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Abstract

Current electroencephalogram (EEG) based brain-computer interface (BCI) systems have lim-

ited real-world practicality due to a number of issues, including the long calibration period

required before each use. This thesis focuses on reducing the time required to calibrate the

BCI system without sacrificing classification accuracy. To address this issue, previously col-

lected EEG data could be potentially mined and reused in calibrating the BCI model for a

new user/session. However, this is not a trivial task due to two key challenges. First, there

are considerable non-stationarities between the current and previously collected EEG signals.

Secondly, due to between-session variations, not all the previously collected EEG signals are

helpful in training the new BCI model.

Initially, the thesis explored the application of distribution alignment techniques to reduce

the effects of EEG non-stationarity. A novel multiclass data space alignment (MDSA) algo-

rithm was proposed and evaluated. Our results showed that the proposed MDSA alignment

algorithm successfully improved the classification accuracy and reduced the effects of non-

stationarity.

The thesis then addressed the second challenge by developing a new framework. This

framework utilised a new algorithm that identifies whether or not the new session would ben-

efit from transfer learning. If so, a novel similarity measurement, called the Jensen-Shannon

Ratio (JSR), was proposed to select one of the past session for training the BCI model. The

proposed framework outperformed state-of-the-art algorithms when there were as few as five

labelled trials per class available from the new session. Despite success to some extent the pro-

posed framework was limited to a binary selection between only one of the past sessions and

current data for training the BCI model.
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Finally, the thesis utilised the findings of the previous research in order to address both

challenges. A novel transfer learning framework was proposed for long-term BCI users. The

proposed framework utilised regularisation, alignment and weighting to train a BCI which

outperformed state-of-the-art algorithms even when only two trials per class from the new

session were available.
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Chapter 1

Introduction

1.1 Background

Brain-computer interfaces (BCI) are systems designed to allow direct communication between

the brain and a computer without the need for any additional input from the user [2]. This

technology is beneficial for people who suffer from severe impairments with movement, such

as locked-in patients, as the BCI can help to replace lost movements and communication [3].

Recently, BCI has been successfully used for stroke rehabilitation by activating the affected

sensorimotor networks [4]. Motor imagery-based BCI (MI-BCI), using electroencephalogram

(EEG) for brain signal acquisition, is the most common form of BCI. MI-BCI changes sponta-

neous EEG signals through the imagination of movement of different parts of the body as they

can consistently be differentiated and are intuitive for the user to perform [2].

The main benefit of EEG is the high temporal resolution that can be obtained without re-

quiring the patient to have any invasive operations [2]. Using EEG, BCI systems have been

designed to control wheelchairs, robotic hands and a range of other devices to allow the users

to communicate with their environment [5]. However, although the results are promising, BCI

still requires a lot of improvement in order to be used reliably in daily life.

The significant challenges faced by EEG-BCIs are caused by the high dimensionality and

non-stationary nature of the brain signals. In addition, the EEG signals being collected to

control the BCI are affected by an extensive range of different factors including the emotions

being felt, the users’ fatigue level and several other factors [6, 7]. These changes in the EEG
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affect the properties of the features extracted by the BCI.

Given EEG signals’ high dimensionality and non-stationarity nature, MI-BCIs require a 20-

30 minute calibration session before each use of the BCI [8]. The user is asked to perform the

same actions repeatedly during this time. The collected data becomes the training data set

made up of labelled trials. The collected data from one or more of these EEG recordings are

then used to train the feature extraction model and the classifier. This extended calibration

allows the system to identify the users’ intention with relatively high accuracy in most cases,

although some users still encounter BCI deficiency [2].

Transfer learning can be potentially used to reduce the BCI calibration time without com-

promising the BCI accuracy [9]. Transfer learning is a commonly employed technique in sys-

tems engineering when only a limited amount of data is available to train the model. Transfer

learning compensates for the limited amount of labelled data available by extracting relevant

information from other similar sources or domains to improve the classification model [9].

However, transfer learning in BCI is not a trivial task due to the unique structure of every

brain and the non-stationary nature of brain signals. Furthermore, the properties of EEG sig-

nals often change considerably from session-to-session [10].

In some cases, data from a target BCI session has unique probability distributions, which

are very different from the data distributions of other sessions (i.e. source sessions). In these

cases, utilising source data can be detrimental to the classification accuracy of the target BCI

session. Thus, it is critical to identify whether or not the source data will be detrimental and

then apply some techniques to either reduce the effect of the detrimental source data on train-

ing the target BCI model or eradicate it.

To reduce the effects of the non-stationarities, various approaches have been explored and

embedded in transfer learning algorithms proposed for BCI [11,12]. These approaches primar-

ily focused on inter-subject transfer learning, evaluating the proposed solutions on datasets

with only one or two sessions of data available for each subject. There is a research bias within

BCI, with the majority of studies focusing on datasets where only one or two sessions are

recorded from each subject [13]. A relatively small amount of literature focuses on inter-session

transfer learning for long-term users. A greater understanding of inter-session transfer learn-
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ing could be advantageous when developing BCIs for rehabilitation when the user is expected

to use the BCI repeatedly over an extended time.

1.2 Motivation

Much work has been put into BCI increasing its accuracy and robustness. These research

studies have led to several advancements in the field, making the BCI a more practical option

for patients. Despite this, BCIs are not yet used in daily life due to the extended calibration

times required at the beginning of each session, limiting their practicality and applications.

The motivation of this report is to develop novel transfer learning algorithms to improve

the current BCI, reducing the calibration requirements while maintaining or improving accu-

racy. Our main ambition is to develop a BCI system for long-term BCI users, particularly stroke

patients, that can operate accurately with almost zero training time. The focus of this thesis

is on MI-BCI and EEG signals. As already discussed, due to its portability and high temporal

accuracy, EEG can potentially be an accessible brain imaging technique with good practical

applications [14].

1.3 Aims and Objectives

The aim of this research is to develop novel transfer learning frameworks for BCI users which

reduce the calibration time required by as much as possible while maintaining effective levels

of classification accuracy. Figure 1.1 shows the challenges related to this aim and how the

objectives can address the challenges in order to fulfil the aim.

As shown in the figure there are two main challenges that need to be addressed in order

to complete the aim of this project. The initial challenge is to reduce the non-stationarities

between the source sessions, used for training data, and the target session, used for testing.

These non-stationarities are one of the key issues that lead to long calibration times being

required, particularly when the training data being used is from a different day or collected in

a different setting. Reducing the effect of these non-stationarities can improve the classification

accuracy without the need to completely retrain the BCI with the target session.

The second challenge is the large variations in the distribution of the data across the avail-
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Figure 1.1: The aim, challenges that need to be addressed and objectives of this thesis.

able source sessions, leading some source sessions to be more suitable for training the BCI for

the target session than others. In some cases, the source sessions distributions may be similar

to the target sessions, while in others completely different. As such it is important to be able

to measure these differences and then make sure that the source sessions used to train the BCI

have similar distributions to the target session. While, those sessions which have high dissim-

ilarities, and could potentially be detrimental to training the BCI, are given less weights or not

used at all.

In some cases, this also leads to none of the source sessions being suitable for the target

session. This can be due to none of the source sessions being similar to the target session.

Equally, sometimes the target session may also have easily classifiable EEG data with high

levels of dissimilarity between the session’s two classes. For these sessions, a BCI with high
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classification accuracy can be trained with only a few trials. In these cases the addition of more

data can lead to under-fitting. Therefore limiting the effect or even avoiding transfer learning

can lead to higher classification accuracy despite the lack of data from the target session.

The final challenge is combining the previous objectives to create a complete framework.

For this, the final objective is to develop a novel framework. Taking advantage of both do-

main alignment and selective transfer learning to produce a reasonable level of classification

accuracy with only a few target session trials.

To address the above-mentioned aim the following objectives need to be addressed:

1. Develop novel domain alignment techniques to reduce non-stationary and mismatch be-

tween the source and target data. Source data refers to the data from past BCI sessions

and target data refers to the few trials available from the current session.

2. Develop effective tools to investigate dissimilarities between two classes within the target

data as well as dissimilarities between the target and the source data available.

• Use the developed tools, to develop a decision making algorithm identifying whether

or not transfer learning is beneficial for each user.

• If transfer learning is beneficial, use the developed tools to select and/or weigh the

source data for transfer learning.

3. Develop a comprehensive transfer learning framework that:

• Minimises the nonstationarity between the source data and target data as obtained

in objective 1,

• Takes into account dissimilarity between the data of each source session and the

target session, (i.e. objective 2)

• Optimises the trade-off between the source and target models in the final BCI model.

The developed algorithms are analysed and evaluated through publicly available data as

well as data collected from stroke patients throughout their rehabilitation. The advantages

and disadvantages of these algorithms are explored along with possible future developments

which may help improve them in the future.

5



1.4 Thesis Overview

This section describes the layout of this thesis and how the work completed in each of the

chapters addresses the objectives mentioned above.

Chapter 2 provides an overview of the current literature in the field of BCI research. Ini-

tially, this chapter introduces different methods of signal acquisition that can be used for the

BCI, the types of neurological signals that can be used to operate a BCI and current state of

the art algorithms that are used for motor imagery-based BCIs. Following this the chapter ex-

plores the use of BCI for rehabilitation, particularly focusing on how it can be implemented

to aid stroke patients with recovery. After defining some of the issues currently limiting the

use of BCI for rehabilitation the chapter then introduces and defines a number of topics that

may be effective at addressing these issues, namely adaptation and transfer learning. Then the

current approaches to adaptation and transfer learning are reviewed and their challenges and

limitations are explained.

Chapter 3 proposes a novel linear alignment algorithm that reduces the effects of non-

stationarities between the past source sessions and the current target session. The proposed

algorithm improves the classification accuracy by applying a linear transform to minimise

the Kullback Leibler divergence between the sessions. The proposed alignment algorithm was

evaluated using publicly available data and the results were published in the 40th Engineering

in Medicine and Biology Conference (EMBC 2018).

Chapter 4 develops a novel selective transfer learning framework. The proposed frame-

work only utilises transfer learning when it is beneficial for the target session and then only

selects the best source data for transfer learning. This framework uses session-specific classi-

fication accuracy obtained from a small number of target session trials to identify whether or

not the user would benefit from transfer learning. If so, it uses a novel measure to identify

the source session which would produce the highest classification accuracy. This framework

was again tested using a publicly available dataset and published in the 44th International

Conference on Acoustics, Speech, and Signal Processing (ICASSP 2019).

Chapter 5 presents a novel framework which incorporates the novel linear alignment as

well as selective transfer learning in order to produce usable levels of classification accuracy
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when only a few target trials are available. The proposed framework is comprised of three

parts, initially implementing the linear alignment from chapter 3 to align the source data to

the target data, next combining the weighted aligned source data, and finally regularising the

weighted aligned source data and the target data to create the BCI model. Combining the

novel alignment method with a novel selective transfer learning algorithm proved to be very

beneficial with both the approaches complementing each other, producing better classification

accuracies with fewer target session trials than either approach alone. This framework was

evaluated with a multi session dataset collected from stroke patients as well as a publicly

available dataset and the results published in the Frontiers in Neuroergonomics.

Chapter 6 layouts the conclusions drawn from the work completed on this project, laying

out the contributions that this work has provided as well as suggestions for the future work

which could be completed based on this work.

1.5 Publications during this PhD

1-The conference paper “Data Space Adaptation for Multiclass Motor Imagery-based BCI”

was published in the 40th Engineering in Medicine and Biology Conference (EMBC 2018) and

presented through a poster.

2-The conference paper “A Subject-to-Subject Transfer Learning Framework based on Jensen-

Shannon divergence for Improving Brain-computer Interface” was published in the 44th Inter-

national Conference on Acoustics, Speech, and Signal Processing (ICASSP 2019) and presented

through a poster.

3-The conference paper “Weighted Transfer Learning of Dynamic Time Warped Data for
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Medicine and Biology Conference (EMBC 2020) and presented through a poster.

4-The journal paper “A Transfer Learning algorithm to Reduce Brain-computer Interface

Calibration Time for Long-term Users” was published in the Frontiers in Neuroergonomics.
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Chapter 2

Literature Review

2.1 Brain computer interfaces (BCI)

Brain-computer interfaces (BCIs) are systems which allow computers to interpret brain signals

to control an output. Signals generated by the brain are collected either via either invasive de-

vices, which are placed directly on the brain to collect signals, or non-invasive devices, which

collect brain generated signals from the scalp. These BCI then use the collected signals to con-

trol a computer.

Brain-computer interfaces generally follow a set route from signal acquisition through pre-

processing, feature extraction and classification. The classified signal is often used to control

an actuator or provide user feedback. This method of communication is potentially benefi-

cial for users with severe disability who cannot use the available human-machine interfaces

(HMI), such as a computer and mouse, joystick etc. [15]. BCI can also be more intuitive than

HMI in many applications, such as controlling a prosthetic, as motor imagery can be used di-

rectly instead of a non-intuitive controller. BCIs have been used to control a computer mouse,

type messages onto a keyboard, control a wheelchair and more recently it has started to be

implemented to assist in rehabilitation.

2.2 Types of signal acquisition methods

The imaging devices to acquire signals from the brain can be divided into invasive and non-

invasive. Invasive devices tend to acquire less noisy signals from the brain but requires sensors
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to be placed inside the body. On the other hand, non-invasive imaging devices acquire brain

signals from outside the head, usually the scalp.

Invasive BCI: Invasive BCI is a broad term for any BCI systems requiring the sensors to

be implanted either inside the brain or on the surface of the brain[15]. These sensors tend to

obtain excellent signals due to their proximity to the brain. However, they require invasive

surgery and a high risk of infection and post-surgery complications[15].

Non-invasive BCI: Non-invasive BCIs are much more common as they do not require any

implantation, making them safer for the user and quicker to set up [15]. There are several

forms of sensors which can be used for scanning the brain without being invasive; however,

not all of these are suitable for BCI [15].

Functional magnetic resonance imaging (fMRI) produces a very clear image of the brain

and is commonly used in medicine to produce high-quality real-time images of the brain. fMRI

is not suitable for BCI, though, due to the requirements of the system itself. To produce the

magnetic resonance, a giant electromagnet is required, which is too big to move, has a high cost

for sustained use, and the magnet interferes with any metal in the room. This would mean that

the BCI would not be affordable or portable and also struggle to interact with the user directly.

