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ABSTRACT 

Basic aspects of the shear behaviour of rock-rock and rock-soil interfaces are 

investigated by physical modelling. 

Shear characteristics of rock discontinuities are studied by conducting direct shear tests 

on identical models of various natural rough surfaces. A strong synthetic rock is 

developed and used to cast several sets of identical samples by using a rubber moulding 

material. All samples are subjected to direct shear testing in the same relative direction 

of shearing and under various normal stresses, over the full range of dilatant behaviour. 

The effect of scale on peak shear strength is studied by testing models of natural rock 

surfaces in full and divided into sub-samples of various sizes. Identical samples are 

reproduced by using two different casting materials of different mechanical properties 

and are tested under various normal stresses. 

The test results indicate that independent of rock material, roughness, scale and 

normal stress level, the peak shear strength can be interpreted as comprising two 

components, one purely :frictional and one geometrical. The controlling parameter of 

peak shear strength is the dilation angle, which for a particular joint type, reduces 

logarithmically with normal stress over four orders of magnitude and becomes zero at a 

normal stress which in most cases is about one order of magnitude lower than the 

unconfined compressive strength. Beyond this normal stress, the shear behaviour of the 

sample becomes purely frictional. 

A simple, theoretical but readily applicable criterion is proposed, for a realistic 

mechanism of shearing and based on the suggestion that peak shear strength comprises 

one frictional and one geometrical component. Changes in peak friction angle due to 

normal stress, sample size or roughness are interpreted in terms of change in the 

geometrical component only. The magnitude of the frictional component is determined 

from the shear strength of the rock wall material, whereas the magnitude of the 

geometrical component is predicted from consideration of surface roughness and 

normal contact theory. The results of a compilation of data concerning the friction 

angle of various types of fresh rock are provided. The advantage of the new criterion is 

its simplicity, the use of physically meaningful parameters and the ability to explain the 

observed behaviour of natural rock discontinuities. Verification of the new criterion is 

established by testing against published data. 

The behaviour of soil-rock interfaces is studied by direct shear tests on interfaces 

between granular materials and modelled rock surfaces of various roughness. Two 



ii 

different granular materials of various sizes and a diversity of surfaces with different 

roughness, are used to model the soil-rock interface. It is found that for a particular 

type of rock and soil material, the shear behaviour of the interface depends upon the 

rock surface roughness, the grain size and shape of the soil particles and the nonnal 

stress. Some aspects of double soil-rock interfaces are presented. 

Recommendations are made concerning the suitability of casting materials in 

reproducing natural rock surfaces, the expected friction angle for various types of fresh 

rock and the determination of in-situ shear strength both for rock-rock and rock-soil 

interfaces. 
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CHAPTER 1 

INTRODUCTION 

1.1 General Introduction 

Many problems in geotechnical engineering practice involve dealing with the shear 

behaviour of geotechnical interfaces, which generally form weak elements within the 

geotechnical environment. Interfaces are boundaries between geomaterials of the same 

or similar strength, for example rock-rock, concrete-rock and soil-soil, or between two 

different lithological units of which one is classified as rock and the other as soil Such 

interfaces weaken the mechanical properties of the geomaterials and introduce 

interaction mechanisms with engineering structures, which may be critical for stability. 

The general term discontinuities is used to describe mechanical breaks or fractures of 

negligible tensile strength regardless of their geological origin (faults, joints, bedding 

planes etc.). The termjoints tends also to be used generally in rock mechanics to cover 

all types of structural weakness despite their particular geological origin. Both terms 

are used in this thesis with the same meaning. The overall behaviour of a rock mass is 

largely dependent on the geometrical (number of sets, orientations, apertures, 

persistence, roughness etc.) and mechanical properties ( cohesion, friction angle, 

stiffness etc.) of rock discontinuities. Rock-concrete interfaces like those formed 

between a concrete dam and the foundation rock or a concrete pier and the walls of a 

rock socket behave in a similar way with rock-rock interfaces, except that they may 

have a small cohesion due to bond between concrete and rock. In some geotechnical 

problems instead of two rocks separated by a discontinuity, the case of a soil layer 

adjacent to a rock stratum is encountered. In this case the properties of the soil-rock 

interface are important. When the soil layer is contained between two rock strata a 

double soil-rock interface is formed and the type of soil, its thickness and mechanical 

properties govern the overall behaviour. 

Some typical examples illustrating the importance of rock-rock or rock-concrete 

interfaces in rock engineering problems are shown in Figure 1.1 , where several 

interaction mechanisms may occur. For example, low friction angle of a critically 

oriented rock discontinuity may cause sliding of the rock mass above it (Figure 1. la); 

open joints in the rock mass beneath the foundation of a bridge may cause considerable 

settlement upon the application of load (Figure 1.1 b ); key blocks may slide following 

the excavation of a tunnel (Figure l.lc); stress concentrations may develop in the 

corners of a deep excavation and/or swelling may occur as a result of the unloading 

caused by the excavation, especially in the case of joints filled with clayey material as 

shown in Figure 1.1 d; the existence of a main discontinuity and a system of 



. . . . . - : . . . ... . . . . .. . 

(c) 

(g) 

. . . . . . , . . . .. .. . . . . . . .. . : 

2 

(d) 

(f) 

(h) 

Figure 1.1: Typical examples illustrating the influence of rock-rock and rock-concrete 

interfaces on rock engineering projects: (a) slope stability; (b) foundation on rock; 

( c) underground excavation; ( d) surface excavation; ( e) hydroelectric power cavern; 

(t)-(g) fluid flow through joints; (h)-U) concrete - rock interfaces 

(b) 
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secondaries may cause spalling of the rock in the walls of a powerhouse cavern (Figure 

1. l.e) modelling of fluid flow through rock mass necessary for the petroleum industry 

requires knowledge of hydraulic properties of discontinuities (Figure 1.1.f); flow 

through joints underneath a dam may cause stability problems (Figure. 1.1.g). 

Failure along rock-concrete interfaces may occur for example along the interfaces 

between a concrete dam and its foundation rock (Figure 1. lh), the rock socket and 

the pier (Figure. 1.1 i) or the grout of a rock anchor and its rock. 

A number of geotechnical problems where the importance of single or double soil

rock interfaces is illustrated is shown in Figure 1.2. A soil layer on top of a rock 

stratum (Figure 1.2a) is susceptible to translational failure, especially when the rock 

surface is smooth; sliding may occur along the interface formed in the transition zone in 

a weathering profile between materials of different degree of weathering (Figure 1.2b ); 

the presence of gouge in a fault (Figure 1.2c) reduces its shear strength and may lead to 

seismic events; a discontinuity filled with soil of low strength (Figure 1.2d) may cause a 

slope stability problem; sliding may occur along the interface between an earth/rockfill 

dam and the foundation rock (Figure l.2e); reduction in the shear resistance between 

a concrete pile and its surrounding soil (Figure l .2f) may cause settlement, whereas 

reduction in the bearing capacity of a soil anchor (Figure 1.2g) may result from a 

reduction in shear strength of the grout-soil interface: stability of retaining concrete 

walls may be controlled by the friction angle of the rock-soil interface. 

1.2 Parameters affecting the behaviour of interfaces in the field 

From the examples given above, it is apparent that the shear characteristics of interfaces 

are responsible for many potential failure mechanisms in geotechnical engineering 

projects. Several parameters may influence the shear behaviour of interfaces in the 

field, including: 

1) rock wall material quality ( strong, weak, weathering susceptibility etc.) 

2) surface roughness (very rough, stepped, smooth, slickensided etc.) 

3) in -situ stress (principal stress magnitudes/directions etc. ) 

4) water ( water pressure, permeability, etc.) 

5) infill ( sand, clay, thick, thin, coatings etc.) 

6) scale ( size of rock blocks, infill grain size, etc.) 

7) time ( creep, relaxation, cycling loading, strain rate etc.) 

8) stiffuess 

9) weathering 

10) engineering ( stress redistribution, change in hydraulic conditions, 

construction method, etc.). 
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(a) (b) 

(c) (d) 

(e) 

(f) (g) (h) 

Figure 1.2: Typical examples illustrating the influence of soil-rock and soil-concrete interfaces 

on rock engineering projects: (a) soil layer on rock; (b) transition zone in weathering profile;c) 

gouge in fault ; ( d) filled joint; ( e) foundation of earth/ rockfill darn; (f) pile in soil; (g) soil 

anchor; (h) retaining wall 
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Applying the Rock Engineering Systems approach developed by Hudson ( 1992), the 

above ten parameters have been selected as leading diagonals in a 1 0xl 0 matrix of 

interaction mechanisms related to the shear behaviour of geotechnical interfaces and 

more specifically to rock discontinuities. The result is presented in Table 1.1. There are 

other parameters which may also affect the behaviour of geotechnical interfaces and 

the size of the matrix can be increased, as well as its resolution, i.e. the detail to which 

the interactions are described. However, the l 0xl 0 matrix is considered to be adequate 

for the purpose of illustrating the importance of some parameters on the mechanical 

behaviour of interfaces. 

The study of the influenceof all the parameters affecting the shear behaviour of 

geotechnical interfaces is impossible within the framework of a doctoral thesis, 

therefore only a small number of them has been selected, for the purpose of studying 

specific aspects of the shear behaviour of interfaces. These parameters were: the rock 

surface roughness, the normal stress, the sample size, the strength of rock wall 

material, the thickness of infill and the grain size of the soil layer. 

Extrapolation of the results of this investigation in the field requires the influence of all 

parameters likely to have an effect on the overall behaviour to be accounted for. For 

example water, which is not considered in this study, may reduce the friction angle of 

the rock wall material and the total shearing resistance of the discontinuities due to 

water pressure; the presence of clay infill may considerably reduce shear strength by 

masking the rock surface and acting as a lubricant; displacement rate may influence the 

shear strength of discontinuities in some rocks such as shale, or some clay filled 

discontinuities. Other possible mechanisms of interactions are included in Table 1.1. 

1.3 Modelling the shear behaviour of interfaces 

Over the past few decades the behaviour of rock-rock interfaces has attracted a great 

number of investigators, who have studied several aspects of shearing along 

discontinuities. A considerable number of models have been proposed to describe 

specific parameters or the complete shear and normal behaviour or coupled 

hydromechanical response. However, despite the huge amount of available 

experimental data from both laboratory and field tests and the numerous proposed 

models for shear strength, no substantial progress has been made to describe 

accurately the shear behaviour of this single element of a rock mass, taking into 

account the actual physics governing the shearing of rock discontinuities. The difficulty 

arises from the presence of asperities, which greatly affect the mechanical behaviour of 

rock discontinuities during shearing by inducing dilatancy. Many attempts have been 

made to investigate the effect of asperities on the peak shear resistance, and various 
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Table 1. 1: 1Ox10 matrix of interactions between various parameters affecting the mechanical behaviour of rock discontinuities 

strong granites hard rocks require highly penneable discontinuities in strength of jointed ductile rocks like discontinuities in granites near the low-friction rock wall 
Rock material produce very rough high stresses to cause rocks may increase soluble calcitic rocks hard rocks is more halite are more hard silicate rocks surface may be material determines 

Type, strength, IC::: surfaces IC::: plastic deformation !C::: overall permeability c::: may produce large c::: dependent on scale IC::: susceptible to lc::: are stiffer than in soft lc::: decomposed c::: the reinforcement 
friction angle etc. of contacts quantities of infill than soft rocks creep argi llaceous rocks completely 

1,1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 I.IO 
if .(l. .(l. .(l. .(l. .(l. .(l. .(l. .(l. .(l. 

rougher joints result high stresses are dilation of rough strength of ti lied strength of rough rough joints require degradation of rough surface peaks of high degree of 
in deeper deformed developed at the discontinuities joints is higher joints is strongly larger number of rock discontinuities rough joints may interlocking of rough 

zones at rock 1¢: Roughness c::: contacts of rough c::: increases IC::: when rock walls are IC::: scale-dependent IC::: loading cycles to le::: reduces rock mass :c::: disintegrate more IC::: joints reduces 
contacts discontinuities permeabi Ii ty rough reach stability 

stiffness easily support requirements 

2.1 22 2.3 2,4 2.5 2.6 2.7 2.8 2.9 2 10 
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models both empirical and theoretical have been proposed. The theoretical criteria 

areoften complicated and difficult to use, so preference is given to empirical. However, 

they do not consider the physical process involved and their applicability may be 

limited, so that various modifications may be needed to suit a particular case. 

Therefore, the use of powerful numerical models developed to describe rock mass 

behaviour is not beneficial if the input parameters determined from such empirical 

criteria are not reliable. 

It is customary to consider that the peak shear resistance of a rock discontinuity is 

made up of two components: a) a basic friction component due to frictional resistance 

of a flat rock surface and b) a roughness component which consists of dilational 

component and an asperity failure component. The change of shear strength with shear 

displacement is considered by introducing a ploughing or wear component. While the 

separation of the shearing resistance into the above components is convenient in 

qualitative terms, their exact quantitative contribution t~ the shear strength is extremely 

difficult to determine, since most of them occur at the same time. The situation 

becomes more difficult when considering their variation with normal stress and sample 

size. Understandably, this difficulty made several investigators tum to empirical 

relationships. It is an objective of this study to investigate separately the role of the 

frictional and the roughness component on the peak shear strength and attempt to 

describe the shear behaviour in a rational quantitative way. 

Soil-rock interfaces form weak elements between two geomaterials of different class. 

Interfaces like soil-structures, soil - rock, filled joints etc. are very often the subject of 

geotechnical engineering problems. Their shear behaviour has been studied by some 

researchers who investigated mainly the shear characteristics of interfaces between 

construction materials and soil. In this study some aspects of the behaviour of rock-soil 

interfaces in shear are investigated, with emphasis in the deformation mechanisms 

involved. The results are applicable to interfaces at both geological and engineering 

structures scale. 

