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Abstract

We live in a technological generation surrounded by interconnected sensors that can collect
and distribute immense amounts of data on a daily basis. These data would have a bet-
ter connotation and would have been more practical if sensor-based networks allowed us to
capture and monitor the characteristics of physical objects from a highly dynamic environ-
ment. At this point, sensor-based networks could substantially enhance their applicability
if machines process and interpret vast amounts of data correctly, an essential characteristic
of scalable and interoperable wireless sensor network architectures. Through this research
project, a) We will identify and evaluate wireless sensor network architectures enabling ap-
plications from a highly dynamic environment. Then a data architecture will be proposed to
enhance machine-to-machine (M2M) communication and human understanding, consider-
ing the issues and challenges of sensor networks. The future proposed data architecture will
overcome the existing data frameworks’ limitations identified in the literature review. b) The
significant contribution of the research is to propose energy-efficient data collection models
(the first layer of data architecture) that will reduce data transmissions using prediction
models between nodes in sensor networks. The proposed models intend to predict values at
the sink node using coefficients built and transmitted by sensor platforms. The goal is to
build models that improve the energy of battery-powered sensory devices by reducing data
transmissions and recovering values at sink nodes using the same coefficients of models while
ensuring data integrity. Furthermore, the models are evaluated using real data sets from real
sensor networks with the following metrics; RMSE, MAE, MSE, data reduction percentage,
and energy savings.

Keywords: Data Architecture, Data Annotation, Wireless Sensor Networks, Ontologies, Data

Prediction, Data Reduction, Energy Efficiency in WSN.





Contents

1 Introduction 1
1.1 A variety of context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.1.1 Energy Efficiency in WSNs . . . . . . . . . . . . . . . . . . 3

1.3 Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Literature Review 6
2.1 Understanding Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . 6

2.1.1 Wireless Sensor Network . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Application Areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.3 Middleware for Wireless Sensor Networks . . . . . . . . . . . . . . . . 7

2.2 WSN/IoT requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Architectural Requirements . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Functional Requirements . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Non-functional Requirements . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Application Oriented Requirements . . . . . . . . . . . . . . . . . . . 12

2.3 Challenges of Dynamic WSN/IoT . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Architectural Middleware Classification for WSN . . . . . . . . . . . . . . . 16

2.4.1 WSN Middleware Advantages & Disadvantages . . . . . . . . . . . . 18
2.4.2 Paradigm Satisfaction Desiderata . . . . . . . . . . . . . . . . . . . . 20

2.5 Agent oriented Middleware for Wireless Sensor Networks . . . . . . . . . . . 22
2.5.1 Multi-agent based approach . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Bio-inspired approach . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.3 Existing Agent-Oriented Architectures for WSN . . . . . . . . . . . 24
2.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Data Requirements for Wireless Sensor Networks . . . . . . . . . . . . . . . 30
2.6.1 Data Characteristics and Requirements . . . . . . . . . . . . . . . . . 31
2.6.2 Data Requirements for the research study . . . . . . . . . . . . . . . 32

2.7 Syntactic & Semantic Interoperability: Standards and Trends . . . . . . . . 33
2.7.1 Sensor Data Standards . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.7.2 Scope of the Standards . . . . . . . . . . . . . . . . . . . . . . . . . . 34

viii



2.7.3 From Plaintext to Data Interoperaility . . . . . . . . . . . . . . . . . 36
2.7.4 Toward Semantic Interoperability for M2M Communication . . . . . 39

2.7.4.1 Technologies and Languages for Semantic Data Interoper-
ability for Wireless Sensor Networks. . . . . . . . . . . . . . 39

2.7.4.2 Ontologies for Sensor Data. . . . . . . . . . . . . . . . . . . 41
2.7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Reducing Data Transmission via Dual predictions . . . . . . . . . . . . . . . 45
2.8.1 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . 46
2.8.2 Discrete Sine Transform (DST) . . . . . . . . . . . . . . . . . . . . . 47
2.8.3 Discrete Hartley Transoform (DHT) . . . . . . . . . . . . . . . . . . . 47

2.9 Existing Data Architectures for WSN . . . . . . . . . . . . . . . . . . . . . . 48
2.9.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.10 Emerging Issues and Research Questions . . . . . . . . . . . . . . . . . . . . 52
2.11 Research Design and Methodology . . . . . . . . . . . . . . . . . . . . . . . . 53

2.11.1 Research Design and Methodology . . . . . . . . . . . . . . . . . . . 53
2.11.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 Adoption and Enhancement of Sensor Networks Architecture. The propo-
sition of new Data Architecture 57
3.1 Adopting the right Network Architecture . . . . . . . . . . . . . . . . . . . . 57

3.1.1 Ultra Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.2 Robustness and Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . 58
3.1.3 Autonomy and Self-organization . . . . . . . . . . . . . . . . . . . . . 59
3.1.4 Energy, Memory, and Processing limitations . . . . . . . . . . . . . . 60
3.1.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Regional Sensor Network Architecture - proposing an extension of the adopted
Sensor Network Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.2.1 XSN Overall Architecture . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.2 Regional Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
3.2.3 Global Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.4 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 65

3.3 New Semantic Data Architecture for Sensor Network . . . . . . . . . . . . . 67
3.3.1 Architecture Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.3.2 Energy Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.3 Data Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.4 Velocity and Data Scalability . . . . . . . . . . . . . . . . . . . . . . 70
3.3.5 Enabling Interoperability: Syntactic and Semantic . . . . . . . . . . . 71

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Data Transmission Reduction and Data Prediction for Energy Efficient
Wireless Sensor Network applications 73
4.1 Network Design and Problem Description . . . . . . . . . . . . . . . . . . . . 74

4.1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.2 Data Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

ix



4.2.1 Newton Interpolation Polynomial Model . . . . . . . . . . . . . . . . 75
4.2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.3.1 Data Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3.1.1 Effect of Netwon’s Degree Variation and Threshold . . . . . 79
4.3.1.2 Effect of Condition Variation . . . . . . . . . . . . . . . . . 81
4.3.1.3 Data Transmission and Energy consumption . . . . . . . . . 82
4.3.1.4 Data Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.3.1.5 Processing Time . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Energy Efficient Data Reduction and Prediction Based on DST-I and DST-
II Least-squares Extended model 86
5.1 Problem Description of the DST- I based Forecast Modelling . . . . . . . . . 87
5.2 The Least-Squares Solution for the DST-I Coefficients-Seeking . . . . . . . . 87
5.3 Problem Description of the DST-II- Based Forecast Modeling . . . . . . . . . 89
5.4 The Least-Squares Solution for the DST-II

Coefficients-Seeking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Procedure for application of DST-I-LS (DST-II- LS)-Extended Forecast Model 92
5.6 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.6.1 DST-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
5.6.2 DST-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.7 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7.1 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7.2 Dataset preparation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.7.3 DST-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.7.3.1 Data Prediction . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7.3.2 Data Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.7.3.3 Data Transmission and Energy Efficiency . . . . . . . . . . 98
5.7.3.4 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . 99

5.7.4 DST-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.4.1 Data Predictions . . . . . . . . . . . . . . . . . . . . . . . . 99
5.7.4.2 Data Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

6 Discrete Hartley Transform Based Forecast Modeling for Energy Efficient
Wireless Sensor Network 103
6.1 Problem Description of the Hartley Transform Based Forecast Modeling . . . 104
6.2 Dicrete Hartley Transforms Model Extended in the Least-squares for Forecasting104
6.3 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3.1 CAS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.4.1 Data Prediction and Data Accuracy of CAS Approach . . . . . . . . 107
6.4.2 Data Transmission and Energy Efficiency . . . . . . . . . . . . . . . . 109

x



6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7 Future Work 111

xi



List of Figures

2.1 Sensor Nodes Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 WSN Application areas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Middleware Design Approaches Advantages and Disadvantages . . . . . . . . 19
2.4 Data Requirements and characteristics . . . . . . . . . . . . . . . . . . . . . 30
2.6 The methodology presented visually . . . . . . . . . . . . . . . . . . . . . . . 55

3.1 Agent-oriented middlewares . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.2 Overall system (XSN) architecture . . . . . . . . . . . . . . . . . . . . . . . 63
3.3 Architecture Proposal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.1 Newtons Degree Variation: d = 4, d = 6, d = 8 and threshold 0.1 . . . . . . . 79
4.2 Newtons Degree Variation: d = 4, d = 6, d = 8 and threshold 0.25 . . . . . . 80
4.3 Newtons Degree Variation: d = 4, d = 6, d = 8 and threshold 0.5 . . . . . . . 80
4.4 Predicting values within range in time slot of 100 values . . . . . . . . . . . 81
4.5 Effects of Condition Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Predictions using DST-1 for 46 hours forecast of Osterman. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Predictions using DST-1 for 69 hours forecast of MontRose. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Predictions using DST-1 for 69 hours forecast of Calumet. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Predictions using DST-2 for 46 hours forecast of Osterman. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 99

5.5 Predictions using DST-2 for 69 hours forecast of MontRose. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 100

5.6 Predictions using DST-2 for 69 hours forecast of Calumet. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 100

5.7 Predictions using DST-2 for 69 hours forecast of Calumet. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 102

5.8 Predictions using DST-2 for 69 hours forecast of MontRose. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 102

5.9 Predictions using DST-2 for 69 hours forecast of Osterman. Settings are as
follows: T0 = T − 1, T = 24, R = 23 . . . . . . . . . . . . . . . . . . . . . . . 102

xii



6.1 Predictions using DHT for 70 hours forecast of Calumet. Settings are as
follows: T0 = T − 1, T = 24, R = 12 . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 Predictions using DHT for 70 hours forecast of Osterman. Settings are as
follows: T0 = T − 1, T = 24, R = 12 . . . . . . . . . . . . . . . . . . . . . . . 109

6.3 Predictions using CAS for 70 hours forecast of Calumet. Settings are as
follows: T0 = T − 1, T = 24, R = 12 . . . . . . . . . . . . . . . . . . . . . . . 109

xiii





Chapter 1

Introduction

We live in the new era of computing, where billions of nodes connect unpredictably, create
their mutual relations, and share information with other nodes within the network. The
relations vary over time and make what is called a dynamic network. From the real-world
perspective, plenty of network examples can be used as a model to mimic dynamic net-
works and reproduce their structural properties [1]. Protein-protein interaction networks,
human-human interactions, transportation networks, neural networks in biology, and animal
populations are just a few examples that can be analyzed and applied to dynamic networks.
These systems, even though they have always existed, they came to attention when time
became an integral part of the network for a formal treatment of systems [2]. The most
significant transformation is happening in computer science with wireless protocols, low-cost
wireless sensory devices, smartphones, and other intelligent devices.

Compared to the early years of computing, where most of the systems can be consid-
ered static, and relatively predictable [2], with the new technological advancements (tiny
sensory devices, wireless protocols) and mobile users constitute an era of dynamicity and
unpredictability. According to Cisco, [3], the number of machines/devices connected to the
Internet is expected to be around thirty billion by 2030. All these devices will have sensing
capabilities to gather and share their data with the peers in the network. Internet of Things
envisions huge managed devices with sensors that connect to the Internet. Case studies of
smart cities, smart farming, and intelligent hospitals are already present. On the other hand,
the Internet of Things expects further connections; people, processes, things, and informa-
tion which altogether create the Internet of Everything (IoE) [4]. In this paradigm, people
might be nodes on the Internet, data will provide insightful information when linked and
combined, and ”things” expect a connection with one another and the Internet. Finally, the
correct process is necessary to deliver accurate service to the right user efficiently.

At this point, systems cannot perform their tasks flawlessly and predict everything.
Rather, many possible interactions among ”things” spontaneously move in the environment.
Computer scientists and engineers are putting much effort into developing algorithms that
self-assemble into desired structures, such as the case of programmed DNA molecules [5] or
spontaneous local activities in cortical development that reveal large-scale network structure
[6]. All these challenging and ambitious applications are dynamic.
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1.1 A variety of context

A network is a group of interconnected entities with established relations that can exchange
data. It is considered dynamic if the network, specifically the relations, changes over time.

Most of the time, the term dynamic network is used as a synonym for complex systems.
Either it is used as a means to describe huge distributed devices operating in a wireless
network that deals with dynamic environments or a network in a broader sense to describe
network systems from real life. Kuhn et al. [7] describes dynamic networks as an enormous
number of nodes, totally decentralized, where each node knows only its local peers. Casteigts
[8] distinguishes dynamic networks that consist of wireless entities; smartphones, laptops,
sensors, robots, and complex networks, which include a broad range of networks such as
those from social sciences, biology, transportation, etc. In the first category fall, networks
that allow occasional connections up to unrestricted. Complex networks provide a means
to describe a wide range of domains where connections among ”things” are neither purely
random nor purely regular; they produce a massive amount of data available for analysis in
identifying different phenomena.

It is the motivation that distinguishes dynamic versus complex networks. The network
complexity is described via mathematical models, while the dynamic network aims to solve
interaction issues among entities within the network. In general, the term dynamic network
is used by numerous disciplines in an approach to describe complex systems [9]. Following
the above, a complex system describes interactions between system components, individuals,
or players [10]. When two or more components work together, and the input they receive
produces results that cannot be achieved from the components individually, it makes a system
complex [11]. Specifically, how simple entities with no initial structure organize themselves
to create patterns collectively without any central controller and use the information to learn
and evolve [12]. Sagut and McGrath [13] distinguish a) complicated systems composed of
individual parts that somehow follow a pattern and b) complex systems, which despite the
options to follow some patterns, the interactions between parts are constantly changing.

Hereafter, for the purpose of this study the term complex system is going to be defined
as ”A vast number of nodes/components with no well-defined infrastructure and completely
decentralized able to interact with local peers spontaneously, and have the ability of the system
to load balance when a massive number of users access the applications/network”

In this matter, the working environment is highly dynamic, meaning that nodes may
enter or leave the network unpredictably over time. The interactions among components
happen instantly without any notice. Further, the number of users accessing the net-
work(application) must be handled, and the system must process the required service by
such users, even during congestion time. Additionally, the tasks are executed in a dis-
tributed manner, and the system evolves and adapts to all the changes in the environment.
Such a system is of enormous scale, high heterogeneity, and interdependence that charac-
terizes complex systems [13, 14]. One example of such a complex system is the case of the
Internet of Things, specifically Wireless Sensor Networks.
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1.2 Motivation

1.2.1 Wireless Sensor Networks

Wireless Sensor Networks consist of a considerable number of battery-powered sensor nodes
connected to one another and the internet that can collect data and exchange data with the
peers and the world. The volume of generated data by these embedded devices with sensing
capabilities is extremely high. They have a high potential to technologically advance, auto-
mate and create many business possibilities [15, 16]. They could substantially enhance the
decision-making by humans and machines themselves. It can enhance machine-to-machine
(M2M) communication, striving to process all those data to create even more data, but at
a sophisticated level, thus producing more practical knowledge. This mode will create a
continuous cycle where information is continually processed and be available in the suitable
form for the right consumer (machine or human) in the near future. In order to happen
all this, it is required by the modern sensor networks to provide flexibility to operate in a
decentralized mode and without a well-defined infrastructure.

There is an expanded demand for WSN solutions that operate in highly dynamic sur-
roundings and enable the design of an infrastructure of a WSN dynamically and autonomously,
specifically in conditions where well-defined and well-designed infrastructures do not exist
or are not preferable. Those cases will most likely become the primary trend in the future
because of the lack of well-defined situations and thus well-designed solutions which operate
in the best feasible mode for those problems.

The data creates an even greater demand for interoperability than ever before to help
machines to process all those data created from highly dynamic circumstances, as described
above. Although, there is a clear need to consider all issues and challenges imposed because
of the nature of WSNs.

This emerging need demands a distinct level of abstraction to bridge the gap between
sensory devices and applications and improve the M2M communication to create more so-
phisticated applications. First, the ample amount of data observed and collected from sensor
networks creates the need for a well-defined syntax and encodings (syntactic interoperability)
to enable the communication and exchange of such observations in the most efficient way be-
tween the interconnected things. Secondly, the raw data cannot be automatically identified
or appropriately processed by other devices if there are no precise, well-defined semantics.
The raw data must be altered into information to boost the extraction of high-level wisdom
and enhance the decision-making process either by machines or humans.

1.2.1.1 Energy Efficiency in WSNs

Energy efficiency is a critical concern among many researchers in the field of Wireless Sen-
sor Networks. The nodes in Wireless Sensor Network have limitations in energy as well as
processing. In order to operate in the open environment that is often critical (emergency
monitoring, fire explosions, crop field monitoring etc.), or open environments like monitoring
sea/ocean water quality, it is necessary to increase the network lifetime. Specifically, it is
necessary to improve energy of sensor nodes while gathering sensed information and trans-
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mitting them to the right node and then to the right application. In many cases it becomes
infeasible to replace batteries in sensor nodes and thus not being able to monitor and sense
the objects and the surroundings.

Current energy and processing constraints in sensor nodes creates difficulties for the
machine to machine communications and advancing further existing applications [17, 18].
In order to automate and create more autonomy in existing systems and applications, it is
a demand to reduce power consumption and prolong network lifetime. There are already
great studies with regard to energy efficiency mainly focused on network typologies and few
on data collection methods.

1.3 Aim and Objectives

This work aims to identify and adopt the right network architecture that will enable well-
designed solutions in extremely dynamic environments, especially in situations where well-
defined and well-designed infrastructures do not exist or are not preferable. Then it will
propose a data architecture that will enable the efficient communication of information in
this network considering all the challenges imposed by sensor networks stated above. A
significant contribution lies in improving energy efficiency in the data collection phase while
reducing transmission. The applicability of the proposed models will be validated with a
real-world sensor data sets. The objectives are as follows in priority order:

• adopts a robust network architecture that enables mobile ad hoc network solutions and
affords an extremely high number of sensor nodes and concurrent users in real-time to
form a stable architecture for further enhancements.

• proposes a data architecture for the adopted network architecture to enable syntactic
and semantic data interoperability considering the limitations of Wireless Sensor Nodes
(bandwidth, memory, CPU, and energy).

• using the selected architecture after the thorough investigation, propose a new data
framework mentioned, that enhances machine-to-machine communication and under-
standing in the adopted network architecture.

• improve energy efficiency in the network architecture by reducing data transmission
via dual prediction models

• evaluate the algorithmic models using real use case data sets

• evaluate the efficiency of the proposed models; energy efficiency, data accuracy, data
processing

1.4 Structure

The structure of the research work is as follows: Chapter II provides the literature back-
ground of the challenges and the current state of the art of sensor network architectures that
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can work in a highly dynamic environment. Further, we present the existing standards, dis-
cuss the data semantics, and evaluate existing data architectures. Moreover, we describe the
methodology of the research proposal. Chapter III evaluates and adopts the right network
architecture from the challenges identified from the background literature review. Then,
we propose a new extended model architecture for the adopted network architecture. Af-
ter analysing, adopting and extending the network architecture, we introduce a new data
architecture addressing some of the Sensor Networks’ challenges identified in the literature
review. The following three chapters propose new approaches for improving energy efficiency
using prediction algorithms. Finally, future work concludes the research work of the current
thesis.
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Chapter 2

Literature Review

IoT vision presents exciting opportunities to almost every activity we perform on daily
basis, while unique challenges need to be tackled to make it happen. Under a dynamic
global network architecture every ”thing” is connected, is accessible in real time, and is
able to act intelligently upon the available information of the surrounding environment.
The pervasive presence of enormous heterogeneous devices with sensing capability allows
to uniquely identify ”things”, communicate data with other peers in the network which
cooperatively are able to achieve a common goal. The most basic technology is RFID [19]
whose functionality is to uniquely identify track and monitor ”things” using tags. Another
technology with high impact in IoT is Wireless Sensor Network (WSN) which uses sensors to
sense physical properties of ”things”, monitor them and actuators can be used for interactions
with objects under monitoring. Other than this, smart phones, tablets, cloud computing
and a number of technologies make what so called IoT [20]. One particular technology with
highest impact in IoT is Wireless Sensor Network (WSN)

2.1 Understanding Wireless Sensor Networks

Wireless sensor networks are an emerging solution for real-time wide-area monitoring in many
fields of interest like agriculture, healthcare, military, and other interesting domains. The
applicability of this technology to a range of domain problems comes as a result of satisfactory
features and advantages in the market as compared to other monitoring technologies.

In this section, we introduce wireless sensor networks as the main contributors towards
the Internet Of Things, problems that need to be tackled by the network architectures, the
massive amount of data produced by the sensing devices, including the issues imposed by
such massive data production. Further, we will discuss network architectures for WSN and
already existing data architectures where the comparison study will be given.

2.1.1 Wireless Sensor Network

A large number of sensor nodes can be connected Wirelessly using one of the radio frequency
technology Bluetooth, ZigBee, or other constraint communication protocols, and form what
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is called Wireless Sensor Network. Sensors connect with sensor platforms, measure the
important features of the objects being monitored and transmit measurements whenever
changes are detected.

Figure 2.1: Sensor Nodes Compo-
nents

There are two forms of sensor deployments when ob-
serving the phenomena [21]: a) distance monitoring and
b) nearby field. The sensor platform accepts the sensed
data as time series and can process some data (very lim-
ited). As depicted in Figure 2.1, each node can store some
raw data in memory, transmit the data through a radio
transceiver, and process such information received by the
transceiver through a microcontroller. Each sensor node
depends on a source of energy that enables the devices to
keep running. The energy in sensor nodes is limited and

yields from small batteries attached to the device. Taking into account the attached battery
as an energy source along with the tiny device size, the node itself has constraint processing,
memory, and bandwidth for exchanging the data [17, 21, 22, 23].

2.1.2 Application Areas

The ability of WSN to work in any environment by sensing real-time data adds applicability
to a broad spectrum of applications starting from environmental to complex industrial pro-
cess automation. One of the early adoptions of sensor networks is in the military domain,
the project from Defense Advanced Research Project Agency (DARPA)[24]. Today, there
are limitless applications built up using WSN; environmental monitoring, healthcare appli-
cations [25, 26], smart home, agriculture [27, 28], industrial application [29, 30, 31], energy
control system, and other commercial applications [24, 32] as we have summarized in Figure
2.2.

Among the benefits of using WSN is the possibility to self-organize and create a multi-
hop network. In case of a node failure, they can be fault tolerant. Since nodes can be mobile,
each node can quickly enter and abandon the network. From an economic perspective, they
are cheaper in today’s market. The price of a single WSN node was around $ 5 in 2021 [33].
All these features make them very advantageous compared to other technologies.

2.1.3 Middleware for Wireless Sensor Networks

The emerging need for developing applications using WSN requires new software and tools
that facilitate the integration and communication of sensor platforms (which are distributed),
gateways (nodes), and end-user applications. Such tools and software will allow management
of the complexities by providing abstractions at different levels, facilitating the development
process, and reducing programming overhead. Indeed these tools are referred to as middle-
ware and are often used as the solution that stands between the sensor layer and application
layer and ensures effective communication among them.
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Figure 2.2: WSN Application areas

What is middleware?

The term middleware dates back to 1970 that is found in the edition of the Dictionary of
Computers [34]. It refers to middleware as the software which facilitates the installation
and development process not provided by operating systems. The term was not popular
until the 1990’s, and rarely can be found in the literature. In the early 1990s, the term was
mainly associated with relational databases, while later, this was not the case [35, 36]. After
this period, the term middleware was used to signify the software layer between operating
systems and applications and provides abstractions that overcome heterogeneity and hide
the complexities of distributed systems.

Campbell [36] uses the notion of middleware to describe the software layer, which stands
between distributed systems and the application layer. It can be seen in Bakken [37], who
identifies the primary functions of middleware as a layer that hides the complexities and
overcome the heterogeneity of inherently distributed systems. A software layer between
applications and operating systems that eases the programming process by providing ab-
stractions to transactions and remote procedure invocation is defined as middleware [38].
We can see diverse and versatile definitions of the middleware notion. In most cases, it is
used as a software layer that abstracts, integrates, facilitates, and connects one or many
applications with the underlying hardware layer.

Considering heterogeneous communication protocols and the diversity of sensor platforms
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from the open market (including different operating systems), there are particular needs for
WSN middleware discussed in [39]. In the context of the discussion, Atzori et al. [40] suggest
three research areas to be tackled in realizing the vision of IoT; sensors, middleware, and
the Knowledge base, which must act together toward the vision of connected things in the
Internet. Generally speaking, challenges that easily connect things and simplify the M2M
communication and understanding, which easily allow the development of domain-specific
applications, will lead to a desired state of IoT. In order to allow this to happen, there
is a compelling demand for layers of abstractions in the middleware. Still, too much ab-
straction often brings complexities and difficulties1. Specifically, this can be a detriment to
performance and flexibility. These issues are also echoed in [41], who identifies challenges
intended for WSN middleware, including support in the development, deployment, mainte-
nance, and execution. Hlabishi et al. [42], from WSN middleware perspective, acknowledge
network management and heterogeneous-sensor networks as solid issues that need to deal
with. All because WSN includes node movement and route changes in connecting neighbors
[43]. Therefore, the concern for node abstraction is also noted in [44]. Katasanov et al.
[45] utilize agent technologies as a model to deal with the preceding criteria, while semantic
technologies for enabling interoperability among devices/machines.

Hadim and Nadir in [46] state that a middleware layer for a WSN network dictated by
WSN characteristics, in order to be successful, must be able to manage limited power low
energy sensor nodes, their communication and offer support to thousands of connected nodes
that might be mobile. Furthermore, it must support the management of highly dynamic net-
works (many regional networks) and enable heterogeneous hardware solutions with diverse
communication protocols, dynamic network organization, and real-time services. Finally,
data integration, aggregation, and security are significant factors to take into considera-
tion. Meanwhile, Romer et al. [47] suggest that WSN middleware features should integrate
diverse applications by providing application knowledge in nodes, integrating adaptive fi-
delity algorithms, and supporting time and location data. Additionally, Yang et al. [48]
adds the localization algorithms and performance requirements as design middleware issues.
Razzaque et al. [49] in the architectural requirements of IoT middleware suggest; inter-
operability (network, syntactic, and semantic interoperability), programming abstraction,
autonomy, adaptivity, context-awareness, and distribution requirements.

Traditional distributed middlewares like CORBA and DCOM do not comply with the
requirements of WSN network [50] and thus are not suitable for use in this particular en-
vironment. Mainly, the communication in these architectures follows a synchronous model
relying on “request/response,” which is different since WSN, in most cases, follows an event-
driven asynchronous model and is often prone to node failure due to unexpected changes or
energy loss.

Recent proposals of middleware architectures aim to optimize resources, offer scalable
solutions in a highly dynamic environment and address interoperability issues by exploiting
semantic technologies. In the same way, they aim to facilitate WSN application development
by providing levels of abstraction. The following section provides a classification of WSN
middlewares architectures proposals.

1https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
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2.2 WSN/IoT requirements

2.2.1 Architectural Requirements

1. Dynamics and reorganization - Nodes in the network may happen to be mobile, and
they often enter and leave the network in an unpredicted way. In such cases, the SN
should be able to adapt and self-organize its structure to offer flexibility and availability
of resources, including the sensed data.

2. Context-aware - The system continuously monitors the physical object, attaches nec-
essary data for time, location, and space, and acts autonomously or even suggests to
users possible actions based on the perceived situation. In complex domains such as air
traffic control, automobile driving, and emergency services, an entity must recognize
the entities’ operations (nodes) in a Cyber-Physical System.

3. Location-aware - Location awareness is the ability of a sensor node to identify its
position in relation to a particular point of reference using coordinates.

4. Distributed - WSN network covers a wide area by distributing the nodes all over the
field that need to be connected.

5. Autonomy and Self-organization - is required to extend the IoT at a global scale. Mid-
dleware could perform tasks without external input, optimize resources and expand
automatically depending on the need. In such cases, overlay networks and algorithms
achieving self* properties must be implemented in the middleware to enhance perfor-
mance and provide semi/full autonomous systems. For instance, if a node generates
false values, the system may detect and stop sending erroneous data, indicating a self-
optimized network by preserving energy usage. Self-organization is another valuable
property where a collection of entities/agents interact and coordinate their actions to
achieve the global goal [51] efficiently.

6. Interdependence [18] and distributed data processing - Sometimes, cooperation between
nodes is necessary to achieve the desired result for a particular task. Such sensor nodes
should be able to coordinate their activities when operating in the environment.

7. Proactiveness - building an intelligent system does not simply mean that an entity acts
in response to the environment but has a goal-oriented behavior that will know when
to initiate its actions [15].

2.2.2 Functional Requirements

1. Resource-constrained - sensor nodes are small devices with limited memory capacity,
processing, and bandwidth.

2. Energy Management - all WSN nodes depend on battery power, and the quick harvest
of energy means no support for communication. Energy management is a critical
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factor that should be considered when building intelligent systems using WSN. Recent
research studies aim to optimize energy consumption on constrained sensory devices
[34, 35, 36].

3. Device Discovery and Management - each device deployed in the network should allow
other devices to know its presence and vice-versa; all neighboring devices connected in
the network are reachable. When discovery is made, the middleware allows requesting
the services offered by the sensory device.

