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Optimal Smooth Paths Based on Clothoids for Car-like Vehicles in the
Presence of Obstacles
Edward Derek Lambert*, Richard Romano, and David Watling

Abstract: Automated Guided Vehicles are increasingly used for material transfer in factory and warehouse envi-
ronments amongst humans and human operated vehicles. Safe and efficient operation is challenging when there is a
mix of human and automated traffic as fixed guide paths can become blocked more frequently. In this work we aim
to show smooth and efficient paths based on clothoid curves can be used to automatically plan diversions which can
be traversed at high speed by automated fork-lift vehicles, which are car-like in the sense they have a limited turning
radius and angular acceleration. The approach, based on numerical optimisation within convex region constraints
is described in detail, and numerical results for curvature and sharpness are compared to a cubic spline on a small
number of simulated environments. The clothoid spline is less affected, in terms of its objective function, by a shift
in the obstacle boundaries than a cubic spline, for obstacle shifts below 0.5m. The clothoid spline takes longer to
converge for but the output path has attractive qualities like lower peak sharpness, enabling high speed operation.
The method is therefore most useful for applications where path quality is important and updates are required less
frequently. Changing the objective function by increasing weighting parameter b allowed the path shape to be tuned
to reduce the peak sharpness, at the cost of increasing the total length. With b > 100, convergence was poor because
parts of the spline were pushed outside the assigned region, an artefact arising from the constraints only being en-
forced at the start and end of each segment. The analytical Jacobian of the constraints was effective at reducing the
number of function evaluations to reach convergence.

Keywords: Continuous curvature path planning, convex regions, nonholonomic car-like vehicle, non-linear, obsta-
cle avoidance, optimal path.

1. INTRODUCTION

Consider a fleet of Autonomous Guided Vehicles
(AGV) moving material in an automated manufactur-
ing plant. A lattice roadmap made up of virtual guide
paths is a widely used solution for planning the motion of
each AGV [1]. This is designed by engineers installing the
AGV system, and may remain in use for many years. In
environments which are shared with humans and human
operated vehicles there is a greater probability of unex-
pected obstructions blocking the guide paths. Automatic
replanning to avoid these obstructions has the potential to
increase performance and robustness of shared environ-
ment AGV systems. Although numerous techniques have
been developed for planning paths of car-like vehicles
around obstacles [2], none has achieved wide acceptance
in industry [3, 4]. The problem addressed in this paper
is finding a smooth path around obstacles which can be
followed exactly by a vehicle with car-like dynamics.

It is important to consider the variety of solutions which

have been developed already in this area. A range of tech-
niques for motion planning are well described with exam-
ples in [5] including graph search methods such as Prob-
abilistic Roadmaps with Dijkstra in addition to incremen-
tal search methods like Rapidly Exploring Random Trees.
Katrakazas et al. [6] goes into more detail for only those
techniques suitable for on-road autonomous vehicles and
Paden et al. [2] gives optimality and completeness re-
sults for many in a handy comparison table. Recent de-
velopments have used gradient descent to modify Bezier
curves based on obstacle keypoints [7], evaluated alterna-
tive clothoid tentacles [8] and found the parameters of in-
terpolating clothoids as an optimisation [9]. The benefits
of clothoids for controlling lateral acceleration identified
in [10] can be exploited by unoccupied vehicles, which
can travel faster on smooth paths without lateral instabil-
ity [11, 12].

Path planning techniques can be divided into spatial
sampling based and continuous methods. Sampling based
planning algorithms operate on a discretization of the
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state space. Into this category fall roadmap planners such
as [13] where the graph resulting from discretization is
reused multiple times. The graph for adaptive paths is
likely to be used only once as the obstacle field is likely
to change based on recent sensor data. Roadmap planners
are still extremely useful at the global scale where local
sensor updates are less relevant. One result is the split ar-
chitecture described by [2] where a roadmap planner is
used for strategic planning (planning over a longer time
scale like a few minutes, extending from one part of the
site to the other) and a different approach is used for tacti-
cal planning (creation of a detailed trajectory for the next
few seconds). In [14], this approach, using different tech-
niques for the two time-scales is described as integration
planning.

There are other sampling based methods which can also
be useful for path adaptation where local sensor updates
are important such as Dense Random Trees as described in
[15,16] where the discretization is performed as the search
proceeds. Sampling is frequently used to make problems
of high dimensionality feasible, but can only offer resolu-
tion completeness. This is the guarantee that if a solution
exists at the sampling resolution, then it will be found.
Sampling from configuration space can result in paths
which must be smoothed before they are traversable, so
the most relevant techniques are based on sampling from
the control space, or using parametrized curves so that ev-
ery sample is feasible as in [17]. A frequent issue with
dense random tree sampling methods is the introduction
of artefacts in the solution which are difficult to remove
by post-processing.

By contrast, the family of solutions based on numer-
ical optimisation which operate directly on the continu-
ous state space offer improved path quality and guaran-
tees. These methods can be divided into parametric for-
mulations which describe the path as some type of curve
such as a polynomial [18] and those where the path is
represented by a series of time samples which satisfy the
differential constraints such as Timed Elastic Bands [19].
Compared to parametric methods, those optimising over a
series of samples must search a much greater number of
variables and also account for more constraints. This leads
to additional computational burden, so they are often lim-
ited to a short time horizon and make use of a reference
path to linearise obstacle constraints as the tactical planner
in [20] which also uses output constraints to turn overtak-
ing into a convex problem. For longer paths which can be
stored in limited memory and reused parametric methods
may be preferable, provided they are able to represent the
dynamic limitations of the AGV.

Path representations which are suitable for the dynamic
constraints of car-like vehicles can be based on differ-
ent types of spline. Splines which are Cartesian can be
calculated conveniently but they are only traversable if
polynomial terms up to 5th order are included [21]. Po-

lar splines have a smoothly varying curvature at first or-
der and above but they are unable to represent a straight
line they must be mixed with other curve types to form
a complete path. Other curve types such as Bezier curves
exist but one representation which is particularly suited to
industrial AGV roadmaps is the clothoid curve or Euler
spiral [22]. Using this parametrization, and constraining
peak curvature and sharpness, the resulting path will be
feasible for a car-like vehicle at non-zero speed. The im-
portance of sharpness limitation is sometimes overlooked
but this is a real physical limit on the motion of a vehi-
cle. This is because the sharpness is proportional to the
angular acceleration at a constant traversal speed. Previ-
ous work on finding clothoid based paths around obstacles
has mostly used spatial discretization to generate a series
of points between the origin and destination, followed by
curve fitting to find the clothoid segments which best fit
to the points. This is a practical solution and variants of it
are used by [23] who generates the key-points from a se-
quence of position samples from a manual drive, and [24]
who fits to a series of predefined manoeuvres: u-turn, lane
change and so on. As with other sampling based methods,
the choice of sample points affects the final solution, lead-
ing to suboptimal solutions. This was made clear in [25]
where sampling and curve fitting was compared to a direct
optimisation method.

An early method for creating continuous curvature
paths based on clothoids, arcs and straight lines was the
CC-Steer algorithm [26]. This local planner could be used
to connect samples from configuration space to create a
probabilistic road map. A similar algorithm from around
the same time from [27] was also able to create CC-paths
without using clothoids by considering curvature continu-
ity while approximating a holonomic path with a heuristic
exploiting the differential flatness of car pulling trailers.
Differential flatness of a dynamical system indicates the
prior states can be determined from the current state with
no exogenous variables [28]. Fraichard and Scheuer [26]
showed CC-Steer approximated Reeds-Shepp [29] paths
which are provably the shortest for connecting points with
heading continuity. Using the maximum sharpness and
maximum curvature to produce the shortest path is fun-
damental to the operation of CC-Steer, but this is not the
only important objective. Often it is preferable to mini-
mize the sharpness of turns in order to reduce lateral forces
and maintain high speed.

