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Abstract

The structure and symmetry of viruses has been the subject of study

since Crick and Watson in 1956, and there have been several comple-

mentary theories describing different aspects of the geometry of these

complicated entities. Included here is a unified theory that relates the

structure and sizes of the different viral components, from the cap-

someres to the packaging of the genomic material, providing, through

a set of structural constraints on viral structures, a new classification

scheme for viral structures. Moreover, aspects of this theory also ap-

ply to fullerene structures in chemistry, showing that this symmetry

principle is deeper than just biological in nature.
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Chapter 1

Introduction

1.1 Virus Sizes and Shapes

Viruses are a marvel of biology; at the opposite end of the biological

scale spectrum to humans and other animals, they are still highly

complex entities. Described as the “most abundant biological entities

on the planet” [7] they exist at a large variety of scales, from the

tiny Satellite Tobacco Mosaic Virus [57] at 88Å radius (Figure 1.2),

through Chilo Iridescent Virus at 925Å radius [118] (Figure 1.3) up to

the (as of writing) largest virus known, Mimivirus [49][117] at a radius

of approximately 3750Å (Figure 1.4). Figure 1.1 shows a number of

viruses to scale with one another.

But not only do viruses exist at a large variety of scales, they come

in several classes: symmetric (icosahedral), like the three viruses al-

ready mentioned; helical, such as Tobacco Mosaic Virus [73][89] (Fig-

ure 1.5); enveloped, such as HIV [75][80] (Figure 1.6); and complex,

like Bacteriophage T4 [61] (Figure 1.7).
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Figure 1.1: The ubiquity of icosahedral symmetry in viruses [2].
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Figure 1.2: Satellite Tobacco Mosaic Virus [57] rendered with surface
representation in PyMol [92] viewed down a 2-fold axis.

(a) (b)

Figure 1.3: Chilo Iridescent Virus electron density viewed down a 2-
fold axis in entirety (a) and a central section (b) [118].

(a) (b)

Figure 1.4: Sections of Mimivirus showing its size (scale bar is 1000Å).
Mimivirus mostly exhibits icosahedral symmetry, although there is a
unique 5-fold vertex similar to that in Bacteriophage MS2. (a) The
slice of Mimivirus down a 2-fold axis perpendicular to the unique 5-
fold vertex, with a grey icosahedron superimposed. (b) The view along
the 5-fold axis opposite the unique 5-fold vertex [49, 117].
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Figure 1.5: Computer representation of TMV with two turns of RNA
protruding [73].

(a) (b)

Figure 1.6: (a) HIV capsid with hexamers (orange), pentamers (yel-
low) and dimers (blue) [80]. (b) A schematic diagram of the HIV
capsid and its envelope [75].

Figure 1.7: Electron micrograph of negatively stained Bacteriophage
T4 [47].
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We can see in these figures that these viruses display high degrees

of symmetry: TMV repeats one type of coat protein to build the shell

around its genome; HIV has three types of protein complexes in the

capsid, making clusters of 6, 5 and 2 proteins (known as hexamers,

pentamers and dimers respectively), and the head of Bacteriophage

T4 is highly symmetric (indeed, as is the tail, albeit with a lesser level

of symmetry). The reason that viruses have so much symmetry is the

principle of genetic economy [11]. If every protein in an icosahedrally-

symmetric viral capsid had to be coded for individually, the genomes

would have to be 60 times longer at least. Using symmetry, viruses

can code for fewer proteins but build a capsid the same size; icosahe-

dral symmetry is particularly good for this as it is the largest finite

group in three dimensions [108] and therefore has more repeats of the

asymmetric unit (also called the fundamental domain or unit cell) in

the capsid. This idea, that viruses repeat small units over their cap-

sid, was first proposed by Crick and Watson [11] and examined by its

application to a large number of specific viruses by Horne [33], but

then refined into the theory of quasi-equivalence by Caspar and Klug

[9] and Coxeter [10].
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1.2 Previous Frameworks

1.2.1 Quasi-Equivalence

The fundamental idea of quasi-equivalence is that each protein is in

approximately the same local environment as any other; something

especially important when different conformers1 of the same protein

fill all of the different positions on the capsid. This is achieved by an

idea akin to the unfolding of a cube to form a section of a square lattice.

In the same way, an icosahedron can be unfolded into a section of a

triangular lattice (see Figure 1.8). Quasi-equivalence demands that

the individual subunits, originally expected to be minor variations of

the protein structure, lie in positions that can be described by sub-

triangulating the faces of the icosahedron.

This is achieved by placing the unfolded icosahedral net on a

smaller-scale triangular lattice, the only constraint being that the ver-

tices of the net match the vertices of the lattice. This requirement

ensures that when the net is refolded into an icosahedron, the edges

of the triangles match up correctly (for an example of a T = 4 tri-

angulation of an icosahedron with corresponding net, see Figure 1.9).

Examples of how a single face of the net can be superimposed on a

triangular lattice are shown in Figure 1.10.

Inequivalent superpositions, that is, superpositions corresponding

to different viral configurations, are described via their T -number, al-

though, as we shall see, this is not completely sufficient. The T -number

1A particular way of folding a polypeptide chain is called a conformer of that
protein.

21



of a triangulation is defined by how the triangles in it correspond to

the underlying triangular lattice (as in Figure 1.10); the coordinates

(a, b) of one side of one triangle are found in terms of the sides of the

triangles in the lattice (see Figure 1.11(a) for T = 3), and then T is

calculated from

T = a2 + ab+ b2. (1.1)

As noted by Goldberg [24], though, the T -number is not sufficient

to determine the capsid structure completely; for example, 72 + 7 ×

0 + 02 = 49 = 52 + 5× 3 + 32, and so viruses with T -number 49 come

in two different forms. Moreover, viruses with a = m and b = n are

not the same as a = n and b = m; they are mirror images of one

another. In some cases, even, viruses (notably Hepatitis B) come in

two sizes of capsid (in the case of Hepatitis B, these are T = 3 and

T = 4 [12, 109]).

An example of how proteins can be distributed with respect to the

symmetry axes of the icosahedron is shown in Figure 1.12, where rep-

resentatives of the three conformers of the capsid proteins are shown

along with the nearby symmetry axes.
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(a) (b)

Figure 1.8: An icosahedron (a) and the same icosahedron cut along
its edges and laid flat on a triangular lattice (b).

(a) (b)

Figure 1.9: An icosahedron triangulated with T = 4 (a) and the same
icosahedron cut along its edges and laid flat on a triangular lattice
(b).

Figure 1.10: A diagram of the triangles on a triangular lattice corre-
sponding to the allowable triangulation numbers between 1 and 25.
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(a)

(b)

Figure 1.11: (a) A T = 3 triangulation is found when a = b = 1. (b)
A graph showing the number of pentameric and hexameric patches
corresponding to the possible T -numbers [24] showing the T = 3 tri-
angulation has 32 total patches — 12 pentagonal and 20 hexagonal.
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Figure 1.12: A trimer of Pariacoto Virus with the global symmetry
axes marked showing the local symmetry axis in the middle of the
trimer.
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Symmetry is not the only selective pressure on virus capsids. Man-

nige and Brooks [69] showed how the shapes of the main body of the

proteins in the capsid are restricted to trapezoidal shape, at least in

eight out of twelve viral families studied when only different conform-

ers of the same protein make up the capsid. Mannige and Brooks [71]

then also showed that viruses tended to prefer lower hexamer complex-

ity — that is, viruses prefer to have a lower number of distinct types

of hexamers. This quality of hexamer complexity is dependent only

on a and b from equation (1.1).

Extreme cases of icosahedral viruses having a low number of dis-

tinct types of hexamers are those viruses formed of more than 12

pentamers such as Polyoma Virus [82] which has 72 pentameric struc-

tures rather than the 12 pentamers and 60 hexamers predicted by

quasi-equivalence. This was analysed, along with other similar cases,

by Rossmann [87] with the explanation that protein structures were

inherently flexible, and as such in certain viruses were forced into

pentameric locations rather than the hexameric positions expected by

quasi-equivalence. A theory that predicts how this arrangement can

happen is viral tiling theory [106], and such a virus is examined in

Chapter 4, Section 4.3.2.
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1.2.2 Viral Tiling Theory

Quasi-equivalence, as we have seen, is based on the idea of tiling icosa-

hedral objects with equilateral triangles, with the number of triangles

on each face of the icosahedron giving the T -number of that tiling

(recall Figure 1.10). Viral tiling theory keeps the idea of a tesselation

of the icosahedron, but relaxes the assumption that the tiles must be

equilateral triangles, allowing any shape of tile, although kites, darts

and rhombs (taking inspiration from Penrose tilings [78]) seem to be

sufficient. Furthermore, the icosahedral symmetry remains, and the

principle of quasi-equivalence that ensured that identical capsomeres

were placed in structurally similar locations is extended to the gener-

alized principle of quasi-equivalence [106] stating that “On any given

tile protein subunits are located only at corners subtending the same

angle”. This generalises quasi-equivalence, which automatically satis-

fies this broader concept, as all proteins lie within equilateral triangles.

Moreover, the tiles indicate the bonds between the capsomeres of the

virus whether within a tile or across an edge. For the most part, those

bonds within tiles are inter-capsomere and those across edges are intra-

capsomere (a minor exception is Polio in Figure 1.13(c) where most

intra-capsomere bonds are across edges except some between B and C

chain proteins within the kite).

Some examples of this theory are shown in Figure 1.13, where

three T = 3 viruses are shown along with their (different) tilings from

viral tiling theory. Pariacoto Virus (Figure 1.13(a)) does follow quasi-

equivalence fully — the tiles necessary are the expected triangles, and
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each A chain protein around a 5-fold axis links to two different hex-

amers; Bacteriophage MS2 (Figure 1.13(b)) is also a T = 3 virus, but

forms dimers that are best described by rhombs — one that contains

A and B chain proteins and one that forms CC dimers; finally, Po-

liovirus (Figure 1.13(b)) is tiled by kites, and the A chain proteins in

the pentamers each link to two proteins from the same hexamer.

Moreover, while quasi-equivalence predicts the correct layout of

capsomeres for Simian Virus 40 (SV40), it incorrectly predicts 12

pentamers and 60 hexamers; SV40 has, instead, 72 pentamers, as

can be seen in Figure 1.14(a). Viral tiling theory can account for

this, tiling the capsid with kites (around the 5-fold axes) and rhombs

(elsewhere) to give the observed 72 pentamers. Moreover, as the con-

nections within the tiles illustrate, this approach correctly models the

location of the bonds between the pentamers — much as happened

with the T = 3 viruses of Figure 1.13.

However, viral tiling theory, albeit being more complete than quasi-

equivalence, is still a surface theory and does not take into account

any radial information.
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Figure 1.13: (a) Pariacoto Virus, (b) Bacteriophage MS2 and (c) Polio
Virus are all T = 3 viruses; Pariacoto Virus is tiled with triangles
fitting its trimers, in accordance with quasi-equivalence, MS2 is tiled
with rhombs, as best describe its bonding pattern of dimers, and Polio
is tiled with kites.

(a) (b)

Figure 1.14: (a) The surface of Simian Virus 40 and (b) the tiling using
kites and rhombs appropriate to the bonding pattern, explaining the
two different pentameric clusters.
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1.2.3 Packing Lattices

Janner [36, 37, 38, 39, 40] has made a start on a 3D theory, where he

embeds the viral capsid into a packing lattice. Encasing polyhedra for

the viruses are found in terms of the lattice points by visual inspec-

tion, and then these encasing polyhedra are subdivided so as to give

proposed boundaries to the viral components. Such a subdivision of

an encasing polyhedron for Pariacoto Virus focusing on the A chain

protein is shown in Figure 1.15.

It is not clear how best to embed a virus within these lattices, given

no three-dimensional lattice has icosahedral symmetry, nor which scal-

ing such a lattice should be at. Here, we develop a three-dimensional

approach based on quasi-lattices [45, 94] to continue Keef and Twarock’s

work with point arrays which encode optimal ways of how icosahedral

symmetry may be realised at different radial levels simultaneously

[42, 43]. These point arrays will be examined more closely in Chap-

ter 2.

1.3 Available Data on Virus Structures

Useful tools of recent times for the study of viruses are cryo-EM and

X-ray crystallography. Cryo-EM along with associated image process-

ing techniques maps the electron density of a virusand the files con-

taining the results can be downloaded from (for example) the EM

DataBank [59] and viewed with software such as Chimera [79]. X-

ray crystallography (first used on Tomato Bushy Stunt Virus (TBSV)

[85]) interrogates the virus structure at a resolution typically around
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Figure 1.15: The encasing form of Pariacoto Virus viewed down the 5-
fold axis, showing two pentamers of A chain protein, with a subdivision
of the external decamer [39].

3Å and results, once a suitable model is constructed from the den-

sity obtained, in a pdb-file (as can be downloaded from VIPER [83]

or the Protein DataBank [5]), listing the coordinates of the detected

non-hydrogen atoms. Such a pdb-file can be displayed with one of

several viewers (such as Chimera [23, 79] and PyMol [92]), and this

level of detail allows for normal mode analysis — probing the dynamic

properties of viruses — to be carried out in a fully atomistic way (eg

[15]), as opposed to a more coarse-grained model (eg [77]).

As we shall see with carbon cages in Chapter 5, objects with

icosahedral symmetry can undergo buckling transitions, and these are

based on their Foppl von Karman number [64], defined as

γ =
Y R2

κ
,
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where R is the radius of the object under consideration, Y is the 2D

Young’s modulus (stiffness) and κ is the bending modulus. Mannige

et al. have used this to show that such a transition is impossible for

T < 7. There are precisely two types of capsid structure for T = 7,

although the transition requires some small energy input. However,

for T > 7 the situation is variable — a T = 9 virus, for example, may

not be able to buckle at all, due to the layout of its proteins [70].

The investigation of viral capsids via these non-standard mathe-

matical and biophysical means proceeds on many fronts: for example

Zandi et al. [121] (following Goldberg [25]) demonstrated through

simulation of capsomeres self-arranging around a sphere how certain

numbers were favoured, recovering the particular T -numbers Caspar,

Klug and Goldberg determined. Figure 1.16 shows the overall energy

ε(N) of a capsid of N capsomeres including one energy term tak-

ing into account interconversion between pentamers and hexamers,

and another term for the relative movement of the capsomeres. They

demonstrate that the local minima of ε(N) occur at those configu-

rations for which the organisation of the capsomeres corresponds to

T -numbers.
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Figure 1.16: Internal Energy per Capsomer ε(N) is a pronounced
local minimum when N (number of capsomers) is 12, 32, 42 and 72,
corresponding to T = 1, 3, 4 and 7 [121].

1.4 Viral Genomes

We have seen that viral capsids exhibit symmetry and high degrees

of order in their organisation. Interestingly, the viral genomes within

the capsids also show evidence of order [59, 93, 98, 104].

While higher life forms achieve complexity through many agents

acting in concert to a common goal, the virus is a remarkable example

of how one component can achieve a complex variety of functions. In

particular, viral genomes must code for the correct proteins to form

the protective capsid of the required T -number to surround a genome

of that length [122], be of a structure amenable to packaging by those

proteins [16, 28, 41, 102], be able to fold sufficiently well to fit in

the limited space available [119], aid (in some cases) with conformal

switching of the coat proteins to enable them to take up the appropri-

ate quasi-equivalent structure [18, 113]; in some cases act as a scaffold

for coat proteins to assemble around [4] as well as the primary function
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of genomic material: allowing infection and reproduction. There is

also evidence that stem-loop patterns are responsible for co-operative

effects in virus capsid assembly in (ss)RNA viruses [14].

(a) (b)

Figure 1.17: Log-log plot of maximum (a) and average (b) ladder
distances across viral ssRNA (see legends) and random ssRNA [119].

Viral genomic material is especially good at folding into a smaller

volume when compared to other (ss)RNAs [119]: Figure 1.17 shows

that the Ladder Distance between two bases, LDij — the number of

base pairs crossed when traversing the most direct path in the folded

RNA that connects bases i and j counting only double-stranded sec-

tions — is lower for viruses (see the legends) than for random ssRNA

(the line with error bars). That is, RNA from icosahedral viruses folds

more efficiently than random ssRNA; Tobamovirus is rod-shaped, and

therefore under no pressure to fold efficiently, hence the RNA folds no

more or less efficiently than the baseline random RNA. It seems rea-

sonable to assume that the same pressure would exist on viral DNA

as well.

Moreover, in order to fit genomic material in such a confined space,

even with its propensity to fold compactly, some viruses have to pack-

age their genomes under enormous pressures (up to 50 atmospheres!)
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[22] which requires efficient packaging [48, 115], even if this packaging

can lead to knots in the genomic material [66, 67, 88].

In addition to the patterns in the RNA sequence, there is ample

evidence for structured features in the geometric organisation of the

genomes as seen in cryo-EM images of Bacteriophage MS2 and Hep-

atitis B (see Figure 1.18); such structure is not evident in the pdb-file

as this volume of the virus was not modelled.

(a) (b)

Figure 1.18: Cryo-EM structures of (a) Bacteriophage MS2 [59, 104]
(viewed down a 2-fold axis) and (b) Hepatitis B [59, 93] (viewed down
a 5-fold axis) show evidence of icosahedrally structured genomic cages.
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1.5 Thesis Structure

Chapter 2 examines the point arrays encoding the quasi-lattice infor-

mation, their construction and some immediate consequences.

The algorithm presented in Chapter 3 interrogates the available

data for virus capsid proteins and calculates which point array is the

most suitable description of the biology, and we show how the point

arrays so chosen provide a prediction determining some of the struc-

tural constraints on virus architecture. Results of this applied to a

selection of 11 viruses is presented in Chapter 4.

This thesis, while primarily concerned with viruses and their struc-

ture, also looks at how the mathematics used here to understand their

architectures can be applied to fullerene structures; an introduction

to fullerenes is given at the beginning of Chapter 5, which details the

application of this method to these structures.

