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Preface

My PhD is funded by the Horizon 2020–Marie Sk lodowska-Curie Ac-

tion as an Early Stage Researcher in the Quantitative T Cell Immunol-

ogy and Immunotherapy (QuanTII) network. Each PhD student part

of QuanTII is required to undertake a secondment in another institu-

tion with the aim of receiving specific training relevant to their research

project.

According to the original plans of my PhD project, I should have vis-

ited the group led by Professor Marc Jenkins in the Department of

Microbiology and Immunology at the University of Minnesota in the

Summer of 2020. The aim of the visit was to undertake mathematical

and computational modelling of the population of CD4+ T cells, based

on measurements that would have been made by a post-doctoral re-

search fellow in the Jenkins’ laboratory. The work developed in collab-

oration with Jenkins’ laboratory would have constituted the contents

of Chapter 5 of my thesis.

Unfortunately, during the SARS-CoV-2 pandemic, the laboratory was

closed for several months and consequently, the experiments were not

performed.

More recently, the University of Leeds started a new collaboration with

Los Alamos National Laboratory (New Mexico) and other institutions

around the world to model reassortment at the cellular, clinical, and

phylogenetic levels in emerging Bunyaviruses. This project required

the development of mathematical models to characterise co-infection

dynamics, which is a necessary condition for reassortment. Thus, my

PhD supervisors and I thought that I could develop these mathematical



models as work for the final chapter of my thesis. This explains why

my thesis contains mathematical models of such different biological

processes.

While using some mathematical tools employed also in Chapters 3

and 4 (e.g., branching processes), the work in Chapter 5 allowed me

to learn about viral dynamics and epidemiology during my visit to Los

Alamos National Laboratory from 10 October to 13 December 2022.

Nowadays, these tools are critically important to develop adequate

mathematical models for the novel coronavirus and other emerging and

re-emerging viruses, which have been prioritised by the World Health

Organisation. Thus, I strongly believe that this project has equipped

me with useful tools that will enhance my future career as a researcher.
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Abstract

When modelling cellular population dynamics, many mathematical

models consider exponential inter-event times. Despite being the most

convenient choice from a mathematical and computational perspective,

the exponential distribution overestimates the probability of short di-

vision times. In Chapter 3, I consider a multi-stage model of the cell

cycle to maintain the advantages of a Markovian model, while improv-

ing on exponential times to division. With this structure in place, cell

generations are introduced in the model to link theoretical predictions

with experimental data. The model with cell generations is param-

eterised making use of CFSE data and Bayesian methods. Then, in

order to study fate correlation of cellular siblings, in Chapter 4, I pro-

pose a mathematical model that makes use of the theory of branching

processes. Cells are categorised based on their fate, either division or

death, which is decided at birth. The applicability of this approach is

shown by considering a data set of stimulated B cells produced with

time-lapse microscopy.

The last chapter of this thesis aims to shed light on the role of co-feeding

and co-transmission in the spread of a vector-borne virus. Thus, a

population of ticks interacts with a population of hosts (small or large

vertebrates). First, I consider a single infection whose dynamics is

modelled through both deterministic and stochastic models. The basic

reproduction number is computed by means of the next generation ma-

trix approach. When modelling co-infection with two different viruses

(or two strains of the same virus), a deterministic model is proposed to

study only co-feeding transmission, accounting also for co-transmission

of the virus. A series of stochastic descriptors of interest are computed

when considering all the routes of transmission.
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Chapter 1

Introduction

In this thesis, two different types of population dynamics are studied. Chapters 3

and 4 focus on stochastic models of cell population dynamics, whereas in Chapter 5,

a population of ticks interacting with a population of hosts (e.g., small or large

vertebrates) is considered to analyse the spread of a vector-borne viral infection.

1.1 Immunological background

Our first line of defence against invaders (e.g., viruses or bacteria) consists of

physical barriers, such as skin and mucous membranes (Sompayrac, 2022). Any

invader that breaches our physical barriers is greeted by the innate immune sys-

tem, so called because any living being is equipped with it (Sompayrac, 2022).

Vertebrates possess also a third line of defence, known as the adaptive immune

system, whose main characteristic is that it is activated on demand, providing a

specific response for different invaders (Sompayrac, 2022). Among the main ac-

tors of the adaptive immune response, there are B cells and T cells, also called B

lymphocytes and T lymphocytes. They display on their surface molecules called

receptors, which are used in pathogen recognition. The set of T lymphocytes with

the same T cell receptors defines a T cell clonotype (Lythe et al., 2016).

Beyond lymphocytes, the immune system is comprised of other types of cells, such

as macrophages and neutrophils. Each type of immune cell has a specific role and

is able to communicate and interact with other cells using cytokines, which are
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1. INTRODUCTION

small proteins produced by a broad range of cells. Cytokine is a general name;

in more specific terms, we can mention for example lymphokine (produced by

lymphocytes) and interleukin (secreted by white blood cells). Some interleukins

(IL for short) play an essential role in the development and proliferation of T

lymphocytes (Rochman et al., 2009). For example, IL-2 is a T cell growth factor

and regulates the proliferation and apoptosis of activated T cells; IL-7 has a central

role in the development of T cells in both humans and mice; IL-15 is fundamental

to maintaining normal T cell counts (T cell homeostasis). Thus, lack or abundance

of these interleukins affects the population size of T lymphocytes.

1.2 Cell population dynamics

Lymphocyte populations stimulated in vitro or in vivo, grow as cells divide. In

particular, during an adaptive immune response, a subset of specific cells, initially

a small fraction of the total population, expands as cells undergo multiple rounds

of division over a few days (Antia et al., 2005). Mathematical models are fun-

damental to providing a quantitative characterisation of lymphocyte population

expansion. One of the main aims of these models is the estimation of lymphocyte

birth and death rates, which vary according to the type of lymphocyte and the

stimuli cells receive. Stochastic models are appropriate to describe immune cell

dynamics because some cells undergo multiple rounds of division, some die, and

others of the same type in the same conditions do not divide at all. If individual

cells behave independently, then each cell can be imagined as sampling from a

probability density of times to division and death. The exponential density is the

most mathematically and computationally convenient choice: it guarantees ana-

lytical tractability and computational efficiency of stochastic simulations by means

of the Gillespie algorithm (Gillespie, 1976, 1977). However, it does not accurately

describe a cell’s time to division because it overestimates the probability of short

division times (Yates et al., 2017; Zilman et al., 2010). Indeed, cells are cycling

through gap, synthesis and mitosis phases. The cell cycle is a complex process that

involves DNA replication and chromosome segregation, leading a cell to divide. As

depicted in Figure 1.1, different phases comprise the cell cycle:
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• the gap phase 1, G1; the cell grows physically larger, copies its organelles

and makes molecular building blocks.

• the synthesis, S; the cell synthesises a complete copy of the DNA in its

nucleus.

• the gap phase 2, G2; the cell continues to grow, makes proteins and organelles

and begins to organise its contents for cell division.

• the dividing phase M, which consists of two main stages:

1. Mitosis: the nuclear DNA of the cell condenses into visible chromosomes

(it is possible to recognise four different mitosis phases).

2. Cytokinesis: the cytoplasm of the cell is split in two, making two new

cells.

Figure 1.1: Schematic representation of the different phases that comprise the cell

cycle from El-Aouar Filho et al. (2017).
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The phases G1, S, G2 represent together the stage called interphase. Cells can also

exit the cell cycle and enter a quiescent state, the G0 phase (El-Aouar Filho et al.,

2017). Given the complex process that leads a cell to divide, it becomes apparent

that daughter cells cannot immediately redivide (Pandit & De Boer, 2019).

With the aim of preserving the advantages of a Markovian framework while im-

proving the representation of experimentally-observed division times, in Chapter 3

a multi-stage representation of cellular division proposed by Yates et al. (2017) is

extended to account also for cell death. Erlang-distributed (or, more generally,

phase-type distributed (He, 2014)) times to division and exponentially distributed

times to death are used. The underlying idea is that each cell is required to se-

quentially visit a given number of stages, denoted by N , before dividing. Each

stage is exponentially distributed, and consequently, the Markovian framework is

preserved. The rate of progression from a stage to the subsequent one is called

birth rate and is denoted by λ. The growth rate of the cell population is derived by

calculating the fraction of cells in each stage. The exponent describing the long-

term cell population growth, and the criterion for extinction of the population,

differs from what would be expected if N steps with rate λ were equivalent to a

single step of rate λ/N . In order to link theoretical predictions with experimental

data, cells are classified into generations (i.e., cells that have divided the same

number of times) using the rule that the daughters of cells in generation g are

in generation g + 1. In some circumstances, this representation is equivalent to

established models of lymphocyte dynamics (Hawkins et al., 2007). The theoret-

ical predictions of the model are linked with a published experimental data set,

where cell counts were reported after T cells were transferred to lymphopenic mice

(Hogan et al., 2013), using Approximate Bayesian Computation methods (Toni

et al., 2009). Cells at the start of the experiment (before any stimulus has been

added) are assumed to be in generation 0. In the comparison, the death rate is

assumed to be proportional to the generation and the Erlang time to division for

generation 0 is allowed to differ from that of subsequent generations. Our results

in Chapter 3 show that the multi-stage representation is preferred to a simple ex-

ponential in posterior distributions and the mean time to first division is estimated

to be longer than the mean time to subsequent divisions (Belluccini et al., 2022).
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Although providing a good description of experimental data (Belluccini et al.,

2022), the multi-stage model with cell generations relies on the assumption that

cells are independent of each other. In particular, no fate correlation is assumed be-

tween daughter cells and their progenitors, or between siblings. However, data sets

from time-lapse microscopy of B and T cell families show that division and death

times for siblings are correlated (Dowling et al., 2014; Duffy & Hodgkin, 2012;

Duffy & Subramanian, 2009; Duffy et al., 2012; Hawkins et al., 2009; Markham

et al., 2010; Wellard et al., 2010), and division destiny is a familial characteris-

tic (Cheon et al., 2021). As the multi-stage model in Chapter 3 cannot account

for such correlations, a two-type branching process is considered in Chapter 4 to

model cellular population dynamics with fate decision at birth. A population of

cells is split into two pools: cells that are going to divide and cells whose fate is

death. When a division occurs, both daughter cells join the division pool with

probability p1, enter the death pool with probability p2, or have different fates

with probability p3 = 1− p1 − p2. After this instantaneous fate decision at birth,

cellular fate takes some random time to happen. Exponential and Erlang proba-

bility distributions are used to model cellular time to division and death with the

aim of preserving the Markov property. In this way, the timescales for cellular

division and death are separated from the cellular fate probabilities. The resulting

dynamics is a two-type branching process (Athreya et al., 2004). The probability

generating function of the number of cells in each pool is derived when working

with exponential times, whereas the expected number of cells over time is com-

puted under the assumption of Erlang times to division and death. Cellular fate

correlation is introduced in the model through the definition of correlation factors.

By means of Approximate Bayesian Computation methods (Toni et al., 2009), the

theoretical predictions of the model are compared to a data set of stimulated naive

B cells, followed for 120 hours using time-lapse microscopy (Hawkins et al., 2009;

Markham et al., 2010). The fate of sibling cells is broken per division: for each

generation the fraction of pairs of siblings both dividing, both dying and having

different fates is known (Markham et al., 2010). This data representation enables

the comparison between the theoretical probabilities of our model and the exper-

imental data. Despite its simplicity, our model qualitatively follows the trends of
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the fraction of pairs of siblings both dividing, both dying and having different fates

observed in the experiments.

1.3 Tick-borne virus transmission

Segmented viruses are characterised by genomes comprised of multiple RNA strands,

called segments. A single host cell can be simultaneously infected with two or

more segmented viruses (or two or more strains of the same segmented virus) as

co-infection of a single host by different pathogens is ubiquitous in nature (Cox,

2001; Lowen, 2017). When co-infection of a single host cell with two or more seg-

mented viruses occurs, genome segments can be exchanged during viral assembly

(McDonald et al., 2016). This process of genome segments exchange is known

as reassortment (Lowen, 2018), and produces progeny with new viral properties,

which may lead to more transmissible or more severe diseases. The family of Bun-

yavirales is an order of segmented negative strand RNA-viruses that includes also

the Crimean-Congo hemorrhagic fever (CCHF) virus, which has been declared a

research and development priority by the World Health Organisation (Mehand

et al., 2018). CCHF virus is a tick-borne virus that causes severe disease only in

humans.

There are still many questions that remain to be answered about the reassortment

process, and in order to provide adequate answers, it is fundamental to understand

co-infection dynamics. Indeed, reassortment can only occur when a single host cell

is infected by two or more pathogens.

Another aspect that one should take into account when modelling the spread of

tick-borne viruses is co-feeding transmission within the tick population (Gonzalez

et al., 1992; Matser et al., 2009). This type of transmission occurs when ticks feed

in close proximity to each other on the same host (Belli et al., 2017).

To shed light on co-feeding transmission and co-infection dynamics, in Chapter 5

we consider two interacting populations, namely hosts (e.g., small or large ver-

tebrates) and ticks, both susceptible to infection with two distinct strains of the

same virus. The infection can be transmitted by infected ticks to susceptible hosts,

from infected hosts to susceptible ticks (systemic transmission), and from infected

ticks to susceptible ticks through co-feeding (non-systemic transmission). We first
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analyse the dynamics of a single infection, proposing both a deterministic and a

stochastic model to understand the role of the different routes of virus transmis-

sion. In the deterministic setting, the basic reproduction number is computed by

making use of the next-generation matrix approach (Van den Driessche, 2017).

An approximating branching process is also considered to derive the probability

of both the virus-free and endemic states (Allen, 2010). Then, by means of first

step arguments (Pinsky & Karlin, 2010), the distribution of the exact number

of secondary infections directly caused by a marked infected individual is derived

(Artalejo & Lopez-Herrero, 2013).

When considering co-infection by two distinct strains (one resident and one inva-

sive), ordinary differential equations are used to model the dynamics of susceptible,

infected and co-infected ticks in a deterministic model that accounts only for co-

feeding transmission. The invasion reproduction number of the invasive strain is

computed by means of the next generation matrix approach (Alizon, 2013a). Using

a stochastic approach that considers all the routes of transmission, the probability

of (and conditional time to) extinction and establishment of the invasive strain

are derived, together with the probability of (and conditional time to) co-infection

events.
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Chapter 2

Mathematical background

Stochastic models are primarily the tool used in this thesis to study cell population

dynamics and tick-borne virus transmission. Some deterministic models have also

been proposed to study complementary aspects of these models. Thus, this chap-

ter contains a background of probability theory and stochastic processes, as well

as some basic notions of differential equations and deterministic modelling. An

overview of the mathematical methods and statistical techniques used throughout

the thesis is also provided.

2.1 Generalities of probability theory

In Chapters 3, 4 and 5, I make use of continuous time Markov chains and branching

processes to study cell population dynamics and tick-borne virus transmission.

The notions required to understand such processes are introduced in this section

following the work by Allen (2010); Berger et al. (2021); He (2014); Jacod & Protter

(2004); Norris (1998); Stirzaker (2005).

2.1.1 Probability

Randomness arises in many everyday activities: flip a coin, make a decision, roll

a die, or buy a stock. A person might wonder about the probability that a head

occurs, or the stock increases its value. In many of these situations the idea

of probability is linked to a proportion between favourable outcomes and all the
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possible events. Therefore, to formalise mathematically the concept of probability,

let S be the set of all the possible outcomes of an experiment, usually referred as

sample space. Each subset of S is called event. For example, suppose to roll a die

and record the count of spots on the up-face. Then, S = {1, 2, 3, 4, 5, 6}, and an

event may be {3} or {4, 6}. Let A denote the family of all events. The set A must

satisfy the following properties.

Definition 2.1. Let A be a collection of subsets of S. Then A is called a σ-algebra

and the pair (S,A) is called a measurable space if the following properties hold:

1. S ∈ A.

2. If A ∈ A, the complement of A, AC, is in A, that is

A ∈ A =⇒ AC ∈ A.

3. For any sequence {An}+∞
n=1, An ∈ A, the union

⋃+∞
n=1An ∈ A.

With each event A ∈ A one associates a number denoted by P(A) and called

probability of A. This number represents the likelihood of the event A to be

realised a priori, before the experiment is performed. The probability P(A) is

defined between 0 and 1, where the closer to 1 P(A) is, the more likely A is to be

observed. A probability P is formally defined on A as follows.

Definition 2.2. Let (S,A) be a measurable space. Let P be a real-valued set

function defined on the σ-algebra A. The set function P : A → [0, 1] is called a

probability measure if the following properties are satisfied:

1. P(A) ≥ 0 for all A ∈ A.

2. P(S) = 1.

3. If Ai ∩ Aj = ∅ for i, j = 1, 2, . . . , i 6= j, then

P

(
+∞⋃
i=1

Ai

)
=

+∞∑
i=1

P(Ai),

where Ai ∈ A, i = 1, 2, . . . .

The ordered triple (S,A,P) defines a probability space.
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2.1.2 Conditional probability and independence

When studying a random process, it is interesting to understand the effect that

the occurrence of an event B has on the probability of another event A. This leads

to the definition of conditional probability and independent events.

Definition 2.3. Let A and B be events defined in the probability space (S,A,P),

with P(B) > 0. The conditional probability of A given B is defined as

P(A|B) =
P(A ∩B)

P(B)
. (2.1)

It may also happen that the knowledge of B does not affect the probability of A;

that is P(A|B) = P(A). In this instance, the identity in (2.1) yields

P(A ∩B) = P(A)P(B).

Definition 2.4. Two events A and B defined in a probability space (S,A,P) are

independent if

P(A ∩B) = P(A)P(B).

2.1.3 Random variables

The mathematical concept of random variable formalises the idea of a quantity

that depends on the outcome of a random experiment.

Definition 2.5. Let (S,A,P) be a probability space and (E,E) a measurable space.

A random variable X is defined as a map from the sample space S to E, X : S→ E

if for each B ∈ E, one has {X ∈ B} ∈ A, where

{X ∈ B} := X−1(B) = {ς ∈ S : X(ς) ∈ B} .

The space E is often the real line R or E = Rn. The random variable X can

be thought of as an element X(ς) of E which depends on the outcome ς ∈ S of

the random experiment. The state space or support or range ΩX of the random

variable X is defined as the set of all the possible values that X can take

ΩX = {x ∈ E : ∃ ς ∈ S such that X(ς) = x} . (2.2)
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If ΩX is finite or countably infinite, then X is said to be a discrete random variable,

whereas if the support is uncountable, then X is said to be a continuous random

variable. Throughout the thesis, the subscript referring to the random variable

will be omitted to simplify the notation.

For each random variable X : S→ E it is possible to define the associated induced

probability measure PX : E→ [0, 1] as

PX(B) = P(X ∈ B), B ∈ E.

Definition 2.6. Let X be a real-valued random variable defined on the probability

space (S,A,P). The cumulative distribution function of X is the function F : R→
[0, 1] defined by

F (x) = P(X ≤ x) = PX((−∞, x]).

The induced probability measure defines the probability mass function and the

probability density function for discrete and continuous random variables, respec-

tively.

Definition 2.7. Let X be a discrete random variable. Then the function f(x) =

PX(X = x) that is defined for each x ∈ Ω is called the probability mass function

of X.

Definition 2.8. Let X be a continuous random variable with cumulative distri-

bution function F (x). Suppose there exists a non-negative, integrable function

f : R→ [0,+∞) such that

F (x) =

∫ x

−∞
f(t)dt.

Then the function f(x) is called the probability density function (pdf for short) of

X.

The probability distribution of a random variable X can be specified by either its

cumulative distribution function F (x) or its probability density (or probability

mass if X is discrete) function f(x).

Example 2.9. The probability distributions of the main well-known random vari-

ables used throughout the thesis are listed below.
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i. A random variable X is said to follow an exponential distribution with pa-

rameter λ > 0, X ∼ Exp(λ), if its probability density function is defined

as

f(x) =

λe−λx, x ≥ 0,

0 otherwise.

ii. A random variable X is said to follow a uniform distribution with parameters

a, b ∈ R and a < b, X ∼ U(a, b), if its probability density function is defined

as

f(x) =


1

b− a
, if x ∈ [a, b],

0 otherwise.

iii. A random variable X is said to follow a Gamma distribution with parameters

α, β > 0, X ∼ Γ(α, β), if its probability density function is defined as

f(x) =


βα

Γ(α)
xα−1e−βx, if x ≥ 0,

0 otherwise,

where the Gamma function Γ(·) is defined as

Γ(z) =

∫ +∞

0

xz−1e−xdx, (2.3)

and Γ(n) = (n − 1)! for any n ∈ N. The parameter α is referred as shape,

whereas β is called rate.

iv. A random variable X is said to follow an Erlang distribution with parameters

N ∈ N and λ > 0, X ∼ Erlang(N, λ), if its probability density function is

defined as:

f(x) =


λNxN−1e−λx

(N − 1)!
, if x ≥ 0,

0 otherwise.

Note that the Erlang probability density is a particular case of the Gamma

where the shape parameter can take only integer values.
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v. A non-negative random variable τ is said to follow a phase-type distribution

(PH distribution), τ ∼ PH(α,T ), if its cumulative distribution function is

given by

F (t) = P(τ ≤ t) = 1−αeT te, t ≥ 0, (2.4)

where

1. e is a column vector of order m ∈ N with all the entries equal to 1;

2. α is a row vector of order m such that αi ≥ 0 for all i = 1, . . . ,m and

α · e =
∑m

i=1 αi ≤ 1. Such a vector is also called sub-stochastic vector;

3. T is a square matrix of order m such that

i. tii < 0 for all i = 1, . . . ,m,

ii. tij ≥ 0 for all i, j = 1, . . . ,m such that i 6= j,

iii.
∑

j tij ≤ 0 for all i = 1, . . . ,m,

iv. det(T ) 6= 0.

The matrix T is called PH-generator and the couple (α,T ) is referred as

phase-type representation (PH-representation) of order m for the PH dis-

tribution. The related probability density function is given by

f(t) = αeT t(−Te), t ≥ 0. (2.5)

Definition 2.10. Suppose X is a continuous random variable with pdf f(x). Then

the expectation, or mean, of X, denoted as E[X], is defined as

E[X] =

∫
R
xf(x)dx.

Suppose X is a discrete random variable with probability mass function f(x) defined

on the space Ω = {ai}+∞
i=1 . Then the expectation, or mean, of X is defined as

E[X] =
+∞∑
i=1

aif(ai).

Definition 2.11. The variance of the random variable X denoted as σ2, σ2
X or

V ar(X) is V ar(X) = E[(X −E[X])2]. The nth moment of X about the point a is

E[(X − a)n].

14



2.1 Generalities of probability theory

For a discrete random variable, it is useful to define its probability generating

function (pgf for short).

Definition 2.12. Let X be a discrete random variable taking non-negative integer

values. The probability generating function of X is defined as

G(z) = E
[
zX
]

=
+∞∑
n=0

znpn, |z| ≤ 1, (2.6)

where z ∈ C and pn = P(X = n).

Since
∑+∞

n=0 pn = 1, the sum in (2.6) converges absolutely for |z| ≤ 1. Thus, G(z)

is well defined for |z| ≤ 1, and infinitely differentiable for |z| < 1 (Karlin & Taylor,

1975). As the name implies, the probability generating function generates the

probabilities associated with the distribution of X

G(0) = p0, G′(0) = p1, G′′(0) = 2!p2,

and, in general,

G(k)(0) = k!pk, k ≥ 1.

The analogous of the probability generating function for a continuous random

variable is given by the Laplace-Stieltjes transform.

Definition 2.13. The Laplace-Stieltjes transfrom of a continuous non-negative

random variable X ≥ 0 with probability density function f(x) is denoted by φX(z)

and defined as

φX(z) = E
[
e−zX

]
=

∫ +∞

0

e−zxf(x)dx, Re(z) > 0,

where z ∈ C. The lth moment of X, denoted by E
[
X l
]
, is obtained by deriving

φX(z):

E
[
X l
]

= (−1)l
dl

dzl
φX(z)

∣∣∣∣
z=0

, l ≥ 0.

15



2. MATHEMATICAL BACKGROUND

2.2 Stochastic processes

In Section 2.1.3, the idea of a single random variable has been formalised. However,

many real phenomena require to be described as random processes evolving in time

or space, or both. This leads to the definition of a stochastic process. The contents

of this section follow Allen (2010); He (2014); Karlin & Taylor (1975); Kulkarni

(2016); Stirzaker (2005).

Definition 2.14. A stochastic process is a collection of random variables {Xt(ς) :

t ∈ T, ς ∈ S}, where T is some index set and S is the common sample space of the

random variables. For each fixed t ∈ T , Xt(ς) denotes a single random variable

defined on S. For each fixed ς ∈ S, Xt(ς) corresponds to a function defined on T

that is called sample path or a stochastic realisation of the process.

Throughout the thesis, the index set T will be a set of times, therefore defined

either as T = {t ∈ R : t ≥ 0} in the case of a continuous time stochastic process,

or T = N0 = N ∪ {0} in the instance of a discrete time stochastic process. The

common sample space S will be often omitted hereinafter; therefore, a stochastic

process will be simply denoted as (X(t))t≥0 if continuous, or (X(k))k∈N0 if discrete.

2.2.1 Continuous time Markov chains

Markov chains are an example of stochastic processes that are utilised to model

a wide range of real-world problems that arise from different disciplines, such as

finance, biology, chemistry, social sciences, economics and physics.

In this section, continuous time Markov chains are considered, meaning that the

time is continuous, whereas the state space of the random variables is discrete. The

main feature of a Markov chain is that what happens next depends only on the

present, while the past history of the process does not affect its future evolution.

The following definition expresses this property in mathematical terms.

Definition 2.15. Let (X(t))t≥0 be a set of discrete random variables taking values

in a finite {0, 1, . . . , N} or infinite {0, 1, 2, . . . } state space Ω. The stochastic

process (X(t))t≥0 is a continuous time Markov chain (CTMC) if for any choice of
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t0, t1, . . . , tn+1 ≥ 0 such that t0 < t1 < · · · < tn+1

P (X(tn+1) = in+1|X(t0) = i0, . . . , X(tn) = in) = P (X(tn+1) = in+1|X(tn) = in) ,

(2.7)

for any i0, i1, . . . , in+1 ∈ Ω.

Equation (2.7) is commonly referred to as Markov property. For every t ∈ [0,+∞),

X(t) is a random variable with probability distribution {pi(t)}i∈Ω, where

pi(t) = P(X(t) = i), i ∈ Ω.

The probabilities of the chain to jump from a state i to a state j describe the

dynamics of the process and are formally defined as follows.

Definition 2.16. Let s, t ∈ [0,+∞) such that s < t. The transition probabilities

between the random variables X(t) and X(s) are defined as

pij(s, t) = P(X(t) = j|X(s) = i), for i, j ∈ Ω.

When the transition probabilities do not depend explicitly on t and s, but only on

the length of the time interval t− s, the Markov process is said to be homogeneous

or stationary. Therefore, the transition probabilities can be rewritten as

pij(t− s) = P(X(t) = j|X(s) = i) = P(X(t− s) = j|X(0) = i) for s < t.

The transition matrix, denoted by P (t), is comprised of the transition probabilities

pij, P (t) = (pij(t))i,j∈Ω.

Let α be the initial distribution of the CTMC, which means

P(X(0) = i) = αi, i ∈ Ω.

The following result contains the characterization of a homogeneous CTMC (Kulka-

rni, 2016).

Theorem 2.17. A CTMC is completely described by its initial distribution α and

the set of transition probability matrices {P (t) : t ≥ 0}.

17
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For most continuous time Markov processes, the following property holds∑
j∈Ω

pij(t) = 1, t ≥ 0, i ∈ Ω, (2.8)

and such processes are referred as non-explosive (see e.g., Norris (1998) for explo-

sive processes). In other words, non-explosive processes have the nice property

that the transition matrix P (t), t ≥ 0, is a stochastic matrix, which means all the

row sums are equal to 1. Note that equation (2.8) can be violated only when the

state space is infinite (Allen, 2010).

In this thesis, we will consider only homogeneous and non-explosive Markov chains.

In order to give an example of a Markov process, the Poisson process will be defined

in the following example.

Example 2.18. Let (N(t))t≥0 be a CTMC with state space Ω = {0, 1, 2, . . . }.
(N(t))t≥0 is a Poisson process if N(0) = 0 and

pij(∆t) = P(N(t+ ∆t) = j|N(t) = i) =


λ∆t+ o(∆t) j = i+ 1,

1− λ∆t+ o(∆t) j = i,

o(∆t) j ≥ i+ 2,

0 j < i,

as ∆t → 0+. Basically the random variable N(t) counts the number of jumps

which occur in the process, where these jumps occur at rate λ. The transition

probabilities tell us that in a small time interval ∆t we can have either one jump

or no jumps. The initial conditions and the transition probabilities are used to

derive differential equations for the probability distributions pi(t) of N(t). The

solutions are then shown to represent a Poisson distribution with parameter λt;

that is, it can be proven that N(t) ∼ Poisson(λt).

Transition matrix

According to Theorem 2.17, given the initial distribution α of the CTMC, the

transition matrix P (t) fully describes the process. However, the matrix P (t)

might be hard to specify even for simple Markov chains. This is the reason why
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other parameters, called transition rates qij, are defined. The transition matrix

can be computed from the transition rates.

Suppose that the transition probabilities are differentiable for t ≥ 0 and at t = 0

are given by

pij(0) = 0 ∀ i 6= j and pii(0) = 1,

i.e., P (0) is equal to the identity matrix. Then, qij is defined as the rate at which

the process can go from state i to state j in a short time interval ∆t, which means

qij = lim
∆t→0+

pij(∆t)− pij(0)

∆t
= lim

∆t→0+

pij(∆t)

∆t
, i 6= j, (2.9)

and

qii = lim
∆t→0+

pii(∆t)− pii(0)

∆t
= lim

∆t→0+

pii(∆t)− 1

∆t
. (2.10)

Note that qij ≥ 0, i 6= j, by definition. As the transition matrix is stochastic, one

has

1− pii(∆t) =
∑

j∈Ω,j 6=i

pij(∆t) =
∑

j∈Ω,j 6=i

(qij∆t+ o(∆t)) ,

as ∆t→ 0+, and therefore

qii = − lim
∆t→0+

∑
j∈Ω,j 6=i (qij∆t+ o(∆t))

∆t
= −

∑
j∈Ω,j 6=i

qij,

where we used the fact that
∑

j∈Ω,j 6=i o(∆t) = o(∆t) (Allen, 2010). Therefore,

qii ≤ 0 and, if qii is finite,
∑

j∈Ω qij = 0. From (2.9) and (2.10) it follows

pij(∆t) = qij∆t+ o(∆t) + δij,

as ∆t→ 0+, where δij is Kronecker’s delta symbol.

Denoting by P (∆t) the infinitesimal transition matrix and by I the identity matrix

of the same dimension, the matrix Q is given by

Q = lim
∆t→0+

P (∆t)− I
∆t

. (2.11)

Definition 2.19. The matrix of transition rates Q = (qij)i,j∈Ω defined in (2.9),

(2.10), (2.11) is called infinitesimal generator matrix and, if Ω = {0, 1, 2, . . . }, Q
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has the following structure

Q =


q00 q01 q02 . . .

q10 q11 q12 . . .

q20 q21 q22 . . .
...

...
...

 =



−
+∞∑
j=0

q0j q01 q02 . . .

q10 −
+∞∑
j=0

q1j q12 . . .

q20 q21 −
+∞∑
j=0

q2j . . .

...
...

...


The main features of the infinitesimal generator matrix are that the sum of all the

elements of each row is equal to 0 and the diagonal terms qii are the negative of

the sum of the other elements in the same row.

Definition 2.20. The Kolmogorov forward equations are a set of differential equa-

tions that describe the rate of change of the transition probabilities:

dpij(t)

dt
=
∑
k∈Ω

qkjpik(t), i, j ∈ Ω,

which can be written in matrix form as

dP (t)

dt
= QP (t).

This system of equations is also known as master equation.

Next result shows how to compute the transition matrix P (t) of a CTMC with a

finite state space Ω = {0, 1, . . . , N} given the infinitesimal generator matrix Q.

Theorem 2.21. The transition probability matrix of a finite-state space CTMC

with infinitesimal generator matrix Q is given by

P (t) = eQt, t ≥ 0.

However, computing the exponential of a matrix is usually analytically not possible

and numerically challenging (Moler & Van Loan, 1978, 2003).
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Inter-event times

The difference between discrete time Markov chains and continuous time Markov

ones is that in the first scenario events can occur at time 1, 2, . . . , whereas in the

second one a jump to a new state can be observed at any time t ≥ 0. Denoting by

Wi the time of the ith event in a CTMC, and assuming W0 = 0, the process will

remain in state X(Wi) for a random amount of time and then jump to X(Wi+1)

at time Wi+1. The sequence of random variables (Wi)
+∞
i=0 is usually called jump

times or waiting times series. Another relevant random variable to be considered

is the inter-event time defined as Ti = Wi+1 −Wi, which represents how long the

process remains in state X(Wi). Figure 2.1 illustrates the jump times Wi and the

inter-event times Ti for the random variable X(t).

Figure 2.1: Sample path of X(t) that shows the jump times Wi and the inter-event

times Ti from Allen (2010).

One of the main features of Markov chains is that the inter-event times Ti are

exponentially distributed with rate
∑

j∈Ω,j 6=i qij. As the expected time of an expo-

nentially distributed random variable is the inverse of the rate, the average time

spent in state i is given by

E[Ti] =
1∑

j∈Ω,j 6=i qij
.

Furthermore, the probability that the process moves from state i to state j in one
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0 1 2 n− 1 n n+ 1

λ0 λ1 λn−1 λn

µn+1µnµ2µ1

Figure 2.2: A depiction of a birth-and-death process with birth rates λj and death

rates µj, j ∈ Ω.

jump is computed as

pij =
qij∑

l∈Ω,l 6=i qil
.

Note that the exponential distribution is the only continuous probability distribu-

tion characterised by the so-called memoryless property:

P (Ti ≥ t+ s|Ti ≥ t) = P (Ti ≥ s) , for any t, s > 0. (2.12)

2.2.2 Birth-and-death processes

A relevant example of continuous time Markov chain is represented by the family

of birth-and-death processes. Consider a continuous time Markov chain (X(t))t≥0

that might have either finite {0, 1, . . . , N} or infinite {0, 1, 2, . . . } state space Ω.

The random variable X(t) expresses the population size at time t. Figure 2.2

depicts a birth-and-death process, where λj is the birth rate and µj is the death

rate from state j.

Transition probabilities for this type of process are

pij(∆t) = P(X(t+ ∆t) = j|X(t) = i)

=


λi∆t+ o(∆t) j = i+ 1,

µi∆t+ o(∆t) j = i− 1,

1− (λi + µi)∆t+ o(∆t) j = i,

o(∆t) otherwise,

with ∆t small enough. Thus, if for example the state space Ω is infinite, the
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infinitesimal generator matrix Q has the following structure

Q =


−λ0 λ0 0 0 0 0 . . .
µ1 −(µ1 + λ1) λ1 0 0 0 . . .
0 µ2 −(µ2 + λ2) λ2 0 0 . . .
0 0 µ3 −(µ3 + λ3) λ3 0 . . .
...

...
...

...
...

...
. . .

 .

A particular case of the birth-and-death process is when the birth and death rates

are linear, that is λi = λi and µi = µi (Allen, 2010). In this case, λ0 = 0 and the

state 0 represents an absorbing state (that is, a state such that once reached, the

system does not leave it).

2.2.3 Waiting times with a phase-type distribution

Exponential and phase-type distributions are very popular in stochastic modelling

due to their memoryless property, or quasi memoryless in the case of phase-type.

Another reason that justifies the wide use of phase-type distributions in applica-

tions is provided by the following result (Asmussen & Albrecher, 2010; He, 2014).

Theorem 2.22. The set of PH-distributions is dense in the set of probability

distributions on the non-negative half-line.

The previous theorem implies that every probability distribution on the non-

negative half-line can be approximated “arbitrarily close” by a sequence of PH

distributions, and therefore studied through Markov chains even if that could not

have been possible a priori. The sequence of PH distributions converges weakly

to the non-negative probability distribution under consideration. The reader is

referred to Theorem A5.14 of Asmussen & Albrecher (2010) for detailed proof.

It is also possible to provide a probabilistic definition of PH distributions that

involves Markov chains. Consider a Markov chain (X(t))t≥0 such that the state

space is comprised of m + 1 states, {1, 2, . . . ,m,m + 1}, and the infinitesimal

generator matrix Q has the following structure:

Q =

(
T TA

0 0

)
, (2.13)
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where T is a PH-generator defined in (2.4). Since the rows of an infinitesimal

generator Q sum to 0, TA and T must be related by the equation TA = −Te.

The structure of Q suggests that m+ 1 is an absorbing state. If one sets

τ = inf{t ≥ 0 : X(t) = m+ 1},

then τ ∼ PH(α,T ) will represent the absorption time in state m+1 and P(τ ≤ t)

the probability that the process has been absorbed in state m + 1 before time t.

That is, a phase-type distribution can be interpreted as the time until absorption

in a CTMC.

Definition 2.23. Assume that the Markov chain (X(t))t≥0 defined by the transi-

tion matrix (2.13) will be eventually absorbed in state m+ 1 with probability 1. A

phase-type random variable τ is defined as the absorption time into state m + 1

of the continuous Markov chain (X(t))t≥0, given that the initial distribution of the

Markov chain is (α, 1−αe). The couple (α,T ) is a PH-representation of τ .

Definition 2.23 associates a Markov chain to a PH distribution. This Markov

chain is called underlying Markov chain, has an absorbing state and, before the

absorption time, is described by the matrix T . The column vector TA contains the

absorption rates from any state of the process to m+ 1. This information enables

to compute the distribution of the residual time to absorption. For instance, let us

imagine that X(t) = j, 1 ≤ j ≤ m; then, the residual time to absorption is a PH

random variable with PH-representation (α = (0, . . . , 1, . . . , 0),T ), where the 1 in

vector α is the jth element. This property of PH distributions is known as quasi

memoryless property, where the quasi underlines the fact that it is necessary to

keep track of the process initial state.

Remark 2.24. Both the exponential and the Erlang distributions belong to the

family of phase-type distributions.

2.2.4 Branching processes

Branching processes were introduced independently by the French statistician

Irénée-Jules Bienaymé, and by the English mathematician Henry William Wat-

son and polymath Francis Galton in the XIX century to study the survival of
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family names in aristocracy (Allen, 2010). In later years, the theory of branching

processes arose great interest from a theoretical perspective (Athreya et al., 2004;

Harris et al., 1963), meanwhile finding numerous applications in biology, immunol-

ogy, ecology, medicine and epidemiology (Haccou et al., 2005; Kimmel & Axelrod,

2002), among other fields. Let us imagine a population of particles, e.g., humans,

cells, or genes, that initially consists of X0 particles. Each particle gives rise at the

end of its life, independently of the others, with probability pk to k new particles,

where

pk ≥ 0, k = 0, 1, 2, . . . ,
+∞∑
k=0

pk = 1. (2.14)

The totality of all the direct descendants of the initial population constitutes the

first generation, whose size is denoted by X1. Each particle of the first generation

produces offspring according to the probability distribution (2.14). The descen-

dants of the particles in the first generation constitute the second generation, X2.

The population size of the nth generation is denoted by Xn, and (Xn)n∈N0 is a

Markov chain in discrete time (Norris, 1998). Thus, we have the following defini-

tion from Allen (2010):

Definition 2.25. Three basic assumptions define a Galton-Watson branching pro-

cess:

i. Each individual in generation n gives birth to ξn offspring in the next gener-

ation, where ξn is a random variable that takes values in {0, 1, 2, . . . } whose

offspring distribution is {pk}+∞
k=0,

pk = P(ξn = k), k = 0, 1, 2, . . . .

ii. Each individual gives birth independently from all other individuals.

iii. The same offspring distribution applies to each generation n, ξn = ξ.

In Galton-Watson processes, an individual’s lifetime is a fixed length of time,

which for convenience is chosen as one unit of time. At the end of its lifetime,

the particle is replaced by its progeny. In the analogous continuous time process,

an individual’s lifetime is not fixed but may have an arbitrary distribution. In

the case of exponentially distributed lifetimes, the branching process (X(t))t≥0 is

25



2. MATHEMATICAL BACKGROUND

a continuous time Markov chain, where X(t) represents the population size at

time t (Allen, 2010). If the individual’s lifetime is not exponential, (X(t))t≥0 is an

age-dependent process known as Bellman-Harris branching process (Allen, 2010;

Harris et al., 1963; Kimmel & Axelrod, 2002).

In order to model biological processes, we may need to define different types of

individuals within the same population. This leads to the definition of multi-type

branching processes. Assume there are N types of individuals, where Xj(t) is the

discrete random variable for the number of individuals of type j, j = 1, . . . , N ,

at time t. Each individual type produces offspring according to a probability

distribution. The process X(t) = (X1(t), . . . , XN(t))t≥0 is a continuous time multi-

type branching process. In particular, in Chapters 4 and 5 we will make use of

two-type branching processes to model cell population dynamics and tick-borne

virus transmission.

2.2.5 Gillespie algorithm

The Gillespie algorithm was originally formulated by Daniel Gillespie to simulate

chemical or biochemical systems of reactions efficiently (Gillespie, 1976, 1977).

Suppose that a Markov chain (X(t))t≥0 has infinitesimal generator matrix Q =

(qij)i,j∈Ω. Algorithm 1 shows how to obtain stochastic realisations of (X(t))t≥0.

2.3 Bayesian statistics background

Bayesian inference is a statistical method which aims to estimate the parameters

θ in a mathematical model by updating the knowledge of the parameters as more

data D are observed according to Bayes’ theorem, which states

P(A|B) =
P(B|A)P(A)

P(B)
,

where A and B are two events such that P(A) > 0 and P(B) > 0. Note that the

assumption P(A) > 0 and P(B) > 0 guarantees that the conditional probabilities

P(A|B) and P(B|A) are well defined. In a statistical framework, this yields

π (θ|D) =
π (D|θ) π(θ)∫

θ
π (D|θ)π(θ)dθ

, (2.15)
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Algorithm 1 Gillespie algorithm

1: Choose tmax, the maximum time point for which a stochastic realisation of

(X(t))t≥0 will be constructed. Set the initial state i = X(0).

2: while t < tmax do:

3: Sum all the transition rates to the states where the process can jump to

from i in a single step, R =
∑

j 6=i qij.

4: Assign a number from 1 to n to the possible n states where the process

can jump to from i in a single step, j1, . . . , jn.

5: Sample u1 ∼ U(0, 1). The process will move to state jk such that∑k−1
l=1

qijl
R
≤ u1 ≤

∑k
l=1

qijl
R

.

6: Update the current state of the process to i = jk.

7: Sample u2 ∼ U(0, 1). Set t→ t− log u2
R

. This is equivalent to adding a time

exponentially distributed with rate R.

8: end while

where π(θ) is the prior distribution, which encodes our beliefs about the parame-

ters before observing the data, π (D|θ) is the likelihood, which is the probability of

obtaining the data D given the value of the parameters θ and π (θ|D) is the pos-

terior distribution and represents the knowledge of the parameters after observing

the data. As the integral in (2.15) is a normalisation constant, a simpler formula

than equation (2.15) can be used to estimate the posterior distribution:

π (θ|D) ∝ π (D|θ) π(θ),

where ∝ stands for “proportional to”. In many mathematical models, the esti-

mation of the likelihood function represents a challenge. Approximate Bayesian

Computation (ABC for short) methods have been developed to deal with likelihood

functions which are not tractable from a computational point of view or require

too many resources to be evaluated (Csilléry et al., 2010). Two ABC methods are

presented in Sections 2.3.1 and 2.3.2.