The contribution of Henrie and Wilde [24] was to de-
scribe an algorithm to join two configurations with the
least maximum curvature and least sharpness to create
comfortable paths similar to those a human driver would
follow. This used symmetric clothoid pairs to assemble
paths with the same structure as [26]. One limitation of
this work is that the clothoid pairs are always arranged
symmetrically which limits the range of manoeuvres. This
was addressed by the bisection method proposed by [23]
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which performs a numerical search to find either two or
four clothoid segments, which are not required to be sym-
metrical, only matched so that the curvature at the end is
zero. Another contribution of [23] is to test one approach
for creating smooth global plans by fitting arcs and lines
and clothoids to a series of samples from a GPS trace of a
test vehicle driven by remote control. Gim [30] goes into
further detail in an Appendix B regarding the reachability
of clothoid pairs, but does not examine the geometric lim-
its discussed in Section 2.2. The search procedure is fast
at finding the parameters which meet the constraints but
no algorithm is given for the correct choice of points to
interpolate given a set of obstacles.

Recent works searching for paths with limited curva-
ture rate such as [31] who used a superset of clothoids to
find the best approximation to a holonomic path with lim-
ited curvature and provide a tuning parameter that could
be tweaked to avoid obstacles. Solanes et al. [32] also ap-
proximated holonomic paths but trained a neural network
to speed up generation of the initial parameter guess. A
double continuous curvature (DCC) path planner is a com-
ponent in the path tracker described in [12]. The shortest
DCC path from the current pose to the global reference
path is found every control cycle by Nelder-Mead with-
out considering obstacles. Silvan and Grassi [33] found a
compact representation of a smooth road centre line con-
sisting of arcs, lines and clothoids. Existing methods e.g.,
[34], could then be used to join certain key poses depend-
ing whether they would track a roundabout or a straight
road. Others such as [35] used a smooth road centre line
as a reference to linearise the obstacle constraints and then
sequentially minimized maximum curvature and sharp-
ness in addition to deviation from the reference path.

In this paper we present a numerical optimisation for-
mulation which can be used to find a clothoid spline
which reaches an arbitrary goal through a series of convex
obstacle-free regions. This is distinct from earlier works
such as [9] as in this paper only the start and the goal
poses are fixed, providing freedom to improve the objec-
tive within the natural constraints of obstacle polygons
rather than being tied to heuristically selected waypoints.
It can also be trivially adapted for point-to-point curve fit-
ting similar to that of [23] but with the resulting path min-
imizing an arbitrary cost function over its length as de-
scribed in Section 4.4. The new method is able to take
into account constraints arising from obstacles directly,
and finds a result using highly optimised off-the-shelf non-
linear optimisation algorithms: Interior-Point Method and
Sequential-Quadratic-Programming were tested. Rather
than simulate a path following controller with a specific
dynamic model, we reproduce results from an existing
root finding method for the smoothest (least sharp) path
[23] where the clothoid curve outperformed other primi-
tives. The solution presented improves on current meth-
ods with a way to find an optimal path directly from the

obstacle representation without introducing sampling bias
by selecting waypoints. Constraints and soft objectives are
separated and a weighting parameter introduced which al-
lows control over the trade off between minimum sharp-
ness and path length. This makes adaptive clothoid paths
useful for a multi-AGV site which must have predictable
behaviour and high efficiency.

2. MATHEMATICAL REPRESENTATION AND
PROBLEM DEFINITION

Clothoid curves are widely used and appreciated for
creating smooth drivable paths with limited angular accel-
eration. They are less frequently used within a numerical
optimisation framework, instead many heuristic methods
for calculating their parameters have been developed. In
what follows we look at the properties of clothoids which
are relevant to numerical optimisation.

2.1. One clothoid segment
The clothoid is defined as a curve whose curvature κ

increases linearly along its length. The rate of increase is
called the sharpness α = dκ/ds. Points on such a curve
are defined by two parameters; the arc length s and the
sharpness α . These two parameters describe a curve spi-
ralling out of the origin along the x axis towards one
asymptote with infinite positive curvature (turning anti-
clockwise) in the positive x− y quadrant for s > 0, α > 0,
and towards a negative asymptote with infinite negative
curvature in the negative x− y quadrant where heading is
decreasing (turning clockwise) for s < 0 or α < 0. The
negative distance curve is just a reflection of the positive
one and all arcs can be joined by appropriate rotation and
translation so we may fix s ≥ 0. The positive part of the
curve with sharpness α = 5 is shown in Fig. 1. It can be
evaluated in Cartesian coordinates with the Fresnel inte-
grals which are reproduced in (3)-(4). The change in angle
over one segment is the deflection δ .

κ = κ0 +αs, (1)
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Fig. 1. Clothoid spiral with α = 5 for s > 0.
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δ =
∫ s

0
(κ0 +αu)du = κ0s+

αs2

2
, (2)

x =C(α,s,κ0) =
∫ s

0
cos(κ0 +αu)du, (3)

y = S(α,s,κ0) =
∫ s

0
sin(κ0 +αu)du. (4)

The symbol ψ will be used for resultant heading angle
after a number of segments. Whereas each δ increases un-
bounded, ψ is an angle measured clockwise from positive
x direction and may be wrapped in the range [0,2π] with-
out consequence. The configuration of a rigid body in a
2D plane with components [x,y,ψ] will be referred to as a
pose. See Appendix B for more details. The range of poses
reachable by varying the parameters of a single segment
are limited. Any x and y position can be reached by choice
of parameters α and s - this makes intuitive sense as the
parameter space is two dimensional as are the constraints.
In order to meet heading ψ and curvature κ constraints as
well, a spline composed of multiple clothoid segments is
needed. Note that a clothoid segment with α = 0 will form
either a straight line of length s if the initial curvature is
zero or an arc of length s otherwise.

2.2. Required number of Segments for Interpolation
First we consider G2 interpolation with clothoids. This

involves fitting clothoid segments to a series of points with
fixed [x,y,ψ,κ] as addressed in [9, 36]. It is helpful to
understand the way the required number of clothoid seg-
ments varies depending on the constraints applied. As we
intend to optimise some objective function of the curve
it is required that the solution is under-determined, that
numerous feasible solutions to the interpolation problem
exist allowing us to search over them to find the best.

G2 continuity is needed for a smooth path which is
traversable for a car-like vehicle [23, 24]. Its importance
for fork lift operation is detailed in [12]. As explained
in Section 2.1 there are two additional degrees of free-
dom available for each clothoid segment included in a G2-
continuous spline. The requirement to end on a specified
point with [x,y,ψ,κ] provides four constraints. This im-
plies that there is a unique solution for two segments per
point as this gives rise to four parameters and four con-
straints.

In order to connect a clothoid segment with a straight
line keeping G2 continuity, the clothoid must have zero
curvature at the point of connection. A clothoid pair with
zero curvature at the end can be described as ’matched’:
The curvature change κ = α · L over each segment is
equal and opposite. Such a pair is shown in Fig. 2 along-
side a curvature-arc-length plot for illustration. Gim et al
[23] show that the minimum reachable heading with two
matched clothoids is given by (5).

ψ > φ = arctan
(y

x

)
. (5)

x

y

φ ψ

More than
two

Two
Segments

κ

s

Fig. 2. The angle φ of the line joining the origin with the
target position (x,y) is the lower limit on heading
ψ reachable with two clothoid segments (the blue
curve). Smaller angles can be reached by adding
a third clothoid segment to create an S shape as
shown in green. Corresponding curvature κ arc
length s trace is plotted alongside.

This is because an s-shaped curve cannot be formed with
only two segments as illustrated in Fig. 2. In [23] smaller
angles are addressed with a second algorithm which com-
putes two matched clothoid pairs (four segments total) in-
stead. The advantage of the method is that the clothoids
do not have to be symmetrical, so the final position can be
reached with a lower sharpness and peak curvature as well
as a shorter path length in some cases compared to using
symmetric clothoid pairs.

