
Multi-Lane Automated Intersection Management

Edward Lambert

January 4, 2022

1 Introduction

Real-world environments are not generally limited to pairs of perpendicular lanes. To
establish the performance of the approaches to intersection management introduced in
the previous chapter, it may be important to examine larger multi-lane intersection ge-
ometries. These often permit certain simultaneous flows which such as opposing left
turns (for those driving on the left-hand side). As a result the difference between opti-
mization of the crossing order compared to a simple ordering heuristic like Nearest-First
(called FIFO in the test) might be shown more clearly.

The motion coordination problem faced by fleets of identical material transfer AGVs
is described in Problem 1. This part of the conflict-free scheduling and routing problem is
isolated in Figure ?? in Chapter ??. A convenient representation of the workspace W is
a connected graph of waypoint paths which avoid the static obstacles in the environment.
This includes the starting position of every AGV τi(0), and the mission locations Mj .

Problem 1 Given a number N AGV operating in a workspace W ∈ R2, what tra-
jectory τi(t) ∈ W should each one follow to complete all missions in the minimum
total AGV-Time. A mission takes place at position Mj ∈ W . A collision-free distance
||τi(t)− τk(t)|| > dmin must be maintained between each AGV at all times.

Numerous ways of dividing and conquering this problem have been developed. One
of the most common is the conflict-free routing approach, where the path is discretized
and segments are assigned to one vehicle at a time [1]. This is also known as prioritized
planning and the priority order has a strong influence on the solution [2]. The global
routing and crossing conflict resolution are solved simultaneously, using the same network
representation for both.

An alternative where global routing is solved individually, and conflict resolution is
performed at the intersection level is described in the breakdown in Chapter 3. In this
scheme, Fleet Control assigns a mission j to an available AGV i and finds a suitable
path through the network for only one AGV i using Dijkstra or similar graph shortest
path technique. Now each AGV has a path πi leading to its destination, which can
be represented as a list of waypoints. An exact point in the Cartesian workspace any
distance s along the path can be found by interpolation of this list [x y] = πi(s).

1

The speed profile s = vi(t) ∈ R is not limited by the network representation. A set
of conflict avoiding speed profiles can be found by solving the local coordination sub-
problem Problem 2.

Problem 2 Given a number N < N̄ of AGV operating on a set of assigned paths
[π0, ...πN] which intersect between s begini and s endi in path coordinates, at what
speed profile si(t) should each path be traversed so all paths are completed in minimum
AGV-Time and the collision-free distance is maintained at the intersection points.

Digani et al [3] propose a 2-layer architecture to solve Problem 1 as a high level zone
capacitated routing problem with local coordination within each zone to handle Sub-
problem 2. A negotiation-based priority scheme had been previously used to complete
the solution. However, the negotiation process could be time consuming so the system
was improved by the addition of Autonomous Intersection Management (AIM) to avoid
the need for negotiation in many cases. The original negotiation scheme remained active
at all times as a backup. This led to higher average speeds, crucially reducing the aver-
age crossing time by more than the execution time of the optimization algorithm used
to solve AIM. The backup system ensured correct behaviour in edge cases: preventing
arrivals in the same lane until the intersection was clear. Having a backup gave sufficient
certainty for a number of tests with hardware.

The collision avoidance constraints can be restated so they are convex, if the crossing
order is fixed (FIFO order was tested). Questions remain about the importance of
searching alternative crossing orders, compared to the additional computational cost.
Better solution time guarantees due to a fixed order could enable AIM to operate without
a backup system in more situations.

Preliminary work reported in Chapter 3 ?? demonstrated the FIFO heuristic could
produce equally good solutions with reduced execution time on an elementary intersec-
tion.

