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Abstract 

Massive amounts of data are expected to be generated by the billions of 

objects that form the Internet of Things (IoT). A variety of automated IoT 

services will largely depend on the use of different Machine Learning (ML) 

algorithms. Traditionally, ML models are processed by centralised cloud data 

centres. In the context of IoT, sensory data are offloaded to the cloud via 

multiple networking hops via the access, metro, and core network layers. This 

approach will inevitably lead to excessive networking power consumption as 

well as Quality-of-Service (QoS) degradation such as increased latency. In 

this thesis, we propose a cloud fog network (CFN) architecture where 

processing takes place in IoT nodes and fog servers in addition to the cloud. 

We use virtualisation to abstract deep neural network algorithms into Virtual 

Service Requests (VSRs) to represent the multiple interconnected layers of a 

Neural Network (DNN). Using Mixed Integer Linear Programming (MILP), we 

design an optimisation model that embeds the DNN VSRs into the CFN in an 

energy efficient way. We examine the performance of the proposed solutions 

and draw comparisons to embedding the DNN VSRs in the cloud. Several 

scenarios have been investigated in this thesis. These include distributed 

versus centralised source nodes, imposing constraints to limit Virtual Machine 

(VM) , that serve Inference DNN models, allocation at local IoT devices and 

studying the performance of the proposed approach when requests are 

embedded in a non-pre-emptive settings. The results show that significant 

energy savings can be obtained by optimising the deep neural network layers 

embedding in the network. The power savings are up to a maximum of 91% 

(68% on average) and vary with the scenario considered. 
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Chapter 1: Introduction 

1.1 Introduction 

Machine learning (ML) is increasingly used in many fields such as medical 

applications, smart cities, and autonomous cars where the goal is to efficiently 

and accurately predict the output or take decisions in response to real-time 

input data [1].  

Nowadays, massive amounts of data can be produced by distributed 

Internet-of-Things (IoT) devices [2]. Using the abundant IoT data, intelligent 

services can be provided at edge networks such as distributed detection, 

monitoring, and classification [3] using ML tools such as Deep Neural Networks 

(DNNs). Traditionally, due to computational complexity, ML algorithms used to 

be executed in centralised cloud data centres (CDCs). While it is evident that 

the usage of centralised data centres for ML has provided accuracy and high 

performance, nevertheless this is achieved at the cost of high energy 

consumption [4], [5]. Transferring input data to CDCs imposes networking 

overheads in terms of power consumption and delay and also raises privacy 

concerns as the data could be accessed for unauthorised purposes [6].   

As ML algorithms increase in their computational complexity, their 

associated energy consumption becomes challenging. In the case of edge / 

fog computing, such challenges heighten because the edge devices are 

resource constrained as they operate on a limited energy budget [7].  

In the literature, the energy efficiency of ML algorithms, specifically deep 

learning models was tackled on a number of levels [5], (i) improving the 

algorithms so that the number of multiplication-and-accumulations (MACs) is 
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minimised in the code, (ii) performing specialised optimisation at the hardware 

level e.g., using high-end Graphical Processing Units (GPUs), and Application-

Specific Integrated Circuits (ASICs) (iii) distributing the hidden layers across 

heterogeneous processing resources offered by Cloud/Fog networks. The last 

approach, also known as DNN inference partitioning, have been proposed and 

its feasibility have been studied in [8], and [9]. Inference involves using pre-

determined weights in the computation of outputs and the DNN can hence be 

successfully partitioned across several layers with a cost of networking 

requirement between its different layers. Despite these efforts, attention has 

not been given to the end-to-end power consumption minimisation when ML 

algorithms are placed anywhere in the processing and networking continuum 

between the edge device and the central data centre. 

In this thesis we take the approach in (iii) by designing a cross-layer 

optimisation framework that efficiently allocates virtualised DNNs across 

heterogeneous layers of processing offered by a cloud fog network (CFN) 

architecture. We use virtualisation to abstract the DNN algorithms into Virtual 

Service Requests (VSRs) where each layer of the DNN algorithm is 

represented by a VM and interconnections between layers are represented as 

virtual links. It is worth to note that in this work we only consider the inference 

phase (i.e., using a trained DNN with determined weights) and not the training 

phase as training is typically more complex and might require powerful central 

processing. We focus on optimizing the assignment of the elements of the 

partitioned DNN inference model between the edge (i.e., the IoT layer) and the 

central cloud layer with the objective of minimizing the power consumption. 
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1.2 Research Objectives 

The work presented in this thesis has the following objectives: 

1. To abstract DNN algorithms as VSRs composed of VMs representing 

the layers of the DNN algorithm and virtual links representing the 

connections between the layers.  

2. To optimise the embedding of the DNN VSRs in a distributed 

processing environment across IoT, fog and cloud layers with the 

objective of minimising the processing and networking power 

consumption. 

3. To compare optimum embedding of DNN VSRs over a distributed 

processing architecture to embedding in the cloud.  

4. To study the energy efficiency degradation due the limited ability of IoT 

nodes to host VMs, imposed by hardware/software limitations.  

5. To study the energy efficiency implications of suboptimum utilisation of 

resources in a non-pre-emptive embedding setting (i.e., sequential 

embedding setting) in which newly arriving VSRs are embedded 

without interrupting existing VSR to maintain QoS. 

1.3 Original Contributions 

The work in this thesis has resulted in the following original contributions:  

 

1. Proposed a cloud –fog network (CFN) architecture that spans the edge, 

access, metro, and core networks providing processing nodes to 

embed DNN VSRs. 
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2. Developed a MILP model that minimises the network and processing 

power consumption of the CFN architecture by optimising the 

embedding of the DNN VSRs. 

3. Evaluated the energy savings obtained by optimising the embedding of 

DNN VSRs over the CFN architecture by comparing them to the power 

consumption resulting from embedding DNN VSRs in the cloud.  

4. Evaluated the increase in power consumption resulting from limiting the 

embedding of DNN VSRs to the IoT and fog layers. 

5. Developed a MILP model to study the impact of constraining the 

number of VMs an IoT node can host on the energy efficiency of the 

CFN architecture. 

6. Developed a MILP model to study the embedding of DNN VSRs in a 

non-pre-emptive setting in which requests are embedded sequentially 

and compared non-pre-emptive embedding in terms of energy 

efficiency and VSRs acceptance ratio to a pre-emptive setting where 

existing VSRs are re-embedded as a new VSR arrives to ensure 

optimum use of resources. 

1.4 List of Publications 

The following publications resulted from the work presented  in Chapter 

3 - Chapter 5: 

1. Yosuf, B.A., Mohamed, S.H., Alenazi, M.M., El-Gorashi, T.E. and 

Elmirghani, J.M.H., 2021, June. Energy-Efficient AI over a Virtualized 

Cloud Fog Network. In Proceedings of the Twelfth ACM International 

Conference on Future Energy Systems (pp. 328-334). 
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2. Alenazi, M. M., Yosuf, B. A., Mohamed, S. H., El-Gorashi, T. E., & 

Elmirghani, J.M.H. (2021) “Energy-Efficient Distributed Machine 

Learning in Cloud Fog Networks” 7th IEEE World Forum on Internet of 

Things, WF-IoT 2021, New Orleans, LA, USA, June 14 - July 31, 2021. 

3. Alenazi, M. M., Yosuf, B. A., Mohamed, S. H., El-Gorashi, T. E., & 

Elmirghani, J.M.H. “Energy Efficient Placement of ML-Based Services 

in IoT Networks”, IEEE International Mediterranean Conference on 

Communications and Networking (MeditCom), 5-8 September 2022, 

Athens, Greece. 

  

1.5 Thesis Organisation 

Following Chapter 1, this thesis is organised as follows: 

Chapter 2 provides an overview of the key technologies related to this thesis 

such as IoT, cloud computing, fog computing, deep neural networks (DNN). 

Chapter 3 presents the CFN architecture and the MILP model that optimises 

the embedding of DNN VSRs. It evaluates the energy efficiency of the CFN 

architecture under two scenarios: 1) DNN VSRs with a single source node, 

and 2) DNN VSRs with multiple source nodes. Chapter 3 also compares 

embedding DNN VSRs over the CDN architecture to embedding over a fog 

architecture. 

Chapter 4 examines the impact of limiting the number of VMs that can be 

processed by an IoT node at any given time compared to multiple VMs 

allocation in IoT nodes. 
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Chapter 5 presents a MILP model to sequentially embed DNN VSRs in a non-

pre-emptive setting maintaining QoS of existing VSRs and compares different 

objective functions to achieve server centric, network centric and total power 

energy efficiency. 

Chapter 6 summarises the contributions of this thesis and provides directions 

for future work.  
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Chapter 2: Background  

2.1 Introduction 

This chapter reviews the topics related to this thesis including IoT, cloud 

computing, fog computing and deep neural networks. It provides the reader 

with the background required to understand the chapters presenting original 

work. 

 

2.2 Internet of Things (IoT) Key Elements  

The Internet of Things (IoT) is defined as a distributed network of physical 

objects with sensing, processing or actuation capabilities able to communicate 

with each other and with users [10]. In the past, most of the IoT applications 

aimed at passive data collection and monitoring. Through the coupling of 

sensors, actuators and machine learning (ML), IoT systems are capable of 

interacting with the physical world and performing sophisticated tasks in an 

automated and dynamic manner [11].  

The uptake of the IoT is increasing at unprecedented levels across a wide 

variety of domains in our daily lives, primarily due to advances in technology 

and manufacturing with respect to reduction in cost, size, and power 

consumption of next-generation low-power radio transceivers and 

microcontrollers [12]. Cisco predicted in 2011 that the number of linked IoT 

items would reach 50 billion by 2020 [13], [14] outnumbering the 7.7 billion 

people on the planet. This prediction whilst not totally fulfilled (10 billion 

connected devices in 2020), the trend is continuing on the rise [15], [16].  
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The Internet of Things (IoT) will change the modern world and its industries. 

Smart meters, for example, will be used to improve utility control. Sensors and 

actuators will allow factory floor mechanisation. City surveillance cameras will 

be used to aid law enforcement agencies in preventing crimes before they 

occur using ML algorithms [17]. It is claimed that IoT-based application 

systems earned $4.8 trillion in revenue alone in 2012 [18]. Also, according to 

the McKinsey Research Institute, the Internet of Things will have an economic 

impact in 2025 of approximately 11.1 trillion dollars [19]. IoT is still in its early 

stages. Energy consumption is a concern with the increasing number of IoT 

devices [20]. 

The sheer number of IoT devices leads to the generation of massive amounts 

of data which is usually transported over multiple domains of the network 

towards the centralised cloud data center for processing to extract knowledge 

from the data [21]. The costly overhead of the transport network (energy 

usage, latency and monetary cost) created a need for processing the collected 

data closer to the IoT end-devices. This led to the introduction of fog 

computing concepts which can fill this void by complementing the cloud and 

extending its services to the edge of the network and even further into the IoT 

devices [22].  

Technically, the Internet of Things is built on a number of key technology 

elements that are needed to allow IoT to fully function and provide benefits to 

the users [23]. These elements include the identification mechanism for the 

IoT and other devices, the sensing and actuators that collect data, the 

communication system that connects the IoT and other devices, the 

computational devices that process the collected data, the services offered 
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based on the data collected by the IoT devices and the semantics and useful 

knowledge extracted via these services. These elements are summarised in 

Figure 2.1 and outlined below:  

 
  

Figure 2. 1:Key of Elements of IoT 

 

Identification:  

Identification provides explicit identity for each object within the network [23]. 

There are two types of operations provided by identity: naming and 

addressing. When identifying IoT objects, it is necessary to distinguish 

between the object ID and the address. The object ID is the item's name, such 

as a temperature sensor, and the object's address is its location inside a 

communications network [24]. Usually there are multiple objects with the same 

name, but each object has its own unique address.  

 

Sensing and Actuators:  
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Sensors and actuators are the primary physical components of IoT nodes. 

Sensors are physical detectors that read and gather data about the 

environment. The sensors are usually low-cost, low-power, and have limited 

processing capability and interfaces to communicate over defined 

communication channels [25]. There are many different types of sensors for 

perceiving the physical environment and measuring things like temperature, 

acceleration, vibration, light, electromagnetic characteristics, humidity, and 

the locations of physical objects [26]. The sensors typically monitor conditions 

and send signals when a change occurs (or can send continuous 

measurements), while actuators receive a signal and perform an action [27].  

 

Communication:  

Many communications technologies support IoT devices and smart services. 

Wi-Fi, Bluetooth [26], IEEE 802.15.4, and Long-Term cellular Evolution (LTE), 

5G Ultra Reliable Low Latency (URLL) are examples of IoT communication 

protocols [28]. These communication technologies are different in terms of the 

data rates they can handle, the distances they can cover, and the amount of 

power they need [29]. In addition to the communication technologies, IoT 

devices require storage and battery power. Memory and storage technology, 

without a doubt, will continue to improve in the future [30]. In terms of battery 

power consumption, a lithium battery of 3v/225mAh, for example, can provide 

lifetime up to 3 years when performing task-based on RFID transmitters [31]. 
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Computation:  

Computation is required to process data obtained to make decisions [32], [33]. 

In IoT networks computation can be centralised or distributed: 

In centralised computation and in the context of the work in this thesis, the IoT 

nodes are assumed to send the request for demands followed by the captured 

data to a specific cloud data centre location. As all IoT nodes rely on a single 

computing location, the computations are considered centralised. 

In distributed computation, the IoT nodes can either process their own data or 

send a request followed by the data to one of multiple computing locations 

(e.g., in the cloud or fog layer) [33]. Thus, in the context of the work in this 

thesis, this form of workload allocation is considered a distributed computing 

architecture. 

 

Services: 

In general, IoT services have been implemented to support different functions 

in our daily lives. Building services, power and cooling services, safety 

services, industrial automation services, and so on have all benefited from the 

widespread usage of wireless communication [34]. 

 

 

Semantics: 

Semantics in IoT is defined as the capacity to generate knowledge by 

deploying smart services utilising various methodologies. Identifying and 

using resources and modelling and analysing data are part of the knowledge 
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production process [35]. Based on these, the logical choice to deploy smart 

services is made. 

 

2.3 Generic IoT Architecture  

A general high-level reference design for IoT systems is proposed in the 

literature [36] - [41]. The reference design consists of various layers, as shown 

in Figure 2.2. These levels are briefly explained below: 

 

Figure 2. 2: Generic IoT Architecture 
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Perception Layer 

The perception layer is the lowest in the IoT architecture. Its primary goal is to 

interpret raw data from objects in the environment. This layer is where all of 

the data collection and sensing takes place. Temperature sensors, cell 

phones, automobiles, drones, cameras, and other IoT items are examples of 

IoT objects [42], [43]. 

 

Aggregation Layer  

The network layer offers the networking infrastructure for securely transmitting 

aggregated data from objects to the cloud for processing. Transmission can 

take place across wired and wireless networks. Communication technologies 

such as Wi-Fi, Bluetooth, ZigBee, LTE, and others are commonly employed 

[44], [45]. In most cases, an IoT gateway device is used to collect raw data 

from the perception layer resource-restricted devices (especially the less 

intelligent ones) [45]. 

 

Cloud layer 

The cloud layer, also known as the middleware layer, gets massive amounts 

of data from the network layer [46]. This layer primary function is service 

administration and data storage. It has an analytical centre that processes 

aggregated data and makes automated decisions based on the analysis of 

the results, then feeds the output into the application layer. This layer enables 

data access and storage via cloud-based services such as infrastructure-as-
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a-service (IaaS), platform-as-a-service (PaaS), software-as-a-service (SaaS), 

and network-as-a-service (NaaS) [39]. 

 

 

 

Application layer  

The Application layer is at the top of the design and is responsible for 

presenting the final data to the end-user [47]. Hence, a key function of this layer 

is to provide a visual representation for the collected data from IoTs and a 

summary for the outcome or decision taken after processing the data.   It gets 

the decision data from the cloud and, in exchange, provides management 

services for the applications that display the decision data or take action based 

on the decision data [46].  

 

2.4 IoT Challenges 

The abundant economic and societal advantages of IoT are confronted with 

several challenges that must be addressed. Some of these challenges are 

given in Figure 2.3 and briefly outlined below. These include Availability, 

Reliability, mobility, Trust, security and privacy and Energy efficiency. 
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Figure 2. 3: Challenges faced by IoT. 

