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abstract

This thesis presents our research on the embedding method, a machine learning

technique that encodes real-world signals into high-dimensional vectors. Specifi-

cally, we focus on a family of algorithms whose backbone is one simple yet elegant

type of topological operation, the linear mapping, aka. linear transformation or

vector space homomorphism. Past studies have shown the usefulness of these ap-

proaches for modelling complex data, such as lexicons from different languages

and networks storing factual relations. However, they also exhibit crucial limita-

tions, including a lack of theoretical justifications, precision drop in challenging

setups, and considerable environmental impact during training, among others.

To bridge these gaps, we first identify the unnoticed link between the success

of linear Cross-Lingual Word Embedding (CLWE) mappings and the preservation

of the implicit analogy relation, using both theoretical and empirical evidence.

Next, we propose a post-hoc ℓ1-norm rotation step which substantially improves

the performance of existing CLWE mappings. Then, beyond solving conventional

questions where only modern languages are involved, we extend the application

of CLWE mappings to summarising lengthy and opaque historical text. Finally,

motivated by the learning procedure of CLWE models, we adopt linear mappings

to optimise Knowledge Graph Embeddings (KGEs) iteratively, significantly re-

ducing the carbon footprint required to train the algorithm.
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Chapter 1

Introduction

Learning encodings for multilingual text and relational data have been two long-

standing research goals in the field of Representation Learning (Shannon, 1948;

Benenfeld, 1968; Schreiber et al., 1993; Lample and Conneau, 2019; Wang et al.,

2021b). The aim of the former is to build a shared space for different languages, so

that closely located vectors correspond to semantically related linguistic elements,

while the motivation being to mitigate the communication barrier caused by the

diversity of human language. The latter takes relation-rich structures (e.g., a

network whose nodes are entities and edges are relations) as input and stores

the information in high-dimensional vector spaces. Such a relation encoder is an

essential component for complex knowledge-based systems.

Conventional methods that perform these two types of embeddings depend

upon human input from domain experts and tend to be unreliable in the real

world (Hermans, 1996; Gennari et al., 2003). Recently, with the rapid de-

velopment in the field of Representation Learning, techniques such as Cross-

Lingual Word Embedding (CLWE) and Knowledge Graph Embedding (KGE)

have emerged. These methods have not only performed remarkably well on main-

stream benchmarks, but also reduced the requirement of supervision to the min-

imum. In addition, some of the most promising CLWE and KGE approaches are

centred around the optimisation of linear mappings. This simple linear algebra

function could be easily calculated on modern computing devices such as GPUs;

therefore, it has become popular means of modelling multilingual and relational

1
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signals (Ruder et al., 2019; Wang et al., 2021b).

Nevertheless, these promising embedding methods are still limited from sev-

eral perspectives. Firstly, some fundamental hypotheses are not fully understood,

thus weakening the models’ explainability. For instance, ground-truth CLWE

mappings are often assumed to be linear, with both supporting (Mikolov et al.,

2013b; Glavaš et al., 2019) and contradicting (Nakashole, 2018; Wang et al.,

2021a) experimental results. A more in-depth exploration with theoretical in-

sights is thus needed to settle this debate. Secondly, mapping-based embeddings

are not robust enough, e.g., CLWEs may handle challenging setups ineffectively,

such as the alignment between polysemous entries (Søgaard et al., 2018). Thirdly,

although these embedding algorithms are utilised widely, their potential has not

been extensively verified yet. One example is that while CLWEs have success-

fully connected modern languages (even the low-resource ones), they have not

been applied in tackling problems where historical languages are available (cf.

§ 2.3). Last but not least, even though adopting linear mappings has reduced

modelling complexity, many embedding approaches still require massive computa-

tional resources, contributing to the emission of greenhouse gases (Strubell et al.,

2019).

This thesis, therefore, aims to find answers to the following research questions:

• When does the linear mapping make an appropriate approximating func-

tion for encoding complex signals such as multilingual lexicons? In particu-

lar, can we identify a condition, theoretically and empirically, under which

the structures of word embeddings for different languages are similar?

• How to improve the embedding precision in difficult scenarios? To achieve

this, we must understand what causes model failures through benchmarking

tests, case studies, error analyses, etc.

• Where can the linear-mapping-based embedding methods be applied be-

yond existing usages? How to evaluate system performance for new tasks?

What if the new tasks introduce new challenges?

• Why the embedding approaches are computationally expensive even with

the optimisation simplification by the linear mapping? Is it possible to
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design algorithms that could further reduce the computational overhead

and make the embedding methods “greener”?

• Whether the embedding model for one type of signal can motivate that

for another?

1.1 Contributions

This thesis presents novel methods, resources, and insights to explore research

questions listed in the previous section. Its main contributions are as follows:

• Introduces the previously unnoticed relationship between the linearity of

CLWE mappings and the preservation of encoded word analogies, and pro-

vides a theoretical analysis of this relationship.

• Describes the construction of a novel cross-lingual analogy test set with five

categories of word pairs aligned across twelve diverse languages.

• Provides empirical evidence of our claim on CLWE mapping linearity, and

introduces SPAE to estimate the analogy encoding preservation (and there-

fore the mapping linearity). We additionally demonstrate that SPAE can be

used as an indicator of the relationship between monolingual word embed-

dings, independent of trained CLWEs.

• Identifies the sensitivity against outlier data as one cause of modelling fail-

ure when CLWEs are designed using the conventional ℓ2-norm linear map-

pings.

• Introduces ℓ1-norm loss to the CLWE community for the first time, so as

to enhance the robustness of learned mappings.

• Develops a new ℓ1 norm optimisation scheme for CLWE refinement, which is

tested to be effective on word translation and cross-lingual transfer learning

benchmarks.

• Proposes a hitherto unexplored and challenging task, namely historical text

summarisation.
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• Constructs a high-quality summarisation corpus for historical de and zh,

with modern de and zh summaries by experts, to stimulate research in this

field.

• Designs a model for historical text summarisation that does not require

parallel supervision and provides a validated high-performing baseline for

future studies.

• Introduces three novel approaches to substantially reduce computational

overhead of embedding large and complex knowledge graphs: full batch

learning based on relational matrices, closed-form Orthogonal Procrustes

Analysis for KGEs, and non-negative-sampling training.

• Systemically benchmarks the proposed KGE algorithm against thirteen

strong baselines on two standard datasets, demonstrating that it retains

highly competitive performance with just order-of-minute training time and

emissions of less than making two cups of coffee.

• Successfully encodes both entity and relation information in a single vec-

tor space for the first time, thereby enriching the expressiveness of entity

embeddings and producing new insights into interpretability.

1.2 Thesis Overview

The remaining chapters of this thesis are structured as follows:

Chapter 2 reviews the background literature that is relevant to the remainder

of the thesis, including the advances and debates regarding CLWE (especially

the linear-mapping-based paradigm), the embeddings for both analogy relation

and real-world factual relations, as well as the background for defining a novel

cross-lingual transfer learning task, namely historical text summarisation.

Chapter 3 establishes a link between the linearity of CLWE mappings and the

preservation of encoded monolingual analogies. This is motivated by the obser-

vation that word analogies can be solved via the composition of semantics based
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Figure 1.1: Wiki vectors (see § 3.2.3) of English (left) and French (right) analogy
word pairs based on Principal Component Analysis (PCA) (Wold et al., 1987).
NB: We manually rotate the visualisation to highlight structural similarity.

on vector arithmetic (Mikolov et al., 2013c) and such linguistic regularities might

be transferable across languages. More specifically, we notice that if analogies

encoded in the embeddings of one language also appear in the embeddings of

another, the corresponding multilingual vectors tend to form similar shapes (see

Fig. 1.1), suggesting the CLWE mapping between them should be approximately

linear. In other words, we suspect that the preservation of analogy encoding

indicates the linearity of CLWE mappings.

Our hypothesis is verified both theoretically and empirically. We make a jus-

tification that the preservation of analogy encoding should be a sufficient and

necessary condition for the linearity of CLWE mappings. To provide empirical

validation, we first define indicators to qualify the linearity of the ground-truth

CLWE mapping (SLMP) and its preservation of analogy encoding (SPAE). Next,

we build a novel cross-lingual word analogy corpus containing five analogy cat-

egories (both semantic and syntactic) for twelve languages that pose pairs of

diverse etymological distances. We then benchmark SLMP and SPAE on three

representative series of word embeddings. In all setups tested, we observe a sig-

nificant correlation between SLMP and SPAE, which provides empirical support

for our hypothesis. With this insight, we offer explanations to why the linear-

ity assumption occasionally fails, and consequently, discuss how our research can

benefit the development of more effective CLWE algorithms. We also recommend

the use of SPAE to assess mapping linearity in CLWE applications.
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Chapter 4 is motivated by the known advantages of ℓ1 loss (aka. Manhat-

tan distance) over the conventional ℓ2 loss, as ℓ1 loss has been mathematically

demonstrated to be less affected by outliers (Rousseeuw and Leroy, 1987) and

empirically proven useful in computer vision and data mining (Aanæs et al.,

2002; De La Torre and Black, 2003; Kwak, 2008). Motivated by this insight,

this chapter proposes a simple yet effective post-processing technique to improve

the quality of CLWEs: adjust the alignment of any cross-lingual vector space to

minimise the ℓ1 loss without violating the orthogonality constraint. Specifically,

given existing CLWEs, we bidirectionally retrieve bilingual vectors and optimise

their Manhattan distance using a numerical solver. The approach can be applied

to any CLWEs, making the post-hoc refinement technique generic and applicable

to a wide range of scenarios. We believe this to be the first application of ℓ1 loss

to the CLWE problem.

To demonstrate the effectiveness of our method, we select four state-of-the-

art baselines and conduct comprehensive evaluations in both supervised and

unsupervised settings. Our experiments involve ten languages from diverse

branches/families and embeddings trained on corpora of different domains. In

addition to the standard Bilingual Lexicon Induction (BLI) benchmark, we also

investigate a downstream task, namely cross-lingual transfer for Natural Lan-

guage Inference (NLI). In all setups tested, our algorithm significantly improves

the performance of strong baselines. Finally, we provide an intuitive visualisa-

tion illustrating why ℓ1 loss is more robust than it ℓ2 counterpart when refining

CLWEs.

Chapter 5 addresses the long-standing need for historical text summarisation

through machine summarisation techniques for the first time. We built a high-

quality dataset containing historical news articles and corresponding modern sum-

maries. The languages considered are German|de and Chinese|zh, mainly due to

the following reasons. First, they both have rich textual heritage and accessi-

ble (monolingual) training resources for historical and modern language forms.

Second, they serve as outstanding representatives of two distinct writing systems

(de for alphabetic and zh for ideographic languages), and investigating them

can lead to generalisable insights for a wide range of other languages. Third, we



1.2 Thesis Overview 7

have access to linguistic experts in both languages, for composing high-quality

gold-standard modern-language summarises for de and zh news stories published

hundreds of years ago, and for evaluating the output of machine summarisers.

In order to tackle the challenge of a limited amount of resources available for

model training (e.g., we have summarisation training data only for the monolin-

gual task with modern languages, and very limited parallel corpora for modern

and historical forms of the languages), we propose a transfer-learning-based ap-

proach which can be bootstrapped even without cross-lingual supervision. To our

knowledge, our work is the first to consider the task of historical text summarisa-

tion. As a result, there are no directly relevant methods to compare against. We

instead implement two state-of-the-art baselines for standard cross-lingual sum-

marisation, and conduct extensive automatic and human evaluations to show that

our proposed method yields better results. Our approach, therefore, provides a

strong baseline for future studies on this task to benchmark against.

Chapter 6 is motivated by research in CLWE mappings. To alleviate the

computational cost of existing KGE models, we introduce ProcrustEs, a

lightweight, fast, and eco-friendly KGE training technique. ProcrustEs is built

upon three novel techniques. First, to reduce the batch-wise computational over-

head, we propose to parallelise batches by grouping tuples according to their

relations, which ultimately enables efficient full batch learning. Second, we turn

to a closed-form solution for Orthogonal Procrustes Problem to boost the embed-

ding training, which has never been explored in the context of KGEs. Third, to

break though the bandwidth bottleneck, our algorithm is allowed to be trained

without negative samples.

To verify the effectiveness and efficiency of our proposed method, we bench-

mark two popular datasets (WN18RR and FB15k-237) against thirteen strong

baselines. Experimental results show that ProcrustEs yields performance com-

petitive with the state-of-the-art while also reducing training time by up to 98.4%

and the carbon footprint by up to 99.3%. In addition, we found that our algo-

rithm can produce easily interpretable entity embeddings with richer semantics

than previous approaches.
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Chapter 7 summarises the highlights of this thesis and discusses potential

future work.

1.3 Published Material

Peer-reviewed publications contributing to this thesis:

• Chapter 3: Xutan Peng, Mark Stevenson, Chenghua Lin, Chen Li. Un-

derstanding Linearity of Cross-Lingual Word Embedding Mappings. Trans-

actions on Machine Learning Research (TMLR), 2022. (Peng et al., 2022)

• Chapter 4: Xutan Peng, Chenghua Lin, Mark Stevenson. Cross-Lingual

Word Embedding Refinement by ℓ1 Norm Optimisation. Proceedings of

Conference of the North American Chapter of the Association for Com-

putational Linguistics: Human Language Technologies (NAACL-HLT),

2021. (Peng et al., 2021b)

• Chapter 5: Xutan Peng, Yi Zheng, Chenghua Lin, Advaith Siddharthan.

Summarising Historical Text in Modern Languages. Proceedings of Con-

ference of the European Chapter of the Association for Computational Lin-

guistics (EACL), 2021. (Peng et al., 2021c)

• Chapter 6: Xutan Peng, Guanyi Chen, Chenghua Lin, Mark Stevenson.

Highly Efficient Knowledge Graph Embedding Learning with Orthogonal

Procrustes Analysis. Proceedings of Conference of the North American

Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies (NAACL-HLT), 2021. (Peng et al., 2021a)



Chapter 2

Background

This chapter describes a variety of literature closely related to the thesis. First, in

§ 2.1 we review the research status of CLWE techniques, especially those centred

around obtaining the optimal mapping function. We highlight the ongoing debate

on whether a CLWE mapping should be assumed linear, which is the key topic in

Chapter 3. We also discuss the popular ℓ2-norm training objective as it is relevant

to the post-hoc CLWE refinement algorithm proposed in Chapter 4. Next, sec-

tion § 2.2 covers embedding methods for modelling two representative categories

of real-world relations: semantic word analogies and the explicit factual triples

from knowledge graphs. They are respectively associated with work described

in Chapters 3 and 6. Since the major advantage of the algorithm proposed in

Chapter 6 is the significantly boosted training speed and reduced environmental

impact, in § 2.2.3 we investigate recent advances in making relational embed-

dings, in particular KGEs, computationally, and therefore also energy, efficient.

Finally, § 2.3 presents previous work on modelling historical text using language

technologies, the main task in Chapter 5, in addition to work in a related area,

cross-lingual summarisation.

2.1 Embedding Cross-Lingual Lexicons

CLWEs encode words from two or more languages in a shared high-dimensional

space in which vectors representing lexical items with similar meanings (regard-

9
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less of language) are closely located. Compared with more recently and complex

techniques such as cross-lingual Pre-trained Language Models (PLMs), CLWE

is orders of magnitude more efficient in terms of training corpora. For example,

Kim et al. (2020) show that inadequate monolingual data size (fewer than one

million sentences) is likely to lead to the collapsed performance of XLM (Lample

and Conneau, 2019) even for etymologically close language pairs. Meanwhile,

CLWE can easily align word embeddings for languages such as African Amharic

and Tigrinya for which only millions of tokens are available (Zhang et al., 2020).

CLWE training also requires much less computational power, e.g., XLM-R (Con-

neau et al., 2020) was trained on 500× Tesla V100 GPUs, whereas the training of

VecMap (Artetxe et al., 2018) can be finished on a single Titan Xp GPU. More-

over, CLWEs tend to perform better than even the state-of-the-art cross-lingual

PLMs on lexical tasks (e.g., BLI and entity linking) (Vulić et al., 2020a), as it

is easier to access the cross-lingual lexical knowledge stored in the former (Vulić

et al., 2023). As a result, the topic has received significant attention as a promising

means to support Natural Language Processing (NLP) for low-resource languages

(including ancient languages) and has been used for a range of applications, e.g.,

Machine Translation (Herold et al., 2021), Sentiment Analysis (Sun et al., 2021),

Question Answering (Zhou et al., 2021) and Text Summarisation (Peng et al.,

2021c).

2.1.1 Evolution of CLWE Algorithms

Some pioneer studies on constructing language-independent representations focus

on abstract linguistic labels (Aone and McKee, 1993). In the machine translation

community, the idea of extracting word translation probabilities from parallel

sentences is also frequently visited (e.g., Brown et al. (1993) and Och and Ney

(2003)). Similarly, the field has witnessed efforts of learning aligned representa-

tions using cross-lingual documents, such as Littman et al. (1998) and De Smet

et al. (2011). Following this strand, since the popularity of neural-based methods,

one paradigm of generating CLWEs is to train shared semantic representations

with multilingual texts aligned at sentence or document level (Vulić and Korho-

nen, 2016; Upadhyay et al., 2016). Although this research direction has been well
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Figure 1: Distributed word vector representations of numbers and animals in English (left) and Spanish (right). The five
vectors in each language were projected down to two dimensions using PCA, and then manually rotated to accentuate
their similarity. It can be seen that these concepts have similar geometric arrangements in both spaces, suggesting that
it is possible to learn an accurate linear mapping from one space to another. This is the key idea behind our method of
translation.

that cat is an animal smaller than a dog), there is
often a strong similarity between the vector spaces.
The similarity of geometric arrangments in vector
spaces is the key reason why our method works well.

Our proposed approach is complementary to the
existing methods that use similarity of word mor-
phology between related languages or exact context
matches to infer the possible translations (Koehn
and Knight, 2002; Haghighi et al., 2008; Koehn
and Knight, 2000). Although we found that mor-
phological features (e.g., edit distance between word
spellings) can improve performance for related lan-
guages (such as English to Spanish), our method
is useful for translation between languages that are
substantially different (such as English to Czech or
English to Chinese).

Another advantage of our method is that it pro-
vides a translation score for every word pair, which

can be used in multiple ways. For example, we can
augment the existing phrase tables with more candi-
date translations, or filter out errors from the trans-
lation tables and known dictionaries.

2 The Skip-gram and Continuous
Bag-of-Words Models

Distributed representations for words were proposed
in (Rumelhart et al., 1986) and have become ex-
tremely successful. The main advantage is that the
representations of similar words are close in the vec-
tor space, which makes generalization to novel pat-
terns easier and model estimation more robust. Suc-
cessful follow-up work includes applications to sta-
tistical language modeling (Elman, 1990; Bengio et
al., 2003; Mikolov, 2012), and to various other NLP
tasks such as word representation learning, named
entity recognition, disambiguation, parsing, and tag-

Figure 2.1: Distributed word vector representations of numbers and animals in
English (left) and Spanish (right). Taken from Mikolov et al. (2013b).

studied, the parallel setup requirement for model training is expensive, and hence

impractical for low-resource languages.

Recent years have seen an increase in interest in projection-based methods.

Motivated by the observation that word embeddings for different languages tend

to be similar in structure (see Fig. 2.1) (Mikolov et al., 2013b), many researchers

have assumed that the mappings between cross-lingual word vectors are lin-

ear (Faruqui and Dyer, 2014; Lample et al., 2018b; Li et al., 2021d). Since the

input embeddings can be generated independently using monolingual corpora

only, projection-based methods reduce the supervision required for training and

offer a viable solution for low-resource scenarios.

Xing et al. (2015) showed that the precision of the learned CLWEs can be

improved by constraining the mapping function to be orthogonal, which is for-
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malised as the so-called ℓ2 Orthogonal Procrustes Analysis (OPA):

argmin
M∈O

∥AM−B∥2, (2.1)

where M is the CLWE mapping, O denotes the orthogonal manifold (aka. the

Stiefel manifold (Chu and Trendafilov, 2001)), and A and B are matrices com-

posed using vectors from source and target embedding spaces.

While Xing et al. (2015) exploited an approximate and relatively slow

gradient-based solver, more recent approaches such as Artetxe et al. (2016) and

Smith et al. (2017) introduced an exact closed-form solution for Eq. (2.1). Orig-

inally proposed by Schönemann (1966), it utilises Singular Value Decomposition

(SVD):

M⋆ = UV⊺,with UΣV⊺ = SVD(A⊺B), (2.2)

where M⋆ denotes the ℓ2-optimal mapping matrix. The efficiency and effective-

ness of Eq. (2.2) have led to its application within many other approaches, e.g.,

Ruder et al. (2018), Joulin et al. (2018) and Glavaš et al. (2019). In particu-

lar, Proc-B (Glavaš et al., 2019), a supervised CLWE framework that simply

applies multiple iterations of ℓ2 OPA, has been demonstrated to produce very

competitive performance on various benchmark tasks including BLI as well as

cross-lingual transfer for NLI and information retrieval.

