraction pattern called the

point spread function (PSF) and can be approximated by a two-dimensional function,

such as a Gaussian function. The center of the PSF determines the position of

the emitter beyond the diffraction limit. The accuracy of detection depends on the

number of photons received from the emitter so that the peak of the PSF can be

found more accurately as the number of photons increases. With these, Abbe’s

formula can be modified to

∆Xmin,∆Ymin =
λ

2nsinα
· 1√

N
(2.4)

where N is the number of detected photons. If N = 100, the resolution of the detected

position of the single emitter is increased by a factor of 10. More details of the for-

mulations and theories from these Nobel laureates can be found elsewhere [55].

Some recent techniques have been able to improve lateral resolution from 200 nm
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to 20 to 50 nm. While this represents a great improvement, most cellular structures

cannot be resolved without high-resolution imaging in three dimensions. Techniques

such as confocal or multiphoton microscopy have axial resolutions typically between

500 and 800 nm [56, 57]. Other techniques such as Photo-Activated Localization Mi-

croscopy (PALM), Stochastic Optical Reconstruction Microscopy (3D STORM), and

Stimulated Emission Depletion (STED) Microscopy have not only improved lateral

resolution but also have reduced axial resolution dramatically up to 20 to 60 nm

[54, 55, 58]. For example, while super resolution imaging is possible thorugh PALM,

STED and STORM, they use different mechanisms to achieve it. PALM use photoac-

tivatable fluorescent proteins to localise individual molecules, STED uses a depletion

laser to reduce the effective size of the excitation spot, and STORM uses stochastic

switching of fluorescent molecules to achieve precise localisation. Although super-

resolution microscopy has given great advantages in terms of resolving sub-cellular

structures, it suffers from significant drawbacks common to fluorescence methods,

such as slow acquisition rate and the necessity of labeling. Moreover, most super-

resolution techniques require samples to be fixed (non-living). In live cell imaging, the

movement of molecules can lea to blurring of th images, making it difficult to achieve

high resolution. Furthermore, live cell imaging can be limited by photobleaching and

phototoxicity, which can damage or destroy the fluorescent molecules, leading to

poor image quality or loss of the sample. In order to achieve high-resolution imaging

tiwh little mobiliyty of the fluorescent molecules, fixed samples are frequently used in

PALM, STED and STORM.

2.4 Holography

Holography was originally developed by Dennis Gabor [59] to correct for spherical

aberrations of electron microscopes, but since then has been used broadly in optical

imaging. It is a technique that involves recording and reconstructing optical waves. In

1948, Gabor proposed a two-step, lensless imaging process that we now call holog-
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raphy. When a coherent reference wave interacts with the light scattered from an

object, the information about the amplitude and phase of the scattered waves can

be recorded. Using the recorded interference pattern, called a hologram, an image

of the original object can be obtained. In 1971, Gabor received the Nobel prize in

physics for his invention.

Wave interference is the main concept behind holography; the light scattered by

an object (object wave) interferes with a reference wave. There are many variations

of holography, but the reference wave is often a plane wave. The interference pattern

is recorded and it reveals the phase of the object wave.

With the development of the charged coupled device (CCD) in the 70s, a direct

application of holography was developed into Digital Holographic Microscopy (DHM)

[60]. In DHM, a hologram is an image that contains recorded information about an

optical wave, such as amplitude and phase. With these, the optical field can be re-

constructed at any position along its propagation direction [61].

DHM has many advantages with respect to other methodologies. It just requires a

standard bright-field microscope with coherent illumination (LED or Laser). It offers

high-speed and three-dimensional imaging with low technical demand. There are

other three-dimensional imaging methods, such as rapid scanning of microscope

focal plane [62] that need special equipment and are technically demanding. On

the other hand, confocal methods require that the sample gets moved mechanically

between axial sections, which limits the sampling frequency. In contrast, DHM ac-

quisition rate is only limited by the frame rate of the camera being used, although

current implementations lack the labeling specificity of confocal imaging.
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2.4.1 Theory

Recapitulating Goodman’s argument [63], the main problem addressed by hologra-

phy is the wavefront reconstruction problem. For this, the recording, and later recon-

struction of the amplitude and phase of a scattered optical wave from a coherently

illuminated object has to be achieved.

Most recording media are sensitive only to light intensity. To be able to record

phase information, it is required to convert it to intensity variation. A standard tech-

nique for this is interferometry. Suppose we know the amplitude and phase of a

coherent wavefront. This field interacts with another wavefront that is coherent with

the first one. The intensity of the sum of two complex fields at r = (x,y,0) depends on

the amplitude and phase of the unknown field. If

a(r) = |a(r)|exp [−iφ(r)] (2.5)

is the field to be reconstructed and

A(r) = |A(r)|exp [−iψ(r)] (2.6)

is the reference field, the interference of both waves is

I(r) = |A(r)|2 + |a(r)|2 +2|A(r)||a(r)| ∗ cos[ψ(r)−φ(r)]. (2.7)

The first two terms represent just the magnitudes squared of both fields, but the

third term, the real part of the cross term, depends on their relative phases. This

recording of the interference pattern of both waves is called a hologram. It is impor-

tant to mention that the hologram is recorded on film (classical holography) and must

be developed at this stage before continuing with the process.

The task ahead of us is to reconstruct the wave. We know that the amplitude
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transmittance of the film can be written as [63]

tA(r) = tb +β
′ (|a|2 +A∗a+Aa∗

)
(2.8)

where tb is a uniform “bias” transmittance and β ′ is the product of the slope β of the tA

vs E curve at the bias point, where E is the energy or wavelength of the light. Then,

if the developed film is illuminated by a coherent reconstruction wave B(r), the light

transmitted is

B(r)tA(r) = tbB+β
′aa∗B+β

′A∗Ba+β
′ABa∗

=U1 +U2 +U3 +U4.
(2.9)

If B(r) = A(r), then the third term of this equation becomes β ′|A|2a(r). In a similar

way, if B(r) = A∗(r), the fourth term of the equations becomes β ′|A|2a∗(r). However,

the first two-term are always present so a method for separating these various wave

components of transmitted light is required.
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Figure 2.5: Imaging by wavefront reconstruction in the case where the photographic
film is used. (a) Recording of the hologram of a point-source object. (b) Generation
of the virtual image. (c) Generation of the real image .

Now, lets suppose that the recorded hologram is the result of the interference of

the reference wave A(r) and a spherical object wave,

a(r) = |a(r)|exp
[

ik
√

z′2 +(x− x′)2 +(y− y′)2
]

(2.10)

where r′ = (x′,y′,z′) are the coordinates of the object point and z′ is its distance from

the recording plane. If we “illuminate” the hologram with A∗(r) we obtain

U4(r) = β
′|A|2a∗(r)

= β
′|A|2a∗0 exp

[
ik
√

z′2 +(x− x′)2 +(y− y′)2
]
,

(2.11)

which is a spherical wave that converges to the real focus at distance z′ to the right of

the hologram, as shown in Fig. 2.5. If the scattered light comes from a more complex

object, it can be considered to be a collection of point sources of various amplitudes
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and phases, forming an image of the entire object. It is important to notice that we

only have used the term U4 of Equation. 2.9. By proper choice of the reference wave,

the other components can be suppressed or separated. If this is not the case, this

”noise” should be taken into account.

2.4.2 Variations

In-line Holography

There are several experimental set-ups for in-line holography, however, the main idea

behind every set-up is to keep the scattered field aligned with the reference beam

(Fig. 2.6). In some set-ups, the original beam is divided using a beam splitter and

then recombined using an optical waveguide [64], while in other set-ups the split

beam is combined with the original beam using an array of mirrors [65].

Figure 2.6: In-line holography. a) hologram recording and b) hologram reconstruc-
tion. Figure adapted from [66].

In all cases, both beams are incident normally on the target. As usual, to recon-

struct the object wave, the hologram has to be illuminated with the same reference

beam from one side, producing a real image on the other side of it. More recently, in-

stead of using photographic paper to record the hologram, charged coupled devices

(CCD) are used for this for easier manipulation and digital reconstruction. Details on

this can be found elsewhere [60, 64, 65] and will be covered in Chapter 3.

In-line holography does not avoid the overlap of the zero-order as the object field

is in alignment with the reference beam, but several methods have been demon-
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strated effective to cope with this problem depending on the object. For example,

the zero-order can be partially removed by subtracting the average intensity of the

entire hologram or by applying a high-pass filter near the zero frequency. As for the

information encoded in the hologram, in-line holography does not have information

loss, thus having enhanced lateral resolution in comparison with off-axis holography

[65].

The simplicity and advantages of in-line holography become very useful when

studying microorganisms, that is why it is a very important technique for biophysicists

to study cell motility in three dimensions. The experimental set-up used in this work

is based on in-line holography.

Off-Axis Holography

It is based on a two-beam interferometric process to produce the hologram [67]. The

object is illuminated with collimated monochromatic light and is located at plane P1

(see Figure 2.7). A diffraction pattern is formed on the recording material which is

located at plane P2. A prism is set beside the object and is illuminated with the same

light as the object. The portion of the incident beam that passes through the prism is

deviated and arrives to the recording material also at plane P2 and is superimposed

to the other portion of the beam that arrives at P2. The resulting pattern recorded is

a hologram.
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Figure 2.7: Recording a hologram with off-axis holography.