 

 

A. Availability 

To realise anywhere and anytime services, IoT software and hardware 

must have high availability. Availability is defined as the percentage of 

time that the service or component is operating. It quantifies the loss in 

time resulting from service or component failure. IoT services must be 

reliable at the software and hardware level. For software, IoT 

applications should deliver services to users simultaneously anytime 

and anywhere. For hardware, a reliable IoT systems requires devices 

that are compatible with the IoT functionalities and protocols. Reliability 

in IoT system can be provided by redundancy for hardware (i.e., 

multiple available servers) and software (i.e., availability of multiple 

software packages within each server to ensure compatibility) [48]. The 

availability of IoT systems can be improved by evaluating the 
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availability requirements at the design stage when developing IoT 

systems to select suitable hardware and software [48], [49]. 

 

B. Reliability  

Reliability and availability are closely related. While availability 

measures the loss in time resulting from failure, reliability measure the 

frequency and impact of failure by quantifying the probability of the 

system meeting certain performance standards during a specified 

period of time.  Meeting stringent reliability requirements is essential in 

designing IoT systems delivering critical services such as emergency 

services and healthcare services [50]. In addition to the reliability of the 

hardware and software delivering the IoT services, a resilient 

communication network is required to reliably connect users to the 

service. Reliability is required in all the layers of the IoT system as a 

failure in perception, data collection, computations, or networking can 

result in delays and data losses which can lead to the service failure 

[51]. A reliable transmission scheme to reduce packet loss in IoT 

systems is proposed in [50]. In [52], [53], a probabilistic model to 

evaluate the reliability and cost of IoT systems is developed. 

 

C. Mobility  

IoT services will be mostly delivered to mobile users. Providing 

continuous service for these users is a challenge as services can be 

interrupted as users move from one gateway to the next. In [53], service 
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interruption was addressed by supporting caching to provide data in 

the case of temporary interruptions. Mobile Internet of Vehicles (IoV) 

formed as ad-hoc networks is specifically challenging. In [54], 

mechanisms for supporting mobility for vehicle-to-vehicle networking 

are discussed. The authors in [55], proposed a group mobility 

mechanism for IoV inspired by flying bird flocks. 

 

D. Trust, Security and Privacy 

The Internet of Things faces significant challenges in security, privacy 

and trust. In addressing these challenges, the scalability of IoT systems 

of billions of devices and the heterogeneity of resources need to be 

considered [56]. As IoT-based systems and applications spread across 

various administrative domains, multiple stakeholders and ownerships 

are unavoidable. A trustworthy robust architecture is required to give 

users of the IoT system complete assurance that the services being 

offered is dependable [57]. Specific procedures and mechanisms are 

required to guarantee that IoT services are not interrupted or 

compromised by cyber-attacks [56]. IoT employs many types of 

identifying technology, such as RFID tags that may be attached to 

things and from which people's whereabouts may be deduced. It is 

critical to have proper systems to avoid the inference of personal 

information and allow IoT users who prefer to remain anonymous to do 

so. One strategy to secure personal information is to retain data as 

close to home as feasible by utilising decentralised processing and key 

management [58]. The authors in [59] optimized cooperative task 
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execution for resource-constraint IoT by utilizing a double-auction 

mechanism that finds the optimal policy for task execution with minimal 

need for private information about the nodes.  

 

E. Energy Efficiency   

Energy efficiency is crucial for IoT systems. The energy efficiency of 

devices and communication interfaces determine the lifetime of the IoT 

systems. In many IoT systems, the devices are typically either battery 

powered or powered by renewable energy or energy harvesting. 

Hence, the scarce energy sources need to be efficiently managed to 

prolong the lifetime of the service supported by the IoT nodes and avoid 

service disruption. [60], [61], [62]. Relay nodes are introduced to IoT 

networks to prolong the IoT system lifetime [63]. Also, discontinuous 

reception/transmission is used in [64] in IoT sensors to turn off their 

communication interfaces and go into sleep mode. 

Processing the massive amount of data created by IoT devices is 

challenging given the limited processing capacity and power sources 

of IoT nodes. Therefore, cloud intervention becomes necessary. 

However, sending the massive amount of data created by IoT devices 

to the cloud data centre is a huge burden on communication networks. 

Fog computing is an emerging computing paradigm that complements 

cloud computing by offering computational resources closer to the user 

at the access and metro networks. Fog computing offers energy 

efficient solutions to process IoT data. 
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2.5 Access Network Architecture for IoT systems 

Traditionally, fixed-line access technologies such as copper-based xDSL, and 

cellular technologies such as 3G/LTE provide the final drop to end-devices. 

Given the massive predicted expansion in the number of connected IoT nodes 

and the requirement to reach the distant cloud for data processing, the 

technologies mentioned above can face challenges in meeting the IoT 

demand due to bandwidth constraints and energy inefficiencies [65]. Several 

significant developments have been made to address the concerns mentioned 

above, including integrating many heterogeneous access networks into a 

single platform as in 5G to allow seamless data interchange with the cloud. 

The combination of a wireless front end to provide connectivity for mobile/fixed 

nodes and fibre links to provide backhauling support ubiquitous services which 

are not achievable with wireless infrastructure alone [66]. Because of its high 

bandwidth, low cost, and point-to-multipoint design, Passive Optical Networks 

(PONs) have been the most appealing alternative for the backhaul in access 

networks providing high bandwidth in both the uplink and downlink [67]. 

 

2.6 Cloud Computing for IoT 

The IoT layer can use the cloud for computing, data storage, and additional 

services based on network scale and application demand [68]. To address the 

issues connected with the massive data storage necessary and the 

computation and processing required, academics and stakeholders have 

boosted their efforts geared towards integrating cloud computing with IoT [60]. 

IoT devices are frequently supported by a local or global cloud infrastructure 

that increases their capabilities and provides extra services because of their 
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low cost, compact size, and low power consumption, as well as their restricted 

data processing, storage, and traffic handling capabilities [69]. Cloud plays 

critical roles in data storage, resource management, service creation, service 

management, service discovery, and power management, among other things 

[70]. When IoT and cloud are combined, a new paradigm emerges that can 

lead to IoT success in service provisioning, high-performance, dependability, 

ubiquity, and scalability. For fast and scalable service delivery, it can give 

cloud features with high elasticity and flexibility, [71], [72]. 

 

2.7 Fog Computing for IoT  

Fog computing is a distributed processing paradigm that extends the abilities 

of the centralised cloud by bringing processing computational resources 

closer to the users as opposed to the centralised processing at the cloud [73]. 

Fog computing could be only a step away from the end devices. However, 

unlike cloud data centres that comprise thousands of powerful servers, in fog 

computing processing nodes are of limited resources [74]. 

As shown in Figure 2.4, fog computing can be represented in a hierarchy, 

mostly in three layers. The bottom layer comprises all IoT end devices, of 

limited computing, storage, and networking capabilities while the upper layers 

may comprise more powerful devices. Any device with communication, 

computational, and storage resources can be a fog node [75]. There are 

numerous potential fog nodes at the network edge. These nodes can release 

massive amounts of computing power as they are distributed across millions 

of devices, including routers, switches, gateways, smartphones, surveillance 

cameras, etc [39].  
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The IoT is an important source of big data since it relies on the connection of 

numerous intelligent devices to the internet that continuously reports the 

status of the physical environments. The focus in Internet of Things is not 

actually on the things in this thesis, but on the large amounts of data generated 

and hence the energy consumed used by devices. In this context, machine 

learning (ML) is a reliable technique for processing generated data into 

information and knowledge, predicting trends, gaining valuable insights, and 

driving automated decision-making processes. However, the integration of ML 

techniques in IoT faces several challenges, mostly in terms of the 

computational requirements they impose. Based on the application quality of 

service (QoS) parameters (such as response time) and the processing 

complexity needed, optimum processing of ML can occur at the IoT nodes, 

fog or cloud [76].  

 

Figure 2. 4: Fog Computing Architecture 
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2.8 Deep Neural Networks (DNN) 

Artificial Intelligence and neural network (NN) algorithms can enable many 

applications and services, especially in the IoT area where massive amounts 

of sensor data must be processed, identified, classified and acted upon [77]. 

DNN algorithms have surpassed human accuracy in numerous applications, 

however, this comes at the cost of high computational complexity. In the 

traditional approach, cloud datacentres alone were the main platform for 

processing NNs due to their abundant processing resources, which can be 

attractive, however, due to latency drawbacks and energy efficiency, it 

becomes necessary to evaluate other processing architectures [78].  

A NN comprises of processing units referred to as neurons performing 

processing to revealing underlying patterns or connections within a dataset, 

much like the human brain making decisions. A Neuron is an activation 

function with many inputs and outputs as seen in Figure 2.5 [79]. The topology 

of a neural network is based on three layers: 1) input, 2) hidden, and 3) output. 

The first layer of the neural network processes the raw input data and relays 

that information to the second layer.  The input layer nodes are all connected 

to each hidden layer nodes via links. The links are needed to establish 

communication and synchronisation between the layers. The data generated 

by the hidden nodes are fed into the output node(s) for decision based on the 

weight of edges and bias values of hidden nodes. The data processing of the 

hidden layer is mostly offloaded to a centralised cloud data center in which the 

input nodes’ data is routed through the local gateway to data centers.  Once 

knowledge is extracted from the processed data, the required output signal is 
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returned to back to the IoT local gateway and then this signal is used by the 

actuator devices.  

The depth of the neural network is what distinguishes a single neural network 

from a deep neural network [78]. A neural network that contains more than 

three layers, including input and output, is considered a deep neural network 

[78]. Neural networks work with small sample size sets to do small tasks while 

deep neural networks not usually work with small samples size to generate 

significant insights [80]. To train neural networks (i.e., perform machine 

learning), three options are available which are supervised learning, 

unsupervised learning, and reinforcement learning [81]. 

 

Figure 2. 5: Neural Network VS Deep Neural Network 

 

2.9 Energy-Efficiency in communication networks and data 

processing 

The performance of cloud and fog computing rely heavily on the transport or 

communication networks that link several network domains [82]. Those 

network domains include the core networks, the metro networks, and the 

access networks. Core networks contain mostly an IP over WDM nodes with 
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an optical networking layer and interfaces to IP equipment. Core networks 

typically connect cities and provide interfacing to cloud computing [83].  

Metro networks typically have ring topologies and are the intermediate layer 

between the core and the access network. Finally, access networks, where 

most of fog computing resources reside, provide the connectivity to end users 

and IoT devices through various wired (e.g., PONs) and wireless interfaces 

[72], [84].  

Optimising the design, protocols, and various workload assignment in different 

layers of the communication networks that provide connectivity for cloud and 

fog computing have been addressed by several studies and proposals in the 

last decade. The following subsections provide a summarised categorisation 

of these studies: 

 

2.9.1 Optimising the design of IP over WDM core networks and optical 

networks 

The authors in [85] studied the optimisation of the physical topology of IP over 

WDM networks under nodal degree constraints and under symmetric full-

mesh and asymmetric traffic demands. An investigation on a full-mesh 

topology and a star topology showed that these topologies achieved 95% and 

92% energy efficiency improvement compared to the NSFNET topology. In 

[86], the physical topology of IP over WDM networks was optimised while also 

considering the embodied energy (i.e., the energy required to manufacture 

and transport the components and equipment) and the operational energy. 

The results show that when considering the embodied energy and the 
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operational energy, embodied energy savings by up to 59% were achieved 

compared to the case of considering the operational energy only. 

The work in [87] addressed the optimisation of the location of a data centre or 

multiple data centres in IP over WDM networks to reduce the power 

consumption of the networking required to support uplink and downlink 

requests by end-users. The study considered the network topology, number 

of data centres, traffic profiles, rate of uplinks and downlinks, and the impact 

of the power consumption minimisation on the delay. This work also 

considered the use of optical bypass, where the IP routers in the core nodes 

are used only in the source and destination nodes.  

The results of using the optical bypass were compared to the case of using 

an optical non-bypass technique, where the transformation of optical signals 

into electronic signals is done at each core node for processing the packets. 

Moreover, the replication of content in these data centres was optimised to 

minimise the power consumption while considering content popularity and 

power consumption of storage. An energy-delay optimal routing algorithm was 

proposed to maintain Quality of Service (QoS) and minimise the power 

consumption.  

The authors in [88] presented a summary of energy-efficiency key studies for 

core networks carried out as part of the GreenTouch consortium over five 

years. The key studies included the use of energy-efficient and improved 

components in core networks, putting devices in idle or sleep mode when not 

in use, optical bypass for intermediate core nodes, the use of optimised mixed 

line rates, putting protection lines into idle mode, optimising the network 
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topology and optimising the content distribution and the networking resources 

virtualisation.  

The study provides a comprehensive MILP model that considered the 

aforementioned techniques with the objective of minimising the power 

consumption of future and current core networks. For the future networks, two 

scenarios were considered which are the business as usual (BAU) and the 

GreenTouch (GT) with BAU (i.e., BAU + GT). The former was based on a 

projection study for the power consumption expected for devices in 2020, 

while the later considers the projected power consumption values for 2020 

devices, in addition to the techniques proposed as part of GT.  

The results show that for the 2020 BAU scenario, the energy efficiency is 

improved by a factor of 4.23× compared to 2010 networks. For the 2020 BAU 

+ GT scenario, the improvement in the energy efficiency compared to 2010 

networks was found to be 315×. In [89], a validation study for the energy 

efficiency improvements was provided as part of the GreenMeter study carried 

by The GreenTouch consortium. The study set bounds on power consumption 

which can help in predicting the energy efficiency improvements in complex 

network structures. 

The studies in [90], and [91] addressed the resilience of IP over WDM 

networks by considering and optimising the use of network coding. The 

protection path in a 1+1 survivable IP over WDM networks was encoded. 

Results based on MILP and on heuristics showed that encoding the protection 

path resulted in power consumption savings of 37% and 23% for ring and 

typical network topologies compared to the case of not using network coding. 

Moreover, the impact of varying traffic demands was considered. In addition, 
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an analytical study was provided to obtain bounds for the energy efficiency in 

the 1+1 survivable IP over WDM networks. This study validated the MILP 

models, heuristics and provided accurate estimation for large networks that 

are too complex for the MILP models and heuristics. 

Optimising elastic optical networks was addressed in [92] where Orthogonal 

frequency-division multiplexing (OFDM) with adaptive rate and modulation 

format was proposed. A MILP model was proposed to minimise the power 

consumption of the rate and modulation adaptive OFDM based optical 

network. Under symmetric traffic, the results show that the OFDM-based 

network reduced the power consumption by 31% compared to conventional 

IP over WDM networks based on intensity modulation.  

The work in [93], considered transparent optical networks and studied the 

energy consumption of these networks based on a cluster-based architecture 

where disjoint cluster are assigned different sleep cycles. The results showed 

that using anycast routing in these networks reduced the power consumption.  

The energy consumption of optical burst switching-based network was 

addressed in [94]. The authors proposed a distributed algorithm that uses 

anycast routing while using sleep cycles. The results showed significant 

reduction in the power consumption without degradation in the QoS. 

 

2.9.2 Optimising the use of renewable energy in optical networks. 

In addition to the optical network design considerations discussed in the 

previous section, the use of renewable energy has been proposed and 

optimised to reduce the Greenhouse gas emissions (GHG) and CO2 emission 
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associated with using non-renewable power resources, and hence provide 

positive environmental impact.  

In [87], the authors utilised the MILP model for the IP over WDM networks with 

data centres to investigate if it is better to place data centres near renewable 

energy sources or to transmit renewable energy to the location of the data 

centres. Using the information about several wind farms and the expected 

transmission losses, the study optimised the locations of the data centres to 

minimise the overall power consumption. The results showed that considering 

the renewable energy in addition to optimising the data centre locations, using 

optical bypass, and replicating content, power savings of up to 73% were 

achieved compared to IP over WDM networks that do not use the considered 

combination of techniques.  

In [95], the authors proposed solar and wind renewable energy use to reduce 

CO2 emission of IP over WDM networks while also minimising their power 

consumption. Heuristic-based results showed that using optical bypass and 

renewable energy, CO2 emissions were minimised by up to 52% with minimal 

impact on QoS. The placement of renewable energy in the nodes of the IP 

over WDM network was also addressed. The results showed that more 

reduction in CO2 emissions is achieved when the renewable energy is placed 

near central nodes. 

To maximise the use of solar renewable energy, the work in [72] proposed the 

use of Energy Storage Devices (ESDs) along with solar-powered fog data 

centres that cache content in the access network. A MILP model was 

developed to optimise the content caching from fog or cloud data centres while 

considering optical bypass and mixed-line rates in the IP over WDM networks, 
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the availability of the solar energy, and optimising the charge and discharge 

of the ESDs. The results showed that savings of up to 43% in the brown power 

consumption are achieved when using solar-powered fog data centres with 

250 m2 solar cells and 100 kWh ESDs. 