To achieve more accurate alignment between embedding spaces, effective nor-

malisation techniques are applied (Xing et al., 2015; Artetxe et al., 2016; Ruder

et al., 2019). On the one hand, “length standardisation” enforces all word vectors

to have the unit length. On the other hand, “mean centring” (for each language)

subtracts the average monolingual word vector from all word embeddings, so that

this mean vector becomes the origin of the vector space. These steps have the

effect of simplifying the mapping from being affine (i.e., equivalent to a shifting

operation plus a linear mapping) to linear by removing the shifting operation.

While the aforementioned approaches still require some weak supervision (i.e.,

seed dictionaries), there have also been some successful attempts to train CLWEs

in a completely unsupervised fashion. For instance, Lample et al. (2018b) pro-

posed a system called Muse, which bootstraps CLWEs without any bilingual
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signal through adversarial learning. VecMap (Artetxe et al., 2018) applied a

self-learning strategy to iteratively compute the optimal mapping and then re-

trieve bilingual dictionary. Comparing Muse and VecMap, the latter tends to

be more robust as its similarity-matrix-based heuristic initialisation is more stable

in most cases (Glavaš et al., 2019; Ruder et al., 2019). Very recently, some studies

bootstrapped unsupervised CLWEs by jointly training word embeddings on con-

catenated corpora of different languages and achieved good performance (Wang

et al., 2020).

2.1.2 Debates on Linearity of CLWE Mappings

Since Mikolov et al. (2013b) discovered that the vectors of word translations ex-

hibit similar structures across different languages, researchers made use of this

by assuming that mappings between multilingual embeddings could be modelled

using simple linear transformations. Although models based on this assumption

have demonstrated strong performance, it has recently been questioned. Re-

searchers have claimed that the structure of multilingual word embeddings may

not always be similar. As follows we list recent works that have cast doubt on

this linearity assumption and further led researchers to experiment with the use

of non-linear mappings. Nakashole and Flauger (2018) and Wang et al. (2021a)

pointed out that structural similarities may only hold across particular regions of

the embedding spaces rather than over their entirety. Søgaard et al. (2018) exam-

ined word vectors trained using different corpora, models and hyper-parameters,

and concluded configuration dissimilarity between the monolingual embeddings

breaks the assumption that the mapping between them is linear. Patra et al.

(2019) investigated various language pairs and discovered that a higher etymo-

logical distance is associated with degraded the linearity of CLWE mappings.

Vulić et al. (2020b) additionally argued that factors such as limited monolingual

resources may also weaken the linearity assumption.

These findings motivated work on designing non-linear mapping functions in

an effort to improve CLWE performance. For example, Nakashole (2018) and

Wang et al. (2021a) relaxed the linearity assumption by combining multiple lin-

ear CLWE mappings; Patra et al. (2019) developed a semi-supervised model that
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loosened the linearity restriction; Lubin et al. (2019) attempted to reduce the

dissimilarity between multilingual embedding manifolds by refining learnt dictio-

naries; Glavaš and Vulić (2020) first trained a globally optimal linear mapping,

then adjusted vector positions to achieve better accuracy; Mohiuddin et al. (2020)

used two independently pre-trained auto-encoders to introduce non-linearity to

CLWE mappings; Ganesan et al. (2021) obtained inspirations via the back trans-

lation paradigm, hence framing CLWE training as to explicitly solve a non-linear

and bijective transformation between multilingual word embeddings. Despite

these non-linear mappings outperforming their linear counterparts in many se-

tups, in some settings the linear mappings still seem more successful, e.g., the

alignment between Portuguese and English word embeddings in Ganesan et al.

(2021). Moreover, training non-linear mappings is typically more complex and

thus requires more computational resources.

Albeit at the significant recent attention to this problem by the research com-

munity, to the best of our knowledge, there has been no in-depth analysis of the

conditions for the linearity assumption. The main cause of this research gap is

that the majority of previous CLWE work has focused on empirical findings. In

Chapter 3, we make the first attempt to explore this direction by providing both

theoretical and empirical contributions.

2.1.3 The ℓ2 Refinement Algorithm

As aforementioned in § 2.1.1 and § 2.1.2, although there are debates around

the suitability, or otherwise, of linear mappings, these so-called projection-based

approaches are still the most successful CLWE models, as learning mappings

between monolingual word vectors requires very little, or even zero, cross-lingual

supervision (Lample et al., 2018b; Artetxe et al., 2018; Glavaš et al., 2019).

Mainstream projection-based CLWE models typically identify orthogonal

mappings by minimising the topological dissimilarity between source and tar-

get embeddings based on ℓ2 loss (aka. Frobenius loss or squared error) (Glavaš

et al., 2019; Ruder et al., 2019). In practice, CLWE models often apply ℓ2 refine-

ment, a post-processing step shown to improve the quality of the initial alignment

(see Ruder et al. (2019) for the survey). Given existing CLWEs {XLA , XLB} for
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languages LA and LB, bidirectionally one can use approaches such as the classic

nearest-neighbour algorithm, the inverted softmax (Smith et al., 2017) and the

cross-domain similarity local scaling (CSLS) (Lample et al., 2018b) to retrieve two

bilingual dictionaries DLA 7→LB and DLB 7→LA . Note that word pairs in DLA 7→LB∩DLB 7→LA

are highly reliable, as they form “mutual translations”. Next, one can compose

bilingual embedding matrices A and B by aligning word vectors (rows) using the

above word pairs. Finally, a new orthogonal mapping is learned to fit A and B

based on least-square regressions, i.e., the optimisation task posed in Eq. (2.1).

Early applications of ℓ2 refinement applied a single iteration, e.g. Vulić and

Korhonen (2016). Due to the wide adoption of the closed-form ℓ2 OPA solution

(cf. Eq. (2.2)), recent methods perform multiple iterations. The iterative ℓ2

refinement strategy is an important component of approaches that bootstrap

from small or null training lexicons (Artetxe et al., 2018). However, a single step

of refinement is often sufficient to create suitable CLWEs (Lample et al., 2018b;

Glavaš et al., 2019).

This learning strategy has two advantages. Besides the fact that adding the

orthogonality constraint to the mapping function has been demonstrated to sig-

nificantly enhance the quality of CLWEs (Xing et al., 2015), the existence of a

closed-form solution to the ℓ2 optima (Schönemann, 1966) greatly simplifies the

computation required (Artetxe et al., 2016; Smith et al., 2017).

Despite the popularity, work in various application domains has noted that

ℓ2 loss is not robust to noise and outliers. It is widely known in computer vision

that ℓ2-loss-based solutions can severely exaggerate noise, leading to inaccurate

estimates (Aanæs et al., 2002; De La Torre and Black, 2003). In data mining, PCA

using ℓ2 loss has been shown to be sensitive to the presence of outliers in the input

data, degrading the quality of the feature space produced (Kwak, 2008). Previous

studies have demonstrated that the processes used to construct monolingual and

cross-lingual embeddings may introduce noise (e.g. via reconstruction error (Allen

and Hospedales, 2019) and structural variance (Ruder et al., 2019)), making the

presence of outliers more likely. Empirical analysis of CLWEs also demonstrates

that more distant word pairs (which are more likely to be outliers) have more

influence on the behaviour of ℓ2 loss than closer pairs. This raises the question

of the appropriateness of ℓ2 loss functions for CLWEs.
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2.2 Embedding Real-World Relations

2.2.1 Encoding Analogies

In cognitive science, analogy is considered as a central method of human activities,

such as perception (Chalmers et al., 1992), memory (Gentner, 1983), communi-

cation (Juthe, 2005), problem solving (Holyoak and Thagard, 1994), and decision

making (Holland et al., 1987). Therefore, it has received significant focus from

the community of machine intelligence research, such as Computer Vision (Mayer,

2009; Johnson et al., 2017) and Robotics (Kiryazov et al., 2007; Cuperman and

Verner, 2019). As for NLP, analogy has been employed as a popular intrinsic

tool (Ashley, 1988; Miclet et al., 2008), especially since the observation that it

can be represented using word embeddings and vector arithmetic (Mikolov et al.,

2013c). A popular example based on the analogy “king is to man as queen is to

woman” shows that the vectors representing the four terms (xking, xman, xqueen

and xwoman) exhibit the following relation:

xking − xman ≈ xqueen − xwoman. (2.3)

Since this discovery, the task of analogy completion has commonly been em-

ployed to evaluate the quality of pre-trained word embeddings (Mikolov et al.,

2013c; Pennington et al., 2014; Levy and Goldberg, 2014a). This line of re-

search has directly benefited downstream applications (e.g., representation bias

removal (Prade and Richard, 2021)) and other relevant domains (e.g., automatic

knowledge graph construction (Wang et al., 2021b)). Theoretical analysis has

demonstrated a link between embeddings’ analogy encoding and the Pointwise

Mutual Information of the training corpus (Arora et al., 2016; Gittens et al., 2017;

Allen and Hospedales, 2019; Ethayarajh et al., 2019; Fournier and Dunbar, 2021).

Nonetheless, as far as we are aware, the connection between the preservation of

analogy encoding and the linearity of CLWE mappings has not been previously

investigated.
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Figure 2.2: A knowledge graph containing the British Royal Family. This screen-
shot is taken from https://demo.staple-api.org/ on 8th September, 2022.

2.2.2 Encoding Knowledge Graphs

Knowledge Graphs are core to many NLP tasks and downstream applications,

such as E-commerce (Yu et al., 2022a), question answering (Saxena et al., 2020),

information management (Li et al., 2020), dialogue agents (He et al., 2017), search

engines (Dong et al., 2014) and recommendation systems (Luo et al., 2022). Fac-

tual relations stored in a knowledge graph are always in the format of tuples con-

sisting of one head entity, one tail entity (both are nodes in knowledge graphs)

and a relation (an edge in knowledge graphs) between them (see an exmaple

in Fig. 2.2). KGEs learn representations of relations and entities in a knowl-

edge graph, which are then utilised in downstream tasks like predicting missing

relations (Bordes et al., 2013; Sun et al., 2019; Tang et al., 2020).

The application of deep learning has led to a growing body of studies con-

ducted on the matter of training KGEs. Roughly speaking, these KGE methods

https://demo.staple-api.org/
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fall into two categories: distance-based models and semantic matching models.

The line of researches regarding distance-based models, which measures plau-

sibility of tuples by calculating distance between entities with additive functions,

was initialised the KGE technique proposed by Bordes et al. (2013), namely,

TransE. After that, a battery of follow-ups have been proposed, including ex-

ample models like TransH (Wang et al., 2014), TransR (Lin et al., 2015), and

TransD (Ji et al., 2015). These algorithms have enhanced ability on modelling

complex relations by means of projecting entities into different (more complex)

spaces or hyper-planes. More recently, a number of studies attempt to further

boost the quality of KGEs through a way of adding orthogonality constraints (Sun

et al., 2019; Tang et al., 2020) for maintaining the relation embedding matrix be-

ing orthogonal, which is also the paradigm we follow in Chapter 6.

In contrast, semantic matching models measure the plausibility of tuples by

computing the similarities between entities with multiplicative functions. Such

an similarity function could be realised using, for example, a bilinear function or a

neural network. Typical models in this line includes DistMult (Yang et al., 2015),

ComplEx (Trouillon et al., 2016), ConvE (Dettmers et al., 2018), TuckER (Bal-

azevic et al., 2019), and QuatE (Zhang et al., 2019).

2.2.3 Improving Efficiency of Relation Encoding

The recent growth in energy requirements for NLP algorithms in general has led

to the recognition of the importance of computationally cheap and eco-friendly

approaches (Strubell et al., 2019). Regarding the encodings of semantic rela-

tions (e.g., word analogies (Ushio et al., 2021)), the increase in computational

requirements can, to a large extent, be attributed to the popularity of massive

pre-trained language models (e.g., BERT (Devlin et al., 2019) and GPT-3 (Brown

et al., 2020)) that require significant resources to train. A number of solutions

have been proposed such as reducing the number of parameters the model con-

tains (Sanh et al., 2019; Bender et al., 2021; Yao et al., 2022).

As for the encoding of factual relations, e.g., KGE, all popular approaches

described in § 2.2.2 share the same issue of their low speed in both training and in-

ference phases (see Rossi et al. (2021) for a controlled comparison of the efficiency
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across different methodologies). In response to this issue, some state-of-the-art

KGE algorithms attempted to accelerate their inference speed either through

making use of the high-speed of the convolutional neural networks (Dettmers

et al., 2018) or through reducing the scale of parameters of the model (Zhang

et al., 2019; Zhu et al., 2020b).

In terms of the acceleration of model training, a number of attempts have

been conducted in a mostly engineering way. These well-engineered systems

adopt linear KGE methods to multi-thread versions in other to make full use

of the hardware capacity (Joulin et al., 2017b; Han et al., 2018), which acceler-

ates training time of, for example, TransE, from more than an hour to only a

couple of minutes. Nonetheless, this line of work has two major issues. One is

that training models faster in this way does not necessarily mean they also emit

less, as process scheduling of a multi-thread system can be energy-consuming.

The other is that they are all extensions of KGE models based on linear clas-

sifiers only (also noting that these models are naturally much faster than other

KGE models) without any algorithmic contribution, which leading to the perfor-

mance of the resulting models limited by the upper bound of models based on

linear classifiers (e.g., recent state-of-the-art methods in Tab. 6.2, such as RotH,

all belong to other families of KGE approaches).

2.3 Summarising Historical Text

The process of text summarisation is fundamental to research into history, ar-

chaeology, and digital humanities (South, 1977). Researchers can better gather

and organise information and share knowledge by first identifying the key points

in historical documents. However, this can cost a lot of time and effort. On

one hand, due to cultural and linguistic variations over time, interpreting histor-

ical text can be a challenging and energy-consuming process, even for those with

specialist training Gray et al. (2011). To compound this, historical archives can

contain narrative documents on a large scale, adding to the workload of manually

locating important elements (Gunn, 2011). To reduce these burdens, specialised

software has been developed recently, such as MARKUS (Ho and Weerdt, 2014)

and DocuSky (Tu et al., 2020). These toolkits aid users in managing and anno-
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tating documents but still lack functionalities to automatically process texts at

a semantic level. As for the advances in terms of new algorithms, please check

§ 2.3.1.

Historical text summarisation can be regarded as a special case of cross-lingual

summarisation (Leuski et al., 2003; Orăsan and Chiorean, 2008; Cao et al., 2020),

a long-standing research topic whereby summaries are generated in a target lan-

guage from documents in different source languages (more detailed introductions

can be found in § 2.3.2). However, historical text summarisation posits some

unique challenges. Cross-lingual (i.e., across historical and modern forms of a

language) corpora are rather limited (Gray et al., 2011) and therefore historical

texts cannot be handled by traditional cross-lingual summarisers, which require

cross-lingual supervision or at least large summarisation datasets in both lan-

guages (Cao et al., 2020). Further, language use evolves over time, including vo-

cabulary and word spellings and meanings (Gunn, 2011), and historical collections

can span hundreds of years. Writing styles also change over time. For instance,

while it is common for today’s news stories to present important information in

the first few sentences, a pattern exploited by modern news summarisers (See

et al., 2017), this was not the norm in older times (White, 1998).

2.3.1 Text Processing for Historical Languages

Early NLP studies for historical documents focus on spelling normalisation (Pi-

otrowski, 2012), machine translation (Oravecz et al., 2010), and sequence labelling

applications, e.g., part-of-speech tagging (Rayson et al., 2007) and named entity

recognition (Sydow et al., 2011). Since the rise of neural networks, a broader

spectrum of applications such as sentiment analysis (Hamilton et al., 2016), in-

formation retrieval (Pettersson et al., 2016), and relation extraction (Opitz et al.,

2018) have been developed.

Chapter 5 adds to this growing literature in two ways. First, much of the work

on historical text processing is focused on English|en, and work in other languages

is still relatively unexplored (Piotrowski, 2012; Rubinstein, 2019). Second, the

task of historical text summarisation has never been tackled before, to the best

of our knowledge. A lack of non-en annotated historical resources is a key reason
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for the former, and for the latter, resources do not exist in any language. We hope

to spur research on historical text summarisation and in particular for non-en

languages through this work.

2.3.2 Cross-Lingual Summarisation and Beyond

The traditional strands of cross-lingual text summarisation systems design

pipelines which learn to translate and summarise separately (Leuski et al., 2003;

Orăsan and Chiorean, 2008). However, such paradigms suffer from the error

propagation problem, i.e., errors produced by upstream modules may accumu-

late and degrade the output quality (Zhu et al., 2020a). In addition, parallel data

to train effective translators is not always accessible (Cao et al., 2020). Recently,

end-to-end methods have been applied to alleviate this issue. The main challenge

for this research direction is the lack of direct corpora, leading to attempts such

as zero-shot learning (Duan et al., 2019), multi-task learning (Zhu et al., 2019),

and transfer learning (Cao et al., 2020). Although training requirements have

been relaxed by these methods, our extreme setup with summarisation data only

available for the target language and very limited parallel data, has never been

visited before.
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Chapter 3

Understanding Linearity of

CLWE Mappings

The technique of CLWE plays a fundamental role in tackling NLP challenges

for low-resource languages. Its dominant approaches assumed that the relation-

ship between embeddings could be represented by a linear mapping, but there

has been no exploration of the conditions under which this assumption holds.

Such a research gap becomes very critical recently, as it has been evidenced

that relaxing mappings to be non-linear can lead to better performance in some

cases. We, for the first time, present a theoretical analysis that identifies the

preservation of analogies encoded in monolingual word embeddings as a neces-

sary and sufficient condition for the ground-truth CLWE mapping between those

embeddings to be linear. On a novel cross-lingual analogy dataset that covers

five representative analogy categories for twelve distinct languages, we carry out

experiments which provide direct empirical support for our theoretical claim.

These results offer additional insight into the observations of other researchers

and contribute inspiration for the development of more effective cross-lingual

representation learning strategies. The resources for this chapter are available at

https://github.com/Pzoom522/xANLG.
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3.1 Theoretical Basis

We denote a ground-truth CLWE mapping asM : X→ Y, where X and Y are

monolingual word embeddings independently trained for languages LX and LY,

respectively.

Proposition. Encoded analogies are preserved during the CLWE mapping

M⇐⇒M is affine.

Remarks. Following Eq. (2.3), the preservation of analogy encoding under a

mapping can be formalised as

xα − xβ = xγ − xθ =⇒M(xα)−M(xβ) =M(xγ)−M(xθ), (3.1)

where xα,xβ,xγ ,xθ ∈ X.

IfM is affine, for d-dimensional monolingual embeddings X we have

M(x) := Mx+ b, (3.2)

where x ∈ X, M ∈ Rd×d, and b ∈ Rd×1.

Proof for Eq. (3.1) =⇒ Eq. (3.2). To begin with, by adopting the “mean

centring” operation in § 2.1.1, we shift the coordinates of the space of X, ensuring

M(⃗0) = 0⃗. (3.3)

This step greatly simplifies the derivations afterwards, because from now on we

just need to demonstrate thatM is a linear mapping, i.e., it can be written asMx.

By definition, this is equivalent to showing thatM preserves both the operations

of addition (aka. additivity) and scalar multiplication (aka. homogeneity).
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Additivity can be proved by observing that (xi+xj)−xj = xi−0⃗ and therefore,

(xi + xj)− xj = xi − 0⃗
Eq. (3.1)
=====⇒M(xi + xj)−M(xj) =M(xi)−M(⃗0)

Eq. (3.3)
=====⇒M(xi + xj) =M(xi) +M(xj). (3.4)

Homogeneity can be proved in four steps.

• Step 1: Observe that 0⃗−xi = −xi − 0⃗, similar to Eq. (3.4) we can show that

0⃗− xi = −xi − 0⃗
Eq. (3.1)
=====⇒M(⃗0)−M(xi) =M(−xi)−M(⃗0)

Eq. (3.3)
=====⇒
×(−1)

M(xi) = −M(−xi). (3.5)

• Step 2: Using mathematical induction, for arbitrary xi, we show that

∀m ∈ N+, M(mxi) = mM(xi) (3.6)

holds, where N+ is the set of positive natural numbers, as

Base Case: Trivially holds when m = 1.