In the present chapter the aim is to compare the performance of an intersection
manager with fixed First-In-First-Out (FIFO) crossing order with a published method
based on a non-convex optimization with Linear objective and Quadratic constraints
(Quad constr), in which the crossing order can be varied to improve the objective, which
is to minimize the sum of crossing time for a set number of participants. The numerical
performance of the intersection manager is also important for its use as a real-time safety
critical system, including the scaling with increasing numbers of approaching vehicles.

1.1 Hypothesis

The Quad constr approach is expected to find solutions with a lower total travel time
than FIFO. Freedom to vary the crossing order has the potential to significantly reduce
total travel time in a multi-lane intersection by allowing sets of vehicles whose path do
not intersect to cross the intersection together.

The Quad constr approach should match FIFO performance if that is the best
ordering, or in other cases improve upon it because it is able to search over different or-

2

derings. Both approaches make the same simplifying assumptions about the constraints,
maximize the same objective by varying the arrival time at the same control waypoints.

The Quad constr approach must search a non-convex space, so it is expected to take
longer to solve. It is also expected to have an unpredictable solution time, which may
limit the scale at which is can be applied, and possibly rule out its use as a standalone
collision avoidance method at any scale. The execution time is expected to be shorter and
more consistent for the FIFO approach, as the linear program can be solved efficiently
with interior point methods.

2 Method

2.1 Assumptions

The objective is to minimize the total travel time for all AGV to complete their missions.
At this stage the missions just consist of reaching the end of their assigned path πi.

s [m]

t [s]

s begin

s end

αα− β α+ β

AB

BC

CD

Figure 1: Diagram of one vehicle in path coordinates.

The path πi can be evaluated at a longitudinal distance s to find the position ξi(s) =
πi(s). Using the variable s it is helpful to divide the path into three parts as shown in
Figure 1: approach, crossing and departing. The first part AB approaching the conflict
where s < s begin, a part traversing the conflict zone BC where s begin < s < s end,
and a part leaving the intersection CD where s > s end.

A1 No external obstacles can be found on the roadmap.

A2 All vehicles whose paths intersect are known to the manager at execution time and
no additional vehicles arrive during the execution of the planned trajectories.

A3 There is a maximum one vehicle per arrival location, each with a fixed path πi
through the intersection.

A4 The full set of paths through the intersection is known at initialization time.

3

Assumption A1 ensures that collisions to be avoided by the motion co-ordination
system are those between different AGVs. AGV are assumed communicate their po-
sition with some certainty P and modify their trajectory within some tolerance ε in
response to instructions. This is reasonable as most static obstacles can be avoided by
construction of the roadmap. External obstacles comprise those which are static and
have not been detected and those which are dynamic but do not respond to instructions
such as pedestrians and human operated vehicles. For more on unexpected obstacles
please refer to Chapter 2 ??.

Assumption A2 ensures that car-following behaviour does not factor in the following
analysis. In the test system arrivals were limited at the source, which counted AGVs
already present on any of the associated lane alternatives, and if the lane capacity was
exceeded further arrivals were stacked in a vertical queue. In Chapter 6 ?? assumption
A2 is relaxed along with A3 in order to study traffic density on a link between two
independently managed intersections.

Similarly A3 rules out unavoidable collisions caused by two vehicles starting in the
same place. In the decomposition described in Chapter 3 ?? this function would be the
responsibility of the task scheduling module.

Based on A4 we can compute the shape of the conflict zone. This is defined in path
coordinates by the earliest intersection point with any other path s begin and the latest
intersection point s end. As AGVs have some bodywork extending around their control
point, the conflict must be expanded by the diameter of the bounding circle. In this
way, an AGV waiting outside the conflict zone can never collide with one inside.