 

2.9.3 Optimising workload assignment, virtual machine placement and 

content distribution for Internet applications 

The authors in [83] addressed the design of energy-efficient IP over WDM 

networks for cloud computing services such as content delivery, Storage-as-

a-Service (StaaS), and Virtual Machine (VM) placement. The authors 

compared centralised and distributed cloud computing and considered the 

impact of content popularity and access frequency on the placement of 

content in cloud data centres. Furthermore, the study considered factors such 

as the number of servers in each cloud data centre, the number of routers and 

switches for the data centre network, and the capacity of storage in each cloud 

data centre.  

A MILP model was developed in [83] to optimise content delivery and the 

results indicated that replicating content on multiple cloud data centres 

resulted in 43% savings in the power consumption compared to centralised 

content delivery. A heuristic, DEER-CD, was developed to optimise content 

delivery and the results based on the heuristic were comparable to the MILP 

model. For StaaS applications the results showed that migrating the content 

based on its access frequency resulted in up to 48% networking power 

savings compared to centralised storage services.  
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Finally, a MILP model was developed to optimise the placement of VMs for 

processing-extensive applications. The results showed that slicing the VMs 

and placing them closer to their users achieved 25% savings in the power 

consumption compared to VM allocation in a single cloud location. For VM 

placement, a heuristic, DEER-VM, was proposed and the heuristic-based 

results were comparable to the MILP model. 

The authors in [82], extended the work of VM placement in [83] and 

considered the placement in fog computing nodes in addition to cloud 

computing data centres. A comprehensive MILP model and heuristics were 

developed to provide energy- efficient placement of VMs in fog and cloud 

computing data centres. This study considered the impact of inter-VM traffic, 

the VMs workload, and the distance between the fog nodes and the users on 

the VM allocation results. It was found that under optimal placement for VMs 

with high traffic demands in the fog-cloud architecture, the total power 

consumption is reduced by 56% compared to distributed cloud only placement 

and by 64% compared to placement in existing cloud data centre locations in 

the AT&T network. 

In [96], the authors focused on optimising IPTV content placement over IP 

over WDM networks. The study considered the TV viewing behaviour over 24 

hours, and programs popularity in the UK to optimise the content caching in 

the IP over WDM core nodes. By placing the most popular content close to 

the end-users, significant savings in the networking power consumption can 

be achieved. Moreover, it was found that replacing the content in the caches 

according to the dynamics of programs viewing throughout the day improved 

the energy savings further.  
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A MILP model was developed to optimise the content replacement according 

to the TV program popularity, optimise the sizes of the caches and optimise 

the sleep-mode intervals so that the total power consumption of content 

caching over the IP over WDM network is minimised. The results showed that 

content replacement with variable cache sizes increased the hit ratio of the 

caches and reduced the power consumption by up to 86% compared to IPTV 

content delivery with no caching. 

The work in [97] focused on the energy efficiency of peer-to-peer applications 

such as BitTorrent when used over IP over WDM networks. The energy 

efficiency of the original BitTorrent protocol was compared to a proposed 

energy efficient BitTorrent protocol over several IP over WDM networks with 

different node numbers and hop counts. It was found that smaller networks 

offer higher energy savings due to the ease of files localisation. Furthermore, 

a MILP model was proposed to optimise the location and upload rates of 

operator-controlled speeders (OCS) used to reduce the impact of leechers 

leaving after the download is complete. In addition to developing MILP and 

heuristic, experimental results were used to validate the results and the 

efficiency of the proposed energy efficient BitTorrent protocol. 

The impact of network neutrality (i.e., treating Internet traffic equally without 

priorities) and its repeal was tackled in [98]. A techno-economical MILP model 

was developed to maximise the profit for Internet service providers, where 

services with varied qualities and prices were considered. The results 

revealed that repealing net neutrality can increase the Internet service 

providers profit by a factor of 8 if the pricing scheme discriminates against 
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data intensive content. This also results in a reduction in core network power 

consumption by 55% compared to the network neutrality service delivery. 

The energy-efficiency of transporting big data in core networks was addressed 

in [99] and [100]. The authors proposed a progressive processing method in 

intermediate core nodes that results in reduction in the size of big data to be 

transmitted from data sources to cloud data centres. Results based on MILP 

models and heuristics showed savings by up to 52% when using the proposed 

method compared to classical big data processing where raw data is sent 

directly to the cloud data centre. The study considered the impact of the 

efficiency of the intermediate processing nodes compared to the cloud and 

the impact of the big data volume, variety and velocity on the power 

consumption savings. 

In [101], the authors focused on the energy efficiency of placing workloads 

within data centre servers. The concept of data centre disaggregation was 

examined where the performance and the energy consumption of using 

disaggregated servers and regular servers were compared. Disaggregation 

fragments the memory, CPU, and network resources into pools instead of the 

single box solution provided by regular servers. The study also proposed 

using optical networking to link the resource pools. Results based on VM 

allocation indicated that data centre disaggregation can achieve up to 42% 

savings in the total power consumption compared to the use of conventional 

data centres. 

In [102] and [103], Big data analytics and machine learning algorithms were 

used to provide priority-based e-healthcare services in 5G networks. Three 

machine learning algorithms were used to analyse historical medical records 
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and extract the likelihood of stroke in different patients. The authors proposed 

a MILP model to optimise the assignment of physical resource blocks (PRBs) 

to users according to the likelihood of strokes. The results showed an increase 

in the signal to noise and Interference (SINR) by 57% for high-risk patients.  

The energy-efficiency of cloud-based real-time health monitoring applications 

was addressed in [104]. Fog computing was proposed to reduce the latency 

and high-power consumption of transporting health data to cloud data centres. 

The fog computing architecture utilised an energy efficient GPON access 

network. The authors proposed a MILP model to optimise the number and 

location of the fog devices and servers to serve the health monitoring 

applications. Power consumption savings by up to 52% were achieved for high 

data rate applications when using the fog computing system compared to 

using the cloud data centre. 

 

2.9.4 Optimising virtual network embedding and services embedding in 

IP over WDM networks.  

Virtual network embedding (VNE) is an important feature for future networks 

that can provide scalability and on-demand allocation of networking 

resources. End-to-end resources including network nodes and links are 

reserved for the application that require certain QoS guarantee over the 

required time window and then, these resources can be freed for further use 

by other requests or applications.  

In [105], the authors provided a comprehensive study of the energy efficiency 

of virtual network embedding. An energy efficient VNE (i.e., EEVNE) approach 

was proposed which is based on a MILP model that optimises VNE 
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assignment in an IP over WDM network with data centres. The study 

compared EEVNE to two embedding approaches: a bandwidth cost VNE 

approach (CostVNE) that optimises the use of bandwidth resources and an 

energy-aware approach (VNE-EA) that only considers the energy-efficiency 

of VNE by switching off devices without taking into account the efficiencies of 

the devices.  

The results showed that EEVNE achieved up to 60% savings in the power 

consumption compared to CostVNE when using energy inefficient data 

centres. A real-time heuristic named real-time energy optimised VNE 

(REOViNE) was proposed and compared to the MILP model and further 

evaluations under different data centre efficiencies were provided. 

Furthermore, the study addressed the impact of propagation delay and virtual 

node co-location constraints. Also, the trade-off between the profit and the 

energy efficiency was considered and results showed that both can be 

maximised concurrently.  

In [106] and [107] the authors focused on the energy efficiency of service 

embedding for IoT applications. In this work, service embedding is regarded 

as a business process (BP) workflow. The BP is modelled as a virtual network 

with virtual nodes (i.e., requests for processing) and virtual links. A MILP 

model was proposed to optimise embedding the BPs while considering the 

details of IoT implementation in the access network. The objectives of the 

model were to minimise the power consumption, to minimise the latency, and 

to minimise both the power consumption and the latency with certain weights. 

The results show that when considering the reduction of the power 

consumption, savings by 42% were achieved compared to a system where all 
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requests are met without considering the power consumption. When 

considering the reduction of the latency, the results showed a reduction by 

47% compared to a system that meets the demands without considering the 

latency reduction. In [107], the resilience of IoT service embedding was 

addressed by proposing traffic splitting. 

 

2.10 Review of Mixed Integer Linear Programming (MILP) 

modelling 

Linear programming is one of the most powerful mathematical optimisation 

methods that can describe a linear system and optimise certain aspects of this 

system (i.e., maximise or minimise a linear function describing revenue for 

example) while satisfying a number of constraints, in the form of linear 

equations, that link some parameters to some decision variables by a larger 

than or equal or less than or equal operation [108].  

The solution to a LP problem is the outcome of the objective function in 

addition to the values that the decision variables take. Typically, all decision 

variables should be defined to be non-negative.  

The general form of an LP can be as the following: 

Let 𝑥1, 𝑥2, … 𝑥𝑛 be the decision variables and let 𝑐𝑗 where 𝑗 = 1, 2, … 𝑛 be the 

objective parameters. Also, let 𝑎𝑖𝑗 where 𝑖 = 1, 2, … 𝑛 𝑎𝑛𝑑 𝑗 = 1,2, … 𝑛 and 𝑏𝑖 

where 𝑖 = 1, 2, … 𝑛 be the constraints parameters.  

Then the LP problem can be written as: 

min 𝑜𝑟 max 𝑐1𝑥1 + ⋯ 𝑐𝑛𝑥𝑛 (2.1) 

Subject to: 
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𝑎11𝑥1 + ⋯ + 𝑎1𝑛𝑥𝑛(≤ 𝑜𝑟 ≥)𝑏1 (2.2) 

𝑎21𝑥1 + ⋯ + 𝑎2𝑛𝑥𝑛(≤ 𝑜𝑟 ≥)𝑏2 (2.3) 

… ..  

𝑎𝑛1𝑥1 + ⋯ + 𝑎𝑛𝑛𝑥𝑛(≤ 𝑜𝑟 ≥)𝑏𝑛 (2.4) 

𝑥𝑗 ≥ 0, ∀ 𝑗 = 1,2, … 𝑛 

 

(2.5) 

In some optimisation problems, the solution under a set of nonlinear equations 

might be required such as a multiplication of two variable. To deal with these 

non-linear equations, some linearisation techniques can be adopted where 

the non-linear equation is replaced by a representative set of linear equations. 

In LP problems as described above, the variables contain only real values. In 

most of optimisation problems, the use of some integer variables is needed 

for example to obtain a number of activated devices which should be positive 

integer. When real and integer variables are used in the problem, it can no 

longer be described as an LP problem and alternatively, the optimisation 

problem is described as a Mixed Integer Linear Programming (MILP) problem. 

Due to the need of obtaining some variables as positive integer, the solvers 

for MILP typically perform further steps such as branch-and-bound to ensure 

those variables are only integer. 

MILP is widely used for a range of optimisation in transport network design, 

economic and operations research. MILP can be used to solve several 

networking optimisation problems.  

For example, in a network design problem, the distribution of traffic from 

sources to destination can be optimised according to desired objectives such 

as minimising the number of hops. Such problem can be formulated using a 
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link-path formulation or a node-link formulation [109]. The node-link 

formulation is a more compact representation where the network can be 

described as a graph (𝑁) where the nodes are connected via several links 

according to the topology.  

To describe the traffic distribution in such a problem, a variable with indices 

for the source node (𝑠 𝑤ℎ𝑒𝑟𝑒 𝑠 ∈ 𝑁), destination node (𝑑 𝑤ℎ𝑒𝑟𝑒 𝑑 ∈ 𝑁), 

current intermediate node and next intermediate node can be used (i.e., 𝑢 and 

𝑣 in the link (𝑢, 𝑣)𝑤ℎ𝑒𝑟𝑒 𝑢 ∈ 𝑁 𝑎𝑛𝑑 𝑣 𝑖𝑛 𝑁𝑢 (the neighbouring nodes of node 

𝑢)). 

In the node-link formulation, a key constraint to be used is the flow 

conservation which states that the total traffic entering a node must leave this 

node with the same total value if it is an intermediate node between a source 

and a destination. If the node is source, only exiting traffic exist in the node 

and if the node is a destination node, only entering traffic exists. 

If the objective in such a problem is to minimise the routing cost (i.e., number 

of hops), this problem can be categorised a multicommodity network flow 

problem where multiple demands are to be served at the same time while 

competing for available resources [109].  

The general format of a MILP problem to describe multicommodity network 

flow problem consists of: 

1- Defining the sets used (for example the nodes). 

2- Defining the parameters and variables. 

3- Defining the objective function. 

4- Defining the flow conservation and the links capacity constraints. 
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A complete MILP model for this multicommodity network flow problem can be 

written as the following: 

Sets and parameters: 

𝑁  Set of the nodes in the network. 

𝑁𝑢  Set of the neighbours of node 𝑢 where 𝑢 ∈ 𝑁. 

𝑅𝑠𝑑 The traffic demand between the source node and destination node 

𝑠, 𝑑 ∈ 𝑁. 

 𝐶𝑢𝑣 The capacity of link (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑁. 

 

Variables: 

𝑋𝑠𝑑
𝑢𝑣 The traffic in link (𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑁 that is associated with the traffic 

demand between 𝑠, 𝑑 ∈ 𝑁. 

 

The objective is to minimise the routing cost: 

min ∑ 𝑋𝑠𝑑
𝑢𝑣

𝑠,𝑑,𝑢,𝑣∈𝑁,𝑠≠𝑑

  (2.6) 

 

Under the following link capacity and flow conservation constraints: 

1- Flow conservation:  

∑ 𝑋𝑠𝑑
𝑢𝑣

𝑣∈𝑁𝑢

− ∑ 𝑋𝑠𝑑
𝑣𝑢

𝑣∈𝑁𝑢

= {
𝑅𝑠𝑑 𝑢 = 𝑠

−𝑅𝑠𝑑 𝑢 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 , ∀ 𝑠, 𝑑 ∈ 𝑁 , 𝑢 ∈ 𝑁. 
(2.7) 

 

2- Link capacity constraint: 

∑ 𝑋𝑠𝑑
𝑢𝑣 ≤ 

𝑠,𝑑∈𝑁

𝐶𝑢𝑣, ∀ 𝑢 ∈ 𝑁 , 𝑣 ∈ 𝑁𝑢. (2.8) 
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This MILP formulation can be a base for a variety of network and resource 

assignment optimisation problems. For example, the allocation of resources 

within a network can be optimised under further capacity constraints in 

addition to the link capacity constraints and the flow conservation routing 

constraints.  

A set of additional devices such as routers, servers, IoT devices, various 

gateways and switches can be described and additional constraints related to 

different devices in different layers of the considered system can be included 

to customise the optimisation problem and address the needs and constraints 

of underlying study. 

Solving MILP requires a solver and a tool to describe the parameters, 

variables, objective function and constraints. The Mathematical Programming 

Language (AMPL) [110] provides such tools and also provides a number of 

powerful solvers such as the CPLEX. Several options and settings for the 

CPLEX solver can be chosen to control reaching the optimal solutions. In the 

models developed for this work, CPLEX was sufficient to reach convergence 

and hence provide optimal solutions. In more complex MILP models, 

heuristics and ML tools such as reinforcement learning can be used to 

approximate the solutions [111]. 

Typically, the complexity of the MILP model is proportional to the number of 

variables and constraints used. Low-complexity MILP models can run in 

typical laptops and PCs, however, high-complexity MILP models or large 

models require supercomputing infrastructure. 
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2.11 Summary 

This chapter provided a high-level review of IoT, cloud computing, fog 

computing, DNN, energy-efficiency in communication networks and MILP to 

give the reader a background to facilitate reading the subsequent chapters. 

Inference models for DNNs (i.e, trained neural networks with multiple hidden 

layers) explained in this chapter, are abstracted in the next chapter using 

Virtual Service Requests (VSRs) to represent the different layers of the DNN 

(i.e., input layer, hidden layers and output layer. 
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Chapter 3: Energy Efficient AI over a Virtualised Cloud Fog 

Network 

3.1 Introduction 

In this chapter we will study energy efficient embedding of DNNs into a cloud-

fog network (CFN) architecture. We abstract the DNN algorithms as virtual 

service requests (VSRs) composed of multiple VMs connected by virtual links. 