Magnetoencephalography (MEG) is another source of signal acquisition that can produce

high-quality signals from the brain despite being non-invasive [16]. Compared to electroen-

cephalogram (EEG), it has higher spatial resolution while maintaining high levels of temporal

resolution[16]. MEG works by tracking the same electrical currents occurring within the brain

as EEG; however, instead of directly measuring the current, the MEG measures the magnetic

field created by this current[16]. The improved spatial accuracy is due to the magnetic field

not being affected by the skull or scalp as the EEG does encounter this[16]. However, MEG

lacks suitability for BCI due to its lack of portability. The magnetic signals collected from the

brain are in the order of 10-1000 femtoteslas, which can not be distinguished from the back-

ground magnetic noise which is found in an urban setting, which tends to be in the order of

108 femtoteslas [17].

Near-infrared spectroscopy (NIRS) uses near-infrared radiation to track the changes in

blood flow which occur within the brain [18].
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The radiation is able to track the flow of blood very accurately within the brain with good

temporal and spatial resolution [18]. Despite this, the NIRS does not work well in BCI. This

is due to the blood flow not being a good way of tracking neuroactivity. The blood does flow

towards activated cells within the brain, as they require more oxygen, but the blood does not

tend to flow to the area until 8-10 seconds after the cell activation [18]. This delay makes a

NIRS-based BCI too slow for many practical applications.

EEG is the most commonly used as it can be cheap, portable and have high temporal reso-

lution despite the high level of noise it can encounter and low spatial resolution. More details

on EEG are provided in the subsequent section.

2.2.1 Electroencephalogram (EEG)

EEG utilises electrodes placed onto the scalp to measure electrical activity originating from the

brain. These electrical signals are conducted through the skull and the scalp where they can

then be measured through the EEG [19]. In order to try and standardise the spatial resolu-

tion from these signals the international 10-20 system has been established to create standard

electrode positions used by all researchers [20]. This electrical activity originates from the ac-

tion potentials that occur when neurons fire. The action potentials produced by these neurons

firing are tiny and hard to detect, being measured in millivolts [20]. As the EEG detects the

voltage after it has passed through the dura matter, skull and scalp it can only detect voltage

when millions of these neurons in the same area fire simultaneously. When this happens a cur-

rent is produced that can be detected by the surface electrodes [19]. Due to this requirement,

the EEG has a low spatial resolution and can only be used to measure and track major brain

activities such as changes in emotion and motor imagery.

The electrodes that detect this surface current can be split into dry and wet electrodes de-

pending on the material used to detect this surface current [21]. Wet electrodes utilise a con-

ductive gel to conduct the electricity from the scalp. This gel ensures that the electrode has an

excellent connection to the scalp even when there is hair between the two. Although the gel

ensures a good connection it can also lead to a loss in spatial resolution if not applied correctly

if it spreads across the scalp. The gel also can lead to an increase in the setup time of the ex-

periment and the clear-up time. Dry electrodes are stuck directly onto the head without the

10



use of any conductive gel and tend not to perform as well as their wet counterpart in terms

of the quality of the recorded signals [22]; This is due to the lack of stable contact between the

electrode and scalp as air can get in the way. Despite this they benefit from a sorter setup and

clear-up time. No gel has to be injected into the electrodes and the BCI user does not need to

wash their air following the experiment.

The signals collected by the electrodes from the scalp, are amplified and then converted

from analogue to digital signals so the computer can process them. These signals are then

usually filtered to remove significant noise caused by muscle movements, mains electrical in-

terference or other sources of noise [2].

The EEG signals are unique for every person due to the differences between each person’s

brain. In addition, the EEG signals are very non-stationary as they can be affected by changes

in the users’ emotions, concentration, fatigue, environment, external factors and illness. De-

spite each EEG being unique, there are trends, which can be detected [20]. Some of these trends

can be identified through changes in certain rhythms in the brain. EEG signals are typically

split into the delta, theta, alpha and beta rhythms, as shown below [21]. Sometimes the EEG is

further split for more specific uses.

• Delta waves (<4 Hz): high amplitude waves prominent in a deep sleep.

• Theta waves (4-7 Hz): commonly correlated with concentration levels

• Alpha waves (7.5-13 Hz): these waves are affected by the motor cortex and are essential for

motor imagery (MI) based BCI

• Beta waves (14-30 Hz): These tend to be weaker than the alpha waves but react to stimuli

The brain is highly complex, and different brain areas often process different information

or fulfil different tasks [23]. As such location along with the frequency of the detected voltage

is key to understanding the collected EEG. As such the electrode placement can cause many

issues if not done correctly, if placed over a different area the previous placement of the signals

can be very different. A good example of this can be seen over the motor cortex from the

homunculus model, shown 2.1, which gives a vague approximation of which part of the motor

cortex controls which part of the body. As such an international system was developed called
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the 10-20 system which provides set points to cover the entire brain accurately and effectively

on any patient [24].

Figure 2.1: The different parts of the body can be roughly mapped to the motor cortex. This is

oversimplified however hold true in general [1].

2.3 EEG Control signals in BCI

Once the signals have been acquired specific features have to be pulled by the BCI to use as

inputs. These tend to be split into evoked signals, which are created in the brain in response

to specific stimuli provided, and spontaneous signals which the user generates themselves

[2]. The evoked signals can be generated by a range of stimuli including visual, touch and

auditory stimulation, as this stimulation is provided by the researcher it can be easily times

and is therefore easier to identify. Spontaneous signals occur naturally when the user of the

BCI is focusing on something in particular

The two main evoked signals that are used by BCI are steady-state signals and P300 signals.

Steady-state can be stimulated through both visual stimuli and auditory stimuli. By creating

a repeating frequency, either with flashes or sound, which is observed by the subject that fre-

quency is replicated within specific regions of the brain and can be detected. By providing

multiple sources of stimuli, set to different frequencies, for the subject to focus on a choice can

be made by the subject allowing communication [2].
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P300 uses the brain’s natural tendency to create a wave peak in activity 300 milliseconds

after seeing an event on a place being focused on. This event can occur in different forms but

is most commonly used by locked-in patients through a P300 speller. This uses flashing rows

and columns of letters to allow the patient to spell out words [25].

The user generates spontaneous signals without external stimuli by concentrating on par-

ticular thoughts [20]. This can be in the form of understanding emotions but the most common

signals used are sensorimotor signals or motor imagery.

Motor imagery signals occur when the subject imagines moving a particular part of their

body, this signal created is very similar to the signal generated by the subject when they move

their body. As such this has been used in stroke rehabilitation to help patients retrain their

brains and improve their control over their bodies. These signals come primarily from the

motor cortex and different movements can be differentiated by the location that the signal is

originating from [2].

2.4 State-of-the-art algorithms in motor imagery-based BCI

The majority of the BCI systems can be split into pre-processing, feature extraction and clas-

sification. The classification is then often used to control some form of actuator or provide

some form of feedback [2]. A few BCI are being developed through the use of neural networks

that are capable of producing high levels of accuracy without going through these steps; how-

ever they require a large amount of data in order to train the system initially.

The signals acquired are initially pre-processed to remove any artefacts that have been

generated. The artefacts are primarily electrical signals produced from the muscles around the

head being used while some noise also comes from the environment, such as mains noise [26].

These electromyographic signals can cause issues because they are much stronger, generated

closer to the surface of the skin, and can spread a large distance from their source. In most

cases, this pre-processing is made up of a band pass filter that focuses on the frequencies re-

quired by the particular BCI, ignoring any irrelevant frequencies, and an artefact rejecter that

removes any trials with very large swings in the amplitude detected. This artefact rejecter
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works due to the difference in the magnitude of the electrical currents being detected from the

brain, 10-100 micro-volts, and the artifacts [26].

The common spatial patterns technique (CSP) is the most popular form of feature extraction

for MI-based BCI is the common spatial patterns technique (CSP). This separates two classes

of multi-variate signals by providing weightings which maximize the difference in variance

between the classes, leaving one class with high variance and the other with low variance

[27]. This technique has been proved effective in a large number of experiments and has been

adapted several times to improve the accuracy achieved in a range of scenarios. One of the

most recent variations on the CSP is the filter-bank CSP (FBCSP) which splits the incoming

signal into multiple components with different frequency bands. The FBCSP then produces

weights for each band and selects the best features for the system to use by examining their

mutual information [28].

Following the feature extraction the BCI needs to classify what the features mean, this is

done through machine learning. Machine learning can be split into two key forms supervised

and unsupervised. Unsupervised learning algorithms use data without any labels to learn

rules. This is more commonly used for clustering and dimensionality reduction. While Su-

pervised learning algorithms draw predictions and learn rules for new data based on existing

labeled data. These can be used for the classification of the new data.

The most commonly chosen classifiers for BCIs are linear discriminant analysis (LDA) and

the source vector machine (SVM) [29] [30]. Despite their popularity they do have some flaws

which can become an issue due to the non-stationary nature of the EEG signals. Due to this

more advanced forms have been developed such as the regularized LDA which has success-

fully been used to reduce the effects of overfitting [31].

2.5 BCI for stroke patients

BCI has been used in several medical applications to help users who have lost some control

of their external environment, most commonly for users experiencing full paralysis with no

control over their body [32]. Recently there has been an increase in researching the application

of BCI for a number of other medical conditions, such as helping in the rehabilitation of stroke
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patients [33].

A stroke is the occurrence of damage to the brain due to a lack of blood. This is a growing

concern with more than 100,000 people in the UK having a stroke yearly [34]. The stroke can

happen due to a blockage in the blood vessels in the brain, and ischaemic stroke, a blood

vessel bursting, or haemorrhagic stroke, both of which can affect the way the body works [35].

These changes can affect the patients’ cognitive functions, emotions and ability to control their

muscles as damaged areas of the brain either struggle or cannot replicate the signals they were

sending before [34].

BCI can be used to assist stroke patients in two key ways. The patient can use them to

compensate for the user’s lack of neuromuscular control, allowing them to communicate with

their environment [33]. This is becoming increasingly popular for patients who have some

form of muscle weakness limiting their ability to interact with the outside world effectively.

However this application of the BCI is most practical for patients who have full paralysis and

have no other option but to use the BCI as it can be uncomfortable when used for extended

periods of time. The second application to assist stroke patients is to help provide rehabilita-

tion. The rehabilitation of the stroke patient to improve motor function has traditionally been

done through the application of physiotherapy, known as active motor training, to stimulate

the activity in the patient’s motor cortex; however, recently, more research has been done into

BCI rehabilitation [36]. Motor imagery (MI) activates the neurons in the motor cortex, allowing

even patients who lack motor control to stimulate the brain through their intentions. Several

approaches have been researched using combinations of BCI, physiotherapy and exoskeletons

for research [37]. According to motor relearning theory, such active participation is expected

to facilitate motor rehabilitation and neuroplasticity in stroke patients [33].

These approaches are being increasingly researched with more compelling evidence of the

BCI effectiveness being published. These innovative BCI are helping rehabilitate the patient;

however they are far from being optimized, requiring long calibration times before each use

and obtaining low levels of accuracy for many users.
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2.6 Limitations of motor imagery-based BCI

While relying on motor imagery to control a BCI can be very beneficial, there are still several

limitations with motor imagery-based BCI. One of the key limitations of using motor imagery

to control and train a BCI is that it is a spontaneous signal instead of evoked [2]. As mentioned

previously being a spontaneous signal makes the BCI more intuitive and removes the need for

external stimuli. However along with these benefits there are several downsides. The main

limitation of spontaneous signals is the reliance on the participant. When trying to collect

signals to train the BCI it is impossible to know if the participant is correctly generating the

desired signal. Many factors can lead to changes to the signal and lead to an inaccurate model.

For example, if the user is distracted or not paying attention they may miss the cue to attempt

the imagery or perform the imagery at a much later period than expected [38]. Equally if the

participant is not motivated they may allow their mind to drift and not focus on generating

the imagery correctly when prompted to. There is also the possibility of the participant mis-

understanding the imagery that is required of them. For example, in some studies they have

been instructed to imagine moving their hand; however as the exact movement is not spec-

ified different movements may be imagined each time [39]. Through careful planning while

developing the trials, ensuring the reasons behind the experiment are understood and appre-

ciated, giving the participants plenty of breaks to relax and re-focus and ensuring the imagery

instructions are made clear, these limitations can be reduced but never completely removed.

All these limitations due to the reliance on the participant to accurately produce the de-

sired signal can also lead to the need for a long calibration time. These calibration periods

are required due to the non-stationary nature of the EEG signals being collected. This is par-

ticularly an issue with spontaneous signals where the previously mentioned reliance on the

participant. Changes to participants’ mental state, fatigue level and surroundings can lead to

small changes in the EEG signals being produced and the participants’ reaction time which in

turn affects the timing of the signals [40]. Unlike evoked signals, such as SSVEP, where we

are looking for a specific increase in one EEG frequency in a specific area, motor imagery can

be activated differently for each participant. These lead to long periods of calibration being

required to ensure a high level of classification accuracy [2].
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Even with this calibration period the non-stationary nature of the EEG can cause variations

both from session to session and even within a session itself. These inter and intra-session vari-

ations can be large enough to reduce the effectiveness of the trained BCI leading to a reduction

in classification accuracy [41]. While an initial calibration period can reduce the effect of the

inter-session non-stationarities it does not impact the intra-session non-stationarities. These

are often minor early on but can become more dramatic as the BCI is used for a longer period

[41].

Along with the effects of the non-stationary nature of the EEG signals motor imagery-based

BCIs are also limited by the hardware currently developed to collect these signals. Collecting

signals originating from the brain using electrodes on the scalp can be difficult with many

challenges, such as combating the noise created by the signal passing through the skull and

scalp and hair often stopping proper contact between the electrode and scalp [2]. The current

best solution to this is the use of wet electrodes, which use conductive gel to ensure a good

connection with the scalp; however despite the improvement in signal quality, this presents a

new issue. The extra setup and clean-up time the wet electrodes cause practicality issues as it

makes the process of using a BCI much longer. This increased setup and clean-up time the wet

electrodes create reinforces the need for a reduced calibration time.

2.7 Reducing session to session variations and the long calibration

time

2.7.1 Transfer Learning

To reduce the BCI’s required calibration time, it is essential to develop accurate BCI models

using as few trials as possible. The critical barrier to reducing BCI calibration time is the nature

of the EEG signals described previously. As stated, the signals collected from EEG are unique,

non-stationary and have high dimensionality [2].

As these signals are unique for each person, it is difficult to use any data collected from

another user directly. Although there are often some similar features between users, there

are also several differences which make identifying robust and accurate features difficult if

17



only a limited number of labelled trials are available from the new user. The non-stationary

nature of the EEG leads to changes in the EEG both inter and intra-session. These changes

in properties of EEG signals can be due to variations in the user’s mental state, fatigue, and

physical condition of the sensors among other reasons [40]. All these factors can often cause

poor performance of the BCI when it is trained using data collected from the user previously.