2.2.3 Non-functional Requirements

1. Interoperability - is required to handle the dynamics and explore the business value
of continuously generated data. The interoperability can be achieved when end-users,
applications, and primarily machines commonly understand the meaning of data and
can efficiently process and interpret those data [52]. Agent technologies should adopt
semantic web technologies to facilitate decision-making, ease the discovery of resources,
and provide accurate results to end-user queries. This interoperability sought to be;
a) syntactic and b) semantic.

2. Mobility - middleware requires to support network dynamics and movement of sensor
nodes. Each node is connected wirelessly and can move within the network range.

3. Fault Tolerance - It is required to ensure normal functioning due to power restrictions
or hostile environments where the networks are deployed.

4. Ultra Scalability - Middleware should be capable of dynamically injecting the ser-
vice functionalities, providing service discovery and composition, and enabling efficient
communication with other entities in the network and the Internet. This way, algo-
rithms must process voluminously generated data by sensors, and the persistence layer
needs to store those data and immediately respond with accurate results to end users’
queries. Furthermore, managing billions of connected things presents a significant chal-
lenge. The only way to keep the trend is to scale quickly with a set of rich behaviors
and intelligent algorithms with self* properties and not burden developers with imple-
mentation tasks whenever a new device is added. Thus, scalability is required in all
three dimensions: a) Size (increasing networks, users etc.) b) Geography (communica-
tion distance posing no problems), and c) Administration (optimization should occur
without too much effort and should be automatic)

5. Heterogeneity - Different vendors produce sensory devices that may consist of different
operating systems, that in turn demand abstractions from middleware for integrating
each device in the network and providing the services to end users. The more devices
are integrated, the more the demand for data interoperability is created. As the infor-
mation generated by sensory devices might have different data models, a middleware
should provide an interface that accepts the information streams and converts them
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to a common standardized format that is accepted among all entities in the network.
The heterogeneity should be considered in terms of a) hardware devices b) network, c)
programming languages, and d) data formats.

6. Intelligence - the amount of data streams produced by the sensor network is exception-
ally high. Designing a middleware that could bring Intelligence closer to the nodes,
such as reducing transmission of unnecessary raw data and ensuring that the system
is at an optimal level, is very desirable.

7. Robustness and openness - having open systems allows us to understand the technolo-
gies involved and could enable cooperation from diverse technologies, including devices
from different systems. However, this will open the research direction with security
and privacy. On the other hand, having a system that can operate continuously de-
spite numerous failures that could happen (node failure, broken links, noisy and faulty
physical world realities) is more than desired for future intelligent applications.

8. Concurrency - virtualization of sensory devices would give numerous applications access
to the same device without the necessity to deploy similar devices for the same purpose.

2.2.4 Application Oriented Requirements

1. Diverse applications - a wide variety of applications would be able to access the middle-
ware by using various technologies from different vendors. In that case, the middleware
will also create the need to address the appropriate domain-specific requirements.

2. Real time - in a monitoring environment with the wireless sensor nodes, industries/ or-
ganizations collect real-time data about their interested ”thing” properties and process
in real-time that information that will result in an appropriate decision.

3. Precision - some specific domains, like industrial automation, smart automotive, health-
care, and other related industries, require high accuracy and no latency at all. For
instance, a self-driving car requires data immediately without delay because of the ac-
tions to be taken instantly, otherwise, a crash might happen with other objects nearby.
As a result, having very low latency and enough bandwidth to transmit the necessary
data are crucial for building future smart apps.

4. Seamless connectivity and stability - The near future requires fast data processing
techniques and high connection speed with quality service.

5. Security - nodes will collect heterogeneous information, including personal human data,
their location, medical data, preferences, and similar sensitive data. It is necessary to
build security protection at a different middleware level, including the regional net-
works: from the physical layer where we collect data, every communication encryp-
tion, and middleware level, if possible, the detection of an attack and their diagnosis,
or privacy issues if they are broken.
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6. Transport Systems Requirements

• Delay sensitivity - Vehicles moving at high speed have a crucial requirement re-
garding communication delay, which could be in micro to milliseconds. In cases
when bandwidth is restricted, and a delay occurs, the life of surrounding people
would be at risk.

• High-speed mobility - In the automation industry, it is critical to guarantee high
precision using ad hoc connections at a very high speed.

7. Health Care

• Confidentiality - saving patients’ data requires a model that restricts data access
by keeping data secret and ensuring confidentiality.

• Data Visualization - data visualizing techniques that professional caregivers un-
derstands still need progress. Data will be meaningless if the visualization does
not follow a certain standard.

• Trustworthiness - providing high-quality measurements and data delivery with no
latency. In healthcare, the level of trustworthiness must be very high. Trustwor-
thiness has several other consequences concerning radio communication which can
lead to additional loss of packets or noisy data when metal doors and walls are
present.

8. Marine Environment

• Higher Water resistance - the more profound the water level, the stronger the
resistance.

• Strong robustness - sensor nodes need to work in an environment with high waves,
typhoons, and different tides.

• Higher energy consumption occurs due to long distances in communicating the
data while monitoring the environment (ship mobility, container tracking, etc.)

• Sensor coverage issues - the maritime environment is inadequate for deploying
sensing devices in ocean areas, which might result in coverage problems.

• Unstable line-of-sight - between transmitter and receiver becomes critical due to
antenna oscillation, waves, and moving ”objects.”

9. Industry Challenges

• Mixing legacy infrastructure with IoT - Industry is still not ready to modernize all
of its infrastructure with modern IoT, and one of the challenges is to find solutions
that both; legacy and modern infrastructure are able to operate together. The
legacy issue indicates the need to leverage data by producing the necessary tools
for integrating the data from both; systems and new tools that efficiently process
data.
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• Unpredicted situations - further development of intelligent algorithms is necessary
to respond to unpredicted behaviors from industrial machines.

• High-Speed Internet Protocols - information transformation from machine to ma-
chine should be higher than what current protocols are offering.

• Cyber security and property security - today, the industry faces security chal-
lenges and cyber-attacks that could cause an economic loss. Protecting products,
customers, marketing strategic data, and even more to avoid the misbehavior of
machines requires additional security enhancements.

10. Smart City

• Long range communication - Smart city consists of a very noisy environment that
creates signal interferences and provides environmental barriers with several other
obstacles. It requires long-range communication to devastate such issues.

• Bandwidth consumption - smart city produces tons of data that will consume the
bandwidth fast.

• Ultra-dense device deployments - due to dynamism, noisy environment, crowds,
and obstacles appearing in the city, the need for dense sensor node deployment is
required.

• Functional extensibility - has to do with adding new functionalities/services to
the existing ones.

WSN is characterized by many sensory devices and network protocols (Zigbee, Xbee, 5G,
Bluetooth, etc.) with applicability to a wide range of domains. Challenges already present
on the Internet are valid to WSN, but there are far more issues because of the characteristics
and limitations imposed by WSN. Those challenges are summarized in the following section.

2.3 Challenges of Dynamic WSN/IoT

As the previous section introduces the general challenges of IoT, for the purpose of this study,
the challenges will be categorized according to the definition of dynamic systems. Thus, the
following section discusses the challenges of the dynamic system:

• Ultra Scalability - Middleware should be capable of scaling in several perspectives:

– Functional scalability - is the ability of the middleware to easily add new func-
tionalities and scale with new services and new functionalities with minimum
effort.

– Geographical scalability (GS) - in complex systems, GS represents the ability of
middleware to maintain performance and efficiency regardless of when it is ex-
panded from a local area to a distributed geographic pattern. It also means that
the distance of components will perform well when communicating and collabo-
rating.

14



– Load scalability - presents the capability of the distributed system to create a
balanced load when the number of inputs is growing or when the number of
inputs is light. It shows how easily it accommodates the load of the middleware
architecture by modifying components, adding new ones, or removing them.

– Administrative scalability - is the capability of the middleware architecture to
work for a number of organizations/institutions/users.

• Heterogeneity - Heterogeneity is a critical aspect of IoT, where complex systems
often need to sustain with many diverse standards, devices, and applications. So
starting from the hardware up to the application level, the heterogeneity includes:

– Heterogeneous devices - multiple vendors produce devices with different capacities
including devices addressing application-specific requirements.

– Heterogeneous data streams - information can be in binary, plain text, or struc-
tured, such as JSON or XML. Thus, the complex system needs to access such
information and be able to process them.

– Communication protocols - since WiFi cannot be directly applied to sensory de-
vices with already known limitations (memory, processing, and energy), a variety
of lightweight wireless protocols exists and aim to work in such resource-limited
devices.

– Operating system - as multiple vendors are producing sensory devices, there may
be cases where different operating systems are used by different vendors, which
also indicates that different programming languages may be used.

• Autonomy - the system should adapt to unpredictable changes while also hiding
its complexity from users. It should perform its tasks without external input and
do them automatically [53]. IBM proposes four properties for autonomic computing:
self-healing, self-optimization, self-configuration, and self-protection [54]. The self*
properties are expanded further by Prosland [54] and Nami and Bertel [55].

– Self-organization: patterns arising at a global system arise from the interactions
of low-level components [53]. It allows the creation of a structured network for
nodes who enter the network spontaneously.

– Self-adaptation: the system is able to adapt itself to changing conditions without
too much effort.

– Self-healing: discovery from faults in an automatic manner.

– Self-optimizing: automatic optimization of the resources to function properly as
defined in the requirements.

• Emergent properties [56]: complex systems poses emergent properties which arise
by studying the system overall and not parts individually. More than a complete
overview of the individuals is required to predict the system’s behavior overall. In
IoT, the cases of autonomous driving cars, smart traffic lights, smart grids, etc., are
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complex systems that need emergent properties [57]. One requirement to be fulfilled
as an emergent behavior is to have self-organization property and, specifically, realize
autonomic properties.

• Robustness - A critical factor of the middleware is to react to disruptions of bro-
ken links and node failures. Failing nodes have an immediate effect on the accuracy
of the received values that may require new settings for the nodes or new network
configuration in case of node failure.

• Interoperability - is required to handle the dynamics and explore the business value
of continuously generated data. Interoperability (syntactic and semantic) is achieved
when end-users, applications, and most machines typically understand the meaning of
data and efficiently process and interpret those data. This interoperability sought to
be;

– Syntactic interoperability: a common structured data format like XML or JSON
enabling machine processing of information.

– Semantic interoperability: the ability to share the meaning in machine-to-machine
communication.

• Energy efficiency - due to the dynamic environment, node mobility, and small-sized
power supply, the demand for energy optimization and efficient energy usage in wireless
sensor networks is crucial. To have energy efficiency, several domain problems need
to be touched; data transmission, routing of information, processing, and localization
strategy. For instance, transferring the data to the failing nodes requires retransmission
[71]. Recently, much investigation has been done to improve the energy efficiency in
sensor networks.

• Memory and Processing - The miniaturization of the sensory devices and the
energy limitations directly affect the processing and storage of these devices (which
are constrained). Storing the data internally is impossible, while processing the data
is too limited.

2.4 Architectural Middleware Classification for WSN

A demand prevails to classify a taxonomy and check the advantages and disadvantages of
each architectural approach that can work in a highly dynamic environment in delivering
middleware services for WSN. This classification derives from an investigation of the research
literature of previous reviews in the middleware approaches for WSN network [49, 58, 59, 60,
61, 62]. This categorization reflects how closely each architectural approach is able to address
the issues and challenges of sensor networks and their potential for future applications.

This categorization includes:

• Database Oriented. The entire sensor network is seen as a virtual distributed
database.
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• Service Oriented. The design paradigm follows SOA architecture approach, where
the applications are built in the form of services.

• Agent Oriented. Agent-oriented programming (AOP) is used to develop modular
programs for WSN control and coordination.

• Virtual machine based. Virtual Machine is placed on nodes within the network,
allowing programming support and providing abstractions of the OS.

• Tuple Space oriented. Each sensor node in the network acts as a shared memory
consisting of tuples that can be accessed concurrently by other nodes in the network.

• Event based. In event-based middleware, components, applications, and all the other
participants interact through events. Each event has a type, as well as a set of typed
parameters whose specific values describe the specific change to the producer’s state.

• Rule based. In the rule-based paradigm, the execution of an instruction is based on
the rules or knowledge applied to the initial receiving data to inherit new information.

The following section examines the previous work investigated in this area which sum-
marizes the approaches identified by different research studies in Table 2.1. Then, we will
provide the pros and cons of each paradigm which details the reasoning of this thesis regard-
ing the most suitable paradigm for Wireless Sensor Networks.

Table 2.1: Taxonomy for Wireless Sensor Network middleware

Resources DB
Service
Orien.

Tuple Agent VM
Event-
based

Rule-
based

App.
driven

other

Molla et al. [59] :2006 D D D D
Sugihara et al. [63] :2008 D D D
Razzaque et al. [49] :2016 D D D D D D D
Wang et al. [62] :2008 D D D D D
Hadim & Mohamed [46]
:2006

D D D D
Kuorilehto et al. [64] :2005 D D D D
Li & Moh [65] :2014 D D D D D
Chelloug et al. [61] :2017 D D D

Kuerilehto et al. [64] distinct operating system, middleware, and virtual machine-based
architectures. Operating system and VM architectures mainly operate at the node level,
while the middleware performs at the network level. It follows that the middleware archi-
tectures are classified into database approach, application QoS and based on the context of
the surrounding environment, which are implemented using tuple spaces or mobile agents.
Tuple spaces are considered communication methods for task assignments rather than an
architectural model.

Hadim & Mohamed [46] propose another classification for sensor networks based on
programming support and programming abstraction. The latter describes the sensor network
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as we view it, a layer over the network that changes as we view it. Programming support
classifies; VM machine middleware, database, modular (agent-oriented), application-driven,
and message-oriented approaches. Contrary to Kuerilehto et al. [64], the VM approach is
represented as a middleware approach that allows modular programming and distributed
modules throughout the network using tailored algorithms, which later the VM interprets
the modules. Database abstraction perceives the whole network as a virtual database, which
allows users to unleash queries via a friendly interface and get replies that most often are
approximate results. The message-oriented approach allows asynchronous communication in
a distributed sensor network by employing a publish-subscribe mechanism.

A broader classification is given by Razzaque et al. [49], which categorizes middle-
wares according to the design approach. The classification consists of: a) event-based, b)
service-oriented, c) VM-based, d) agent-based, e) tuple-spaces, f) database-oriented, and
g) application-specific. Database-oriented, agent-based, and tuple spaces are previously pre-
sented in the above sections. Message-oriented approaches are treated under the event-based
approaches. The events are disseminated from sensor nodes to the end-user application pro-
grams. Most commonly, the communication model is publish/subscribe mechanism that
is also part of message-oriented middleware and thus falls in the same category. On the
other hand, service-oriented approaches are built following the SOA approach where loose
coupling, service compose-ability, and remote access are integral to these middlewares.

Another mode not discussed previously is the one noted by Wang et al. [62], which
follows a rule-based approach and is represented by FACTS middleware [66]. Likewise tuple-
space approach, each node acts as a shared memory, structuring the data in tuples and
encompassing local rules. Then, a component consisting of a set of rules allows the execution
of occurrences by receiving the information from local nodes. Authors in [62] give a more
rigorous taxonomy of the architectures for WSN. They divide into programming abstractions
and implementation features. The first involves the design approach to be tackled, while the
second provides implementation features, including coordination and context features.

Other research reviews ([59, 61, 63, 65]) provide a similar classification of middleware for
WSN, all of which are previously discussed.

2.4.1 WSN Middleware Advantages & Disadvantages

The middleware design approaches discussed previously provide a means to develop high-
level applications in the domain of the WSN network easily. Each paradigm is distinguished
for its own powerful features and has its pros and cons where Figure 2.3 summarizes the
advantages and disadvantages of each paradigm, which will also be discussed according to
the criteria previously identified in the literature while addressing the important issues of
a generic (not application-specific) WSN middleware addressed in the Introduction section
of this report; dynamic environment, ultra-scalability, heterogeneity, robustness, autonomy
and node constraints. First, we will discuss the paradigm in general, which would best fit
the criteria specified, and then a detailed overview of the middlewares following such design
approach is discussed.

In designing the Ubiroad middleware, Terziyan et al. [67] identifies interoperability, mo-
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Figure 2.3: Middleware Design Approaches Advantages and Disadvantages

bility, and heterogeneity as middleware design feature that needs to provide mobile services
to the end users. Following that, as the number of devices continually increases and along
with that increases the management of such massive growth, authors in [68] propose auto-
nomic and resilient service provisioning support by the middleware.

It is evident that current middlewares are only able to address some of the WSN require-
ments and challenges imposed by their characteristics and application domains they operate.
For instance, Razaque et al. [49] identifies several architectural challenges that are not/partly
provided by current middlewares, such as interoperability, autonomy, adaptiveness, and pro-
gramming abstractions. Alternatively, Anne et al. [69] remark service discovery, scalability,
and security & privacy as concerns for the middlewares.

Of course, the next generation of IoT should be able to deal with all of the above design
issues for enabling next-generation IoT systems. Notably, the super-massive increase of
connected things will require autonomy for systems that must have self-management but
also remove complexity barriers for further growth.

The following table summarizes middleware paradigm comparison mainly based on the
dynamic challenges of IoT.
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Table 2.2: Comparison Criteria for the WSN paradigms

DB C, E, NRT
Service-oriented D, S, SI, SRT, DA (hard coded)

VM D, HS, SRT, S, partially RA
Agent-based DA, Aut, R, SRT, D, SO, HS, E, SI, partially RA
Event-based C, E, S, HRT,

Application-based Aut, HRT, C, D, HS
Legend Aut: Autonomous, E: Energy efficient, C: Centralized

A: Availability, DA: Dynamically adaptive,
SRT: soft real-time, HRT: hard real time HS/S: Highly Scalable/Scalable
SO: self-organized, D: decentralized SemI: Semantic Interoperability
NRT: Not real time SI: syntactic interoperability

2.4.2 Paradigm Satisfaction Desiderata

Previous sections identified a set of paradigms, discussed their advantages and disadvantages,
and explicitly defined the criteria under which the middleware paradigm is compared. Table
2.2 recaps the supported requirement of each middleware paradigm. It can be concluded that
service-oriented, agent-based, application-oriented, and VM-based address more specified
requirements for the purpose of this study.

DB approach. Centralized approaches are commonly adopted by the industry [70] due
to operational costs and low capital. All the resources reside in a primary data center where
IoT users connect remotely to a registry in the form of a client-server and query the data from
the central database. They make it possible to respond to user queries and extract meaningful
information, most often with approximate results. The most popular is GSN [71], which is
also implemented in other projects like OpenIoT [72]. A great feature of this architecture is
the Plug & Play capability. Despite the success in the industry because of operational cost
and historical data, they provide, today, WSN applications require real-time monitoring,
whereas centralized middlewares are timeliness[73]. Next, in the centralized solutions, it
takes a lot of work to handle scalable sensor network dynamics due to the mobility of nodes
and environment dynamics which often may require local collaboration to accomplish a task
based on the collected data. For instance, recently, we have self-driving cars that requires
to instantly make decisions locally, rather than waiting for someone to press a button and
wait for the following action. It is also challenging to handle and manage applications and
services dispersed geographically. Finally, the main data center becomes a single point of
failure, and attack [74].

VM approach. VM-based are very good at providing abstraction and scalability at the
application level. It allows the developers to develop applications in small modules, which
are then distributed throughout the network. Considering that each node holds a VM that
interprets the modules [49], the nodes themselves should be resource-rich enough to run the
VM modules correctly [75]. On the other hand, installing VM would minimize energy con-
sumption and resource usage [76]. Overall, VM architectures, together with service-oriented
approaches, follow a predefined and deterministic mechanism for resource composition, which
does not scale well in ultra-scale and dynamic environments [49].
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Event-based. In the event-based approach, applications receive data transmission when
a specific event occurs. Generally, events consist of a set of typed parameters that deter-
mines whether there is a change in the state of the component being monitored. Usually, the
sensed information of the producer is assumed to be accurate. The kind of event approach
is message-oriented middleware which depends on the publish/subscribe mechanism. The
architectural model follows an asynchronous communication model, which is also considered
more suitable than the synchronous communication model [46]. Most of the requirements ad-
dressed by even-based approaches cover non-functional requirements; real-time performance,
availability, scalability, resilience, and security [77]. These imply to perform well in mobile
and reactive apps, while the support for interoperability, context-awareness, and adaptability
are limited [49].

Application-oriented. Application-oriented middlewares are based on a set of require-
ments of a specific domain that try to satisfy the quality of service by following an architecture
that fits the network of a specific application. Building another application for a different
domain requires addressing new requirements and even starting implementation from the
beginning.

Service-oriented. Presents an industry supported standard technology. The SOA,
together with Agent-oriented approaches, facilitates the modeling and development of today’s
complex systems by offering modular solutions (separating the concerns into smaller pieces);
one through services and later through agents. SOA would provide better scalability through
load balancing by creating individual clusters, while the Agent-oriented paradigm (AOP) is
known for scalable solutions. Following the SOA-based architecture seems inconvenient for
Sensor Networks due to the node limitations. As a result, it fails to comply with SOA
requirements for high processing power and memory for message processing [69]. Further,
SOA research challenges such as heterogeneity, mobility, adaptability, awareness, security,
and privacy [22] should be further addressed.

Agent-based. The agent-based programming paradigm is highly flexible and has a lot
to offer to the IoT. There is evidence from studies [78, 79] that this is the most suitable tech-
nology to meet the IoT needs for building robust, complex, real-life enterprise applications.
In a distributed environment like IoT, complexity and scalability are handled by separating
its components and decomposing the larger problem into subproblems by assigning each sub-
problem to an agent. Also, agents can coordinate the tasks accordingly and provide efficient
solutions via distributed computing, bandwidth, and power usage [80].

In an environment where agents operate, the ability to adapt to a rapidly changing envi-
ronment and dynamics which consist of limited resources [80, 81] is high. Agents might know
in a precise manner with whom, and when to collaborate, so the goal is accomplished. A nat-
ural way of modeling complex systems is through small autonomous components interacting
with each other towards the goal achievement [82]. The more autonomous components are
built, the better management of complexity. Usually, various software modules (or mobile
agents) in distributed systems run on the distinct local network and become part of that
network throughout their lifetime. Due to the mobility of agents [82], there is potential to
change the state dynamically depending on the environment and thus capable of performing
well relevant to the new changing environment.
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Another dimension where agents play a significant role is the ability to do data processing
and data extraction in sensor nodes. Data processing near the nodes filters the unnecessary
raw data and further turns the raw data into information in a region of interest. The
possession of such properties allows global energy management for the whole network [83].

Although AOP and SOA present the most promising paradigm by addressing most of
the requirements of today’s IoT, the differences are as follows: Regarding Interactions, the
difference between Service-oriented and Agen-oriented approaches is the difference between
syntactic and semantic level interactions. SOA interactions are bound mainly at ”syntactic
level”; a service invokes a function that is exposed by another function, and after a given time,
it retrieves the results [82]. In the agent-oriented paradigm, the interactions are bound to
semantic and knowledge levels. The semantic interaction allows agents to communicate and
engage with the problems cooperatively until the desired results are achieved. Consequently,
we may give more responsibilities and create more autonomous systems so that human
intervention remains at the lowest level possible in our future e-business applications and
enterprise integration.

Admittedly, agents have the ability to provide autonomy in WSN systems if the informa-
tion is shared and appropriately processed. A very promising approach for the system’s au-
tonomy plays knowledge representation languages [84], which allows modeling, representing,
and processing of the environment and sensed information. In particular, the combination
of an agent-based paradigm with semantic Web and Web services is very promising for the
future of IoT. There are several studies [85, 86] showing the relevance and benefits of such a
combination.

2.5 Agent oriented Middleware for Wireless Sensor Net-

works

An agent is an autonomous software that is capable of performing some actions with a
certain degree of autonomy in a particular environment in order to accomplish the given
tasks. In Agent-oriented middleware, multiple software agents are dispersed throughout the
network and enable the execution of simultaneous applications. Agents are likely to store
their state while moving from one node to another node and thus making them very suitable
for decentralized systems that tolerate partial failure [87]. In Wireless Sensor Network, an
agent can represent real-life entities such as a doctor in a hospital, a temperature monitoring
center, a self-driving car, etc. For instance, when querying a particular truck, an agent
would give its location, depicting the truck on the road. It is demonstrated that agents can
also reduce data transmission and thus save up roughly 90% of data transfer time [88]. The
energy savings happens because the data will be transferred only when an agent requires it.
It indicates that they eliminate the data redundancy and data transfer overhead within the
network.

We already emphasized the importance of agent-oriented architectures for Wireless Sen-
sor Networks using particular criteria and the advantages compared to other paradigms.
The current section elaborates on agent-oriented architectures that help us to find the best
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architecture later in chapter 3 according to the criteria described in section 2.3.

2.5.1 Multi-agent based approach

Multi-agent approach provides the necessary tools and methods to model complex distributed
systems, such as the case of WSN, with some capabilities in performing tasks either indi-
vidually or collaboratively under certain rules or by learning via input gathered from the
monitoring environment. Thus, a multi-agent system consists of numerous software agents
that collaboratively solve the tasks, operating beyond their individual capacities [89]. Each
agent likely performs processing tasks individually, reasons over the data, and can provide
visionary solutions via intelligent algorithms integrated into each agent or via intelligent al-
gorithms capable of solving complex issues provided at the global level, resulting from facts
exchanged by local agents.

Thus, knowledge sharing among agents promotes better processing time, task realization,
energy savings, and bandwidth utilization. They also help in selecting the optimal path for
information traveling in a dynamically modifying network structure. The above statement
shows better utilization of WSN resources and contributes to better decision-making in
distributed and dynamic environments. For instance, in (semi)autonomous vehicles, agents
efficiently process sensed local data and share the knowledge with other agents for better
decision-making by avoiding possible accidents or in a crowded city; they allow to select the
best route to arrive faster at the destination.

2.5.2 Bio-inspired approach

Biological systems and nature are a great source of inspiration for designing, developing,
and applying biological and chemical principles in several engineering problems, which are
introduced for the first time by Eigen [90]. These principles come from chemical systems
by studying nanostructures of biological molecules or studying interactions of proteins in di-
verse surfaces [91] and biological systems by studying the swarm behaviors. Self-organization
biological systems provide interesting properties that emerge spontaneously via local inter-
actions of individual elements in order to solve complex problems at the global level. For
instance, ants are limited in the functions they perform. Nevertheless, they are able to solve
very complex problems when they function in colonies, capable of creating superhighways
while carrying food. These genuine, spontaneous, and self-organization behaviors have found
a suitable solution to a wide range spectrum of applications. Specifically, many algorithms
and tools have emerged and been applied to various problems in WSN. Dressler and Akan [92]
classify Bio-inspired solutions in three main categories; a) Bio-inspired computing consisting
of optimization algorithms, b) Bio-inspired systems that deal with architectural paradigms,
and c) Bio-inspired networking for building large-scale, distributed applications. We mainly
study bio-inspired solutions from an architectural perspective addressing WSN requirements.
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2.5.3 Existing Agent-Oriented Architectures for WSN

In what follows, we list the agent-oriented WSN architectures extracted from the literature
review.

Agilla [93] is an agent-based middleware designed to support self-adaptive applications.
Agilla is built on top of TinyOS and Mate. It is composed of moving agents that save
their current state using tuple space. The autonomy of each agent is guaranteed by the
use of local tuple spaces where every node in the network consists of tuples that make it
possible for other agents who visit that particular node to read/update the saved information.
It makes use of a template pattern for gathering information in tuple spaces. The main
idea of Agilla was to deploy on a network with no pre-installed apps. In this middleware,
agents adapt the application’s behavior from the environment they operate and reconfigure
it. Also, agents might interact with nearby agents or remotely access information using
tuple spaces. Apparently, agents process information and make decisions locally, reducing
the data communication and making Agilla an appropriate solution for nodes requiring
energy efficiency. However, programmability and code management are very challenging due
to low-level language abstractions.

Impala [94] is a middleware designed explicitly for ZetbraNet project, which is a wildlife
tracking project for tracking nodes and peer-to-peer communication techniques. Impala
allows applications to achieve modularity, adaptability, and repairability in WSN via efficient
updates that come into modular pieces on the fly (through a wireless transceiver).

Impala is suitable for sensor networks that are deployed in a harsh environment that
requires minor updates but not too frequently since the overhead is present when delivering
a specific event. It follows that they are efficient when there is a need for complete software
upgrades or re-installation.

ActorNet [95] is a mobile agent platform for WSN designed to support concurrent appli-
cations in constraint sensor nodes. It provides code migration functionalities similar to Agilla
but with higher efficiency and interoperability support. In addition to the above, ActorNet
provides virtual memory, context switching, and multitasking for better execution support
when multiple applications access nodes with limited resources. A drawback of ActorNet is
fault tolerance that comes from the service discovery mechanism, which is a local broadcast
protocol that requires a node to know all the neighboring nodes, which introduces an extra
overhead in the network.

UbiRoad [96] presents a semantic middleware following an agent-driven architecture for
context-aware smart road environments. This middleware includes flexible collaboration
between smart road devices and services and the interoperability among heterogeneous in-
car and roadside devices. Semantic interoperability is obtained with regards to a) data-level
interoperability by developing a paradigm of resource-oriented networking and b) protocol-
level interoperability by utilizing context-aware, adaptable and reconfigurable composite
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service networks. In addition, agents in Ubiroad allow monitoring of various components of
the network, which by monitoring resources internally, including the interactions with other
resources in a smart road environment, contributes to self-management capabilities.

