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1 Introduction

The capacity and safety of an intersection can be considered in terms of the number
and type of conflict points which it contains. When every entrance to the intersection
is connected to every exit by a smooth arc, a conflict point exists wherever two arcs
intersect. They can be classified as head-on, following, crossing, diverging or merging.
In many studies these points are assumed to be fixed, and only speed of the vehicles
which controls the rate of progress along the arcs is varied to minimise delay.

With the development of path planning around obstacles on-the-fly, it becomes possi-
ble to consider what arrangement of conflict points is best given the traffic at a particular
instant in the near future.

2 Literature Review

Studies on the theoretical capacity of signalized intersections and roundabouts with an
equivalent footprint indicate that in most cases, if there are few approach lanes small
roundabouts will tend to have higher capacity. If there are many approach lanes signals
tend to be more effective, unless the traffic on different approaches is extremely unequal
[1].

A systematic procedure computing the conflict points in an intersection is given in [2].
Roundabouts tend to have a large number of merging and diverging conflicts, but fewer
or none of the crossing and head-on conflicts which lead to the most serious collisions
due to high relative speeds.

Intersection control often addresses crossing conflicts by separating vehicles in time,
while they all take the shortest path straight through the intersection in the same way
as if it was signal controlled. There are a wide range of optimal and heuristic approaches
to solve for the speed profile, both decentralized and centralized, a good review is given
in [3]. Many studies have looked at how to incorporate a proportion of human controlled
vehicles which are not able to communicate their intention. One way of doing this is
using traffic signals which only apply to human drivers [4]. The downside is that the
nature of the intersection must remain similar to a traffic-light controlled one if non-
communicating participants are going to be controlled by lights.
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Recently a number of studies have extended intersection coordination of Connected
and Autonomous Vehicles (CAVs) to the resolve the type of merging of diverging conflicts
which occur and roundabouts. These are reviewed in [3]. A centralized solution with
an intersection manager minimizing delay and energy consumption is described in [5].
This shows that a high proportion of vehicles need to be communicating for significant
benefits to be realized.

A decentralized approach based on intent communication by way of virtual vehicles,
can also be applied to roundabouts. In [6], reactive heuristics are shown to lead to
poor performance compared to a model predictive control approach. The virtual vehicle
concept allows common lane based heuristics such as car following to be extended to
resolve conflicts in [7]. Another work investigating virtual lanes is [8]. Here a conflict
graph is used to assign approaching vehicles to appropriate virtual lanes and a distributed
controller is presented to stabilize the platoon.

Another approach presented in [9] is a decentralized solution to the global problem
of minimizing the delay. Proofs of completeness and optimality of the aggregate problem
are given, making this technique very impressive. It is not shown to be applicable to
roundabouts in any of the numerical examples, although the incorporation of optimal
trajectory planning by the low level controller to execute merging makes it a good
example of the combination of path planning and intersection management. Collision
constraints are based on a conflict zone rather than conflict points as in [10]. The
location of the conflict points is fixed by the fixed paths between the entry and exit
lanes of the junction. The space inefficiency of the zone representation for multiple lanes
is addressed by using multiple zones, one for each pair of lanes. The use of simultaneous
path optimization might be expected to increase computational complexity and thereby
reduce the number of vehicles with can be routed, however an attached video showing
many vehicles interacting for about 10 minutes seems to refute this. It seem the ordering
problem is resolved in a decentralized way based on game theory and the game ‘Chicken.’
Using game theory to resolve the ordering problem may give this approach an edge over
the mixed integer optimization used in [10], in terms of how many vehicles they can
control before running into execution time limits. It is a little surprising that the game
would always produce the optimal ordering given the motion model used by each AGV.
The consensus mechanism will be important here. Questions remain about the possibility
of AGVs disagreeing about the order they calculate from the communicated position and
speed data.