Along with these factors, the EEG’s high dimensionality makes it very difficult to precisely

model the users’ mental state using only a few trials [9]. It is common to have outliers in EEG

signals, either due to muscular noise or the non-stationary nature of the EEG. These outliers

can have a dreadful effect on the model, causing its accuracy to drop dramatically. Several

studies have been carried out in order to try and address this issue. Utilising only a few la-

belled trials to try and develop a practical BCI. One of the critical approaches explored is the

implementation of transfer learning [9].

Transfer learning is a commonly used machine learning technique, often implemented to

train a system when there is only a limited amount of data. When only a limited number of la-

belled trials are available from one domain that can be used to train the system, transfer learn-

ing aims to take valuable data from other domains [42]. Unlike many other machine learning

techniques, transfer learning does not presume that the training and test data are from the

same feature space with a fixed distribution. This allows for a much more flexible application

of the technique with data from similar sources training the model instead of new training data

being required each time there is any change in the distribution. Negating the need for new

training data after every shift of the distribution can reduce costs and save time. This has made

the technique widely implemented in real-world applications such as computer-aided design

(CAD), image recognition, Wifi localisation, software defect classification, tracking muscle fa-

tigue and brain-computer interfaces (BCI) [9, 43–45]. In these areas, there are often changes in

distribution when completing tasks which would require re-training the model with new data.

The application of transfer learning has been particularly interesting in BCIs as the distribution

often shifts due to the nature of the EEG signals [42].

When effective transfer learning can significantly reduce the calibration time required for

BCIs and increase the overall classification accuracy. To explore this, many studies have ex-
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plored different transfer learning approaches for BCI. These studies include applying a range

of machine learning techniques to each of the critical components of the BCI. For example,

some studies focus on improving the feature space of the target session using the data avail-

able in the source sessions, either transforming source space features to better fit with the avail-

able target sessions’ features or trying to identify aspects common to all the feature domains

[46]. Other studies explore using the available source data to improve the classifier, altering

the classifier’s parameters based on the source data [47]. Finally, some studies also explore

instance-based transfer learning where the algorithm assumes the source data cannot be used

directly, utilising some parts may provide valuable data [42].

Despite this range of focuses, two critical approaches have been explored to address this

thesis’s identified challenges. These are the application of adaptation to address the non-

stationary nature between sessions, and selective transfer learning, to differentiate between

the available source sessions.

2.7.2 Domain Adaptation

Domain adaptation is an approach utilised along with transfer learning where machine learn-

ing algorithms can be applied to alter the data from the source sessions or the target session to

reduce the dissimilarity between the data. Within BCI, adaptation has often been employed to

reduce the effect of the EEGs’ non-stationary nature and uniqueness between sources that can

lead to issues with the BCI model.

One application of adaptation is to deal with the covariate shift that can occur. This co-

variate shift the change in probability distribution within the data, which can occur due to the

non-stationary nature of the EEG signals being used [48]. In [49], an adaptive BCI utilising

a covariate shift monitoring algorithm was proposed to combat the covariate shifts that can

occur due to the EEGs non-stationary nature. This utilised a covariate shift monitoring algo-

rithm to identify when a shift occurred through an exponentially weighted moving average

(EWMA) control chart, which combines current and historical data to detect any changes in

the time series of data. After this algorithm has detected a shift, it is then validated with a

multivariate Hotelling’s T square statistical hypothesis test. If the p-value is below 0.05, the

shift is validated, and the BCI adapts the classifier, re-training it using the previously correctly
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classified trials. This approach proved very effective at identifying when covariate shifts occur

in real-time, and the adaptations led to a statistically significant improvement in the classifica-

tion accuracy. However, this continuous adaptation approach focused on an online algorithm

with trials being labelled after each trial was classified. This is not practical in a real-world

application as identifying if the classification of the trial was correct requires human interven-

tion.

Similar approaches focus on addressing the covariate shift that can occur within transfer

learning [48]. Focusing on countering the covariate shift between source sessions and the target

session. For example, adaptive classifiers such as the Bagged Importance weighted LDA also

utilises adaptation in a similar process. However, instead of utilising manually approved trials,

it takes a small number of labelled trials from the target session to estimate the shift [48].

Another adaptation approach that has been explored is aligning the EEG trials available

within the source data in the euclidean space [50]. Unlike the previous approach, where the

adaptation was used to reduce the effect of the covariate shift, this alignment is done to identify

robust features. By aligning the source data trials, it is possible to reduce the euclidean distance

between the sessions in the data space domain. This approach significantly improved the

classification accuracy achieved through transfer learning.

Despite the benefits of these approaches, they only address a few of the issues that occur

within EEG-based MI BCIs. The use of adaptation can reduce the dissimilarity between dif-

ferent sessions of data, limit the effects of the EEGs non-stationary nature and identify robust

features for training; however, it does not address the differences within the source data nor

account for the range of variations that can be present in the target sessions. Even after adap-

tation has been applied, there are many cases where data in the source session is detrimental

to training the BCI.

2.7.3 Selective transfer learning

One area of transfer learning which has been explored can be called selective transfer learning.

With many types of data it has often been found that not all the available source data benefits

a model, even if the data is collected from a very similar source. This can be particularly true

for EEG data due to its non-stationary nature, which can cause changes in the data distribution
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even when collected from the same subject on the same day. In order to reduce the effects of

this detrimental data, selective transfer learning aims to remove any source data that could

be detrimental or limit its impact. Previously this approach has been explored in a range of

applications such as malware classification, image classification and financial fraud detection

[51–53]. In these applications the transfer algorithms proposed attempt to reduce the effect of

any detrimental data. This is done either through weighting the source data [54], excluding

certain parts of the source data from being used [55] or regularising the source data using the

available labelled trials from the target data [56].

Recently studies have started exploring these selective transfer learning approaches to im-

prove the classification accuracy of BCIs. The application of weights to differentiate between

source sessions based on their similarity to the target session has been examined multiple times

with different measures applied to evaluate the similarity between the source sessions and the

target sessions. For example, in [54], Azab et al. utilise Kullback-Leibler (KL) divergence to

measure the similarity between the target session and source sessions. This approach led to a

statistically significant increase in the classification accuracy when there were only a limited

number of target session trials. In particular the proposed weighting approach benefited the

target sessions where only poor classification accuracy could be achieved when trained with

just the target data.

A different approach that can be used to adjust for the variations between the sessions

is regularisation. In [56], Lotte et al. utilise regularisation parameters while combining the

labelled target data and the available source sessions. By weighting the source sessions to

account for the variations between them and including the target data, it became possible to

produce a more stable covariance matrix. This performed than previously proposed state-of-

the-art algorithms however failed to take into account the non-stationarities that can still occur

between each session’s data.

2.7.4 Challenges of transfer learning

Although many studies have now been completed exploring different possible applica-

tions of transfer learning to improve BCIs, there are still several limitations and challenges

that have been identified throughout this chapter. One fundamental limitation which seems
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familiar throughout these papers is the focus on inter-subject transfer learning and the lack of

exploration of inter-session transfer learning. This focus is understandable as collecting data

from a subject during multiple sessions over an extended time is much more complicated than

collecting it from just one or two sessions. However, inter-session transfer learning is a key

area which needs to be explored. In the majority of real-world applications for BCI technology,

the users will be using the BCI for multiple sessions over an extended period. In these cases,

it is essential to recognise the potential benefits that the data collected can provide. When data

collected from one user is used to train a model for a new user, the classification accuracy is of-

ten low, yet studies have found that using the user’s old data can be beneficial when enough is

available [57]. This highlights the difference between the inter-session and inter-subject trans-

fer learning methods that need to be explored. This issue is magnified when this is further

examined to create a BCI applicable in the real world. One of the critical variables between

inter-subject transfer learning for BCIs is the unique nature of the EEG signals created due

to the unique make-up of each user’s brain. In a large number of rehabilitation applications

of the BCI, the users will have encountered some form of trauma to the brain. This trauma

can permanently alter the brain and lead to activation patterns which differ significantly from

the norm. In these cases, it can be expected that a large proportion, if not all, of the available

inter-subject transfer learning data, will be detrimental to the training of the BCI model.

While reviewing the current transfer learning approaches that are being used to train BCI

one of the common themes that seemed to occur was the requirement of a large number of

labelled trials being required from the target session. The transfer learning techniques were

able to take advantage of the valuable data available in the source sessions and improve the

classification accuracy, but a large number of calibration trials did not reduce the calibration

time required by the BCI. Reducing this calibration period is key to making the BCI a real-

world practicality, as users often only have a limited time to access the BCI. The more time

spent on re-calibrating the BCI to work with the current target session the less time there is for

actual rehabilitation.

A final challenge that appears to be overlooked is exploring the issue of the BCI as a whole

to allow the BCI to work in the real world. Many of the studies exploring selective trans-
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fer learning proposed algorithms to address the variations present between source sessions

and address them with different weights, while others proposed algorithms to account for the

differences between the source and target sessions and even adaptation algorithms that help

to reduce the effects of non-stationarity between sessions have been studied. Despite these

highlighting potential growth areas, they often turn a blind eye to the other issues. Identi-

fying which source sessions will work best for the new target session is crucial, but it is also

important to try and reduce this difference. A lot has been developed to resolve the various

limitations of BCI, but they tend to focus on one approach. Research into how these different

methods of improving the BCI can work together and help each other account for issues the al-

gorithms were not designed to handle on their own needs to be conducted. Instead of looking

at the various issues individually, it is essential to address the situation as a whole to achieve

a practical BCI that works well in the real world with little to no calibration between sessions.

2.8 Conclusion

This chapter has provided a general background and exploration of currently used approaches

within BCI. Initially, a brief explanation of what BCIs are was provided, along with the brain

signals commonly collected to control the BCI and the types of mental states which can be

detected. From this research, EEG-based motor imagery BCIs were focused on due to the high

temporal resolution of the EEG obtained non-invasively and the practicality offered through

motor imagery (MI). Following this line, state-of-the-art algorithms currently implemented

in MI-based BCIs were briefly examined. Then stroke rehabilitation, a possible application

where MI-based BCI would be able to provide practical, real-world benefits to a large number

of people, was explored. While this review found that the current EEG-based MI BCI provided

many benefits, fundamental limitations must be addressed.

This chapter then explored transfer learning as a potential solution to many limitations. A

definition of transfer learning was set out, and several approaches were examined. From these

approaches, domain adaptations and selective transfer learning were identified as crucial areas

and focused on, with various studies applying this technique being explored in detail. Finally,

the chapter laid out some limitations of the current work that has been completed and found
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vital areas that could be explored during the project.
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Chapter 3

Multiclass Data Space Alignment to

Reduce Session to Session

Non-stationarity in Motor

Imagery-based BCI

The findings presented in this chapter have been previously published in the 40th Engineering in

Medicine and Biology Conference (EMBC 2018) and presented through a poster [58].

3.1 Introduction

As previously mentioned, one of the main issues affecting practicality of BCIs is the non-

stationarites between different sessions [59]. These non-stationarities can cause the properties

of the EEG signals to change considerably between sessions. Thus, a BCI trained with one

session to classify a different session can have a very low classification accuracy, even if both

sessions are from the same participant.

In order to reduce the mismatch between the source and target EEG data, caused by non-

stationarities inherent in EEG data, various forms of adaptation and alignment have been re-

searched [11, 12]. Using a limited number of trials from the target session, adaptation tech-

niques reduce the effects of differences between the target and source data by adapting param-
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eters of the trained BCI model. This can include adjusting the feature selection method or the

classifier parameters based on the target session [60, 61]. Similarly, alignment algorithms use

the trials from the target session to align the source and target data. Although aligning the BCI

does require a calibration period the number of trials is much lower than the number of trials

required to completely retrain the BCI.

A lot of research has been done to develop optimal adaptation or alignment techniques to

improve the classification accuracy without requiring the whole BCI to be retrained. This in-

cludes research into adaptive feature extraction and classifiers such as implementing an adap-

tive linear discrimination analysis classifier which updates the global mean [62] referred to

as pooled mean linear discrimination analysis. This research highlights the improvements of

using adaptation with transfer learning over simply relying on naive transfer learning alone.

This also allows the BCI to use previous data and not have to completely re-train the BCI each

time it is implemented [8, 62–64]. Despite this, the focus of these alignment and adaptation

techniques are often limited, tending to focus on binary class BCIs and being limited to some

specific BCI models.

Recently there has been a shift from binary class towards multiclass BCI systems. This is

due to the opportunity they would present by drastically increasing the information transfer

rate (ITR). Multiclass BCIs have the potential to allow faster communication with the user as

well as control of complex actuators, providing more degrees of freedom. Several research

studies on multiclass BCIs focus on optimising different BCI components such as feature ex-

traction techniques [65] and classifiers [64].

Some adaptation techniques, initially developed for binary BCIs, have been modified to

be applicable in multiclass BCIs. For example, pooled mean linear discrimination analysis

[62] has been altered to multiclass pooled mean linear discrimination analysis (MPMLDA)[66]

allowing it to work within a multiclass setting. Another adaptive classifier, based on an en-

hanced Bayesian linear discrimination analysis [67], has also been developed for multiclass

BCIs. These altered adaptation techniques have proven to be effective at reducing the fall in

accuracy caused by the non-stationary nature of EEG. However, these adaptation techniques

require to be implemented by building on a particular feature extraction technique or classifier.
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This limits the BCI from future development as the adaptation method may not be applicable

to a different feature extractor or classifier.

Data space alignment (DSA) is a method of changing the data distribution directly before

it has gone through feature extraction or classification [46]. This method minimises the distri-

bution difference between the BCI training data and the testing data using a linear transform.

This means that DSA is not restricted by any particular feature extraction techniques or clas-

sifiers. In this chapter, DSA is modified so it can be applied to multiclass BCIs aligning the

data with only a few labeled trials from the testing data. Delaying the test data but to a limited

extent. The number of classes does not affect the previously proposed unsupervised DSA al-

gorithm, however, the supervised DSA does require altering due to the change in the number

of classes. In this chapter, the proposed multiclass data space alignment (MDSA) algorithm

will be evaluated using BCI Competition IV dataset 2a [68]. The proposed MDSA will then

be compared to two other state-of-the-art multicalss adaption methods, namely unsupervised

DSA [46] and MPMLDA [66], providing an evaluation of the algorithm’s ability to improve

multiclass BCI performance.