Lastly, the conclusions drawn from this work are given in Chapter

6, and more detailed information about the various point arrays used

are in Appendix A.

This thesis is accompanied by a CD that contains the software

developed in this thesis.

36



Chapter 2

Constructing Templates for

Virus Architectures

We have seen in Chapter 1 that a large number of viruses of greatly

differing sizes (with radii from 88Å to around 3750Å) exhibit icosahe-

dral symmetry at a number of different radial levels. Previous theories

have, as discussed, described the capsid layouts of icosahedral viruses

to a greater or lesser extent, but none have yet incorporated radial

information. Zandi et al. showed that the capsid layouts correspond-

ing to T -numbers also map to local minima in energy functions [121]

(as shown in Figure 1.16), so it is not inconceivable that viruses also

make use of symmetry in its extended form to exploit minima in more

general free energy landscapes.

Therefore, we need a mathematical tool to predict how different

radial levels of viruses are organised. This can be achieved with an

(affine) extension of the symmetry group, as we show in the next

section.
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2.1 The Basics

The problem of finding affine extensions of the symmetry group is

related, from a mathematical point of view, to the construction of

lattices (that is, infinite periodic structures). The idea, in a nutshell,

is to use a base shape that encapsulates the underlying symmetry re-

quired (for example, using a hexagon for 6-fold rotational symmetry)

and move it in space in a specific coordinated way (this is what the

extended symmetry group encodes) to obtain a lattice (or lattice-like,

for non-crystallographic symmetries) arrangement. For the hexagon

mentioned, we obtain a lattice. For a pentagon, a lattice is not pos-

sible (See Figure 2.1), due to the crystallographic restriction [94, 91],

which says that the point groups of 2-dimensional lattices must be of

the order 2, 3, 4 or 6; the pentagon has order 5. However a similar

construction is possible; that is, one that has long-range order but no

periodicity.

In analogy to this 2-dimensional example, we start with different

instantiations of icosahedral symmetry in three dimensions. The dif-

ferent possible types of tilings accommodating the affine extensions

of the icosahedral group correspond to projections of 6-dimensional

lattices, just as the Penrose tiling can be obtained via projection from

a 5-dimensional lattice [94]. Since there are three Bravais lattices

with icosahedral symmetry in six dimensions [63, 6] (the simple cu-

bic, body-centred cubic and face-centred cubic lattices), we start with

three related basic shapes: the icosahedron, the dodecahedron and

the icosidodecahedron. These have vertices on (respectively) the 5-,
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3- and 2-fold axes of symmetry (see Tables A.1, A.2 and A.3 — page

168), and correspond to a projection of the bases of the simple cubic,

body-centred cubic and face-centred cubic lattices in six dimensions

[35], respectively. Clearly, applying the 60 elements of the icosahedral

rotation group to these maps the structures onto themselves (that is,

the structures are invariant under icosahedral symmetry). We there-

fore extend icosahedral symmetry by allowing a single translation to

be added. This translation is restricted to being along one of the

5-, 3- and 2-fold symmetry axes, and only certain lengths are possi-

ble as otherwise the resulting set of points would be trivial. That is,

it is chosen so that there are fewer points in the extended point ar-

ray than would be expected for a random translation, i.e. some of the

points generated by the translation coincide at the same point in space

(mathematically, the new group has non-trivial relations). These are

the allowable translations. Figure 2.2 illustrates this.
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(a) (b) (c)

Figure 2.1: When translated, hexagons can form a periodic construc-
tion (a) but pentagons cannot, despite forming long-range order (b)
in the same way as Penrose Tilings (c).

(a) (b)

Figure 2.2: A pentagon translated (a) trivially and (b) non-trivially.
Note that there are 30 points in (a) but only 25 in (b) as pairs of
points coincide on the symmetry axes (marked in red).
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2.2 A Reformulation of the Problem

Every point in an array can be expressed as pi + λtj, where pi is a

vertex of the base shape, tj is the translation vector and λ ∈ R is a

multiplier measuring the length of the translation. What is important

in this formulation, though, is the relative scaling of the base shape

(given by |pi|) to the translation (|λtj|). There are therefore two

options: fix the base shape and scale the translation, which has been

done previously in [42] and [43]; or to fix the translation and scale the

base shape. These options are illustrated in Figure 2.3. This different

viewpoint makes it possible to be more systematic in calculating all

the allowable pairs of t and λ for each base shape. In Figure 2.4 each

translated icosahedron is given by 12 points expressed as pi/λ + tj

(the origin is the cyan point in the middle of the image).

In that figure are four sets of icosahedra viewed down a 2-fold

axis, translated by the same amount (along 5-fold axes), but each

scaled differently. In essence, as λ decreases, the icosahedra “grow”

from the four centres (which, in this case, would be four of the 12

vertices of an unscaled un-translated icosahedron), and so the only

places their points can possibly intersect are along the planes bisecting

the line connecting two of the adjacent centres — these planes being

denoted by the dotted lines — and the three translations (blue, cyan

and chartreuse) that have points that hit these planes.
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(a)

(b)

Figure 2.3: For the geometry of the construction, only the relative
size of the the base shape versus the translation length is important;
if both are scaled simultaneously, the same result is obtained. The
shorter translation in (a) is the same as the large squares in (b), while
the longer translation corresponds to the small squares.

Figure 2.4: Icosahedra scaled by 1/λ for λ = 10 (red), λ = 5 (orange),
λ = 2 (yellow), λ = τ (chartreuse), λ = 1 (cyan) and λ = τ − 1 (blue)
viewed down a 2-fold axis and how they fit together when translated
along 5-fold axes.
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Figure 2.5 shows a few of the symmetry planes and axes laid out

diagrammatically, showing the relationships between them. Note in

particular that only two of the three types of planes need to be checked

— the plane between a 5-fold and a 3-fold axis is exactly that between

a 2-fold and a 3-fold.

Figure 2.5: Only two symmetry planes need to be checked for coin-
ciding points, appearing here as lines because of the projection. The
red plane (the horizontal line) checks intersections between two adja-
cent 5-fold axes and two adjacent 2-fold axes and the blue plane (the
vertical line) checks intersections between two adjacent 3-fold axes.

2.3 Finding Allowable Translations

To calculate the intersection of the vertices of the translated base

shape and a symmetry plane, the equations of the two compenents

are needed. The equation of a plane is (n − n0) · x = 0 (where n is

the normal to the plane and n0 is any point on that plane), and that

of a line is x = x0 + λt where t is the direction of the line and x0

is any point on that line. In both cases, x is a general point on the

plane and the line respectively. For these to intersect, x must satisfy

both of these equations. In this case, n0 = 0 (the plane spanned by

the symmetry axes goes through the origin), n = a × b (the normal
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vector is the cross product of two vectors spanning the plane), x0 = pi

(a general point on the line is one from the base point) and t = tj

(the line is in the translation direction). This gives

(a× b) · (pi + λtj) = 0

which rearranges to

λ =
−pi · (a× b)

tj · (a× b)
, (2.1)

where pi is the base point being translated, tj is the translation vector,

and a and b are the axes of symmetry determing the plane of intersec-

tion. This is the multiplier in pi+λtj and hence determines the length

of the translation with respect to the size of the base shape. This pro-

cess is carried out for each point pi in the base shape (i.e. either

icosahedron, dodecahedron or icosidodecahedron — see points listed

in Tables A.1, A.2 and A.3 (page 168)) and one translation vector tj

from each of the icosahedron, dodecahedron or icosidodecahedron (as

symmetry ensures any more is unnecessary). The allowable symmetry

planes consist of all planes containing “adjacent” 2- and 3- fold axes or

“adjacent” 2- and 5-fold axes as discussed earlier and shown in Figure

2.5. Adjacency is required to only check intersections on the edges

of the kite — other planes between symmetry axes are not symmetry

planes of the icosahedron.

A program implementing this algorithm (in Symbolic Python [100,

114]) is available as

standard-symplane_normal_translations-sympy.py.
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Two fold Three fold Five fold
Icosidodecahedron 11 (5,11) 8 (5,8) 6 (6,6)
Dodecahedron 8 (5,8) 5 (3,4) 4 (4,4)
Icosahedron 6 (6,6) 4 (4,4) 3 (3,3)

Table 2.1: The distribution of point arrays for the three base shapes
by this method and, in brackets, by [42] and [43] respectively.

The allowable point arrays determined with this method for each

of the three base shapes are given in Tables A.6, A.7 and A.8 in

Appendix A (page 172). Observe that as the number of points in the

base shape increases, the number of allowable point arrays with that

base shape also increases, from 13 to 17 to 25. This set of 55 point

arrays is referred to as the library of pure point arrays.

Note that this search over all points in the base shape is slightly

inefficient, as not all of them need to be checked — they naturally

form equivalence classes based on their orientation with the translation

vector. Computing these equivalence classes to restrict the search

space does not decrease the overall computing effort, though, as it

would take longer to compute the classes than would be saved by

knowing them. It is, however, interesting to note that this provides

an explanation for the numbers of allowable point arrays and why they

are not simply divisors or multiples of 12, 20 and 30, as, for example,

translating an icosahedron along a 5-fold axis breaks the 12 points

into equivalence classes with 1, 5, 5, and 1 members.

Table 2.1 lists the numbers of ways each base shape can be trans-

lated meaningfully along a symmetry axis, and in brackets are the

corresponding figures from [42] and [43]. It can be seen that this ap-

proach is more exhaustive, because it also considers those points that
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have multiplicity due to their locations on symmetry planes rather

than just symmetry axes — those missed in [42] (that is, those that

are formed when the base shape meets a symmetry plane rather than

a symmetry axis) are those starred in the tables in the Appendix; the

one unfortunately missed by [43] is double-starred. The software used

to compute these 55 point arrays is available as

standard_normal_cloud_generation.py on the attached CD.

It can be seen that Table 2.1 is symmetric along the top-left to

bottom-right diagonal — that there are, for example, as many point

arrays found by translating an icosahedron along a 3-fold axis as there

are by translating a dodecahedron along a 5-fold axis. The reasons for

this will be explored in Section 2.4.

2.4 Direct Consequences

Keef and Twarock calculate their point arrays have 26 distinct outsides

(defined there as the outer layer which is “those points with the largest

distance from the centre” [43]), the reduction in number coming from

the fact that two combinations of translations can have results that

are identical, given scaling. That is:

a + cb = l(b + da) (2.2)

where a,b are vectors pointing to vertices of the three base shapes

and c, d, l ∈ R. This is made a little clearer in Figure 2.6, which shows

the general idea (in this example, d = l = 2 and c = 1/2).

Moreover, it can clearly be seen that c and d must be reciprocals
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Figure 2.6: The red and blue dots correspond to two related combina-
tions of translation and base shape and generate the same polyhedral
shape under the action of the symmetry group.

of one another (|da|/|a| = |b|/|cb|, so cd = 1), and that l is equal

to one of a and b. This provides an explanation for the symmetric

property of Table 2.1 and, moreover, makes precise which point ar-

rays are paired with which, and hence are identical (excluding the

different base shapes). Further to the 18 pairs of arrays generated in

this fashion, there are 19 others. However, those 19 arrays that exist

on the diagonal also match up in this way (that is, where an icosa-

hedron is translated along a 5-fold, etc.) to produce 8 more pairs (1

from the icosahedron along a 5-fold, 2 from the dodecahedron along a

3-fold and 5 from the icosidodecahedron along a 2-fold). In fact, every

array is paired with another, except for 12, 24 and 36, which are in

some sense paired with themselves (having a translation length of 1);

this produces a set of arrays that have 29 distinct exteriors. Arrays
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No. Start Axis Amount No. Start Axis Amount
1 Icos 2 −1 + τ 55 IDD 5 τ
2 Icos 2 4− 2τ 54 IDD 5 1/2 + τ/2
3 Icos 2 1 53 IDD 5 1
4 Icos 2 −2 + 2τ 52 IDD 5 τ/2
5 Icos 2 2 51 IDD 5 1/2
6 Icos 2 2τ 50 IDD 5 −1/2 + τ/2
7 Icos 3 −1 + τ 30 Dodec 5 τ
8 Icos 3 1 29 Dodec 5 1
9 Icos 3 τ 28 Dodec 5 −1 + τ
10 Icos 3 1 + τ 27 Dodec 5 2− τ
11 Icos 5 −1 + τ 13 Icos 5 τ
14 Dodec 2 2− τ 49 IDD 3 1 + τ
15 Dodec 2 −6 + 4τ 48 IDD 3 1/2 + τ
16 Dodec 2 −1 + τ 47 IDD 3 τ
17 Dodec 2 4− 2τ 46 IDD 3 1/2 + τ/2
18 Dodec 2 1 45 IDD 3 1
19 Dodec 2 −2 + 2τ 44 IDD 3 τ/2
20 Dodec 2 2 43 IDD 3 1/2
21 Dodec 2 2τ 42 IDD 3 −1/2 + τ/2
22 Dodec 3 2− τ 26 Dodec 3 1 + τ
23 Dodec 3 −1 + τ 25 Dodec 3 τ
31 IDD 2 −1/2 + τ/2 41 IDD 2 2τ
32 IDD 2 2− τ 40 IDD 2 1 + τ
33 IDD 2 1/2 39 IDD 2 2
34 IDD 2 −1 + τ 38 IDD 2 τ
35 IDD 2 τ/2 37 IDD 2 1/2 + τ/2

Table 2.2: Each point array in the left hand column has an identical
exterior to the corresponding point array in the right hand column.

identical in this regard are indicated in Table 2.2.

Additionally, when combining point arrays as in Section 2.5.1, we

can see that certain point arrays will occur as the outer point array

more than others, which further constrains the possibilities. This is

understandable, because the smaller the translation multiplier, the

more likely that array is to be on the outside of a combination. Fur-

thermore, not only does the translation length indicate how likely a
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given array is to be an exterior (for example, array 31 has a translation

length of only −1/2 + τ/2 = 0.309 and is the exterior in 25 combina-

tion arrays) but how ‘overlapping’ those arrays are. That is, how large

the 3-dimensional annulus containing points from both point arrays is;

it does not mean that points have to coincide. For example, array 31

can be combined with array 6 (they are both translated along a 2-fold

axis), but the outermost points of the re-scaled array 6 lie closer to

the origin than the innermost points of array 31. In fact, they do not

overlap at all. Meanwhile, arrays 6 and 41 can be combined, but have

the same translation multiplier and hence overlap almost completely.

A graph showing the point arrays and their radii (after scaling for

combining) is shown in Figure 2.7. This phenomenon could well have

implications for the interpretation of these point arrays for viruses.

Notably, if a virus capsid only overlaps with the outer point array, no

information is gained about the interior of the virus (such as genome

organisation), as many point arrays may fit. Examples of this are

analysed in Section 4.4.
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Figure 2.7: The radii of the scaled point arrays showing that some
pairs of compatible point arrays do not overlap at all.
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2.5 Denser Point-Arrays

The affine extensions of point arrays have a degree of freedom that

corresponds to how often the translation operator acts (so far, we have

only discussed it acting once). If a given translation is repeated and the

resulting point arrays scaled to the same radius, the higher iteration

arrays will be denser (see Figure 2.8). Given the size of the protein

container with respect to its interior radius, different cut-offs may be

appropriate. Furthermore, the higher the iteration, the more faceted

the point arrays become; that is, the more their exterior approaches

the shape of the polyhedron corresponding to the translation vector

(that is, several 5-fold translations will result in something tending

to an icosahedron). For smaller viruses (generally up to T = 4, but

occasionally up to T = 7) the first iteration is sufficient, but it can be

useful to combine compatible arrays, as explained in the next section.

2.5.1 The Combination Point-Arrays

The first method to create denser point arrays is to combine compat-

ible arrays as described in [42]: two arrays are compatible if they are

translated along the same axis of symmetry, and we scale each array

so that the translation multiplier (λ in 2.1) is the same. This gives

us a total of 569 combination point arrays, each of which (with 55 ex-

ceptions) have approximately double the number of points in them of

members of the 55 (the exceptions being the 55 combinations when a

point array is combined with itself). The combinations are numbered

from 1 to 1083 by combining the compatible (in the sense of having the
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(a) (b)

(c)

Figure 2.8: A translation applied (a) once (b) twice and (c) three
times, showing how the point arrays become denser with higher iter-
ations.

same translation direction) point arrays systemically: combination 1

is point array 1 combined with itself; combination 2 is point array 1

combined with 2; combination 3 is 1 with 3 etc. up to combination

1083 being point array 55 with itself. However, note that point array

1 combined with 2 is exactly the same as point array 2 combined with

1, and so the 569 combinations carry labels from 1 to 1083. However,

this number system had procedural advantages, and we choose to keep

this notation to be consistent with previous publications.

For example, in Tables A.6, A.7 and A.8 (see page 172), point

array 1 can be combined with point arrays 1–6, 14–21 and 31–41,

although a point array combined with itself yields no further informa-

tion. To combine two compatible point arrays, each are scaled so that

the translation has a multiplier (recall λ) of 1 (scaling the base shape
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commensurately). For example, to combine point array 1 with point

array 20, point array 1 (which has a multiplier of τ − 1) is scaled by

a factor of (τ − 1)−1 and point array 2 (with a multiplier of 1/2) is

scaled by a factor of 2. This process leaves both point arrays scaled

so that the translation multiplier of each is 1.

2.5.2 Second Iteration Arrays

The 55 point arrays originally generated can be viewed as the orbit

of a single point under the action of the icosahedral group with a

translation vector added, but allowed to act at most once. A natural

extension, then, is to allow this translation vector to act at most twice.

In essence, we repeat the copy-and-translate process, but instead of

our base shape being either the icosahedron, the dodecahedron or the

icosidodecahedron, our base shape is one of the point arrays listed in

Tables A.6, A.7 and A.8, and the translation used is the same as for

the base array.

This procedure creates point arrays with considerably more points

in them than the original 55 arrays, and even the combination point

arrays mentioned previously (the original 55 have a mean number of

points of 406, the combination arrays of 820, but the second iteration

point arrays have a mean number of points of 3,116).