2.3.1 ABC with rejection algorithm

Given a mathematical model which generates predictions (e.g., number of individ-

uals over time) based on some parameters θ and a data set D, the ABC method
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based on a rejection algorithm aims to estimate the posterior distributions of the

parameters π (θ|D) by updating the prior beliefs making use of the experimental

data D and Algorithm 2 (Pritchard et al., 1999). To this end, a tolerance thresh-

old ε is fixed. Parameters are sampled from the prior distributions π(θ) and are

used to simulate the mathematical model. A function d(·, ·) is utilised to measure

a distance between the simulated model predictions and the experimental data.

The sampled parameters are accepted if the measured distance is smaller than ε.

The method is reiterated until a fixed sample size N of the approximated posterior

distribution is reached.

Algorithm 2 ABC with rejection algorithm.

1: Fix the tolerance threshold ε and the sample size N , and set n = 0.

2: while n < N do:

3: Sample the parameters θ∗ from the prior distributions π(θ).

4: Simulate the model predictions D∗ using the parameter values θ∗.

5: Compute the distance d(D∗,D) between D∗ and the observed data D.

6: if d(D∗,D) ≤ ε then:

7: Accept and store θ∗ and n→ n+ 1.

8: end if

9: end while

If ε is sufficiently small, the output π (θ|d(D∗,D) ≤ ε) will be a good approxima-

tion of the posterior distribution.

2.3.2 ABC sequential Monte Carlo

Algorithm 2 can be computationally inefficient when the parameter space to ex-

plore is large due to either a large number of parameters in the model or prior dis-

tributions defined over large intervals. Indeed, in these cases, it is more challenging

to sample a set of parameters that generate a small distance when the parameter

space to explore is large. Thus, Algorithm 2 may take a long time to converge. In

order to overcome this issue and to more efficiently explore the parameter space,

Toni et al. (2009) proposed an ABC algorithm that uses sequential Monte Carlo

methods (ABC SMC for short). Maintaining the same notation of the previous
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section, the idea behind the ABC SMC algorithm is that the posterior distributions

of the parameters in the model, π (θ|D), are obtained through intermediate dis-

tributions, called populations, which converge to the final posterior distributions.

To this end, the sample size N and the tolerance thresholds ε1 > ε2 > · · · > εT

are defined, with T representing the number of iterations required to obtain the

posterior distributions. Note that the tolerance threshold is reduced iteration by

iteration. In the first iteration, the parameters (or particles) are sampled from

the prior distributions π(θ) and are used to simulate model predictions D∗ from

the model described by π (D|θ∗). A distance d(D∗,D) is computed between the

simulated predictions and the experimental data. If d(D∗,D) ≤ ε1, then θ∗ are

accepted. The process continues until the sample size N has been reached. The

accepted parameters constitute the population π (θ|d(D∗,D) ≤ ε1), and for all

the accepted particles the weights w1 = 1/N are computed. For the subsequent

iterations, the prior distributions are the posteriors obtained from the previous

iteration. Thus, the parameters θ∗ are sampled from π (θ|d(D∗,D) ≤ ε1) with

weights w1 and then perturbed according to a perturbation kernel to get θ∗∗. The

model predictions D∗ are simulated from π (D|θ∗∗). If d(D∗,D) ≤ ε2, then the

parameters θ∗∗ are accepted. The process stops when a number of parameter val-

ues equal to the sample size N has been achieved. The weights w2 are computed for

all the accepted particles. The procedure is repeated T times and the set of the ac-

cepted parameters of the last iteration π(θ|d(D∗,D) ≤ εT ) comprises the posterior

distribution of the parameters in the model. Therefore, the ABC SMC algorithm

requires the definition of the prior distribution, distance, tolerance thresholds and

perturbation kernel. The method is summarised in Algorithm 3.

Note that in the ABC methods illustrated in this section, users have the freedom

to choose the distance function between the experimental data sets and the model

simulations. For a specifically chosen distance function, the ABC inference can be

equivalent to a full likelihood inference for a deterministic system. Indeed, if the

distance function is chosen to be the Euclidean distance, i.e., the sum of squared

errors, then the ABC inference is equivalent to the maximum likelihood problem

for deterministic models for which normally distributed errors are assumed (see

Appendix C of Toni et al. (2009)).
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2. MATHEMATICAL BACKGROUND

Algorithm 3 ABC sequential Monte Carlo algorithm (Toni et al., 2009).

1: Set the number of iterations T , define the tolerance thresholds ε1 > ε2 > · · · >
εT and the sample size N . Set the population indicator i = 1.

2: while i < T do:

3: Initialise the sample size n = 0.

4: while n < N do:

5: if i = 1 then

6: Sample θ∗∗ from π(θ).

7: else

8: Sample θ∗ from the previous iteration posterior distribution,

{θ(k)
i−1} = π (θ|d(D∗,D) ≤ εi−1), k = 1, . . . , N , with weights wi−1.

Perturb θ∗ to obtain θ∗∗ ∼ Ki(θ|θ∗). If π(θ∗∗) = 0, re-sample θ∗

until π(θ∗∗) 6= 0.

9: end if

10: Simulate the model predictions D∗ from π (D|θ∗∗).
11: If d(D∗,D) ≤ εi, set θ

(n)
i = θ∗∗ and set n→ n+ 1. Calculate the

weights of the particles θ
(n)
i as

w
(n)
i =


1 if i = 1,

π(θ
(n)
i )∑N

j=1 w
(j)
i−1Ki(θ

(n)
i |θ

(j)
i−1)

if i > 1,

12: end while

13: Normalise the weights and set i→ i+ 1.

14: end while
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2.4 Deterministic models

2.4 Deterministic models

The mathematical models presented in this thesis are mainly stochastic. In par-

ticular, I worked with continuous time Markov chains to model cell population

dynamics (Chapters 3 and 4) and transmission of tick-borne infection (Chapter 5).

Thus, the quantities of interest of such models, e.g., the number of cells in a given

stage of the cell cycle in Chapter 3 or the number of infected individuals in Chap-

ter 5, are random variables. If one considers the expected values of such variables,

their dynamics over time can be described by ordinary differential equations. This

leads to a deterministic model for the means of the stochastic variables. The main

difference between a stochastic and a deterministic model is that, given a set of

parameter values, the stochastic model output is a collection of different realisa-

tions of the process, whereas the output resulting from the deterministic model

is always the same. Thus, stochastic models account for uncertainty and random

fluctuations of the variables of interest, which are ubiquitous in many biological

processes. However, stochastic models can introduce many mathematical details

and consequently complexity. Deterministic models may help to gain useful in-

sights analysing an approximated, simpler, process.

To better understand the setting of Chapters 3 and 4, consider a family of random

variables Xj(t), j = 1, . . . , N , and let Mj(t) = E[Xj(t)] be their expected values.

The evolution of Mj(t) over time can be described as

dMj(t)

dt
= f(Mi(t),θ), i, j = 1, . . . , N,

where θ is the vector of the parameters in the model and f(·, ·) is a function

of the parameters and the variables of the model. In order to find f(·, ·), one

can consider the probability master equation and the generating functions of the

random variables Xj(t), j = 1, . . . , N . Alternatively, it is possible to look at the

events that can occur in the stochastic process in a short time interval ∆t. The

use of ordinary differential equations to model mean quantities in a stochastic

process is useful to link the theoretical predictions of the model to experimental

data, as shown in Chapters 3 and 4. This stochastic approach enables to define

also higher moments of the random variables Xj(t), i.e., E[(Xj(t))
l], l ≥ 1, which
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2. MATHEMATICAL BACKGROUND

could potentially be used when parameterising the model if adequate data sets

were available.
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Chapter 3

Multi-stage models of cell

proliferation and death: tracking

cell divisions with Erlang

distributions

Cells of the immune system patrol our bodies for months or years (den Braber

et al., 2012; Westera et al., 2013). During an adaptive immune response, a subset

of specific cells, initially a small fraction of the total population, expands as cells

undergo multiple rounds of division over a few days (Antia et al., 2005). Although

most of these cells die as the infection is overcome, lasting immunity is ensured by

the transformation, or “differentiation” of individual cells to a memory phenotype.

Stochastic models are appropriate here because some cells undergo multiple rounds

of division, some die, and others of the same type in the same conditions do not

divide at all (Deenick et al., 2003; Pereira et al., 2003). If individual cells behave

independently, then each cell can be imagined as sampling from a probability

density of times to division and death. Given its unique memoryless property

described in equation (2.12), the exponential density is the most mathematically

and computationally convenient choice. It ensures analytical tractability, at least

in some scenarios, and computational efficiency of stochastic simulations using

the Gillespie algorithm (Gillespie, 1976, 1977). In particular, the consideration

of exponentially distributed inter-event times leads to a Markovian framework,
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DISTRIBUTIONS

which is capable to account for heterogeneity at the single-cell level, identifying

different types of cells. In these models, the variables describe the number of cells

of each type as a function of time, and cellular events such as division, death or

differentiation are defined by their associated rates; each event corresponds to a

possible fate of an individual cell. Since the inter-event times are exponentially-

distributed random variables, their probability density is maximised at zero.

The rapid expansion of cohorts of lymphocytes is recreated in laboratories, either

by stimulation in vitro or by transferring cells to lymphopenic mice. By labelling

cells with carboxyfluorescein succinimidyl ester (CFSE) (Lyons & Parish, 1994) or

cell trace violet (Quah & Parish, 2012) at the beginning of an experiment, and then

using flow cytometry at a later time, a cohort of cells can be classified into genera-

tions; that is the number of rounds of divisions a cell undergoes over the course of

the experiment. Indeed, each round of division dilutes the intracellular dye, which

is equally distributed from the mother to the two daughter cells (De Boer et al.,

2006; Gett & Hodgkin, 2000; Hasbold et al., 1999; Lee & Perelson, 2008; Lyons &

Parish, 1994; Wellard et al., 2011). At the beginning of an experiment, when cells

are labelled, it is considered that all cells are in generation 0.

In more recent years, time-lapse microscopy experiments allowed to track individ-

ual cells and identified correlations within family trees of immune cells (Dowling

et al., 2014; Duffy & Subramanian, 2009; Duffy et al., 2012; Hawkins et al., 2009;

Kinjyo et al., 2015; Markham et al., 2010; Wellard et al., 2010). Over the timescales

of such experiments, hours to days, it is not appropriate to treat cell division as an

instantaneous event. Rather, cells are “cycling” through gap, synthesis and mitosis

phases (G1/G2, S and M), and daughter cells cannot immediately redivide (Pandit

& De Boer, 2019). To improve on the exponential distribution, Smith and Mar-

tin proposed a model in which the time between divisions is the sum of a fixed

time spent in phase B, corresponding to S/G2/M, and a variable time spent in

phase A, corresponding to G1 (Smith & Martin, 1973). In the “single stochastic

division” model of Hogan et al. (2013), the rate of transition from A to B phase

depends on the T cell clonotype and on the number of cells competing for the

same resources (Hogan et al., 2013). If there is a common molecular mechanism

controlling the time spent in all phases of the cell cycle, then phase B may, instead,

occupy a fixed proportion of the total time (Dowling et al., 2014). Takahashi (1966,
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1968) divided the cell cycle into four phases, with the duration of each drawn from

a Pearson type III distribution. Weber et al. (2014) postulated a delayed exponen-

tial waiting time for each of the three phases, corresponding to G1, S and G2/M.

Kendall (1948) introduced the idea of cell division occurring at the end of a se-

quence of k phases, with an exponentially-distributed time spent in each phase.

Luzyanina et al. (2007) made use of a similar model, where each phase identifies a

cell generation to study methodological and computational issues related to CFSE

labelling data. Gamma and Erlang distributions have been considered to model a

cell’s time to division (León et al., 2004; Zilman et al., 2010). Yates et al. (2017)

incorporated the idea of a sequence of exponentially-distributed phases, also re-

ferred as stages, before division in a multi-stage representation of a population of

dividing cells. This yields an Erlang distribution of times to division, while retain-

ing some of the mathematical and computational advantages of the exponential

distribution (Yates et al., 2017). The number of stages N and their mean dura-

tion 1/λ can be used as free parameters to compare with experimental data (Chao

et al., 2019; Vittadello et al., 2019). On the other hand, the internal stages are a

mathematical construct that do not directly correspond to biological phases.

With a particular focus on modelling proliferating lymphocytes, Hawkins et al.

(2007) proposed a general framework, called cyton model, based on the idea that

each cell has a set of competing clocks, determining its fate. Cellular division and

death times are modelled making use of right-skewed probability distributions,

such as gamma, log-normal and Weibull. A number of features are incorporated

in the model: generation-dependent parameters, heritable factors, or correlations

between cells of the same generation (Cheon et al., 2021; Duffy & Subramanian,

2009; Markham et al., 2010). When the fate of an individual cell is determined

by competing internal clocks, the probability density of observed times between

divisions is not the same as that of the division clock because division only happens

if another fate does not. The probability density of division times is said to be

“censored” (Duffy & Hodgkin, 2012). When all clocks have exponential probability

densities, the probability density of observed division times is also exponential due

to the memoryless property of exponential random variables; this conservation of

shape does not hold for non-exponential distributions, including the log-normal

and Erlang distributions.
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In this chapter, we aim to preserve the advantages of a Markovian framework

while improving the representation of experimentally-observed division times. To

this end, we adopt a multi-stage representation of the cell cycle, building on the

approach of Yates et al. (2017), where cell death is included as a competing fate.

Phase-type distributed times to division, and exponentially distributed times to

death are used. In the simplest case, obtained by assuming identical birth and

death rates across stages, the analytical expression for the expected number of

cells in each stage as a function of time is derived, and the limiting behaviour of

the system is studied as t→ +∞. The growth rate of the cell population is derived

by calculating the proportions of cells by stage. The exponent describing the long-

term cell population growth, and the criterion for extinction of the population,

differs from what would be expected if N steps with rate λ were equivalent to a

single step of rate λ/N . Cell generations are also included in the model in order

to make theoretical predictions comparable to CFSE experimental data (Hogan

et al., 2013). The expected number of cells in each generation is found in the

case of constant birth and death rates, and number of stages across generations.

Although arising from different motivations, the multi-stage model with cell gen-

erations can be accommodated within the cyton framework, with the progressor

fraction equal to one, and division and death clocks following Erlang and expo-

nential distributions, respectively. The applicability of our stochastic approach

is shown by calibrating the multi-stage model with cell generations and its expo-

nential version with CFSE data from two populations of murine T cells (Hogan

et al., 2013). Model calibration is performed making use of Approximate Bayesian

Computation sequential Monte Carlo (ABC-SMC) approaches (Toni et al., 2009)

described in detail in Section 2.3.

The chapter is structured as follows. In Section 3.1, the multi-stage model includ-

ing cell death is presented and cell generations are incorporated in the representa-

tion. In Section 3.2, analytical results for the multi-stage framework are derived

under some conditions on the model parameters. Furthermore, the multi-stage

model with generations is compared to the cyton framework. In Section 3.3, the

multi-stage model with cell generations is calibrated by making use of CFSE data

from Hogan et al. (2013). Its performance is compared with a simple exponential

model of cell division. A final discussion is provided in Section 3.4.
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3.1 Multi-stage models of cell division and death:

a Markovian framework

A multi-stage (MS) model of the time between cell divisions is presented. Cells

pass through a sequence of N stages before dividing. Hereinafter, stages and

compartments will be used as synonyms. The stages are not directly related to

the biological phases of the cellular cycle. The time to progress from stage j to

the next one, j + 1, is an exponentially-distributed random variable with mean

1/λ(j). These rates, λ(j), j = 1, . . . , N , will be referred to as birth rates. Times to

death are also distributed exponentially, with per cell death rate µ. Thus, at each

stage, each cell may either proceed to the next one, with probability λ(j)/(λ(j) +µ),

or die, with probability µ/(λ(j) + µ). The inter-event time is a random variable,

following the exponential distribution with mean 1/(λ(j) +µ). When a cell in stage

N divides, its daughters enter the first stage.

Figure 3.1: Multi-stage model of cell division and death (MS model). The cell

cycle is divided into N different stages. A cell has to visit N stages in order to

divide. At each stage j, j = 1, . . . , N , the cell may proceed to the next stage, with

birth rate λ(j), or die, with death rate µ.
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Figure 3.1 illustrates the dynamics. This multi-stage model is equivalent to consid-

ering two independent clocks for cell division and death, which compete to decide

the cellular fate. The time-to-death clock follows an exponential distribution with

rate µ, while the division time follows a continuous phase-type distribution with

parameters α and T (see Section 2.2.3). A particular choice of phase-type distri-

bution is the Erlang(N, λ), which is a concatenation of N identically distributed

exponential steps, where all birth rates are equal: λ(j) = λ, j = 1, . . . , N . The

case µ = 0 has been considered by Yates et al. (2017).

The number of cells in stage j at time t, is the random variable Sj(t), j = 1, . . . , N .

Let Mj(t) = E[Sj(t)], be the expected value of Sj(t). In a short time interval ∆t

the following events can happen:

Mj(t+ ∆t) =

{
M1(t) + ∆t(2λ(N)MN(t)− (λ(1) + µ)M1(t)), if j = 1,

Mj(t) + ∆t(λ(j−1)Mj−1(t)− (λ(j) + µ)Mj(t)), if j = 2, . . . , N.

(3.1)

Indeed, in the case of the first stage, two daughter cells can arrive following the

division of an individual in stage N , or a cell loss may occur because a cell either

moves to stage 2 or dies. For all the other stages, a cell might join from the

previous stage, proceed to the next one or die. Letting ∆t → 0+ in (3.1), one

obtains

dMj(t)

dt
=

{
2λ(N)MN(t)− (λ(1) + µ)M1(t), if j = 1,

λ(j−1)Mj−1(t)− (λ(j) + µ)Mj(t), if j = 2, . . . , N.
(3.2)

When the MS model is extended to assign a generation to each cell, the model is

referred to as the MS-G model. In this way, model predictions can be compared

with CFSE experimental data (Lyons & Parish, 1994). CFSE is an intracellular

dye that dilutes two-fold when a cell divides. At the beginning of the experiment

cells are labelled with the dye. Then, harvesting the cells and measuring CFSE

intensity by flow cytometry at particular time instants generates cellular profiles,

and by quantifying the fluorescent intensity of any given cell, one can ascertain

the generation that this cell belongs to. CFSE data typically display a number of

intensity peaks, which reflect the number of divisions that cells of that peak have

undergone. An example of CFSE profile is displayed in Figure 3.2. The maximum

number of peaks is usually 9 or 10 due to the fact that after 10 divisions, the
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Figure 3.2: CFSE dilution of CD4+ T cells cultured with monocyte-derived cells

from the CD4+ T cell-monocyte cultures from Figure 1 of Zhang et al. (2020).

intensity of the dye is 210 fold lower than that of the initial one, and comparable

to the auto-florescence of cells (Ganusov et al., 2007).

In the MS-G model, generation g ≥ 0 is split into Ng different stages. The notation

Ng reflects the fact that the number of stages may depend on the generation g. A

cell in generation g has to sequentially visit all Ng compartments to divide. On the

other hand, cells might also die at any stage of the cycle. As depicted in Figure 3.3,

if a cell belongs to generation g and is in compartment j, j = 1, . . . , Ng − 1, it

may proceed to the following stage, with birth rate λg, or die with death rate

µg. Again the notation reflects the potential for these rates to depend on the

generation. When a cell reaches the last stage, Ng, of generation g and divides,

its two daughters will join the first compartment of generation g+ 1. In summary,

given a cell in generation g, its time to division follows an Erlang distribution with

parameters (Ng, λg), whereas its time to death follows an exponential distribution

with rate µg. These distributions correspond to two independent competing clocks

to control cellular fate, similarly to those considered in Figure 3.1.

The number of cells in stage j of generation g at time t is the random variable

Sgj (t), g ≥ 0, j = 1, . . . , Ng. Let M g
j (t) = E[Sgj (t)] be the expected value of Sgj (t).

To obtain the dynamics of M g
j (t) over time, the events that can happen in a short
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Figure 3.3: Multi-stage model with cell generations (MS-G model). Each cell

in the first stage of generation 0 has to visit all the N0 compartments in order to

divide. When cells arrive at the last stage of generation 0, N0, they may divide

with birth rate λ0, or die with death rate µ0. If a cell divides, its daughter cells

join the first stage of the next generation, and the process continues.
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time interval ∆t are considered:

M g
j (t+ ∆t) =


M0

1 (t) + ∆t(−(λ0 + µ0)M0
1 (t)), if g = 0, j = 1,

M g
j (t) + ∆t(λgM

g
j−1(t)− (λg + µg)M

g
j (t)), if g ≥ 0, j 6= 1,

M g
j (t) + ∆t(2λg−1M

g−1
Ng−1

(t)− (λg + µg)M
g
j (t)) if g ≥ 1, j = 1.

(3.3)

Indeed, the only possible events affecting cells in stage 1, generation 0, is either

one of these cells moving to the next stage, or dying. If instead one looks at the

first stage of all generations but 0, two cells may arrive following a division in the

last stage of the previous generation, or a cell might die or proceed to the following

stage. Lastly, at any intermediate stage (j = 2, . . . , Ng) within a generation g, a

cell may join from the previous stage, proceed to next one, die, or divide if j = Ng.

The set of differential equations below follows from equation (3.3) letting ∆t→ 0+:

dM g
j (t)

dt
=


−(λ0 + µ0)M0

1 (t), if g = 0, j = 1,

λgM
g
j−1(t)− (λg + µg)M

g
j (t), if g ≥ 0, j = 2, . . . , Ng,

2λg−1M
g−1
Ng−1

(t)− (λg + µg)M
g
1 (t), if g ≥ 1, j = 1.

(3.4)

One aims to compute the mean number of cells over time for the MS and MS-G

models. Specifically the MS-G model will provide the mean number of cells in each

generation, and thus, can be used together with CFSE data to obtain division and

death rates. When division times are Erlang distributed (MS model), or if one

considers that those Erlang distributions are identical across generations (MS-G

model), it is possible to carry out a comprehensive analytical study. This is shown

in Section 3.2.

When convenient analytical solutions cannot be obtained, (3.2)-(3.4) can be solved

numerically in different ways. For example, for the MS-G model, and keeping in

mind our interest in modelling CFSE data, it is assumed there exists a maximum

generation G that can be measured by the dye. Thus, one might be interested

in following cells within generations g = 0, . . . , G. For these generations, equa-

tions (3.4) can be solved by making use of the matrix exponential. To this end,

let M(t) be the column vector of the mean number of cells in each stage and
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generation as time evolves, i.e.,

M (t) =
(
M0

1 (t), . . . ,M0
N0

(t),M1
1 (t), . . . ,M1

N1
(t), . . . ,MG

1 (t), . . . ,MG
NG

(t)
)T

= (M0(t)T ,M1(t)T , . . . ,MG(t)T )T ,

which has length
∑G

g=0Ng, and where the column sub-vectors Mg(t) contain the

mean number of cells across stages in generations g = 0, . . . , G. Also, the coefficient

matrix is defined as

A =


A00 0N0×N1 0N0×N2 · · · 0N0×NG−1

0N0×NG
A10 A11 0N1×N2 · · · 0N1×NG−1

0N1×NG
...

. . . . . . . . .
...

...
0NG−1×N0 0NG−1×N1 0NG−1×N2 · · · AG−1,G−1 0NG−1×NG
0NG×N0 0NG×N1 0NG×N2 · · · AG,G−1 AG,G

 ,

where

Agg =



−(λg + µg) 0 0 0 · · · 0
λg −(λg + µg) 0 0 · · · 0
0 λg −(λg + µg) 0 · · · 0
...

. . . . . . . . . . . .
...

0 · · · 0 λg −(λg + µg) 0
0 · · · 0 0 λg −(λg + µg)


,

Ag,g−1 =


0 · · · 0 2λg−1

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 .

Agg is a square Ng×Ng matrix, whereas Ag,g−1 is a Ng×Ng−1 matrix. A is then a

real square matrix of dimension
∑G

g=0 Ng, and 0a×b represents a null matrix with

dimension a × b. Given the vector of the initial conditions n0, which has length∑G
g=0Ng, the system of equations (3.4) can be rewritten as the following Cauchy

problem {
dM(t)

dt
= A ·M(t),

M (0) = n0.
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3.2 Exact mean number of cells in each stage and generation

The solution of the system is given by M(t) = eAtn0, where

eAt =
+∞∑
k=0

(At)k

k!

represents the matrix exponential. For efficient ways of computing this matrix,

see Refs. Gómez-Corral & Garćıa (2014); Gómez-Corral & López Garćıa (2013);

Moler & Van Loan (1978, 2003). Finally, since CFSE data describe the number of

cells in each generation, one can then compute the mean number of cells in each

generation over time as

M g(t) =

Ng∑
j=1

M g
j (t), g ≥ 0. (3.5)

Using (3.4) and (3.5), the time evolution of M g(t) is computed as follows

dM0(t)

dt
= −λ0M

0
N0

(t)− µ0M
0(t),

dM g(t)

dt
= 2λg−1M

g−1
Ng−1

(t)− λgM g
Ng

(t)− µgM g(t), g ≥ 1.

(3.6)

In a related approach by Zilman et al. (2010), a cell’s time to division is a gamma-

distributed random variable, and time to death is exponentially distributed. So-

lutions are given in terms of integral equations. Here, with Erlang-distributed

division times, a set of linear differential equations is found for the expected num-

ber of cells in each stage.

3.2 Exact mean number of cells in each stage and

generation

In this section, it is shown how the Markovian framework of the proposed multi-

stage models provides analytical tractability under some simplifying assumptions.

The aim is to compute the mean number of cells in each stage and generation over

time, and then to study the long-term behaviour as t→ +∞.
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3.2.1 MS model with Erlang division time

In this section, a simple case of the MS model, where identical birth rates are

assumed across different stages, is considered; that is, λ(j) = λ, j = 1, . . . , N . The

phase-type distribution for the time to division in Figure 3.1 is Erlang(N, λ) and

the mean time to division is given by N
λ

. Note that when N = 1 the MS model

becomes a Markovian linear birth-and-death process (see Section 2.2.2), with birth

rate, λ, and death rate, µ. Equations (3.2) become

dMj(t)

dt
=

{
2λMN(t)− (λ+ µ)M1(t), if j = 1,

λMj−1(t)− (λ+ µ)Mj(t), if j = 2, . . . , N.
(3.7)

As in Yates et al. (2017), new variables are introduced to derive the solutions

of (3.7). In particular, the system is rewritten in terms of mj(t) = e(λ+µ)tMj(t),

j = 1, . . . , N , which satisfy the following ODEs:

dmj(t)

dt
=

{
2λmN(t), if j = 1,

λmj−1(t), if j = 2, . . . , N.
(3.8)

An N th-order homogeneous differential equation for mN(t) that does not depend

on µ is derived:
dNmN(t)

dtN
= 2λNmN(t), (3.9)

together with a set of ODEs that relate mj(t) to the derivatives of mN(t) with

respect to time

mj(t) =

(
1

λ

)N−j
dN−jmN(t)

dtN−j
, j = 1, . . . , N − 1. (3.10)

The characteristic polynomial associated to (3.9) is

P (x) = xN − 2λN ,

and its roots in C are given by

xk = 2
1
N λ

(
cos

(
2kπ

N

)
+ i sin

(
2kπ

N

))
, k = 0, . . . , N − 1,

which can be written in the exponential form as

xk = 2
1
N λe

2kπ
N
i, k = 0, . . . , N − 1.
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Hence, the solution of (3.9) is given by

mN(t) =
N−1∑
k=0

cke
2

1
N λzkt, (3.11)

where z = e
2πi
N is the first Nth root of unity and ck are yet undetermined constants

which depend on the initial conditions. If, at time t = 0, there are C0 cells in the

first stage and zero cells in any other stage, then

ck =
C0

2N
2

1
N zk, k = 0, . . . , N − 1. (3.12)

In order to prove this, mN(t) is first differentiated with respect to time to derive

the analytical expression of mj(t) according to equation (3.10). As zkN = 1 for all

k = 0, . . . , N − 1, one obtains

mj(t) =
N−1∑
k=0

ck

(
2

1
N zk

)N−j
e2

1
N λzkt = 21− j

N

N−1∑
k=0

ckz
−kje2

1
N λzkt. (3.13)

It is now shown by substitution that the constants ck are given by (3.12). For

j = 1 one gets

m1(0) = 21− 1
N

N−1∑
k=0

C0

2N
2

1
N zkz−k = C0,

and if j = 2, . . . , N

mj(0) = 21− j
N

N−1∑
k=0

C0

2N
2

1
N zkz−jk =

C0

N
2

1−j
N

N−1∑
k=0

zk(1−j).

To prove that mj(0) = 0, the summation
∑N−1

k=0 z
k(1−j) is studied. The sum of the

Nth roots of unity is equal to zero. Indeed, from zN = 1 one obtains

0 = zN − 1 = (z − 1)(zN−1 + zN−2 + · · ·+ z + 1) = (z − 1)
N−1∑
k=0

zk.

Since z 6= 1, it is proved that
∑N−1

k=0 z
k = 0. On the other hand zN(1−j) = 1 for

all j = 2, . . . , N , so that one concludes
∑N−1

k=0 z
k(1−j) = 0 and therefore mj(0) = 0,

j = 2, . . . , N . Replacing the expression of the constants (3.12) in (3.13) and going
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Figure 3.4: Analytical solutions derived in equations (3.14) (solid lines) are com-

pared with stochastic simulations (dots) realised using the Gillespie algorithm.

Each dot is the mean value of 200 realisations. The number of stages is N = 4

and the birth and death rates are λ = 1.2 and µ = 0.2 (on the left), µ = 0 (on the

right) with units of inverse time t−1.

back to the original variables Mj(t), j = 1, . . . , N , the solutions of system (3.7) are

Mj(t) = C0
2

1−j
N

N
e−µt

N−1∑
k=0

z(1−j)ke

(
2

1
N zk−1

)
λt
, j = 1, . . . , N. (3.14)

In Figure 3.4, the analytical solutions obtained for Mj(t), j = 1, . . . , N are com-

pared with stochastic simulations of the process realised making use of the Gille-

spie algorithm (Gillespie, 1976, 1977). The solutions and the stochastic realisations

agree. The expected number of cells in each stage Mj(t), j = 1, . . . , N are plot-

ted when the death rate is µ = 0.2 (on the left) and µ = 0 (on the right). One

notes that in the latter case, corresponding to the model considered by Yates et al.

(2017), the cell population grows significantly faster. Furthermore, the inclusion

of cell death makes population extinction possible (as shown in Figure 3.6), con-

versely to the model proposed by Yates et al. (2017), where the population of cells

always grows exponentially.

The total number of cells in the population at time t ≥ 0 is defined as S(t) =∑N
i=1 Si(t), so that M(t) = E[S(t)] is expected total number of cells in the popu-
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lation at time t. From (3.14), M(t) can be derived as

M(t) =
N∑
j=1

Mj(t) = C0
2

1
N

2N
e−µt

N−1∑
k=0

zk

2
1
N zk − 1

e

(
2

1
N zk−1

)
λt
, (3.15)

where the final expression is obtained recalling that the sum of the first N + 1

terms of a geometric series is given by
∑N

i=0 x
i = 1−xN+1

1−x . One also notes that the

time evolution of M(t) can be easily derived from (3.7) as

dM(t)

dt
= λMN(t)− µM(t). (3.16)

Mean fraction of cells at each stage

As in Yates et al. (2017), the mean fraction of cells in each stage, Pj(t), is defined

as the ratio between the mean number of cells in compartment j and the expected

total number of cells in the population, i.e.,

Pj(t) =
Mj(t)

M(t)
, j = 1, . . . , N. (3.17)

Making use of (3.7) and (3.16), the dynamics over time of Pj(t), j = 1, . . . , N obey

the differential equations

dPj(t)

dt
=

{
λ(2PN(t)− P1(t)− P1(t)PN(t)), if j = 1,

λ(Pj−1(t)− Pj(t)− Pj(t)PN(t)), if j = 2, . . . , N,
(3.18)

which have the following steady state solution

P ∗1 =
2P ∗N

1 + P ∗N
, P ∗j =

P ∗j−1

1 + P ∗N
, j = 2, . . . , N. (3.19)

One observes that P ∗j < P ∗j−1, j = 1, . . . , N − 1, which means (on average) the

fraction of cells decreases stage by stage, independently of the initial distribution

of cells. In fact, one can solve (3.19) to determine P ∗j , as follows

P ∗j =
(

N
√

2
)N−j (

N
√

2− 1
)
, j = 1, . . . , N, (3.20)

which interestingly does not depend on λ or µ. Thus, at late times the fraction of

cells in each stage only depends on the number of stages considered; the parameter

λ sets the timescale of the dynamical system, and all cells are equally susceptible

to death, regardless of the stage they are in. Figure 3.5 shows the values of

P ∗j , j = 1, . . . , N for different values of N .
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Figure 3.5: Mean fraction of cells in each stage in the long term derived in equa-

tion (3.20) as a function of the number of stages N .

Population extinction versus unlimited growth

In order to study the long-term behaviour of the population of cells, the MS model

with Erlang division time is considered. One can define

p
(m)
j = lim

t→+∞
P(S(t) = 0 | Sj(0) = m, Sk(0) = 0, k 6= j), j = 1, . . . , N,

the probability of population extinction at late times, for m cells initially in stage

j at time t = 0. Since cells behave independently, it is clear that p
(m)
j =

(
p

(1)
j

)m
,

so I omit the super-index hereinafter and denote p
(1)
j ≡ pj. A first-step argument

leads to

pi =
µ

λ+ µ
+

λ

λ+ µ
pi+1, i = 1, . . . , N − 1,

pN =
µ

λ+ µ
+

λ

λ+ µ
p2

1.

These equations can be solved recursively, leading to

p1 =

{ 1
(1−r)N − 1, if µ < (21/N − 1)λ,

1, if µ ≥ (21/N − 1)λ,
(3.21)

where r = µ
µ+λ

. When N = 1, p1 = µ
λ
, that is the extinction probability of a

birth-and-death process (Allen, 2010); when N = 2, p1 = µ2+2µλ
λ2

.
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Figure 3.6: Long-term behaviour when t → +∞ of a population with an initial

number of cells, C0 = 102. Birth and death rates, λ and µ, have units of inverse

time, t−1. Left. Parameters: N = 5, λ = 0.6, µ = (21/N − 1)λ. The population

of cells in stage j levels out to 2
1−j
N C0/N for sufficiently large times. Centre.

Parameters: N = 5, λ = 0.5, µ = 0.1, so that µ > (21/N − 1)λ. The population

of cells at any stage becomes extinct at late times. Right. Parameters: N = 5,

λ = 0.8, µ = 0.1, so that µ < (21/N − 1)λ. The populations grow according

to (3.25) and the relation between M1 and M5 given by equation (3.24) is satisfied.

For example, at t = 100, M1(t) ' 24/5M5(t).

The analytical solutions (3.14)-(3.15) provide another route to study the limiting

behaviour as t → +∞. The terms of the summation in (3.14) are considered in

order to explore if there exists a dominant term. When k = 0, the exponent is

given by (21/N − 1)λ − µ, which can be positive, if µ < (21/N − 1)λ or negative,

when µ > (21/N − 1)λ, or zero if µ = (21/N − 1)λ. When k > 0, one notices that

Re
((

2
1
N zk − 1

)
λ− µ

)
=

(
2

1
N cos

(
2πk

N

)
− 1

)
λ− µ. (3.22)

Since the cosine function is always less or equal to 1, the right hand side of (3.22)

is dominated by
(
21/N − 1

)
λ − µ for all k = 1, . . . , N − 1. This means that the

leading term in the summation of (3.14) is the one corresponding to k = 0. To

conclude the analysis, three cases are distinguished:

1. µ = (21/N − 1)λ. The exponent of the term corresponding to k = 0 is
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zero. For k > 0, the exponents become 21/Nλ(zk − 1), which have negative

real part for all k = 1, . . . , N − 1. Therefore, the long-term behaviour of

Mj(t), j = 1, . . . , N and M(t) is derived as

lim
t→+∞

Mj(t) =
2

1−j
N C0

N
, j = 1, . . . , N, and lim

t→+∞
M(t) =

2
1
NC0

N
,

as shown in Figure 3.6 (left).

2. µ > (21/N − 1)λ. The exponent of the term corresponding to k = 0 is

negative. Since it is the dominant term, the exponent is also negative for

k = 1, . . . , N − 1. Thus, extinction of the cell population is certain, that

is limt→+∞Mj(t) = 0 for all j = 1, . . . , N . Figure 3.6 (centre) shows an

example of extinction when N = 5, λ = 0.5 t−1, µ = 0.1 t−1 – where t is the

unit of time – and the initial number of cells is C0 = 102.

3. µ < (21/N−1)λ. Since the dominant term corresponds to k = 0, as t→ +∞,

Mj(t) '
2

1−j
N C0

N
e

(
(2

1
N −1)λ−µ

)
t
, j = 1, . . . , N, (3.23)

and

lim
t→+∞

M1(t)

MN(t)
= 2

N−1
N , (3.24)

which is illustrated in Figure 3.6 (right).

The leading term in the summation of (3.15) is the one corresponding to

k = 0. Therefore, as t→ +∞,

M(t) ' C0
2

1
N

2N
(

2
1
N − 1

) e(σNλ−µ)t, where σN = 2
1
N − 1. (3.25)

The exponent σN = 2
1
N −1, describing the long-term cell population growth,

plotted in Figure 3.7, is lower than would be expected if N steps with rate

λ were equivalent to a single step of rate λ/N . As N → +∞, we have

NσN → log 2. In terms of (3.20), λσN < λ/N because PN(t) < 1/N as

t→ +∞. Because the cell population is unevenly distributed across stages,

with a bias towards earlier stages in the long run as shown in equation (3.20),

N steps with rate λ are not equivalent to a single step of rate λ/N .
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1 2 3 4 5 6

0.5

1

N

21/N − 1

1/N

Figure 3.7: The exponent σN that determines the asymptotic growth rate of the

population is shown against the number of stages. The dotted line would be

expected if N steps with rate λ were equivalent to a single step of rate λ/N .

3.2.2 MS-G model with identical Erlang division times

across generations

The solutions of the system (3.4) can be written in a closed analytical form in

particular cases. For example, one may consider a simplified scenario where the

number of stages is equal to 1 for all the generations, i.e., Ng = 1 for all g ≥ 0.

Thus, system (3.6) becomes

dM g(t)

dt
=

{
−(λ0 + µ0)M0(t), if g = 0,

2λg−1M
g−1(t)− (λg + µg)M

g(t), if g ≥ 1.
(3.26)

Then, if at time t = 0, there are C0 cells in generation 0, so that nT0 = (C0, 0, . . . , 0),

this leads by recursion to the following solutions:

M0(t) = C0e−(λ0+µ0)t,

M g(t) = 2g C0

(
g−1∏
l=0

λl

)
g∑
i=0

e−(λi+µi)t

g∏
k=0,k 6=i

1

λk + µk − λi − µi
, g ≥ 1.

(3.27)

In this case the MS-G model becomes a birth-and-death process tracking cell

generations, and becomes identical to that considered in Refs. De Boer & Perelson

(2005); Luzyanina & Bocharov (2018); Luzyanina et al. (2007); Revy et al. (2001),

where the inter-event times of cell death and division are modelled as exponential

random variables, rather than Erlang distributions.
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Another particular case is when one considers identical number of stages, N , and

rates, λ and µ, across generations, so that division times are Erlang-distributed in

each generation. Under these assumptions, it is possible to obtain an analytical

expression for the mean number of cells in each generation. In particular, system

(3.4) becomes

dM g
j (t)

dt
=


−(λ+ µ)M0

1 (t), if g = 0, j = 1,

λM g
j−1(t)− (λ+ µ)M g

j (t), if g ≥ 0, j = 2, . . . , N,

2λM g−1
N (t)− (λ+ µ)M g

1 (t), if g ≥ 1, j = 1.

(3.28)

These equations can be rewritten in terms of the new variablesmg
j (t) = e(λ+µ)tM g

j (t),

for g ≥ 0, j = 1, . . . , N . This is equivalent to multiplying (3.28) by the integrating

factor e(λ+µ)t. Thus, (3.28) become

dmg
j (t)

dt
=


0, if g = 0, j = 1,

λmg
j−1(t), if g ≥ 0, j = 2, . . . , N,

2λmg−1
N (t), if g ≥ 1, j = 1.

(3.29)

To determine the solutions of (3.29), we focus here on the case M0
1 (0) = m0

1(0) =

C0, while all the other compartments are empty at time t = 0. This implies that

m0
1(t) = C0 for t ≥ 0, and by solving (3.29) recursively one gets

m0
j(t) = C0λ

j−1 tj−1

(j − 1)!
, j = 1, . . . , N.

This expression allows one then to determine the mean number of cells in each

stage of generation 1,

m1
j(t) = 2C0λ

N+j−1 tN+j−1

(N + j − 1)!
, j = 1, . . . , N. (3.30)

By recursion of (3.29) the mean number of cells in each compartment j of gener-

ation g is given by

mg
j (t) = 2gC0λ

gN+j−1 tgN+j−1

(gN + j − 1)!
for g ≥ 0, j = 1, . . . , N.

Going back to the original variables, M g
j (t), the solutions of (3.28) are

M g
j (t) = 2gC0λ

Ng+j−1 tNg+j−1

(Ng + j − 1)!
e−(λ+µ)t, g ≥ 0, j = 1, . . . , N. (3.31)
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From the previous equations, one can show that

lim
t→+∞

M g
j (t) = 0, for all g ≥ 0, j = 1, . . . , N,

since cells in each generation and compartment either proceed to the next stage

within their generation, divide (proceeding to the next generation), or die.

Once the mean number of cells in each compartment for a given generation is at

hand, the expected number of cells in each generation can be determined according

to (3.5). It can be written

M g(t) =
N∑
j=1

M g
j (t) = 2gC0(λt)Nge−(λ+µ)t

N∑
j=1

(λt)j−1

(Ng + j − 1)!
, g ≥ 0. (3.32)

This equation is consistent with the results of the exponential model (N = 1) (see

Section 3.2 of Luzyanina et al. (2007)). On the other hand, if one is interested in

the mean number of cells in each compartment, Mj(t) for j = 1, . . . , N , regardless

of the generation they belong to, this can be computed as follows

Mj(t) =
+∞∑
g=0

M g
j (t) =

+∞∑
g=0

2g C0 λ
gN+j−1 e−(λ+µ)t tgN+j−1

(gN + j − 1)!

= C0 e−(λ+µ)t 2
1−j
N

+∞∑
g=0

(
2

1
N λt

)gN+j−1

(gN + j − 1)!
,

(3.33)

for j = 1, . . . , N and t ≥ 0. In practice, one could truncate the series above to

get an approximation of the mean number of cells in each stage. However, one

can use instead the solution provided by (3.14), since the dynamics of the MS-G

model is equivalent to the dynamics of the MS model, when the parameters N , λ

and µ are generation-independent. It can be numerically checked, that this indeed

provides equivalent results as shown in Figure 3.8. The analytical solutions of the

MS model derived in (3.14) (solid lines) are compared with stochastic simulations

of the MS-G model realised with the Gillespie algorithm (Gillespie, 1976, 1977).

The two models agree.