MAPS [97] is an agent-oriented middleware for WSN applications based on Sun SPOT
technology. MAPS offers a set of services that supports the management of agents and
services for easy access to the node resources. Agents’ actions follow the multi-plane ECA-
based model where each action is triggered by certain events under certain rules. MAPS
framework is particularly designed for devices with limited resources and suits well for Sun
SPOT nodes that are Java programming compliant.

MASPOT [98] extends the abstraction of MAPS and adds the capability for code mi-
gration to Sun SPOT sensor nodes. Providing migration capability brings a better range of
applicability of Sun SPOT sensor nodes compared to MAPS. Compared to MAPS, agents’
communication in MASPOT is fulfilled via a broadcast protocol which introduces an extra
overhead in the network.

TinyMAPS [99] is a Java-based framework designed to work with the Sentilla sensor
platform. It derives from MAPS middleware by enhancing functionalities to work with
nodes having more limited capabilities compared to Sun SPOT. TinyMAPS is less efficient
than MAPS when agents communicate with each other but improve migration when the
data payload is low (under 58 bytes).

UBIWARE [100] is a middleware for integrating heterogeneous IoT resources and pro-
viding semantic interoperability between the connected components and the applications.
It follows an agent-oriented paradigm that is developed on top of Java Agent Development
Framework (JADE 2). UBIWARE allows the development of complex, distributed systems
that are flexible and extensible. One of the main principles is to support automatic discov-
ery, followed by orchestration, choreography, invocation, and execution of various meaningful
services. Although it does not look ideal for Wireless Sensor Networks, it seems a promising
approach for IoT by addressing several IoT requirements.

Emergent Distributed Bio-Organization (EDBO) [74] presents a bio-inspired agent-
oriented middleware for WSN. Inspired by the concept of gaining the desired properties at a
higher level through the interactions happening at a lower level, EDBO aims to tackle most of
the challenges of distributed systems and today’s IoT requirements. Similar to UBIWARE,
it intends to discover resources from decentralized but unstructured networks. UBIWARE
follows a proactive routing strategy, while EDBO utilizes emergent behaviors. Discovery in
EDBO middleware is achieved via BioBot, which can interact with the cyber-physical system
(CPS) and handle the end user queries. BioBots can interact with each other in order to
achieve the desired result. Furthermore, EDBO has the ability to offer a scalable, robust

2http://jade.tilab.com/
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solution in distributed systems without explicit engineering using bio-inspired algorithms for
replication and organization of the activities.

Self-Adaptive Middleware for Wireless Sensor Networks (SAMSON) [101] is a
middleware for Wireless Sensor Networks that addresses the autonomic model requirements
such as self-configuration, self-healing, and self-optimization and, as a result, will facilitate
the creation of self-adaptive WSN middleware applications. It follows the MAPE-K [102]
model proposed by IBM for autonomic computing. Their reference architecture (RA) allows
them to map elements of the RA to software components and generate source code for
the sink nodes and nodes in the WSN network. The code is platform-specific and can be
deployed to nodes running the Contiki operating system. The SAMSON self-adaptivity takes
into account the nodes with faults, disconnection, and power concerns.

Distributed Internet-like Architecture for Things (DIAT) [103] propose a dis-
tributed layered architecture able to tackle the challenges of automation through dynamic
service creation, security, zero-configuration, heterogeneity, and interoperability. The idea is
to run the so-called ”IoT daemon” in every object that consists of some processing power and
memory. This daemon is divided into three layers: virtual object layer (VOL), composite
virtual object layer, and service layer. The first layer (VOL) of the IoT daemon deployed in
device A can communicate with the second layer of each daemon deployed in other devices.
This layer allows for overcoming the interoperability issues among the system. In situations
where limited capabilities exist, such as WSN, the daemon provides limitations to the fea-
tures that can be offered to those particular nodes. However, DIAT allows the creation of
dynamic services with some ”manual” configurations in the platform.

EAGILLA[104] is an enhanced alternative to Agilla middleware. The Eagilla middle-
ware supports mobile agents that can move around the nodes (not fixed like agilla). The
communication of moving agents goes on globally by supporting multicasting in WSNs. This
communication between agents and remote agents is similar to agilla and is based on tuple
spaces. Eagilla is different from Agilla in supporting several nodes from different vendors,
which addresses the heterogeneity issue of WSN. Eagilla is in its early stages, and it provides
simulation results.

Sensomax [105] is an agent-oriented middleware dedicated to working with Sunspot nodes
implemented with Java platforms (Java SE and ME). In Sensomax, it is possible to access
nodes by multiple applications concurrently. Each application is treated as a process, and
these processes can access all the resources. The resources are categorized as shared resources
on a global level with all the network nodes, locally with members of the same cluster, which
consist of cluster head and system properties. In Sensomax, every node can become a
cluster node that can communicate with the other cluster nodes and the gateway. There is
no distinction between nodes with resource constraints and nodes without constraints. Also,
this middleware is application domain-specific, using Sunspot nodes.
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Bisnet [106]. BISNET presents a biologically-inspired middleware for WSN. The mid-
dleware is inspired by the bee colony mechanism and implements certain agent behaviors;
pheromone emission, energy exchange, replication, migration, and death. For instance, when
an agent reads the sensor readings, it converts to energy which is shared among agents for
maintaining a balance of energy and also used for pheromone emission that alerts other
agents of environmental changes. When the pheromone exceeds a specific threshold value,
agents can replicate themselves, and as a result, the monitoring node is replaced by the
replicated agent while the parent moves to the neighboring node. The migration is used in
multi-hop transmission for transmitting data to the base station, while agent death happens
due to a lack of energy.

FIoT (Framework for IoT) [107]. Presents an agent-based framework for building self-
adaptive and self-organized IoT systems. It is constructed using MAS and machine learning
techniques for making decisions based on the collected information. The main focus of the
middleware is to provide autonomy to the smart object in the sense that they do not need
human administration. Each smart object is controlled by an agent who collects the data
from it and sends the data to the agent controller. Based on the defined features of the
problem domain (which should be provided by the designer), the adaptive agent executes
and process the information. The framework looks promising by employing evolutionary and
predictive algorithms for improving the performance and the adaption to the dynamics of
IoT. On the other hand, the framework does not consider the constraints of the WSN and
IoT. Smart objects are considered devices equipped with sensors, actuators, processing, and
networking capabilities embedded with intelligence. These smart objects can either sense
and interpret their own generated information or information from nearby devices.

ACOSO (Agent-based COoperating Smart Objects) [103]. ACOSO follows an
agent-oriented and event-driven paradigm for monitoring cooperative smart objects (CSO)
(similar to FIoT middleware). CSO in ACOSO utilizes the event-driven proactive architec-
ture following a message-based and publish/subscribe communication model. The middle-
ware layer which implements the CSO architecture is built using agent frameworks. ACOSO
is specifically designed for developing and managing SO, which demands proactive and reac-
tive solutions. In particular, exploiting the regional knowledge of smart objects allows them
to react to outer stimuli, perpetrate their inference rules, and fulfill specific goals.

Al-Sakran [108] proposes an agent-based framework for intelligent traffic monitoring.
The system integrates RFID and Wireless Sensor Network technology to monitor several
explicit parameters for this domain. The collected information is gathered by a software
agent that is integrated into the device, stores the data locally, or forwards the information
to the other agents for further processing, which allows making decisions for the monitoring
segment. The framework is domain-specific and works in a decentralized environment that
addresses IoT’s mobility and heterogeneity requirements. The framework is simulation-
based, tested for a number of segments, and it is good to see how it performs in real-life
scenarios.
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Table 2.3: Agent oriented middleware approach comparison
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Agilla D D D D D X D
Impala D NS NS D NS D NS

ActorNet D NS NIP D NIP D D
UbiRoad D D D D D NIP NIP

MAPS D NIP NIP D NIP NS D
MASPOT D D D D NS NS D
TinyMAPS D NIP D D NIP D D
UBIWARE D D D D NIP NIP NIP

EDBO D D D D D NIP NIP

SAMSON D D D D D D NIP

DIAT D NIP NIP D NS NS NS

EAGILLA D D D D NIP NIP NIP

Sensomax D D NIP D NS NS D
Bisnet D D D D D D D
FIoT D D NIP D D NS NS

ACOSO D NIP NIP D NS NS NS

Al-Sakran D NS NS D NS NS NS

Legend: NIP: No Information Provided, NS: Not supported D: Support
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2.5.4 Discussion

The previous sections have provided an overview of sensor networks concepts, applications,
and challenges. Following that, a review of middleware architectural paradigms was con-
ducted, and a taxonomy of the approaches was presented. The middleware paradigm ad-
vantages and disadvantages are presented in section 2.4.1, and table 2.2 that gives us the
knowledge for the most approximate approach that can address the requirements of the
future WSN middleware with regards to the comparison criteria presented in section 2.3.

Database approaches provide a familiar and easy implementation of the wireless sensor
network (compared to other approaches) with a user interface for issuing queries in a central
database and returning the approximate results. They are often restricted to working with
specific hardware like TinyDB[109] and unsuitable for dynamic environments.

Virtual machine approaches provide a good model to overcome the heterogeneity of the
hardware platforms but implementing a new platform that runs with a virtual machine
requires a significant amount of time. Then, the platform is able to change the behavior
accordingly to the environmental conditions. On the other hand, installing the VM requires
resource-rich capabilities.

Service-oriented middlewares provide modularity of the IoT systems with a high potential
to address several issues of IoT. This approach is highly recognized in several studies of IoT
middlewares [40]. Often, these middleware approaches are combined with other approaches,
such as OpenIoT with GSN middleware [110]. Alternatively, the service-oriented approach
cannot provide fine-grained modularization in the constrained node platforms, which in turn
restrict performing tasks in a highly dynamic environment that requires knowledge to adapt
to the environment changes.

Agent-oriented approaches are seen as a solution to perform well in a highly dynamic
environment where the infrastructure is not well-defined, and changes in the network occur
very often. By applying knowledge through collaborative interactions locally or globally,
agents can be seen as external controllers of the whole network without human intervention.

Given the above, disparate agent-oriented middlewares were discussed in section 2.5.3.
A comparative study based on the comparison criteria was summarized in table 2.3. Each
of these approaches has its own merits and limitations. This comparative study is done so
that a given middleware fulfills such dynamic requirements. This analysis is extended and
discussed in more detail in chapter 3, which presents one of the discussion themes of this
thesis.

Finally, as can be seen from the research literature, agent-oriented middleware, even
though with high potential to deal with the specified criteria (the increasing demand for ultra-
scalable middleware solution that is able to work in a highly dynamic environment, changing
state of sensors and entities themselves) there are still limitations in resource discovery and
applying real-world knowledge which yields with advanced reasoning capabilities and fault
detection of the devices, for instance, in a dynamic environment in the city where cars enter
and leave the parking slot, how one can get an exact answer that a nearby parking area in
the city has a free parking spot. Recent studies apply the semantic context of real-world
entities using Ontologies which is the topic of the next sections.
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2.6 Data Requirements for Wireless Sensor Networks

Much effort is spent integrating WSN and providing service to end users by addressing spe-
cific requirements. Less research is done on interpreting and enabling machine-to-machine
understanding of sensed data context. Real-world sensed data are different (temperature of
the room, environment, vehicle, human, inside an airplane, tunnel.), and accessing, under-
standing, processing, and interpreting data from various sources is tremendously important.
Considering the vast volume of data generated by IoT devices, particularly by Wireless Sen-
sor Networks, many business opportunities, industrial improvement, and real-life activities
would be improved if these data were adequately exploited. In 2012, IoT generated 2.5
quintillion bytes daily, while in 2025, 72% of IoT devices are expected to be connected and
generate two zettabytes of data.

Figure 2.4: Data Requirements and characteristics

The volume of generated data is overgrowing, and building applications using monitor-
ing technologies typically involves additional real-time requirements. Yongrui Qin (see [60])
summarizes data characteristics in four categories: Data generation, quality, and interoper-
ability. Although these are valid for WSN data, there are more practical issues that need to
be considered. Since sensor nodes have limited capabilities, data format, real-time process-
ing, and tagging are essential factors for generated data. We list the important data features
and characteristics for future WSNs middleware in what follows.
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2.6.1 Data Characteristics and Requirements

The number of everyday connected objects is 20.6 billion in 2020, which consists of 2.7
connected devices per person (7.6 billion people in total) 3 with 14.1 ZB4 generated data
per year. As this number continuously grows, the domain of sensors still needs attention for
standardization. Standards for physical and electrical feature representation, data processing
and message parsing procedures, and the possibility for offering Plug & Play capabilities
[111].

Data processing [112, 113], quality of data [113], and storage [112, 113] becomes a big
challenge with the enormous increase of connected sensory devices attached to daily objects.
The data will play a significant role in every field of interest when they are exploited correctly.
Machines need the collected data provided by various sensors to be understandable. The
need for structured data enabling machine interpretability and reasoning is essential [114].
It requires attaching further semantics to the actual raw data.
a) Data generation:

1. Velocity - depending on the monitoring environment, data can be generated at a differ-
ent speed. Some applications require every second to transmit the sensed value, which
will reduce the energy consumption of the nodes, or the data can be generated slowly
enough that could result in possible loss of information.

2. Scalability - generating continually raw data from hundreds or thousands of nodes
drastically increases the data volume. Considering this, the system’s performance and
governance of generated data will be an issue.

3. Dynamics - this means that due to the mobility and environment dynamics, the need
for location and time to attach to the sensed information is required.

4. Heterogeneity - having a diversity of vendors and applications of different kinds creates
the demand to deal with different formats and structures of information from specific
domains.

5. Plug & Play - providing the sensor node the opportunity to attach sensors into it
without further configuration is greatly appreciated.

b) Data quality:

1. Uncertainty & Accuracy - due to the noise and influence of the environment, sensors
could produce values that are not correct or accurate.

2. Redundancy - monitoring an environment could make it possible to deploy similar
sensor nodes in nearby places that will collect similar values. Also, sensors would
produce the same values for a period of time due to unchanged values, which again
creates Redundancy.

3https://mitechnews.com/internet-of-things/how-big-is-iot-20-6-billion-connected-devices-by-2020/
4https://www.forbes.com/sites/joemckendrick/2016/11/13/with-internet-of-things-and-big-data-92-of-

everything-we-do-will-be-in-the-cloud/#231f5d154ed5
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3. Ambiguity - data could be interpreted differently from two different things.

4. Inconsistency - when a phenomenon is monitored by two or more sensors, the collected
information would result in Inconsistency. Inconsistency is due to Accuracy, packet
loss, noise, or other factors involved in the sensing process [113].

c) Data interoperability:

1. Incompleteness - WSN networks are mobile and dynamic that cooperate with each
other to achieve a common goal. In such a cooperative environment, it is vital to
see/distinguish the missing information that a specific node has produced.

2. Syntactic - machines need to communicate to each other the sensed values for taking
actions or fulfilling the provided goal. Devices must share a common data format for
communicating with each other.

3. Semantics - apart from communicating the information, the possibility of understand-
ing and interpreting the common meaning of such information is crucial for future
dynamic applications.

d) Data Management and Processing

1. Data Storage - storing continuously generated data for use in later phases is an essen-
tial aspect for historical reasonings or building systems smart enough so that when a
similar situation appears during phenomena monitoring, it could predict and prevent
not happening the same thing.

2. Real-time Data Processing - a huge amount of real-time data streams will be produced
by sensing devices, and having data processing mechanisms to get insights is required
in order to utilize applications to their best. It involves:

(a) Real time tagging - the data coming from sensors are unstructured, and the pos-
sibility of identifying the data origin and noisy data requires extra information to
be attached.

(b) Real time aggregation - processing real-time information on a scheduled time and
finding important patterns is desirable for future dynamic systems.

2.6.2 Data Requirements for the research study

For the purpose of this study, we will take into consideration the following characteristics
with regards to data:

• Syntactic and Semantic Interoperability - current and future middlewares requires in-
teroperable systems where the data can be easily processed and understood by ma-
chines.

• Accuracy - the data comming from sensor nodes needs to be accurate.
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• Velocity for energy efficiency. How to improve energy efficiency by reducing data
transmission in between the nodes. It is important that sensor nodes send as fewer
data as possible and not frequently.

2.7 Syntactic & Semantic Interoperability: Standards

and Trends

Wireless sensor nodes are composed of a number of sensors, a transceiver, a radio, a power
source, and memory. They are small devices with limitations in memory, communication,
processing, and energy consumption [115, 116]. Further, sensor nodes are sensitive and prone
to physical damages that will produce unrelated values or often fail when they are deployed
in harsh environments. Taking into account that sensory devices are used to measure the
physical properties of the objects being observed, several research challenges need to be ad-
dressed. An emerging research field of these challenges are associated with data: lightweight
format to be used, quality of data, syntactic and semantic interoperability, redundancy, and
scalability. Indeed, these challenges become more difficult to deal with when there are plenty
of manufacturers who produce these kinds of devices, and each of them has its own way of
describing things.

Accordingly, there is a need for data standards that are able to describe physical and elec-
trical features and measurements, enabling plug & play capabilities [111], providing syntactic
and semantic interoperability, and offering data scalability by always taking into consider-
ation resource limitations. Providing such a standard allows us to easily filter unnecessary
data or detect erroneous ones, which yields to better decision-making. It is also important
for energy saving by not transferring inaccurate data to other nodes. In the case of the
minimum energy or outside noise directly influencing sensors, wrong data will be generated
that could easily be detected.

As long as the sensor node energy lifetime is critical in a WSN, it demands little packet
size, and less frequency of packet delivery is necessary. The less data are transmitted, the
more energy efficient the node will be. Sending 100 bits of data from node to node consumes
5 µJ [117]. Since the data needs to be transmitted from node to node until it reaches the
sink node, the energy will be wasted in the whole network.

2.7.1 Sensor Data Standards

Having open data standardizations for describing sensors and their capabilities in the domain
of WSN provides a mean for interoperable systems, stimulate market competition, prevents
parties from controlling a standard, and avoid the need to be stucked in a specific architecture
for solving problems that will result in innovation and differentiation with the provision of
better services. A goal of this section is to present sensor data standards, discuss them
according to the specific layer categorization and then represent what they have done for
data interoperability.
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SensorML [118] provides an XML schema for describing sensor meta-data, and its pro-
cesses, while O & M is a standard that describes the observations. Both present standards
under the umbrella of SWE group. A combination of SensorML and O & M [119] gives good
modeling to describe the sensory information and thus create syntactic interoperability.

The IEEE 1451 is a set of standards able to interconnect smart transducers with the sys-
tems. It provides numerous functionalities [120] (like self-identification, self-description, self-
diagnosis, location-awareness, time-awareness, data processing, etc.), and thus (semi)automation
could be achieved. Here, the transducer electronic data sheet (TEDS) is introduced as a spec-
ification for sensory information, able to be attached to memory in the EEPROM of smart
transducers.

Amon [121] is a general-purpose open data format for describing and exchanging sen-
sor/metering/monitoring devices data. It describes the data capabilities of devices, metering
points, and entities.

SenML is a lightweight media type for representing sensor measurements and related
data, with the focus devices with limited capabilities [122]. It is designed to carry multiple
measurements and the possibility that the packet size could remain under 80 bytes. The
supported protocols are Constraint Application Protocol (CoAP) and HTTP.

Echonet [123] is an open standard supporting heterogeneity of home appliances and the
sensors integrated into such types of equipment. Many vendors are already using Echonet
in the Japanese market in the domain of smart homes.

Device Kit is an OSGi technology that serves as a data model for devices. It also
simplifies the development process for future applications when hardware characteristics are
unknown [124].

Device Description Language (DDL) [111] provides an XML schema for describing
sensors and related devices by exposing them as services. It is a reference for Service Oriented
Device Architecture (SODA).

2.7.2 Scope of the Standards

In a world full of different types of sensors, ensuring the heterogeneity of the devices and
making them fully functional is not quite easy. The applicability and the scope of each
previously mentioned data format in the prior section are different. Table 2.8 presents
functionalities they provide in different layers starting from the physical to the application
layer. Indeed, these functionalities are represented for some of the standards in [111], and
we are extending them with additional data formats.

Operating environment covers the description of the physical characteristics of the
devices (form factor) and operating environment. This information, even though not highly
important for the developer can serve as a form to check whether the device works properly
under specific conditions.

Physical layer describes the electrical characteristics, mechanical interfaces, and other
form factors of physical devices (size, shape, etc.).

Units and block layer (Pins and ports) describes pin wiring, pinout, and timing
of signals. It will allow us to describe the pins and ports of the sensors with the platform.
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These three layers are less important for the developer and, consequently, for the application
point of view since there is not much that could be done using such information.

Events and Protocol Layer is the one that describes the parsing procedures of the
signal being processed. These procedures need an analog-to-digital converter (ADC) for the
analog voltage port or a string for the digital port. Most of the standards that need to
tackle the issue of the Plug & Play capability need to be able to provide specifications of the
receiving signal. Whenever a sensor is connected to the platform, it generates a timed pulse
that is translated into a unique identifier. This identifier maps to an address space that will
cause the platform to download the driver for the specific sensor and automatically start
receiving measurements for the monitoring object. To enable the Plug & Play capabilities,
only TEDS, DDL, and Device Kit are the standards fulfilling such requirements.

Functional layer provides descriptions for the semantics of the receiving signal. For
instance, whenever a signal is sent by a sensor, this is converted by ADC to the appropriate
value (i.e., 30 degrees Celius). These semantics are the most important features for developers
and, thus, a target of all the standards described above. In this layer, the measurements
and units are described as time, location, and other important features of the monitoring
objects.

Network layer describes interfaces for wireless communication and protocol stack. Since
the majority of the sensors do not have wireless communication capabilities, most of the
standards do not include descriptions for this layer.

Data service layer exposes the device interfaces to the outside world as a service over
the network. This layer is supposed to manage the communication protocol and data format
together with the semantics where it is possible to access the device’s data over the network.
This layer has not been part of the abovementioned standards.

Table 2.4: Sensor descriptions of standards in different layers (Y=Yes, N=No)

Description
IEEE
1451

DDL
Device
Kit

Sensor
ML

Echonet Amon SenML

Operating environment layer N Y N N N N N
Physical layer N Y N N N N N
Units and block layer N Y N N N N N
Event and protocol layer Y Y Y N N N N
Functional layer Y Y Y Y Y Y Y
Network configuration and protocol
layer

Y N Y N N N N

Interoperable data service layer N N N N N N N

We see in Table 2.4 that the only standard able to describe how environmental variables
affect the results of the device is DDL. In IEEE 1451 and Device Kit, the lower layer is the
Event and protocol layer. We also know that the data carried by sensing devices are just
raw readings, and if no parsing procedure exist, there is no practicable way to understand
such readings.

Although, under the assumption that parsing procedures are implemented by vendors for
each sensor node, almost all the standards choose the lower bound layer, the functional one,
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which is also considered mandatory. In this layer, the semantics of the receiving signal is
described (i.e., 30 degrees Celsius). Some standards like IEE 1451 and device kit define net-
working capabilities, while the last layer is not in the scope of any standard. The networking
layer is the discussed topic among researchers whether it should be included in the standards
[111] since most of the sensors do not have networking capabilities. Nodes themselves are
responsible for data transmission.

The majority of manufacturers describe the capabilities of the device (error rate, max.,
and min. values, device operation condition mode, parsing procedures, sensor features,
etc.) using their specific model, and often they do not follow a particular standard already
mentioned in this report. Hence, the scope of the majority of the presented standards
is to model the observed sensor data and their values (i.e., room temperature, its value,
timestamp, etc.). Basically, the chosen standard should allow the modeling of the data
so that the packet length remains small and provide simple semantics to enable later the
increase of the knowledge with an alternative format with expressive power.

2.7.3 From Plaintext to Data Interoperaility

The increasing number of sensors continually produces a vast amount of raw data. More
than values are needed to properly exploit the resources and extract new knowledge from the
raw data. Machines require formats that easily could be processed, understood, and even
interpreted. The desired format needs to scale well and carry enough information but always
considers the constraints of the sensor nodes. For instance, in a home automation scenario,
the home temperature is required to maintain cooling and air conditioning automatically.
Further, to create intelligent homes, several parameters could be gathered, such as humidity,
moisture, and temperature, and based on these observed parameters, it is possible to reason
and get more insights that could adapt to user preferences. Nevertheless, all this information
requires to have small packet size that could easily travel from node to node until it reaches
the sink node. Except for the need to measure real-time values and communicate these
data to other machines, the data need to be machine processable and interpretable. It is
insufficient to have just temperature value, but there is a need to get more insights from that
value (whether the value is in Celsius or Fahrenheit degree, whether it is room, outside, or
body temperature).

To enable machine processing and provoke syntactic data interoperability, encoding for-
mats such as XML and JSON are well-formed with a standardized structure. They allow us
to model observed raw data in a structured way so that machines can easily process such
information. The XML is the common encoding basis for SenML, SensorML, Device Kit,
and Echonet. In fact, Echonet device specification is a logical model of the information or
essentially a dictionary of devices where each device represented in XML is transformed into
an Echonet object. Different encoding formats are supported by SenML (XML, JSON, EXI,
and CBORCBOR5 or textual modeling. formats) depending on device constraints and the
developer preferences. DDL uses plain text, which is not the appropriate form for enabling
machine processing and enhancing interoperability among machines.

5Concise Binary Object Representation: http://cbor.io/
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Table 2.5: Features os Sensor Description Standards

Standard
Name

Data
Format

Semantic
Support

Units Data
types

Design
perspective

Constraint
devices

Supported
devices

Good for

SensorML XML Yes (if inte-
grated with
O & M)

Yes CDT Data Ori-
ented

No Intelligent
Sensors

Describing com-
plex devices

IEEE 1451
(TEDS)

IDL No Yes CDT Modular Yes Intelligent
Sensors

Manufacturing
the design devices
interface

Amon JSON No Yes PDT Data Ori-
ented

No Devices Industry (meter-
ing/ monitoring)

SenML XML, EXI,
JSON,
CBOR

Very lim-
ited

Yes PDT Data Ori-
ented

Yes Sensors, Ac-
tuators

Very constraint
devices

Echonet XML
(Object -
dictionary
of devices)

Limited Yes PDT Class Yes Home Appli-
ances

Home automa-
tion

Device Kit DKML No Yes PDT Modular No Sensors, Ac-
tuators

Exposing de-
vices as services
(Eclipse plugin)

DDL Plain text N/A Yes PDT Data Ori-
ented

Yes Sensor and
Devices
Communica-
tion

Manufacturing
and process in-
dustries (Plug &
Play)

*PDT = Primitive Data Types

*CDT = Complex Data Types

The possibility of sending several measurements in a single packet without exceeding
bandwidth is important. Several sensors can be equipped in a single sensory device, which
will need all the observed properties to be delivered to the end node. It is essential to
choose a lightweight format that could easily be expanded with semantics and carry all the
measurements simultaneously within its boundaries.

Regarding syntactic Interoperability, the efforts have been focused on employing Sen-
sorML from the OWC group. Recently, many middlewares have used SenML as a lightweight
format for their Wireless Sensor Network architectures. The former consist of a set of model
languages that define sensors and their services by exposing them to the web. However,
additional effort is required to automate the process; sometimes, it takes effort to implement
the proposed technologies.

Regarding scalability, implementing XML as a data format for real-time application de-
velopment promises extensibility and flexibility. At the same time, managing information
as XML raises three issues related to enterprise scalability and robustness. The first is that
XML is not designed for fast information retrieval. The second is that XML is a verbose
method for exchanging data over a highly constrained network, which becomes a problem
when exchanging a large amount of data daily. The third issue is that XML elements are
not defined as native data types. The steps required for converting XML-tagged data into
predefined data types degrade the performance of a real-time WSN application system. On
the other hand, JSON is a lightweight format with simple syntax, easy to process, and easily
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can be extended with other data.
Dealing with node constraints and energy efficiency, EXI and CBOR are the preferred

formats for the transmission of the data in binary form due to the small packet size. EXI
format allows the delivery of packets easily from node to node, can process the data lo-
cally, and making decisions requires a lot of CPU resources which is not convenient for the
CPU-constrained platform. It creates difficulties in detecting erroneous data from quality
data, and it will break the hard constraints of real-time monitoring. On the other hand,
it is possible to model the data in JSON format that will include a small amount of data,
including basic semantics, so that later these data could easily be transformed into more
sophisticated knowledge that will allow machines to interpret. XML is another alternative,
as most standards have proposed. However, XML is considered heavyweight compared to
JSON [125, 126]. Xiang et al. ([22]) evaluate the formats through experiments with the
formats XML, JSON, EXI, RDF, and Entity Notation. Since the performances are getting
better for these sensory platforms, the more semantics we will provide to the next node, the
better exploitation, and usage of these data will be possible.

(a) Packet length extracted from [22] (b) Number of Cycles [22]

In Figure 2.5a, the Exi format has the lowest packet length, followed by JSON and XML.
In contrast, the number of cycles to process the same information (Figure 2.5b) is lower in
JSON format compared to XML [22] and EXI. The last data format requires high processing
power.