2.2 Problem Representation

In general there are a number of differential constraints on the motion of an AGV along
a path. For any path and vehicle combination a maximum forward speed can be selected
which keeps the lateral and angular acceleration within the vehicle constraints at the
point of peak curvature and the point of peak sharpness. For simplicity of exposition in
this work the lower for the two speed limits is taken as the maximum v̄ over the entire
length so the lateral dynamics can be neglected without loss of generality. Continuous
speed profiles which ensure path following subject to vehicle limitations as presented
in [4] could offer higher speeds using the same waypoints in some cases. Methods for
generating paths which are sufficiently smooth for a target traversal speed are discussed
in Chapter 2 ??. Longitudinal dynamics to second order lead to a maximum speed v̄
and a maximum acceleration ā.

Additional assumptions B1, B2, B3 allow the optimal speed profile to be specified
by the time of arrival at two waypoints. These are located at the beginning s begin and
end s end of the conflict zone.

B1 Waypoint timing instructions are only sent with sufficient approach distance re-
maining to adjust speed before reaching the first waypoint s begin−s > min conflict dist

B2 The conflict zone must be long enough to reach the second waypoint at the right
time without violating acceleration limits s end− s begin > min conflict dist

4

B3 All waypoints can be reached with an average speed v < v̄

The maximum speed v̄ is taken from the spec sheet. The min conflict dist param-
eter is calculated based on the maximum acceleration parameter ā of the AGV model.
The acceleration limit is assumed to be symmetrical, so peak deceleration is −ā. The
distance required to decelerate at ā from any valid speed v < v̄ is given by Equation 1.

min conflict dist =
v2

2â
(1)

2.3 Timed Waypoint Messages

The speeds were converted into timed waypoints which the AGV controllers must meet
as closely as possible. Timed waypoints are expressed as a [s, t] ∈ R2 tuple. The discrete
waypoint list which specifies the path is used to convert the path distance s into a
workspace position [x y].

The timed waypoint conversion takes the constant speed solution for the intersection
problem and retains only the safety critical part at the entry and exit of the conflict
zone. As there are two constant speed sections, two timed waypoints for fixed position
[sbegin, send] are calculated according to Equation 2.

As long as vehicles reach point s at time t, their actual speed profile can take any
form as long as it remains positive.[

t enter
t depart

]
=

[
φAB(s begin− s)

φAB(s begin− s) + φBC(s end− s begin)

]
(2)

This was tested in Chapter 3 ?? where a second order model of the motor dynamics
followed the instructions. In this test the simulated AGVs follow a simple first order
model, the controller used is specified in Section ??.

2.4 Individual Longitudinal Control

The individual controllers are simplified a great deal by using a first order dynamic
model. This means that the controller can set the speed directly. The only source of
error arises from the communication latency between the intersection manager and the
vehicle, taken to be 200ms round trip. This is equal to two control cycles on the vehicle.
The individual controller uses the latest position s and time t to meet the next Timed
Waypoint [ŝ, t̂]. The waypoint to target is chosen base on current position, the closest
one with both ŝ > s and t̂ > t is selected. Then the target speed is calculated according
to Equation 3.

u =
ŝ− s
t̂− t

(3)

This will ensure arrival at the right time, whatever the speed was over the commu-
nication delay. The actual speed of the simulated vehicle will be constant (assuming

5

no safety sensor activation) but slightly different to that calculated by the intersection
manager.

If the individual controller has not received a Timed waypoint yet, or it has passed
the last one it will set the speed to the maximum allowed for this path.

2.5 Objective

The objective to minimize the total travel time is given by Equation 4. It is linear terms
of the reciprocal speed vector φ ∈ R(n×n), which has up to two elements per AGV. One
for the approach if it has not yet been passed and one for the conflict so φi = [φAB, φBC].
The segment lengths for the approach and the conflict are contained in distance vector
d so di = [dAB, dBC].

min
φ
JT = dTφ

subject to
φ > φmin

φTHijφ > 0 ∀i, j ∈ [1, p] with j > i

(4)

The condition j > i in Equation 4 indicates that the number of constraints varies
with the number of vehicles p as p(p−1)

2 . This corresponds to one constraint between
each pair of approaching AGVs.