Using Mixed Integer Linear Programming (MILP), we formulate the 

embedding of the DNN into the CFN architecture as an optimisation problem 

that minimises the total power consumption through trade-offs between 

processing and networking power consumption. We study the energy 

efficiency of the Cloud-Fog architecture by comparing it to a baseline 

approach in which the DNN VSRs are embedded in a cloud data centre 

(CDC). We study the embedding of DNN VSRs under two scenarios: In 

Scenario 1 a single IoT device is generating data for the input layer of the DNN 

algorithm while in Scenario 2 multiple IoT devices generate data for the input 

layer.  

3.2 The Proposed Cloud Fog Architecture 

Figure 3.1 shows the considered CFN architecture. It comprises of four 

networking layers which are edge network, access network, metro network, 

and core network. In the edge network, we consider distributed IoT devices in 

different zones. Some of these IoT devices are source nodes collecting data. 

For the access layer, we consider a Passive Optical Network (PON) in each 

IoT zone. The PON contains several Optical Network Units (ONUs) that 

connect with the IoT devices through Wi-Fi. Each zone is covered by an ONU. 
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The ONU aggregates the traffic from IoT devices into an Optical Line Terminal 

(OLT) via fibre links and a splitter/combiner. An Access Fog (AF) node 

containing several servers is connected to each OLT. The OLT connects to 

the metro network through a metro switch which connects to the core network 

via a metro edge router. A Metro Fog (MF) node composed of a set of servers 

is placed in the metro node. The core network we consider is an IP over WDM 

network [112] which has two layers, an IP layer and an optical layer.  

The IP layer in each core node connects to the metro network and 

aggregates/disaggregates its uplink/downlink traffic and the optical layer 

performs electrical to optical / optical to electrical conversion and physically 

connects to other core nodes via optical fibre links. We consider a CDC 

connected to a core node that is one hop from the core node aggregating 

traffic from the metro and access networks that link the considered IoT 

devices. We assume the processing nodes in the CFN architecture depicted 

in Figure 3.1 are virtualised, i.e., VMs, where a number of networked VMs 

compose a VSR and a VSR compose a layer of the DNN, can be embedded 

in the architecture layers regardless of the hardware heterogeneity.  

We consider multiple DNN topologies to be embedded into the processing 

nodes of the CFN architecture. A DNN topology is represented by VSRs, each 

of which is composed of multiple VMs. Each layer of the DNN is represented 

by a VSR and the VMs of a VSR are connected via virtual links as illustrated 

in Figure 3.2 thus forming a VSR topology. The input VM of the DNN VSR 

must be embedded in IoT source nodes where data is collected while the 

hidden layers can be embedded into any of the CFN layers. The output layer 

will be connected to the actuator implementing the decisions taken by the 
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DNN. However, the embedding of the hidden layers can be influenced by the 

geographical distribution of the IoT nodes. The networking power 

consumption incurred due to data transfer should be accounted for. Therefore, 

one may choose to place the hidden layers as close as possible to the source 

nodes where the input layer is embedded. Proximity to source nodes is also 

desirable to limit latency. In Figure 3.1, we exemplify how a VSR is mapped 

onto the physical resources in the CFN architecture. 

Note that, the DNN topology considered, and its associated training algorithm 

represents an inference model not a training model as the latter will be 

executed in the cloud due to its high processing requirements (ie training in 

the cloud to determine the DNN weights, but real time operation at the edge 

of the network (our focus). Inference DNN models are pre-trained, hence they 

are not as computationally intensive as training models because the weights 

and biases have already been determined [113]. 
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Figure 3. 1: Architecture of Internet of Things (IoT) 

  

 

Figure 3. 2: An illustration of VSR embedding over the Cloud Fog 
Network (CFN) Architecture 
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3.3 The MILP Model 

We develop a model to optimise the embedding of DNN VSRs into the CFN 

architecture depicted in Figure 3.1. As explained above, a VSR comprises of 

multiple VMs, each VM represents a layer of a DNN algorithms that has a 

demand for processing (in FLOPS) and the VMs are connected by virtual links 

with data rate demands (in Mbps). A VSR is embedded optimally on the CFN 

architecture while respecting capacity constraints of processing and 

networking devices. The CFN architecture shown in Figure 3.1  is modelled 

as an undirected graph 𝐺 = (𝑁, 𝐿), where 𝑁 represents the set of all nodes 

and 𝐿  the set of links connecting those nodes in the topology. The VSR 𝑠 is 

represented by the directed graph 𝐺𝑟 = (𝑅𝑟 , 𝐿𝑟), where 𝑅𝑟 is the set of VMs, 

each representing a DNN layer and 𝐿𝑟 is the set of virtual links connecting 

those VMs. Before introducing the optimisation model, we define the sets, 

parameters and variables used:  

 

Sets: 

𝔻ℂ  Set of CDCs. 

𝕄𝔽 Set of MF nodes. 

𝔸𝔽 Set of AF nodes. 

𝕀 Set of IoT devices. 

ℙ Set of processing nodes that can process a VSR, 

where ℙ = 𝔻ℂ ∪ 𝕄𝔽 ∪ 𝔸𝔽 ∪ 𝕀. 
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𝕀ℙ Set of source node IoT devices,  𝕀ℙ ⊂ 𝕀  

ℝ Set of VSRs. 

𝕍𝕄𝑟 Set of VMs in VSR 𝑟 ∈ ℝ.  

ℕ Set of networking nodes in the CFN architecture (IoT 

devices, ONUs, OLTs, metro nodes, core nodes).  

ℕ𝑚 Set of neighbour nodes of node m ∈ ℕ in the CFN.  

Parameters: 

𝑠 𝑎𝑛𝑑 𝑑 Index the source and destination nodes of a virtual link in 

a VSR topology, 𝑠, 𝑑 ∈ 𝕍𝕄𝑟 , 𝑟 ∈ ℝ. 

𝑏 𝑎𝑛𝑑 𝑒 Index source and destination processing nodes of an end 

to end traffic demand aggregated from embedding VSR, 

𝑏, 𝑒 ∈ 𝑃, 𝑏 ≠ 𝑒. 

𝑚 𝑎𝑛𝑑 𝑛 Index the end nodes of physical links in the CFN 

topology.  

𝐴𝑛
𝑝
 𝐴𝑛

𝑝 = 1 if processing node 𝑝 ∈ 𝑃 and networking node 𝑛 ∈

𝑁 are co-located, otherwise 𝐴𝑛
𝑝 = 0. 

𝐹𝑟,𝑠 Processing requested by node s in VSR 𝑟 ∈ ℝ. 

𝐻𝑟,𝑠,𝑑 Data rate of virtual link (𝑠, 𝑑) in VSR 𝑟 ∈ ℝ. 
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𝑃𝑠
𝑟 Ps

r = 1 if VM 𝑠 ∈ 𝑉𝑀𝑟 in VSR 𝑟 ∈ ℝ is the input layer, 

otherwise 𝑃𝑠
𝑟 = 0. 

𝛱𝑛
(𝑛𝑒𝑡)

 Maximum power consumption of network node 𝑛 ∈ ℕ 

accounting for all equipment in the node.  

𝜋𝑛
(𝑛𝑒𝑡)

 Idle power consumption of network node 𝑛 ∈ ℕ 

accounting for all equipment in the node. 

𝐶𝑛
(𝑛𝑒𝑡)

 Capacity of network node 𝑛 ∈ ℕ. 

𝜖𝑛 Energy per bit of network node 𝑛 ∈ ℕ, 

𝜖𝑛 =
𝛱𝑛

(𝑛𝑒𝑡)
−𝜋𝑛

(𝑛𝑒𝑡)

𝐶𝑛
(𝑛𝑒𝑡) . 

𝛱𝑝
(𝐿𝐴𝑁)

 Maximum power consumption of LAN network inside 

processing node p∈ ℙ accounting for all equipment in the 

LAN.  

𝜋𝑝
(𝐿𝐴𝑁)

 Idle power consumption of LAN network inside 

processing node p∈ ℙ accounting for all equipment in the 

LAN. 

𝐶𝑝
(𝐿𝐴𝑁)

 Capacity of LAN network inside processing node 𝑝 ∈ ℙ. 

𝐸𝑙𝑝 Energy per bit of LAN network inside processing node 

𝑝 ∈ ℙ, 𝐸𝑙𝑝 =
𝛱𝑝

(𝐿𝐴𝑁)
−𝜋𝑝

(𝐿𝐴𝑁)

𝐶𝑝
(𝐿𝐴𝑁) . 

𝛱𝑝
(𝑝𝑟)

 Maximum power consumption of a single server at 

processing node 𝑛 ∈ ℙ.  
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𝜋𝑝
(𝑝𝑟)

 Idle power consumption of a single server at processor 

node 𝑝 ∈ ℙ. 

𝐶𝑝
(𝑐𝑝𝑢)

 Processing capacity of a serve at processing node 𝑝 ∈ ℙ. 

𝐸𝑝 Energy per FLOPS of processing node 𝑝 ∈ ℙ, 𝐸𝑝 =

𝛱𝑝
(𝑝𝑟)

−𝜋𝑝
(𝑝𝑟)

𝐶𝑝
(𝑐𝑝𝑢)  

𝑁𝑆𝑝 Maximum number of servers that can be deployed at 

processing node 𝑝 ∈ ℙ. 

𝛿𝑛 Proportion of idle power consumed in high-capacity 

networking equipment 𝑛 ∈ 𝑁. 

𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

 Power Usage Effectiveness (PUE) factor of node 𝑛 ∈ 𝑁 

for networking. 

𝑃𝑈𝐸𝑝
(𝑛𝑒𝑡)

 Power Usage Effectiveness (PUE) factor of node 𝑝 ∈ 𝑃 

for processing. 

Variables: 

𝜆𝑏,𝑒 Traffic demand between processing node pair (𝑏, 𝑒)  

aggregated after all VSRs are embedded, 𝑏, 𝑒 ∈ ℙ. 

𝜆𝑚,𝑛
𝑏,𝑒

 Traffic demand between processing node pair (𝑏, 𝑒) ∈ ℙ 

aggregated after all VSRs are embedded, traversing 

physical link (𝑚, 𝑛), 𝑚 ∈ ℕ and 𝑛 ∈ ℕ𝑚. 



- 62 - 

 

𝜆𝑛 Amount of traffic originating/passing by/destined to 

network node 𝑛 ∈ ℕ,  

where 𝜆𝑛 =  ∑ ∑ ∑ ∑ 𝜆𝑚,𝑛
𝑏,𝑒 +𝑛∈ℕ𝑚𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ

 ∑ ∑ ∑ ∑ 𝜆𝑛,𝑚
𝑏,𝑒  𝑛∈ℕ𝑚𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ . 

𝛽𝑛 Amount of traffic destined to network node 𝑛 ∈ ℕ,  

where  

𝛽𝑛 =  ∑ ∑ ∑ ∑ 𝜆𝑚,𝑛
𝑏,𝑒

𝑛∈ℕ𝑚:𝑛=𝑒𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ

 

𝜃𝑝 Amount of traffic destined to a processing node 𝑝 ∈ ℙ,  

where  𝜃𝑝  ∀𝑛 ∈ ℕ: 𝐴𝑛
𝑝 = 1. 

𝛼𝑛 𝛼𝑛 = 1 if networking node 𝑛 ∈ ℕ is activated, otherwise 

𝛼𝑛 = 0. 

Ω𝑝 Amount of workload in FLOPS, allocated to processing 

node 𝑝 ∈ ℙ. 

𝑁𝑝 Number of activated servers at processing node 𝑝 ∈ ℙ. 

Φ𝑝 Φ𝑝 = 1 if processing node 𝑝 ∈ ℙ is activated, otherwise 

Φ𝑝 = 0. 

𝛿𝑏
𝑟,𝑠

 𝛿𝑏
𝑟,𝑠 = 1 if VM 𝑠 ∈ 𝑉𝑀𝑟 in VSR 𝑟 ∈ ℝ is embedded into 

processing node b∈ 𝑃, otherwise 𝛿𝑏
𝑟,𝑠 = 0. 

𝑤𝑏,𝑒
𝑟,𝑠,𝑑

 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 is the XOR of 𝛿𝑏

𝑟,𝑠
 and 𝛿𝑒

𝑟,𝑑
, i.e.  𝑤𝑏,𝑒

𝑟,𝑠,𝑑 = 𝛿𝑏
𝑟,𝑠 ⊕ 𝛿𝑒

𝑟,𝑑 .   
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𝜌𝑏,𝑒
𝑟,𝑠,𝑑

 𝜌𝑏,𝑒
𝑟,𝑠,𝑑 = 1 if the virtual nodes 𝑠, 𝑑 ∈ 𝕍𝕄𝑟 in VSR 𝑟 ∈ ℝ are 

successfully embedded in processing nodes 𝑏, 𝑒 ∈ ℙ 

respectively and a link between processing nodes 𝑏, 𝑒  is 

established if a virtual link exists between virtual nodes 

𝑠, 𝑑, otherwise 𝜌𝑏,𝑒
𝑟,𝑠,𝑑 = 0. 

The total power consumption comprises of two parts: 1) network power 

consumption, 2) processing power consumption.  

The adopted power profile consists of a proportional part and an idle part. The 

proportional part increases with the volume of workload, whilst the idle part is 

consumed as soon as the device is activated. We assume that any unused 

equipment is switched off completely. 

The network power consumption is given by: 

∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

(𝜖𝑛 𝜆𝑛 + 𝛼𝑛𝜋𝑛
(𝑛𝑒𝑡)

𝛿𝑛) 

𝑛∈ℕ

. (3.1) 

The power consumption of the networking equipment comprises of the power 

consumption of all the networking nodes in the CFN topology depicted in 

Figure 3.1 multiplied by the PUE of each networking node. The first term of 

the above expression is the proportional power consumption of the networking 

equipment whilst the second term calculates the idle power consumption of 

these equipment. 

The processing power consumption includes the power consumed by the 

servers as well as the switches and routers within these nodes to provide the 

LAN. The processing power consumption is given by: 
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∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

(𝐸𝑝Ω𝑝 + 𝑁𝑝𝜋𝑝
(𝑝𝑟)

+ 𝐸𝐿𝑝𝜃𝑝 + Φ𝑝𝜋𝑝
(𝐿𝐴𝑁)

𝛿𝑛)

𝑝∈ℙ

  (3.2) 

The first term of the above expression is the proportional power consumption 

of the servers whilst the second term calculates the idle power consumption 

of these servers. The third and fourth terms are the idle and proportional power 

consumed by switches and routers of the internal LAN of the processing 

nodes.  

The objective of the MILP is to minimise the total power consumption given 

as follows: 

Minimise:  

∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

(𝜖𝑛 𝜆𝑛 + 𝛼𝑛𝜋𝑛
(𝑛𝑒𝑡)

𝛿𝑛) 

𝑛∈ℕ

+ ∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

(𝐸𝑝Ω𝑝 + 𝑁𝑝𝜋𝑝
(𝑝𝑟)

+ 𝐸𝐿𝑝𝜃𝑝

𝑝∈ℙ

+ Φ𝑝𝜋𝑝
(𝐿𝐴𝑁)

𝛿𝑛) . 

(3.3) 

Subject to:  

 ∑ 𝛿𝑏
𝑟,𝑠 = 1

𝑏∈ℙ

           ∀𝑟 ∈ ℝ, 𝑠 ∈ 𝕍𝕄𝑟: Ps
r ≠ 1 (3.4) 

Constraint (3.4) ensures that VMs of a VSR, except for input VMs, are 

embedded into any of the processing nodes.  

∑ 𝛿𝑏
𝑟,𝑠 = 1

𝑏∈𝕀ℙ

           ∀𝑟 ∈ ℝ, 𝑠 ∈ 𝕍𝕄𝑟: Ps
r = 1 (3.5) 

Constraint (3.5) ensures that input VMs of a VSR are embedded into source 

data IoT devices only.  
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∑ 𝜆𝑚,𝑛
𝑏,𝑒 − ∑ 𝜆𝑛,𝑚

𝑏,𝑒 = {
𝜆𝑏,𝑒 𝑚 = 𝑠

−𝜆𝑏,𝑒 𝑚 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈ℕ𝑚𝑛∈ℕ𝑚

 

∀𝑏, 𝑒 ∈ ℙ, 𝑑 ∈ ℙ, 𝑚 ∈ ℕ: 𝑏 ≠ 𝑒. 

(3.6) 

Constraint (3.6) preserves the flow of traffic in the network. This linear 

Equation ensures that, excluding the source and destination nodes, the total 

traffic demand passing through an intermediate node in the virtual connection 

from the source node to the network is identical to the total outgoing traffic 

demands leaving that intermediate node. 