In conclusion, future application requires quite a standardization that could easily in-
tegrate the sensing devices into the system and make use of it. Echonet has attracted the
Japanese market for home automation. Enabling Plug & Play properties for sensors, the
IEEE 1451 standard is the most appropriate that offers such a possibility. This standard
allows specifying configuration information in the memory of the sensor. Specifically, using
TEDS, it is possible to identify the current sensor attached to the devices, its interface, and
other relevant information the sensor detects. Later, all this knowledge can automatically
be detected and received when the software interface is written. SenML utilizes constraint
resources with minimal energy harvesting, low processing power, and when the packet length
matters. To utilize the resources with limited bandwidth, it is SenML that can model objects
as an appropriate model while this object contains an array of entries. Further, when the
bandwidth is highly constrained, this protocol allows a model of the data using EXI format
and sends minimal data over a mesh network. It also helps minimize energy consumption
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when we know that most energy is spent during transmission. However, EXI requires more
processing power to process the carrying information. Considering the popularity of JSON
format, it is possible to model the data with 80-byte important observations. Amon is created
more with the purpose of being human-readable, while Device Kit and DDL, even though
young in the market, have the option to enter the industry of Wireless Sensor Networks.
SensorML, on the other side, is well-known in industry [111], but its complexity and design
nature limit the applicability in small, constraint devices [127].

2.7.4 Toward Semantic Interoperability for M2M Communication

The already mentioned standards are not widely accepted and thus are not enough to provoke
semantic data interoperability because sensors and platforms are strongly dependent on the
sensor manufacturer and industry. Data annotation and semantics are valuable metadata for
today’s real-time systems to overcome heterogeneity, M2M understanding and interpretation,
and discovery of the resources and extraction of new knowledge from the output of multiple
sensor measurements. While sensors consist of common characteristics across applications,
metadata are those characteristics that make a difference and achieve common understanding
for both: humans and machines.

Utilizing semantic presentation and the common standard ontologies would help to
achieve interoperability at higher levels and understand the proper meaning of the data.
For instance, machines could distinguish room and body temperature and apply different
reasoning techniques. Therefore, through the literature review, sensor ontologies should in-
clude several concepts and relations between concepts. The general required attributes for
sensors as proposed by the National Institute of Standards and Technology (NIST) [128]
are summarized in Table 2.6. We are categorizing these concepts as follows: a) Sensors /
Actuators: identity, manufacturer, configuration b) Physical features: location, power sup-
ply, energy, actual consumption energy, operating conditions, force, speed c) Observations:
observation, accuracy, frequency, and d) Data: data types, latency, units of measurements,
quality of data, time.

A shared ontology (or multiple shared ontologies) describing the above concepts and
relations provokes semantic interoperability among the applications. This shared ontology
allows exchanging information so that the meaning of the observed properties of the objects
will be automatically processed and interpreted by the receiver. Through reasoning, new
semantic facts could be achieved based on the observed data.

2.7.4.1 Technologies and Languages for Semantic Data Interoperability for Wire-
less Sensor Networks.

Semantic 6 is the study of understanding and interpreting the true meaning of a word or a
sentence. Such words, to be understandable by computers, need a semantic representation
using symbols or markup languages.

6Semantic, according to: http://www.thefreedictionary.com/semantic
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Table 2.6: Sensor Required Attributes as proposed by NIST

Attributed Comments

Physical Power, weight, size

Operating environment Conditions for device operation

Immediate data Time, spatial data, latency, frame rate and other important data

Derived data Results after computing raw data

Algorithms Algorithms for producing outcomes (derived data)

Integration/fusion Data aggregation and fusion combining data from multiple sensors

Capabilities Functional applications from the data

Communication Physical and logical protocols, interoperability

Processing On-board processing power of sensors and sensor nodes

Calibration Calibration algorithms

Provenance Maintaining the records of raw data and derived data

Confidence Level of confidence in raw data

We already know that the most intriguing and successful artifact is the current Web [129],
but still, explicit resource exploitation needs semantic technologies. Hence, the semantic web
allows humans and agents to cooperate with each other, reason over the available resources,
and accomplish sophisticated tasks [130]. The core concept of this semantic representation
is Ontology, which enables knowledge discovery of a shared resource. It can be used for
knowledge representation [131], natural language processing and knowledge engineering [132],
semantic representation, and building expert systems [131].

Most of the research attention is given to the true meaning of the receiving values from
sensors. Several studies address the significance of annotating sensed data and the powerful
utility that could be derived [133, 134, 135]. When the (semi)automatic annotation of sensed
data is achieved, it will have a significant impact on the real-time monitoring system and
enable real-time machine processing.

To make this happen, several ontological languages are created with the purpose of
facilitating the annotation process, which will help to achieve semantic interoperability and
make the data accessible on the web, as well as expose these as services to third parties.
A set of core semantic technologies are already developed, and most of them are de facto
standards [136]. Languages like Ontology Inference Layer (OIL)[129], DAML+OIL [137],
RDF [138], Web Ontology Language (OWL)[139], JSON-LD 7, enable to describe sensor
information with semantics attached to it. Standard ontologies are important for achieving
semantic interoperability using the core semantic languages and technologies.

• Ontology Inference Layer (OIL) is presented as ontological infrastructure for the
Semantic Web built upon Description Logic (to reason over services) and frame-based
languages (semantic modeling) [129].

• DAML+OIL is a successor of OIL and combines features of DARPA agent markup

7http://json-ld.org/
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language. It adds features to previous W3C standards (RDF, RDFS) by extending
with ontological primitives of object-oriented and frame-based systems [137].

• RDF the standard for representing the data in the form of triples on the Web is RDF.
Each triple in RDF carries a subject node, predicate, and object node [138]. To extend
the structure of the Web, it uses URI to name the relationship between things. The
supported data format is an XML serialization form for exchanging the data between
applications [136]. RDF has limitations in providing the relationship between concepts.
Thus, RDF Schema and OWL are proposed.

• RDF Schema (RDFS) extends RDF and adds features in describing the data prop-
erties [139]. In RDFS, we have the notion of classes and properties, similar to OOP
languages like Java, with the difference in setting the properties as classes [139].

• Web Ontology Language (OWL). Representing the knowledge on the web is made
through OWL [139]. The base of OWL is the DAML-OIL language which adds acces-
sibility features to machines in the document’s content and additionally increases the
reasoning power [140].

These are the de-facto standards for integrating IoT into the Web of things.

2.7.4.2 Ontologies for Sensor Data.

The community has developed several ontologies for describing important information about
sensor data. These include measurements, observations, features of interest, location, time,
etc. In what follows, we present Ontologies (even though none of them is a standard) that
could possibly provide interoperability at a global level of the system and become de facto
standards.

Semantic Sensor Network (SSN) Ontology [141] describes sensors, observations,
and related concepts. These concepts in SSN ontology are divided into four different per-
spectives: a) Sensors can semantically describe device capabilities of the sensed object, b)
Observations represent the sensing values, c) Systems consisting of subsystems, and d) Fea-
ture and Property for representing phenomena properties.

An important aspect of this Ontology is the possibility to add external domain-specific
ontologies and extend its capabilities (i.e. Time, Location, or domain-specific ontologies: i.e.,
Health ontologies). Further, we can have a better level of interoperability in SSN ontology
since it aligns SSN ontology concepts with the DOLCE Ultra Lite (DUL 8) upper ontology.

Sensor Web for Autonomous Mission Operations (SWAMO) [142] is a frame-
work and ontology able to create interoperable sensor web products and services within the
sensor web. It models components, systems, and processes as physical or logical represen-
tations. It consists of agents able to maintain operations as well as make decisions. It is
compatible with SWE.

OntoSensor [143] presents another ontology for representing sensors, capabilities, and
measurements. This ontology presents a broad knowledge base of sensors (humidity, GPS,

8DUL - is an upper ontology for presenting concepts understandable among all knowledge domains
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Accelerometer, etc.) for query and inference. To express sensor properties, SensorML is used
to derive its terms. The Ontology seems not updated and complex to implement 9.
Universal Plug and Play (UPnP) [144]. Presents an Ontology to enable Plug& Play
capacities by describing devices and services they provide. The UPnP ontology presents
instances of devices, services, actions, arguments, and state variables. The Ontology is not
updated, and no new features are added (not actively maintained).

Foundation for Intelligent Physical Agents (FIPA) [145]. FIPA ontology describes
devices and their characteristics aiming to exchange and create data interoperability between
software agents. The main class of this ontology is Device which has descriptions and allows
the description of hardware and software properties. Since its introduction, this ontology
has had no updates or added features.

OpenIoT Ontology [146]. presents an extension of the SSN ontology with additional
concepts relevant to cloud integration, utilizing unit metrics and points of interest (POI)
at some level of granularity. It enables to collect the data virtually. It also offers tools for
the development and deployment of IoT applications. There are extensions regarding client
authentication, Client credentials, and other services-related concepts.

The most relevant ontologies offering semantics for describing features of sensing devices
are reviewed. One of the ontologies from the SWE group was O & M. To distinguish with
SSN ontology, the O & M describes the observations as events, while in SSN ontology, the
observations are described as a process. SSN differentiates the domain-specific concepts and
those devices-specific, while in O & M, everything is presented as a whole. The SWAMO
ontology is very complex and hard to develop and integrate. This ontology helps expose
components/processes as web products. The OntoSensor is not actively maintained and is
hard to implement. OpenIoT ontology presents an extension of SSN attempting to cap-
ture important information about the sensor, its units, and domain-specific information.
However, additional work needs to be addressed by OpenIoT in order to address sensor ca-
pabilities, performance, and usage conditions. The most relevant ontology to describe the
sensed information semantically and the object being observed seems to be SSN ontology.
This ontology, combined with other domain-specific ontologies, allows for semantic interop-
erability and prevents the misconception of the data coming from sensors. It means machines
are able to process information in a meaningful manner. Another important feature of SSN
is to use solely parts of it (i.e., measurements). It is very beneficial to transmit the correct
information to other parties for further processing using low-cost technologies. However,
transmitting the right information requires some higher intelligence in the nodes, and this
cannot be achieved just by semantically annotating the sensed data. Using SSN ontology,
we can connect other ontologies like location (indoor or outdoor location) ontology, which
is among the research challenges. All this information could enhance the discovery process
of the resources using exact locations and respond to user queries with higher precision. In
other words, SSNs enhance the data and device discovery process by semantically describ-
ing available resources and observations and offers a great possibility to achieve semantic
interoperability.

9http://www.w3.org/2005/Incubator/ssn/wiki/Incubator_Report#OntoSensor
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Table 2.7: Sensor Ontology Features

Name SSN OntoSensor SWAMO UPnP FIPA CSiro OpenIoT

Sensors
Physical characteris-
tics

Y Y N N Y Y N

Identity/ manufac-
turer

N N N Y Y Y N

Configuration Y Y N Y N Y Y

Hierarchy Y Y N N N Y Y

Deployment Y N N Y N Y Y

Physical features

Location N Y Y N N Y Y

Power supply N Y N N N Y N

Energy N N N N N N Y

Current consumption N N N N N N N

Operating conditions Y N N Y N Y Y

Observations

Input/Output Y Y N N N Y

Observation Y Y Y Y N N Y

Accuracy Y Y N N N Y Y

Frequency Y Y N N N Y Y

Response model Y Y N N N Y Y

Communication pro-
cess

Y N N N N Y Y

Data

Latency Y N N N N Y Y

Units of measure-
ments

N Y Y N N Y Y

Data types N Y Y N N Y Y

Data quality N Y Y N N Y Y

Time N Y Y N N N Y

Y = Supported, N = Not Supported

2.7.5 Discussion

We have divided sensor standards into two categories: a) sensor data formats dedicated to
simple sensor descriptions and b) standard ontologies for utilizing semantics when describ-
ing sensor data, capable of overcoming issues already mentioned in section 2.3 (syntactic
semantic interoperability).

Certainly, in the first category, fall sensor standards that assist manufacturers with the
standardized structured format to describe features of sensory devices and their capabilities.
Due to restrictions in memory, bandwidth, and CPU, describing in detail each sensory device
and enabling automatic discovery of the resources is not considered by several standards.
Most of the time, manufacturers follow their standardized approach to describe information
and present standards that describe observations and measurements.

In this category, the majority of the standards do not provide detailed complex features
such as quality of the information, allowing to discover anomalies in the data that will
later allow performing the cleansing procedure. With the increasing volume of data, data
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Table 2.8: Number of Concepts, Axioms and Properties

Name SSN OntoSensor SWAMO UPnP FIPA CSiro OpenIoT

Classes 52 289 No info 9 15 71 74

Axioms 599 1970 No info 310 203 503 383

Object Property 55 125 No info 11 14 61 27

Data Property 0 108 No info 23 18 11 15

inconsistency becomes an issue. Highly dynamic environments require temporal consistency,
which needs small packet size and efficiency in transmission. It is known that most energy is
spent during transmission, and sending large packet sizes requires a lot of energy. Utilizing
XML as a data format creates a larger packet size, requires more processing power, and is
less scalable compared to JSON. EXI format is a better alternative when constrained devices
are present, while JSON seems a better alternative compared to XML. Future attempt needs
to be addressed by each standard, to reduce packet size, add more semantics, and improve
the accuracy of information. From the point of view of resource discovery, employing simple
standards provides difficulties in automatic discovery, and answering sophisticated questions.
It is difficult to enhance query answering using simple formats with no added semantics. Also,
spatial information are important features for the domain of WSN since the sensor standards
are limited to only latitude and longitude which most often not enough.

On the other hand, the second category tries to overcome issues of semantics, and het-
erogeneity, sophisticate query answering, enabling automatic discovery and inference of new
knowledge from the output of several related measurements. Even though no standard is pre-
sented here to describe all the features and capabilities of sensory devices, some are becoming
de facto standards. One widely adopted standard is the proposition of the W3C group with
SSN, which follows upper ontology guidelines for modeling concepts, which will result in gen-
eral semantic interoperability within systems. Other ontologies seem not updated, neither
maintained.

Due to the constraints of sensory devices, these ontologies could help to annotate sensed
data in more powerful devices. First, the data travels using a simple, non-semantic format
with a small packet size, and later these data are semantically enhanced using techniques
that enable automatic conversion. However, automatic semantic enrichment of sensor data
that could be effectively connected with event processing to enhance the expressiveness of
event processing demands a lot of effort [113]. What can be seen in the second category is
the possibility of combining several ontologies, relating common concepts, and adding the
features that are missing. Most of the Ontologies leave out the performance concepts, energy
level, and capabilities which are exposed at some level of granularity. The SSN ontology plays
a key role in what we saw from the reviewed Ontologies. It has inspired other projects, the
most relevant one being the OpenIoT project. We can take this as a base ontology, use
the features already present, and make use of concepts from domain-specific to enrich with
semantics already missing in the base ontology.

An automatic semantic annotation process utilizing Ontologies could overcome hetero-
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geneity and interoperability by possibly modeling all the concepts and attributes of WSN.
Even though none of the presented Ontologies overcome heterogeneity/interoperability issues
since they cover only parts of the required information model, there is a good indicator to be
extended with additional features and properties to address such requirements thoroughly.

Inferencing new knowledge and transforming the raw data into sophisticated data could
be achieved by utilizing a semantic representation of the observed raw data from sensors.
New knowledge will be extrapolated by observing several related parameters and applying
rules over the real-time values. For instance, in a driving car scenario, there is possible to
predict, take the right directions and be in a specific location for the least time possible.
Gathering values of car speed (velocity), location, and directions and applying specific rules
could provide the best directions. Similarly, by measuring the distance between cars, rain
level, or if the weather is foggy, it would recommend the best speed to drive the car and
avoid possible accidents.

A significant role in processing and reasoning over the semantic data in WSNs applications
is the modeling language. It requires to be lightweight, scalable enough due to a large
amount of generated data, and easily processable considering the hard real-time constraints
of Sensor Networks. Maarala and Su [147] evaluate the performance of different semantic
ontological languages in processing in different scenarios (centralized systems, distributed,
mobile). Short Entity Format (EN) outperforms in the experiments, having the lowest
latency and minimal resource usage.

2.8 Reducing Data Transmission via Dual predictions

Many works exist today intending to increase the lifetime of WSNs. One category dedicates
to routing strategies, while the other dedicates the research work to reduce data transmission.
Our focus stands on the second category of improving the energy lifetime of WSNs by
reducing data transmission. In literature, various techniques aim to reduce data transmission,
starting with data aggregation techniques presented in [148], data compression[149], adaptive
sampling [150], event-triggered and procedures based on dual prediction [151, 152]. Data
compression algorithms aim to reduce data packets’ size and transmit in decreased data
size [153]. Data aggregation sends summary statistics in the gateway, mainly collected by
similar sensor nodes. On the other hand, event-based triggers only when certain events
occur. Adaptive sampling (AS) modifies the sampling rate when a critical event is detected.
Another popular technique that reduces data transmission is via prediction techniques in the
sensor node and the gateway. The dual prediction (DP) approach aims to reduce the number
of transmissions using prediction models, while adaptive sampling reduces the number of
collected data. Between the DP and AS, dual prediction is more suitable as it provides a
better data suppression ratio [154] and thus helps reduce erroneous data and has fewer data
at the gateway.

An approach proposed in [154] uses dual prediction and adaptive sampling to increase
the energy efficiency of the WSN network. The aim is to reduce data transmission when
there is a low correlation between variables, while the sink can generate the values based on
previously collected samples. The algorithm reduces energy up to 57%. In [155], authors use
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the line equations via n-dimensional vectors to predict both nodes for DP. Another technique,
”error-aware data clustering (EDC)” for in-networking prediction, is the work proposed by
the authors in [156]. The EDC model consists of three modules where users can choose a
suitable module for their specific case. The main aim is the use of different techniques like
histogram-based clustering (HDC), Recursive Outlier-Detection Smoothing (RODS), and V-
RODS. The EDC approach decreases data redundancy and detects possible erroneous data in
WSNs. Another technique aiming to increase energy in WSNs is the work proposed in [157].
The model combines a finite impulse response (FIR) filter and recursive least squares (RLS)
filter. The applicability of least-means-square (LMS) for energy efficiency is the research
work carried out in [158]. The nodes are supposed to transmit immediate value when the
actual readings exceed a given threshold. Further, authors in [158] use Kelman filtering
in the sensor node to reduce data transmission and remove redundant data. On the sink
node, two algorithms (Sink Level Aggregation and Sink Level Grouping Algorithm) are used
mainly for reducing spatial data redundancy. Even though the algorithm performs well in
reducing spatial and temporal redundant data, the energy efficiency is increased by up to
50%.

All the abovementioned approaches address the ability to detect erroneous data while
increasing the network lifetime based on the dual prediction mode. Although they reduce
data transmission at a solid state, the data reliability is often compromised. Furthermore,
the algorithms running on devices are complex, and devices with limited resources would be
hard to deal with such algorithms. In this research, we will investigate the discrete Fourier
approaches with the aim to build lightweight algorithms that can reduce data transmission,
and simultaneously enhance data reliability at a satisfactory level.

2.8.1 Discrete Fourier Transform

Frequency analysis is an important method for interpreting sensed data in WSNs. Discrete
Fourier Transform (DFT) is identified with frequency analysis, applicable in many science
fields, where the most common one is in the field of digital signal processing [159]. Its real-
world applicability is often associated with the development of fast algorithms in processing
real values [160]. The algorithms are mainly developed using DFT [160] and DCT [161, 162].
The optimized approach to compute DFT is called Fast Fourier Transform (FFT) [160].
Using FFT, it is possible to process and interpret observed values and react to requests in
real time.

Using the Fourier series, Zong-Chang [163] established an air temperature model to ex-
plain the temperature fluctuation throughout the year in terms of monthly and daily air
temperature measured on an hourly basis. The author developed a temperature prediction
model based on a carefully chosen Fourier coefficient in the sense of the least square error
rule and validated its efficiency to Beichen and other districts of China. Yang [164] proposed
a principal component analysis (widely known as PCA) based eigen-temperature model,
where the keyword eigen-temperatures are the eigenvectors aimed to describe the tempera-
ture movement. The author tested the forecasting capability of the eigen-temperature model
at Tongchuan, China, and claimed that the model exceeded the classical BP-ANN model for

46



forecasting. Solar energy is another form of clean energy, and it has numerous creative appli-
cations [165]. Seeing the applications of solar insolation in modeling phenomenon, Yang [166]
developed a finite Fourier series-based prediction model incorporated with the least-square
method.

To cater to the economic proceedings and other important factors of industries, Yang [167]
proposed a discrete Fourier transform-based electric load forecasting model by considering
the load movement as a time series data. The proposed model was tested at State Grid
Corporation of China, and the model shows its potential over the other known classical
models. Similarly, a discrete cosine transforms electric load prediction model [162] is also
developed in the sense of the least-square technique. Furthermore, the author in his seminal
work [168] investigated the electric loads by means of finite Fourier series in conjunction
with the least-square method. Some recent efforts in the modeling and prediction of the
water-level fluctuations by discrete cosine transform and finite Fourier series jointly with the
least-square method are also discussed in the details, we recommend the serious reader to
[161, 169].

2.8.2 Discrete Sine Transform (DST)

DST plays a significant role in many areas, particularly in the image and signal processing
problems, initially introduced by Jain [170]. Later, various DST versions were developed
by researchers such as Kekreet al. [171], Jain [170]. The evolving algorithms based on
DSTs found a wide application in different fields in digital signal processing (DSP) (image
processing, adaptive digital filtering) and interpolation [172]. The most important transform
is the discrete Fourier transform (DFT) from the family of discrete transforms. It is mainly
due to its effectiveness in many applications in diverse fields of science and technology. It
also plays a crucial role in different DSP and image-processing apps. Moreover, DFT and
inverse DFT (IDFT) have been viewed as SP’s main technology in orthogonal frequency
division multiplexing (OFDM) communication systems.

Similar to DST, the Discrete Cosine Transform (DCT) is utilized as a form to process and
compress data in WSNs. Authors in [173] provide a DCT model that involves the coefficient
transmission and signal recovery. Similar predictive models for sensor data based on DCT
are research work of [162, 174].

2.8.3 Discrete Hartley Transoform (DHT)

Discrete Harley Transform is a great alternative solution to Discrete Fourier Transform
(DFT) [175]. It is faster when processing real values[176]. DHT is also a useful alternative
to compute other discrete transforms such as DCT [177] and DST[178]. Besides being an
alternative tool for discrete transform, the DHT has a fairly wide use in various fields such as
image compression [179], image watermark [180], fingerprint matching [181], image process-
ing [182]. Further, DHT improves image prediction when combined with machine learning
algorithms [183]. It must be noted that DHT is appropriate for use cases where there is a
constraint sensor node, such as implementation in improving security [184]. It is considered
a fast algorithm implementation without creating overhead in such constrained devices.
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2.9 Existing Data Architectures for WSN

Wireless Sensor Networks provide raw data that machines cannot understand, process, and
interpret. Much effort is spent in integrating WSN and providing service to end users, and
less research effort in interpreting and enabling machine-to-machine understanding of sensed
data context. The real-world sensed data are different (room temp., outside temp., vehicle
temp., human temp., etc), and accessing, understanding, processing, and interpreting data
from various sources is tremendously important. To address data interoperability among
WSNs in what follows, we present semantic data architectures for WSNs.

Sense and Sens’ability: Semantic Data Modelling for Sensor Networks [185] is
a semantic model for enabling heterogeneous sensor data to be annotated so as to enhance
the processing and interpretation of massive amounts of heterogeneous sensor data. This ar-
chitecture is based on standard formats and ontologies proposed by Sensor Web Enablement
(SWE) group and SensorML data component models. Further, it extends its capabilities for
unit measurements using NASA Sweet ontology.

A Data Annotation Architecture for Semantic Applications in Virtualized Wire-
less Sensor Networks [186] provides another semantic architecture for enabling Seman-
tic interoperability among virtualized sensor nodes. This architecture deals with two types of
sensor platforms; resource-constraint sensor platforms and devices without limitation. This
architecture uses standards like SSN ontology and SenML as a data model for describing
sensory information. This architecture addresses the enrichment of raw data only to nodes
without constraints. However, nodes with limitations only provide a simple model, and
semantic interoperability becomes an issue.

ES3N [187] proposes a semantic-based database approach tool that applies Semantic Web
techniques for data management of heterogeneous sensor data, including collection, storage,
and querying. It follows a multi-layered plan involving data collection, memory caching,
data tagging, ontology representation, query processing, and user interaction. This work
uses its ontology exported in OWL language for defining classes, concepts, and properties.
Then, sensor raw data are tagged with meta-data and saved as RDF files. SPARQL query
is used for querying specific data, and the response to end users is again in RDF format.

A Semantic-based Architecture for Sensor Data Fusion [188] proposes a three-
layer architecture aiming to offer data aggregation, data annotation, data management, and
querying functionalities. The features provided are accomplished by using Open Geospatial
Consortium (OGC)10 by extending Semantic Web techniques for processing raw data and
enhancing with further semantics. This architecture can offer a scalable solution, but ap-
plying rules to the receiving data through a central unit seems to be a drawback that will
indicate performance limitations.

10http://www.opengeospatial.org/
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Semantic Web Architecture for Sensor Networks (SWASN) [189] utilizes Semantic
Web technologies for facilitating the understanding, processing, and interpreting of sensor
data. This work utilizes distinct parts of CommonSense [190], a multi-tier service-oriented
architecture aiming to integrate sensor data received by heterogeneous devices. SWASN
consists of four layers: SN data sources, Ontology layer, Semantic Web processing layer,
and applications layer. It could be a good option to use different ontologies on a gateway;
however, it does not provide any data modality, and no standard Ontology for describing
sensor data is used. This project evaluates its architecture through the implementation of a
fire emergency scenario.

Semantic Sensor Observation Service (SemSOS)[191] is another framework that
provides enrichment of sensor data with semantics. This work extends the OGC Semantic
Web Enablement (SWE) 11 specifications. It uses its core standards by adding data annota-
tion to raw data with Ontological concepts and features presented by such standards. This
framework enhances semantically the raw data with spatial and temporal concepts using do-
main Ontologies which then are used for reasoning. Even though this implementation looks
very promising due to the standards they use, it is not clear enough how this framework will
scale in situations when the number of sensors and the volume of the data size increase a lot
because of the annotation process, which most often requires processing power and sensor
nodes are devices with limitations.

2.9.1 Discussion

It is clear that Wireless Sensor Network is a complex domain and many research challenges
exist. One of the challenges previously mentioned is syntactic and semantic interoperability
which refers to the possibility of exchanging information, understanding, processing, and
interpreting that information by machines. Considering the limitations of sensor nodes and
a large number of nodes in the network, the existence of a variety of sensors that might use
different formats results in heterogenous data and thus requires a flexible solution that needs
to be tackled by architectures that offer WSN solutions.

These architectures should consider: a) scalable solutions due to the increasing volume
of data coming from sensor networks that, if not designed properly, would reduce the overall
system’s performance. Thus, architectures need to consider as much as possible to avoid a
single point of doing things. For instance, annotating data from a central computer/server or
providing centralized data storage solutions is not highly scalable b) a data representation
model, which is a significant issue to be tackled by architectures. In a sensor network
with constraint nodes, it is highly important for representing collected data in a lightweight
format. In those nodes, using a simple data model is crucial. For instance, using the binary
format is a good option for a limited sensor platform but will result in less interoperable
data. However, other formats can enable the enhancement of raw data with semantics,
such as RDF and JSON-LD, that are presented in this report. c) Semantics are necessary
for gathering raw data. With the introduction of Ontologies, we can describe and give

11http://www.opengeospatial.org/projects/groups/sensorwebdwg
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meaning to raw data. d) Ontologies are another important aspect that needs consideration
by architectures. Utilizing main concepts and attributes in an abstract manner offered by
Ontologies would result in semantic interoperability on a more global level. It is essential to
make use of standard Ontologies so that everyone speaks the same ”language”. e) application
interface and its data representation format is another parameter that needs consideration.
End users could develop different applications; thus, relying on a standard interface and the
use common data format is very important.

In the following, we will evaluate the reviewed data architectures.