1.4 Objectives 

The main objective of this study is to contribute to a better understanding of the 

mechanisms involved when a rock-rock or a soil-rock interface is subjected to shearing. 

To achieve this objective, an experimental programme was set up, based on laboratory 

direct shear tests on various rock-rock and soil-rock interfaces. A synthetic rock was 

developed especially for this study and used to represent rock; various granular 

natural and artificial materials were used as soils. 
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The main objectives of the first part of the study, which is about the behaviour of 

rock-rock interfaces, are: (a) to investigate the origin, the magnitude and the relative 

contribution to shear resistance of the various shear strength components over a wide 

range of normal stress. (b) to study the effect of scale on peak shear strength and ( c) to 

attempt an incorporation of the results of this study into a rational comprehensive peak 

shear strength criterion. 

The aims of the second part, which concerns the soil-rock interfaces are: a) to 

investigate the effect of roughness of the rock surface and the grain shape and size of 

the soil on the shear strength characteristics of the interface. b) to identify deformation 

mechanisms involved during shearing and c) to attempt to clarify some aspects of the 

double soil-rock interfaces. 

1.5 Method 

A systematic laboratory based experimental programme has been the method for this 

study. Physical modelling of rock joints is commonly used, but various problems in 

shear behaviour may not be properly accounted for. For example some low strength 

materials may be unsuitable, in so far as they may produce considerable surface debris 

or thin smooth surface layers, the effect of which may be inadequately quantified. 

There is a considerable amount of experimental data on shear strength of rock-rock 

interfaces and many more are probably not needed. Consequently, the main effort of 

this study was directed towards the interpretation of high accuracy data produced by 

the experimental programme, by examining separately the effect of each strength 

component on the magnitude of peak shear strength. To achieve _this a basic straight

forward, simple and most relevant approach was used: a series of direct shear tests on 

sets of identical joint samples at various constant normal stresses. A synthetic rock was 

developed as a rock substitute and used in the experimental programme. Various types 

of natural rock surfaces were reproduced by casting in a number of identical copies 

which were then tested at the appropriate normal stress. All samples were tested in the 

same relative shearing direction, under constant normal stress which varied from very 

low values up to a sufficiently high to suppress dilation. 

A special programme comprising direct shear tests on joints of different sizes and 

strength of rock was used to examine the effect of scale and rock strength on peak 

shear strength of rock discontinuities. 

The investigation of the shear behaviour of soil-rock interfaces was carried out by 

means of direct shear tests, using the newly developed synthetic rock to form surfaces 

with various roughness, from very smooth to very rough planar and saw-toothed. 
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Granular natural. and artificial materials with spherical, round and subround particles of 

various sizes were used to investigate the effect of grain size as compared to the 

surface roughness. 

1.6 Thesis layout 

The thesis is divided in four parts. The development and properties of artificial rock is 

discussed in part I (Chapter 2). Comparison with natural rocks is made, and critical 

evaluation of its capabilities and limitations is given. 

Part II is about the shear behaviour of rock discontinuities. It consists of Chapters 3, 4, 

5 and 6. In Chapter 3 a literature review is attempted, including aspects of the shear 

behaviour of intact rock and rock discontinuities. Critical review of various peak shear 

strength models is made. The experimental results from physical modelling and 

discussion are presented in Chapter 4, whereas the basic characteristics of a new peak 

shear strength criterion are described in Chapter 5. Well-documented theoretical 

principles are used to achieve a simple formulation where physically meaningful and 

easy to determine parameters are used. The theory behind the criterion explains the 

origin and magnitude of the peak shear strength components. In Chapter 6, the 

capabilities of the new criterion are tested against a few sets of well-established 

experimental results, published by various authors. 

Part III consists of Chapters 7 and 8. The experimental results and analyses from the 

experimental programme on single soil-rock interfaces are given in Chapter 7. In 

Chapter 8 some experimental results and discussion about some aspects of double 

soil-rock interfaces are presented. 

The conclusions of the work and recommendations for engineering practice and 

further research are given in Part IV, Chapter 9. 

The various components of thesis and their contribution to the research thrust and 

conclusions are given in the form of a flow-chart in Figure 1.3. 



CHAPTER2 

DEVELOPMENT OF A SYNTHETIC ROCK 

2.1 Introduction 

Several model materials have been extensively used in rock mechanics problems. The 

use of model materials offers the advantage of ease of preparation of identical samples 

with the same morphological and mechanical characteristics chosen according to the 

requirements of each particular modelled situation. Stimpson (1970) lists 24 different 

materials which can provide friction angles from as low as 7° up to 46°. A limitation of 

this approach exists when modelling at much reducing geometric scales, when, for 

similitude, the model material is required to be very weak. In this case, a major problem 

arises from the non-consistent behaviour in shear ( e.g. Hencher et al, 1993). A more 

fundamental problem, especially with the rock joints, is the lack of true similitude 

(Stimpson, 1979). Rock joints are usually rough, and during shearing they produce 

dilation which must be adequately scaled. The roughness should be modelled directly to 

the geometric scale. When a modelled surface is produced by direct cast on a natural 

discontinuity, the corresponding prototype amplitudes may be so high that they become 

unrealistic. This is a particularly severe problem, where the geometric scale factor is 

high. It is almost impossible to find a synthetic material whose properties can all be 
' 

satisfactorily scaled; hence a selection of properties which are most important for the 

problem concerned must be made. To eliminate some of the aforementioned problems 

associated with scaling, it was decided to carry out this study by using a relatively 

strong synthetic cast rock material as a substitute for a natural rock , i.e. by using a 

scaling factor equal to 1. 

2.2 Specification for the synthetic rock properties 

In nature, rock-rock interfaces occur in any rock type, from the weakest to the 

strongest, whereas soil-rock interfaces are formed between soils and relatively weak 

rocks. Typical natural soil-rock interface are formed by alternate beds of soils with 

sedimentary rocks such as limestones, sandstones, siltstones, mudstones, shales etc. 

Therefore, the main requirement for the synthetic rock was to be moderately strong, so 

that it could be used in a testing program both for rock joints and soil-rock interfaces. 

The properties set for the synthetic rock, as being representative for such types of rocks 

are shown in Table 2.1. Another important consideration was that the new material 

should be stable in water so that it could be used in saturated conditions. 

2.3 Selection of constituents 

2.3.1 Cementing material 

The main model materials most commonly used in rock mechanics problems have a 

granular "aggregate" and a cementing material such as plaster, cement, resin, oil or 
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Table 2.1: Specifications of properties of the synthetic rock 

No Property Units Value 

1 Uniaxial compressive strength (MPa) 40-80 

2 Ratio UCS/UTS - 10-15 

3 Ratio Young's Modulus/UCS - 100-300 

4 Friction angle of planar saw-cut surfaces (degrees) 30-35 

5 Strain at failure (%) <0.6 

6 Porosity (%) <20 

7 Density (Mg/m3) 2.2-2.7 

8 Maximum grain size (mm) 1 

wax (Stimpson, 1970). Recently pure, strong, plaster based materials such as 

Hydrostone ( e.g. Kutter & Otto 1990, Huang et al. 1993) and DieKeen ( Handanyan 

et al. , 1990) have been used as rock substitutes in studies of behaviour of rock and 

rock joints. Johnston & Choi ( 1986) used a synthetic weak rock substitute by pressing 

a mix of a natural mudstone powder with different water contents. In the present study 

an effort was made to develop a cement based material, suitable for substitution of low 

to medium strength sedimentary rocks commonly encountered in rock - soil interfaces. 

Unlike plaster, cement is stable in water and can therefore be used in tests with water 

saturated conditions. Another advantage is the lack of any need for oven curing. 

However, the time required to gain its full strength, together with low brittleness, make 

the Ordinary Portland cement unsuitable. A special cement with improved properties, 

which was adopted for this study is a calcium aluminate cement (CAC) -commonly 

called High Alumina Cement (HAC)- manufactured in U.K. by Lafarge Special 

Cements and used mainly in the refractory industry under the trade name ciment fondu. 

The main advantage of calcium aluminate cement over ordinary Portland cement are 

the higher strength, the faster rate of gain in strength and the lower porosity. It is a 

rapid hardening cement, but unlike plaster it is not quick setting; its setting time is 

comparable with that of ordinary Portland cement. However, after CAC has set, it 

gains strength so rapidly that within 24 hours the compressive strength of the concrete 

made with it can be as high as 90 per cent of the ultimate strength (Neville, 1975), as 

shown in Fig. 2.1. 

Calcium aluminate cement is a dark grey powder with a bulk density of 1150 kg/m3 , 

specific gravity 3.25, an average specific surface area according to BS 915 ( 1972) 3000 

cm2/g and a residue on 90 micron sieve <8% (Ciment Fondu Lafarge, 1990a, 1990b). 

The main constituents of CAC are CaO, Al2O3, SiO2, Fe2O3 and FeO. Some minor 

constituents also exist (Table I. l , Appendix I). 
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The principal mineralogical phase is monocalcium aluminate (CaO.Al2O3) whereas the 

secondary phases are: 

2CaO.SiO2 (C2S)- ~ calcium silicate 

4CaO.Al2O3.Fe2O3 (C~) - calcium ferrites and 

12CaO.7Al2O3 (C,2A1) 

In the abbreviations given in parentheses C stands for CaO, A for Al2O3 and F for 

Fe2O3. 

The initial setting time for mortar measured on the VICAT needle according to BS 

4550:1978 at 20° C is 2 hr 10 mins to 2 hr 30 mins and the final setting 2hr 30 mins to 

3 hr 10 mins. For neat cement paste according to BS915:Part 2:1972 the initial set is 

between 2 and 6hrs and the final set not more than 2 hours after the initial set. 

Although the calcium aluminate cement is a rapid hardening cement its setting time is 

sufficient for controlled casting, cleaning of tools etc. 

The total heat of hydration of CAC is in the range 110-120 cal/g which is virtually 

equivalent to that of Portland cements. However, this heat is liberated within 1 day, 

compared to 25-50% in the latter case. 

The nature of hydrates formed depends on temperature. For hydration below 25°C the 

following two metastable hexagonal aluminates are formed: 

CaO.Al2O3 10H2O (CAH,o) 

2CaO.Al2O3 8H2O (C2AHs) 

These hydrates change with time to a cubic stable form, following the reactions: 

3CAH,o ➔ C3AH6 + 2AH3 + l8H2O 

3C2AHs ➔ 2C3AH6 + AH3 + 9H2O 

This change - known as "conversion"- takes several years at a temperature of 20°C, 

but happens much more rapidly as the temperature increases and is accompanied by an 

increase in the porosity of the cement paste which leads to lower strengths. In a 

laboratory environment conversion has no any adverse effect on strength if the product 

(mortar or concrete) is used in less than a year. According to the manufacturer, the 

shrinkage characteristics of CAC are as follows: 

Time 6 hrs 1 day 3 days 7 days 14 days 28 days 

Shrinkage (µm/m) 0 200 500 600 680 700 

On a standard mortar 1 :2. 7 ( cement : aggregate ratio) with a water/cement ratio = 0.4, 

the following mechanical properties are obtained: 

Age 6hrs 24 hrs 7 days 28 days 

Flexural strength (MPa) 4.5-6.5 6.5-8.5 7.5-9 8-1 2 

Compressive strength (MPa) 35-45 60-70 75-85 80-95 
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It should be borne in mind that the flexural strength is higher than the tensile strength 

measured in direct tension. For neat cement pastes the compressive strength changes 

with the ratio w/c as shown in Fig. 2.2. 

The porosity of calcium aluminate cement is lower than that of Portland cement, the 

reason being that CAC combines with a higher proportion of the gauging water in the 

reaction of hydration and so reduces the amount of free water which forms voids. For a 

neat cement paste the products of hydration are non porous (Neville, 1975). The 

dependence of porosity of neat cement paste with water / cement ratio is shown in 

Figure 2.2 

Compared to Portland cement, calcium aluminate cement gives a stronger, less porous 

product and it gains almost maximum strength in 7 days (Fig. 2.1). Specimens tested a 

few days earlier or later than a specified day will therefore give practically the same 

strength. The practical implication of this characteristic is that specimens from the same 

batch need not be tested on the same day. 

2.3.2. Aggregate 

To achieve best results the following considerations were taken into account regarding 

the role of the aggregate: 

(a) The size of the aggregate should be less than 1 mm for a rock-like material 

having similar texture to a natural sedimentary rock. The finer the aggregate 

size the higher water/cement (w/c) ratio; the extra water above that required 

to hydrate the cement increases the porosity and decreases the strength. 

(b) Angular aggregates give higher strength and lower porosity when compared 

to round aggregates (Kraft, 1971). 

( c) Well graded aggregates give better results in terms of strength and 

workability. 

( d) Compaction by vibration reduces the wlc ratio and hence increases the 

strength. 

( e) Fines require more water and therefore increase porosity and reduce 

strength. 

The basic material design principle for the present study was to use only one type of 

aggregate which when mixed with cement and water would give a material with the 

specified properties. 

A number of aggregates including marble dust, silver sand and barytes were used as 

preliminary mixes: 
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Marble dust consisting of angular particles <lmm, resulted in mixes with higher values 

for compressive strength, modulus of elasticity and friction angle. 

Uniform silver sand with round particles (D<600 µm) gave mixes with lower strength, 

higher porosity and 8% lower density than the marble dust. Barytes (Dmax = 300 µm) 

resulted in product with higher density and similar strength to marble dust. 

The results from all these mixes were quite similar with relatively low tensile strength 

and high strain at failure i.e. reduced brittleness (approaching 1.0%). For each mix the 

actual values were a function of the cement/aggregate and the water/cement ratios. 