Inductive Step: Assume the inductive hypothesis that m = k (k ∈ N+), i.e.,

M(kxi) = kM(xi). (3.7)

Then, as required, when m = k + 1,

M
(
(k + 1)xi

) Eq. (3.4)
=====M(kxi) +M(xi)

Eq. (3.7)
===== kM(xi) +M(xi) = (k + 1)M(xi).

• Step 3: We further justify that

∀n ∈ N+, M(
xi

n
) =
M(xi)

n
, (3.8)
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as

M(
xi

n
) =M

(
xi + (−n− 1

n
xi)

) Eq. (3.4)
=====M(xi) +M(−n− 1

n
xi)

Eq. (3.5)
=====M(xi)−M(

n− 1

n
xi)

Eq. (3.6)
=====M(xi)− (n− 1)M(

xi

n
)

directly yieldsM(xi

n
) = M(xi)

n
, i.e., Eq. (3.8).

• Step 4: Considering the set of rational numbers Q = {0} ∪ {±m
n
|∀m,n},

Eqs. (3.3), (3.5), (3.6) and (3.8) jointly justifies the homogeneity of M for Q.

Because Q ⊂ R is a dense set, homogeneity ofM also holds over R, see Kleiber

and Pervin (1969).

Finally, combined with the additivity that has been already justified above,

linearity of CLWE mappingM is proved, i.e., Eq. (3.1) =⇒ Eq. (3.2).

Proof for Eq. (3.2) =⇒ Eq. (3.1). Justifying this direction is quite straight-

forward:

xα − xβ = xγ − xθ =⇒Mxα −Mxβ = Mxγ −Mxθ

=⇒Mxα + b− (Mxβ + b) = Mxγ + b− (Mxθ + b)

=⇒M(xα)−M(xβ) =M(xγ)−M(xθ).

Summarising the proofs for both the forward and reverse directions, we con-

clude that the proposition holds.

Please note, the high-level assumption of our derivations is that word embed-

ding spaces can be treated as continuous vector spaces, an assumption commonly

adopted in previous work, e.g., Levy and Goldberg (2014b), Hashimoto et al.

(2016), Zhang et al. (2018), and Ravfogel et al. (2020). Nevertheless, we argue

that the inherent discreteness of word embeddings should not be ignored, e.g., an

interpolation between two word vectors may not always correspond to an existing

word from the vocabulary (Li et al., 2021c). The following sections complement

this theoretical insight via experiments which confirm the claim holds empirically.
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3.2 Experiment

Our experimental protocol assesses the linearity of the mapping between each

pair of pre-trained monolingual word embeddings. We also quantify the extent

to which this mapping preserves encoded analogies, i.e., satisfies the condition

of Eq. (3.1). We then analyse the correlation between these two indicators. A

strong correlation provides evidence to support our theory, and vice versa. The

indicators used are described in § 3.2.1. Unfortunately, there are no suitable

publicly available corpora for our proposed experiments, so we develop a novel

word-level analogy test set that is fully parallel across languages, namely xANLG

(see § 3.2.2). The pre-trained embeddings used for the tests are described in

§ 3.2.3.

3.2.1 Indicators

Linearity of CLWE Mapping

Direct measurement of the linearity of a ground-truth CLWE mapping is challeng-

ing. One relevant approach is to benchmark the similarity between multilingual

word embedding, where the mainstream and state-of-the-art indicators are the so-

called spectral-based algorithms (Søgaard et al., 2018; Dubossarsky et al., 2020).

However, such methods assume the number of tested vectors to be much larger

than the number of dimensions, which does not apply in our scenario (see § 3.2.2).
Therefore, we choose to evaluate linearity via the goodness-of-fit of the optimal

orthogonal CLWE mapping (cf. Smith et al. (2017)), which is measured as

SLMP := −||M⋆X − Y ||F/r with M⋆ = argmin
M
||MX − Y ||F (3.9)

where || · ||F and r denotes the Frobenius norm and the number of X’s rows.

To obtain matrices X and Y , from X and Y respectively, we first retrieve the

vectors corresponding to lexicons of a ground-truth LX-LY dictionary and con-

catenate them into two matrices. More specifically, if two vectors (represented

as rows) share the same index in the two matrices (one for each language), their

corresponding words form a translation pair, i.e., the rows of these matrices are
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aligned. “Mean centring” is applied to satisfy Eq. (3.3). For fair comparisons

across different mapping pairs, in each of X and Y , rows are standardised by

scaling the mean Euclidean norm to 1.

Large absolute values of SLMP mean that the optimal linear mapping is an

accurate model of the true relationship between the embeddings, and vice versa.

SLMP therefore indicates the degree to which CLWE mappings are linear.

Preservation of Analogy Encoding

To assess how well analogies are preserved across embeddings, we start by prob-

ing how analogies are encoded in the monolingual word embeddings. We use the

set-based LRCos, the state-of-the-art analogy mining tool for static word embed-

dings (Drozd et al., 2016).1 It provides a score in the range of 0 to 1, indicating

the correctness of analogy completion in a single language. For the extension in

a cross-lingual setup, we further compute the geometric mean:

SPAE :=
√

LRCos(X)× LRCos(Y) (3.10)

where LRCos(·) is the accuracy of analogy completion provided by LRCos for

embedding X. To simplify our discussion and analysis from now onward, when

performing CLWE mappings, by default we select the monolingual embeddings

that best encode analogy, i.e., we restrict LRCos(X) ≥ LRCos(Y). SPAE = 1

indicates all analogies are well encoded in both embeddings, and are preserved

by the ground-truth mapping between them. On the other hand, lower SPAE

values indicate deviation from the condition of Eq. (3.1).

Validity of SPAE

As an aide, we explore the properties of the SPAE indicator to demonstrate its

robustness for the interested reader. The score produced by LRCos is relative

to a pre-specified set of known analogies. In theory, a low LRCos(X) score may

1We have tried alternatives including 3CosAdd (Mikolov et al., 2013a), PairDistance (Levy
and Goldberg, 2014a) and 3CosMul (Levy et al., 2015), verifying that they are less accurate
than LRCos in most cases. Still, in the experiments they all exhibit similar trends as shown in
Tab. 3.2.
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not reliably indicate that X does not encode analogies well since there may be

other word pairings within that set that produce higher scores. This naturally

raises a question: does SPAE really promise the validity as the indicator of analogy

encoding preservation? In other words, it is necessary to investigate whether there

exists an unknown analogy word pairing encoded by the tested embeddings to

an equal or higher degree. If there is, then SPAE may not reflect the preservation

of analogy encoding completely, as unmatched analogy test sets may lead to low

LRCos scores even for monolingual embeddings that encode analogies well. We

demonstrate that the problem can be considered as an optimal transportation

task and SPAE is guaranteed to be a reliable indicator.

As analysed by Ethayarajh et al. (2019), the degree to which word pairs are

encoded as analogies in word embeddings is equivalent to the likelihood that

the end points of any two corresponding vector pairs form a high-dimensional

coplanar parallelogram. More formally, this task is to identify

P⋆ = argmin
P

∑
x∈X

C
(
T P (x)

)
, (3.11)

where P is one possible pairing of vectors in X and C(·) is the cost of a given

transportation scheme. T P (·) denotes the corresponding cost-optimal process of

moving vectors to satisfy

∀{(xα,xβ), (xγ ,xθ)} ⊆ P,

T P (xα)− T P (xβ) = T P (xγ)− T P (xθ), (3.12)

i.e., the end points of T P (xα), T P (xβ), T P (xγ) and T P (xθ) form a parallelo-

gram.

Therefore, in each language and analogy category of xANLG, we first ran-

domly sample vector pairing samples, leading to 1e5 different P (more samples

will make the downstream computation overhead unbearable). Next, for each of

them, we need to obtain T P (·) that minimises
∑

x∈X C
(
T P (x)

)
in Eq. (3.11).

Our algorithm is explained using the example in Fig. 3.1, where the cardinality

of X and P is 8 and 4, respectively.

• Step 1: Link the end points of the vectors within each word pair, hence
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Figure 3.1: An example of solving T P (·) in Eq. (3.12), with P =

{(x1,x2), (x3,x4), (x5,x6), (x7,x8)}. In the figure we adjust the position of x1,
x3, x5 and x7 in the last step, but it is worth noting that there also exists other
feasible T P (·) given p⋆, e.g., to tune x2, x4, x6 and x8 instead.

our target is to adjust these end points so that all connecting lines not only

have equal length but also remain parallel.

• Step 2: For each vector pair (xα,xβ) ∈ P, vectorise its connecting line

into an offset vector as vα−β = xα − xβ.

• Step 3: As the start points of all such offset vectors are aggregated at 0⃗,

seek a vector p⋆ that minimises the total transportation cost between the

end point of p⋆ and those of all offset vectors (again, note they share a start

point at 0⃗).

• Step 4: Perform the transportation so that all offset vectors become p⋆,

i.e.,

∀(xα,xβ) ∈ P, T P (xα)− T P (xβ) = p⋆.

In this way, the tuned vector pairs can always form perfect parallelograms.

Obviously, as p⋆ is at the cost-optimal position (see Step 3), this vector-

adjustment scheme is also cost-optimal.

Solving p⋆ for high dimensions is non-trivial in real world and is a special case

of the NP-hard Facility Location Problem (aka. the P-Median Problem) (Kariv

and Hakimi, 1979). We, therefore, use the scipy.optimize.fmin implementation

of the Nelder-Mead simplex algorithm (Nelder and Mead, 1965) to provide a

good-enough solution. To reach convergence, with the mean offset vector as the
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initial guess, we set both the absolute errors in parameter and function value

between iterations at 1e4. We experimented with implementing C(·) using mean

Euclidean, Taxicab and Cosine distances respectively. For all analogy categories

in all languages, P⋆ coincides perfectly with the pre-defined pairing of xANLG.

This analysis provides evidence that the situation where an unknown kind of

analogy is better encoded than the ones used does not occur in practice. SPAE is

thus trustworthy.

3.2.2 Datasets

Calculating the correlation between SLMP and SPAE requires a cross-lingual word

analogy dataset. This resource would allow us to simultaneously (1) construct

two aligned matrices X and Y to check the linearity of CLWE mappings, and

(2) obtain the monolingual LRCos scores of both X and Y. Three relevant

resources were identified, although none of them is suitable for our study.

• Brychćın et al. (2019) described a cross-lingual analogy dataset consisting

of word pairs from six closely related European languages, but it has never

been made publicly available.

• Ulčar et al. (2020) open-sourced the MCIWAD dataset for nine languages,

but the analogy words in different languages are not parallel.2

• Garneau et al. (2021) produced the cross-lingual WiQueen dataset. Unfor-

tunately, a large part of its entries are proper nouns or multi-word terms

instead of single-item words, leading to low coverage on the vocabularies of

embeddings.

Consequently, we develop xANLG, which we believe to be the first (pub-

licly available) cross-lingual word analogy corpus. For consistency with previ-

ous work, xANLG is bootstrapped using established monolingual analogies and

cross-lingual dictionaries. xANLG is constructed by starting with a bilingual

analogy dataset, say, that for LX and LY. Within each analogy category, we first

translate word pairs of the LX analogy corpus into LY, using an available LX-LY

2Personal communication with the authors.
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dictionary. Next, we check if any translation coincides with its original word

pair in LY. If it does, such a word pair (in both LX and LY) will be added into

the bilingual dataset. This process is repeated for multiple languages to form a

cross-lingual corpus.

We use the popular MUSE dictionary (Lample et al., 2018a) which contains

a wide range of language pairs. Two existing collections of analogies are utilised:

• Google Analogy Test Set (GATS) (Mikolov et al., 2013c), the de facto

standard benchmark of embedding-based analogy solving. We adopt its ex-

tended English version, Bigger Analogy Test Set (BATS) (Gladkova et al.,

2016), supplemented with several datasets in other languages inspired by

the original GATS: French, Hindi and Polish (Grave et al., 2018), Ger-

man (Köper et al., 2015) and Spanish (Cardellino, 2019).

• The aforementioned Multilingual Culture-Independent Word Anal-

ogy Datasets (MCIWAD) (Ulčar et al., 2020).

Due to the differing characteristics of these datasets (e.g., the composition of

analogy categories), they are used to produce two separate corpora: xANLGG

and xANLGM. Only categories containing at least 30 word pairs aligned across

all languages in the dataset were included. For comparison, 60% of the semantic

analogy categories in the commonly used GATS dataset contains fewer than 30

word pairs. The rationale for selecting this value was that it allows a reason-

able number of analogy completion questions to be generated, as 30 word pairs

can be used to generate as many as 3480 unique analogy completion questions

such as “king :man :: queen:?”.3 Information in xANLGG and xANLGM for the

capital-country of Hindi was supplemented with manual translations by native

speakers. In addition, each analogy included in the data set was checked by at

least one fluent speaker of the relevant language to ensure that they are valid.

3For an analogy category with t word pairs,
(
t
2

)
four-item elements can be composed. An

arbitrary element, α:β :: γ:θ, can yield eight analogy completion questions as follows:

α:β :: γ:? β:α :: θ:? γ:α :: θ:? θ:β :: γ:?

α:γ :: β:? β:θ :: α:? γ:θ :: α:? θ:γ :: β:?

Hence,
(
t
2

)
× 8 unique questions can be generated.



3.2 Experiment 33

1

00
0

00
1

00
2

00
3

00
4

00
5

00
6

00
7

00
8

00
9

01
0

01
1

01
2

01
3

01
4

01
5

01
6

01
7

01
8

01
9

02
0

02
1

02
2

02
3

02
4

02
5

02
6

02
7

02
8

02
9

03
0

03
1

03
2

03
3

03
4

03
5

03
6

03
7

03
8

03
9

04
0

04
1

04
2

04
3

04
4

04
5

04
6

04
7

04
8

04
9

05
0

05
1

05
2

05
3

05
4

05
5

05
6

05
7

05
8

05
9

06
0

06
1

06
2

06
3

06
4

06
5

06
6

06
7

06
8

06
9

07
0

07
1

07
2

07
3

07
4

07
5

07
6

07
7

07
8

07
9

08
0

08
1

08
2

08
3

08
4

08
5

08
6

08
7

08
8

08
9

09
0

09
1

09
2

09
3

09
4

09
5

09
6

09
7

09
8

09
9

E
M

N
LP

20
20

S
ub

m
is

si
on

**
*.

C
on

fid
en

tia
lR

ev
ie

w
C

op
y.

D
O

N
O

T
D

IS
TR

IB
U

TE
.

♷ANLGG

Ca
teg

or
y

#
♣♤

♤♭
♤♲

♥♱
♧♨

♯♫
C
A
P
†

31
Bu

da
pe
st

Un
ga
rn

Bu
da
pe
st

Hu
ng
ar
y

Bu
da
pe
st

Hu
ng
ría

Bu
da
pe
st

Ho
ng
rie

Bu
da
pe
sz
t

W
ęg
ry

G
N
D
R
†

30
so
hn

to
ch
ter

so
n

da
ug
ht
er

hij
o

hij
a

fil
s

fil
le

sy
n

có
rk
a

N
A
T
L
†

34
Pe
ru

Pe
ru
an
isc

h
Pe
ru

Pe
ru
via

n
Pe
rú

Pe
ru
an
o

Pé
ro
u

Pé
ru
vie

n
Pe
ru

Pe
ru
wi
ań
sk
i

G
-
P
L
‡

31
ki
nd

ki
nd
er

ch
ild

ch
ild
re
n

ni
ño

ni
ño
s

en
fan

t
en
fan

ts
dz
iec

ko
dz
iec

i

♷ANLGM

Ca
teg

or
y

#
♤♭

♤♳
♥♨

♧♱
♫♵

♱♴
♲♫

A
N
I
M
†

32
ea
gle bi
rd

ko
tk
as

lin
d

ko
tk
a

lin
tu

or
ao

pt
ica

ēr
gli
s

pu
tn
s

ор
ёл

пт
иц

а
or
el

pt
ica

G
-
P
L
‡

31
m
ac
hi
ne

m
ac
hi
ne
s

m
as
in

m
as
in
ad

ko
ne

ko
ne
et

str
oj

str
oje

vi
m
aš
īn
a

m
aš
īn
as

ма
ш
ин

а
ма

ш
ин

ы
str
oj

str
oj
i

Ta
ble

1:
Re

su
lts

बुड
ापे
⡰ट

हंग
री

बेट
ा

बेट
ी

पे⣶ पे⣶ ब⡜
चा

ब⡜
चे

बुड
ापे
⡰ट

हंग
री

बेट
ा

बेट
ी

पे⣶ पे⣶ ब⡜
चा

ब⡜
चे

बुड
ापे
⡰ट

हंग
री

बेट
ा

बेट
ी

पे⣶ पे⣶ ब⡜
चा

ब⡜
चे

T
ab

le
3.
1:

S
u
m
m
ar
y

of
an

d
ex
am

p
le
s
fr
om

th
e

x
A
N
L
G

co
rp
u
s.

#
d
en
ot
es

th
e

n
u
m
b
er

of
cr
os
s-
li
n
gu

al
an

al
og
y

w
or
d

p
ai
rs

in
ea
ch

la
n
gu

ag
e.

† S
em

an
ti
c:

a
n
i
m
a
l
-
s
p
e
c
i
e
s
|A
N
I
M
,
c
a
p
i
t
a
l
-
w
o
r
l
d
|C
A
P
,
m
a
l
e
-
f
e
m
a
l
e
|G
N
D
R
,

n
a
t
i
o
n
-
n
a
t
i
o
n
a
l
i
t
y
|N
A
T
L
.
‡ S
y
n
ta
ct
ic
:
g
r
a
m
m
a
r
-
p
l
u
r
a
l
|G
-
P
L
.



3.3 Result 34

The xANLG dataset contains five distinct analogy categories, including both

syntactic (morphological) and semantic analogies, and twelve languages from a

diverse range of families (see Tab. 3.1). From Indo-European languages, one be-

longs to the Indo-Aryan branch (Hindi|hi), one to the Baltic branch (Latvian|lv),

two to the Germanic branch (English|en, German|de), two to the Romance branch

(French|fr, Spanish|es) and four to the Slavonic branch (Croatian|hr, Polish|pl,

Russian|ru, Slovene|sl). Two non-Indo-European languages, Estonian|et and

Finnish|fi, both from the Finnic branch of the Uralic family, are also included.

In total, they form 15 and 21 languages pairs for xANLGG and xANLGM,

respectively. These pairs span multiple etymological combinations, i.e., intra-

language-branch (e.g., es-fr), inter-language-branch (e.g., de-ru) and inter-

language-family (e.g., hi-et).

3.2.3 Word Embeddings

To cover the language pairs used in xANLG, we make use of static word embed-

dings pre-trained on the twelve languages used in the resource. These embeddings

consist of three representative open-source series that employ different training

corpora, are based on different embedding algorithms, and have different vector

dimensions.

• Wiki4: 300-dimensional, trained on Wikipedia using the Skip-Gram version of

FastText (refer to Joulin et al. (2017a) for details).

• Crawl5: 300-dimensional, trained on CommonCrawl plus Wikipedia using

FastText-CBOW.

• CoNLL6: 100-dimensional, trained on the CoNLL corpus (without lemmatisa-

tion) using Word2Vec (Mikolov et al., 2013c).

3.3 Result

Both Spearman’s rank-order (ρ) and Pearson product-moment (r) correlation

coefficients are computed to measure the correlation between SLMP and SPAE.

4https://fasttext.cc/docs/en/pretrained-vectors.html
5https://fasttext.cc/docs/en/crawl-vectors.html
6http://vectors.nlpl.eu/repository/

https://fasttext.cc/docs/en/pretrained-vectors.html
https://fasttext.cc/docs/en/crawl-vectors.html
http://vectors.nlpl.eu/repository/
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Wiki Crawl CoNLL
CAP GNDR NATL G-PL CAP GNDR NATL G-PL CAP GNDR NATL G-PL

de .68 .25 .21 .23 .47 .48 .79 .77 .65 .43 .41 .55
en .94 .33 .94 .58 .57 .67 .76 .94 .87 .57 .79 .61
es .45 .13 .35 .13 .40 .57 .68 .87 .13 .07 .07 .17
fr .92 .27 .76 .13 .65 .50 .85 .87 .48 .14 .24 .35
hi .29 .30 .42 .07 .58 .59 .59 .32 .32 .37 .31 .16
pl .16 .21 .26 .10 .29 .55 .82 .84 .45 .45 .38 .52

Wiki Crawl CoNLL
ANIM G-PL ANIM G-PL ANIM G-PL

en .48 .65 .29 .87 .36 .58
et .12 .50 .52 1.00 .21 .48
fi .06 .65 .48 .87 .42 .54
hr .17 .20 .50 .68 .07 .11
lv .19 .10 .39 .84 .27 .23
ru .36 .40 .61 .87 .42 .55
sl .42 .23 .39 .81 .12 .39

Table 3.4: Raw monolingual LRCos results (upper:xANLGG; lower: xANLGM).