Table 2.9: Characteristics of semantic architectures

Name Scalability Ontology
Data For-
mat

Application
Interface
and Data
Format

Semantics Approach

Sense and
Sens’ability

Medium
SWE, Sen-
sorML,
SWEET

RDF/XML
Not consid-
ering

sensor data,
location

Service-
oriented

Data Anno-
tation Archi-
tecture for
Semantic Ap-
plications in
Virtualized
Wireless Sensor
Networks

Medium-to-
high

SSN

SenML for
constraint
nodes, RDF
for advanced
nodes

Coap sensor data
sensor
virtualized-
based

ES3N Low
Own imple-
mentation

RDF No info
Data,
queries

Database
centered

A Semantic-
based Architec-
ture for Sensor
Data Fusion
[188]

Medium

Sensors to
high-level
events map-
ping

RDF and
XML

Mapping
rules, sensor
data

High-level
events detec-
tion

rule-based
transforma-
tion

SWASN Medium

Hybrid,
sensors,
location,
domain

RDF HTTP
Service
oriented

rule-based
transforma-
tion

SemSOS Medium
O&M,
OWL-Time

OWL in-
stances

Service
oriented

O&M data,
queries

Service-
Oriented
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Table 2.10: Characteristics of semantic architectures

Name Scalability Ontology
Data For-
mat

Protocol
Interface

Semantics Approach

Sense and
Sens’ability

Medium
SWE, Sen-
sorML,
SWEET

RDF/XML HTTP
sensor data,
location

Service-
oriented

Data Anno-
tation Archi-
tecture for
Semantic Ap-
plications in
Virtualized
Wireless Sensor
Networks

Medium-to-
high

SSN

SenML for
constraint
nodes, RDF
for advanced
nodes

Coap sensor data
sensor
virtualized-
based

ES3N Low
Own imple-
mentation

RDF No info
Data,
queries

Database
centered

A Semantic-
based Architec-
ture for Sensor
Data Fusion
[188]

Medium

Sensors to
high-level
events map-
ping

RDF and
XML

HTTP
High-level
events detec-
tion

rule-based
transforma-
tion

SWASN Medium

Hybrid,
sensors,
location,
domain

RDF HTTP
Service
oriented

rule-based
transforma-
tion

SemSOS Medium
O&M,
OWL-Time

OWL in-
stances

HTTP
O&M data,
queries

Service-
Oriented

Most of the architectures presented in the table above have addressed semantic interop-
erability by employing semantic web standards and ontologies presented previously by other
parties (like O&M by OGC). Regarding scalability, the majority of the architectures seem
not to scale very well due to the centralized approach they follow. First, providing a single
unit for converting raw data with semantics in a large-scale network would lower the per-
formance of the system overall. Imagine having thousands of nodes, and we add semantics
through a single unit. The architecture presented by [185] enhances the data with semantics
in nodes without limitations. It offers better scalability than others by converting raw data
into semantics in each gateway. However, constraint nodes are not enhanced semantically.

Concerning the Ontologies, most of them follow standard models, or they extend the
existing ontologies with other capabilities. Most of the architectures presented here follow
SWE standards like O & M. However, SSN is more desirable compared to O & M as we
have reviewed in section 2.7. Even though they are a good point to provide meta-data
to raw data, providing domain-specific ontologies that will help to increase the reasoning
and interpretation of the data seems difficult to extend in these frameworks. For instance,
location is a crucial aspect that needs to be tackled by almost every modern data architecture.

Efficient processing and transmission from one node to another are crucial in a sensor
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network. Thus, in order to address the energy efficiency and limited bandwidth, we cannot
employee directly models with rich semantic formats and exchange unchanged data between
the nodes. We need a format that is simple enough to be delivered without obstacles in
this constrained environment. In this approach [185], authors have considered limitations,
where the collected data are sent to end users. Providing a simple model in constraint
nodes and later enhancing it with further semantics seems promising. Finally, none of the
architectures have considered the use of lightweight formats like JSON or JSON-LD12 for
employing semantics to the data.

Following the above, the architecture proposed by Khan et al. [186] addresses some of
the requirements we have identified in the research challenges. They offer data solutions for
constrained devices and capable devices. They consider delivery of information using a con-
strained protocol for sensor networks that is called CoAP 13 protocol. However, employing a
simple model in all relevant components results in poor data interoperable. Other solutions
are not addressing such constraints, and employing SensorML from the beginning does not
seem the right solution. Also, a single point of doing things would result in an inefficient
solution. Further, considering the system’s performance, we already reviewed different data
formats, and none of the architectures have considered lightweight formats. Finally, employ-
ing domain-specific Ontologies in a different layer to enhance knowledge of the information
seems that further research is needed.

2.10 Emerging Issues and Research Questions

The literature review enabled a comprehensive study of the phenomenon under investigation.
Hence, elaborated technologies like Wireless Sensor Networks, their features, issues, and
challenges that need to be tackled, existing middlewares in the market, and data standards,
ontologies, and semantic middleware; all this information gives us a thorough understanding
and insight for adopting the right network architecture for enabling the development of future
highly dynamic WSN applications and then propose a data architecture for the adopted
network architecture. Altogether, they allow us to address the research issues presented in
the first section.

As result, several research questions emerge:

1. How can the proposed data architecture overcome the limitations that existing data
architectures have?

2. In what context does the proposed data architecture improve the performance of the
existing adopted architecture?

3. How can the proposed data architecture improve the discovery of the resources?

4. What should be the characteristics of an efficient data architecture when adopting a
sensor-based architecture?

12http://json-ld.org/
13http://coap.technology/
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5. What are the specific criteria to evaluate the data architecture to overcome the per-
formance limitations?

6. How can the proposed architecture improve energy efficiency in WSNs?

7. How can prediction models can improve energy efficiency in sensor nodes and by what
extent can the improvement be quantified?

8. What are the specific criteria to evaluate the prediction models for energy efficiency?

2.11 Research Design and Methodology

The research design refers to the steps we are following during our research to integrate differ-
ent study components coherently and logically, allowing us to address the research question
efficiently. Major components of the research project, like measures, treatments/programs,
and methods, are well-adjusted, so they address the primary research questions [192]. The
research design and methodology are elaborated on in the preceding section.

2.11.1 Research Design and Methodology

”This work aims to identify and adopt the right network architecture that will enable well-
designed solutions in extremely dynamic environments, especially in situations where well-
defined and well-designed infrastructures do not exist or are not preferable. Then it will
propose a data architecture that will enable the efficient communication of information in
this network, considering all the challenges imposed by sensor networks stated above. A
significant contribution lies in improving energy efficiency in the data collection phase while
reducing transmission. The applicability of the proposed models will be validated with a real-
world scenario using available data sets.”

Let us describe the methodology by breaking down the aim into smaller pieces so we
better understand the whole process.

1. ”...identify and adopt the right network architecture ...”
First, identifying the appropriate network architecture for a highly dynamic environ-
ment requires a thorough study of the nature of sensor networks from the literature
review and the features they possess to build future smart applications. That’s why we
address the features of Wireless Sensor Networks starting from section 2.1.1. However,
the most interesting part that allows us to identify and adopt the most promising ar-
chitecture according to the problem domain is by reviewing the paradigms addressing
the scalability, distribution, and ability to work in a highly dynamic environment. We
considered the architectures that address such needs (section 2.5.3 ) and the evalua-
tion of properties, challenges, and issues addressed by them. Such information gives us
insights to classify and decide on the appropriate architecture and, as a result, adopt
it.
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2. ”...propose a data architecture ...” Introducing a data framework that precisely fulfills
the specific requirements of a Wireless Sensor Network, suits the adopted architecture,
and addresses the research challenges like syntactic and semantic interoperability. First
of all, the data architecture requires an understanding of the requirements and prop-
erties of sensor nodes. Second, it needs to research the existing data standards and
technologies that allow us to enable semantic interoperability. Third, it requires an
understanding of the components of an existing architecture. We addressed the require-
ments and properties issues of sensor nodes and wireless sensor networks via a literature
review and the case studies other researchers have done (this can be found in Section
2.2). In section 2.6, we analyzed the current trends, data standards, technologies, and
existing frameworks allowing us to address the second challenge. Understanding the
agent-oriented approaches and details from the middleware allows us to propose a data
framework for enhancing machine-to-machine communication by addressing the needs
of WSNs.

3. ”...A significant contribution lies in improving energy efficiency in the data collection
phase while reducing transmission ...”
A central role in the architecture is to have energy-efficient models that allow us to
increase network lifetime via the prediction algorithms. Thus, the key contribution will
be to propose new models that can calculate coefficients and start predicting values on
the sink nodes, and all these will result in fewer data transmissions between the nodes.

Following the prediction models, we will evaluate the performance of the proposed
approaches regarding energy efficiency and accuracy.

Evaluation The required performance measurements include the following:
1. Energy savings: We need to measure how much energy can be saved while reducing
transmission and maintaining data integrity at a desired level.
2. Data Transmissions. We can show how much data transmissions can be reduced
using the proposed prediction approaches.
3. Processing Time. What is the processing time to generate coefficients, and whether
such processing time could impact the energy efficiency of sensor nodes?
4. Data Accuracy. These include mathematical metrics to evaluate data accuracy
and compare with existing approaches. Via the following metrics, we can evaluate
whether the model can be a right fit: Root-mean-square-error, mean-absolute-error,
mean-square-error, and mean-square-absolute-percentage-error.

Evaluation Criteria:

(a) Energy consumption: Several techniques/models exist today for measuring
the energy consumption of the sensor nodes in the Sensor Networks. These in-
clude simulation tools like Tossim [193], Atemu [194], Contiki [195], theoretical
estimations, mathematical modeling languages like PetriNet [196] and in situ mea-
surements. Theoretical estimations rely on a mathematical formula to calculate
the energy of sensor nodes. Simulators are often device specific or not mature
enough to execute the code we provide on sensor nodes. Thus, for the purpose of
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this study, we rely on theoretical estimations for evaluating the performance of
proposed approaches with regard to energy efficiency.

Performing direct measurements that rely on physical sensor nodes provides the
best accurate results of energy estimation [197]. These measurements are often
performed in real-time, which can be seen in [198, 199, 200]. Direct measurements
require a specific device (ex., oscilloscope14) that measures energy in the sensor
nodes.

In our case, we will rely on theoretical foundations to evaluate the energy per-
formance, while incorporating real data from direct sensor measurements. The
real data measurements will need to be periodically monitored to ensure the most
accurate statistics are included.

4. Compare performance metrics from point nr. 3. with a similar approaches using the
same metrics identified from point nr. 3.

Simply, we have summarized our methodology in figure below.

Figure 2.6: The methodology presented visually

14a device that displays oscillation on the screen.
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2.11.2 Discussion

This research work aims to evaluate and adopt the network architecture that works in a
highly dynamic environment, then propose a data architecture that will enable effective
communication of information in sensor-based networks considering all challenges that are
imposed there. Primarily, the intention is to compare the existing architectures and analyze
the dynamic requirements of the already implemented sensor-based networks. The literature
review presented in the previous chapter will help to identify the appropriate network archi-
tecture. By this, the aim is to propose a new data framework that will fulfill the requirements
of a sensor-based network and overcome the limitations of the already existing frameworks.

The proposed data architecture will ensure to address the research challenges imposed by
the wireless sensor network (limited bandwidth, memory, and computational power) through
data modeling using existing standards reviewed in section 2.7. Through the existing data
standards that will be part of the proposed data architecture, machines can efficiently process
the vast amount of data coming from sensor networks and overcome the limitations of the
already existing frameworks. Similar architectures are presented in the literature review and
discussed thoroughly in section 2.9. These architectures try to create data interoperability
in their corresponding architectures by integrating semantic standards. However, they do
not address the limitations of Wireless Sensor Networks by employing directly rich semantic
formats nearby nodes. We believe that by proposing a data architecture that employs a data
model that fits the needs of constraint sensor nodes and later employing semantic standards
where no single unit of conversion exists and considering domain-specific Ontologies, we are
tackling some crucial challenges of Wireless Sensor Networks data architectures.

We are talking about the vast amount of data generated by sensor networks. One im-
portant aspect to consider in data architecture is data redundancy and accuracy. We need
to adopt the right ontological language that does scale efficiently. Directly we cannot ap-
ply ontologies due to constraints imposed by SN. Thus, applying the correct technique for
annotating the receiving data affects the response time.

Finally, new prediction algorithms can improve energy efficiency in sensor nodes. This
research work will evaluate energy consumption, processing and the impact on energy ef-
ficiency, and the accuracy of the proposed models. We can increase or decrease energy
consumption depending on the data/packet we transmit. The larger the packet we trans-
mit in a sensor network, the less energy efficient the node is. Thus, energy consumption
is a requirement to be considered when designing the data architecture. The core part of
the architecture is to include algorithms that highly impact energy efficiency via coefficient
transmissions and use the coefficients to predict future values. Thus, the fewer data packets
we transmit, the more energy efficient the network becomes.
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Chapter 3

Adoption and Enhancement of Sensor
Networks Architecture. The
proposition of new Data Architecture

In this chapter, the focus is to adopt the right network architecture based on the dynamic
requirement presented in the literature review and elaborated in more detail in this chapter,
extend the adopted network architecture with additional features by proposing a regional
network, and finally propose a new data architecture that can tackle additional data require-
ments, specifically interoperability and energy efficiency.

3.1 Adopting the right Network Architecture

In Chapter 2, WSN middlewares paradigms were discussed, pros and cons were provided, and
the most suitable architectural paradigm for the specified criteria was identified. Following
such a paradigm, middleware approaches were identified, and a preliminary comparison was
given. Despite the similarity that can be seen from that specific comparative study which
provides a high-level overview of the qualities of each approach, there are differences if a
detailed comparison is considered.

In agent-oriented approaches, it is evident that the efforts to provide intelligence to the
nodes by supported agents increase the network longevity and adapt to the environment’s
dynamics without external interference. The network dynamism is achieved through the
support of intelligent algorithms that can make the decision locally and algorithms that
reduce energy through data reduction or estimation models. Several middleware approaches
are designed to work for specific hardware platforms, such as those working for Sun SPOT
nodes from Sun Microsystems. In addition to this, these approaches provide a communication
model using tuple spaces. Despite advantages, there is no convergence to the semantics where
machines could apply real-world knowledge, provide linking to analogous concepts, and as a
result, increase reasoning capabilities [201].

Section 2.3 - 2.6 is viewed as a decomposition to fulfill the primary thesis objective given
in Section 1.3; ”adopt successful network architecture that is robust, enable mobile ad hoc
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network solutions, and afford an extremely high number of sensor nodes and concurrent users
in real-time so to form a stable architecture for further enhancements.”

In what follows, a set of criteria and qualities of a desired middleware are presented
in more detail, and a detailed comparison is performed under specific criteria which would
result in the adoption of the most ”righteous” architectural middleware.

3.1.1 Ultra Scalability

In an era where the number of connected ”things” has drastically increased, it becomes
necessary for middleware to accept new network connections without losing efficacy and per-
formance. This need for scalability is required in all components of the middleware, from
efficient communication to service delivery. Any form which requires manual configuration,
installation, and management is not feasible. Multiple devices need to connect on a daily
basis, and the middleware should be capable of dynamically injecting the service function-
alities, service discovery, and composition, as well as enabling efficient communication with
other entities in the network and the Internet. On the other hand, middleware algorithms
must be able to perform efficiently to process a large amount of generated data; the per-
sistence layer must be capable of affording the preservation of data, while query answering
requires an immediate response with accurate results. Moreover, scalable middleware is also
essential for security purposes and the management of billions of connected things.

Several questions should be considered when providing scalable systems in IoT and WSN
in particular.

- What happens when the frequency of data increases by a factor of a hundred?
- What is the time to process the query, and what kind of queries can be supported?
The only way to keep the trend is to scale quickly with a set of rich behaviors and

intelligent algorithms with self* properties and not burden developers with implementation
tasks whenever a new device is added. If not possible, the middleware should make it as
trivial as possible for the developer to extend the behavior of middleware concepts easily
and scale with new ”things.”

Among agent-oriented approaches, some middlewares are dedicated to working for a
specific platform such as Agilla [93], MAPS [97], MASPOT [98] etc. To collect information
from other nodes, other than the approaches that are able to run, is almost infeasible, or
this requires building the code from scratch and running on that specific hardware.

As the information generated by sensory devices are different data models, a middleware
could provide an interface that accept the information streams and convert them to a common
standardized format that is accepted among all entities in the network. Then, the interface
should allow to easy configuring of the resources in the local network.

3.1.2 Robustness and Adaptivity

One critical factor of the middleware using Wireless Sensor Networks is to react to disrup-
tions of broken links and node failures. Sensor nodes may also fail as a result of battery
harvesting, hardware faults, and similar environmental parameters that may affect the com-
munication between the nodes (high temperature, low temperature, rain etc.). All of these
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may affect the accuracy of the receiving values, which could potentially require new settings
for the nodes or new network configuration in case of node failure. These unintended fea-
tures are very desirable when performed automatically by the middleware. No matter the
failures and the environmental changes that may affect the physical layer, the architectural
middleware approach should recover and adapt to the new condition without affecting the
overall performance.

In the upper layer, as the number of end users grows, the performance of the middleware
should remain as in the case of small scale and fulfill all the requirements without delaying
the results.

3.1.3 Autonomy and Self-organization

To extend the utilization of the IoT at a global scale, it is of critical importance for the
middleware to be able to perform tasks without external input, manage the components and
devices in an integrated manner, optimize the use of the resource, and expand automatically
when there is a need and continually increase the real world knowledge for reasoning and
guidance. For instance, Agilla [93] uses the local knowledge of the nodes to make decisions
without user input. More recent middleware such as SAMSON [101] and EDBO [202] exploit
more advanced algorithms in decision-making; to optimize network lifetime and adapt to
network dynamics.

IBM self-management properties of an autonomous system [203] comprise self-healing,
self-configuration, self-optimization, and self-protection. In case a node enters the network,
it automatically set-up the connections and starts communicating with other nodes. If nodes
generate false values, the system may detect and stop sending erroneous data. This could
be an indicator to self-optimize the network by preserving energy usage by not delivering
erroneous data.

Another property that is highly important and very related to the autonomy of the sen-
sor network is self-organization: a collection of entities/agents that interact and coordinate
their actions in order to achieve the global goal efficiently [51]. The interactions of entities
in the middleware should happen with the mandatory/needed ones until the common goal
is fulfilled. From the agents perspective, the entities/agents know with whom and when to
interact for a specified goal. Therefore, the agents interactions can help the whole system to
remain stable in such dynamic environment like WSN, and also help sensor nodes to reduce
energy consumption when not all sensor nodes are involved in communication. Having ”in-
telligent” communication among agents can help the WSN network to extend its lifetime.
Finally, in an autonomous IoT, the middleware could provide the possibility to reason over
the data using real-world knowledge and make decisions partly drawing upon machine learn-
ing (ML) and optimization algorithms. Still, the possibility to make informed choices when
important actions needs to be taken should be left to users1.

1http://gow.epsrc.ac.uk/NGBOViewGrant.aspx?GrantRef=EP/N014243/2

59



Table 3.1: Detailed agent-oriented middleware approach comparison
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Agilla D D D D D X D DD X

Impala D X X DD X D X D X

ActorNet DD X NI D NI D D X D
UbiRoad DDD DD D D D NI NI X DD
MAPS DD NI NI D NI X D X X

MASPOT DD D D D X X D X X

TinyMAPS D NI D DD NI D D X X

UBIWARE DD DD D D D NI NI DD DDD
EDBO DD DDD DDD DDD DD NI NI DD X

SAMSON D DDD DD DD D D NI D X

DIAT DD NI NI DD X X X D X

EAGILLA DD D D DD NI NI NI D X

Sensomax DD DD NI D X X D X X

Bisnet D D D DD DD DDD D X X

FIoT DD D NI D D X X D X

ACOSO DD NI NI DDD X X X D X

Al-Sakran DD X X D X X X D X

Legend: NI: No Information, X: Not supported D: Low Support DD: Moderate Support DDD: Strong Support

3.1.4 Energy, Memory, and Processing limitations

It is already discussed in the last two paragraphs of section 2.3 (not only) the limitations
in energy, memory, and processing power. Thus, we will also derive the topics and compare
the middlewares according to these criteria.

There is no universal agreement on what Architecture Description Languages (ADLs)
should represent, particularly regarding the architecture’s behavior. Representations cur-
rently in use are relatively challenging to parse and are not supported by commercial tools.
Most ADLs tend to be vertically optimized toward a particular kind of analysis.
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Figure 3.1: Agent-oriented middlewares

3.1.5 Discussion

This chapter discussed in detail a set of requirements for architectural middleware using a
sensor network. This was modeled using the research literature within Chapter 2. The need
to support a highly scalable dynamic sensor network was noted. The heterogeneity of sources,
including the generation of information, presents one of the criteria; this is because of the
need for open generic middleware that would easily extend the network as per user preferences
of sensor nodes. In a related manner, the middleware must provide self* properties in order
to tackle the requirements of sensor networks and near-future applications.

Following such requirements, we categorize the agent-oriented approaches into middle-
ware architectures built upon bio-inspired concepts and agent-oriented approaches as can
be seen in Figure 3.1. Natural processes inspire the bio-inspired solution to build intelligent
middlewares that enable self* properties to emerge. In such cases, agents via local collab-
orations could emerge toward the intended goal at a global level. From an unstructured
network such as WSN, this could be a new viable structure created via agent interactions.
Additionally, the created structure is a new way to create an even larger structure, totally
different from the first one, which could be extended further, and so on. Moreover, all these
processes applied to software agents are inspired by biological processes such as bee colonies
in Bisnet or several heuristic algorithms in EDBO.

On the other hand, agent-oriented middleware is developed using agent-oriented program-
ming, which is represented by object entities with additional characteristics and behavior.
Agents communicate with each other and possess a certain degree of awareness which is
defined by a set of constraints. The majority of middlewares presented in this thesis have
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implemented partly sets of self* properties with a high potential to be improved further.
Bio-inspired algorithmic solutions are becoming a fundamental solution for designing

complex dynamic systems. Such approaches are used for service composition [204] and
have been successfully implemented in several agent-oriented middlewares (BISNET, EDBO,
FIoT). They could provide an autonomous solution in the area of Wireless Sensor Networks
addressing the requirements already presented.

Regarding diversity, most of these approaches need to tackle heterogeneity which is funda-
mental for the expansion of future IoT applications. Most agent-middlewares are tailored for
a specific node or specific operating system, and extra work should be devoted to a different
target to handle diversity. There is a demand to offer plug & play solutions using different
sensor nodes and, thus, different sensor networks. For this thesis, middlewares tailored to a
specific family of sensor platforms are not considered potential candidate.

Considering the scalability parameter, the bulk of solutions are able to offer a certain
degree of scalability. Solutions such as agilla, impala, MAPS, and a few others are able to
perform well locally while performing at a network level could be questionable due to the
overhead that is created. Also, several manual configurations are required to be performed
before initiating the monitoring process, which leads to leads to less scalable systems in
terms of integrating new devices in the network.

Based on the facts and comparison table presented with comparison criteria for this thesis,
the most relevant middleware are considered SAMSON, Bisnet, and EDBO. Recently, Bio-
inspired solutions have been the preferred alternative compared to static specified solutions,
and thus, Bisnet and EDBO stand on the tight list as the preferred architectural middleware
approach. Comparing the last two, EDBO wins by a few points, as shown in Table 3.1.
Thus, according to the criteria specified, the most suitable architecture is EDBO.

3.2 Regional Sensor Network Architecture - propos-

ing an extension of the adopted Sensor Network

Architecture

The proposed architecture is a refinement of the IoT architecture proposed in [202], which
is a bio-inspired middleware optimized for cyber-physical systems. The newly proposed
refinement is the outcome of an attempt to adopt the architecture proposed in [202] in the
health monitoring scenario. It tackles all the requirements and challenges imposed by WSNs
(section 2.3), and it will be called from now on “eXtreme Sense Network” (XSN). XSN aims
to serve as the primary infrastructure that will enable any authorized consumer to perceive
the required sensor data as if connected to the central nervous system of an organism. It
facilitates a plug-and-play solution to add a new sensor to the network at any time with
minimal effort. Then, service will be automatically provided, and discovery will be enabled
in a fully decentralized manner.
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3.2.1 XSN Overall Architecture

XSN comprises the “Global Network (GN)” and a number of “Regional Networks (RN)”
(Fig. 3.2). The GN is an overlay network of Biobots as proposed in [202], and the proposed
refinement that satisfies all mentioned WSN challenges is designed in the RN. The RN con-
sists mainly of two different kinds of nodes; XSN Platforms and XSN Nodes. The role of XSN
Platforms is to facilitate a platform that hosts primitive sensors and enables their effective
communication to the rest of the regional layer. XSN Nodes facilitate the connectivity of
all XSN Platforms in the regional layer and interfaces this layer to the global layer when
required. Connectivity with the GN is not required, and the RN can work autonomously.

The global layer is a realization [202] of a research prototype network that achieves several
self* properties using a bio-inspired solution named EDBO [205]. Thus, the global layer is
composed of biobots (logical nodes) that are realized in a biospace (middleware). Biobots
can communicate with XSN Nodes if in range; hence a connection between two layers is
created.

Figure 3.2: Overall system (XSN) architecture

3.2.2 Regional Network

The new concept introduced in this paper is the “Regional Network”, which constitutes of
each local deployment that allows direct access to sensor information. The system compo-
nents of RN are:

• XSN Platform: This is an embedded system with integrated sensors used to monitor the
required environment, in our case, vital signs of humans and other useful measurements
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of their surrounding environment. It employs an energy-efficient short-range wireless
network interface that enables broadcasting sensor information to XSN Nodes. Sensors
are connected to the XSN Platforms and periodically collect sensed data that need to
be sent to the XNS Nodes.
In this health monitoring scenario, the Libelium WaspMote build on ATmega 1281
micro-controller was chosen as XSN platform, which is an open-source platform with
low energy consumption, battery-powered, reasonable technical and user documen-
tation, and a growing community of users. It is an improvement over the Arduino
microcontroller with a built-in accelerometer, thermometer, and sleep mode configu-
ration for better power management. A plethora of sensors is available for sensing the
required information via sensor boards that are either dedicated to their product lines
or prototyping sensor boards to integrate any sensor. WaspMote also integrates XBee
wireless interface for wireless communication based on IEEE 802.15.4 standard. The
XBee shield is appointed directly on the WaspMote; meanwhile, the Connection Bridge
allows to use of the same shield on Raspberry Pi (XSN Node in our case) to ensure
compatibility. The Pi offers GPIO2 and device peripheral compatibility for Arduino
via an optional board.

• XSN Node: This represents a small device equipped with a microcontroller and wireless
network interface to receive data broadcasted by the XSN Platforms and then forward
to the nearby nodes by realizing mobile ad hoc network (MANET) routing. This XSN
Node ensures connectivity among multiple nodes in the same RN. Its position can be
stationary or carried by a tracking device. The processing capabilities are enough to
create network services accessible by clients. In the context of the RN, it plays the
role of the sink in the formed WSN. They include an interface component that plays
the role of the gateway router for the RN and allows XSN Nodes to communicate with
Biobots, which are the nodes of the ”Global Network.”
To prototype an XSN node, we used Raspberry Pi, a mini-computer capable of running
an operating system (lightweight Raspbian OS was selected). To create communica-
tion compatibility between the XSN platform and the XSN node, the Xbee connection
bridge was used. In the XSN Node, TP-Link TL-WN725N Wireless Interface is selected
to connect to the WiFi network due to low power consumption and high transmission
speed. The mesh network and ad-hoc network connectivity are achieved by using
BATMAN and IPv6 protocol stack in each node. These will allow limitless network
addresses. Thus, an XSN Node can discover other XSN Nodes within the communi-
cation range using BATMAN ad-hoc networking. Then, the local client can access
the sensor services provided by XSN nodes using HTTP requests, and the responses it
receives are in a simple JSON format. Unlike the local client, to access the services by
a global client, BioBot provides the adapter implementation for XSN Node services.

• Local Client : This represents an optional end-user with the option to access the sensed
data from the regional network. This user may query data directly from the XSN
Node since it is part of the regional network but can also access the distributed service

2GPIO (general-purpose input/output) are input/output pins on an integrated circuit whose behavior
can be controlled at run time.
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provided by biobots in the global network.

3.2.3 Global Network

The bio-inspired agent-based distributed system is part of the IoT architecture that realizes
the “Global Network”. The GN middleware enables the discovery of service for the sensor
data and allows seamless access from remote locations over an unstructured distributed
artificial network of XSN middleware nodes called Biobots.

• Biospace: This is the platform that constitutes the basis for creating agents that can
serve sensor data.

• Biobots : These agents access sensor nodes via RESTful service requests to access
and provide information collected by sensor platforms. They can communicate in a
distributed manner with each other for service discovery purposes.

• End User Systems : Represents applications that access sensor services by communi-
cating with the discovered Biobots. The end-user systems are installed on user devices
(such as tablets or smartphones) that remotely access sensor data or remote servers
that collect and process sensor information.

3.2.4 Discussion and Conclusion

In this chapter, we presented a refined network architecture called “Regional Network” that,
together with the “Global Network” provides a complete architecture called eXtreme Sense
Network (XSN). The XSN architecture presents abstractions on different levels; i) the GN is
inspired by emergent natural phenomena and enables the integration of physical systems to
the Web, and ii) the RN, which aims to provide an abstraction for the physical layer of sensor
networks. Together, they can solve critical issues; scalability, heterogeneity, robustness,
self-adaptability, self-optimization, and resource discovery. The XSN architecture enhances
network flexibility by allowing sensor devices to easily connect to the network in an ad hoc
manner via several wireless interfaces that also contribute to service discovery. In contrast
to other middleware approaches, this applies the idea of a bio-inspired model by introducing
several bio-inspired algorithmic solutions for decision-making, birth, and death of biobots,
resource optimization, and discovery. Using the XSN architecture, a WSN application can
use an initially unstructured network that will adapt and change its structure autonomously
according to the changing demands and load in the network.