In contrast with in-line holography, the reference beam is tilted at an angle θ with

respect to the normal of the hologram plane That is why it is called off-axis hologra-

phy. This means that the phase of the reference beam is not constant across the field

of view because it has to travel more distance to reach the target. To reconstruct the

object, the hologram is illuminated with the same collimated beam of monochromatic

light (see Figure 2.8). As the reference beam is incident with an angle, real and

virtual images are formed along a different axis at a distances z and −z respectively

from the hologram plane [63].
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Figure 2.8: Hologram reconstruction with off-axis holography.

Off-axis holography is helpful when trying to avoid the overlap of the zero-order

and holographic images. However, due to this tilt, this effect reduces the amount of

information encoded in the hologram [66] as the phase across the field of view is not

constant. This causes low spatial coherence, which means that it contains a range

of different spatial frequencies. This can lead to unwanted interference, reducing

the signal-to-noise ratio. This variation of holography is used as a metrology instru-

ment for surface topography, birefringence, oxide patterns thickness and vibration

characterisation [68].
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Chapter 3

Digital Holographic Microscopy

As seen in Chapter 2, to reconstruct the field scattered by a complex object, the

object can be considered as a collection of point sources of various amplitudes and

phases. In Digital Holographic Microscopy, we record the hologram using a camera

(CCD or CMOS). These cameras are an array of pixels, and each pixel records a

part of the intensity of the field. In DHM reconstruction, these pixels are considered

as point sources, such that when all the “scattered” light from all these pixels is col-

lected, the object has been effectively reconstructed. This “propagation” process is

typically performed by software based on Rayleigh-Sommerfeld Propagation, which

is discussed in detail below.

Digital holographic microscopy is a technique that can be used to image and track

cells in three dimensions for motility studies. This technique uses the encoded in-

formation in 2D images called holograms (Fig. 3.2a) to reconstruct the entire 3D

space in which the microorganisms are swimming via different methods. This can

be achieved by using Rayleigh-Sommerfeld propagation. Although there are other

methods to obtain the 3D position of a particle, for example, using Lorenz-Mie scat-

tering theory [69] or using image correlation [53], this project focuses almost entirely

on Rayleigh-Sommerfeld propagation. This method takes advantage of diffraction

theory. Basically, if we know the optical field in one plane, we can “re-focus” it to
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another plane.

Figure 3.1: Hologram recording apparatus.

(a) (b)

Figure 3.2: Digital holographic microscopy images of a mixture of E. coli cells and
polystyrene beads [70]. (a) Raw holography data and (b) raw holography data with
static background removed. For every cell a set of diffraction rings is present. The
characteristics of these diffraction rings are crucial for obtaining the 3-dimensional
position. The scale bars represent 25 µm in both images.
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As we are talking about microorganisms, we will restrict our discussion to weakly

scattering objects so that their refractive index relative to their surroundings (m =

np/nm) and characteristic dimension, d, should follow that

|m−1| ≪ 1, kd|m−1| ≪ 1 (3.1)

where k = 2πnm/λ is the wavenumber and λ is the illumination wavelength. Here,

np and nm are the indices of refraction of the object and the medium respectively.

Roughly, it is assumed that the scatterer is composed of different dipole oscillators

whose individual contributions can be added to find the total scattered field [71].

This approximation is well suited for microbial systems because their index of

refraction is similar often to their surroundings. These are basically phase objects,

exhibiting negligible absorption. In practice, a small amount of defocus renders them

visible close to the focal plane. We exploit this characteristic to localize bacteria in

3D; details are given later in this chapter.

3.1 Rayleigh-Sommerfeld Propagation

Consider a small spherical particle of radius a in a DHM setup (Fig. 3.1).
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Figure 3.3: DHM principle. Incident field E0 is scattered by a particle producing a
scattered field Es. Both fields interact and create an interference pattern recorded at
the focal plane.

Suppose a plane wave with amplitude E0 is incident on a particle that is located

at the origin. The scattered field Es interferes with the unscattered light E0 (Fig. 3.3).

The total intensity [72] at a point r is:

I(r) = |E0(r)|2 +ℜ [E∗
0(r) ·Es(r)]+ |Es(r)|2. (3.2)

We can ignore the third term because we are supposing that the object is a weak

scatterer. Dividing by the unscattered intensity we obtain a “normalised hologram”

[73]:

b(r)≈ 1+ℜ

[
E∗

0(r) ·Es(r)
|E0(r)|2

]
. (3.3)

Assuming that the plane in which the hologram is recorded is at z = 0, then we

can reconstruct the light field using the Rayleigh-Sommerfeld method. We perform

the reconstruction at z =−z′ above the hologram plane with the convolution

Es(r′) = Es(x,y,0)⊗h(r′) (3.4)
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where

h(r′) =− 1
2π

∂

∂ z′
eikr′

r′
, (3.5)

is the Rayleigh-Sommerfeld propagator, r′ = (x′,y′,z′) and r′ = (x′2 + y′2 + z′2)1/2. The

primed coordinates indicate positions in the refocused space. The convolution of

the image with a spherical wave is the mathematical equivalent of considering each

pixel of the image as a point source.

3.1.1 3D object localization

As a particle is imaged with digital holographic microscopy, the Rayleigh-Sommerfeld

scheme allows us to numerically refocus it at a particular distance, z, from the focal

plane. If the process is repeated at various distances from the focal plane, then a

stack of images is created in which each slice is the refocused image at a particular

z. If the particle is in focus at z′, its diffraction pattern center will appear dark at slices

z > z′. When z < z′, a contrast inversion will happen (see Fig. 3.4).
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Figure 3.4: (a) Vertical slice through the centre of a created image stack. (b) Diffrac-
tion pattern produced by a particle located at z≈9 µm from the focal plane. (c)
Vertical slice through the reconstructed image stack for the particle in (b). (e) and (f)
represent the same as (b) and (c) but from a particle located below the focal plane
at z≈-9 µm from the focal plane. (d) and (g) are gradient stacks of (b) and (e). Scale
bars are 2 µm. Figure taken from [74].

This behavior occurs when a converging spherical wavefront passes through its

geometrical focus so these wavefronts are retarded by a net phase of π radians

compared to a plane wave of the same frequency and wavelength propagating in the

same direction.

Figure 3.5: Gouy phase phenomenon [75]. Along the z axis, the phases of the beam
deviate from those of a plane wave. As z goes to minus infinity, the beam was in
phase with the reference plane wave. As z goes to infinity, the beam will be π radians
out of phase with the reference wave.
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This phenomenon is called the “Gouy phase shift” or ”Gouy phase anomaly” [75,

76] and its effect can be seen in Fig. 3.4a. In our case, we have cells acting as

sources of secondary wavelets. By examining their interference with the unscattered

(plane wave) reference field around the reconstructed focal region, we observe this

phase anomaly as a contrast inversion near the object’s position. By setting a thresh-

old, we can isolate regions of highest change of intensity (Fig. 3.4d and Fig. 3.4g),

allowing us to localise particles in 3D. Hologram reconstruction is sensitive to con-

trast. If the diffraction patterns are very defined, then the reconstruction is precise.

In practice, objects that are further than 1500 µm from the focal plane cannot be

detected as the diffraction patterns they produce does not have enough contrast to

then be reconstructed. In all cases we have restricted our search to axial distances

of at most 200 µm.

Figure 3.6: (a) A hologram of an Archea sample. (b) to (d) correspond to slices at
25, 75, and 100 µm of a reconstructed image stack using the Rayleigh-Sommerfeld
scheme. (e) to (h) are the corresponding slices of the gradient stack which result
from applying the Sobel-type filter to the image stack.
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Until now we have only reconstructed a volume from the recorded hologram.

What is left to do is to obtain the (x,y,z) coordinates of the objects within the vol-

ume in order to locate them in three dimensions. We take advantage of the fact that

in the reconstructed field when a particle is above the focal plane, the center of its

diffraction pattern appears light while the centre appears dark when the particle is

located below the focal plane. If we are able to keep track of these intensity changes,

then when the center of the diffraction pattern turns from dark to light, or from light

to dark, then we will have found the axial location of the particle.

To do this, we use a Sobel-type kernel, which extracts the intensity gradient in the

negative z direction by convolving it with the reconstructed field

g(r′) =
∂

∂ z′
I(r′)≈ I(r′)⊗Sz′, (3.6)

where the kernel Sz′ is given by

Sz′(x,y,0) =


−1 −2 −1

−2 −4 −2

−1 −2 −1

 , Sz′(x,y,1) =


0 0 0

0 0 0

0 0 0

 , Sz′(x,y,2) =


1 2 1

2 4 2

1 2 1

 .

(3.7)

For the approximation in Eq. 3.6 to be valid, the field must change slowly com-

pared to the sampling frequency in the axial direction. This condition is satisfied

easily because ∆z′ can be chosen to be arbitrarily small. We retain all positive values

of g(r′) by setting negative values to zero to isolate the particles on one side of the

focal plane. Then, by setting a threshold, we leave values where maximum changes

in contrast along z occur, thus isolating the particle’s location (see Fig. 3.6). To ob-

tain the (x,y) coordinates, we localise the bright spots from the slices of the gradient
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stack. To do this, we consider the particle’s position to be the centre of mass of the

bright spot. For the axial position z, we choose a gradient stack slice by integrating

the pixel values in a region around the particle’s (x,y) position at different axial posi-

tions, and select the gradient stack slice that has the highest integrated value. This

process to detect the focus plane is based on the gradient computation criterion and

details can be found elsewhere [77, 78].