While these mixes resulted in an acceptable unconfmed compressive strength, the 

tensile strength was relatively low and the axial strain at failure was high. Fortunately, 

two alternative aggregates which are being used with calcium aluminate cements in the 

refractory industry, namely andalusite and sillimanite, were employed and gave 

improved properties. These two minerals have a similar composition and behaviour, 

and when mixed with CAC and water they gave a material with higher tensile strength, 

Young's modulus and density and lower strain at failure. As more readily available, 

andalusite was fmally selected, which was mixed only with cement and water to form 

the synthetic rock. 

Andalusite (AhSiO5) appears with the form of coarse prismatic crystals with a nearly 

square cross section, the prism angle being 89°12' (Mason & Berry, 1968). Some 

crystals have carbonaceous inclusions arranged so that in cross - section they form a 

dark cross. This variety is called chiastolite (Hamilton et al. , 1987). Its hardness is 7.5 , 

density 3.15 glee and it appears with different colours, the most common being white, 

grey, pink and brown. It has a vitreous lustre, often dull. Andalusite occurs mainly in 

contact metamorphosed shales (petites) and occasionally in regionally metamorphosed 

rocks. It has been recorded from pegmatites and is used in the refractory industry. The 

andalusite used in the present study had a grey colour and was provided by Sheffield 

Refractories. The results of a chemical analysis are given in Table 1.2 (Appendix I). A 

rnicrophotograph of the raw andalusite used in the preparation of the synthetic rock, 

where the shape of the grains can be clearly seen, is shown in Plate 2.1. The grain size 

was chosen so that 100% passed the 1 mm sieve and 50% was fmer than 300 µm. The 

grain size distribution is given in Fig. 1.1 (Appendix I) 

2.4 Proportions of constituents 

The properties of the synthetic rock vary with the cement:andalusite (c/a) ratio and the 

water cement ratio (w/c). A range of c/a ratio was used, the main target being to 

achieve a strong, workable mix, able to copy accurately rough rock surfaces. The main 

conclusions from these preliminary mixes are as follows: 
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The compressive strength increases with increasing c/a ratio up to a maximum at about 

1: 1.5, after which it decreases. Young's modulus remains unchanged with c/a ratio 

within the range used. Strain at failure increases with compressive strength. Density 

decreases with increased c/a ratio. Depending on the particular problem to be scaled 

the appropriate c/a ratio can be chosen. 

Vibration reduces the amount of mixing water, hence increases strength. The effect is 

more pronounced for thicker specimens. However, compaction for longer than 1 min · 

may result in segregation. For the present study the main criterion was a high 

compressive strength material and the final proportions which were selected were: 

Cement : 1 part by weight 

Andalusite : 1.5 parts by weight 

Water/ cement: 0.43 

Two slightly different methods were followed for the preparation of the samples: in the 

first method the mix was poured into steel moulds and placed on an ENDECOTT test 

sieve shaker and vibrated for 1 minute. In the second method the wet mix was poured 

into aluminium frames and vibrated by a small hand vibrator for approximately two 

minutes. The first method was used for the experimental programme on the soil-rock 

interfaces and the second one on the programme on rock discontinuities. The small 

vibrator was used because the aluminium frame used for casting the joint replicas was 

not stiff enough to bear the vibration action and was proved very efficient in removing 

the air bubbles from the mix; special care was taken to ensure that the size of the pores 

on the surface of the discontinuity was so small that they were almost invisible. 

The strength increases with age as shown in Fig. 2.3. It can be seen that after less than 

one week the increase in strength is very small and consequently it was decided to test 

the cast specimens after one week. The proportions finally used resulted in a mix with a 

good workability. Like all cast materials, some air bubbles remain within the mass of 

the material even after compaction. However, this has no significant consequence, 

providing that in the produced rock surface these bubbles are kept to a minimum. The 

new synthetic rock tends to dry at the free surface and a thin layer becomes dusty. This 

can be avoided if after setting an anti-drying agent is applied to the free surface. 

2.5 Properties of the synthetic rock 

2.5.1 Physical Properties 

The total porosity was determined with a Micrometrics mercury porosimeter, type 

AutoPore II 9220. Each of the five samples used was oven dried and evacuated, 

immersed in mercury, and the mercury pressure on the sample was isostatically 
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Plate 2.1: Microphotographs of andalusite showing selectected coarse grains (a) 

and as used (b ). 
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increased causing mercury to intrude into the pores. The pore size intruded · is inversely 

proportional to the applied pressure. Pore diameter and volume data are obtained from 

the equilibrated pressures where mercury intrudes into a given size pore according to 

the so-called Washurn equation: 

-4y cos0 
D=-~--

p 
(2.1) 

where D is pore diameter when p is the applied pressure, r-=485 dyn/cm the mercury 

surface tension and 0=130° the interfacial contact angle. The samples are first subjected 

to low pressure (up to 207 kPa), which allows measurement of pore diameters from 

360 to 6 µm and then to high pressure (up to 414 MPa), which extends the 

measurement of pore diameters from 6 to 0.003µm. Results are shown in Fig. 2.4. 

The average porosity was found to be 19%, with specimens oven-dried for 24 hours. 

During this process the CAC is converted and the porosity is increased. When this 

porosity is normalised to account for conversion it comes down to 13%. Comparison of 

the density and porosity of the synthetic with some natural rocks, is shown in Fig. 2.5 

(Gyenge & Herget, 1977). 

From the same tests the dry density was found equal to 2.27 Mg/m3 whereas the 

skeletal density was 2.80 Mg/m3
• The density of the material "as used", was determined 

by dividing the mass of a sample by its volume. All the samples tested in compression, 

tension and triaxial compression (more than 50 samples), were used and the average 

density was found to be 2.45 Mg/m3 which is in the range of densities for many rocks. 

The ultra-sonic velocities, both P-wave and S-wave, were measured by an OYO New 

Sonic Viewer (Model 5217 A). 5 samples having diameter d=25 mm and height ranging 

from 50 mm to 120 mm were used to measure both velocities. The P-wave velocity 

was 4640 mis and the S-wave velocity 1910 mis. The value for P-wave appears to be 

representative for sedimentary rocks but the S-wave is relatively low. This may be due 

to the fact that with S-waves it is harder to distinguish 1st arrival, so S-wave velocities 

are approximate. 

2.5.2 Uniaxial compressive strength 

The compressive strength depends on the cement/andalusite and water/cement ratios . 

It was found that the maximum strength is gained at a c/a ratio equal to 1: 1.5 for which 

the ratio w/c (before vibration) was 0.42. After vibration the actual water/cement ratio 

used for hydration is approximately 0.38. 
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Cores 25x50 mm and 50xl 00 mm were tested the first on a MTN 250 kN and the 

second on a Denison 2000 kN compression machine. No noticeable variation of 

strength with size was found, but vibration had a considerable affect. The average value 

for vibrated mixes was 62 MPa, whereas for non-vibrated 47 MPa. Typical axial stress 

(cr) - axial strain (E) diagrams from the latter case are shown in Fig. 2.6. Young's 

modulus was determined from the cr-E graphs as tangent to the curve at 50% of 

maximum attained stress. The average value was equal to 11 GPa. The strain at failure 

is approximately 0.6. According to the classification for intact rocks by Deere (1968), 

the new material has medium strength and low modulus ratio E/crc (177) and falls in the 

areas of the diagram corresponding to sandstones, shales, mudstones etc. (Fig. 2. 7). 

In Fig 2.8 the synthetic rock is shown among some physical rocks investigated for dam 

foundations (Kikuchi et al., 1982). 

From S- wave velocity and the calculated Young's modulus, Poisson's ratio was found 

equal to 0.33 (average of 5 specimens), which falls in the range of Poisson's ratio values 

for limestones (e.g. Pelis, 1993). 

2.5.3 Hardness 

The hardness of the new rock material measured by a Shore scleroscope, on flat 

surfaces saw-cut or cast against glass was quite variable but within the range 15-25. 

The variability is due to the nature of the test, which is considerably affected by small 

pores on the surface of the sample. Therefore, it is expected that a porous material has 

no consistent value of hardness. 

2.5.4 Indirect Tensile strength 

The tensile strength was determined by the Brazilian method (ISRM, 1981). Cores 50 

mm in diameter and 30 mm long were used which gave an average value of the tensile 

strength equal to 5.5 MPa for vibrated and 4.8 for non-vibrated mixes. The ratio of 

compressive to tensile strength is 11.3 and 9.8 respectively, which falls almost on the 

best-fit curves for all three main categories of rocks (Fig. 2.9). 

2.5.5 Behaviour in triaxial compression 

Two sizes of cylindrical specimens were used in triaxial testing: one having a diameter 

d = 25 mm and a height h = 50 mm and the other d = 54 and h = 100 mm. The axial 

stresses are plotted against the confining pressures in Fig. 2.10. The shape of the 

envelope is concave downwards, but if a Mohr-Coulomb envelope is fitted a cohesion 

of 16.5 MPa and a friction angle of 30.5° is obtained. As can be concluded from Fig. 

2.10, the difference between vibrated and non-vibrated mixes disappears at small 
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confining pressures, where the pores close. The same results are shown in Fig 2.11 with 

principal stresses shown on a dimensionless form. According to the criterion proposed 

by Hoek & Brown ( 1980 a, b ), the new synthetic rock is not very brittle, has a value for 

the parameter m (Chapter 3.2) equal to 5.9 and compares closely with rocks like 

limestone, dolomite and mudstone. 

In Fig. 2.12 some typical axial stress-axial strain are shown for different confining 

pressures shown on each curve. At low normal stresses, the behaviour is brittle and the 

fracture takes place along an oblique plane. As the confining pressure increases, the 

curve flattens and at confining pressure approaching 20 MPa the curve is horizontal, 

which suggests that this pressure corresponds to the brittle-plastic transition. The 

corresponding axial stress at CJ'3 = 20 MPa is CJ'1 =124 MPa. At this pressure there are 

multiple small fractures , but a macroscopic fracture takes place along a plane at an 

angle around 30° to the CJ'1 axis. The Mohr diagram corresponding to the state of stress 

in the brittle-plastic transition is shown in Figure 2.13. The friction angle can be 

calculated from the tangent to the Mohr circle passing through the origin (Orowan, 

1960), which has a slope to the cr axis given by 

(2.2) 

The corresponding friction angle of the material is 46°. This value may seem high, but 

it is rather typical for carbonate rocks (Mogi, 1966, Hoskins et al. , 1968, etc.), 

whereas similar values have been measured for other rock types such as granite 

(Gyenge et al., 1991 , Lajtai & Gadi, 1989, Martin & Chandler, 1994). The confining 

pressure required for the rock to reach the brittle-plastic transition is relatively low 

(lower than the unconfined compressive strength), but this is typical for porous 

carbonate rocks. For example, Elliot & Brown (1986) found that a porous oolitic 

limestone with a compressive strength of 23 MPa reached its brittle-plastic transition at 

the much lower confining pressure of 5 MPa. The friction angle determined from the 

orientation of the conjugate failure planes (measured angle 0=63°) is 46°. 

2.5.6 Friction angle of saw-cut planar surfaces 

Shear tests were carried out in a Wykeham Farrance shear box using lOOxlOO mm saw

cut surfaces. The results from such tests are shown in Fig. 2.14. The results from first 

and second run are shown separately. The second run was carried out after the samples 

were first removed, cleaned with compressed air and repositioned. Most tests, 

especially those at the higher normal stresses, exhibited stick-slip behaviour; the 

magnitude of stick-slip increased with increasing normal stress. 
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The stick-slip phenomenon is very common in sliding between flat surfaces especially 

at high normal stresses (Lajtai & Gadi 1989). From the plot shown in Fig. 2.14 an 

average friction angle ~=32° is derived. Tests on a tilt table on large number (>50) of 

different saw-cut surfaces gave a similar sliding angle of 32.4°± 2.3°. When this value is 

compared with the value of 46° found for the friction angle of the rock material, it can 

be concluded that there is a 14° reduction in friction angle as a result of saw-cutting. 

2.5.7 Performance of modelled joints in direct shear 

The performance in shear of rough rock joints made of the new material in shear, was 

studied by carrying out a number of direct shear tests at different normal stresses. 

These results are presented in Chapter 4.2.4, where the consistency of the new material 

is discussed. 

2.6 Summary and critical evaluation of the behaviour of the synthetic rock 

The new synthetic rock can be used to replicate medium strength and average modulus 

ratio natural rocks. From its overall behaviour and especially those properties related to 

frictional (triaxial behaviour), the new synthetic rock is representative of medium 

strength, medium porosity carbonate rocks. Typically, the best representations are 

made for limestones, mudstones, siltstones etc. When the choice is based on the 

unconfined compressive strength/Young's modulus ratio, this material can be 

considered as suitable to represent a wide range of materials such as sandstones, 

limestones, schists, diabases, basalts etc. and all rock types lying on the same El ac line 
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(Fig. 2. 7). A summary of the main properties of the synthetic rock is given in Table 

2.2. 

Table 2.2: Summary of properties of the new synthetic rock 

(values in parenthesis represent non-vibrated mixes) 

Property Units Value 

Dry density g/cm3 2.45 

Skeletal density g/cm3 2.80 

Porosity % 13 

P-wave velocity mis 4640 

S-wave velocity mis 1910 

Shore hardness number 20 

Unconfined compressive strength l\.1Pa 65(47) 

Tensile strength (Brazilian) l\.1Pa 5.5(4.5) 

Friction angle degrees 46 

Mohr-Coulomb parameters 

Cohesion l\.1Pa 16.5 

Friction angle degrees 30.5 

Friction angle of saw-cut surface degrees 33 

The main advantages of the material include: 

(a) It is a simple two component cast material with no special requirements 

for treatment. 

(b) Early development of high strength which practically remains unchanged 

after the first seven days. 

( c) Selection of the desired compressive strength or frictional resistance by 

adjusting the cla ratio. 

( d) low porosity relatively to other similar materials. 

(e) It can be used both as model material at small scaling factors (e.g.<5) and as 

rock substitute (scaling factor= 1) 

(f) Good reproduction of rough joint surfaces, which may be secured by the 

use of a small vibrator. 