The proposed XSN architecture achieves scalability by allowing clusters of XSN Nodes
in the RN to be connected with global nodes called BioBots, creating clusters in the GN
for service discovery and processing. Each XSN platform is connected with XSN nodes via
short-range wireless communication, whereas nodes create multi-hop mobile ad hoc networks
in the RN. The presence of various wireless interfaces in a node using the BATMAN3 protocol
provides a discovery mechanism and allows to integrate multiple XSN nodes which ensures
scalability while empowering heterogeneity. As the number of XSN nodes increases, more

3https://www.open-mesh.org/projects/open-mesh/wiki/BATMANConcept
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dynamic links are available for data transmission, and robustness is achieved. Further, the
XSN node that serves as a gateway delivers the data to a BioBot. As the number of nodes
increases in the RN, the number of Biobots increases as well due to emergent properties of
the Biobot; that is, by increasing the energy level through the service discovery mechanism,
replication occurs, and more logical connections are made with other Biobots. As a result,
the concentration of BioBots close to the RN where the load exists increases. In addition
to this, the communication of two XSN nodes in different RNs is handled via BioBots that
can communicate with each other and exchange the necessary information to make local
decisions concerning the services they offer.

At the middleware level, the communication between devices and end-users is performed
via BioBots, which provides an adapter layer that hides the heterogeneity of different data
formats and device features. The current implementation accepts XML and JSON format in
the form of rest services offered by an XSN node. This can easily be extended with additional
data formats.

XSN architecture accomplishes autonomy by providing several self* properties to the
system. Self-organization is achieved when discovering the services from the connected “Re-
gional Networks”. The more successful the response ratio for the end-user queries, the
stronger the relationship among the Biobots. Otherwise, the inability to provide such service
weakens the relationship between Biobots, and as a result death of an agent occurs, which
makes other BioBots change their structure. Thus, self-adaptivity and self-organization are
achieved through load balancing via energy maximization.

The RN layer offers the ability to work independently without relying on the GN layer,
comprising of components that allow XSN Platforms, which are resource-limited, without
any pre-configuration, to deliver the data to XSN Nodes (node with multiple interfaces) that
offer the required services. In the RN, the security issues are addressed by configuring the
XBee with a 128-bit Advanced Encryption Standard (AES) key to ensure confidentiality and
integrity. The security mechanism is implemented from XSN platform to XSN node while
other layers of architecture need further security considerations.

Having such a complete XSN network architecture could find numerous applications,
including but not limited to applications in an open field (e.g., a camp) without a well-
established network infrastructure aiming to control individuals’ physiological and health
status as well as use for operational purposes. The whole network architecture could offer
a cost-effective solution that supports such dynamism. Other potential applications include
agriculture, traffic, and transportation, where each device could be treated as an XSN node,
and the biospace could create a highly intelligent control system.

A prototype implementation of the proposed architecture has been used in a health mon-
itoring scenario enabling remote monitoring of vital signs and providing proof of concept. In
the next section, we aim to add features and functionalities supporting data interoperability
that will enhance the automatic discovery process and enable machine-to-machine communi-
cation and shared understanding for better local or global decision-making. The limitations
in XSN platforms forbid the use of semantic technologies directly. Thus, several data repre-
sentation standards are investigated for this purpose. Based on each node’s limitations and
requirements, we can use different standards at different levels of the network.
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3.3 New Semantic Data Architecture for Sensor Net-

work

Previous sections of this chapter describe a desiderata middleware for an unstructured, dy-
namic sensor network; we adopted the right architectural middleware approach based on the
functional and architectural requirements (subject to this thesis) of the IoT and WSN in
particular. This section considers the adopted sensor network architecture and discusses the
design of a new data framework for the adopted middleware, which aims to further extend
with additional requirements already identified in chapter 2 under data requirements. The
framework is termed ESIADS; the name stems from the problem domain under discussion.
It stands for Enabling Semantic Interoperability in Artificial Distributed Systems in the
domain of Wireless Sensor Networks.

ESIADS design considers the resource limitations of the sensor node, provides semantic
interoperability by utilizing de facto standard semantic web technologies in sensor networks
and semantic web languages and adapts the framework to the adopted architecture.

The new data architecture presents the second objective of this thesis which is:
Objective 2: ” propose a data architecture for the adopted architecture in order to enable
syntactic and semantic data interoperability considering the limitations of Wireless Sensor
Nodes (bandwidth, memory, CPU, and energy)”.

Many proposals address specific IoT requirements, but only a few have considered the
data requirements. Some previously discussed data architecture proposals have addressed
specific needs, such as offering machine interoperability by employing semantic formats and
using Ontologies. These data architectures mainly offer centralized solutions, and there
is still room for improvements in treating IoT data requirements such as qualitative data
and machine interoperable using lightweight data formats by considering constrained sensor
nodes and handling the scalable volume of IoT-generated data.

We are proposing a data framework for the proposed EDBO architecture so we are able
to address the research problems presented in the literature review in Section 2.6.2. In what
follows, we will present the details of such a framework.

Although machine-interpretable data (semantics) are employed and recognized by several
architectures, more work is necessary on adopting semantic technologies for agent-oriented
architectures. Agents could overcome the constraints of sensor nodes and employ semantic
web technologies in their architecture. All these are due to the power of autonomy they
can maintain and the possibility to set the processing of incoming data outside the sensor
layer. Considering that WSN is a hot research area, data issues are still present in many
middlewares. Additional attention is necessary to model a layer of semantic data that could
highlight some challenges. In Figure 3.3, we have presented a new semantic data architecture
that can tackle some of the data-related challenges.
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Figure 3.3: Architecture Proposal

3.3.1 Architecture Layers

In what follows, we describe the new data architecture layers.
Layer I: The wireless Sensor Network layer consists of wireless sensor platforms forming a
mesh network using low-power radio frequency protocols such as ZigBee, Z-Wave, etc. These
platforms are constrained devices with limited capabilities. Thus, it is difficult to address
the issues of providing semantics directly to the nodes or producing qualitative data. The
first layer employs simple formats that are lightweight and can easily travel the information
from node to node with less energy possible. Basically, in these wireless sensor platforms,
we cannot preprocess the information to enable quality information to be sent throughout
the other nodes until it arrives at the Sink node. However, employing a simple format
with simple semantics could easily enable this information to be preprocessed, filtered, and
cleaned in nodes with processing power.

Limited Bandwidth and Energy Efficiency - The maximum bandwidth for transmitting
the information using the employed protocols in WSN networks is 255kb. The available
payload for a packet traveling from one node to another using ZigBee protocol [206] is 116
bytes. Next, the appropriate data format to describe the sensor description is chosen to be
SenML, specifically designed for constrained devices. In SenML, we can represent the sensor
information in different formats, while JSON is the preferred format for easy processing and
better energy utilization than XML. Thus, keeping and transmitting information in a small
packet efficiently makes use of bandwidth and results in less energy spent.
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Why SenML? SenML is a lightweight format that allows data modeling in different
formats. SenML is created to be used with constrained devices. Among the standards
already discussed in section 2.7, SenML provides a means to model the data in a format
appropriate to the needs of the platform. If the platform is very constrained, one can model
the data using the CBOR format or EXI, which cannot be accurate for other standards.

Suppose we have two sensors measuring different properties (i.e., temperature sensor and
glucose). In SenML, such a description looks like in Appendix A, where the packet size is
107 bytes, which is the maximum size supported by low-rate wireless technologies (IEEE
802.15.4) that are 116 bytes [206]. The same measurements are described by the SensorML
standard (Appendix B). There are 1100 bytes needed for transmitting the same information.
This number is high and exceeds the max payload for low-rate wireless technologies. Most
of the time, many packets penetrate the same route, and thus delivery delay is expected.
The lower the packet size, the faster the packet is transmitted. As a result, SenML seems
an adequate protocol for transmitting the packets over constraint communication mediums.
Also, it supports different formats (JSON, XML, Exi).

In the sink node, the transmitted information can be transformed into the semantic
format and annotate the raw data with meta-data since there are no limitations on the pro-
cessing power. The sink node can be any node with high capabilities. We can do processing
without any limitations and add additional knowledge to the receiving data.

It is important to note that, on the first layer, we employ lightweight algorithms (per-
ception layer) when it comes to the data collection phase. There will be running algorithms
on the XSN platform and XSN node. The algorithm that runs on the XSN platform will
generate coefficients of a function based on the input values. Once the coefficients are gener-
ated, they will be transmitted to the XSN node via the data format explained above. These
coefficients will help the XSN node generate the real values via prediction during a scheduled
period of time and predict future values. In this case, the XSN platform can stay in sleeping
mode while the XSN node predicts future values at a given period.

Layer II: Second Layer would consist of nodes with processing power and no limitation
boundaries. As a result, these nodes can process the information locally before sending
the pieces of information to the middleware. Also, this will allow semantically annotating
the data with further semantics using Ontologies. Although there is no standardization for
Sensor Ontologies, we employ SSN ontology that seems promising and quite standardized for
the semantic representation of these data. Thus, in this Layer, there are algorithms that will
automatically transform the SenML to SSN, specifically using the JSON-LD data format.
The second Layer would also help agents to make decisions locally based on the global needs
of the middleware. Having several local networks and appointing an agent or some agents in
each network would enable dynamic cooperation and achieve global intelligence at a higher
level. It will also help to optimize the use of the resources at the local level.

Layer III: In the last layer, there is a possibility for applying real-time processing tech-
niques of the information coming from each local network or applying semantic rules to
increase the knowledge to a higher level that would enable sophisticated information to end
up to end-users. A critical step towards it would be discovering the employed resources in the
network. At the top of the third layer, a Semantic query engine would improve the extrac-

69



tion of information from the lower layers by enhancing the knowledge and resource discovery
process. This query will enable the agents to be activated and collaboratively respond to
such requests and even more by employing semantics agents that will possibly answer sophis-
ticated queries. Since agents collaboratively solve issues, there would be possible to enhance
the performance when hundreds or thousands of nodes are accessed within the network and
accessed by millions of users daily. It is because nearby agents would have the knowledge
of nearby agents, deliver the request to the appropriate one, undertake such issues, and de-
liver the “best response” if possible. The architecture will improve data characteristics as
described in the following subsections.

3.3.2 Energy Efficiency

Most of the data architectures previously presented assume sensor platforms with enough
capabilities and directly employ semantics in these platforms. We have noticed that the
architecture presented in [186] separates sensors with limited capabilities and those without
constraints. Sensors with limited capabilities employ a flexible, lightweight format such as
SenML, but they deliver the services to end users without enhancing further with semantics.
Since the mesh network allows the information to be traveled from node to node, the pro-
vision of a lightweight format for transmitting information increases the chances for energy
efficiency. The fewer bytes transmitted between the nodes, the more energy is saved. Thus,
the proposed framework improves the energy of the sensor network from two perspectives: it
makes use of lightweight and uses prediction algorithms. Employing prediction models will
help greatly increase the network’s lifetime, as we will see in the following chapters. The
prediction models can reduce energy usage during transmission and send less data on the
network. Sending just the coefficients one time and then using such coefficients to predict
future values is a great way to improve energy efficiency.

3.3.3 Data Quality

In Sink Node, employing prediction algorithms will allow us to have quality data and re-
move erroneous ones. The dual prediction algorithms allow removing erroneous data when
the data are interpolated and even extrapolated. The details on qualitative data will be part
of the following chapters since, in our case, quality depends on the data predictions by the
algorithms themselves.

3.3.4 Velocity and Data Scalability

- Agents could reduce data generation if these are not necessary to be delivered to other
layers. Although applying lightweight formats such as JSON and JSON-LD for semantic
representation of the data would reduce the amount of data that can be stored either in se-
mantic databases or as a file stored in the specified directory. Instead of saving every sensor
value from the XSN platform, the coefficient will reduce much space. Since the coefficients
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can predict a number of future values, including the values within the range, the only point
is to process the queries properly to extract the right data.

3.3.5 Enabling Interoperability: Syntactic and Semantic

The receiving information with SenML have few semantics. However, to facilitate resource
discovery and create semantic interoperability, Ontologies are introduced. The well-known
format that allows semantics to be included and makes the data publicly available is JSON-
LD4. Following standardized format and ontologies improves data heterogeneity as well. The
followed standards avoid conflicts about heterogeneous data and its meaning.

A wrapper library performs the transformation of SenML to JSON-LD. This wrapper
enriches the data with further semantics. The SSN is the appropriate Ontology for semanti-
cally annotating the sensor data because of the strengths presented in the literature review
(section 2.). It offers rich semantics for sensor observations and follows an upper ontology
like Dolce Ultra Lite to enable higher-level semantic interoperability.

3.4 Conclusions

The work presents the research analysis and evaluation of existing architectures that address
the dynamic requirements of WSNs with high potential to produce sophisticated applications.
As a first initial step, we based our research on adopting the right network architecture
that has already addressed specific issues and has a higher potential than others for future
enhancements. As a result, we adopted EDBO as network architecture for highly dynamic
WSN characteristics. Then, we extended the middleware with the regional layer that shows
the applicability of middleware using a Wireless Sensor Network in a domain of interest.

Further, we have proposed a data framework for the adopted architecture that tackles
interoperability issues, energy efficiency, and data quality. Specifically, we tackled the prob-
lem based on the requirements of WSNs. That is why we designed the data architecture in
such a way to fit, first of all, with the adopted architecture and, secondly, handle the data
requirements of dynamic systems.

After finishing all the steps discussed in the methodology and addressing the research
questions, a possible future direction would be advancing the knowledge of the existing ar-
chitecture. Some possible questions that could be addressed based on the data architecture
proposed are as follows:

• How to improve data knowledge using domain-specific ontologies?

• How can ontologies enhance the response to user queries?

• Are we able to provide more intelligence closer to the nodes using Ontologies to reduce
bandwidth?

4http://json-ld.org/
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• How to extend the lifetime of the sensor network using intelligent algorithms?

• Can neural networks help us improve energy efficiency?

In order to address further energy efficiency, as the main contribution of the thesis is
about, the subsequent chapters follow dual prediction models for the increasing lifespan of
XSN platforms.
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Chapter 4

Data Transmission Reduction and
Data Prediction for Energy Efficient
Wireless Sensor Network applications

This chapter proposes an algorithm that optimizes energy usage in Wireless Sensor Networks
when transmitting information between the nodes. Since Sensor Network makes it possible to
monitor physical properties and their surrounding environment in real-time, massive amounts
of data are generated daily and transmitted over the network. A lot of processing power,
memory, and a high-speed network are required. Further, transmitting a large amount of
data consumes much energy in sensory devices and limits the network lifetime. The less the
data size in data transmission, the more energy-efficient the node is. Sending 100 bits of
data from node to node consumes 5 µJ [117]. Imaging sending time series data where the
event can repeat the same value several times.

A novel data prediction approach is proposed for data transmission reduction from the
sensor node to the base station while not breaking the data integrity. This algorithm is
appropriate for sensory devices with energy constraints, memory, and computing resources.
The intended proposed approach is based on the Newton interpolation algorithm combined
with the arithmetic means to reduce the data transmission by sensory device and allow the
same data to be generated whenever necessary on the base station. This algorithm runs
on the sensor node and the gateway. Instead of transmitting data packets periodically to
the gateway, we propose to send only coefficients of Newton interpolation polynomials. By
having the coefficients, we can generate the same data at any time using the same algorithm
that runs on the gateway. Newton’s interpolation is also helpful in assessing the missing
values between the data range.

The proposed approach based on Newton’s divided difference interpolation polynomial
allows us to achieve better energy efficiency by predicting values. It provides an excellent
method to obtain reasonably accurate data when interpolating the data within the range and
quite accurate data when we predict out of the range. Although, predicting data out of range
requires a more often coefficient re-evaluation. Data results from the real sensed temperature
show that the algorithm is quite accurate and significantly reduces data transmission over
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the network, improving energy efficiency and increasing the network lifetime.
The chapter structure is as follows: we describe the design and problem formulation

followed by the prediction model, where we describe the maths of the Newton interpolation
polynomial and its corresponding algorithms. Then, the next section describes the results
based on the real data set of the temperature collected within a day. The metrics include
the effect of Newton degree variation, the number of necessary transmissions based on the
math formula, and energy consumption. Further, we check the accuracy of the data (mean
square error, mean absolute error, mean absolute percentage error). Finally, the discussion
concludes the chapter.

4.1 Network Design and Problem Description

This research considers a regional network consisting of sensor platforms (XSN platforms),
embedded sensory devices with limited resources, and sensor nodes (XSN nodes), devices
with no restrictions. The XSN platform is responsible for observing the environmental values
or values of the monitoring object. Then the platform is connected with powerful devices
called sensor nodes (XSN nodes). XSN nodes might connect with other nodes and serve as
a gateway. With the connection of multiple nodes, we form a local network.

Our approach consists of the dual prediction model where the same algorithm runs in
XSN platforms and XSN nodes. XSN platform collects a few data points and creates a
prediction model using the Newton interpolating algorithm combined with the means, and
the same runs in the XSN node. We reduce the data transmission from XSN platforms to
XSN nodes while a given threshold is not exceeded. Also, we only transmit the coefficients of
the function. The provided algorithm can be adapted in every application, whether critical or
non-critical. For example, in a critical application, a minimal deviation is allowed; however,
this algorithm can impact the energy efficiency of the XSN platform. On the contrary, many
applications, i.e., temperature, humidity, etc., might produce similar values for extended
periods, and employing such an approach will significantly increase WSN lifetime.

4.1.1 Problem Description

Let represent WSN as a set of XSN platforms Ni where i = 0, 1, ..n, represented by a unique
ID, and E that represent a set of connections. XSN platform measures the values over time
and transmits them to the XSN node. Let T1 represent the beginning time when the XSN
platform Ni measure a value V1 and transmit it to the end node. This way, we can present
measurements at each time with their corresponding values as data points (Ti, Vi), i = 0, ...n
and easily find polynomials passing these data points as a system of linear equations. As
soon as the coefficients are known from the equation, they can be delivered to the end nodes.
The XSN node, at any time, can reconstruct the equation based on the receiving coefficients.

The XSN platform aims to collect a few data points and construct the interpolating poly-
nomial function corresponding to the data points’ degree. The higher the rate of changing
values, the more complex the prediction of the following values becomes. The slower the
changing values one after the other, the better the prediction. Although, we reconstruct
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the polynomial as soon as we catch changes that do not correspond to the equation line.
Another benefit of using such an equation is that we can construct the values at specified
points (say, a user requires temperature at a specific time).

4.2 Data Prediction

As WSN applications are increasing fast, sensor devices’ volume of generated data that
need transmission from node to the endpoint is exceptionally high. Sensors observe different
kinds of data, starting from environmental conditions (temperature, humidity, air pressure),
monitoring object movements (patients, traffic, enemy), patients’ conditions (temperature,
heart rate, blood pressure), etc. All these will significantly impact memory and, specifically,
battery power consumption for the XSN platforms. This section presents an approach to
improve energy efficiency based on the Newton interpolation polynomial.

4.2.1 Newton Interpolation Polynomial Model

Let tN0 be the observation in time N0; meanwhile, yN0 is the temperature corresponding to
that time. Then, we have, t1 ≤ t2 ≤ ... ≤ tN0 , while yi does not necessary have to be ordered.
We form the sorted pairs (t1, y1), , ..., (tN0 , yN0) and we can present in the coordinate system.
Let us consider the problem: How to find function y = f(t), which passes through some of
these points and is closer to the other points. Then through this polynomial, we can make
the prediction outside this area. In the beginning, we are dealing with the solution to the
first problem.
If a function of time is fitted by a polynomial of time, the error between them is

f(t)−
M∑
j=1

Ajej(t) (4.1)

where ej(t) =
j−1∏
i=0

(t− ti) and e0(t) = 1 while f(t) is the function, t is time, M is the highest

order of the polynomial, and AM is a coefficient of each term.
Let us revisit the quadratic polynomial interpolant formula

f2(t) = A0 + A1(t− t0) + A2(t− t0)(t− t1)

where

A0 = f(t0)

A1 =
f(t1)− f(t0)

t1 − t0

A2 =

f(t2)−f(t1)
t2−t1

− f(t1)−f(t0)
t1−t0

t2 − t0
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Note that A0, A1, and A2 are finite divided differences. A0, A1, and A2 are the first, second,
and third finite divided differences, respectively. We denote the first divided difference by

f [t0] = f(t0)

the second divided difference by

f [t1, t0] =
f(t1)− f(t0)

t− t0

and

f [t2, t1, t0] =
f [t2, t1]− f [t1, t0]

t2 − t0
=

f(t2)−f(t1)
t2−t1

− f(t1)−f(t0)
t−t0

t2 − t0

where f [t0], f [t1, t0], and f [t2, t1, t0] are called bracketed functions of their variables enclosed
in square brackets. Rewriting,

f2(t) = f [t0] + f [t1, t0](t− t0) + f [t2, t1, t0](t− t0)(t− t1)

Table 4.1: The calculation of divided differences can be expressed in the following table,
called the divided-difference scheme:

t0 f(t0)

f [t0, t1]

t1 f(t1) f [t0, t1, t2]

f [t1, t2] f [t0, t1, t2, t3]

t2 f(t2) f [t1, t2, t3]

f [t2, t3] f [t1, t2, t3, t4]

t3 f(t3) f [t2, t3, t4]

f [t3, t4]

t4 f(t4)

This leads us to write the general form of Newton’s divided difference polynomial for
N0 + 1 data points, (t0, y0), (t1, y1), · · · , (tN0 , yN0), as

fN0(t) = A0 + A1(t− t0) + A2(t− t0)(t− t1) + · · ·+ A2(t− t0)(t− t1)...(tN0 − tN0−1)
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A0 = f [t0]

A1 = f [t1, t0]

A2 = f [t2, t1, t0]
...

AN0−1 = f [tn−1, ..., t1, t0]

AN0 = f [tN0 , tN0−1, ..., t1, t0]

where the definition of the mth divided difference is

AN0 = f [tN0 , tN0−1, ..., t0] =
f [tN0 , tN0−1, ..., t1]− f [tN0−1, ..., t0]

tN0 − t0
.

More about the interpolating polynomials see [207].
The procedural description is given below :

(1) (A0, A1, ..., AN0)← (f0, f1, ..., fN0)

(2) for k = 1 to N0

(3) for j = N0 downto k

(4) Aj ←
Aj−1 − Aj

tj−k − tj

4.2.2 Algorithms

Finding coefficients of the interpolating polynomial (Newton Divided-Difference Table):
Given k distinct interpolating points (the time when the measurement is done) x0, x1, ...xk,
and the sensor values at these points, yk = f(xk). Then, the coefficients of the interpolating
function are: cl = f [xl] for l = 0, 1, ..., n− 1.
INPUT: x, y
Output: Coefficient set Ci

1. SET n = length(y)
2. SET Cij = 0
3. for i = 1 to n do
4. Ci0 = yi
5. end for
6. for j = 1 to n do
7. for i = 0 to n-j do
8. Cij = (ci+1,j−1 − Ci,j−1)/xi+1 − xi
9. end for
10. end for
11. return Ci

77



Algorithm to evaluate the new data point. This stage aims to predict new values
using newton interpolation using coefficients produced by algorithm 1.
INPUT: C - coefficients, X data points, XNEW - evaluation point
Output: P - predicted value
1. SET n = length(y)
2. SET n = length(X) - 1
3. SET p = C[n]
4. for k = 1 to n+ 1 do
5. p = C[n− k] + (XNEW −X[n− k]) ∗ p
6. end for
7. return p

Since the Newton interpolation at some points can diverge far from the values within the
range, the aim is to put a regulator between the predicted value and the mean of the last
two data points. The role of this regulator is not to construct new coefficients when there
are no big changes in values. Thus, we have:

MEAN = (Y [n− 1] + Y [n− 2])/2

Then, if |MEAN − P | > 1 we set P = MEAN . Further, in the XSN platform, we compare
the real value with the predicted value, whether they are within a given threshold. The
threshold value depends on the application area and can be changed accordingly. Those
applications that are very critical must have a low threshold value. Then, the algorithm
follows: if |Current value−P | > THRESHOLD, we construct new coefficients; otherwise,
we do not need to send any value to the XSN node since the predicted one is valid and within
the allowed range.

4.3 Experimental Results

The experimental results are tested with actual temperature values gathered within 12 hours
from the XSN platform, namely waspmote1, which is an embedded device with the integrated
temperature sensor. The data are sent to the XSN node (raspberry PI), saving the data set in
a file. We run the algorithm against this data set to check the technique’s effectiveness. The
algorithm works as follows: Few latest values are always collected in the sensor platform, and
based on these values, we built the coefficients of the Newton interpolation. The coefficients
are transmitted to the XSN node. XSN platform does not transmit any coefficients until the
absolute value between the measured and the predicted one does not exceed a given threshold.
Once it exceeds, new coefficients from the latest values are generated and sent again to the
XSN node. Since the XSN node has coefficients, it can generate values anytime. The
algorithm predicts values within and outside the range. Thus, it exceeds the limitations of
the proposed algorithm given in [208], which compares values within the range. Furthermore,
our algorithm is compared with the technique proposed in [208].

1https://www.cooking-hacks.com/documentation/tutorials/waspmote.html
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4.3.1 Data Prediction

The main difference between the algorithm running on the XSN platform and the XSN node
is that the generation of coefficients runs on the platform level. The following metrics are as
follows:

Table 4.2: Parameters and values

Prameter Value

Year 21/10/01

Observed Condition temperature

Collected Readings 506

Slot interval 1 minute

4.3.1.1 Effect of Netwon’s Degree Variation and Threshold

Each sensor platform needs to few raw data points to find the coefficients of a polynomial.
The performance and accuracy of data depend on Newton’s degree d that we perform in our
simulation. An appropriate polynomial degree can be selected depending on the application
requirements and sensor resources. The greater the polynomial degree, the more computation
is needed, but more accurate data can recover at the XSN node. Furthermore, a given
threshold is helpful for the algorithm to reconstruct coefficients in case the predicted value
exceeds the given threshold.

Figure 4.1: Newtons Degree Variation: d = 4, d = 6, d = 8 and threshold 0.1

In Figure 4.4, we predicted values within the range for a fixed size of 100 slots. As it is
shown in the figure, the original data and the predicted values are not far away, specifically at
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Figure 4.2: Newtons Degree Variation: d = 4, d = 6, d = 8 and threshold 0.25

Figure 4.3: Newtons Degree Variation: d = 4, d = 6, d = 8 and threshold 0.5

degree 8 of the polynomial, where values match a lot. As a result, the algorithm reduces the
transmission similar to [208] in the case of fixed periodic size and fixed degree. Furthermore,
the algorithm exceeds the limitations of the technique in [208], for having a fixed period size.
Our approach reconstructs new coefficients and re-evaluates the polynomial dynamically
when there is no match between predicted and observed values in a given threshold.
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Figure 4.4: Predicting values within range in time slot of 100 values

4.3.1.2 Effect of Condition Variation

The results for the proposed approach reveal that if the current observation is quite different
from the following observation, the algorithm requires more often to re-evaluate the coeffi-
cients, and the predicted value is slightly more pronounced than the original one. On the
other hand, when the values vary slightly, the Newton data are much closer to real observed
values, and there is no need to reconstruct the coefficients of Newton polynomials. As can
be seen from Figure 4.5, having variations in values one after the other makes the real value
and predicted ones have much difference compared to other cases.

Figure 4.5: Effects of Condition Variation
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4.3.1.3 Data Transmission and Energy consumption

This section analyzes the number of coefficients transmitted from each sensor in the XSN
platform to the XSN node. The simulations show the algorithm can reduce transmissions
between 92% - 94% when the threshold is set to 0.5, up to 45% when the threshold is
set to 0.25, and up to 34% when the threshold is 0.1. The statistics are from the dynamic
generation of coefficients when predicted and measured values exceed the threshold. Suppose
we predict values within the given range in a fixed time slot. In that case, our technique
behaves similarly to work proposed in [208] when it comes to periodic data transmission
ratio for a fixed time slot.

We will use the following Equations presented in [152] to calculate the data reduction
percentage.

TTR = TCR −NTR (4.2)

DPR =

∣∣∣∣(TTR

TCR

∗ 100

)
− 100

∣∣∣∣ (4.3)

where TTR represent total transmitted readings, TCR - represent the data set, NTR - non
transmitted readings. From Table 4.7, we see that the algorithm can save energy on data
transmission from 34% to 94%. Regarding the periodic transmission, this all depends on
the time slot. Suppose we transmit every half an hour; then the number of coefficient
transmissions for 24h will be 48.

Table 4.3: Dynamic Data Transmission out of 350 data set

Threshold 0.5 0.25 0.1

Newton degree d4 d6 d8 d4 d6 d8 d4 d6 d8

Nr. of transmissions 24 28 20 192 216 220 231 231 231

Reduced Transm. in % 93.1 92 94.3 45.1 38.3 37.1 34 34 34

Periodic transmissions depends on fixed time period

In order to evaluate the energy consumption of the proposed model, we will use the
energy model in [209]. This model depends highly on data transmission, and other factors
like sensing and processing are not considered. The energy consumed by the XSN platform
with N sensors is given using the equation

Energy = N ∗ (d+ 1) ∗ Ec ∗ 64 (4.4)

where d represents the Newton degree (i.e., for degree 4, we have d+1 values), Ec is electronic
circuity (mostly 50nJ/bit)

Hence, our technique performs very well in improving the energy lifetime of XSN plat-
forms/nodes when considering that most of the energy is spent during data transmission.
Specifically, this is emphasized when having a border threshold of 0.5. Then, the more en-
ergy is spent, the more often we generate new coefficients that need to be delivered to the
end node. Also, the energy lifetime decreases with the increase of Newton’s degree. If we
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Table 4.4: Energy Consumption

Threshold 0.5 0.25 0.1

Newton degree d4 d6 d8 d4 d6 d8 d4 d6 d8

Energy cons. in mJ 0.38 0.63 0.51 3.07 4.84 5.38 3.69 5.17 5.91

Energy saving in % 94 90 92 54 28 20 45 23 13

compare our technique with the technique proposed [208], even though it dynamically gen-
erates coefficients performs better when we provide a threshold of 0.5. The authors in [208]
can achieve 86% - 93% for Lagrange degree 6, while we can achieve 90%-94% by dynamically
generating coefficients. However, our technique does not perform better when reducing the
threshold to 0.1. This performance decrease is due to dynamic generation and frequent data
transmission. However, having a concise period time slot, our technique might achieve the
same results as the research results provided [208].