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟

𝐹𝑟,𝑠 =

𝑏∈ℙ

  ∑ 𝐹𝑟,𝑠

𝑠∈𝕍𝕄𝑟

        ∀𝑟 ∈ ℝ (3.7) 

Constraint (3.7) ensures that the processing demand of request 𝑟 ∈ ℝ is 

fulfilled. 

𝛿𝑏
𝑟,𝑠 + 𝛿𝑒

𝑟,𝑑 = 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 + 2𝜌𝑏,𝑒

𝑟,𝑠,𝑑      

∀𝑟 ∈ ℝ, ( 𝑠, 𝑑) ∈ 𝕍𝕄𝑟 , (𝑏, 𝑒) ∈ ℙ: 𝑏 ≠ 𝑒, 𝑠 ≠ 𝑑 

(3.8) 

Constraint (3.8)(4.16) ensures that virtual nodes connected in the VSR 

topology are also connected on the physical network. This is done by 

introducing a binary variable 𝑤𝑏,𝑒
𝑟,𝑠,𝑑

 that is only equal to 1 if 𝛿𝑏
𝑟,𝑠

and 𝛿𝑒
𝑟,𝑑 e are 

exclusively equal to 1, otherwise 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 = 0. 

∑ ∑ ∑ 𝐻𝑟,𝑠,𝑑

𝑑∈𝕍𝕄𝑟:
𝑠≠𝑑

𝜌𝑏,𝑒
𝑟,𝑠,𝑑

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

= 𝜆𝑏,𝑒      ∀(𝑏, 𝑒) ∈ ℙ: 𝑏 ≠ 𝑒 (3.9) 

Constraint (3.9) ensures that the data rate requirement of virtual links is 

fulfilled. 𝐻𝑟,𝑠,𝑑 represents the bitrate requested by VSR on the virtual link 𝑠, 𝑑 

and 𝜌𝑏,𝑒
𝑟,𝑠,𝑑

 is variable to be =1 if connected virtual nodes are also connected 
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on the physical network; otherwise =0.  𝜆𝑏,𝑒 represents a variable of traffic 

demand between processing node pairs 𝑏, 𝑒 ∈ ℙ aggregated after all VSRs 

are embedded. 

𝑁𝑝 ≥
Ω𝑝

𝐶𝑝
(𝑐𝑝𝑢)

      ∀𝑝 ∈ ℙ 
(3.10) 

𝑁𝑝 ≤ 𝑁𝑆𝑝         ∀𝑝 ∈ ℙ (3.11) 

Constraints (3.10) and (3.11) determine the number of activated processing 

servers and ensures it is not larger than the number of servers the processing 

node host, respectively.  

𝜆𝑛 ≥ 𝛼𝑛         ∀𝑛 ∈ ℕ  (3.12) 

𝜆𝑛 ≤ 𝑀𝛼𝑛      ∀𝑛 ∈ ℕ  (3.13) 

Constraints (3.12) and (3.13) elate the binary variable 𝛼𝑛 to the continuous 

variable 𝜆𝑛, i.e. determine if a network node is activated or not based on the 

traffic traversing/generated/destined to the node.  

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

≥ Φ𝑝     ∀𝑝 ∈ ℙ (3.14) 

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

≤ 𝑀Φ𝑝     ∀𝑝 ∈ ℙ (3.15) 

Constraints (3.14) and (3.15) determine the binary value of Φ𝑝, i.e. determine 

if a processing node is activated based on the amount of processing 

performed by the node.  
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3.4 Results and Discussions 

In this section, we study the energy efficiency of the CFN architecture by 

comparing optimised embedding of the DNN VSRs into the CFN to a baseline 

approach in which the DNN VSRs are processed by a CDC. We consider two 

scenarios: In Scenario 1 a single IoT device generates data for the input layer 

of the DNN VSRs while in Scenario 2 multiple IoT devices generates data for 

the input layer.  

3.4.1 Scenario 1 

In this scenario, we assume that there is only a single IoT device generating 

input data for a DNN VSR. We consider the parameters in Table 3.1 and Table 

3.2 for the networking and processing nodes, respectively. It is important to 

note that, where possible, device parameters have been obtained using 

equipment datasheets, however, we have also made simple but realistic 

assumptions. For example, high-capacity networking equipment located in the 

aggregation point of the access, metro and core networks are used by many 

applications and services. Hence, we have assumed that, only a portion of the 

idle power consumption is associated with our applications. We assume this 

to be 3% of the equipment idle power consumption for access node (OLT), 

metro node and core node [114]. Notably, 3% of traffic globally is due to 

surveillance-type applications; hence, the proportional percentage chosen for 

the Idle power to serve those applications is 3% [114]. For the IoT devices and 

ONUs, we assume the device is use only by the DDN applications, i.e., all the 

idle power is attributed to the application. We have also assumed that the 

centralised data centre is a single hop from the aggregation core router and 

based on the topology of the NSFNET, the average distance between the core 
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nodes is 509 km [112]. We assume that in total, there are 20 IoT devices. The 

IoT devices are distributed among four zones such that zone one and zone 

two comprise of 6 IoT devices each whilst zone 3 and zone 4 comprise of 4 

IoT devices each. 

We examine the embedding of multiple DNN based VSRs up to 20. We 

assume that the VSRs arrive one at a time and each time a new VRS is 

embedded, all the existing VSRs are re-embedded to ensure the most 

optimum utilisation of resources. The number of VMs per VSR is randomly 

distributed between 2–4 VMs. The processing workload of input VMs and 

hidden layer VM is randomly distributed between 0.1 – 1 GFLOPS and  

between 0.6 – 10 GFLOPS, respectively. The virtual links data rate is 

randomly distributed between 0.1-2 Mbps.   

We also assume that at each AF node and MF node, 6 and 10 servers are 

hosted, respectively while we assume the centralised data centre nodes have 

unlimited number of servers. It is important to note that the relatively high 

processing efficiency of the IoT layer is due to the use of low-power 

microprocessors in these nodes. However, they are very limited in terms of 

computational capacity compared to the fog and cloud layers [115]. We 

consider a PUE of 1.25 in AF node, 1.35 in the MF node, 1.12 in the CDC 

node, 1.5 for core nodes and 1 in ONUs and IoT devices as these do not 

require cooling [114]. The MILP model is solved using IBM’s commercial 

solver CPLEX over the University of Leeds high performance computing 

facilities (ARC3) using 24 cores with 126 GB of RAM [116]. 
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Table 3. 1: Processing Device parameters for scenario 1 [117] 

Devices Max(W) Idle(W) GFLOPS Efficiency 

(W/GFLOPS) 

IoT (Rpi 4 B 

4GB) 

7.3 2.56 13.5 0.35 

AF Server (Intel 

i5-3427U) 

37.2 13.8 34.5 0.67 

MF Server (Intel 

i5-3427U) 

37.2 13.8 34.5 0.67 

CDC (Intel Xeon 

E5-2640) 

298  58.7 428  0.55 
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 In Figure 3.3, four different embedding scenarios are evaluated: 1) VSRs 

being embedded at the CDC, 2) VSRs being embedded at the AF, 3) VSRs 

being embedded at the MF, and 4) optimised embedding of VSRs across the 

CFN (CFN-MILP). We observed significant power consumption savings with 

the optimised embedding into the CFN architecture compared to processing 

at the CDC due to local computation in the IoT layer as seen in Figure 3.4. 

The savings are up to 91% (68% on average). These savings can be attributed 

Table 3. 2: Networking Devices for Scenario 1 

Devices Max (W) Idle (W) Bitrate  

(Gbps) 

Efficiency 

(J/Gb) 

IoT Wi-Fi 

interface [117] 

0.56  0.34  0.1  2.2 

ONU  (including 

Wi-Fi interface) 

[114] 

15 9 10 0.6  

OLT [114] 1940 60 8600 0.22 

Metro Router 

Port [114] 

30 27 40 0.08 

Metro Switch 

[114] 

470 423 600 0.08 

IP/WDM Node 

[114] 

878 790 *40/𝜆 0.14 
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to the processing efficiency of the local IoT devices as well as the access 

network used to connect them, hence avoiding various costly overheads such 

as network power consumption and PUE values associated with the higher 

processing layers. With the optimised embedding into the CFN, due to the 

abundance of processing resources, VSRs are embedded by the IoT layer. In 

Figure 3.3(a), there is a spike in processing and networking power 

consumption. This is because during very high workloads (20 VSRs), the 

MILP model chooses to split the workload among the IoT and CDC servers as 

seen in Figure 3.4 due to capacity violation in the IoT layer. Hence, the CDC 

node is used to process the excessive workloads only and most of the total 

workload is kept at the IoT layer. Note that the Access Fog (AF) and Metro 

Fog (MF) nodes are never utilised despite their proximity to the input node at 

the IoT layer and the negligible network power consumption as per Figure 3.3 

(b) and (c). This is due to the processing inefficiency of these nodes coupled 

with the high PUE values. If the CDC node was to be further away from the 

aggregating metro node (more than one hop) then the processing efficiency 

of the cloud data centre (CDC) may not compensate for the power consumed 

in the core network to access the CDC, hence the AF and MF may have a role 

to play.  
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Figure 3. 3: Total power consumption vs. no. of Virtual Service 
Requests (VSRs) under different placement solutions 

 

Figure 3. 4: Workload distribution of Scenario 1 

 

 (a) 
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Figure 3. 5: Network vs. processing power 
consumption of; (a) CFN (MILP), (b) AF and (c) 
MF (d) CDC. 
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3.4.2 Scenario 2 

This scenario considers multiple IoT nodes generating data for the input layer 

of the DNN VSRs. The impact of having single versus multiple inputs on the 

performance of the CFN is studied and the total power savings compared to 

the baseline solution (processing in CDC) are quantified. We have made some 

changes to the architecture. As can be seen in Figure 3.6, we have increased 

the scale of the network by adding more OLTs and AFs in addition to the 

multiple IoT nodes feeding data into the input layer.  

 

Figure 3. 6: Multiple IoT nodes generating data for DNN input layer over 
the proposed CFN architecture. 
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Table 3. 3: Processing Device Parameters for Scenario 2 [117] 

Devices Max(W) Idle(W) GFLOPS Efficiency 

(W/GFLOPS) 

IoT (Rpi 4 B 

4GB) 

7.3  2.56  13.5  0.35 

AF Server 

(Intel i5-

3427U) 

32.6  10  [1][2] 47.7  0.47 

MF Server 

(Intel i5-

3427U) 

134  29 [1] [2]  181  0.58 

CDC (Intel 

Xeon E5-

2640) 

298  58.7  428  0.55 
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*40Gbps / wavelength ** is 60% of max power ***is 90% of max power. 

 

In addition to the aforementioned changes, we have also made some changes 

to network and processing parameters as seen in Table 3.3 and Table 3.4. In 

the previous scenario the OLT device was much more efficient in terms of the 

idle power consumption however in this scenario we have considered a more 

practical OLT device that has a higher idle power consumption. This was done 

to see if distributing DNN layers would be impacted since the network is less 

efficient now. As for the server parameters, unlike the previous scenario, the 

AF and MF nodes have been assigned heterogeneous processing capability.  

Table 3. 4: Network Devices Parameter for Scenario 2 

Devices Max (W) Idle (W) Bitrate  

(Gbps) 

Efficiency 

(W/Gbps) 

IoT Wi-Fi 

interface [117] 

0.56  0.34  0.1  2.2 

ONU  (including 

Wi-Fi interface) 

[114] 

15  9** 10  0.6  

OLT [114] 1940  1746*** 8600  0.22 

Metro Router Port 

[114] 

30  27*** 40 0.08 

Metro Switch [114] 470  423*** 600  0.08 

IP/WDM Node [114] 878 790*** 40/wavelength 0.14 
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We assume that in total, there are 30 IoT devices, equally distributed 

among 10 IoT zones: IoT Zone 1 – IoT Zone 10.  Ten of the IoT devices act 

as data sources. In total, we consider 3 OLT devices and each one aggregates 

traffic from a cluster of 3 or 4 ONUs.  

We consider DNN VSRs similar to those considered in Scenario 1 but with 

input VMs to be embedded in 10 source data IoT devices. The input VMs 

workload is randomly distributed between 0.1–1 GFLOPS. Also, a higher 

workload is considered for hidden VMs randomly distributed between 2 – 13.5 

GFLOPS.  

 We consider the nodes to have more efficient PUE factors. The PUE 

factors are 1.1, 1.25, 1.1 in AF, MF and CDC nodes, respectively. Similar to 

Scenario 1, we also assume that at each AF and MF node hosts 6 and 10 

servers, respectively while we assume the centralised data centre nodes have 

unlimited number of servers. Similar to the Scenario 1, the MILP model is 

solved using IBM’s commercial solver CPLEX over the University of Leeds 

high performance computing facilities (ARC3) using 24 cores with 126 GB of 

RAM [116]. 

In the following subsections, we compare Scenario 2 to Scenario 1 

considering the CFN architecture in Figure 3.6 and a fog architecture where 

processing is only available in IoT nodes, AF nodes and MF nodes. The fog 

architecture has similar parameters to those of the CFN architecture in Figure 

3.6.  This comparison evaluates the increase in power consumption resulting 

from limiting the processing of DNN VSRs to the IoT devices and fog nodes. 
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3.5.2.1 Performance of the CFN architecture  

Figure 3.7 shows the total power consumption which included processing and 

networking power consumption versus the number of VSRs for Scenario 1 

and Scenario 2 considering the optimised CFN architecture and the baseline 

approach where all processing takes place in the CDC. Figure 3.8 and Figure 

3.9 break the total power consumption to networking power consumption and 

processing power consumption. We reproduced Scenario 1 results 

considering the input parameters of this section for fair comparison. For 

Scenario 1, compared to the baseline, the CFN solution achieves up to 68% 

(average 12%) power consumption reduction for VSRs (1 VSR – 9 VSRs). 

This is because, as explained above, VSRs can be processed on local low-

power IoT devices as seen in Figure 3.10 (a).  For 10 VSRs, some of the VMs 

are embedded in the cloud. From 11 VSRs to 27 VSRs, all the hidden layers 

are embedded in the cloud. Interestingly, IoT utilisation increases again (from 

28 VSRs – 30 VSRs). This happens to avoid activating an additional server at 

the CDC due to its high idle power consumption.   

 

Figure 3. 7: Total power consumption of CFN with/out cloud data 
centre. 
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Figure 3. 8: Breakdown of CFN’s network and processing power 
consumption (scenario 1). 

 

 

 

 

 

 

 

 

 

 

 

(a) 

Figure 3. 9: Breakdown of CFN’s network and 
processing power consumption (scenario 2). 
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(b) 

Figure 3. 9: Workload distribution of: (a) Scenario 1, and (b) Scenario 2. 

 

 

In Scenario 2, the IoT and CDC layers are predominantly the optimal 

choice with utilisation of the AF layer at 10 VSRs only as seen in Figure 3.10 

(b).  Note that all of the OLT devices that connect the different zones will be 

activated as we have 1 input per zone. This makes the power consumed to 

access the higher processing nodes (AF, MF and cloud) nodes lower and 

therefore the cloud and the AF are used to embed VMs for number of VSRs 

lower than that of Scenario 1. From Figure 3.7, compared to the baseline, 

Scenario 2 achieves up to 60% (average 10%) power consumption reduction 

for 1 VSR – 9 VSRs. In future, as the processing efficiency of fog servers is 

improves and PUE factors are minimised, fog nodes may provide energy 

efficient solutions for embedding DNN VSRs. 
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3.5.2.2 Performance of the fog architecture 

In this subsection, we aim to evaluate the increase in power consumption 

resulting from limiting the processing of DNN VSRs to the IoT devices and fog 

nodes for Scenario 1 and Scenario 2. Figure 3.11 shows that in Scenario 1, 

the fog architecture yields an increase in power consumption up to 44% (19% 

on average) compared to the CFN architecture. In Scenario 2 the increase in 

power consumption of the fog architecture compared to the FCN architecture 

is reduced to 20% maximum (10% average). This limited increase in power 

consumption as a result of embedding VMs in the fog architecture compared 

to the CFN architecture indicates that improvement in the energy efficiency of 

fog node by similar magnitude, which is anticipated in the near future, would 

allow efficient use of fog nodes in embedding DNN VSRs. 

 

Figure 3. 10: The total power consumption of the CFN approach 
with/without CDC collaboration under single and multiple input IoT 

nodes. 