On the other hand, the main disadvantages are: 

(a) Requirement for curing at temperatures exceeding 25° C, because of the 

risk of "conversion" . This is not in real problem when the material is being used 

in the laboratory, where temperature is expected to be lower than 25° C. 

(b) Drying of the free surface, necessitating the use of an anti-drying agent if 

the free surface has to remain unaltered. 



CHAPTER3 

SHEAR STRENGTH OF ROCK DISCONTINUITIES 

3.1 Introduction 

The shear behaviour of rock discontinuities has attracted a great number of 

investigators over the past three decades. An impressive number of studies have been 

devoted to all aspects of shearing along joints. Numerous models have been proposed 

to describe characteristic shear strength parameters, such as peak shear strength, or 

complete shear and normal behaviour or coupled hydromechanical response. 

Although, the basic mechanism of shearing along a rock joint is widely accepted and 

despite the large amount of existing data, the most widely used shear strength criteria 

remain empirical in nature. Incorporation of these empirical criteria into numerical 

models of rock mass behaviour make their predictive capabilities, at best, as good as 

the accuracy of the performance of these empirical models which are based mainly on 

purely empirical input parameters. 

It is customary to consider that the shearing resistance of a rock discontinuity is made 

up of the following components: 

a) a component due to frictional resistance of flat surfaces 

b) a dilational component 

c) an asperity failure component and 

d) a plough component 

Most models for predicting shear strength use the first two or three components 

whereas some recent ones have introduced the plough component to account for 

changes of shear stress with shear displacement. 

While the separation of the shearing resistance into the above components is convenient 

in qualitative terms, their exact quantitative contribution to the shear strength is 

extremely difficult, since they all occur at the same time. The situation becomes more 

difficult when considering their variation with normal stress and scale. Understandably, 

this difficulty made several investigators turn to empirical relations. 

3.2 Shear strength of intact rock 

3.2.1 Introduction 

The shear characteristics of a rock discontinuity are partly determined by the 

characteristics of the intact rock material which forms the walls. It is therefore 

necessary to describe the basic characteristics of the shear behaviour of intact rock. 

The shear strength of intact rock is best studied by the triaxial compression test where 

a-1 > a-2 = a-3• The complete axial stress ( a-1) - axial strain ( &1) curves in triaxial 
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compression at different confining pressures are similar to those obtained by Wawersik 

& Fairhurst (1970) for Tennessee Marble at different confining pressures (Fig. 3.1). As 

the confming pressure increases 

(a) the peak strength increases; 

(b) the type of behaviour changes from typically brittle to fully plastic; 

( c) there is a flattening and widening of the region incorporating the peak of the ( a
1
)

( &J curve; 

( d) the post-peak drop in the stress to the residual strength reduces and disappears at 

high values of a;. 

The change in behaviour from brittle to fully ductile ( corresponding to cr3 = 48.3 MPa 

in Figure 3.1) is known as the brittle-ductile transition or more accurately brittle -

plastic transition (Rutter, 1986) and varies with the rock type. Generally, the 

dependence on confming pressure of the maximum differential stress ( cr 1-cr3) preceding 

failure is non-linear (Fig. 3.2) 

3.2.2 Fracture criteria for isotropic rock 

All the fracture criteria used in practice have the following form: 

(3 .1) 

The simplest and most important of the phenomenological criteria is the Coulomb's 

shear strength criterion, stating that shear failure takes place in that plane for which 

where 

c is the "cohesion" and~ the "angle of internal friction" and 

-r is the shear strength on the plane. 

(3.2) 

In terms of principal stresses the criterion is expressed by a linear relation ( at least over 

a moderate range of confming pressure) between a1 and 0-3, namely 

(3.3) 

where a0 is a constant, equal to the unconfined compressive strength C0 , if the relation 

is obeyed down to zero confming pressure and q a constant with a value usually 

between 2 and 11 (Paterson, 1978). The parameters in the two expressions of the 

criterion are related to the following expressions 

q-1 
sinrp=-- (a) 

q+l 
(b) (3.4) 
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The value of cohesion c lies in the range (0.15-0.35)Co whereas tanrjJ, the "coefficient 

of internal friction" has values between 0.5 and 1.5 (Sangha & Dhir, 1975), which are 

in general agreement but often slightly higher than the coefficients of friction for sliding 

between rock surfaces (Paterson, 1978). Although it is widely used, Coulomb's 

criterion is not particularly satisfactory for the following reasons: 

(a) It implies that a major shear fracture exists at peak strength, which is not always the 

case. 

(b) It implies a direction of shear which does not always agree with experimental 

observations. 

( c) It is a linear relation whereas experimental peak strength envelopes are generally 

non-linear and can be considered linear only over a limited range of normal stress or 

confining pressure. 

Griffith (1921) postulated that fracture of brittle materials is initiated at tensile stress 

concentrations at the tips of hypothetical minute elliptical cracks ( Griffith cracks) in the 

material. He developed a criterion described by 

and to the parabolic Mohr envelope 

I =41'a( o-+TaJ 

(3.5a) 

(3.5b) 

(3.5c) 

It follows from equation (3.5a) that the Griffith criterion of failure predicts a value of 

the uniaxial compressive strength eight times the value of the uniaxial tensile strength 

(Fig. 3.4), which is lower than the ratio commonly measured for rocks. 

Fairhurst (1964) suggested an empirical generalisation of the Griffith criterion to allow 

for an arbitrary compressive/tensile strength ratio n, having the following form 

where 

r is the shear strength 

O-n the normal stress and 

C0 the unconfined compressive strength 

(3.6) 

McLintock & Walsh (1962) modified the Griffith criterion in order to take into account 

friction forces between the surfaces of closed cracks, since the original criterion was 
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valid only as long as the cracks remained open. Murrell ( 1965) expanded the original 

Griffith criterion to include triaxial stress conditions and hydrostatic pressure effects, 

whereas Murrell & Digby ( 1970) extended it to the general three-dimensional problem 

with closed cracks. 

Criteria based on the plasticity theory have been proposed by several authors including 

Gerogiannopoulos & Brown (1978), Price & Farmer (1979, 1981), Michelis (1985), 

and Elliot & Brown (1986). 

However, because all these criteria have been found not to apply to rock over a wide 

range of applied compressive strength conditions, a number of empirical strength 

criteria have been proposed (e.g. Murrell 1965; Hobbs 1966; Mogi 1966; Hoek 1968; 

Lundborg 1968; Franklin 1971; Bieniawski 1974; Brook 1979; Hoek & Brown 

1980a,b; Yoshinaka & Yamabe 1980; Adachi et al. 1981; Johnston 1985; Yudhbir et 

al. 1983; Kim & Lade 1984; Yoshida et al. 1990; Lade 1993). Among them, the 

failure criterion proposed by Hoek & Brown (1980 a,b), extended to three dimensions 

by Pan & Hudson (1988), is particularly worth noting because it has a simple form and 

is consistent with a large number of experimental data from intact rock to jointed rock 

masses. The criterion has a distorted parabolic shape in a 1 and a 3 space and is 

expressed as 

(3.7) 

where ac is the uniaxial compressive strength of intact rock, m and s are parameters 

that depend upon rock type and rock conditions, and a1 and a3 denote the maximum 

and minimum principal stresses, respectively (Fig. 3.5). For intact rock s is unity. 

Results of the applications of this criterion to a wide range of rocks are tabulated by 

Hoek (1983), whereas an updated version was proposed by Hoek & Brown (1988) and 

a more general form to include the negative confining pressure range was given by 

Hoek et al. (1992) and Hoek (1994). 

3.2.3 Brittle-plastic transition 

Rocks in general behave in a brittle manner at low confining pressures; but under 

suitable conditions (increased confining pressure and/or temperature), they can exhibit 

ductility. The term brittle-plastic transition or more accurately brittle-plastic transition 

(Rutter, 1986), is used to denote the entire transition from purely brittle to purely 

plastic behaviour. This change is not abrupt, but involves a gradual transition through a 

"semi-brittle" field (Evans et al. , 1990). When physical mechanisms are considered, a 

variety of potential deformation mechanisms in the ductile field and correspondingly a 

variety in the character of brittle-plastic transition may occur as shown in Table 3.1. 
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Thus no single view of the brittle-plastic transition can be valid under all conditions 

(Paterson, 1978). However, there are two simplified views of how a brittle-plastic 

transition can happen with increasing confining pressure. These cases have been 

characterised by Mogi (1972, 1974) as A-type and B-type transitions and represent 

extremes in the range of behaviour that can be expected at relatively low temperatures: 

A-Type corresponds to rocks which deform in the ductile field entirely by crystal 

plasticity whereas B-type occurs entirely by cataclastic flow. 

a) A-type rocks (Simple crystal plasticity case, Fig. 3.6a). Crystal plasticity is a term 

used to describe the permanent deformation of crystalline material by slip and twinning 

within grains. Both processes are basically simple shearing processes. In this case 

faulting occurs after some permanent deformation, which increases with increasing 

pressure. The large permanent strain in the post-yield region before fracture occurs by 

homogeneous plastic deformation. The brittle-plastic transition may occur when the 

fracture strength is equal to the yield strength. 

b) B-type rocks (simple cataclastic flow case, Fig. 3.6.b). Cataclastic flow is a term 

describing the permanent straining achieved by the combination of the disturbed 

fracturing whereas the material is broken into fragments, and the relative movement of 

fragments. This mechanism is similar to the flow of a granular material (Paterson, 

1978). In this case the stress drop occurs just after the yield point and the permanent 

deformation in the post-yield region occurs by cataclastic flow or frictional sliding. 

According to Oro wan ( 1960) the brittle-plastic transition pressure is the pressure at 

which the strength of rock at faulting is equal to the strength due to frictional resistance 

after faulting. 

Some carbonate rocks are A-type, whereas many silicate rocks are B-type but most 

rocks seem to be intermediate between these two types and near the transition pressure 

probably both fracturing and plastic deformation contribute to the inelastic 

deformation just before and after yielding (Mogi, 1974). 

For both cases the ductility, which is defined as the ability to undergo large permanent 

deformation without fracture (Handin, 1966) increases as the confining pressure 

increases, whereas the stress drop decreases. Oro wan ( 1960) suggested that the stress 

drop characteristic of fracture does not occur at high pressure because frictional 

resistance on the fault surface becomes higher than the shearing strength of rock. This 

idea has been used as a possible explanation of the brittle-plastic transition by Maurer 

(1965), Mogi (1966) and Byerlee (1968). Mogi (1966) found that the brittle-plastic 
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Table 3.1: Schematic diagram illustrating the phenomenology of the brittle-plastic transition 

(after Evans et al. 1990) 

Failure Mode 

Attributes 

< --Brittle->< ------Ductil.e------ > 
< - Semibrittle-- > 

< -----Cataclasis------ ><--Plastic - > 

Permaamt Stram 
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~an: Dependmtz 
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Figure 3.6: Types of transitions : (a) A-type, simple crystal plasticity. (b) B-type, simple 

cataclastic flow (after Mogi, 1974) 
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transition boundary in the differential stress vs. confining pressure graph is expressed by 

the linear curve (Figure 3.7a) 

for various silicate rocks, whereas the transition boundary m carbonate rocks 1s 

somewhat different (Figure 3.7b). 

Magi (1972) suggested that the frictional hypothesis can explain the brittle-plastic 

transition for B-type rocks which deform in the post-yield region by cataclastic flow or 

frictional sliding, but it may not be applicable to A-type rocks, in which large 

permanent strain before fracture takes place by homogeneous plastic deformation. 

Byerlee (1968) argued that the brittle-plastic transition boundary is independent of rock 

type, and that Orowan's frictional hypothesis is valid for both silicate and carbonate 

rocks. The difference in the interpretation of the brittle-plastic behaviour in the two 

rock types may be due to some confusion about the definition of the brittle or plastic 

state. Heard ( 1960) defmed brittle or plastic behaviour by using the ductility. The rock 

specimen is considered brittle if the maximum strain was less than 3%, transitional 

between 3% and 5%, and plastic above 5%. Using this definition, the frictional 

hypothesis can explain the B-type behaviour but it may be not applicable to A-type. On 

the other hand, Byerlee ( 1968) defmed the brittle or plastic state by whether or not 

stress drop occurs after faulting. In this case, the brittle-plastic transition can be 

explained by the frictional hypothesis for both A- and B-types, as pointed out by Magi 

(1974). 

According to the Orowan's frictional hypothesis, at the brittle-plastic transition the 

shear strength of the intact rock material is equal to the frictional resistance along the 

fault surface. Therefore, the coefficient of friction can be calculated from the transition 

pressure and the corresponding maximum differential stress. As an example, the 

typical results from Von Karman's (1911) classical triaxial compression experiments 

on marble (Fig. 3.8) will be used. 

The normal stress in a plane whose normal makes an angle a with the axis of the 

specimen is 
O'. + O'. O'. -(J'" 

O"=OC= 1 3 +( 1 3 )cos2a 
2 2 

(3.9) 

and the shear stress is 
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O"J -0-3 'a =CD =(--~)sin2a 
2 

(3.10) 

The frictional resistance to sliding in this plane is µa-a. where µ is the coefficient of 

friction. 

The Mohr diagram showing the state of stress is given in Fig. 3.9. According to 

Orowan ( 1960) failure by sliding occurs when, in the plane of the most unfavourable 

orientation, the shear stress reaches the value of the frictional resistance. The ordinate 

of any point on the line OD drawn at an angle ~ to the cr axis gives the frictional 

resistance for the normal pressure represented by its abscissa. At the beginning of the 

compression test the differential stress AB = a-,-0-1 applied to the specimen is small, 

and the corresponding Mohr circle (small circle in Fig. 3.8) does not reach the friction 

line OD. The shear stress due to compressive loading is not enough to produce failure 

by sliding. Failure occurs when, with increasing load, the circle comes into contact with 

the friction line at point D. The friction angle ~ is related to 0-1 and a-3 with the 

following relation 

sin </J (3.11) 

from which the coefficient of friction is obtained. 

