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Abstract—On public roads motion conflicts are resolved by
drivers based on a static set of rules and their own perception.
In automated material transfer with multiple automated vehicles
e.g. fork lifts they are resolved centrally, often with a simplified
representation of the state space such as a roadmap graph.

Index Terms—Road Pricing, Autonomous Mobile Robot, Con-
flict Avoidance, Simulation

I. INTRODUCTION

Autonomous Mobile Robots (AMR) for material transfer
are distinguished from Automated Guided Vehicles (AGV) by
their ability to sense obstacles around them and plan their mo-
tion accordingly to achieve a goal pose [1]. One area of rapid
growth in the use of these vehicles is to transfer items from
stock shelves to pacjing stations in partially or fully automated
pick-pack-and-ship warehouses for e-commerce [2]. It is more
productive for multiple AMR engaged in a transfer task such
as servicing stations in a flexible manufacturing system for the
jobs to be shared among idle AMR, keeping them all busy [3].

II. PROBLEM DEFINITION

The problem of planning the motion of a number of
vehicles to complete a series of transfer tasks is multi-vehicle
motion planning. The explosion of possible future states when
autonomous plans are interdependent due to reliance on shared
resources is noted by Schwarting [4]. This is usually tackled
in one of three ways: Centralized control where the state space
is discretized and then solved to resolution completeness ,
decoupled control where the problem is broken down into sev-
eral stages for example independent path planning followed by
speed adjustment to avoid collision as in a two-level model [5].
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A recent AMR with some decentralized planning is described
by Liaqat et al [6]. It is able to detect static and dynamic
obstacles at runtime and plan a new path autonomously to
reach its goal. The question of how multiple vehicles should
handle adaptive planning is an important one for material
transfer and may have implications for automated road traffic.

III. LITERATURE REVIEW

Motion planning for multiple vehicles in a shared workspace
can be solved centrally if the goals of each agent are known.
The problem is the explosion in future states that must be
searched to find an optimal results such as [7] struggle to
scale beyond a handful of vehicles in real time.

Many decoupled (but still centralized) algorithms have been
proposed in order to create practical solutions which run in
real time but are suboptimal. Many involve discretizing space
to create a lattice so graph methods can be used such as [8].
Conflicts are resolved by extending the lattice into the time
domain and the priority for each vehicle to minimize the make-
span is found by integer optimization to achieve near optimal
results for many vehicles.

One decentralized method from Draganjac et al also limits
path adaptations to a state lattice covering the entire site [9].
The decision making is decentralized by a messaging scheme
where each vehicle has a priority and the ability to request
obstructing vehicles move out of its way. All lower priority
vehicles will move. The priorities are fixed at run time and a
proof is included that every conflict can be decomposed into
a conflict between two vehicles and will therefore not lead to
deadlock.

A good review of intersection control schemes coordination
techniques for on-road automated vehicles is given in [10].
These aim to improve traffic flow rates and reduce fuel con-
sumption with high safety at either intersections or on-ramps.



Often they are based on spatial reservations to ensure safety
[11] but there is also a body of work suggesting they should
be based on Cooperative Adaptive Cruise Control (CACC)
where virtual platoons are formed at every intersection in
order to resolve conflicts without any participant coming to
a halt. On the road speeds are higher so the fuel saving is
more important but this approach to conflict avoidance should
maximize throughput and consequently minimize the total
travel time for a fleet of vehicles carrying out a transfer task.

IV. ROADMAP PLANNING WITH PIGOUVIAN PRICING

Roadmap planning involves an approximation of the
workspace by a set of states which are outside every obstacle.
These states form the nodes of the roadmap graph. The links
of the graph encode whether a single feasible maneouvre can
be found between a pair of states. The roadmap representation
enables resolution optimal paths to be found through complex
environments using the A* algorithm. By weighting the links
according to their length, A* will return the shortest sequence
of links. Each link may be associated with a complex path
shape which is feasible given the differential constraints aris-
ing from the vehicle kinematics.