4.3.1.4 Data Accuracy

Data accuracy refers to the similarity between the predicted values and observed values.
To evaluate the proposed approach’s data accuracy, we will consider the Mean Square Error
(MSE) and Mean Absolute Error (MAE). Both are useful for checking the quality (accuracy)
of an estimator. The formula for MSE and MAE are as follows:

MSE =
1

n

n∑
i=1

(AV − PV )2

MAE =
1

n

n∑
i=1

|AV − PV |

where AV represents observed values from the data set and PV represents predicted values.
Then, the Tables below show different Newton degrees’ overall performance with different
thresholds. All the tables show that the algorithm performs relatively well regarding accu-
racy. The higher the degree of Newton’s polynomial, the more accurate the prediction. On
the other hand, the data quality degrades when we lower the threshold value. Thus, if we
consider data accuracy, it is beneficial to set the threshold higher to have better accuracy
for data sets that do not have more considerable changes between time slots.

A common metric to check in percentage the accuracy of a model is Mean Absolute
Percentage Error (MAPE) which is given below:

MAPE =
100%

n
∗

n∑
i=0

(
|actual–forecast|

|actual|

)
According to Tables 4.8, we can easily see that our approach achieves highly accurate

data with error percentages lower than 2%. That means we achieve an accuracy of about
98%. Note that the algorithm did not consider any erroneous value or loss, which may affect
the data accuracy.
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Table 4.5: MSE and MSA for given threshold 0.5 in the proposed approach

Threshold 0.5

Newton degree d4 d6 d8

MSE 0.112818144 0.103024362 0.081035668

MAE 0.253929079 0.223464962 0.22946131

Table 4.6: MSE and MSA for given threshold 0.25 in the proposed approach

Threshold 0.25

Newton degree d4 d6 d8

MSE 0.298122177 0.259323889 0.207310902

MAE 0.341373224 0.312772419 0.307370295

Table 4.7: MSE and MSA for given threshold 0.1 in the proposed approach

Threshold 0.1

Newton degree d4 d6 d8

MSE 0.220642 0.208681613 0.207784315

MAE 0.313059853 0.296422767 0.310286971

Table 4.8: Mean Absolute Percentage Error

Threshold 0.5 0.25 0.1

Newton degree d4 d6 d8 d4 d6 d8 d4 d6 d8

Error (%) 1.39 1.22 1.22 1.85 1.69 1.67 1.70 1.61 1.62

4.3.1.5 Processing Time

Due to energy, memory, or processing limitations, complexity is another important metric to
be considered in XSN nodes and XSN platforms. Processing is a metric that can delay data
transmission to the end node. In our algorithm, the complexity of processing the coefficients
depends on the polynomial degree, which means the number of readings to evaluate the
function. The complexity of our algorithm is n∗(n−1)

2
that is O(n2), where n = degree. The

complexity is similar to the Lagrange polynomial proposed in [208]. One of the advantages
of using Newton’s polynomial is adding more data points without re-constructing the whole
problem. Regarding the processing time, we need O(d+ 1) in order to evaluate the function.
Of course, the complexity increases with the increase of Newton’s degree. This complexity
is due to more computations involved in reading and processing data to find the coefficients.
Even though processing impacts energy, the approach consists of simple processing that will
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not impact that much.

4.4 Conclusion and Future Work

The number of sensory devices is increasing daily, and IoT is becoming mainstream for future
applications. More data will be generated as more sensory devices are used in everyday
applications. It is much needed to advance current strategies either in data management or
specifically in saving energy from battery-powered sensory devices. Thus, in the current work,
we have proposed a dual data prediction algorithm that runs on two different nodes, namely
the XSN platform and XSN Node, to save energy by reducing data transmission between
such nodes. The first node will generate coefficients, while the second node can predict the
values based on the generated coefficients. Through simulations of the temperature data set,
we demonstrate that the technique exceeds some limitations of having a fixed time slot for
other research. It can dynamically predict values in-between and outside the range. Also, the
technique shows that it can improve energy consumption and thus extend network lifetime
and have better energy saving on some specifically given threshold. Another critical point is
that this technique can produce highly accurate data.

However, for future work, some improvements can be made. First, we need to check how
the algorithm can behave when we consider erroneous data and improve in that direction,
so the predicted values do not reduce data quality. Another approach is to advance the
algorithm more, so we can set it in sleep mode on the sensor platform, which can save the
XSN platform’s energy even more. In this direction, we can combine our algorithm with the
Fourier series to predict future values without reconstructing coefficients. As a result, we
can reduce data transmission even more without breaking data accuracy.
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Chapter 5

Energy Efficient Data Reduction and
Prediction Based on DST-I and
DST-II Least-squares Extended model

Energy efficiency in WSNs is a fundamental problem for many research studies. Wireless Sen-
sor Networks often consists of many small, reasonable sensors with restricted power, process-
ing, and memory resources. The sensory devices can measure and gather information from
the monitoring environment and transmit the raw sensory data to the base station. Since
battery-powered sensory devices often operate in harsh environments in battery-enabled
mode, they must secure power as much as possible to hold their connections in WSN net-
works. Therefore, saving energy in sensory devices demands efficient prediction techniques
to reduce data transmission between the nodes. It will help to avoid waste of energy during
transmission.

This chapter proposes two novel forecasting models, Discrete Sine Transform (DST-I and
DST-II) Least-Squares Extended (LSE) model, which are Fourier-related transforms using
a purely real matrix. In the proposed models, DST-I and DST-II are used to generate
coefficients of the function based on a finite number of discrete data points collected from
sensor readings of a sensor node. The same algorithms can be used on the sink node to
recover the data and predict future values. By using the proposed techniques, we decrease
the number of transmissions from the sensor node to the sink node, which can significantly
improve energy efficiency and extend the sensor network lifetime. The proposed models are
evaluated using real sensor data collected from Chickago Beach district from three locations.
MSE, RMSE, MAE, and MAPE are the metrics for performance evaluation. The evaluation
shows highly accurate data and energy improvements. The performance results clearly show
that the proposed models outperform similar techniques regarding prediction accuracy, such
as DNN + Rough sets and DCT. Furthermore, the results of the two proposed techniques
(DST-I and DST-II) show that DST-II performs better than DST-I in terms of accuracy.

The chapter is structured as follows: Section 5.1 is the problem description of DST-I,
followed by the next section describing the combination of DST-I with the Least Square
Extended (LSE) model used for coefficient findings. Then, the next two sections describe
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DST-II and the connection of DST-II with LSE. Then we describe the steps of the algorith-
mic procedure, followed by algorithms. Section 5.7 elaborates the results of the algorithms
performed on the real sensor data set. Finally, a discussion completes the chapter.

5.1 Problem Description of the DST- I based Forecast

Modelling

In maths, the discrete sine transform (DST-I) belongs to Fourier transforms similar to the
DFT using a purely real matrix. It is equivalent to the imaginary parts of a DFT of approxi-
mately twice the length, operating on real data with odd symmetry, where the input/output
data in some variants is shifted by half a sample. DST-I is a critical technique or method
to convert a signal into an elementary frequency component. It is commonly used in image
compression techniques similar to JPEG compression, which converts each pixel intensity
of an image into its corresponding frequency value. This chapter aims to study DST’s effi-
cacy in predicting WSN data, so we can use the built coefficients to avoid unnecessary data
transmissions between the nodes. It is imperative to mention that there has been no work
in using DST on WSNs for data reduction and prediction. Hence, there is no work on using
DST in forecasting water temperature.

For a sequence (discrete time-series) of length T, its 1-D (one-dimension) DST-I definition
is,

H(s) =
T−1∑
t=0

G(t) sin ((t+ 1)θsπ) , s = 0, 1, ..., T − 1,

where G represents the sequence (or called discrete time-series) of length T (G(t), t =

0, 1, ...., T − 1), H is the DST-I of G (H(s), s = 1, 2, ..., T ) and θs = (s+1)π
T+1

. The DST-I
of the T-point input is given by

G(t) =
R−1∑
s=0

√
2

R + 1
H(s) sin

(
π(s+ 1)(t+ 1)

R + 1

)
, s = 0, 1, ..., T − 1.

5.2 The Least-Squares Solution for the DST-I Coefficients-

Seeking

In this section, we try to solve the problem of determining the DST-I coefficient for prediction
modeling by employing the LS (least-squares) estimates. That is, on the basis of the finite
observations of water temperature for an hour G(t)(t = 1, 2. . . T0)(T0 < T ) to determine
the called LSO (least-squares optimum) R−term DST-I coefficients: Ĥ(s)(s = 1, 2. . . R),
a called the DST-I-LS-extended (DST-I-based least-squares-extended) prediction model is
proposed as follows,

Ĝ(t) =
R∑

s=1

Ĥ(s) sin

(
sπt

T + 1

)√
2

R + 1
; (5.1)
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where, the DST-I-LS-extended model defined by equation (5.1)) will be determined by the
model’s outputs Ĝ(t) which fit the previous observations G(t)(t = 1, 2. . . T0)(T0 < T ) in the
LS (least-squares) sense. Note that with consideration of the effective solution for getting
the R-term DST-I coefficients Ĥ(s) (s = 1, 2, . . . , R) on the basis of observation of the finite
water temperature for an hour T0(T0 < T ), we usually put R ≤ T0 < T. Denote:

E2 =

T0∑
t=1

(
G(t)− Ĝ(t)

)2
=

T0∑
t=1

[
G(t)−

R∑
s=1

Ĥ(s)

√
2

R + 1
sin

(
sπt

T + 1

)]2
. (5.2)

The called LSO (least-squares-optimum) solution for the DST-I-LS-extended prediction
model defined by the equation (5.1) indicates that the sum of squares of the errors E2
defined by the equation (5.2) will be the least amount possible. To minimize E2 (Eq.(5.2))

with respect to Ĥ(s),
(

∂E2

∂Ĥ(s)
= 0, s = 1, 2, ..., R

)
it follows,

T0∑
t=1

sin

(
sπt

T + 1

)√
2

R + 1

[
G(t)−

R∑
s=1

Ĥ(s)

√
2

R + 1
sin

(
sπt

T + 1

)]
= 0 (5.3)

from here we have

T0∑
t=1

sin

(
sπt

T + 1

)√
2

R + 1
G(t) =

T0∑
t=1

sin

(
sπt

T + 1

)√
2

R + 1

·
R∑

s=1

Ĥ(s)

√
2

R + 1
sin

(
sπt

T + 1

)
. (5.4)

Let a(r, t) = sin
(

rπt
T+1

)√
2

R+1
, it results in,

T0∑
t=1

a(r, t)G(t) =

T0∑
t=1

a(r, t)
R∑

s=1

Ĥ(s)a(s, t), for r = 1, 2, ..., R. (5.5)

For brevity of mathematical expression, further definitions are introduced as,

AR×T0 =


a(1, 1) a(1, 2) · · · a(1, T0)

a(2, 1) a(2, 2) · · · a(2, T0)
...

...
. . .

...

a(R, 1) a(R, 2) · · · a(R, T0)


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and

GT0×1 =


G(1)

G(2)
...

G(T0)

 ĤR×1 =


Ĥ(1)

Ĥ(2)
...

Ĥ(R)


From here and from equation (6.7) it follows

AR×T0 · GT0×1 = AT×T0

(
Ĥ′

R×1AR×T0

)′
= AR×T0 · A′

T0×R · ĤR×1 (5.6)

Note that for r = 1, 2. . . R, we have

T0∑
t=1

a(r, t)
R∑

s=1

Ĥ(s)a(s, t) = AR×T0

(
Ĥ′

R×1AR×T0

)′
(5.7)

From the equation (5.6), on the basis of the prior finite T0 observations of water temperature
for hour G(t)(t = 1, 2, ..., T0)(T0 < T ), the called R−term LSO (least-squares-optimum)
DST-I coeficinets Ĥ(s)(s = 1, 2, ..., R) for building the DST-I-LS-extended prediction model
defined by (5.1) are determined by,

ĤR×1 =
(
AR×T0A

′
T0×R

)−1
AR×T0GT0×1 (5.8)

Finally, the DST-I-LS-extended prediction model defined by relation (5.1) can now be estab-
lished with the LSO (least-squares-optimum) DST-I coefficients ĤR×1 defined by (5.8) avail-
able. Then we can employ the DST-I-LS-extended prediction model defined by the equation
(5.8) to predict the future fluctuation of the water temperature for an hour at its next point
of time: Ĝ(t)(t = T0 + 1) or ones at its subsequent points in time: Ĝ(t)(t = T0 + 1, . . . , T ).

5.3 Problem Description of the DST-II- Based Fore-

cast Modeling

For a discrete-time signal (also called a sequence) with T components, its 1-D (one-dimension)
DST-II definition is,

Q(s) = ϑ(s)
T∑
t=1

P(t) sin

(
(2t− 1)θs

2

)
, s = 1, 2, ..., T, (5.9)

where P represents the sequence (or called discrete time-series) of length T (P(t), t =
1, 2...., T ), Q is the DST-I of P (P(s), s = 1, 2, ..., T ) and

ϑ(s) =

√
2

T
ψs
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ψs :=


√

1
2
, if s = T,

1, if s = 1, 2, ..., T − 1.

and
θs =

sπ

T
.

Its corresponding inverse sine transform called the inverse DST-II (IDST-II) is defined by,

P(t) =
T∑

s=1

Q(s)w(s) sin

(
(2t− 1)sπ

2T

)
, s = 1, 2, ..., T, (5.10)

where

ω(s) =

√
2

T
ψs

ψs :=


√

1
T
, if s = T,√

2
T
, if s = 1, 2, ..., T − 1.

5.4 The Least-Squares Solution for the DST-II

Coefficients-Seeking

From the previous section, we see that the definitions of DST-II and IDST-II (relations (5.9)-
(5.10)) show that the discrete time-series P(t)(t = 1, 2, . . . , T ) and the DST-II transform
coefficients Q(s)(s = 1, 2, . . . , T ) are the same size of T-length. Given the limited number of
T0 (< T ) daily water temperature data over a given period of time: P(t)(t = 1, 2, . . . , T0),
is needed how to extend the presented model of the DST-II defined by relation (5.10) to
the prediction to prediction the daily water temperature movement at its next time points:
P(t)(t = T0 + 1, ..., T ). How to calculate the Discrete Sine Transform coefficients Q(t)
(relation (5.9)-(5.10)) based on the limited hourly observations is the principal problem.
However, since T0 < T, we can not directly calculate the Discrete Sine Transform coefficients
Q(s) by using relation (5.9). The least-squares approach can solve the problem. Namely, on
the basis of the finite observations: P(t)(t = 1, 2, . . . , T0)(T0 < T ), we are to get its R-term

Discrete Sine Transform coefficients ˆQ(s)(s = 1, 2, . . . , R) for building the extended model
defined by relation (5.11), which yields P̂(t) most fitting the given P(t)(t = 1, 2, . . . , T0)(T0 <
T ) in the least-squares sense,

P̂(t) =
R∑

s=1

Q̂(s)w(s) sin

(
sπ(2t− 1)

2T

)
. (5.11)
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where

ω(s) :=


√

1
R
, if s = R,√

2
R
, if s = 1, 2, ..., R− 1.

It must be borne in mind that to effectively obtain the R-term coefficients Q̂(s)(s = 1, 2, . . . , R)
based on the limited T0 < T observations, typically, we set R ≤ T0 < T . Denote E2 as sum
of squares of the errors (or called the deviations) (ϵt, t = 1, 2. . . T0),

E2 =

T0∑
t=1

e2t =

T0∑
t=1

(
P(t)− P̂(t)

)2
=

T0∑
t=1

[
P(t)−

R∑
s=1

ω(s)Q̂(s) sin

(
sπ(2t− 1)

2T

)]2
; s = 1, 2, .., R. (5.12)

Now we are to find its optimal solution, which subjects to that sum E2 of squared deviations
or called residuals et t = 1, · · · , T0 (relation (5.12)) will be the least amount possible. To

minimize E2 (relation (5.12)) with respect to Q̂(k),
(

∂E2

∂Q̂(s)
= 0, s = 1, 2, ..., R

)
it follows,

T0∑
t=1

ω(s)Q̂(s) sin

(
sπ(2t− 1)

2T

)[
P(t)−

R∑
s=1

Q̂(s)ω(s) sin

(
sπ(2t− 1)

2T

)]
= 0

from here we have

T0∑
t=1

ω(s) sin

(
sπ(2t− 1)

2T

)
P(t) =

T0∑
t=1

ω(s) sin

(
sπ(2t− 1)

2T

)

×
R∑

s=1

Q̂(s)ω(k) sin

(
sπ(2t− 1)

2T

)
.

Let l(r, t) = ω(r) sin
(

rπ(2t−1)
2T

)
, it results in,

T0∑
t=1

l(r, t)P(t) =

T0∑
t=1

l(r, t)
R∑

s=1

Q̂(s)ω(s) sin

(
kπ(2t− 1)

2T

)
, for r = 1, 2, ..., R. (5.13)

For brevity of mathematical expression, further definitions are introduced as,

LR×T0 =


l(1, 1) l(1, 2) · · · l(1, T0)

l(2, 1) l(2, 2) · · · l(2, T0)
...

...
. . .

...

l(R, 1) l(R, 2) · · · l(R, T0)


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and

PT0×1 =


P(1)

P(2)
...

P(T0)

 Q̂R×1 =


Q̂(1)

Q̂(2)
...

Q̂(R)


From here and from equation (5.13) it follows

LR×T0 · PT0×1 = LR×T0 · L′
T0×R · Q̂R×1 (5.14)

Note that for r = 1, 2, . . . , R, we have

T0∑
t=1

l(r, t)
R∑

s=1

Q̂(s)l(r, t) = LR×T0

(
P̂ ′

R×1LR×T0

)′
(5.15)

From the equation of relation (5.14), on the basis of the prior finite T0 for observations water
temperature for hour P(t)(t = 1, 2, ..., T0)(T0 < T ), the called R−term LSO (least-squares-
optimum) DST-II coeficinets Q̂(t)(t = 1, 2, ..., R) for building the DST-II-LS-extended pre-
diction model defined by relation (5.11) are determined by,

Q̂R×1 =
(
LR×T0L

′
T0×R

)−1
LR×T0PT0×1 (5.16)

Finally, the DST-II-LS-extended prediction model defined by relation (5.11) can now be
established with the LSO (least-squares-optimum) DST-II coefficients Q̂R×1 defined by re-
lation (5.16) available. Then we can employ the DST-II-LS-extended prediction model de-
fined by relation (5.11) to predict the future fluctuation of the water temperature for an
hour at its next point of time: P̂(t)(t = T0 + 1) or ones at its subsequent points in time:
P̂(t)(t = T0 + 1, . . . , T ).

5.5 Procedure for application of DST-I-LS (DST-II-

LS)-Extended Forecast Model

To elaborate, the algorithmic procedure of the proposed DST-I-LS (DST-II-LS)-extended
forecast model (Eq.(5.1) and (5.11)), a procedure of analysis is composed of the following
steps:

(1) To evaluate annual water temperature by month, we assume its discrete-time period
T, as T = 12 for it has 12 months in each day, and similarly, we put T = 24 for daily
water temperature by an hour, that is, 24 h of each day. Note that we can also set T =
48 for half-hourly air temperature forecasting as there are 48 half-hours in one day, and so on.

(2) On the basis of previous daily water temperature for hour observations: Ĝ(t)(t =
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1, 2. . . T0)(T0 < T ), (P̂(t)(t = 1, 2. . . T0)(T0 < T ), we are to implement the DST-I-LS(DST-
II-LS)-extended forecast modeling (Eq. (5.1)) to predict its future fluctuation at its next
point of time P̂(t)(t = T0 + 1)(Ĝ(t)(t = T0 + 1)) or ones at its subsequent points in time:
P̂(t)(t = T0 + 1, . . . , T )(Ĝ(t)(t = T0 + 1, . . . , T )).

(3) To determine the so-called M-term LSO (least-squares-optimum) DST-I (DST-II) coeffi-

cients: Ĥ(s)(s = 1, 2, . . . , R) ( ˆQ(t)(t = 1, 2, . . . , R)) for forecast modeling (Eq.(5.1)) based on
the previous for daily water temperature by hour observations: Ĝ(t)(t = 1, 2, ..., T0), (P̂(t), (t =
1, 2, ..., T0)) by

ĤR×1 =
(
BR×T0B

′
T0×M

)−1
BR×T0xT0×1; (Q̂R×1 =

(
LR×T0L

′
T0×R

)−1
LR×T0PT0×1);

(4) With the DST-I-LS (DST-II)- coefficients Ĥ(s)(s = 1, 2, . . . , R); Q̂(s)(s = 1, 2, . . . , R)

available, future daily water temperature hourly at its next point time ˆG(t)(t = T0 + i), i =

1, 2, ..., T − T0, ( ˆP(t)(t = T0 + i), i = 1, 2, ..., T − T0) or ones at its subsequent points in time
(t = T0 + 1, . . . , T ) can be predicted by the DST-I(DST-II)-LS-extended model:

Ĝ(t) =
R∑

s=1

Ĥ(s)

√
2

R + 1
sin

(
sπt

T + 1

)
,

(
P̂(t) =

R∑
s=1

Q̂(s)w(s) sin

(
sπ(2t− 1)

2T

))
.

5.6 Algorithms

Finding coefficients of the DST are as following:
Given the limited number of the sensor values T0 (< T ) of daily water temperature data

over a given period of time, described using the model Ĝ(t)(t = 1, 2, . . . , T0), (P̂(t)(t =
1, 2, . . . , T0)), it is required to extend the presented model of the DST-I (DST-II) defined
by relation (5.1, respectively 5.10) to predict daily water temperature movement at future
points: G(t)(t = T0 + 1, ..., T ), (P̂(t)(t = T0 + 1, ..., T )).

5.6.1 DST-I

INPUT: x,R, T, T0
Output: Coefficient set Ci

1. SET B = {}RXT0 ;
2. for n = 1 to T0 do
3. for m = 1 to R do
4. Bm,n = sqrt(2/(R + 1)) ∗ sin((m ∗ π ∗ n)/(T + 1));

end for
5. end for
6. SET Ci = inv(B ∗B′) ∗B ∗ x;
11. return Ci
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Algorithm to evaluate the new data point. This stage aims to predict new values
using coefficients from DST produced by algorithm 1.
INPUT: C - coefficients, R, T, T0
Output: S - predicted value
1. SET S = {}T0+1X1;
2. for n = 1 to T0 + 1 do
3. for k = 1 to R do
4. Sn = Sn + sqrt(2/(R + 1)) ∗ sin((k ∗ π ∗ n)/(T + 1)) ∗ Ck;
5. end for
6. end for
7. return S

5.6.2 DST-II

INPUT: x,R, T, T0
Output: Coefficient set Ci

1. SET B = {}RXT0 ;
2. for n = 1 to T0 do
3. for m = 1 to R do
4. Bm,n = sqrt(2/(R + 1)) ∗ sin((m ∗ π ∗ n)/(T + 1));

end for
5. end for
6. for n = 1 to T0 do
7. B(R,n)=sqrt(1/R)*sin((R*pi*(2*n-1))/(2*T));
8. SET Ci = inv(B ∗B′) ∗B ∗ x;
9. end for
10. return Ci

Algorithm to evaluate the new data point. This stage aims to predict new values
using coefficients from DST-II produced by algorithm above.
INPUT: C - coefficients, R, T, T0
Output: S - predicted value
1. SET S = {}T0+1X1;
2. for n = 1 to T0 + 1 do
3. for k = 1 to R do
4. Sn = Sn + sqrt(2/(R + 1)) ∗ sin((k ∗ π ∗ n)/(T + 1)) ∗ Ck;
5. end for
6. for n = 1 to T0 + 1 do
7. S(i) = S(i) + P (R) ∗ sqrt(1/R) ∗ sin((R ∗ pi ∗ (2 ∗ i− 1))/(2 ∗ T ));
8. end for
9. return S
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5.7 Experimental Results

To validate the proposed approach under real use case WSN deployment conditions, we use
the actual data set from automated sensors of the Chicago Park District Beach Weather
Stations [210]. Unlike the dataset used in the previous chapter, we aim to evaluate the
proposed approach from the same sensors in different locations. The sensors dataset is from
locations in the Chicago district that observe air temperature, water temperature, humidity,
wind, etc., on an hourly basis. All the sensors measure values on an hourly basis. We
evaluate our approach using water temperature from sensors located at Calumet, Montrose,
and Osterman for this study. The code is written in Matlab, and the experiments are finalized
using Octave. We do compare our results with the research work based on Deep Neural
Network proposed in [211], and discrete cosine transform-least squares-extended (DCT-LSE)
[212].

5.7.1 Evaluation Metrics

The metrics used in the previous chapter are also valid here. Thus, we will use the following:

• Means Square Error (MSE): an indicator to estimate the average error between the
predicted and the actual value ( equation provided in section 4.3.1.4).

• Means Absolute Error (MAE): an indicator to estimate the average absolute error
between the predicted and the actual value (equation provided in section 4.3.1.4).

• Means Absolute Percent Error (MAPE): an indicator to estimate the average absolute
percentage error between the predicted and the actual value (equation provided in
section 4.3.1.4).

• Root Mean Squared Error (RMSE): an indicator of how close the predictions and
observations are. It shows the standard deviation of the difference between the true
value and the predicted one. The formula is as follows:

RMSE =

√∑n
j=1(xj − x′j)2

n

5.7.2 Dataset preparation

The observations are the real-time water data from three different places as discussed in
section 5.7. There are a few data points where some features were missing, and thus we
avoided those in our experiment. Data cleaning is an important step to initiate the evaluation
of our approach and start forecasting future values.
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5.7.3 DST-I

5.7.3.1 Data Prediction

The DST-based least-squares approach is used to predict values every hour at three regions
(“Calumet”, ”Osterman”, ”MontRose” in Chicago District [210]) during 70-hour periods in
2014 (i.e., from 5/7/2014 12:00:00 AM to 5/7/2014 11:00:00 PM ). The algorithm works
as follows: we use 23 values to build the coefficients of the algorithm, and then the model
predicts the future values. Every predicted value is added to the model, while the first value
existing in the queue will be removed. The concept is similar to queue with FIFO data
structure type.

Figure 5.1: Predictions using DST-1 for 46 hours forecast of Osterman. Settings are as
follows: T0 = T − 1, T = 24, R = 23

As shown in Figures 5.1 - 5.3, the predicted values within the range are the same as the
actual values. That means the algorithm is the perfect fit when predicting within the range.
Predicting future values shows a minimal difference between predictions and actual values.
As a result, the algorithm can reduce data transmission in the case of a fixed periodic date
frame producing the same data at the sink node. For instance, the approach is appropriate for
cases where there is not much of a need to send values instantly but instead to have a periodic
timeframe where the coefficients are built and transmitted. Based on the coefficients, the
sink node can produce exact values anytime. However, the future values are always within
the range. They do not diverge like Newton Interpolating polynomials, where the coefficients
constantly need re-evaluation because of divergence.

5.7.3.2 Data Accuracy

Using the metrics provided in section 5.7, we compare the proposed approach from three
locations. The primary focus is predicting water level parameters from sensor nodes in the
Chickago district. After applying the algorithm on the data set mentioned in section 5.7.3.1,

96



Figure 5.2: Predictions using DST-1 for 69 hours forecast of MontRose. Settings are as
follows: T0 = T − 1, T = 24, R = 23

the results are summarized in Table 5.1. The results represent the accuracy of hourly water
temperature predictions and how well the model fits the current data.

Table 5.1: Metrics of DST-I on different regions for R=23, T0 = T − 1 = 23

DST-I - Regions Calumet MontRose Osterman

MSE 4.81 4.22 4.14

MAE 1.55 1.55 1.36

MAPE 7.27 7.99 6.56

RMSE 2.19 2.05 2.034

If we analyze the MAPE metrics, the model shows that the average difference between
the residuals is 6.5% - 8%. That means the model is around 92% accurate. It is beneficial
for applications that allow such a difference in error values. Additionally, this model is quite
suitable for such applications if used to predict values within a range.

Table 5.2: Metrics for forecasting data of three algorithms

Aproach Proposed DST-I DNN + Rough sets[211] DCT (average) [212]

MSE 4.14 35.68 8.94

MAE 1.36 5.16 NI

RMSE 2.034 5.85 2.99

The proposed DST-I approach has the lowest RMSE compared with the two other models
from Table 5.2, and from the first perspective, it outperforms the other two approaches.