Of the curves in Figure 3.8, the most appropriate for calculating the coefficient of 

friction is that at a-3 = 68 MPa. The curves at lower pressure show a stress drop which 

means that the resistance to crushing is still higher than the frictional resistance to 

sliding of fragments and the curves at higher pressure show a rise which is due to 

progressive plastic deformation and strain hardening of the fragments. For the curve 

with a-3 = 68 MPa, a-1 - a-3 = 288 MPa, and sin</J = 0.677, µ = tan</J = 0.92 ( <jJ = 42.6°). 

The brittle - plastic transition pressure for pure coarse-grained marbles lies in the range 

20-30 MPa, whereas other marbles and limestones show similar transition pressures 

(Paterson, 1978). However, the transition pressure tends to be higher when the rock is 

fine-grained or less pure. For example for the very fine-grained Solnhofen limestone 

(Heard, 1960) the brittle-plastic transition occurs at about 100 MPa. Similar behaviour 

to marble and limestone is exhibited by evaporates and various fairly porous or 

weathered rocks, but other rocks behave differently (Paterson, 1978). Some examples 

of brittle-plastic transition pressures observed in triaxial compression tests at room 

temperature are shown in Table 3.2, compiled by Paterson (1978). A more detailed 

compilation of data on brittle-plastic transition pressures and the resulting friction 

angles is presented in Chapter 5. 
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Table 3.2: Examples of typical brittle-plastic transition pressures 

( after Paterson, 1978) 

Rock Approximate transition 

pressures (MPa) 

Limestones and marbles 30-100 

Dolomite 100-200 or higher 

Gypsum 40 

Anhydrite 100 

Rocksalt <20 

Talc 400 

Serpentinite 300-500 

Chloritite 300 

Argillaceous sandstone 200-300 

( ~ 10% porosity) 

Siltstones and shales of <100 

medium to high porosity 

Porous lavas 30-100 

The more siliceous igneous and metamorphic silicate rocks, such as granite and 

quartzite, remain brittle at confining pressures in excess of 1000 MPa (Byerlee 1968, 

Bergues et al. 1974). Shimada et al.(1983) found that non-porous granite, gabbro, 

dunite and eclogite remained in the brittle field when tested at room temperature and 

confining pressures up to 3 GPa. 

Transition pressure decreases with porosity. Correlations between transition pressure 

and porosity of some sandstones are given by Scott & Nielsen (1991), Logan (1987) 

and Wong (1990). 
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3.3 Shear strength of rock discontinuities 

3.3.1 Introduction 

The resistance to sliding between contacting solids has been extensively studied and 

many attempts have been made to derive a complete theory to account for the 

phenomenon. 

There are two basic laws of frictional behaviour: 

a) The shear resistance between two bodies is independent of the size of the 

surfaces in contact. 

b) The shear resistance between two bodies is proportional to the normal load 

between the bodies. 

These laws were first stated by Leonardo da Vinci in the late 1400s, largely forgotten, 

and then rediscovered by the French engineer Amontos in 1699. They are often called 

Amontons' laws. 

It is generally accepted that the adhesion theory described below provides the most 

likely explanation of friction. 

3.3.2 The adhesion theory of friction 

Terzaghi (1925), and Bowden and Tabor (1950) proposed that friction is due to 

adhesive forces acting at the points of contact between the opposing surfaces. This 

theory became known as the adhesion theory of friction . 

Terzaghi (1925) argued that even smooth surfaces are rough on a molecular scale, and 

that the actual area of contact is only a small part of the total area of the surface. He 

suggested that the frictional resistance is caused by physical-chemical interaction 

between the contacting surfaces, forming firm or semi-firm bridges and concluded that 

for chemically pure surfaces the bridges are formed by molecular attraction at the 

points of contact. Thus the frictional resistance is the shear strength of that bridge. 

This hypothesis of Terzaghi was overlooked for many years, and was independently 

stated and shown to describe the frictional behaviour of a wide range of materials by 

Bowden, Tabor and their colleagues starting in the late 1930s. Based on a series of 

experiments on the friction between surfaces of metallic solids, Bowden and Tabor 

(1950), suggested that when solid surfaces are brought together they make contact 

only at a few points (Fig. 3.10). The sum of all these contact areas Ar is much smaller 

than the apparent area A of the contacting surfaces. It is only Ar, not A, that is 

responsible for friction. Accordingly, the normal stress acting at these areas is very 

high, and results in adhesion, welding the surfaces together at "junctions". Bowden and 

Tabor (op. cit.) have shown how at the contacting regions the deformation will first be 

elastic, but with materials capable of undergoing plastic flow the smallest loads will 

produce stresses exceeding the elastic limit and plastic deformation will occur. If the 
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load is increased the asperities are plastically crushed until they are large enough to 

support the load by elastic strains in the underlying material. Under these conditions 

the true area Ar of contact is small and independent of the apparent area of contact A. 

Bowden & Tabor assumed that the true area of contact, Ar arose from plastic 

deformation and that the major force of friction arose from shearing the junctions thus 

formed. 

asperities 

/!~ 
;;t\•t~t~t•:1•11: . 

(a) 

(b) 

Fig. 3.10. Contact between two rough surfaces 

3.3.3 The area of contact between contacting surfaces 

Terzaghi (1925), suggested that the frictional resistance of a surface, S, is equal to: 

S=µN (3 .12) 

where 

N is the total load, and 

µ is the coefficient of friction. 

He observed that sliding could commence only after the shear strength of the weaker 

material s had been exceeded over the total net area of contact Ar. Thus the frictional 

resistance of the surface, S, was equal to: 

(3.13) 

or 
(3.14) 
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Both the coefficient of friction and the shear strength of the weaker material are 

constant, thus the frictional resistance of the surface is proportional to both the normal 

load and the actual area of contact between the surfaces. 

Terzaghi reasoned that the stress acting at the points of contact is of the order of the 

compressive strength of the weaker material and that the actual area of contact is small 

in comparison to the total area of the surface, and is proportional to the applied load. 

An estimate of the actual area of contact can be made by dividing the applied stress by 

the compressive strength of the weaker material. If the stress exceeds the compressive 

strength, the material undergoes plastic deformation, and a consequent increase in the 

area of contact. 

Bowden and Tabor (1950) observed that the frictional resistance of solid surfaces is 

equal to the shear strength of welded junctions, multiplied by the area of contact, 

equation (3.12) above. The formation of welded junctions occurs until the area of 

contact is sufficient to support the applied load. The actual area of contact between the 

surfaces, Ar, is proportional to the applied load but independent of the area of the 

sliding surface, and is given by: 

N 
A=-r 

p 

where 

Ar is the real area of contact 

N is the load acting across the surfaces and 

p is the yield strength of the material. 

(3.15) 

Thus both Terzaghi (1925) and Bowden & Tabor (op. cit.) have shown that the 

frictional resistance of plastic surfaces is a function of the actual contact area, and that 

the actual contact area is independent of the area of the sliding surface, but 

proportional to the applied load. 

For surfaces which behave elastically, the relationship between the actual area of 

contact and the normal load is more complex. Archard (1957) found that for a 

Hertzian contact between a hemispherical asperity and a planar surface, the area of 

contact Ar and the normal load N are connected with the relation 
2 

A oc.N 3 
r (3.16) 
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This relation contradicts Amonton's second law and suggests that, either elastic 

surfaces do not behave in a Hertzian manner, or some other mechanism of asperity 

deformation occurs. 

In the case of surfaces composed of numerous elastic asperities, Archard (op. cit.) 

suggested two possible modes of deformation upon the application of a normal load: 

a) the number of asperity contacts remains constant with each asperity deforming due 

to the applied load. In this case the increase in contact area is proportional to two

thirds the applied load (relation 3.16 above). 

b) the number of asperities increases with normal load, but the deformation of each 

asperity remains constant. In this case the area of contact increases proportionally with 

the normal load. 

In a real situation both modes of deformation occur simultaneously as a result of an 

increase in normal load. Hyett & Hudson (1990) observed that upon the application of 

a normal load on both rough and smooth joint surfaces consisting of epoxy resin, there 

was an increase in both the deformation of existing contacts and the creation of new 

points of contact. Archard (1957 and 1974) showed that for a surface composed of 

hemispherical asperities the area of contact is given by: 

(3.17) 

where 2/3 < n < l 

For a surface composed of a single scale of asperity, n equals 2/3. For surfaces 

composed of asperities of numerous scales the value of n increases. When the variation 

in scale of the asperities displays a gaussian distnbution, n is equal to 44/45. Thus the 

proportionality between load and contact area holds in case of complex elastic surfaces. 

Therefore, when any plastic or complex elastic surfaces come into contact, the actual 

contact area approaches direct proportionality to the normal load and Amonton's laws 

are obeyed. 

3.3.4 The origin of the adhesive forces between solid surfaces 

Several investigators other than Bowden and Tabor (1950) and Terzaghi (1925) tried 

to explain the origin of the adhesive forces between solid surfaces. Hardy and Hardy 

(1919) and Hencher (1977) attributed adhesion to molecular attraction between 

surfaces at the points of contact, whereas Allen (1963) and Bailey (1965) to chemical 

bonding, i.e. metallic, ionic and co-valent bonds forming between molecules in 

opposing surfaces, and other surface forces, i.e. Van der Waals forces. Tabor and 
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Winterton (1969) observed that Van der Waals forces acting on mica surfaces 

contribute significant attractive forces at distances up to 30 run. 

Johnson et al. (1971) observed that a force perpendicular to the surfaces is required to 

separate them, and concluded that the force is equal to the adhesion acting at the points 

of contact. They observed that adhesion decreases as the surface roughness increases, 

reasoning that the decrease is due to the roughness preventing intimate contact between 

the surfaces. Fuller and Tabor (1975) observed that a force acting normally to the 

surfaces of contacting elastic solids is required to cause their separation and attributed 

this to adhesion. They noted that adhesion diminishes with increasing roughness. 

The occurrence of adhesive forces at the points of contact between mineral surfaces 

have been recognised by several authors. Hom and Deere (1962) attributed the 

frictional resistance of minerals to molecular cohesion between the surfaces and 

observed that the frictional resistance is variable. They reasoned that this is due to the 

adsorption of contaminants onto the mineral surfaces which reduces the adhesion. 

Bromwell ( 1966) suggested that friction is due to adhesive forces and demonstrated 

that the adhesive forces are diminished by the absorption of gases onto the mineral 

surface when it is exposed to air. He found that frictional resistance is increased by 

careful cleaning. 

3.3.5 The Greenwood & Williamson model 

Greenwood and Williamson ( 1966) developed a realistic analytical model for contact 

of a rough surface with a flat surface, where the rough surface was described with a 

random distribution of asperity heights. 

The basic assumptions of this model are: 

a) The asperities, at least at their summits, are spherical. 

b) All asperity summits have the same radius P 
c) The summits are sufficiently apart to deform independently 

Based on the Hertzian contact theory between individual asperities (Timoshenko & 

Goodier, 1951) they showed that for a peak height distribution (jJ(z), when the reference 

planes of the two surfaces are separated by a distance d (Fig. 3.1 lb); the number of 

contact spots n, the real area of contact Ar and the total normal load N are given from 

the following equations respectively 

n= l7A [¢(z)dz (3 .18) 
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4 
I 3 

N = 3,, AE'/32 r (z - d0 + 5) 2rjJ(z)dz 

where 

l/ is he number of asperities per unit area 

A is the macroscopic (gross) area of contact 

/3 the radius of the asperity summits 

(3.19) 

(3.20) 

z applies to the rough surface and is the distance from a peak to its reference plane 

5 = d0 -d with d0 the distance between the reference plane and the smooth surface 

without any stress. 

[ rjJ( z )dz is the probability of an asperity peak having a height greater than d and E' is 

a composite modulus of elasticity, given by 

1 

E' 

1- v/ 1-v/ 
+ E El 2 

(3.21) 

where E 1, v1 and E2, v2 are the modulus of elasticity and the Poisson's ratio for the 

material of surfaces l and 2 respective!Y· 

If the two contacting surfaces are of the same material E 1 = E2 = E , v
1 
= v

2 
= v 

and 

(3.22) 

In the case of an exponential distribution, (/)(, z ) =- e s , equations (3 .20), (3 .21) and 
s 

(3.22) yield: 

where 

--h 
n = l/ Ae 

--h 
A1 = tr ( l/fJs)Ae 

an the apparent normal stress and 

s the standard deviation, 

h =( do-o)/s the standardised separation 

Equation (3.27) then yields 

(3.23) 

(3.24) 

(3.25) 

(3.26) 
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(a) No stress 

Flat surface and reference plane 

Reference plane in rough surface 

Reference plane below rough surface 

(b) Stress O'a 
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Fig. 3.11. Contact between a rough and a flat surface 

(a). No normal stress. (b) Under normal stress crn 

Reference plane 1 
- -----------------

----------- ---- - -Reference plane 2 

--r -· -- ------ ---,. ---
d COMPOSITE PROFILE 

__ L __ 

(a) 

(b) 

Fig. 3.12: (a) Sketch of the profiles of two rough surfaces. (b) Sketch of a composite profile, 

the sum of the ordinates of the two profiles in (a) (after Brown & Scholz, 1985). 



50 

where 

1 1 3 - - -

A =d0 -sln[1r2 17E'fJ2s2 ] (3.27a) and B= s (3.27b) 

From (3.23), (3.24) and (3.25) 

(3.28) 

and so, independently of the mode of deformation ( elastic or plastic) or the shape of 

the asperities, there will be exact proportionality between area of contact and normal 

load, so that Amonton's second law is obeyed. This suggests that the laws of friction, 

and particularly of the proportionality between area and load lies not in the mode of 

deformation of individual contact spots but simply in the statistics of surface roughness 

(Greenwood & Williamson, 1966, Greenwood, 1967). 