There is no mathematical reason why this process cannot be re-

peated, except that the number of points in the array (and hence the

number of constraints it imposes on the matched virus) grows expo-

nentially (as the base shape is being copied a minimum of 12 more

times). As well as becoming more numerous, points in second (and
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further) iteration point arrays become radically more proximate (to

the extent of filling all of space as the number of translations tends to

infinity), which is what allows higher iteration point arrays to better

match higher T -number viruses.

2.6 Calculating the Exteriors of the Point-

Arrays

For later purposes we will require the outermost points of the arrays

separately. The procedure for calculating these is straightforward.

Using R [81] and the R Geometry package [27], we can calculate the

points on the convex hull of a point array. Difficulties arise due to

rounding errors and so not all of the points on the convex hull are

found. It can occur that a point lies a fraction within the convex

hull (most commonly a problem with points that lie in the middle of

faces of the convex hull, see Figure 2.9), and so this procedure will not

detect them. The function used (convhulln) provides a triangulation

of the convex hull whose vertices are precisely a subset of the points

required. The triangulation provided is arbitrary, but irrelevant; the

polyhedron described is always the same and the triangulations are

equivalent from a procedural point of view.

Instead, once the triangles forming the convex hull have been

found, the distance from each point in the array to this polyhedron

can be computed by applying Eberly’s method [17, 19] to each triangle

forming part of the convex hull. Then those points that are sufficiently

54



Figure 2.9: The red points (a) are easily picked up as being on the
convex hull while the green points (b) may or may not be correctly
found due to rounding errors.

close to the polyhedron can be taken as the ones that “should” be part

of the exterior. That is, the distance from a point x to the surface of

polyhedron A is:

d(A,x) = min
y∈A
|x− y|

where A includes the faces, edges and vertices of the polyhedron (or,

more precisely, the triangulation of the polyhedron). We take as being

on the hull all x in the point array such that d(A,x) ≤ ε for some

(small) ε ∈ R.

This procedure is slightly more involved than just using the points

found by convhulln, as there is not (currently) software that can com-

pute convex hulls symbolically1. Instead, the symbolic representations

of the point array are evaluated. This new version is used to compute

the convex hull, and then each symbolic point is tested against those

known to be on the hull. This is unfortunately not a particularly fast

procedure, but only needs to be carried out once and the result can

be reused. The results can be found on the attached CD.

1That is, using algebraic expressions rather than floating point numbers. This
is a method of avoiding rounding errors in computations.
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Chapter 3

The Best-fit Algorithm

Now that the point arrays of the library have been created, their im-

plications for virus architecture are investigated. This is achieved

essentially by superimposing the point arrays on the virus in ques-

tion via the scaling approach detailed in Section 3.2.2 and applying

a scoring function that probes the point arrays’ fit to topographical

features and proximity to capsid proteins. The process can be sped up

somewhat by only considering a fraction of the whole structure due to

symmetry.

3.1 Reduction to the Asymmetric Unit

The virus and the point arrays both satisfy icosahedral symmetry and

so only the asymmetric unit of both the virus and the point arrays

need be considered. This need only be done once on the point arrays,

and then these asymmetric units will be the input into the algorithm,

along with the input from the pdb-file, which is restricted to those
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atoms whose positions lie in the asymmetric unit as a pre-processing

step.

The vertices of a typical asymmetric unit intersecting the icosahe-

dron’s surface has vertices given by

v1 = (0, τ, 1) (the 5-fold)

v2 =
1

2
(1, τ, 1 + τ) (a 2-fold)

v3 =
1

2
(−1, τ, 1 + τ) (the other 2-fold)

v4 =
1

3
(0, τ, 1 + 2τ) (the 3-fold)

(3.1)

where τ =
(
1 +
√

5
)
/2 (see Figure 3.1).

Figure 3.1: Three asymmetric units of the icosahedron shaded in red,
green and blue displaying how they meet at a 3-fold axis, and a close-
up view of one cell annotated with the vertices from (3.1).
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3.1.1 Structural Data Reduction

A virus is a complicated object and contains many atoms (around

510,000 for Pariacoto Virus (T = 3) and approximately 2,943,660 for

the full Bluetongue capsid (T = 13) [29]) but is highly symmetric

(recall there are 60 asymmetric units). The amount of data to be

processed is therefore reduced by projecting the position of each atom

to the origin and calculating whether it passes through a kite one

and a half times the linear size of that given in (3.1). The simplified

version of Pariacoto Virus has merely 39,710 atoms (a reduction of

92.3%) and Bluetongue would be reduced to 240,733 (a reduction of

91.8%).

This process does not need to be particularly precise as long as the

resulting set of atoms fully contain the asymmetric unit plus informa-

tion on nearby sections of the surrounding subunits, as a matching

carried out with the entirety of the virus would produce the same end

result due to symmetry. However, the fewer atoms in the section of

virus that are checked, the faster the process will be. On the other

hand, information beyond the fundamental domain must be kept as

the relative locations of points on the boundary of this to surrounding

protein is important. Figure 3.2 shows the chosen selection against

the whole virus in two cases.
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(a)

(b)

Figure 3.2: The vertices of the kite (cyan) and the Cα atoms inside the
cone defined by the expanded kite (white) showing the reduction in
number of atoms caused by this simplification for (a) Pariacoto Virus
and (b) Bacteriophage MS2.
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3.1.2 Model Data Reduction

In the same way as with the structural data, a point in a point array is

in the asymmetric unit if, when projected down to the origin, it passes

through the kite formed by the four vertices given in (3.1). Care must

be taken, though, with points that project through the very edge

of the kite, as a lack of infinite numerical precision can cause some

points to be rejected when they should be registered as located within

the asymmetric unit. To cover this, given the point arrays are not

infinitely dense, the kite can be enlarged very slightly to ensure all

the appropriate points are captured. It is essential that points are

not doubly-counted, but this can easily be checked by calculating how

many points the reduced asymmetric unit would correspond to with

full symmetry applied and comparing this to the number of points in

the full point array.

The point arrays end up being reduced by an amount somewhere

between 94.2% and 98.2%, with half of the arrays being reduced by

between 97.6% and 98.0%.
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3.2 Identification of the Best-fit Point-

Array

The point arrays identified by Dr Keef via visual inspection previously

matched outermost features of the viruses well (see Figure 3.3), and

therefore we have created an algorithm that mimics his procedure.

(a) (b)

Figure 3.3: Points matching outermost features of (a) Pariacoto Virus
and (b) Bacteriophage MS2.

3.2.1 Defining the Outermost Viral Features

We have already defined the outside of a point array in Chapter 2,

Section 2.6. Here we develop a similar procedure for the structural

data representing the virus. To define the outermost features of a

virus capsid, we determine the Cα atoms that lie above 95% of the

maximum radius on which an atom occurs, cluster these hierarchically

by distance using the hclust function in R, and then take the mean

of each cluster. This target point is then raised to the same radius as

the top of the radially most distant Cα atom — that is, the radius of

the atomic position given by the pdb-file plus the van der Waal radius

of that atom.
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Figure 3.4: The outermost Cα atoms (green) in the asymmetric unit
(white) of Pariacoto Virus and their associated scaled mean (red).

Figure 3.5: The outermost Cα atoms (green) in the asymmetric unit
(white) of Bacteriophage MS2 and their associated scaled mean (red).

The Cα atoms in the asymmetric units that are picked out are

shown in green in Figures 3.4 and 3.5, whereas the target points are

indicated in red. Close-ups of these are in Figures 3.6 and 3.7. As we

discuss later, this will be a target point in our procedure for matching

the outermost array points.

3.2.2 Scaling and Scoring

For each pair of target point pt (as discussed in Section 3.2.1) and outer

array point pa (i.e. one on the convex hull), the minimal distance dmin

that can be achieved between them by a collective rescaling of all array
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Figure 3.6: A trimer of Pariacoto Virus with outermost Cα atoms
(green) and target point (red).

Figure 3.7: A dimer of Bacteriophage MS2 with outermost Cα atoms
(green) and target point (red).

points is

dmin(pt,pa) =

√
|pt|2 −

∣∣∣∣pt · pa|pa|2
pa

∣∣∣∣2 (3.2)

(a pictorial representation of the gauge point being scaled to the target

point is given in Figure 3.8). The shortest distance over all such pairs

(pt,pa) determines the scaling of the whole array; that is, the array is

scaled so that pt and pa are at this distance from one another. The

choice of pa that realises this distance is referred to as the gauge point,

pg. The choice of array point is restricted to those on the convex

hull to ensure that the point array and virus are initially scaled to

approximately the same size.

This minimal distance is part of the score that will be assigned to
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Figure 3.8: The array point slides to the point of closest approach to
minimise the distance to the target point.

the array (referred to as S1 in equation 3.5 (page 70)). We therefore

have

S1 = dmin(pt,pg) = min
(pt,pa)

dmin(pt,pa). (3.3)

Figure 3.9 shows such a gauge point having been scaled to match a

target point according to this procedure. It can now be seen why the

raising of the target point pt to the radius of the top of the highest

Cα atom (as mentioned in Section 3.2.1) is required; it ensures that

the gauge point pg will not be placed inside material1. The reason

for this is that the points of the arrays are intended to be boundary

conditions for the proteins, and so must be on or near the boundaries

of those proteins, not inside them.

Once the array under consideration has been scaled to as described

above, it is scored. First we introduce some terminology: vdw is the

1Note that this could be checked with [68] via MSMS [90] (also available in Py-
MOL [123]) if it could be made stable for tiny probes. MSMS calculates the Solvent
Accessible Surface (SAS) and Solvent Excluded Surface (SES) analytically for a
given molecule, but is only stable for atomic size probes, which are considerably
larger than the infinitesimal points we use.
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Figure 3.9: A trimer of Pariacoto Virus with outermost Cα atoms
(green), target point (red) and gauge point (black).

van der Waal’s radius of each atom and is taken at 1.9Å [8]; threshold

is how close an array point has to be to the capsid of the virus before it

is counted as representative of the capsid (set at 4Å); inner threshold is

how close an array point has to be to proteins if it is to count multiple

times (set at 2Å); virus radius is the maximum radius an atom occurs,

plus vdw ; inner radius is the minimum radius an atom occurs, minus

vdw and middle radius is the mean of virus radius and inner radius.

We now compare the point arrays with data from pdb files. These

data contain the coordinates of all the detected non-hydrogen atoms in

each protein of the virus capsid (as mentioned in Section 1.3) organised

according to chains.

For each point in an array, the distance to the nearest atom of each

chain is computed. This produces a table of data similar to Table 3.12,

where the double line indicates the middle radius of the virus. The

meanings of the columns are as follows: n gives the number of points

of the array at each radius r; A, B and C3 give the distances from a

2The data given is actually for Pariacoto Virus, but is representative of the
steps taken in general.

3Pariacoto only has three chains. For larger viruses with more chains, more
letters are used.
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point at radius r to the nearest atom in the protein chain indicated in

the column header.

The entries 7777, 8888 and 9999 are placeholders, indicating that

the algorithm has not calculated a distance because it will not be re-

quired in the scoring steps — reasons are given in the various stages

of scoring listed below. This enables the algorithm to work consider-

ably faster without compromising accuracy. The three different num-

bers indicate three different regions: 9999 indicates points more than

threshold (4Å) below inner radius (that is, rows 1, 2 and 3 in Table

3.1) — these will never be able to be representative of the capsid and

will only match genomic material; 7777 represents points between in-

ner radius minus threshold and middle radius (i.e. rows 5, 6, 7 and

8) — these may match capsid or genomic material depending on their

position; and 8888 is the placeholder for points above middle radius

(rows 9, 10 and 11), which should match to protein.
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n A B C r
1

In
n
er 20 9999 9999 9999 43

2 20 9999 9999 9999 70
3 12 9999 9999 9999 77
4

M
id

d
le

60 7777 7777 7777 92
5 60 7777 7777 7777 94
6 60 7777 0.017 0.107 112
7 20 7777 7777 7777 114
8 30 7777 7777 0.471 131

9

O
u
te

r 60 0.054 1.749 8888 140
10 60 8888 11.477 14.193 162
11 60 8888 3.061 2.927 174

Table 3.1: Sample RMSD output.

n A B C r x SS
1

In
n
er 20 9999 9999 9999 43 0 -

2 20 9999 9999 9999 70 0 -
3 12 9999 9999 9999 77 0 -
4

M
id

d
le

60 7777 7777 7777 92 0 -
5 60 7777 7777 7777 94 0 -
6 60 7777 0.017 0.107 112 2 0.012
7 20 7777 7777 7777 114 0 -
8 30 7777 7777 0.471 131 1 0.222
9

O
u
te

r 60 0.054 1.749 8888 140 2 3.062
10 60 8888 11.477 14.193 162 1 131.722
11 60 8888 3.061 2.927 174 1 8.567

Table 3.2: Annotated sample RMSD output where the bolded entries
denote scores that indicate the corresponding point of the array is
representative of protein and hence will contribute to the scoring of
the point array.
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An analysis of these tables is then conducted by scoring the array

according to the following procedure:

1. Flag each entry (entries shown in bold in Table 3.2 are those

flagged) in the A, B and C columns less than inner threshold

(2Å). This is so that points that are very close to multiple pro-

teins score to each of those proteins.

2. For each row corresponding to a radius greater than the middle

radius (that is, rows 9–11), flag the minimum entry (of columns

A, B and C). This part ensures that floating points far from the

capsid are penalised (by forcing them to count), but does not

consider points that are predictive and occur in the space within

the capsid for which no data is available in the pdb-file, making

sure they do not penalise the array.

3. For each row corresponding to a radius less than the middle ra-

dius (rows 1–8, but in practice, only rows 4–8 need to be checked

as rows 1–3 are guaranteed to be too far from capsid material

to be representative), flag the minimum entry (of columns A, B

and C) if it is less than threshold (4Å). This ensures points that

are within the capsid and match material well contribute to the

score of the array4.

4. For each row, count how many entries are flagged (this gives

column x in Table 3.2) and measures how many protein chains

4Note that flags from steps 1, 2 and 3 can lead to more than one flag per entry.
For example, 0.054 at radius 140 is flagged twice because it meets criteria 1 and
2. This is irrelevant because it only matters whether an entry is flagged at all or
not.
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the point under consideration matches to.

5. For each row with at least one flagged entry, sum the squares of

the flagged entries (which gives column SS in Table 3.2).

6. Then, letting i run over each row and denoting as ni, xi and SSi

the entries in the ith row, calculate

S2 =

√∑
i (ni × SSi)∑
i (xi × ni)

. (3.4)

This calculates a value akin to the RMSD of the bolded entries to

the surfaces of the proteins, adjusted to compensate for the fact that

there are different numbers of points per radial level. In effect, it mea-

sures how well those points near to proteins represent the surfaces of

those proteins, where S2 = 0 would imply those points all lie precisely

on protein boundaries.

The two scores S1 and S2 (calculated in (3.3) and (3.4) respec-

tively) need to be considered simultaneously to arrive at a combined

score. For this, we consider these scores as coordinates of a point in

a plane as illustrated in Figure 3.10. The red point scores well on S2

(it fits well to the capsid), but not very well on S1 (matching a tower

well), whereas the blue point fits to a tower well, but not to the capsid.

However, the green point scores less well than the blue on S2 and less

well than the red on S1, but scores adequately on both. This, then, is

the scoring point for the array to be kept, and we use the score given

by
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S =
√
S2
1 + S2

2 (3.5)

which is essentially the Euclidean distance of the scoring point from

the ideal situation represented by 0 for both S1 (matching the target

point exactly) and S2 (all points lying exactly on protein surfaces).

Both scores are measured in Angstroms and are therefore directly

comparable — not even rescaling is necessary, as they both occur over

similar ranges.

Figure 3.10: Three sample sets of scores.

This combination ensures that the best-fit array matches both the

outermost characteristic features (such as towers) of the virus and the

capsid well. However, the pdb-file is given only up to a certain res-

olution, and so checking that the best-fit point array does not apply

purely because of these margins is necessary (that is, we need a ro-

bustness check for our procedure). We therefore test each array not

just at the scaling given by the minimum distance from equation (3.2)

(page 63), but also by the scalings found by moving the target point

up and down by increments of 0.1Å in a range of ±5Å. The amount

that the target point is moved is referred to as the shunt. Arrays that
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only occur over a small (usually 0.2Å) range are viewed as artifacts of

the data and not representative.

3.3 Analysing the Data

The algorithm outlined in Section 3.2 provides a large amount of in-

formation on how each point array matches to a given virus at each

of many scalings. These data then need to be interpreted to remove

any anomalies and produce the candidate(s) for the best-fit array.

The output of the algorithm produces data such as that given in

Table 3.3 (except the last column, which is added after some process-

ing, as explained later). The column headings here are truncated for

reasons of space. The headings, where different from Chapter 4, are

given in emphasis. For reference, the columns are as follows:

No. (Combo Number) — the number of the combination point array;

Out (Outside) — the point array (of the 55 basic arrays) that lies on

the outside of the combination;

In (Inside) — the point array that lies on the inside of the combina-

tion5;

RMSD — the quasi-RMSD score (S2 from equation 3.4);

Tower Dist. (Dist. to Tower) — the distance from the gauge point

to a tower midpoint (S1 from equation (3.3));

5In cases such as combination point array 70 that consists of arrays 3 and 36
where the translation multiplier λ of each is 1, both arrays can be considered on
the outside. In these cases, the arrays are presented in numerical order.
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Final Score — the final overall score (S from equation (3.5))

R (Combo Radius) — the maximum radius on which an array point

lies;

Shunt the radial adjustment of the target point which gives rise to

the best (lowest) score for the point array under consideration;

NH (Number of Hits) — the number of points corresponding to cap-

sid material;

Prev (Prevalence) — the number of scalings for which the point array

listed occurs in the tested range6.