These processes are computationally less expensive if they are performed in

Fourier space. It can be done easily thanks to the Fourier Convolution Theorem

which states that the convolution of two signals is the pointwise product of their

Fourier transforms so Eq. 3.4 and Eq. 3.6 become simple products when done

in Fourier space.

3.2 Modified Propagator

The most important step in DHM is when we propagate the light field using the

Rayleigh-Sommerfeld propagator. This step, combined with applying a three-dimensional

Sobel-type kernel, allows us to localise bacteria in three dimensions by approximat-

ing the three-dimensional light field derivative in the z-direction (Eq. 3.6). To do these

computations, several Fourier transforms have to be calculated for the refocusing

step and for the Sobel-type kernel step. The following equations present a way to

reduce the number of computations required to obtain the light intensity change in

the axial direction by modifying the Rayleigh-Sommerfeld propagator.

If we consider Eq. 3.4, then its derivative with respect to z is

∂Es(r′)
∂ z′

=
∂

∂ z′
(
Es(x,y,0)⊗h(r′)

)
= Es(x,y,0)⊗

∂h(r′)
∂ z′

.

(3.8)
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We can rewrite Eq. 3.8 as

∂Es

∂ z′
= F−1{Ês(q) ·

∂H(q)
∂ z′

}, (3.9)

where Ês(q) and H(q) are the two-dimensional Fourier transforms of Es(x,y,0) and

h(r′) respectively while

H(q) = e
ikz(1−(

λq
2πn

)2)1/2

= eiz(k2−q2)1/2
(3.10)

according to [72] and q = |q|. Then, the derivative with respect to z of Eq. 3.10 is

∂H(q)
∂ z

= i(k2 −q2)1/2eiz(k2−q2)1/2
. (3.11)

We now can use Eq. 3.9 to compute directly the intensity gradient along the neg-

ative z direction without having to separately produce an image stack as an interim

step.
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Chapter 4

3D Particle Tracking

4.1 Image Cross-correlation

Template matching using image cross-correlation is another method to detect and

track cells in 3D [53]. It is based on computing the image cross-correlation (Eq. 4.1)

between an image and a “look-up-table” (LUT) created by imaging cells at different

distances from the focal plane. The cross-correlation between images a and b is

calculated as

C(a,b) =
(a− ā)(b− b̄)

σ(a)σ(b)
, (4.1)

where ā, b̄, σ(a) and σ(b) are the means and standard deviations across all pixels of

the images. Depending on the size of the images, this calculation can be computa-

tionally expensive. In Fourier space, the correlation is

C(a,b) = F−1{F{a}⋆ ·F{b}}, (4.2)

where F denotes the Fourier transform and ⋆ denotes the complex conjugate.

The geometry of the diffraction patterns on the recorded images is determined by

the axial distance to the focal plane and the geometry of the object. Bigger diffraction
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patterns correspond to objects located far from the focal plane, while small diffraction

patterns correspond to objects close to it. A particle is assigned a z-coordinate by

choosing the best image from the LUT that has the strongest cross-correlation with

the experimental image. This can be seen in Figure 4.1 where the correlation peaks

corresponding to two diffraction patterns are compared. The one that produces a

stronger correlation is selected. The group in ref. [53] used phase contrast imaging

to enhance the contrast of images of bacteria, but this is not strictly necessary as

long as some contrast is apparent between the cells and the background. Localising

bacteria by image cross-correlation is quite straightforward, however, the construc-

tion of the LUTs can be time-consuming, and it is specific to the optical setup in use.

Changes in magnification and sample species require the assembly of a new LUT.

As each species have different shapes, their diffraction pattern can be somewhat

different. To achieve better results, a different LUT for any different species has to be

created. Additionally, as each LUT is created using one magnification, these LUTs

do not apply when applying the scheme to videos recorded using different magnifi-

cations.
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Figure 4.1: Image cross-correlation example a sample of E. coli. The video was
recorded using a 20x magnification lens using a laser with λ = 642 nm recording at
10Hz. (a) is a sample normalized frame. (b) and (c) are images from the LUT at
123.9 µm and 68.9 µm from the focal plane respectively. (d) and (e) are the cross-
correlations of (a) with (b) and (c) respectively. Each pixel is 0.70 µm wide. It is
noticeable that (d) has a stronger correlation with (a) than (e). Cross-correlation was
computed with a GPU.

4.1.1 GPU Correlation

As computing image cross-correlation in Fourier space is equivalent to multiply-

ing two arrays, using graphics processing units (GPU) can speed up the process-

ing time greatly. However, if the image size is sufficiently big, and the number of

cross-correlations to be computed is large, these operations become computation-

ally expensive even using modern GPUs capable of highly parallelised operation. In

comparison with a CPU, GPU performed correlation is a great improvement. Some

tests were made to compare performance using a regular CPU (Intel Core i7-5820K)
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against a regular GPU (NVIDIA GeForce GTX TITAN X). The results showed that the

GPU has a ∼5x improvement. Of course, this number should vary according to each

specific computing setup.

4.1.2 Optical Correlation

Optical computing is a way to reduce computational cost and long processing times

when computing image cross-correlation between several images, while reducing

the power consumption of equipment. A system based on the canonical 4- f system

(Fig. 4.2) is used to perform the computations. In this manner, the number of Fourier

transforms required to compare a LUT containing M images against a collection

of N images drops from typical values of 2(N ×M) ∼ 2× 105 to zero by exploiting

the Fourier-transforming properties of lenses and spatial light modulators (SLM). As

Laser 

a

Lens 1

B

Lens 2

Camera

f f f f

Figure 4.2: Standard optical correlator. The input light field is encoded with the
image raw data at point ’a’. Lens 1 condenses the wavefront and images its Fourier
transform onto ’B’, a second SLM encoded with a filter. The Fourier transform of this
information is imaged by Lens 2 onto the camera.

seen in Fig. 4.2, raw image data, a(x,y), is encoded in the beam profile of a coherent

light source by using an SLM. This wavefront passes through a lens placed one focal

length from a second SLM, which is encoded with the convolution kernel. A second

lens transforms the convolution back to real space at the camera. The complex

amplitude of the collected light field corresponds to

c = F−1{F{a} ·B}. (4.3)
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In this case, B is the Fourier transform of a target image of the LUT. Additionally,

the optical computer provided by Optalysys Ltd. is more complicated that the simple

optical correlator shown in Fig. 4.2. The system used in this research takes advan-

tage of several beam splitters, polarisers, spatial light modulators, and cameras to

perform calculations in parallel, shown in schematic form in Fig. 4.3. Spatial light

modulators use liquid crystal technology to modulate the amplitude and phase of

light beams by applying a transmission function t(x,y) to the beam. A liquid crystal

is a liquid whose molecules are arranged in a crystal-like way. When a voltage is

applied to them, their optical properties change, allowing or denying light to pass

through them. Every pixel of an SLM acts independently using this effect, allowing a

transmission function t(x,y) to be programmed on it. When used in an optical correla-

tor at point a (see Fig. 4.2), the SLM should change the phase of the bean according

to the input image. When placed at point B (Fourier plane of Lens 1), the SLM should

encode the information of the phase of the Fourier transform of the target image.

Figure 4.3: Schematic representation of the ”optical computer” used for parallelised
optical image correlation computation. It consists of one laser, four polarisers, three
lenses, three beam splitters, four spatial light modulators, and two cameras.

The layout shown in Fig. 4.3 minimises the physical footprint of the device. The
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cameras refresh at 120 Hz. The optical computer can operate with binary inputs

(SLMs 1 and 2) or 8-bit inputs (SLMs 3 and 4). SLMs for binary inputs refresh at

2400 Hz with an image resolution of 2048x1538 pixels, while SLMs for 8-bit inputs

refresh at 120 Hz with an image resolution of 1920x1080 pixels.

As the videos recorded using digital holographic microscopy are 8-bit, the idea

was to use the optical computer grayscale capability. However, some inconveniences

with using 8-bit input images were found. As the LUT was obtained by refocusing a

frame of a recorded video, the video and the LUT have different brightness. To en-

hance the cross-correlation between these, all the inputs have to be “zero-meaned”

and normalized. When done usin a computer, this process is easily done due to

its capability of handling floating point numbers. However, the optical computer only

allows 8-bit images so this process cannot be applied directly. Instead, I adopted the

usage of binary inputs to get around this issue. Using binary input images results

in information loss. However, results demonstrate that good results can be obtained

with them.

4.2 Tracking Techniques

The previously discussed techniques allow us to visualise the position of microor-

ganisms in two or three dimensions in just a moment in time. To be able to obtain

characteristics of the movement and how these microbes explore their surroundings,

it is necessary to obtain their positions in a range of time. We can then compute

speed, turn angle, and other metrics related to the microorganisms’ movement.
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Figure 4.4: Coordinates obtained with digital holographic microscopy. Colour indi-
cates time. By eye, it is evident that there are three individual tracks, however, these
coordinates have not been processed with a tracking algorithm. In other words, track
labels have not been assigned to the data points.