3.2 Methodology

3.2.1 Proposed Multi-class Data Space Alignment (MDSA)

The proposed MDSA is an extension of the supervised binary data space adaptation (DSA)

[46] allowing the alignment method to be incorporated into a multiclass BCI. Using a linear

transform, MDSA alters the target EEG data (i.e. testing data), after it has been band-pass

filtered, so it is as similar to the available source data (i.e. training data).

Assume the source data is defined as D̂ = (X̂i, ŷi)
n̂
i=1, where X̂i ∈ X̂ ⊂ Rch×t is the ith

recorded source trial with ch being the number of channels and t representing the time sample.

ŷi ∈ Ŷ ⊂ R represents the corresponding class label. In order to perform the alignment a small

number of trials are gathered from the target session and used to build an estimate of the

target session probability distribution. The target data is presented as D = (Xi, yi)
m
i=1 where

Xi ∈ X ⊂ Rch×t is the ith recorded target trial and yi ∈ Y ⊂ R represents the class labels of the

corresponding trials.
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The proposed MDSA aims to use a linear transform, V ⊂ Rch×ch, to minimize the distribu-

tion difference between the source data and the target data. The ideal goal of V is to have the

aligned target data, represented by S(VTX, Y), to have the same data distribution as the train-

ing/source data. By matching the distributions, the feature extractor and classifier trained

using the source data should still perform well on the target data.

In order to calculate the optimum V a few characteristics of the source and target data dis-

tributions must be known. The normalised covariance matrix of the EEG data can be estimated

as shown in (3.1), where tr is the trace function, known as the sum of the diagonal elements

of the matrix. Please note the mean of EEG trials is zero due to the EEG signals being band-

passed. The distribution of the EEG data can be modelled as Gaussian based on the maximum

entropy principle [69] with zero mean and the covariance matrix calculated as (3.1).

Σ =
1
n

n

∑
i=1

XiXT
i

tr(XiXT
i )

(3.1)

Let us assume the Gaussian distributions of two datasets are presented as N0(µ, Σ) and

N1(µ̂, Σ̂) with µ̂ and µ representing the means of the distribution while Σ̂ and Σ co-variances.

The difference between these two Gaussian distributions can then be calculated using the Kull-

back Leibler criteria [69] as shown in (3.2), where k is the dimension of the data and det refers

to the determinant function.

KL[N0 ∥ N1] =
1
2
[(µ̂ − µ)TΣ̂−1(µ̂ − µ) + tr(Σ̂−1Σ)− ln(

det(Σ)
det(Σ̂)

)− k] (3.2)

To find the optimum V for supervised alignment, the KL divergence is calculated for the

training and testing data of each class separately. In order to minimise the total loss function

across all the classes, the differences are summed before the V is calculated. The transformed

test data distribution is defined as Nt(0, VTΣcV) and training data distribution as Ns(0, Σ̂c) for

class c in (3.3) while cl is used to represent the total number of classes in the BCI.

min L(V) = min
cl

∑
c=1

1
2
[tr(Σ̂c−1VTΣcV)− ln(

det(VTΣcV)

det(Σ̂c)
)] (3.3)

To find the optimum V that minimises L given in (3.3), the first derivative of L is calculated

with respect to V and set to zero, as shown in (5.6).
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dL
dV

=
cl

∑
c=1

1
2
[2tr(Σ̂c−1ΣcV)− 2tr(V−1)] = 0 (3.4)

V = cl−0.5
cl

∑
c=1

(Σ̂c−1Σc)†0.5 (3.5)

In (3.5) † represents the pseudo-inverse. Using (3.5) the optimum V is calculated and then

applied to the band-pass filtered test trials. The features of the linearly aligned test data is then

calculated and classified using the feature extractor and the classifier previously trained using

the training data.

3.3 Experiment

3.3.1 Dataset

The dataset used in this chapter is the publicly available dataset, BCI Competition IV dataset

2a [70]. This dataset contains EEG data from nine users who each completed two sessions,

each containing six runs, on different days. Each run consists of 48 trials containing 12 trials

from each of the four classes making a total of 288 trials from each session. The four classes are

all variations of motor imagery with the user imagining the movement of their right hand, left

hand, both feet or tongue.

3.3.2 Data processing

To examine the alignment capabilities of the different techniques, the first session was used to

train the BCI model with common spatial patterns (CSP) for feature extraction and LDA for

classification. Subsequently, the second session was used as the testing data. To evaluate the

alignment and adaptation methods, the first 80 trials of the testing session were set aside for

alignment and not included in the results. The same pre-processing and feature extraction was

performed for each of the alignment methods. The training data was band pass filtered from

8Hz to 35Hz and a pair wise CSPs was trained for 6 class pairs was used for feature extraction.

In this study, MPMLDA [66] is one of the two methods used for comparison. This method

adapts linear discriminate analysis (LDA) classifier used in the multiclass BCI by updating the
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global mean, µi,j, of each of the pair-wise LDAs as new trials are classified. The change caused

by the new data, x, is weighted by the probability of the new data belonging to a relevant

classes for the LDA as shown in (3.6). Here i and j represent the two classes that the LDA is

classifying, Pi(x) and Pj(x) are the probabilities of the new data belonging to the class i and j

respectively. β is the learning rate, set to 0.03 as suggested in [66]. The updated global mean,

µ′
i,j, is then utilised to recalculate the LDA before the next trial is classified.

µ′
i,j = (1 − (Pi(x) + Pj(x))β)µi,j + (Pi(x) + Pj(x))βx (3.6)

The unsupervised DSA technique (DSA-US) does not require altering due to the fact it

is independent from the classes, relying only on the distribution of the entire EEG data. As

such it is used as a second comparison for the proposed MDSA. This method also uses a linear

transform to align the test data to the trained data after it has been band pass filtered. However

it does not split the data into its classes. DSA-US uses all the data at once to calculate the

optimum linear transform as shown (3.7), where Σ̂ and Σ respectively represent the average

covariance of the available trials from the training and test sessions.

Vunsupervised = Σ̂−0.5Σ0.5 (3.7)

3.4 Results and Discussion

3.4.1 Classification Accuracy

Fig. 3.1 shows the increase in accuracy for each of the different alignment algorithms across

the different number of trials used for alignment. As shown in Fig. 3.1, compared to the base

BCI design without any alignment, all the three examined alignment algorithms improved

the average classification accuracy of the test data. MPMLDA does not require any initial test

trials to calculate the alignment parameters as it updates the global mean after every new trial

added to the test data. This is a form of continuous adaptation thus, the MPMLDA accuracy

presented in Fig. 3.1 is fixed across the x-axis.

Initially, when only ten trials per class are used for alignment, there is a very little difference
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between the accuracies of the three alignment algorithms. The limited number of trials may

have restricted the accurate estimation of the alignment parameters in both MDSA and DSA-

US as the estimation could be easily distorted by artefact corrupted trials. By increasing the

number of trials per class to 15, DSA-US slightly outperformed the MDSA algorithm. In this

case estimation of covariance matrices of test data was based on 60 trials in DSA-US compared

to 15 trials in the proposed MDSA. Having more trials for estimating covariance matrix in

DSA-US could have led to a better estimation of alignment matrix.
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Figure 3.1: Average improvement in accuracy for DSA-US, MPMLDA and the proposed MDSA

compared to no alignment, using different number of trials per class for adaption. When 20

trials per class are used for alignment the proposed MDSA outperforms the other techniques.

In the case of 20 trials per class being provided for alignment, MDSA outperformed DSA-

US, possibly due to each class having enough trials to estimate an accurate distribution of

the data. This does highlight one of the issues of MDSA, as it requires more trials than its

unsupervised counterpart to produce its best level of accuracy. However, it can also produce
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higher accuracy levels if a relatively large number of trials are available. This could be due

to the MDSA creating representative data distributions for each class for the alignment while

still recognising changes in the EEG signals relatively quickly unlike DSA-US. The DSA-US

algorithm uses the 80 previous trials for each calculation of the linear transform, so if the user’s

EEG signals start to change, due to fatigue or changes in their mental state, it takes a while to be

seen by DSA-US as the 79 other trials dilute the change. This problem is not very pronounced

in MDSA due to the trials being split by class so the change is only diluted by 19 other trials

per class.

3.4.2 Improvement in Classification Accuracy across Different User Groups

The plots presented in Fig. 3.2 compare the classification accuracies of the proposed MDSA,

DSA-US and MPMLD. As shown in Fig.3.2, the proposed MDSA and DSA-US both outper-

formed MPMLDA when implemented with users who were able to achieve levels of accuracy

above 70%. Users 1, 3, 7 and 8 all achieved better accuracies when DSA-US or MDSA were

applied compared to MPMLDA. The only user who achieved accuracy higher than 70% and

performed best with MPMLDA was user 9. Conversely, the users with low levels of accu-

racy found MPMLDA most effective at improving their accuracy in all cases except for user

5. Fig.3.2 also displays that the MDSA outperformed the DSA-US in 66% of users, excluding

users with less than 1% difference between the two algorithms. Suggesting that although all

the alignment algorithms are capable of improving the average accuracy of the BCI, MDSA

and MPMLDA outperformed DSA-US when used with users encountering BCI deficiency.

In Table 3.1, the users were grouped into two groups based on their accuracy without

alignment, i.e. either above 70% accuracy or below 70%. As shown in Table 3.1, on average

MPMLDA and MDSA perform similarly for subjects with accuracies less than 70%, while DSA-

US is less effective for this group. This suggests that MDSA is useful as MPMLDA when imple-

mented to reduce BCI deficiency. High accuracy users see little improvement from MPMLDA

while DSA-US and MDSA both perform equally well. Suggesting that MDSA has a good over-

all increase in accuracy for users who obtain high levels of accuracy and those encountering

BCI deficiency.
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Figure 3.2: Scatter plots comparing the classification accuracies of the different alignment al-

gorithms; Each subject is presented with a dot with black dots being used if the difference

between the techniques being less than 1%. Having the dot on the left hand side of the line

means the alignment technique on the y axis works better for the corresponding subject. 20

trials per class were used for estimating transformation matrix for DSA-US and MDSA.

3.5 Conclusion

The objective for this chapter was to develop a novel domain alignment technique to reduce

non-stationary and mismatch between the source and target data. This alignment method had

to be flexible, allowing for varying numbers of classes and not being reliant on a particular

feature extractor or classifier, so that it could be easily incorporated into the project’s future

research. The proposed MDSA occurs in the data space making it independent from the fea-

ture selection and classification used by BCI. It has shown to be effective in improving the
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<70% >70%

MPMLDA DSA-US MDSA MPMLDA DSA-US MDSA

4.44% 3.96% 4.44% 2.89% 4.23% 4.23%

Table 3.1: Average accuracy improvement for each technique for users encountering BCI de-

ficiency (Below 70% Without alignment) and users with good accuracy (Above 70% without

alignment)

accuracy of multiclass BCIs, capable of outperforming MPMLDA and DSA-US when enough

data is provided. However, the improvement is not statistically significant. Despite the pro-

posed MDSA not showing significant improvement over the other algorithms, it did improve

accuracy for both users who were proficient with BCIs and users encountering BCI deficiency,

unlike the DSA-US or MPMLDA. This range of effectiveness suggests that although the overall

accuracy improvement was not statistically significant, the MDSA alignment could apply to a

wide range of sessions. Thus, combining this alignment method with other transfer learning

techniques could easily be explored.

As transfer learning often utilises multiple source sessions, it would be more practical to

align the source sessions to the target session instead of aligning the target session to source

sessions. As the target session would only be able to align to either a single source session or an

average of the available source sessions, it would be possible to align each source session to the

target session. This could reduce the number of calibration trials required while maintaining

and increasing the classification accuracy.

A second possible improvement to this algorithm would be adjusting it so that it works

on a continuous manner similar to the MPMLDA used for comparison. Through updating the

alignment with every new trial it would allow for the proposed MDSA to try and limit the ef-

fects of intra-session non-stationarity along with the inter-session non-stationarity it currently

addresses. Implementing this would also remove the short period of collecting trials at the

start of the session for the alignment. This would require much more computational power

as the alignment would have to be adjusted in real time as the new data is received but could

further reduce the mis-match between the model and target data.
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Interestingly while exploring these different transfer learning algorithms it became clear

that for some of the users using other subjects data was detrimental. Some users were able

to achieve a much higher classification accuracy using a model trained with only a couple of

trials of their own data than one trained with any of the available source data.
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Chapter 4

A Subject-to-Subject Selective Transfer

Learning Framework for Improving

BCI

The findings presented in this chapter have been previously published in the 44th International Con-

ference on Acoustics, Speech, and Signal Processing (ICASSP 2019) and presented through a poster

[71].

4.1 Introduction

In order to improve the accuracy, research has been carried out to improve the components

within the BCI [65]. These range from feature extractors, such as the filter-bank common spa-

tial patterns algorithm [72], to classifiers, such as the adaptive linear discriminant analysis

(aLDA) which updates the classifier parameters when new trials are available [62]. A range of

other adaptation methods have also been explored in BCI to further improve the classification

accuracy. An example is the multiclass data space alignment (MDSA) algorithm, proposed in

the previous chapter. MDSA reduces the difference between the training data and test data

through a linear transform [73][58]. Despite these techniques improving accuracy, they often

require a large number of calibration trials to provide a significant improvement.

To reduce the need for the long calibration time, transfer learning between sessions and
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subjects has been investigated. Transfer learning often refers to a procedure of using a data set

from a different but related task to improve the accuracy of a new task [74]. When used for

BCI, the data sets are often from the same task but different users.

One form of transfer learning is through identifying features which are stationary across

multiple subjects, known as domain adaptation. This area has been explored by Lotte and

Guan [75] and Kang et al [76] [61] with some success. The other form of transfer learning is

called rule adaptation which attempts to find the framework of classification rules. The rule

adaptation-based transfer learning attempts to select the most appropriate feature extraction

and classification rules from a pool of available components [74]. This area of transfer learning

has has been recently explored by He and Wu [77].

These various approaches to transfer learning have been effective for a large proportion

of the sessions examined however many actually see a decrease in the classification achieved.

Increasing the pool of data being used often allows the trained model to avoid being over-

specialised however for some sessions this extra data actually has a detrimental impact [].

Some sessions perform best when all the source data comes from the same participant. Mean-

while other times the session performs best when trained with data from the session itself even

when the amount of this data is very limited. Due to this in order to maximise the classification

accuracy achieved by the algorithm it’s important to identify these sessions.