2.6 Collision Avoidance

The collision avoidance constraints can be expressed in terms of the arrival time ai of
one and the departure time dj of the other of a pair of approaching AGV in conflict.
For safe crossing between AGV i and j we require the condition in Equation 5 holds.

ai > dj ∪ aj > di (5)

The only difference between the two AIM approaches is the way they transform this
condition into constraints on a standard form optimization which can be solved with
convex methods. One uses a fixed order leading to to linear constraints and the other
permits any ordering through quadratic constraints.

Both optimize over the same parameter vector φ as defined in Equation 6. This
contains a stack of pairs of reciprocal average speeds, one for section AB and one across
section BC.

φ =


1/vAB,0

1/vBC,0
...

1/vAB,N

1/vBC,N

 (6)

The constraint on approaching vehicles from those which are already past their own
decision point is the same for both approaches. Every approaching AGV must have

6

an arrival time (si − s begini)φi greater than the latest departure time of any crossing
vehicle dj . Setting tp = maxj dj and tp = tp × 1 ∈ R(1×N) to create N constraints from
the single value of tp this can be expressed as in Equation 7.

s0 − s begin0 0
. . . 0

...
. . .

...

0
. . . sN − s beginN 0

φ ≤ tp (7)

2.7 FIFO

FIFO is simple heuristic for ordering based on the one described by [5]. In a world
where all the vehicles have the same mass and acceleration and two arrive at full speed
on different approach lanes, the farther vehicle will have to slow down less to allow the
closer one to pass. To use a different ordering in this simple case always wastes time, and
our objective is to minimize travel time. For this method the pairs in φ must be sorted
by the remaining distance along path AB before the start of the conflict s − s begin.
As the conflict zone extent is a fixed property of the intersection this distance will not
change when other vehicles arrive on new paths, so the ordering is stable. After sorting,
index i + 1 will be further from the decision point than index i. Then Equation 5 can
be expressed as


s0 − s begin0 s0 − s end0

. . . 0
...

. . .
...

0
. . . sN − s beginN sN − s endN

φ ≤

a0
d0
...
aN
dN

 (8)

Care should be taken to exclude from φ those AGV which have already passed the
decision point defined as s begin −min conflict length. The motion of these vehicles
can no longer be altered because the on-board longitudinal controller would likely be
unable to meet the new waypoint times due to physical limits on acceleration.

2.8 Quad constr

The constraints can be expressed without imposing a fixed order by transforming the
reserved time blocks into centroid α and half width β representation. This leads to
Equation 9 for the constraint between any pair of AGVs (i, j).

|αi − αj | > βi + βj (9)

And equivalently Equation 10.

(αi − αj)
2 − (βi + βj)

2 > 0 (10)

7

This makes it possible to express the constraint that vehicles do not collide in terms
of time. Vehicle i arrives at the first conflicted segment ωmin

i and departs from the last
at ωmax

i . The following three subsections set out three alternative ways of expressing
the collision avoidance constraints which have been evaluated. The arrival time is given
by Equation 11. Considering average speeds, the departure time ωmax

i is also linear, this
is given by Equation 13.

ωmin
i = dABφAB = eTφi (11)

Where
eT = [dAB, 0] (12)

and

ωmax
i = [dAB, dBC]

[
φAB

φBC

]
= fTφi (13)

Where
fT = [dAB, dBC] (14)

Following [6], the time window between ωmin and ωmax may be expressed in terms
of the midpoint α and the extent β as shown in Figure 1. In this way the collision
avoidance constraints in Equation 9 are independent of the order in which AGV i and
AGV j cross the conflict.

αi = ωmax
i + ωmin

i (15)

represents the midpoint of the time vehicle i occupies the conflicted segment and

βi = ωmax
i − ωmin

i (16)

represents the range of the time either side of the midpoint, both scaled by a factor of
two.