Tower Final
No. Out In RMSD Dist. Score R Shunt NH Prev
563 50 28 4.698 0.892 4.782 173.9 -1.6 5 24

Table 3.3: Sample results showing which array this row is for, the
outside and inside components of that combination, S2, S1 and S, the
radius of the array, which shunt was used, the number of matches
against protein and how many shunts this array is relevant at.

Two filters are applied to the data to remove anomalies or point

arrays that do not sufficiently fit the capsid:

1. Remove any rows that have NH ≤ 3. These are deemed not to

be sufficiently representative of the capsid.

2. Remove any rows that have Final Score > 1000. As part of the

scoring algorithm, any array that has a point with a negative dis-

tance to a protein (that is, a point that is located inside the van

6Table headings are given in abbreviated form in Table 3.3.
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der Waals radius of an atom) has a penalty term of 1000 applied

to its score7. We are attempting to find geometric constraints on

material boundaries for the virus, so points lying within capsid

material are not appropriate.

Once the list of scores has been pared down in this way, the best

scaling for each array is considered. A final statistic is calculated,

which is the Prevalence of that array in the reduced list — that is, the

number of scalings for which the given array occurs in the reduced list.

Ideally, if an array has a Prevalence that is low, it could be rejected,

considering the caveat that the Prevalence will be artificially low at

the extreme ends of the shunt range; if the best fit of a point array

occurs at the end of the search range for the shunts, the range must

be increased. The remaining data is then sorted by Score (the overall

score as given by equation (3.5)) with the point array with the lowest

score being rated the best-fit point array.

7The exact figure is irrelevant; the key is that the array is removed from con-
sideration.
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Chapter 4

Applications to Viruses

This chapter contains the results of applying the algorithm developed

in Chapter 3 to a selection of pdb-files downloaded from the VIPER

website [83].

Each virus (unless otherwise specified) was tested against the first

iteration combination point arrays described in Chapter 2, Section

2.5.1, i.e. the library of point arrays, at a range of shunts between

−5Åand 5Å, with a step size of 0.1Å. The results for each virus are

given in a table with the structure of Table 3.3.

Several sections are presented, each focussing on a different aspect

of virus structure.
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4.1 Genomic Cages

In addition to information on the atomic positions of the capsid pro-

teins, for a number of viruses there is also data on the organisation

of the genomic material, and this can be used to validate predictions

of the algorithm. Here, three viruses for which X-ray, cryo-EM or

neutron scattering data reveal ordered features in their genome or-

ganisation are studied, as well as one (Bacteriophage GA) that is

evolutionarily related to such a virus (Bacteriophage MS2).

4.1.1 Pariacoto Virus

The first test case is Pariacoto Virus, which is a T = 3 virus with

single-stranded RNA that infects the Southern Army worm found in

Peru. Its structure was resolved to 3.0Å [98], and is available from

VIPER (PDB-ID 1f8v). The pdb-file includes 88% of the protein

capsid which exhibits prominent towers on local 3-fold symmetry axes

(Figure 3.9 (page 65) shows the tower from the side, indicating its

height, and Figure 1.12 in the Introduction on page 25 shows it from

above, demonstrating the local 3-fold location). It also, importantly,

includes a modelled dodecahedral cage of RNA (containing approxi-

mately 35% of the viral genome) within the capsid [13].

The R and S strands of ‘protein’ forming the RNA were removed

from the pdb-file before the algorithm was applied leaving just the A,

B and C chains of actual protein; that is, RNA was not taken into

account when determining the best-fit point array. The results are

given in Table 4.1. They clearly show that the best outer point array
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is 50; interestingly, the first 13 results have 50 as their outside, and the

14th result is array 131, which is array 6 combined with itself (note,

array 6 has the same exterior as array 50). The first array that has a

different exterior is array 228 in 15th place, which has a final score of

7.506 compared to the score of the best-fit point array which is 4.782.

Figure 4.2 shows the best-fit point array overlaid on not only the

crystal structure of the capsid proteins, but also on the RNA cage that

was removed prior to running the algorithm. The red, magenta, purple

and light blue points map around the capsid protein, marking out the

height of the tower, the midpoints of trimer-trimer interactions as

well as the lowest extent of the capsid material. There are also some

“floating” points (pink), shown in Figure 4.1(a); these count badly

against the score of the point array, but this negative effect is clearly

countered by the good fit of the rest of the points, as evidenced by the

fact that this point array achieves the lowest score.

What is astonishing is the fit that this point array has to the RNA

cage. Figure 4.1(b) shows the (dark) blue and green points marking

out a dodecahedral cage that traces the RNA double-helix (A-duplex

RNA), with the blue points located at the 3-junctions and the green

points fitting snugly into the minor grooves.
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(a) (b)

Figure 4.1: The best-fit point array overlaid on (a) the crystal struc-
ture of the capsid material and RNA cage of Pariacoto Virus and (b)
just the RNA.

(a) (b)

Figure 4.2: The best-fit point array overlaid on the crystal structure
of the capsid material of a trimer of Pariacoto Virus from (a) the top
and (b) from the side with the associated RNA fragment.
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However, there is further information to be gleaned from the points

that the best-fit point array 563 produces near the capsid centre: its

points at radial level 92Å correspond to the minor grooves of the RNA,

and are 31.1Å apart; its points closest to the center of the capsid

(radial level 43Å) are also 31Å apart. Given that not all of the RNA

is accounted for in the outer dodecahedral cage, there must be more in

the capsid, and this point array suggests that there could be an extra

cage closer to the middle. It is an area where the cryo-EM data1, albeit

at a much weaker signal, shows a further ring structure, as shown in

Figure 4.3.

Moreover, while the orange points are 31Å apart, the yellow points

are 50.2Å apart (one turn of RNA plus ∼ 19Å). This is a similar

pattern to the dark blue points (which mark the corners of the do-

decahedral cage) being 81.2Å apart (two turns of RNA plus ∼ 19Å),

suggesting that the yellow points are in a similar position relative to

the orange points as the dark blue points are to the green points in

Figure 4.1. This could imply that, in analogy, they are marking a

cage of RNA with one turn of RNA per side, rather than the two

turns in the larger RNA cage at larger radius that accounts for the

35% of RNA seen in the crystal structure. If further data for this

region were to become available, potentially without the icosahedral

averaging commonly used, this prediction could be tested.

Having investigated the best-fit point array, the next two arrays

are analysed to see if they contain any further information. (After

these two further arrays the final score jumps significantly — from

1Reconstruction kindly provided by Jack Johnson
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4.850 to 5.321.) 1014 contains only minimal further information, but

226 includes extra points of interest. See Figure 4.4 for a comparison

of the point arrays on the data. Note that the extra points in 226

‘bracket’ the RNA in a way that 563 does not (see Figure 4.5).

Recalling the other 3D approach, that is, that by Janner mentioned

in Section 1.2.3, the results here are compared with those available in

[39]. Figure 4.6(a) shows the encasing form of Janner with two sets

of inscribed inverted pentagons (i.e. two inverted pentagons inscribed

within two inverted pentagons) and a further inscribed decamer used

to provide the scaling from the encasing form to the protein pentamer

and Figure 4.6(b) shows the same selection of proteins with the gauge

points (magenta) and those points marking the three-junctions of the

RNA in comparison; the latter figure uses two complementary pen-

tagrams inscribed within the encasing form of the gauge points to

provide the scaling necessary. It can be seen that the algorithm and

point arrays presented here are compatible with and extend Janner’s

method while being simpler in execution, due to, in part, the more

natural scaling available when using a finite array as opposed to an

infinite lattice.
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Figure 4.3: The best-fit point array overlaid on the crystal structure
[98] of the capsid material and RNA cage as well as cryo-EM data3 of
Pariacoto Virus. Density belonging to the capsid is shown in purple
and cream, the layer of RNA adjacent to the interior surface of the
capsid is in light blue, and there is evidence for a predicted layer of
RNA (also shown in light blue) between the orange and yellow points
near the centre.
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Figure 4.4: A slab through Pariacoto Virus with the best-fit point
array (563 — green), and the two next-best arrays (1014 shown in
yellow, and 226 in blue) and the points shared by all three point
arrays (that is, outer array 50 — red) superimposed.

(a) (b)

Figure 4.5: Points in array 226 (blue) mark additional information
about the RNA cage — (a) side view and (b) top view.
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(a) (b)

Figure 4.6: A view down the 5-fold axis of a selection from the A chain
proteins of Pariacoto Virus from (a) Janner [39] and (b) the algorithm
presented here showing the encasing form and the inscribed shapes
delimiting the protein bulk and outermost features.
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Capsid to RNA prediction

With Pariacoto virus pdb having a modelled cage of RNA, it is possible

to take the results from the previous section and see how they match to

the genomic structure in a more structured way. In particular, each

point array that successfully models the capsid (by which is meant

“does not place a point within an atom” — that is, has not incurred

the penalty of 1000) can be scored against the RNA while keeping the

scaling that best represents the capsid. The process is very similar

to the previous scoring, but does not force any points to score; those

that are within 4Å of the RNA are scored, while those that are further

away are not.

Figure 4.7 is a graph showing the original score to the capsid pro-

teins compared to the new score comparing the array to the genome.

Unfortunately, as can be seen, there is no correlation between these

scores. However, of the 196 combination point arrays that fit to the

capsid in some way, fully 50 do not have any points anywhere near the

genomic material (these are not shown on the graph), and 28 place

points within an atom of it. Of the remaining 118, point array 563

(the best fit to the capsid — and hence at the far left of Figure 4.7)

lies at number 19. The old and new scores of the arrays best fitting

the genome (up to and including number 563) is shown in Table 4.2.
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Figure 4.7: A scatter graph showing the comparison each point array’s
score to the capsid informs their score to the genomic cage. As can
be seen, there is no correlation. Point array 563 has the lowest score
when matching to protein (and is displayed in the bottom left of the
graph) but has only the 19th best score to the genome.
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Array Score to Capsid Score to Genome
40 21.915 0.0267
65 21.935 0.0267
90, 115, 140,
397, 422, 447,
609, 615, 616, 22.157 0.0267
617, 618, 619
869 22.283 0.0273
499 28.001 0.0993
345 12.18 0.3142
86 23.07 0.3295
563 4.782 0.3540

Table 4.2: The nineteen lowest-scoring point arrays to the Pariacoto
genome.

None of these matches place a point directly within an atom (else

they would have incurred the scoring penalty and not receive such a

good score), but that does not necessarily make them good matches.

Figure 4.8, in particular, shows the point responsible for the score of

0.0267 for the top 14 matches (all of which match in precisely the

same manner and are displayed in Figure 4.9(a) and (b)) lies within

the protein material and, were it subjected to such a stability check,

would no doubt fail. The previous scoring used the concept of mov-

ing the target point up and down to establish a range over which an

array would receive a valid score (the Prevalence), while this method,

making use of the “best” scaling for each array, only inspects one such

scaling. The point giving array 869 such a good score (displayed in

Figure 4.9(c) and (d)) is virtually identically placed.

Point arrays 499, 345 and 86, though, are in very reasonable po-

sitions compared to the genome atoms and would pass any stability

analysis. 345, in particular, has points in virtually identical locations
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to 563, demonstrating that it alone of the other point arrays matches

the turn length of the RNA.

Figure 4.8: A extreme close-up view of the point from point array
40 that matches the Pariacoto genome (the large circle denotes a 4Å
radius — the cross in the middle marks the precise middle), showing
how it lies between a number of atoms (the beige spheres mark the
modelled 1.9Å van der Waals radius) and would fail a stability test.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 4.9: A view from the side (left) and top (right) of (a) and (b)
point array 40 (same as arrays 65, 90, 115, 140, 397, 422, 447, 609,
615, 616, 617, 618, and 619), (c) and (d) point array 869, (e) and (f)
point array 499, (g) and (h) point array 345, (i) and (j) point array
86, (k) and (l) point array 563 and (m) and (n) all the arrays.
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4.1.2 Bacteriophage MS2

Bacteriophage MS2 is also a T = 3 virus, but it infects Escherichia

coli. The crystal structure is deposited as PDB-ID 1zdh. It has been

resolved to 2.7Å [26, 112], and this atomic model of recombinant phage

includes the RNA stem-loops that make contact with the capsid pro-

tein [113]. MS2 is composed of dimers, rather than trimers as in

Pariacoto Virus. There are 60 AB dimers and 30 CC dimers, the CC

dimers being symmetric and the AB dimers having one of their FG-

loops folded to allow the dimer to avoid steric clashes when arranging

around the 5-fold axes, as shown in Figure 4.10.

Figure 4.10: A (left) CC and (right) AB dimer of MS2 displaying their
FG loops — the loops of the CC dimer (green) are both extended as is
that of the A chain protein (blue), whereas that of the B chain protein
(red) is folded to allow their arrangement around the 5-fold axes.

Here, point array 7 is the best-fit outer array shared by the two

best-scored point arrays (note that 21 and 42 have identical exteriors).

152 is the best-fit point array, with 163 also analysed to see how far

it differs.
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Figure 4.11 shows the best-fit point array superimposed on the

crystal structure of MS2, coloured by radial level, with close-ups of the

AB dimers and CC dimers in Figures 4.13(a) and 4.14(a), respectively.

Figure 4.12 shows the best-fit point array (152 — green) together with

the next-best point array (163 — blue), and the common points in red.

It shows that both arrays have points at similar radial levels in the

interior of the capsid, and this implies the same prediction for the

radial distribution of RNA inside the capsid. As well, not only do the

arrays mark the AB-loop of the B conformer (as expected given the

matching method used), but indicate where each stem-loop of RNA

attaches to the dimer. Note that the RNA was not present in the pdb-

file while the algorithm was processing it. Indeed, the array coming

second has more points near the RNA underneath the CC dimers than

the best-fit array, but is no different under the AB dimers.

Cryo-EM data (EMDB-IDs 1431, 1432 and 1433) [59, 104] are

available, and in Figure 4.15 we can see how well every point of

the best-fit point array matches the experimentally determined RNA

structure within the capsid. From Figure 4.12 there is little reason to

assume that array 163 would clash with the cryo-EM data, but the

points in the middle of the capsid are too close to the centre to rea-

sonably match material, corroborating that our algorithm has selected

the correct model.
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Figure 4.11: The best-fit point array (152) overlaid on the crystal
structure [112] of Bacteriophage MS2.
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Figure 4.12: The best-fit point array (152 — green) with the next-
best point array (163 — blue) with the common points (red) overlaid
on the crystal structure of Bacteriophage MS2. As can be seen, they
both match to the B chain towers (red protein), as well as the upper
surface of the A chain protein (blue) and lower surface of the CC
dimers (green). Morever, the locations of interest are close for both
point arrays.

(a) (b)

Figure 4.13: The two best-fit point arrays matching to an AB dimer
(A chain is blue, B chain is red) of MS2 from the (a) side and (b) top;
they match the AB dimer identically.
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(a) (b) (c)

Figure 4.14: (a) The best-fit point array (152) matching to a CC
dimer of MS2 from the side; (b) The next best-fitting point array
(163) matching to a CC dimer of MS2 from the side; (c) The next
best-fitting point array (163) matching to a CC dimer of MS2 from
underneath.

Figure 4.15: The best-fit point array overlaid on the cryo-EM structure
[59, 104] of the genomic material (showing the double shell structure)
and crystal structure [112] of the capsid of Bacteriophage MS2.
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4.1.3 Bacteriophage GA

Bacteriophage GA has been solved to 3.4Å resolution [99] and is avail-

able from VIPER with PDB-ID 1gav. It is very similar in structure

to Bacteriophage MS2 despite relatively low sequence similarity, and

its structure was solved by using the structure of MS2 as a template.

Not particularly surprisingly, then, point array 152 is once again the

best-fitting point array as shown in Table 4.4.

The best-fit point array and the common points for the other 9 ar-

rays (being array 42) are shown superimposed together on the crystal

structure in Figure 4.16. As can be seen in both that and Figures 4.17

and 4.18, they match the exterior of Bacteriophage GA differently (ar-

rays 7 and 42 are not related by the method of Section 2.4), but yet

both mark the potential contact point of the RNA to the CC dimer

— the cyan point in Figure 4.18 — assuming Bacteriophage GA is

similar to Bacteriophage MS2 in this respect.

It is remarkable that whilst the ensembles of runners-up for Bacte-

riophages MS2 and GA are different despite large overlaps (there are

7 point arrays in common) the best-fit point array remains constant.

This implies that the algorithm may well be picking out the same best-

fit array for evolutionarily related viruses, encapsulating the essential

features of their geometries.
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Figure 4.16: The best-fit point array (152 — green) and the common
points for the next best 9 point arrays (879 — blue).

(a) (b)

Figure 4.17: An AB dimer of Bacteriophage GA with the points com-
mon to the 9 runner-up point arrays superimposed from (a) the side
and (b) the top.
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(a) (b)

Figure 4.18: A CC dimer of Bacteriophage GA with the points com-
mon to the 9 runner-up point arrays superimposed from (a) the side
and (b) the top.
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4.1.4 Tomato Bushy Stunt Virus

The structure of Tomato Bushy Stunt Virus (TBSV) has been solved

to 2.9Å resolution and is deposited with PDB-ID 2tbv [32]. It has a

T = 3 structure made up of 180 copies of the same protein, although

25% of the protein structure is unknown [103]. One of the terminal

arms of each of the capsomeres is not distributed icosahedrally, and so

is averaged away. According to the literature the bulk of the unseen

protein lies in a second, internal, shell, and “most of the RNA is

sandwiched between the two protein shells.” [103]. Moreover, the two

shells are connected only at the 3-fold axes.

Table 4.5 shows a single best-fit point array, although the best-fit

exterior array (29) occurs in 3 of the 10 lowest scoring arrays, and 5

of the others are the related point array 8. Out of interest, then, we

present the best-fit point array with the next three arrays in Figure

4.19.