In this chapter we propose a framework to make use of selective transfer learning and

rule adaption transfer learning. First, a method to identify sessions that will not benefit from

transfer learning is explored. After the sessions which don’t require transfer learning are iden-

tified their own data is used to train the model. Otherwise, if the sessions would benefit from

transfer learning a new measurement of similarity, named the Jensen-Shannon ratio (JSR), is

implemented. This measure is used to compare calibration trials with existing data sets for

transfer learning. Finally, the data set with the highest similarity to the trials of the target user

is selected, from previously recorded data, for training a BCI model for the target user.

The proposed framework will be evaluated using the publicly available BCI Competition

IV data set 2a [68]. The algorithm will then be compared to utilizing only the Kullback Leibler

(KL) divergence for data set selection and a framework previously proposed by Lotte using
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other subjects data to alter the co-variance and mean of the training data set [78].

4.2 Methodology

4.2.1 Proposed Selective Subject to Subject Transfer learning Framework

The proposed framework consists of two steps as follows:

4.2.1.1 Identifying Participants Who Would Benefit from Transfer Learning

Users who encounter BCI deficiency can benefit substantially from the application of transfer

learning. While for other users, who easily obtain high classification accuracy, the transfer

learning can be detrimental. To counter this the proposed framework identifies the users who

can benefit from subject to subject transfer learning then selects the best previously recorded

data set for these users to train their BCI models. To identify the subjects requiring transfer

learning the leave-one-out validation (LOOV) accuracy is applied on the few subject-specific

target trials. If the average accuracy for those subject-specific trials is below 70% they are

identified as BCI deficient. For user who are found to encounter BCI deficiency the proposed

JSR was then used to select an appropriate data set for training the BCI.

4.2.1.2 Proposed Jensen Shannon Ratio to Select source data

The proposed JSR measures the difference of the average EEG signals from the same class

between users and the opposing classes using the Jensen Shannon divergence. The JSR is

then used to select an appropriate signal for training, where the same classes are similar and

opposing classes are far apart. The Jensen Shannon divergence is based on the Kullback Leibler

(KL) divergence with some useful differences.

KL[Nj ∥ Dj] =
1
2
[(µj − µj)

TΣj
−1
(µj − µj) + tr(Σj

−1
Σj)− ln(

det(Σj)

det(Σj)
)− k] (4.1)

The band pass filtered EEG signals can be modelled as Gaussian distributions. The sim-

ilarity between two Gaussian distributions can be measured through the KL divergence, as

shown in (4.1). For this equation Nj(µ, Σ) and Dj(µ, Σ) are used to represent the distributions
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of class j from the target subject N and training subject D. µ and µ represent the means of the

distribution, and Σ and Σ denote covariances.

Jensen Shannon divergence is an extension of the KL divergence. This extension provides

a symmetric and finite value for the similarity by measuring to a middle point providing,

as shown in (4.2). The middle point Mji(µji, Σji) is calculated from the average of the two

distributions being compared, with µji = 0.5(µj + µi) and Σji = 0.5(Σj + Σi). This Jensen

Shannon divergence is then used to calculate the JSR and select the best data sets for the test

data.

JS[Nj ∥ Di] =
1
2
(KL[Nj ∥ Mji] + KL[Di ∥ Mji]) (4.2)

Through knowing the differences between the EEG signals for each subject and class the

JSR can be calculated. This aims to select a data set which has similar distributions for the same

class while ensuring that the opposing classes are not similar. This is done through equation

(4.3), with C representing the number of classes. The JSR aims to minimize the dissimilarity be-

tween the classes of two data sets while simultaneously maximizing the dissimilarity between

different classes.

JSR =
∑C

j=1 JS[Nj ∥ Dj]

∑C
i=1i ̸=j(JS[Nj ∥ Di])

(4.3)

When using the JSR for BCI subject to subject transfer learning the band-pass filtered EEG

signals are used. As such Di(0, Σi) can be used to represent the distribution of one of the

training data sets. While Nj(0, Σj) represents the distribution of the few subject specific trials

we have from the user for each j class. In each of these distributions the normalized co-variance

is estimated through the signal values x as shown in (4.4), with N number of trials.

Σ =
1
N

N

∑
i=1

xixi
T

tr(xixi
T)

(4.4)

As the band pass filtered EEG has a zero mean, equation (4.3) can be simplified to equation

(4.5). Once the JSR has been calculated between the distribution of the subject specific trials

and each of the possible training data distributions, the training data with the lowest JSR value

is then selected. This data set is used to train the CSP and LDA of the BCI.
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JSR =
C

∑
j=1

∑
i ̸=c

(tr(M)−1Σj + (M)−1Σj)− ln(det(Σj)

det(Σj)
)

C(tr(M)−1Σi + (M)−1Σj)− ln(det(Σi)
det(Σj)

)
(4.5)

4.2.2 Experiment

4.2.2.1 Dataset

To evaluate the framework proposed in this chapter the BCI Competition IV dataset 2a [70]

dataset described in the previous chapter was used.

4.2.2.2 Data Processing

As before the EEG data for each user was split into the two sessions available. One being

labeled as the source sessions and the other as the target session. The first 40 trials of each of the

target sessions were removed and used by the proposed algorithm, as well as the comparison

algorithms, to identify the best source sessions or source session weightings. This number was

selected heuristically following examining different numbers of trials and finding that most

classification accuracies leveled off after this point.After the source data is selected was band

pass filtered from 8Hz to 35Hz, a pair wise CSPs was trained for 6 class pairs and then these

features were used to create and train 6 pair wise LDAs.

To evaluate the effectiveness of the proposed JSR transfer learning, its results are compared

with the accuracies obtained using a KL based similarity measure. Moreover, the proposed

framework is compared to the algorithm previously suggested by Lotte utilizing other subjects

training data [78]. These were also compared to training the BCI with the available subject

specific trials provided to highlight the improvement in accuracy achieved by providing the

additional training trials.

KL divergence is a long established method of calculating the difference between two Gaus-

sian distributions. As such it is used for comparison against the JSR as a mean of transfer

learning in the data domain. Equation (5.1) displays the calculations required to calculate the

KL divergence. In this the data set which has the lowest summation of KL divergence between

the test and target subjects classes is used for the BCI training.

Lotte and Guan previously developed an algorithm for BCI which used other subjects data
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to reduce the need for calibration trials [78]. This evaluates the training data by training a

BCI using each of the training data sets available. The subject specific trails are then used to

evaluate the data sets. The selected data sets are then weighted, with λ, then used to estimate a

new co-variance and mean in the feature domain as shown (4.7) and (4.6). For these equations

µ and Σ are the mean feature vector and co-variance of the target subject while µ and Σ are the

mean feature vector and co-variance of the training subset. s is the number of selected training

data sets.

Σ = (1 − λ)Σ + λ
1
s

s

∑
i=1

Σs (4.6)

µ = (1 − λ)µ + λ
1
s

s

∑
i=1

µs (4.7)

λ =
DatasetAccuracy − SubjectSpeci f icAccuracy

100 − ChanceAccuracy
(4.8)

The weighting of λ is calculated through comparing the leave-one-out validation (LOOV)

accuracy that is achieved by the subject specific trials and the accuracy achieved when the

other data sets are used for training. If the leave one out validation outperforms the other data

sets it is used for training the BCI, while if it is less than chance the trials are not used at all. If

the LOOV accuracy is between the chance level and the accuracy achieved by the other data

sets then they are weighted as shown in (4.8).

4.3 Results and Discussion

4.3.1 Improvement for BCI Deficient Users

Initially the proposed JSR is compared to the other transfer learning algorithms. The JSR allows

BCI deficient users to achieve higher accuracy then any of the other algorithms. This can be

seen in figure 4.1 which shows the accuracy achieved by each of the algorithms when 8 subject

specific trials are available. For the users who achieved less than 70% accuracy with their

subject specific trials the average improvement was 8% with JSR. In comparison the algorithm

proposed by Lotte improved the accuracy for these subjects by just 3% and the KL divergence
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caused a fall in accuracy. Subjects 1 and 5 in particular had a large increase in classification

accuracy when the JSR was applied. While the average accuracy across all the subjects is not

improved by JSR, compared to the standard BCI. This could be improved with a larger data

base with more subjects to select from.

Figure 4.1: The accuracy achieved by each algorithm for every subject in the data set when

only 8 trials are available for either training or calibration.

When examining the average classification accuracy across all the subjects, when 8 subject

specific trials are available, the algorithm proposed by Lotte outperforms the JSR 0.9%. This

may be due to Lotte’s algorithm only using others data for users encountering BCI deficiency,
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who require assistance, while JSR was used for all subjects. The subjects able to achieve high

levels of accuracy with only a few subject specific trials lose accuracy with any of the other

data sets available in the database. As such it is important to differentiate between the subjects

who will achieve high accuracy and the subjects who will encounter BCI deficiency.

To identify these BCI deficient subjects the proposed framework incorporates the LOOV ac-

curacy as a quick way to estimate the users competency in controlling EEG based BCI. Through

this the users are classified as either BCI deficient or sufficient. The users will then either use

the JSR to select the best training set for them or use the subject specific trials as the training

set for the BCI.

Using the framework to select the subjects requiring transfer learning, before applying the

JSR, improves the average accuracy across all the subjects. This is shown in figure 4.2 where

the proposed framework is able to achieve 77% accuracy when 40 subject specific trials are

available. When only the subject specific trials are used for training the average accuracy is

only 74.5%. The proposed framework consistently outperforms the standard BCI although it

does not perform optimally initially and experiences a small decrease in accuracy when 28

trials are available. The drop in accuracy which occurs when there are 28 subject specific trials

is due to subjects 2 and 8 both experiencing a fall in accuracy. These subjects are both correctly

identified as BCI deficient and sufficient respectively however still lose accuracy due to a few

inconsistent trials. These trials causes the JSR to select a bad data set for subject 2 and leading

to a fall in accuracy of 2%. This shows that the framework could benefit from an algorithm to

evaluate and remove trials that are outliers.

4.3.2 Average Improvement from Proposed Framework

As mentioned the framework is not able to improve the average accuracy when only 8 subject

specific trials are available. The LOOV misidentifies subjects 1 and 3 lowering the average

accuracy by 0.1% compared to the standard BCI. The initially low accuracy of the proposed

framework highlights one of the main problems which is its ineffectiveness in noticing BCI

deficient users quickly. Using the LOOV accuracy is able to produce a fairly accurate predic-

tion of the users capabilities when enough trials are available however a few outlying trials

can affect the results. These outliers are not necessarily just trials that produce low levels of
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accuracy but can also produce uncharacteristically high levels of accuracy which lead to the

subjects being miss-classified by the LOOV and the framework under performing. The LOOV

does perform well when there are enough trials provided to the validation and the framework

does still improve on the standard BCI when 10 or more trials are available.

Figure 4.2: The average accuracy achieved by the standard BCI and framework improves as

the number of trials increase.

Table 4.1 highlights this failing of the LOOV accuracy as a measurement of BCI competency.

The proposed framework improves upon standard BCI however there is still a lot of room

for improvement. If a better selection method was available this could further improve the

accuracy of the framework. This increase in accuracy could be up to 3% if the correct subjects

are selected to utilize the JSR. The current framework is able to improve the accuracy for BCI

deficient subjects by over 5.5% when only 8 trials are available and by up to 6.5% when 40
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Table 4.1: Average accuracy for BCI deficient users

Trials Subject Specific Proposed framework JSR

8 57 62.5 62.5

40 58.65 65.1 66.1

trials are available.

4.4 Conclusion

Overall an improvement in the classification accuracy was consistently achieved for users en-

countering BCI deficiency by the proposed Jensen Shannon ratio data selection. When the

“leave one out” method was used to select the users who required alternative training trials

the average accuracy of the system outperformed the standard BCI by 3%. It is also important

to remember that this was conducted using a publicly available data set with only nine sub-

jects, providing a relatively small amount of training data to select from. A larger data set with

more subjects may be able to find more appropriate data sets for each deficient subject. A num-

ber of users who were miss-classified could have benefited from using a different users data.

As such to progress this work a key area to focus on will be in selecting a better predictor of

classification accuracy going forward. This could potentially improve the systems allowing it

to achieve an accuracy of 77% with only 8 trials. As the framework improves it can be applied

to assist stroke patients with rehabilitation.
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Chapter 5

A Transfer Learning algorithm to

Reduce BCI Calibration Time for

Long-term Users

The findings presented in this chapter have been published in the 42nd Engineering in Medicine and

Biology Conference (EMBC 2020)[79] and in the “Frontiers of Neuroergonomics” [80].

5.1 Introduction

To reduce the BCI calibration time transfer learning can be used [9]. Transfer learning is a

commonly employed technique in systems engineering when only a limited amount of data is

available to train the model. Transfer learning compensates for the limited amount of labelled

data available by extracting relevant information from other sources or domains to improve the

classification model [9]. However, transfer learning in BCI is not a trivial task due to the non-

stationary nature of brain signals. The properties of EEG signals often change considerably

from session to session [10].

To reduce the affects of the non-stationarities, a range of approaches have been explored

and embedded in transfer learning algorithms proposed for BCI [11, 12]. For example, some

transfer learning algorithms applied alignment of the EEG distributions between the source

and target sessions [77, 81–83] or weighted the source sessions according to their similarities
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with the target session [84]. However these research studies focused on inter-subject transfer

learning, evaluating the proposed solutions on datasets with only one or two sessions of data

available for each subject. There is a research bias within BCI, with the majority of studies

focusing on datasets where only one or two sessions are recorded from each subject [13]. There

is a relatively small amount of literature focused on long-term users and inter-session transfer

learning. One of the main causes of inter-subject variations in EEG signals is the varying brain

morphology across the users. This issue is particularly significant for stroke users whose brain

is altered by lesions that vary in size and location from user to user. Inter-session transfer

learning is not affected by this issue with the majority of the non-stationarities coming from

other causes.

Despite the limited number of studies on long-term BCI users, the potential benefits of

inter-session transfer learning to reduce the calibration period is clear. Arvaneh et al. found

that when 11 previous sessions, with 60 trials of each class in each session, were combined in

the form of a “naive transfer learning“, potentially invariant BCI features could be identified

[57]. These sessions were collected over a period of one month and showed the potential

of inter-session transfer learning to reduce the need for a calibration session. However, this

approach is very limited. A lot of data is required before these so-called invariant features can

be extracted, while some users still continue to perform better with the BCI model trained only

using the data collected from the new session, called the “session-specific model”.