Equation (3.26) has been used by Goodman (1976), Swan (1983) and Brown & Scholz 

(1986) to describe normal deformation of rockjoints. 

Brown & Scholz ( 1985) generalised the theory of Greenwood & Williamson to cover 

the case of contact between two rough surfaces mated or unmated (Fig. 3.12). They 

use the sum of the ordinates of the topographic profiles for each surface to generate a 

composite profile. Contact occurs between maxima of this composite profile where the 

surfaces are closest together. These maxima do not necessarily coincide with peak 

heights on either surface. 

The effect of possible tangential stresses at oblique contacts between the surfaces is 

taken into account, by introducing a tangential stress factor k, which depends on the 

slope of surfaces in contact. Brown & Scholz (op. cit.) developed the following 

equation relating the average normal stress to joint closure 

(3.29) 

where k is the mean value of a tangential stress correction factor, which for small 

surface slopes is approximately equal to unity and 

E' and /J are values averaged over all contacts. 

For an exponential probability function ¢(z) , equation (3.29) yields again equation 

(3.26). In this case, the constants A and Bare given by 
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1 1 3 
- - -

A =d0 - s ln[1r2 77kE'fJ2s2 J (3.30a) and B= s (3.30b) 

The peaks in most rough surfaces are essentially of Gaussian distribution rather than 

exponential. Swan (1983) made careful measurements with a profilometer of the 

topography of 10 different surfaces of Offerdale slate and showed that the peak heights 

of asperities fitted a Gausssian distribution. However, an exponential distribution is a 

fair approximation to the upper quartile of a Gaussian distribution of heights of 

asperities as suggested by Greenwood & Williamson (1966), who observed in practice 

(for metal surfaces) the ideal behaviour predicted for an exponential distribution. This 

quartile is more relevant to the frictional behaviour (Halling, 1978) and an exponential 

distribution of heights can offer a reasonable approximation for rock joint contacts at 

low to medium normal stresses (Swan, 1983, Sun et al. , 1985). 

Greenwood & Williamson ( 1966) found that plastic flow is expected at high normal 

loads. Thus under sufficiently high loads, asperities of small curvature may flow 

plastically even for normally brittle materials, although brittle fracture of the asperities 

often may intercede (Scholz, 1990). 

3.3.6. Plastic deformation of rocks and rock joints 

It may be argued that the application to rock surfaces of adhesion theory, which is 

based upon plastic deformation of the points of contact, to rock surfaces may be 

problematic, since rocks are normally brittle materials and the asperities may fail by 

brittle fracture, rather than plastic yielding. However, this brittle behaviour changes to 

plastic when the applied stress is sufficiently high, as suggested by Bridgman's 

experiments (Bridgman, 1952). Bowden and Tabor (1964) observed that when NaCl 

was subjected to high confining pressures, brittle fracturing was prevented, and the 

NaCl deformed by plastic flow, thus allowing cold welding of the contacts. The same 

authors have shown experimentally that the deformation of rock salt in the region of 

sliding is dominated by plastic and not by brittle processes. Brace (1962) observed that 

quartz crystals subjected- to indentation hardness tests displayed apparent plastic 

deformation in the region of the indentation and concluded that brittle fracturing is 

restricted by high confining pressures. Based on the results of penetration tests, Scholz 

and Engelder (1976) proposed that the creep observed was due to plastic flow. 

According to Gerk & Tabor (1978) under conditions of hardness indentation, brittle 

materials around the indenter become sufficiently ductile to sustain plastic flow. It 

appears that this behaviour is independent of the hardness of the material, as suggested 

by direct observations on the transition of diamond by Vereshhchagen et al. (1974). 

These observations suggest that if the confining pressure is sufficiently high, the plastic 



52 

deformation of the surface required to cause cold welding at the points of contact does 

occur. 

Brown and Scholz ( 1986) observed that, at low normal stresses, contacting rock 

surfaces undergo elastic deformation. As the contact stresses increase, the elastic yield 

strength of the asperities is exceeded and the asperities deform plastically. They noted 

that macroscopic plasticity when viewed microscopically may involve both brittle 

fracturing and plastic flow. This is typical of the behaviour in the brittle-ductile 

transition, as suggested by Evans et al. (1990) and shown in Table 3.1 The plastic 

deformation first occurs when the maximum contact stress exceeds the indentation 

hardness of the material, and that significant plastic deformation occurs when the mean 

contact stress exceeds the indentation hardness of the material. The onset of plastic 

deformation is also dependent upon the shape of the asperities. Asperities with low 

apex angles deform plastically at lower stresses than those with high apex angles. 

From routine shear strength testing there is also enough experimental evidence, that the 

frictional force of natural rock-rock interfaces arises from shearing of rock under high 

normal stresses at localised areas of contact. For example Jaeger (1971) estimated that 

the actual area of contact Aa for a rough joint is of the order of 1 % of the apparent 

area of contact A. Based on laboratory measurements Barton (1971a) estimated that at 

any stage of sliding the ratio A/ A is relatively small, whereas Barton & Choubey 

(1977) pointed out that real normal and shear stress at a conventional rock mechanics 

problem may be as high as one thousand times as those calculated from the gross area 

of contact. For example at nominal stresses of l MPa, the corresponding real stresses 

may be as high as 1000 MPa. They found that, over a wide range of rock joints the 

ratio Ac/A is approximately equal to the normal stress/joint wall compressive strength 

ratio, in agreement with Terzaghi (1925). Results by Iwai (1976, quoted in Barton et 

al., 1985) from normal closure tests on granite, indicated ratios of Ac/A of less than 

0.1 % when effective normal stress as low as 0.26 MPa was applied. At higher normal 

stress (20 MPa) the ratio of Aal A was in the range l 0-20%. Similar observations were 

made by McMahon ( 1985), Y oshinaka et al. ( 1993) and others. 

Brown & Scholz ( 1986) calculated the real area of contact as less than 1 % of the 

nominal surface area of the sample at normal loads exceeding 50 MPa. Logan & Teufel 

( 1986) measured the real area of contact during sliding for three different cases: 

sandstone sliding on sandstone; limestone on limestone and sandstone sliding on 

limestone. Their results, shown in Fig. 3.13, indicate that the real area of contact. 

increases linearly with normal stress in all cases. The approximate values of the real 

normal stress were from 200 to 2,200 MPa. The fractional area of contact Aa/ A at an 



..... 
u 
(:,;:I ..... = 0 u 

<.+-, 
0 
(:,;:I 
<I) ... 
(:,;:I 

~ 
<I) 

0::: 

25.-------------------, 

20 

5 

o.__.....1-_ __. __ .....__~ _ __.'--_...:......_....1 

100 200 300 

Normal stress (MPa) 

Fig. 3.13: Variation of contact area with normal stress (after Logan & Teufel, 1986) 

apparent normal stress of 10 MPa was of the order of 1-7%, and lower at lower 

normal stresses. The asperities deform by a combination of brittle fracturing, crystal 

twinning and bending of existing twins. 

Stesky and Hannan (1987, 1989) also conducted normal closure tests on joints m 

marble, alabaster and quartzite, at normal stresses up to half the uniaxial compressive 

strength of the rock. They found that the relative contact area increased with reaching 

about 15% at 19 MPa for marble, 30% at a normal stress of 12 MPa for alabaster but 

quartzite had a permanent relative contact area of less than 1 % at 49 MPa, indicating 

that most of the deformation was elastic. These authors commented that the initial 

contact stress may be close to the differential stress needed for deformation of this 

marble rock under sufficient confinement for bulk cataclastic flow to occur, i.e. close 

to the brittle-ductile transition stress. 

McMahon (1985) examined the nature of asperity failure during shear of natural joints 

and observed that the asperities fail by grinding rather than by shearing through. 

Similar observations were made by Hutson & Dowding (1990) and Perreira & de 
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Freitas (1993) for regular saw-toothed joints. The last authors concluded that stresses 

were locally concentrated, although the shear surface consisted of a number of teeth of 

the same geometry. This is very important as it suggests that contact points are limited 

and therefore the acting stress is very high, changing the behaviour from brittle to 

plastic, even in the case of saw-toothed surfaces. Hutson and Dowding (op. cit.) 

observed that the degree of grinding is a function of external work, the joint roughness 

and the normal stress. McMahon (1985) observed that the reduction from peak to 

ultimate shear strength of the surface is brought about by this grinding of the 

asperities. 

3.3. 7 Peak, ultimate and residual shear strength 

Rock joints are in general rough, and roughness varies in scale from that of the grain 

size of the rock to large asperities several metres in length. The asperities interlock to a 

certain degree and work must be done for sliding to occur. When a shear force is 

applied the deformation is elastic until, at the points of contact, it becomes sufficiently 

high to cause failure of the adhesive junctions. For sliding to occur at low normal 

stresses work must be done against the normal load to cause the overriding of the 

asperities, which is known as dilation. Thus the shear stress increases to a peak (Fig. 

3 .14) at which point overriding of the asperities occurs. The shear stress will 

subsequently reduce; however, further interlocking may produce successive peaks. As 

the normal stress increases less work is required to cause asperity failure than asperity 

overriding. Consequently, the dilation is reduced and peak shear stress is mainly due 
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to the shear strength of the asperities. If the normal stress is sufficiently high, dilation is 

fully suppressed and the shear strength is solely due to shearing through the asperities. 

After failure of the asperities has occurred the shear stress reduces to a level at which 

further sliding will occur with no further increase in shear stress. This is commonly 

termed the residual shear strength. Krahn and Morgenstern ( 1979) observed that the 

residual shear strength of the surface depends upon the original roughness. Hassani and 

Scoble (1985) observed a similar relationship for shear tests on artificially roughened 

siltstone discontinuities. Krahn and Morgenstern ( op. cit.) recommend that the term 

ultimate shear strength be used for the post peak shear strength of rock discontinuities. 

Barton (1973) proposed that the residual shear strength can be indirectly obtained by 

direct shear tests of saw cut surfaces. However, saw cutting alters the affects of surface 

texture and consequently the affects of surface damage and the accumulation of sliding 

debris during shearing. It is therefore questionable whether a saw-cut surface will give 

the true residual strength of a rough joint. 

3.3.8 The origin of shear strength of rock joints 

Ladanyi & Archambault (1970) and Barton (1971a, b) separated the peak shear 

strength of a rough joint into three components, following a similar for soils (Rowe, 

1962): a) one due to sliding resistance between flat surfaces (base friction component) 

b) one due to dilation (dilation component) and c) one due to shearing through of 

asperities (asperity failure component). The last two components are due to roughness 

and together comprise the so-called roughness component. To account for the 

reduction of shear strength with shear displacement, a plough component has been 

introduced (e.g. Plesha, 1987, Hutson & Dowding, 1990 and Leong & Randolph, 

1992). 

Hencher (1987, 1995) used a different scheme to describe the various components of 

shear strength. He suggested that in cases where there are no major asperities, there is 

one frictional component (including adhesion and interlocking-ploughing) and one 

geometrical ( due to dilation). For major asperities a "cohesion" component should be 

added (Table 3.3). 

The role of each one of these factors is different, but in general shear strength arises 

from two main sources: a) from the frictional properties of the rock wall material and 

b) the surface roughness which causes overriding and/or shearing through of asperities. 
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3.3.8.1 The frictional component 

The "base" friction angle is used in rock mechanics in a similar way to the mineral 

friction angle for soils (Rowe, 1962). That is, a block is cut into two and is subjected 

to shearing. The corresponding friction angle is termed the basic fiction angle (Barton 

1973), and depends on the surface preparation (degree of grinding and polishing), as 

has been demonstrated by Ripley & Lee (1962), Coulson (1970), Krahn & 

Morgenstren (1979) and others. In the case of unweathered joints, this friction angle is 

taken as being equal to the residual friction angle for unweathered joints (Barton & 

Table 3.3: Factors contributing to the shear strength of rock joints (after Rencher, 1995) 

1. Adhesion (lower bound friction) 

increasing nonnal load➔ 

N, N2 

2. Interlocking and ploughing 

(additional friction) 

increasing nonnal load➔ 

N1 N2 

~ ~ 
3. Overriding 

4. Cohesion 

- Bonding over true area of contact (A 1, Ai) 

• proportional to nonnal load 

• does not cause dilation 

• no reduction with displacement 

• same for different textural surfaces and roughness 

- Surface textural component 

• proportional to nonnal load 

. • does not cause dilation 

• generally decreases with displacement due to 

damage and the production of debris 

• increases with rougher surface texture 

- Work done due to dilation or compression 

• uphill sliding leads to an increase in measured 

strength and vice versa 

• purely geometrical effect 

• decreases with nonnal load and decreasing wall 

rock strength reduction with displacement 

• same for different textural surfaces and roughness 

- Shearing of rock bridges and locked asperities 

• not proportional to normal load 

• independent of dilation 

• lost after peak strength 



57 

Choubey, 1977). The base friction angle is not a fundamental physical property of the 

material and for a diamond sawcut surface may be a reproducible index for a particular 

rock type and particular saw blade. In some cases sand-blasted surfaces have been 

used, for example by Ripley & Lee (1962), Coulson (1972) and others. Hencher et al. 

(1993) reported that the sliding angle of a flat sandstone surface can be reduced from 

35° to 12° by repetitive sliding. For weak materials this may not be possible, as the 

variation in base friction angle may be higher. Toy (1993) demonstrated that the base 

friction angle of weak plaster-based model materials may vary considerably n the 

range 9-35° and concluded that this friction angle is variable. Swan & Zongqi (1985) 

and Reeves (1985) argued that the base friction angle is scale dependent. 

Ripley & Lee (1962) used the term true friction angle to describe that part of peak 

friction angle which remains after correction for dilation. The same procedure is 

recommended by CANMET (Gyenge and Herget, 1977) to define a basic friction 

angle, and has been used by several authors including Ross-Brown & Walton (1975). 