Note that, it is not possible to compute the correlations between all pairs due

to (1) the number of dimensions varies across embeddings series, and (2) the

source and target embeddings have been pre-processed independently for differ-

ent mappings. Instead, results are grouped by embedding method and analogy

category.

Figures in Tab. 3.2 show that a significant positive correlation between SPAE

and SLMP is observed for all setups. In terms of the Spearman’s ρ, among the

18 groups, 5 exhibit very strong correlation (ρ ≥ 0.80) (with a maximum at

0.96 for CoNLL embeddings on CAP of xANLGG), 4 show strong correlation

(0.80 > ρ ≥ 0.70), and the others have moderate correlation (0.70 > ρ ≥ 0.50)

(with a minimum at 0.58: CoNLL embeddings on ANIM and G-PL of xANLGM).

Interestingly, although we do not assume a linear relationship in § 3.1, large

values for the Pearson’s r are obtained in practice. To be exact, 4 groups indicate

very strong correlation, 6 have strong correlation, while others retain moderate

correlation (the minimum r value is 0.58: Wiki embeddings on CAP and G-PL

of xANLGG). These results provide empirical evidence that supplements our
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theoretical analysis (§ 3.1) of the relationship between linearity of mappings and

analogy preservation.

In addition, we explored whether the analogy type (i.e., semantic or syntactic)

affects the correlation. To bootstrap the analysis, for both kinds of correlation co-

efficients, we divide the 18 experiment groups into two splits, i.e., 12 semantic ones

and 6 syntactic ones. After that, we compute a two-treatment ANOVA (Fisher,

1925). For both Spearman’s ρ and Pearson’s r, the results are not significant at

p < 0.1. Therefore, we conclude that the connection between CLWE mapping

linearity and analogy encoding preservation holds across analogy types. We thus

recommend testing SPAE before implementing CLWE alignment as an indicator

of whether a linear transformation is a good approximation of the ground-truth

CLWE mapping (see § 3.4).

Although there are strong correlations between the measures, they are not

perfect. We therefore carried out further investigation into the data points in

Tab. 3.2 that do not follow the overall trend. Firstly, we identified that some

are associated with “crowded” embedding regions, in which the correct answer

to an analogy question is not ranked highest by LRCos but the top candidate is

a polysemous term (Rogers et al., 2017). One example is the LRCos score of the

CAP analogy for pl’s Wiki embeddings, which was underestimated. If we consider

the three highest ranked terms, rather than only the top term, then the overall ρ

and r of “Wiki: CAP” (the first cell in Tab. 3.2) will increase sharply to 0.79 and

0.76, respectively.

Secondly, we noticed the in certain cases the source and target vectors of a

word pair are too close (i.e. the distance between them is near zero). This phe-

nomenon introduces noise to the results of analogy metrics such as LRCos (Linzen,

2016; Bolukbasi et al., 2016), and consequently, impact SPAE. For example, the

mean cosine distance between G-PL pairs is smaller in xANLGM (0.18) than

xANLGG (0.24). Therefore, the SPAE for G-PL is less reliable for xANLGM

than xANLGG, leading to a lower correlation.
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3.4 Application

As discussed in § 2.1.2, in many scenarios linear CLWEmappings outperform their

nonlinear counterparts, while in other setups nonlinear CLWE mappings are more

successful. Therefore, an indicator that predicts the relationship between inde-

pendently pre-trained monolingual word embedding which helps decide whether

to use linear or non-linear mappings without training actual CLWEs, would be

beneficial. Use of this indicator has the potential to reduce the resources required

to find optimal CLWEs (e.g., some recent approaches need several hours of pro-

cessing on modern GPUs (Peng et al., 2021b; Ormazabal et al., 2021)), with

corresponding reductions in carbon footprint.

The proposed SPAE metric, which can be obtained within several minutes on

a single CPU, can be leveraged as such a metric. A high SPAE score suggests that

the linear assumption holds strongly on the ground-truth CLWE mapping, so it

is feasible to train a linear CLWE mapping; otherwise, the non-linear approaches

are recommended.

To demonstrate this idea in practice, we revisited a systematic evaluation

on CLWE models based on linear mappings (Glavaš et al., 2019), which reported

Mean Reciprocal Rank (MRR) of five representative linear-mapping-based CLWE

approaches on the Word Translation task (the de facto stadard for CLWEs).

We focus on six language pairs (en-fi, en-hr, en-ru, fi-hr, fi-ru, hr-ru) as

they are covered by both xANLGM and the dataset of Glavaš et al. (2019).

Additionally, only Wiki embeddings were involved in the experiments of Glavaš

et al. (2019). Thus, for each language pair, we aggregated SPAE of different

analogy categories for Wiki embeddings, then calculated the average, S̄PAE.

Results are shown in Tab. 3.5, where the Spearman’s ρ between S̄PAE and

Word Translation performance is highlighted. Strong positive correlations are

observed in all setups that were tested. These results demonstrate that S̄PAE

provides as accurate indication of the real-world performance of linear CLWE

mappings, regardless of the language pair, mapping algorithm, or level of super-

vision (i.e., size of the seed dictionary for training). These results also provide

solid support to the main statement of this chapter, i.e., the ground-truth CLWE

mapping between monolingual word embeddings is linear iff analogies encoded
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in those embeddings are preserved.

3.5 Further Implications

Prior work relevant to the linearity of CLWE mappings has largely been observa-

tional (see § 2.1.2). This section sheds new light on these past studies from the

novel perspective of word analogies.

Explaining Non-Linearity

We provide three suggested reasons why CLWE mappings are sometimes not

approximately linear, all linked with the condition of Eq. (3.1) not being met.

The first may be issues with individual monolingual embeddings (see one such

example in the upper part of Fig. 3.2). In particular, popular word embedding

algorithms lack the capacity to ensure semantic continuity over the entire em-

bedding space (Linzen, 2016). Hence, vectors for the analogy words may only

exhibit local consistency, with Eq. (3.1) breaking down for relatively distant re-

gions. This caused the locality of linearity that has been reported by Nakashole

and Flauger (2018), Li et al. (2021d) and Wang et al. (2021a).

The second reason why a CLWE mapping may not be linear is semantic gaps.

Despite analogies in our xANLG corpus all are language-agnostic, the analogical

relations between words may change or even disappear sometimes. For example,

languages pairs may have very different grammars, e.g., Chinese does have the

plural morphology (Li and Thompson, 1989), so some types of analogy, e.g. G-PL

used above, do not hold. Also, analogies may evolve differently across cultures,

(see example in the lower part of Fig. 3.2). These two factors go some way to

explain why typologically and etymologically distant language pairs tend to have

worse alignment (Ruder et al., 2019).

Thirdly, many studies point out that differences in the domain of training

data can influence the similarity between multilingual word embeddings (Søgaard

et al., 2018; Artetxe et al., 2018). Besides, we argue that due to polysemy,

analogies may change from one domain to another. Under such circumstances,

Eq. (3.1) is violated and the linear assumption no longer holds.
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Figure 3.2: Illustration of example scenarios where the CLWE mapping is non-
linear. Translations of English (left) and Chinese (right) terms are indicated by
shared symbols. Upper: The vector for “blueberry” (shadowed) is ill-positioned
in the embedding space, so the condition of Eq. (3.1) is no longer satisfied. Lower:
In the financial domain some Eastern countries (e.g., China and Japan) tradi-
tionally use “black” to indicate growth and “green” for reduction, while Western
countries (e.g., US and UK) assign the opposite meanings to these terms, also
not satisfying the condition of Eq. (3.1).

Mitigating Non-Linearity

The proposed analogy-inspired framework justifies the success and failure of the

linearity assumption for CLWEs. As discussed earlier, it also suggests a method

for indirectly assessing the linearity of a CLWE mapping prior to implementa-

tion. Moreover, it offers principled methods for designing more effective CLWE

methods. The most straightforward idea is to explicitly use Eq. (3.1) as a train-

ing constraint, which has very recently been practised by Garneau et al. (2021).7

Based on analogy pairs retrieved from external knowledge bases for different lan-

guages, their approach directly learnt to better encode monolingual analogies,

particularly those whose vectors are distant in the embedding space. It not only

works well on static word embeddings, but also leads to performance gain for

large-scale pre-trained cross-lingual language models including the multilingual

BERT (Devlin et al., 2019). These results on multiple tasks (e.g., bilingual lexi-

con induction and cross-lingual sentence retrieval) can be seen as an independent

7They cited our earlier preprint as the primary motivation for their approach.
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confirmation of this chapter’s main claim and demonstration of its usefulness.

Our study also suggests another unexplored direction: incorporating analogy-

based information into non-linear CLWE mappings. Existing work has already

introduced non-linearity to CLWE mappings by applying a variety of techniques

including directly training non-linear functions (Mohiuddin et al., 2020), tun-

ing linear mappings for outstanding non-isomorphic instances (Glavaš and Vulić,

2020) and learning multiple linear CLWEmappings instead of a single one (Nakas-

hole, 2018; Wang et al., 2021a) (see § 2.1.2). However, there is a lack of theoretical

motivation for decisions about how the non-linear mapping should be modelled.

Nevertheless, the results presented here suggest that ensembles of linear trans-

formations, covering analogy preserving regions of the embedding space, would

make a reasonable approximation of the ground-truth CLWE mappings and that

information about analogy preservation could be used to partition embedding

spaces into multiple regions, between which independent linear mappings can be

learnt. We leave this application as our important future work.

3.6 Summary and Discussion

CLWE bridges the gap between languages and is efficient enough to be applied

in situations where limited resources are available, including to endangered lan-

guages (Zhang et al., 2020; Ngoc Le and Sadat, 2020). This chapter presented a

theoretical analysis of the mechanisms underlying CLWE techniques which has

potential to improve these methods. Moreover, the proposed SPAE metric predicts

whether monolingual word embeddings in different languages should be aligned

using a linear or non-linear mapping, without actually training the CLWEs. This

indicator lowers the computational expense required to identify a suitable map-

ping approach, thereby reducing the computational power needed and negative

environmental effects.

One limitation of CLWEs is the inconvenience of handling multi-word terms.

In the future, we will attempt to mitigate this via vector composition (Cordeiro

et al., 2016), and expand our experiments on analogies for multi-word expressions.

Besides, we plan to enrich xANLG by including new languages (e.g., African

ones) and analogy categories (e.g., meronyms) to enable explorations at an even
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larger scale.

3.7 Post-Publication Retrospect

Since the work described in this chapter was publicly released, new training

paradigms directly motivated by it have been proposed, e.g., Garneau et al.

(2021). Beyond building analogy corpora in the cross-lingual setup, very recent

work has constructed resources for multi-modal scenarios (Zhang et al., 2023).



Chapter 4

Refining CLWE Mappings via ℓ1

Norm Optimisation

CLWEs encode words from two or more languages in a shared high-dimensional

space in which vectors representing words with similar meaning (regardless of lan-

guage) are closely located. Existing methods for building high-quality CLWEs

learn mappings that minimise the ℓ2 norm loss function. However, this opti-

misation objective has been demonstrated to be sensitive to outliers. Based

on the more robust Manhattan norm (aka. ℓ1 norm) goodness-of-fit criterion,

this chapter proposes a simple post-processing step to improve CLWEs. An

advantage of this approach is that it is fully agnostic to the training process

of the original CLWEs and can therefore be applied widely. Extensive exper-

iments are performed involving ten diverse languages and embeddings trained

on different corpora. Evaluation results based on bilingual lexicon induction

and cross-lingual transfer for natural language inference tasks show that the ℓ1

refinement substantially outperforms four state-of-the-art baselines in both su-

pervised and unsupervised settings. It is therefore recommended that this strat-

egy be adopted as a standard for CLWE methods. The code is available at

https://github.com/Pzoom522/L1-Refinement.

45

https://github.com/Pzoom522/L1-Refinement
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4.1 Methodology

A common characteristic of CLWE methods that apply the orthogonality con-

straint is that they optimise using ℓ2 loss (see § 2.1.3). However, outliers have

disproportionate influence in ℓ2 since the penalty increases quadratically and this

can be particularly problematic with noisy data since the solution can “shift”

towards them (Rousseeuw and Leroy, 1987). The noise and outliers present in

real-world word embeddings may affect the performance of ℓ2-loss-based CLWEs.

The ℓ1 norm cost function is more robust than ℓ2 loss as it is less affected

by outliers (Rousseeuw and Leroy, 1987). Therefore, we propose a refinement

algorithm for improving the quality of CLWEs based on ℓ1 loss. This novel

method, which we refer to as ℓ1 refinement, is generic and can be applied post-

hoc to improve the output of existing CLWE models. To our knowledge, the

use of alternatives to ℓ2-loss-based optimisation has never been explored by the

CLWE community.

To begin with, analogous to ℓ2 OPA (cf. Eq. (2.1)), ℓ1 OPA can be formally

defined and rewritten as

argmin
M∈O

∥AM−B∥1 = argmin
M∈O

tr[(AM−B)⊺ sgn(AM−B)], (4.1)

where tr(·) returns the matrix trace, sgn(·) is the signum function, and ∈ O
denotes that M is subject to the orthogonal constraint. Compared to ℓ2 OPA

which has a closed-form solution, solving Eq. (4.1) is much more challenging due

to the discontinuity of sgn(·). This issue can be addressed by replacing sgn(·)
with tanh(α(·)), a smoothing function parameterised by α, such that

argmin
M∈O

tr
[
(AM−B)⊺ tanh(α(AM−B))

]
. (4.2)

Larger values for α lead to closer approximations to sgn(·) but reduce the smooth-

ing effect. This approach has been used in many applications, such as the activa-

tion function of long short-term memory networks (Hochreiter and Schmidhuber,

1997).

However, in practice, we find that Eq. (4.2) remains unsolvable in our case
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with standard gradient-based frameworks for two reasons. First, α has to be suf-

ficiently large in order to achieve a good approximation of sgn(·). Otherwise, rel-

atively small residuals will be down-weighted during fitting and the objective will

become biased towards outliers, just similar to ℓ2 loss. However, satisfying this

requirement (i.e., large α) will lead to the activation function tanh(α(·)) becom-

ing easily saturated, resulting in an optimisation process that becomes trapped

during the early stages. In other words, the optimisation can only reach an un-

satisfactory local optimum. Second, the orthogonality constraint (i.e., M ∈ O)
also makes the optimisation more problematic for these methods.

We address these challenges by adopting the approaches proposed by

Trendafilov (2003).1 This method explicitly encourages the solver to only ex-

plore the desired manifold O thereby reducing the ℓ1 solver’s search space and

difficulty of the optimisation problem. We begin by calculating the gradient ∇
w.r.t. the objective in Eq. (4.2) through matrix differentiation:

∇ = A⊺
(
tanh(Z) + Z⊙ cosh−2(Z)

)
, (4.3)

where Z = α(AM − B) and ⊙ is the Hadamard product. Next, to find the

steepest descent direction while ensuring that any M produced is orthogonal, we

project ∇ onto O, yielding2

πO(∇) :=
1

2
M(M⊺∇−∇⊺M) + (I−MM⊺)∇. (4.4)

Here I is an identity matrix with the shape of M. With Eq. (4.4) defining the

optimisation flow, our ℓ1 loss minimisation problem reduces to an integration

problem, as

M⋆ = M0 +
∫
− πO(∇) dt, (4.5)

where M0 is a proper initial solution of Eq. (4.1) (e.g., ℓ2-optimal mapping ob-

1NB:When borrowing the solution of Trendafilov (2003), we fixed their weighted matrix as an
identity matrix given the nature of CLWEs. While Trendafilov (2003) proposed to conduct the
optimisation from scratch, our algorithm employs the ℓ2-norm optima as the starting point. In
addition, we adjusted the ODE solver selection, because the ones originally used by Trendafilov
(2003) are no longer applicable in the CLWE scenario (due to the large scale of dimensions and
data points).

2See Chu and Trendafilov (2001) for derivation details.
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Algorithm 1 ℓ1 refinement

Input: CLWEs {XLA ,XLB}
Output: updated CLWEs {XLAM

⋆,XLB}
1: DLA 7→LB ← build dict via XLA and XLB

2: DLB 7→LA ← build dict via XLB and XLA

3: D ← DLA 7→LB ∩DLB 7→LA

4: A,B← looks up for D in XLA ,XLB

5: perform integration to solve Eq. (4.5) for M⋆, with initial
value M0 ← I, until stopping criteria are met

tained via Eq. (2.2)).

Empirically, unlike the aforementioned standard gradient-based methods, by

following the established policy of Eq. (4.4), we observed that the optimisation

process of Eq. (4.5) do not violate the orthogonality restriction or get trapped

during early stages. However, this ℓ1 OPA solver requires extremely small step

size to generate reliable solutions (Trendafilov, 2003), making it computationally

expensive.3 Therefore, it is impractical to perform ℓ1 refinement in an iterative

fashion like ℓ2 refinement without significant computational resources.

Previous work has demonstrated that applying the ℓ1-loss-based algorithms

from a good initial state can speed up the optimisation. For instance, Kwak

(2008) found that feature spaces created by ℓ2 PCA were severely affected by

noise. Replacing the cost function with ℓ1 loss significantly reduced this problem,

but required expensive linear programming. To reduce the convergence time,

Brooks and Jot (2013) exploited the first principal component from the ℓ2 solu-

tion as an initial guess. Similarly, when reconstructing corrupted pixel matrices,

ℓ2-loss-based results are far from satisfactory; using ℓ1 norm estimators can im-

prove the quality, but are too slow to handle large-scale datasets (Aanæs et al.,

2002). However, taking the ℓ2 optima as the starting point allowed less biased

reconstructions to be learned in an acceptable time (De La Torre and Black,

2003).

Inspired by these works, we make use of ℓ1 refinement to carry out post-hoc

3It takes averagely 3 hours and up to 12 hours to perform Eq. (4.5) on an Intel Core i9-9900K
CPU. In comparison, the time required to solve Eq. (2.2) in each training loop is less than 1
second and the iterative ℓ2-norm-based training takes 1 to 5 hours in total.
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enhancement of existing CLWEs. Our full pipeline is described in Algorithm 1

(see § 4.2.3 for implemented configurations). In common with ℓ2 refinement (cf.

§ 2.1.3), steps 1-4 bootstrap a synthetic dictionary D and compose bilingual word

vector matrices A and B which have reliable row-wise correspondence. Taking

them as the starting state, in step 5 an identity matrix naturally serves as our

initial solution M0.

During the execution of Eq. (4.5), we record ℓ1 loss per iteration and see if

either of the following two stopping criteria have been satisfied: (1) the updated

ℓ1 loss exceeds that of the previous iteration; (2) on-the-fly M has non-negligibly

departed from the orthogonal manifold, which can be indicated by the maximum

value of the disparity matrix as

max(|M⊺M− I|) > ϵ, (4.6)

where ϵ is a sufficiently small threshold. The resulting M⋆ can be used to adjust

the word vectors of LA and output refined CLWEs.

A significant advantage of our algorithm is its generality: it is fully indepen-

dent of the method used for creating the original CLWEs and can therefore be

used to enhance a wide range of models, both in supervised and unsupervised

settings.

4.2 Experimental Setup

4.2.1 Datasets

In order to demonstrate the generality of our proposed method, we conduct ex-

periments using two groups of monolingual word embeddings trained on very

different corpora:

• Wiki-Embs (Grave et al., 2018): embeddings developed using Wikipedia

dumps for a range of ten diverse languages: two Germanic (English|en,

German|de), two Slavic (Croatian|hr, Russian|ru), three Romance (French|fr,

Italian|it, Spanish|es) and three non-Indo-European (Finnish|fi from the
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Uralic family, Turkish|tr from the Turkic family and Chinese|zh from the

Sino-Tibetan family).

• News-Embs (Artetxe et al., 2018): embeddings trained on a multilingual

News text collection, i.e., the WaCKy Crawl of {en,de, it}, the Common

Crawl of fi, and the WMT News Crawl of es.

News-Embs are considered to be more challenging for building good quality

CLWEs due to the heterogeneous nature of the data, while a considerable portion

of the multilingual training corpora for Wiki-Embs are roughly parallel. Following

previous studies (Lample et al., 2018b; Artetxe et al., 2018; Zhou et al., 2019a;

Glavaš et al., 2019), only the first 200K vocabulary entries are preserved.