In matrix form this can be written in terms of the parameter vector φi containing
the only the reciprocal speeds relevant to AGV i.

αi = fTφi + eTφi = 1T
i Aφi (17)

with A = diag(f + e)
βi = fTφi − eTφi = 1T

i Bφi (18)

with B = diag(f − e).
This can be captured in a block diagonal Hessian Hij , containing a block Λij for each

pair as shown in Equation 19.

Λij =

[
Ai1i1

T
i Ai −Ai1i1

T
j Aj

Aj1j1
T
i Ai Aj1j1

T
j Aj

]
(19)

Hij =

[
Λii Λij

Λji Λjj

]
(20)

The quadratic constraints are then expressed as φTHφ > 0.

8

2.9 Solver Details

The FIFO speeds were found with scipy.optimize.linprog and the vehicles ordered with
the Python 3.7.6 function sorted.

The Quad constr speeds were found with scipy.optimize.minimize given the analyti-
cal Jacobian and Hessian. Two algorithms were tested:SLSQP stands for the Sequential
Least Squares Quadratic Programming algorithm and trust constr indicates the trust
region constrained algorithm [7][8].

The default settings for each algorithm are shown in Table ??. The value of gtol
is the threshold the gradient of the objective must be below for termination for the
trustconstr algorithm. The equivalent ftol is the tolerance the change in the function
value must be below for termination, as slsqp does not not use the gradient information.

As inequality constraints are present trustconstr will introducing slack variables and
solving a sequence of equality-constrained barrier problems [9].

constraint form FIFO Quad Quad
algorithm linprog slsqp trustconstr

init - φ min φ min
max iter 1000 120 240

ftol - 10−9 -
gtol - - 10−9

Table 1: Solver Settings

For execution time comparisons all test ran on a 1.6Ghz Intel(R) Core(TM) i5-8250U
Quad Core laptop with 16 GB main memory.

3 Numerical Experiment

The two intersection managers were implemented in Python with an identical messaging
interface to communicate with a collection of AGV controllers with simplified dynamics.

The first test is inspired by the published results in [6], showing the improvement
of intersection management similar to Quad constr over decentralized negotiation. The
tests took place on a close duplicate of three realistic intersection layouts with fixed
direction lanes.

Over ten runs, one AGV was initialized at each entrance, and assigned a random exit.
The clearing time Tclearing for the last vehicle to leave the intersection is recorded in
each run. The execution time to calculate the optimal waypoint times for every vehicle
was calculated at the start Texec. The worst delay for a single AGV compared to its free
flow time to cross the intersection Twait is also recorded. Twait is defined somewhat
differently to Digani 2019 [6]. In that paper the metric captures the time spent stationary
so the optimal method has zero waiting time in every case. As both the tested methods
in the present study are optimal in that sense, it makes sense to use the delay based

9

definition given in Equation 21 to compare them. The delay based Twait is still averaged
over different AGV in each run, and the worst run average is recorded for that layout.

Twait = crossing time− PathLength

max speed
(21)

In the table below Twait is calculated according to Equation 21 so it is likely to be
non-zero, even for optimal methods. It represents the delay caused by the intersection
compared to free flow speed. In some cases it is slightly negative, because vehicles can
exceed the maximum speed to meet the waypoints given by the intersection manager.

4 Numerical Results

Figure 2: Intersection 4 reproduced from [6] with approximate arrival a and departure
d nodes overlaid.

To examine the success of the FIFO heuristic on a complex intersection we begin
with the results for Intersection 4 with 11 entrances. The waypoints were reproduced
by estimating the origin and destination points and finding new Reeds-Shepp paths [10]
between them. The effect can be seen by comparing Figure 2 and Figure 3 where the
conflict locations are similar in size and number but there are some diagonal straight
sections.

Figure 3: Intersection 4 detailed waypoints using Reeds-Shepp paths [10] to join the 66
a− d pairs.