The condition for the existence of an unsymmetrical
clothoid pair to fit three non-collinear points is given by
(6) reproduced from [37].

g
h + cos(ψ)

sin(ψ)
<

IC(ψ)

IS(ψ)
. (6)

The Fresnel Integrals defining the Cartesian position of
a clothoid given in (3) and 4 in Section 2.1 can equiva-
lently be expressed as integrals over deflection δ as de-
fined in (2).

x = a · IC(δ ) = a ·
∫

δ

0

cosu√
u

du, (7)

y = a · IS(δ ) = a ·
∫

δ

0

sinu√
u

du (8)

Equation (6) gives a maximum ratio of g/h in terms
of the final angle ψ . The length g is always the distance
to the furthest point from the intersection P and h is the
distance to the closer point, as shown in Fig. 3. As the
condition is given in terms of points rather than poses, the
requirement that the points not be collinear is equivalent to
(5) because ψ = φ would indicate collinearity and ψ < φ

would result in the opposite initial heading given by vec-
tor X1 − P. In order to avoid very short, high sharpness
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Fig. 3. The two limiting positions for an unsymmetrical
clothoid pair without line segments reaching an an-
gle ψ according to the g/h condition in (6). For
ψ = 90, IC(ψ)

IS(ψ) = 1.7749.

segments, straight line segments can be introduced before
or after the clothoid pair as suggested in [37]. This allows
unequal cases beyond the limits shown in Fig. 3 to be fit-
ted.

Using six parameters to describe two matched clothoids
with zero curvature at the beginning and end permits the
inclusion of a straight line at either end. The parameters
would be two for each clothoid segment (total four) and
two more for the length of the straight line at either end.
The paths created for automated driving by [23] use a
matched clothoid pair (two segments) for any corner. With
this number of segments, there are certain unreachable
poses as an s-shape cannot be formed within one region.
The limited flexibility of these paths should be sufficient
for executing a turn and returning to zero curvature in each
region.

2.3. Obstacle field representation
Any field of polygonal obstacles can be equivalently

represented as a set of possibly overlapping convex re-
gions of free space [5]. Path planning within convex re-
gions can be divided into the following steps:

1) Spanning. Convert obstacle representation into a small
number of possibly overlapping convex regions which
span the free space.

2) Assignment. Assign path segments to a sequence of
connected regions between the region containing the
start to the region containing the goal

3) Curve Fitting. Solve for the best path from the start to
the goal which remains within this sequence over its
entire length

The ‘Spanning’ problem involves calculating a mini-
mum number of spanning regions and is an NP hard prob-
lem in itself. A common representation of an obstacle field
constructed from range data is an occupancy grid [38].
This consists of a 2D array of cells and can be created
from uncertain range measurements from vehicles which

are able to estimate their own position [39]. Each cell rep-
resents an area of the floor, with a number p ∈ [0,1] indi-
cating the probability it contains an obstacle. A threshold
can be used to create a binary map of occupied and un-
occupied cells. The coarse obstacle-free region sets used
in the numerical examples can be generated using the ver-
tical decomposition method [40]. This begins with piece-
wise linear polygons, which can be created by connecting
the cell corners of a binary occupancy grid. More complex
environments and cluttered obstacle fields could be ad-
dressed using Iterative Region Inflation by Semi-definite
Programming as described in [41].

The advantage of the regions being convex is that they
can be solved guaranteeing optimality (that no other pa-
rameter set can minimize the objective further) and com-
pleteness (that if a path exists it will certainly be found).
Given that the polygonal representation is only an approx-
imation to the real obstacle field, it can only offer com-
pleteness within the limits of the resolution used to repre-
sent the obstacles but this provides more freedom than a
series of pose samples chosen heuristically and may per-
mit lower cost solutions in some cases.

Deits and Tedrake [18] use a mixed integer formulation
which addresses ‘Assignment’ and ‘Curve Fitting’ simul-
taneously to achieve optimal results.‘Assignment’ can also
be approached as a graph problem, where there is a node
for each region. Edges are inserted between regions which
are connected. Connected regions can be found easily in
configuration space as the vehicle is reduced to a point and
therefore if any corner of a region is contained within any
other, it is certain one is reachable from the other and they
should be connected in the graph. Using the straight line
distance between region corners to give an edge weight-
ing, results in an approximation of the shortest global path.
In this way the topology can be solved separately, com-
pensating for one weakness of numerical optimisation, the
‘topological blindness’ identified in [42].

2.4. Test environment 1
The first test environment was created for a hypothetical

item fetch AGV with a payload of 50kg and a top speed of
1m/s.

A simple region shape for exposition is an axis aligned
rectangle extending from xmin to xmax and from ymin to
ymax. Regions for the local avoidance problem are shown
in Fig. 4. We assume the assignment is available between
N regions and N clothoid pairs. Referring to Fig. 4, the
first pair will be assigned to the blue region, the second
pair to the red region and the last pair to the amber region.

2.5. Test environment 2
The second test environment shown in Fig. ?? was cre-

ated for an automated fork lift AGV research platform
which is taken to be representative [44]. The obstacles are
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Fig. 4. Example of an obstacle field represented as a set
of possibly overlapping empty convex regions. The
reference path is a straight dashed line along the
x-axis (to the right). The largest dimension of the
vehicle body used to expand the obstacles d and
the maximum deviation from the path is q.

Table 1. Dimensions from datasheet [43]. *Stopping dis-
tance R based on top speed 3.22m/s and hypo-
thetical braking deceleration of 4 m/s2.

Parameter Dimension (mm)
W 1067
L 1583
r 1289
Ls 1001

S0* 1200
R* 1300

L

r

W

R

Lb

S0

S0 +R

Fig. 5. Dimensions used to expand the obstacles.

Fig. 6. Pallet environment. Obstacles are black with ex-
pansion by the vehicle disk shown in purple.

based on (1.0×1.2)m pallets which are commonly used in
the UK and Netherlands [45]. The datasheet for the man-
ually operated vehicle on which the AGV is based, a Hys-
ter E30-40HSD [43] gives the dimensions in Table 1. The
plan of the vehicle is given in Fig. 5.

The datasheet gives the maximum speed as 7.2 miles
per hour (3.22 m/s). Traction is provided by dual 4.8 kW
motors. The unloaded weight of the vehicle is 3059 kg and
the battery 1043 kg for a total of 4201 kg [43].

For correct operation it is important to consider the
exclusion zone of the safety rated range sensor fitted to
the front of the vehicle. If an obstacle breaches the ex-
clusion zone the AGV must perform an emergency stop,
or in some cases slow down significantly. To avoid slow-
ing down the path planning must account for not only the
shape of the vehicle but also the shape of this zone. Often
this is a cuboid slightly wider than the vehicle, sufficiently
long that the AGV can come to a complete stop from full
speed before the front makes contact with a static obstacle.
More details are available in the NIST Safety Standards
[46].

In the two simulated environments the obstacle field
is represented in 2D. The bounding circle dimension is
strongly influenced by the stopping distance R. Starting
from the constant acceleration equation v2 = u2 +2as and
setting v = 0 gives the stopping distance s = u2

−2a .

2.6. Problem definition: Clothoid fitting to convex re-
gions

The core problem is G2 continuous path planning around
obstacles for a point robot. Using a convex spanning re-
gion approach described in Section 2.3 this can be di-
vided into a small number of sub-problems. This paper ad-
dresses the ‘Curve Fitting’ sub-problem in detail using the
path representation set out in Section 2.2. The approach is
described in Section 3.

The requirement for G2 (curvature) continuity provides
four constraints on each segment similar to the posture in-
terpolation problem [9]. In each region we permit one path
piece consisting of a line segment length s0,i, a matched
pair of clothoid segments defined by α1,i,α2,i,L1,i,L2,i and
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the other line segment length sF,i, as explained in Section
2.2. This provides a total of six free parameters per path
piece. As there are only four constraints per region the
problem is under-determined and the length of the straight
lines can be balanced against the length of the clothoids to
find the ideal combination. We consider the start and end
region to always be separate even if they overlap, so there
will be a minimum of four clothoid segments across the
whole spline and s-shapes are feasible.