4.2.2 Baselines

Glavaš et al. (2019) provided a systematic evaluation for projection-based CLWE

models, demonstrating that three methods (i.e., Muse, VecMap, and Proc-B)

achieve the most competitive performance. A recent algorithm (JA) by Wang

et al. (2020) also reported state-of-the-art results. For comprehensive comparison,

we therefore use all these four methods as the main baselines for both supervised

and unsupervised settings (we directly adopted their official codebases and hyper-

parameter configurations):

• Muse (Lample et al., 2018b): an unsupervised CLWE model based on

adversarial learning and iterative ℓ2 refinement;

• VecMap (Artetxe et al., 2018): a robust unsupervised framework using a

self-learning strategy;

• Proc-B (Glavaš et al., 2019): a simple but effective supervised approach

to creating CLWEs;

• JA-Muse and JA-RCSLS (Wang et al., 2020): a recently proposed Joint-

Align (JA) Framework, which first initialises CLWEs using joint embedding

training, followed by vocabularies reallocation. It then utilises off-the-shelf

CLWE methods to improve the alignment in both unsupervised (JA-Muse)

and supervised (JA-RCSLS) settings.
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In the original implementations, Muse, Proc-B and JA were only trained on

Wiki-Embs while VecMap additionally used News-Embs. Although all baselines

reported performance for BLI, they used various versions of evaluation sets, hence

previous results are not directly comparable with the ones reposted here. More

concretely, the testsets for Muse/JA and VecMap are two different batches

of en-centric dictionaries, while the testset for Proc-B also supports non-en

translations.

4.2.3 Implementation Details

The CSLS scheme with a neighbourhood size of 10 is adopted to build synthetic

dictionaries via the input CLWEs. A variable-coefficient ordinary differential

equation (VODE) solver4 was implemented for the system described in Eq. (4.5).

Suggested by Trendafilov (2003), we set the maximum order at 15, the smoothness

coefficient α in Eq. (4.3) at 1e8, the threshold ϵ in Eq. (4.6) at 1e-5, and performed

the integration with a fixed time interval of 1e-6. An early-stopping design was

adopted to ensure computation completed in a reasonable time: in addition to

the two default stopping criteria in § 4.1, integration is terminated if
∫
dt reaches

5e-3 (dt is the differentiation term in Eq. (4.5)).

In terms of the tolerance of the VODE solver, we set the absolute tolerance

at 1e-7 and the relative tolerance at 1e-5, following the established approach of

Kulikov (2013). These tolerance settings show good generality empirically and

were used for all tested language pairs, datasets, and models in our experiments.

4.3 Results

We evaluate the effectiveness of the proposed ℓ1 refinement technique on two

benchmarks: Bilingual Lexicon Induction (BLI), the de facto standard for mea-

suring the quality of CLWEs, and a downstream natural language inference task

based on cross-lingual transfer. In addition to comparison against state-of-the-art

CLWE models, we also report the performance of the single-iteration ℓ2 refine-

ment method which follows steps 1-4 of Algorithm 1 then minimises ℓ2 loss in the

4http://www.netlib.org/ode/vode.f

http://www.netlib.org/ode/vode.f
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final step.

To reduce randomness, we executed each model in each setup three times and

the average accuracy (ACC, aka. precision at rank 1) is reported. Following

Glavaš et al. (2019), by comparing scores achieved before and after ℓ1 refine-

ment, statistical significance is indicated via the p-value of two-tailed t-tests with

Bonferroni correction (Dror et al., 2018) (note that p-values are not recorded for

Tab. 4.2b given the small number of runs).

4.3.1 Bilingual Lexicon Induction

Refining Unsupervised Baselines

Tab. 4.1a follows the main setup of Lample et al. (2018b), who tested six lan-

guage pairs using Wiki-Embs.5 After ℓ1 refinement, Muse-ℓ1, JA-Muse-ℓ1, and

VecMap-ℓ1 all significantly (p<0.01) outperform their corresponding base algo-

rithms, with an average 1.1% performance gain over Muse, 1.1% over JA-Muse,

and 0.5% over VecMap. To put these improvements in context, Heyman et al.

(2019) reported an improvement of 0.4% for VecMap on same dataset and lan-

guage pairs.

Our method tends to work better on the more distant language pairs. For

instance, for the distant pairs en–{ru, zh}, the increments achieved by Muse-

ℓ1 are 1.6% and 1.3%, respectively; whereas for the close pairs en–{de,es, fr}
the average gain is a maximum of 0.9%. A similar trend can be observed for

JA-Muse-ℓ1 and VecMap-ℓ1. (As the VecMap algorithm always collapses for

en–zh, no result is reported for this language pair).

Another set of experiments were conducted to evaluate the robustness of our

algorithm following the main setup of Artetxe et al. (2018), who tested four

language pairs based on the more homogeneous News-Embs. Tab. 4.1b shows

that JA-Muse-ℓ1 and VecMap-ℓ1 consistently improves the original VecMap

with an average gain of 1.2% and 1.0% (p<0.01). Obtaining such substantial

improvements over the state-of-the-art is nontrivial. For example, even a recent

weakly supervised method by Wang et al. (2019b) is inferior to VecMap by

5Note that we are unable to report the result of English to Esperanto as the corresponding
dictionary is missing, see https://git.io/en-eo-dict-issue.

https://git.io/en-eo-dict-issue
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en–de en–es en–fr en–ru en–zh

Muse 74.0 81.7 82.3 44.0 32.5
Muse-ℓ2 74.0 82.1 82.6 *43.8* *31.9*
Muse-ℓ1 75.2 82.6 82.9 *45.6* *33.8*

JA-Muse 74.2 81.4 82.8 45.0 36.1
JA-Muse-ℓ2 74.1 81.6 82.7 45.1 36.2
JA-Muse-ℓ1 75.4 82.0 83.1 46.3 38.1

VecMap 75.1 82.3 80.0 49.2 00.0
VecMap-ℓ2 74.8 82.3 79.4 48.9 00.0
VecMap-ℓ1 75.4 82.9 80.2 49.9 00.0

(a) Wiki-Embs (setup of Lample et al. (2018b)).

en–de en–es en–fi en–it

Muse 00.0 07.1 00.0 09.1
Muse-ℓ2 00.0 00.0 00.0 00.0
Muse-ℓ1 00.0 00.0 00.0 00.0

JA-Muse 47.9 48.4 33.0 37.2
JA-Muse-ℓ2 47.9 48.6 32.9 37.3
JA-Muse-ℓ1 48.8 49.7 35.2 37.7

VecMap 48.2 48.1 32.6 37.3
VecMap-ℓ2 48.1 47.9 32.9 37.1
VecMap-ℓ1 49.0 48.9 34.4 37.8

(b) News-Embs (setup of Artetxe et al. (2018)).

Table 4.1: ACC (%) of unsupervised BLI. NB: for en–{ru, zh} we observed one
failed run (ACC <10.0%), where we only record the average of successful scores
with *.

1.0% average ACC. On the other hand, Muse fails to produce any analysable

result as it always collapses on the more challenging News-Embs. Improvement

with ℓ1 refinement is also larger when language pairs are more distant, e.g., for

VecMap-ℓ1 the ACC gain on en-fi is 1.8%, more than double of the gain (0.7%)

on the close pairs en–{de, it} (cf. Tab. 4.1a and above).

We also conduct an ablation study by reporting the performance of ℓ2 refine-

ment scheme ({Muse, JA-Muse, VecMap}-ℓ2). This observation is in accor-

dance with that of Lample et al. (2018b), who reported that after performing ℓ2

refinement in the first loop, applying further iterations only produces marginal

precision gain, if any.
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en–de en–fi en–fr en–hr en–it en–ru en–tr

JA-RCSLS 50.9 33.9 63.0 29.1 58.3 41.3 29.4
JA-RCSLS-ℓ2 50.7 33.8 63.0 29.1 58.2 41.3 29.5
JA-RCSLS-ℓ1 51.6 34.5 63.4 30.4 59.0 41.9 30.2

Proc-B 52.1 36.0 63.3 29.6 60.5 41.9 30.1
Proc-B-ℓ2 51.8 34.4 63.1 28.2 60.5 39.8 28.0
Proc-B-ℓ1 52.6 36.3 63.7 30.5 60.5 42.3 30.9

(a) Wiki-Embs (setup of Glavaš et al. (2019)).

en–de en–fi en–it

JA-RCSLS 46.8 42.0 37.4
JA-RCSLS-ℓ2 46.9 42.2 37.5
JA-RCSLS-ℓ1 48.3 44.6 39.0

Proc-B 47.5 41.4 37.3
Proc-B-ℓ2 47.1 41.7 37.4
Proc-B-ℓ1 52.6 43.3 41.1

(b) News-Embs.

Table 4.2: MRR (%) of supervised BLI.

Overall, the ℓ1 refinement consistently and significantly improve the CLWEs

produced by base algorithms, regardless of the embeddings and setups used,

thereby demonstrating the effectiveness and robustness of the proposed algo-

rithm.

Refining Supervised Baselines

To test the generalisability of our method, we also applied it on state-of-the-art

supervised CLWE models: Proc-B (Glavaš et al., 2019) and JA-RCSLS (Wang

et al., 2020). Following the setup of Glavaš et al. (2019), we learn mappings using

Wiki-Embs and 1K training splits of their dataset.

Their evaluation code retrieves bilingual word pairs using the classic nearest-

neighbour algorithm and outputs the Mean Reciprocal Rank (MRR). As shown in

Tab. 4.2a, both JA-RCSLS-ℓ1 and Proc-B-ℓ1 outperform the baseline algorithms

for all language pairs (with the exception of en–it where the score of Proc-

B is unchanged) with an average improvement of 0.9% and 0.5%, respectively

(p<0.01).
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Unsupervised de–it de–tr fi–hr fi–it hr–ru it–fr tr–it

ICP 44.7 21.5 20.8 26.3 30.9 62.9 24.3
GWA 44.0 10.1 00.9 17.3 00.1 65.5 14.2

Muse 49.6 23.7 22.8 32.7 00.0 66.2 30.6
Muse-ℓ2 50.3 23.9 23.1 32.7 34.9 67.1 *30.5*
Muse-ℓ1 50.7 26.5 25.4 35.0 37.9 67.6 *33.3*

JA-Muse 50.9 25.6 23.4 34.9 36.9 68.3 34.7
JA-Muse-ℓ2 50.9 25.5 23.4 34.7 36.9 68.4 34.7
JA-Muse-ℓ1 51.5 28.4 26.1 36.0 37.6 68.7 36.1

VecMap 49.3 25.3 28.0 35.5 37.6 66.7 33.2
VecMap-ℓ2 48.8 25.7 28.5 35.8 38.4 67.0 33.5
VecMap-ℓ1 50.1 28.2 30.3 37.1 40.1 67.6 35.9

Supervised

DLV 42.0 16.7 18.4 24.4 26.4 58.5 20.9
RCSLS 45.3 20.1 21.4 27.2 29.1 63.7 24.6

JA-RSCLS 46.6 20.9 22.1 29.0 29.9 65.2 25.3
JA-RSCLS-ℓ2 46.4 20.8 22.3 29.0 29.8 65.2 25.3
JA-RSCLS-ℓ1 47.3 22.2 23.8 30.1 31.2 65.9 26.6

Proc-B 50.7 25.0 26.3 32.8 34.8 66.5 29.8
Proc-B-ℓ2 50.0 24.1 25.6 31.8 34.3 66.4 29.6
Proc-B-ℓ1 51.1 25.6 26.9 33.6 35.0 67.4 30.5

Table 4.3: MRR (%) of BLI for non-en language pairs. Muse yielded one unsuc-
cessful run for tr–it, and we only record the average of the two successful scores
with *.

JA-RCSLS-ℓ1 and Proc-B-ℓ1 were also tested using News-Embs with results

shown in Tab. 4.2b6. ℓ1 refinement achieves an impressive improvement for both

close (en–{de, it}) and distant (en–fi) language pairs: average gain of 1.9%

and 3.9% respectively and over 5% for en–de (Proc-B-ℓ1) in particular. The

ℓ2 refinement does not benefit the supervised baseline, similar to the lack of

improvement observed in the unsupervised setups.

6Note that results for en–es is not included, as no en–es dictionary is provided in Glavaš
et al. (2019)’s dataset.
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Comparison of Unsupervised and Supervised Settings

This part provides a comparison of the effectiveness of ℓ1 refinement in unsuper-

vised and supervised scenarios. Unlike previous experiments where only align-

ments involving English were investigated, these tests focus on non-en setups.

Glavaš et al. (2019)’s dataset is used to construct seven representative pairs which

cover every category of etymological combination, i.e., intra-language-branch

{hr–ru, it–fr}, inter-language-branch {de–it}, and inter-language-family {de–
tr, fi–hr, fi–it, tr–it}. The 1K training splits are used as seed lexicons in

supervised runs. Apart from our main baselines, we further report the results

of several other competitive CLWE models: Iterative Closest Point Model (ICP,

Hoshen and Wolf, 2018), Gromov-Wasserstein Alignment Model (GWA, Alvarez-

Melis and Jaakkola, 2018), Discriminative Latent-Variable Model (DLV, Ruder

et al., 2018) and Relaxed CSLS Model (RCSLS, Joulin et al., 2018).

Results shown in Tab. 4.3 demonstrate that the main baselines (Muse, JA-

Muse, VecMap, JA-RCSLS, and Proc-B) outperform these other models by a

large margin. For all these main baselines, post applying ℓ1 refinement improves

the mapping quality for all language pairs (p<0.01), with average improvements

of 1.7%, 1.4%, 1.8%, 1.1%, and 0.8%, respectively. Consistent with findings in

the previous experiments, ℓ2 refinement does not enhance performance. Improve-

ment with ℓ1 refinement is higher when language pairs are more distant, e.g.,

for all inter-language-family pairs such as fi–hr and tr–it, even the minimum

improvement of Muse-ℓ1 over Muse is 2.3%.

Comparing unsupervised and supervised approaches, it can be observed that

Muse, JA-Muse and VecMap achieve higher overall gain with ℓ1 refinement

than JA-RCSLS and Proc-B, where JA-Muse-ℓ1 and VecMap-ℓ1 give the

best overall performance. One possible explanation to this phenomenon is that

there is only a single source of possible noise in unsupervised models (i.e. the

embedding topology) but for supervised methods noise can also be introduced

via the seed lexicons. Consequently unsupervised approaches drive more benefit

from ℓ1 refinement, which reduces the influence of topological outliers in CLWEs.
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Figure 4.1: Changes to ||AM − B||2 after applying ℓ1 (upper) and ℓ2 (lower)
refinement. Each word pairs is represented by a bar ordered on the x-axis by the
distance between them.
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Topological Behaviours of ℓ1 and ℓ2 Refinements

To validate our assumption that ℓ2 refinement is more sensitive to outliers while

its ℓ1 counterpart is more robust, we analyse how each refinement strategy changes

the distance between bilingual word vector pairs in the synthetic dictionary D

(cf. Algorithm 1) constructed from trained CLWE models. Specifically, for each

word vector pair we subtract its post-refinement distance from the original dis-

tance (i.e., without applying additional ℓ1 or ℓ2 refinement step). Fig. 4.1 shows

visualisation examples for three algorithms and language pairs, where each bar

represents one word pair. It can be observed that ℓ1 refinement effectively re-

duces the distance for most word pairs, regardless of their original distance (i.e.,

indicated by bars with negative values in the figures). The conventional ℓ2 re-

finement strategy, in contrast, exhibits very different behaviour and tends to be

overly influenced by word pairs with large distance (i.e. by outliers). The reason

for this is that the ℓ2-norm penalty increases quadratically, causing the solution

to put much more weight on optimising distant word pairs (i.e., word pairs on

the right end of the X-axis show sharp distance decrements). This observation

is in line with Rousseeuw and Leroy (1987) and explains why ℓ1 loss performs

substantially stronger than ℓ2 loss in the refinement.

Case Study

After aligning en-ru embeddings with unsupervised Muse, we measured the dis-

tance between vectors corresponding to the ground-truth dictionary of Lample

et al. (2018b) (cf. Fig. 4.1a). We then detected large outliers by finding vector

pairs whose distance falls above Q3 + 1.5 · (Q3−Q1), where Q1 and Q3 respec-

tively denote the lower and upper quartile based on the popular Inter-Quartile

Range (Hoaglin et al., 1986).7 We found that many of the outliers correspond to

polysemous entries, such as {state (2× noun meanings and 1× verb meaning),

состояние (only means status)}, {type (2× nominal meanings and 1× verb mean-

ing), тип (only means kind)}, and {film (5× noun meanings), фильм (only means

7It is worth noting that such an outlier detection process relies on a ground-truth dictionary,
which does not exist before the construction of CLWEs in practice. In other words, it is not
feasible to directly remove outliers from the learning process as a heuristic.
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movie)}. We then re-perform ℓ2-based mapping after removing these vector pairs,

observing that the accuracy jumps to 45.9% (cf. the original ℓ2-norm alignment

it is 43.8% and after ℓ1 refinement it is 45.6%, cf. Tab. 4.1). This indicates that

although all baselines already make use of preprocessing steps including vector

normalization, outlier issues still exist and harms the ℓ2 norm CLWEs. However,

they can be alleviated by the proposed ℓ1 refinement technique.

Another interesting direction to explore is whether CLWEs can benefit from

conducting more ℓ1-based optimisation iterations, or in an extreme configuration,

replacing all ℓ2-based iterations with the ℓ1-based ones. Considering the aforesaid

low convergence speed, it is unrealistic for us to test all setups. Yet, we installed

the ℓ1 solver on VecMap and experimented with building en-ru CLWEs from

scratch. The training took over four days and yielded an ACC of 51.1%, which

is superior to both VecMap (49.2%) and VecMap-ℓ1 (49.9%) (cf. Tab. 4.1a).

Such margins once again highlight the usefulness of the proposed ℓ1-based CLWE

strategy. Future work should thus focus on improving the efficiency of the ℓ1-

based computation process.

4.3.2 Natural Language Inference

Finally, we experimented with a downstream NLI task in which the aim is to

determine whether a “hypothesis” is true (entailment), false (contradiction) or

undetermined (neutral), given a “premise”. Higher ACC indicates better encod-

ing of semantics in the tested embeddings. The CLWEs used are those trained

with Wiki-Embs for BLI. For Muse, JA-Muse and VecMap, we also obtain

CLWEs for en–tr pair with the same configuration.

Following Glavaš et al. (2019), we first train the Enhanced Sequential In-

ference Model (Chen et al., 2017) based on the large-scale English MultiNLI

corpus (Williams et al., 2018) using vectors of language LA (en) from an aligned

bilingual embedding space (e.g., en–de). Next, we replace the LA vectors with

the vectors of language LB (e.g., de), and directly test the trained model on the

language LB portion of the XNLI corpus (Conneau et al., 2018).

Results in Tab. 4.4 show that the CLWEs refined by our algorithm yield the

highest ACC for all language pairs in both supervised and unsupervised settings.
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Unsupervised en–de en–fr en–ru en–tr

ICP 58.0 51.0 57.2 40.0
GWA 42.7 38.3 37.6 35.9

Muse 61.1 53.6 36.3 35.9
Muse-ℓ2 61.1 53.0 *57.3* *48.9*
Muse-ℓ1 63.5 55.3 *58.9* *52.3*

JA-Muse 61.3 55.2 58.1 55.0
JA-Muse-ℓ2 61.2 55.2 57.6 55.1
JA-Muse-ℓ1 62.9 57.9 59.4 57.5

VecMap 60.4 61.3 58.1 53.4
VecMap-ℓ2 60.3 60.6 57.7 53.5
VecMap-ℓ1 61.5 63.7 60.1 56.4

Supervised

RCSLS 37.6 35.7 37.8 38.7

JA-RSCLS 50.2 48.9 51.0 51.7
JA-RSCLS-ℓ2 50.4 48.6 50.9 51.5
JA-RSCLS-ℓ1 51.3 50.1 53.2 52.6

Proc-B 61.3 54.3 59.3 56.8
Proc-B-ℓ2 61.0 54.8 58.9 55.1
Proc-B-ℓ1 62.1 54.8 60.7 58.2

Table 4.4: ACC (%) of NLI. Muse yielded one unsuccessful run for en–ru and
en–tr respectively, which we exclude when calculating the average (with *).

The ℓ2 refinement, on the contrary, is not beneficial overall. Improvements in

cross-lingual transfer for NLI exhibit similar trends to those in the BLI experi-

ments, i.e. greater performance gain for unsupervised methods and more distant

language pairs, consistent with previous observations (Glavaš et al., 2019). For

instance, Muse-ℓ1 JA-Muse-ℓ1 and VecMap-ℓ1 outperform their baselines by

at least 2% in ACC on average (p<0.01), whereas the improvements of JA-

RSCLS-ℓ1 and Proc-B-ℓ1 over their corresponding base methods are 2% and

2.1% respectively (p<0.01). For both unsupervised and supervised methods, ℓ1

refinement demonstrates stronger effect for more distant language pairs, e.g.,

Muse-ℓ1 surpasses Muse by 1.2% for en–fr, whereas a more impressive 2.7%

gain is achieved for en–tr.

