Sampling Based Planning Techniques

Edward Derek Lambert

March 27, 2019

1 Introduction

Geometric path planning or the piano mover’s problem consists of finding a sequence
of configurations between an origin and a destination within a field of obstacles. The
problem is known to be PSPACE hard, that is to require at least a polynomial amount
of memory to solve. It has been a topic of active research in robotics and animation for
the last several decades and many practical solutions have been developed, especially
for the case of a two dimensional workspace with polynomial obstacles. An overview is
given in Handbook of Robotics, Part A: Robotic Foundations - Motion Planning [1].

Typically approaches make some approximation to make the problem tractable, at
the cost of some aspect of global optimality of the solution. Approaches may be divided
roughly into Mathematical Programming based and Sampling Methods, although there
are others such as Potential Field methods and many combinations.

Sampling methods for motion planning can be divided into deterministic and ran-
domized sampling. Deterministic samplers subdivide state space into a uniform lattice
such as a grid or a more exotic symmetrical structure designed to span the search space
effectively. Randomized sampling methods fall into two main categories: Rapidly Ex-
ploring Trees (RRTs) [2] and Probabilistic Roadmaps (PRM). Probabilistic roadmaps
are typically used for static environments, where it is advantageous to make multiple
queries on the same roadmap, for a robot performing different taks within the same en-
vironment. This is because it is time consuming to produce a new roadmap but quick to
make additional queries on it. RRTs are more useful when the environment is changing
rapidly such as a robot exploring new areas. The tree is quick to construct but there is
little advantage to making subsequent queries.

2 State Lattice Planners

Sampling from the state space in a regular lattice to create a graph for efficient searching
is one of the first practical approaches to path planning for mobile robots. This is
because the computational complexity was low enough for real-time systems provided
certain assumptions held. Typically the lattice took the form of a regular grid, either
four connected or eight connected by straight lines. Each node represented the x-y state
of a holonomic robot, able to move in any workspace direction freely. The holonomicity



Given:
1. A workspace W is either in R? or R3
2. An obstacle region O
3. A robot defined in W consisting of one or more rigid bodies
4. A configuration space C comprising Cops and Ceree
5. An initial configuration q; € Cgree
6. A goal configuration gg € Cpree
Compute a continuous path 7 : [0, 1] = Cfree such that 7(0) = qr and 7(1) = qg¢

Figure 1: The piano mover’s problem - geometric path planning.[1]

assumption allows many interesting path finding behaviours to be studied, but typically
does not hold for practical systems like cars or fork lift trucks with Ackerman steering
which are subject to differential constraints.

2.1 Smoothing

One way of incorporating differential constraints into the lattice planning approach is
to fit a smooth curve which respects the constraints such as a cubic spline as closely as
possible to use nodes returned by the planner. The difficulty here is that the smooth
curve does not exactly follow the edges in the graph which were used to calculate the
route cost and check for obstacle intersection. If the cost of the smooth path is different
to that of the approximation used in the lattice, any optimality guarantees provided by
the planning method such as Dikstras algorithm are compromised. Worse, the smooth
path must be checked against the obstacle map for collisions, and it is not clear how the
path should best be modified if any collisions are detected. For an example of smoothing
with clothoid curves see [3] [4].

2.2 Differental Constraints

It is possible to carefully construct a lattice which captures differential constraints as
detailed by Pivtoraiko et al [5].The trick is calculating the control inputs required to
join a set of vertices which span state space (inverse kinematics) or sampling from the
control space in order to generate a set of vertices (forward kinematics). Both methods
have complications, for example the shape of the lattice must be known ahead of time
to be reachable with a simple set of primitives for the inverse method. For the forward
method the difficulty is in the choice of interval in control space that leads to complete
and uniform coverage of state space. These difficulties are resolved for one example
configuration in [5] with 16 discrete headings, 8 levels of curvature and a total of 192



Motion Planning

St'ate Space State Space Contjnuous
Discrete Sampled

Single Multiple Potential Mathematical
Query Query Fields Programming
— ‘ | ‘
Rapidly State Lattice | Probabilistic
Exploring Roadmap
Dense Trees

Figure 2: Hierarchy of planning approaches. See '"Handbook of Robotics, Part A: Robotic
Foundations - Motion Planning’ [1] for more details.

controls. The balance to be struck in the choice of resolution is that higher resolutions
lead to a higher branching factor, increasing the memory required to represent a given
area, but lower resolutions will give suboptimal paths. Imagine following a straight wall
which does not align with one of the 16 cardinal directions in the lattice, but halfway
between. The planner with return an optimal path which alternates between the two
closest cardinal directions, rather than a straight line aligned with the wall. With a back
of the envelope calculation, increasing the resolution to 10mrad to minimize artefacts
increases the number of nodes required per square metre to exceed the number of atoms
in the known universe. This trade off is the biggest obstacle to the use of lattice planners
for general path planners and led to the development of randomized planners, which can
give satisfactory uniformity and coverage of high dimensional state space without the
direct link between the branching factor and the resolution when constructing a lattice.