The principle has been employed by Hencher & Richards (1982, 1989), with 

correction for dilation applied in an incremental fashion for volumetric work done 

throughout the test. These authors used the term "basic" friction angle not for sawcut 

surfaces, but for naturally textured, non-dilational surfaces. This angle was found to 

be about 40° for a number of shear tests on sheeting joints in granite, a value clearly 

higher than the friction angle of saw-cut surfaces. The method of separation of shear 

strength into two components is very clear, but Barton (1990) argued that the textural 

strength ofHencher & Richards is scale dependent. However, Papaliangas et al. (1994) 

demonstrated that this strength is independent of scale. This subject is a matter of 

some debate and it would be true to say that an objective of the present work was to 

attempt to resolve this problem. 

A wide range of values for typical base friction angles is reported in the literature. 

These values are based on sliding tests on sawcut surfaces, which may have been 

subjected to lapping or sandblasting, or on residual shear strength. The value of 

residual shear strength - and consequently the basic friction angle- may be dependent 

upon the original roughness (Krahn & Morgenstern, 1979, Hassani & Scoble, 1985). 

Barton (1973) argued that the residual shear strength may not be achieved during a 

direct shear test due to insufficient shear displacement. Barton & Choubey (1977) 

proposed that the residual friction angle is equal to the friction angle of sawn surfaces 

when the joint is unweathered but in the case of weathered joints it can be obtained by 

direct shear tests of saw cut surfaces and from the Schmidt rebound numbers for the 

unweathered and weathered surface. Ultimate friction angles measured on different 

types of joints in the same hard, relatively pure, unaltered limestone ranged from 14° 
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to 32° (Cruden, 1983). Some basic friction angle ranges for typical rocks are given in 

Table 3.4. These values may vary considerably with site conditions. 

3.3.8.2 The roughness component 

Roughness has a dominant effect on the frictional properties of rock joints. It has been 

argued by Greenwood & Williamson (1965) and Greenwood (1967) that the laws of 

friction have their origin not in the mode of deformation (brittle fracture or plastic 

flow) but in the statistics of surface roughness (see Chapter 3.3.5). The random 

geometry of joint surfaces has been statistically treated by a number of researchers. 

Several attempts have been made to correlate roughness directly to shear strength, for 

example Reeves (1985), Swan(1981, 1983), Swan & Zongqi (1985), Dight & Chiu 

(1981 ), Chiu & Dight (1983) among them. The effects of roughness on shear strength 

can be considered on different scales, but they are usually considered on two scales, 

that of the contacting asperities (microscopic scale) and that scale of the sliding 

surface (macroscopic scale). 

Table 3.4: Typical basic friction angles (after Wyllie, 1990) 

Rock type Typical examples Basic friction 

angle 

Low-friction rocks schists (high mica content), shale, marl 20°- 27° 

Medium-friction rocks sandstone, siltstone, chalk, gneiss, slate 27°- 34° 

High-friction rocks basalt, granite, limestone, conglomerate 34°- 40° 

On the microscopic scale all surfaces, even the smoothest ones, are rough and the 

frictional resistance of two contacting surfaces is due to adhesion at the points of 

contact. On this scale the effect of surface roughness is to reduce the adhesive 

component of friction. This has been demonstrated by Hardy and Hardy (1919) who 

observed that the frictional resistance of rough glass surfaces was lower than that of 

smooth glass. Similar observations were made by Fuller and Tabor (1975), Johnson et 

al. ( 1971 ), and Briggs & Briscoe ( 197 6) who attributed this reduction to the higher 

asperities causing the smaller asperities to separate. This reduces the actual area of 

contact between the surfaces, and consequently reduces the adhesion. However, when 

the two surfaces are of different hardness, the shear resistance increases with 

increasing roughness, as shown by Byerlee (1967a). Due to this difference there is a 

significant amount of asperity indentation, similar to that described by Scholz and 

Engelder ( 197 6), which increases the coefficient of friction between the two surfaces. 

The macroscopic scale roughness has no effect upon the friction due to adhesion at the 

points of contact, but work must be done to overcome interlocking of large scale 
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asperities in order to enable shear displacement to occur. Consequently the effect of 

large scale roughness is to increase the shear strength of the surfaces. To overcome this 

interlocking the asperities must either be overridden or sheared through. 

Roughness can be characterised by a number of parameters. Many researchers, among 

them Wu & Ali (1978), Tse & Cruden (1979), Krahn & Morgenstern (1979), Maerz 

et al. ( 1990) and others have tried statistical parameters such as centre line average 

value, mean square value, root mean square (RMS) value, mean square of the first 

derivative, (Z2) RMS of the first derivative, RMS of the second derivative, probability 

density function, auto-correlation function, spectral density function, structure function 

(SF), roughness profile index (Rp) and micro-average i angle (A;) to quantify roughness. 

Ladanyi & Archambault (1970), Reeves (1985), Swan (1981, 1983), Swan & Zongqi 

(1985), Dight & Chiu (1981), Chiu & Dight (1983) amongst others have used the 

average asperity slope, which appears to be most relevant to the dilational behaviour of 

rough surfaces. This parameter can be defined in different ways, but the most common 

form in use is the root mean square slope gradient (Z2) defmed by: 

where 

1 r-L dy 
2 

z =- (-) 2 L =O dx 
(3.31) 

y is the amplitude at a particular point on the roughness profile about the centreline, 

x is the tangential distance along the profile and 

L is the total length of the profile. The centreline divides the profile such that the sums 

of areas to either side of it are equal. 

Kulatilake et al. (1994) feel that Z2 is a good parameter to quantify small scale 

roughness, and an additional statistical parameter is needed to quantify large-scale 

roughness. 

The use of the fractal dimension D (Mandelbrot, 1983, 1985, Feder, 1988) to provide a 

measure of roughness for rock joints has been tried by some researchers including 

Brown & Scholz (1985 ), Andrle & Abrahams (1989), Chesters et al. (1989), Miller et 

al. (1990), Power & Tullis (1991), Huang et al. (1992), Odling (1994), Hsiung et 

al.(1995) and others. 

Barton & Choubey (1977) defmed a "Joint Roughness Coefficient" (JRC) which takes 

values from O for the smoothest to 20 for the roughest surface. They have suggested 

two methods to choose an appropriate value for JRC: the first by visual comparison 

with a set of 10 typical roughness profiles published by these authors. This visual 

comparison has been found subjective and unreliable by some workers including Maerz 
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et al. ( 1990) and Miller et al. ( 1990). The second method, tilt or pull tests, are carried 

out on natural joints and an estimate of JRC is made by back analysis of the test 

results using the empirical criterion suggested by Barton & Choubey ( 1977), along with 

the estimations for joint wall compressive strength and basic friction angle on the joint 

plane. Although purely empirical and strongly scale dependent (Bandis et al, 1981), 

JRC has experienced wide application and several attempts have been made to correlate 

it with other roughness parameters, mainly the average asperity angle ( or slope) and 

the fractal dimension. 

Tse & Cruden (1979) found the following relation between JRC and the Root Mean 

Square (RMS) gradient (Z2) when an asperity base length of 0.5% of the sample length 

was used: 

JRC = 32.2 + 32.47log(Z2 ) (3.32) 

Various investigators including Turk et al. (1987), Carr & Warriner (1989), Lee et 

a/.(1990), Wakabayashi & Fukushige (1992), Xie & Pariseau (1992) and Odling (1994) 

tried to establish correlations between JRC and fractal dimension, in order to develop a 

quantitative method of specifying surface roughness. A fractal approach would be very 

useful, as it would enable scale effects on joint roughness to be considered. However, 

these correlations are not capable of providing a reasonable estimate of JRC value, to 

be used for the estimation of peak shear strength of rock joints (Hsiung et al. , 1993). 

Furthermore, it must not be forgotten that the nature of JRC is purely empirical. Any 

correlations must be considered as a connection between fractal dimension and a 

roughness parameter, rather than JRC itself. Hobbs ( 1993) states the limitations 

existing when correlating the fractal dimension of a surface with JRC, concluding that 

as yet there is no case of correlation between JRC and the fractal dimension, whereas 

Miller ( 1990) emphasises the difficulties in obtaining meaningful measures of fractal 

dimension. Tanimoto & Kishida (1994) feel that the fractal dimension range 

corresponding to JRC values (from Oto 20) is too narrow to distinguish JRC rating, i.e. 

its resolution is too low to represent the roughness of a joint surface. They suggested 

an alternative parameter called "power spectrum moment" to describe roughness. 

Seidel & Haberfield ( 1995) tried a more meaningful correlation between two physical 

parameters, namely the fractal dimension and the mean asperity angle and height of 

rough surfaces. It must be said that the fractal dimension is of little use to the practising 

engineer, dealing with description and quantification of roughness of rock joints. This is 

the reason why several such correlations have been suggested between D and JRC or 

other common roughness parameters. 
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For a complete description of roughness one single parameter is not adequate. Koura 

& Omar ( 1981) found that both the asperity height and the wave length should be 

considered simultaneously to describe surface roughness adequately. Brown ( 1987) has 

pointed out that the fractal dimension D should be considered together with the 

amplitude of the surface at a particular wave length, in order to specify the roughness 

of the profile, and similar suggestions were made by Hsiung et al. (1995). However, for 

design purposes, it would be very convenient to represent the profile of a joint by a 

single parameter. It appears that, among other single parameters, the average slope of 

the asperities correlates best with the coefficient of friction (Koura & Omar, 1981 , 

Myers, 1962, Tabor, 1975). In the field of rock engineering, the importance of the 

average slope angle i of the asperities on shear strength of rock joints is reflected by 

the great number of studies devoted to it ( e.g. Reeves, 1985). 

In conclusion, it appears that despite the work devoted to attempt to correlate several 

surfaces parameters to JRC, which is a purely empirical parameter, the results may be 

inadequate to describe roughness. It would probably have been more useful if the 

research had been directed towards the establishment of an alternative to JRC, rather 

than trying to correlate JRC with various other parameters. 

To measure roughness at different scales from laboratory size samples to large exposed 

surfaces, various techniques have been proposed by several researchers, including 

Fecker & Rengers (1971), Ross-Brown & Walton (1975), Weisbach (1978), Stimpson 

(1982), Miller et al (1989) and Maerz et al (1990). The most commonly used methods 

for in-situ measurement of roughness are: 

(a) A compass clinometer with variable-size base plate (Fecker & Rengers, 1971, 

Richards & Cowland, 1982 ). 

(b) A profilometer clamped to the rock surface (Fecker & Rengers 1971). A stylus or 

wheel traverses the surface along a line and the roughness is recorded on paper or 

magnetic medium, by means of a transducer system. 

(c) Shadow profilometry (Franklin et al., 1988 and Maerz et al., 1990 ). A shadow is 

cast on a rough rock joint facet by a straight edge held against the surface in bright 

light. Using photoanalysis, the edge of the shadow can be digitised and any required 

roughness parameter calculated. 

(d) Terrestrial photogrammetry, used when the surfaces to be recorded are large 

(Ross-Brown et al., 1973). 

Rock surface roughness comprises a whole spectrum of varying wavelengths and 

amplitudes. It appears that small samples are influenced mainly by small scale 
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Fig. 3.15: First (A) and second (B) order asperities of a rock joint surface. ~=average slope 

angle, i = angle between surface feature and average dip of discontinuity 

(after Patton, 1966a) 

roughness and larger samples by large scale asperities. The slope angle of asperities ( or 

the equivalent exhibited dilation angle) is dependent upon the asperity base length over 

which this angle is determined, as demonstrated by Fecker & Rengers (1971), Barton 

(1971a), Goodman et al. (1972), Richards & Cowland (1982) and others. Patton 

( 1966a) categorised field scale roughness into first-order and second order with wave 

lengths 1-2% and 0.1-0.3% respectively of the lengths of the failed surfaces he studied. 

A typical illustration where first order roughness gives an angle of 13° and second 

order between 10 and 46° is shown in Fig. 3 .1 5. Generally, large asperities have 

roughness angles which are relatively low ( < 20°), and second-order asperities have 

roughness angles which may be as high as 60°, but more commonly fall in the range 40° 

- 50° (Selby, 1987). The significance of each of these components of roughness 

depends upon the strength of asperities and the magnitude of the normal and shear 

stress. At very low normal stress, the asperities remain intact, but as the normal 

stress increases in magnitude the second order, and then the frrst order, become 

increasingly more important. 

Tse & Cruden ( 1979) in their correlation between JRC and the mean asperity gradient 

Z2 , used base length equal to 0.5% of the sample length L, whereas Sarra Pistone 

( 1990) for an analogous correlation suggested a base length of 2% L. It appears that 
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there is no universal agreement on the suitable base length. Obviously the smaller the 

asperity base length, the more important the smaller asperities become, as they become 

involved in shearing at lower normal stresses. Based on direct shear tests on rough 

model joints Barton (1971a, b) suggested that the dilation angle (dn) at a ratio of 

normal stress to the unconfined compressive strength of 0.001 (practically negligible 

damage, thus equivalent to roughness) is estimated from the following relationship 

dn =S.D.(i) (3.33) 

for A.B.(%) equal to 0.05%L 

and S.D. (i) being the standard deviation of asperity angles measured with an "asperity 

base" value of A.B. expressed as percentage of the sample length. 