By processing each hologram in a sequence of recorded images, we obtain a

collection of three-dimensional coordinates, each with a different label of time (see

Fig. 4.4). However, if we want to study individual microbes, we need to be able

to distinguish individual trajectories from our collection of coordinates. This process

can be done manually, but in a sample with many cells, it becomes necessary to use

computer algorithms to do so. Several of the most common methods are discussed

below.

4.2.1 Search Sphere Tracking

Search sphere tracking is one of the most common tracking ideas used for particle

tracking problems (see Fig. 4.5).
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Figure 4.5: Coordinates obtained with DHM. Detection of individual trajectories is
needed.

The idea behind it is quite simple. Let ri = (xi,yi,zi) be the position of a particle at

time ti, then from the collection of data points at time ti+1, we choose the coordinate

that is within a user-defined distance ε from ri. If there are several coordinates that

lie within that distance, then the coordinate that is chosen is the one that is closest

to ri. This process is repeated until all tracks are detected (see Fig. 4.6).
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Figure 4.6: Search sphere algorithm. A distance ε and an initial cell position (r0) time
t0 are chosen. Distances to cells at the next time step, t1, are computed. If a cell lies
within a sphere with radius ε from r0, it is chosen as part of the track and the process
is repeated to select the next position. If more than one cell lies within the ε-sphere,
then the cell that is closest to r0 is chosen for the track.

Although this process is quite straightforward, there are some considerations to

be taken into account. Most data sets are not perfect and clean so some of the tra-

jectories seen in the raw data may miss one or more data points at some specific

times. To get around this, another parameter, frame skip, is defined. This parame-

ter allows the algorithm to cope with this issue when there is no coordinate that lies

within the ε-sphere. Instead, it recalculates the distances of cells at the next time

step hoping to find coordinates within the ε-sphere. This process can be repeated

several times equal to the frame skip parameter. For example, if frame skip = 5, then

the process can happen five times. If during these five iterations, no coordinate is

found within the ε-sphere, then the track is discarded and a new starting position is

initialised. This algorithm was written and developed in Python by me and it is used

to compare the tracking methods discussed below. It is important to mention that
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this algorithm works only for the bacteria that are present in the first frame of the

video. It does not take into account cells that enter the data set at a time different

than the initial time. Once tracks have been detected, tracks shorter than a certain

user-defined threshold can be discarded. There are very sophisticated tracking soft-

ware such as TrackMate [79] that allow particle tracking in two and three dimensions

based on different particle linking methods such as LAP trackers, Kalman tracker,

Overlap tracker and Nearest-Neighbor tracker. I decided to develop the in-house

search sphere tracking algorithm to deal with specific data files and formats that are

used in the laboratory.

4.2.2 Machine Learning: Clustering Applications

In 1959, the term machine learning was firstly used by Arthur Samuel, an IBM em-

ployee who worked in artificial intelligence and computer gaming [80]. Machine

learning comes from the question of how to construct computer programs that auto-

matically improve with experience? Machine Learning tries to understand and build

models that “learn”. This means that these methods use data to improve perfor-

mance on some set of tasks, from detecting fraudulent credit card transactions, spam

filtering systems, text analysis (natural language processing) on social networks,

computer vision, etc [81]. The difference with normal computer algorithms is that

traditional programming is a manual process. This means that a person creates the

program and its logic in a declarative way. On the other hand, machine learning algo-

rithms can automatically formulate rules from the data without explicit programming.

Generally speaking, machine learning can be divided into three branches: super-

vised learning, unsupervised learning, and reinforcement learning. Reinforcement

learning aims to understand and develop an autonomous agent that, by sensing and

interacting with its environment, can learn the optical conditions to achieve its goal

[81]. In this work, we will only consider supervised and unsupervised learning.
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Supervised learning

Supervised learning algorithms try to model relationships between input variables

and output variables. The objective is to be able to predict output values of new data

based on the relationships learned from previous data sets (training data sets). The

computer is fed with training data that contain “labeled” data. It means that the data

is already tagged with the correct answer. From this data the computer should be

able to learn patterns embedded in the data so when new data is introduced, the

computer will be able to produce accurate predictions.

The most common tasks that these algorithms perform are regression and clas-

sification. Output values can be continuous, like the price of a house depending on

location and size, but also can be discrete values. For example, logistic regression

assigns tags between binary classes and can be used to predict if a person is at risk

of developing heart disease based on characteristics such as age, sex, body mass

index, etc [82].

Some of the most common supervised learning algorithms are linear regression,

logistic regression, decision trees, SVM or support vector machines (see Fig. 4.7)

and neural networks.

Figure 4.7: Classification example using support vector machine algorithm. SVM are
supervised learning models used for classification tasks. The main idea is to find the
hyperplane that maximises the margin [83].
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As an example, Fig. 4.7 shows how a support vector machine works. Support

vector machines are used for classification tasks. With training data, as shown in

Fig. 4.7, the objective is to find the hyperplane that maximises the margin. After this

hyperplane has been found, new data points can be classified depending on which

side of the hyperplane they are.

Unsupervised learning

In contrast with supervised learning, in unsupervised learning, the data fed to the

learning algorithm does not contain labels. The goal of unsupervised learning is to

learn the structure and discover hidden patterns in the data. As for classification

tasks, cluster analysis is the assignment of a set of observations into subsets to that

the observations within the same cluster are similar to each other. These algorithms

are useful in cases where the user does not know what to look for in the data. There

is a huge variety of these algorithms and their performance depends greatly on the

nature of the data set it is applied to (see Fig 4.8).
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Figure 4.8: Performance of clustering algorithms on data sets with different charac-
teristics. The nature of the data set greatly influences the results of the clustering
algorithms. Figure adapted from [84].

The performance of several clustering algorithms on different data sets is shown

in Fig. 4.8. As it can be seen, the accuracy is greatly dependent on the nature of the

data set and the nature of the methodology each algorithm use. K-Means works fine

for blob-shaped data while DBSCAN is accurate for concentric circle-shaped data.

Cluster Analysis

Classification of objects into groups is a task that every person performs daily. In

the past, classifying data or ”clustering” relied on the perceptions of the researcher.

In other words, this task was done subjectively. More recently, as computers are

available and have enormous computing power, automated algorithms have been

implemented to perform automatic data classification, based solely on the data it-

self. Nowadays, with the rise of data science, these clustering algorithms are being

applied in different areas of research and in industry, such as artificial intelligence,
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pattern recognition, ecology, economics, geosciences, banking, politics, marketing,

etc. There is a wide diversity of these algorithms because of the huge diversity of ap-

plications. Different applications use different data types (continuous, discrete, etc)

so the clustering method has to adapt to the application itself [85].

Most clustering algorithms can be divided into two types: hierarchical and parti-

tioning algorithms [86]. Hierarchical algorithms are based on hierarchical decompo-

sition. In essence, the data (D) is represented by a tree that splits D into smaller sub-

sets until each subset consists of just one object. Each node of the tree represents

a cluster. These algorithms do not need input parameters, however, a termination

condition has to be set. Some of these algorithms have been proven effective to

detect non-convex (arbitrarily shaped) clusters [87].

Partitioning algorithms work by dividing a database of n objects into a set of k

clusters, where k is an input parameter. To set the input parameter, prior knowledge

about the data has to be known, however, most of the time this knowledge may not

be available. These algorithms start with an initial partition of D and iteratively opti-

mise it according to a certain strategy. With this, the clusters detected by partitioning

algorithms are always convex (blobs).

In 1988, Jain [88] explored approaches based on data density to identify clus-

ters. Data are partitioned into a number of non-overlapping cells. Cells with a high

frequency of counts of data points are potential cluster centres and the boundaries

between clusters are in the low-frequency regions of the cells. This approach has the

capability of detecting clusters of any shape, however, its computing requirements

are quite expensive.
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K-Means

K-Means is one of the most popular clustering algorithms and is probably the most

widely applied clustering technique. Given a set of data points (x1,x2, ...,xn) where

each observation is a d-dimensional vector, K-Means stores k centroids that are used

to define the clusters S = (S1,S2, ...,Sk). A point is considered to belong to a particular

cluster if it is closer to that cluster’s centroid than any other centroid. Basically, what

the algorithm does is to find the best centroids by alternating between the assignment

of data points to clusters based on current centroids and the choosing of centroids

based on the current assignment of data point to clusters [89, 88]. The objective

is to minimize the sum of squared distances of all the clusters with respect to their

centroids, i.e.,

argmin
k

∑
i=1

∑
x∈Si

||x−µi||2 (4.4)

where µi is the mean of data points in cluster Si. The assignment step assigns

each data point to the cluster closer to itself. All data points should be assigned

to only one cluster. The update step recalculates the centroids by taking the mean

of the data points assigned to each cluster. This process can be run indefinitely,

however, it is chosen to have converged when the centroids coordinates no longer

change (see Fig. 4.9).
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Figure 4.9: K-Means algorithm procedure. (a) Choose the number of clusters k. (b)
Select k random points from the data as centroids. (c) Assign all the points to the
closest cluster centroid. (d) Recalculate the centroids with the newly formed clusters.
(e) Repeat (c) and (d) until convergence.