As can be seen, which is not unexpected, they are very similar,

but each yields different information about the AB and CC dimers,

as shown in close-up views in Figures 4.20 and 4.21. The bottom

row in each figure shows all four point arrays superimposed on the

dimers simultaneously to illustrate the different areas highlighted by

the different point arrays.

Moreover, [103] offers some data on the interior structure of TBSV

(see Figure 4.22) which shows that there is structured genomic mate-

rial inside the capsid. Figure 4.23 shows the same four point arrays

displayed previously, with the X-ray data, overlaid on this neutron-
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(a) (b)

(c) (d)

Figure 4.19: Tomato Bushy Stunt Virus with (a) the best-fit point
array (580) coloured by radial level; (b) point array 575 coloured by
radial level with point array 580 shown in black; (c) point array 170
coloured by radial level with point array 580 shown in black and (d)
point array 175 coloured by radial level with point array 580 shown in
black.

scattering density plot (aligned in the same way), and Figure 4.24

shows all four superimposed simultaneously. As can be seen, the close-

ness of the fit is remarkable, in all cases — the only discrepancy is

between the X-ray data and the neutron-scattering data on each side,

where some of the A and B proteins do not seem to be picked up by

the neutron-scattering; the point arrays match very well.
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(a)

(b)

(c)

(d)

(e)

Figure 4.20: An AB dimer of Tomato Bushy Stunt Virus, in a side
view (left column) and top view (right column) displaying point arrays
(a) 580, (b) 575, (c) 175, (d) 170 and (e) all four combined, in rows
from top to bottom, respectively.
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(a)

(b)

(c)

(d)

(e)

Figure 4.21: A CC dimer of Tomato Bushy Stunt Virus, in a side view
(left column) and top view (right column) displaying point arrays (a)
580, (b) 575, (c) 175, (d) 170 and (e) all four combined, in rows from
top to bottom, respectively.
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Figure 4.22: A 2-fold view through the neutron-scattering density
results for TBSV [103]. According to the literature, areas below 55%
correspond to protein, those between 55% and 70% to RNA, and other
areas to solvent.
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(a) (b)

(c) (d)

Figure 4.23: A 2-fold view through the neutron-scattering density
results for TBSV [103] superimposed with point arrays (a) 580 (b)
575 (c) 175 and (d) 170. According to the literature, areas below 55%
correspond to protein, those between 55% and 70% to RNA, and other
areas to solvent.
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Figure 4.24: A 2-fold view through the neutron-scattering density
results for TBSV [103] with all four point arrays (580, 575, 175 and
170) superimposed simultaneously. According to the literature, areas
below 55% correspond to protein, those between 55% and 70% to
RNA, and other areas to solvent.
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4.2 Swelling Transformations

The virus discussed in this section, Cowpea Chlorotic Mottle Virus,

undergoes a swelling transformation which is a putative intermediate

in the infection process. In this section, we examine the start and end

states of the transformation as this can be used as input to examine the

mathematical transitions between the point arrays [35]. The number

of combinations of start and end states is large, so it is the hope

that this work can provide information on where effort may be most

fruitfully spent.

This particular virus was picked for this project as it was of a

suitable size for the point arrays to work best on, and had suitably

well-defined start and end states. There is no direct link in this work

between the start and end states and their associated point arrays; it

is hoped that the transition can give insights into the swelling of the

capsid.

4.2.1 Cowpea Chlorotic Mottle Virus

The structure of Cowpea Chlorotic Mottle Virus (CCMV) has been

solved to 3.2Å resolution and has been deposited with PDB-ID 1cwp

[95]. It is a T = 3 virus with a capsid formed of 180 chemically iden-

tical proteins covering the expected three quasi-equivalent locations.

Table 4.6 illustrates a situation that demands care — four of the

lowest-scoring point arrays occur at a shunt of -5Å. This can artificially

lower their prevalence due to the range of acceptable scalings butting

up against the usual cutoff of -5Å. We therefore re-ran the algorithm
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using a wider search range. This gives the results shown in Table 4.7.

Point arrays 137 and 919 are removed from contention because of their

low prevalences (2 — which are no longer artificially lowered because

of the increased search range) and we see that 917 is the best-fit point

array. Note that this point array is identical to the best-fit point arrays

given in [35] as regards its overlap with capsid material. However,

917 exhibits one additional match to capsid protein, which is in an

excellent position between the B and C chains and is shown in Figure

4.25. The data communicated to Indelicato et al. was preliminary

data communicated privately before the algorithm (and in particular

the first filter of Section 3.3) was complete.

Figure 4.25: The extra point of the best-fit point array (917) compared
to those given in [35]. It matches the crystal structure of a complex
of B and C chain proteins in CCMV marking where the terminal arm
of the B chain protein fits into a hollow in the C chain protein.

Figure 4.26 (both (a) and (b)) show that the best-fit point array

fits to the top and bottom of the capsid material well — delimiting

its thickness — and Figures 4.27 and 4.28 show the points matching

to the AB and CC dimers respectively.
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(a) (b)

Figure 4.26: The best-fit point array matching the crystal structure
of CCMV down (a) a 2-fold axis and (b) a 5-fold axis showing how it
matches the extent of the capsid.

(a) (b)

Figure 4.27: The best-fit point array matching the crystal structure
of an AB dimer of CCMV from (a) the side and (b) the top.

(a) (b)

Figure 4.28: The best-fit point array matching the crystal structure
of a CC dimer of CCMV from (a) the side and (b) the top.
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4.2.2 Cowpea Chlorotic Mottle Virus — Swollen

Form

The swollen form of CCMV is given as a proposed model [65, 97]

available from the VIPER website with “PDB-ID” ccmv swln 1. Once

again, the data presented in [35] is based on preliminary data, that

is, it was obtained before the first filter (of Section 3.3) was in place,

communicated privately, just as in Section 4.2.1. The best-fit point

array here (547 – composed of arrays 27 and 28) is identical as regards

its overlap with the capsid to those point arrays presented in [35]

except for the addition of one point just under the A chain protein

(the blue point under the red protein in Figure 4.30(a)); it is this point

that has raised the total score slightly (i.e. made the RMSD slightly

worse) from 4.243 to 4.482 but increased the number of hits above the

threshold value. Figure 4.29 shows the best-fit point array overlaid

with the X-ray crystallography data viewed down a 5-fold axis, which

illustrates the match this point array has to the capsid, representing

its thickness accurately.
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Figure 4.29: The best-fit point array matching the crystal structure
of swollen CCMV, viewed down a 5-fold axis.

(a) (b)

Figure 4.30: The best-fit point array matching the crystal structure
of an AB dimer of swollen CCMV, (a) a side view and (b) a top view.
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(a) (b)

Figure 4.31: The best-fit point array matching the crystal structure
of a CC dimer of swollen CCMV, from (a) a side view and (b) a top
view.
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4.3 Smaller and Larger Viruses

The viruses considered so far have been T = 3 viruses. Here, a smaller

(T = 1) virus and a larger (T = 7d) virus are analysed.

4.3.1 Satellite Tobacco Mosaic Virus

First considered is Satellite Tobacco Mosaic Virus (STMV), which is

a T = 1 virus with the expected 60 identical capsid proteins. It is

deposited on VIPER with PDB-ID 1a34 [57] and has been resolved to

a resolution of 1.81Å. The pdb-file has fragments of RNA present with

59% of the genome visible [57], which form part of a cage of RNA that

comprises approximately 80% of the virus’ RNA [58].

However, STMV has a radius of only around 90Å, meaning that

the standard point arrays, while they would have the usual number

of points within the capsid, would provide a greater density of points

there and hence too many fine detail structural conditions. We there-

fore use only the pure point arrays given in Tables A.6, A.7 and A.8

in Appendix A (page 172).

If only the 55 pure point arrays are considered, relaxing the normal

restriction that there must be three points of contact between the point

array and the virus, the results are those shown in Table 4.9. Figure

4.32 shows this best-fit pure point array, that is, point array 8 by itself,

matching to the capsid. As can be seen in Figure 4.32(a) and (b), the

best-fit point array matches the extent of the capsid well, while still

providing some information on the interior of the virus; Figure 4.32(c)

and (d) reinforce this, showing a protein dimer with attached RNA.
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Finally, Figure 4.32(e) and (f) show the RNA fragment by itself with

the point array, displaying how the fragment is bracketed by this point

array.

(a) (b)

(c) (d)

(e) (f)

Figure 4.32: View down the (a) 3-fold axis and (b) the 5-fold axis of
STMV with the best-fit pure point array. (c) Side view and (d) top
view of the protein-RNA contact with the best-fit pure point array.
(e) Side view and (f) top view of the RNA alone, with the best-fit
pure point array. The fit to protein is lessened, so the Number of Hits
becomes too low to escape the usual filter and the match to the RNA
is greatly lessened.
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4.3.2 Simian Virus 40

The second virus in this section is Simian Virus 40, or SV40. It is

available from VIPER with PDB-ID 1sva [96] and is a T = 7d virus

(recall Figure 1.11 showing how the various T -numbers are found; the

T = 7 triangle of Figure 1.10 is T = 7l, so the layout of SV40 is the

mirror image of that).

In the same way that STMV is smaller than the viruses previously

considered, SV40 is larger (recall STMV was approximately 90Å in

radius, SV40 is around 250Å; it may not be particularly large com-

pared to some viruses such as those seen in the Introduction — recall

Mimivirus in Figure 1.4 — but the data requirements increase with

the square of the radius!), so point arrays with finer detail and more

constraints are used; these are the second-iteration point arrays from

Section 2.5.2. However, the same range of shunts from +5Å to −5Å is

used, as the size of the outermost features of the virus have not scaled

similarly in size. Table 4.10 gives the results, showing that point ar-

ray 30 is the best fitting point array unambiguously, with a combined

score of 2.811 compared to the next best array with a score of 8.713,

over twice as big.

Figure 4.33 shows the best-fit point array matching to the crys-

tal structure of SV40 from both 2-fold and 3-fold axes, matching the

surface of the capsid proteins well while still providing structural con-

straints within the virus. Figures 4.34 and 4.35 show the best-fit

array matching to the 5-fold and quasi-5-fold pentamers of SV40: the

proteins are delineated well, and the two pentamers are matched in
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different places by the points. In particular, the positions of the two

different types of C-terminal arm conformations are picked out, show-

ing how even a non quasi-equivalent virus can fit to this theory.

(a) (b)

Figure 4.33: The second iteration point array 30 viewed down (a) a
2-fold axis and (b) a 3-fold axis.

(a) (b)

Figure 4.34: The 5-fold pentamer of Simian Virus 40 with second-
iteration point array 30 from (a) the side and (b) the top.

(a) (b)

Figure 4.35: The quasi-5-fold pentamer of Simian Virus 40 with
second-iteration point array 30 from (a) the side and (b) the top.
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4.4 Polymorphic Interiors

Some viruses do not show any ordered features in the publicised den-

sities. As argued below, this may be because there is a polymorphic

genome organisation (that is, the genome may take up one of a number

of different arrangements) in these viruses due to the fact that there

may be fewer boundary conditions (from the best-fit point array(s))

in these cases.

4.4.1 Hepatitis B

The T = 4 structure of Hepatitis B, solved to a resolution of 3.3Å,

is deposited at the Protein DataBank with PDB-ID 1qgt[116] and is

available from VIPER. The capsid is formed of two protein dimers (AB

and CD), both of which have an unusually large number of α−helices.

Table 4.11 shows the results of our best-fit algorithm, which give

one point array with a clear lead over the others. Note that point

arrays 10 and 27 are structurally related as discussed in Section 2.4,

which is why the second-best point array in the table has a Distance

to Tower score similar to the best-fit point array. Figure 4.36 shows

the best-fit point array superimposed on a cross-section of the crystal

structure, viewed down a 5-fold axis. Array points are situated on the

towers of the CD dimers (see Figure 4.37 (c)) — which, incidentally,

lie precisely on the intersection of the “crossbars” of the kite — and

the pink and cyan points bracket the capsid from above and below,

defining its thickness (best displayed in the full picture in Figure 4.36,

but can also be seen to mark the extent of the non-tower portion of
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the dimer in Figure 4.37 (a)).

Figure 4.36: A view down the 5-fold axis showing Hepatitis B with
the best-fit point array 222 coloured by radial level.

Once again, there are points in the capsid interior, and also for

this virus, cryo-EM data are available (EMDB-ID 1400 — although

this includes the envelope [93], and also from private communication

with Roseman [86]) to probe the predictions of our theory. Figure

4.38 shows a cross-sectional view through the middle of the density,

displaying the envelope (purple), capsid protein (cream) and DNA

(light blue). The outer shell of DNA clearly occupies the area between

the cyan and green points, although there is a further blob of density

around the origin. Like the density in the centre of Pariacoto Virus in

Figure 4.3, though, this most likely corresponds to noise or disordered

genomic material as it occurs at lower signal strength, but it is still

interesting that the furthest extent of it reaches almost exactly to the
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(a) (b)

(c) (d)

Figure 4.37: The best-fit point array for Hepatitis B (222) against an
AB dimer from (a) the side (b) the top and a CD dimer shown in a
(c) side view and (d) top view.

yellow points.

Figures 4.39 and 4.40 show cryo-EM data for Hepatitis B with first

RNA and and then DNA. The RNA results show a clear shell of RNA

(light blue) within the capsid (cream to burgundy), bounded between

the cyan and light green points, in a manner very similar to that in

Figure 4.38. The DNA results are less good, and are shown at two

different threshold levels: 0.33 on the left and 0.25 on the right. Figure

4.40(a) shows turns of DNA in the expected position between the cyan

and light green points, but nothing else, while Figure 4.40(b) shows

fragmentary information on density just above the orange points and

below the yellow, indicating there may well be more genomic material

here.
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Figure 4.38: A view down the 5-fold axis of Hepatitis B showing
cryo-EM data [93] in comparison with the best-fit point array (222
— coloured by radial level). It displays the envelope (purple), capsid
protein (cream) and DNA (light blue).
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Figure 4.39: A view down the 5-fold axis of Hepatitis B showing
cryo-EM data [86] in comparison with the best-fit point array (222
— coloured by radial level). This is displayed at a level of 4.57 show-
ing a very regular shell of RNA (light blue) between the cyan and light
green points.
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(a)

(b)

Figure 4.40: A view down the 5-fold axis of Hepatitis B showing
cryo-EM data [86] in comparison with the best-fit point array (222
— coloured by radial level). (a) A level of 0.33, showing turns of DNA
(light blue) between the cyan and light green points. (b) A level of
0.25 which brings in a little more of the density, notably close to the
orange and yellow points.
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4.4.2 Tobacco Necrosis Virus

Tobacco Necrosis Virus (TNV) is a T = 3 virus; an early pdb-file

is available from VIPER with PDB-ID 1tnv [3] but this lacks side-

chain information. The pdb-file with PDB-ID 1c8n [76] resolves the

structure to 2.25Å.

Table 2.7 shows that the top 10 point arrays, with one exception,

are pure point array 1 as the exterior composed with some other point

array for the interior. The exception (1083) has point array 55 as the

exterior, and this is twinned with 1 in the sense of Section 2.4.

Note that in Figure 2.7, though, the extent of point array 1 overlaps

with the other point arrays that it is paired with; however, these lie

entirely below the median line for point array 1 which only has 6

definable radii. Thus, with the exception of point arrays 3, 36 and 19,

they do not overlap with the capsid. This is borne out by the “Number

of Hits” column of Table 4.12 which shows 4 points interacting with

the capsid, whereas combination point arrays 3, 20 and 12 show more

than this (6, 6 and 5 points respectively). Point array 3, though, has

a very low prevalence (3) so would be rejected as modelling the capsid

particularly well; however, due to the similarities with the rest of the

ensemble of best-fit point arrays, it is kept in the discussion.

Figure 4.41 shows eight of the best-fit point arrays down a 5-fold

axis, while Figure 4.42 shows point array 1 (i.e. the points in common

across the majority of the best-fit point arrays) down a 5- and 3-fold

axis. All eight are different, giving different minimal radii of points

of interest. There are, however, no areas over-represented if all the
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point arrays are overlaid, over and above what is shown in Figure 4.42

which shows the points in common. It could be the case, then, that

these points in common indicate common structural features of all the

different organisations compatable with the symmetry critera.

Figure 4.43 shows point arrays 1, 3 and 20 superimposed on a

trimer of TNV. As can be seen in images (a) and (b), the points in

common to the best-fit point arrays are in a pentagonal arrangement

around the trimer; the uppermost point (red) delimits the outermost

points of the capsid and the purple ones mark both the more common

outer layer of the capsid as well as the boundaries between trimers.

The additional points of point arrays 3 and 20 include, for both of

these, points marking the lowest radius of the capsid which can most

easily be seen in Figure 4.43 (d) and (f). Point array 3 includes a

point marking the base of the A chain protein (which is probably the

highest place of the interior surface of the capsid), while that included

in 20 only marks the 2-fold axis and point of closest approach between

two trimers on that edge.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 4.41: Tobacco Necrosis Virus viewed down a 5-fold axis with
point array (a) 3 (b) 4 (c) 5 (d) 6 (e) 12 (f) 13 (g) 14 and (h) 20.
Since all of these point arrays are possible combinations having pure
point array 1 as an exterior overlapping with the capsid, each of these
corresponds to a permissible genome organisation.
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(a) (b)

Figure 4.42: The points in common to the best-fit point arrays for
Tobacco Necrosis Virus viewed down (a) a 5-fold and (b) a 3-fold
axis.

(a) (b)

(c) (d)

(e) (f)

Figure 4.43: A trimer of Tobacco Necrosis Virus with point array 1
from (a) the top and (b) the side, point array 3 from (c) the top and
(d) the side, and point array 20 from (e) the top and (f) the side.
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4.4.3 Desmodium Yellow Mottle Tymovirus

Desmodium Yellow Mottle Tymovirus (DYMV) is a T = 3 virus with

180 chemically identical subunits arranged into pentamers and hex-

amers which bulge out around their respective symmetry axes. The

pdb-file is available with PDB-ID 1ddl [56] from VIPER, and was

determined to 2.7Å resolution.