In summary, in addition to improving BLI performance, our ℓ1 refinement

method also produces a significant improvement for a downsteam task (NLI),
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demonstrating its effectiveness in improving the CLWE quality.

4.4 Summary and Discussion

This work provides an effective post-hoc method to improve CLWEs, advancing

the state-of-the-art in both supervised and unsupervised settings. Our compre-

hensive empirical studies demonstrate that the proposed algorithm can facilitate

researches in machine translation, cross-lingual transfer learning, etc. Besides,

this chapter introduces and solves an optimisation problem based on an under-

explored robust cost function, namely ℓ1 loss. We believe it could be of interest

for the wider community as outlier is a long-standing issue in many artificial

intelligence applications.

4.5 Post-Publication Retrospect

The ℓ1-based refinement algorithm has been used as a major baseline in other

CLWE studies (e.g., Feng et al. (2022)), which renewed the performance records

of tasks such as BLI. As for downstream tasks such as cross-lingual NLI, PLMs

(e.g., Chi et al. (2021)) have been the dominant approach.
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Chapter 5

Applying CLWE Mappings for

Historical Text Summarisation

We introduce the task of historical text summarisation, where documents in his-

torical forms of a language are summarised in the corresponding modern language.

This is a fundamentally important routine to historians and digital humanities re-

searchers but has never been automated. We compile a high-quality gold-standard

text summarisation dataset (for evaluation purposes only), which consists of his-

torical German and Chinese news from hundreds of years ago summarised in

modern German or Chinese. Based on cross-lingual transfer learning techniques,

we propose a summarisation model that can be trained even with no cross-lingual

(historical to modern) parallel data, and further benchmark it against state-of-

the-art algorithms. We report automatic and human evaluations that distinguish

the historical to modern language summarisation task from standard cross-lingual

summarisation (i.e., modern to modern language), highlight the distinctness and

value of our dataset, and demonstrate that our transfer learning approach out-

performs standard cross-lingual benchmarks on this task. We release our code

and data at https://github.com/Pzoom522/HistSumm.

63
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5.1 HistSumm Corpus

As covered in Chapters 1 and 2, automatically summarising historical documents

in a modern language can reduce the time and efforts needed to access the main

points of text written hundreds of years ago, thus directly benefiting researcher

in History, Archaeology, Digital Humanities, etc. Note that, the languages of the

input and output of this task are the same - the primary difference is that they are

in modern and historical forms respectively (e.g., modern Chinese and historical

Chinese). To bootstrap this research direction, we created theHistSumm corpus,

which can be used to evaluate historical text summarisation systems.

5.1.1 Dataset Construction

In history and digital humanities research, summarisation is most needed when

analysing documentary and narrative text such as news, chronicles, diaries, and

memoirs (South, 1977). Therefore, for de we picked the GerManC dataset (Dur-

rell et al., 2012), which contains Optical Character Recognition (OCR) results of

de newspapers from the years 1650–1800. We randomly selected 100 out of the

383 news stories for manual annotation. For zh, we chose 『万历邸抄』 (Wanli

Gazette) as the data source, a collection of news stories from the Wanli period

of Ming Dynasty (1573–1620). However, there are no machine-readable versions

of Wanli Gazette available; worse still, the calligraphy copies are unrecognisable

even for non-expert humans, making the OCR technique inapplicable. Therefore,

we performed a thorough literature search on over 200 related academic papers

and manually retrieved 100 news texts1.

The main challenge of historical text summarisation is that the performer

needs to be able to both understand stories in the historical language (which can

be quite obscure to the general public) and generate well-structured summaries

in the respective modern language (which requires good writing skill). To this

end, we recruited two experts with degrees in Germanistik and Ancient Chinese

Literature, respectively. They were asked to produce summaries in the style of

de MLSUM (Scialom et al., 2020) and zh LCSTS (Hu et al., 2015), whose news

1Detailed references are included in the ‘source’ entries of zh HistSumm’s metadata.
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Figure 5.1: Publication time of HistSumm stories.

stories and summaries are crawled from the Süddeutsche Zeitung website and

posts by professional media on the Sina Weibo platform, respectively. The an-

notation process turned out to be very effort-intensive: for both languages, the

experts spent at least 20 minutes in reading and composing a summary for one

single news story (they were paid 30 RMB for each summary). The accomplished

corpus of 100 news stories and expert summaries in each language, namely Hist-

Summ (see examples in Tab. 5.1), were further examined by six other experts for

quality control (see details in § 5.4.2). Microsoft Office Excel was used to assign

tasks and collect annotations throughout this study.

5.1.2 Dataset Statistics

Publication time. As visualised in Fig. 5.1, the publication time of de and

zh HistSumm stories exhibits distinguished patterns. Oldness is an important

indicator of the domain and linguistic gaps (Gunn, 2011). Considering news in

zh HistSumm is on average 137 years older than its de counterpart, such gaps

can be expected to be greater. On the other hand, de HistSumm stories cover

a period of 150 years, compared to just 47 years for zh, indicating the potential

for greater linguistic and cultural variation within the de corpus.

Topic composition. For a high-level view of HistSumm’s content, we asked

experts to manually classify all news stories into six categories (shown in Fig. 5.2).

We see that the topic compositions of de and zh HistSumm share some similar-

ities. For instance, Military (e.g., battle reports) and Politics (e.g., authorities’
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Figure 5.2: Topic composition of HistSumm.

de (word-level) zh (character-level)

HistSumm MLSUM HistSumm LCSTS

Lstory 268.1 570.6 114.5 102.5
Lsumm 18.1 30.4 28.2 17.3
CR (%) 6.8 5.3 24.6 16.9

Table 5.2: Comparisons of mean story length (Lstory), summary length (Lsumm),
and compression rate (CR = Lsumm/Lstory) for summarisation datasets.

policy and personnel changes) together account for more than half the stories in

both languages. On the other hand, we also have language-specific observations.

9% de stories are about Literature (e.g., news about book publications), but

this topic is not seen in zh HistSumm. And while 14% de stories are about

Sovereign (e.g., royal families and Holy See), there are only 2 examples in zh

(both about the emperor; we found no record on any religious leader in Wanli

Gazette). Also, the topics of Society (e.g., social events and judicial decisions)

and Natural Disaster (e.g., earthquakes, droughts, and floods) are more prevalent

in the zh dataset.

Story length. In news summarisation tasks, special attention is paid to the

lengths of news stories and summaries (see Tab. 5.2). Comparing de HistSumm

with the corresponding modern corpus de MLSUM, we find that although histor-

ical news stories are on average 53% shorter, the overall compression rate (CRs)
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is quite similar (6.8% vs 5.8%), indicating that key points are summarised to

similar extents. Following LCSTS (Hu et al., 2015), the table shows character-

level data for zh, but this is somewhat misleading. While most modern words

are double-character, single-character words dominate the historical vocabulary,

e.g., the historical word ‘朋’ (friend) becomes ‘朋友’ in modern zh. According

to Che et al. (2016), this leads to a character length ratio of approximately 1:1.6

between parallel historical and modern samples. Taking this into account, the

CRs for the zh HistSumm and LCSTS datasets are also quite similar to each

other.

When contrasting de with zh (regardless of historical or modern), we notice

that the compression rate is quite different. This might reflect stylistic variations

with respect to how verbose news reports are in different languages or by different

writers.

5.1.3 Vicissitudes of News

Compared with modern news, articles in HistSumm reveal several distinct char-

acteristics with respect to writing style, posing new challenges for machine sum-

marisation approaches.

Lexicon. With social and cultural changes over the centuries, lexical pragmat-

ics of both languages have evolved substantially (Gunn, 2011). For de, some

routine concepts from hundreds of years ago are no longer in use today, e.g.,

the term ‘Brachmonat’ (№41), whose direct translation is fallow month, actu-

ally refers to June as the cultivation of fallow land traditionally begins in that

month (Grimm, 1854). We observe a similar phenomenon in zh HistSumm, e.g.,

‘贡市’ (№24 and №31) used to refer to markets that were open to foreign mer-

chants, but is no longer in use. For zh, additionally, we notice that although

some historical words are still in use, their semantics have changed over time,

e.g., meaning of ‘闻’ has shifted from hear to smell (№53), and that of ‘走’ has

changed from run to walk (№25).
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Syntax. Another aspect of language change is that some historical syntax has

been abandoned. Consider ‘daß derselbe noch länger allda/ biß der Frantz.

Abgesandter von dannen widerum abreisen möge/ verbleiben soll’ (the same

should still remain there for longer, until the France Ambassador might leave

again) (№33). We find the subordinate clause is inserted within the main clause,

whereas in modern de it should be ‘daß derselbe noch länger allda verbleiben

soll, biß der Frantz. Abgesandter von dannen widerum abreisen möge’. For zh,

inversion is common in historical texts but becomes rare in the modern language.

For example, sentence ‘王氏之女成仙者’ (Ms. Wang’s daughter who became a

fairy) (№65) where the attributive adjective is positioned after the head noun,

should be ‘王氏之成仙（的）女’ according to modern zh grammars. Also, we

observe cases where historical zh sentences without constituents such as subjects,

predicates, objects, prepositions, etc. In these cases, contexts must be utilised to

infer corresponding information, e.g., only by adding ‘居正’ (Juzheng, a minister’s

name) to the context can we interpret the sentence ‘已，又为私书安之云’ (№20)

as ‘after that, (Juzheng) wrote a private letter to comfort him’. This adds extra

difficulty to the generation of summaries.

Writing style. To inform readers, a popular practice adopted by modern news

writers is to introduce key points in the first one or two sentences (White, 1998).

Many machine summarisation algorithms leverage this pattern to enhance sum-

marisation quality by incorporating positional signals (Edmundson, 1969; See

et al., 2017; Gui et al., 2019). However, this rhetorical technique was not widely

used in HistSumm, where crucial information may appear in the middle or even

the end of stories. For instance, the keyword ‘Türck’ (Turkish) (№33) first occurs

in the second half of the story; in article №7 of zh HistSumm (see Tab. 5.1), only

after reading the last sentence can we know the final outcome (i.e., the authority’s

seal had been saved from fire).

5.2 Methodology

Based on the popular cross-lingual transfer learning framework (Li, 2021), we

propose a simple historical text summarisation framework (see Fig. 5.3), which
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Figure 5.3: Illustration of our proposed framework.

can be trained even without supervision (i.e., parallel historical-modern signals).

Step 1. For both de and zh, we begin with respectively training modern and

historical monolingual word embeddings. Specially, for de, following the sugges-

tions of Wang et al. (2019a), we selected subword-based embedding algorithms

(e.g., FastText (Joulin et al., 2017a)) as they yield competitive results. In addition

to training word embeddings on the raw text, for historical de we also consider

performing text normalisation (NORM) to enhance model performance. This ortho-

graphic technique aims to convert words from their historical spellings to modern

ones, and has been widely adopted as a standard step by NLP applications for his-

torical alphabetic languages (Bollmann, 2019). Although training a normalisation

model in a fully unsupervised setup is not yet realistic, it can get bootstrapped

with a single lexicon table to yield satisfactory performance (Ljubešić et al., 2016;

Scherrer and Ljubešić, 2016).
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For ideographic languages like zh, word embeddings trained on stroke sig-

nals (which is analogous to subword information of alphabetic languages) achieve

state-of-the-art performance (Cao et al., 2018), so we utilise them to obtain

monolingual vectors. Compared with simplified characters (which dominate our

training resources), traditional ones typically provide much richer stroke signals

and thus benefit stroke-based embeddings (Chen and Sheng, 2018), e.g., tradi-

tional ‘葉’ (leaf ) contains semantically related components of ‘艹’ (plant) and

‘木’ (wood), while its simplified version (‘叶’) does not.

Therefore, to improve the model performance we also conduct additional ex-

periments on enhanced corpora which are converted to the traditional glyph using

corresponding rules (CONV) (see § 5.3.3 for further details).

Step 2. Next, we respectively build two semantic spaces for de and zh, each

of which is shared by historical and modern word vectors, using linear CLWE

mappings. Given parallel supervision is very limited in real-world scenarios, we

mainly consider two bootstrapping strategies: in a fully unsupervised (UspMap)

style and through identical lexicon pairs (IdMap). While the former only relies on

topological similarities between input vectors, the latter additionally takes advan-

tage of words in the intersected vocabulary as seeds. Although their historical and

current meanings can differ (cf. § 5.1.3), in most cases they are similar, providing

very weak parallel signals (e.g., ‘Krieg’ (war) and ‘Frieden’ (peace) are common

to historical and modern de; ‘天’ (universe) and ‘人’ (human) to historical and

modern zh).

Step 3. In this step, for each of de and zh we use a large monolingual modern-

language summarisation dataset to train a basic summariser that only takes

modern-language inputs. Embedding weights of the encoder are initialised with

the modern partition of corresponding cross-lingual word vectors in Step 2 and

are frozen during the training process, while those of the decoder are randomly

initialised and free to update through back-propagation.

Step 4. Upon convergence in the last step, we directly replace the embedding

weights of the encoder with the historical vectors in the shared vector space,
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yielding a new model that can be fed with historical inputs but output modern

sentences. This entire process does not require any external parallel supervision.

5.3 Experimental Setup

5.3.1 Training Data

Consistent with § 5.1.1, we selected de MLSUM and zh LCSTS as monolingual

summarisation training sets. For monolingual corpora for word embedding train-

ing, to minimise temporal and domainal variation, we only considered datasets

that were similar to articles in MLSUM, LCSTS, and HistSumm, i.e, with text

from comparable periods and centred around news-related domains.

For modern de, such resources are easy to access: we directly downloaded

the de News Crawl Corpus released by WMT 2014 workshops (Bojar et al.,

2014), which contains shuffled sentences from online news sites. We then con-

ducted tokenisation and removed noise such as emojis and links. For histori-

cal de, besides the already included GerManC corpus, we also saved Deutsches

Textarchiv (Nolda, 2019), Mercurius-Baumbank (Ulrike, 2020), and Mannheimer

Korpus (Mannheim, 2020) as training data. Articles in these datasets are all

relevant to news and have topics such as Society and Politics. Note that we only

preserved documents written in 1600 to 1800 to match the publication time of

de HistSumm stories (cf. § 5.1.2). Apart from the standard data cleaning pro-

cedures (tokenisation and noise removal, as mentioned above), for historical de

corpora we replaced the very common slash symbols (/) with their modern equiv-

alents: commas (,) (Lindemann, 2015). We also lower-cased letters and deleted

sentences with less than 10 words, yielding 505K sentences and 12M words in

total.

For modern zh, we further collected news articles in the corpora released by He

(2018), Hua et al. (2018), and Xu et al. (2020a) to train better embeddings. For

historical zh, to the best of our knowledge, there is no standalone Ming Dynasty

news collection except Wanli Gazette. Therefore, from the resources released by

Jiang et al. (2020), we retrieved Ming Dynasty articles belonging to categories2 of

2Following the topic taxonomy of Jiang et al. (2020).
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Novel, History/Geography, and Military3. Raw historical zh text does not have

punctuation marks, so we first segmented sentences using the Jiayan Toolkit4.

Although Jiayan supports tokenisation, we skipped this step as the accuracy is

unsatisfactory. Given that a considerable amount of historical zh words only

have one character (cf. § 5.1.2 and § 5.1.3), following Li et al. (2018) we simply

treated characters as basic units during training. Analogous to historical de, we

removed sentences with less than 10 characters. The remaining corpus has 992k

sentences and 28M characters.

5.3.2 Baseline Approaches

In addition to the proposed method, we also consider two strong baselines based

on the Cross-lingual Language Modelling paradigm (XLM) (Lample and Con-

neau, 2019), which has established state-of-the-art performance in the standard

cross-lingual summarisation task (Cao et al., 2020). More concretely, for de

and zh respectively, we pretrain baselines on all available historical and modern

corpora using causal language modelling and masked language modelling tasks.

Next, they are respectively fine-tuned on modern text summarisation and unsu-

pervised machine translation tasks. The former becomes the (XLM-E2E) baseline,

which can be directly executed on HistSumm in an end-to-end fashion; the latter

(XLM-Pipe) is coupled with the basic summariser for modern inputs in Step 3 of

§ 5.2 to form a translate-then-summarise pipeline.

5.3.3 Model Configurations

Normalisation and convention. We normalised historical de text using cSM-

Tiser (Ljubešić et al., 2016; Scherrer and Ljubešić, 2016), which is based on

character-level statistical machine translation. Following the original papers, we

pretrained the normaliser using RIDGES corpus (Odebrecht et al., 2017). As

for the zh character convention, we utilised the popular OpenCC5 project which

uses a hard-coded lexicon table to convert simplified input characters into their

3Sampling inspection confirmed that their domains are similar to those of Wanli Gazette.
4https://github.com/jiaeyan/Jiayan
5https://github.com/BYVoid/OpenCC

https://github.com/jiaeyan/Jiayan
https://github.com/BYVoid/OpenCC
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traditional forms.

Word embedding. As discussed in § 5.2, when training de and zhmonolingual

embeddings, we respectively ran subword-based FastText (Joulin et al., 2017a)

and stroke-based Cw2Vec (Cao et al., 2018). For both languages, we set the

dimension at 100 and learned embeddings for all available tokens (i.e., minCount

= 1). Other hyperparameters followed the default configurations. After training,

we preserved the most frequent 50K tokens in each vocabulary (NB: historical zh

only has 13K unique tokens). To obtain aligned spaces for modern and historical

vectors, we then utilised the robust VecMap framework (Artetxe et al., 2018)

with its original settings.

Summarisation model. We implemented our main model based on the robust

Pointer-Generator Network (See et al., 2017), which is a hybrid framework for

extractive (to copy source expressions via pointing) and abstractive (to produce

novel words) summarisation models. After setting up the encoder and decoder (cf.

in Step 3 of § 5.2), we started training with the default configurations. As for the

two baselines which are quite heavyweight (XLM (Lample and Conneau, 2019) is

based on BERT (Devlin et al., 2019) and has 250M valid parameters), we trained

them from scratch with FP16 precision due to moderate computational power

access. All other hyperparameter values followed the official XLM settings. To

ensure the baselines can yield their highest possible performance, we trained them

on the enhanced corpora, i.e., normalised de (NORM) and converted zh (CONV).

5.4 Results and Analyses

5.4.1 Automatic Evaluation

We assessed all models with the standard ROUGE metric (Lin, 2004), reporting

F1 scores for ROUGE-1, ROUGE-2, and ROUGE-L. Following Hu et al. (2015),

the ROUGE score of zh outputs are calculated on character-level.

As shown in Tab. 5.3, for de, our proposed methods are comparable to the

baseline approaches or outperform the baselines by small amounts; for zh, our
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de ROUGE-1 ROUGE-2 ROUGE-L

XLM-Pipe 12.72 2.88 10.67
XLM-E2E 13.48 3.27 11.25
UspMap 13.36 3.02 11.28
UspMap+NORM 13.78 3.59 11.60
IdMap 13.45 3.10 11.38
IdMap+NORM 14.37 3.30 12.14

zh

XLM-Pipe 10.91 2.96 9.83
XLM-E2E 12.67 3.86 11.02
UspMap 13.09 4.25 11.31
UspMap+CONV 16.38 6.06 14.00
IdMap 18.38 7.05 15.89
IdMap+CONV 19.22 7.42 16.52

Table 5.3: ROUGE F1 scores (%) on HistSumm.

en→zh ROUGE-1 ROUGE-2 ROUGE-L

XLM-Pipe 14.93 4.14 12.62
XLM-E2E 18.02 5.10 15.39
UspMap 11.43 1.27 10.07
IdMap 12.06 1.72 10.93

zh→en

XLM-Pipe 9.08 3.29 7.43
XLM-E2E 12.97 4.31 10.95
UspMap 5.15 0.84 2.42
IdMap 5.98 1.33 2.90

Table 5.4: ROUGE F1 scores (%) of standard cross-lingual summarisation. Fol-
lowing Cao et al. (2020), for monolingual pretraining, we used corpora in § 5.3.3
(57M sentences) for modern zh and annotated Gigaword (Napoles et al., 2012)
(183M sentences) for en; for summarisation training, we used LCSTS for en→zh
and CNN/DM dataset (Hermann et al., 2015) for zh→en; for testing, we used
the data released by Zhu et al. (2019).

models are superior by large margins. Given that XLM-based models require a

lot more training resources than our model, we consider this a positive result. For

comparison of the strengths and weaknesses of the models, we show their perfor-

mance for a modern cross-lingual summarisation task in Tab. 5.4. To heighten
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the contrast we chose two languages (zh and en) from different families and with

minimal overlap of vocabulary. As shown in Tab. 5.4, the XLM-based models out-

perform our method on this modern language cross-lingual summarisation task

by large margins.