In figure 4 the total travel time produced by FIFO ordering is similar to the solution
to the quadratic constraints for 2 - 5 AGV. For 6 - 11 AGV the quadratic constraints

10

permit much lower travel times. The greater the number of AGVs the greater the
advantage, with travel times for 11 vehicles reduced from over 350 AGV-Seconds to less
than 150 AGV-Seconds. This corresponds to a doubling of average crossing speed.

0

50

100

150

200

250

300

350

400

0 2 4 6 8 10 12

AG
V-

Se
co

nd
s

N AGV

Intersection 4 TTT_mu

trust-region

fifo

Figure 4: Total Travel Time for 2-11 Vehicles on Intersection 4. Trust Region Algorithm.

Execution time results in Figure 5 are for the trust − region algorithm. The FIFO
method is much faster to compute as expected. The computation time increases roughly
linearly with the number of vehicles, reaching 65 seconds for 11 AGV. This may be too
slow for a responsive real time controller, but the search can be terminated earlier and
the constraints will be satisfied, so no risk of collision only slightly reduced crossing
speed.

4.1 Intersection 3

To establish how performance varies with intersection geometry, Intersection 3 in Figure
6 has up to 8 entrances, and Intersection 4 shown in Figure 2 has up to 12. Lower
numbers of vehicles were tested on the full size intersection by leaving a fixed number of
arrival points empty. The empty start locations were selected from a uniform distribution
over 10 repeated runs.

The total travel time TTT in Figure 7 is consistently improved by the Quad constr
method, and the degree of improvement is greater the busier the intersection becomes.

The travel time is improved further by switching to the trust region algorithm, as
shown in Figure 8. On the same layout, with the same arrivals the trust region algorithm
takes much longer to converge but find a superior ordering which almost halves the travel
time objective.

Comparing the Tworst wait should reveal the degree of individual sacrifice required

11

0

10

20

30

40

50

60

70

2 3 4 5 6 7 8 9 10 11

Se
co

nd
s

N AGV

Intersection 4 T_Exec

 trust-region fifo

Figure 5: Execution time for 2-11 vehicles compared on Intersection 4. Trust region
Algorithm.

Figure 6: Intersection 3 Layout including eight arrival nodes. Reproduced waypoints as
tested shown as red dots.

12

0

20

40

60

80

100

120

140

160

0 2 4 6 8 10

AG
V-

Se
co

nd
s

AGV

Intersection 3 TTT mu

fifo

quad

Figure 7: Intersection 3 Total Travel Time. Quadratic constraints solved with SLSQP
algorithm.

13

0
10
20
30
40
50
60
70
80
90

100

0 2 4 6 8 10

AG
V-

Se
co

nd
s

AGV

TTT_mu Intersection 4

trust_constr

slsqp

3

Figure 8: Solution quality with the two algorithms can be compared based on the TTT
objective.

0

5

10

15

20

25

30

35

40

0 2 4 6 8 10

Se
co

nd
s

AGV

Tworst_wait mu

fifo

quad

Figure 9: Worst waiting time experienced by a single AGV, averaged over 10 runs across
Intersection 3.

14

to reach social optimum. As before, Quad constr is consistently able to improve on
the FIFO solution by choosing a different order with the benefits increasing as the
intersection gets busier. This shows that the wrong ordering leads to individual delay in
higher traffic, even with a completely fair policy. Missed opportunities for non-conflicting
flows to progress at the same time, lead to a longer wait for whoever crosses last.

4.2 Intersection 1 Results in Detail

-10

0

10

20

30

40

50

-20 -10 0 10 20 30 40 50

Y [m]

X [m]

Intersection 1 Layout

Figure 10: Waypoints with 10cm spacing for each of the six paths through Intersection
1.

Intersection 1 only has three arrival nodes as shown in Figure 10, so only two and
three arrivals can be tested while keeping one vehicle per lane and no car following
(Assumption A3).