Pigouvian pricing is a concept from road transport eco-
nomics which sets the price for a road section according to
the social costs arising from an additional vehicle using that
section [12]. Drivers may be assumed to be rational agents
who choose a route minimising the total cost of their trip,
comprising the cost of their own travel time (converted into
monetary units with a certain value of time £ per minute),
plus the monetary cost resulting from the tolls on all the road
sections they used. If the road pricng is Pigouvian the cost
of a link will be set to the sum of all the delays experienced
by every other road user. If the prices are set with perfect
imformation, selfish drivers will independently choose routes
to reach a “user equilibrium” which minimzes the total travel
time [13].

The assumption of rational agents should be valid for
Automated Guided Vehicles selecting a route using the A*
algorithm, with the links weighted according to the centrally
designed road price. Recent work has made clear that inter-
sections are the bottleneck on road system capacity in many
cases [14]. For this reason it has been proposed to set a price
for traversing an intersection, rather than for a link. This leads
to a simple method for caluclating the Pigouvian price for an
intersection at any future time for which a traffic forecast is
available. The social cost of one user crossing the intersection
is given by the time they take to cross it, multiplied by the
anticiapted number of arrivals in the cross lane in this time.

V. DISTRIBUTED TASK ASSIGNMENT WITH CONTRACT
TENDERING

Task assignment is the problem of selecting which job
(sometimes consisting of a pick location, a drop location and
some constraints e.g. completion time, item size) to perform
first, and which AGV from the fleet should perform it. This can
be completed using an auction mechanism described by [15].

The task list is stored on a central server, which broadcasts
a job contract specifing the particulars of each one in turn to
every AGV in the fleet. When an AGV recieves the job spec,
it computes a trajectory plan to get from its current position
to the pick location, and then to the drop location, without
talking account of any other vehicles. The expected time of
completion of this plan is submitted to the auctioneer as a bid.
The auctioneer needs only to wait a fixed time to collect the
bids, and then select the lowest and send a job award message
to that AGV.

The results of this system are improved if the AGV always
produce a bid for every job contract, even if they are currently
busy [16]. As long as they add the expected time for comple-
tion of their current in progress task to the bid they send to
the auctioneer, tasks will be allocated efficiently.

The combination of auction based assignemnt and conflict-
free routing is investigated in [17].

VI. METHOD

One possible publish/subscribe message interface is shown
in Figure 1.
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Fig. 1. Objects and messages for proposed decenralized control scheme.

The Pigouvian price for an intersection is approxiated by
Equation 1. The social cost of one user crossing the intersec-
tion is given by the time they take to cross it 7', multiplied
by anticipated length of the queue in the cross lane g plus the
number of arrivals in the cross lane at this time n multiplied
by their average waiting time 7.



(1)

The price is broadcast in the Link Price Labels message to
which all AGV subscribe.

The task list is stored on a central server, which broadcasts
a job contract specifing the particulars of each one in turn to
every AGV in the fleet. When an AGV recieves the job spec,
it computes a trajectory plan to get from its current position
to the pick location, and then to the drop location, without
talking account of any other vehicles. The expected cost of
completion of this plan (according to tthe latest link price
labels) is submitted to the auctioneer as a bid. The auctioneer
needs only to wait a fixed time to collect the bids, and then
select the lowest and send a job award message to that AGV.

The interface shown assumes all conflicts can be resolved
locally using an independent intersection manager for each in-
tersection. The intersection controller is respondible for speed
selection on all approach lanes to an extended conflict zone
where multiple path cross or come closer than a safe distance.
Each AGV must submit an approach plan indicating the exact
path it will take through the intersection. The intersection
controller solves a local optimization to find the highest set of
speeds which will ensure safe separation between each AGV
in the conflict zone.

pi = qT' +nt
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