The difference in the performance of models on the modern and historical

summarisation tasks illustrate key differences in the tasks and also some of the

shortcomings of the models. Firstly, the great temporal gap (up to 400 years for

de and 600 years for zh) between our historical and modern data hurts the XLM

paradigm, which relies heavily on the similarity between corpora (Kim et al.,

2020). In addition, Kim et al. (2020) also show that inadequate monolingual

data size (less than 1M sentences) is likely to lead to unsatisfactory performance

of XLM, even for etymologically close language pairs such as en-de. In our

experiments we only have 505K and 992K sentences for historical de and zh

(cf. § 5.3.1). On the other hand, considering the negative influence of the error-

propagation issue (cf. § 2.3.2), the poor performance of XLM-Pipe is not surprising

and is in line with observations of Cao et al. (2020) and Zhu et al. (2020a). Our

model instead makes use of cross-lingual embeddings, including bootstrapping

from identical lexicon pairs. This approach helps overcome data sparsity issues

for the historical summarisation tasks and is also successful at leveraging the

similarities in the language pairs. However, its performance drops when the two

languages are as far apart as en and zh.

When analysing the ablation results of the proposed method, on de and zh we

found different trends. For de, scores achieved by all the four setups show minor

variance. To be specific, models bootstrapped with identical word pairs outper-

formed the unsupervised ones, and models trained on normalised data yielded

stronger performance. Among all tested versions, UspMap+NORM got the best

score in ROUGE-2 and IdMap+NORM led in ROUGE-1 and ROUGE-L, indicating

that the normalisation enhancement does benefit de historical text summari-

sation models. For zh, as predicted, with richer glyph information encoded,

the stroke-based embedding method can better learn word semantics. We find

that UspMap+CONV outperforms UspMap and IdMap+CONV outperforms IdMap.

Adding identical words during mapping initialisation brings substantial bene-

fits too: 3.58% and 2.52% ROUGE-L improvement for IdMap over UspMap and
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IdMap+CONV over UspMap+CONV, respectively.

5.4.2 Human Judgement

To gain further insights, we invited six experts to conduct human evaluations.

Like the annotators in § 5.1.1, they also held degrees in Germanistik or Ancient

Chinese Literature. Beyond the standard dimensions of summarisation evalua-

tion (Informativeness, Conciseness, and Fluency), we added ‘Currentness’ as the

fourth, which focuses on measuring ‘to what extent a summary follows current

rather than early linguistic styles’. We used a five-point Likert scale, with 1 for

worst and 5 for best. For each language, experts were only asked to rate the

gold-standard human summary and the summaries generated by the XLM-E2E

baseline and the best two setups in § 5.4.1. For each of the 100 news stories in

each language, 3 experts independently each rated the three model outputs and

the human summary. They were paid 5 RMB for each sample.

The final results are given in Tab. 5.5. When comparing different systems, we

report statistical significance as the p-value of two-tailed t-tests with Bonferroni

correction (Dror et al., 2018). We found that in all aspects the scores for the

gold-standard summaries were always above 4 points, indicating the high quality

of the gold-standard summaries. Across both languages, our models outperform

the baseline for informativeness and conciseness (p<0.01) and achieve comparable

levels of fluency and currentness. Summaries generated by XLM-E2E were slightly

more fluent than our approach for both de and zh (p<0.05), indicating that the

baseline has merit with respect to its language modelling abilities. However, it

tended to make errors in understanding historical inputs and locating key points;

e.g. the human reference for zh article №57 is focused on the commander’s

decision of bursting the river to beat the rebel army (‘宁夏之役中，魏学曾为了

击溃叛乱部落，决定决河灌城’), but XLM-E2E summarises it as 黄河大堤水，比

塔顶还高几丈’ (the surface of the river is several feet higher than the tower top),

which is fluent but irrelevant.

As for different setups of the proposed algorithm, for de, in dimensions of

Informativeness, Conciseness and Fluency, the performance of UspMap+Norm and

IdMap+NORM was almost equally good. The improvement from utilising identical
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word pairs for CLWE mapping seems more evident for Currentness, i.e., the

average score was 0.08 higher (p<0.05). For zh, while IdMap and IdMap+CONV

achieved close Informativeness scores, the latter outperforms the former in other

three aspects by 0.08, 0.12, and 0.09 respectively (p<0.01). This observation

indicates that when the lexical encoding is improved with enriched stroke-level

information, the model is less likely to include redundant information in the

summaries (i.e., conciseness score is higher), and the produced sentences are

more fluent in terms of modern zh grammars.

5.4.3 Error Analysis

We further analysed model inputs with the lowest scores in § 5.4.2, and found

that they were mostly for stories whose content was dissimilar to any sample in

modern training sets. For instance, five zh texts in HistSumm are on themes

not seen in modern news (i.e., witchcraft (№65), monsters (№35 and №46), and

abnormal astromancy (№8 and №28)). On these texts, even the best-performing

IdMap+CONV model outputs a large number of [UNK] tokens and can merely

achieve average Informativeness, Conciseness, Fluency, and Correctness scores

of 1.41, 1.67, 1.83, and 1.60 respectively, which are significantly below its overall

results in Tab. 5.5. This reveals the current system’s shortcoming when processing

inputs with theme-level zero-shot patterns. This issue is typically ignored in the

cross-lingual summarisation literature due to the rarity of such cases in modern

language tasks. However, we argue that a key contribution of our proposed task

and dataset is that they together indicate new improvement directions beyond

standard cross-lingual summarisation studies, such as the challenges of zero-shot

generalisation and historical linguistic gaps (cf. § 5.1.3).

5.5 Summary and Discussion

We attack the problem of automatically summarising historical texts presented

in its modern language variant, which is highly relevant for digital humanities in

general and historical research in particular. As the first of this research strand,

we carefully curated a high-quality corpus of historical news. This dataset in-
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volves two structurally different languages, German and Chinese, and can serve

as (part of a) standard for future studies. Moreover, we developed a pipeline using

cross-lingual transfer learning. We also designed methods to further deal with the

challenges of historical texts, including spelling variation, language change, and

writing style shift over time. The work in this chapter not only offers bootstrap-

ping resources (baselines, benchmarks, etc.) for a new task, but also demonstrates

the applications of CLWE mappings beyond modern languages.

As analysed in § 5.4, despite our proposed CLWE-based method can generate

good modern-language summaries for a few historical story samples, the overall

scores of both automatic and human evaluations are pretty low (especially in the

Chinese setups). Therefore, although the tested machinery can be used as an

interesting demonstration that inspires follow-up studies on the task of historical

text summarisation, we believe it is not ready to be employed as a practical tool so

far. To improve the generation quality of CLWE-based algorithms, one potential

direction is to include the tokenisation adaptation step (Pfeiffer et al., 2021) in

the pipeline. As for the PLM-based schemes, to tackle the lexicon mismatch issue

during transfer learning (see § 5.4.1), the idea of initialising their embeddings with

CLWEs (Minixhofer et al., 2022) is also worth a visit.

5.6 Post-Publication Retrospect

Our work has motivated new efforts on CLWE algorithms (e.g., Sannigrahi and

Read (2022)), cross-lingual summarisation systems (e.g., Jiang et al. (2022)),

and Digital Humanities (e.g., Domingo and Casacuberta (2022)). Nevertheless,

historical text summarisation is still a very challenging task that has no practical

solution.



Chapter 6

Learning KGE Efficiently by

Mapping Relational Matrices

KGEs have been intensively explored in recent years due to their promise for

a wide range of applications. However, existing studies focus on improving

the final model performance without acknowledging the computational cost of

the proposed approaches, in terms of execution time and environmental im-

pact. This chapter proposes a simple yet effective KGE framework which can

reduce the training time and carbon footprint by orders of magnitudes compared

with state-of-the-art approaches, while producing competitive performance. We

highlight three technical innovations: full batch learning via relational matri-

ces, closed-form Orthogonal Procrustes Analysis for KGEs, and non-negative-

sampling training. In addition, as the first KGE method whose entity em-

beddings also store full relation information, our trained models encode rich

semantics and are highly interpretable. Comprehensive experiments and ab-

lation studies involving 13 strong baselines and two standard datasets ver-

ify the effectiveness and efficiency of our algorithm. The code is available at

https://github.com/Pzoom522/ProcrustEs-KGE.

81
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6.1 Methodology

We propose a highly efficient and lightweight method for training KGEs called

ProcrustEs1, which is more efficient in terms of time consumption and CO2

emissions than previous counterparts by orders of magnitude while retaining

strong performance. This is achieved by introducing three novel optimisa-

tion strategies, namely, relational mini-batch, closed-form Orthogonal Procrustes

Analysis, and non-negative sampling training.

6.1.1 Preliminaries: Segmented Embeddings

Our proposed ProcrustEs model is built upon segmented embeddings, a tech-

nique which has been leveraged by a number of promising recent approaches to

KGE learning (e.g., RotatE (Sun et al., 2019), SEEK (Xu et al., 2020b), and

OTE (Tang et al., 2020)). In contrast to conventional methods for KGEs where

each entity only corresponds to one single vector, algorithms adopting segmented

embeddings explicitly divide the entity representation space into multiple inde-

pendent sub-spaces. During training each entity is encoded as a concatenation

of decoupled sub-vectors (i.e., different segments, and hence the name). For

example, as shown in Fig. 6.1, to encode a graph with 7 entities, the embed-

ding of the tth entity is the row-wise concatenation of its d/ds sub-vectors (i.e.,

et,1
⌢et,2

⌢ . . .⌢ et,d/ds), where d and ds denote the dimensions of entity vectors

and sub-vectors, respectively. Employing segmented embeddings permits paral-

lel processing of the structurally separated sub-spaces, and hence significantly

boosts the overall training speed. Furthermore, segmented embeddings can also

enhance the overall expressiveness of our model, while substantially reducing the

dimension of matrix calculations. We provide detailed discussion on the empirical

influence of segmented embedding setups in § 6.2.4.

1Following the tradition of naming a KGE method (e.g., TransE, ComplEx, and RotatE),
we capitalised the letter “E” here.
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6.1.2 Efficient KGE Optimisation

Full Batch Learning via Relational Matrices

Segmented embeddings can speed up training process by parallelising tuple-wise

computation. In this section, we propose a full batch learning technique via

relational matrices, which can optimise batch-wise computation to further reduce

training time. This idea is motivated by the observation that previous neural

KGE frameworks all perform training based on random batches constructed from

tuples consisting of different types of relations (Bordes et al., 2013; Trouillon et al.,

2016; Schlichtkrull et al., 2018; Chami et al., 2020; Huang et al., 2022). Such a

training paradigm is based on random batches which, although straightforward

to implement, is difficult to parallelise. This is due to the nature of computer

process scheduling: during the interval between a process reading and updating

the relation embeddings, they are likely to be modified by other processes, leading

to synchronisation errors and consequently result in unintended data corruption,

degraded optimisation, or even convergence issues.

To tackle this challenge, we propose to construct batches by grouping tuples

which contain the same relations. The advantage of this novel strategy is two-fold.

For one thing, it naturally reduces the original tuple-level computation to simple

matrix-level arithmetic. For another and more importantly, we can then easily

ensure that the embedding of each relation is only accessible by one single process.

Such a training strategy completely avoids the data corruption issue. In addition,

it makes the employment of the full batch learning technique (each batch covers

all training samples) possible, which offers a robust solution for parallelising the

KGEs training process and hence can greatly enhance the training speed. To

the best of our knowledge, this approach has never been explored by the KGE

community.

As illustrated in Fig. 6.1, we first separate the embedding space into segments

(cf. § 6.1.1) and arrange batches based on relations. After that, for each training

step, the workflow of ProcrustEs is essentially decomposed into m × d/ds

parallel optimisation processes, where m is the number of relation types. Let i

and j denote the indices of relation types and sub-spaces, respectively, then the

column-wise concatenations of the jth sub-vectors of all tuples of ith relations
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can be symbolised as Hi,j (for head entities) and Ti,j (for tail entities). Similarly,

Ri,j denotes the corresponding relation embedding matrix in the jth sub-space.

The final objective function of ProcrustEs becomes

L =
m∑
i=1

d/ds∑
j=1

||Hi,jRi,j − Ti,j||2. (6.1)

Orthogonal Procrustes Analysis

Our key optimisation objective, as formulated in Eq. (6.1), is to minimise the

Euclidean distance between the head and tail matrices for each parallel process.

In addition, following Sun et al. (2019) and Tang et al. (2020), we restrict the re-

lation embedding matrix Ri,j to be orthogonal throughout model training, which

has been shown effective in improving KGE quality. Previous KGE models use

different approaches to impose orthogonality. For instance, RotatE (Sun et al.,

2019) takes advantage of a corollary of Euler’s identity and defines its relation

embedding as

Ri,j =

[
cos θi,j sin θi,j

− sin θi,j cos θi,j

]
, (6.2)

which is controlled by a learnable parameter θi,j. Although Eq. (6.2) holds or-

thogonality and retains simplicity, it is essentially a special case of segmented

embedding where ds equals 2. As a result, Ri,j is always two-dimensional, which

greatly limits the modelling capacity (see § 6.2.4 for discussion on the impact of

dimensionality). To overcome this limitation, OTE (Tang et al., 2020) explicitly

orthogonalises Ri,j using the Gram-Schmidt algorithm per back-propagation step.

However, while this scheme works well for a wide range of ds (i.e., the dimension

for the sub-vector), similar to RotatE, OTE finds a good model solution based

on gradient descent, which is computationally very expensive.

We address the computational issue by proposing a highly efficient method

utilising the proposed parallelism of full batch learning. With full batch learning,

comparing with existing methods which deal with heterogeneous relations, Pro-

crustEs only needs to optimise one single Ri,j in each process, which becomes a

simple constrained matrix regression task. More importantly, we can directly use
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Eq. (2.2), the closed-form solution which has been widely adopted in the CLWE

community (cf. § 2.1). During each iteration, ProcrustEs can directly find the

globally optimal embedding for each relation given the current entity embeddings

by applying Eq. (2.2). Then, based on the calculated L, ProcrustEs updates

entity embeddings through the back propagation mechanism (NB: the relation

embeddings do not require gradients here). This process is repeated until conver-

gence. As the optimisation of relation embeddings can be done almost instantly

per iteration thanks to the closed-form Eq. (2.2), ProcrustEs is significantly

(orders of magnitude) faster than RotatE and OTE. In addition, compared with

entity embeddings of all other KGE models which are updated separately with

relation embedding, entity embeddings trained by ProcrustEs can be used

to restore relation embeddings directly (via Eq. (2.2)). In other words, Pro-

crustEs can encode richer information in the entity space than its counterparts

(see § 6.2.5).

Further Optimisation Schemes

As recently surveyed by Ruffinelli et al. (2020), existing KGE methods employ

negative sampling as a standard technique for reducing training time, where up-

date is performed only on a subset of parameters by calculating loss based on

the generated negative samples. With our proposed closed-form solution (i.e.,

Eq. (2.2)), computing gradients to update embeddings is no longer an efficiency

bottleneck for ProcrustEs. Instead, the speed bottleneck turns out to be the

extra bandwidth being occupied due to the added negative samples. Therefore,

for ProcrustEs, we do not employ negative sampling but rather update all

embeddings during each round of back propagation with positive samples only,

in order to further optimise the training speed.

We also discovered that if we do not apply any additional conditions during

training, ProcrustEs tends to fall into a trivial optimum after several updates,

i.e., L = 0, with all values in Hi,j, Ti,j and Ri,j being zero. In other words, the

model collapses with nothing encoded at all. This is somewhat unsurprising as

such trivial optima often yields large gradient and leads to this behaviour (Zhou

et al., 2019b). To mitigate this degeneration issue, inspired by the geometric
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FB15k-237 WN18RR

Entities 14,541 40,943
Relations 237 11
Train samples 272,115 86,835
Validate samples 17,535 3,034
Test samples 20,466 3,134

Table 6.1: Basic statistics of the two benchmark datasets.

meaning of orthogonal Ri,j (i.e., to rotate Hi,j towards Ti,j around the coordinate

origin, without changing vector length) and popular practice in the CLWE stud-

ies (Artetxe et al., 2018; Vulić et al., 2019), we propose to constrain all entities

to a high-dimensional hypersphere by performing two spherisation steps in every

epoch. The first technique, namely length normalisation, ensures the row-wise

Euclidean norm of Hi,j and Ti,j to always be one. This helps ProcrustEs avoid

the trivial optimum as Hi,j, Ti,j and Ri,j cannot be zero-matrices with a positive

norm. The second operation is centring, which respectively translates Hi,j and

Ti,j so that the column-wise sum of each matrix becomes a zero vector (note

that each row denotes a sub-vector of an entity), otherwise, the relations may

be modelled as affine transformations instead (similar to the scenario discussed

in § 3.1) Our experiments validated that employing these two simple constraints

effectively alleviates the trivial optimum issue (see § 6.2).

6.2 Experiment

6.2.1 Setups

We assess the performance of ProcrustEs on the task of multi-relational link

prediction, which is the de facto standard of KGE evaluation.

Datasets. In this study, following previous works (e.g., baselines in Tab. 6.2),

we employ two benchmark datasets for link prediction: FB15K-237 (Toutanova

and Chen, 2015), which consists of sub-graphs extracted from Freebase, and con-

tains no inverse relations; and (2) WN18RR (Dettmers et al., 2018), which is



6.2 Experiment 88

extracted from WordNet. Tab. 6.1 shows descriptive statistics for these two

datasets, indicating that FB15K-237 is larger in size and has more types rela-

tions while WN18RR has more entities. We use the same training, validating,

and testing splits as past studies.

Evaluation metrics. Consistent with Sun et al. (2019) and Tang et al. (2020),

we report Hit Ratio with cut-off values n = 1, 3, 10 (i.e., H1, H3, and H10) and

Mean Reciprocal Rank (MRR). Additionally, as to efficiency, we report the time

cost and CO2 emissions for each model, i.e., from the beginning of training until

convergence.

Baselines. We compare ProcrustEs to not only classical neural graph em-

bedding methods, including TransE (Bordes et al., 2013), DistMulti (Yang et al.,

2015), and ComplEx (Trouillon et al., 2016), but also embedding techniques re-

cently reporting state-of-the-art performance on either WN18RR or FB15k-237,

including R-GCN (Schlichtkrull et al., 2018), ConvE (Dettmers et al., 2018),

A2N (Bansal et al., 2019), RotatE (Sun et al., 2019), SACN (Shang et al., 2019),

TuckER (Balazevic et al., 2019), QuatE (Zhang et al., 2019), InteractE (Vashishth

et al., 2020), OTE (Tang et al., 2020), and RotH (Chami et al., 2020). For all

these baselines, we use the official code and published hyper-parameters to facil-

itate reproducibility.

Implementation details. All experiments are conducted on a workstation

with one NVIDIA GTX 1080 Ti GPU and one Intel Core i9-9900K CPU, which

is widely applicable to moderate industrial/academic environments. We use the

Experiment Impact Tracker (Henderson et al., 2020) to benchmark the time and

carbon footprint of training. To reduce measurement error, in each setup we

fix the random seeds, run ProcrustEs and all baselines for three times and

reported the average.

The key hyper-parameters of our model is d and ds, which are respectively

set at 2K and 20 for both datasets. The detailed selection process is described

in § 6.2.4. We train each model for a maximum of 2K epochs and check if the

validation MRR stops increasing every 100 epochs after 100 epochs. For WN18RR
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and FB15k-237 respectively, we report the best hyperparameters as fixed learning

rates of 0.001 and 0.05 (Adam optimiser), and stopping epochs of 1K and 200.

6.2.2 Main Results

Tab. 6.2 reports the results of both our ProcrustEs and all other 13 baselines

on both WN18RR and FB15k-237 datasets. We analyse these results from two

dimensions:

• Effectiveness: the model performance on link prediction task (MRR is

our main indicator);

• Efficiency: system training time and carbon footprint (i.e., CO2 emis-

sions).