3. METHOD: CLOTHOID FITTING TO CONVEX
REGIONS

The core routine is a method to find the parameters
of a sequence of G2-continuous (continuous in curvature)
clothoid segments which is contained entirely within a
chain of obstacle-free regions. We minimize the weighted
squared sum of path length and sharpness, over a sequence
of N path pieces assigned to N convex regions. The ob-
jective function is designed to trade off smoothness with
path length such that the best path is one that minimizes
the weighted squared sum of sharpness and path length
to reach the x, y, ψ and κ of the reference path. This is
captured in (9) below:

min
ααα,LLL,s0s0s0,sFsFsF

JT = b ·αααT
ααα +LLLTLLL+s0s0s0

Ts0s0s0 +sFsFsF
TsFsFsF

such that

{
ceqceqceq(ααα,LLL,s0s0s0,sFsFsF) = 000,
ccc(ααα,LLL,s0s0s0,sFsFsF)≤ 000,

with bounds LLL≥ 000,s0s0s0 ≥ 000,sFsFsF ≥ 000. (9)

Bold variables indicate vectors of the parameters defined
in Section 2.1 for every path piece. Scaling parameter b
is discussed in Section 3.1. The equality constraints arise
from enforcing continuity between each piece and of the
first and last segments with the origin and destination re-
spectively. The inequality constraints relate to the require-
ment to remain outside every obstacle. The first deriva-
tives of the objective and constraints are given in Ap-
pendix A.

3.1. Objective function
Two important objectives for an alternative path for an

AGV are the total length and the peak sharpness. Both of
these properties are desirable rather than mission critical
so they are useful in resolving the many solutions which
are available to reach a given pose smoothly. Other perfor-
mance measures such as reaching the destination exactly,
limiting the peak curvature and avoiding the obstacles are
better interpreted as hard constraints, as it is not useful to
compromise them in any way for the measures which are
only desirable.

The degree to which smoothness is important com-
pared to path length may depend on the application so
it is left with a scaling parameter b. The units of b are

m2 per radian2/m4 = m6·radian−2. If b is set very high,
smoother paths can be attained, at the cost of increasing
path length. In general there is a trade off between path
length and smoothness (measured by the least maximum
rate of change of curvature as identified by [24]).

Results will be reported with three alternative parame-
ters settings for b, with and without the straight lines, as
described below.

• Equal Weighting with Lines, b = 1, min
αi,Li,s0,sF

JT =

N
∑L2

i +
N
∑α2

i

• Equal Weighting no Lines, b = 1, s0 = 0, sF = 0,

min
αi,Li

JT =
N
∑L2

i +
N
∑α2

i

• Minimum Sharpness, no Lines, b = inf, s0 = 0, sF =

0, min
αi

JT =
N
∑α2

i

3.2. Equality constraints for region i
For continuity, the spline must reach the goal pose and

curvature given by [x̂, ŷ, ψ̂,0]T . A straight line s0 before
and sF after the clothoid pair is included while maintaining
curvature continuity by the constraint κ = 0 which forces
the clothoid pair to be matched, smoothly returning the
curvature to zero at the end.

For multiple regions, the continuity constraints are ap-
plied implicitly by integrating each segment starting from
the final pose of the last. As the curvature is zero at the
end of each pair, this can be done by integrating pairwise
from the origin as in (10) followed by a rotation and trans-
lation to the final pose of the last segment using the ⊕ op-
erator detailed in Appendix B. This is an example of sin-
gle shooting trajectory optimisation as described in [47].
Each region gives rise to one additional κ = 0 constraint,
to ensure the straight lines s0,i and sF,i can be added with
curvature continuity.

xi

s0,i +C(α1,i,L1,i,0)
+ cos(δ1,i) ·C(α2,i,L2,i,km,i)
− sin(δ1,i) ·S(α2,i,L2,i,km,i)
+ sF,i · cos ψ̂i

yi

sin(δ1,i) ·C(α2,i,L2,i,km,i)
+ cos(δ1,i) ·S(α2,i,L2,i,km,i)
+ sF,i · sin ψ̂i

ψi α1,iL2
1,i/2+α2,iL2

2,i/2
κi α1,iL1,i +α2,iL2,i


. (10)

The path in local coordinates for one piece given by
(10) can be composed using the ⊕ operator to find the
final position in global coordinates.

[Xi,Yi,Ψi]
T =[Xi−1,Yi−1,Ψi−1]

T ⊕ [xi,yi,ψi]
T ,

∀ i ∈ [1,N],

where capital letters indicate global coordinates. The first
region is given the index i = 1. [X0,Y0,Ψ0] indicates the
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starting position. This is taken to be the origin of the coor-
dinate system.

3.3. Equality constraints vector
Subtracting the goal pose from the Nth pose in global

coordinates gives the equality constraints, where N is the
total number of convex regions under consideration.

ceqceqceq =



XN− X̂
YN− Ŷ
ΨN− Ψ̂

κ1−0
...

κN−0


= 000. (11)

Note that the ceqceqceq array is length N +3 as there is a con-
straint on curvature at the end of each clothoid pair κi. The
other quantities are scalar and refer to the pose of the final
segment at the end of the spline.

3.4. Inequality constraints
In order to operate on the obstacle field directly and

avoid spatial sampling, inequality constraints are used to
fix the segments inside their assigned regions. The assign-
ment of curve sections to regions will not be discussed
here, but can be approached as an integer problem to find
the boolean assignment matrix HHH(N×R) which results in the
lowest cost solution. R is the number of regions in the map,
and N is the number of pieces of the spline between the
start and the goal. A simple region shape for exposition
is an axis aligned rectangle extending from Xmin to Xmax

and from Ymin to Ymax. This leads to the following eight
inequality constraints on every region, ensuring that both
the start and end of each piece are contained.

Based on the assignment HHH(i, j), indicating path piece i
must be entirely contained in region subscript j. The con-
straints for one region are given by

HHH(i, j) = 1 ⇐⇒ dididi =



Xi−Xmax, j

−Xi +Xmin, j

Yi−Ymax, j

−Yi +Ymin, j

Xi−1−Xmax, j

−Xi−1 +Xmin, j

Yi−1−Ymax, j

−Yi−1 +Ymin, j


≤ 000. (12)

These inequality constraints ensure the start and end of
the curve piece i assigned to region j remain inside the
region. The position at the start of curve i is identical to
the position at the end of curve i−1 by the application of
the continuity constraints. For the first curve the start is
fixed at the origin by the choice of coordinate frame. The
inequality confirms that the initial position must be in a
region of free space for a solution to exist.

The constraints for the entire problem can be con-
structed by stacking di for each region into a partition vec-
tor as follows:

cineqcineqcineq =

 d1d1d1
...

dNdNdN

≤ 000. (13)

Constraint (12) only applies to the start and end of each
clothoid pair, not the entire curve. This works quite well
when the curvature remains low but will cause a problem
for certain combinations of region shape and path curva-
ture as discussed in Section 4.2.

3.5. Multiple shooting formulation
Alternatively the problem can be posed as a multiple

shooting trajectory optimisation by the terminology of
[47]. The suggestion is that although there are more nu-
merous parameters and more constraints on the multiple-
shooting problem, it may counter-intuitively be easier for
the solver because each parameter-constraint pair is more
independent and closer to linear. This involves extra pa-
rameters X0,i, Y0,i, Ψ0,i which provide a pose offset for
each clothoid pair and explicit continuity constraints be-
tween each clothoid pair and the last. The problem would
then be described as

min
ααα,LLL,s0s0s0,sFsFsF ,X0X0X0,Y0Y0Y0,Ψ0Ψ0Ψ0

JT = b ·αααT
ααα +LLLTLLL+s0s0s0

Ts0s0s0 +sFsFsF
TsFsFsF

subject to

{
c̃eqc̃eqc̃eq(ααα,LLL,s0s0s0,sFsFsF ,X0X0X0,Y0Y0Y0,Ψ0Ψ0Ψ0) = 000,
c̃ineqc̃ineqc̃ineq(ααα,LLL,s0s0s0,sFsFsF ,X0X0X0,Y0Y0Y0,Ψ0Ψ0Ψ0)≤ 000,

with bounds LLL≥ 000, s0s0s0 ≥ 000, sFsFsF ≥ 000. (14)

Now the coordinates are calculated slightly differently,
using the new offset parameters rather than a recurrence
relation.

