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1 Introduction

In previous chapters the throughput and delay of a number of promising Automated
Intersection Management (AIM) algorithms have been compared on two perpendicular
lane segments which meet in the middle. This might be called an elementary intersection.
There are certain traffic phenomona which are difficult or impossible to observe in this
environment, so it is difficult to draw firm conclusions about the superiority of one
method. For instance, larger intersections will often permit non-conflicting flows such
as opposing left turns (for those driving on the left-hand side).

The wider motion coordination problem faced by fleets of identical material transfer
AGYVs is described in Problem 1. A convenient representation of the workspace W is a
connected graph of waypoint paths which avoid the static obstacles in the environment.
This includes the starting position of every AGV 7;(0), and the mission locations M;.

Problem 1 Given a number N AGV operating in a workspace W € R?, what tra-
jectory 7;(t) € W should each one follow to complete all missions in the minimum
total AGV-Time. A mission takes place at position M; € W. A collision-free distance
[|75(t) — 7%(t)|| > dmin must be maintained between each AGV at all times.

Numerous ways of dividing and conquering this problem have been developed. One
of the most common is the conflict-free routing approach, where the path is discretized
and segments are assigned to one vehicle at a time [?]. This can be solved by sequentially
finding the shortest path through a Space-Time-Extended Network (STEN), and pruning
the nodes in the path before the next plan [?]. This is also known as prioritized planning
and the priority order has a strong influence on the solution [?]. Time discretization may
lead to conservative solutions, depending on the step size.

An alternative approach which relies only on time separation is described in the
breakdown in Chapter 3. In this case, Fleet control assigns mission j to an available
AGYV i and finds a suitable path through the network for only one AGV i using Dijkstra
or similar graph shortest path technique. Now each AGV has a list of waypoints m;
leading to its destination. A trajectory can be defined as a path m; together with a
speed profile v;(t). A set of conflict avoiding speed profiles can be found by solving the
local coordination sub-problem Problem 1.



Problem 2 Given a number N < N of AGV operating on a set of assigned paths
[0, ... ], what trajectory should each one follow to allow all the missions to be com-
pleted in the minimum AGV-Time while the collision-free distance is maintained between
each one at all times.

Digani et al [?] used a 2-level decomposition to solve Problem 1 as a high level
zone capacitated routing problem and a local coordination sub problem within each
zone. A decentralized prioritised planner based on negotiation formed a backup system.
Autonomous Intersection Management (AIM) was used to reduce negotiation time of the
backup system. The use of AIM leads to reduced travel time compared to negotiation
based conflict resolution. The backup system ensured correct behaviour in edge cases:
preventing arrivals in the same lane until the intersection was clear. This made real time
control possible.

The collision avoidance constraints can be restated so they are convex, if the crossing
order is fixed (FIFO order was tested). Questions remain about the importance of
searching alternative crossing orders, compared to the additional computational cost.
Better solution time guarantees due to a fixed order could enable AIM to operate without
a backup system in more situations.

2 Aim

To compare the performance of an intersection manager with fixed First-In-First-Out
(FIFO) crossing order with a published method based on a non-convex optimization
with Linear objective and Quadratic constraints (Quad_constr), in which the crossing
order can be varied to improve the objective, which is to minimize the sum of crossing
time for a set number of participants. The numerical performance of the intersection
manager is also important for its use as a real-time safety critical system, including the
scaling with increasing numbers of approaching vehicles.

3 Hypothesis

The Quad_constr approach is expected to find solutions with a lower total travel time
than FIFO. Freedom to vary the crossing order has the potential to significantly reduce
total travel time in a multi-lane intersection by allowing sets of vehicles whose path do
not intersect to cross the intersection together.

The Quad_constr approach should match FIFO performance if that is the best
ordering, or in other cases improve upon it because it is able to search over different or-
derings. Both approaches make the same simplifying assumptions about the constraints,
maximize the same objective by varying the arrical time at the same control waypoints.

The Quad_constr approach must search a non-convex space, so it is expected to take
longer to solve. It is also expected to have an unpredictable solution time, which may
limit the scale at which is can be applied, and possibly rule out its use as a standalone
collision avoidance method at any scale. The execution time is expected to be shorter and



more consistent for the F'IF'O approach, as the linear program can be solved efficiently
with interior point methods.

4 Method

4.1 Assumptions

The objective is to minimize the total travel time for all AGV to complete their missions.
At this stage the missions just consist of reaching the end of their assigned path ;.

The path 7; can be evaluated at a longitudinal distance s to find the position &;(s) =
mi(s). Using the variable s it is helpful to divide the path into three parts: approach,
crossing and departing. The first part «; approaching conflict where s < s_begin, a
part traversing the conflict zone [3; where s_begin < s < s_end, and a part leaving the
intersection 7; where s > s_end.

A1l No external obstacles can be found on the roadmap

A2 Followers on path 7; only begin to move after the lead AGV has cleared the inter-
section

A3 Each AGV has a unique initial and final position

A4 The full set of paths through the intersection is known at initialization time

Assumption Al ensures that collisions to be avoided by the motion co-ordination
system are those between different AGVs. This is reasonable as most static obstacles
can be avoided by construction of the roadmap. External obstacles comprise those
which have unexpectedly moved since mapping time, and truly dynamic obstacles like
pedestrians and human operated vehicles. For more on unexpected obstacles please refer
to Chapter 2 ?77.