3 Probabilistic Roadmaps

Probabilistic Roadmaps are an example of a multiple-query sampling based planner.
They are probabilistic in the sense they sample randomly from W to build up a con-
nectivity graph - the roadmap. They do not inherently cope with uncertainty in the
obstacle field. One important component is a local planner, which is able to generate a
path between two nearby configurations and test if it intersects with any obstacles. The
algorithm proceeds by testing each sample by creating a local path from the nearest point



on the existing tree, and only adding the new point to the graph is the path is obstacle
free. Depending on the local planner it is possible to incorporate smooth paths respect-
ing vehicle dynamic limits, but other methods are more appropriate in cases where the
obstacle field is dynamic because the simplifying assumption making roadmaps so fast is
that of a static environment. Another important component is the graph method used
to select the shortest path such as Dijkstra which is used to find the shortest path once
the roadmap is constructed. There also must be some heuristic guiding the selection of
new points.

The distinction between PRMs and lattice planners is only in the mechanism by
which samples are drawn from state space to construct the roadmap [1]. They are
both Roadmap planners. Either a repeating pattern or lattice is overlaid or states are
selected randomly within an area of interest and discarded if they are not reachable
according to the obstacle map and the local planner. This is based on the idea that
randiom samples of high enough density will provide unbiased and complete coverage of
the space. Particularly in the limit as the number of samples tends to infinity, a PRM
may be ’probabilistically complete’ so that as the number of samples tends to infinity
the probability of finding a solution if one exists tends to one.

The modifications to both types of Roadmap planners which deal with a changing
environment and differential constraints on motion are very similar. Differential con-
straints can be incorporated into the local planner as described in 2, alththough there
are fewer constraints on PRM as there is no need to use kinmatics to ensure the samples
form a regular lattice.

3.1 Uncertainty

Both types of roadmap planner are useful for dealing with uncertain representations
of the world where the environment is represented as an occupancy grid, a grid of
values covering the space, each value representing the occupancy probability of that
cell. The best path can be found directly from this representation by minimising the
sum of occupancy probability of every cell traversed by the path. This may be more
useful than the "hard constraints’ offered by optimization methods, because although
the solution will not violate the constraints, the constraints themselves are constructed
by throwing away information about the uncertainty of the environment to create a
binary representation where every position in space is either inside or outside polygonal
obstacles [5].

4 Rapidly Exploring Random Trees

Rapidly Exploring Random Trees are an example of a single query planner introduced by
LaValle and Kuffner [2]. Most simply, a tree is constructed by sampling from state space
close to an existing node in the tree. A local planner is used to generate a trajectory
from the existing node to the new sample avoiding obstacle regions if one exists. If an
obstacle free trajectory is found, a new node is added at the sample state with an edge



from the existing node. Nearby nodes in the tree should also be checked and connected
with edges if posible.

Starting with the initial position and the goal position, this process is repeated until
sufficient coverage of the state space is obtained. When a new sample is reachable
from both trees, origin and destination must be connected and a graph method such
as Dijkstra can be used to identify the vertices through the graph which make up the
shortest path between them. The tree growing phase of the algorithm can be terminated
at this point but it may be possible to improve the quality of the solution by adding
more reachable states to the connected graph in case a better solution can be found.

References

[1] Bruno Siciliano and Oussama Khatib, editors. Springer Handbook of Robotics.
Springer Handbooks. Springer, Berlin, 2 edition, 2016.

[2] Steven M LaValle. RRT-progress and prospects. Algorithmic and Computational
Robotics: New Directions, 91:399-404, 2001.

[3] Marcus Lundberg. Path planning for autonomous vehicles using clothoid based
smoothing of A * generated paths and optimal control. PhD thesis, KTH Royal
Institute of Technology, 2017.

[4] D. J. Walton and D. S. Meek. A controlled clothoid spline. Computers and Graphics
(Pergamon), 29(3):353-363, 2005.

[5] Mikhail Pivtoraiko, Ross A. Knepper, and Alonzo Kelly. Differentially constrained
mobile robot motion planning in state lattices. Journal of Field Robotics, 26(3):308—
333, 2009.