[Xi,Yi,Ψi]
T =[X0,i−1,Y0,i−1,Ψ0,i−1]

T ⊕ [xi,yi,ψi]
T ,

∀ i ∈ [1,N],

where capital letters indicate global coordinates.
Subtracting the final pose and curvature of the previous

pair from the initial pose each pair, with zero curvature
gives the equality constraints for that region arising from
continuity

q̃iq̃iq̃i =


X0,i−Xi−1

Y0,i−Yi−1

Ψ0,i−Ψi−1

κ0,i−0

= 000. (15)

There is also a constraint with the goal pose similar to the
single shooting form, which must be included in the stack.

q̃goalq̃goalq̃goal =


XN− X̂
YN− Ŷ
ΨN− Ψ̂

κN−0

= 000. (16)
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Here we use the first subscript of X0, i to indicate it is
the X offset for the region given by the second subscript.
The offsets are new search parameters for this formula-
tion. Symbols with a single subscript, the subscript identi-
fies the region and Xi refers to that at the end of the curve
assigned to that region. Again the first region is given the
index i = 1. The start pose is [X0,Y0,Ψ0]. This is taken to
be the origin of the coordinate system.

The inequality constraints for the entire problem can be
constructed by stacking k̃i for each region into a partition
vector as follows:

c̃ineqc̃ineqc̃ineq =


q̃1q̃1q̃1
...

q̃Nq̃Nq̃N

q̃goalq̃goalq̃goal

= 000. (17)

The inequality constraints for region i are given by

HHH(i, j) = 1 ⇐⇒ d̃ĩdĩdi =



Xi−Xmax, j

−Xi +Xmin, j

Yi−Ymax, j

−Yi +Ymin, j

Xi−1−Xmax, j

−Xi−1 +Xmin, j

Yi−1−Ymax, j

−Yi−1 +Ymin, j


≤ 000. (18)

The constraints for the entire problem can be constructed
by stacking d̃i for each region into a partition vector as
follows:

c̃ineqc̃ineqc̃ineq =

 d̃1̃d1̃d1
...

d̃ÑdÑdN

≤ 000. (19)

4. NUMERICAL RESULTS

First, in Section 4.1 the suitability for finding the
smoothest path subject to obstacle constraints is tested on
an environment similar to Fig. 4. Subsequently, an alter-
native formulation, the effect of analytical gradients, tun-
ing parameter b and the objective function are evaluated
for their potential in speeding up the solution. A number
of tests without obstacles are included in Section 4.5 and
4.6 so path parameters can be compared with an existing
heuristic method.

4.1. Motivating problem
The tested problem concerns the avoidance of a small

obstacle blocking a straight path while remaining within a
set tolerance from it. The allowable distance from the orig-
inal path is used to generate the outer boundary enclosing
[0, 5] and [11, -5]. With the obstacle information available
from sensors this is broken up into three convex regions.
As set out in Section 2.2 this necessitates a path with six
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y
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]

X
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 =[11   0   0   0]

2 4 6 8 10 12

s[m]

-1

-0.5

0

0.5

Sharpness [rad.m-2]

Curvature [rad.m-1]

Fig. 7. Single shooting optimal avoidance path for a ve-
hicle traveling along the x-axis which encoun-
ters a rectangular obstacle at [5,-2.5], extending
to [6,2.5], rejoining the reference path at [11, 0].
Weighting parameter b = 1.

clothoid segments, two at the start, two at the goal and two
at an intermediate region needed to connect the two.

The single shooting formulation was solved using
interior-point1method in 36 iterations to produce the path
and curvature profile shown in Fig. 7. The region con-
straints are satisfied. This can be seen as each of the four
segments is marked with an open circle. The same points
are marked with open circles in the curvature and sharp-
ness profile shown below the x-y plot in Fig. 7. These can
be used to evaluate the quality of the path without refer-
ence to a specific vehicle model. The largest magnitude
curvature is found at the midpoint with a value of -1.233
[m−1], corresponding to a turning radius of 811mm, suit-
able for a small vehicle with Ackermann steering, hav-
ing a wheelbase less than 811mm. The largest magnitude
sharpness of 0.8388 [radm−2] is seen on the segments be-
fore and after the peak curvature. This path can be tracked
with high accuracy by different AGVs by reducing for-
ward speed to control the lateral acceleration based on the
path curvature, and the angular acceleration based on the
sharpness.

The single shooting formulation reduces the number of
parameters which might be expected to reduce total exe-
cution time. In fact, it took multiple seconds to reach con-
vergence on the small 20m×10m environment made up of
three regions tested.

4.2. Weighting parameter b effects
The weighting parameter b has a significant effect on

convergence time as shown in Fig. 8. The number of
iterations and function evaluations increased for larger
weights, in the same way as time to convergence.
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The two path plots cover both extremes of weighting
tested for the avoidance problem. Fig. 9(b) shows the ef-
fect of a small weighting on sharpness. The path is shorter,
the peak sharpness is higher, but it is not the shortest con-
tinuous path which would pass through the corner formed
by region one and two (the top one). The segments are
close to equal length because, for a set of numbers with
a fixed sum, the sum of squares will be minimized if
the numbers are equal. This provides a bias toward equal
length segments and may contribute to the success of an
equal weighting of the two components.

Fig. 9(a) shows the effect of a large weighting on sharp-
ness. The path is longer and more meandering but has
lower peak sharpness. The constraints are met as the start
and end are contained but the curve leaves the convex re-
gion at the top. Because the region constraint is not applied
to the point of peak curvature, there are a large number of
feasible solutions with similar sharpness. This makes an
objective based on sharpness (b >> 1) very flat close to
the minimum with this set of obstacles. Looking through
the text output of fmincon, a feasible solution according to
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Fig. 8. Convergence time as weighting b between sharp-
ness and length is varied.
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(b) b = 10−3.

Fig. 9. Path comparison for extremes of b.

the threshold of 1e-6 is found earlier but the search contin-
ues until the threshold is reached. To solve this problem,
the region constraints need to be be applied to additional
samples along the path.

4.3. Obstacle avoidance multiple shooting formula-
tion

In the multiple shooting formulation by contrast, the curve
positions in one region are independent of the parameters
of the earlier segments due to the introduction of a new
[X0,Y0,Ψ0] offset parameter for each region and a new
constraint that this offset matches the final pose of the
curve in the preceding region.

With the initial guess shown in Fig. 10(a) the solver
must find offsets which satisfy both continuity and region
containment. This can give better performance than single
shooting in some cases involving longer splines [47]. In
the problem shown in Fig. 10(b) with three regions the dis-
continuities have been resolved after convergence, the ex-
ecution time is comparable with single shooting, slightly
improved, with around 700 function calls using interior
point method.

This is despite increasing the number of parameters
from six per region to nine per region (18 to 27 with
N = 3), and the number of constraints from 4+N equality
and 8N inequality (7 and 24 with N = 3) to 4+4N equal-
ity and 8N inequality (16 and 24 with N = 3). The number
of inequality constraints could be reduced slightly for the
multiple shooting by fixing the start position at the world
origin, to match the features of the single shooting setup.

4.4. Curve fitting with two clothoids with different
objectives

Cartesian path and curvature profile results for a single re-
gion containing two clothoid segments and two straight
lines are shown in Fig. 11(a) for comparison to those re-
ported by [23] for two matched clothoids. For illustration
the parameters identified for the same final pose by our

0 2 4 6 8 10

x[m]

-5

0

5

y
[m

]

X
G

 =[11   0   0]

(a) Initial parameter guess.
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(b) After convergence.

Fig. 10. Multiple shooting initial guess (αi = 1.0, Li =
1.0) showing path continuity constraints are not
met until the optimisation has converged.
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Fig. 11. Side by side comparison of a path from the origin
to [8,6, 60], curvature profile is shown below.

Table 2. Parameters identified for a path from [0,0,0] to
[8,6,60]. The objectives are explained in Section
3.1.

Equal Weighting,
with Lines

Minimum Sharpness,
no Lines

α1 [m−2] 0.1472 0.1094
α2 [m−2] -0.1135 -0.0222
L1 [m] 2.4893 1.7981
L2[m] 3.2281 8.8535
s0 [m] 1.5966 0
sF [m] 3.7390 0

Total Length [m] 11.0529 10.6516
κm [m−1] 0.3633 0.1966

interior-point
iterations

12 2000+

interior-point
funcCount

101 16220+

sqp iterations 15 12
sqp funcCount 130 89

method with two different cost functions are shown in Ta-
ble 2.