Regarding the performance on WN18RR, we found that ProcrustEs per-

forms as good as or even better than previous state-of-the-art approaches. To be

concrete, out of all 13 baselines, it beats 11 in H10, (at least) 9 in H3 and 8 in

MRR. The models outperformed by ProcrustEs include not only all methods

prior to 2019, but also several approaches published in 2019 or even 2020. No-

tably, when compared with the RotatE and OTE, two highly competitive methods

which have similar architectures to ProcrustEs (i.e., with segmented embed-

dings and orthogonal constraints), our ProcrustEs can learn KGEs with higher

quality (i.e., 0.014 and 0.005 higher in MRR, respectively). This evidences the

effectiveness of the proposed approaches in § 6.1 in modelling knowledge tuples.

While ProcrustEs achieves very competitive performance, it requires signif-

icantly less time for training: it converges in merely 14 minutes, more than 100

times faster than strong-performing counterparts such as SACN. Moreover, it is

very environmentally friendly: from bootstrapping to convergence, ProcrustEs

only emits 37g of CO2, which is even less than making two cups of coffee2. On

the contrary, the baselines emit on average 1469g and up to 5342g CO2: the latter

is even roughly equal to the carbon footprint of a coach ride from Los Angeles to

San Diego3.

2https://tinyurl.com/coffee-co2
3https://tinyurl.com/GHG-report-2019

https://tinyurl.com/coffee-co2
https://tinyurl.com/GHG-report-2019
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As for the testing results on FB15k-237, we found that although ProcrustEs

seems less outstanding (we investigate the reasons in § 6.2.3), it still outperforms

at least 7 more complex baselines in H1 and almost all models prior to 2019 in

MRR. Furthermore, similar to the observation onWN18RR, it demonstrates great

advantage in terms of efficiency. While all baselines need 91 to 1128 minutes to

coverage with 350g to 4589g CO2 produced, ProcrustEs can learn embeddings

of similar quality in just 9 minutes and with 42g emissions. By employing

both traditional batch and negative sampling, we show that ProcrustEs can

achieve near-state-of-the-art performance on both datasets. We discuss this in

detail in § 6.2.3.

To provide a unified comparisons between ProcrustEs and the most strong-

performing baselines on both effectiveness and efficiency, we further investigate

the following question: How much performance gain can we obtain by spending

unit time on training or making unit emissions? We did analysis by calculating

MRR/(training time) and MRR/(carbon footprint) and the results are presented

in Fig. 6.2. It is obvious that among all competitive KGE models, ProcrustEs

is the most economic algorithm in terms of performance-cost trade-off: it is more

than 20 times more efficient than any past works, in terms of both performance

per unit training time and per unit CO2 emissions.

We also investigate baseline performance with a shorter training schedule.

From scratch, we train RotH, the best performing algorithm on WN18RR, and

stop the experiment when MRR reaches the performance of ProcrustEs. On

WN18RR, RotH takes 50 minutes (3.6× ProcrustEs) and emits 211g CO2

(5.7× ProcrustEs); on FB15k-237 RotH takes 45 minutes (5.0× ProcrustEs)

and emits 218g CO2 (5.2× ProcrustEs). These results once again highlight the

efficiency superiority of our approach.

To further ascertain the efficiency advantage of ProcrustEs by ruling out

factors such as numbers of all epochs, we pick four frameworks with strongest

MRR performance and estimate their bandwidth during training, as illustrated

in Fig. 6.3.

We can see that although some baselines have been engineered for enhanced

computational efficiency, e.g., by default RotH creates 24 threads for multipro-

cessing, on both datasets they still substantially underperform ProcrustEs with
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Figure 6.3: Comparison of bandwidth (number of processed samples per second).
The upper and the lower are respectively for WN18RR and FB15k-237.

huge margins in terms of bandwidth.

6.2.3 Ablation Studies

To better understand the performance difference of ProcrustEs on WN18RR

and FB15k-237, we dive deeply into the dataset statistics in Tab. 6.1. Goyal et al.

(2017) and Hoffer et al. (2017) found that although full batch learning can boost

training speed and may benefit performance, when the data distribution is too

sparse, it may be trapped into sharp minimum. As the average number of samples

linked to each relation is significantly smaller for FB15k-237 than for WN18RR

(1148 vs 7894), the distribution of the former is likely to be more sparse and the

generalisability of ProcrustEs may thus be harmed. For another, FB15k-237

has finer-grained relation types (237 vs. 11 of WN18RR), so intuitively the like-

lihood of tuples sharing similar relations rises. However, as ProcrustEs omits

negative sampling to trade for speed, sometimes it maybe be less discriminative

for look-alike tuples.

To validate the above hypotheses, we additionally conduct ablation studies by
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switching back to traditional batch mode and/or adding negative sampling mod-

ules4. Configurations where the closed-form optimisation, Eq. (2.2), is replaced

by gradient descent, are omitted since the resulting architecture is very similar

to OTE. As shown in the lower section of Tab. 6.2, both using either traditional

or negative sampling (i.e., w/ NS and w/ TB) can improve the performance

of ProcrustEs for all metrics. For example, on WN18RR our approach (w/

NS+TB) outperforms most baselines and is close to the performance of QuatE

and RotH, but thanks to the Orthogonal Procrustes Analysis, the computational

cost of our approach is significantly less. Compared to WN18RR, the gain of our

model on FB15k-237 by adopting negative sampling and traditional batch is even

more significant, achieving near-state-of-the-art performance (i.e., compared to

TuckER, the MRR is only 1.3% less with merely 4.9% of the computational time).

These observations verify our aforementioned hypotheses. We also found out that

traditional batch is more effective than negative sampling for ProcrustEs in

terms of improving model performance. On the other hand, however, adding

these two techniques can reduce the original efficiency of ProcrustEs to some

extend.

Nevertheless, as Eq. (2.2) is not only fast but also energy-saving (as only ba-

sic matrix arithmetic on GPUs is involved), even ProcrustEs with the “w/

NS+TB” configuration preserves great advantage in training time and car-

bon footprint. Moreover, it achieves near-state-of-the-art effectiveness on both

datasets (cf. Tab. 6.2) and still exceeds strong baselines in training efficiency

with large margins (cf. Fig. 6.2). One interesting observation is that, while the

training time of RotH is merely 1.47× of that of ProcrustEs (w/ NS+TB),

their emission levels are drastically different. This is because RotH implements

24-thread multiprocessing by default while our approach creates only one pro-

cess. Within similar training time, methods like RotH will thus consume a lot

more power and emit a lot more CO2. Therefore, for effectiveness-intensive ap-

plications, we recommend training ProcrustEs in transitional batches with

negative sampling, as it can then yield cutting-edge performance without losing

its eco-friendly fashion.

4Following Sun et al. (2019), we set the batch size at 1024 and the negative sample size at
128.
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Figure 6.4: With different d (upper) and ds (lower), the training time and conver-
gence MRR of ProcrustEs on WN18RR (results on FB15k-237 exhibit similar
trends). X-axes denote dimensionality.

6.2.4 Impacts of Dimensionality

When configuring ProcrustEs, we set ds at 20 following the recommendation

of Tang et al. (2020). As for d, intuitively the larger it is, the more capacious

ProcrustEs will be (which was later verified empirically), so we decide 2K as

the best setting given the 11GB graphics memory limit of our hardware.

To further examine how the selection of these two dimensional hyper-

parameters influence the effectiveness and efficiency of ProcrustEs, we first

trained ProcrustEs with d ∈ {100, 200, 400, 800, 1K, 1.5K, 2K} and plotted re-

sults based on the validation set, as shown in Fig. 6.4. It is evident that with the

increase of d, the model performance (indicated by MRR) grows but the training

time also rises. Observing the curvature of training time almost saturates when
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d ⩾ 1K, Then, for the dimension of sub-embeddings, we fixed d at 2K and enu-

merated ds ∈ {2, 5, 10, 20, 25, 50, 100}. For algorithm performance, the pattern

we witnessed is on par with that reported by Tang et al. (2020), i.e., before ds

reaches 20 or 25 the effectiveness jumps rapidly, but after that the model slowly

degrades, as the learning capacity of the network reduces. Coincidentally, the

training speed also climbs its peak when ds is 20, making it indisputably become

our optimal choice.

6.2.5 Interpreting Entity Embeddings

Building on the fact that ProcrustEs fuses entity information and relation

information (in other words, for a specific entity, the information of the entity

itself and of its corresponding relations is encoded in a single vector), the location

of a entity is more expressive and, thus, the related entity embedding is more

interpretable. Picking up on that, we do visualisation study on the trained entity

embeddings. To this end, we conduct dimension reduction on the embeddings

using PCA, which reduces the dimensionality of an entity embedding from 2K to

three5. Fig. 6.4 shows the visualisation result, from which we see a diagram with

6 “arms”. This is far distinct from the distributional topology of conventional

semantic representations, e.g., word embeddings (Mikolov et al., 2013c).

In Fig. 6.4, we also list the representative entities that fall in some clusters

on each arm. Each cluster is referred by an ID (from A1 to F2). When we zoom

into this list, we observe something interesting:

• First, entities on the same arm are semantically similar, or, in other words,

these entities belong to the same category. Concretely, entities on arm A

are locations, those on arm B are biochemical terms, and those on arm C

are military related entities. Entities on arm D, E, and F consists of entities

refer to concepts of law, botany, and occupation, respectively.

• Second, significant differences exist between each cluster/position on a

arm. One example is that, for arm A, A1 are entities for cities, such as

Stuttgart, Houston, Nanning ; A2 is about entities for rivers, mountains,

5We disable axes and grids for visualisation’s clarity.
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etc.; and A3 contains entities referring to countries or regions. Similarly,

while B1 mainly consists of medicine names, entities in B2 obviously relate

to chemical terms.

• Third, ProcrustEs can also put the “nick name” of a entity into the

correct corresponding cluster. For example, Windy City (i.e., Chicago) and

Pittsburgh of the South (i.e, Birmingham) were successfully recognised as

names for cities.

6.3 Summary and Discussion

We provided a efficient KGE training framework in this chapter. As having been

proven in experiments, it emits less greenhouse gases and therefore, has less nega-

tive environmental repercussions than any other KGE approaches. Additionally,

rather than encoding relations in their own vector space, our method projects

them in the space of entities implicitly, which improves both expressiveness and

interpretability of the learned embeddings.

6.4 Post-Publication Retrospect

Besides serving as a major baseline in a list of follow-up studies (e.g., Li et al.

(2021b), Li et al. (2022), and Wang et al. (2022d)), ideas of ProcrustEs have

directly contributed to the development of more advanced KGE methods (e.g.,

Li et al. (2021a) and Wang et al. (2022a)). Beyond the construction of KGEs,

new KGE evaluation metrics were also motivated by ProcrustEs, e.g., Bastos

et al. (2023).



Chapter 7

Conclusions

This thesis describes research on linear-mapping-based encoding methods for mul-

tilingual and relational signals, namely CLWE and KGE. The main outputs in-

clude state-of-the-art algorithms, new resources such as corpora and metrics, as

well as novel insights. This chapter summarises the key contributions throughout

the thesis and suggests exciting directions for future exploration.

7.1 Summary of Thesis

Chapter 2 began with introducing cross-lingual embedding methods, among

which CLWE is one of the most commonly used. Specifically, it reviewed the

debate on the linearity assumption made by some previous work on CLWE and

the wide adoption of ℓ2 refinement, which are relevant to Chapters 3 and 4. Next,

the chapter described studies on two representative categories of relational encod-

ings: analogies learned by word vectors and factual information stored by KGEs.

To motivate Chapter 6, we analysed the efficiency limitations of existing methods.

Lastly, we discussed literature on applying NLP techniques to historical text and

the research topic of cross-lingual summarisation. which are both related to the

task of historical text summarisation in Chapter 5.

Chapter 3 made the first attempt to explore the conditions under which CLWE

mappings are linear. Theoretically, we show that this widely-adopted assump-

tion holds iff the analogies encoded are preserved across embeddings for different

99



7.1 Summary of Thesis 100

languages. We describe the construction of a novel cross-lingual word analogy

dataset for a diverse range of languages and analogy categories and propose in-

dicators to quantify linearity and analogy preservation. Experimental results on

three distinct embedding series firmly support our hypothesis. We also demon-

strate how our insight into the connection between linearity and analogy preser-

vation can be used to better understand past observations about the limitations

of linear CLWE mappings, particularly when they are ineffective. Our findings

regarding the preservation of analogy encoding provide a test that can be applied

to determine the likely success of any attempt to create linear mappings between

multilingual embeddings.

Chapter 4 proposed a generic post-processing technique to enhance CLWE

performance based on optimising ℓ1 loss. This algorithm is motivated by success-

ful applications in other research fields (e.g. computer vision and data mining)

which exploit the ℓ1 norm cost function since it has been shown to be more robust

to noisy data than the commonly-adopted ℓ2 loss. The approach was evaluated

using ten diverse languages and word embeddings from different domains on the

popular BLI benchmark, as well as a downstream task of cross-lingual transfer

for NLI. Results demonstrated that our algorithm can significantly improve the

quality of CLWEs in both supervised and unsupervised setups. It is therefore

recommended that this straightforward technique be applied to improve perfor-

mance of CLWEs.

Chapter 5 introduced the new task of summarising historical documents in

modern languages, a previously unexplored but important application of cross-

lingual summarisation that can support historians and digital humanities re-

searchers. To facilitate future research on this topic, we constructed the first

summarisation corpus for historical news in de and zh with the support of lin-

guistic experts. We also proposed a transfer learning method that makes effective

use of similarities between languages and therefore requires limited or even zero

parallel supervision. Our automatic and human evaluations demonstrated the

strengths of our method over state-of-the-art baselines. This is the first study of

automated historical text summarisation.

Chapter 6 was motivated by the closed-form Procrustes Analysis widely used

in the field of CLWE. In this chapter, we proposed a novel KGE training frame-
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work, namely ProcrustEs, which is eco-friendly, time-efficient and can yield

very competitive or even near-state-of-the-art performance. Experiments show

that our method is valuable especially considering its significant and substantial

reduction on training time and carbon footprint.

7.2 Evaluation of Thesis Goals

This thesis answers,m the five research questions raised in Chapter 1.

• When does the linear mapping make an appropriate approximat-

ing function for encoding complex signals such as multilingual

lexicons?

This question is answered in Chapter 3. Using theoretical and empirical

evidence, we justified that the similarity between multilingual word embed-

dings (i.e., CLWE mapping is linear) iff analogy encodings in monolingual

embeddings are preserved.

• How to improve the embedding precision in difficult scenarios?

This question is answered in Chapter 4. We discovered that the conventional

ℓ2 refinement tends to be sensitive against outliers, commonly seen in the

alignment between polysemous or rare words. We, therefore, proposed an

optimisation algorithm based on the ℓ1 loss that substantially outperforms

strong baselines in extensive experiments.

• Where can the linear-mapping-based embedding methods be ap-

plied beyond existing usages?

This question is answered in Chapter 5. Beyond the conventional modern-

modern alignment, we introduced CLWE technique to align modern words

with historical ones and designed workarounds to new challenges. We com-

posed the first historical text summarisation dataset to verify the model’s

effectiveness.

• Why the embedding approaches are computationally expensive

even with the optimisation simplification by the linear mapping?



7.3 Future Directions 102

This question is answered in Chapter 6. We identified sample-centred pa-

rameter updating, negative sampling, and random batch training as the

efficiency bottlenecks in KGE training, which motivated us to propose Pro-

crustEs that speeds up KGE training by orders of magnitude.

• Whether the embedding model for one type of signal can motivate

that for another?

This question is answered in both Chapters 3 and 6. On the one hand, we

show that the linearity of CLWE mapping is related to the encoding of the

analogy relation. On the other hand, the optimisation approach of CLWE

mappings can motivate the development of KGE.

7.3 Future Directions

Firstly, the main insight of Chapter 3, i.e., the relationship between analogy

encoding and cross-lingual representation learning, can motivate the design of

new training objectives (e.g., to complete multilingual analogies) that improve

cross-lingual models. Besides, as discussed in § 3.4, it can also be applied to

evaluate the goodness of cross-lingual representation systems in the follow-up

studies. Secondly, the strategy of replacing ℓ2-based objectives with ℓ1-based

ones in Chapter 4 can be extended to cross-lingual PLMs, especially when more

efficient solvers are available. Thirdly, as analysed in § 5.5, future works can

employ more advanced PLM techniques to attack the historical text summari-

sation problem proposed in Chapter 4, so as to develop more practical tools for

the research of Digital Humanities. Lastly, it is interesting to explore whether

KGEs bootstrapped by the lightweight ProcrustEs (proposed in Chapter 6)

can be further enhanced by more effective but slower methods (e.g., OTE), so as

to boost the trade off between efficiency and performance.

In addition to these concrete ideas, there are also several more general but

very exciting avenues for future research, including:

• Pre-trained cross-lingual and relational language modelling. Al-

though large-scale pre-trained language models require massive resources

during training, they have proved remarkably successful on many tasks,
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demonstrating impressive performance and outstanding scalability (Bender

et al., 2021). Very recently, attempts have been made to extend PLMs

by enhancing them with knowledge graphs (Petroni et al., 2019; Yu et al.,

2022b) or/and training them in multilingual setups (Conneau et al., 2020;

Zhou et al., 2022). However, most of these studies only consider single-

hop triples or fail to incorporate cross-lingual signals into factual reasoning.

This thesis has demonstrated the existence of strong connections between

cross-lingual and relational encodings, which could contribute to the devel-

opment of language models that can use both signals simultaneously.

• Multi-modal cross-lingual and relational encoding. While this thesis

considers setups with only text and graph data, adding new modalities will

likely improve the model’s performance. For instance, video information

can be language-independent, which may help the model understand multi-

lingual text. Likewise, modern Knowledge Graphs often contain numerous

images, which can benefit relational embeddings. Very recent methods have

achieved early-stage success (Zheng et al., 2021; Singh et al., 2022), but to

our knowledge, there still lacks unified models that encode both multilingual

and relational signals with multi-modal input.

• Temporal signal processing. Experiments in Chapter 5 highlight how

temporal shifts in data lead to challenges when training cross-lingual mod-

els. Similarly, relational information may also be dynamic, adding diffi-

culties to relational encodings. Therefore, it is useful to explore how to

mitigate the gaps when training embeddings for data from a large period

and how to keep already trained embeddings up to date. Recent studies on

temporal modelling methods have demonstrated the great potential of this

direction, but they also report challenges such as inferior precision against

strong static counterparts (Sadeghian et al., 2021; Wang et al., 2022b,c).
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Ondřej Bojar, Christian Buck, Christian Federmann, Barry Haddow, Philipp

Koehn, Johannes Leveling, Christof Monz, Pavel Pecina, Matt Post, Herve

Saint-Amand, Radu Soricut, Lucia Specia, and Aleš Tamchyna. Findings of
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Robnik-Šikonja. Multilingual culture-independent word analogy datasets. In

Proceedings of the 12th Language Resources and Evaluation Conference, pages

4074–4080, Marseille, France, May 2020. European Language Resources As-

sociation. ISBN 979-10-95546-34-4. URL https://aclanthology.org/2020.

lrec-1.501.

https://www.aclweb.org/anthology/2020.acl-main.241
https://www.aclweb.org/anthology/W15-4007
http://www.sciencedirect.com/science/article/pii/S0167739X03000438
http://www.sciencedirect.com/science/article/pii/S0167739X03000438
https://aclanthology.org/2020.lrec-1.501
https://aclanthology.org/2020.lrec-1.501


BIBLIOGRAPHY 136

Demske Ulrike. Mercurius-Baumbank (Version 1.1), 2020. URL https://doi.

org/10.34644/laudatio-dev-VyQiCnMB7CArCQ9CjF3O. Universität Potsdam.

Shyam Upadhyay, Manaal Faruqui, Chris Dyer, and Dan Roth. Cross-lingual

models of word embeddings: An empirical comparison. In Proceedings of the

54th Annual Meeting of the Association for Computational Linguistics (Volume

1: Long Papers), pages 1661–1670, Berlin, Germany, 2016. Association for

Computational Linguistics. doi: 10.18653/v1/P16-1157. URL https://www.

aclweb.org/anthology/P16-1157.

Asahi Ushio, Luis Espinosa Anke, Steven Schockaert, and Jose Camacho-

Collados. BERT is to NLP what AlexNet is to CV: Can pre-trained language

models identify analogies? In Proceedings of the 59th Annual Meeting of the

Association for Computational Linguistics and the 11th International Joint

Conference on Natural Language Processing (Volume 1: Long Papers), pages

3609–3624, Online, August 2021. Association for Computational Linguistics.

doi: 10.18653/v1/2021.acl-long.280. URL https://aclanthology.org/2021.

acl-long.280.

Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Nilesh Agrawal, and Partha

Talukdar. Interacte: Improving convolution-based knowledge graph embed-

dings by increasing feature interactions. In Proceedings of the AAAI Conference

on Artificial Intelligence, 2020.
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