97



Figure 5.3: Predictions using DST-1 for 69 hours forecast of Calumet. Settings are as follows:
T0 = T − 1, T = 24, R = 23

However, it must be noted that the research work on [211] predicts the battery level from
the same data set as in this research work (our approach is tested with water temp.), while
the [212] use the data set to predict hourly electricity load movement (for 72 hours) at PJM
regions.

5.7.3.3 Data Transmission and Energy Efficiency

This section discusses and analyses the energy savings of the DST-I and DST-II approaches
in the WSN. There are 24 values necessary to generate the coefficients (both algorithms
require this). Once the coefficients are generated, they are transmitted to the sink node,
where we can generate and forecast future values—using the same formula from the previous
chapter (eq. 4.2 and 4.3) for calculating the data reduction percentage and considering
the RMSE as provided previously with an average of 2.2, we only need one transmission
consisting of 24 coefficients. It reduces approximately 98% of data transmission considering
the data set used for evaluation. However, considering equation 4.4, on how much energy
we can actually save on the XSN sensor platform, we have:

Table 5.3: Energy Consumption and Saving

Algorithm DST-I & DST-II

Energy cons. in mJ from algorithm 76.8

Energy saving in % 66 %

As Table 5.3 shows, the number of transmissions is very low considering the prediction of
the next two days (hourly water temperature). However, the energy savings are only around
66% without considering the processing calculations. By extending the hourly predictions
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using the same coefficients, the energy savings becomes higher (i.e., forecasting 100 future
hourly values will increase to 76% the energy efficiency). In such cases, it is necessary to take
care of data integrity because the values may diverge to a level that is not allowed. Once
the coefficients are delivered to the sink node, the sensor platform is set to sleep mode.

5.7.3.4 Data Processing

Processing is another important factor that may affect the energy of XSN nodes. It also
directly affects the information delay crucial for real WSN applications. In the proposed
methods, the complexity stands in finding the coefficients of the DST-I and DST-II. The
coefficients of the models proposed in this research require calculating a pure real matrix
that depends on the value of R and T0. That means the algorithm, in our case, requires
23x23 when R = 23 and T0 = 23. That means the algorithm has a complexity of O(RXT )
that is approximate O(n2). Further, to finalize the coefficient calculations, the inverse of a
given matrix must be resolved. That involves another O(n2) calculations. Finally we have
O(n2)+O(n2) = 2O(n2) ≈ O(n2). The best part of the algorithm is that once the coefficients
are calculated, there is no need to re-evaluate because it is considered appropriate for the
use case where it is applied. The calculations provided above might have a low impact in
the long term on the total energy spent.

5.7.4 DST-II

5.7.4.1 Data Predictions

The same data set as in section 5.7.3.1 is applied for evaluating the performance of DST-2.
Also, under the same settings as DST-I, we evaluate the algorithm.

Figure 5.4: Predictions using DST-2 for 46 hours forecast of Osterman. Settings are as
follows: T0 = T − 1, T = 24, R = 23

The results from Figs.5.4-5.6 show that the predictions results fit quite well to the simu-
lated data set . There is a perfect match within the given range, and slight difference outside
the range.
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Figure 5.5: Predictions using DST-2 for 69 hours forecast of MontRose. Settings are as
follows: T0 = T − 1, T = 24, R = 23

Figure 5.6: Predictions using DST-2 for 69 hours forecast of Calumet. Settings are as follows:
T0 = T − 1, T = 24, R = 23

5.7.4.2 Data Accuracy

Following the section 5.7.3.2, the same metrics for evaluating DST-II are provided. The
results of this evaluation are summarized in Table 5.4.

From Table 5.5 we can easily see that DST-II performs better than DST-I, and thus
better than the other two algorithms.

5.8 Discussion

Energy efficiency is crucial in WSN networks. The more data is transmitted within the sensor
network, the more energy is spent, and battery-powered sensory devices stop functioning.
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Table 5.4: Metrics of DST-I on different regions for R=23, T0 = T − 1 = 23

DST-II - Regions Calumet MontRose Osterman

MSE 3.14 3.47 4.15

MAE 1.32 1.37 1.37

MAPE 6.12 7.01 6.61

RMSE 1.77 1.86 2.038

Table 5.5: Metrics for forecasting data of three algorithms (Average from different regions)

Aproach DST-II DST-I DNN + Rough sets[211] DCT [212]

MSE 3.58 4.14 35.68 8.94

MAE 1.35 1.36 5.16 NI

RMSE 1.88 2.034 5.85 2.99

Fourier transform methods are widely used in several domains, such as signal processing,
image processing, and interpolation. DST is a Fourier analysis method expressed as a sum
of sinusoids having various amplitudes and frequencies. Although they have high applica-
bility, they cannot be used to forecast directly. However, combining DST with least-square
shows a great match as a prediction model applicable to the WSN domain to reduce data
transmissions via the prediction. They are just a few coefficients that are transmitted from
one node to another. The contributions of this study include
. 1. They are two prediction algorithms proposed in this study: DST-I and DST-II, both
extended with least-squares error that are evaluated using the real sensor data sets from
different locations of the Chicago Beach district.
2. The experiments and metrics show the proposed approaches’ efficacy in predicting sensor
data expressed as a time series. Comparing the metrics of both models show that DST-II
slightly outperforms DST-I. Comparison of both models can be seen in Figures 5.8-5.9 and
Table 5.5. Table 5.5 also shows better performance compared to the other two approaches.
3. The proposed models provide an advantage in reducing the data transmissions between
the nodes. Both approaches show that using the previous 23 values to build a model allows us
to forecast the next 48 values without breaking data integrity. Thus, we can easily say they
are good approaches to save energy in sensor nodes by sending 24 coefficients and predicting
future values with around 90% accuracy.

The proposed algorithms improve energy efficiency and reduce data transmission by a
considerable percentage. However, the algorithms might be heavier while calculating the
function’s coefficients. It can further improve the accuracy by considering threshold pa-
rameters, which is part of future work. These parameters will automatically automate the
XSN nodes to set on sleep mode and, whenever necessary, to set real value as input to the
algorithm. Furthermore, the need to evaluate the energy efficiency performance in the real
device will be considered.
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Figure 5.7: Predictions using DST-2 for 69 hours forecast of Calumet. Settings are as follows:
T0 = T − 1, T = 24, R = 23

Figure 5.8: Predictions using DST-2 for 69 hours forecast of MontRose. Settings are as
follows: T0 = T − 1, T = 24, R = 23

Figure 5.9: Predictions using DST-2 for 69 hours forecast of Osterman. Settings are as
follows: T0 = T − 1, T = 24, R = 23
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Chapter 6

Discrete Hartley Transform Based
Forecast Modeling for Energy
Efficient Wireless Sensor Network

In the previous chapter, we demonstrated the efficiency of Fourier-related transform (DST-
I and DST-II combined with Least Square) as a dual data prediction reduction approach
to improving energy efficiency in WSN networks. Although the model is highly accurate
in predicting the data, it involves quite a number of coefficients to build the model. The
purpose of this chapter is to introduce a new approach from the Fourier-related transform
called Discrete Hartley Transform (DHT). The key idea is to improve efficiency with better
data prediction accuracy, performance, or both. The accuracy and performance represent the
main concern in the sensor nodes where constraints in memory and processing are apparent.
Thus, efficient prediction aims to reduce data transmission, resulting in less energy usage
from sensor nodes.

Discrete Hartley Transform (DHT) can help in this regard to transform real input from
the gathered sensor information and produce real output on the sink node. DHT is a more
efficient computational alternative to Discrete Fourier Transforms where the data are purely
real, and the inverse and direct transformation is identical. The literature review revealed the
DHT applicability in many domains like image processing, watermark image authentication,
encryption, etc. Although, using DHT in the domain of WSN is limited nor existing.

As a result, this chapter introduces a new dual prediction approach based on Discrete
Hartley Transform extended with least-squares. The next section 6.1 describes the problem
formulation in forecasting data, then followed by section 6.2 with the new approach of the
DHT-Least Square forecasting model. The rest of the sections provide the algorithm and
the results in forecasting sensor data from the real data set.
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6.1 Problem Description of the Hartley Transform Based

Forecast Modeling

A discrete Hartley transform (DHT) is a Fourier-related transform of discrete, periodic
data similar to the discrete Fourier transform (DFT), with analogous applications in signal
processing and related fields. Its main distinction from the DFT is that it transforms real
inputs into real outputs, with no intrinsic involvement of complex numbers.
The discrete Hartley transform (DHT) is given by

B(s) =
T∑
t=1

C(t)cas
(

2π(t− 1)(s− 1)

T

)
, s = 1, 2, ..., T, (6.1)

where C represents the sequence (or called discrete time-series) of length T (C(t), t =
1, 2...., T ), B is the DHT of C (C(s), s = 1, 2, ..., T ). The combination cos z+sin z =

√
2 cos

(
z − π

4

)
is sometimes denotes cas(z) and should not confused with cisz = eiz = cos(z) + i sin(z) or
e−iz = cis(−z). Its corresponding inverse sine transform, called the inverse DHT (IDHT) is
defined by,

C(t) =
1

T

T∑
s=1

B(s)cas

(
2π(t− 1)(s− 1)

T

)
, s = 1, 2, ..., T. (6.2)

The definitions of Discret Hartley Transform (Eqs.(6.1)-(6.2)) show that the DTS (discrete
time-series) C(t)(t = 1, 2, . . . , T ) and the Discret Hartley transform coefficients C(s)(s =
1, 2, . . . , T ) are the same size of T -length. When given T0(< T ) limited for observations
of water temperature for an hour: C(t)(t = 1, 2. . . T0), we now consider how to extend the
Discrete Hartley model (relation (6.2)) to forecast its future movement at its next time
point (C(t)(t = T0 + 1)) or at its succeeding points in time: C(t)(t = T0 + 1. . . T ). However,
because of T0 < T, the transform coefficients B(s) cannot be straightly computed by using the
original definition of relation (6.1). Then the calculation of the Discrete Hartley transforms
coefficients B(s) on the basis of the previous limited for observations water temperature for
an hour C(t)(t = 1, 2, . . . , T0)(T0 < T ) becomes the key problem for the forecast modeling.
The following section presents one LSO (least-squares-optimum)-based solution for seeking
the Discrete Hartley transform coefficient.

6.2 Dicrete Hartley Transforms Model Extended in

the Least-squares for Forecasting

Given a limited number T0(< T ) of the observations water temperature for an hour: C(t)(t =
1, 2, . . . , T ), we now focus on how to extend the Discrete Hartley Transforms model (relation
6.3) to predict fluctuations of water temperature for an hour at its subsequent time points
in the future: C(t)(t = N0 + 1, . . . , N). The major problem (Yang, 2018) is to estimate
the Discrete Hartley Transforms coefficient B(s) in relation (6.2). We now try to solve the
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problem in the least-squares sense. That is, to observations water temperature for hour:
C(t)(t = 1, 2, ..., T0)(T0 < T ),we try to get its Discrete Hartley Transform coefficient B(s)
for building the Discrete Hartley model with employing R-term harmonics, which yields
Ĉ(t)(t = 1, 2, . . . , T ) most fitting the given C(t)(t = 1, 2, . . . , T ) in the least-square sense,

Ĉ(t) =
1

T

R∑
s=1

B̂(s)cas

(
2π(s− 1)(t− 1)

T

)
(6.3)

Denote Ê2 as the sum of squares of the errors (or called the deviations) (ϵ̂t, t = 1, 2, . . . , T0).
Now we are to find its optimal solution, which subjects to that sum Ê2 of squared deviations
or called residuals (ϵ̂t, t = 1, 2. . . T0) (relation (6.4)) is one minimum, usually put R ≤ T0 < T,

Ê2 =

T0∑
t=1

ϵ̂2t =

T0∑
t=1

(
C(t)− Ĉ(t)

)2
=

T0∑
t=1

[
C(t)− 1

T

R∑
s=1

B̂(s)cas

(
2π(s− 1)(t− 1)

T

)]2
(6.4)

The called LSO (least-squares-optimum) solution for the DHT-LS-extended forecast model
(relation (6.3)) indicates that the sum of squares of the errors Ê2 (relation (6.4)) will be the

least amount possible. To minimize Ê2 (relation (6.4)) with respect to B̂(s),
(

∂Ê2

∂B̂(s) , s = 1, 2, ..., R
)

it follows,

T0∑
t=1

1

T
cas

(
2π(s− 1)(t− 1)

T

)[
C(t)−

R∑
s=1

1

T
B̂(s)cas

(
2π(s− 1)(t− 1)

T

)]
= 0 (6.5)

from here we have
T0∑
t=1

1

T
B̂(s)cas

(
2π(s− 1)(t− 1)

T

)
=

T0∑
t=1

1

T
cas

(
2π(s− 1)(t− 1)

T

)

·
R∑

s=1

1

T
B̂(s)cas

(
2π(s− 1)(t− 1)

T

)
. (6.6)

Let g(r, t) = 1
T
cas
(

2π(r−1)(t−1)
T

)
, it results in,

T0∑
t=1

g(r, t)C(t) =

T0∑
t=1

g(r, t)
T∑

s=1

B̂(s)g(s, t), for r = 1, 2, ..., R. (6.7)

For the simplicity of the above expression, further definitions are introduced as

WR×T0 =


g(1, 1) g(1, 2) · · · g(1, T0)

g(2, 1) g(2, 2) · · · g(2, T0)
...

...
. . .

...

g(R, 1) g(R, 2) · · · g(R, T0)


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and

ZT0×1 =


Z(1)

Z(2)
...

Z(T0)

 B̂R×1 =


B̂(1)

B̂(2)
...

B̂(R)


From here and from equation (6.7) it follows

WR×T0 · ZT0×1 = WR×T0

(
B̂T
R×1WR×T0

)′
= WR×T0 ·W ′

T0×R · B̂R×1 (6.8)

Note that for r = 1, 2. . . R, we have

T0∑
t=1

g(r, t)
T∑

s=1

B̂(s)g(s, t) = WR×T0

(
Ẑ ′

R×1WR×T0

)′
(6.9)

From the relation (6.8), on the basis of the prior finite T0 observations of water tempera-
ture for hour C(t)(t = 1, 2, ..., T0)(T0 < T ), the called R−term LSO (least-squares-optimum)
DHT coefficients B̂(t)(t = 1, 2, ..., R) for building the DHT-LS-extended forecast model (re-
lation.(6.3)) are determined by,

B̂R×1 =
(
WR×T0W

′
T0×R

)−1
WR×T0ZT0×1 (6.10)

Finally, the Discrete Hartley Transform-LS-extended prediction model (relation (6.3)) can
now be established with the LSO (least-squares-optimum) DHT coefficient B̂R×1 (relation
(6.10)) available. Then we can employ the Discrete Hartley Transform-LS-extended predic-
tion model (relation (6.3)) to predict the future fluctuation of the water temperature for an
hour at its next point of time: Ĉ(t)(t = T0 + 1) or ones at its subsequent points in time:
Ĉ(t)(t = T0 + 1, . . . , T ).

6.3 Algorithms

Finding coefficients of the DHT are as follows:
Given the limited number of the sensor values T0 (< T ) of daily water temperature data

over a given period of time, described using the model Ĉ(t)(t = 1, 2, . . . , T0), it is required
to extend the presented model of the DHT defined by relation (6.3) to predict daily water
temperature movement at future points: Ĉ(t = T0 + 1, ..., T ).

6.3.1 CAS Algorithm

INPUT: x,R, T, T0
Output: Coefficient set Ci
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1. SET B = {}RXT0 ;
2. for n = 1 to T0 do
3. for m = 1 to R do
4. B(m,n) = (1/R) ∗ (sin(((m− 1) ∗ 2 ∗ pi ∗ (n− 1))/T ) + cos(((m− 1)

∗2 ∗ pi ∗ (n− 1))/T ));
end for

5. end for
6. SET Ci = inv(B ∗B′) ∗B ∗ x;
11. return Ci

Algorithm to evaluate the new data point. This stage aims to predict new values
using coefficients from CAS produced by algorithm 1.
INPUT: C - coefficients, R, T, T0
Output: S - predicted value
1. SET S = {}T0+1X1;
2. for n = 1 to T0 + 1 do
3. for k = 1 to R do
4. S(n) = S(n) + (1/R) ∗ (sin(((k − 1) ∗ 2 ∗ pi ∗ (n− 1))/T ) + cos(((k − 1)

∗2 ∗ pi ∗ (n− 1))/T )) ∗ P (k);
5. end for
6. end for
7. return S

6.4 Experimental Results

6.4.1 Data Prediction and Data Accuracy of CAS Approach

The DHT-based CAS approach uses the same data as the previous chapter from the Chicago
District [210]) during 70-hour periods in 2014 (i.e., from 5/7/2014 12:00:00 AM to 5/7/2014
11:00:00 PM ). There are different settings for the DHT-based CAS approach: 23 values
serve as input to build the coefficients, then the coefficients are transmitted to the sink node
necessary to predict future values. In a similar manner as previous approaches, DST-I and
DST-II, every time a prediction is made, it is added to the model, and the first real value
from the queue is removed.

Table 6.1: Metrics of DHT for Calumet region with R=23, T0 = T − 1 = 23

DHT R=12 R=8 R=6 R=4 R=2

MSE 0.86 0.58 0.51 0.48 0.52

MAE 0.61 0.54 0.51 0.5 0.51

MAPE 3.05 2.66 2.54 2.47 2.52

RMSE 0.93 0.76 0.71 0.69 0.72
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Figure 6.1: Predictions using DHT for 70 hours forecast of Calumet. Settings are as follows:
T0 = T − 1, T = 24, R = 12

Table 6.2: Metrics of DHT for MontRose region with R=23, T0 = T − 1 = 23

DHT R=12 R=8 R=6 R=4 R=2

MSE 1.37 1.07 1.01 0.99 1.07

MAE 0.849 0.74 0.72 0.7 0.72

MAPE 4.67 4.05 3.89 3.79 3.9

RMSE 1.17 1.03 1 0.99 1.03

Table 6.3: Metrics of DHT for Osterman region with R=23, T0 = T − 1 = 23

DHT R=12 R=8 R=6 R=4 R=2

MSE 0.92 0.56 0.49 0.48 0.5

MAE 0.59 0.53 0.52 0.51 0.52

MAPE 3 2.73 2.64 2.62 2.68

RMSE 0.96 0.74 0.7 0.69 0.71

Figures 6.1 - 6.3 present graphics comparing the behavior of the algorithm for different R
values. From the graphs, it can easily be seen that all the settings are nearby the real values,
and the differences are very small. It can be noticed easily for R = 4, the line between actual
and predicted values matches a lot. Tables 6.1 - 6.3 provide data accuracy and how well
the models fit the data set. It must be noted from the tables above that a very low RMSE,
means that the model performs quite well when it comes to data accuracy.
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Figure 6.2: Predictions using DHT for 70 hours forecast of Osterman. Settings are as follows:
T0 = T − 1, T = 24, R = 12

Figure 6.3: Predictions using CAS for 70 hours forecast of Calumet. Settings are as follows:
T0 = T − 1, T = 24, R = 12

6.4.2 Data Transmission and Energy Efficiency

The algorithm is tested with 23 input observations for generating coefficients of degrees 2, 4,
6, 8, and 12. Using the equation 4.2 from the previous chapter to calculate the percentage
in reducing the transmissions and considering the RMSE with an average of 1.06 from three
regions, it is necessary to transmit only once with four coefficients of the function considering
the best case scenario from the evaluation of the date set. It reduces 99% of data transmission
out of 70 hourly forecasts. Considering equation 4.4 in evaluating the energy efficiency on
the XSN platform, table 6.5 provides information on energy saving. It must be noted that
the equation used for evaluating energy consumption does not consider processing power.

The DHT approach does not require many calculations. They are 4x23 calculations when
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Table 6.4: Energy Consumption and Saving

Algorithm DHT for R = 4 DHT for R = 12

Energy cons. in mJ from algorithm 12.8 38.4

Energy saving in % 94 % 82%

R = 4 and T0 = 23 . In general, the processing time is to calculate a matrix of RXTo. Once
the coefficients are ready, the node can be set to sleeping mode, and the sink node can predict
future values based on the DHT algorithm. Furthermore, having an accuracy of 95%-97%
based on metrics provided in Table 6.1 - 6.3, it can be easily concluded that the algorithm
has a good performance and can help a lot in improving the network lifetime.

6.5 Discussion

This chapter introduced a new valuable model for improving energy efficiency via predic-
tion. The model extends DHT with a least square method to improve the data prediction.
The extended model shows an excellent match for predicting sensor data in WSN without
breaking data integrity. The model can achieve high accuracy when R = 4, meaning that
we can only send coefficients in one transmission and make accurate predictions for at least
the next 70 hours. Furthermore, the algorithm can work in constrained devices with limited
processing capabilities.

Comparing DHT with previous algorithms (DST-I and DST-II from the previous chap-
ter), as well as DNN - Rough sets[211] and DCT [212], provides better performance and
accuracy. The table below presents a comparison of these algorithms.

Table 6.5: Energy Consumption and Saving

Algorithm DHT DCT-I DCT-II DNN [211] DCT [212]

MSE 0.48 3.58 4.14 35.68 8.94

MAE 0.51 1.35 1.36 5.16 NI

RMSE 0.69 1.88 2.034 5.85 2.99

It can be concluded based on experimental results that the algorithm is effective and
reduces data transmission. It is not highly effective as DST-I and DST-II when predicting
values within the range(producing exact values), however, both (DST-I and DST-II) have
higher settings (R=24). Otherwise DHT algorithm is highly accurate even when predicting
within the range. The higher the R value, the more processing is required. Future work
includes measuring the performance of the approach in real devices, considering erroneous
data and detecting those erroneous data.
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Chapter 7

Future Work

In this dissertation, we have worked on finding the best possible network architecture based
on the requirements elaborated in chapter II. Then we proposed a new data architecture for
the network architecture. Further, several models are proposed to improve energy efficiency
via the predictions. Then, we evaluate the performance from the real dataset of the move-
ment of water temperatures using the finite Furie series. The models created by this study
address the load predictions based on the discrete interpolation of:

• Furier transformation (DFT).

• Discrete Hartley Transforms (DHT)

• Discrete Sine transform DST-I

• Discrete Sine transform DST-II

• Newton Interpolation

In particular, comparison of DHT and DST models have been made.
Problems that remain to be explored in the future:
• Generalization of these models for the multidimensional case.
• Introduction of any other factor affecting daily water temperature movement and ex-

pansion of forecasting models using the least-squares method for DFT, DCT, DST, DHT,
etc.

• Combining models examined using neural networks for prediction.
• Review of DFT, DCT, DST, DHT prediction models using Monte Carlo simulation
• Definition of Max-product sampling type operators and applications to image processing
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[17] J. Elson and K. Römer, “Wireless sensor networks: A new regime for time synchro-
nization,” SIGCOMM Comput. Commun. Rev., vol. 33, pp. 149–154, Jan. 2003.

[18] P. Anantharam, P. Barnaghi, and A. Sheth, “Data processing and semantics for ad-
vanced internet of things (iot) Applications: modeling, annotation, integration, and
perception,” in Proceedings of the 3rd International Conference on Web Intelligence,
Mining and Semantics, p. 5, ACM, 2013.

[19] X. Jia, Q. Feng, T. Fan, and Q. Lei, “Rfid technology and its applications in internet
of things (iot),” in Consumer Electronics, Communications and Networks (CECNet),
2012 2nd International Conference on, pp. 1282–1285, IEEE, 2012.

[20] D. Uckelmann, M. Harrison, and F. Michahelles, “An architectural approach towards
the future internet of things,” in Architecting the internet of things, pp. 1–24, Springer,
2011.

[21] J. A. Stankovic, “Research challenges for wireless sensor networks,” ACM SIGBED
Review, vol. 1, no. 2, pp. 9–12, 2004.

[22] X. Su, J. Riekki, J. K. Nurminen, J. Nieminen, and M. Koskimies, “Adding semantics
to internet of things,” Concurrency and Computation: Practice and Experience, Jan.
2014.

[23] P. Koskela and M. Majanen, “Robust header compression for constrained application
protocol,” pp. 36–39, Jan. 2014.

[24] B. Madhav and A. Ralegaonkar, “Wireless sensor network: A promising approach for
distributed sensing tasks,” Excel Journal of Engineering Technology and Management
Science, vol. Vol. I No.1, Jan. 2012.

[25] T. J. Dishongh, M. McGrath, and B. Kuris, Wireless sensor networks for healthcare
applications. Artech House, 2014.

113



[26] M. Atto and C. Guy, “A cross layer protocol based on mac and routing protocols
for healthcare applications using wireless sensor networks,” International Journal of
Advanced Smart Sensor Network Systems (IJASSN), vol. 4, no. 2, 2014.

[27] Y. Duan and T. Guo, “Research and Application of wireless sensor networks in agri-
culture,” in First International Conference on Information Sciences, Machinery, Ma-
terials and Energy, Atlantis Press, 2015.

[28] A. Z. Abbasi, N. Islam, Z. A. Shaikh, et al., “A review of wireless sensors and networks’
applications in agriculture,” Computer Standards & Interfaces, vol. 36, no. 2, pp. 263–
270, 2014.

[29] A. Berger, L. B. Hormann, C. Leitner, S. B. Oswald, P. Priller, and A. Springer,
“Sustainable energy harvesting for robust wireless sensor networks in industrial appli-
cations,” pp. 1–6, IEEE, Apr. 2015.

[30] A. A. Kumar Somappa, K. Øvsthus, and L. M. Kristensen, “An industrial perspective
on wireless sensor networks—a survey of requirements, protocols, and challenges,”
Communications Surveys & Tutorials, IEEE, vol. 16, no. 3, pp. 1391–1412, 2014.

[31] Z. Zhou, D. Zhao, X. Xu, C. Du, and H. Sun, “Periodic Query Optimization Leverag-
ing Popularity-Based Caching in Wireless Sensor Networks for Industrial IoT Appli-
cations,” Mobile Networks and Applications, vol. 20, pp. 124–136, Apr. 2015.

[32] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor net-
works: a survey,” Computer networks, vol. 38, no. 4, pp. 393–422, 2002.

[33] “Wireless sensor networks: creating a $ 2 billion mar-
ket in 2021.” http://www.idtechex.com/research/articles/

wireless-sensor-networks-creating-a-2-billion-market-in-2021-00003663.

asp?donotredirect=true, accessed: april, 2015.

[34] A. Chandor, J. Graham, R. Williamson, et al., “Dictionary of computers,” 1970.

[35] P. A. Bernstein, “Middleware: a model for distributed system services,” Communica-
tions of the ACM, vol. 39, no. 2, pp. 86–98, 1996.

[36] A. T. Campbell, G. Coulson, and M. E. Kounavis, “Managing complexity: Middleware
explained,” IT professional, vol. 1, no. 5, pp. 22–28, 1999.

[37] D. Bakken, “Middleware,” Encyclopedia of Distributed Computing, vol. 11, 2001.

[38] W. Emmerich, M. Aoyama, and J. Sventek, “The impact of research on middleware
technology,” ACM SIGSOFT Software Engineering Notes, vol. 32, no. 1, pp. 21–46,
2007.

[39] R. Sugihara and R. K. Gupta, “Programming models for sensor networks: A survey,”
ACM Transactions on Sensor Networks (TOSN), vol. 4, no. 2, pp. 1–29, 2008.

114

http://www.idtechex.com/research/articles/wireless-sensor-networks-creating-a-2-billion-market-in-2021-00003663.asp?donotredirect=true
http://www.idtechex.com/research/articles/wireless-sensor-networks-creating-a-2-billion-market-in-2021-00003663.asp?donotredirect=true
http://www.idtechex.com/research/articles/wireless-sensor-networks-creating-a-2-billion-market-in-2021-00003663.asp?donotredirect=true


[40] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,” Computer
networks, vol. 54, no. 15, pp. 2787–2805, 2010.
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Appendix A - Describing sensor
information with SenML

{"e":

[

{ "n": "temperature", "t": 15364,"v":36.5, "u":"degC" },

{ "n": "glucose", "t": 15364, "v":36.5, "u": " mmol/L"}

]

}

107 bytes
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Appendix B - Describing sensor
information with SensorML

<sml:inputs>

<sml:InputList>

<sml:input name="body temperature">

<sml:ObservableProperty definition="http://url_link.com/something/

temperature.owl#Temperature/">

</sml:input>

<sml:input name="glucose">

<sml:ObservableProperty definition="http://url_link.com/something/

glucose.owl#glucose"/>

</sml:input>

</sml:InputList>

</sml:inputs>

<!-- ================ Outputs = Quantities================== -->

<sml:outputs>

<sml:OutputList>

<sml:output name="the_disease_parameters">

<swe:DataRecord>

<swe:field name="body temperature">">

<swe:Quantity definition="http://definitionLink.com/ont/swe/

property/BodyTemperature">

<swe:label>Body Temperature"></swe:label>

<swe:uom code="cel"/>

</swe:Quantity>

</swe:field>

<swe:field name="glucose">

<swe:Quantity definition="http://definitionLink.com/ont/swe/

property/Glucose">

<swe:label>Glucose</swe:label>

<swe:uom code="mmol/L"/>

</swe:Quantity>

</swe:field>

</swe:DataRecord>
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</sml:output>

</sml:OutputList>

</sml:outputs>

1100 bytes
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