One of the key sources of literature on inter-session transfer learning for long-term BCI

users is from the teams competing in the Cybathlon BCI event [85]. The BCI race at the Cy-

bathlon competitions has been held every 4 years where teams with tetraplegic pilots com-

peted to control an avatar through a race track using BCI [86]. This required the teams to

develop BCIs that could detect three different mental commands and to train a pilot to use the

system. The user training period ranged from a month to over a year for some teams, allow-

ing an in-depth exploration of BCI for long-term use and the potential of inter-session transfer

learning.

The team led by Hehenberger et al. utilised inter-session transfer learning and intra-session

adaptation for their BCI model developed for the Cybathlon competition race [87]. This team
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worked with their pilot for 14 months collecting 26 sessions, each containing 120 EEG trials.

Using the collected dataset, in an offline analysis, the authors highlighted the benefits of inter-

session transfer learning over session-specific BCIs. They combined the data from the past five

sessions and the new data to train the BCI model in the form of an inter-session naive transfer

learning. Although it was successful to some extent, no optimisation was performed when

combining the new and previous data to reduce the inter-session non-stationarities. Another

Cybathlon team led by Benaroch et al. explored using both inter-session alignment and intra-

session adaptation for their BCI model [88]. Over a period of 3 months this team collected 20

sessions, with the length of the sessions varying between an hour and two hours. To reduce

the calibration time and reduce inter-session variability, they applied an alignment method

projecting the Riemannian mean spatial covariance matrix from each session to a common

reference point (i.e. the identity matrix). This alignment proved effective at reducing the non-

stationarities and improving the inter-session transfer learning. However, even with this align-

ment still some of the source sessions were detrimental to the BCI model. Other researchers

suggested that the use of selective transfer learning would reduce the effects of detrimental

source sessions by weighting the source sessions based on their similarities with the target

session [89].

Recently, Cao et al. has explored weighting the source sessions to improve the inter-session

transfer learning in long-term BCI users performing BCI-based stroke rehabilitation [90]. For

this purpose, they utilised a previously proposed inter-subject transfer learning algorithm [84].

The proposed transfer learning algorithm added a regularisation parameter to the objective

function of the BCI classifier, aiming at minimising the dissimilarity between the classification

parameters of the new session and the past sessions while maximising the two class separa-

tions. Importantly, the proposed algorithm gave different weights to different source classifiers

based on the similarity between their features and the features of the target session. Cao et al.

validated the utilised inter-session transfer learning algorithm on a BCI dataset from seven

stroke patients. The dataset consists of 12 BCI sessions per stroke patient, each session having

180 trials performed in a randomised order. The proposed inter-session transfer learning al-

gorithm significantly increased the classification accuracy of stroke subjects encountering BCI

48



deficiency. However the improvement in BCI accuracy was not statistically significant for all

users. Many of the stroke participants performed better when relying on the standard naive

transfer learning; with all source sessions having the same weight.

This chapter focuses on inter-session transfer learning to reduce the required calibration

time for stroke patients who use BCI for rehabilitation. The proposed algorithm reduces this

calibration time by combining previously recorded data from the same user with a limited

number of data recorded from the current session, reducing the need for an extended calibra-

tion session. The proposed algorithm called regularised Kullback-Leibler weighted data space

alignment (r-KLwDSA), consists of three steps to make effective use of the inter-session source

sessions. Initially, the algorithm uses linear alignment to reduce non-stationarity between the

current target session and the previous source sessions. The source sessions are then weighted

to minimise the effects of any detrimental source data. Finally, the algorithm utilises regulari-

sation to incorporate the target data and the weighted aligned source data into the BCI model.

The proposed r-KLwDSA algorithm is evaluated using EEG signals collected from 11 stroke

patients over a period of six weeks. To simulate the real world scenario of long-term BCI use

for stroke rehabilitation, the data will be evaluated chronologically, only using previously col-

lected sessions for transfer learning. As such when evaluating the first target session only

the screening session will be available for inter-session transfer learning and when evaluat-

ing session two both the screening session and session one will be used for transfer learning.

This chapter will compare the effects of the weighting and alignment separately as well as the

combined effect on classification performance. Furthermore, the performance of the proposed

r-KLwDSA algorithm will also be compared with the performance of the session-specific BCI

model trained with only the available trials from the current target session and the naive trans-

fer learning model trained with only the previous source sessions without any alignment.

5.2 Methodology

In this chapter, we assume that EEG trials of J sessions, previously recorded from our current

user, are available. These sessions are called source sessions. The jth source session, Ŝj, can be

represented as Ŝj =(X̂i
j, ŷi

j)
m̂j
i=1, where X̂i

j ∈ X̂j ⊂ Rch×t represents the ith EEG trial from m̂j total
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EEG trials available in Ŝj , and ŷi
j ∈ ŷj ⊂ R represents the corresponding class label. Moreover,

ch and t respectively denote the number of channels and the number of time samples recorded

in each EEG trial.

Similarly, in this chapter, we have access to a small number of EEG trials from a new ses-

sion, collected in a short calibration session from the same user. This session, referred to as the

target session, is presented as S=(Xi, yi)m
i=1, where Xi ∈ X ⊂ Rch×t is the ith recorded trial and

yi ∈ y ⊂ R represents its corresponding class label. Moreover, m refers to the total number of

trials in the target session.

As can be seen in Fig. 5.1, the proposed r-KLwDSA algorithm consists of three steps, each

attempting to address one of the challenges of transfer learning in BCI. Step 1 reduces the non-

stationarity between the EEG data from the source sessions and those from the target session.

For this purpose, a linear transform is performed on the EEG data of each source session to

reduce their distribution difference from the target data. Subsequently, step 2 defines the sim-

ilarity between the EEG distributions of each linearly aligned source session and the target

session using a proposed weighting mechanism. Finally, step 3 fuses the weighted aligned tri-

als from the source sessions with the few available trials of the target session using a proposed

regularisation method. In fact, the regularisation controls a trade-off between the target model

from the new session and the weighted aligned source model from the past sessions. These

three steps are explained in detail in the following subsections.

5.2.1 Linear alignment to reduce non-stationarities

When performing transfer learning, one of the key issues is the presence of non-stationarities

which can cause large differences in the properties of EEG data from session to session. These

differences in the data space can have a very detrimental effect on the performance of transfer

learning in BCI. To address this issue, similar to Chapter 3, we propose the use of a linear

transformation, Lj, to reduce the mismatch between the distribution of each source session,

P(X̂j, ŷj), and the distribution of the target session, P(X, y). For this purpose, Lj ⊂ Rch×ch

needs to be calculated such that the distribution dissimilarity between P(Zj, ŷj) and P(X, Y) is

minimised where Zj = LjX̂j.

Assuming that EEG signals have Gaussian distributions [69], we used Kullback Leibler
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Figure 5.1: The proposed r-KLDSA algorithm is comprised of three steps, 1) the EEG data from

the source sessions are aligned to the EEG data from the available target data using data space

alignment, 2) weighting the aligned data of the source sessions based on their similarities with

the data of the target session, 3) fusing the weighted aligned source data with the target data

using a regularisation method.
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(KL) divergence for Gaussian distributions to measure the distribution dissimilarity between

the target session and each source session. Given two Gaussian distributions, N1(µ1, Σ1) and

N2(µ2, Σ2) with µ1 and µ2 as the means and Σ1 and Σ2 as the covariance matrices, the KL

divergence between N1 and N2 is measured as

KL[N1 ∥ N2] =
1
2
(tr(Σ2

†Σ1) + (µ2 − µ1)
TΣ2

†(µ2 − µ1)− ln(
det Σ1

det Σ2
)− k), (5.1)

where tr, det and ln denote the trace function, the determinant function and the natural log-

arithm function respectively. † and T denote the pseudo-inverse and the transpose functions,

respectively. Finally, k refers to the dimension of the data.

As the EEG data of the source and target sessions are band-pass filtered, they have zero

means. The co-variance matrices, representing the distributions of the target session, S, and

the jth source sessions, Ŝj, are calculated using (5.2) and (5.3) respectively,

Σ
c
=

1
mc

mc

∑
i=1

Xc,i(Xc,i)T

tr(Xc,i(Xc,iT))
, (5.2)

Σ̂c
j =

1
m̂c

j

m̂c
j

∑
i=1

X̂c,i
j (X̂c,i

j )T

tr(X̂c,i
j (X̂c,i

j )T)
, (5.3)

where, c denotes the class, and mc is the total number of trials for the class c. Subsequently, the

linearly transformed Ŝj, presented as LjŜj, has a zero mean and the covariance matrix calculated

as LjΣ̂
c
j Lj

T. Given (5.1), the distribution dissimilarity between the linearly transformed jth

source session and the target session can be calculated as:

KL[LjŜj ∥ S] =
1
2

2

∑
c=1

[tr(Σc†LjΣ̂
c
j Lj

T)− ln(
det (LjΣ̂

c
j Lj

T)

det(Σc
)

)− ch]. (5.4)

The linear transform Lj aims to minimise the distribution dissimilarity between Ŝj and S. To

calculate Lj, the first order derivation of the loss function (5.5) with respect to Lj is computed

and set to zero, as shown in (5.6) and (5.7). For more details on how optimum Lj has been

calculated, please see the appendix.

A(Lj) = min
Lj

2

∑
c=1

1
2
[tr(Σc†LjΣ̂

c
j Lj

T)− ln(
det(LjΣ̂

c
j Lj

T)

det(Σc
)

)− ch]. (5.5)

dA
dLj

=
2

∑
c=1

1
2
[

d
dLj

tr(Σc†LjΣ̂
c
j Lj

T)− d
dLj

ln(det(LjΣ̂
c
j Lj

T))] = 0. (5.6)
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Lj =
√

2
2

∑
c=1

(Σ̂c
j Σ

c†
)†0.5. (5.7)

By applying the linear transform Lj to each of the source sessions, the KL divergence be-

tween the target and the aligned source session is minimised. This reduces the effect of the

non-stationarities from session to session.

5.2.2 Weighting according to EEG distribution similarity

Although reducing the non-stationarity can help improve transfer learning, some source ses-

sions can still be detrimental to the BCI. The second step of the proposed r-KLwDSA algorithm,

shown in figure 5.1, weights the aligned source data of each previous session to reduce the im-

pact of adverse data while placing more weight on data that is similar to the target session.

In (5.4), we proposed using the KL divergence between Gaussian distributions to measure

dissimilarity between the aligned jth source session and the target session. Subsequently, the

assigned weight for the aligned jth source session, ωj, presenting its distribution similarity to

the target session, is calculated through equation (5.8),

ωj =
(KL[LjŜj ∥ S])−1

∑J
i=1(KL[LiŜi ∥ S])−1

, (5.8)

where, KL[LjŜi ∥ S] is calculated using (5.4). According to (5.8), source sessions with simi-

lar data to the data of the target session are assigned larger weights, whereas aligned source

sessions with less similarity to the target session are given small weights. Consequently, the

weighted aligned source data are used to calculate the co-variance matrix of past data, called

the transfer learning co-variance matrix, Σ̂c
TL, as

Σ̂c
TL =

J

∑
j=1

ωjLjΣ̂
c
j L

T
j . (5.9)

5.2.3 Regularised Transfer Learning between past and present data

Transfer learning can be very effective for some of the target sessions, while for some other tar-

get sessions, the source data might be detrimental, even after weighting and alignment. These

target sessions usually tend to be able to achieve high classification accuracy even when only
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a few target trials are available for training. As such the third step of the proposed r-KLwDSA

algorithm uses a regularisation method to find a trade-off between data from the previous ses-

sions and the new data from the new target session in the final BCI model. Thus, the final

regularized co-variance matrices are calculated using (5.10) with a regularisation parameter,

r ∈ {0, 0.1, ..., 1}. The individualised regularisation parameter is calculated for each target ses-

sion and selected through leave-one-out cross validation method on the available target trials.

The parameter achieving the highest average leave-one-out classification accuracy was then

used to produce the final co-variance matrix, Σc
F for class c. The final co-variance matrices are

then used for training the Common Spatial Patterns (CSP) features [91], as further elaborated

in Section 3.2.

Σc
F = rΣ

c
+ (1 − r)Σ̂c

TL (5.10)

5.3 Experiment

5.3.1 Dataset

The dataset used to evaluate the proposed algorithm is known as the nBetter dataset [7]. This

dataset was collected by the Institute for Infocomm Research, A*Star, Singapore to evaluate

the efficacy of the Neurostyle Brain Exercise Therapy Towards Enhanced Recovery (nBETTER)

system in post-stroke upper limb rehabilitation. The clinical trial obtained ethical approval

from the Institution’s Domain Specific Review Board (IRB), National Healthcare Group, Sin-

gapore and is registered in ClinicalTrials.gov under NCT02765334. The use of this dataset to

evaluate our proposed algorithm was approved through IRB Reference: 2020-103.

All participants in the study had their first-ever stroke 3 to 24 months before participating

the clinical trial, affecting their upper limb movements. They all provided informed consent

before enrollment in the study. Potential participants attended a 40 minute BCI screening ses-

sion, and only those who achieved BCI accuracy above 57.5% 10-fold cross validation accuracy

were invited to attend the nBetter intervention. The EEG data was collected from 24 EEG chan-

nels, placed in the international 10-20 system positioning: F3, F4, FC3, FC4, C3, C4, CP3, CP4,

P3, P4, FT7, FT8, T3, T4, TP7, TP8, Fz, Oz, FCz, Cz, CPz, Pz, A1 and A2, and digitally sampled
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at 256 Hz for a voltage range of ±300mV.

In total the nBetter dataset contains the EEG data from 11 stroke patients completing one

screening session, 18 supervised sessions and 18 therapy sessions supervised by an occupa-

tional therapist. The screening session, collected at the start of the study, contains four runs,

each consisting of 20 idle trials and 20 motor imagery trials. For the idle class the participant

was instructed to relax, whereas for the motor imagery class the participant was instructed to

imagine movement of their affected hand. As shown in Figure 5.2, each supervised session

followed by one therapy session on the same day, conducted thrice weekly over a six week

period. In each of the supervised sessions 40 labelled trials were collected, half motor imagery

and the other half idle trials. The therapy sessions contain four runs each consisting of 40

motor imagery trials. Each of the trials in these sessions lasted 13 seconds, as illustrated in Fig-

ure 5.3 with the instruction to perform motor imagery being presented for four seconds after

giving the participant two seconds to prepare.