 

3.5 Summary  

This chapter investigated the power consumption associated with the 

embedding of DNN VSRs over a CFN architecture. The layers of the DNN 

were abstracted as VMs that are interconnected by virtual links. Each VM has 
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processing demand in FLOPs and each virtual link has bandwidth demand in 

bps. The studies in this chapter were divided into two scenarios: Scenario 1 

and Scenario 2. Under Scenario 1, we looked at a case where DNN VSRs 

have a single IoT device generating data for the input layer, whilst in Scenario 

2, we studied multiple IoT devices generating data for the input layer of the 

DNN VSRs. We developed a MILP model to optimise the embedding of DNN 

VMs under the two scenarios. For Scenario 1, the optimisation results showed 

the VMs are optimally processed on local IoT devices in collaboration with the 

cloud. This resulted in up to 68% power savings (12% on average) compared 

to processing all the VMs in the cloud considering a scalable architecture with 

multiple OLTs. 

For Scenario 2, the results also showed that despite of the number of source 

nodes and their geographical deployment, the distribution of the VMs among 

the IoT devices in other parts of the network is still more favourable than 

consolidating them in higher capacity fog servers that were associated with a 

higher PUE value. The optimum embedding over the CFN architecture 

produced up to 60% power savings (10% on average) considering a scalable 

architecture with multiple OLTs. 

 Furthermore, we evaluated the energy efficiency of a fog architecture in 

embedding DNN VSRs. The results showed that optimising the embedding 

over the fog architecture resulted in up to 44% (19% on average) and up to 

20% (10% on average) increase in total power consumption compared to the 

optimum embedding over the CFN architecture considering scenario 1 and 

Scenario 2, respectively. This increase in power consumption is due to the 

high PUE factor and less energy efficiency of servers in fog nodes.  This 
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limited increase in power consumption indicates that improvement in the 

energy efficiency of fog node by similar magnitude, which is anticipated in the 

near future, would allow efficient use of fog nodes in embedding DNN VSRs. 
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Chapter 4: Energy Efficient Placement of DNN Services over 

a Cloud-Fog Network: the impact of VM allocation constraint    

 

4.1 Introduction 

In Chapter 4, we evaluate the embedding of each layer of a DNN  as by a 

VSR, whose is modelled as a number of connected VMs. under the 

assumption that the IoT layer could process all types of VMs. However, in a 

practical scenario, IoT devices can be limited in terms of the type and the 

number of VMs they can host due to hardware / software limitations. 

Therefore, we introduce a constraint that only permits a limited number of VMs 

to be processed by any IoT device at a given time. We refer to this case as 

IoT limited VM allocation constraint. To draw comparisons and quantify the 

power savings, we evaluate the performance under different limits on the 

number of VMs an IoT node can host.  

Furthermore, we extend the studies of the previous chapter by studying how 

the performance of the CFN architecture is affected by the idle power 

proportion ratio (𝛿) attributed to the DNN applications in highly shared 

networking equipment in the access, metro and core networks. A range of 

values of 𝛿 (3%, 6% and 10%) are considered. The increase in 𝛿  represents 

the potential growth of the DNN applications in the future.  

4.2 MILP Model 

We extend the MILP model in Chapter 4 to reflect the restriction on the number 

of VMs that can be embedded into an IoT device. We present the complete 

model in this section for improved readability. 
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The sets, parameters and variables are defined:  

Sets: 

𝔻ℂ  Set of CDCs. 

𝕄𝔽 Set of MF nodes. 

𝔸𝔽 Set of AF nodes. 

𝕀 Set of IoT devices. 

ℙ Set of processing nodes that can process a VSR, 

where ℙ = 𝔻ℂ ∪ 𝕄𝔽 ∪ 𝔸𝔽 ∪ 𝕀. 

𝕀ℙ Set of source node IoT devices,  𝕀ℙ ⊂ 𝕀  

ℝ Set of VSRs. 

𝕍𝕄𝑟 Set of VMs in VSR 𝑟 ∈ ℝ.  

ℕ Set of networking nodes in the CFN architecture (IoT 

devices, ONUs, OLTs, metro nodes, core nodes).  

ℕ𝑚 Set of neighbour nodes of node m ∈ ℕ in the CFN.  

Parameters: 

𝑠 𝑎𝑛𝑑 𝑑 Index the source and destination nodes of a virtual link in 

a VSR topology, 𝑠, 𝑑 ∈ 𝕍𝕄𝑟 , 𝑟 ∈ ℝ. 

𝑏 𝑎𝑛𝑑 𝑒 Index source and destination processing nodes of an end 

to end traffic demand aggregated from embedding VSR, 

𝑏, 𝑒 ∈ 𝑃, 𝑏 ≠ 𝑒. 
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𝑚 𝑎𝑛𝑑 𝑛 Index the end nodes of physical links in the CFN 

topology.  

𝐴𝑛
𝑝
 𝐴𝑛

𝑝 = 1 if processing node 𝑝 ∈ 𝑃 and networking node 𝑛 ∈

𝑁 are co-located, otherwise 𝐴𝑛
𝑝 = 0. 

𝐹𝑟,𝑠 Processing requested by node s in VSR 𝑟 ∈ ℝ. 

𝐻𝑟,𝑠,𝑑 Data rate of virtual link (𝑠, 𝑑) in VSR 𝑟 ∈ ℝ. 

𝑃𝑠
𝑟 Ps

r = 1 if VM 𝑠 ∈ 𝑉𝑀𝑟 in VSR 𝑟 ∈ ℝ is the input layer, 

otherwise 𝑃𝑠
𝑟 = 0. 

𝛱𝑛
(𝑛𝑒𝑡)

 Maximum power consumption of network node 𝑛 ∈ ℕ 

accounting for all equipment in the node.  

𝜋𝑛
(𝑛𝑒𝑡)

 Idle power consumption of network node 𝑛 ∈ ℕ 

accounting for all equipment in the node. 

𝐶𝑛
(𝑛𝑒𝑡)

 Capacity of network node 𝑛 ∈ ℕ. 

𝜖𝑛 Energy per bit of network node 𝑛 ∈ ℕ, 

𝜖𝑛 =
𝛱𝑛

(𝑛𝑒𝑡)
−𝜋𝑛

(𝑛𝑒𝑡)

𝐶𝑛
(𝑛𝑒𝑡) . 

𝛱𝑝
(𝐿𝐴𝑁)

 Maximum power consumption of LAN network inside 

processing node p∈ ℙ accounting for all equipment in the 

LAN.  
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𝜋𝑝
(𝐿𝐴𝑁)

 Idle power consumption of LAN network inside 

processing node p∈ ℙ accounting for all equipment in the 

LAN. 

𝐶𝑝
(𝐿𝐴𝑁)

 Capacity of LAN network inside processing node 𝑝 ∈ ℙ. 

𝐸𝑙𝑝 Energy per bit of LAN network inside processing node 

𝑝 ∈ ℙ, 𝐸𝑙𝑝 =
𝛱𝑝

(𝐿𝐴𝑁)
−𝜋𝑝

(𝐿𝐴𝑁)

𝐶𝑝
(𝐿𝐴𝑁) . 

𝛱𝑝
(𝑝𝑟)

 Maximum power consumption of a single server at 

processing node 𝑛 ∈ ℙ.  

𝜋𝑝
(𝑝𝑟)

 Idle power consumption of a single server at processor 

node 𝑝 ∈ ℙ. 

𝐶𝑝
(𝑐𝑝𝑢)

 Processing capacity of a serve at processing node 𝑝 ∈ ℙ. 

𝐸𝑝 Energy per FLOPS of processing node 𝑝 ∈ ℙ, 𝐸𝑝 =

𝛱𝑝
(𝑝𝑟)

−𝜋𝑝
(𝑝𝑟)

𝐶𝑝
(𝑐𝑝𝑢)  

𝑁𝑆𝑝 Maximum number of servers that can be deployed at 

processing node 𝑝 ∈ ℙ. 

𝛿𝑛 Proportion of idle power consumed on high-capacity 

networking equipment 𝑛 ∈ 𝑁. 

𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

 Power Usage Effectiveness (PUE) factor of node 𝑛 ∈ 𝑁 

for networking. 

𝑃𝑈𝐸𝑝
(𝑛𝑒𝑡)

 Power Usage Effectiveness (PUE) factor of node 𝑝 ∈ 𝑃 

for processing. 
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Variables: 

𝜆𝑏,𝑒 Traffic demand between processing node pair (𝑏, 𝑒)  

aggregated after all VSRs are embedded, 𝑏, 𝑒 ∈ ℙ. 

𝜆𝑚,𝑛
𝑏,𝑒

 Traffic demand between processing node pair (𝑏, 𝑒) ∈ ℙ 

aggregated after all VSRs are embedded, traversing 

physical link (𝑚, 𝑛), 𝑚 ∈ ℕ and 𝑛 ∈ ℕ𝑚. 

𝜆𝑛 Amount of traffic originating/passing by/destined to 

network node 𝑛 ∈ ℕ,  

where 𝜆𝑛 =  ∑ ∑ ∑ ∑ 𝜆𝑚,𝑛
𝑏,𝑒 +𝑛∈ℕ𝑚𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ

 ∑ ∑ ∑ ∑ 𝜆𝑛,𝑚
𝑏,𝑒  𝑛∈ℕ𝑚𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ . 

𝛽𝑛 Amount of traffic destined to network node 𝑛 ∈ ℕ,  

where  

𝛽𝑛 =  ∑ ∑ ∑ ∑ 𝜆𝑚,𝑛
𝑏,𝑒

𝑛∈ℕ𝑚:𝑛=𝑒𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ

 

𝜃𝑝 Amount of traffic destined to a processing node 𝑝 ∈ ℙ,  

where  𝜃𝑝  ∀𝑛 ∈ ℕ: 𝐴𝑛
𝑝 = 1. 

𝛼𝑛 𝛼𝑛 = 1 if networking node 𝑛 ∈ ℕ is activated, otherwise 

𝛼𝑛 = 0. 

Ω𝑝 Amount of workload in FLOPS, allocated to processing 

node 𝑝 ∈ ℙ. 
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𝑁𝑝 Number of activated servers at processing node 𝑝 ∈ ℙ. 

Φ𝑝 Φ𝑝 = 1 if processing node 𝑝 ∈ ℙ is activated, otherwise 

Φ𝑝 = 0. 

𝛿𝑏
𝑟,𝑠

 𝛿𝑏
𝑟,𝑠 = 1 if VM 𝑠 ∈ 𝑉𝑀𝑟 in VSR 𝑟 ∈ ℝ is embedded into 

processing node b∈ 𝑃, otherwise 𝛿𝑏
𝑟,𝑠 = 0. 

𝑤𝑏,𝑒
𝑟,𝑠,𝑑

 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 is the XOR of 𝛿𝑏

𝑟,𝑠
 and 𝛿𝑒

𝑟,𝑑
, i.e.  𝑤𝑏,𝑒

𝑟,𝑠,𝑑 = 𝛿𝑏
𝑟,𝑠 ⊕ 𝛿𝑒

𝑟,𝑑 .   

𝜌𝑏,𝑒
𝑟,𝑠,𝑑

 𝜌𝑏,𝑒
𝑟,𝑠,𝑑 = 1 if the virtual nodes 𝑠, 𝑑 ∈ 𝕍𝕄𝑟 in VSR 𝑟 ∈ ℝ are 

successfully embedded in processing nodes 𝑏, 𝑒 ∈ ℙ 

respectively and a link between processing nodes 𝑏, 𝑒  is 

established if a virtual link exists between virtual nodes 

𝑠, 𝑑, otherwise 𝜌𝑏,𝑒
𝑟,𝑠,𝑑 = 0. 

The total power consumption comprises of two parts: 1) network power 

consumption, 2) processing power consumption.  

The power profile adopted consists of a proportional part and idle part. The 

proportional part increases with the volume of workload, whilst the idle part is 

consumed as soon as the device is activated. We assume that any unused 

equipment is switched off completely. 

The network power consumption is given by: 

∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

(𝜖𝑛 𝜆𝑛 + 𝛼𝑛𝜋𝑛
(𝑛𝑒𝑡)

𝛿𝑛) 

𝑛∈ℕ

. (4.1) 

The power consumption of the networking equipment comprises of the power 

consumption of all the networking nodes in the CFN topology depicted in 
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Figure 3.1 multiplied by the PUE of each networking node. The first term of 

the above expression is the proportional power consumption of the networking 

equipment whilst the second term calculates the idle power consumption of 

these equipment. 

The processing power consumption includes the power consumed by the 

servers as well as the switches and routers within these nodes to provide the 

LAN. The processing power consumption is given by: 

∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

(𝐸𝑝Ω𝑝 + 𝑁𝑝𝜋𝑝
(𝑝𝑟)

+ 𝐸𝐿𝑝𝜃𝑝 + Φ𝑝𝜋𝑝
(𝐿𝐴𝑁)

𝛿𝑛)

𝑝∈ℙ

  (4.2) 

The first term of the above expression is the proportional power consumption 

of the servers whilst the second term calculates the idle power consumption 

of these servers. The third and fourth terms are the idle and proportional power 

consumed by switches and routers of the internal LAN of the processing 

nodes.  

The objective of the MILP is to minimise the total power consumption given 

as follows: 

 

Minimise:  

∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

(𝜖𝑛 𝜆𝑛 + 𝛼𝑛𝜋𝑛
(𝑛𝑒𝑡)

𝛿𝑛) 

𝑛∈ℕ

+ ∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

(𝐸𝑝Ω𝑝 + 𝑁𝑝𝜋𝑝
(𝑝𝑟)

+ 𝐸𝐿𝑝𝜃𝑝

𝑝∈ℙ

+ Φ𝑝𝜋𝑝
(𝐿𝐴𝑁)

𝛿𝑛) . 

(4.3) 
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𝜖𝑛represent energy per bit of a network node as parameter  𝜆𝑛 is variable for 

amount of traffic passing a network node. 𝛼𝑛 is variable to indicate if  𝑛 ∈ ℕ𝑐 

is activated, 𝜋𝑛
(𝑛𝑒𝑡)

 is parameter of idle power consumption of networking 

devices. 𝛿𝑛is parameter of proportion idle power consumption on high-

capacity network equipment. 𝐸𝑝is a parameter for the energy per FLOPS of 

processing node 𝑝 ∈ ℙ, Ω𝑝 is a variable for the amount of workload in FLOPS 

that is located in processing node 𝑝 ∈ ℙ. 𝑁𝑝is variable of number activated 

servers at processing node 𝑝 ∈ ℙ. 𝜋𝑝
(𝑝𝑟)

 is parameter of idle power 

consumption of single server at processing node 𝑝 ∈ ℙ. 𝐸𝐿𝑝is parameter of 

energy per bit of LAN network inside processing node 𝑝 ∈ ℙ.  𝜃𝑝 is variable of 

the amount traffic destined to a processing node 𝑝 ∈ ℙ. Φ𝑝 is variable to 

indicate if a processing node 𝑝 ∈ ℙ is activated. 𝜋𝑝
(𝐿𝐴𝑁)

 is parameter of idle 

power consumption of LAN network inside processing node 𝑝 ∈ ℙ.  

Subject to:  

 ∑ 𝛿𝑏
𝑟,𝑠 = 1

𝑏∈ℙ

           ∀𝑟 ∈ ℝ, 𝑠 ∈ 𝕍𝕄𝑟: Ps
r ≠ 1 (4.4) 

Constraint (4.4) ensures that VMs of a VSR, except for input VMs, are 

embedded into any of the processing nodes.  

∑ 𝛿𝑏
𝑟,𝑠 = 1

𝑏∈𝕀ℙ

           ∀𝑟 ∈ ℝ, 𝑠 ∈ 𝕍𝕄𝑟: Ps
r = 1 (4.5) 

Constraint (4.5) ensures that input VMs of a VSR are embedded into source 

data IoT devices only.  
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∑ 𝜆𝑚,𝑛
𝑏,𝑒 − ∑ 𝜆𝑛,𝑚

𝑏,𝑒 = {
𝜆𝑏,𝑒 𝑚 = 𝑠

−𝜆𝑏,𝑒 𝑚 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈ℕ𝑚𝑛∈ℕ𝑚

 

∀𝑏, 𝑒 ∈ ℙ, 𝑑 ∈ ℙ, 𝑚 ∈ ℕ: 𝑏 ≠ 𝑒. 

(4.6) 

Constraint (4.6) preserves the flow of traffic in the network. 

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟

𝐹𝑟,𝑠 =

𝑏∈ℙ

  ∑ 𝐹𝑟,𝑠

𝑠∈𝕍𝕄𝑟

        ∀𝑟 ∈ ℝ (4.7) 

Constraint (4.7) ensures that the processing demand of request 𝑟 ∈ ℝ is 

fulfilled. 