Similarly A3 rules out unavoidable collisions (or equivalently impossible to complete
missions) caused by sending two vehicles to the same place at the same time. In the
decomposition described in Chapter 3 77 this function would be the responsibility of the
task scheduling module. The AGV fleet scheduling problem is not a contribution of this
thesis, other works in this area include the auction based method in [?].

Assumption A2 ensures that car-following behaviour does not factor in the following
analysis. In the test system arrivals were limited at the source, which counted AGVs
already present on any of the associated lane alternatives, and if the lane capacity was
exceeded further arrivals were stacked in a vertical queue.In Chapter 6 7?7 assumption
A2 is relaxed along with A3 in order to study traffic density on a link between two
independently managed intersections.

Based on A4 we can compute the shape of the conflict zone. This is defined in path
coordinates by the earliest intersection point with any other path s_begin and the latest
intersection point s_end. As AGVs have some bodywork extending around their control
point, the conflict must be expanded by the diameter of the bounding circle. In this way,



an AGV waiting outside the conflict zone can never collide with one inside. If AGV are
to plan adaptive paths across the intersection, they only need to limit their variation to
within the original conflict zone. This is left as further work.

4.2 Problem Representation

In general there are a number of differential constraints on the motion of an AGV along
a path. Assuming the path is smooth enough to be traversed at full speed without
wheel slip, lateral dynamics can be neglected without loss of generality. Methods for
generating paths which are sufficiently smooth for a given traversal speed are discussed
in Chapter 2 ?7. Longitudinal dynamics to second order lead to a maximum speed ©
and a maximum acceleration a.

Addtional assumptions B1, B2, B3 allow the optimal speed profile to be specified by
the time of arrival at two waypoints. These are located at the beginning s_begin and
end s_end of the conflict zone.

B1 Waypoint timing instructions are only sent with sufficient approach distance re-
maining to adjust speed before reaching the first waypoint s_begin—s > min_con flict_dist

B2 The conflict zone must be long enough to reach the second waypoint at the right
time without violating acceleration limits s_end — s_begin > min_con flict_dist

B3 All waypoints can be reached with an average speed v < ¥

The maximum speed v is taken from the spec sheet. The min_con flict_dist param-
eter is calculated based on the maximum acceleration parameter G of the AGV model.
The acceleration limit is assumed to be symmetrical, so peak deceleration is —a. The
distance required to decelerate at a from any valid speed v < © is given by Equation 1.

2

v
M lict_dist = — 1
min_con flict_dis 5% (1)

~

The collision avoidance constraints can be expressed in terms of the arrival time a;
of one and the departure time d; of the other of a pair of approaching AGV in conflict.
For safe crossing between AGV ¢ and j we require the condition in Equation 2 holds.

ai>deaj>di (2)

The only difference between the two AIM approaches is the way they transform this
condition into constraints on a standard form optimization which can be solved with
convex methods. One uses a fixed order leading to to linear constraints and the other
permits any ordering through quadratic constraints.

Both optimize over the same parameter vector ¢ as defined in Equation 3. This
contains a stack of pairs of reciprocal average speeds. One for section o and one across
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The constraint on approaching vehicles from those which are already past their own
decision point is the same for both approaches. Every approaching AGV must have
an arrival time (s; — s_begin;)¢; greater than the latest departure time of any crossing
vehicle d;. Setting t, = max; d; and t, = t, x 1 € RI*N) to create N constraints from
the single value of ¢, this can be expressed as in Equation 4.

sg — s_beging 0 0
: ¢ <tp (4)

0 . sy — sbeginy 0

4.3 FIFO

For this method the pairs in ¢ must be sorted by the remaining distance along path «
before the start of the conflict s — s_begin. As the conflict zone extent is a fixed property
of the intersection this distance will not change when other vehicles arrive on new paths,
so the ordering is stable. After sorting, index i + 1 will be further from the decision
point than index ¢. Then Equation 2 can be expressed as

ago

sg — s_beging sg — s_endy 0 do
: p<| (5)

0 SN — s.beginy sy — s_endy aN

dn

Care should be taken to exclude from ¢ those AGV which have already passed the
decision point defined as s_begin — min_con flict_length. The motion of these vehicles
can no longer be altered because the on-board longitudinal controller would likely be
unable to meet the new waypoint times due to physical limits on acceleration.

4.4 Quad_constr

The constraints can be expressed without imposing a fixed order by transforming the
reserved time blocks into centroid o and half width S representation. This leads to
Equation 6 for the constraint between any pair of AGVs (4, j).

| — o] > Bi + B (6)



And equivalently Equation 7.
(i —aj)® = (Bi+ Bj)* > 0 (7)

In terms of the parameter vector ¢, this can be captured in a block diagonal Hessian

H;;, containing a block A;; for each pair as shown in Equation 8.
AT A -4

Nij = [AllTA A117ZA 1 (8)

| A Ay
Hy = [ Aji Ajj

The quadratic constraints are then expressed as ¢ Heo > 0.