Figure 4.10: Samples of raw data shaped in (a) blobs and (c) lines. (b) Clusters
detected with K-Means with k = 3. (d) Clusters detected with k = 2.
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From Fig. 4.10 it is evident that the shape of the data is very important for accu-

racy when determining the clusters. K-Means has its limitations when the shape of

the clusters is not convex or blob-like. It is not guaranteed to find the optimum com-

bination of centroids as it is heavily dependent on the choosing of the initial clusters.

There are algorithms such as K-Means++ that propose a method to find the optical

initial clusters by assuming that spreading out the k initial cluster centres is a good

thing. Details on this can be found elsewhere [90].

DBSCAN

Density-Based Spectral Clustering of Applications with Noise (DBSCAN) is an un-

supervised learning method that identifies clusters of data based on the idea that

a cluster is a continuous region of high data density, separated from other clusters

by regions of low density. It can detect clusters of arbitrarily shapes and sizes from

big data sets and is resilient to noise and outliers. It was first proposed in 1996 to

meet the requirements that clustering algorithms should have when used in large

data sets: 1) minimal knowledge to determine input parameters, 2) detect clusters

with arbitrary shape, and 3) good efficiency on large databases [86].

The working principle of DBSCAN is that it groups together points with many

nearby neighbours (high density), and marks them as outliers point that lie alone in

low-density regions. It depends on two parameters. The first one, M, is the mini-

mum number of points clustered together for a region to be considered dense. The

second one, ε, is a distance defined by the user to be used to locate points in the

neighbourhood of a cluster point. After the algorithm is complete, there are three

different types of data points:

1. Core: it has at least M points within distance ε.

2. Border: it has at least one core point within distance ε.
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3. Noise: it has neither a core point nor a border point. It is less than M points

within distance ε.

The algorithm starts by selecting an arbitrary starting point. Then, the data points

that lie within the ε-neighbourhood are identified. If this collection has at least M

points (including the original data point), a cluster is started. Otherwise, the point is

labelled as noise. If a point is found to be in a dense part of a cluster, then its ε-

neighbourhood is also part of the cluster. The process is repeated until all the cluster

is connected. Afterwards, a not visited data point is selected to initialise the process

again (see Fig. 4.11).

Figure 4.11: DBSCAN working principle example. In this figure, M = 4. The process
starts with point A. All red points are core points because the ε-neighborhood if these
points contain at least M points. These core points form a cluster. Points B and C are
reachable from A via other core points, so they belong the cluster and are labeled as
border points. Point N is labeled as a noise point because it is not a core point and
is not reachable thus it does not belong to the cluster Image was obtained from [91].

The main advantages DBSCAN has with respect to other clustering algorithms

are that it does not require previous knowledge of the number of clusters in the data

set. Also, DBSCAN can detect arbitrarily shaped clusters, even when the cluster is
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surrounded by another cluster (see Fig. 4.12). Both clusters remain separate due to

the correct choosing of M and ε if the data is well understood. Another advantage

of DBSCAN is that it is robust to noise and to outliers. Some disadvantages are that

border points that are close to more than one cluster can be chosen for either cluster.

Also, DBSCAN is very sensitive to the chosen distance measure (Euclidean distance

most of the time), especially for high-dimensional data.

Figure 4.12: Comparison in accuracy between DBSCAN and K-Means. (a) and (b)
are raw data examples. (c) and (d) are clusters detected using DBSCAN with ε = 0.2
and M = 10. (e) and (f) are clusters detected using K-Means with k = 2.

From Fig. 4.12, it is evident that the clusters are arbitrarily shaped and close to

each other. While K-Means does not handle the shapes correctly, DBSCAN is able

to identify the clusters with their true shape.
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Chapter 5

Results

5.1 Experimental Set-up

For all imaging experiments, a standard experimental holographic microscopy set-

up was used. This set-up consisted of a Nikon ECLIPSE Ti microscope with optics

optimised for visible high wavelengths. The illumination was provided by a THOR-

LABS temperature-controlled diode laser with a wavelength of 642 nm coupled to

the microscope with a single-mode optical fiber. Holograms were recorded with a

MIKROTRON EoSENS CMOS Camera with a resolution of 1280x1024 pixels with

a sampling frequency of 0.711 px/µm and up to 500 full frames per second. The

camera was controlled by EPIX XCAP V3.8 software. This optical system was posi-

tioned on an optical table (THORLABS Nexus) to reduce noise by damping external

vibrations from the surrounding environment. The experimental set-up can be seen

in Figure 5.1. For the Archea videos, a 20x (air, NA 0.5) microscope objective was

used, while for the E. coli videos I used a 40x (air, NA 0.75) microscope objective.

The software to perform all the calculations for wavefront reconstructions, particle

localisation and tracking can be found in [92].
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Figure 5.1: (a) Schematic representation of the optical set-up for holographic mi-
croscopy. A laser illuminates the sample and a hologram is recorded. (b) Photograph
of the actual set-up used for experimentation.

In this set-up, several objective lenses can be attached. For the experiments

shown in this thesis, two microscope objectives with magnifications of 20x and 40x

respectively were used. This magnification enables a large field of view to accurately

detect light scattered from weakly-scattering objects.

The recorded videos have different sizes for the purpose of experimentation.

From 400x400 pixels ups to approximate 1000x1000 pixels. The CMOS camera was

controlled by software to ensure that all the sensor’s regions were exposed at the

same time, and the camera was connected to a frame grabber card with a RAM of

4GB to enable fast acquisition of uncompressed video to be saved to be processed

afterwards.
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5.2 Analysis Considerations

5.2.1 Track Smoothing and Isolation of Swimmers

To analyse a bacterial track, it is necessary to remove any remaining noise (cam-

era and vibrations from the environment) from the detected coordinates. For this,

the “linked” tracks were smoothed using a spline smoothing algorithm programmed

in Python. A piecewise cubic spline was fitted to the data. Selecting a balance

parameter, p, which lies within 0 and 1, the smoothness of the fit can be controlled.

Examples on the effect of the balance parameter can be seen in Figure 5.2. Python’s

implementation of this algorithm is based on the algorithm proposed by Carl de Boor

in his book “A Practical Guide to Splines” [93]. This algorithm aims to minimise

p
n

∑
j=1

w j|y j − f (x j)|2 +(1− p)
∫ xn−1

x0

λ (x)|D2 f (x)|2dx (5.1)

where p is the balance parameter, y j and xi are the dependent and independent

variables respectively, and w j is the weight assigned to each element (in this thesis

the weights are equal for every data point). D2( f (x)) denotes the second derivative

of the function f and λ (x) is the piecewise function that controls the smoothness of

each interval between consecutive data points. Details can be found in [93, 94, 95].
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Figure 5.2: Example of applying a smoothing cubic spline with balance parameters
of p = 0, p = 1, and p = 0.8 to data points of a sine wave. The closer p gets to 1, the
closer the fit gets to the data points.

As the aim of this work is to study swimming bacteria, we should be able to de-

termine, from a sample, which cells are swimming and which are not. To isolate

swimming cells we use the mean squared displacement as the cells that are not

swimming, are undergoing Brownian motion. As seen in Chapter 1, section 1.4,

mean squared displacement allows us to discriminate between motile (superdiffu-

sion) and non-motile (diffusion or subdiffusion) cells as shown in Fig. 1.6. Mean

squared displacement was calculated as

MSD(τ) = ∑(rt − rt+τ)
2. (5.2)

5.2.2 Speed and Reorientation Events

There are several metrics that allow scientists to understand how bacteria explore

their surroundings. If movement is to be described, then speed is an important quan-
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tity for that purpose. In this work, speed was computed from bacterial trajectories as

vi =

√
(xi+1 − xi)2 +(yi+1 − yi)2 +(zi+1 − zi)2

ti+1 − ti
(5.3)

The motivation for studying bacteria is to understand how to respond to different

types of chemical compounds. Changes in direction allow the study of mechanisms

that make the cells explore their environment for a certain purpose. To determine

reorientation events in a track, a heuristic measure [96] was used. It is defined as

Ξ(t) =
arccos |a(t) ·a(t +1)|

∆t
·
(

1− vt

⟨v⟩t

)
(5.4)

where ∆t is the time between successive coordinates in a track, vt is the cell’s

instantaneous speed, a(t) and a(t + 1) are the tangent vectors of the trajectory at

times t and t + 1 (see Fig. 5.4), and ⟨v⟩t is the average speed for the whole trajec-

tory. Peaks of this metric represent abrupt changes in direction, this allows us to

determine reorientation events (see Figure 5.3).

Figure 5.3: Ξ(t) metric example. When plotting Ξ(t) vs t, peaks represent zones
with high change in orientation. This allows us to determine where and when the
reorientation event occurred.
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Figure 5.4: Sample sinusoidal trajectory. Vectors a(t) and a(t +1) are tangent to the
trajectory at times t and t +1 respectively. θ is the angle between those vectors. The
figure was adapted from [96].