There are two remarks to make here. Firstly, the [8,6,60]
point meets the condition in (6), Section 2.2 and can be
reached exactly with two clothoids and no line segments.
Many nearby points require a line to be included at the
end of the clothoid pair for convergence, particularly those
with lower final angles (closer to the limit given by (5)).
Secondly, the initial guess had to be very close to the min-
imum in order to reach convergence at all with interior-
point method for this problem. Using the ‘Equal Weight-
ing with Lines’ objective an initial guess of [1, -1, 1, 1, 1,
1] converged in 12 iterations with interior-point method.
With the same initialisation vector and the ‘Minimum
Sharpness, no Lines’ objective, interior-point did not con-
verge within 2000 iterations. If the solver was changed to
sqp convergence took 12 iterations and 89 function evalu-
ations. The interior-point method is shown to be slightly
faster on some problems but less stable than sqp on the
limited numerical tests performed. These tests only in-
volved three regions, leading to 18 parameters and 16 con-
straints. It is a notable advantage of the convex region rep-
resentation that the number of regions can be strictly lim-
ited even in environments with lots of clutter. The docu-
mentation lists sqp as a medium-scale algorithm, which
needs to store and operate on matrices with the dimen-
sion of the parameters [48]. If problems are encountered in
larger tests, interior-point is a large scale-algorithm which
does not rely on dense matrix operations, and should per-
form better. Due to the general constrained form of the
problem other highly optimized methods for specific per-
formance needs could be used depending on the needs
of the application (e.g., limited processing time, limited
memory, embedded platform. . . ).

The ‘Minimum Sharpness, no Lines’ solution would be
expected to be longer with lower peak sharpness than the
‘Equal Weighting, with Lines’ solution, as only reducing
sharpness contributes to the objective. As expected Table
2 shows the peak sharpness is reduced from 0.1472 to
0.1094, around 30%. Surprisingly the total length of the
‘Minimum Sharpness, no Lines’ solution is also less than
the ‘Equal Weighting, with Lines’. In this case sqp is stuck
in a local minimum when additional straight lines are in-
cluded. Line segments must be permitted for convergence
on cases outside the boundary of the existence criteria in
Section 2.2, but it seems that well within the boundary
such as the end point in Fig. 11(a), considering line seg-
ments may lead to the introduction of local minima.

4.5. Curve fitting with two clothoids with analytical
gradient

The impact of analytical gradients was tested on a sin-
gle region containing two segments to the point [8, 6, 40],
close to the lower angle limit, as shown in Fig. 12(b). With
an initial guess which did not meet the regions constraints
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ppp = [0.1,−0.1,1,1,1,1], interior-point method1 failed to
converge. The alternative algorithm sqp1 converged in
27 iterations with or without derivatives as shown in
Fig. 12(a). When using analytical derivatives the number
of function evaluations was reduced from 264 total to 123
total but the total execution time increased from 1.33 sec-
onds to 2.28 seconds2. Therefore the mean execution time
per function evaluation increased from 1.33/264 = 5 ms
to 2.28/123= 18 ms with the additional of numerical gra-
dients.

On a similar problem with a different goal heading, pro-
viding analytical derivatives reduced the function count
reported by fmincon from 213 to 55 and the number of
iterations to reach the same optimality threshold from 25
to 24. However the computation time increased by about
50% from 2.35 seconds to 3.00 seconds. If the solver was
changed to sqp2, the effect was similar. Slightly reduced
count of function evaluations but an increased computa-
tion time. This may be due to the numerous integral terms
in the expressions for the gradients taking more time to
evaluate than the function at multiple locations to allow
differencing. There are 22 integrals to evaluate in the Jaco-
bian. Only two integrals are required to evaluate the objec-
tive function. Equations (3)-(4) were evaluated with Vec-
torized Adaptive Quadrature method [49] with a relative
tolerance3 of 10−6 . No attempt was made to store and
reuse repeated terms in the Jacobian, although there are
several.

4.6. Curve fitting with four clothoids with different
objectives

In order to enable further comparison with the bisection
method of Gim et al. [23], another test was reproduced in-
volving an s-shaped path comprising four clothoids to the
pose [12,10,θ ], where θ varied in increments of 10 de-
grees. This shows clearly the trade off between path length
and peak sharpness.

The ‘Equal Weighting, with Lines’ set of paths is shown
in Fig. 13. For the final angle of -30 degrees the key pa-
rameters of the solution are shown in Table 3. The cost is
equivalent to penalizing path length with b = 1 [m6 rad−2]
but because each segment is squared individually, the cost
is lower if each segment is of similar length. The ‘Mini-
mum Sharpness, no Lines’ set of paths for comparison is
shown in Fig. 14. For every tested heading the path is sig-
nificantly longer than the ‘Equal Weighting, with Lines’
solution, while the peak sharpness is much lower. This
makes intuitive sense because over longer distances the
shortest path is a straight line. As the sharpness is in-

1interior-point and sqp are available as options for the fmin-
con function of MATAB.

2Numerical tests ran on a consumer laptop with 16GB RAM
and an Intel(R) Core(TM) i5-8250U CPU @1.60GHz.

3Vectorized Adaptive Quadrature is available in MATLAB as
a built in function q=integral(fun, xmin, xmax), the default upper
bound on error is 10−6×q.
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Fig. 12. Comparison of performance with and without an-
alytical gradients. The number of iterations is
high because the heading angle at the end is close
to the lower limit given by (5) for this position.

creased the path comes to resemble the point to point line
more closely.

Convergence with the ‘Equal Weighting, with Lines’
cost was particularly strong in the experiments attempted
compared to either the more natural absolute sum of the
segment lengths, all squared J = (∑ j |α j|)2 +(∑ j |L j|)2 +
(∑ j |s0, j|)2 + (∑ j |sF, j|)2 or the minimum sharpness with
the line segments fixed at zero so J = (∑ j |α j|)2. Again
the minimum sharpness approach produced paths almost
identical to the bisection method proposed by [23] on the
examples they reported.
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Fig. 13. Six lane change paths with objective ‘Equal
Weighting, with Lines’, each ending at the same
point [12,10] with a heading θ separated by 10
degrees.

Table 3. Parameters identified for a path from [0,0,0] to
[12,10,-30]. This is one of the curves plotted in
Fig. 13. The objectives are explained in Section
3.1 Units α m−2, κ m−1, L m.

Equal
Weighting
with Lines

Equal
Weighting,
no Lines

Minimum
Sharpness,
no Lines

α1 0.1707 0.0552 0.0727
α2 -0.1404 -0.0443 -0.0709
α3 -0.2808 -0.0894 -0.0745
α4 0.4582 0.1716 0.0665

Peak Sharpness
max |αi|

0.4582 0.1716 0.0745

L1 2.4569 4.8616 4.7639
L2 2.9860 6.0572 4.8878
L3 2.7117 5.4077 5.2704
L4 1.6615 2.8180 5.967
s01 1.7170 0 0
sF1 3.2565 0 0
s02 3.2565 0 0
sF2 0.0893 0 0

Total Length 18.14 19.1445 20.8288
κm1 0.4142 0.2685 0.3464
κm2 -0.7557 -0.4837 -0.3928

The final position was taken from [23] so it can be used
to compare the curvature profile and path trace to the one
produced by the bisection method presented in that paper.
This is a root finding approach which is suitable for meet-
ing the constraint on final position. No objective function
is defined so the first solution which meets the constraint
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Fig. 14. Six lane change paths with objective ‘Minimum
sharpness, no lines’, each ending at the same point
[12,10] with a heading θ separated by 10 degrees.

tolerance will be accepted. The ‘Minimum sharpness, no
Lines’ path trace in Fig. 14 looks very similar to the paths
produced by the bisection method. The total length of both
is around 20.8m. The coordinate system differences make
side by side comparison a little challenging, as they used
a start position of [0,0,90] ending at [10,12,120] which is
the same path subject to some affine transformations. The
curvature profile is comparable side-by-side and shows the
sharpness of each section found by bisection to be close
to 0.07125, very close to the average of the ‘Minimum
Sharpness, no Lines’ column in Table 3.