Moreover, when N = 1 or N = 2, one can analytically show the equivalence. In

the former case (N = 1), it is enough to recall the power series of the exponential
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Figure 3.8: Equivalence between the analytical solutions of the MS model (solid

lines) and stochastic simulations of the MS-G model (dots) to compute the ex-

pected number of cells in each stage under the assumption of identical number of

stages N , birth and death rates, λ and µ, across generations. The number of stages

is N = 3, the rates are fixed as λ = 0.04, µ = 0.01 and have unit of inverse time

t−1. The simulations consider a maximum number of generations G = 5. Each

dot is the mean value of 500 realisations realised with the Gillespie algorithm.
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function. In the latter case (N = 2), we derive from (3.14)

M1(t) =
C0

2
e−(λ+µ)t

(
e
√

2λt + e−
√

2λt
)
,

M2(t) =
C0

2
√

2
e−(λ+µ)t

(
e
√

2λt − e−
√

2λt
)
,

using the fact that z = eπi = −1. On the other hand, from (3.33) one obtains

M1(t) = C0e−(λ+µ)t cosh
(√

2λt
)

= C0e−(λ+µ)t e
√

2λt + e−
√

2λt

2
,

M2(t) = C0e−(λ+µ)t sinh
(√

2λt
)

=
C0√

2
e−(λ+µ)t e

√
2λt − e−

√
2λt

2
.

This shows that the two models lead to the same expected number of cells in each

stage.

3.2.3 Comparison between the MS-G model and the cyton

model

The cyton model is a stochastic model proposed by Hawkins et al. (2007) to describe

the population dynamics of B and T lymphocytes. Division and death times are

regulated by two independent clocks, and the competition between both clocks

determines the fate of the cell. In the cyton model, each clock is described by a

probability density function, and the parameters that define these probabilities are

the free parameters in the model. Right skewed distributions, such as log-normal

or gamma, are usually adopted to characterise the two independent clocks that

regulate cell division and death. When a cell divides, these clocks, which depend

on the number of divisions the cell has undergone, are reset for each daughter

cell. However, when analysing an in vitro experiment with this type of cells,

there is evidence that not all cells either divide or die. For instance, a portion of

them may not respond to the stimulation (Pereira et al., 2003), or may respond

without division (Deenick et al., 2003). This is the reason why a progressor fraction

is defined in the cyton model. This progressor fraction represents for a given

generation, the fraction of cells that are capable of undergoing further division. In

summary, the cyton model is based on the following assumptions:
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• death and division are random events, characterised by a probability density

function for the time to divide or die, respectively,

• these processes are independent, and compete to determine the fate of the

cell,

• the clocks responsible for these processes are reset in the daughter cells when

a cell divides,

• only a fraction of the cells in each generation are capable to undergo further

divisions, and

• the intra-cellular mechanisms that regulate cellular fate depend on the cell’s

generation.

In order to translate these assumptions into mathematical terms, let γg be the

progressor fraction characterising cells having undergone g divisions, and let φg(·)
and ψg(·) represent the probability density functions for the time to division and

death, respectively, for cells in generation g. The number of cells dividing for the

first time, or dying, per unit time at time t ≥ 0 can be calculated, respectively, as

(Hawkins et al., 2007):

ndiv0 (t) = γ0 C0

(
1−

∫ t

0

ψ0(s)ds

)
φ0(t), (3.34)

ndie0 (t) = C0

(
1− γ0

∫ t

0

φ0(s)ds

)
ψ0(t), (3.35)

where C0 is the initial number of cells in the population. Consequently, the time

evolution of the expected number of cells in generation 0, M̃0(t), obeys the differ-

ential equation

dM̃0(t)

dt
= −

[
ndiv0 (t) + ndie0 (t)

]
. (3.36)

The number of cells in generation g dividing, or dying, per unit time at time t can

be computed, respectively, as

ndivg (t) = 2γg

∫ t

0

ndivg−1(s)

[
1−

∫ t−s

0

ψg(l)dl

]
φg(t− s)ds, (3.37)

ndieg (t) = 2

∫ t

0

ndivg−1(s)

[
1− γg

∫ t−s

0

φg(l)dl

]
ψg(t− s)ds. (3.38)
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Hence, the dynamics of the average number of cells in each generation, M̃ g(t), is

governed by the differential equations

dM̃ g(t)

dt
= 2ndivg−1(t)− ndivg (t)− ndieg (t), g ≥ 1. (3.39)

In the next sections we show how the cyton model is equivalent to our model for

particular choices of the probability density functions of the division and death

clocks, φg(·) and ψg(·), and the progressor faction γg.

Exponential time to division and death

Here the MS-G model is considered with number of stages across generations

equal to one, i.e., Ng = 1 for all g ≥ 0. This means that cells in generation

g divide after an exponentially distributed time with rate λg, and die with rate

µg. This is different to a Markovian linear birth-and-death process, since rates

are generation-dependent. The evolution through time of M g(t), g ≥ 0, obeys the

differential equations derived in (3.26). In this case, the MS-G model is equivalent

to the cyton model with exponential times for division and death, and progressor

fraction γg = 1, g ≥ 0. One can show this equivalence by proving that ndivg (t) =

λgM
g(t) and ndieg (t) = µgM

g(t), by induction on g. In the cyton model, the

assumption of exponential time to division and death implies that φg(t) = λge
−λgt

and ψg(t) = µge
−µgt, g ≥ 0. Therefore, according to (3.34) and (3.35), the number

of cells at time t dividing for the first time or dying to exit generation 0 per unit

time is given by

ndiv0 (t) = C0λ0e−(λ0+µ0)t, ndie0 (t) = C0µ0e−(λ0+µ0)t.

From (3.27), one knows that M0(t) = C0e−(λ0+µ0)t. Therefore, it is possible to

write ndiv0 (t) = λ0M
0(t) and ndie0 (t) = µ0M

0(t), which proves the case g = 0.

Following induction, one assumes ndivg (t) = λgM
g(t) and ndieg (t) = µgM

g(t) hold

for generation g and needs to show they also hold for generation g + 1. Making
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use of (3.27) and (3.37), it follows

ndivg+1(t) = 2

∫ t

0

λg2
gC0

g−1∏
l=0

λl

g∑
i=0

e−νis
g∏

k=0,k 6=i

1

νk − νi
λg+1e−νg+1(t−s)ds

= λg+12g+1C0

g∏
l=0

λl

g∑
i=0

e−νg+1t

∫ t

0

g∏
k=0,k 6=i

e(νg+1−νg)s

νk − νi
ds

= λg+1M
g+1(t),

where νi = λi + µi. For the number of cells in generation g + 1 dying, equation

(3.38), together with (3.27) lead to

ndieg+1(t) = 2

∫ t

0

λg2
gC0

g−1∏
l=0

λl

g∑
i=0

e−νis
g∏

k=0,k 6=i

1

νk − νi
µg+1e−(νg+1)(t−s)ds

= µg+12g+1C0

g∏
l=0

λl

g∑
i=0

e−νg+1t

∫ t

0

g∏
k=0,k 6=i

e(νg+1−νg)s

νk − νi
ds

= µg+1M
g+1(t),

which concludes the proof. With the identities ndivg (t) = λgM
g(t) and ndieg (t) =

µgM
g(t) in (3.36) and (3.39), one shows that M g(t) and M̃ g(t) obey the same

differential equations for all g ≥ 0. Thus, the two models are equivalent.

Erlang time to division and exponential time to death

I now consider the more interesting case where the number of stages in each gen-

eration is greater than one, and the cell cycle can be described as a multi-stage

process. The focus here is on the case where identical number of stages N and birth

and death rates, λ and µ, respectively, are considered across generations. Similarly

to the previous case, one can show that ndivg (t) = λM g
N(t) and ndieg (t) = µM g(t)

by induction on g. Since a cell’s time to division is Erlang distributed and a cell’s

time to death is exponentially distributed, ψg(t) = µe−µt for all g ≥ 0 and

φg(t) =
λN tN−1e−λt

(N − 1)!
, g ≥ 0,

where the progressor fraction is again set to 1 for each generation. Note that

in this case the parameters in φg(·) and ψg(·) are independent of the generation
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g, since the number of stages and the birth and death rates are identical for all

generations. From (3.34) and (3.35), the number of cells dividing for the first time

or dying to exit generation 0 per unit time at time t is

ndiv0 (t) =
C0λ

N tN−1

(N − 1)!
e−(λ+µ)t, ndie0 (t) = C0µe−(λ+µ)t

N−1∑
j=0

(λt)j

j!
.

The dynamics of the expected number of cells in generation 0 is given by (3.36),

as in the previous case. Using (3.31) and (3.32), one observes that

M0(t) = C0e−(λ+µ)t

N−1∑
j=0

(λt)j

j!
, M0

N(t) =
λN tN−1

(N − 1)!
e−(λ+µ)t.

Therefore, ndiv0 (t) = λM0
N(t) and ndie0 (t) = µM0(t), which concludes the case g = 0.

Making use of these identities in (3.36) one obtains

dM̃0(t)

dt
= −λM0

N(t)− µM0(t),

which is the differential equation derived in (3.6) for M0(t). Now, let us suppose

that the identities ndivg (t) = λM g
N(t) and ndieg (t) = µM g(t) hold for generation g

and we prove them for generation g+1. Using (3.37) and the induction hypothesis,

we have

ndivg+1(t) = 2

∫ t

0

λ2gC0
(λs)Ng+N−1

(Ng +N − 1)!
e−(λ+µ)se−µ(t−s)λ

N(t− s)N−1e−λ(t−s)

(N − 1)!
ds

= 2g+1 λN(g+2)

(N(g + 1)− 1)!
C0e−(λ+µ)t 1

(N − 1)!

∫ t

0

sN(g+1)−1(t− s)N−1ds

= 2g+1 λN(g+2)

(N(g + 1)− 1)!
C0e−(λ+µ)t

N−1∑
j=0

(−1)jtN−1−j

j!(N − 1− j)!

∫ t

0

sN(g+1)−1+jds

= λ2g+1 (λt)N(g+1)+N−1

(N(g + 1) +N − 1)!
C0e−(λ+µ)t = λM g+1

N (t),

where we have used (3.31) for the last step. The same arguments can be used to

look at the number of cells in generation g + 1 dying per unit of time given by
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equation (3.38). Together with the induction hypothesis, we can write

ndieg+1(t) = 2

∫ t

0

λ2gC0
(λs)Ng+N−1

(Ng +N − 1)!
e−(λ+µ)se−λ(t−s)

N−1∑
j=0

λj(t− s)j

j!
µe−µ(t−s)ds

= 2g+1λNg+NC0
e−(λ+µ)tµ

(Ng +N − 1)!

N−1∑
j=0

λj

j!

∫ t

0

sNg+N−1(t− s)jds

= 2g+1λNg+NC0e−(λ+µ)tµ
N−1∑
j=0

λj
j∑

k=0

tj

k!(j − k)!

tk+N+Ng

k +N +Ng

(−1)k

(Ng +N − 1)!

= µ2g+1C0e−(λ+µ)t

N−1∑
j=0

(λt)N(g+1)+j

(N(g + 1) + j)!
= µM g+1(t),

where the last identity was obtained making use of (3.32). Hence, (3.39) becomes

dM̃ g(t)

dt
= 2λM g−1

N (t)− λM g
N(t)− µM g(t), g ≥ 1,

which is identical to (3.6) for M g(t), g ≥ 1. This concludes the proof of the

equivalence between the cyton model and the multi-stage model with generations

when a cell’s time to divide is Erlang distributed with parameters λ and N , and a

cell’s time to die is exponential with rate µ. In summary, the analysis presented in

this section for the multi-stage model with Erlang division time and exponential

death time leads to novel analytical solutions for the cyton model with the previous

choice of clocks.

3.3 Case study: lymphopenia-induced prolifera-

tion

In this section, I illustrate the applicability of the MS-G model to CFSE data,

making use of an experimental study of lymphopenia-induced proliferation (Hogan

et al., 2013). In particular, the performance of the MS-G model is compared

to that of a simple exponential (or single stage) model with generations, which

is equivalent to making Ng = 1 for all g in the MS-G model. The statistical

comparison is realised by means of the corrected version of the Akaike Information
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Criterion (AICC) (Anderson & Burnham, 2004; Burnham & Anderson, 2004). See

Appendix A for the derivation of the AICC .

Lymphopenia is defined as an abnormally low or reduced level of lymphocytes in

the peripheral blood and can occur due to viral infections, chemical and physical

lympho-depleting agents, autoimmune-related systemic diseases, genetic factors,

cancers, sepsis and other severe injuries (Guo et al., 2021). This condition results

in an abundance of available resources for T cells (such as IL-7). Consequently,

a process called lymphopenia-induced proliferation (LIP) can occur to restore the

normal number of lymphocytes. Differences in T cell response to lymphopenia have

been observed to vary between distinct T cell clonotypes (i.e., the set of T cells with

the same T cell receptor). Thus, Hogan et al. (2013) considered T lymphocytes

belonging to two different T cell clonotypes, namely OT-I and F5 T cells, which are

characterised by different rates of LIP. In particular, F5 T cells show a relatively

slow rate of LIP, whereas OT-I T lymphocytes undergo a significantly more rapid

LIP (Hogan et al., 2013). CFSE-labelled OT-I or F5 T cells were transferred

intravenously to lymphopenic mice. A certain number of days (3, 4, 5, 6, 7, 10, 12

and 18 days) after the transfer, spleens and lymph nodes were recovered from the

mice and analysed by flow cytometry to quantify the expression levels of CD8, CD5,

CD44, and CFSE dilution (Hogan et al., 2013). For each time point, the number

of mice analysed was between 3 and 7. Two independent transfer experiments,

carried out under identical conditions, were performed: one for OT-I cells and a

second one for F5. In Figure 3.9, both data sets are shown: for each time point

the number of cells is plotted for each mouse and generation (identified via CFSE

dilution measurement). On the left (right), OT-I (F5) cells are represented by the

green (blue) histograms. In order to infer model parameters, all cells which have

divided five or more times will be considered as a single class, denoted 5+. This is

similar to the approach considered in Refs. De Boer et al. (2006); Ganusov et al.

(2007); Zilman et al. (2010). The rationale behind this choice is to reduce errors

in the quantification of labelled cells with low CFSE fluorescence, as is the case

for five or more divisions.

Figure 3.9 clearly shows that OT-I T cells proliferate faster than F5 cells, so

that by day 7 there are OT-I cells in generation 10, whereas for F5 cells the

maximum generation observed at day 7 is 6. This greater proliferative capacity of
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Figure 3.9: Data set of murine T lymphocytes from Hogan et al. (2013). Left:

OT-I T cells. Right: F5 T cells. For each time point, the number of cells is

plotted for each mouse and generation.
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OT-I cells eventually leads, after one week, to competition for resources (e.g., IL-7

cytokine) and the OT-I population approaching its carrying capacity (Hogan et al.,

2013). Since our model does not account for competition, it can only appropriately

describe the dynamics of OT-I cells during the first week of the experiment. Thus,

for OT-I cells we will only make use of the data set up to that time (one week).

Yet for the F5 population we will use the entire data set since that effect (carrying

capacity) is not observed. In Hogan et al. (2013) this competition was incorporated

with a density-dependent birth rate, λ(P ), as follows

λ(P ) = λ̄ e−δP , (3.40)

where λ̄ is the rate of growth under unlimited resources, δ the size of reduction

caused by the expansion of competing cells, and P is the size of the popula-

tion (Hogan et al., 2013). Figure 3.10 shows the density-dependent birth rate,

λ(P ), as a function of the population size P . It suggests that the competition for

resources is greater in the case of OT-I T cells. In the experiments the number of

OT-I cells after one week (about 5×105) is larger than the population of F5 T cells

at day 18 (about 4 × 105). Therefore, the population of F5 T cells never reaches

its carrying capacity and the role of competition for resources can be neglected.

We aim to model the dynamics in Figure 3.9 by using the MS-G model, for which

we need to estimate a number of model parameters. These model parameters are

estimated by means of the ABC-SMC method illustrated in Algorithm 3 (Toni

et al., 2009). Thus, the posterior distribution of the parameters is obtained by T

sequential applications of the ABC algorithm, where the posterior obtained in each

iteration is used as prior for the next one. Algorithm 3 requires the definition of

prior distributions for the first iteration, a distance function, a tolerance threshold

for each iteration, and a perturbation kernel (Toni et al., 2009). Uniform prior dis-

tributions are assumed for all the parameters in the model, which means for each

parameter a credible interval, where the parameter is believed to lie, is defined.

Since further information is not added and the structure of the prior distribution

does not favour any particular parameter value, all the knowledge that one will

obtain from the calibration will actually come from the experimental data. The

ranges of the prior distributions are described in Table 3.1. When a prior distribu-

tion spans several orders of magnitude, the uniform distribution is taken over the
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Figure 3.10: Density-dependent birth rate, λ(P ), as a function of the population

size, P . The parameter λ̄, with units of cell · day−1, represents the rate of growth

under no competition and δ quantifies the level of reduction caused by the expan-

sion of competing cells. Values for λ̄ (shown in the inset) and δ = 6.0 × 10−6 are

taken from Table 1 of Hogan et al. (2013).

exponent to efficiently explore parameter space. Given xgD(t), the experimentally

determined mean number of cells in generation g at time t, for g ∈ {0, 1, 2, 3, 4, 5+},
and its corresponding model prediction, xgM(t) = M g(t) for a particular choice of

parameters θ = (C0, N0, N, λ0, λ, α), the distance function is defined as

d(model,data | θ) =

√√√√ G∑
g=0

∑
t∈T

[
xgM(t)− xgD(t)

σgD(t)

]2

, (3.41)

where T is the set of time points and depends on the clonotype of interest (either

OT-I or F5), σgD(t) represents the standard deviation of the experimental data at

time t and generation g, and G is the merged (and maximum) generation, G = 5+.

In practice, the first tolerance threshold, ε1, in the ABC-SMC algorithm is defined

as the median value of the distances obtained from 104 preliminary realisations,

with the parameters sampled from the prior distributions in Table 3.1. The sub-

sequent tolerance thresholds, εj, j = 2, . . . , T can be then defined as the median

of the distance values obtained from the previous iterations of the algorithm. Fi-

nally, a uniform perturbation kernel is used to perturb the parameters during the

sequence of iterations (Toni et al., 2009), and the algorithm is implemented for
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T = 16 in the case of the multi-stage model and T = 7 for the single stage one.

Before performing the Bayesian inference, some assumptions are made based on

the experimental set-up. Several studies have shown that the time to first division

is larger than the time to subsequent divisions, since cells require time to become

activated before they divide (Hawkins et al., 2007; Kinjyo et al., 2015; Markham

et al., 2010). Thus, I assume that all generations but 0 are comprised of the same

number of stages N , whereas generation 0 is characterised by N0 stages. Similarly,

cells in generation 0 proceed to divide with birth rate λ0, whilst all the other

generations have a birth rate λ. Therefore, in contrast to the inference in Zilman

et al. (2010), the number of stages N0 and N are free parameters in the model.

On the other hand, the per cell death rate in a given generation is assumed to be

linear on the number of cell divisions that the cell has undergone (Ganusov et al.,

2007; Mazzocco et al., 2017). That is

µg = α g, g ≥ 0, (3.42)

where α is a parameter to estimate. These linear death rates encode the fact

that cells are more likely to die when they have already undergone several divi-

sions (Ganusov et al., 2007; Mazzocco et al., 2017). Finally, the initial number of

cells, C0, is considered a parameter to be estimated, since the actual number of

transferred cells which make it to the lymph nodes or spleen cannot be measured.

The calibration of the simple exponential model is carried out similarly, but just

with the constraint N0 = N = 1.

Model parameter Description Prior distribution

C0 Initial number of cells C0 = 10x, x ∼ U(4, 6)

N0, N Number of stages Udiscrete(1, 50)

λ0, λ Birth rate λ0 = 10y, λ = 10z, y, z ∼ U(−3, 1)

α Death rate slope α = 10w, w ∼ U(−5,−1)

Table 3.1: Prior distributions for parameters in the multi-stage model with cell

generations. Units for λ0, λ and α are inverse hours (h−1).

The calibrated model predictions obtained for each model, and for each clonotype

(OT-I or F5), are shown in Figure 3.11. I run the model with the parameters
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being sampled from the estimated posterior distributions and compute the median

of all the model predictions, which corresponds to the solid magenta (multi-stage

model) and turquoise (exponential model) lines in Figure 3.11. The bands around

median predictions represent 95% confidence intervals, which are calculated as

the central 95% intervals of the model predictions for those parameter values.

Thus, the lower bound of the confidence interval is given by the 2.5th percentile

of all the model predictions, whereas the upper bound corresponds to the 97.5th

percentile. Data points are plotted with the standard deviation from the multiple

experimental replicates. As shown in Figure 3.11, the calibrated MS-G model

successfully captures the dynamics of the proliferating T-cell populations (OT-I

and F5), whereas the single stage model significantly underestimates the expected

number of cells beyond generation 1, particularly in the case of OT-I T cells.

The corrected version of the Akaike Information Criterion (AICC) (Anderson &

Burnham, 2004; Burnham & Anderson, 2004) was used to quantify the better fit of

the MS-G model accounting for the extra parameters N0 and N in the multi-stage

model. The values of AICC for each model and clonotype are listed in Table 3.2.

Despite the two extra parameters, the values of AICC corresponding to the multi-

stage model are significantly lower for both clonotypes. Overall, the MS-G model

is able to explain the data from the OT-I transfer experiment better, since this

data set is less noisy than the F5 set.

Mathematical model Cell type Value of AICC

Multi-stage OT-I T cells 50.4

Exponential OT-I T cells 283

Multi-stage F5 T cells 206

Exponential F5 T cells 317

Table 3.2: AICC values for the exponential and multi-stage models with cell gen-

erations calibrated with CFSE data of murine T lymphocytes.

The marginal posterior distributions for each parameter are shown in green and

blue in Figures 3.12 and 3.13, for the multi-stage and exponential models, respec-

tively, and the (uniform) prior distributions are plotted in red. Summary statistics

of these posterior distributions are shown in Tables 3.3-3.6. Cell death is governed
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A

B

Figure 3.11: Exponential (solid turquoise line) and multi-stage (solid magenta line)

model predictions compared to the data sets (orange dots) for OT-I (A) and F5

(B) T cells. Bars on data points represent their standard deviation. The expected

number of cells in each generation is plotted as a function of time. These predic-

tions represent the median value of 104 simulations with the accepted parameter

values from the posterior distributions. Shaded areas represent 95% confidence

intervals.
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by the parameter α, and is estimated to be low for both models and clonotypes,

suggesting that cell death does not have a significant impact on the dynamics

during lymphopenia, which is in fact dominated by cell division. This result is in

agreement with Hogan et al. (2013), where the death rate is assumed to be zero.

The initial number of cells can be estimated with relative success, and does not

seem to depend heavily on the model considered. On the other hand, cell division

is governed by parameters (N0, λ0, N, λ), with N0 = N = 1 in the exponential

model. One notes that in both models, N0

λ0
and N

λ
represent the mean time to the

first and subsequent divisions, respectively. Although all division-related parame-

ters can be estimated from the data, for both models and clonotypes, a correlation

between the division rate and the number of stages is seen in the scatter plots

of Figure 3.14. Instead of plotting the marginal posterior distributions for these

parameters, one can consider the posterior distribution for the mean times N0

λ0
and

N
λ

(see Figure 3.14). The fact that N = 1 is never chosen as an accepted parameter

value in the posterior distribution for the multi-stage model and the OT-I clono-

type already suggests that a multi-stage representation of cell division is preferred

for this clonotype. On the other hand, for the F5 clonotype the marginal distri-

bution for N shows a non-zero frequency for the value 1, but larger values of N

are also represented in its posterior distribution. The mean time to both first and

subsequent divisions, N0

λ0
and N

λ
, are significantly longer for the F5 clonotype than

the OT-I. In fact, our results estimate that F5 T cells divide slowly compared to

OT-I cells, requiring on average 192 hours to carry out a first division (59 hours

taken by OT-I T cells), as shown in Figure 3.14 for the multi-stage model. The

time to subsequent divisions is represented by the blue histograms. Interestingly,

my estimation of the mean time to first division of OT-I cells, on average 59 hours,

is close to the value obtained by Hogan et al. (2013) (52 hours when considering

the best fit parameter estimates). In the case of F5 cells, my results predict an

average of 192 hours to undergo their first division, whereas Hogan et al. obtained

a value of 137 hours. Still, one notes that the value 137 hours is within the range

covered by the predicted posterior distribution.

Results here indicate that OT-I T lymphocytes require on average 59 hours for

their first division, and a bit less, 46 hours, for subsequent divisions (see upper

left plot of Figure 3.14). Based on the ABC-SMC approach, one concludes that
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A

B

Figure 3.12: Posterior distributions (green and blue) for the parameters in the

multi-stage (A) and exponential (B) model for OT-I T cells. In the exponential

model, the number of stages for all generations is equal to 1, i.e., N0 = N = 1.

Prior distributions are shown in red.

Param. Minimum Maximum Mean Median Std dev

C0 3.00× 104 1.03× 105 4.67× 104 4.54× 104 8.03× 103

N0 1 7 2.83 3 1.23

N 2 34 6.59 5 4.30

λ0 1.98× 10−2 1.08× 10−1 4.64× 10−2 4.56× 10−2 1.45× 10−2

λ 2.80× 10−2 8.08× 10−1 1.48× 10−1 1.20× 10−1 1.01× 10−1

α 1.00× 10−5 5.97× 10−3 5.06× 10−4 1.76× 10−4 7.47× 10−4

Table 3.3: Summary statistics of OT-I clonotype posterior distributions for the

multi-stage model. Although N0 and N are integers, the means of their posterior

distributions are non-integers.
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A

B

Figure 3.13: Posterior distributions (green and blue) for the parameters in the

multi-stage (A) and exponential (B) model for F5 T cells. In the exponential

model, the number of stages for all generations is equal to 1, i.e., N0 = N = 1.

Prior distributions are shown in red.

Param. Minimum Maximum Mean Median Std dev

C0 4.74× 104 1.85× 105 9.26× 104 8.94× 104 2.22× 104

N0 1 10 3.01 3 1.53

N 1 35 2.42 2 2.57

λ0 2.68× 10−3 7.20× 10−2 1.70× 10−2 1.47× 10−2 1.07× 10−2

λ 2.06× 10−3 5.88× 10−1 2.20× 10−2 9.54× 10−3 3.90× 10−2

α 1.00× 10−5 6.21× 10−3 1.35× 10−3 8.19× 10−4 1.40× 10−3

Table 3.4: Summary statistics of F5 clonotype posterior distributions for the multi-

stage model. Although N0 and N are integers, the means of their posterior distri-

butions are non-integers.
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A

B

Figure 3.14: Joint posterior distributions (left two columns) of the number of

stages N0, N and the birth rates λ0, λ. Marginal posterior distributions (right

two columns) for the mean time to first and subsequent divisions estimated from

the multi-stage model (third column) and the exponential model (fourth column).

Panel A for OT-I T cells and B for F5 T cells.

Param. Minimum Maximum Mean Median Std dev

C0 1.43× 104 5.46× 105 2.40× 104 2.34× 104 5.28× 103

λ0 1.56× 10−2 6.19× 10−2 2.40× 10−2 2.28× 10−2 5.69× 10−3

λ 7.45× 10−3 1.29× 10−2 9.88× 10−3 9.78× 10−3 1.10× 10−3

α 1.00× 10−5 7.23× 10−3 4.76× 10−4 1.32× 10−4 8.17× 10−4

Table 3.5: Summary statistics for the posterior distributions of the exponential

model for the OT-I clonotype.
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Param. Minimum Maximum Mean Median Std dev

C0 4.54× 103 1.10× 105 7.33× 104 7.22× 104 1.39× 104

λ0 2.50× 10−3 7.18× 10−3 4.24× 10−3 4.13× 10−3 9.28× 10−4

λ 1.79× 10−3 3.92× 10−3 2.77× 10−3 2.76× 10−3 4.66× 10−4

α 1.00× 10−5 1.52× 10−3 1.72× 10−4 7.30× 10−5 2.23× 10−4

Table 3.6: Summary statistics for the posterior distributions of the exponential

model for the F5 clonotype.

a multi-stage model with a constant division rate after the first division event, is

a suitable description of lymphopenia-induced proliferation (De Boer & Perelson,

2005; Gett & Hodgkin, 2000; Zilman et al., 2010). The MS-G model estimates that

F5 cells take on average slightly less than 200 hours to divide, both for the first

or subsequent division rounds, as shown in the lower left plot of Figure 3.14. This

dissimilarity can be explained by the different characteristics in terms of prolifera-

tive capacity of OT-I and F5 T cells, and was previously observed by Hogan et al.

(2013). The posterior distributions of the expected time to subsequent divisions

in the MS-G model, N
λ

, and in the exponential one, 1
λ
, shown as blue histograms

in Figure 3.14, indicate that the exponential model predicts a longer division time

than the multi-stage model for both clonotypes. This can be explained by the

implementation of the ABC-SMC algorithm. Indeed, when parameterising the

exponential model, the algorithm tries to keep the distance between the model

predictions and the experimental observations low. This leads to the choice of

parameter sets which limit cell proliferation, as shorter division times in the ex-

ponential model would lead to an increase in cell numbers not observed in the

data set, and thus, larger distance values. This is why the estimated birth rates in

the exponential model are lower than the ones in the multi-stage representation.

As a result, the exponential model predicts a greater average division time than

the multi-stage model for both clonotypes. Finally, my results indicate that for

both clonotypes the exponential model (see Figure 3.14) found a shorter time to

first division than to subsequent ones, contradicting previous findings (Hawkins

et al., 2007; Kinjyo et al., 2015; Markham et al., 2010), which support longer first

division times. This is related to the fact that, overall, the exponential model is
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not able to capture the observed cell dynamics for neither of the clonotypes, as

can be seen in Figure 3.11.

3.4 Discussion

A multi-stage model of cell proliferation and death, tracking cell generations, is pro-

posed in this chapter, leading to a modelling framework which retains the benefits

of a Markov process. With particular choices of rates, the models in this chapter

are equivalent to previously published models used to study lymphocyte prolifer-

ation (De Boer & Perelson, 2005; Hawkins et al., 2007; Luzyanina & Bocharov,

2018; Luzyanina et al., 2007; Revy et al., 2001; Zilman et al., 2010). In the case

study of Section 3.3, the MS-G model performs better than the exponential model

of time to division. The model implemented here provides a flexible framework

for estimating the birth and death rates that describe the dynamics of lymphocyte

populations (Callard & Hodgkin, 2007; De Boer & Perelson, 2013). The repre-

sentation retains the advantages of a Markovian approach, including analytical

tractability in some cases, and computational efficiency of numerical simulations

with the Gillespie algorithm (Gillespie, 1976, 1977). The expected number of cells

in each generation satisfies a set of linear differential equations. Further statistical

comparison of the models in this chapter with other published models (De Boer

& Perelson, 2005; Hawkins et al., 2007; Luzyanina & Bocharov, 2018; Luzyanina

et al., 2007; Revy et al., 2001; Zilman et al., 2010) and with different experimental

data sets is the aim of future work.

It has been observed by Hawkins et al. (2007); Kinjyo et al. (2015); Markham et al.

(2010) that immune cells typically need longer to divide for the first time, whereas

later divisions require shorter times (see e.g. Gett & Hodgkin (2000)). It is possible

to assume that divided and undivided cells have different probability densities of

time to cell division in exponential and Smith-Martin models (Ganusov et al.,

2007; Lee & Perelson, 2008; Mazzocco et al., 2017). With the multi-stage model

introduced here, the separation need not be explicit because it is incorporated in

the generation-dependent parameters. A longer mean time to first division, N0

λ0
,

than mean time to subsequent divisions, N
λ

, is a natural feature of the framework.

Extension of the mathematical analysis in Section 3.2 to the case λ0 6= λ, N0 6= N
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and possibly generation-dependent death rate µg, g ≥ 0, would be desirable to

compute analytically the expected number of cells in each generation also in this

more general setting.

My calculations rely on the assumption that cells are independent of each other.

In particular, no fate correlation is assumed between daughter cells and their

progenitors, or between siblings. However, data sets from time-lapse microscopy

of B and T cell families (Dowling et al., 2014; Duffy & Hodgkin, 2012; Duffy

& Subramanian, 2009; Duffy et al., 2012; Hawkins et al., 2009; Markham et al.,

2010; Wellard et al., 2010) show that division and death times for siblings are

correlated, and “division destiny” is a familial characteristic (Cheon et al., 2021).

A Markovian mathematical model that accounts for siblings fate correlation will

be presented in Chapter 4.

A further potential extension of the MS-G model is the introduction of a population

carrying capacity. In the model as described in Section 3.2, the mean number of

cells over time either increases without bound, dies out or reaches a steady-state,

depending on the relation between division-related parameters (birth rate and

number of stages in the cell cycle), and the death rate. Competition for resources

may be modelled using density-dependent birth and/or death rates (Callard et al.,

2003; Dessalles et al., 2021; Hogan et al., 2013), or by rates that depend on the

time-dependent availability of resources (Hart et al., 2014).
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Chapter 4

Two-type branching process to

study cellular dynamics with cell

fate decision at birth

Mathematical models of population dynamics are often required to account for

different types of individuals within the same population. For instance, in cancer

biology, mutant cells may lead to tumour growth or acquired drug resistance (Antal

& Krapivsky, 2011; Cheek & Antal, 2018; Gunnarsson et al., 2020); in epidemiol-

ogy, it might be important to consider age-dependent risk profiles when modelling

the spread of a disease (Lovell-Read et al., 2022), and to track exposed and infec-

tious individuals to determine the probability of an outbreak (Allen, 2015). The

theory of branching processes provides a powerful mathematical tool, the so-called

multi-type branching processes, to model dynamics that involve non-identical indi-

viduals (Athreya et al., 2004).

Till et al. (1964) made use of a two-type branching process classifying cells based

on their proliferative potential to model colony growth from a single cell in mice

spleens. Thus, the population of cells is divided into two pools: stem cells with

unlimited proliferative potential, from which a colony is formed, and differentiated

cells that cannot give rise to a colony. Since the interest was in studying the

process of colony formation, only the dynamics of stem cells (i.e., a birth-and-

death process) was considered. In the following years this model was extended

by Mackillop et al. (1983) with the incorporation of a third pool of cells to study
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tumour growth. Therefore, the population is comprised of three distinct types of

cells: cells with unlimited proliferative potential (also called stem cells), cells that

can undergo a limited number of divisions, and cells incapable of further divisions.

When a cell division occurs, daughter cells join each pool with a given probability.

Coldman et al. (1985) and Coldman & Goldie (1986) used this model to study

the emergence of drug resistance assuming that stem cells are initially sensitive

to drug delivery. However, they can then generate either two sensitive cells or

one sensitive and one drug resistant cell upon division with a given probability.

The resulting dynamics of drug sensitive and resistant stem cells is a two-type

branching process.

The underlying idea of these models, where cells are classified in different types

and decide which pool to enter at birth (i.e., daughter cells decide which pool they

join when a division occurs), has been adapted here to describe the dynamics of a

population of cells over time with the aim of investigating the role of fate correlation

of siblings making use of a Markovian model. Cells are categorised according to

their fate, either division or death. Thus, the population is divided into two pools

defined by cellular fate. In the division pool, there are cells whose fate is division,

whereas the death pool consists of cells that are going to die. Hawkins et al.

(2009) and Markham et al. (2010) suggest that cellular fate is determined at, or

soon after, birth. Therefore, when a division occurs, both daughter cells enter the

division pool with probability p1, both join the death pool with probability p2, or

have different fates with probability p3 = 1 − p1 − p2. Conversely to the model

proposed by Till et al. (1964), we follow the dynamics of both types of cells, and

in contrast to Mackillop et al. (1983), our mathematical model does not account

for cells with a limited proliferative potential. On the other hand, the approach

proposed here allows for the generation of two cells in the death pool from a cell

in the division pool, whereas two drug resistant cells cannot arise from a division

of a sensitive cell (Coldman & Goldie, 1986; Coldman et al., 1985).

After the instantaneous decision at birth, cellular fate (i.e., either division or

death) takes some random time to happen. As a first approach, cellular times

to division and death are modelled making use of exponential random variables.

In this instance, the analytical expression of the probability generating function

(pgf for short) of the number of cells in each pool is derived. The expected time
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to extinction of the division pool is computed making use of the theory of birth-

and-death processes (Allen, 2010). We note that a particular case of this model

under the assumption p1 = p2 and exponential times to division and death has

been considered by Antal & Krapivsky (2010) to study cell dynamics in skin tissue.

Thus, some of our work here generalises the analysis carried by Antal & Krapivsky

(2010).

As discussed in Chapter 3, despite being the most convenient choice from both a

mathematical and a computational perspective, the exponential distribution does

not provide an accurate representation of a cell’s time to division when studying

cellular proliferation. Therefore, we also consider in this chapter the Erlang distri-

bution to model a cell’s time to division or death. In this case, each cell is required

to visit a sequence of identical and independent exponentially distributed stages

before dividing or dying. With this structure in place, the expected number of

cells in each pool is computed as a function of time, and the long-term behaviour

of the system is studied when t→ +∞.

Interestingly, the model with cellular fate decision at birth presented here separates

the cell population timescale – and therefore its rate of growth – from the cellular

fate probability and long-term behaviour, which depend on the same parameters

in many mathematical models of cell population dynamics. For example, in the

classic birth-and-death process, a cell’s time to division is exponentially distributed

with birth rate λ (Tdiv ∼ Exp(λ)) and a cell’s time to death is an exponential

random variable with death rate µ (Tdeath ∼ Exp(µ)) (Allen, 2010; Pinsky &

Karlin, 2010). Thus, the inter-event times are exponentially distributed with rate

λ+ µ, and each cell’s fate is decided as a competition between these times, where

the probability that a cell divides is given by P(Tdiv < Tdeath) = λ
λ+µ

, whereas

the probability that a cell dies corresponds to P(Tdeath < Tdiv) = µ
λ+µ

. Therefore,

both cellular fate probabilities and population timescales are encapsulated into the

parameters λ and µ. Similarly, in the multi-stage model of the cell cycle proposed

in Chapter 3 (Belluccini et al., 2022), a cell’s division time is an Erlang random

variable with N stages and birth rate λ (Tdiv ∼ Erlang(N, λ)), whereas a cell’s

death time is exponentially distributed with rate µ (Tdeath ∼ Exp(µ)). The fate

of each cell is decided by the competition between these times; in particular, the

probability that a cell divides is P(Tdiv < Tdeath) =
(

λ
λ+µ

)N
, and the probability
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that a cell dies is computed as P(Tdeath < Tdiv) = 1−
(

λ
λ+µ

)N
. Thus, as in the birth-

and-death process, both cellular fate probabilities and population timescales are

determined by the parameters N , λ and µ. On the other hand, the mathematical

model of cell population dynamics proposed here separates population timescales

and cellular fate probabilities, by means of splitting the cell population into two

pools, and incorporating the new parameters p1, p2 and p3 = 1 − p1 − p2. In

particular, p1 and p2 encapsulate the cellular fate probabilities and determine the

population asymptotic behaviour, whereas p3 and the parameters that characterise

a cell’s time to division and death (i.e., birth and death rates, and number of stages

in the case of Erlang distributions) set the population rate of growth.

The Markovian nature of the model presented here ensures analytical tractability,

as shown by the results in Section 4.1, and computational efficiency of stochastic

simulation realised with the Gillespie algorithm (Gillespie, 1976, 1977). An addi-

tional feature of the model proposed here is that the choice of the probabilities

p1 and p2 allows one to account for sibling fate correlation. This is an important

feature as time-lapse microscopy experiments, allowing tracking individual cells,

identified correlations in terms of cellular fate within family trees of immune cells,

e.g., between cell siblings (Cheon et al., 2021; Hawkins et al., 2007; Kinjyo et al.,

2015; Markham et al., 2010; Wellard et al., 2010). In particular, when a division

occurs, daughter cells are more likely to have the same fate, either division or

death (Markham et al., 2010). In order to include sibling fate correlation into our

stochastic model of cell proliferation, correlation factors are defined. The applica-

bility of this approach is shown in Section 4.3 by considering a published data set

of B cell families observed with time-lapse microscopy (Hawkins et al., 2009). The

fate of siblings is broken down per division by Markham et al. (2010), allowing the

comparison of the experimental data with the theoretical probabilities p1, p2 and

p3 = 1− p1 − p2 computed in the stochastic model.

The chapter is structured as follows. Section 4.1 describes the mathematical model,

and contains the analytical results in the instance of exponential times to division

and death (Section 4.1.1) and Erlang times to division and death (Section 4.1.2).

Section 4.2 contains the sensitivity analysis carried out to study how the proba-

bility p3, the birth and death rates, and the number of stages of the division and
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death processes affect the population dynamics. Finally, in Section 4.3, the role of

sibling fate correlation is studied. Section 4.4 provides a final discussion.

4.1 The two-type branching process

A population of cells is divided into two pools based on cellular fate, either division

or death. The division pool contains cells whose ultimate fate is division, whereas

the death pool is comprised of cells whose destiny is death. As suggested by

Hawkins et al. (2009) and Markham et al. (2010), cellular fate is decided at, or

soon after, birth. Thus, we consider that, when a division occurs, daughter cells

instantaneously join the division pool with probability p1, enter the death pool

with probability p2, or have different fates with probability p3 = 1 − p1 − p2.

Cellular dynamics is depicted in Figure 4.1, where cells in the division and death

pools are represented in green and red, respectively.

cells enter the division pool

cells have different fates

cells enter the death pool

Tdiv ∼ Gdiv(·)

p1

p2

p3

Figure 4.1: Three different outcomes of a cell division event. A cell in the division

pool (green) divides after a random time Tdiv, generated from a given probability

distribution Gdiv(·). Upon division, both daughters enter the division pool (green

cells) with probability p1, or the death pool (red cells) with probability p2. Daugh-

ter cells have different fates with probability p3 = 1− p1 − p2.

After the instantaneous decision at birth, cellular fate takes some random time to

actually occur. Here, we consider the exponential (Section 4.1.1) and Erlang (Sec-

tion 4.1.2) probability densities as candidates to model these inter-event times. We

note that, by considering these distributions, our stochastic model is Markovian.
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4.1.1 Exponential times to division and death

Cellular times to division and death are assumed to be exponential random vari-

ables with rates λ and µ, respectively; Tdiv ∼ Gdiv(·) ≡ Exp(λ), Tdeath ∼ Gdeath(·) ≡
Exp(µ). As the fate decision is instantaneous at birth, the expected time to di-

vision for a cell in the division pool is 1
λ
, whereas a cell in the death pool takes

on average 1
µ

units of time to die. Under this hypothesis, the approach presented

here amounts to a generalisation of the mathematical model proposed by Antal

& Krapivsky (2010) to study cell dynamics in skin tissue, where the particular

case p1 = p2 (or r = p1 = p2, p3 = 1 − 2r adopting the notation in the paper) is

considered.

The random variables B(t) and D(t) are defined:

- B(t) is the number of cells in the division pool at time t, and

- D(t) is the number of cells in the death pool at time t.

Since we assume that cells in a given pool behave identically and independently

from each other, the resulting dynamics is a two-type branching process, or a 2-

dimensional continuous-time Markov chain, (B(t),D(t))t≥0, with state space N0 ×
N0, where N0 = N ∪ {0}.