𝛿𝑏
𝑟,𝑠 + 𝛿𝑒

𝑟,𝑑 = 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 + 2𝜌𝑏,𝑒

𝑟,𝑠,𝑑      

∀𝑟 ∈ ℝ, ( 𝑠, 𝑑) ∈ 𝕍𝕄𝑟 , (𝑏, 𝑒) ∈ ℙ: 𝑏 ≠ 𝑒, 𝑠 ≠ 𝑑 

(4.8) 

Constraint (4.8) ensures that virtual nodes connected in the VSR topology are 

also connected on the physical network. This done by introducing a binary 

variable 𝑤𝑏,𝑒
𝑟,𝑠,𝑑

 that is only equal to 1 if 𝛿𝑏
𝑟,𝑠

and 𝛿𝑒
𝑟,𝑑  e are exclusively equal to 

1, otherwise 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 = 0. 

∑ ∑ ∑ 𝐻𝑟,𝑠,𝑑

𝑑∈𝕍𝕄𝑟:
𝑠≠𝑑

𝜌𝑏,𝑒
𝑟,𝑠,𝑑

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

= 𝜆𝑏,𝑒      ∀(𝑏, 𝑒) ∈ ℙ: 𝑏 ≠ 𝑒 (4.9) 

Constraint (4.9) ensures that the data rate requirement of virtual links are 

fulfilled.  

𝑁𝑝 ≥
Ω𝑝

𝐶𝑝
(𝑐𝑝𝑢)

      ∀𝑝 ∈ ℙ 
(4.10) 

𝑁𝑝 ≤ 𝑁𝑆𝑝         ∀𝑝 ∈ ℙ (4.11) 
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Constraints (4.10) and (4.11) determine the number of activated processing 

servers and ensures it is not larger than the number of servers the processing 

node host, respectively.  

𝜆𝑛 ≥ 𝛼𝑛         ∀𝑛 ∈ ℕ  (4.12) 

𝜆𝑛 ≤ 𝑀𝛼𝑛      ∀𝑛 ∈ ℕ  (4.13) 

Constraints (4.12) and (4.13) relates the binary variable 𝛼𝑛 to the continuous 

variable 𝜆𝑛, i.e. determines if a network node is activated or not based on the 

traffic traversing/generated/destined to the node.  

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

≥ Φ𝑝     ∀𝑝 ∈ ℙ (4.14) 

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

≤ 𝑀Φ𝑝     ∀𝑝 ∈ ℙ (4.15) 

Constraints (4.14) and (4.15) determine the binary value of Φ𝑝, i.e. determine 

if a processing node is activated based on the amount of processing 

performed by the node.  

∑ ∑ 𝛿𝑏
𝑟,𝑠 ≤ 𝑘

𝑠∈𝕍𝕄𝑟

 

𝑟∈ℝ

          ∀𝑏 ∈  𝕀𝕠𝕋  (4.16) 

Constraint (4.16) restricts the sum of VMs allocated to an IoT node to be less 

than or equal to the parameter 𝑘.  

 

4.3 Results and Discussions 

In this chapter we consider the architecture, input parameters and power 

consumption values of Section 3.4.1 with the scenario where input VMs is 

embedded in a single source node IoT device. In this chapter we have 
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executed the model to embed 15 DNN VSRs under single VM allocation and 

multiple VMs allocation under different values for the idle power proportion 

ratio (𝛿). 

4.3.1 Single VM Allocation at IoT 

We evaluate the impact of limiting the number of VMs embedded in an IoT 

node at a given time to one VM (i.e., k=1). Our aim is to represent a scenario 

in which, due to hardware / software limitations or low power limitations, IoT 

nodes are not capable of processing multiple types of VMs. Figure 4.1 shows 

the total power consumption which is the sum of the networking and 

processing power consumptions of all nodes against different values of the 𝛿 

factor. It can be observed that when 𝛿 is higher than 3%, the total networking 

and computing power consumption increased by 22% compared the case 

when 𝛿 equals 3% It also shows that when 𝛿 is low (3%), the networking power 

consumption is about 30% of the total power consumption while in the cases 

when 𝛿 is higher than 3%, the networking power consumption is about 10% 

of the total power consumption. Figure 4.2 shows the distribution of 

processing among the cloud, MFN, AFN, and the IoT layers for the case of 

k=1 and for different values of the 𝛿 factor. The results show that when 𝛿 is 

low (3%), the IoT devices are used to embed part of the VMs and the 

remaining is embedded in the CDC (60% of the workload is processed by the 

CDC while 40% is processed by the IoT nodes). The CDC is favoured over 

the AFN and MFN due to the processing efficiency of the CDC and low 

network power consumption to access the CDC with low 𝛿. For high 𝛿 (6% 

and 10%), it can be observed that the CDC is no longer the favourite choice 

as it loses its merit due to the high-power consumption of the transport 
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network. In these cases, the IoT nodes are assigned to process 60% of the 

workload while the AFN is assigned to process 40% of the workload. When 

𝛿 = 3%, Figure 4.2 shows that the total power consumption reached 300w. 

This is attributed to the total power consumption of processing and networking 

of all considered nodes in the architecture. 

 

Figure 4. 1: Total power consumption under different values of δ when 
k=1. 

 

Figure 4. 2: Workload distribution under different values of δ when k=1 
(k the number of VMs that can be allocated to a single IoT node). 
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4.3.2 Multi VM Allocation at IoT   

In this scenario, we increase the value of paremer k and thus allow multiple 

VMs to be processed at an IoT node. Figure 4.3 shows the total power 

consumption of all nodes against different values of the 𝛿 factor when k=2.  

The results show that the different values of 𝛿 result in the same level of power 

consumption. Also, compared to the case where k=1, the total power 

consumption is reduced by more than 50%. Figure 4.4 shows the distribution 

of processing among the cloud, MFN, AFN, and the IoT layers for the case of 

k=2 and for different values of the 𝛿 factor. The results show that for all 

considered values of 𝛿, the IoT nodes are the preferred location to process all 

the demands. Hence, the higher than 50% reduction in the total power 

consumption for the case when k=2 compared to the case when k=1 is due to 

the ability of the IoT nodes to process more and having higher utilisation. 

Also,allowing two VMs to be processed by a single IoT device gives enough 

capacity for all the VMs to be processed at the IoT layer and therefore avoiding 

higher processing layers as seen in Figure 4.4. Figure 4.5 shows that the 

flexibility in the VM allocation scheme substantially achieve significant power 

savings up to 63% under all values of 𝛿 compared to the single VM allocation 

scenario (k=1).   
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Figure 4. 3: Total power consumption under different values of δ when 
k=2(all VMs allocated at IoT nodes when k>1). 

 

 

Figure 4. 4: Workload distribution under different values of δ when k = 
2. 
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Figure 4. 5: Total power savings achieved at k=2 compared to k=1. 

 

4.4 Summary 

This chapter extended the studies in the previous chapter by evaluating the 

impact of constraining the VM allocation in IoT devices. It also evaluated the 

impact of the idle power of the network devices. It further examined the effect 

of varying the amount of idle power in core and access network devices 

attributed to ML / DNN applications (the proportion factor). The results showed 

that relaxing the VMs allocation constraint to allow two VMs to be embedded 

into a single IoT device allows all VSRs to be hosted in the IoT layer (for our 

set of network, processing and demand parameters) resulting in substantial 

power savings up to 63% compared to constraining VMs allocation in IoT 

devices to a single VM. The results also show that under the single VM 

allocation constraint, the increase in the idle power proportion factor to 6% 

and 10% resulted in 22% increase in total power consumption compared to 

an idle power proportion factor of 3%.  
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Chapter 5: Sequential Job Placement in a Non-Pre-emptive 

Network   

5.1 Introduction  

In the previous chapters, we studied the embedding of DNN VSRs under the 

assumption that on the arrival of new requests, the network could be re-

optimised by re-embedding the existing VSRs. We refer to this approach as a 

pre-emptive VSRs embedding scheme. In this chapter we study the 

embedding of VSRs assuming that requests are embedded sequentially, and 

the new requests are served on the spare capacity, hence existing VSRs will 

not be changed. We refer to this approach as a non-pre-emptive embedding 

scheme.  This means that existing user’s quality of experience (QoE) will not 

be impacted as a continued service is maintained. We study three objective 

functions: 1) a network centric approach whereby only the power consumption 

of the network is minimised, 2) a server centric approach whereby only the 

power consumption of processing is minimised, and 3) a hybrid approach 

whereby the network and the server power consumption are jointly minimised. 

The different objective functions give different approaches to handle scarcity 

of resources as sequential embedding of VSRs results in suboptimum 

utilisation of resources. In the previous chapters, all the VSRs were embedded 

successfully as the re-embedding of existing VSRs allows optimum utilisation 

of resources.  With sequential embedding of VSRs, the suboptimum utilisation 

of resources might result in rejecting some VSRs. Hence, the constraints of 

the optimisation model allow rejection of VSRs and the optimisation objective 

function increases the number of accepted VSRs in addition to minimising the 
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power consumption. Also, to reduce the complexity of the optimisation model 

we study optimising the embedding over the IoT layer only. 

   

5.2 MILP Model  

We modified the MILP model in Chapter 4 to represent sequential embedding 

of VSRs in an architecture where VMs embedding is limited to the IoT layer. 

In the following we present the complete modified model for improved 

readability.  

The following sets, parameters and variables are defined:  

Sets: 

𝕀 Set of IoT devices. 

ℙ Set of processing nodes that can process a VSR, 

where ℙ = 𝕀. 

𝕀ℙ Set of source node IoT devices,  𝕀ℙ ⊂ 𝕀  

ℝ Set of VSRs. 

𝕍𝕄𝑟 Set of VMs in VSR 𝑟 ∈ ℝ.  

ℕ Set of networking nodes (IoT devices, ONUs, OLTs,).  

ℕ𝑚 Set of neighbour nodes of node m ∈ ℕ. 
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Parameters: 

𝑠 𝑎𝑛𝑑 𝑑 Index the source and destination nodes of a virtual link in 

a VSR topology, 𝑠, 𝑑 ∈ 𝕍𝕄𝑟 , 𝑟 ∈ ℝ. 

𝑏 𝑎𝑛𝑑 𝑒 Index source  and destination  processing  nodes  of an 

end to end traffic demand aggregated from embedding  

VSR, 𝑏, 𝑒 ∈ 𝑃, 𝑏 ≠ 𝑒. 

𝑚 𝑎𝑛𝑑 𝑛 Index the end nodes of physical links.  

𝐹𝑟,𝑠 Processing requested by node s in in VSR 𝑟 ∈ ℝ. 

𝐻𝑟,𝑠,𝑑 Data rate of virtual link (𝑠, 𝑑) in VSR 𝑟 ∈ ℝ, 

𝑃𝑠
𝑟 Ps

r = 1 if VM 𝑠 ∈ 𝑉𝑀𝑟 in VSR 𝑟 ∈ ℝ is the input layer, 

otherwise 𝑃𝑠
𝑟 = 0. 

𝛱𝑛
(𝑛𝑒𝑡)

 Maximum power consumption of network node 𝑛 ∈ ℕ 

accounting for all equipment in the node.  

𝜋𝑛
(𝑛𝑒𝑡)

 Idle power consumption of network node 𝑛 ∈ ℕ 

accounting for all equipment in the node. 

𝐶𝑛
(𝑛𝑒𝑡)

 Capacity of network node 𝑛 ∈ ℕ. 

𝜖𝑛 Energy per bit of network node 𝑛 ∈ ℕ, in J/Gb, 

𝜖𝑛 =
𝛱𝑛

(𝑛𝑒𝑡)
−𝜋𝑛

(𝑛𝑒𝑡)

𝐶𝑛
(𝑛𝑒𝑡) . 
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𝛱𝑝
(𝑝𝑟)

 Maximum power consumption of a single server at 

processing node 𝑛 ∈ ℙ.  

𝜋𝑝
(𝑝𝑟)

 Idle power consumption of a single server at processor 

node 𝑝 ∈ ℙ. 

𝐶𝑝
(𝑐𝑝𝑢)

 Processing capacity of a serve at processing node 𝑝 ∈ ℙ. 

𝑅𝐶𝑝
(𝑐𝑝𝑢)

 Residual processing capacity of a serve at processing 

node 𝑝 ∈ ℙ. 

𝐸𝑝 Energy per FLOPS of processing node 𝑝 ∈ ℙ, 𝐸𝑝 =

𝛱𝑝
(𝑝𝑟)

−𝜋𝑝
(𝑝𝑟)

𝐶𝑝
(𝑐𝑝𝑢)  

𝛿𝑛 Proportion of idle power consumed on high-capacity 

networking equipment 𝑛 ∈ 𝑁. 

𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

 Power Usage Effectiveness (PUE) factor of node 𝑛 ∈ 𝑁 

for networking. 

𝑃𝑈𝐸𝑝
(𝑛𝑒𝑡)

 Power Usage Effectiveness (PUE) factor of node 𝑝 ∈ 𝑃 

for processing. 

𝑃𝑈𝑝 The amount of processing workload on node 𝑝 ∈ 𝑃 for 

existing VSRs.  

𝑇𝑅𝑛 The amount of traffic served by network node 𝑛 ∈ ℕ for 

existing VSRs.  

𝛾𝑟 𝛾𝑟 = 1 if request 𝑟 ∈ ℝ is accepted otherwise  𝛾𝑟 = 0. 
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Variables: 

𝜆𝑏,𝑒 Traffic demand between processing node pair (𝑏, 𝑒)  

aggregated after all VSRs are embedded, 𝑏, 𝑒 ∈ ℙ. 

𝜆𝑚,𝑛
𝑏,𝑒

 Traffic demand between processing node pair (𝑏, 𝑒) ∈ ℙ 

aggregated after all VSRs are embedded, traversing 

physical link (𝑚, 𝑛), 𝑚 ∈ ℕ and 𝑛 ∈ ℕ𝑚. 

𝜆𝑛 Amount of traffic originating/passing by/destined to 

network node 𝑛 ∈ ℕ,  

where 𝜆𝑛 =  ∑ ∑ ∑ ∑ 𝜆𝑚,𝑛
𝑏,𝑒 +𝑛∈ℕ𝑚𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ

 ∑ ∑ ∑ ∑ 𝜆𝑛,𝑚
𝑏,𝑒  𝑛∈ℕ𝑚𝑚∈ℕ𝑒∈ℙ:𝑏≠𝑒𝑏∈ℙ . 

𝛼𝑛 𝛼𝑛 = 1 if network node 𝑛 ∈ ℕ is activated, otherwise 𝛼𝑛 =

0. 

Ω𝑝 Amount of workload in FLOPS, allocated to processing 

node 𝑝 ∈ ℙ. 

𝑁𝑝 Number of activated servers at processing node 𝑝 ∈ ℙ. 

Φ𝑝 Φ𝑝 = 1 if processing node 𝑝 ∈ ℙ is activated, otherwise 

Φ𝑝 = 0. 

𝛿𝑏
𝑟,𝑠

 𝛿𝑏
𝑟,𝑠 = 1 if VM 𝑠 ∈ 𝑉𝑀𝑟 in VSR 𝑟 ∈ ℝ is embedded into 

processing node b∈ 𝑃, otherwise 𝛿𝑏
𝑟,𝑠 = 0. 

𝑤𝑏,𝑒
𝑟,𝑠,𝑑

 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 is the XOR of 𝛿𝑏

𝑟,𝑠
 and 𝛿𝑒

𝑟,𝑑
, i.e.  𝑤𝑏,𝑒

𝑟,𝑠,𝑑 = 𝛿𝑏
𝑟,𝑠 ⊕ 𝛿𝑒

𝑟,𝑑 .   
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𝜌𝑏,𝑒
𝑟,𝑠,𝑑

 𝜌𝑏,𝑒
𝑟,𝑠,𝑑 = 1 if the virtual nodes 𝑠, 𝑑 ∈ 𝕍𝕄𝑟 in VSR 𝑟 ∈ ℝ are 

successfully embedded in processing nodes 𝑏, 𝑒 ∈ ℙ 

respectively and a link between processing nodes 𝑏, 𝑒  is 

established if a virtual link exists between virtual nodes 

𝑠, 𝑑, otherwise 𝜌𝑏,𝑒
𝑟,𝑠,𝑑 = 0. 

The total power consumption comprises of two parts: 1) network power 

consumption, 2) processing power consumption.  

The adopted power profile consists of a proportional part and idle part. The 

proportional part increases with the volume of workload, whilst the idle part is 

consumed as soon as the device is activated. We assume that any unused 

equipment is switched off completely. 