The optimisation method has a clear advantage as it
searches intermediate angles by continuously varying the
length and sharpness of the first two clothoid segments.
Bisection with four clothoids by contrast only searches
very coarsely over intermediate angles (every 10 degrees).
Searching more effectively should be a big advantage of
using optimisation, but in this particular example the im-
provement is very small. The main benefit of the new
method is the ability to take into account obstacle con-
straints at the start and the end and find a path purely from
a polygonal representation of the obstacles.

A range of curves with θ varying from -30 degrees to
20 degrees is shown in Fig. 13. The parameters can be
compared to the same range of angles with a cost func-
tion which only penalizes the sum of squared sharpness
of each segment and forces the straight lines at the start
and end of each segment to zero in Table 3. The sharpness
is reduced but the total path length is increased until it is
almost identical to the curve plotted in [23]. The added
value of using four segments over three is questionable as
the middle two take almost the same value.

The expected trade off between peak sharpness and to-
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tal path length can be seen in Table 3.

4.7. Effect of small changes to region boundaries
When the convex regions are constructed based on an

occupancy grid as suggested in Section 2.3 measurement
errors may lead to sudden changes in the size of the free
space as the probability of one cell being occupied crosses
the threshold. In this situation the size of the position shift
would be determined by the cell size of the binary oc-
cupancy grid. The cell size is typically made larger than
the sensor noise by some constant factor. A cell size of
100mm was selected to provide an ample boundary for a
common sensor with zero mean error, 10mm standard de-
viation [50].

The offset error was varied in increments of 100mm,
and the resulting change in objective function is shown in
Fig. 15. Both curve types increase linearly with the posi-
tion error at first. The cubic objective is the second deriva-
tive of position, while the clothoid minimized ‘Equal
Weighting With Lines’ from Section 3.1 The clothoid
curve objective increases more slowly until the final offset
of 0.5m which causes a step change in the objective. This
seems to be related to the lack of a constraint on the mid-
point of the curve piece. As the obstacle is shifted the path
must deflect more and in this case the midpoint leaves its
assigned region. The problem of sensor errors pushing the
path planner into a suboptimal local minimum could be
significant. An additional constraint the midpoint should
resolve it in this case, but for real world implementation
some kind of safety checks will be needed before attempt-
ing to drive a new path for situations like this.

4.8. Curvature comparison with cubic spline on envi-
ronment 2

Side by side comparison reveals the clothoid curve in
Fig. 16 has a higher peak curvature and is much smoother
as measured by the peak sharpness. Cubic curves are sim-
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Fig. 15. Normalised objective function against a linear
shift of the boundary in x and y.

ple to implement and often used for path planning. The
cubic curve only has enough degrees of freedom to meet
the heading constraint at the start and end by relaxing the
constraint on second derivative to zero at the start and the
end. The cubic curve in Fig. 17 is continuous and the peak
of 1.5m is feasible with a limited steering angle vehicle,
however the curvature plot reveals rapid changes in cur-
vature. The sharpness peaks at the start and end and is
too large to be shown on the figure. This is will result in
the steer-drive wheel actuating rapidly and likely greater
tracking error by an AGV attempting to follow it. Using
a higher order polynomial could improve on this, but not
to the extent of the clothoid curve which has piecewise
constant sharpness and the magnitude is always less than
2[m−2] so it can be tracked by a real AGV such as the one
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described in Section 2.5.

5. CONCLUSION

The formulation presented in Section 3 is sufficient
to solve the path planning with obstacle constraints us-
ing clothoid curve segments with G2 continuity, using a
generic constrained non-linear solver. The path with three
regions converges reliably and it can be extended to more
complex scenes. Execution time of several seconds in-
dicates a need for further optimisation, but the path is
equally smooth as the interpolation method of Gim et al
[23], without the need for a sequence of points from man-
ual driving or a heuristic for selection of waypoints based
on the obstacle field, likely to be suboptimal.

The key concern of industrial automation which it ad-
dresses is optimal planning with clothoid curves based
on a polygonal obstacle representation which can be con-
structed from range sensors such as LIDAR. The method
is therefore most useful for applications where path qual-
ity is important and updates are required less frequently.
For example, a centralized adaptive replanning module
which is tightly integrated with a central routing algorithm
which collects information from a number of sensors and
vehicles and makes safety critical path alteration decisions
as discussed in [1]. Interaction with other vehicles may be
based on the allocation of regions at different times. Val-
idating the interactions becomes much easier if the infor-
mation is collected from different sources (around blind
corners for example) and a safe alternative path is gener-
ated which can be followed by the existing vehicle control
system.

Freedom to choose a different objective function or
weighting parameter b to generate different shape paths is
a strength of this formulation but also reveals the weak-
ness of using an optimisation approach. Different ob-
jective functions have different convergence characteris-
tics for the same boundary conditions. One based on an
equal weighting converges nicely but as b is increased,
emphasising smoothness convergence takes longer as the
constraints are only enforced at the start and end of
each segment. The search of infeasible solutions leads to
wasted iterations, especially when b > 100. The appropri-
ate weighting for b might best be addressed using knowl-
edge of the speed controllers to be used for path traversal
in order to plan minimum time paths around obstructions
and minimize the delay from obstructions in a site.

Real-time performance is important for the method to
be useful as part of a AGV control system. The multiple
shooting form was not much faster on the small environ-
ments tested. The analytical Jacobian of the constraints
was effective at reducing the number of function evalua-
tions to reach convergence but not total execution time. An
improved implementation with more reuse of terms could
approach the factor of two reduction in function evalua-

tions recorded. Even with this improvement, the presented
method would be slower than existing heuristic methods
for clothoid parameter estimation. Its strength lies in the
guarantee of optimality given the obstacle polygons (sub-
ject to convergence, which was strong in the limited nu-
merical examples tested). Other avenues to improve per-
formance in further work should explore improving the
initial parameter guess based on the point to point solu-
tion between the corners of the regions, and the use of
alternative numerical methods designed for convex con-
strained problems such as CVX [51]. Finally, even with
execution time of several seconds it is possible to use au-
tomatic adaptive paths in some situations, as the clothoid
shape allows reuse of the same optimal path by vehicles
with differing dynamics by adjustment of the longitudinal
speed to control the steering rate.

Expanding the environment with a disc the size of the
largest dimension of the vehicle is a gross approximation,
which will lead to over cautious paths. It would be better
to represent the obstacles in (2 + 1) dimensions, and plan
in (x,y,ψ). Obstacles can then be expanded based on the
current heading of the path as described in [18] who use a
sum of squares approach to find (2+1)D convex polygons.
Applying these (2+1)D constraints to the optimisation pre-
sented here would be straightforward but the number of
path pieces needed to make the entire space reachable may
be different. This could be investigated in a future study.

Testing a wider range of environments is left to fur-
ther work. This may motivate an increase in the number
of obstacle constraint points on the path to prevent clip-
ping problems seen in Section 4.2. A constraint on the
point of peak curvature may be most helpful before sam-
pling the curve at approximately linear intervals. We were
not able to prove the statement “provided N connected re-
gions can be found between two poses, there always ex-
ists a smooth path between them comprised of line seg-
ments and clothoids in the order L-C-C-L”. A wider range
of test cases would give confidence that this is true in
many cases. Further testing would also be useful to iden-
tify cases where a path exists but the peak curvature is so
high a vehicle would have to slow down unacceptably to
traverse it.