5 Numerical Experiment

The two intersection managers were implemented in Python with an identical messaging
interface to communicate with a collection of AGV controllers with simplified dynamics.

The FIFO speeds were found with scipy.optimize.linprog and the vehicles ordered
with the Python 3.7.6 function sorted

The Quad_constr speeds were found with scipy.optimize.minimize given the analytical
Jacobian and Hessian. The speeds were converted into timed waypoints which the AGV
controllers must meet as closely as possible. This conversion takes the constant speed
solution for the intersection problem and retains only the safety critical part at the entry
and exit of the conflict zone to pass to the AGV controllers. Vehicles with second order
dynamics were also simulated.

The first test is inspired by the published results in [?], showing the improvement
of intersection management similar to Quad_constr over decentralized negotiation. The
tests took place on a close duplicate of three realistic intersection layouts with fixed
direction lanes.

Over ten runs, one AGV was initialized at each entrance, and assigned a random exit.
The clearing time T'clearing for the last vehicle to leave the intersection is recorded in
each run. The execution time to calculate the optimal waypoint times for every vehicle
was calculated at the start T'exec. The worst delay for a single AGV compared to its free
flow time to cross the intersection Twait is also recorded. Twait is defined somewhat
differently to Digani 2019. In that paper the metric captures the time spent stationary
so the optimal method has zero waiting time in every case. The waiting time is averaged
over different AGV in each run, and the worst run average is recorded for that layout.

PathLength

10
max_speed (10)

Twait = crossing_time —

In the table below Twait is calculated according to Equation 10 so it is likely to be
non-zero, even for optimal methods. It represents the delay caused by the intersection



compared to free flow speed. In some cases it is slightly negative, because vehicles can
exceed the maximum speed to meet the waypoints given by the intersection manager.

5.1 Real World Intersection Designs 1,3,4 from Literature

Intersection 1 Layout

Figure 2: Intersection 3 Layout including eight arrival nodes. Reproduced waypoints as
tested shown as red dots.

6 Numerical Results

Execution time results in Figure 6 are for the SLSQP algorithm, running on a 1.6Ghz
Intel(R) Core(T'M) i5-8250U Quad Core with 16 GB main memory.

Results for two and three vehicles suggest Quad_constr is able to find a better solution
at the cost of a higher execution time. It is difficult to establish a trend as this intersection
only has three arrival nodes as shown in Figure 77.

The total travel time TT'T is consistently improved by the Quad.onstr method, and
the degree of improvement is greater the busier the intersection becomes. The clearing
time shows a similar trend, but there is one test where the FIFO solution leads to
an improved T'clearing. As the objective function is based on Total Travel Time, the
Quad.ontr solver improves the objective with a order which leads to a worse T'clearing.

Comparing the T'worst_wait should reveal the degree of individual sacrifice required
to reach social optimum. As before, Quad_constr is consistently able to improve on
the FIFO solution by choosing a different order with the benefits increasing as the



2004 Ll

w1

2

3

3

SR 7N p
&4

5

190
490 495 500 505 510 515 520 525 530 535

0 100 200 300 400 500

Figure 3: Intersection 4 reproduced from [?] with approximate arrival a and departure
d nodes overlaid.

Figure 4: Intersection 4 detailed waypoints using Reeds-Shepp paths [?] to join the 66
a — d pairs.
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Figure 5: Tclearing is the time for the last vehicle to cross Intersection 4.
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Figure 6: Computation time for Intersection Manager to calculate safe speeds for all
participants on Intersection 4. SLSQP algorithm.

intersection gets busier. This shows that the wrong ordering leads to individual delay in
higher traffic, even with a completely fair policy. Missed opportunities for non-conflicting
flows to progress at the same time, lead to a longer wait for whoever crosses last.

6.1 Alternative Algorithm for Minimizing Linear Objective with Quadratic Constraints

In this test SLSQP stands for the Sequential Least Squares Quadratic Programming
algorithm. With the default settings this algorithm terminated much faster, but the
solution were lower quality as shown by the consistently worse travel time than the
trust_constr method with gtol = 1e7% in Figure 17. The value of gtol is the threshold
the gradient of the objective must be below for termination, and has already been reduced
from its default of gtol = 1e=8 to try and speed things up.

There is a problem when n_agv=8, which leads to the number of iterations exceeding
the limit, which was set to n_iter=600. This explains the very low standard deviation
in Figure 19. The time taken to complete n_iter iterations is very consistent. Despite
early termination he solution appears to meet the constraints.

The results including n_agv=9,10,11 show a different pattern. Suggesting slsqp fails
to find a good solution here. The execution time levels off as the solutions become much
worse, suggesting the search terminated early. The iteration limit was not reached.

It is surprising the execution time for FIFo method which involves solving a linear
program is so high, approaching a second for only 11 AGV. Closer inspection reveals
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Figure 8: Total Simulated Travel Time in AGV-Time units

that 99% of this time is spent sorting the list before the linear program is executed which
seems to indicate a sorting bug.
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