To evaluate the proposed r-KLwDSA algorithm, only the screening and supervised sessions

were used. These sessions contained clearly labelled trials with equal numbers of each of the

two classes. When considering each supervised session as the target session the first 10 trials

of each class were used as training data, while the rest were kept for evaluation. When the

supervised session was used as a source session all trials were used for transfer learning. To

simulate a real world scenario the supervised sessions were evaluated chronologically. As a

result, when the supervised session one was evaluated as the target session, only the screening

session was used as source data. Similarly, when the supervised session 18 was used as the

target session, the supervised sessions 1 to 17 and the screening session were used as the source

sessions.

5.3.2 Data Processing

Any of the trials missing time samples were removed, other than this no artifact rejection

algorithms used. A zero phase elliptic band pass filter from 8 to 35 Hz was used to filter the

EEG data as this range contains the key range of frequencies that are linked to motor imagery.

The band-passed EEG signals from 2.5 to 5 seconds after the presentation the cue were used

for feature extraction. This time interval considers sufficient time for the participant to react
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Figure 5.2: Illustration of the data collection of the nBetter dataset. First a screening session is

collected at the start of the six weeks. Following the screening session, a supervised session

followed by a therapy session is collected three times a week.
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Figure 5.3: A trial from the nBetter supervised session. Each supervised session consists of 20

motor imagery (MI) trials and 20 idle trials.

to the motor imagery instruction. Six different feature extraction algorithms, including the

proposed r-KLwDSA algorithm, are used in this chapter. These six algorithms utilise CSP

filters to calculate the features. The CSP diagonalises the covariance calculated for each class to

find the subspace that maximises the variance of one class while minimising the variance of the

second classes. The first and last two rows of the CSP were selected as the most discriminative

spatial filters for feature extraction. The normalised variances of the spatially filtered EEG

signals from the training part of the target session were used as the features to train a Linear

Discrete Analysis (LDA) classifier.

Despite all using CSP for calculating the features, the covariance matrix of each class, used

to calculate CSP, was obtained differently in the six applied methods. For the proposed r-

KLwDSA algorithm, the covariance of each class was calculated as described above in (5.10).

The proposed KLwDSA algorithm is a special case of the proposed r-KLwDSA algorithm with

r = 0. In other words, the proposed KLwDSA algorithm uses the covariance matrices cal-

culated in (5.9) to obtain the CSP filters. The standard session-specific (SS) algorithm is also

a special case of the proposed r-KLwDSA algorithm with r = 1. As when r = 1 no trans-

fer learning occurs making it the same as a standard CSP-LDA BCI. Thus, the SS uses only

the training data available in the target session to calculate the CSP filters. The naive transfer

learning algorithm, nTL, concatenates all the source sessions with equal weights and with-

out alignments to calculate the covariance of each class for the CSP algorithm. The DSA and

KLw algorithms are extensions to nTL. The DSA algorithm applies the DSA linear transform

to each of the source sessions before calculating the CSP covariance matrices by concatenat-

ing the aligned source trials. The KLw algorithm weights each of the source sessions using

the weighting method proposed in step 2 of the proposed algorithm without any alignment.
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Then the weighted covariance matrices of the source sessions are used for calculating the CSP

filters. All these algorithms are compared in terms of the classification results to understand

their merits and disadvantages.

5.4 Results and Discussion

5.4.1 Comparison of classification accuracy results

Figure 5.4 shows the average classification accuracy of the six above-mentioned algorithms

across all the subjects and sessions when a different number of target trials were available for

BCI calibration. As shown in Figure 5.4, the proposed r-KLwDSA algorithm outperformed all

the other algorithms across different numbers of available target trials. Given the number of

available target trials between 2 to 10 per class, r-KLwDSA consistently outperformed SS by

an average more than 4%. The sensitivity and specificity were also calculated for the proposed

r-KLwDSA algorithm and have been included in a table in the supplementary materials.

A 6 (algorithms = SS, nTL, KL, DSA, KLwDSA and r-KLwDSA) × 5 (target trials per class

= 2, 3, 4, 5 and 10) × 18 (available source sessions= 1, 2,..., 18) repeated measures ANOVA

test was performed on the classification results using the SPSS software. The statistical results

showed that only the number of trials satisfied Mauchly Sphericity, so the Greenhouse Geisser

was used to evaluate the effects of the algorithms, the number of target trials and sessions

on the classification results. The results showed that the number of target trials and the algo-

rithms had statistically significant effects on the classification accuracy with P-values of less

than 0.001 and 0.048, respectively. The post hoc analysis showed using 3, 4, 5, and 10 target

trials per class led to significantly better classification results compared to when we used only

2 target trials per class (p < 0.001). Similarly using 10 target trials per class significantly out-

performed the results of using 3 trials per class (p = 0.008). When comparing the algorithms

separately, the post hoc analysis showed that the proposed r-KLwDSA algorithm significantly

outperformed all the other algorithms. P-values of less than 0.001 were obtained when com-

paring the proposed r-KLwDSA with the SS, nTL, DSA, KLw and KLwDSA algorithms. The

post hoc analysis did not show any significant difference between the SS, nTL, KLw and DSA

algorithms. Interestingly, by combining KLw and DSA, the proposed KLwDSA algorithm sig-
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nificantly outperformed the SS, nTL, DSA and KLw algorithms, with the P-values of 0.006,

0.013, 0.012 and 0.032 respectively. We corrected the p-values for the multiple comparisons

using the Bonferroni correction method.

Figure 5.4: Average classification accuracy of six different algorithms across all subjects and

sessions, when different number of target trials were available for calibration. SS denotes the

target session-specific algorithm; nTL, naive transfer learning; proposed KLw, Kullback Liebler

weighted transfer learning; proposed DSA, data space alignment transfer learning; proposed

KLwDSA, aligned and weighted transfer learning; and proposed r-KLwDSA, the regularised,

aligned and weighted transfer learning algorithm.

To better understand the merits of the proposed r-KLwDSA over the standard SS algorithm,

the best two features of these two algorithms, obtained using the target data from subject 6,

session 16, were compared in Figure 5.5. Figure 5.5 highlights the benefit of implementing the

proposed algorithm when there are only a limited number of target trials available. As shown
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the SS algorithm suffers greatly from overfitting due to the lack of target training trials. The

SS algorithm extracts session-specific CSP features which perform very well with the available

training data with only two features on the incorrect side of the hyperplane. However when

transferring to the target test data the features from both classes overlap. The r-KLwDSA

algorithm is not affected by this overfitting due to the integration of the source sessions data.

While the trained target features overlap slightly more than the SS algorithm the test target

features are much more distinctive.

5.4.2 Average Sensitivity and Specificity of each algorithm

Table 5.1 compares the average Sensitivity and specificity of the proposed r-KLwDSA algo-

rithm with the Sensitivity and specificity of SS, nTL, KL, DSA, and KLwDSA.

2 target trials per class 3 target trials per class 4 target trials per class 5 target trials per class 10 target trials per class

Mean

Accu.

Mean

Spec.

Mean

Sens.

Mean

Accu.

Mean

Spec.

Mean

Sens.

Mean

Accu.

Mean

Spec.

Mean

Sens.

Mean

Accu.

Mean

Spec.

Mean

Sens.

Mean

Accu.

Mean

Spec.

Mean

Sens.

SS 59.72 60.20 59.24 61.97 61.62 62.32 64.49 62.83 66.16 64.55 63.79 65.30 64.62 65.51 63.74

nTL 62.40 59.14 65.66 63.64 62.02 65.25 63.89 62.42 65.35 63.76 61.67 65.86 64.09 59.09 69.09

KL 62.22 58.89 65.56 63.61 61.97 65.25 63.91 62.42 65.40 63.76 61.67 65.86 64.19 59.65 68.74

DSA 60.86 59.65 62.07 62.07 62.63 61.52 63.66 63.08 64.24 64.49 64.34 64.65 65.78 61.31 70.25

KLwDSA 61.62 58.79 64.44 64.65 62.32 66.97 66.04 63.43 68.64 66.41 64.14 68.69 68.28 64.80 71.77

r-KLwDSA 65.28 62.63 67.93 68.01 65.51 70.51 68.86 64.55 73.18 68.59 64.75 72.42 70.23 67.27 73.18

Table 5.1: The average classification accuracy, specificity and sensitivity are shown for each

algorithm as the number of target trials increases. These averages are calculated across all

the users and sessions. Accu., Spec. and Sens. denote accuracy, specificity and sensitivity

respectively.

5.4.3 Effects of number of target trials and source sessions on the performance of

r-KLwDSA

Further statistical analyses were carried out to investigate the effects of the number of target tri-

als and source sessions on the performance of the proposed r-KLwDSA algorithm. A 5 (target

trials per class = 2, 3, 4, 5 and 10) × 18 (available source sessions= 1, 2,..., 18) repeated measures

ANOVA test was performed on the r-KLwDSA classification results. Mauchly Sphericity was

satisfied for the number of trials per class, so the sphericity assumed results were used. The
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Figure 5.5: An example of the distribution of the two best features obtained by the session-

specific CSP and the proposed r-KLwDSA. These features were collected from subject 6, ses-

sion 16. The blue crosses and red squares denote the normalized features of the hand motor

imagery and the rest class, respectively. The black line represents the LDA hyperplane ob-

tained by the target train data.

ANOVA results confirmed that the number of available target trials had a main affect on the

classification accuracy with a P-value of less than 0.001. This is aligned with previous liter-

ature, as increasing the number of target trials improves the estimation of the average target
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trials for each class. The improved average target trial results in a better DSA alignment and a

more accurate KL weighting, consequently improving the r-KLwDSA accuracy.

While increasing the available target trials significantly improved the classification accu-

racy, the number of available source sessions did not have a main effect on the classification

results of the proposed r-KLwDSA algorithm (P-value = 0.472). A potential factor contribut-

ing to the lack of a significant effect of the number of source sessions on the r-KLwDSA results

could be the non-stationarity of the EEG signals. The users’ EEG signals vary from session to

session, and these variations can be significant over extended periods. Thus, increasing the

number of the source data could not necessarily improve the BCI accuracy. Please note that to

mimic practical scenarios, we considered the data chronologically and used all the available

source sessions for training r-KLwDSA. Thus, our results did not make a direct comparison

between the different number of source sessions as by increasing the number of the source

sessions the target sessions were changed. To better analyse the impact of number of source

sessions on the r-KLwDSA performance, we fixed the target session to session 18 and used dif-

ferent numbers of the nearest source sessions. However still we did not observe a statistically

significant effect of number of source sessions on rKLwDSA results.

5.4.4 Effects of Increasing Source Session Availability on Accuracy

One of the interesting findings of this chapter is how increasing the available source session

does not always lead to an improvement in the classification accuracy. Figure 5.6 shows the

changes in the classification accuracy for target session 18 for all 11 subjects. First only the

previous session, session 17, is used to train the BCI then session 17 and 16 are used followed

by sessions 17, 16 and 15 and so on until all the previous data has been used.
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Figure 5.6: Classification results of the proposed r-KLwDSA algorithm using 5 trials per class

from the session 18 as the target session and different number of source sessions. Each curve

presents one participant.

Figure 5.7 shows the classification accuracy across all 11 subjects as a box plot. The highest

mean classification accuracy across all the users is when there are 4 source sessions available.

However the actual best number of source sessions varies significantly from user to user.
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Figure 5.7: Box-plots of the classification results for the proposed r-KLwDSA algorithm using 5

trials per class from the session 18 as the target session and different number of source sessions.

5.4.5 Change in classification accuracy for those encountering BCI deficiency

Figure 5.8 presents scatter plots showing all the classification results obtained using SS against

those obtained using the proposed r-KLwDSA algorithm, when 2, 3, 5 and 10 target trails were

available for BCI calibration. As can be seen, compared to the SS algorithm, the increased clas-

sification accuracy from using the proposed r-KLwDSA algorithm was pronounced for stroke

users encountering BCI deficiency (i.e. SS accuracy less than 60%). As expected, increasing the

number of available target trials led to a larger improvement in the classification accuracy of

the users who were identified as BCI deficient using the SS algorithm.

To better investigate the benefit of using r-KLwDSA, Table 5.2 splits the 198 available tar-

get sessions based on the classification accuracy achieved by the SS algorithm, when ten target

trials per class were available for BCI calibration. Impressively, for the total 73 sessions where

the SS encountered BCI deficiency (i.e. accuracy below 60%), the use of r-KLwDSA yielded
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Figure 5.8: Four scatter plots showing the SS classification accuracy against the classification

accuracy of the proposed r-KLwDSA algorithm. Each star represents one test session of a

patient.

a significant increase in the classification accuracy with an average improvement of 13.22%

and p-value of 0. Moreover, the proposed r-KLwDSA significantly improved the classification

accuracy of the total 87 sessions achieving between 60% and 85% accuracy using the SS algo-

rithm. However, the observed average improvement was smaller, with the average accuracy

increasing by 2.99%. On the contrary, sessions with a SS classification accuracy more than 85%

observed an average decrease in the accuracy when r-KLwDSA was applied. This shows when

the session-specific model performs very well, adding source sessions to the model could be

detrimental and the proposed regularisation method could not deal with it as expected. This

could be because the regularisation values were chosen using cross validation on only very

few target trials, which increases the risk of over fitting. Thus, there is a need to investigate
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novel ways to find the optimum regularisation values, particularly for those with very good

initial SS performance.

Below 60% 60% to 85% 85% to 100%

SS Mean Acc 45.82% 68.56% 91.71%

r-KLwDSA Mean Acc 59.04% 71.55% 88.68%

SS Count 73 87 38

P-Value 0 0.016 0.003

Table 5.2: The sessions are separated into those achieving below 60%, between 60% and 85%

and above 85% classification accuracy using the session specific (SS) BCI model, when there

were 10 target trials per class available for calibration. The average classification accuracy

achieved by these sessions using the proposed r-KLwDSA and the session specific BCI are

presented with the p-value calculated from the t-test between them.

Considering the r-KLwDSA results and regardless of the number of target trials available,

we observed consistent improvements in the classification accuracy of the sessions with BCI

deficient SS models. For those sessions, the proposed r-KLwDSA algorithm improved the

classification accuracy by an average of 9.29%, 9.54%, 8.93%, 9% and 13.22% for 2, 3, 4, 5 and

10 trials per class, respectively. Importantly, the observed improvements in the classification

accuracy were significant for all these different number of available target trials with P-values

of less than 0.001.

In summary, Figure 5.8 and Table 5.2 show that the proposed r-KLwDSA could potentially

reduce the number of sessions encountering BCI deficiency while limiting the calibration time

to less than 4 minutes. Thus, r-KLwDSA could help more stroke patients have a meaningful

and potentially effective BCI-based rehabilitation.