0

5

10

15

20

25

30

35

40

2 3

AG
V-

Se
co

nd
s

AGV

TTT mu Intersection 1

fifo

slsqp

trust

Figure 11: Total Simulated Travel Time in AGV-Time units

Results for two and three vehicles in Figure 11 suggest Quad constr is able to find a
better solution at the cost of a higher execution time. With few vehicles interacting the
difference is minimal, suggesting only one or two of the 10 runs could be improved with

15

a change in ordering and most were the same.
The execution time over the 10 runs with different path choices shown in Figure 12

increases markedly with the switch to quadratic constraints. The choice of algorithm
makes little difference in this case.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

2 3

Se
co

nd
s

AGV

T_exec mu Intersection 1

fifo

slsqp

trust

Figure 12: Mean of the Execution Time over 10 runs with random paths.

4.2.1 Detail of Improved Ordering with 2 AGV

To understand better the mechanism for improving travel time by reordering, it is in-
structive to examine two vehicles in Intersection 1, where a reordering benefit was de-
tectable, although it became more significant for higher numbers of crossings on larger
intersections.

The distance-time trace for each vehicle can be plotted together, where distance
is measured as chainage along the path, starting at the arrival point. This means the
conflict start distance is different for each AGV. The location is marked by a circle plotted

16

0 5 10 15 20 25 30

time [s]

0

10

20

30

40

50

60

70

80

d
is

ta
n
c
e
 [
m

]

RunCrossingTime1i3v-FIFO
1
627489790.2378933,1627489796.4764016,3,30,,

Figure 13: Distance along path over time for each AGV on Intersection 1, Run 3 with
FIFO method.

0 2 4 6 8 10 12 14 16 18

time [s]

0

10

20

30

40

50

60

70

80

d
is

ta
n
c
e
 [
m

]

RunCrossingTime1i3v-QuadConstr
n
ew

1
627490148.8853805,1627490157.3409555,3,30,,

Figure 14: Distance along path over time for each AGV on Intersection 1, Run 3 with
Quad (trust-constr) method.

17

at the start and the star plotted at the end in Figure 13. The AGV position at each time
step is represented by a cross one colour for each AGV. The timing instruction from the
intersection manager is indicated by the position of the circle and start on the time axis.
The use longitudinal speed control described in Section 2.4ensures the deadlines are met
exactly in this simulation which did not include any disturbances.

The distance time plot of the same scenario with three vehicles under quad control
in Figure 14 looks very different. The fact that two routes are not in direct conflict is
exploited to allow two vehicles to proceed at full speed. The third vehicle needs to slow
down a little less as less time is used for the second one to get clear.

0 10 20 30 40 50

0

10

20

30

40

0.10s to 8.10s

(a)

0 10 20 30 40 50

0

10

20

30

40

8.10s to 16.10s

(b)

0 10 20 30 40 50

0

10

20

30

40

16.10s to 24.10s

(c)

Figure 15: Positions of three AGV over the specified time window under FIFO ordering.

Shown on a plan view in Figure 15 the red and yellow traces are seen to travel very
slowly to give the blue trace (closest to the decision point) time to get clear.

0 10 20 30 40 50

X [m]

0

10

20

30

40

Y
 [
m

]

0.10s to 5.10s

(a)

0 10 20 30 40 50

X [m]

0

10

20

30

40

Y
 [

m
]

5.10s to 10.10s

(b)

0 10 20 30 40 50

X [m]

0

10

20

30

40

Y
 [
m

]

10.10s to 15.10s

(c)

Figure 16: Positions of three AGV over the specified time window under Quad manage-
ment with flexible ordering.

By contrast, the traces in Figure 16 both blue and yellow proceed at full speed as
they don’t conflict. Once they are out of the way the red trace can proceed, saving 10
seconds overall.