APPENDIX A: ANALYTICAL GRADIENTS OF
THE SINGLE SHOOTING FORMULATION

WITHIN ONE REGION

Stacking the parameters for the optimisation de-
scribed in Section 3 into a single vector ppp1×6 =
[α1,α2,L1,L2,s0,sF ]

T allows the Jacobian of the objec-
tive for one region to be expressed as

∂JJJ
∂ ppp

= 2 · [bα1,bα2,L1,L2,s0,sF ]
T . (A.1)
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The pose at the end of the path piece in the region of in-
terest is [XF ,YF ,ΨF ]. For the derivatives we only consider
one path piece, and drop the i subscript used in (10). The
equality constraint vector with goal pose [X̂ ,Ŷ ,Ψ̂] is given
by

ceqceqceq =


XF − X̂
YF − Ŷ
ΨF − Ψ̂

κF −0

= 000, (A.2)

and the inequality constraints to remain within a square
region bounded by [Xmax,Xmin,Ymax,Ymin] is given by

cineqcineqcineq =


XF −Xmax

−XF +Xmin

YF −Ymax

−YF +Ymin

≤ 000. (A.3)

The matrix derivatives ∂ccceq

∂ ppp

(6×4)
and ∂cccineq

∂ ppp

(6×4)
were con-

structed from scalar partial derivatives listed below. Each
element is defined in terms of the parameters ppp in the
following sections. The symbols are introduced in Sec-
tion 2.1, the starting pose is taken to be the origin, so the
end pose in global coordinates is given by (10). Functions
C(α,s,κ) and S(α,s,κ) are defined by (3) and (4), respec-
tively. The peak curvature where the two clothoids meet is
given the symbol κm = α1L1 and the final heading at the
end of the second clothoid is given by ΨF =

α1L2
1

2 +
α2L2

2
2 .

A.1. Components with respect to α1

∂XF

∂α1

=
∫ L1

0
−u2

2
sin
(

α1u2

2

)
du

+ cos(δ1)
∫ L2

0
(−L1 ·u)sin

(
α1L1 ·u+

α2u2

2

)
du

+(−sin(δ1)L2
1/2)

∫ L2

0
cos(α1L1 +α2u)du

− sin(δ1)
∫ L2

0
(L1 ·u)cos

(
α1L1 ·u+

α2u2

2

)
du

−
(
cos(δ1)L2

1/2
)∫ L2

0
sin(α1L1 +α2u)du

+ sF(L1L2 +L2
1/2)(−sinΨF), (A.4)

∂YF

∂α1

=
∫ L1

0

u2

2
cos
(

α1u2

2

)
du

+ sin(δ1)
∫ L2

0
(−L1 ·u)sin

(
α1L1u+

α2u2

2

)
du

+(cos(δ1)
L2

1

2
)
∫ L2

0
cos
(

α1L1u+
α2u2

2

)
du

+ cos(δ1)
∫ L2

0
(L1 ·u)cos

(
α1L1u+

α2u2

2

)
du

+(−sin(δ1)
L2

1

2
)
∫ L2

0
sin
(

α1L1u+
α2u2

2

)
du

+ sF(L1L2 +L2
1/2)cos(ΨF), (A.5)

∂ΨF/∂α1 =
1
2

L2
1 +L1L2, (A.6)

∂κF/∂α1 = L1. (A.7)

A.2. Components with respect to α2

∂XF

∂α2
= cos(δ1)

∫ L2

0

(
−u2

2

)
sin
(

α1L1u+
α2u2

2

)
du

− sin(δ1)
∫ L2

0

(
u2

2

)
cos
(

α1L1u+
α2u2

2

)
du

+ sF(−sinΨF)

(
L2

2

2

)
, (A.8)

∂YF

∂α2
= sin(δ1)

∫ L2

0
−u2

2
sin
(

α1L1u+
α2u2

2

)
du

+ cos(δ1)
∫ L2

0

u2

2
cos
(

α1L1u+
α2u2

2

)
du

+ sF(cosΨF) ·
(

1
2

L2
2

)
, (A.9)

∂ΨF

∂α2
=

1
2

L2
2, (A.10)

∂κF

∂α2
= L2. (A.11)

A.3. Components with respect to L1

∂XF

∂L1

= cos(α1L2
1/2)

+ cos(δ1)
∫ L2

0
(−α1 ·u)sin

(
α1L1u+

α2u2

2

)
du

+(−sin(δ1)α1L1)
∫ L2

0
cos
(

α1L1u+
α2u2

2

)
du

− sin(δ1)
∫ L2

0
(α1 ·u)cos

(
α1L1u+

α2u2

2

)
du

− (cos(δ1)α1L1)
∫ L2

0
sin
(

α1L1u+
α2u2

2

)
du

− sF(α1L1 +α1L2)sin(ΨF), (A.12)

∂YF

∂L1

= sin(α1L2
1/2)

+ sin(δ1)
∫ L2

0
(−α1 ·u)sin

(
α1L1u+

α2u2

2

)
du

+(cos(δ1)α1L1)
∫ L2

0
cos
(

α1L1u+
α2u2

2

)
du
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+ cos(δ1)
∫ L2

0
(α1 ·u)cos

(
α1L1u+

αu2

2

)
du

+(sin(δ1)α1L1)
∫ L2

0
sin
(

α1L1u+
α2u2

2

)
du

+ sF(α1L1 +α1L2)cos(ΨF), (A.13)

∂ΨF

∂L1
= α1L1 +α1L2, (A.14)

κF

∂L1
= α1. (A.15)

A.4. Components with respect to L2

∂XF

∂L2
= cos

(
α1L1L2 +

α2L2
2

2

)
cos(δ1)

− sin
(

α1L1L2 +
α2L2

2

2

)
sin(δ1)

+ sF · (−sinΨF)(α1L1 +α2L2), (A.16)

∂YF

∂L2
= cos

(
α1L1L2 +

α2L2
2

2

)
sin(δ1)

+ sin
(

α1L1L2 +
α2L2

2

2

)
cos(δ1)

+ sF · (cosΨF)(α1L1 +α2L2), (A.17)

∂ΨF

∂L2
= α1L1 +α2L2, (A.18)

κF

∂L2
= α2. (A.19)

A.5. Components with respect to s0

∂XF/∂ s0 = 1, (A.20)

∂YF/∂ s0 = 0, (A.21)

∂ΨF/∂ s0 = 0, (A.22)

∂κF/∂ s0 = 0. (A.23)

A.6. Components with respect to sF

∂XF/∂ sF = cos(ΨF), (A.24)

∂YF/∂ sF = sin(ΨF), (A.25)

∂ΨF/∂ sF = 0, (A.26)

∂κF/∂ sF = 0. (A.27)

APPENDIX B: POSE OPERATORS

These operators are defined to simplify working with
rigid bodies in two dimensions. A rigid body in a plane has
2+1 parameters, two for translation in the plane and one
for heading angle. The position in metres and the heading
in radians can be assembled into a three vector, called the
pose.

p1p1p1 = [x1,y1,ψ1]
T , (B.1)

p2p2p2 = [x2,y2,ψ2]
T . (B.2)

Working with higher dimensional spaces it is common
to use homogeneous coordinates to simplify operations on
rigid bodies. The two operators defined here are conve-
nient for working in 2D without the complexity of homo-
geneous notation. They are inverse operators in the sense
that p3p3p3 = p1p1p1⊕ p2p2p2→ p3p3p3	 p2p2p2 = p1p1p1. The decompose oper-
ator 	 is order dependent like ordinary subtraction. They
are defined below using the algebra of homogeneous co-
ordinates given in [52].

B.2. Compose ⊕
This operator takes the second pose and rotates it into

the frame of the first before vector addition of all three
components.

p3p3p3 = p1p1p1⊕ p2p2p2 =

x1 + x2 cos(ψ2)− y2 sin(ψ2)
y1 + x2 sin(ψ2)+ y2 cos(ψ2)

ψ1 +ψ2

 .
(B.3)

If each pose is expressed in homogeneous 3x3 form,

T1T1T1 =

cos(ψ1) −sin(ψ1) x1

sin(ψ1) cos(ψ1) y1

0 0 1

 . (B.4)

The same operation is a matrix multiplication

T3T3T3 = T1T1T1T2T2T2. (B.5)

B.3. Decompose 	
This operator finds the pose of p3p3p3 expressed relative to

pose p1p1p1

p1p1p1 = p3p3p3	 p2p2p2. (B.6)

If each pose is expressed in homogeneous 3x3 form, the
same operation is a matrix multiplication by the the in-
verse

T1T1T1 = T3T3T3T2T2T2
−1. (B.7)
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