The network power consumption resulting from embedding the newly 

arriving VSR is given by: 

∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

𝜖𝑛 𝜆𝑛 

𝑛∈ℕ

+ ∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

𝛼𝑛𝜋𝑛
(𝑛𝑒𝑡)

𝛿𝑛 
𝑛∈ℕ:

𝑇𝑅𝑛=0

. (5.1) 

The first term of the above expression is the proportional power consumption 

of the networking equipment whilst the second term calculates the idle power 

consumption of these equipment. The condition 𝑇𝑅𝑛 = 0 ensures that we do 

not duplicate the idle power consumption of a network node that has been 

activated previously.  

The processing power consumption of IoT nodes includes the power 

consumed by the servers as given below: 
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∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝐸𝑝Ω𝑝

𝑝∈ℙ

+ ∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝑁𝑝𝜋𝑝
(𝑝𝑟)

𝑝∈ℙ:
𝑃𝑈𝑝=0

 (5.2) 

The first term of the above expression is the proportional power consumption 

of the servers whilst the second term calculates the idle power consumption 

of these servers. The condition 𝑃𝑈𝑢 = 0 ensures that idle power consumption 

of the processing nodes activated to embed pervious VSRs is not duplicated.  

Three objective functions are defined as given below.  

With sequential embedding of VSRs, the suboptimum utilisation of resources 

might result in rejecting some VSRs. Hence, the optimisation model allows 

rejection of VSRs and the optimisation objective function increases the 

number of accepted VSRs in addition to minimising the power consumption. 

The Server Centric Approach  

Minimise the processing power consumption only given as: 

∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝐸𝑝Ω𝑝

𝑝∈ℙ

+ ∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝑁𝑝𝜋𝑝
(𝑝𝑟)

𝑝∈ℙ:
𝑃𝑈𝑝=0

− 𝛾 

 

(5.3) 

The Network Centric Approach 

Minimise the network power consumption only given as: 

∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

𝜖𝑛 𝜆𝑛 

𝑛∈ℕ

+ ∑ 𝑃𝑈𝐸𝑛
(𝑛𝑒𝑡)

𝛼𝑛𝜋𝑛
(𝑛𝑒𝑡)

𝛿𝑛 
𝑛∈ℕ:

𝑇𝑅𝑛=0

− 𝛾 (5.4) 
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The hybrid Approach 

Minimise the total power consumption given as: 

∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝐸𝑝Ω𝑝

𝑝∈ℙ

+ ∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝑁𝑝𝜋𝑝
(𝑝𝑟)

𝑝∈ℙ:
𝑃𝑈𝑝=0

+ ∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝐸𝑝Ω𝑝

𝑝∈ℙ

+ ∑ 𝑃𝑈𝐸𝑝
(𝑝𝑟)

𝑁𝑝𝜋𝑝
(𝑝𝑟)

𝑝∈ℙ:
𝑃𝑈𝑝=0

− 𝛾 

 

(5.5) 

Subject to:  

 ∑ 𝛿𝑏
𝑟,𝑠 = 𝛾𝑟

𝑏∈ℙ

           ∀𝑟 ∈ ℝ, 𝑠 ∈ 𝕍𝕄𝑟: Ps
r ≠ 1 (5.6) 

Constraint (5.6) ensures that VMs of an accepted VSR, except for input 

VMs, are embedded into any of the processing nodes.  

∑ 𝛿𝑏
𝑟,𝑠 = 𝛾𝑟

𝑏∈𝕀ℙ

           ∀𝑟 ∈ ℝ, 𝑠 ∈ 𝕍𝕄𝑟: Ps
r = 1 (5.7) 

Constraint (5.7) ensures that input VMs of an accepted VSR are embedded 

into data source IoT devices only.  

∑ 𝜆𝑚,𝑛
𝑏,𝑒 − ∑ 𝜆𝑛,𝑚

𝑏,𝑒 = {
𝜆𝑏,𝑒 𝑚 = 𝑠

−𝜆𝑏,𝑒 𝑚 = 𝑑
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒𝑛∈ℕ𝑚𝑛∈ℕ𝑚

 

∀𝑏, 𝑒 ∈ ℙ, 𝑑 ∈ ℙ, 𝑚 ∈ ℕ: 𝑏 ≠ 𝑒. 

(5.8) 

Constraint (5.8) preserves the flow of traffic in the network. 

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟

𝐹𝑟,𝑠 =

𝑏∈ℙ

  ∑ 𝐹𝑟,𝑠𝛾𝑟

𝑠∈𝕍𝕄𝑟

        ∀𝑟 ∈ ℝ (5.9) 
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Constraint (5.9) ensures that the processing demand of request 𝑟 ∈ ℝ is 

fulfilled. 

𝛿𝑏
𝑟,𝑠 + 𝛿𝑒

𝑟,𝑑 = 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 + 2𝜌𝑏,𝑒

𝑟,𝑠,𝑑      

∀𝑟 ∈ ℝ, ( 𝑠, 𝑑) ∈ 𝕍𝕄𝑟 , (𝑏, 𝑒) ∈ ℙ: 𝑏 ≠ 𝑒, 𝑠 ≠ 𝑑 

(5.10) 

Constraint (5.10) ensures that virtual nodes connected in the VSR topology 

are also connected on the physical network. This done by introducing a binary 

variable 𝑤𝑏,𝑒
𝑟,𝑠,𝑑

 that is only equal to 1 if 𝛿𝑏
𝑟,𝑠

and 𝛿𝑒
𝑟,𝑑  e are exclusively equal to 

1, otherwise 𝑤𝑏,𝑒
𝑟,𝑠,𝑑 = 0. 

∑ ∑ ∑ 𝐻𝑟,𝑠,𝑑

𝑑∈𝕍𝕄𝑟:
𝑠≠𝑑

𝜌𝑏,𝑒
𝑟,𝑠,𝑑

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

= 𝜆𝑏,𝑒      ∀(𝑏, 𝑒) ∈ ℙ: 𝑏 ≠ 𝑒 (5.11) 

Constraint (5.11) ensures that the data rate requirement of virtual links are 

fulfilled.  

Ω𝑝 ≤ 𝑅𝐶𝑝
(𝑐𝑝𝑢)

         ∀𝑝 ∈ ℙ (5.12) 

Constraints (5.12) ensures that processing handled by an IoT node does not 

exceed the residual processing capacity of the IoT node server (Note that the 

IoT node has one server).  

𝜆𝑛 ≥ 𝛼𝑛         ∀𝑛 ∈ ℕ  (5.13) 

𝜆𝑛 ≤ 𝑀𝛼𝑛      ∀𝑛 ∈ ℕ  (5.14) 

Constraints (5.13) and (5.14) relate the binary variable 𝛼𝑛 to the continuous 

variable 𝜆𝑛, i.e. determines if a network node is activated or not  based on the 

traffic traversing/generated by the node.  
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∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

≥ Φ𝑝     ∀𝑝 ∈ ℙ (5.15) 

∑ ∑ 𝛿𝑏
𝑟,𝑠

𝑠∈𝕍𝕄𝑟𝑟∈ℝ

≤ 𝑀Φ𝑝     ∀𝑝 ∈ ℙ (5.16) 

Constraints (5.15) and (5.16) determine the binary value of Φ𝑝, i.e. determine 

if a processing node is activated based on the amount of processing 

performed by the node.  

 

5.3 Results and Discussions  

As explained, in this chapter we consider an architecture where processing 

takes place at the IoT layer only to reduce the complexity of the MILP model.  

We consider a scenario where input VMs are embedded in a single source 

node IoT device. We consider power consumption values of Section 3.5.1 

(Table 3.1 and Table 3.2). We assume that in total, there are 20 IoT devices. 

We have distributed the IoT devices among four zones such that Zone 1 and 

Zone 2 comprise of 6 IoT devices each whilst Zone 3 and Zone 4 comprise of 

4 IoT devices each. One of the IoT device in Zone 1 acts as a data source to 

collect data. 

We examine the sequential embedding of 20 VSRs arriving one at a time. The 

number of VMs per VSR is randomly distributed between 2–4 VMs. The 

processing workload of input VMs is randomly distributed between 0.1 – 1 

GFLOPS. The hidden layer VM are randomly distributed between 10 – 20 

Mbps. These data rates are representative of high-resolution image/video files 

that are exchanged between the NN layers [118]. The virtual links data rate is 

randomly distributed between 0.1-2 Mbps.   
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Moreover, we have made the assumption that the processing efficiency at the 

IoT layer is heterogeneous. The IoT nodes that reside at the source node’s 

zone (IoT 1 – IoT 6) have a lesser processing efficiency than the IoT nodes 

that are located in the other IoT zones. Figure 5.1 shows the processing 

efficiency of all the IoT devices in Watts / Flops.  Having a heterogeneous 

processing efficiency across the IoT zones is expected to give interesting 

trade-offs between minimising the network power consumption and 

minimising the processing power consumption. Table 5.1 and Table 5.2 give 

the processing and networking devices power consumption. 

 

Table 5. 1: Processing device parameters 

 

 

 

 

 

 

 

 

Devices Max(W) Idle(W) GFLOPS Efficiency 

(W/GFLOPS) 

IoT (Rpi 4 B 

4GB) 

7.3 [117]  2.56 

[117]  

13.5 

[117] 

0.35 
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Table 5. 2: Networking devices parameters 

 

 

Figure 5. 1: Processing efficiency at the IoT layer 

 

The results in Figure 5.2 show the network power consumption and the 

processing power consumption versus the number of requests under the 

network centric, server centric and hybrid approaches. The requests arrive 

one at a time and the existing requests are not reconfigured when allocating 

arriving requests. As expected, the network centric approach has resulted in 

Devices Max (W) Idle (W) Bitrate  

(Gbps) 

Efficiency 

(J/Gb) 

IoT Wi-Fi 

interface 

0.56 [117] 0.34 [117] 0.1 

[117] 

2.2 

ONU ( including 

Wi-Fi interface) 

15 [114] 9 [114] 10 [114] 0.6  

OLT 1940 [114] 60 [114] 8600 

[114] 

0.22 
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the minimum network power consumption as the VMs are embedded on the 

IoT devices that can be energy-efficiently connected regardless of the devices 

processing efficiency. The server centric and the hybrid approaches 

performed similarly as far as network power consumption is concerned as the 

processing power consumption is higher than the network power 

consumption. Compared to the hybrid approach and server centric approach, 

the network centric approach has saved up to 8% of the network power 

consumption.   

As for the processing power consumption, the network centric approach has 

resulted in a maximum increase of 16% compared to the server centric 

approach. As was previously mentioned and shown in Figure 5.1, the most 

efficient IoT devices were placed at zones other than the source node. Hence, 

with the server centric approach, the model is able to make better use of the 

processing IoT devices by packing them more efficiently regardless of the 

network overhead.   

In addition to the power consumption metric, we have also shown the number 

of accepted requests in Figure5.3 under all the three approaches for the 

sequential embedding scheme and the pre-emptive embedding scheme.  The 

architecture processing and networking resources were sufficient to host all 

the 20 requests under the pre-emotive embedding with hybrid approach. The 

server centric and the hybrid approaches have both rejected 4 requests. The 

sequential embedding network centric approach has resulted in accepting 19 

out of 20 requests. The improved performance of the network centric 

approach can be attributed to the better utilisation of the networking resources 

which becomes a bottleneck for the processing centric approach and hybrid 
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approach as they attempt to place the requests on the most efficient IoT 

devices therefore depleting the capacity of certain Wi-Fi APs.  

 

Figure 5. 2: (a) Network power consumption under the different 
approaches, (b) processing power consumption under the 

different approaches 
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Figure 5. 3: The number of accepted requests vs. different approaches 

 

5.4 Summary  

This chapter studied the embedding of DNNs VSRs in a non-pre-emptive 

scenario in an architecture of IoT devices only. We considered a scenario 

where requests are embedded sequentially, and the existing requests are not 

reconfigured. We considered three energy minimisation approaches to handle 

scarcity of resources: a network centric approach, a server centric approach 

and a hybrid approach. The results showed that the suboptimal utilisation of 

resources with sequential embedding resulted in blocking some requests. The 

network centric approach was shown to be the most efficient in serving 

requests under sequential embedding with a maximum increase in processing 

power consumption of 16%. 
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Chapter 6: Conclusions and Future Work 

 

In this chapter, the contributions made in this thesis will be summarised. The 

chapter will also suggest a number of topics for future research.  

6.1 Conclusions 

The work in this thesis has studied the energy efficient embedding of DNN 

VSRs over a heterogeneous CFN architecture under different scenarios and 

constraints to reflect DNN algorithm topologies and IoT capabilities.  

In Chapter 3, we investigated the power consumption associated with the 

embedding of DNN VSRs over a CFN architecture. The studies in this chapter 

were divided into two scenarios. Under Scenario 1, we looked at a scenario 

where DNN VSRs have a single IoT device generating data for the input layer 

of the DNN VSRs, whilst Scenario 2 considered multiple IoT devices 

generating data for the input layer. A MILP model is developed to optimise the 

embedding of DNN VSRs under the two scenarios. For Scenario 1, the 

optimisation of embedding over the CFN architecture resulted in up to 68% 

power savings (12% on average) compared to processing all the VMs in the 

cloud. For Scenario 2, the optimum embedding over the CFN architecture 

produced up to 60% power savings (10% on average). For both scenarios the 

results also showed that despite the number of source nodes and their 

geographical deployment, the distribution of the VMs among the IoT devices 

is favoured over consolidating them in higher capacity fog servers that were 

associated with a higher PUE value. Furthermore, we evaluated the energy 

efficiency of a fog architecture in embedding DNN VSRs. The results showed 
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that optimising the embedding over the fog architecture resulted in up to 44% 

(19% on average) and up to 20% (10% on average) increase in total power 

consumption compared to the optimum embedding over the CFN architecture 

considering Scenario 1 and Scenario 2, respectively.  This limited increase in 

power consumption indicates that improvement in the energy efficiency of fog 

nodes by similar magnitude, which is anticipated in the near future, would 

allow efficient use of fog nodes in embedding DNN VSRs. 

Chapter 4 extended the studies in Chapter 3 by studying the introduction of 

constrains on the VM allocation in IoT devices and evaluating the impact of 

the idle power proportion factor attributed to the DNN applications. The results 

showed that relaxing the VMs allocation constraint to allow two VMs to be 

embedded into a single IoT device allows all VSRs to be hosted in the IoT 

layer resulting in power savings up to 63% compared to constraining VMs 

allocation in IoT devices to a single VM. The results also show that under a 

single VM allocation constraint, the increase in idle power proportion factor to 

6% and 10% has resulted in 22% increase in total power consumption 

compared to an idle power proportion factor of 3%.  

Chapter 6 studied the embedding of DNNs VSRs in a non-pre-emptive 

scenario where newly arriving VSRs are embedded without reconfiguring 

existing VSRs. An architecture that contains IoT devices only was considered. 

We considered three energy minimisation approaches to handle scarcity of 

resources in IoT networks: A network centric approach, a server centric 

approach and a hybrid approach. The results showed that the network centric 

approach is the most efficient in serving requests and reducing blocking 

resulting from the suboptimal utilisation of resources with sequential 
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embedding. The increase in processing power consumption resulting from 

adopting the network centric approach is limited to a maximum of 16% 

6.2 Future Work   

This thesis provides a framework that can be the basis of further studies. In 

the following we suggest some future research directions:  

6.2.1 Delay sensitive services 

The embedding of DNN VSRs that serve delay sensitive applications and 

ultra-delay sensitive applications such as healthcare applications is an 

interesting topic to investigate. Serving such VSRs will require giving them 

priority over non delay sensitive applications and opting for less efficient 

processing nodes at the fog layer to ensure minimum delay. It would be 

interesting to study the trade-off between delay and power consumption in 

embedding delay sensitive DNN VSRs. 

 

6.2.2 Scarce energy sources for IoT devices 

IoT devices are typically either battery powered or powered by renewable 

energy. Hence, the scarce energy sources need to be efficiently managed to 

prolong the lifetime of the service provided by the IoT nodes and avoid service 

disruption. It would be interesting to consider a constraint on the energy 

availability of IoT devices when studying the embedding of DNN VSRs. 
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6.2.3 Heuristics Algorithms 

The MILP models in this thesis provide the optimal solution however they are 

very complex to execute, hence deploying these models in real-time scenarios 

is not practical. Therefore, it would be of interest to design heuristic-based 

algorithms of reduced computational complexity to enable real-time DNN 

VSRS embedding.  
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