A similar method which solves the ordering ordering problem sequentially, followed by
individual optimization of the approach speed along fixed paths is described in [11]. This
method claims only local (per-vehicle) optimality for the speed choice sub problem, and
makes it clear the crossing order at convergence will be suboptimal, and depends strongly
on the decision order. The sub problem is posed as a Linear Quadratic Regulator,
commonly seen in optimal control problems. In general terms, those early in the decision
order will deviate from the plans less. This is more of a problem when vehicles are not
uniform, as to reduce energy consumption a late arriving lorry should deviate as little as
possible. A heuristic is given for the decision order based on the time to conflict arrival.
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The use of optimal control in [11] is shared with many earlier works regarding coordi-
nation of Unmanned Arial Vehicles, many of which relax the assumption of static paths.
In this way [12] addressed the full multi-vehicle motion planning problem for small num-
bers of aircraft with simple dynamics. The craft were assumed to be differentially flat:
that is, able to actuate in any of the workspace degrees of freedom independently, like
a quadrotor. They were represented using bounding rectangles, leading to a slightly
conservative mixed integer problem. The integer variables are used to choose which
constraints are active. This might seem excessive when representing static obstacles,
however when the constraints arise from other moving vehicles, the integer variables are
a natural way to represent the passing-order problem. The scaling to larger numbers of
vehicles is a particular challenge, due to the combinatorial explosion of possibilities.

An alternative approach to the coordination of differentially flat aircraft which uses
a sequential solution of per-vehicle receding horizon sub problems to approximate the
global solution is given in [13]. An earlier theoretical treatment based on iterative
bargaining with soft collision constraints is given by [14]. The parameters are real
numbers, and the constraints linear while the cost is quadratic. It may converge to an
infeasible solution given a particular minimum safety distance even from a valid set of
starting positions and speeds, and the suggested solution is to reduce the threshold until
it becomes feasible.

More recently, solutions based on Distributed Model Predictive (DMPC) control have
been developed. In [15], per-vehicle optimizations runs simultaneously to reduce execu-
tion time. This ensures recursive feasibility and closed loop stability. Another DMPC
approach is given by [16]. This scales up to 25 vehicles in real time. the quadrotors
concerned are all identical and differentially flat. For an under-actuated system like an
AGV, some of the simplifications may no longer be possible.

The distributed consensus on the arrival order underpins the distributed solution for
trajectory planning. The body of work considering flexible paths for aircraft relies on
similar techniques to the latest works targeted at Connected Automated Road Vehicles
where the paths are fixed. Specifically [9] uses sequential per-vehicle optimisation to
find the highest safe speeds subject to static obstacle constraints, and the trajectories
of vehicles earlier in the sequence. The crossing order is determined by the arrival time
at the ’point of no return’ according to the motion model of each vehicle. The high
frequency closed loop controller on one vehicle continues to operate while the others
are formulating their own trajectory plan. Similarly the work on adaptive paths in [16]
uses simultaneous per-vehicle optimisation to find the trajectory as a sequence of control
actions and associated positions at regular time intervals which the vehicle is predicted
to occupy up to a receding time horizon. Both offer a suboptimal global (all-vehicles)
solution, which is guaranteed to be safe. Could the simultaneous approach improve
performance of DMPC? Is it just a different name for the same algorithm? An existing
constrained optimisation based path planner could be used to generate trajectories by
assuming a simple speed profile. Mutual constraints between two trajectories can then be
applied, with one constraint for each time sample, leading to a solution to the central(all-
vehicle) multi-vehicle trajectory planning problem. The local(per-vehicle) optimization
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is identical to the global(all-vehicle) one, only the passing order choice need to reach
consensus. Either of the two aforementioned decentralized ordering algorithms should
be applicable. Which is most promising, resulting in a consensus with the least deviation
from central(all-vehicle) optimality? Does the answer change depending on the nature
of the path optimisation, should it be based on a clothoid spline or radial polynomials?
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