18

4.3 Alternative Algorithm for Minimizing Linear Objective with Quadratic Constraints

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

5

0 2 4 6 8 10

Se
co

nd
s

AGV

Texec_sigma Intersection 4

trust_constr

SLSQP

Figure 17: Standard Deviation of execution time for the Quadratic constraints.

With the settings in Table??the SLSQP algorithm terminated faster than the trust constr
method with gtol = 1e−6 in Figure 4. The value of gtol is the threshold the gradient of
the objective must be below for termination.

There is a problem when n agv=8, which leads to the number of iterations exceeding
the limit, which was set to n iter=600. This explains the very low standard deviation
over the 10 runs with different paths seen in Figure 17. The time taken to complete
n iter iterations is very consistent. Despite early termination the solution meets the
constraints.

The results including n agv=9,10,11 show a different pattern suggesting SLSQP
fails to find a good solution here. The execution time levels off as the solutions become
much worse, suggesting the search terminated early. The iteration limit was not reached.

5 Conclusion

Across all three intersection layouts tested, the quadratic constraints formulation con-
sistently found a crossing solution with higher average speeds. The negative impact of
suboptimal FIFO ordering on the travel time is large, outweighing the benefit of a faster
execution time. The potential non-convexity of the quadratic constraints, which could
not be proven, was in any case handled with aplomb by both solution algorithms. The
trust constr algorithm in many cases found a solution to the quadratic constraints with
a lower TTT than the slsqp algorithm. Both methods satisfied the constraints equally
well. Further parameter tuning could be useful subject to the available computing power

19

and real-time execution deadlines. Crucially, with either trust constr or slsqp method
a solution which satisfies the hard constraints will be available, and more search time
finds a solution closer to the global minimum. Anecdotally slsqp makes fast progress
and then hits a positive linesearch gradient, while trust constr progresses slower but is
less likely to terminate early.

References

[1] Jur P. Van Den Berg and Mark H. Overmars. Prioritized motion planning for
multiple robots. 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IROS, pages 2217–2222, 2005.

[2] Maren Bennewitz, Wolfram Burgard, and Sebastian Thrun. Constraint-based opti-
mization of priority schemes for decoupled path planning techniques. Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence
and Lecture Notes in Bioinformatics), 2174(July):78–93, 2001.

[3] Valerio Digani, M. Ani Hsieh, Lorenzo Sabattini, and Cristian Secchi. A Quadratic
Programming approach for coordinating multi-AGV systems. IEEE International
Conference on Automation Science and Engineering, 2015-Octob:600–605, 2015.

[4] Pedro F. Lima, Marco Trincavelli, Jonas Martensson, and Bo Wahlberg. Clothoid-
Based Speed Profiler and Control for Autonomous Driving. IEEE Conference on In-
telligent Transportation Systems, Proceedings, ITSC, 2015-Octob:2194–2199, 2015.

[5] Zhiyuan Du, Baisravan HomChaudhuri, and Pierluigi Pisu. Hierarchical distributed
coordination strategy of connected and automated vehicles at multiple intersections.
Journal of Intelligent Transportation Systems: Technology, Planning, and Opera-
tions, 22(2):144–158, 2018.

[6] Valerio Digani, M. Ani Hsieh, Lorenzo Sabattini, and Cristian Secchi. Coordina-
tion of multiple AGVs: a quadratic optimization method. Autonomous Robots,
43(3):539–555, 2019.

[7] Andrew R Conn, Nicholas I M Gould, and Philippe L Toint. Trust region methods.
SIAM, 2000.

[8] Optimization and Root Finding (scipy.optimize) minimize(method=’trust-constr’),
2019.

[9] Richard H. Byrd, Mary E. Hribar, and Jorge Nocedal. An interior point algorithm
for large-scale nonlinear programming. SIAM Journal on Optimization, 9(4):877–
900, 1999.

[10] J A Reeds and L A Shepp. Optimal paths for a car that goes forwards and back-
wards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

20