Mean number of cells in each pool and long-term behaviour

To study the dynamics of the expected number of cells in each pool as a function

of time, let B(t) = E[B(t)] and D(t) = E[D(t)] be the expected values of B(t) and

D(t), respectively. The total mean number of cells in the population at time t,

P (t), is computed as P (t) = B(t) +D(t). During a short time interval ∆t, in the

division pool one has

B(t+ ∆t) = B(t) + ∆t (λp1B(t)− λp2B(t)) ,

where the first term in brackets reflects the possibility that a cell divides and both

daughters enter the division pool, whereas the second one corresponds to the event

that a cell divides and both daughters’ fate is death. One notices that the case

when a division occurs and daughter cells have different fates does not affect the
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number of cells in the division pool. Therefore, the evolution through time of B(t)

is given by
dB(t)

dt
= λ(p1 − p2)B(t),

from which the analytical expression of B(t) is obtained as

B(t) = B(0)eλ(p1−p2)t. (4.1)

From here, we can already note that the division pool population will grow for

p1 > p2, remain constant if p1 = p2, and decay if p1 < p2; and that this is not

affected by the probability p3, beyond the fact that these probabilities need to

satisfy the condition p1 + p2 + p3 = 1.

Let us now consider the death pool. The mean number of cells in this pool, D(t),

obeys the equation

D(t+ ∆t) = D(t) + ∆t (2λp2B(t) + λ(1− p1 − p2)B(t)− µD(t)) ,

where the first term in brackets reflects the event that a cell divides and the

offsprings enter the death pool, the second term accounts for the possibility that

a cell undergoes a division and the two daughters have different fates, and the last

term refers to a cell death. Hence,

dD(t)

dt
= 2λp2B(t) + λ(1− p1 − p2)B(t)− µD(t),

which can be solved by multiplying both sides by the integrating factor eµt. As-

suming D(0) as initial condition at time t = 0, the evolution through time of D(t)

is given by

D(t) =
λ(1− p1 + p2)

λ(p1 − p2) + µ
B(0)

(
eλ(p1−p2)t − e−µt

)
+D(0)e−µt, (4.2)

so that

P (t) = B(0)eλ(p1−p2)t +
λ(1− p1 + p2)

λ(p1 − p2) + µ
B(0)

(
eλ(p1−p2)t − e−µt

)
+D(0)e−µt. (4.3)

From (4.1) and (4.2), it is clear that the long-term behaviour of the mean of the

population as t→ +∞ depends only on the relationship between the probabilities

p1 and p2, whereas the birth and death rates λ and µ set the population dynamics

timescale. In particular, the population will grow when p1 > p2, go extinct when

p1 < p2, and reach a steady state at
(
λ
µ

+ 1
)
B(0) when p1 = p2, as shown in

Figure 4.2.
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Figure 4.2: Long-term behaviour of the expected number of cells in the division

pool (dashed lines), the death pool (dotted lines) and the whole population (solid

lines) when t → +∞ under the assumption of exponential times to division and

death derived in equations (4.1), (4.2) and (4.3), respectively. Three cases are

distinguished: p1 > p2 (left), p1 < p2 (centre), and p1 = p2 (right). The initial

condition provides a total number of 102 cells, half in the division pool and half in

the death pool. The birth and death rates are fixed as λ = 0.2 and µ = 0.1 with

units inverse of time, t−1.

Probability generating function

As the probability generating function characterises completely a discrete random

variable, the aim of this section is to derive the analytical expression of the pgf

of the number of cells in each pool. Let p(i,j)(t) denote the probability that the

process is in state (i, j), with i, j ∈ N0, at time t given the initial conditions

(B(0),D(0)) = (1, 0), i.e.,

p(i,j)(t) = P
(
(B(t),D(t)) = (i, j)|(B(0),D(0)) = (1, 0)

)
, t ≥ 0.

Note that we are omitting the initial conditions in this notation. The expression

of the Kolmogorov forward equation (or master equation) is

dp(i,j)(t)

dt
= λp1(i− 1)p(i−1,j)(t) + λp2(i+ 1)p(i+1,j−2)(t)

+ λ(1− p1 − p2)ip(i,j−1)(t) + µ(j + 1)p(i,j+1)(t)

− (λi+ µj)p(i,j)(t),

(4.4)

where the first term represents the event that a cell divides and both daughters’

fate is division, the second one accounts for the possibility that a cell divides and
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the offsprings enter the death pool, the third one refers to the probability that a

division occurs and the daughters have different fates, the fourth one corresponds

to the event that a cell dies and the last term contains rates for all the events that

can occur from state (i, j).

Let G(x, y; t) be the probability generating function of the number of cells in each

pool defined as

G(x, y; t) =
+∞∑
i=0

+∞∑
j=0

p(i,j)(t)x
iyj, x, y ∈ C, |x|, |y| ≤ 1, (4.5)

for the initial conditions (B(0),D(0)) = (1, 0). Equation (4.4) enables the deriva-

tion of a partial differential equation (PDE) for the pgf G(x, y; t). To this end, let

us consider the partial derivatives of G(x, y; t):

∂G(x, y; t)

∂x
=

+∞∑
i=1

+∞∑
j=0

p(i,j)(t)ix
i−1yj,

∂G(x, y; t)

∂y
=

+∞∑
i=0

+∞∑
j=1

p(i,j)(t)x
ijyj−1,

∂G(x, y; t)

∂t
=

+∞∑
i=0

+∞∑
j=0

dp(i,j)(t)

dt
xiyj.

Replacing equation (4.4) in the partial derivative with respect to time, one obtains

∂G

∂t
= λp1x

2∂G

∂x
+ λp2y

2∂G

∂x
+ λ(1− p1 − p2)xy

∂G

∂x
+ µ

∂G

∂y
− λx∂G

∂x
− µy∂G

∂y
,

which can be rewritten as

λ
(
p1x

2 + p2y
2 + (1− p1 − p2)xy − x

)∂G
∂x

+ µ(1− y)
∂G

∂y
− ∂G

∂t
= 0, (4.6)

with boundary condition G(x, y; 0) = x for the initial conditions (B(0),D(0)) =

(1, 0). One could attempt to solve equation (4.6) making use of the methods of

characteristics; see e.g., Ref. Pinchover et al. (2005). However, its expression

involves all the three partial derivatives of G(x, y; t). Instead, one can derive

another equation satisfied by G(x, y; t) that involves only the partial derivative

with respect to time. To this end, let dj(t) denote the probability that there are j
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cells in the death pool at time t given the initial conditions (B(0),D(0)) = (0, 1),

i.e.,

dj(t) = P
(
D(t) = j|(B(0),D(0)) = (0, 1)

)
.

The probability generating function of cells in the death pool, H(y; t), is defined

as

H(y; t) =
+∞∑
j=0

dj(t)y
j, y ∈ C, |y| ≤ 1,

with initial conditionH(y; 0) = y given that (B(0),D(0)) = (0, 1). As (B(0),D(0)) =

(0, 1), in a short time interval ∆t, ∆t→ 0+, one has

(B(∆t), D(∆t)) =

{
(0, 0) with probability µ∆t,

(0, 1) with probability 1− µ∆t.

Therefore

H(y; t+ ∆t) = µ∆t+ (1− µ∆t)H(y; t),

from which H(y; t) obeys the differential equation

∂H

∂t
= µ− µH, (4.7)

with initial condition H(y; 0) = y. Thus, the solution of (4.7) is given by

H(y; t) = 1− e−µt + ye−µt, (4.8)

which corresponds to the probability generating function of a pure death process

(Allen, 2010), as one would expect.

Let us now consider the initial conditions (B(0),D(0)) = (1, 0). In a short time

interval ∆t, ∆t→ 0+, the following scenarios are possible:

(B(∆t),D(∆t)) =


(2, 0) with probability λp1∆t,

(0, 2) with probability λp2∆t,

(1, 1) with probability λ(1− p1 − p2)∆t,

(1, 0) with probability 1− λ∆t.

Therefore

G(x, y; t+ ∆t) = G(x, y; t)(1− λ∆t) + λp1G
2(x, y; t)∆t+ λp2H

2(x, y; t)∆t

+ λ(1− p1 − p2)G(x, y; t)H(y; t)∆t,
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from which another PDE for the probability generating function G(x, y; t) is de-

rived as
∂G

∂t
= −λG+ λp1G

2 + λp2H
2 + λ(1− p1 − p2)GH, (4.9)

with boundary condition G(x, y; 0) = x for the initial conditions (B(0),D(0)) =

(1, 0). Hereinafter, the arguments used in Antal & Krapivsky (2010) will be ex-

tended to solve (4.9). Replacing the expression of (4.8) in (4.9), one gets

∂G

∂t
= λp1G

2+λ((1−p1−p2)(1−e−µt+ye−µt)−1)G+λp2(1−e−µt+ye−µt)2, (4.10)

which seems easier to solve than equation (4.6) since only the partial derivative

with respect to time appears. Indeed, its expression takes the form of a Riccati

equation (Bittanti et al., 2012), i.e., a first-order ordinary differential equation

that is quadratic in the unknown function:

Y ′(t) = A(t)Y 2(t) +B(t)Y (t) + C(t).

Without loss of generality, the birth rate is assumed to be λ = 1, which means

that the unit of time is set as the average time for a cell in the division pool to

divide. Let h(t) = 1−e−µt+ye−µt. Rewritten in terms of h ≡ h(t), equation (4.10)

becomes

µ(1− h)
∂G

∂h
= p1G

2 + p2h
2 − (p1 + p2)hG− (1− h)G, (4.11)

with initial conditions G(x, y;h(0) = y) = x at time t = 0. Equation (4.11) is then

rewritten in terms of the new variable u ≡ u(t) = 1− h(t) = (1− y)e−µt as

−µu∂G
∂u

= p1G
2 + p2(1− u)2 − (p1 + p2)(1− u)G− uG,

and its initial condition is G(x, y;u(0) = 1− y) = x. Hence, if u 6= 0, one has

∂G

∂u
= − p1

µu
G2 +

p1(1− u) + p2(1− u) + u

µu
G− p2(1− u)2

µu
. (4.12)

When u = 0, that is y = 1 (or equivalently t = 0), equation (4.10) becomes

∂G

∂t
= p1G

2 − (p1 + p2)G+ p2, (4.13)
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with boundary condition G(x, 1; 0) = x at time t = 0. Equation (4.13) is a Riccati

equation with constant coefficients. Thus, one considers the classical change of

variables adopted in the case of a Riccati equation, i.e., G(t) = −s′(t)/ (p1s(t)).

It follows

s′′(t) + (p1 + p2)s′(t) + p1p2s(t) = 0, (4.14)

with initial conditions s(0) = 1, s′(0) = −p1x. The characteristic polynomial

associated to (4.14) is

Λ2 + (p1 + p2)Λ + p1p2 = 0,

which has two distinct real roots Λ1 = −p1,Λ2 = −p2. The solution of (4.14) is

therefore

s(t) = C1e
−p1t + C2e

−p2t,

where the constants C1 and C2 are yet to be determined. Making use of the initial

conditions s(0) = 1, s′(0) = −p1x, one obtains

C1 =
p2 − p1x

p2 − p1

, and C2 =
p1x− p1

p2 − p1

.

Thus, the solution of (4.13) is given by

G(x, 1; t) =
C1p1e

−p1t + C2p2e
−p2t

p1 (C1e−p1t + C2e−p2t)
.

The aim is now to solve equation (4.12), which is a Riccati equation with coeffi-

cients

A(u) = − p1

µu
,

B(u) =
p1(1− u) + p2(1− u) + u

µu
,

C(u) =
p2(1− u)2

µu
.

As shown above, one considers the classical change of variables adopted in the

case of a Riccati equation, i.e., G(u) = −z′(u)/(A(u)z(u)), or equivalently G(u) =

−(log z(u))′/A(u), and obtains the homogeneous second-order differential equation

z′′(u) + α(u)z′(u) + β(u)z(u) = 0, (4.15)
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4.1 The two-type branching process

where

α(u) = −
(
B(u) +

A(u)

A′(u)

)
=
µ− p1(1− u)− p2(1− u)− u

µu
,

β(u) = C(u)A(u) =
p1p2(1− u)2

µ2u2
.

Let Φ(u) = e−
1
2(
∫
α(u)du). Thus, Φ′ = −α(u)Φ/2. Considering Z = z/Φ, or

equivalently, z = ΦZ, the first derivative in (4.15) disappears yielding

Z ′′ +

(
L1 +

L2

u
+
L3

u2

)
Z = 0, (4.16)

with

L1 =
2(p1 + p2)− 1− (p1 − p2)2

4µ2
,

L2 =
(p1 − p2)2 − (p1 + p2)(µ+ 1) + µ

2µ2
,

L3 =
µ2 − (p1 − p2)2

4µ2
.

In order to solve equation (4.16), two cases are distinguished: p1 =
(
1−√p2

)2

and p1 6=
(
1−√p2

)2
.

Case p1 6=
(
1−√p2

)2
. Re-scaling equation (4.16) using

v =
√
p2

1 + (p2 − 1)2 − 2p1(p2 + 1),

w =
p2

1 + (p2 − 1)(p2 − µ)− p1(1 + 2p2 + µ)

2vµ
,

η =
p1 − p2

2µ
,

g =
uv

µ
,

one obtains the canonical Whittaker differential equation (Whittaker, 1903)

d2Z

dg2
+

(
−1

4
+
w

g
+

1
4
− η2

g2

)
Z = 0. (4.17)

Notice that w is well defined as v 6= 0 since p1 6=
(
1−√p2

)2
. The solution of

(4.17) up to an irrelevant constant is given by

Z(g) = M(w, η, g) + CW (w, η, g),
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where M(w, η, g) and W (w, η, g) are the Whittaker functions (Abramowitz et al.,

1988) and C is a constant yet to be computed making use of the initial conditions.

My aim is to write the pgf G(x, y;u) in terms of its original variables (x, y; t). One

has

G(x, y;u) = −(log z(u))′

A(u)
=
µu

p1

(logZ(u) + log Φ(u))′

=
µu

p1

(
∂gM(w, η, g) + C∂gW (w, η, g)

M(w, η, g) + CW (w, η, g)

v

µ
− α(u)

2

)
=
uv

p1

∂gM(w, η, g) + C∂gW (w, η, g)

M(w, η, g) + CW (w, η, g)
− µ− (p1 + p2)(1− u)− u

2p1

,

where ∂g denotes the partial derivative with respect to g and

∂gM(w, η, g) =
(g − 2w)M(w, η, g) + (1 + 2w + 2η)M(1 + w, η, g)

2g
,

∂gW (w, η, g) =
(g − 2w)W (w, η, g)− 2W (1 + w, η, g)

2g
.

Therefore,

G(x, y;u) =
uv − 2µw − µ+ (p1 + p2)(1− u) + u

2p1

+
µ

2p1

(1 + 2w + 2η)M(1 + w, η, g)− 2CW (1 + w, η, g)

M(w, η, g) + CW (w, η, g)
.

(4.18)

The initial condition G(x, y;u = 1 − y) = x is replaced in (4.18) to compute the

constant C:

x =− (1− y)v − 2µw − µ+ (p1 + p2)y + 1− y
2p1

+
µ

2p1

(1 + 2w + 2η)M(1 + w, η, ĝ)− 2CW (1 + w, η, ĝ)

M(w, η, ĝ) + CW (w, η, ĝ)
,

where ĝ = (1−y)v
µ

. Solving the previous equation with respect to C and denoting

θ = ĝ − 2w − 1 +
(p1 + p2)y + 1− y − 2p1x

µ
,

it follows that

C =
θM(w, η, ĝ) + (1 + 2w + 2η)M(1 + w, η, ĝ)

−θW (w, η, ĝ) + 2W (1 + w, η, ĝ)
. (4.19)
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Replacing (4.19) in (4.18), and recalling the definition of u as u(t) = (1− y)e−µt,

one gets the analytical expression of the probability generating function G(x, y;u)

in terms of the original variables (x, y; t). We note that when we set p1 = p2 in

equation (4.18), we recover equation (59) in Antal & Krapivsky (2010), as one

would expect. Figure 4.3 shows the comparison between the numerical solution

of (4.9) and its analytical expression derived in (4.18), which agree.

Figure 4.3: Comparison between the numerical solution of (4.9) and its analytical

expression derived in (4.18) for the following choice of parameter values: p1 = 0.4,

p2 = 0.5, µ = 0.3, x = 0.7, y = 0.8. The death rate µ has units of inverse time,

t−1.

Case p1 =
(
1−√p2

)2
. In this instance, equation (4.16) simplifies as

Z ′′ +

(
(1− µ)(p2 −

√
p2)

µ2u
+
µ2 − (1− 2

√
p2)2

4µ2u2

)
Z = 0.

The previous equation is re-scaled through the definition of

w̃ =
(1− µ)(p2 −

√
p2)

µ2
,

η̃ =
(1− 2

√
p2)

2µ
,

yielding

Z ′′ +

(
w̃

u
+

1
4
− η̃2

u2

)
Z = 0. (4.20)
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The Frobenius method (see e.g., Chapter 4 of Ref. Teschl (2012)) is used here to

solve (4.20). This method searches for a solution in the form of a power series. In

particular, one considers

Z(u) = ur
+∞∑
k=0

Aku
k =

+∞∑
k=0

Aku
k+r, A0 6= 0, (4.21)

where the parameter r ∈ R and the coefficients Ak, k ≥ 0, are yet to be determined.

A function defined as power series is analytic in the region of convergence of

the power series, so the first and second derivatives of Z(u) are well defined and

computed as

Z ′(u) =
+∞∑
k=0

(k + r)Aku
k+r−1,

Z ′′(u) =
+∞∑
k=0

(k + r)(k + r − 1)Aku
k+r−2.

Replacing Z(u) and Z ′′(u) in (4.20), it follows

+∞∑
k=0

(k + r)(k + r − 1)Aku
k+r−2 +

(
w̃

u
+

1
4
− η̃2

u2

) +∞∑
k=0

Aku
k+r = 0,

from which we obtain the equation(
(r − 1)r +

(
1

4
− η̃2

))
A0u

r−2

+
+∞∑
k=1

(
(k + r − 1)(k + r) +

(
1

4
− η̃2

))
Aku

k+r−2

+
+∞∑
k=1

w̃Ak−1u
k+r−2 = 0.

For the previous equation to hold, the coefficients of each power of u must be null,

that is (
(r − 1)r +

(
1

4
− η̃2

))
A0 = 0 (4.22)(

(k + r − 1)(k + r) +

(
1

4
− η̃2

))
Ak + w̃Ak−1 = 0, k ≥ 1. (4.23)
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Since A0 6= 0 by construction, from (4.22) two values of r are derived, r = 1±2η
2

,

which will lead to two independent solutions of (4.20). Replacing the values of r

in (4.23), one obtains

Ak = − w̃

(k ± η̃)2 − 1
4

+ 1
4
− η̃2

Ak−1

= − w̃

k (k ± 2η̃)
Ak−1.

In order to write the solution of equation (4.20) in terms of the Bessel function of

the first kind, Jν(z), (Abramowitz et al., 1988), we choose A0 = w̃
1
2
±η̃. Thus, the

general expression of Ak is given by

Ak = (−1)k
w̃k+ 1

2
±η̃

k!(k ± 2η̃)(k − 1± 2η̃) · · · (1 +±2η̃)
,

which replaced in (4.21) yields

Z±(u) =
+∞∑
k=0

(−1)k
w̃k+ 1

2
±η̃

k!(k ± 2η̃)(k − 1± 2η̃) · · · (1± 2η̃)
uk+ 1

2
±η̃.

The functions Z±(u) can be rewritten in terms of the Bessel function of the first

kind, Jν(z) as

Z±(u) = Γ (1± 2η̃)
√
u
√
w̃J±2η̃

(
2
√
u
√
w̃
)
,

where Γ(z) is the Gamma function defined in equation (2.3). Thus, the general

solution of (4.20) is given by

Z(u) = c1Z−(u) + c2Z+(u)

=
√
u
√
w̃
(
c1Γ(1− 2η̃) J−2η̃

(
2
√
u
√
w̃
)

+ c2Γ(1 + 2η̃)J2η̃

(
2
√
u
√
w̃
))

,

where c1 and c2 are constants yet to be determined depending on the initial con-

ditions. Hence,

G(x, y;u) = −(log z(u))′

A(u)
=
µu

p1

(logZ(u) + log Φ(u))′

=
µu(

1−√p2

)2

(
Z(u)

Z ′(u)
− α

2

)
,

(4.24)
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where

Z ′(u) =
1

2
(
√
u
√
w̃)−1−2η̃w̃

(
(1 + 2η̃)c1 0F1(1− 2η̃;−uw̃)− 4η̃c1 0F1(−2η̃;−uw̃)

+(
√
u
√
w̃)4η̃c2Γ(1 + 2η̃)

(
2 0F1(2η̃;−uw̃)

Γ(2η̃)
+ (1− 2η̃)

0F1(1 + 2η̃;−uw̃)

Γ(1 + 2η̃)

))
,

where 0F1(a; z) denotes the generalised hypergeometric function (Andrews et al.,

1999). Indeed, the Bessel function can be expressed in terms of the generalised

hypergeometric function 0F1(a; z) as

Jν(z) =

(
1
2
z
)ν

Γ(ν + 1)
0F1

(
ν + 1;−1

4
z2

)
.

See for example equation (9.1.69) of Abramowitz et al. (1988) for reference. Defin-

ing c = c1
c2

and introducing the functions

d(x, y, t) = 2
0F1 (2η̃; e−µt(y − 1)η̃)

Γ(2η̃)
+ (1− 2η̃)

0F1 (1 + 2η̃; e−µt(y − 1)η̃)

Γ(1 + 2η̃)
,

f(x, y, t) = (1 + 2η̃) 0F1

(
1− 2η̃; e−µt(y − 1)η̃

)
− 4η̃ 0F1

(
−2η̃; e−µt(y − 1)η̃

)
+ c
(√

e−µt(1− y)
√
η̃
)4η̃

Γ(1 + 2η̃)d(x, y, t),

g(x, y, t) = 0F1

(
1− 2η̃; e−µt(y − 1)η̃

)
+ c
(√

e−µt(1− y)
√
η̃
)4η̃

0F1

(
1 + 2η̃; e−µt(y − 1)η̃

)
,

allows one to rewrite G(x, y;u) in (4.24) in terms of the original variables (x, y; t)

as

G(x, y; t) =

1 + 2
(
p2 −

√
p2

)
(1− e−µt + ye−µt)− µ+

µf(x, y, t)

g(x, y, t)

2
(√

p2 − 1
)2 ,

where

c =
κ1κ2 0F1 (1− 2η̃; (y − 1)η̃) + 4η̃µ 0F1 (−2η̃; (y − 1)η̃)

4η̃µ 0F1 (2η̃; (y − 1)η̃) + κ3 0F1 (1 + 2η̃; (y − 1)η̃)
,

κ1 =
(√

1− y
√
η̃
)−4η̃

,

κ2 = 2 (
√
p2 − 1)2 x+ 2

√
p2y − 2p2y − 2η̃µ− 1,

κ3 = 1− 2 (
√
p2 − 1)2 x− 2

√
p2y + 2p2y − 2η̃µ.
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Figure 4.4: Survival probabilities in the three scenarios p1 = 0.6 > p2 = 0.3,

p1 = 0.3 < p2 = 0.6, and p1 = p2 = 0.45. The death rate is fixed at µ = 0.5 with

units of inverse time, t−1.

Once the probability generating function is at hand, the survival probability at

time t can be computed as S(t) = 1−G(0, 0; t), i.e.,

S(t) = 1− P((B(t),D(t)) = (0, 0)|(B(0),D(0)) = (1, 0))), t ≥ 0.

Figure 4.4 shows an example of the probability of survival when p1 > p2, p1 = p2,

and p1 < p2.

Another quantity of interest is the probability of having a total number of i + j

cells in the population at time t, Πn(t), that is

Πn(t) = P(B(t) +D(t) = n|(B(0),D(0)) = (1, 0)), n ∈ N0,

or equivalently

Πn(t) =
∑
i+j=n

p(i,j)(t).

As in Ref. Antal & Krapivsky (2010), one observes that

G(z, z; t) =
+∞∑
i=0

+∞∑
j=0

p(i,j)(t)z
izj =

+∞∑
n=0

Πn(t)zn,
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which means that the probability Πn(t) is the coefficient of the power series that

defines G(z, z; t). Thus, Πn(t) can be extracted making use of the Cauchy’s integral

formula and its derivatives (Ablowitz et al., 2003; Antal & Krapivsky, 2010)

Πn(t) =
1

2πi

∮
γ

G(z, z; t)

zn+1
dz, (4.25)

where γ is any simple closed contour in the domain where G(z, z; t) is analytical.

Similarly, recalling the definition of G(x, y; t) in (4.5), one obtains

p(i,j)(t) = − 1

4π2

∮
γ

1

yj+1

∮
γ

G(x, y; t)

xi+1
dxdy. (4.26)

Note that the probabilities p(i,j)(t) fully determine the dynamics of the stochastic

process (B(t),D(t))t≥0 for the initial conditions (B(0),D(0)) = (1, 0). The integrals

in (4.25) and (4.26) can be approximated making use of the fast Fourier transform

method, as discussed in Antal & Krapivsky (2010).

Probability and expected time to extinction

The aim of this section is to derive the probability of extinction of the total cell

population and the expected time to extinction of the cells in the division pool.

Indeed, cells in the death pool will eventually die and therefore do not contribute

to the probability of population extinction in the long-term. To this end, define

p
(b0)
B = lim

t→+∞
P
(
(B(t),D(t)) = (0, 0)|(B(0),D(0)) = (b0, 0)

)
,

p
(d0)
D = lim

t→+∞
P
(
(B(t),D(t)) = (0, 0)|(B(0),D(0)) = (0, d0)

)
.

(4.27)

If cells are independent of each other, p
(b0)
B =

(
p

(1)
B

)b0
and p

(d0)
D =

(
p

(1)
D

)d0
. We

make use of the following notation: pB = p
(1)
B and pD = p

(1)
D . A first-step argument

leads to

pB = p1p
2
B + p2p

2
D + (1− p1 − p2)pDpB.

Obviously pD = 1 as cells in the death pool can only die. Thus, it follows

pB =

1 if p1 ≤ p2,
p2

p1

if p1 > p2,
(4.28)
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in agreement with the survival probabilities depicted in Figure 4.4 and the well

known results of classic birth-and-death process (see e.g., Refs. Allen (2010);

Pinsky & Karlin (2010)). Indeed, the process (B(t))t≥0 is a linear birth-and-death

process with birth rate λi = iλp1 and death rate µi = iλp2. Furthermore, the

condition of extinction p1 < p2 agrees with the results of the study of the long-

term behaviour of the population in the deterministic case illustrated in Figure 4.2.

To derive the expected time to extinction, let Ta,b, a, b ∈ N0, a < b, be the random

variable for the time it takes for the population of cells in the division pool to go

from size a to size b, that is

Ta,b = inf{t ≥ 0 : B(t) = b | B(0) = a}.

The expected time to extinction beginning from m cells in the division pool is

defined as τm := E[Tm,0], m ∈ N. Clearly τ0 = 0 from its definition. From

Theorem 6.3 of Allen (2010),

τ1 =
1

λp2

+
+∞∑
i=2

λ1λ2 . . . λi−1

µ1µ2 . . . µi
=

+∞∑
i=1

(i− 1)!(λp1)i−1

i!(λp2)i

=
1

λp1

+∞∑
i=1

1

i

(
p1

p2

)i
= − 1

λp1

log

(
1− p1

p2

)
.

(4.29)

Regarding the expected time to extinction starting with m cells in the division

pool, τm, from the same Theorem 6.3 of Allen (2010), it follows that

τm = τ1 +
m−1∑
s=1

(
µ1 . . . µs
λ1 . . . λs

+∞∑
i=s+1

λ1 . . . λi−1

µ1 . . . µi

)

= τ1 +
m−1∑
s=1

(
s!(λp2)s

s!(λp1)s

+∞∑
i=s+1

(i− 1)!(λp1)i−1

i!(λp2)i

)

= τ1 +
1

λp1

m−1∑
s=1

(
p2

p1

)s [
− log

(
1− p1

p2

)
−

s∑
i=1

(p1
p2

)i

i

]
.

(4.30)

For instance, if m = 2, the expected time to extinction is

τ2 = − 1

λp2
1

[
p1 log

(
1− p1

p2

)
+ p2 log

(
1− p1

p2

)
+ p1

]
.
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Figure 4.5: How the ratio p1
p2

affects the expected times to extinction τ1 derived in

equation (4.29) and τ10 computed from equation (4.30) with m = 10 and λ = 0.3

with units inverse of time, t−1.

Figure 4.5 shows how the expected times to extinction τ1 and τ10 are affected by

the ratio p1
p2

. As derived in equation (4.28), population extinction occurs when

p1 ≤ p2. Moreover, in our model 0 ≤ p1 + p2 ≤ 1. Thus, the values of p1 and p2

must be sampled from the region where 0 ≤ p1 ≤ p2 ≤ 1 and 0 ≤ p1 + p2 ≤ 1. We

adopt the approach illustrated by Goggans et al. (2014) to sample uniformly in

such region. In Figure 4.5, it is interesting to notice that both τ1 and τ10 increase

as the ratio p1
p2

grows, and higher values of p3 generally imply longer expected time

to extinction. This is explained by the role that p3 plays on cellular dynamics,

which is studied in detail in Section 4.2. I underline the fact that τm, with m ≥ 1,

represents the expected time to extinction of the cells in the division pool, which

will imply the extinction of the total population of cells since the fate of the cells

in the death pool is death. However, at time τm, some cells may still populate the

death pool.

Figure 4.6 shows the distribution of the time to extinction starting with 10 cells

in the division pool for different values of the ratio p1
p2

, which varies across rows:
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4.1 The two-type branching process

in the first row, p1
p2

= 0.25, in the second p1
p2

= 0.5 and in the third p1
p2

= 0.75.

The vertical line represents the expected time to extinction τ10. In the first row,

p2 = 4p1. Since p1 + p2 ≤ 1, the maximum value that p1 can take is p1,max = 1/5

(right plot). In the left plot, p1 = p1,max/4 and in the central one p1 = p1,max/2.

The choice of p1 in the second and third rows follows the same logic. Thus, the

value of p3 decreases across columns, reaching p3 = 0 on the right column. We

observe that the time to extinction becomes shorter as p3 decreases, according to

the results in Figure 4.5. Interestingly, a larger value of the ratio p1
p2

implies a

longer time to extinction. Indeed, for the same value of p1, when p1
p2

increases, p2

becomes smaller, while p3 grows.

4.1.2 Erlang times to division and death

In this section, the multi-stage model of the cell cycle described in detail in Chap-

ter 3 is adopted for the division process, and extended also to death events. As

in Yates et al. (2017) and Belluccini et al. (2022), the cell cycle is divided into N

stages, which a cell has to sequentially visit before dividing. The time to progress

from stage j to the next one, j + 1, is an exponentially distributed random vari-

able with mean 1
λj

. I will refer to these rates, λj, j = 1, . . . , N , as birth rates.

Thus, the division time follows a continuous phase-type distribution. A particular

choice of phase-type distribution is the Erlang (N, λ), which is a concatenation

of N identically distributed and independent exponential steps, where all birth

rates are equal: λj = λ, j = 1, . . . , N . Therefore, Tdiv ∼ Gdiv(·) ≡ Erlang(N, λ)

and the expected time to division is N
λ

. In a similar manner, the death process is

comprised of K stages, which the cell has to visit sequentially before dying. The

time to progress from stage i to the next one, i+ 1, is an exponentially distributed

random variable with mean 1
µi

. These rates, µi, i = 1, . . . , K, will be called death

rates. If the death rate is identical across stages, i.e., µi = µ, i = 1, . . . , K, a

cell’s time to death is a random variable with an Erlang distribution of parameters

(K,µ). Thus, Tdeath ∼ Gdeath(·) ≡ Erlang(K,µ) and the expected time to death

is K
µ

.

We note that the Erlang distribution can be thought of as a sum of exponential

distributions, and consequently the Markovian property is maintained.
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Figure 4.6: Distribution of the time to extinction T10,0 for different values of the

ratio p1
p2

, which varies across rows: in the first row, p1
p2

= 0.25, in the second p1
p2

= 0.5

and in the third p1
p2

= 0.75. The birth rate λ is 0.3 with units inverse of time, t−1.

The probability densities are obtained from 104 simulations of a birth-and-death

process with birth rate λp1 and death rate λp2 realised with the Gillespie algorithm

(Algorithm 1).
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We aim to study the evolution through time of the mean number of cells in each

pool. To this end, the following random variables are defined:

- Bj(t) to count the number of cells at stage j of the division process at time

t, j = 1, . . . , N .

- Di(t) to count the number of cells at stage i of the death process at time t,

i = 1, . . . , K.

Thus, the resulting mathematical process is a multi-dimensional Markov chain

(B1(t), . . . ,BN(t),D1(t), . . . ,DK(t))t≥0 with space state NN
0 × NK

0 , or a 2-type

branching process with Erlang inter-event times. To describe the state where

the process is at time t, a tuple of dimension N+K is needed to count the number

of cells in each stage of the division and death processes.

One notes that, at time t, the total number of cells in the division pool is
∑N

j=1 Bj(t),
whereas in the death pool there are

∑K
i=1 Di(t) cells. Consequently, the total pop-

ulation size at time t is given by
∑N

j=1 Bj(t) +
∑K

i=1 Di(t).

Mean number of cells in each pool

Denote by Bj(t), j = 1, . . . , N , and Di(t), i = 1, . . . , K, the expected values of

the random variables Bj(t), j = 1, . . . , N , and Di(t), i = 1, . . . , K, respectively;

that is Bj(t) = E[Bj(t)] and Di(t) = E[Di(t)]. The total expected number of cells

in the birth stages at time t is B(t) =
∑N

j=1Bj(t), whereas the total expected

number of cells in the death stages at time t is given by D(t) =
∑K

i=1Di(t). Thus,

the total mean number of cells in the population at time t, P (t), is computed as

P (t) = B(t) + D(t). To understand the dynamics of the mean number of cells in

each stage, consider what can happen in a short time interval ∆t, starting with

one cell that proceeds to divide. One has

Bj(t+ ∆t) = Bj(t) + ∆t (λBj−1(t)− λBj(t)) , j = 2, . . . , N.

Therefore, the evolution through time of Bj(t) is given by

dBj(t)

dt
= λBj−1(t)− λBj(t), j = 2, . . . , N, (4.31)

99



4. TWO-TYPE BRANCHING PROCESS TO STUDY CELLULAR
DYNAMICS WITH CELL FATE DECISION AT BIRTH

where the first term accounts for the event of a cell arriving at stage j from stage

j − 1, and the second one refers to the possibility of a cell moving from stage j to

j + 1. Let us now consider the first stage of the division process, j = 1. In a short

time interval ∆t, three different events can occur which affect the mean number

of cells in division stage 1 (that is, B1(t)): two new cells arrive into division stage

1 when a cell divides and the offsprings join the division pool, only one cell lands

into division stage 1 when a division occurs and the siblings select different fates,

or a cell in division stage 1 proceeds to stage 2. In mathematical terms,

B1(t+ ∆t) = B1(t) + ∆t (2λp1BN(t) + λ(1− p1 − p2)BN(t)− λB1(t)) .

Simplifying, one finds that the evolution of B1(t) over time is given by

dB1(t)

dt
= λ(1 + ρ)BN(t)− λB1(t), (4.32)

where ρ = p1 − p2. Let us now determine the dynamics of the cells in the death

pool, considering first a cell in stage i, i = 2, . . . , K, of the death process. In a

short time interval, one has

Di(t+ ∆t) = Di(t) + ∆t (µDi−1(t)− µDi(t)) , i = 2, . . . , K.

Therefore, the expected number of cells in stage i of the death process, Di(t),

obeys the differential equation

dDi(t)

dt
= µDi−1(t)− µDi(t), i = 2, . . . , K. (4.33)

The last stage that remains to be analysed is the first one of the death branch.

Its dynamics is affected by three distinct events: a cell in the Nth stage of the

division process divides and its daughters have different fates, a cell divides and its

offsprings enter the death pool, and a cell in the death stage 1 proceeds towards

death stage 2. This means

D1(t+ ∆t) = D1(t) + ∆t (2λp2BN(t) + λ(1− p1 − p2)BN(t)− µD1(t)) ,

which leads to the differential equation

dD1(t)

dt
= λ(1− ρ)BN(t)− µD1(t). (4.34)
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The set of equations (4.31), (4.32), (4.33) and (4.34) fully describes the cellular

dynamics in our model. To obtain their analytical solutions, I first focus on equa-

tions (4.31) and (4.32) that describe the division process as they do not depend

on the death pool dynamics. The steps illustrated in Yates et al. (2017) and

Chapter 3 (Belluccini et al., 2022) are adapted here. The core idea is to rewrite

equations (4.31) and 4.32 in terms of the new variables

Xj(t) = Bj(t)e
λt, j = 1, . . . , N.

Therefore, the new set of equations

dXj(t)

dt
=

{
(1 + ρ)λXN(t), if j = 1,

λXj−1(t), if j = 2, . . . , N,

is obtained, from which the equation below follows

dNXN(t)

dtN
= (1 + ρ)λNXN(t), (4.35)

together with a set of ODEs that relate Xj(t) to the derivative of XN(t) with

respect to time

Xj(t) =

(
1

λ

)N−j
dN−jXN

dtN−j
, j = 1, . . . , N − 1. (4.36)

Equation (4.35) is an N th order homogeneous differential equation; its associated

characteristic polynomial is

P (x) = xN − (1 + ρ)λN ,

whose roots in C are given by

xk = (1 + ρ)
1
N λ

(
cos

(
2kπ

N

)
+ i sin

(
2kπ

N

))
, k = 0, . . . , N − 1,

which can be written in exponential form as

xk = (1 + ρ)
1
N λe

2kπ
N
i, k = 0, . . . , N − 1.

Hence, the solution of (4.35) is given by

XN(t) =
N−1∑
k=0

ake
xkt =

N−1∑
k=0

ake
(1+ρ)

1
N λzkt,
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where z = e
2πi
N is the first Nth root of unity and ak are yet undetermined constants.

In order to compute ak, consider the initial conditions B1(0) = b0, Bk(0) = 0 for

k = 2, . . . , N , and Di(0) = 0, for i = 1, . . . , K, representing b0 cells (for some

b0 ≥ 1) in the first division stage and no cells in all the other stages. Given the

identity in equation (4.36), XN(t) is differentiated with respect to time to obtain

the analytical expression of Xj(t), j = 1, . . . , N , as

Xj(t) =
N−1∑
k=0

ak

(
(1 + ρ)

1
N zk

)N−j
e(1+ρ)

1
N λzkt

= (1 + ρ)1− j
N

N−1∑
k=0

akz
−kje(1+ρ)

1
N λzkt,

(4.37)

since zkN = 1 for all k = 0, . . . , N − 1. It can be proven by substitution that the

constants ak are given by

ak =
b0

(1 + ρ)N
(1 + ρ)

1
N zk. (4.38)

Indeed, for j = 1 one obtains

X1(0) = (1 + ρ)1− 1
N

N−1∑
k=0

b0

(1 + ρ)N
(1 + ρ)

1
N zkz−k = b0,

and if j = 2, . . . , N

Xj(0) = (1 + ρ)1− j
N

N−1∑
k=0

b0

(1 + ρ)N
(1 + ρ)

1
N zkz−jk

=
b0

N
(1 + ρ)

1−j
N

N−1∑
k=0

zk(1−j).

To prove that Xj(0) = 0, the summation
∑N−1

k=0 z
k(1−j) is considered, observing

that the sum of the Nth roots of unity is equal to zero. Indeed, from zN = 1 one

obtains

0 = zN − 1 = (z − 1)(zN−1 + zN−2 + · · ·+ z + 1) = (z − 1)
N−1∑
k=0

zk.

Since z 6= 1, it follows
∑N−1

k=0 z
k = 0. On the other hand zN(1−j) = 1 for all

j = 2, . . . , N , so that one can conclude
∑N−1

k=0 z
k(1−j) = 0, and therefore Xj(0) = 0.
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Replacing the expression of the constants (4.38) in (4.37) and going back to the

original variables Bj(t), the solution of the equations (4.31) and (4.32) can be

rewritten as

Bj(t) =
(1 + ρ)

1−j
N b0

N

N−1∑
k=0

z(1−j)ke
λt

(
(1+ρ)

1
N zk−1

)
, j = 1, . . . , N. (4.39)

Note that, if N = 1, i.e., a cell’s time to division is exponentially distributed,

equation (4.39) agrees with the result derived in equation (4.1).

Equations (4.33) and (4.34), that describe the dynamics of cells whose fate is death,

remain to be solved. To this end, firstly equation (4.34) will be solved making use

of an integrating factor, and then one will proceed with the other equations (4.33)

from i = 2 to i = K adopting the same technique. This is due to the fact that the

time evolution of Di(t) depends on Di−1(t), i = 2, . . . , K. Multiplying (4.34) by

the integrating factor eµt and rearranging the order of the terms, one gets

d(D1(t)eµt)

dt
= λ(1− ρ)BN(t)eµt. (4.40)

Replacing the expression ofBN(t) derived in (4.40) in the differential equation (4.40),

and integrating the result with respect to time, it follows

D1(t) =
λ(1− ρ)(1 + ρ)

1
N
−1b0

N

N−1∑
k=0

zke
λt

(
(1+ρ)

1
N zk−1

)

λ(1 + ρ)
1
N zk − λ+ µ

+ d1e
−µt, (4.41)

where d1 is an integration constant to be determined. In order to compute d1, one

makes use of the initial condition D1(0) = 0. Thus, d1 is given by

d1 = −λ(1− ρ)(1 + ρ)
1
N
−1b0

N

N−1∑
k=0

zk

λ(1 + ρ)
1
N zk − λ+ µ

.

Replacing the value of d1 in (4.41), D1(t) is given by

D1(t) =
λ(1− ρ)(1 + ρ)

1
N
−1b0

N

N−1∑
k=0

zk
e
λt

(
(1+ρ)

1
N zk−1

)
− e−µt

λ(1 + ρ)
1
N zk − λ+ µ

.

Consider the subsequent stage of the death process, D2(t). It obeys the differential

equation
dD2(t)

dt
= µD1(t)− µD2(t), (4.42)
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with initial condition D2(t) = 0. The same approach illustrated for D1(t) is

adopted here by multiplying the equation above by the integrating factor eµt.

Then, the expression of D1(t) is replaced in (4.42) and the equation is integrated

with respect to time t. One obtains

D2(t) =
λµ(1− ρ)(1 + ρ)

1
N
−1b0

N

N−1∑
k=0

zk

qk

eλt
(

(1+ρ)
1
N zk−1

)
qk

− te−µt

+ d2e
−µt,

(4.43)

where qk = λ(1+ρ)
1
N zk−λ+µ. The constant d2 is found making use of the initial

condition D2(0) = 0, and its expression is replaced in (4.43). This leads to the

expected number of cells in the second stage of the death pool D2(t), i.e.,

D2(t) =
λµ(1− ρ)(1 + ρ)

1
N
−1b0

N

N−1∑
k=0

zk

qk

eλt
(

(1+ρ)
1
N zk−1

)
− e−µt

qk
− te−µt

 .