Table 4.13 shows the results of applying the first iteration combi-

nation point arrays. Point arrays 291 and 300 are discarded, due to

their (extremely) low prevalence (1 and 3 out of a possible 101 respec-

tively), leaving 217 as the best-fit point array, albeit by a small margin

(it scores 1.852 with the next-best arrays scoring 1.897). Note that

the exteriors (48 and 15) are complementary in the sense of Table 2.2,

so there is effectively only one point array that matches the protein

coat of DYMV. The first point array with a different exterior is 59,

which achieves a score of 5.438, but only has a prevalence of 2, and so

would be discarded. The next point array that has a different exterior

and an acceptable prevalence is 1014 (50 and 51) which has a score of

9.160 (with a prevalence also of 78).

Figure 4.44 shows the best-fit point array (217) against the virus

viewed down both a 3-fold and a 5-fold axis, showing how it fits the

extent of the capsid; Figure 4.45 shows the same point array against

two trimers (compare with Figure 4.2 which shows a trimer of Pari-

acoto Virus). Figure 4.46(a–d) shows the best-fit point array (217)

matching a pentamer and a hexamer of DYMV individually, while

(e) and (f) show the pentamer and hexamer together. Notably, the
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bulk of the proteins are marked clearly from a top view, and the hex-

amer’s extent is exceptionally well followed, something that no doubt

contributes considerably to the remarkably low RMSD score of 1.246

despite 8 points of the point array matching capsid material.

(a) (b)

Figure 4.44: The crystal structure of Desmodium Yellow Mottle Ty-
movirus with the best-fit point array (217) overlaid, coloured by radius
viewed down (a) a 3-fold axis and (b) a 5-fold axis.

(a) (b)

Figure 4.45: The crystal structure of two trimers of Desmodium Yellow
Mottle Tymovirus with the best-fit point array (217) overlaid, coloured
by radius from (a) the side and (b) the top.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.46: The best-fit point array 217 matching a pentamer of
Desmodium Yellow Mottle Tymovirus viewed from (a) the top and
(b) the side and a hexamer from (c) the top and (d) the side and
matching a neighbouring pentamer and hexamer from (e) the top and
(f) the side.
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4.5 Conclusions

What is clear from these results, and in particular from Section 4.1,

is that the symmetry of viruses is not purely tangential (as opposed

to radial), to use a mathematical phrase. That is, the influence of

symmetry does not only impact the layout of proteins on the surface of

the capsid, but also the thickness of that capsid, and also the potential

layouts of the genomic material within that capsid.

Section 1.4 of the Introduction discussed how efficient viral genomes

are in terms of genetic economy, coding for the correct proteins, fold-

ing efficiently and so on, but there appears to be an even deeper con-

nection than that: the method presented here shows that symmetry

implies a correlation between the shapes and sizes of different viral

components.In particular, given the dimensions of RNA are fixed by

nature, a point array that matches them inside the virus leaves little

room for variation of the capsid structure. There is therefore evidence

of a global viral molecular scaling principle, through which the dimen-

sions of the various viral components are related to one another, and

that of the RNA, as illustrated in Figure 4.47.
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Figure 4.47: The width of RNA dictates the location and scaling of
the remaining points, and hence the dimensions of the capsomeres (in
this case a trimer) making up the capsid.
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Chapter 5

Applications to Fullerenes

Viruses are not the only multishell structures with icosahedral sym-

metry: such structures also occur in chemistry. We probe here if our

mathematical techniques can account for their structures as well.

5.1 Introduction to Fullerenes

In 1980 Iijima reported micrographs of “extremely small particles of

less than 100Å in diameter having graphite-like structure” [34]. These

carbon cage structures were found in vacuum-deposited films of car-

bon, and resembled polyhedra made up of 12 pentagonal and otherwise

hexagonal faces. Kroto et al. confirmed the existence of a structure

with 60 carbon atoms via graphite vaporisation [52]. They proposed

the structure shown in Figure 5.1 and named this molecule “Buckmin-

sterfullerene”, although the alternatives “ballene”, “spherene”, “soc-

cerene” and “carbosoccer” were also mentioned in the literature.
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Figure 5.1: C60 as proposed by Kroto.

The proposed structure was confirmed by Hawkins via X-ray crys-

tallography [30], before Ugarte [110] showed that graphitic networks

can curl up under irradiation by electrons, forming nested shells of

carbon exactly like those seen previously by Iijima. Kroto [51] ex-

plained that while the structures were very similar, their methods of

construction could be quite different.

C60 and related structures were analysed by e.g. Leszczynski and

Yanov [62], who investigated whether atoms similar to carbon could

also form fullerenes. Various properties of carbon fullerenes, such as

their polarisability [55], have been probed. The existence of C80 was

confirmed in 1996 [31], and the possibility of more complicated surfaces

has been raised [101].

Icosahedral fullerenes (classified mathematically by Kustov et al

[54]) occur in two forms: spherical and faceted. The spherical forms

are perhaps more stable than the faceted ones [111, 120], with most

of the curvature being concentrated around the pentagons [72].
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5.2 Point-Arrays as Models of Fullerenes

A check of the exteriors of the existing point arrays shows that none

of them are consistent with the characteristic layout of fullerenes in

terms of hexagonal and pentagonal rings when treating each point

of the array as a carbon atom. Therefore, different arrays must be

calculated. Exactly the same procedure as introduced in Chapter 2

(page 37) is followed, but with a base shape of C60 rather than an

icosahedron, dodecahedron or icosidodecahedron. The vertices used

are given in Tables A.4 and A.5, starting on page 170.

The standard procedure results in 49 point arrays: 21 from a trans-

lation along a 2-fold axis; 16 from a 3-fold axis and 12 from a 5-fold

axis. As an aside, the number of point arrays generated from a base

shape with 60 vertices follows the general trend of increasing num-

ber of point arrays found as the number of vertices in the base shape

increase (with 13, 17 and 25 point arrays resulting from base shapes

with 12, 20 and 30 vertices). The allowed translations are given in

Tables A.9 and A.10, starting on page 174.

5.2.1 The C60 Series

We know, thanks to Ugarte [111], that there is a carbon onion that

is realised as an ensemble of shells composed of C60 inside C240 inside

C540 (Figure 5.2 shows C60 alongside C240 and C540 for comparison).

Therefore, we start by constructing a model of C240 based on C60 as

a base shape. When the exteriors of the point arrays are calculated

with the procedure of Section 2.6 (page 54), there are 13 point arrays

142



whose exteriors have exactly 240 points. Precisely one of these is

consistent with three-connectedness ; that is, each point has precisely

three neighbours at approximately the same distance. There is no

other point array with the three-connectedness property among all 49

point arrays. It is therefore the only candidate to model the geometry

of the C240 molecule. For reference, the translation that provides the

model of C240 is along a 5-fold axis with a multiplier of 3 (see point

array 45 in Table A.10 on page 175).

For computational purposes, we will require the following defini-

tion that allows us to check the three-connectedness property for our

fullerene models.

Definition 1. Two numbers a and b are defined as approximately the

same if

|a− b|
|a|+ |b|

< 0.01

Note that this definition is scale-invariant, symmetric in a and b and

applies equally to vectors.

Figure 5.2 shows how the structure of C240 differs from that of

C60 by an extra hexagon (shown in green) between the two pentagons

(red). This leads to the question as to whether repeating the copy-

and-translate process using C240 as a start configuration leads to a

further shell of this type. If a further iteration step is carried out

(i.e. another translation along a 5-fold axis with a multiplier of 3),

the structure of C540 (shown in Figure 5.2(c)) is obtained. It has one

more extra hexagon between the pentagons as demonstrated in the

figure.
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(a) (b) (c)

Figure 5.2: The carbon cages in a carbon onion: (a) C60, (b)C240 and
(c) C540. Note that all three have pentagons (red) oriented vertex-to-
vertex with no, one and two hexagons (green) between them respec-
tively.

Indeed, this translation can be repeated, producing models for

C960, C1500, C2160 and C2940 as well. This shows that our procedure

simultaneously models different shells of a carbon onion.

5.2.2 The C80 Series

After the confirmation of the existence of C80 by Hennrich [31], Furche

[20] analysed the different forms available for it, concluding that the

icosahedral model was the least stable. As shown in Figure 5.3, the

pentagons of C80 are oriented differently to those in C60: the C60

pentagons are oriented “point-to-point” and those in C80 are “edge-

to-edge”. The affine extensions determined earlier are therefore not

able to describe them. (Note that the 49 point arrays generated from

C60 do not include one that has precisely 80 points in its exterior —

the smallest has 150 points.)

In order to account for this phenomenon, a screw-translation is nec-
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(a) (b) (c)

Figure 5.3: (a) C60 has pentagons that are oriented vertex-to-vertex
whereas (b) C80 and (c) C180 have pentagons that are oriented edge-
to-edge.

(a)

(b)

Figure 5.4: (a) A glide-reflection. The shape is translated and reflected
in the line of translation at each step. (b) A screw-translation of an
icosahedron along a 5-fold axis. As the icosahedron is moved along
the axis of translation it is rotated around that axis.
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essary. This is akin to a glide-reflection in two dimensions (see Figure

5.4). A glide-reflection of a footprint produces a pattern akin to some-

one walking. For each iteration, the repeated motif (the footprint in

this case) is reflected through the line (the direction of walking) and

translated by one stride-length. A screw-translation is a similar con-

cept in three dimensions. That is, when translating the start shape

along an n-fold axis, it is rotated by π/n radians around that transla-

tion direction (the direction of rotation is irrelevant, as the end result

is identical). The criteria for finding a valid translation remain the

same. As before, one of the translated points must lie on one of the

symmetry planes.

This procedure generates what will be referred to as the “twisted

translations”, of which there are 130 (see Tables A.16 to A.20, page

181). Once again, the exteriors have been found and checked for three-

connectedness. Precisely three of the twisted point arrays are three-

connected: numbers 66, 106 and 113, and these have 120, 80 and

120 points, respectively. In particular, the translation constructing

C80 is along a 5-fold axis (by length −1/5 + 2τ/5), meaning that the

pentagons should line up correctly. Indeed, the structure formed is

made up of 12 pentagons and 30 hexagons, each hexagon located on a

2-fold axis (see Figure 5.3(b)). This figure shows that C80 contains an

additional hexagon between the two pentagons of C60. However, the

rotation required to do this precludes the same translation being used

to continue the series. Instead, C80 must be used as a starting point,

and then “straight” (i.e. non-twisted) translations can be generated

using C80 as a start configuration.
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There are 76 standard translations of C80, of which two are three-

connected: numbers 64 (along a 5-fold by length 7/5 + τ/5) and 69

(along a 5-fold by length 12/5+τ/5). They have 180 and 240 points in

their exteriors, respectively. The former corresponds to the expected

layout of pentagons and hexagons, as depicted in Figure 5.3(c), and,

in particular, has two hexagons separating the adjacent pentagons as

illustrated in the figure. This translation can be iterated to produce

layouts for larger fullerenes, starting with C320 and C500.
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5.2.3 Other Possibilities

Looking at the other three-connected point array exteriors generated,

there are still three to consider; two with 120 points, and one with 240

points, shown in Figure 5.5.

The first alternative structure for C120 (as in Figure 5.5(a)) is not

very likely to be realised experimentally as the angles required for

carbon to create the triangles in that structure are rather acute (and

cyclopropane is rather reactive [1]). The second structure (shown in

Figure 5.5(b)), is somewhat more feasible, although it does include

squares, which may also be rather reactive. It is the only proposed

structure for C120 to date that is not the “dumbbell” shape of two C60

molecules bonded by a shared face [50] in Figure 5.6.

Finally, we revisit all point arrays, twisted and non-twisted with

the test for three-connectedness. This reveals more structures that

could potentially be realised as fullerenes: arrays 22 and 26 of the

basic 55 point arrays (see Table A.7) give a structure1 for C200 (see

Figure 5.7). Generating twisted arrays with the “standard” choice

of base shapes (namely, the icosahedron, the dodecahedron and the

icosidodecahedron) gives one more array (33 — twist translating a

dodecahedron along a 2-fold axis by −4 + 3τ) that corresponds to the

buckyball structure, C60. This exhausts all possibilities obtainable

with our formalism.

1Just one structure: those two point arrays are identical, even if generated in
different ways.
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(a) (b) (c)

Figure 5.5: (a) C120 displaying triangles, pentagons and irregu-
lar octagons; (b) C120 as a truncated icosidodecahedron, displaying
squares, hexagons and decagons; (c) C240 displaying squares, pen-
tagons, hexagons and irregular nonagons.

Figure 5.6: C120 as a C60 dimer as found by X-ray crystallography
[50].

Figure 5.7: A model for a carbon cage structure formed from 200
atoms displaying pentagons, deformed hexagons and decagons.
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5.3 Summary

Kustov et al. [54] show that from a group theoretical point of view,

Cn with n = 60z and n = 60z + 20, for z ∈ N, are “allowable”

fullerene structures. Our method has resulted in models for a number

of these fullerenes, including two infinite series, and potential alterna-

tive structures for C120 and C240. The structures found, and how they

are related via translations and twist-translations, are shown in dia-

grammatic form (using dot [21]) in Figure 5.8. The links are labelled

by the numbers of the translations used to map the corresponding

structural blueprints onto each other (the numbers relate to the ta-

bles in Appendix A), and a prefix of T refers to a twisted translation.

It is true, though, that, with the exception of those structures

shown in Figures 5.5 and 5.7, the structures proposed fit directly into

a triangulation scheme differing from that of Caspar and Klug by only

the exact locations of the entities involved (carbon atoms as opposed

to proteins). It is still interesting to note that a triangulation the-

ory (namely quasi-equivalence) and this affine extension theory agree

completely in this case, showing one as an extension of the other.
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Figure 5.8: A graph displaying the potential fullerene structures cre-
ated and how they relate via translations and twisted translations.
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Chapter 6

Conclusions

In this chapter, the conclusions that can be drawn from the results in

the previous chapters are analysed, with particular attention to the

results from Chapter 4.

6.1 Predictive Capabilities

The three aspects of the algorithm’s predictive capabilities discussed

here are the predictions on genomic layouts, the possibilities of mul-

tiple genomic layouts for certain viruses (referred to as polymorphic

interiors) and providing information for the study of viral transitions.

6.1.1 Predicting Genomic Layout

What would seem to be the outstanding result of this new approach

is the correlation between the structure of the protein capsid and the

structure of the genomic material (RNA in most of the examples) pack-

aged within that capsid. Previous approaches to viral layout ([9, 107])

152



have concentrated on the capsid, for which structural data is available

at higher resolutions than for genome organisation.This 3D approach,

though, links the structure of the capsid with the organisation of the

genomic material while providing information on the capsid thickness

at various locations.

This correspondence between capsid and genome organisation is

particularly noticeable in Sections 4.1.1 (Pariacoto Virus), 4.1.2 (Bac-

teriophage MS2) and 4.4.1 (Hepatitis B). The Pariacoto Virus result

is particularly stunning as not only do the extra internal points match

remarkably well to the cryo-EM data (note that every internal point

of the array matches to some feature of the cryo-EM map), but there

is also modelled X-ray crystallography data for the RNA, and a subset

of the internal points are extremely close to the molecular surface of

this (recall that the X-ray data of the RNA was not made available

to the algorithm). The results for Bacteriophage MS2 and Hepatitis

B display a remarkable match to the relevant cryo-EM data, and in

several cases, every single internal point matches to some cryo-EM

feature. It is worth pointing out that while Bacteriophage MS2 and

Pariacoto Virus are both T = 3 viruses, Hepatitis B is a T = 4 virus.

Next, Tomato Bushy Stunt Virus (TBSV - Section 4.1.4) displays

extra information about the tertiary genomic structure under neutron

scattering (see Figure 4.22), and the point arrays that were chosen

by the best-fit algorithm to match to the capsid are all in agreement

with this further information (see Figures 4.23 and 4.24). Again, every

point in the array (indeed, in each of the 4 best-fitting point arrays)

corresponds to material boundaries in the structural information from
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the neutron-scattering data.

TBSV exhibits a two-domain [84] protein structure, where the pro-

teins making up the capsid fold into two distinct domains. This is not

explicitly delineated by the point arrays, as they do not contain such

information, but Figures 4.20 and 4.21, particularly the bottom rows

of the combined point arrays, do give some indication that this struc-

ture is reflected in the point array.

Finally, STMV does not seem to exhibit an RNA cage, but the

pdb-file does include RNA fragments where it attaches to the capsid.

These fragments are bracketed by the best-fit point array, and even

such a small virus can be modelled in this framework. Larger viruses

exhibit a number of issues that are discussed later in Section 6.3.4.

There are, however, flaws in the theory. As Section 4.1.1 discusses,

while the match to the modelled genomic material looks impressive,

it is not the best match of all the point arrays, nor even only those

that matched to the capsid proteins. Indeed, of the 196 point arrays

matching to the capsid, 563 is 19th by way of scoring to the genome.

There is not even, unfortunately, any significant correlation (linear or

nonlinear) between the capsid and genome scores as could be hoped

were there to be a direct causal link between the two (this does not,

though, rule out such a link). Furthermore, of the 117 point arrays

that match reasonably to the genome (that is, both have points near

the genomic material but not within an atom), the mean score is 1.144

with standard deviation 0.455, meaning the score for array 563 is 1.600

standard deviations below the mean and that 5.48% of scores are at

least this good, assuming a normal distribution of scores. However,
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of the 18 better-fitting point arrays, 15 of them would fail a stability

test such as the “Prevalence” statistic — assuming that points that

deep into the capsid move significantly as the target point moves — as

illustrated in Figure 4.8. There is certainly a prospect for a different

measure of stability, and perhaps a different best-fit algorithm would

produce a more clear-cut result.