We can calculate angles between two different positions separated by a time τ as

θ =
a(t) ·a(t +1)
|a(t)||a(t +1)|

. (5.5)

5.2.3 Sample Preparation

Of the two microbes (Escherichia coli and Archaea) that were used for this thesis to

develop microscopy analysis techniques, only E. coli were grown in a wet laboratory

by me. Archaea, strain Haloarcula (HGSL), videos were provided by my supervi-

sor, who collected the samples in the Great Salt Lake in Utah in the United States

and recorded the videos using the optical set-up describe above. The Archaea were

grown in the laboratory after isolation from environmental samples. Studies of Ar-

chaea from the Boulby mine in the United Kingdom and Archaea from the Great Salt

Lake can be found elsewhere [97, 98].

As mentioned above, E. coli (HCB1) was cultivated and grown in the laboratory.

First, a saturated culture was prepared from the -80oC fridge stocks by putting a

frozen crystal of glycerol stock into a sterile glass bottle with 10 ml of Lysogeny broth

(LB) media. The bottle was then placed in an incubator at 37oC at 150 rpm shak-

ing for 8-10 hours. The culture was then removed from the incubator to prepare an
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exponential culture three or four hours before performing holography. For the expo-

nential culture, 10 µ l of saturated culture was mixed with 10 ml of LB media into a

sterile bottle and placed in the incubator at 37oC with 150 rpm shaking for 3-4 hours.

The bottle was then removed from the incubator to prepare the sample chambers to

record holographic videos.

To prepare a sample, the saturated culture was washed into motility buffer and

diluted to an appropriate concentration in motility buffer (MB) [99] to the desired

cell concentration. Sample chambers were constructed using glass slides, short

coverslips, and UV curing glue, creating a thin channel measuring approximately 5

mm × 20 mm × 250µm [70] (5.5).

Figure 5.5: Schematic of the sample chambers. All components were fixed using
optical glue. Sample chamber edges were sealed using nail polish.

5.3 Modified Propagator

This results section compares the motility features of trajectories of Archaea obtained

with the proposed modified propagator scheme against our standard Rayleigh-Sommerfeld/Gouy

phase methodology. The video analysed was recorded with the hologram recording
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optical set-up described above with a 20x (air, NA 0.5) magnification microscope ob-

jective recording with a frequency of 30 Hz and an exposure time of 150 µs, resulting

in a video of 512x512 pixels and 2000 frames, lasting in total 66.6 s. This video was

cropped to a 226×226 pixel region for further analysis.

For the original and the modified schemes, the propagation consisted of 50 refo-

cused images in steps of 2.5 µm from the recording (focal) plane as the axial resolu-

tion is ∆z = 2λ/NA2 = 5.13µm. As the camera sensor sampling frequency was 1.422

px/µm, the resulting image stack of refocused images comprised a volume of roughly

159 µm x 159 µm x 125 µm. Three-dimensional coordinates from these stacks were

obtained with the technique described in chapter 3, section 3.1.1, and the tracks

were detected using the Search Sphere Algorithm. After the tracks were smoothed,

the tracks of swimming cells were identified using the mean squared displacement

method. Fig. 5.6 shows the tracks detected by the means of both schemes.

(a) Rayleigh-Sommerfeld (b) Modified Propagator

Figure 5.6: Archaea smoothed tracks obtained with search sphere algorithm. (a)
Raw data points were obtained using Rayleigh-Sommerfeld propagation. (b) Raw
data points were obtained using the modified propagator scheme; the two sets of
data are indistinguishable by eye.
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By visual inspection, it is noticeable that both schemes produce virtually identical

tracks. For further inspection, three cells were selected for closer inspection (see

Fig. 5.7).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.7: 3D trajectories of Archaea linked with search sphere algorithm. Red
dots represent raw data and black lines represent the smoothed trajectory. (a), (c)
and (e) were obtained using the Rayleigh-Sommerfeld scheme. (b), (d) and (f) were
obtained using the modified propagator scheme.
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To investigate in more detail how the modified propagator scheme performs in

comparison to the Rayleigh-Sommerfeld scheme, two plots were made (see Fig. 5.8)

in order to understand the precision of the modified scheme, taking as true values

Rayleigh-Sommerfeld detected positions. The track from Fig. 5.7f was compared

with the track from Fig. 5.7e. These tracks were chosen because they comprise the

largest range of z-positions, ranging from z=15 µm to z=60 µm.

(a) (b)

(c) (d)

Figure 5.8: Accuracy of modified propagator compared to Rayleigh-Sommerfeld
scheme. (a) shows raw Zmod vs Zrs compared with a straight line (m=1). (b) shows
the error of the coordinates obtained with the modified propagator with respect to the
Rayleigh-Sommerfeld propagation scheme. (c) and (d) are the same as (a) and (b)
but compare coordinates after smoothing.

By analysing this comparison, it is noticeable from Fig. 5.8a and Fig. 5.8b that

the modified propagator detects cells with precision with a mean error of -0.87 µm.

This means that, on average, the modified propagator is shifted 0.87 µm up. To com-

pare tracks without noise (camera and vibrations from the environment), the same
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comparison was made but with smoothed tracks. It showed that the smoothed tracks

were closer to each other, with a mean error of -0.82 µm. It suggests that it has

a systematic error that shifts the coordinates in one direction. From Fig. 5.8, both

raw and smoothed, are shifted above the reference. It means that even though the

coordinates are shifted, the general shape of the track is conserved. This is actually

the only thing that matters, as the insights from the track are just dependent on the

track’s shape.

The next analysis focuses on the characteristics that define the tracks. First,

the instantaneous speeds of the cells were calculated using equation 5.3. With the

Rayleigh-Sommerfeld scheme, the mean speed was 1.567 µm/s−1± 0.620 µm/s−1

(v±σv) while with the modified scheme was 1.567 µm/s−1± 0.647 µm/s−1. Accord-

ing to [96], Haloarcula sp. (HGSL) has a mean speed of 2.2 µm/s−1± 0.8 µm/s−1. It

is important to mention that in [96] they obtained the speed distribution from N=4.0

× 106 time points, while in this case there were just N=10,000 time points. The cells

used are the same as shown in Figure 5.6.
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(b)

(d)

Figure 5.9: Speed comparison of Archaea tracks obtained with search sphere algo-
rithm using (a) Rayleigh-Sommerfeld propagation and (b) modified propagation.

To continue the analysis, the angle change at every time step of the cells was

calculated using equation 5.5. With the Rayleigh-Sommerfeld scheme, the mean

angle between contiguous time steps was 16.576◦± 11.021◦ (θ ±σθ ) while with the

modified scheme was 16.496◦± 11.388 ◦. Comparing the value with the distribution

from [96], the value lies within the distribution. However, no exact value is given to

compare with the ones obtained.
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(b)

(d)

Figure 5.10: Reorientation event angle comparison of Archaea tracks obtained with
search sphere algorithm using (a) Rayleigh-Sommerfeld propagation and (b) modi-
fied propagation.

Proposing this modified propagation scheme for cell tracking reduces the number

of steps needed to obtain the three-dimensional cells’ coordinates. This affects the

computation time as shown in Table 5.1.
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Table 5.1: Performance comparison between Rayleigh-Sommerfeld propagation
scheme against modified propagation depending on video size. All calculations were
for 2000 frames.

225x226 512x512 1024x1024

RS 00:04:46 00:14:06 00:56:02
MOD 00:04:22 00:12:03 00:46:27

Speed Up 1.09x 1.17x 1.21x

Although the run time improvement shown in Table 5.1 can be considered small,

9%, for smaller video sizes, the improvement increases as the video size increases.

When analysing a recording of 2,000 frames with a frame size of 1024x1024, the

improvement goes up to 21%. This translates into almost 10 minutes for every hour

of computation. This may not seem much, but when analysing several videos in

batch, the run time can be reduced significantly.

5.4 Machine Learning Tracking

The purpose of this work is to develop high-throughput methodologies for tracking

microorganisms in more efficient ways. Lately, Machine Learning techniques have

been developed to solve problems in different areas of interest (banking, industrial

production, computer science, medicine, physics, and biology). This section of the

results focuses on showing how an unsupervised machine learning clustering algo-

rithm can be used to track bacteria in three dimensions while improving computation

time dramatically. K-Means is not considered for tracking motile cells because it is

a centroid-based algorithm, which divides the entire space into regions, resulting in

the detection of incomplete and mixed individual tracks.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.11: 3D trajectories of Archaea. (a), (c) and (e) were linked with the stan-
dard search sphere algorithm, while (b), (d), and (f) were linked with DBSCAN. Raw
coordinates were obtained using the Rayleigh-Sommerfeld scheme.

DBSCAN is compared with the regular search sphere algorithm using the same
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Archaea data set as in the section above. Three-dimensional coordinates obtained

using the Rayleigh-Sommerfeld scheme will be used in the analysis.

From Fig. 5.11 it can be appreciated that the smoothed tracks detected using DB-

SCAN are almost identical to the ones detected with the search sphere algorithm.

Due to the nature of DBSCAN, some extra coordinates may have been assigned

to the track as the algorithm does not discriminate coordinates depending on time.

However, track cleaning software routines were written to cope with “time-duplicates”.

To further analyse if the tracks detected with DBSCAN are similar to the ones

detected using the search sphere algorithm, track metrics were calculated similarly

to the previous section. First, the mean speeds of all the tracks detected with both

algorithms were obtained (see Fig. 5.12. The mean speeds were 1.567 µm/s−1±

0.620 µm/s−1 and 1.569 µm/s−1± 0.614 µm/s−1 for search sphere and DBSCAN

respectively. This shows that both detection algorithms assign virtually the same

coordinates to the tracks.
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(a)

(b)

Figure 5.12: Speed comparison of Archaea tracks obtained with search sphere al-
gorithm (a) and DBSCAN (b).