(4.44)

Repeating the same procedure for Di, i = 3, . . . , K, the general analytical solutions

of (4.33) are obtained as

Di(t) =
λµi−1(1− ρ)(1 + ρ)

1
N
−1b0

N

N−1∑
k=0

zk

eλt
(

(1+ρ)
1
N zk−1

)
− e−µt

qik
−

i−1∑
l=1

tle−µt

l!qi−lk

 ,

(4.45)

where i = 1, . . . , K. Note that, when K = 1, i.e., a cell’s time to death is exponen-

tially distributed, equation (4.45) agrees with the result derived in equation (4.2).

In order to verify the accuracy of equations (4.39) and (4.45), cellular dynamics

is simulated making use of the Gillespie algorithm (Gillespie, 1976, 1977). The

realisations are then compared to the deterministic solutions. The results agree,

as shown in Figure 4.7.

Long-term behaviour

Here, the focus is on the long-term behaviour of the cell population as t → +∞,

finding a condition for its extinction and growth, which one expects to depend on

the probabilities p1 and p2 as in the exponential case.
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4.1 The two-type branching process

Figure 4.7: Comparison between the analytical solutions derived in (4.39) and

(4.45) (solid lines) and stochastic realisations (dots) obtained using the Gillespie

algorithm as mean value of 5×102 simulations. The initial condition represents 102

cells in the first stage of the division process and no cells in all the other stages.

The parameters in the model are fixed as N = 3, K = 2, p1 = 0.5, p2 = 0.3,

p3 = 0.2, λ = 0.4 and µ = 0.3. The birth and death rates λ and µ have units of

inverse time, t−1.
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From the mean number of cells in stage j of the division process at time t, Bj(t), j =

1, . . . , N , derived in (4.39), the expected total number of cells in the birth stages,

B(t) =
∑N

j=1Bj(t), can be computed summing equation (4.39) from j = 1 to

j = N , i.e.,

B(t) =
N−1∑
k=0

(1 + ρ)
1
N b0

N
zke

λt

(
(1+ρ)

1
N zk−1

)
N∑
j=1

(1 + ρ)−
j
N z−jk. (4.46)

Let us simplify the last summation in equation (4.46). The sum of the first N + 1

terms of a geometric series is given by
∑N

i=0 x
i = 1−xN+1

1−x . Hence,

N∑
j=1

(
(1 + ρ)−

1
N z−k

)j
=

1−
(

(1 + ρ)−
1
N z−k

)N+1

1− (1 + ρ)−
1
N z−k

− 1

=
−(1 + ρ)−

1
N
−1z−k + (1 + ρ)−

1
N z−k

(1 + ρ)
1
N zk − 1

(1 + ρ)
1
N zk

=
ρ

(1 + ρ)
(

(1 + ρ)
1
N zk − 1

) .
Therefore, the expected total number of cells in the division pool is given by

B(t) =
(1 + ρ)

1
N b0ρ

(1 + ρ)N

N−1∑
k=0

zk

(1 + ρ)
1
N zk − 1

e
λt

(
(1+ρ)

1
N zk−1

)
. (4.47)

Moreover, from (4.31) and (4.32) the evolution through time of B(t) can be easily

derived as
dB(t)

dt
= λρBN(t). (4.48)

In order to study the limiting behaviour of the population size as t → +∞, one

observes that in the analytical expression of Bj(t) given by equation (4.39), the

dominant term is always the first, which corresponds to k = 0. The other terms

related to k ≥ 1 are analysed in order to justify this statement. In the exponent

of the second term of the summation in (4.39), which means k = 1, the coefficient

of t has its real part equal to

Re
((

(1 + ρ)
1
N z − 1

)
λ
)

=

(
(1 + ρ)

1
N cos

(
2π

N

)
− 1

)
λ. (4.49)
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If cos
(

2π
N

)
< 0, then the quantity in (4.49) is negative; otherwise, since

1 + ρ ≤ 2,

and f(y) = y1/N is an increasing function,

(1 + ρ)
1
N cos

(
2π

N

)
− 1 ≤ 2

1
N cos

(
2π

N

)
− 1,

where the right hand side is negative for any integer N in the interval [2, 28] (Yates

et al., 2017). In practice, one would not consider a number of stages in the division

pool larger than N = 28, which is the case for all the numerical results presented

in Chapter 3. Therefore, it is proved that the second term in the summation of

(4.39) decays as t→ +∞. The same conclusion cannot be drawn for the rest of the

terms since some exponents are positive. However, the dominant term is always

the first one given that(
(1 + ρ)

1
N − 1

)
λ >

(
(1 + ρ)

1
N cos

(
2πk

N

)
− 1

)
λ for k = 2, . . . , N − 1,

where the term on the left is the real part of the coefficient of t when k = 0 and

the right hand side corresponds to the same quantity for all the other values of k,

but k = 1. Hence, as t→ +∞, one has

lim
t→+∞

Bj(t) = lim
t→+∞

(1 + ρ)
1−j
N b0

N
e

(
(1+ρ)

1
N −1

)
λt
, j = 1, . . . , N. (4.50)

Equation (4.50) gives an approximation of the expected number of cells in each

birth stage Bj(t), j = 1, . . . , N for large values of t. Using again the well known

sum of the first N + 1 terms of a geometric series, it follows that

lim
t→+∞

B(t) = lim
t→+∞

(1 + ρ)
1
N
−1b0ρ

N
(

(1 + ρ)
1
N − 1

)e((1+ρ)
1
N −1

)
λt
, (4.51)

which is equal to 0 when (1 + ρ)
1
N < 1, i.e., if p1 < p2, and goes to +∞ when

p1 > p2, as the intuition would suggest.

Note that we studied the late time behaviour of the division pool as cells in the

death pool will eventually die and therefore do not contribute to the probability

of population extinction.
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Finally, one can consider the special case when p1 = p2. The differential equa-

tions (4.31), (4.32), (4.33) and (4.34) that define the cellular dynamics simplify

as

dB1(t)

dt
= λBN(t)− λB1(t),

dBj(t)

dt
= λBj−1(t)− λBj(t), j = 2, . . . , N,

dD1(t)

dt
= λBN(t)− µD1(t),

dDi(t)

dt
= µDi−1(t)− µDi(t), i = 2, . . . , K.

Their solutions are given by

Bj(t) =
b0

N

N−1∑
k=0

z(1−j)keλt(z
k−1), j = 1, . . . , N, (4.52)

and

Di(t) =
λµi−1b0

N

N−1∑
k=0

zk

(
eλt(z

k−1) − e−µt

(λzk − λ+ µ)i
−

i−1∑
l=1

tle−µt

l! (λzk − λ+ µ)i−l

)
, i = 1, . . . , K.

Repeating the same steps shown for the cases p1 < p2 and p1 > p2, the long-term

behaviour of Bj(t) can be determined also when p1 = p2. As t→ +∞, the leading

term in the summation in (4.52) is the one corresponding to k = 0, which means

lim
t→+∞

Bj(t) =
b0

N
, j = 1, . . . , N. (4.53)

Equation (4.53) tells us that the population size of the division pool remains

constant (B1(0) = b0 and Bj(0) = 0 if j > 1) and the cells in this pool are

distributed homogeneously among the stages.

Similarly, as t → +∞, the leading term in the summation in equation (4.1.2) is

the one corresponding to k = 0. Thus, one obtains

lim
t→+∞

Di(t) = lim
t→+∞

λµi−1b0

Nµi

(
1− e−µt −

i−1∑
l=1

tle−µt

l!µ−l

)
=
λb0

µN
, i = 1, . . . , K.

(4.54)
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Figure 4.8: Long-term behaviour of the expected number of cells in the division

stages B(t) (dashed lines), the death stages D(t) (dotted lines) and the whole

population P (t) (solid lines) when t→ +∞ under the assumption of Erlang times

to division and death. Three cases are distinguished: p1 > p2 (left), p1 < p2

(centre), and p1 = p2 (right). The number of stages of the birth process is N = 3,

whereas the death branch is comprised of K = 2 stages. The birth and death rates

are λ = 0.4 and µ = 0.3, respectively, with units of inverse time, t−1. The initial

conditions provide 102 cells in the first stage of the division stage and no cells in

the other stages.

Thus, if λ > µ cells accumulate in the death pool, where they are homogeneously

distributed among the stages. Conversely, if µ > λ cells leave quickly the death

pool.

In summary, the total number of cells in the population tends to

lim
t→+∞

P (t) =

(
1 +

λ

µ

K

N

)
b0, (4.55)

where λ
µ
K
N

is the ratio between the expected time to death K
µ

and the expected

time to division N
λ

. The larger this ratio is, the larger the total population size is

for late times. Note that when N = 1 = K, the steady state in equation (4.55)

agrees with the one obtained in the case of exponential times to division and death.

Figure 4.8 shows the long-term behaviour of the system as t → +∞ in the three

cases p1 < p2 (on the left), p1 > p2 (in the centre), p1 = p2 (on the right). These

results are in agreement with the ones obtained in the exponential case.
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Probability of extinction

In order to derive the probability of extinction of the population of cells, define

for j = 1, . . . , N and i = 1, . . . , K

p
(b0)
Bj

= lim
t→+∞

P
(
P (t) = 0|Bj(0) = b0, Bl(t) = 0 if l 6= j,Di(t) = 0 for i = 1, . . . , K

)
,

p
(d0)
Di

= lim
t→+∞

P
(
P (t) = 0|Di(0) = d0, Bj(t) = 0 for j = 1, . . . , N,Dl(t) = 0 if l 6= i

)
.

(4.56)

Since cells are independent of each other, p
(b0)
Bj

=
(
p

(1)
Bj

)b0
and p

(d0)
Di

=
(
p

(1)
Di

)d0
. I

will denote pBj = p
(1)
Bj

and pDi = p
(1)
Di

. A first-step argument leads to

pBN = p1p
2
B1

+ p2p
2
D1

+ (1− p1 − p2)pD1pB1 .

Notice that pBj = pBj+1
, j = 1, . . . , N−1 and obviously pDi = 1 for all i = 1, . . . , K

as cells in the death pool can only die. Hence, the same probability of extinction

derived in the exponential case is obtained, i.e.,

pBj =

1 if p1 ≤ p2,
p2

p1

if p1 > p2.

This means, as one would expect, that the consideration of an Erlang distribution

for the division and death times, instead of the exponential one, only affects the

timescales of the process, and not its asymptotic fate (i.e., population survival

versus extinction). Notice that these results are in agreement with the conditions

of population growth and extinction derived in the previous section when studying

the long-term behaviour of the deterministic system for t→ +∞.

4.2 Sensitivity analysis

In the mathematical analysis presented in Section 4.1, I proved that the long-term

behaviour of the system depends on the relationship between the parameters p1

and p2, regardless of the probability distribution adopted to model a cell’s time to

division and death. In particular, if p1 > p2 the population grows, if p1 < p2 the
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Figure 4.9: Effect of the probability p3 = 1 − p1 − p2 on the expected number

of cells over time, calculated via equations (4.1), (4.2) and (4.3). The birth and

death rates are fixed as λ = 0.5 and µ = 1 with units of inverse time, t−1, and a

cell’s time to division and death is an exponential random variable. In all cases,

the initial condition is (B(0), D(0)) = (10, 10).
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population goes extinct and if p1 = p2 the population reaches a steady state, as

shown in Figures 4.2 and 4.8.

After understanding the role of p1 and p2, the interest is in studying how the

probability p3 = 1−p1−p2, and the birth and death rates λ and µ affect the cellular

dynamics. Another aim is to analyse the impact that the type of distribution

(exponential or Erlang) used to model cell’s time to division and death has on

population dynamics.

In Figure 4.9 the role of p3 is explored. To this end, the death rate µ is fixed

equal to 1 t−1, therefore the unit of time is the average life-span of a cell in the

death pool. On the other hand, the birth rate is assumed to be the half of the

death rate, i.e., λ = 0.5 t−1. Figure 4.9 shows the time evolution of the expected

number of cells in each pool and in the whole population for different values of

p3. In particular, the probability p3 varies as p3 = 0 (left column), p3 = 1/3

(central column) and p3 = 2/3 (right column). At the same time, three scenarios

are considered in Figure 4.9: p1 > p2 (first row), p1 = p2 (second row), p1 < p2

(third row). The ratio between p1 and p2 is constant for the different values of

p3. First, it is observed that higher values of p3 lead to slower cellular dynamics.

For instance, the first row of Figure 4.9 shows the case p1 > p2, which corresponds

to population growth. When p3 = 0, cell population increases significantly faster

than in the scenario p3 = 2/3. The same behaviour is observed when p1 < p2

(third row of Figure 4.9): the population requires a longer time to become extinct

for increasing values of p3. Interestingly, the value of p3 does not affect cellular

dynamics when p1 = p2. This is explained by the equations (4.1) and (4.2) of

the expected number of cells in the division and death pools. Indeed, they both

depend on the quantity ρ = p1 − p2, which vanishes when p1 = p2, explaining the

behaviour observed in the central row of Figure 4.9. When p1 < p2, larger values

of p3 increase the population time to extinction. In summary, the probability p3

does not determine the asymptotic behaviour of the system, although it affects the

population rate of growth or time to extinction.

In Figure 4.10, we explore how the birth and death rates impact the timescales of

the population dynamics. When the probabilities p1 and p2 are fixed, together with

the number of stages N and K, and the death rate µ (left panel of Figure 4.10), the

larger λ is, the faster the dynamics is. This is due to the shorter expected time to
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Figure 4.10: Effect of the variation of the birth and death rates λ (on the left) and µ

(on the right) on cell population dynamics. On the left µ = 0.6, on the right λ = 0.6

with units of inverse time t−1. The probabilities p1, p2 and the number of stages

of the birth-and-death processes are fixed as p1 = 0.4, p2 = 0.3, N = 3, K = 2.
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division that corresponds to larger values of λ. When all the parameters are fixed,

but the death rate µ (right panel of Figure 4.10), one notices that the number

of cells in the division pool does not vary according to different values of µ (the

red and green dashed curves overlap), in agreement with what one would expect

from the theoretical study of the system being Bj(t), j = 1, . . . , N , independent

of µ. Instead, for larger values of µ, one observes a smaller size of the population

in the death pool, and consequently of the whole population of cells. Indeed, if

µ increases, a cell’s death time will become shorter, implying that cells leave the

population quicker.

In Figure 4.11, we aim to understand the role that the number of stages of the

division and death processes, N and K respectively, introduced in Section 4.1.2,

play on the cellular dynamics. To this end, the dynamics of cells over time is sim-

ulated assuming first exponential times to division and death (which is equivalent

to N = 1 = K). Then, N = 10 stages are considered for the division process

while keeping K = 1, and vice-versa, exponential time to division and K = 10

stages for the death process are considered. Finally, the case N = K = 10 is

simulated. The outcomes are compared in Figure 4.11. In order to obtain a fair

comparison, the stages N and K in the division and death processes are introduced

while maintaining the expected time to division N
λ

and death K
µ

the same as in

the exponential case (i.e., when varying N or K, the rates λ and µ are varied as

well so that those expected times remain the same in Figure 4.11). When p1 > p2

(left panel of Figure 4.11) and cell’s time to division is exponential (green dashed-

dotted line and blue dotted line), the total number of cells in the population is

larger than the one predicted by the model with Erlang distributed times to divi-

sion (red dashed-dotted line and orange dashed line). Indeed, while the expected

times remain the same, the exponential distribution overestimates the probability

of shorter division times. This is explained by the shape of the exponential proba-

bility density function compared to the Erlang one depicted in Figure 4.12, where

different values of the number of stages N are considered. One notes that the

shape of the Erlang probability density function becomes narrower as the number

of stages N increases. Furthermore, the Erlang distribution becomes deterministic

as the number of stages increases to infinity, N → +∞.
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Figure 4.11: Expected number of cells in the population when considering expo-

nential and/or Erlang times to division and death. The expected times to division

and death are fixed at 15 units of time, and birth and death rates are computed

given the number of stages N and K.

Similarly, for equal times to division, the case with Erlang distributed times to

death predicts a larger number of cells. This is justified by the fact that the

exponential distribution estimates shorter times to death. The behaviour observed

in the central plot of Figure 4.11 when p1 = p2 confirms the results found in

equation (4.55). In the instance of p1 < p2, the number of stages in the division

and death processes does not have a significant impact on the population dynamics.

The sensitivity analysis carried out in this section shows that my model separates

the cell population timescales – and consequently its rate of growth – from the

cellular fate probability and asymptotic behaviour, which often depend on the

same parameters, as in the case of the classic birth-and-death process and the

multi-stage model proposed in Chapter 3. Indeed, the long-term behaviour is

determined by the relationship between the probabilities p1 and p2, whereas the

other parameters p3, λ, µ and the number of stages N and K in the instance of

Erlang times to division and death set the population rate of growth. Table 4.1

contains a comparison of the conditions for population extinction and explosion

in the instances of my model with cellular fate decision at birth, the birth-and-

death process and the multi-stage model of cell proliferation and death presented

in Chapter 3.
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Figure 4.12: Erlang probability densities (solid lines) with expected time fixed at

15 units of time (dashed line) and different number of stages N . N = 1 corresponds

to the exponential probability density function.

Mathematical model Explosion Extinction Steady state Reference

Fate decision at birth p1 > p2 p1 < p2 p1 = p2 Sections 4.1.1 and 4.1.2

Multi-stage µ < (21/N − 1)λ µ > (21/N − 1)λ µ = (21/N − 1)λ Belluccini et al. (2022)

Birth and death λ > µ λ < µ λ = µ Allen (2010)

Table 4.1: Model comparison. The mathematical model with cellular fate decision

at birth presented in this chapter is compared with the classic birth-and-death

process and the multi-stage model of cell proliferation and death introduced in

Chapter 3. Three different parameter regimes have been considered: population

explosion, extinction and steady state.
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4.3 Role of cellular fate correlation

In recent years, time-lapse microscopy experiments allowed to track individual

cells (Hawkins et al., 2009). The study of these data sets of B and T cell families

showed that division and death times for siblings are correlated (Dowling et al.,

2014; Duffy & Hodgkin, 2012; Duffy & Subramanian, 2009; Duffy et al., 2012;

Hawkins et al., 2009; Markham et al., 2010; Wellard et al., 2010), and “division

destiny” is a familial characteristic (Cheon et al., 2021). Hawkins et al. (2009)

have produced a data set of CpG-stimulated naive B cells, followed for 120 hours

using time-lapse microscopy. A total of 107 and 89 pedigrees were observed in

two distinct experiments, Fam2 and Fam3. In Markham et al. (2010), the data

set published in Hawkins et al. (2009) is further studied, and new quantitative

representations of cellular fate correlation are provided. The fate of siblings (i.e.,

two daughter cells arising from the same mother upon division) is broken down per

division event (see Figure 1 of Ref. Markham et al. (2010)). Thus, for each gener-

ation, the fraction of pairs of siblings that both divide, both die, and have different

fates is experimentally estimated, and can be compared with the theoretical prob-

abilities p1, p2 and p3 in my model. Figure 4.13 summarises this representation for

Fam2 and Fam3.

These results suggest that, when a division occurs, daughter cells are more likely

to either both divide or both die. This trend varies with generations. Indeed, in

early generations both siblings almost always divide (green triangles), whereas after

some divisions both daughters’ fate is increasingly likely to be death (red triangles).

It is interesting to observe that the fraction of pairs of siblings with different fates

(blue triangles) always remains below 20%, reaching its maximum at generation

3. The aim here is to try to compare these experimental results with theoretical

predictions. In Section 4.3.1, cell independence is assumed and it is shown that

the model predictions cannot reproduce the trends of the experimental data under

this assumption. Thus, Section 4.3.2 contains a first attempt to incorporate sibling

fate correlation in the model through the definition of correlation factors.
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Figure 4.13: Fate of siblings is broken down per division in Markham et al. (2010)

for experiments Fam2 (on the left) and Fam3 (on the right). A cell generation

represents the number of divisions that those cells have undergone. For all division

events involving cells in a given generation, the fraction of events leading to each

possible pair of siblings fates (both siblings decide to divide, both decide to die or

each one has a different fate) has been experimentally estimated.

4.3.1 Cells are independent of each other

In order to understand the role of cellular fate correlation when studying the

expansion phase of lymphocytes populations stimulated in vitro, cells are assumed

to be independent of each other and the theoretical model predictions are compared

to the data set studied in Markham et al. (2010). To this end, the probabilities

that determine cellular fate are assumed to be generation-dependent, as the trends

of the data plotted in Figure 4.13 would suggest. When a cell in the division pool

in generation g − 1 divides, we consider that siblings belong to generation g. We

denote by εg the probability that a cell belonging to generation g divides. As cell

fate is either division or death, the probability that a cell in generation g will die

is 1− εg. Given the independence amongst cells in the population, the probability

that a pair of siblings generated by a cell in generation g − 1 both divide is given

by pg1 = ε2
g, and, in a similar manner, the probability that both daughters’ fate is

death is pg2 = (1 − εg)2. Therefore, the possibility that a pair of siblings coming

from a cell in generation g − 1 have different fates is quantified by the probability
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pg3 = 1−pg1−p
g
2 = 2εg(1− εg). One can directly estimate pg1, g = 1, . . . , 5, from the

data set shown in Figure 4.13 (by setting pg1 equal to the values given by the green

triangles). Then, the probability εg is derived as εg =
√
pg1, and thus, pg2 and pg3

are computed under the assumption of cell independence as

pg2 =
(

1−
√
pg1

)2

and pg3 = 2
√
pg1(1−

√
pg1), g = 1, . . . , 5. (4.57)

The comparison between the experimental data of Fam2 and Fam3 and the theo-

retical probabilities computed in (4.57) is plotted in Figure 4.14, on the left and

right column, respectively. The red triangles correspond to the fraction of pairs of

siblings whose fate is death, whereas the blue triangles refer to pairs of daughters

with different fates. The theoretical probabilities pg2 and pg3, g = 1, . . . , 5, derived

according to equation (4.57) are plotted as dots in red and blue, respectively. In

both Fam2 and Fam3, it is straightforward to notice that, under the assumption

of cell independence, the mathematical model with cellular fate decision at birth

cannot explain the experimental data. This is particularly evident in the case of

pairs of siblings with different fates: the model predictions show an increasing

trend across generations, reaching a maximum between 70% and 80% at gener-

ation 4, in contrast with the experimental data that always stay below 20%. It

becomes apparent that a different choice of p1 and p2 that incorporates cellular

fate correlation is necessary to link theoretical predictions and experimental data

sets, as suggested in Ref. Duffy & Hodgkin (2012). This will be discussed in the

next section.

4.3.2 Introducing sibling fate correlation

In this section, a first attempt to introduce correlation factors in the model to

account for sibling fate correlation is presented. In order to understand the role

of these factors in cellular dynamics, imagine that, when a division occurs, the

first daughter joins the division pool with probability ε, whereas its fate is death

with probability 1− ε. The fate of the second daughter is determined taking into

account the destiny of its sibling as follows:

- P(2nd daughter divides | 1st daughter divides) = fε, where 1 < f ≤ 1
ε
.

119



4. TWO-TYPE BRANCHING PROCESS TO STUDY CELLULAR
DYNAMICS WITH CELL FATE DECISION AT BIRTH

Figure 4.14: Comparison between the data set analysed in Markham et al. (2010)

and our theoretical predictions derived according to (4.57) under the assumption of

cell independence for experiments Fam2 (left column) and Fam3 (right column).

The data points are represented by the triangles, whereas the dots identify our

theoretical predictions.
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cells enter the division pool

cells have different fates

cells enter the death pool

p1 = fε2

p2 = l(1− ε)2

p3

Figure 4.15: Three different outcomes following a cell division in presence of sibling

fate correlation. Both daughters enter the division pool with probability p1 = fε2

or the death pool with probability p2 = l(1 − ε)2. Daughter cells have different

fates with probability p3 = 1− fε2 − l(1− ε)2.

- P(2nd daughter dies | 1st daughter divides) = 1− fε.

- P(2nd daughter dies | 1st daughter dies) = l(1− ε), where 1 < l ≤ 1
1−ε .

- P(2nd daughter divides | 1st daughter dies) = 1− l(1− ε).

Note that, f = l = 1 leads to the case of cell independence analysed in the previous

section, while correlation factors f and l greater than 1 introduce fate correlation

between siblings as their definition increases the probability of a pair of siblings

having the same fate. In this setting, the probabilities p1 and p2 are computed

as p1 = fε2 and p2 = l(1 − ε)2. Thus, p3 = 1 − fε2 − l(1 − ε)2. Figure 4.15

depicts the possible outcomes of a cell division event when sibling fate correlation

is introduced in the model.

As described for the general mathematical model discussed in Section 4.1, after the

decision at birth, cellular fate takes some random time to happen. Although not

needed to compare with Figure 4.13, I note that one could compute analytically

the expected number of cells in each pool over time in the case of exponential and

Erlang times to division and death retracing the steps described in Sections 4.1.1

and 4.1.2. As the exponential distribution can be thought of as a Erlang dis-

tribution with a single stage (i.e., N = 1 and K = 1), only the case of Erlang
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times to division and death is considered in this section. Replacing p1 = fε2 and

p2 = l(1−ε)2 in (4.32) and (4.34), one gets the set of ordinary differential equations

that describe the dynamics of cells across stages as

dB1(t)

dt
= λ(1 + fε2 − l(1− ε)2)BN(t)− λB1(t),

dBj(t)

dt
= λBj−1(t)− λBj(t), j = 2, . . . , N,

dD1(t)

dt
= λ(1− fε2 + l(1− ε)2)BN(t)− µD1(t),

dDi(t)

dt
= µDi−1(t)− µDi(t), i = 2, . . . , K.

From Section 4.1.2, the expected number of cells in each stage of the division

process over time is equal to

Bj(t) =
(1 + ρ̃)

1−j
N b0

N

N−1∑
k=0

z(1−j)ke
λt

(
(1+ρ̃)

1
N zk−1

)
, j = 1, . . . , N, (4.58)

where ρ̃ = fε2 − l(1− ε)2. On the other hand, the evolution through time of the

mean number of cells in the death pools is computed as

Di(t) =
λµi−1(1− ρ̃)(1 + ρ̃)

1
N
−1b0

N

N−1∑
k=0

zk

eλt
(

(1+ρ̃)
1
N zk−1

)
− e−µt

q̃k
i −

i−1∑
m=1

tme−µt

m!q̃k
i−m

 ,

(4.59)

i = 1, . . . , K, with q̃k =
(
λ(1 + ρ̃)

1
N zk − λ+ µ

)
.

In order to compare the theoretical predictions of our model with the data set

illustrated in Figure 4.13, the probabilities of joining the division or death pool

are assumed to depend on the number of cell divisions. This reflects the fact that

cells are more likely to die when they have already undergone several divisions

(Belluccini et al., 2022; Ganusov et al., 2007; Mazzocco et al., 2017). Thus, it is

not restrictive to assume that εg, g = 1, . . . , 5 decreases as cell generation increases;

that is ε1 ≥ ε2 ≥ · · · ≥ ε5. On the other hand, one can consider that the correlation

factors f and l do not vary across generations to limit the number of parameters

in the model. In particular, the parameters in my model with fate correlation

are the probabilities εg, g = 1, . . . , 5, and the correlation factors f and l. It is
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important to note that, since the data set in Figure 4.13 does not incorporate any

information about the timescales of the process or the evolution of the number of

cells over time, parameters µ and λ (and the number of stages N and K in the case

of Erlang times to division and death) are irrelevant here. The parameters in the

model are inferred making use of the data set in Figure 4.13 and Algorithm 2. The

prior distributions are uniform between [0, 1] for the probabilities εg, g = 1, . . . , 5,

and also for the correlation factors in their range of definition. However, as the

interval of existence of f and l depends on εg, g = 1, . . . , 5, the approach illustrated

in Goggans et al. (2014) is adopted here to explore efficiently the parameter space.

In order to do so, observe that

0 ≤ l − 1

l
≤ ε5 ≤ ε4 ≤ ε3 ≤ ε2 ≤ ε1 ≤ fε1 ≤ 1,

where the first and the last two inequalities follow directly from the definition of

f and l, whereas the others reflect the assumption that cells are more likely to

die (and therefore less likely to divide) when they have already undergone several

divisions, trends that are clearly exhibited also by the data set in Figure 4.13.

Figure 4.16 contains the theoretical predictions of the mathematical model (dots)

compared to the experimental data (triangles) described in Figure 4.13. Despite

its simplicity, my model is able to replicate the trends shown by the data for both

experiments Fam2 and Fam3, especially when comparing to results in Figure 4.14.

Three different colours identify the fate of pairs of siblings: green corresponds

to both daughters dividing, red represents the case where both daughters’ fate is

death, and lastly, blue corresponds to siblings with different fates. In Figure 4.16,

one notices that, in both experiments, the model predictions still overestimate the

probability of siblings having different fates, particularly in the case of experiment

Fam3 (right panel of Figure 4.16). In some instances, this corresponds to an un-

derestimation of the fraction of pairs of siblings that either divide or die. This may

be related to the fact that the model ignores inheritable features from the mother

cell, accounting only for sibling fate correlation. As suggested by Markham et al.

(2010), another parameter might be required for vertical inheritance. Figure 4.17

contains the posterior distributions of model parameters, which indicate overall

good learning from the data sets given the mathematical model. In the case of

experiment Fam2, the correlation factor l is higher than f , whereas they are very
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Figure 4.16: Model predictions (triangles) compared with experimental data (dots)

from Fam2 (left) and Fam3 (right).

similar in the instance of Fam3. It is also interesting to observe that, in Figure 4.17

B, ε4 and ε5 are significantly smaller than the other probabilities εg, g = 1, 2, 3.

This can be explained by the data set: looking at the data of Fam3 (Figure 4.13,

right plot), there is a remarkable decrease of the fraction of pairs of siblings that

divide between generation 3 and generation 4.

On the other hand, one could assume that both the probabilities and the corre-

lation factors depend on cell generations. In this instance, choosing one of the

correlation factors equal to 1, for example lg = 1, g = 1, . . . , 5, the parameters

in the model are εg, fg, g = 1, . . . , 5. Thus, the probabilities are computed as

pg1 = fgε
2
g and p2 = (1 − εg)

2, g = 1, . . . , 5, from which one can derive for each

generation the exact values of εg and fg that reproduce the experimental data.

The same conclusion follows from the assumption fg = 1, g = 1, . . . , 5. Although

under this assumption it is possible to replicate exactly the data, the fact that the

number of parameters equals the number of data points suggests that over-fitting

issues may arise.
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4.3 Role of cellular fate correlation

A

B

Figure 4.17: Posterior distributions for model parameters, obtained with the data

sets Fam2 (A) and Fam3 (B).
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4.4 Discussion

A mathematical model that makes use of two-type branching processes is proposed

here to study the dynamics of a population of cells over time, and to investigate

the role that cellular fate correlation plays on the evolution of the population.

A family of cells is divided into two pools based on cellular fate, which is either

division or death. The underlying idea is that cells decide their fate at birth, and

after this instantaneous decision, the fate takes some random time to happen. A

cell’s times to division and death have been modelled as exponential and Erlang

random variables. Hence, the stochastic approach presented in this chapter yields

a Markovian model. Obviously, other probability densities may be adopted to

model division and death times, such as gamma, Weibull and log-normal distri-

butions (Cheon et al., 2021; Zilman et al., 2010). However, these choices would

not guarantee the advantages of the Markovian models, which ensure analytical

tractability, as shown by the results in Section 4.1, and computational efficiency of

stochastic simulations with the Gillespie algorithm (Gillespie, 1976, 1977). When

considering exponential times to division and death, the probability generating

function of the number of cells in each pool is derived, generalising the analysis

carried out by Antal & Krapivsky (2010) to study cell dynamics in skin tissue.

Interestingly, the model with cellular fate decision at birth presented here sepa-

rates the cell population timescales – and therefore its rate of growth – from the

cellular fate probability and asymptotic behaviour (i.e., population survival ver-

sus extinction), which often depend on the same parameters, as in the case of the

classic birth-and-death process (Allen, 2010) and the multi-stage model proposed

in Chapter 3 (Belluccini et al., 2022). In particular, in our model p1 and p2 en-

capsulate the cellular fate probabilities and determine the asymptotic behaviour

of the cell population. On the other hand, the parameters p3, the birth and death

rates λ and µ, and the number of stages N and K in the case of Erlang times to

division and death, set the population timescales and rate of growth.

After studying the model under the assumption of cell independence, a prelimi-

nary attempt to include sibling fate correlation in the model is proposed through

the definition of correlation factors. The applicability of this approach is shown

by considering a time-lapse microscopy data set of B cell families (Hawkins et al.,
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2009; Markham et al., 2010), where the fate of sibling pairs is broken down per

division. Despite its simplicity, the model is able to replicate the trend of the

experimental data, although overestimating the fraction of pairs of siblings with

different fates. This might be related to the possibility that only one factor ac-

counting for sibling fate correlation is not enough to explain cellular dynamics,

as suggested by Markham et al. (2010). Another parameter may be required to

account for inheritable features from the mother cell.

An extension of my stochastic model to track the number of divisions that cells

undergo over time would be desirable, both with and without cellular fate corre-

lation. This would allow one to link theoretical predictions with other types of

experimental data, e.g., CFSE data (De Boer & Perelson, 2005; De Boer et al.,

2006; Ganusov et al., 2007), making use of the expected number of cells in each

pool derived in Sections 3.2 and 4.3.2. This is the aim of future work.

Depending on the relationship between the probabilities p1 and p2, the population

of cells expands without bounds, dies out or reaches a steady state, as shown in

Section 4.1. Competitions for resources may be introduced making use of resource-

dependent branching processes (Bruss & Duerinckx, 2015) or logistic branching

processes (Lambert, 2005).

In the model presented in this chapter only two possible fates, either division

or death, are considered. However, the flexibility of the approach enables the

incorporation of other fates, such as cellular differentiation (Mı́guez, 2015), through

the introduction of other events at birth. The analysis of the expected number of

cells in each pool can be carried out following the steps shown in Section 4.1.
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Chapter 5

Mathematical models of

tick-borne virus transmission

The genomes of segmented viruses are comprised of multiple RNA strands, called

segments, each of which is a self-contained genetic element, carrying the required

protein components for its expression and replication. Although segmented viruses

can differ significantly in their virion structure, pathology, or genome architecture,

they all have in common the capability of exchanging genome segments during viral

assembly in a co-infected host cell (McDonald et al., 2016). Indeed, a host can

be simultaneously infected by two (or more) distinct pathogens, or two (or more)

strains of the same virus, which might enter the same cell (Cox, 2001; Lowen, 2017).

The process of genome segments exchange is known as reassortment (Lowen, 2018),

and produces progeny with new viral properties, such as accelerated replication

kinetics or altered pathogenicity (Ma et al., 2009; Zhu et al., 2011).

Established in 2017, Bunyavirales is an order of segmented negative strand RNA-

viruses which is comprised of more than 330 viruses classified within fourteen virus

families (Abudurexiti et al., 2019). These viruses possess genomes of between two

and eight RNA segments, although those with tripartite genomes represent the

majority. The three segments are named small (S), medium (M) and large (L);

the S segment encodes the nucleocapsid protein, the M segment encodes the mem-

brane glycoproteins and the L segment encodes the RNA polymerase (Ariza et al.,

2013). Bunyaviruses that cause diseases in humans include the Crimean–Congo
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Figure 5.1: Schematic representation from Klempa (2018) of all potential reassor-

tants resulting from the co-infection of a cell by two hypothetical parental viruses

A (blue) and B (red). S, M, and L capital letters stand for the S, M, and L genomic

segments. Subscripted A and B indicate the origin of the given segment to one of

the two parents.

hemorrhagic fever (CCHF) virus, which has been declared a research and develop-

ment priority pathogen by the World Health Organisation (Mehand et al., 2018).

CCHF is a tick-borne virus with fatality rate ranging from less than 5% to more

than 30% depending on the size of the outbreak and the region (Spengler et al.,

2019). In recent years, a reassortant of CCHF virus caused severe disease in Spain

(Negredo et al., 2021). Several questions remain to be answered about reassor-

ment, for instance, if there is any mechanism that promotes the establishment of

one reassortant over the possible 23 = 8 (for two strains and three segments) seg-

ment combinations summarised in Figure 5.1 (Michalakis & Blanc, 2020). In order

to shed light on these issues, it is necessary to take a step back to understand the

co-infection dynamics in hosts and ticks, as well as the role that different routes

of transmission play in the spread of the virus. These two aspects represent the

focus of the work presented in this chapter.

After contracting the CCHF virus, humans are the only species to develop a severe
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disease characterised by fever, myalgia, dizziness, neck pain and stiffness, backache,

headache, sore eyes and photophobia. Human infections occur through tick bites,

handling parts of viremic animals, or exposure to the blood and body fluids of

infected patients (Spengler & Estrada-Peña, 2018; Spengler et al., 2019). On the

other hand, transmission between ticks and livestock occurs during blood meals

(Bhowmick et al., 2022; Matser et al., 2009). Infection amongst ticks may also

be trans-stadial (i.e., transmitted across the different life stages of the tick, which

are egg, larvae, nymph and adult, as depicted in Figure 5.2), transovarial (i.e.,

from female adults to eggs) or occur during co-feeding through saliva contact

(Gonzalez et al., 1992; Matser et al., 2009). The transmission of the infection

via co-feeding between ticks occurs when the vectors feed in close proximity to

each other on the same host and at the same time (Belli et al., 2017). Since the

infection through co-feeding does not involve the host bloodstream, it can occur

when the vectors are feeding on a vertebrate that is not necessarily infected. Once

a tick becomes infected, the infection lasts for its lifetime (Gargili et al., 2017),

whereas viremia is cleared in about a week in livestock (Gonzalez et al., 1998; Hoch

et al., 2018). The short-lasting viremia in vertebrates and the fact that vertebrate

animals develop only quite mild symptoms make the detection of CCHF virus in

livestock rather challenging. The transmission tick-to-vertebrate and vice-versa

involves blood contact and is usually referred to as systemic, while co-feeding is

regarded as non-systemic transmission (Bhowmick et al., 2022).

Several mathematical models account for the different life stages of ticks (Lou et al.,

2014; Ogden et al., 2005; Rosà et al., 2003). Conversely, the models presented in

this chapter do not distinguish egg, larva, nymphs and adults to avoid hyper-

parametrisation. The aim is to provide analytical results to clarify the role of

different transmission routes, and co-transmission in the instance of co-infection

dynamics.

Ticks represent vectors and reservoirs for CCHF virus, and vertebrate animals,

in particular livestock, are critical for the maintenance of the virus (Spengler &

Estrada-Peña, 2018; Spengler et al., 2016). In order to understand the role of the

different routes of transmission, the spread of a single infection (i.e., a single virus

or viral strain) amongst two interacting populations, i.e., vertebrate animals and

ticks, is modelled in Section 5.1. A system of ordinary differential equations is used
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Figure 5.2: Life cycle of Hyalomma ticks and vertical and horizontal transmission

of Crimean-Congo hemorrhagic fever virus from Perveen & Khan (2022).

to describe the dynamics of susceptible and infected individuals. The basic repro-

duction number is computed making use of the next generation matrix approach

(Diekmann et al., 2010; Van den Driessche, 2017). Moreover, if the populations

of susceptible individuals are large, one can assume that infected individuals be-

have independently of each other. Thus, the dynamics of infected hosts and ticks

can be approximated making use of a two-type branching process, as shown in

Section 5.1.2. This approach enables the computation of the probability of epi-

demic extinction. On the other hand, when considering depletion of susceptible

individuals, the probability of epidemic extinction versus virus establishment, as

well as the conditional times to such events, can be computed by means of first

step arguments (Pinsky & Karlin, 2010). Furthermore, the distribution of the

exact number of secondary infections caused by an infected individual is derived

(Artalejo & Lopez-Herrero, 2013).

In order to study co-infection dynamics, the populations of vertebrates and ticks

are assumed to be in an endemic equilibrium due to a resident viral strain V1. An

invasive viral strain, V2, is then introduced in the system through a given number

of hosts and/or ticks infected with V2. In the instance of CCHF virus, the invasive

viral strain can be thought of as a mutant or reassortant strain of the same virus.
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5.1 Single infection dynamics

First, in Section 5.2.1 we propose a deterministic model that accounts only for

co-feeding transmission. In this setting, the invasion reproduction number of the

invasive viral strain V2 in an endemic equilibrium of the resident viral strain V1 is

computed by means of the next generation matrix approach (Allen et al., 2019;

Gao et al., 2016). Then, a stochastic model is introduced to describe the dynamics

of hosts and ticks infected with the invasive viral strain V2. As our interest is in

studying the early dynamics of V2, the population of susceptible individuals, as

well as the populations of hosts and ticks infected by V1, are assumed to be large

and constant over time. Thus, individuals infected with V2 are independent of

each other. Hence, the stochastic model presented in Section 5.2.2 enables the

computation of some stochastic descriptors of interest making use of first step

arguments: probability of extinction of the invasive strain V2, establishment of

V2, and co-infection events (i.e., co-infection of either a vertebrate or a vector).

The conditional times to such events are also computed. We focus on analysing

summary statistics related to co-infection events since co-infection is a necessary

(but not sufficient) condition for reassortment to occur. Thus, our interest is

in studying the different factors affecting the probability and timescales of co-

infection events occurring.

The chapter is structured as follows. Section 5.1 contains a deterministic and a

stochastic model of the single infection dynamics aimed to understand the role of

different routes of transmission. In Section 5.2, we propose a deterministic model

of co-feeding transmission, and also a stochastic approach to study the infection

dynamics in the presence of two distinct viral strains, V1 and V2, referred to as

resident and invasive strain, respectively. Section 5.3 provides a final discussion.

5.1 Single infection dynamics

Consider a population of ticks interacting with a population of hosts, which may

be small or large vertebrates. Both species are susceptible to the infection of a viral

strain V1. The virus is transmitted from tick-to-vertebrate and vice-versa through

contact with infected blood. Within the tick population, tick-to-tick transmission

may also happen through co-feeding (Gonzalez et al., 1992; Matser et al., 2009).

Vertebrate animals are characterised by short lasting viremia (Gonzalez et al.,
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Hs H1

µsns

ΦH β1nsm1 µ1n1

ϕ1n1

T s T 1

νsms

ΦT γ1msn1 + α1msm1 ν1m1

Figure 5.3: Diagram for the dynamics of susceptible and infected hosts (top) and

ticks (below). The model parameters are summarised in Table 5.1.

1998; Hoch et al., 2018), whereas once a tick contracts the virus, the infection lasts

for its lifetime (Gargili et al., 2017). This assumption reflects the fact the virus

usually survives the moulting process through to the subsequent developmental

stage of ticks (trans-stadial transmission) (Dohm et al., 2014; Gargili et al., 2017;

Norman et al., 1999).

Let us denote the number of susceptible and infected hosts at time t as ns(t) and

n1(t), respectively. Similarly, susceptible and infected ticks at time t are ms(t)

and m1(t), respectively. Thus, the sub-index s indicates susceptible individuals

and the sub-index 1 denotes species infected by the viral strain V1. Figure 5.3

illustrates the dynamics considered in this mathematical model. In particular,

susceptible hosts immigrate in the population with rate ΦH , are infected by an

infected tick with transmission parameter β1, and die with rate µs; infected hosts

clear the virus on average in 1/ϕ1 units of time and die with rate µ1. On the

other hand, susceptible ticks immigrate with rate ΦT , contract the virus due to

systemic transmission with transmission parameter γ1, or through co-feeding with

transmission parameter α1, and live on average 1/νs units of time; infected ticks

have an average lifespan of 1/ν1 units of time.
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Parameter Event Range Units Reference

β1 T1 +Hs → T1 +H1 [10−4, 10−1] 1/Days/Tick Norman et al. (2004)

γ1 H1 + Ts → H1 + T1 [10−4, 10−1] 1/Days/Host Norman et al. (2004)

α1 T1 + Ts → T1 + T1 [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

νs Death rate of Ts [6× 10−3, 3.8× 10−2] 1/Days Lou et al. (2014)

ν1 Death rate of T1 [6× 10−3, 3.8× 10−2] 1/Days Lou et al. (2014)

µs Death rate of Hs [1/3600, 1/360] 1/Days Mpeshe et al. (2011)

µ1 Death rate of H1 [1/3600, 1/360] 1/Days Mpeshe et al. (2011)

ΦT Arrival of ticks [0.5, 3.5] Tick/Days Sutton et al. (2012)

ΦH Arrival of hosts [0.5, 1.5] Host/Days Mpeshe et al. (2011)

ϕ1 H1 → Hs [1/7, 1/5] 1/Days Hoch et al. (2018)

Table 5.1: Summary of the parameters in the single infection model.