5.4.6 Impact of number of source sessions on the regularisation value

Figure 5.9 illustrates the effects of the number of available target trials and source sessions

on the regularisation value in the proposed r-KLwDSA algorithm. The regularisation value,

r, defines a trade-off between the weighted aligned source trials and the target trials in the
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final r-KLwDSA model. Figure 5.9 shows larger weights were given to the target trials when

more target trials per class were available for training the r-KLwDSA model. For example,

given one source session available, when ten target trials per class were used for training, the

target trials on average got weighted as r = 0.52, whereas the average obtained r was 0.17

when there were two target trials per class available for calibration. These results suggest that

when more target trials are getting available for calibration, r-KLwDSA gets more similar to

the target session-specific model rather than the transfer learning model extracted from the

source sessions. However, when there are only a couple of target trials available for training,

although the proposed r-KLwDSA algorithm still finds them useful, the focus has to be on the

source data available as a clear representation of the target session cannot be calculated from

the limited data available.

When there were less than 5 source sessions available, the effects of the number of source

sessions on r was opposite to the effect of the number of target trials. Figure 5.9 shows when

there was only one previous source session available, the average r-value was high; however,

as the number of sessions available increased, the average weight given to the target trials

decreased. This drop in the r-value is presumably due to the increasing amount of source data

available for transfer learning. As the amount of transfer learning data increased, the proposed

r-KLwDSA could find more source sessions which were similar to the target session and could

produce more robust features without relying too much on the available target trials. However,

this trend is not consistent as the further increase in the number of available sessions did not

lead to a further decrease in the r-value. This end to the trend could be due to the user adapting

to using the BCI over time. As the user continues to use the BCI for rehabilitation, they would

start learning how to produce more consistent and separable target EEG signals. Due to this

the proposed r-KLwDSA algorithm would adapt to this change and increase the r-value to rely

more on the target data when calibrating the BCI model.
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Figure 5.9: The average r-value used for regularising the proposed r-KLwDSA algorithm for

each of the target trials per class is plotted against the number of source sessions available. In

the proposed r-KLwDSA, the r-value, r, is used to weight the available target trials while 1 − r

is used to weight the aligned weighted source trials.

5.4.7 Limitations and Future Work

Although the results collected show that the proposed r-KLwDSA performed best for the ma-

jority of the stroke patients in a few cases other method performed better. In particular for

some users the SS performed much better for a couple of sessions.

Ideally if the correct regularisation parameter r was calculated for each session the pro-

posed r-KLwDSA should always outperform the standard SS algorithm. Utilising regulari-

sation improved the classification accuracy however applying leave-one-out cross validation

to select the r value is rather lacking. This method is prone to overfitting due to the limited

number of target trials available. Finding a better alternative method to calculate the r value
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that works well with limited trials would be very beneficial.

The current proposed r-KLwDSA assumes that there are no non-stationarities within each

session which is not an always correct assumption. Further work could be done to reduce the

effects of these non-stationarities. Different variants of CSP have been produced to reduce the

effects of these non-stationarities such as the KL-CSP and DTW-CSP [92] [93]. Alternatively,

online adaptation algorithms have also been developed to reduce these non-stationarities and

could further improve the classification accuracy [46].

5.5 Conclusion

This chapter proposed a novel algorithm for transfer learning combining linear alignment,

weighting and regularisation to reduce the calibration time for long-term BCI users. The lin-

ear alignment aimed to reduce the non-stationarity between the source and target sessions,

whereas the weighting mechanism adjusted the impact of each source session on the BCI

model based on its similarity to the target data. Finally, the regularisation step combined the

weighted aligned source data and the few available target data to build the final BCI model.

The proposed algorithm significantly outperformed the session-specific model and a num-

ber of other state-of-the -art transfer learning algorithms when the number of available target

trials was very few and the number of available source sessions was between 1 to 18. Impor-

tantly, the proposed algorithm remarkably reduced the number of BCI sessions with deficient

session-specific accuracy (i.e. less than 60%) with an average accuracy improvement of around

10%.
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Chapter 6

Conclusion and future work

This thesis has focused on developing novel transfer learning frameworks to reduce the cal-

ibration time required for long-term BCI users while maintaining an effective classification

accuracy. In order to do this, two key challenges needed to be addressed effectively. Firstly re-

ducing the effects of non-stationarities between the source and target data. Secondly, account-

ing for the differences between the available source sessions so that the effects of detrimental

data are limited while the useful data is prioritised.

6.1 Conclusion

Throughout this thesis, several different transfer learning algorithms and frameworks have

been proposed and explored, and their ability to address these challenges has been evaluated.

Overall an alignment algorithm, a measure of similarity and two frameworks have been de-

veloped and proposed to fulfil the objectives set.

In chapter two, we initially explored and evaluated the current work that has been com-

pleted by different studies to resolve these challenges. Through the exploration of the current

methods that are being applied, it appeared that transfer learning has the potential to fulfil

the objectives set out with alignment and selective transfer learning, particularly areas which

show promise in addressing challenges we had identified.

Initially a novel method of alignment, called MDSA, was proposed to align the distribu-

tions of EEG data from multiple classes. In chapter three we explored this proposed trans-
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fer learning alignment and its ability to reduce effects of non-stationarity between the source

and target sessions. By collecting a small number of labelled target session trials, the pro-

posed MDSA algorithm was able to create a linear alignment which minimised the Kullback

Liebler divergence between the target and source sessions. The proposed alignment reduced

the effects of non-stationarity between raw EEG data before feature extraction or classification.

Therefore it could be applied to any feature extraction and classification techniques later if re-

quired. The results showed the proposed MDSA improved the mean classification accuracy

and even outperformed one state-of-the-art form of continuous adaptation when more than

ten target trials per class were available.

Although the proposed MDSA algorithm showed some success, it also highlighted some

issues and limitations that need to be addressed. The first is the limited nature of the proposed

MDSA. By aligning the target session to a source session, the transfer learning technique is

limited to that single source session, as the target session would not be able to directly align

with multiple source sessions. To counter this, the proposed MDSA was later altered to align

the source session to the target session. This allowed for the inclusion of multiple source ses-

sions while retaining the MDSA’s benefit. Another limitation of the proposed MDSA which we

sadly did not get time to address, was the assumption that the EEG non-stationarity did not

have an effect withing each source/target session. An interesting final point discovered while

developing this alignment was the variations between source sessions. It was found that for

some target sessions, when transfer learning was applied, even in a naive form, it significantly

improved the classification accuracy, while for others, the effect was the opposite. In fact for

some target sessions a BCI trained using the few labelled trials from the target session outper-

formed any transfer learning method explored. From this, the importance of selective transfer

learning became clear.

In chapter four we proposed a method to identify the target sessions that would benefit

from transfer learning as well as a new measurement of similarity between sessions. Subse-

quently, we created a framework which first identified the target sessions that would benefit

from transfer learning and then found the source session with the highest similarity to train

the model. A significant correlation between sessions that found transfer learning detrimen-
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tal and sessions that obtained high levels of classification accuracy with session-specific BCIs

were found. As such, to identify the target session that performed best without transfer learn-

ing, leave-one-out validation was applied using the few available labelled trials from the target

session. Target sessions obtaining above 70% average leave-one-out classification accuracy did

not use transfer learning, while the other sessions utilised transfer learning. For these sessions,

the Jensen Shannon Ratio (JSR) was proposed. A measurement which worked out the ratio

between the similarity of the same classes in the target and source session and the similarity

between the opposite classes in the target and source sessions. This proposed measurement

selected one source session to train the BCI for the target data. This similarity measure had a

statistically significant improvement of 8% against a standard BCI for the sessions that encoun-

tered BCI deficiency. Importantly, the proposed leave-one-out method for selecting whether

or not to implement transfer learning identified the correct approach around two-thirds of the

times. To summarise, the proposed framework on average improved the classification accu-

racy even when only four target trials per class where available; however, both approaches

contained some limitations.

Finally, in chapter five, we proposed a new framework, called r-KLDSA, to build on the

previous framework exploring inter-session instead of inter-subject transfer learning, using a

similarity measurement to weight source sessions instead of selecting a single source session

and regularising the target and source sessions instead of just selecting between transfer learn-

ing and session-specific. Along with this, the proposed r-KLwDSA framework also incorpo-

rated the previously proposed MDSA alignment algorithm, improved as previously explained

so that it can work on aligning multiple source sessions to the target session. This framework

initially utilised alignment to address the challenge of the non-stationary nature of the EEG.

Then regularisation and weighted transfer learning to address the variations between all the

source and target sessions. This proposed framework was evaluated using the nBetter data set,

which contained data collected from 11 subjects with the arm weakness due to stroke. Each

subject provided 18 BCI sessions over six weeks. As one key application of BCI currently being

developed is for stroke rehabilitation, this data set contained very interesting data. In order to

try and replicate a real-world scenario, the data set was evaluated chronologically, with each
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session being added to the pool of available source sessions only after it had been a target ses-

sion. As such, only one source session was available for session two, while session eighteen

had seventeen source sessions available.

The proposed r-KLDSA provided encouraging results improving classification accuracy

for all the subjects with as few as two labelled target trials per class. Sessions that encountered

BCI deficiency when using session-specific BCI, in particular, had a statistically significant

mean improvement of over 13% classification accuracy when ten labelled target session trials

per class were used. Along with these results, a lot of interesting points became apparent,

such as how some target sessions perform better with fewer source sessions being available;

potentially, the changes between each session accumulate until the older source sessions only

provide detrimental data.

Overall the final proposed framework addressed the challenges laid out at the start and

completed the objective of reducing the calibration time required by the BCI while improving

the accuracy. This reduction in the calibration time will lead to a more efficient BCI technology,

which can be set up in a shorter time frame, making them much more practical for real-world

applications.

6.2 Future Works

The proposed frameworks in this thesis could potentially be improved with more work to

address the limitations identified during the thesis and other general challenges in BCI.

• The proposed MDSA algorithm designed in chapter three aligns the data spaces linearly.

It is interesting to investigate if non-linear alignments could be useful. Moreover, the

MDSA works regardless of the feature extraction method explored or the classifier. Due

to their reliability and common use, the common spatial patterns (CSP) filter was used for

feature selection, while linear discrete analysis was used for classification. Other meth-

ods have been explored briefly for comparison; however, more work could be explored

using different feature extraction and classification approaches within the framework.

• In chapter four, a new method of similarity was proposed called the Jensen Shannon
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ratio. This measure performed well when evaluated using the BCI Competition IV data

set 2a; however, once it was applied to the nBetter stroke data set, it was found that

relying on Kullback Liebler divergence performed better. Although this was the case for

the nBetter data set, evaluating the proposed JSR on more data sets would be interesting.

• In chapters four and five, two frameworks are proposed to reduce the need for a long

calibration session. Although effective, these frameworks are only evaluated on their

ability to classify two classes of EEG data. Increasing the number of classes the algorithm

can classify would significantly impact the BCIs’ real-world applications.

• In chapter five, the best regularisation parameter was selected among a set of prede-

fined values using cross-validation on the available target trials. Although the proposed

method proved effective, it is still far from optimal, especially when the labelled target

trials are limited. Exploring other regularisation methods to find the optimal regularisa-

tion parameter with the limited number of trials would be interesting.

• In chapter five it also became clear the it is not necessarily the best approach to provide

a large number of previously recorded sessions as the source sessions for the same user.

An interesting area which could be explored is identifying the best number of source

sessions for inter-session transfer learning. This probably wouldn’t be a set number but

it may be possible to develop an algorithm possibly based on similarity.

• Throughout the thesis, several algorithms are proposed and explored; however, in all

cases, it is assumed there is no non-stationarity between trials. Although the proposed

work reduces the effects of non-stationarity between sessions, they could be improved

by extending the framework to accommodate continuous adaptations.

• One data set containing data collected from stroke patients over an extended period was

used to explore the proposed r-KLwDSA framework along with one publicly available

dataset containing two sessions for each subject. Evaluating this framework with more

data sets containing EEG collected over an extended time could be interesting to explore

the idea of intra-subject transfer learning further.
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• The proposed algorithms in this thesis were all evaluated using offline data collected

previously. The results collected appear encouraging, but an online experiment could

be useful. As much as we can try to simulate a real-world experiment by evaluating

the data chronologically, there are limits to this. Testing these algorithms in real-world

experiments would reveal new flaws that need to be addressed.

• An interesting area which still requires much research is understanding the co-adaptation

process between the BCI and the user. The proposed frameworks utilise machine learn-

ing to reduce the effects of the non-stationary nature of the EEG signals; however, it does

not account for the learning process. The user can be also trained to reduce the effects

of non-stationarity in EEG signals by generating more discriminative and stable brain

signals. Importantly, when BCIs are used for rehabilitation, it is important to obtain high

levels of classification accuracy but also to train the brain.
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Chapter 7

Appendix

7.1 Mathematical Proof of Equation (5.7)

To obtain the optimal Lj, presented in (5.7), we need to calculate the first-order derivative of

(5.4), with respect to Lj, and set it to zero. To do this we use the properties presented below

[94]:

tr(ABC) = tr(CAB) = tr(CBA) (S1)

d
dLj

tr(A) = tr(
dA
dLj

) (S2)

d
dLj

det(A) = det(A)tr(A−1 dA
dLj

) (S3)

where A, B, and C are real matrices. As the EEG covariance matrices are positive and

symmetric we can conclude that:

d
dL

tr(Σc†LjΣ̂
c
j Lj

T) =
d

dL
tr(Σ̂c

j LjΣ
c†Lj

T) (S4)

d
dL

tr(Σc†LjΣ̂
c
j Lj

T) = 2tr(Σc†LjΣ̂
c
j ) = 2tr(Σ̂c

j Σ
c†Lj) (S5)

d
dLj

ln(det(LjΣ̂
c
j Lj

T)) =
det(LjΣ̂

c
j Lj

T)
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c
j Lj
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d
dLj

ln(det(LjΣ̂
c
j Lj

T)) =
d

dLj
ln(det(LjΣ̂

c
j Lj

T)) = 2tr(Lj
−1) (S7)

By substituting equation (S5) and (S7) into equation (5.6), we find

dA
dLj

=
2

∑
c=1

tr(Σ̂c
j Σ

c†Lj − Lj
−1) = 0 (S8)

One of the solutions for equation (S8) is

Σ̂1
j Σ1†Lj + Σ̂2

j Σ
2†Lj − 2Lj

−1 = 0 (S9)

This solution can then be simply re-arranged as equation (S9).
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