Angle change was computed (see Fig. 5.13). With the search sphere algorithm,

the mean angle between contiguous time steps was 16.576◦± 11.021◦ (θ ±σθ ) while

with DBSCAN, the mean angle was 16.637◦± 11.097 ◦.
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(b)

(d)

Figure 5.13: Reorientation event angle comparison of Archaea tracks obtained with
search sphere algorithm using (a) Rayleigh-Sommerfeld propagation and (b) modi-
fied propagation.

It is evident that both algorithms, when conditions are suitable (see 6), detect

tracks similarly. However, the most important difference between these algorithms

is their computation performance. Table 5.2 shows that DBSCAN represents a dra-

matic improvement in bacteria tracking with computation times up to 57 times faster.

It is important to mention that this cell sample is very dilute. Track detection algo-
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rithms are sensitive to how many data points (cells) are present in the field of view.

Even so, DBSCAN will outperform any search sphere tracking algorithm due to its

multiprocessing (usage of several CPU cores at the same time) capability.

Table 5.2: Performance comparison between search sphere algorithm and DBSCAN.

Data set Search Sphere [s] DBSCAN [s] Speed-up

RS 10.0188 s 0.2229 s 44.95x
MOD 11.0835 s 0.1919 s 57.76x

5.5 Correlation Tracking

As an alternative to digital holographic microscopy, image cross-correlation applied

for particle localisation has been shown effective for this purpose [53]. For this, a

library of target images of bacteria diffraction patterns has to be created experimen-

tally, which can be time-consuming. In this work, the capability of digital holographic

microscopy to refocus microscopy images at different distances from the focal plane

is exploited to create the target image library.

Additionally to computing the image cross-correlations between the recorded

video and the target images (following Taute et. al. [53]), in this work, the option

of computing the image cross-correlation using a GPU and an “optical computer” is

explored.

5.5.1 Considerations

The two-dimensional zero-normalised cross-correlation of a pair of images A(x,y)

and B(x,y) , each consisting of n pixels, is given by

C(x,y) =
1
n ∑

x,y

(A(x,y)−µA)(B(x,y)−µB)

σAσB
, (5.6)

84



and can be computed in Fourier space to exploit GPU and Optical correlation func-

tionalities. Performing this computation in a GPU has the advantage that it supports

binary data to floating point numbers. The recorded videos are grayscale or 8-bit

with values ranging from 0 to 255. After the computation of the cross-correlation, the

resulting values are floating point arrays, which can encode large amounts of infor-

mation. This enables us to compute the zero-normalised cross-correlation to make

the computation robust to brightness differences between images. Even though the

optical computer system has the capability to correlate 8-bit images, the camera res-

olution is still 8-bit. This results in information loss, making the resulting images

sensitive to brightness differences between input images. In this thesis, the optical

computer’s capability of performing fast (120 Hz) and parallelised correlations com-

putation of binary input images is exploited. By making the input images binary, there

is information loss. However, it is demonstrated below that good results can be ob-

tained. The optical computer formats the input and target images to fit the system’s

spatial light modulators and the camera. As a consequence, all correlation images

have the same size of 1216x756 pixels, irrespective of the original ”digital” size.

5.5.2 Image Cross-Correlation Results

This results section is focused on comparing both image cross-correlation alterna-

tives (GPU and Optical) with the standard digital holographic microscopy based on

Rayleigh-Sommerfeld propagation. Examples of correlation images obtained with a

GPU and the optical computer are shown in Figure 5.15. As the size of diffraction

patterns is very important for target matching problems, a magnification of 60x (air,

NA 0.75) was used to record a sample of E. coli at 60 fps with an exposure time of

1.259 µs for a duration of 7.16 s. Each of the 430 frames of the recorded video was

700x700 in size which corresponds to a field of view of 164 µm x 164 µm.
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For creating the target images, DHM and track detection using the search sphere

algorithm were performed. By visual inspection, a cell that reached a high z-position

was selected to be used as the template for the target images library. Its position

relative to the focal plane was recorded as z0=121.1 µm. The library consists of 25

target images in steps of 5 µm, ranging from z=121.1µm to z=1.1µm 5.14.

Figure 5.14: Target image library creation. (a) Cell selection as a template to create
target images. (b) Target images were by using Rayleigh-Sommerfeld propagation
at distances ranging from 121.1-1.1 µm from the focal plane. All images have the
same scale.

Particle localisation in 3D was performed with an in-house built software written

in Python. The i’th image stack of correlation images corresponds to the i’th video

frame cross-correlated with all target images. The j’th slice of this image stack is the

cross-correlation between the i’th frame with the j’th target image. Then, a projection

across z-axis is made to detect the cells’ two-dimensional positions in the (x,y) plane

(see Fig. 5.16).
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Figure 5.15: Example of correlation images computed by (a) GPU and (b) optical
computer.

Figure 5.16: Cell localisation in 3D from a GPU computed cross-correlation. (a)
Correlation images of the first video frame with some target images. All images have
the same scale. (b) Z-projection of the correlation images to localise bacteria in (x,y).

Once the cells have been localised in two dimensions, to obtain z, at every de-
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tected cell’s position in two dimensions, the maximum intensity value of the frame

stack along the z-axis is selected. Once this value is located along z, the cell’s three-

dimensional position has been found. Examples of smoothed tracks obtained with

DHM, GPU correlation, and optical correlation 5.17 indicate that the three methods

produce similar tracks.

(a) DHM (b) GPU Correlation

(c) Optical Correlation

Figure 5.17: Example of E. coli tracks obtained with (a) digital holographic mi-
croscopy, (b) GPU correlation and (c) Optical correlation.
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Optical correlation has problems when two cells overlap at a certain time step.

This overlapping cause the diffraction patterns to overlap. When correlating the ”cor-

rect” target image, it may not produce a peak high enough to be detected by the

algorithm. A certain threshold can be adjusted for this purpose, however, when the

images are noisy, the generated peak is less likely to rise above this threshold. GPU

correlation seems to cope with this problem as it detects the complete tracks (by

visually inspecting the video), even when two cells overlap. In this case, due to the

noisy nature of the video, DHM cuts the lower left track because of the overlapping

event.

To further analyse if the tracks obtained with correlation analysis, track metrics

were calculated similarly to the previous sections. First, the mean speeds of all the

tracks detected with the three schemes were obtained (see Fig. 5.18. The mean

speeds were 20.239 µm/s−1± 6.430 µm/s−1, 21.452 µm/s−1± 5.856 µm/s−1, and

21.986 µm/s−1± 5.931 µm/s−1 for DHM, GPU correlation and optical correlation

respectively. These measurements agree with the speed reported in the literature,

ranging from 15 µm/s−1 to 30 µm/s−1 [28].
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(a)

(b)

(c)

Figure 5.18: Mean speed comparison of E. coli smoothed tracks obtained (a) digital
holographic microscopy, (b) GPU correlation and (c) optical correlation.
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(a)

(b)

(c)

Figure 5.19: Mean angle change of E. coli trajectories obtained with (a) digital holo-
graphic microscopy, (b) GPU correlation and (c) Optical correlation.
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The mean angle change between subsequent time steps of E. coli cells (see Fig.

5.19) is 1.899◦± 1.302◦, 1.515◦± 1.223 ◦, and 1.022◦± 0.801 ◦ for DHM, GPU cor-

relation and optical correlation respectively. In all cases, the mean angle change

is close to one degree. It makes sense because E.coli moves in a run and tumble

fashion so, during runs, the angle change between subsequent positions is small

due to Brownian motion. There are a few significant reorientation events. As a con-

sequence, the tails of the angle change distributions present values up to 40◦. The

same track for all schemes was selected for comparison to analyse the localisation

accuracy along the longest range (20 µ to 115 µm) in the axial direction (see Fig.

5.20).

Figure 5.20: Tracks of the same cell obtained with digital holographic microscopy
(black), GPU correlation (red), and optical correlation (blue).
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(a) (b)

(c) (d)

Figure 5.21: Correlation schemes accuracy compared with DHM detected coordi-
nates. (a) GPU z vs DHM z. The straight line represents equal accuracy. (b) The
error of GPU localisation against DHM localisation. c) and (d) are the same as (a)
and (b) but comparing Optical correlation z localisation against DHM.

As seen in Fig. 5.21, GPU correlation localise cells within 2.5 µm with respect to

DHM. The obtained z coordinates are within 1 µm in the range from 35 µm to 110

µm. As for optical correlation, the detected positions lie within 7 µm with respect

to DHM. In all cases, optical correlation coordinates are above DHM coordinates,

suggesting a systematic error in detection. This does not produce a significant track

shape deformation as the mean speed and mean angle change metrics are close to

the reference.

The objective of studying image cross-correlation, specifically optical correlation

cell localisation, is to be able to improve runtime with respect to current methods

that are computationally expensive, without losing accuracy. As mentioned above,
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Table 5.3: Performance comparison of GPU and Optical correlations depending on
a number of combinations between input images and target images, and image size.
A column for DHM is included to compare performance.