5.1.1 A deterministic approach

The events described in Figure 5.3 are combined in the following system of ordinary

differential equations to obtain the evolution of susceptible and infected hosts and

ticks over time as

dns
dt

= −µsns − β1nsm1 + ϕ1n1 + ΦH ,

dms

dt
= −νsms − γ1msn1 − α1msm1 + ΦT ,

dn1

dt
= −µ1n1 + β1nsm1 − ϕ1n1,

dm1

dt
= −ν1m1 + γ1msn1 + α1msm1.

(5.1)

The basic reproduction number, R0, is the average number of secondary infec-

tions generated by one infected individual in a completely susceptible population

(Diekmann et al., 1990; Van den Driessche & Watmough, 2002), and represents

a threshold parameter for the epidemic. In particular, if R0 < 1, on average an

infected individual produces fewer than one new infection during its infectious pe-

riod; thus, the infection does not become endemic. Conversely, when R0 > 1, an

infectious individual transmits the virus to more than one individual; hence, the

infection invades the population. If there is only one species of infected individu-

als in the model, R0 is given by the product of the infection rate and the average

duration of the infection (Van den Driessche & Watmough, 2002). However, when
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the model presents more than one type of infectious individuals, as in the instance

of our model defined in equations (5.1), or when different stages of infectious-

ness are taken into account (Anderson & Watson, 1980), a more general method

is required to compute R0. The next generation matrix approach, proposed by

Diekmann et al. (1990) and then elaborated by Diekmann et al. (2010); Van den

Driessche (2017); Van den Driessche & Watmough (2002), provides a tool to com-

pute the basic reproduction number “as the number of new infections produced by

a typical infected individual in a population at the virus-free equilibrium”(Van den

Driessche & Watmough, 2002).

Here, R0 is computed considering all the routes of transmission and in some sim-

plified scenarios (i.e., when some parameters are set equal to zero) making use of

the next generation matrix approach. The first step is to distinguish between in-

fected and uninfected individuals (Van den Driessche & Watmough, 2002), which

is straightforward in the case of the model defined in equations (5.1): ns and ms

are the uninfected individuals, whereas n1 and m1 are the infected ones. Thus, the

virus-free equilibrium is derived from the system of equations (5.1) in the absence

of infected hosts or ticks, i.e., considering only the uninfected individuals ns and

ms:

dns
dt

= −µsns + ΦH ,

dms

dt
= −νsms + ΦT .

(5.2)

The virus-free steady state can be written as (n?s,m
?
s, 0, 0), where

n?s =
ΦH

µs
,

m?
s =

ΦT

νs
.

(5.3)

The Jacobian matrix of system (5.1) linearised at (n?s,m
?
s, 0, 0) is computed as

−µs 0 ϕ1 0
0 −νs −γ1

ΦT
νs

−α1
ΦT
νs

0 0 −µ1 − ϕ1 β1
ΦH
µs

0 0 γ1
ΦT
νs

−ν1 + α1
ΦT
νs

 .
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The sub-system of the infected species is given by

dn1

dt
= −µ1n1 + β1nsm1 − ϕ1n1,

dm1

dt
= −ν1m1 + γ1msn1 + α1msm1,

which, linearised at the virus-free steady state (n?s,m
?
s, 0, 0), becomes

dn1

dt
= −µ1n1 + β1

ΦH

µs
m1 − ϕ1n1,

dm1

dt
= −ν1m1 + γ1

ΦT

νs
n1 + α1

ΦT

νs
m1.

The system thus obtained is used to determine the fate of a small number of

infected individuals introduced in a virus-free population. Adopting the notation in

Van den Driessche & Watmough (2002), in order to compute the basic reproduction

number R0, the previous linearised system of ODEs is written as ẋ = (F − V )x,

where x = (n1,m1)T , F is the transmission component which accounts for the

production of new infections, and V is the transition component that considers

the changes in the state of the infected populations. Thus, the matrix F is given

by

F =

 0 β1
ΦH

µs

γ1
ΦT

νs
α1

ΦT

νs

 ,

whereas V is defined as

V =

(
µ1 + ϕ1 0

0 ν1

)
.

The value of R0 is then given by ρ(FV −1), that is the largest eigenvalue of the

matrix FV −1, called next generation matrix (Van den Driessche & Watmough,

2002), which is computed as

FV −1 =

 0 β1
ΦH

µsν1

γ1
ΦT

νs(µ1 + ϕ1)
α1

ΦT

νsν1

 . (5.4)

This definition of R0 is due to the fact that the largest eigenvalue of a matrix

represents the largest possible stretch that a vector can undergo when multiplied
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by the matrix. As explained by Brouwer (2022), “the first couple of generations

of a new epidemic will quickly converge to a specific pattern, with the size of each

generation increasing (or decreasing) by a factor of ρ(FV −1) and the distribution

among infected compartments given by ν”, where ν is the eigenvector of the next

generation matrix corresponding to ρ(FV −1). In order to interpret the entries of

FV −1, consider the fate of an infected individual introduced into a susceptible

population. For example, if an infected host is introduced in a population of

susceptible hosts, the expected number of secondary infections produced by the

infected host is RHH = (FV −1)11 = 0 because the infection cannot be directly

transmitted from host-to-host. If the infected host is introduced among susceptible

ticks, then the mean number of secondary infections is

RHT = (FV −1)21 = γ1
ΦT

νs(µ1 + ϕ1)
.

On the other hand, if an infected tick is introduced in a population of susceptible

hosts, the expected number of secondary infections is given by

RTH = (FV −1)12 = β1
ΦH

µsν1

.

Finally, if an infected tick is introduced in a population of susceptible ticks, the

average number of new infections among ticks produced by the infected tick is

RTT = (FV −1)22 = α1
ΦT

νsν1

.

The following values of R0 are computed considering particular transmission sce-

narios where some parameters are set equal to zero:

• Non-systemic transmission, i.e., co-feeding only and γ1 = β1 = 0:

R0 =
α1ΦT

νsν1

= RTT .

An epidemiological interpretation of R0 here is that an infected tick transmits

the virus to susceptible ticks at a rate of α1ΦT/νs during its lifetime 1/ν1,

so that the average number of secondary infections is α1ΦT
νsν1

.

• Transmission only from infected tick to susceptible host, thus γ1 = α1 = 0:

R0 = 0. Therefore, this type of transmission cannot generate an outbreak.
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• Transmission only from infected host to susceptible tick, that is β1 = α1 = 0:

R0 = 0. As in the case above, this type of transmission cannot generate an

outbreak.

• Co-feeding and from tick-to-host transmissions, which means γ1 = 0:

R0 =
α1ΦT

νsν1

.

Notice that this is the same R0 as the one computed in the case of only

non-systemic transmission.

• Co-feeding and from host-to-tick transmissions, therefore β1 = 0:

R0 =
α1ΦT

νsν1

.

Notice that this is the same R0 as the one computed in the case of only

non-systemic transmission.

• Systemic transmission, that is from infected host to susceptible tick and from

infected tick to susceptible host, while α1 = 0:

R0 =

√
β1γ1ΦH ΦT

µs ν1 νs(µ1 + ϕ1)
=
√
RHTRTH .

An epidemiological interpretation of R0 in this case is that an infected tick

transmits the virus to susceptible hosts at a rate β1ΦH/µs during its lifetime

1/ν1; on the other hand, an infected host can infect susceptible ticks at a

rate γ1ΦT/νs during the time frame 1/(µ1 +ϕ1) it is infected. Note that the

square root in the expression of R0 represents a geometric mean (Van den

Driessche, 2017). As discussed in Roberts & Heesterbeek (2003); Van den

Driessche (2017), in the literature the square root is often omitted, giving the

same threshold for stability at 1, but considering R2
0 as the expected number

of secondary infected hosts that result from a single infected host (or tick) as

two generations are required to transmit an infection from host-to-host (or

tick-to-tick, respectively), the first being from host-to-tick (or tick-to-host)

and the second being from tick-to-host (or host-to-tick). For example, Allen
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et al. (2019) define the basic reproduction numbers without the square root.

The quantity R2
0 can also be referred to as type reproduction number (Shutt

et al., 2017). Note that, in the case of only systemic transmission, ticks and

vertebrates are characterised by the same type reproduction number.

• Transmission by any route:

R0 =
1

2

(
α1ΦT

νsν1

+

√
α2

1Φ2
T

ν2
sν

2
1

+
4β1γ1ΦH ΦT

µs ν1 νs(µ1 + ϕ1)

)

=
1

2

(
RTT +

√
R2
TT + 4RHTRTH

)
.

(5.5)

Since R0 > 0, one has R0 ≤ 1 ⇐⇒ R2
0 ≤ 1. The last inequality can be

rewritten as

α2
1Φ2

T

ν2
sν

2
1

+
4β1γ1ΦH ΦT

µs ν1 νs(µ1 + ϕ1)
≤
(

2− α1ΦT

νsν1

)2

.

After simplifying, one obtains the condition

β1γ1ΦTΦH

ν1(µ1 + ϕ1)νsµs
+
α1ΦT

ν1νs
≤ 1, (5.6)

which is more intuitive to interpret from an epidemiological point of view.

In particular, it is straightforward to observe that the left hand side of equa-

tion (5.6) is comprised of two components, the first of which accounts for

systemic transmission and the second is due to co-feeding.

The study of the basic reproduction number highlights that co-feeding represents

a special route of transmission, which is totally distinguished from the systemic

transmission and is able to maintain an epidemic on its own. On the other hand,

the systemic transmission requires both the tick-to-host and host-to-tick routes to

produce an outbreak.

Figure 5.4 shows how the value of the basic reproduction number R0 in the presence

of all routes of transmission derived in equation (5.5) is affected by varying the

transmission parameters tick-to-tick α1 (across rows), tick-to-host β1 (varied along

the y-axis) and host-to-tick γ1 (varied along the x-axis), as well as the number of

susceptible ticks at virus-free equilibrium, given by the ratio ΦT
νs

(varied across
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columns). The number of susceptible hosts at equilibrium, represented by ΦH
µs

, is

normalised at 1. It is also assumed that infection does not affect the death rate of

hosts and ticks, i.e., µs = µ1 and νs = ν1 (Gao et al., 2016). The red line in the

plots represents the threshold value R0 = 1. Note that, for increasing values of α1

and susceptible number of ticks at virus-free equilibrium, the basic reproduction

number becomes larger. In particular, when α1 ≥ 10−3 (1/Days/Tick) and ΦT
νs

= 6

or ΦT
νs

= 8, the co-feeding transmission becomes predominant and R0 is never

smaller than 1. As our intuition would suggest, the largest values of R0 correspond

to the largest values of the transmission parameters α1, β1 and γ1.

5.1.2 Branching process approximation

The theory of branching processes has been used to model the propagation of

infectious diseases to shed light, for example, on the extinction of the epidemic

outbreaks, their extinction time and the effect of possible control measures (Bar-

toszyński, 1967; Jacob, 2010). These models assume independence between in-

fected individuals, meaning that infected individuals transmit the virus to suscep-

tible ones independently of each other. Therefore, a branching process approxima-

tion provides an adequate description of the system when the susceptible popula-

tions are large, for instance at the beginning of an outbreak. When the depletion of

susceptible individuals due to infection can be neglected and the population is not

saturated with infectious individuals, one can assume that the infected populations

behave as a branching process (i.e., an infected individual infects a susceptible,

generating two infected individuals in the next generation).

Assuming that the populations of susceptible ticks and vertebrates are large, in

this section the dynamics of infected ticks and hosts is approximated making use of

a two-type branching process. To this end, define the following random variables:

• H1(t) is the number of infected hosts at time t;

• T1(t) is the number of infected ticks at time t.

Imagine that one infected host is introduced in a population of susceptible hosts

and ticks, that is (H1(0), T1(0)) = (1, 0). Following the events illustrated in Fig-
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Figure 5.4: How the basic reproduction number computed in equation (5.5) is

affected by varying the transmission parameters tick-to-tick α1 (across rows), tick-

to-host β1 (varied along the y-axis) and host-to-tick γ1 (varied along the x-axis),

as well as the number of susceptible ticks at virus-free equilibrium, given by the

ratio ΦT
νs

(varied across columns). The number of susceptible hosts at equilibrium,

represented by ΦH
µs

, is normalised at 1. The death rates of hosts and ticks are not

affected by the infection, that is µs = µ1 = 1/(4×365) per day and νs = ν1 = 1/200

per day. The viral clearance rate of an infected host is 1/6 per day. The red lines

represent the threshold value R0 = 1.
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ure 5.3, in a short time interval ∆t one has

(H1(∆t), T1(∆t)) =


(1, 1) with probability γ1ms∆t,

(0, 0) with probability (µ1 + ϕ1)∆t,

(1, 0) with probability 1− (γ1ms + µ1 + ϕ1)∆t.

(5.7)

Instead, if an infected tick is introduced in a population of susceptible ticks and

hosts, i.e., (H1(0), T1(0)) = (0, 1), the following cases are possible

(H1(∆t), T1(∆t)) =


(1, 1) with probability β1ns∆t,

(0, 2) with probability α1ms∆t,

(0, 0) with probability ν1∆t,

(0, 1) with probability 1− (β1ns + α1ms + ν1)∆t.

(5.8)

Thus, the pair (H1(t), T1(t))t≥0 defines a two-type branching process in continuous

time (Athreya et al., 2004). Note that, as the susceptible populations of ticks and

hosts are assumed to be large and depletion due to infection is ignored, the number

of susceptible hosts and ticks, ns and ms respectively, is considered constant. In

order to study the probability of extinction of the infected species, one considers

the embedded discrete time branching process; see page 418 of Karlin & Taylor

(1975) for reference. The embedded discrete time branching process is defined as

(H1(kt0), T1(kt0))k∈N, where t0 is any fixed positive number. Making use of the

theory of discrete time branching processes, one can easily determine the probabil-

ity of virus-free and endemic states in the continuous case. To this end, the steps

illustrated in Section 4.7 of Allen (2010) will be adapted here.

Suppose (H1(0), T1(0)) = (1, 0) and denote by pH1(i, j) the probability of having i

infected hosts and j infected ticks in one generation (or in one time step) starting

with one infected host at time t = 0. From equation (5.7), one obtains

pH1(1, 1) =
γ1ms

γ1ms + µ1 + ϕ1

,

pH1(0, 0) =
µ1 + ϕ1

γ1ms + µ1 + ϕ1

.

The probability generating function associated with the offspring distribution of
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one infected host, fH1(x, y), is defined as

fH1(x, y) =
+∞∑
i=0

+∞∑
j=0

pH1(i, j)x
iyj

=
γ1ms

γ1ms + µ1 + ϕ1

xy +
µ1 + ϕ1

γ1ms + µ1 + ϕ1

,

where x, y ∈ C and |x|, |y| < 1.

Similarly, starting with one infected tick and denoting by pT1(i, j) the probability

of having i infected hosts and j infected ticks in one generation (or in one time

step) starting with one infected tick at time t = 0, equation (5.8) yields

pT1(1, 1) =
β1ns

β1ns + α1ms + ν1

,

pT1(0, 2) =
α1ms

β1ns + α1ms + ν1

,

pT1(0, 0) =
ν1

β1ns + α1ms + ν1

.

The probability generating function associated with the offspring distribution of

one infected tick, fT1(x, y), is defined as

fT1(x, y) =
+∞∑
i=0

+∞∑
j=0

pT1(i, j)x
iyj

=
β1ns

β1ns + α1ms + ν1

xy +
α1ms

β1ns + α1ms + ν1

y2 +
ν1

β1ns + α1ms + ν1

,

where x, y ∈ C and |x|, |y| < 1.

Let F (x, y) = (fH1(x, y), fT1(x, y)) be the vector of the probability generating

functions. Given its definition, F (x, y) has a fixed point at (1, 1). The probability

of extinction depends on the existence of another fixed point of F (x, y) in [0, 1]2.

To investigate this, consider the mean number of infected ticks (or hosts) caused

by an infected host (or tick) in one generation, i.e., in one time step, that is

mH1H1 = E [H1(1)|(H1(0), T1(0)) = (1, 0)] ,

mH1T1 = E [H1(1)|(H1(0), T1(0)) = (0, 1)] ,

mT1H1 = E [T1(1)|(H1(0), T1(0)) = (1, 0)] ,

mT1T1 = E [T1(1)|(H1(0), T1(0)) = (0, 1)] .
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These expected values can be defined in terms of the probability generating func-

tions as

mH1H1 =
∂fH1(x, y)

∂x

∣∣∣∣
x=1,y=1

=
γ1ms

γ1ms + µ1 + ϕ1

,

mH1T1 =
∂fH1(x, y)

∂y

∣∣∣∣
x=1,y=1

=
γ1ms

γ1ms + µ1 + ϕ1

,

mT1H1 =
∂fT1(x, y)

∂x

∣∣∣∣
x=1,y=1

=
β1ns

β1ns + α1ms + ν1

,

mT1T1 =
∂fT1(x, y)

∂y

∣∣∣∣
x=1,y=1

=
β1ns + 2α1ms

β1ns + α1ms + ν1

,

from which the expectation matrix M is built to derive the condition of virus

extinction and virus establishment (see page 180 of Allen (2010)):

M =


γ1ms

γ1ms + µ1 + ϕ1

β1ns
β1ns + α1ms + ν1

γ1ms

γ1ms + µ1 + ϕ1

β1ns + 2α1ms

β1ns + α1ms + ν1

 .

Since all its entries are positive, the matrix M is regular, which means all the

entries of Mp are positive for some p > 0. Thus, M has a simple eigenvalue of

maximum modulus, that will be denoted by λ; see page 180 of Allen (2010). It is

straightforward to compute

λ =
1

2

(
A+ +B +

√
(A+)2 +B2 + 2A−B

)
, (5.9)

where

A± =
β1ns ± 2α1ms

α1ms + β1ns + ν1

,

B =
γ1ms

γ1ms + µ1 + ϕ1

.
(5.10)

From Theorem 4.5 of Allen (2010), one has

i. If λ ≤ 1, then

lim
k→+∞

P
(

(H1(k), T1(k)) = (0, 0)|(H1(0), T1(0)) = (1, 0)
)

= 1,

lim
k→+∞

P
(

(H1(k), T1(k)) = (0, 0)|(H1(0), T1(0)) = (0, 1)
)

= 1.
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ii. If λ > 1, then

lim
k→+∞

P
(

(H1(k), T1(k)) = (0, 0)|(H1(0), T1(0)) = (1, 0)
)

= x,

lim
k→+∞

P
(

(H1(k), T1(k)) = (0, 0)|(H1(0), T1(0)) = (0, 1)
)

= y,

where (x, y) is the fixed point of F (x, y).

The expression of the fixed point (x, y), which gives the probability of extinction

when λ > 1, can be found for this system using the software Mathematica. As

observed by Allen (2010), if the process starts with n1 infected hosts and m1

infected ticks, i.e., (H1(0), T1(0)) = (n1,m1), the probability of extinction is given

by

lim
k→+∞

P
(

(H1(k), T1(k)) = (0, 0)|(H1(0), T1(0)) = (n1,m1)
)

= xn1ym1 .

5.1.3 Equivalence of deterministic model and branching

process approximation

We aim to show here that the condition λ ≤ 1 (or λ > 1) derived from the

branching process approximation in (5.9) is equivalent to the condition R0 ≤ 1 (or

R0 > 1, respectively) obtained from the deterministic model, where R0 is defined

by equation (5.5). The condition λ ≤ 1, where λ is defined in equation (5.9), can

be rewritten as √
(A+)2 +B2 + 2A−B ≤ 2− A+ −B.

Taking the square of both sides and simplifying, we obtain

A−B + 2A+ + 2B − A+B ≤ 2.

Replacing the definitions of A± and B as in equation (5.10) in the previous in-

equality and simplifying yields

β1γ1msns
ν1(µ1 + ϕ1)

+
α1ms

ν1

≤ 1.

Evaluating the previous condition at the virus-free equilibrium (n?s,m
?
s, 0, 0) de-

fined in (5.3), we derive the condition

β1γ1ΦTΦH

ν1(µ1 + ϕ1)νsµs
+
α1ΦT

ν1νs
≤ 1, (5.11)
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which is the same inequality obtained in equation (5.6) from the deterministic

model. Thus, the deterministic model and the branching process approximation

provide equivalent conditions for the virus extinction or establishment, as one

would expect. While the equivalence is shown only when all the routes of trans-

mission are considered, it can be easily proven also in the other special cases

considered in Section 5.1.1. From an epidemiological perspective, the left hand

side of (5.11) can be interpreted as follows: the first term represents an infected

tick that infects susceptible hosts at a rate β1
ΦH
µs

during its lifetime 1
ν1

; on the

other hand, an infected host can infect susceptible ticks at a rate γ1
ΦT
νs

during the

time frame 1
µ1+ϕ1

it is infected. The second term is due to co-feeding: an infected

tick can infect a susceptible vector at a rate α1
ΦT
νs

during its lifetime 1
ν1

.

One notes that the main difference between the deterministic model defined in Sec-

tion 5.1.1 and the branching process approximation presented in Section 5.1.2 is

that the stochastic approach enables the computation of the probability of extinc-

tion of infected individuals also in the case of virus establishment; that is λ > 1,

or, equivalently R0 > 1.

5.1.4 Considering depletion of susceptible species

The branching process approximation presented in Section 5.1.2 can be seen as a

stochastic version of the deterministic model provided in Section 5.1.1 under the

assumption of large populations of susceptible individuals, and thus, independence

of infected individuals. In this section, we consider instead a stochastic version of

the model where the number of susceptible individuals is not in excess, and its time

evolution (in particular, the depletion of susceptible individuals over time due to

infection) cannot be neglected. One of the aims of this approach is to analyse the

stochastic dynamics of the system in terms of a number of stochastic descriptors or

summary statistics. In particular, the probabilities of extinction of infected species

versus the establishment of the virus are computed, together with the conditional

times to such events. The distributions of the exact number of secondary infections

are also derived considering the possible routes of transmission tick-to-host, host-

to-tick and tick-to-tick. These stochastic descriptors are computed making use of

a technique called first step analysis. This is a typical technique used to compute
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summary statistics of interest in a CTMC. In particular, one exploits the law of

total probability and the Markov property to condition on the next event occurring

in the system, which leads to a system of linear equations that can be efficiently

solved. For more details, the reader is referred to Section 3.4 of Pinsky & Karlin

(2010).

Since the depletion of susceptible individuals over time is taken into account to

derive the probability of and conditional time to the virus-free state or to virus

establishment, as well as the distribution of the exact number of secondary in-

fections, a new infection of a host (or a tick) corresponds to the reduction of the

susceptible number of hosts (or ticks) by one unit. Furthermore, as the interest

is in studying the early times of the epidemic (e.g., epidemic extinction versus

establishment when the virus is seeded into the population), the analysis can be

simplified by considering that the total population sizes of hosts and ticks are

constant over time. To do this, we neglect immigration events from now on (i.e.,

set ΦH = ΦT = 0), and we consider that, when an infected individual (either a

tick or a host) is removed from the system (e.g., due to death or viral clearance),

it is instantaneously replaced by a susceptible individual of the same species (ei-

ther tick or host). Note that this is a different model from the one considered

in Section 5.1.2. Let NH denote the total number of hosts, and similarly NT is

the total number of ticks. Thus, if at time t, there are n1 infected hosts and m1

infected ticks, the size of the population of susceptible hosts is NH − n1, whereas

the number of susceptible ticks is NT − m1. Maintaining the same notation of

Section 5.1.2, the random variables H1(t) and T1(t) are the number of infected

hosts and ticks, respectively, at time t. The continuous time Markov chain that

describes the dynamics of the infected individuals, (H1(t), T1(t))t≥0, is defined in

the rectangle

Ω = {(n1,m1) ∈ N2
0 : 0 ≤ n1 ≤ NH , 0 ≤ m1 ≤ NT}.

As depicted in Figure 5.5, from a state (n1,m1) ∈ Ω, the process can jump to four
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(n1,m1)
(n1 + 1,m1)(n1 − 1,m1)

(n1,m1 + 1)

(n1,m1 − 1)

β1(NH − n1)m1

(µ1 + ϕ1)n1

(γ1n1 + α1m1)(NT −m1)

ν1m1

Figure 5.5: Transition diagram for the Markov chain (H1(t), T1(t))t≥0 showing the

possible states which the process can move to from a general state (n1,m1) and

the transition rates with which these jumps occur.

adjacent states, with transition rates

q(n1,m1),(n′1,m
′
1) =


β1(NH − n1)m1, if (n′1,m

′
1) = (n1 + 1,m1),

(γ1n1 + α1m1)(NT −m1), if (n′1,m
′
1) = (n1,m1 + 1),

(µ1 + ϕ1)n1, if (n′1,m
′
1) = (n1 − 1,m1),

ν1m1, if (n′1,m
′
1) = (n1,m1 − 1).

(5.12)

We note that (0, 0) is an absorbing state, representing epidemic extinction. A

typical situation of interest is when NT and NH represent susceptible individuals

in a particular region, where an infected tick (T1(0) = 1) or host (H1(0) = 1)

is introduced. In this situation, it is of interest to compute the probability of

short-term epidemic extinction (i.e., the epidemic dies out without causing a large

outbreak in this region) versus virus establishment (i.e., a threshold number of

infected individuals is achieved, leading to an outbreak). In the next subsection,

we compute these probabilities, as well as the conditional times to such events. To
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do this, a second absorbing macro-state E is defined by merging all the states in the

sub-set {(n1,m1) ∈ Ω : n1 +m1 = Nmax}, where, for the purposes of this chapter,

Nmax is a positive integer such that Nmax ≤ min{NH , NT}. If the total number

of infected individuals, n1 + m1, hits the threshold Nmax, the virus is considered

established in the populations of hosts and ticks. Hence, one notices that the state

space of the Markov chain defined in equation (5.12) is actually the triangle given

by

Ω̂ = {(n1,m1) ∈ N2
0 : 0 ≤ n1 +m1 ≤ Nmax − 1} ∪ E.

Probability of and conditional time to virus-free state and virus estab-

lishment

In order to compute the probability of short-term epidemic extinction (i.e., reach-

ing (0, 0) before reaching the absorbing macro-state E), as well as the conditional

time to such event, define for (n1,m1) ∈ Ω̂

τV S(n1,m1) = inf{t ≥ 0 : (H1(t), T1(t)) = (0, 0)|(H1(0), T1(0)) = (n1,m1)},

that is the time to reach the virus-free state (VS) (0, 0) starting with n1 infected

hosts and m1 infected ticks. We note that τV S(n1,m1) = +∞ if the process, in the

long term, reaches the absorbing state E instead of (0, 0) (representing virus estab-

lishment instead of short-term epidemic extinction). The probability of reaching

the virus-free state and the expected time to reach the virus-free state condi-

tioned on actually reaching this fate can be computed starting from any initial

state (n1,m1) ∈ Ω̂. This can be obtained from the Laplace-Stieltjes transform of

τV S(n1,m1) defined as

φV S(n1,m1)(z) = E
[
e
−zτV S

(n1,m1)1{
τV S
(n1,m1)

< +∞
}] , Re(z) ≥ 0,

where 1{
τV S
(n1,m1)

< +∞
} is a random variable taking the value 1 if τV S(n1,m1) < +∞ and

0 otherwise, so that the previous Laplace-Stieltjes transform is restricted to the
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sample paths satisfying τV S(n1,m1) < +∞. Using a first step argument, we can write

φV S(n1,m1)(z) = E
[
e
−zτV S

(n1,m1)1{
τV S
(n1,m1)

< +∞
}]

=
∑

(n′1,m
′
1)∈Ω̂

E
[
e
−zτV S

(n1,m1)1{
τV S
(n1,m1)

< +∞
}∣∣∣∣(n1,m1)→ (n′1,m

′
1)

]
·

P ((n1,m1)→ (n′1,m
′
1)) ,

where the notation (n1,m1)→ (n′1,m
′
1) represents the event of moving from state

(n1,m1) to state (n′1,m
′
1) in one jump. Thus, P ((n1,m1)→ (n′1,m

′
1)) is the proba-

bility of moving from state (n1,m1) to state (n′1,m
′
1) in the next event that occurs.

The states that can be possibly reached in one jump of the process starting from

(n1,m1) are depicted in the transition diagram in Figure 5.5. If the process jumps

from (n1,m1) to (n′1,m
′
1), the random variable τV S(n1,m1) can be split into two parts,

τV S(n1,m1) = t(n1,m1)→(n′1,m
′
1)+τ

V S
(n′1,m

′
1), where t(n1,m1)→(n′1,m

′
1) denotes the time taken for

the process to move from state (n1,m1) to state (n′1,m
′
1) in one step, and therefore,

φV S(n1,m1)(z) =
∑

(n′1,m
′
1)∈Ω̂

E
[
e
−zt(n1,m1)→(n′1,m

′
1)
∣∣(n1,m1)→ (n′1,m

′
1)
]
·

E

[
e
−zτV S

(n′1,m
′
1)1{

τV S
(n′1,m

′
1)
< +∞

}
]
P ((n1,m1)→ (n′1,m

′
1)) ,

where the expectation of the product becomes the product of the expectations due

to the independence given by the Markov property, and the second expectation is

no longer conditional also due to the Markov property. One has

P ((n1,m1)→ (n′1,m
′
1)) =

q(n1,m1),(n′1,m
′
1)

R(n1,m1)

,

where

R(n1,m1) = q(n1,m1),(n1+1,m1) + q(n1,m1),(n1−1,m1) + q(n1,m1),(n1,m1+1) + q(n1,m1),(n1,m1−1).

Then, as t(n1,m1)→(n′1,m
′
1)|(n1,m1)→ (n′1,m

′
1) is exponentially distributed with rate

R(n1,m1) and E
[
e−zX

]
= λ

λ+z
if X ∼ Exp(λ),

E
[
e
−zt(n1,m1)→(n′1,m

′
1)
∣∣(n1,m1)→ (n′1,m

′
1)
]

=
R(n1,m1)

R(n1,m1) + z
.
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Thus, the following system of linear equations is derived:

φV S(n1,m1)(z) =
β1(NH − n1)m1

R(n1,m1) + z
φV S(n1+1,m1)(z) +

(µ1 + ϕ1)n1

R(n1,m1) + z
φV S(n1−1,m1)(z)

+
γ1(NT −m1)n1 + α1(NT −m1)m1

R(n1,m1) + z
φV S(n1,m1+1)(z)

+
ν1m1

R(n1,m1) + z
φV S(n1,m1−1)(z),

(5.13)

which can be rewritten as(
R(n1,m1) + z

)
φV S(n1,m1)(z) = β1(NH − n1)m1φ

V S
(n1+1,m1)(z)

+ (µ1 + ϕ1)n1φ
V S
(n1−1,m1)(z)

+ (γ1(NT −m1)n1 + α1(NT −m1)m1)φV S(n1,m1+1)(z)

+ ν1m1φ
V S
(n1,m1−1)(z).

(5.14)

It is interesting to notice that, for z = 0, one has

φV S(n1,m1)(0) = E
[
1{

τV S
(n1,m1)

< +∞
}] = P

(
τV S(n1,m1) < +∞

)
,

which is the probability of reaching the virus-free state starting from (n1,m1). We

introduce the notation pV S(n1,m1) := P
(
τV S(n1,m1) < +∞

)
. Hence, evaluating equation

(5.14) at z = 0, one obtains the following system of linear equations:

R(n1,m1)p
V S
(n1,m1) = β1(NH − n1)m1p

V S
(n1+1,m1) + (µ1 + ϕ1)n1p

V S
(n1−1,m1)

+ (γ1(NT −m1)n1 + α1(NT −m1)m1)pV S(n1,m1+1) + ν1m1p
V S
(n1,m1−1).

(5.15)

Boundary conditions are given by pV S(0,0) = 1 and pV S(n1,m1) = 0 if n1 + m1 = Nmax.

We note that reaching any state (n1,m1) with n1 +m1 = Nmax represents reaching

the macro-state E according to its definition. Recall that

E

[(
τV S(n1,m1)1

{
τV S
(n1,m1)

< +∞
})l] = (−1)l

dl

dzl
φV S(n1,m1)(z)

∣∣∣∣
z=0

, l ≥ 0. (5.16)

One notes that, for l = 0, the 0th derivative of the Laplace-Stieltjes transform

corresponds to the probabilities derived in equation (5.15), whereas for l = 1,
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the first derivative of the Laplace-Stieltjes transform corresponds to the first-order

moments. In order to simplify the notation, denote the first-order moments as

MV S
(n1,m1) = E

[
τV S(n1,m1)1

{
τV S
(n1,m1)

< +∞
}] .

Differentiating (5.14) with respect to z and evaluating it at z = 0, one obtains

R(n1,m1)M
V S
(n1,m1) = β1(NH − n1)m1M

V S
(n1+1,m1) + (µ1 + ϕ1)n1M

V S
(n1−1,m1)

+ (γ1(NT −m1)n1 + α1(NT −m1)m1)MV S
(n1,m1+1)

+ ν1m1M
V S
(n1,m1−1) + pV S(n1,m1).

(5.17)

Boundary conditions are given by MV S
(n1,m1) = 0 if n1 +m1 = Nmax because in this

case 1{
τV S
(n1,m1)

< +∞
} = 0.

Equation (5.17) shows that, in order to compute MV S
(n1,m1), it is necessary to first

determine the value of pV S(n1,m1); that is the computation of the first derivative of

the Laplace-Stieltjes transform depends on the 0th derivative of the transform.

More broadly, this method could be used to compute higher order moments of the

random variable τV S(n1,m1)1
{
τV S
(n1,m1)

< +∞
}, where the lth derivative of the Laplace-

Stieltjes transform depends on the l − 1th derivative previously computed in an

algorithmic fashion. However, our interest is in computing the derivatives defined

in equation (5.16) for l = 0, 1, which correspond to the probabilities in equa-

tion (5.15) and to the first-order moments in equation (5.17), respectively.

We note that the system of equations (5.15) and (5.17) contains one equation

for each possible initial state (n1,m1) ∈ Ω̂. Thus, in order to solve this system

efficiently, one can write it in matrix form, where the structure of the corresponding

matrix of coefficients depends on the ordering of the equations (i.e., of the states

in Ω̂). A particularly efficient way of doing this is to organise the state space Ω̂ in

sub-sets (here called levels) as follows:

L (j) =
{

(n1,m1) ∈ Ω̂ : n1 +m1 = j
}
, Ω̂ =

Nmax−1⋃
j=1

L (j)∪ {(0, 0)} ∪E. (5.18)

The state space Ω̂ organised in levels is depicted in Figure 5.6. For instance, level

L (3) = {(3, 0), (2, 1), (1, 2), (0, 3)} consists of the states (n1,m1) in Ω̂ such that

the number of infected individuals, n1 + m1, is equal to 3. Thus, if one orders
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. . .

T1

H1

...

...

...

...

· · ·L(0)

L(1)

L(2)

L(3)

L(4)

E = L(Nmax)

Figure 5.6: The state space Ω̂ is organised in levels according to equation (5.18).

the states by levels with L (0) ≺ L (1) ≺ · · · ≺ L (Nmax − 1), and the states

within each level L (j) as (j, 0) ≺ (j − 1, 1) ≺ (j − 2, 2) ≺ · · · ≺ (0, j), then it is

clear that only transitions between adjacent levels are allowed (see Figure 5.5). In

particular, from any state (n1,m1) in L (j), the next event in the Markov chain

can take the process to either a state in level L (j − 1) through the death or the

viral clearance of an infected host or the death of an infected tick, or a state in

level L (j+ 1) via a new infection of either a host or a tick. Moreover, from states

in level L (Nmax − 1), the process can either move to level L (Nmax − 2) or to

the absorbing state E, representing virus establishment. Note that the absorbing

state E can be reached only from L (Nmax− 1). On the other hand, the virus-free

state (0, 0) can be accessed only from level L (1), and the process reaching state

(0, 0) corresponds to epidemic extinction.

Thus, equations (5.15) and (5.17) can be rewritten in a matrix form as

X(l)(V S) = AX(l)(V S) + b(l)(V S), l = 0, 1, (5.19)

154



5.1 Single infection dynamics

where V S stands for virus-free state, and where

X(l)(V S) =


X

(l)
1 (V S)

X
(l)
2 (V S)

X
(l)
3 (V S)

...

X
(l)
Nmax−1(V S)

 , b(l)(V S) =


b

(l)
1 (V S)

b
(l)
2 (V S)

b
(l)
3 (V S)

...

b
(l)
Nmax−1(V S)

 ,

A =



0 A1,2 0 · · · 0 0
A2,1 0 A2,3 · · · 0 0

0 A3,2 0 · · · 0 0
...

. . . . . . . . .
...

...
0 0 0 · · · 0 ANmax−2,Nmax−1

0 0 0 · · · ANmax−1,Nmax−2 0


.

The sub-vectors X
(l)
j (V S) and b

(l)
j (V S) that constitute the vectors X(l)(V S) and

b(l)(V S) respectively, l = 0, 1, have dimensions j + 1, with j = 1, . . . , Nmax − 1.

For l = 0, which corresponds to the probabilities in equation (5.15), the sub-vectors

X
(0)
j (V S) that comprise X(0)(V S) are defined as

X
(0)
j (V S) =


pV S(j,0)

pV S(j−1,1)
...

pV S(0,j)

 , j = 1, . . . , Nmax − 1,

whereas b
(0)
j (V S) = 0 if j > 1 and

b
(0)
1 (V S) =


µ1 + ϕ1

R(1,0)

ν1

R(0,1)

 .

In the instance of equations (5.17), which correspond to l = 1, the sub-vectors in

X(1)(V S) are given by

X
(1)
j (V S) =


MV S

(j,0)

MV S
(j−1,1)

...
MV S

(0,j)

 , j = 1, . . . , Nmax − 1,
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and b(1)(V S) consists of sub-vectors defined as

b
(1)
j (V S) =



pV S(j,0)

R(j,0)

pV S(j−1,1)

R(j−1,1)
...

pV S(0,j)

R(0,j)


, j = 1, . . . , Nmax − 1.

The blocks that comprise the matrix A, Ak+1,k and Ak,k+1, have dimensions (k+

2)× (k + 1) and (k + 1)× (k + 2) respectively, and are defined as follows:

• For k = 1, . . . , Nmax − 2:

(Ak+1,k)i+1,j+1 =


(k + 1− i)(µ1 + ϕ1)

R(k+1−i,i)
, if i = j,

iν1

R(k+1−i,i)
, if i = j + 1,

0, otherwise,

where i = 0, . . . , k + 1 and j = 0, . . . , k.

• For k = 1, . . . , Nmax − 2:

(Ak,k+1)i+1,j+1 =


((k − i)γ1 + iα1)(NT − i)

R(k−i,i)
, if i = j − 1,

iβ1(NH + i− k)

R(k−i,i)
, if i = j,

0, otherwise,

where i = 0, . . . , k and j = 0, . . . , k + 1.

Let Ik denote the identity matrix of order k. Equation (5.19) can then be solved

efficiently using Algorithm 4 based on a forward-elimination backward-substitution

solution suggested by Ciarlet et al. (1989) (see page 144) to obtain pV S(n1,m1) and

MV S
(n1,m1) for any initial state (n1,m1) ∈ Ω̂.
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Algorithm 4 Probability of (l = 0), and conditional time to (l = 1), virus-free

state
1: H2 = (I3 −A2,1A1,2)−1.

2: J
(l)
2 = A2,1b

(l)
1 + b

(l)
2 .

3: for k = 3, . . . , Nmax − 1 do:

4: Hk = (Ik+1 −Ak,k−1Hk−1Ak−1,k)
−1.

5: J
(l)
k = Ak,k−1Hk−1J

(l)
k−1 + b

(l)
k .

6: end for

7: X
(l)
Nmax−1 = HNmax−1J

(l)
Nmax−1.

8: for k = Nmax − 2, . . . , 1 do:

9: X
(l)
k = Hk(J

(l)
k +Ak,k+1X

(l)
k+1).

10: end for

11: return X(l) = ((X
(l)
1 )T , . . . , (X

(l)
Nmax−1)T )T .

Once MV S
(n1,m1) is at hand, invoking the law of total expectation, one has

MV S
(n1,m1) = E

[
τV S(n1,m1)1

{
τV S
(n1,m1)

< +∞
}∣∣∣τV S(n1,m1) < +∞

]
P
(
τV S(n1,m1) < +∞

)
+ E

[
τV S(n1,m1)1

{
τV S
(n1,m1)

< +∞
}∣∣∣τV S(n1,m1) = +∞

]
P
(
τV S(n1,m1) = +∞

)
= E

[
τV S(n1,m1)

∣∣∣τV S(n1,m1) < +∞
]
P
(
τV S(n1,m1) < +∞

)
,

which yields

TV S(n1,m1) = E
[
τV S(n1,m1)

∣∣∣τV S(n1,m1) < +∞
]

=
MV S

(n1,m1)

pV S(n1,m1)

, (5.20)

that represents the conditional expected time to reach the virus-free state from

any initial state (n1,m1) ∈ Ω̂ conditioned on the process actually reaching this

absorbing state.

Figures 5.7 and 5.8 show respectively the probability of reaching the virus-free state

(0, 0) and the expected time to reach the virus-free state conditioned on the pro-

cess actually reaching this absorbing state for different values of the transmission

parameters β1, γ1 and α1, and initial conditions. The parameter that encapsulates

co-feeding transmission, α1, varies as 10−6 (left column), 10−5 (central column)

and 10−4 (right column). The stochastic descriptors are computed starting with
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only one infected host (first row), two infected hosts (second row) and three in-

fected hosts (third row). The values of γ1 and β1 vary between 0 and 5 × 10−3

along the x-axis and y-axis of each plot. As shown in Figure 5.7, one observes that

the virus-free state (0, 0) is more likely to be reached when the parameters α1, β1

and γ1 are small (as in the yellow area of the plots of the left and central columns).

In the left and central column plots, the curve that marks the sharp gradient from

the yellow area to the green/blue one represents the combination of parameters for

which the basic reproduction number R0 is equal to 1. Thus, when R0 < 1 (yellow

area), the process reaches the virus-free state, whereas for R0 > 1 (green/blue

area) the virus may become endemic. Conversely to the deterministic model in

Section 5.1.1, the stochastic approach presented here allows us to compute the

probability of virus extinction even when R0 > 1. On the other hand, for larger

values of the co-feeding transmission α1 (right column), R0 is always greater than

1, and the host-to-tick transmission parameter γ1 affects the probability pV S(n1,m1)

more than β1, which corresponds to tick-to-host transmission. This is explained by

the initial conditions, that consider only infected hosts. Indeed in this situation,

there are no infected ticks that can transmit the virus to susceptible hosts. It is

also interesting to notice that, when the initial number of infected hosts increases

(second and third row), the system more closely resembles the deterministic be-

haviour. Indeed, the gradient decay from yellow to blue (i.e., R0 < 1 and R0 > 1,

respectively) is sharper for increasing values of the initial number of hosts, n1.