6.1.2 Polymorphic Interiors

Most icosahedrally–symmetric viruses do not have modelled genomic

material in their pdb-files, suggesting that X-ray crystallography does

not provide sufficient resolution to reliably locate the genome. Cryo-

EM data often demonstrate the presence of such genomic material,

albeit to a lower resolution than the more icosahedrally regular capsid

proteins, but occasionally there is very little information near the cen-

tre of the capsid. Two possibilities for this effect are firstly that the

genome may not be organised in a symmetric manner (or with much

organisation at all), and secondly that there are multiple different ar-

rangements of the genomic material that each look different under

icosahedral symmetry and so the averaging process “washes out” the

information. In some cases, extra information can be found by not

averaging so much: [105] applied only 5-fold averaging to investigate

how the genomic material of Bacteriophage MS2 lies when the virus

is bound to its receptor.

The ability of our approach to explain the second phenomenon

is discussed in Section 2.4, Figure 2.7 in particular suggesting that

for certain external point arrays, a number of different internal ones
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are equally possible, implying that the structural constraints permit

a number of different genome organisations for these viruses. Sections

4.4.2 and 4.4.3 show this principle in action: for Tobacco Necrosis

Virus, all of the 10 best-scoring point arrays share the same exte-

rior (point array 1), despite the first 4 scoring (very slightly) better

than the remainders (13.46 to 13.83) and are all scaled to the same ra-

dius (160Å), despite having different interior point arrays; Desmodium

Yellow Mottle Tymovirus demonstrates similar behaviour (see Section

4.1.3) – note that point arrays 15 and 48 have identical exteriors in the

sense of Table 2.2 – despite the different prevalences and even scalings

of the ten best-fit point arrays.

Also, despite Bacteriophage GA (Section 4.1.3) having a distinct

best-fit point array (152, which is composed of 7 and 8 and is the same

as the best-fit point array for Bacteriophage MS2 (Section 4.1.2)) with

a score of 4.76, it has an ensemble of follow-up point arrays with scores

of 5.49, each with exterior point array 42 (having a notably high radius

as shown in Figure 2.7). This could suggest that the virus prefers

one particular arrangement of genomic material, but several other

organisations are possible and occur with similar probabilities (albeit

lower than that for the arrangement corresponding to point array 152).

This could be tested in principle with cryo-EM tomography when that

field advances to achieve sufficiently high resolutions.

Finally, Hepatitis B (Section 4.4.1) is a somewhat special case,

having a (relatively) ordered genome at two points in the maturation

process and matching only one point array well. On the face of it,

this would appear to be a further flaw with the theory. However,
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the best-fit point array matches both of the tested genome structures

well, albeit matching the RNA shell better; this is no doubt partially

due to the fact that the RNA cage appears to be more ordered and

hence more visible. Furthermore, while the outermost of the predictive

points mark the turns of DNA visible in Figure 4.40(a), when more

density is brought in, the first patches fit exactly with each of the

other predictive points as shown in Figure 4.40(b).

This indicates the algorithm demonstrating that it takes into ac-

count (or at least, does not contradict) the known ability of a virus to

have a genome capable of folding in multiple ways (in this case, as it

transitions between RNA and DNA) despite one and only one point

array being picked out as the best-fitting. This adds weight to the

supposition that not all sparsely populated cryo-EM models are due

to disorganised genomic material, but could well be because of (po-

tentially more radically) different tertiary structures of the genome.

6.1.3 Swelling Transformations

Some viruses undergo various structural transformations during their

life cycle, for example as part of a maturation process, such as in

the case of Hong Kong 97 [60]. Here, Cowpea Chlorotic Mottle Virus

(CCMV) was investigated in Section 4.2 by subjecting both the begin-

ning state (Section 4.2.1) and the proposed end state (Section 4.2.2)

to the algorithm described in Chapter 3. The results of the algorithm

on the initial state (Figures 4.27 and 4.28) and the final state (Figures

4.30 and 4.31) (this author’s contribution) have formed the basis for

an analysis of the likely transitions [35].
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6.2 Comparison with Random Points

With each point array matching to a feature on the exterior of the

viral capsid it is feasible to calculate the probability of a match of

a given accuracy to a marked point that a random point distributed

over a sphere of a given radius might achieve. That is, if we imagine

the exterior of the virus as a sphere and pin targets on it with a

radius equal to the amount the best-fit point array was away from the

target point of the algorithm (that is, S1 from equation (3.3)), we can

calculate the probability one of a number of darts thrown at random

hits one of those targets; that is, how likely it is to get a result at least

as good as the one found by the best-fit algorithm. The ratio of the

sum of the areas of these targets and the area of the encasing sphere

gives the probability each dart hits, x, but what is required is the

probability that at least one dart hits out of several. The probability

all the darts miss is (1 − x)n where n darts are thrown, and so the

probability at least one hits is 1− (1− x)n. Each of the t targets has

an area of πe2 where e is the radius of the target, and the large sphere

has an area of 4πr2 where its radius is r. This is illustrated in Figure

6.1. We then have x = te2/4r2.

The formula for the probability of a random point achieving a

result at least as close to an outermost feature as the best-fit algorithm

is then

P = 1−
(

1− te2

4r2

)n
(6.1)

where r is the radius of the tower midpoint (taken from the “Combo
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Figure 6.1: One of the t targets of radius e for a random point array
compared with the sphere of radius r encasing the virus undergoing
analysis.

Radius” columns from results tables in Chapter 4), e is the error “de-

sired” (the “Dist. to Tower” columns from Chapter 4 — S1 from

equation (3.3)), n is the number of distinct outsides (fixed for here at

29 from Section 2.4) and t is the number of tower points available as

targets, which has to be considered on a virus-to-virus basis. Much of

the time, there are as many distinct outermost features as there are

proteins, but notable exceptions are Pariacoto Virus (where there is

one tower for each trimer — recall Figure 4.2) and Hepatitis B, where

each dimer forms a distinct tower (most obvious in Figure 4.36).

A very large caveat applies, though: this is purely measuring the

outermost points; it is not a probability of finding a point array to

match the entire virus at least as well as the best-fit.

Table 6.1 summarises the results of this applied to the 11 viruses

studied here. The 99.9% chance of a match as good or better to the

outermost features of TBSV is, however, not as bad as it appears.
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Virus Error (S1) Radius Probability
Bacteriophage GA 4.236 149.068 65.8%
Bacteriophage MS2 5.826 148.797 87.4%
CCMV 6.972 136.262 97.4%
CCMV (Swollen) 3.925 162.577 53.7%
DYMV 1.370 147.982 10.6%
Hepatitis B 1.619 178.03 7.0%
Pariacoto 0.892 173.894 1.1%
Simian 40 2.390 243.956 22.2%
STMV 2.781 93.065 32.4%
TBSV 5.922 174.139 53.4%
TNV 12.638 160.326 99.9%

Table 6.1: The 11 viruses studied, and the probability of matching
their outermost features by chance.

There are two components to an overall score, S, being S1 and S2

(the match to outermost features analysed here and the RMSD to

protein surfaces), and one of these being high can be, in some degree,

compensated for by a low score in the other. For TNV, the high score

S1 (12.64) is compensated for by the (comparatively low for that virus)

S2 score of 4.63 — the shortest distance to a target point for TNV is

7.5Å, but the associated RMSD score is 17.73!

On the other hand, the fact that the chance of getting a hit to

the towers of Pariacoto Virus as good as the best-fit point array is as

low as 1.1% is even more impressive given that this does not take into

account any of the further remarkable matches with the capsid.
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6.3 Assessment of the Method

In discussions about the method explained here, a few potential crit-

icisms have surfaced, most of which have been underpinned by mis-

understandings about the library. This section aims to enlighten the

reader as to some of these potential pitfalls.

6.3.1 Icosahedral Symmetry can Manifest in Many

Ways

The point arrays are based on icosahedral symmetry, as are viruses

(which is why they match). The affine extension generating the point

arrays also relies on the symmetry axes of the icosahedron, and so it

has been posited that the algorithm is bound to succeed as it matches

an icosahedral object to another icosahedral object.

Icosahedral symmetry can be instantiated in many ways (Chapters

2 and 5 contain a plethora of examples) and the results examined here

demonstrate that viruses do not follow just icosahedral symmetry, but

one of a finite set of restricted instantiations of icosahedral symmetry

at different radial levels. Thus, while it is not surprising to see icosahe-

dral symmetry at various radial levels, the way it is organised (e.g. as

an icosahedron, dodecahedron, icosidodecahedron or something with

more vertices, such as C60) and the exact nature of the radial levels in

the multishell structure are non-trivial predictions of the theory.
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6.3.2 The Point-Arrays Fill Space

Another criticism has been that given there are so many point arrays,

it is trivial to pick and choose certain points so that they fit any icosa-

hedral object. As it happens, if all the “pure” point arrays (the basic

55) are scaled to the same exterior radius, there are indeed some in-

ternal points close to any particular radius chosen (however, choosing

the radius is not the same as choosing the position, as the location

on that sphere is not changeable). However, one can not simply pick

and choose subsets of those points freely — they come in packages

(55, naturally) and each package must be taken as a whole, or not at

all. As explained previously, in particular for Pariacoto Virus, once

the gauge point has been picked and scaled correctly, the rest of the

point array follows automatically, with a little lee-way to pick the in-

terior of the combination point array, but again, these points come as

a “package deal”.

6.3.3 Other Matching Algorithms

This algorithm is not the only possible way of fitting the point arrays

to viruses; for example, the same “matching to gauge points” method

could be used to select the exterior point array, and then the best

fitting of the internal point arrays could be chosen, with a different

consideration for stability. This may work well for viruses with par-

ticularly solid and prominent outermost features such as Pariacoto,

but perhaps less so for viruses such as Tobacco Necrosis or Dengue

[53]. Again, though, it is impossible to prove that any one algorithm
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is the best (or what “best” means in this setting) and what is pre-

sented here is merely one possible fitting algorithm, among other as

yet untried algorithms, that produces results that clearly demonstrate

the existence of a more general symmetry to viruses than previously

thought.

6.3.4 Larger Viruses

The viruses studied here have been mostly T = 3 viruses, with one

smaller and two larger, albeit only T = 4 and T = 7. Many larger

viruses have been studied so as to produce a pdb-file, such as the

T = 13 Bluetongue virus [29] with an outer radius of 353Å or the very

large pT = 169 PBCV-1 virus [74] with an outer radius of 929Å, but

are not studied here. The primary reason for this is computing power

— the memory requirements increase as the square of the radius —

although the definition of the “outside” of a virus used here becomes

less useful at this radius, as the viruses under consideration become

more icosahedron-like and less round. However, the higher iteration

point arrays also become more faceted, so there is hope there. Lastly,

the work on clustering outermost features needs to be updated, as

for the smaller viruses the algorithm works well on small areas of

protein; with the larger viruses, the outermost features consist of entire

proteins, so the current method offers a number of target points for

each protein.
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6.4 Further Work

There is more work that can be done on the algorithm. As mentioned

in Section 6.3.4, the algorithm can be applied to larger viruses (with

appropriate computing power) and the necessary tweaks worked out

and applied — it is the hope of the author that there could be a scale-

invariant algorithm applicable to any (within reason) size of virus,

smoothly transitioning from smaller, rounder, T = 1, 3 or 4 viruses to

larger, more faceted, ones.

Once a truly universal algorithm is worked out, this work could

form the basis of a new classification system for viruses, if, say, the

algorithm were applied to any appropriate deposition at the Protein

DataBank or anything mirrored on VIPER. Given that the algorithm

does not detect quasi-equivalence or the lack thereof, though, T num-

ber is still useful (as would be a viral tiling, if appropriate).

However, as discussed briefly in Section 6.1.1, there is room for a

stability analysis that is not just the Prevalence statistic; the aborted

approach with MSMS [123] is unlikely to apply, as it is unsuitable for

anything not molecular in size. There is the option for using the B fac-

tors in the PDB files, if present, to apply Gaussian noise to the atomic

coordinates, or perhaps the approach could be to calculate what pro-

portion of space near each point is occupied by atoms, although this

is difficult to find analytically.

Lastly, one of the predictions of further RNA within Pariacoto

virus (Section 4.1.1) was based on the distance between two adjacent

points being exactly that of a turn of ssRNA. It is certainly feasible (on
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the lower iteration point arrays at least; higher iterations may require

more computing power) that once an array has been fitted to a virus,

the distances between adjacent pairs of points can be calculated and

any that match neatly to an integer multiple of turns of RNA or DNA

could be identified to the user for further investigation. This approach

would aid greatly in the predictive power of the algorithm and entire

paradigm.
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6.5 Uniting Viruses and Fullerenes

This thesis has presented a unified framework for generating geometric

representatives of affine-extended icosahedral symmetry and a best-fit

algorithm to apply these concepts to icosahedral structures in virol-

ogy and carbon chemistry. It has shown how the same mathematical

principles apply to fullerenes and simultaneously underlie the struc-

ture and size of multiple viral components, in a prescriptive rather

than descriptive way, where previous theories of viruses have only ap-

plied in a surface manner to the capsid. Moreover, this approach,

using only icosahedral symmetry, is blind to whether the virus under

consideration follows basic quasi-equivalence theory (that is, using a

triangulation of the icosahedron’s surface), or the extension of viral

tiling theory (using other shapes of tiles). It also proffers a potential

explanation as to why some viral particles reveal little to nothing of

their interiors under (for example) cryo-EM, over and above positing

a randomly organised genome. It is the hope of the author that this

new understanding of the deeper symmetry of viruses can be used in

biological and medical research to help inspire new targeted methods

of preventing harmful viruses.
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Appendix A

Point Arrays

This Appendix contains supplementary information about the specifics

of the point-arrays and their construction. Firstly there are the ta-

bles giving the coordinates of the three basic shapes — icosahedron,

dodecahedron and icosidodecahedron — and also C60; these are the

start configurations as in [35] and all translation lengths given are indi-

cated with respect to these. Then there are tables giving the labels of

each start configuration, translation direction and amount for each of

those three start configurations, followed by tables giving information

about the standard point-arrays of C60. Finally, there are tables for

each twisted point-array with the four possible start configurations.
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x y z
coordinate coordinate coordinate
1 0 τ
−1 0 τ
1 0 −τ
−1 0 −τ
0 τ 1
0 −τ 1
0 τ −1
0 −τ −1
τ 1 0
−τ 1 0
τ −1 0
−τ −1 0

Table A.1: The vertices of the icosahedron.

x y z
coordinate coordinate coordinate
1 1 1
−1 1 1
1 −1 1
−1 −1 1
1 1 −1
−1 1 −1
1 −1 −1
−1 −1 −1
0 1− τ τ
0 −1 + τ τ
0 1− τ −τ
0 −1 + τ −τ
1− τ τ 0
−1 + τ τ 0
1− τ −τ 0
−1 + τ −τ 0
τ 0 1− τ
−τ 0 1− τ
τ 0 −1 + τ
−τ 0 −1 + τ

Table A.2: The vertices of the dodecahedron.
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x y z
coordinate coordinate coordinate
τ 0 0
−τ 0 0
0 τ 0
0 −τ 0
0 0 τ
0 0 −τ
1/2 τ/2 1/2 + τ/2
−1/2 τ/2 1/2 + τ/2
1/2 −τ/2 1/2 + τ/2
−1/2 −τ/2 1/2 + τ/2
1/2 τ/2 −1/2− τ/2
−1/2 τ/2 −1/2− τ/2
1/2 −τ/2 −1/2− τ/2
−1/2 −τ/2 −1/2− τ/2
τ/2 1/2 + τ/2 1/2
−τ/2 1/2 + τ/2 1/2
τ/2 −1/2− τ/2 1/2
−τ/2 −1/2− τ/2 1/2
τ/2 1/2 + τ/2 −1/2
−τ/2 1/2 + τ/2 −1/2
τ/2 −1/2− τ/2 −1/2
−τ/2 −1/2− τ/2 −1/2
1/2 + τ/2 1/2 τ/2
−1/2− τ/2 1/2 τ/2
1/2 + τ/2 −1/2 τ/2
−1/2− τ/2 −1/2 τ/2
1/2 + τ/2 1/2 −τ/2
−1/2− τ/2 1/2 −τ/2
1/2 + τ/2 −1/2 −τ/2
−1/2− τ/2 −1/2 −τ/2

Table A.3: The vertices of the icosidodecahedron.
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x y z
coordinate coordinate coordinate
1 0 3τ
−1 0 3τ
1 0 −3τ
−1 0 −3τ
0 3τ 1
0 −3τ 1
0 3τ −1
0 −3τ −1
3τ 1 0
−3τ 1 0
3τ −1 0
−3τ −1 0
2 τ 1 + 2τ
−2 τ 1 + 2τ
2 −τ 1 + 2τ
−2 −τ 1 + 2τ
2 τ −1− 2τ
−2 τ −1− 2τ
2 −τ −1− 2τ
−2 −τ −1− 2τ
τ 1 + 2τ 2
−τ 1 + 2τ 2
τ −1− 2τ 2
−τ −1− 2τ 2
τ 1 + 2τ −2
−τ 1 + 2τ −2
τ −1− 2τ −2
−τ −1− 2τ −2
1 + 2τ 2 τ
−1− 2τ 2 τ

Table A.4: The vertices of C60 (A).
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x y z
coordinate coordinate coordinate
1 + 2τ −2 τ
−1− 2τ −2 τ
1 + 2τ 2 −τ
−1− 2τ 2 −τ
1 + 2τ −2 −τ
−1− 2τ −2 −τ
1 2τ 2 + τ
−1 2τ 2 + τ
1 −2τ 2 + τ
−1 −2τ 2 + τ
1 2τ −2− τ
−1 2τ −2− τ
1 −2τ −2− τ
−1 −2τ −2− τ
2τ 2 + τ 1
−2τ 2 + τ 1
2τ −2− τ 1
−2τ −2− τ 1
2τ 2 + τ −1
−2τ 2 + τ −1
2τ −2− τ −1
−2τ −2− τ −1
2 + τ 1 2τ
−2− τ 1 2τ
2 + τ −1 2τ
−2− τ −1 2τ
2 + τ 1 −2τ
−2− τ 1 −2τ
2 + τ −1 −2τ
−2− τ −1 −2τ

Table A.5: The vertices of C60 (B).
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Translation Translation
Number Start Direction Amount
1 Icos IDD −1 + τ
2 Icos IDD 4− 2τ
3 Icos IDD 1
4 Icos IDD −2 + 2τ
5 Icos IDD 2
6 Icos IDD 2τ
7 Icos Dodec −1 + τ
8 Icos Dodec 1
9 Icos Dodec τ
10 Icos Dodec 1 + τ
11 Icos Icos −1 + τ
12 Icos Icos 1
13 Icos Icos τ

Table A.6: The point-arrays with an icosahedral start.