GPU Opical DHM
# Frames # Target Images # Total Correlations Run time Run time Run time

Archaea 400 (400x400) 24 (64x64) 9200 00:01:32 00:01:18 00:01:42
Archaea 400 (800x800) 24 (64x64) 9200 00:05:02 00:01:19 00:06:37
Archaea 400 (1000x1000) 24 (64x64) 9200 00:07:57 00:01:18 00:10:18

Ecoli Video 1 430 (700x700) 25 (80x80) 10750 00:04:17 00:01:33 00:07:40
Ecoli Video 1 430 (700x700) 25 (160x160) 10750 00:04:28 00:01:32 00:07:40
Ecoli Video 2 700 (700x700) 20 (170x170) 17500 00:06:00 00:02:31 00:08:40
Ecoli Video 2 1400 (700x700) 20 (170x170) 20000 Memory Error 00:05:00 00:17:10

Optical correlation runtime is not dependent on input image size, while GPU corre-

lation and DHM are heavily dependent on it. To prove this, computation using the

three methods with varying input images was performed. In all cases, DHM and CPU

show a dependence on input image size while Optical correlation shows it is not de-

pendent. Also, all methods are dependent on the number of input images (frames

and target images) as they define the total number of correlation images to be com-

puted. This scenario was tested and all methods show dependence as expected.

More importantly, the GPU correlation shows up to 70% runtime improvement while

optical correlation shows up to 1000% runtime improvement, both with respect to

digital holographic microscopy three-dimensional cell localisation.
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Chapter 6

Conclusions

6.1 Modified Propagator

In Chapter 3, the proposed modified propagator was introduced as an alternative to

the usual Rayleigh-Sommerfeld propagation and Sobel-type kernel convolution. On

the latter scheme, the Sobel-type kernel convolution is performed to approximate the

derivative along the z-axis to then find intensity changes that represent cells. The

modified propagator scheme computes in one step the derivative along z during the

propagation process. This reduces memory usage and computation time because it

avoids the calculation of a 3D Sobel-type kernel convolution at every time step. This

results in a runtime improvement, more noticeable when the images to be analysed

increase in size. From the data presented, with both schemes, the runtime increases

quadratically (see Fig. 6.1) with the lateral size of the images and linearly with the

number of frames of the video (as each frame is analysed in virtually the same time).

Although most applications used in this research do not require videos with lateral

size larger than 1024 pixels, in other applications higher image acquisition rates for

longer periods of time may be useful. In general, to study microbes’ movement

several recordings are obtained to then be processed in batches. To analyse several

videos is time-consuming so any reduction in time for each video can become a

95



Figure 6.1: Runtime comparison between Rayleigh-Sommerfeld localisation (blue
dots) and the modified propagator (red hexagons). The blue and red lines are
quadratic fits respectively.

significant reduction of time overall.

6.2 Machine Learning for Tracking

In Chapter 4, an alternative approach based on machine learning clustering algo-

rithms for particle tracking (coordinate stitching) was introduced (DBSCAN). Tests

were performed in order to compare DBSCAN with the currently used search sphere

algorithm. It was found that DBSCAN identifies individual trajectories up to 60 times

faster than the search sphere algorithm. This is partly because DBSCAN is im-

plemented in parallel, allowing all the cores of the computer’s CPU to work at the

same time. In contrast, the search sphere algorithm, as it is implemented, cannot be

parallelised because each frame is considered sequentially, and allocation to tracks

depends on previous time points. Although there are studies in which artificial intel-

ligence, deep learning or machine learning is used to study microbes, in most cases

neural networks are used for microbe detection and counting [100, 101] rather than
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tracking. In some cases, supervised learning techniques such as K-Nearest Neigh-

bours are used for bacteria tracking [102, 103]. However, by design, this method is

(to some extent) equivalent to the search sphere algorithm developed for this thesis.

Unsupervised learning and clustering techniques have not been explored, besides

this work, for tracking bacteria in 3D.

This dramatic increase in runtime is important because currently, the aim in sight

is to be able to track cells in real-time, which would mean visualising moving cells

in a 3D microscope. Other machine learning approaches are currently under study

(see below), however, this objective is still to be met.

6.3 Correlation Tracking

Image cross-correlation cell thee-dimensional tracking has been explored in other

work [53]. In this thesis the hardware used for computing the correlations was differ-

ent. The parallelism capacity of graphical processing units (GPU) was exploited as

image cross-correlation can be computed as an array multiplication in Fourier space.

In consequence, GPU cross-correlations are performed significantly faster than with

a regular central processing unit (CPU). Correlation tracking computation time for lo-

calising cells in three dimensions is 70% faster than the Rayleigh-Sommerfeld/Sobel

scheme. This thesis also considers the development of a technique that uses op-

tical image-cross correlation for cell localisation. Comparing computation time with

respect to the Rayleigh-Sommerfeld/Sobel scheme, up to 1000% runtime improve-

ment was found. This part of the project was aiming to reduce the gap to be able

to track bacteria in three dimensions in real-time. Good results were obtained when

comparing the tracks obtained with the other methods, however, there were a lot of

technical difficulties to overcome. The most important one is that the optical corre-

lation acquisition rate is dependent on the SLM switching frequency and camera ac-

quisition rate. With a cleverly designed device by Optalysys Ltd., multiplexing can be
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exploited to increase the acquisition rate. This device has the capability to correlate

8-bit images, however, the resulting correlation images’ resolution is also 8-bit. The

“target images” library is created using Rayleigh-Sommerfeld propagation, and most

of the time these refocused images require careful intensity normalisation. Normally,

to cope with this, zero-mean cross-correlation is used, but because the SLMs and

cameras are 8-bit, this cannot be achieved. In this work, binary input images (video

frames and target images) were used to produce the strongest correlation possible

while exploiting the fast switching capability of binary SLMs. Evidently, there is a

trade-off between strong correlation and speed, however, the results show that with

clever manipulation and post-processing, the correlation peaks are big enough to

detect cells’ positions. As optical correlation runtime does not depend on image size

(images still need to fit within the SLM size), optical correlation should be used for

applications with large image sizes as GPU correlation may saturate the computer’s

memory. When images are small, then GPU correlation is suitable to deal with the

task as more defined correlation peaks can be obtained. If the target images are

small (have low information content), then GPU correlation should be preferred, as

zero-mean cross-correlation can be computed. If these ”small” target images are

fed to the optical correlation system, then the obtained correlation peaks may not

be higher than the noise of the system. In this work, optical correlation was used

with target image sizes of 80×80 pixels. The video was recorded with a 40x mag-

nification objective lens to maximise the information content embedded in the target

images as the recorded diffraction patterns were sufficiently big. Some tests were

made for the Archaea data (recorded with 20x magnification), which are smaller (ap-

proximately half the diameter of E. coli) used for modified propagation and machine

learning tracking, however, the diffraction rings were small. In consequence, the cor-

relation peaks obtained were no bigger than the system’s noise. On the other hand,

the same test was performed for GPU correlation, and the results were satisfactory

because GPUs support floating point numbers, maximising the information content

used in the calculation. As an improvement, the usage of 16-bit SLMs and cam-
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eras may produce more defined correlation peaks while also recording less noisy

images. This should more accurate detection along all axis. This thesis serves as a

proof of concept for particle tracking using optical correlation, however, further work

is needed to tune the system and apply modifications to produce better results.

The intention of this entire work is to enable scientists to study accurately and

fast how microorganisms explore their surroundings to be able to obtain insights

that will help them unravel the mechanisms behind these movements. If we are

able to unravel and understand these mechanisms, then we may be able to harness

bacterial movement for a specific purpose. For example, harness predatory bacteria

to be able to treat infections. The techniques proposed (particle localisation using

image cross correlation calculated with a Graphics Processing Unit or an ”Optical

Computer”, and bacteria 3D tracking using Machine Learning present advances in

producing desired results in a faster fashion than the techniques normally used.)

6.4 Future Work

As for particle tracking, DBSCAN is very fast to stitch individual trajectories. However,

its implementation for real-time cell tracking is not trivial. Other methods are being

explored for this. For example training different types of neural networks (CNN, RNN,

etc) with a labelled diffraction pattern library [104, 105, 106, 107, 108] can be helpful

for applying a computer vision model to the video being recorded and optimising and

extracting sample’s information. Also, further track analysis to identify trajectories

substructure should be explored in addition to the current track metrics (speed and

turn angle) approach. Interesting details of the tracks can be seen in Figure 5.6 and

more information about the swimming behaviour, for example, wobbling depending

on the action of the flagella of sample species, can can be obtained. This studies

present a start point to further develop these approaches to obtain faster and more

reliable options to study microorganisms.
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Although optical correlation is faster than the Rayleigh-Sommerfeld/Sobel scheme

to localise cells in three dimensions, the accuracy of this method is less accurate,

showing a ∼7 µm deviation from “ground truth” values (Rayleigh.Sommerfeld /Sobel

scheme). This offset appears to be a systematic error (see Fig 5.21) as it appears in

most of the coordinates tested. Further investigation on tuning the system to improve

contrast for 8-bit SLMs is needed to improve axial resolution. Furthermore, if more

robust hardware such as 16-bit SLMs and cameras are used, this improvement may

be obtained. To bring this methodology closer to real-time bacteria tracking, further

investigation and optimisation is needed.
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