On the contrary, when the virus is introduced into the system through a single

infected host (first row), the stochasticity of the potential short-term extinction

event is more significant. Regarding the conditional time to reach the virus-free

state conditioned on actually reaching this fate depicted in Figure 5.8, one notes

that the process takes a long time to reach the virus-free state for those parameter

values such that R0 ≈ 1, particularly when γ1 increases. Indeed, more ticks be-

come infected for larger values of γ1. Conversely to hosts, ticks remain infected for

their lifetime. Thus, a longer time is needed for the system to become virus-free

because of the time infected ticks require to be removed. Overall, the factors that

affect the most the probability of virus extinction (i.e., the process reaching the

absorbing state (0, 0)) and the timescale to reach this fate is the basic reproduction

number R0 being smaller or greater than 1 and the initial conditions.

158



5.1 Single infection dynamics

Figure 5.7: The probability of reaching the virus-free state, pV S(n1,m1), computed in

equation (5.19) for l = 0, is plotted for different values of the transmission pa-

rameters α1 (1/Days/Tick), β1 (1/Days/Tick) and γ1 (1/Days/Host), and initial

conditions. The co-feeding transmission parameter, α1, varies as 10−6 (left col-

umn), 10−5 (central column) and 10−4 (right column). The probability pV S(n1,m1)

is computed starting with only one infected host (first row), two infected hosts

(second row) and three infected hosts (third row). The values of γ1 and β1 vary

between 0 and 5 × 10−3 along the x-axis and y-axis of each plot. The other pa-

rameters are fixed as follows: NH = 20, NT = 102, Nmax = 20, µ1 = 1/(4 × 365)

1/Days, ϕ1 = 1/6 1/Days and ν1 = 1/200 1/Days.
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Figure 5.8: The expected time to reach the virus-free state (0, 0) conditioned on

actually reaching this fate, TV S(n1,m1), computed in equation (5.20), is plotted for dif-

ferent values of the transmission parameters α1 (1/Days/Tick), β1 (1/Days/Tick)

and γ1 (1/Days/Host), and initial conditions. The co-feeding transmission pa-

rameter, α1, varies as 10−6 (left column), 10−5 (central column) and 10−4 (right

column). The conditional time TV S(n1,m1) is computed starting with only one infected

host (first row), two infected hosts (second row) and three infected hosts (third

row). The values of γ1 and β1 vary between 0 and 5 × 10−3 along the x-axis and

y-axis of each plot. The other parameters are fixed as follows: NH = 20, NT = 102,

Nmax = 20, µ1 = 1/(4× 365) 1/Days, ϕ1 = 1/6 1/Days and ν1 = 1/200 1/Days.
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On the other hand, one could define for (n1,m1) ∈ Ω̂

τE(n1,m1) = inf{t ≥ 0 : H1(t) + T1(t) = Nmax|(H1(0), T1(0)) = (n1,m1)},

that is the time to reach the absorbing macro-state E (i.e., virus establishment)

starting with n1 infected hosts and m1 infected ticks. The probability of virus

establishment and the expected time to virus establishment conditioned on actually

reaching this fate can be computed starting from any initial state (n1,m1) ∈ Ω̂.

This can be obtained from the Laplace-Stieltjes transform of τE(n1,m1) defined as

φE(n1,m1)(z) = E
[
e
−zτE

(n1,m1)1{
τE
(n1,m1)

< +∞
}] , Re(z) ≥ 0.

Similarly to the case of virus-free state, define

ME
(n1,m1) = E

[
τE(n1,m1)1

{
τE
(n1,m1)

< +∞
}] ,

pE(n1,m1) = P
(
τE(n1,m1) < +∞

)
.

Following the same steps illustrated for φV S(n1,m1)(z), one obtains the analogous

system of linear equations derived in equations (5.15) and (5.17) for pE(n1,m1) and

ME
(n1,m1) respectively. Note that

pE(n1,m1) = 1− pV S(n1,m1), for all (n1,m1) ∈ Ω̂,

therefore only the analogous of system (5.17) has to be solved to find ME
(n1,m1).

This system of equations can be rewritten in matrix form using the order of the

state space described in equation (5.18) as

X(l)(E) = AX(l)(E) + b(l)(E), l = 1. (5.21)

The same matrix A is derived, whereas the sub-vectors that comprise X(1)(E) are

defined as

X
(1)
j (E) =


ME

(j,0)

ME
(j−1,1)

...
ME

(0,j)

 , j = 1, . . . , Nmax − 1,
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whereas the sub-vectors of b(1)(E) are given by

b
(1)
j (E) =



pE(j,0)

R(j,0)

pE(j−1,1)

R(j−1,1)
...

pE(0,j)
R(0,j)


, j = 1, . . . , Nmax − 1.

Note that the sub-vectors X
(1)
j (E) and b

(1)
j (E) have dimension j + 1, with j =

1, . . . , Nmax − 1. Algorithm 4 can be then adapted to solve equation (5.21) to

compute ME
(n1,m1), as well as the expected time to reach an endemic state condi-

tioned on the process actually reaching this absorbing state, for any initial state

(n1,m1) ∈ Ω̂.

Distribution of the exact number of secondary infections

In Section 5.1.1, the basic reproduction number, that is, the average number of

new infections generated by one infected individual in a susceptible population, is

computed by means of the next-generation matrix approach. From an epidemio-

logical perspective, one could also be interested in deriving the distribution of the

exact number of secondary infections directly caused by a marked infected indi-

vidual (Artalejo & Lopez-Herrero, 2013). To this end, let us define the following

random variables

• ΛT (T ) = number of ticks directly infected by a marked infected tick until

the marked tick is removed, or the process is absorbed in E.

• ΛT (H) = number of hosts directly infected by a marked infected tick until

the marked tick is removed, or the process is absorbed in E.

• ΛH(T ) = number of ticks directly infected by a marked infected host until

the marked host is removed, or the process is absorbed in E.
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Note that, when the threshold of the total number of infected individuals Nmax

is sufficiently large, the three random variables defined above represent the exact

number of secondary infections caused by a marked individual. Also, by defining

the random variables above in this way, and in those situations where the virus

becomes established in the population (i.e., trajectories where the threshold num-

ber of infected individuals Nmax is reached), these random variables allow us to

quantify the contribution that the marked individual of interest makes to reach

this threshold value.

For n ∈ N0 and any state (n1,m1) ∈ Ω̂, define the probabilities

ρTT(n1,m1)(n) = P
(
ΛT (T ) = n

∣∣(H1(0), T1(0)) = (n1,m1),m1 6= 0
)
,

ρTH(n1,m1)(n) = P
(
ΛT (H) = n

∣∣(H1(0), T1(0)) = (n1,m1),m1 6= 0
)
,

ρHT(n1,m1)(n) = P
(
ΛH(T ) = n

∣∣(H1(0), T1(0)) = (n1,m1), n1 6= 0
)
.

For example, if n = 4, ρTT(n1,m1)(4) is the probability that a marked infected tick

transmits the virus to exactly 4 susceptible ticks during its lifetime (or before the

macro-state E is reached). Let first analyse ρTT(n1,m1)(n). When considering the

possible stochastic events representing the infection of a susceptible tick or the

death of an infected tick, two different scenarios are distinguished. In particular,

if there are m1 infected ticks and a susceptible tick becomes infected, this new

infection is caused by the marked tick with probability 1/m1 (since all the infected

ticks are identical in our stochastic process). Similarly, if an infected tick dies, one

considers that the marked tick is the one that dies with probability 1/m1. In light

of this and by means of a first step argument, one obtains for n = 0

ρTT(n1,m1)(0) =
β1(NH − n1)m1

R(n1,m1)

ρTT(n1+1,m1)(0) +
(µ1 + ϕ1)n1

R(n1,m1)

ρTT(n1−1,m1)(0)

+
γ1(NT −m1)n1 + α1(NT −m1)(m1 − 1)

R(n1,m1)

ρTT(n1,m1+1)(0)

+
ν1(m1 − 1)

R(n1,m1)

ρTT(n1,m1−1)(0) +
ν1

R(n1,m1)

,

(5.22)

with boundary conditions ρTT(0,0)(0) = 1 and ρTTE (0) = 1. On the other hand, for
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n ≥ 1 , one has

ρTT(n1,m1)(n) =
β1(NH − n1)m1

R(n1,m1)

ρTT(n1+1,m1)(n) +
(µ1 + ϕ1)n1

R(n1,m1)

ρTT(n1−1,m1)(n)

+
γ1(NT −m1)n1 + α1(NT −m1)(m1 − 1)

R(n1,m1)

ρTT(n1,m1+1)(n)

+
α1(NT −m1)

R(n1,m1)

ρTT(n1,m1+1)(n− 1) +
ν1(m1 − 1)

R(n1,m1)

ρTT(n1,m1−1)(n),

(5.23)

with boundary conditions ρTT(0,0)(n) = 0 and ρTTE (n) = 0. A direct inspection of

equations (5.22) and (5.23) shows that one can start by solving (5.22) for n = 0,

and then solve equation (5.23) sequentially for n = 1, then n = 2, 3, . . . . Similarly

to the approach showed for the other stochastic descriptors in the previous section,

equations (5.22) and (5.23) are rewritten in a matrix form. In order to do so, the

state space is organised as illustrated in equation (5.18). Note that the distribution

of ΛT (T ) can be derived for any initial state (n1,m1) ∈ Ω̂ such that m1 6= 0

because at least one infected tick is required by definition (since ΛT (T ) is defined

for a marked infected tick). Thus, equations (5.22) and (5.23) can be rewritten in

matrix form as

Y TT (n) = BTTY TT (n) + bTT (n), n ∈ N0, (5.24)

where

Y TT (n) =


Y TT

1 (n)

Y TT
2 (n)

Y TT
3 (n)

...
Y TT

Nmax−1(n)

 , bTT (n) =


bTT1 (n)

bTT2 (n)

bTT3 (n)
...

bTTNmax−1(n)

 ,

and the matrix BTT is defined as

BTT =



0 BTT
1,2 0 · · · 0 0

BTT
2,1 0 BTT

2,3 · · · 0 0

0 BTT
3,2 0 · · · 0 0

...
. . . . . . . . .

...
...

0 0 0 · · · 0 BTT
Nmax−2,Nmax−1

0 0 0 · · · BTT
Nmax−1,Nmax−2 0


.
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The sub-vectors Y TT
j (n) and bTTj (n) that constitute the vectors Y TT (n) and

bTT (n) respectively, have dimension j, with j = 1, . . . , Nmax−1. In particular, the

sub-vectors Y TT
j (n), n ∈ N0, are defined as

Y TT
j (n) =


ρTT(j−1,1)(n)

ρTT(j−2,2)(n)
...

ρTT(0,j)(n)

 , j = 1, . . . , Nmax − 1.

Vector bTT (n), n ∈ N0, is organised in sub-vectors bTTj (n) of dimension j, j =

1, . . . , Nmax − 1. If n ≥ 1, one has

bTTj (n) =



α1(NT − 1)ρTT(j−1,2)(n− 1)

R(j−1,1)

α1(NT − 2)ρTT(j−2,3)(n− 1)

R(j−2,2)
...

α1(NT − j)ρTT(0,j+1)(n− 1)

R(0,j)


, j = 1, . . . , Nmax − 2.

For j = Nmax − 1, the sub-vector bTTNmax−1(n) = 0 if n ≥ 2, whereas

bTTNmax−1(1) =



α1(NT − 1)

R(Nmax−2,1)

α1(NT − 2)

R(Nmax−3,2)
...

α1(NT −Nmax + 1)

R(0,Nmax−1)


.

If n = 0, one has

bTTj (0) =



ν1

R(j−1,1)

ν1

R(j−2,2)
...
ν1

R(0,j)


, j = 1, . . . , Nmax − 2,
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and

bTTNmax−1(0) =



ν1 + (Nmax − 2)γ1(NT − 1)

R(Nmax−2,1)

ν1 + ((Nmax − 3)γ1 + α1)(NT − 2)

R(Nmax−3,2)
...

ν1 + (Nmax − 1)α1(NT −Nmax + 1)

R(0,Nmax−1)


.

The blocks that comprise the matrix BTT , BTT
k+1,k and BTT

k,k+1, have dimensions

(k + 1)× k and k × (k + 1) respectively, and are defined as follows:

• For k = 1, . . . , Nmax − 2:

(BTT
k+1,k)i+1,j+1 =


(k − i)(µ1 + ϕ1)

R(k−i,i+1)

, if i = j,

iν1

R(k−i,i+1)

, if i = j + 1,

0, otherwise,

where i = 0, . . . , k and j = 0, . . . , k − 1.

• For k = 1, . . . , Nmax − 2:

(BTT
k,k+1)i+1,j+1 =


(i+ 1)β1(NH − k + i+ 1)

R(k−i−1,i+1)

, if i = j,

((k − j)γ1 + iα1)(NT − i− 1)

R(k−i−1,i+1)

, if i = j − 1,

0, otherwise,

where i = 0, . . . , k − 1 and j = 0, . . . , k.

Equation (5.24) can then be solved efficiently by means of Algorithm 5, which is an

adaptation of Algorithm 4, to obtain the probability distribution of ΛT (T ). The

underlying idea is to compute first ρTT(n1,m1)(0), and then ρTT(n1,m1)(n) for n ≥ 1.

Consider now ρTH(n1,m1)(n). When considering the possible stochastic events repre-

senting the infection of a susceptible host, or the death of an infected tick, two

different scenarios are distinguished. In particular, if there are m1 infected ticks

and a susceptible host becomes infected, this new infection is caused by the marked

tick with probability 1/m1. Similarly, if an infected tick dies, one considers that
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Algorithm 5 Distribution of ΛT (T )

1: Define ñ as the maximum n ∈ N0 for which ρTT(n1,m1)(n) is computed.

2: for n = 0, . . . , ñ do:

3: H2 = (I2 −BTT
2,1B

TT
1,2 )−1.

4: J2(n) = BTT
2,1 b

TT
1 (n) + bTT2 (n).

5: for k = 3, . . . , Nmax − 1 do:

6: Hk = (Ik+1 −BTT
k,k−1Hk−1B

TT
k−1,k)

−1.

7: Jk(n) = BTT
k,k−1Hk−1Jk−1(n) + bTTk (n).

8: end for

9: Y TT
Nmax−1(n) = HNmax−1JNmax−1(n).

10: for k = Nmax − 2, . . . , 1 do:

11: Y TT
k (n) = Hk(Jk(n) +BTT

k,k+1Y
TT
k+1(n)).

12: end for

13: return Y TT (n) = ((Y TT
1 (n))T , . . . , (Y TT

Nmax−1(n))T )T .

14: end for

the marked tick is the one that dies with probability 1/m1. Thus, the first step

equation for ρTH(n1,m1)(0) is obtained as

ρTH(n1,m1)(0) =
γ1(NT −m1)n1 + α1(NT −m1)m1

R(n1,m1)

ρTH(n1,m1+1)(0)

+
ν1(m1 − 1)

R(n1,m1)

ρTH(n1,m1−1)(0) +
(µ1 + ϕ1)n1

R(n1,m1)

ρTH(n1−1,m1)(0)

+
β1(NH − n1)(m1 − 1)

R(n1,m1)

ρTH(n1+1,m1)(0) +
ν1

R(n1,m1)

.

(5.25)

with boundary conditions ρTH(0,0)(0) = 1 and ρTHE (0) = 1. On the other hand, for

n ≥ 1, a first step argument yields

ρTH(n1,m1)(n) =
γ1(NT −m1)n1 + α1(NT −m1)m1

R(n1,m1)

ρTH(n1,m1+1)(n)

+
ν1(m1 − 1)

R(n1,m1)

ρTH(n1,m1−1)(n) +
(µ1 + ϕ1)n1

R(n1,m1)

ρTH(n1−1,m1)(n)

+
β1(NH − n1)

R(n1,m1)

ρTH(n1+1,m1)(n− 1) +
β1(NH − n1)(m1 − 1)

R(n1,m1)

ρTH(n1+1,m1)(n),

(5.26)
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with boundary conditions ρTH(0,0)(n) = 0 and ρTHE (n) = 0. We will first derive

ρTH(n1,m1)(0) and then sequentially ρTH(n1,m1)(n) for n ≥ 1. In order to write the

previous equations (5.25) and (5.26) in matrix form, the state space is organised

as illustrated in equation (5.18). Observe that the distribution of ΛT (H) can be

derived for any initial state (n1,m1) ∈ Ω̂ such that m1 6= 0 because at least one

infected tick is required by definition (since ΛT (H) is defined for a marked infected

tick). Thus, equations (5.25) and (5.26) can be rewritten in matrix form as

Y TH(n) = BTHY TH(n) + bTH(n), n ∈ N0, (5.27)

where

Y TH(n) =


Y TH

1 (n)

Y TH
2 (n)

Y TH
3 (n)

...
Y TH

Nmax−1(n)

 , bTH(n) =


bTH1 (n)

bTH2 (n)

bTH3 (n)
...

bTHNmax−1(n)

 ,

and the matrix BTH is defined as

BTH =



0 BTH
1,2 0 · · · 0 0

BTH
2,1 0 BTH

2,3 · · · 0 0

0 BTH
3,2 0 · · · 0 0

...
. . . . . . . . .

...
...

0 0 0 · · · 0 BTH
Nmax−2,Nmax−1

0 0 0 · · · BTH
Nmax−1,Nmax−2 0


.

The sub-vectors Y TH
j (n) and bTHj (n) that constitute the vectors Y TH(n) and

bTH(n) respectively, have dimension j, with j = 1, . . . , Nmax − 1. In particular,

the sub-vectors Y TH
j (n), n ∈ N0, are defined as

Y TH
j (n) =


ρTH(j−1,1)(n)

ρTH(j−2,2)(n)
...

ρTH(0,j)(n)

 , j = 1, . . . , Nmax − 1.

Vector bTH(n), n ∈ N0, is organised in sub-vectors bTHj (n) of dimension j, j =
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1, . . . , Nmax − 1. If n ≥ 1, one has

bTHj (n) =



β1(NH − j + 1)ρTH(j,1)(n− 1)

R(j−1,1)

β1(NH − j + 2)ρTH(j−1,2)(n− 1)

R(j−2,2)
...

β1NHρ
TH
(1,j)(n− 1)

R(0,j)


, j = 1, . . . , Nmax − 2.

For j = Nmax − 1, the sub-vector bTHNmax−1(n) = 0 if n ≥ 2, whereas

bTHNmax−1(1) =



β1(NH − j + 1)

R(j−1,1)

β1(NH − j + 2)

R(j−2,2)
...

β1NH

R(0,Nmax−1)


.

If n = 0, one has

bTHj (0) =



ν1

R(j−1,1)

ν1

R(j−2,2)
...
ν1

R(0,j)


, j = 1, . . . , Nmax − 2,

and

bTHNmax−1(0) =



ν1 + ((Nmax − 2)γ1 + α1)(NT − 1)

R(Nmax−2,1)

ν1 + ((Nmax − 3)γ1 + 2α1)(T − 2) + β1(NH −Nmax + 3)

R(Nmax−3,2)
...

ν1 + (Nmax − 1)α1(NT −Nmax + 1) + (Nmax − 2)β1NH

R(0,Nmax−1)


.

The blocks that comprise the matrix BTH , BTH
k+1,k and BTH

k,k+1, have dimensions

(k + 1)× k and k × (k + 1) respectively, and are defined as follows:

169



5. MATHEMATICAL MODELS OF TICK-BORNE VIRUS
TRANSMISSION

• For k = 1, . . . , Nmax − 2:

(BTH
k+1,k)i+1,j+1 =


(k − i)(µ1 + ϕ1)

R(k−i,i+1)

, if i = j,

iν1

R(k−i,i+1)

, if i = j + 1,

0, otherwise,

where i = 0, . . . , k and j = 0, . . . , k − 1.

• For k = 1, . . . , Nmax − 2:

(BTH
k,k+1)i+1,j+1 =


iβ1(NH − k + i+ 1)

R(k−i−1,i+1)

, if i = j,

((k − i− 1)γ1 + (i+ 1)α1)(NT − i− 1)

R(k−i−1,i+1)

, if i = j − 1,

0, otherwise,

where i = 0, . . . , k − 1 and j = 0, . . . , k.

Equation (5.27) can then be solved efficiently by adapting Algorithm 5 to obtain

the probability distribution of ΛT (H).

Lastly, ρHT(n1,m1)(n) is analysed. When considering the possible stochastic events

representing the infection of a susceptible tick, or the death of an infected host,

two different scenarios are distinguished. In particular, if there are n1 infected

hosts and a susceptible tick becomes infected, this new infection is caused by the

marked host with probability 1/n1. Similarly, if an infected host dies, one considers

that the marked host is the one that dies with probability 1/n1. In light of this

and by means of a first step argument, one obtains for ρHT(n1,m1)(0)

ρHT(n1,m1)(0) =
(µ1 + ϕ1)(n1 − 1)

R(n1,m1)

ρHT(n1−1,m1)(0) +
ν1m1

R(n1,m1)

ρHT(n1,m1−1)(0)

+
γ1(NT −m1)(n1 − 1) + α1(NT −m1)m1

R(n1,m1)

ρHT(n1,m1+1)(n)

+
β1(NH − n1)m1

R(n1,m1)

ρHT(n1+1,m1)(0) +
µ1 + ϕ1

R(n1,m1)

,

(5.28)

with boundary conditions ρHT(0,0)(0) = 1 and ρHTE (0) = 1. On the other hand, for
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n ≥ 1, the first step equation for ρHT(n1,m1)(n) is given by

ρHT(n1,m1)(n) =
(µ1 + ϕ1)(n1 − 1)

R(n1,m1)

ρHT(n1−1,m1)(n) +
ν1m1

R(n1,m1)

ρHT(n1,m1−1)(n)

+
β1(NH − n1)m1

R(n1,m1)

ρHT(n1+1,m1)(n) +
γ1(NT −m1)

R(n1,m1)

ρHT(n1,m1+1)(n− 1)

+
γ1(NT −m1)(n1 − 1) + α1(NT −m1)m1

R(n1,m1)

ρHT(n1,m1+1)(n).

(5.29)

with boundary conditions ρHT(0,0)(n) = 0 and ρHTE (n) = 0. First, the probabilities

ρHT(n1,m1)(0) will be computed, and then sequentially the probabilities ρHT(n1,m1)(n) for

n ≥ 1. In order to write equations (5.28) and (5.29) in matrix form, the state space

is organised as illustrated in equation (5.18). Notice that the distribution of ΛH(T )

can be derived for any initial state (n1,m1) ∈ Ω̂ such that n1 6= 0 because at least

one infected host is required by definition (since ΛH(T ) is defined for a marked

infected host). Thus, equations (5.28) and (5.29) can be rewritten in matrix form

as

Y HT (n) = BHTY HT (n) + bHT (n), n ∈ N0, (5.30)

where

Y HT (n) =


Y HT

1 (n)

Y HT
2 (n)

Y HT
3 (n)

...
Y HT

Nmax−1(n)

 , bHT (n) =


bHT1 (n)

bHT2 (n)

bHT3 (n)
...

bHTNmax−1(n)

 ,

and the matrix BHT is defined as

BHT =



0 BHT
1,2 0 · · · 0 0

BHT
2,1 0 BHT

2,3 · · · 0 0

0 BHT
3,2 0 · · · 0 0

...
. . . . . . . . .

...
...

0 0 0 · · · 0 BHT
Nmax−2,Nmax−1

0 0 0 · · · BHT
Nmax−1,Nmax−2 0


.

The sub-vectors Y HT
j (n) and bHTj (n) that constitute the vectors Y HT (n) and

bHT (n) respectively, have dimension j, with j = 1, . . . , Nmax − 1. In particular,
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the sub-vectors Y HT
j (n), n ∈ N0, are defined as

Y HT
j (n) =


ρHT(j,0)(n)

ρHT(j−2,2)(n)
...

ρHT(1,j−1)(n)

 , j = 1, . . . , Nmax − 1.

Vector bHT (n), n ∈ N0, is organised in sub-vectors bHTj (n) of dimension j, j =

1, . . . , Nmax − 1. If n ≥ 1, one has

bHTj (n) =



γ1NTρ
HT
(j,1)(n− 1)

R(j,0)

γ1(NT − 1)ρHT(j−1,2)(n− 1)

R(j−1,1)
...

γ1(NT − j)ρHT(1,j)(n− 1)

R(1,j−1)


, j = 1, . . . , Nmax − 2.

For j = Nmax − 1, the sub-vector bHTNmax−1(n) = 0 if n ≥ 2, whereas

bHTNmax−1(1) =



γ1NT

R(j,0)

γ1(NT − 1)

R(j−1,1)
...

γ1(NT −Nmax + 2)

R(1,Nmax−2)


.

If n = 0, one has

bHTj (0) =



µ1 + ϕ1

R(j,0)

µ1 + ϕ1

R(j−1,1)
...

µ1 + ϕ1

R(1,j−1)


, j = 1, . . . , Nmax − 2,
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and

bHTNmax−1(0) =



µ1 + ϕ1 + (Nmax − 2)γ1NT

R(Nmax−1,0)

µ1 + ϕ1 + ((Nmax − 3)γ1 + 2α1)(NT − 2) + 2β1(NH −Nmax + 2)

R(Nmax−2,1)
...

µ1 + ϕ1 + (Nmax − 2)α1(NT −Nmax + 2) + (Nmax − 2)β1(NH − 1)

R(1,Nmax−2)


.

The blocks that comprise the matrix BHT , BHT
k+1,k and BHT

k,k+1, have dimensions

(k + 1)× k and k × (k + 1) respectively, and are defined as follows:

• For k = 1, . . . , Nmax − 1:

(BHT
k+1,k)i+1,j+1 =


(k − i)(µ1 + ϕ1)

R(k−i+1,i)

if i = j,

iν1

R(k−i+1,i)

if i = j + 1,

0 otherwise,

where i = 0, . . . , k and j = 0, . . . , k − 1.

• For k = 1, . . . , Nmax − 1:

(BHT
k,k+1)i+1,j+1 =


iβ1(NH − k + i)

R(k−i,i)
if i = j,

((k − i− 1)γ1 + iα1)(NT − i)
R(k−i,i)

if i = j − 1,

0 otherwise,

where i = 0, . . . , k − 1 and j = 0, . . . , k.

Equation (5.30) can then be solved efficiently by adapting Algorithm 5 to obtain

the probability distribution of ΛH(T ).

Figure 5.9 depicts the probabilities ρTT(0,1)(n), ρTH(0,1)(n) and ρHT(1,0)(n), n = 0, . . . , 39, in

blue, red and green respectively, for different values of the transmission parameters

α1, β1 and γ1, while all the other parameters in the model are fixed. In particular,

the threshold Nmax is fixed at 102 infected individuals, with an initial number of

susceptible hosts NH = 102 and susceptible ticks NT = 103. In the first row, the
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value of the co-feeding transmission parameter α1 varies as 10−6 (first column)

and 10−4 (second column). As one would expect, α1 mainly affects ρTT(0,1)(n): for

small values of α1, the marked tick infects at most one other tick before the process

ends, whereas when α1 is increased, the marked tick can infect up to six susceptible

ticks. On the other hand, α1 does not have a significant effect on the number of

secondary infections caused by systemic transmission. In the second row, the value

of the tick-to-host transmission parameter β1 is 10−4 in the first column and 10−2

in the second one. For larger values of β1, the marked tick infects a larger number

of hosts, as our intuition would suggest. Moreover, the number of ticks infected

by the marked tick decreases for larger values of β1 because the marked tick is

more likely to infect a host during its lifetime. We also observe that a marked host

infects fewer ticks when β1 is increased. This can be explained by noting that,

when the marked host infects a tick, this tick will transmit the virus to several

susceptible hosts since the value of β1 is large. Consequently, when a new infection

of a tick occurs, it will be less likely that this infection is caused by the marked host

as there are many infected hosts. In the third row, the value of the host-to-tick

transmission parameter γ1 varies as 10−4 (first column) and 10−2 (second column).

When the value of γ1 increases, a marked host infects a significantly larger number

of ticks, as expected. We also note that a marked tick infects fewer hosts for larger

values of γ1. Indeed, as soon as the marked tick infects a host, this host will

infect several ticks since the value of γ1 is large. Thus, when a new infection of a

host occurs, the probability that this infection is caused by the marked tick is low

because the number of infected ticks is large.

5.2 Co-infection dynamics

Consider a population of ticks interacting with a population of hosts, e.g., small

or large vertebrates, which are in an endemic state due to a viral strain V1. We

will refer to V1 as resident strain. As described in Section 5.1, the infection with

V1 can be transmitted through three different routes: tick-to-host, host-to-tick

and tick-to-tick. A second viral strain V2 is introduced in the system through a

given number of ticks or hosts infected with V2. We will refer to V2 as invasive

strain. Similarly to the infection with the resident strain, the infection with the
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Figure 5.9: The probabilities ρTT(0,1)(n), ρTH(0,1)(n) and ρHT(1,0)(n), n = 0, . . . , 39, are

depicted in blue, red and green respectively, for different values of the transmission

parameters α1 (first row), β1 (second row) and γ1 (third row). The threshold

Nmax is fixed at 102 infected individuals, with an initial number of susceptible

hosts NH = 102 and susceptible ticks NT = 103. The transmission parameters

are: γ1 = β1 = 10−3 in the first row; γ1 = 10−3 and α1 = 10−5 in the second

row; β1 = 10−3 and α1 = 10−5 in the third row. The other parameters in the

model are fixed as follows: ϕ1 = 1/6 per day, νs = ν1 = 1/200 per day and

µs = µ1 = 1/(4× 365) per day.
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Variable Description Population size

Hs Susceptible hosts ns

H1 Hosts infected with V1 n1

H2 Hosts infected with V2 n2

Hc Co-infected hosts nc

Ts Susceptible ticks ms

T1 Ticks infected with V1 m1

T2 Ticks infected with V2 m2

Tc Co-infected ticks mc

Table 5.2: Summary of the variables in the model of co-infection dynamics.

invasive strain can be transmitted via three routes: tick-to-host, host-to-tick and

tick-to-tick. For both strains, once a tick contracts the virus, the infection lasts

for its lifetime (Gargili et al., 2017), whereas vertebrate animals are characterised

by short lasting viremia (Gonzalez et al., 1998; Hoch et al., 2018).

Given the presence of two different viral strains, a single host, or a single tick, is

either susceptible, or infected with V1, or infected with V2, or co-infected with both

viral strains. Table 5.2 summarises the notation for susceptible, infected and co-

infected hosts and ticks. Thus, we need to account for many infection events when

modelling the dynamics of susceptible, infected and co-infected individuals in the

presence of the three routes of transmission. In order to shed light on the role of co-

transmission, a simplified scenario is considered in Section 5.2.1, where we propose

a deterministic model that takes into account only co-feeding transmission. Indeed,

as shown in Section 5.1.1, co-feeding is the only route of transmission that is able

to maintain an epidemic with no other route of transmission. In Section 5.2.2, we

propose a stochastic model of the invasive viral strain dynamics to derive some

descriptors of interest and study the factors that affect co-infection events.

5.2.1 Co-feeding and co-transmission: a deterministic model

In this section, a simplified scenario that accounts for only co-feeding transmission

is studied. Thus, we consider a population of ticks susceptible to the infection

of a resident viral strain V1. An invasive viral strain V2 is introduced in the
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Parameter Event Range Units Reference

α1 T1 + Ts → T1 + T1 [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

α2 T2 + Ts → T2 + T2 [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

ε1 Tc + Ts → Tc + T1 [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

ε2 Tc + Ts → Tc + T2 [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

εc Tc + Ts → Tc + Tc [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

ξ1 T1 + T2 → T1 + Tc [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

ξ2 T2 + T1 → T2 + Tc [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

η2 + ηc Tc + T1 → Tc + Tc [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

η1 + ηc Tc + T2 → Tc + Tc [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

νs Death rate of Ts [6× 10−3, 3.8× 10−2] 1/Days Lou et al. (2014)

ν1 Death rate of T1 [6× 10−3, 3.8× 10−2] 1/Days Lou et al. (2014)

ν2 Death rate of T2 [6× 10−3, 3.8× 10−2] 1/Days Lou et al. (2014)

νc Death rate of Tc [6× 10−3, 3.8× 10−2] 1/Days Lou et al. (2014)

ΦT Arrival of ticks [0.5, 3.5] Tick/Days Sutton et al. (2012)

Table 5.3: Summary of the parameters in the deterministic co-infection model

accounting for only co-feeding transmission.

population through a given number of ticks infected with V2. We are interested

in deriving a condition for the invasion (or establishment) of the invasive strain

V2 in a system where the virus V1 is endemic. In particular, we compute the

invasion reproduction number of the invasive viral strain V2 in a system where

the resident strain V1 is in equilibrium by means of the next generation matrix.

To this end, let ms(t), m1(t), m2(t) and mc(t) be the number of susceptible,

infected with V1, infected with V2 and co-infected ticks at time t. Figure 5.10

illustrates the dynamics considered in this mathematical model, whereas Table

5.3 summarises the parameters in the model. In particular, susceptible ticks

immigrate in the population with rate ΦT and their average lifetime is 1
νs

days.

Ticks infected with V1, or V2, or co-infected, die with death rate ν1, ν2 and νc,

respectively. The infection is transmitted tick-to-tick through co-feeding. One

notes that co-transmission events are allowed in this setting; that is a susceptible

tick can acquire both infections simultaneously when interacting with a co-infected

tick, becoming co-infected itself. The events illustrated in Figure 5.10 are combined

in the following system of ordinary differential equations that describe the time

evolution of susceptible, infected with the resident viral strain V1, infected with
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T s T 1

T 2 T c

α2msm2 + ε2msmc

ΦT

ξ1m1m2 + (η1 + ηc)m2mc

ξ2m1m2 + (η2 + ηc)m1mc

εcmsmc

α1msm1 + ε1msmc

ν2m2

νcmc

ν1m1

νsms

Figure 5.10: Diagram for the dynamics of susceptible, infected and co-infected ticks

in the deterministic model of co-feeding and co-transmission. Model parameters

are summarised in Table 5.3.

the invasive viral strain V2 and co-infected ticks:

dms

dt
= ΦT − νsms − α1msm1 − α2msm2 − (ε1 + ε2 + εc)msmc,

dm1

dt
= −ν1m1 + α1msm1 + ε1msmc − (η2 + ηc)m1mc − ξ2m2m1,

dm2

dt
= −ν2m2 + α2msm2 + ε2msmc − (η1 + ηc)m2mc − ξ1m2m1,

dmc

dt
= −νcmc + εcmsmc + ξ1m2m1 + ξ2m1m2 + (η1 + ηc)m2mc + (η2 + ηc)m1mc.

(5.31)

Note that the previous system has a virus-free equilibrium E0 given by

E0 =

(
ΦT

νs
, 0, 0, 0

)
.

Linearising system (5.31) about the virus-free equilibrium and making use of the

next generation matrix approach by following the same steps illustrated in Sec-

178



5.2 Co-infection dynamics

tion 5.1.1, one obtains the next generation matrix FE0(V E0)−1 as

FE0(V E0)−1 =



α1ΦT

ν1νs
0

ε1ΦT

νcνs

0
α2ΦT

ν2νs

ε2ΦT

νcνs

0 0
εcΦT

νcνs

 ,

where the component

FE0 =



α1ΦT

νs
0

ε1ΦT

νs

0
α2ΦT

νs

ε2ΦT

νs

0 0
εcΦT

νs

 ,

accounts for new infections, whereas the matrix

V E0 =

ν1 0 0
0 ν2 0
0 0 νc

 ,

considers the changes in the state of the infected populations. Thus, the basic

reproduction number R0 associated with the model (5.31) is defined as the largest

eigenvalue of the next generation matrix FE0(V E0)−1, i.e., R0 = max{R1, R2, Rc},
where

R1 =
α1ΦT

νsν1

, R2 =
α2ΦT

νsν2

, Rc =
εcΦT

νsνc
.

We observe that R1 represents the average number of new infections with V1 di-

rectly caused by a tick infected with V1 introduced in a population of susceptible

ticks. The epidemiological interpretation of R2 is similar: R2 is the average number

of new infections with V2 directly caused by a tick infected with V2 introduced in a

population of susceptible ticks. On the other hand, Rc accounts for co-transmission

of both strains representing the average number of new infections with both strains

directly caused by a co-infected tick introduced in a population of susceptible ticks.

In order to derive a condition for the establishment of the invasive strain in a sys-

tem where the strain V1 is in equilibrium, the invasion reproduction number of
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the invasive strain V2, Rinv(V2|V1), is computed by means of the next generation

matrix (Gao et al., 2016; Van den Driessche & Watmough, 2002). The invasion

reproduction number Rinv(V2|V1) is defined as the average number of infections

with V2 that are produced when a tick infected by V2 is introduced into the system

comprised of susceptible ticks, and ticks infected with the resident strain V1, where

V1 is in equilibrium. Thus, Rinv(V2|V1) is a threshold value: if Rinv(V2|V1) < 1,

the invasive strain goes extinct without generating an epidemic; on the contrary,

when Rinv(V2|V1) > 1, the invasive strain invades the system where the resident

strain is in equilibrium, causing an outbreak. We note that, from the perspective

of the invasive viral strain V2, susceptible individuals are both susceptible ticks and

ticks infected with the resident viral strain. Thus the sub-system of susceptible

individuals (obtained by setting m2 = mc = 0 in system (5.31)) is given by

dms

dt
= ΦT − νsms − α1msm1,

dm1

dt
= −ν1m1 + α1msm1,

(5.32)

and has an equilibrium with the presence of only the resident strain V1. We will

refer to this equilibrium as E1, which is given by

E1 =

(
ν1

α1

,
α1ΦT − νsν1

α1ν1

, 0, 0

)
. (5.33)

Note that E1 exists if and only if α1ΦT−νsν1
α1ν1

> 0, or equivalently R1 > 1, which

means that the resident viral strain V1 is established in the system.

The sub-system of ticks infected with V2 is

dm2

dt
= −ν2m2 + α2msm2 + ε2msmc − (η1 + ηc)m2mc − ξ1m2m1,

dmc

dt
= −νcmc + εcmsmc + ξ1m2m1 + ξ2m1m2 + (η1 + ηc)m2mc + (η2 + ηc)m1mc.

The previous system is linearised about the equilibrium E1 and rewritten as ẏ =

(FE1 − V E1)y, where y = (m2,mc)
T , FE1 is the transmission component which

accounts for the production of new infections with V2, and V E1 is the transition

component that considers the changes in the state of the infected populations.

Since the interest is in measuring the ability of the invasive strain V2 to invade an
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equilibrium of the resident strain V1, only new infections with V2 are regarded as

such, whereas new infections with V1 are considered as changes in the state of the

infected populations. For example, a susceptible tick that becomes infected with

V1 is not considered a new infection, and consequently not accounted for in the

matrix FE1 . Conversely, a susceptible tick that becomes infected with V2 is a new

infection, and thus included in FE1 . Therefore, the matrix FE1 is given by

FE1 =


α2ν1

α1

ε2ν1

α1

ξ2(νsν1 − α1ΦT )

ν1α1

εcν1 − (η2 + ηc)νs
α1

+
(η2 + ηc)ΦT

ν1

 ,

and

V E1 =

ν2 +
ξ1ΦT

ν1

− νsξ1

α1

0

ξ1(νsν1 − α1ΦT )

ν1α1

νc

 .

Under the assumption that the infection does not affect the death rate (Gao et al.,

2016), i.e.,

ν = νs = ν1 = ν2 = νc, (5.34)

neither does it affect the susceptibility of ticks, that is

α1 = ξ1, α2 = ξ2, ε1 = η1, ε2 = η2, εc = ηc, (5.35)

the maximum eigenvalue of the next generation matrix FE1(V E1)−1, that is the

invasion reproduction number Rinv(V2|V1), is computed as

Rinv(V2|V1) =
α2 − ε2
2α1R1

+
ε2ΦT

2ν2
+
Rc

2
+

√(
ε2 − α2

2α1R1

− ε2ΦT

2ν2
− Rc

2

)2

− α2εc
α2

1

.

One would expect that Rinv(V1|V1), which is the invasion reproduction number

when resident and invasive strains are identical, is equal to 1 (neutrality) when a

population in an endemic equilibrium with the resident strain V1 is invaded with

V1. However, as argued by Alizon (2008, 2013a), the invasive strain always has an

advantage: it can infect both susceptible individuals and individuals infected with

the resident strain, whereas the resident strain can only infect susceptible individ-

uals as the individuals infected by the invasive strain V2 are rare (Alizon, 2013a).
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One notes that this assumes that the invasive strain V2 has at least the same fitness

as the resident strain V1. The first mathematical model of co-infection to over-

come the intrinsic bias of the invasive strain was proposed by van Baalen & Sabelis

(1995), who considered individuals co-infected twice with the resident viral strain

V1 and individuals co-infected twice with the invasive viral strain V2. This solu-

tion might seem counter-intuitive from a biological perspective as one could wonder

about the biological meaning of individuals infected twice with the same strain (Al-

izon, 2013a). When dealing with micro or macro-parasites, co-infection with the

same strain can be thought of as individuals with a double parasite load (Alizon,

2013a). One challenge with the co-infection model proposed by van Baalen &

Sabelis (1995) is that the mathematical analysis becomes generally more compli-

cated, especially when considering both systemic and non-systemic transmission.

Thus, we propose here the alternative to normalise Rinv(V2|V1) by Rinv(V1|V1),

where Rinv(V1|V1) is computed as Rinv(V2|V1) (under hypotheses (5.34) and (5.35))

assuming that α2 = α1 and ε2 = ε1, which means that V1 and V2 are the same

strain. This yields

Rinv(V1|V1) =
α1 − ε1
2α1R1

+
ε1ΦT

2ν2
+
Rc

2
+

√(
ε1 − α1

2α1R1

− ε1ΦT

2ν2
− Rc

2

)2

− εc
α1

.

Hence, the normalised expression of the invasion reproduction number, denoted as

R̃inv(V2|V1), is given by

R̃inv(V2|V1) =
Rinv(V2|V1)

Rinv(V1|V1)
.

This normalisation guarantees that the neutrality condition; that is the invasion

reproduction number is equal to 1 when resident and invasive strains are identical,

is satisfied. However, it would be interesting to compare the normalised invasion

reproduction number R̃inv(V2|V1) proposed here with the one computed when con-

sidering also individuals co-infected twice by the same strain (Alizon, 2013a,b;

van Baalen & Sabelis, 1995). In this case, the variables in the model would be

susceptible ticks, ticks infected by V1, ticks infected twice by V1, ticks infected by

V2, ticks infected twice by V2 and ticks co-infected simultaneously with V1 and

V2. After describing their dynamics over time by means of ordinary differential

equations, one could derive the invasion reproduction number by making use of

the next generation matrix. This is the aim of future work.
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5.2.2 A stochastic approach

In this section, we propose a stochastic model that accounts for all the routes

of transmission (i.e., tick-to-host, host-to-tick and tick-to-tick) in the presence of

two different viral strains, V1 and V2. Since we are interested in studying the early

dynamics of the invasive viral strain V2 in a system where the resident strain V1 is

endemic, the populations of susceptible individuals and individuals infected with

V1 are assumed to be large. Thus, the depletion of susceptible individuals, as well

as individuals infected with V1, due to infection with the invasive viral strain V2

is not taken into account. Thus, vertebrates and ticks infected with V2 behave

independently of each other. One of the main objectives of this approach is to

analyse the stochastic dynamics of the invasive viral strain in terms of a number

of stochastic descriptors. In particular, the probabilities of extinction of individ-

uals infected with V2, establishment of the invasive viral strain, and co-infection

events (i.e., co-infection of a vertebrate or co-infection of a tick) are computed,

together with the expected conditional times to such events. Co-infection events

are important for the aim of this chapter because they could lead to re-assortment.