Translation Translation
Number Start Direction Amount
14 Dodec IDD 2− τ
15* Dodec IDD −6 + 4τ
16* Dodec IDD −1 + τ
17 Dodec IDD 4− 2τ
18 Dodec IDD 1
19 Dodec IDD −2 + 2τ
20 Dodec IDD 2
21* Dodec IDD 2τ
22* Dodec Dodec 2− τ
23 Dodec Dodec −1 + τ
24 Dodec Dodec 1
25 Dodec Dodec τ
26** Dodec Dodec 1 + τ
27 Dodec Icos 2− τ
28 Dodec Icos −1 + τ
29 Dodec Icos 1
30 Dodec Icos τ

Table A.7: The point-arrays with a dodecahedral start.
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Translation Translation
Number Start Direction Amount
31* IDD IDD −1/2 + τ/2
32 IDD IDD 2− τ
33* IDD IDD 1/2
34 IDD IDD −1 + τ
35* IDD IDD τ/2
36 IDD IDD 1
37* IDD IDD −2 + 2τ
38 IDD IDD τ
39* IDD IDD 2
40 IDD IDD 1 + τ
41* IDD IDD 2τ
42* IDD Dodec −1/2 + τ/2
43 IDD Dodec 1/2
44 IDD Dodec τ/2
45 IDD Dodec 1
46 IDD Dodec 1/2 + τ/2
47* IDD Dodec τ
48* IDD Dodec 1/2 + τ
49 IDD Dodec 1 + τ
50 IDD Icos −1/2 + τ/2
51 IDD Icos 1/2
52 IDD Icos τ/2
53 IDD Icos 1
54 IDD Icos 1/2 + τ/2
55 IDD Icos τ

Table A.8: The point-arrays with an icosidodecahedral start.
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Translation Translation
Number Start Direction Amount
1 C60 IDD −1 + τ
2 C60 IDD 4− 2τ
3 C60 IDD 1
4 C60 IDD −2 + 2τ
5 C60 IDD 8− 4τ
6 C60 IDD 2
7 C60 IDD −1 + 2τ
8 C60 IDD −4 + 4τ
9 C60 IDD 1 + τ
10 C60 IDD 6− 2τ
11 C60 IDD 3
12 C60 IDD 2τ
13 C60 IDD −6 + 6τ
14 C60 IDD 4
15 C60 IDD −2 + 4τ
16 C60 IDD 2 + 2τ
17 C60 IDD 6
18 C60 IDD 4τ
19 C60 IDD 4 + 2τ
20 C60 IDD 2 + 4τ
21 C60 IDD 6τ

Table A.9: The point-arrays with a start of C60 translated along 2-fold
axes.
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Translation Translation
Number Start Direction Amount
22 C60 Dodec −1 + τ
23 C60 Dodec 1
24 C60 Dodec −2 + 2τ
25 C60 Dodec τ
26 C60 Dodec 2
27 C60 Dodec −1 + 2τ
28 C60 Dodec 1 + τ
29 C60 Dodec 3
30 C60 Dodec 2τ
31 C60 Dodec 2 + τ
32 C60 Dodec 1 + 2τ
33 C60 Dodec 3τ
34 C60 Dodec 2 + 2τ
35 C60 Dodec 1 + 3τ
36 C60 Dodec 2 + 3τ
37 C60 Dodec 3 + 3τ
38 C60 Icos −1 + τ
39 C60 Icos 1
40 C60 Icos −2 + 2τ
41 C60 Icos τ
42 C60 Icos 2
43 C60 Icos −1 + 2τ
44 C60 Icos 1 + τ
45 C60 Icos 3
46 C60 Icos 2τ
47 C60 Icos 2 + τ
48 C60 Icos 1 + 2τ
49 C60 Icos 3τ

Table A.10: The point-arrays with a start of C60 translated along 3-
and 5-fold axes.
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Translation Translation
Number Start Direction Amount
1 Icos IDD −3 + 2τ
2 Icos IDD 2− τ
3 Icos IDD −1 + τ
4 Icos IDD −4 + 3τ
5 Icos IDD 1
6 Icos IDD 3− τ
7 Icos IDD τ
8 Icos IDD −1 + 2τ
9 Icos IDD 1 + τ
10 Icos IDD 2 + τ
11 Icos Dodec 2/3− τ/3
12 Icos Dodec −1/3 + τ/3
13 Icos Dodec −2/3 + 2τ/3
14 Icos Dodec −1/3 + 2τ/3
15 Icos Dodec 1/3 + τ/3
16 Icos Dodec 5/3− τ/3
17 Icos Dodec 2/3 + τ/3
18 Icos Dodec 1/3 + 2τ/3
19 Icos Dodec 2/3 + 2τ/3
20 Icos Dodec 1/3 + 5τ/3
21 Icos Icos 7/5− 4τ/5
22 Icos Icos 3/5− τ/5
23 Icos Icos 2/5 + τ/5
24 Icos Icos −2/5 + 4τ/5
25 Icos Icos 1
26 Icos Icos 3/5 + 4τ/5

Table A.11: The twisted point-arrays with an icosahedral start.
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Translation Translation
Number Start Direction Amount
27 Dodec IDD 5− 3τ
28 Dodec IDD −3 + 2τ
29 Dodec IDD 2− τ
30 Dodec IDD −6 + 4τ
31 Dodec IDD −1 + τ
32 Dodec IDD 4− 2τ
33 Dodec IDD −4 + 3τ
34 Dodec IDD 1
35 Dodec IDD 6− 3τ
36 Dodec IDD −2 + 2τ
37 Dodec IDD 3− τ
38 Dodec IDD τ
39 Dodec IDD −3 + 3τ
40 Dodec IDD 2
41 Dodec IDD −1 + 2τ
42 Dodec IDD 1 + τ
43 Dodec IDD 3
44 Dodec IDD 2τ

Table A.12: The twisted point-arrays with a dodecahedral start trans-
lated along a 2-fold axis.
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Translation Translation
Number Start Direction Amount
45 Dodec Dodec 5/3− τ
46 Dodec Dodec 2/3− τ/3
47 Dodec Dodec −4/3 + τ
48 Dodec Dodec 1/3
49 Dodec Dodec −5/3 + 4τ/3
50 Dodec Dodec 2/3
51 Dodec Dodec 1/3 + τ/3
52 Dodec Dodec −2/3 + τ
53 Dodec Dodec 1
54 Dodec Dodec −1/3 + τ
55 Dodec Dodec −2/3 + 4τ/3
56 Dodec Dodec 5/3
57 Dodec Dodec 1/3 + τ
58 Dodec Dodec 2/3 + τ
59 Dodec Dodec 1/3 + 4τ/3
60 Dodec Icos −4/5 + 3τ/5
61 Dodec Icos 3/5− τ/5
62 Dodec Icos −8/5 + 6τ/5
63 Dodec Icos −1/5 + 2τ/5
64 Dodec Icos 2/5 + τ/5
65 Dodec Icos 9/5− 3τ/5
66 Dodec Icos −6/5 + 7τ/5
67 Dodec Icos 8/5− τ/5
68 Dodec Icos −3/5 + 6τ/5
69 Dodec Icos 4/5 + 2τ/5

Table A.13: The twisted point-arrays with a dodecahedral start trans-
lated along 3- and 5-fold axes.
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Translation Translation
Number Start Direction Amount
70 IDD IDD −3/2 + τ
71 IDD IDD 1− τ/2
72 IDD IDD −1/2 + τ/2
73 IDD IDD 2− τ
74 IDD IDD −2 + 3τ/2
75 IDD IDD 1/2
76 IDD IDD −1 + τ
77 IDD IDD 3/2− τ/2
78 IDD IDD τ/2
79 IDD IDD 5/2− τ
80 IDD IDD −3/2 + 3τ/2
81 IDD IDD 1
82 IDD IDD −1/2 + τ
83 IDD IDD 2− τ/2
84 IDD IDD 1/2 + τ/2
85 IDD IDD −1 + 3τ/2
86 IDD IDD 3/2
87 IDD IDD τ
88 IDD IDD 1 + τ/2
89 IDD IDD −1/2 + 3τ/2
90 IDD IDD 1/2 + τ
91 IDD IDD 3/2 + τ/2
92 IDD IDD 3τ/2
93 IDD IDD 1 + τ
94 IDD IDD 1/2 + 3τ/2
95 IDD IDD 3/2 + τ

Table A.14: The twisted point-arrays with an icosidodecahedral start
translated along a 2-fold axis.
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Translation Translation
Number Start Direction Amount
96 IDD Dodec 1/6
97 IDD Dodec 1/2− τ/6
98 IDD Dodec τ/6
99 IDD Dodec −1/2 + τ/2
100 IDD Dodec 1/6 + τ/6
101 IDD Dodec 1/2
102 IDD Dodec τ/3
103 IDD Dodec −1/2 + 2τ/3
104 IDD Dodec −1/6 + τ/2
105 IDD Dodec 2/3
106 IDD Dodec −1/3 + 2τ/3
107 IDD Dodec 1/2 + τ/6
108 IDD Dodec τ/2
109 IDD Dodec 2/3 + τ/6
110 IDD Dodec 1/2 + τ/3
111 IDD Dodec 2τ/3
112 IDD Dodec 1/6 + 2τ/3
113 IDD Dodec 1/2 + τ/2
114 IDD Dodec 2/3 + τ/2
115 IDD Dodec 1/2 + 2τ/3
116 IDD Dodec 2/3 + 2τ/3
117 IDD Dodec 1/3 + τ
118 IDD Dodec 1/2 + τ
119 IDD Dodec 1/2 + 7τ/6
120 IDD Icos −2/5 + 3τ/10
121 IDD Icos 3/10− τ/10
122 IDD Icos −1/2 + τ/2
123 IDD Icos −1/5 + 2τ/5
124 IDD Icos 1/2
125 IDD Icos 1/10 + 3τ/10
126 IDD Icos 4/5− τ/10
127 IDD Icos 2/5 + τ/5
128 IDD Icos τ/2
129 IDD Icos −2/5 + 4τ/5
130 IDD Icos 3/10 + 2τ/5
131 IDD Icos 1/2 + τ/2
132 IDD Icos 1/10 + 4τ/5
133 IDD Icos 4/5 + 2τ/5

Table A.15: The twisted point-arrays with an icosidodecahedral start
translated along 3- and 5-fold axes.
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Translation Translation
Number Start Direction Amount
1 C60 IDD 5− 3τ
2 C60 IDD −3 + 2τ
3 C60 IDD 2− τ
4 C60 IDD 7− 4τ
5 C60 IDD −1 + τ
6 C60 IDD −4 + 3τ
7 C60 IDD 1
8 C60 IDD −7 + 5τ
9 C60 IDD −2 + 2τ
10 C60 IDD 3− τ
11 C60 IDD −5 + 4τ
12 C60 IDD τ
13 C60 IDD 5− 2τ
14 C60 IDD −3 + 3τ
15 C60 IDD 2
16 C60 IDD −6 + 5τ
17 C60 IDD 7− 3τ
18 C60 IDD −1 + 2τ
19 C60 IDD 4− τ
20 C60 IDD 1 + τ
21 C60 IDD −7 + 6τ
22 C60 IDD −2 + 3τ
23 C60 IDD 3
24 C60 IDD −5 + 5τ
25 C60 IDD 8− 3τ

Table A.16: The twisted point-arrays with a start of C60 translated
along a 2-fold axis (A).
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Translation Translation
Number Start Direction Amount
26 C60 IDD 5− τ
27 C60 IDD −3 + 4τ
28 C60 IDD 2 + τ
29 C60 IDD 7− 2τ
30 C60 IDD −1 + 3τ
31 C60 IDD 1 + 2τ
32 C60 IDD 6− τ
33 C60 IDD 3 + τ
34 C60 IDD 3τ
35 C60 IDD 5
36 C60 IDD −3 + 5τ
37 C60 IDD −1 + 4τ
38 C60 IDD 4 + τ
39 C60 IDD 1 + 3τ
40 C60 IDD −2 + 5τ
41 C60 IDD 2 + 3τ
42 C60 IDD −1 + 5τ
43 C60 IDD 1 + 4τ
44 C60 IDD 3 + 3τ
45 C60 IDD 5τ
46 C60 IDD 5 + 2τ
47 C60 IDD 4 + 3τ
48 C60 IDD 3 + 4τ
49 C60 IDD 5 + 3τ

Table A.17: The twisted point-arrays with a start of C60 translated
along a 2-fold axis (B).
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Translation Translation
Number Start Direction Amount
50 C60 Dodec −1 + 2τ/3
51 C60 Dodec −4/3 + τ
52 C60 Dodec 1/3
53 C60 Dodec −2/3 + 2τ/3
54 C60 Dodec 5/3− 2τ/3
55 C60 Dodec 2/3
56 C60 Dodec −4/3 + 4τ/3
57 C60 Dodec −2/3 + τ
58 C60 Dodec 1
59 C60 Dodec −5/3 + 5τ/3
60 C60 Dodec 2τ/3
61 C60 Dodec −1 + 4τ/3
62 C60 Dodec 2/3 + τ/3
63 C60 Dodec −1/3 + τ
64 C60 Dodec 1 + τ/3
65 C60 Dodec −5/3 + 2τ
66 C60 Dodec τ
67 C60 Dodec 5/3
68 C60 Dodec −4/3 + 2τ
69 C60 Dodec 1/3 + τ
70 C60 Dodec 2
71 C60 Dodec −2/3 + 5τ/3
72 C60 Dodec −1 + 2τ
73 C60 Dodec 2/3 + τ
74 C60 Dodec 4/3 + 2τ/3
75 C60 Dodec 3− τ/3
76 C60 Dodec −2/3 + 2τ

Table A.18: The twisted point-arrays with a start of C60 along a 3-fold
axis (A).
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Translation Translation
Number Start Direction Amount
77 C60 Dodec 1 + τ
78 C60 Dodec 8/3
79 C60 Dodec 5τ/3
80 C60 Dodec 2/3 + 4τ/3
81 C60 Dodec −1/3 + 2τ
82 C60 Dodec 4/3 + τ
83 C60 Dodec 3
84 C60 Dodec 2τ
85 C60 Dodec 5/3 + τ
86 C60 Dodec 1/3 + 2τ
87 C60 Dodec 2 + τ
88 C60 Dodec 5/3 + 4τ/3
89 C60 Dodec 2/3 + 2τ
90 C60 Dodec 4/3 + 5τ/3
91 C60 Dodec 2 + 4τ/3
92 C60 Dodec 1 + 2τ
93 C60 Dodec 4/3 + 2τ
94 C60 Dodec 2 + 5τ/3
95 C60 Dodec 1 + 7τ/3
96 C60 Dodec 5/3 + 2τ
97 C60 Dodec 2 + 2τ
98 C60 Dodec 5/3 + 7τ/3
99 C60 Dodec 5/3 + 3τ
100 C60 Dodec 1 + 11τ/3
101 C60 Dodec 4/3 + 11τ/3
102 C60 Dodec 4/3 + 4τ

Table A.19: The twisted point-arrays with a start of C60 translated
along a 3-fold axis (B).
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Translation Translation
Number Start Direction Amount
103 C60 Icos −11/5 + 7τ/5
104 C60 Icos 3/5− τ/5
105 C60 Icos −8/5 + 6τ/5
106 C60 Icos −1/5 + 2τ/5
107 C60 Icos 6/5− 2τ/5
108 C60 Icos −9/5 + 8τ/5
109 C60 Icos −2/5 + 4τ/5
110 C60 Icos −6/5 + 7τ/5
111 C60 Icos 12/5− 4τ/5
112 C60 Icos 8/5− τ/5
113 C60 Icos 4/5 + 2τ/5
114 C60 Icos −7/5 + 9τ/5
115 C60 Icos 11/5− 2τ/5
116 C60 Icos 3/5 + 4τ/5
117 C60 Icos −1/5 + 7τ/5
118 C60 Icos 6/5 + 3τ/5
119 C60 Icos 13/5− τ/5
120 C60 Icos 2/5 + 6τ/5
121 C60 Icos −2/5 + 9τ/5
122 C60 Icos −6/5 + 12τ/5
123 C60 Icos 1/5 + 8τ/5
124 C60 Icos 8/5 + 4τ/5
125 C60 Icos 7/5 + 6τ/5
126 C60 Icos −1/5 + 12τ/5
127 C60 Icos 13/5 + 4τ/5
128 C60 Icos 8/5 + 9τ/5
129 C60 Icos 4/5 + 12τ/5
130 C60 Icos 11/5 + 8τ/5

Table A.20: The twisted point-arrays with a start of C60 translated
along a 5-fold axis.

185



Bibliography

[1] Chemspider, accessed 23/05/2011. URL www.chemspider.com.

148

[2] T. S. Baker, N. H. Olson, and S. D. Fuller. Adding the third

dimension to virus life cycles: three-dimensional reconstruction

of icosahedral viruses from cryo-electron micrographs. Microbiol.

Mol. Biol. Rev., 4(63):862–922, 1999. 6, 17

[3] M. Bando, Y. Morimoto, T. Sato, T. Tsukihara, Y. Yokota,

K. Fukuyama, and H. Matsubara. Crystal structural analysis of
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