Thus, in this section, we compute the probability of a co-infection event occur-

ring in early times after the introduction of the invasive viral strain V2, and the

timescales for this type of event to occur. Similarly to the analyses described in

Section 5.1.4, these stochastic descriptors are derived by making use of first step

arguments (Pinsky & Karlin, 2010).

As the individuals infected with V2 behave independently of each other, one can

assume that the populations infected with the invasive strain behave as a branching

process. However, as shown in Section 5.1.2, this approach would only allow the

computation of the probabilities of extinction and establishment of V2, whereas we

are also interested in deriving the probabilities of co-infection events, as well as the

conditional times to such events. Indeed, since co-infection is a necessary condition

for reassortment, these descriptors are relevant to estimate the probability and

timescales of potential reassortment events.

In order to compute the stochastic descriptors mentioned above, define the follow-

ing random variables:

• H2(t) is the number of hosts infected by the invasive strain V2 at time t;

183



5. MATHEMATICAL MODELS OF TICK-BORNE VIRUS
TRANSMISSION

Parameter Event Range Units Reference

β2 T2 +Hs → T2 +H2 [10−4, 10−1] 1/Days/Tick Norman et al. (2004)

γ2 H2 + Ts → H2 + T2 [10−4, 10−1] 1/Days/Host Norman et al. (2004)

α2 T2 + Ts → T2 + T2 [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

ν2 Death rate of T2 [6× 10−3, 3.8× 10−2] 1/Days Lou et al. (2014)

µ2 Death rate of H2 [1/3600, 1/360] 1/Days Mpeshe et al. (2011)

ζ1 T1 +H2 → T1 +Hc [10−4, 10−1] 1/Days/Tick Norman et al. (2004)

ζ2 T2 +H1 → T2 +Hc [10−4, 10−1] 1/Days/Tick Norman et al. (2004)

ξ1 T1 + T2 → T1 + Tc [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

ξ2 T2 + T1 → T2 + Tc [10−6, 10−3] 1/Days/Tick Norman et al. (2004)

λ1 H1 + T2 → H1 + Tc [10−4, 10−1] 1/Days/Tick Norman et al. (2004)

λ2 H2 + T1 → H2 + Tc [10−4, 10−1] 1/Days/Tick Norman et al. (2004)

ϕ2 H2 → Hs [1/7, 1/5] 1/Days Hoch et al. (2018)

Table 5.4: Summary of the parameters in the stochastic co-infection model ac-

counting for all the routes of transmission.

• T2(t) is the number of ticks infected by the invasive strain V2 at time t.

The process (H2(t), T2(t))t≥0 defines a continuous time Markov chain that describes

the dynamics of individuals infected with the invasive viral strain V2. Figure 5.11

illustrates the dynamics considered in the mathematical model presented in this

section. We note that only the dynamics of hosts and ticks infected with the

invasive strain V2 are modelled, whereas the populations of susceptible individuals

and individuals infected with V1 are assumed to be large and their depletion is not

taken into account. On the other hand, the dynamics of co-infected individuals are

not modelled: the probabilities of the first co-infection of a host or a tick, as well

as the conditional times to such events, are computed through the definition of

two absorbing states representing the first time that a co-infection of a vertebrate

or a tick occurs.

The state (0, 0) is an absorbing state, representing V2 extinction. Since it is of

interest to compute the probability of V2 establishment, as well as the probability

of a co-infection event occurring before V2 extinction or establishment occurs, the

following absorbing states are defined:

• The macro-state E2 defined as

E2 = {(n2,m2) ∈ N2
0 : n2 +m2 = Nmax}, Nmax ∈ N,
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Hs H1

H2 Hc

β2m2ns

ζ1m1n2

ζ2m2n1

µ2n2

ϕ2n2

T s T 1

T 2 T c

γ2n2ms

ξ1m1m2 + λ1m2n1

ξ2m1m2 + λ2m1n2

ν2m2

Figure 5.11: Diagram for the dynamics of susceptible, infected and co-infected

hosts (top) and ticks (below). Model parameters are summarised in Table 5.4.
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representing the establishment of the invasive viral strain V2. Note that n2

denotes hosts infected with V2, whereas m2 refers to ticks infected with V2. If

the total number of individuals infected with V2, n2 +m2, hits the threshold

Nmax, the invasive strain is considered established in the population of hosts

and ticks.

• CH , representing the first time that a co-infection of a vertebrate occurs.

• CT , representing the first time that a co-infection of a tick occurs.

Thus, one notices that the state space of the Markov chain (H2(t), T2(t))t≥0 is

given by

Ω2 = {(n2,m2) ∈ N2
0 : 0 ≤ n2 +m2 ≤ Nmax − 1} ∪ E2 ∪ CH ∪ CT .

As depicted in Figure 5.12, from a state (n2,m2) ∈ Ω2, the process can jump to

four adjacent states or to the absorbing states CH and CT with transition rates

q(n2,m2),(n′2,m
′
2) =



β2m2ns, if (n′2,m
′
2) = (n2 + 1,m2),

(γ2n2 + α2m2)ms, if (n′2,m
′
2) = (n2,m2 + 1),

(µ2 + ϕ2)n2, if (n′2,m
′
2) = (n2 − 1,m2),

ν2m2, if (n′2,m
′
2) = (n2,m2 − 1),

ζ1m1n2 + ζ2m2n1, if (n′2,m
′
2) = CH ,

(ξ1 + ξ2)m1m2 + λ1n1m2 + λ2n2m1, if (n′2,m
′
2) = CT ,

(5.36)

where the model parameters are summarised in Table 5.4.

Probability and conditional time to V2 extinction and establishment

In order to compute the probability of short-term extinction of the invasive strain

V2 (i.e., reaching (0, 0) before reaching any other absorbing state E2, CH and CT ),

as well as the conditional time to such event, define for (n2,m2) ∈ Ω2

τV S2

(n2,m2) = inf{t ≥ 0 : (H2(t), T2(t)) = (0, 0)|(H2(0), T2(0)) = (n2,m2)},

that is the time to the extinction of the invasive viral strain V2 starting with n2

infected hosts and m2 infected ticks. One observes that, in this scenario, the fact
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(n2,m2)

(n2,m2 + 1)

(n2,m2 − 1)

(n2 + 1,m2)(n2 − 1,m2)

CH

CT

(γ2n2 + α2m2)ms

ν2m2

β2m2ns

(µ2 + ϕ2)n2

ζ1m1n2 + ζ2m2n1

(ξ1 + ξ2)m1m2 + λ1n1m2 + λ2n2m1

Figure 5.12: Transition diagram for the Markov chain (H2(t), T2(t))t≥0 showing

the possible states which the process can move to from a general state (n2,m2)

and the transition rates with which these jumps occur. CH and CT denote the

first co-infection of a host and the first co-infection of a tick, respectively, and are

absorbing states.
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that the process does not reach the absorbing state (0, 0) does not mean that V2

will become established. Indeed, either the invasive strain V2 becomes established

or a co-infection event occurs. We note that τV S2

(n2,m2) = +∞ if the process, in the

long term, reaches any of the absorbing states E2, CH or CT instead of (0, 0).

The probability of V2 extinction and the expected time to reach the V2 virus-free

state conditioned on actually reaching this fate can be computed starting from

any initial state (n2,m2) ∈ Ω2. This can be obtained from the Laplace-Stieltjes

transform of τV S2

(n2,m2) defined as

φV S2

(n2,m2)(z) = E
[
e
−zτV S2

(n2,m2)1{
τ
V S2
(n2,m2)

< +∞
}] , Re(z) ≥ 0,

where 1{
τ
V S2
(n2,m2)

< +∞
} is a random variable taking the value 1 if τV S2

(n2,m2) < +∞
and 0 otherwise, so that the previous Laplace-Stieltjes transform is restricted to

the sample paths satisfying τV S2

(n2,m2) < +∞. Using a first step argument, it can be

written that

φV S2

(n2,m2)(z) = E
[
e
−zτV S2

(n2,m2)1{
τ
V S2
(n2,m2)

< +∞
}]

=
∑

(n′2,m
′
2)∈Ω2

E
[
e
−zτV S2

(n2,m2)1{
τ
V S2
(n2,m2)

< +∞
}∣∣∣∣(n2,m2)→ (n′2,m

′
2)

]
·

P ((n2,m2)→ (n′2,m
′
2)) ,

where the notation (n2,m2) → (n′2,m
′
2) represents the event of moving from

state (n2,m2) to state (n′2,m
′
2) in one jump. Thus, P ((n2,m2)→ (n′2,m

′
2)) is

the probability of moving from state (n2,m2) to state (n′2,m
′
2). The states that

can be possibly reached in one jump of the process starting from (n2,m2) are

depicted in the transition diagram in Figure 5.12. If the process jumps from

(n2,m2) to (n′2,m
′
2), the random variable τV S2

(n2,m2) can be split into two parts,

τV S2

(n2,m2) = t(n2,m2)→(n′2,m
′
2)+τ

V S2

(n′2,m
′
2), where t(n2,m2)→(n′2,m

′
2) denotes the time taken for

the process to move from state (n2,m2) to state (n′2,m
′
2) in one step, and therefore,

φV S2

(n2,m2)(z) =
∑

(n′2,m
′
2)∈Ω2

E
[
e
−zt(n2,m2)→(n′2,m

′
2)
∣∣(n2,m2)→ (n′2,m

′
2)
]
·

E

[
e
−zτV S2

(n′2,m
′
2)1{

τ
V S2
(n′2,m

′
2)
< +∞

}
]
P ((n2,m2)→ (n′2,m

′
2)) ,
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where the expectation of the product becomes the product of the expectations due

to the independence given by the Markov property, and the second expectation is

no longer conditional also due to the Markov property. One has

P ((n2,m2)→ (n′2,m
′
2)) =

q(n2,m2),(n′2,m
′
2)

R(n2,m2)

,

where

R(n2,m2) = q(n2,m2),(n2+1,m2) + q(n2,m2),(n2−1,m2) + q(n2,m2),(n2,m2+1)

+ q(n2,m2),(n2,m2−1) + q(n2,m2),CH + q(n2,m2),CT .

Then, as t(n2,m2)→(n′2,m
′
2)|(n2,m2)→ (n′2,m

′
2) is exponentially distributed with rate

R(n2,m2) and E
[
e−zX

]
= λ

λ+z
if X ∼ Exp(λ),

E
[
e
−zt(n2,m2)→(n′2,m

′
2)
∣∣(n2,m2)→ (n′2,m

′
2)
]

=
R(n2,m2)

R(n2,m2) + z
.

Thus, the following system of linear equations is derived:

φV S2

(n2,m2)(z) =
β2nsm2

R(n2,m2) + z
φV S2

(n2+1,m2)(z) +
(µ2 + ϕ2)n2

R(n2,m2) + z
φV S2

(n2−1,m2)(z)

+
γ2n2ms + α2msm2

R(n2,m2) + z
φV S2

(n2,m2+1)(z)

+
ν2m2

R(n2,m2) + z
φV S2

(n2,m2−1)(z),

(5.37)

which can be rewritten as(
R(n2,m2) + z

)
φV S2

(n2,m2)(z) = β2nsm2φ
V S2

(n2+1,m2)(z)

+ (µ2 + ϕ2)n2φ
V S2

(n2−1,m2)(z)

+ (γ2n2ms + α2msm2)φV S2

(n2,m2+1)(z)

+ ν2m2φ
V S2

(n2,m2−1)(z).

(5.38)

Note that φV S2
CH

(z) = φV S2
CT

(z) = 0. Moreover, for z = 0, one has

φV S2

(n2,m2)(0) = E
[
1{

τ
V S2
(n2,m2)

< +∞
}] = P

(
τV S2

(n2,m2) < +∞
)
,

which is the probability of reaching the extinction of the invasive viral strain V2

starting from (n2,m2), before any other fate (i.e., E2, CT or CH) is reached. We
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introduce the notation pV S2

(n2,m2) := P
(
τV S2

(n2,m2) < +∞
)

. Hence, evaluating equation

(5.38) at z = 0, one obtains the following system of linear equations:

R(n2,m2)p
V S2

(n2,m2) = β2nsm2p
V S2

(n2+1,m2) + (µ2 + ϕ2)n2p
V S2

(n2−1,m2)

+ (γ2n2ms + α2msm2)pV S2

(n2,m2+1) + ν2m2p
V S2

(n2,m2−1).
(5.39)

Boundary conditions are given by pV S2

(0,0) = 1 and pV S2

(n2,m2) = 0 if n2 + m2 = Nmax.

We note that reaching any state (n2,m2) with n2 +m2 = Nmax represents reaching

the macro-state E2 according to its definition. Recall that

E

[(
τV S2

(n2,m2)1
{
τ
V S2
(n2,m2)

< +∞
})l] = (−1)l

dl

dzl
φV S2

(n2,m2)(z)

∣∣∣∣
z=0

, l ≥ 0. (5.40)

One notes that, for l = 0, the 0th derivative of the Laplace-Stieltjes transform

corresponds to the probabilities derived in equation (5.39), whereas for l = 1,

the first derivative of the Laplace-Stieltjes transform corresponds to the first-order

moments. In order to simplify the notation, denote the first-order moments as

MV S2

(n2,m2) = E
[
τV S2

(n2,m2)1
{
τ
V S2
(n2,m2)

< +∞
}] .

Differentiating (5.38) with respect to z and evaluating it at z = 0, one obtains

R(n2,m2)M
V S2

(n2,m2) = β2nsm2M
V S2

(n2+1,m2) + (µ2 + ϕ2)n2M
V S2

(n2−1,m2)

+ (γ2n2ms + α2msm2)MV S2

(n2,m2+1)

+ ν2m2M
V S2

(n2,m2−1) + pV S2

(n2,m2).

(5.41)

Boundary conditions are given by MV S2

(n2,m2) = 0 if n2 +m2 = Nmax because in this

case 1{
τ
V S2
(n2,m2)

< +∞
} = 0.

Equations (5.41) show that, in order to compute MV S2

(n2,m2), it is necessary to first

determine the value of pV S2

(n2,m2), that is the computation of the first derivative of

the Laplace-Stieltjes transform depends on the 0th derivative of the transform.

More broadly, this method could be used to compute higher order moments of the

random variable τV S2

(n2,m2)1
{
τ
V S2
(n2,m2)

< +∞
}, where the lth derivative of the Laplace-

Stieltjes transform depends on the l − 1th derivative previously computed in an

algorithmic fashion. However, our interest is in computing the derivatives defined
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in equation (5.40) for l = 0, 1, which correspond to the probabilities in equations

(5.39) and to the first-order moments in equations (5.41), respectively.

In order to write equations (5.39) and (5.41) in matrix form, the state space Ω2 is

organised in sub-sets (here called levels) as follows:

L (j) = {(n2,m2) ∈ Ω2 : n2 +m2 = j} ,

Ω2 =
Nmax−1⋃
j=1

L (j) ∪ {(0, 0)} ∪ E2 ∪ CH ∪ CT .
(5.42)

Note that equations (5.39) and (5.41) represent a system of linear equations with

one equation per (initial) state in Ω2. Thus, if one orders the states by levels with

L (0) ≺ L (1) ≺ · · · ≺ L (Nmax − 1), and the states within each level L (j) as

(j, 0) ≺ (j−1, 1) ≺ (j−2, 2) ≺ · · · ≺ (0, j), then it is clear that only transitions to

adjacent levels and to the absorbing states CH and CT are allowed (see Figure 5.12).

In particular, from any state (n2,m2) in L (j), the next event in the Markov chain

can take the process to either a state in level L (j − 1) through the death or V2

clearance of a host infected with V2 or the death of a tick infected with the invasive

strain, or a state in level L (j+ 1) via a new infection with V2 of either a host or a

tick. Moreover, from states in level L (Nmax − 1), the process can either move to

level L (Nmax − 2) or to the absorbing states E2, CH and CT , representing virus

establishment and co-infection events. Note that the absorbing state E2 can be

reached only from L (Nmax− 1), whereas the co-infection absorbing states can be

reached from any (n2,m2) ∈ Ω2. On the other hand, the extinction of the invasive

strain represented by the state (0, 0) can be accessed only from level L (1).

Thus, equations (5.39) and (5.41) can be rewritten in a matrix form as

X(l)(V S2) = CX(l)(V S2) + b(l)(V S2), l = 0, 1, (5.43)

where

X(l)(V S2) =


X

(l)
1 (V S2)

X
(l)
2 (V S2)

X
(l)
3 (V S2)

...

X
(l)

Nmax−1
(V S2)

 , b(l)(V S2) =


b

(l)
1 (V S2)

b
(l)
2 (V S2)

b
(l)
3 (V S2)

...

b
(l)

Nmax−1
(V S2)

 ,
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C =



0 C1,2 0 · · · 0 0
C2,1 0 C2,3 · · · 0 0

0 C3,2 0 · · · 0 0
...

. . . . . . . . .
...

...
0 0 0 · · · 0 CNmax−2,Nmax−1

0 0 0 · · · CNmax−1,Nmax−2 0


.

The sub-vectors X
(l)
j (V S2) and b

(l)
j (V S2) that constitute the vectors X(l)(V S2)

and b(l)(V S2) respectively, l = 0, 1, have dimensions j+1, with j = 1, . . . , Nmax−1.

For l = 0, which corresponds to the probabilities in equation (5.39), the sub-vectors

X
(0)
j (V S2) that comprise X(0)(V S2) are defined as

X
(0)
j (V S2) =


pV S2

(j,0)

pV S2

(j−1,1)
...

pV S2

(0,j)

 , j = 1, . . . , Nmax − 1,

whereas b
(0)
j (V S2) = 0 if j > 1 and

b
(0)
1 (V S2) =


µ2 + ϕ2

R(1,0)

ν2

R(0,1)

 .

In the instance of equations (5.41), which correspond to l = 1, the sub-vectors in

X(1)(V S2) are given by

X
(1)
j (V S2) =


MV S2

(j,0)

MV S2

(j−1,1)
...

MV S2

(0,j)

 , j = 1, . . . , Nmax − 1,
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and b(1) consists of sub-vectors defined as

b
(1)
j (V S2) =



pV S2

(j,0)

R(j,0)

pV S2

(j−1,1)

R(j−1,1)
...

pV S2

(0,j)

R(0,j)


, j = 1, . . . , Nmax − 1,

The blocks that comprise the matrix C, Ck+1,k and Ck,k+1, have dimensions (k+

2)× (k + 1) and (k + 1)× (k + 2) respectively, and are defined as follows:

• For k = 1, . . . , Nmax − 2:

(Ck+1,k)i+1,j+1 =


(k + 1− i)(µ2 + ϕ2)

R(k+1−i,i)
, if i = j,

iν2

R(k+1−i,i)
, if i = j + 1,

0, otherwise,

where i = 0, . . . , k + 1 and j = 0, . . . , k.

• For k = 1, . . . , Nmax − 2:

(Ck,k+1)i+1,j+1 =


((k − i)γ2 + iα2)ms

R(k−i,i)
, if i = j − 1,

iβ2ns
R(k−i,i)

, if i = j,

0, otherwise,

where i = 0, . . . , k and j = 0, . . . , k + 1.

Equation (5.43) can then be solved efficiently adapting Algorithm 4 to obtain

pV S2

(n2,m2) and MV S2

(n2,m2) for any initial state (n2,m2) ∈ Ω2.

Once MV S2

(n2,m2) is at hand, invoking the law of total expectation, one has

MV S2

(n2,m2) = E
[
τV S2

(n2,m2)1
{
τ
V S2
(n2,m2)

< +∞
}∣∣∣τV S2

(n2,m2) < +∞
]
P
(
τV S2

(n2,m2) < +∞
)

+ E
[
τV S2

(n2,m2)1
{
τ
V S2
(n2,m2)

< +∞
}∣∣∣τV S2

(n2,m2) = +∞
]
P
(
τV S2

(n2,m2) = +∞
)

= E
[
τV S2

(n2,m2)

∣∣∣τV S2

(n2,m2) < +∞
]
P
(
τV S2

(n2,m2) < +∞
)
,
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which yields

E
[
τV S2

(n2,m2)

∣∣∣τV S2

(n2,m2) < +∞
]

=
MV S2

(n2,m2)

pV S2

(n2,m2)

,

that represents the conditional expected time to reach the virus-free state from

any initial state (n2,m2) ∈ Ω2 contioned on the process actually reaching this

absorbing state.

On the other hand, one could define for (n2,m2) ∈ Ω2

τE2

(n2,m2) = inf{t ≥ 0 : H2(t) + T2(t) = Nmax|(H2(0), T2(0)) = (n2,m2)},

that is the time to reach the absorbing macro-state E2 (i.e., establishment of the

invasive strain V2) starting with n2 hosts andm2 ticks infected with V2. In this case,

the fact that the absorbing state E2 is not reached does not necessarily mean that

the invasive viral strain establishment does not occur. Indeed, a co-infection event

might happen first. The probability of V2 strain establishment and the expected

time to V2 strain establishment conditioned on actually reaching this fate can be

computed starting from any initial state (n2,m2) ∈ Ω2. This can be obtained from

the Laplace-Stieltjes transform of τE2

(n2,m2) defined as

φE2

(n2,m2)(z) = E
[
e
−zτE2

(n2,m2)1{
τ
E2
(n2,m2)

< +∞
}] , Re(z) ≥ 0.

Similarly to the case of virus-free state for the invasive viral strain V2, define

ME2

(n2,m2) = E
[
τE2

(n2,m2)1
{
τ
E2
(n2,m2)

< +∞
}] ,

pE2

(n2,m2) = P
(
τE2

(n2,m2) < +∞
)
.

Following the same steps illustrated for φV S2

(n2,m2)(z), one obtains the analogous

system of linear equations derived in equations (5.39) and (5.41) for pE2

(n2,m2) and

ME2

(n2,m2) respectively. This systems of equations can be rewritten in matrix form

using the order of the state space described in equation (5.42). This yields

X(l)(E2) = CX(l)(E2) + b(l)(E2), l = 0, 1. (5.44)
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The same matrix C is derived, whereas the sub-vectors that comprise X(0)(E2)

and X(1)(E2) are defined as

X
(0)
j (E2) =


pE2

(j,0)

pE2

(j−1,1)
...

pE2

(0,j)

 , j = 1, . . . , Nmax − 1,

and

X
(1)
j (E2) =


ME2

(j,0)

ME2

(j−1,1)
...

ME2

(0,j)

 , j = 1, . . . , Nmax − 1,

respectively. On the other hand, the sub-vectors of b(1)(E2) are given by

b
(1)
j (E2) =



pE2

(j,0)

R(j,0)

pE2

(j−1,1)

R(j−1,1)
...

pE2

(0,j)

R(0,j)


, j = 1, . . . , Nmax − 1.

whereas b
(0)
j (E2) = 0 if j < Nmax − 1 and

b
(0)

Nmax−1
(E2) =



γ2(Nmax − 1)

R(Nmax−1,0)

γ2ms(Nmax − 2) + β2ns + α2ms

R(Nmax−2,1)
...

(β2ns + α2ms)(Nmax − 1)

R(0,Nmax−1))


.

Algorithm 4 can be then adapted to compute pE2

(n2,m2) and ME2

(n2,m2), as well as

the expected time to reach an endemic state conditioned on the process actually

reaching this absorbing state, for any initial state (n2,m2) ∈ Ω2.
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Probability and conditional time to co-infection events

We are interested in computing the probability of the first co-infection events, that

is the first co-infection of a vertebrate or the first co-infection of a tick, as well

as the conditional times to such events because they can be used to estimate the

probability and the timescale of potential reassortment events. We note that in

the stochastic model presented in this section, co-transmission (i.e., a susceptible

individual can become co-infected in one time step) is not considered.

In order to compute the probability of the first host co-infection, define for (n2,m2) ∈
Ω2

τCH(n2,m2) = inf{t ≥ 0 : process visits CH |(H2(0), T2(0)) = (n2,m2)},

that is the time to have a co-infected vertebrate for the first time starting with

n2 hosts and m2 ticks infected with the invasive viral strain V2. The probability

of the first co-infection of a host and the expected time to the first co-infection of

a host conditioned on actually reaching this fate can be computed starting from

any initial state (n2,m2) ∈ Ω2. This can be obtained from the Laplace-Stieltjes

transform of τCH(n2,m2) defined as

φCH(n2,m2)(z) = E
[
e
−zτCH

(n2,m2)1{
τ
CH
(n2,m2)

< +∞
}] , Re(z) ≥ 0.

Similarly to the case of the virus-free state and the establishment of the invasive

viral strain V2 analysed in the previous section, define

MCH
(n2,m2) = E

[
τCH(n2,m2)1

{
τ
CH
(n2,m2)

< +∞
}] ,

pCH(n2,m2) = P
(
τCH(n2,m2) < +∞

)
.

Following the same steps illustrated for φV S2

(n2,m2)(z), one obtains the analogous

system of linear equations derived in equations (5.39) and (5.41) for pCH(n2,m2) and

MCH
(n2,m2) respectively. This systems of equations can be rewritten in matrix form

using the order of the state space described in equation (5.42). This yields

X(l)(CH) = CX(l)(CH) + b(l)(CH), l = 0, 1. (5.45)
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The same matrix C is derived, whereas the sub-vectors that comprise X(0)(CH)

and X(1)(CH) are defined as

X
(0)
j (CH) =


pCH(j,0)

pCH(j−1,1)
...

pCH(0,j)

 , j = 1, . . . , Nmax − 1,

and

X
(1)
j (CH) =


MCH

(j,0)

MCH
(j−1,1)

...

MCH
(0,j)

 , j = 1, . . . , Nmax − 1,

respectively. On the other hand, the sub-vectors of b(1)(CH) are given by

b
(1)
j (CH) =



pCH(j,0)

R(j,0)

pCH(j−1,1)

R(j−1,1)
...

pCH(0,j)

R(0,j)


, j = 1, . . . , Nmax − 1.

whereas

b
(0)
j (CH) =



jζ1m1

R(j,0)

(j − 1)ζ1m1 + ζ2n1

R(j−1,1)
...

jζ2n1

R(0,j)


, j = 1, . . . , Nmax − 1.

Algorithm 4 can be then adapted to compute pCH(n2,m2) and MCH
(n2,m2) for any initial

state (n2,m2) ∈ Ω2. Then, the expected time to the first co-infection of a host

conditioned on the process actually reaching this absorbing state is derived as

T CH
(n2,m2) = E

[
τCH(n2,m2)

∣∣∣τCH(n2,m2) < +∞
]

=
MCH

(n2,m2)

pCH(n2,m2)

. (5.46)
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Finally, in order to compute the probability of the first tick co-infection, define for

(n2,m2) ∈ Ω2

τCT(n2,m2) = inf{t ≥ 0 : process visits CT |(H2(0), T2(0)) = (n2,m2)},

that is the time to have a co-infected tick for the first time starting with n2 hosts

and m2 ticks infected with the invasive viral strain V2. The probability of the

first co-infection of a tick and the expected time to the first co-infection of a tick

conditioned on actually reaching this fate can be computed starting from any initial

state (n2,m2) ∈ Ω2. This can be obtained from the Laplace-Stieltjes transform of

τCT(n2,m2) defined as

φCT(n2,m2)(z) = E
[
e
−zτCT

(n2,m2)1{
τ
CT
(n2,m2)

< +∞
}] , Re(z) ≥ 0.

Similarly to the case of the virus-free state and the establishment of the invasive

viral strain V2 analysed in the previous section, define

MCT
(n2,m2) = E

[
τCT(n2,m2)1

{
τ
CT
(n2,m2)

< +∞
}] ,

pCT(n2,m2) = P
(
τCT(n2,m2) < +∞

)
.

Following the same steps illustrated for φV S2

(n2,m2)(z), one obtains the analogous

system of linear equations derived in equations (5.39) and (5.41) for pCT(n2,m2) and

MCT
(n2,m2) respectively. Note that

pCT(n2,m2) = 1− pV S2

(n2,m2) − p
E2

(n2,m2) − p
CH
(n2,m2), for all (n2,m2) ∈ Ω2,

therefore only the analogous of system (5.41) has to be solved to find MCT
(n2,m2).

This system of equations can be rewritten in matrix form using the order of the

state space described in equation (5.42). One obtains

X(l)(CT ) = CX(l)(CT ) + b(l)(CT ), l = 1. (5.47)

The same matrix C is derived, whereas the sub-vectors that comprise X(1)(CT )

are defined as

X
(1)
j (CT ) =


MCT

(j,0)

MCT
(j−1,1)

...

MCT
(0,j)

 , j = 1, . . . , Nmax − 1,
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On the other hand, the sub-vectors of b(1)(CT ) are given by

b
(1)
j (CT ) =



pCT(j,0)

R(j,0)

pCT(j−1,1)

R(j−1,1)
...

pCT(0,j)

R(0,j)


, j = 1, . . . , Nmax − 1.

Algorithm 4 can be then adapted to computeMCT
(n2,m2) for any initial state (n2,m2) ∈

Ω2. This enables the computation of the expected time to have the first tick co-

infection conditioned on the process actually reaching this absorbing state as

T CT
(n2,m2) = E

[
τCT(n2,m2)

∣∣∣τCT(n2,m2) < +∞
]

=
MCT

(n2,m2)

pCT(n2,m2)

. (5.48)

Figure 5.13 shows the probability of reaching the first co-infection of a host (panel

A) or a tick (panel B), whereas Figure 5.14 depicts the expected time to reach the

first co-infection of a host (panel A) or a tick (panel B) conditioned on the process

actually reaching these absorbing states, for different values of the transmission

parameters ζ1, ξ1 and λ2, and initial conditions. The parameter ξ1, which models

a tick infected with V1 infecting a tick infected with V2, leading to a co-infected

tick, affects the probabilities pCH(n2,m2) and pCT(n2,m2), as well as the conditional times

T CH
(n2,m2) and T CT

(n2,m2), only when the invasive strain is introduced in the system

through infected ticks. Indeed, when the invasive strain is introduced in the system

through infected hosts, there are no ticks infected with V2 that can be infected by

a tick infected with V1. On the other hand, the parameters ζ1 (representing a tick

infected with V1 infecting a host infected with V2, yielding a co-infected host) and

λ2 (modelling a host infected with V2 infecting a tick infected with V1, resulting

in the co-infection of a tick) affect the probabilities pCH(n2,m2) and pCT(n2,m2), and the

conditional times T CH
(n2,m2) and T CT

(n2,m2), only when the invasive strain is introduced

in the system through infected hosts. Indeed, when the invasive strain is introduced

in the system through infected ticks, there are no hosts infected with V2 that can

be infected by, or infect, a tick infected with V1.
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In Figure 5.13, when V2 is introduced in the populations through infected hosts,

larger values of λ2 correspond to a smaller probability of reaching a co-infected

host (first row of panel A). This is explained by the fact that increasing λ2 while

keeping the other parameters fixed and considering the same initial conditions,

determines an increment of the probability of the co-infection of a tick occurring

first, as shown in panel B of Figure 5.13. Considering the same initial conditions,

one observes that larger values of ζ1 increase the probability of reaching the first

co-infection of a host, while decreasing the probability of the first co-infection of

a tick occurring, as our intuition would suggest. On the other hand, when the

invasive strain V2 is introduced in the system through infected ticks, an increase

of ξ1 makes the first co-infection of a tick more likely to occur (see the second row

of panel B), as one would expect.

In Figure 5.14, it is interesting to observe that, when starting with hosts infected

with V2, the conditional time to reach the first co-infection of a host (first row of

panel A) is short, particularly for larger values of λ2, as one would expect. On the

other hand, when the invasive strain is introduced through infected ticks (second

row of panel A), the conditional time to reach the first co-infection of a host is

significantly longer. Indeed, in this model, we are not considering co-transmission

and the parameters ζ2 (which represents the infection of a host infected with V1 by

a tick infected with V2) and β2 (which models the infection of a susceptible host by

a tick infected with V2) are small. Thus, in those few cases when the co-infection

of a host is reached starting with only ticks infected with V2 (since the probability

pCH(n2,m2) is low), a longer time is needed to reach the first co-infection of a host

before other absorbing states.

Regarding the conditional time to reach the first co-infection of a tick depicted in

panel B of Figure 5.14, one notes that the process takes on average a short time to

reach the first co-infection of a tick for all the parameter values but when starting

with only hosts infected by V2 and λ2 = 10−4. In this instance, the parameter ζ1

is inversely proportional to T CT
(n2,m2). This can be explained by the fact that the

process takes also a shorter time to be absorbed by CH when ζ1 is larger. Thus,

in order to observe first the co-infection of a tick, the process has to reach this

absorbing state quicker when ζ1 increases.
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In summary, the results in Figures 5.13 and 5.14 suggest that the main factors (i.e.,

the main parameters) affecting the probability and conditional time to reach the

first co-infection of a host or a tick significantly depend on how the invasive strain

is introduced into the population. When V2 enters the system through infected

ticks, the process is more likely to reach the first co-infection of a tick before the

first co-infection of a host. Instead, when the invasive strain is introduced via

infected hosts, the fate of the process depends significantly on the value of λ2.

Regarding the conditional times to reach the first co-infection event, we observe

that the timescale to reach the first co-infection of a tick is on average shorter than

the timescale required to have the first co-infected host.

5.3 Discussion

Interacting populations of ticks and hosts are considered to describe the transmis-

sion of tick-borne viral infections. The focus of the work presented here is on three

fundamental aspects: co-feeding, co-infection and co-transmission. The virus can

be transmitted tick-to-host, host-to-tick and tick-to-tick through co-feeding (Gon-

zalez et al., 1992; Matser et al., 2009). With the aim of characterising the role

of different routes of transmission, we propose a deterministic model of single

infection dynamics. As the model presents more than one type of infectious indi-

viduals, the basic reproduction number is derived by means of the next generation

matrix approach (Diekmann et al., 2010; Van den Driessche & Watmough, 2002),

considering all the possible routes of transmission and under some simplified sce-

narios. This study allows us to prove that co-feeding and systemic transmission

are two distinguished routes of transmission, with co-feeding being the only route

able to maintain an epidemic with no other route of transmission in place. The

deterministic model is then approximated making use of the branching processes

theory (Allen, 2010), which enables the derivation of a condition for the epidemic

extinction equivalent to the basic reproduction number R0 computed in the de-

terministic setting. Then, a stochastic approach that accounts for the depletion

of susceptible individuals due to infection allows us to derive the probability of

virus extinction versus epidemic establishment, as well as the conditional times to
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A

B

Figure 5.13: The probabilities of reaching the first co-infection of a host pCH(n2,m2)

(A), and the first co-infection of a tick pCT(n2,m2) (B) are plotted for different values of

the transmission parameters ζ1, ξ1 and λ2, and initial conditions. The transmission

parameter λ2 varies as 10−4 (left column) and 10−2 (right column). The proba-

bilities pCH(n2,m2) and pCT(n2,m2) are computed starting with two infected hosts (first

row of A and B) or two infected ticks (second row of A and B). The parameter

ζ1 varies between 10−5 and 10−2 along the x-axis, whereas ξ1 varies between 10−7

and 10−4 along the y-axis. The other parameters are fixed as follows: Nmax = 20,

ns = n1 = 10, ms = m1 = 102, β2 = γ2 = ζ2 = λ1 = 10−4, α2 = ξ2 = 10−5,

µ2 = 1/(4× 365) and ν2 = 1/200.
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A

B

Figure 5.14: The conditional times to reach the first co-infection of a host T CH
(n2,m2)

(A), and the first co-infection of a tick T CT
(n2,m2) (B) are plotted for different values of

the transmission parameters ζ1, ξ1 and λ2, and initial conditions. The transmission

parameter λ2 varies as 10−4 (left column) and 10−2 (right column). The conditional

times T CH
(n2,m2) and T CT

(n2,m2) are computed starting with two infected hosts (first row

of A and B) or two infected ticks (second row of A and B). The parameter ζ1

varies between 10−5 and 10−2 along the x-axis, whereas ξ1 varies between 10−7

and 10−4 along the y-axis. The other parameters are fixed as follows: Nmax = 20,

ns = n1 = 10, ms = m1 = 102, β2 = γ2 = ζ2 = λ1 = 10−4, α2 = ξ2 = 10−5,

µ2 = 1/(4× 365) and ν2 = 1/200.
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such events. In this setting, we also derive the distribution of the exact number of

secondary infections (Artalejo & Lopez-Herrero, 2013).

On the other hand, as co-infection is a necessary condition for reassortment, it is

interesting to study the different factors affecting the probability and timescales of

the first co-infection events occurring. Assuming that ticks and hosts are suscep-

tible to the infection of two different strains of the same virus, V1 and V2 (resident

and invasive respectively), we propose a deterministic model of co-feeding trans-

mission that accounts for co-transmission (Alizon, 2013a). The basic reproduction

number and the invasion reproduction number of the invasive viral strain V2 in an

endemic equilibrium of the resident strain V1 are computed by making use of the

next generation matrix. Since our model does not account for individuals infected

twice with the same viral strain, the invasive virus V2 possesses an intrinsic ad-

vantage over the invasive strain (Alizon, 2013a,b). Indeed, the invasive strain can

infect both susceptible individuals and individuals infected with V1, whereas the

resident strain can only infect susceptible individuals as hosts and ticks infected

by V2 are rare. In order to overcome this issue, we propose a normalisation for

the invasion reproduction number of the invasive viral strain V2 in an endemic

equilibrium of the resident strain V1. We are interested in comparing our solution

with the invasion reproduction number computed in the model where co-infection

with the same strain is allowed (Alizon, 2013a; van Baalen & Sabelis, 1995). A

challenge of this alternative might be the complexity of the analysis, particularly

when considering both systemic and non-systemic transmission. The comparison

of the invasion reproduction number computed under these different assumptions

is the aim of future work.

A stochastic approach is also proposed to compute some stochastic descriptors of

interest, such as the probability of the establishment of the invasive viral strain

versus its extinction, and the probability of the first co-infection events, as well

as the expected conditional times to such events. Our analyses of these stochastic

descriptors show that the main parameters that affect the probability and timescale

to the first co-infection of a tick or a host depend on how the invasive strain is

introduced in the system (either through ticks or hosts infected with V2). Moreover,

the conditional time required to reach the first co-infection of a tick is on average

shorter than the conditional time to have the first co-infected host.
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We note that this stochastic approach does not account for co-transmission, i.e.,

an individual cannot become infected with both strains simultaneously. It is the

aim of future work to include in the model this type of transmission, analysing

how co-transmission affects the stochastic descriptors. From an epidemiological

perspective, it would be also interesting to compute the distribution of the exact

number of secondary infections directly caused by a tick or a host infected with

the invasive viral strain V2, similarly to the analysis carried out in Section 5.1.4

for a single infection.

One could also think to parametrise the mathematical models presented here mak-

ing use of experimental data, for example, antibody seroprevalence data (Monsalve-

Arteaga et al., 2020; Nurettin et al., 2022; Phonera et al., 2021). The assumptions

on the parameters, especially in the case of co-infection with two different viruses

or viral strains, would depend on the quantity and the quality of the data, as well

as on the specific questions that one would be interested in answering. Personally,

given the challenge that I faced when looking for the values of infection trans-

mission parameters (for example, α1, β1 and γ1 in the instance of single infection

dynamics), I would be interested in providing a sensible estimation for them.

In summary, the work presented in this chapter provides several tools to better

characterise co-infection dynamics in tick-borne virus transmission and to under-

stand the role that different routes of transmission play in the spread of the virus.

Beyond the future research that I mentioned above, a natural prosecution of this

study would consist in the definition of mathematical models of the intracellular

life cycle of Bunyaviruses with reassortment as the co-infection of a single cell is a

necessary condition for reassortment.
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Appendix A

Akaike Information Criterion for

model selection

In Chapter 3 I made use of the corrected version of the Akaike’s information cri-

terion (AICC) to compare statistically the performance of the exponential and

the Erlang MS-G models accounting for the extra parameters N0 and N when

assuming Erlang times to division and death. The approach in Anderson & Burn-

ham (2004); Burnham & Anderson (2004) was followed to derive the expression of

AICC .

The general Akaike’s information criterion (AIC), introduced for the first time in

1973 (see e.g. Akaike (1998)), is defined as

AIC = −2 log
(
L(θ̂)

)
+ 2K,

in which L(θ̂) is the maximum likelihood estimate and K is the number of param-

eters in the model. However, when the number of parameters is high compared to

the size of the data set n, i.e. n/K < 40, the performance of AIC may be poor.

Therefore, a second order correcting factor was introduced in 1978 by Hurvich &

Tsai (1989); Sugiura (1978) and led to the definition of AICC as

AICC = AIC +
2K(K + 1)

n−K − 1
. (A.1)

In order to derive the expression of AICC , let θ = (C0, N0, N, λ0, λ, α), and

xgM(θ, t) represent the prediction given by the mathematical model with param-

eter values θ for the number of cells in generation g at time t. Notice that
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xgM(θ, t) = xgM(t) = M g(t) in the notation of Chapter 3. The parameters θ have

been added as variables to highlight their role when computing AICC . Then, let

xgD(t) denote the experimentally determined mean of cells in generation g at time

t. Hence, one has

xgD(t) = xgM(θ, t) + ξg(t), t ∈ T , g ≥ G,

where T is the set of the time points. The errors, ξg(t), are assumed to be in-

dependent and normally distributed with mean 0 and standard deviation σgD(t),

which depends on the time point t and the generation g and is given with the

data. Notice that Anderson & Burnham (2004); Burnham & Anderson (2004)

assume that the errors are normally distributed with mean 0 and constant stan-

dard deviation σ. The hypothesis that the standard deviation varies with time

and generations is due to the structure of the data set: for each time point and

generation, a number of mice between 3 and 7 were considered, making possible

to compute the standard deviation.

Given that the errors are independent and normally distributed, their joint distri-

bution is

f(ξg(t)|θ, σgD(t)) =
G∏
g=0

∏
t∈T

1√
2πσgD(t)

exp

(
−1

2

(
ξg(t)

σgD(t)

)2
)
,

and therefore the likelihood is given by

L(θ) =
1

(2π)n/2
1∏G

g=0

∏
t∈T σgD(t)

exp

(
−1

2

G∑
g=0

∑
t∈T

(
ξg(t)

σgD(t)

)2
)
. (A.2)

Switching to the logarithm and neglecting the terms which do not depend on ξg(t),

equation (A.2) becomes

log (L(θ)) = −1

2

G∑
g=0

∑
t∈T

(
xgD(t)− xgM(θ, t)

σgD(t)

)2

. (A.3)

Therefore, the parameters θ̂ that maximise the (log)likelihood are the same that

minimise the distance (3.41) used in the ABC-SMC algorithm implemented in
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Chapter 3. Replacing the value of log
(
L(θ̂)

)
derived in (A.3) in the formula of

the AICC (A.1), one obtains

AICC =
G∑
g=0

∑
t∈T

(
xgD(t)− xgM(θ̂, t)

σgD(t)

)2

+
2Kn

n−K − 1
. (A.4)

Formula (A.4) was used to determine the values of AICC shown in Table 3.2.
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