3.3.8.3 The effect of normal stress on the roughness component 

The effect of roughness reduces as the normal stress increases. At very low normal 

stresses, with negligible damage, small asperities control shear strength. As the normal 

stress increases, larger and larger asperities dominate shear behaviour, and the role of 

roughness reduces. At a sufficiently high normal stress, all dilation is suppressed, and 

roughness no longer has an affect on shear strength, and the individuality of joint 

morphology is lost. Ladanyi & Archambault (1970) suggested that this normal stress is 

a fraction of the brittle - ductile transition stress, depending on the degree of 

interlocking. Barton et al. ( 1985) suggested that at high normal stress dilation is equal 

to 0.5JRC!og10 (JCS/ a,J, which implies that dilation becomes zero when normal stress 

approaches the compressive strength of the rock wall material. However, there is no 

experimental evidence for this. On the contrary, several experimental data sets suggest 

that the normal stress at which dilation becomes zero is much lower. For example, 

Denby & Scoble (1984) reported that all dilation is suppressed at a normal stress in the 

range 2.0-3.5 MPa for a large number of joints in Coal Measures with unconfined 

compressive strengths in the range 40-160 MPa (Hassani_ & Scoble, 1981). Kutter & 

Otto ( 1990), found that dilation in gneiss joints with an unconfined compressive 

strength of 180 MPa, formed by separation along its schistocity plane tended to zero 

when the normal stress approached 7 .5 MP~. Krsmanovic ( 1967) presented data from 

shear tests on rough joints in limestone, which show linearity between shear strength 

and normal stress for normal stress above 5 MPa. Martin & Millar (1974) found that 

for joints in weathered greywacke dilation becomes zero at normal stress 3.0 MPa. 

Gaziev (1976) suggested a formula for the variation of dilation angle with normal 

stress, which predicts zero dilation when the normal stress is equal to 30-40% of the 

unconfined compressive strength, and data from Gaziev & Lapin ( 1986) indicate that 

dilation becomes zero at about 0.250c. Goodman & Dubois (1972) found that for 
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sandstones, granites and other rock types dilation is completely prevented at a normal 

stress far below the brittle-ductile transition stress. 

Model joints also show zero dilation at normal stresses lower than the unconfined 

compressive strength. For example the experimental results published by Bandis et al. 

(1981) based on direct shear tests on model joints with unconfined compressive 

strength of 2000 kPa, suggest a zero dilation angle in the range 100-250 kPa. Similar 

conclusions are drawn from the results published by Schneider (1976). 

Numerous models have been developed to take account of the variation of the 

roughness component with normal stress. Some of these models consider separately a 

component due to dilation and a component due to asperity failure, whereas others do 

not. 

3.3.9 Peak shear strength criteria 

Attempts to explain the shear strength of rough rock joints was based on the work of 

Newland & Allely (1957) who studied the dilatant behaviour of sand and proposed the 

following linear strength criterion 

(3.33) 

where r is the peak shear strength 

a-n the normal stress 

<Pµ the angle of frictional sliding resistance between sand grains 

L the average angle of deviation of particle displacements from the direction 

of the applied shear stress. 

Using plaster models with saw-toothed shape, Patton (1966a, b) and Goldstein et al. 

( 1966) showed that the peak shear strength envelope at very low normal stresses is 

linear, and can be represented by: 

where 

(3 .34) 

<Pr is the angle of frictional sliding resistance along a plane surface or the 

residual friction angle and 

i the asperity inclination angle. 

At high normal loads Patton suggested that peak shear stress is given by: 
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r=c +crn tan<A (3.35) 

where 

c is the apparent cohesion. 

The apparent cohesion is equivalent to the shear strength of the asperities. This 

component of strength is lost once the asperities have been sheared. Combination of 

equations (3.34) and (3.35) produces a bi-linear failure envelope for rough rock 

discontinuities, (Patton 1966, and Rengers 1970). 

However, some years before Patton had proposed his bi-linear model, Ripley & Lee 

( 1962) recognised that the effect of roughness was to increase the friction angle by an 

angle i equal to the angle of inclination of asperities. They tested rough natural joints in 

sandstone, siltstone and shale and concluded that, when detennined from the true 

normal and tangential forces to the inclined plane of motion, the coefficient of friction 

does not vary, but when horizontal and vertical stresses are considered the result is an 

apparent friction coefficient higher than the basic value of the material. They found that 

what they called the true coefficient of friction could be detennined by 

tan <Pp - tan i 
tan <Ptrue = . 

1 +tan </Jptan l 

which is equivalent to (3.33) and where 

<Ptrue is the true friction angle 

<Pp is the measured peak friction angle and 

i is the instantaneous dilation angle. 

(3.36) 

In contrast to the results of Patton, Ripley and Lee found that this equation holds 

throughout the normal stress range used (up to 1.4 MPa), and Nieble et al. (1974) 

found similar results for large blocks (0.7m x 0.7m and l.Om x I.Om) of joints in 

basaltic rock tested under normal stresses up to 2.5 MPa. The true friction angle is 

higher than that of artificially prepared (ground and sandblasted) surfaces, as shown in 

Table 3.5. 

The bi-linear failure envelope proposed by Patton (1966 a, b) implies a sharp change 

from overriding to shearing of the asperities. This is not the case as there is a 

progressive change from overriding to shearing. Consequently many authors including 

Jaeger ( 1971 ), recommended the use of a curved failure envelope for joints at low 

stresses. 



66 

Table 3.5: Friction angles obtained from flat and rough surfaces 

(after Ripley & Lee, 196 I) 

Rock Flat surfaces Rough natural surfaces 

type Ground Sand- Peak Peak 

smooth blasted non-dilational Measured 

Sandstone 25 ° 29° 36° 54° 

Siltstone 25° 31 ° 31 °-34° 45°-47° 

Shale 26° 27° 24° 34° 

Shale 26° 27° 35°-39° 35°-39° 

Based on multi-stage tests on sheeting joints in Hong Kong granite (Figure 3.16), 

Hencher & Richards (1.982, 1989), suggested that peak shear strength is made up of 

two components, one frictional and one geometrical. Like Ripley & Lee ( 1961 ), they 

calculated the normal and shear stress along the inclined plane to define the frictional 

component. 

Ladanyi & Archambault ( 1970) derived a curvilinear, semiempirical shear strength 

criterion as a function of the strength of intact rock, the degree of interlocking, dilation 

and the residual friction angle. Following Rowe (1962), they assumed that shear 

strength is derived from three sources: resistance to sliding along the contacting 

surfaces of asperities, resistance to shearing of asperities, and work performed by the 

normal load during dilation or contraction. 

where 'P = peak shear strength 

(J'n = normal stress 

v = dy = dilation rate due to shear 
dx 

µ = average coefficient of friction for the joint wall surfaces 

a5 = ratio of area of asperities sheared off to total area. 

77 = degree of interlocking. 

(3.39) 

'r = the shear strength of the irregularities in the joint wall, given by 

Fairhurst ' s parabolic relationship (see chap. 3.2) 

(3.40) 

where 
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Fig. 3.16: Peak shear strengths from multistage tests on rough joints through granite: (a) 

measured; (b) dilation-corrected (after Hencher & Richards, 1989). 
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C0 is the unconfined compressive strength of the rock material adjacent to the 

discontinuity, which, due to weathering may be lower than the uniaxial 

compressive strength of the rock material and 

n is the ratio between compressive and tensile strength of rock. 

The dilation rate and the sheared area ratio are experimentally derived and can be 

estimated using the following equations: 

(3.41) 

and 

(3.42) 

where io is the inclination of asperities, o-T is the transition stress, and K and L are 

approximately equal to 4.0 and 1.5 respectively. In the absence of sufficient data, the 

transition stress can be approximated by the uniaxial compressive strength of the rock. 

Although the theoretical basis of this model is sound, dividing the apparent area into an 

area where asperity overriding occurs and an area where shearing of asperities occurs is 

simplistic. However, its performance is realistic both at low and high normal stresses. 

This model gives a smooth transition between Patton's equation at low normal stress 

levels to Fairhurst's equation for the shear strength of intact material adjacent to the 

joint when the normal stress approaches the unconfined compressive strength of the 

rock. 

Barton (1973) suggested that the peak shear strength of rock discontinuities is the 

result of three components, as shown in Fig. 3.17. The degree to which each of these 

components contributes to the shear . strength is determined by the roughness of the 

discontinuity, the strength of the discontinuity surface and the normal load acting 

across the discontinuity. Based on direct shear tests on model fractures, Barton (1971a, 

b) proposed the empirical non-linear criterion, 

where 

¢b the basic friction angle and 

dn the peak dilation angle 

(3.43) 
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Fig. 3.17: Angular components ofrockjoint shear strength (after Barton, 1971 a, b) 
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Relation (3.43) resulted from the best-fit line for Barton's data, which had the more 

general form 

(3.44) 

for </Jb =30°. When ¢b= 45° equation (3.44) reduces to 

This criterion was later extended by Barton & Choubey (1977) to include joint 

surfaces with varying degrees of roughness, as described by the equation: 

where 

. JCS 
r P = a-n tan( <Pb + JRC log10 --) 

(Y n 
(3.45) 

<Pb is a "basic" friction angle which is equal to the residual friction angle <Pr 

if the joint is weathered 

JRC is a joint roughness coefficient varying from 20 to 0 from the roughest 

to the smoothest surfaces and 

JCS is the Joint Compressive Strength, which is equal to the unconfined 

compressive strength of the rock wall material, but it may be as 

low as 1/4 of this for weathered joints. 

The basic friction angle <Pb varies in the range 21- 38° with an average of 30°. For 

unweathered joints, it can be obtained by carrying out residual shear tests on flat 

sawcut surfaces, whereas for weathered joints, it is replaced by the residual friction 

angle which can be estimated using the following equation: 

(3.46) 

where R and r are the Schmidt rebound values on the unweathered and weathered rock 

surfaces respectively. 

Barton & Choubey suggested that at low normal stresses with little asperity damage, 

the roughness component JRC log10(JCS! a-,J is equal to the peak dilation angle, 

whereas at higher normal stress the dilation angle decreases and the asperity damage 

becomes larger. 
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Barton's criterion fails to predict peak shear strength both at very low and very high 

normal stresses. At very low normal stresses, the logarithmic term in equation 3.45 

tends to infinity and the equation ceases to be valid. Barton suggests that the maximum 

value of the term in the brackets should be 70°. At normal stresses approaching JCS 

the logarithmic term becomes zero and equation (3.45) predicts 

(3.47) 

which is lower than the observed values (Barton, 1973, 1990). Theoretically, this is a 

serious disadvantage, as it may indicate an underlying fundamental deficiency in the 

basis of Barton's relation. To overcome this, Barton (1976) suggested that the 

confined strength ( a,-a3) should be used instead of JCS, because of the "more effective 

confmement" of asperities. Despite its purely empirical nature (see criticism by Reeves, 

1985), Barton's criterion gives accurate predictions, when the parameters JRC and JCS, 

which according to Bandis et al.( 1981 ), are strongly scale dependent, are adjusted to 

field scale. However, Hencher et al. (1993) and Papaliangas et al. (1994) have shown 

that the asperity failure component of the peak shear strength (i.e. JCS) is not scale

dependent and this is a matter which will be considered and discussed in detail in this 

study. 

While the vast majority of the proposed models are based on Patton's "<j,+i" principle, 

there are some empirical models of the power law form, for example Nilsen (1985), 

Lilly (1981), Denby & Scoble (1985) 

(3.47) 

where a and b are constants. These models may fit experimental data quite well but 

lack any theoretical basis. 

Micromechanical models have been proposed which involve an intrinsic frictional 

strength of the contacts, adhesion, geometrical interlock, asperity failure, and 

ploughing. As typical examples the models proposed by Yamada et al. (1978), Sun et 

al. ( 1985), Swan & Zongqi (1985), and Boitnott et al. (1992) are mentioned. 

Although these models propose meaningful mechanisms of friction, their application to 

rock engineering problems seems quite remote. 

Many other studies have been devoted to different aspects of shear behaviour of rock 

joints. They may be summarised : 

(a) empirical, in which correlations between variables affecting shear behaviour are 

derived from existing experimental data, for example Goodman (1974), Schneider 
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(1976) Barton & Choubey (1977), Barton et al. (1985), Leichnitz (1985), Papaliangas 

et al. (1993). 

(b) theoretical, where known theories are used to describe the observed behaviour. This 

approach has been adopted by Roberds & Einstein (1978), Hsu-Sun (1979), Swan 

( 1981 ), Desai & Fishman ( 1987), Kane & Drumm ( 1987), Plesha ( 1987), Qiu et al. 

( 1993) and others. Combination of the two approaches or analytical methods have also 

been used for example by Pantle (1985), Heuze (1979) and others. Basic parameters 

need to be experimentally or empirically determined, which reduces the confidence on 

these models. 

Strength criteria are required to allow prediction and extrapolation from a few 

laboratory tests to any combination of stresses found in a rock mass. In the lack of 

criteria with theoretical basis which match the experimental results satisfactorily and 

give accurate predictions, the empirical criteria, obtained by curve fitting and for which 

a large effort is made to rationalise (Kulatilake et al. , 1994), are used. 

The relation between dilation angles (or roughness angle) and normal stress for some 

common models is given in Table 3.6, from which it becomes evident that all of them 

are empirical in nature and require a number of empirical constants to be determined 

experimentally. In conclusion, the basic criteria for peak shear strength of rock joints 

remain mostly empirical although a great number of studies have been devoted to it and 

huge amount of experimental data from both laboratory and in-situ tests are available. 

3.4 Summary 

The real contact area between two rock rough surfaces is very small and the real 

normal stress very high. When any plastic or complex elastic surfaces come into 

contact the actual area of contact is proportional to normal load. Rock joint surfaces 

have a random geometry, therefore, when in contact, they follow this proportionality 

law. 

The exponential distribution of heights of a surface offers the important advantage that, 

independent of the mode of deformation and the shape of asperities, they obey 

Amonton's friction laws. A rock joint surface can be considered as having an 

exponential distribution, especially at low to intermediate normal stresses. 

Enough experimental evidence suggests that shear strength of rock discontinuities 

arises from shearing of rock wall material under the acting high normal stresses. 
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Table 3.6 : Proposed relations between dilation and normal stress 

Model Relation Remarks 

I. Ladanyi & Cin 0-T =C0 , k=4, 
tan l= tan io(J- -- f , 

Archambault (1970) ncrr n = empirical constant 

2. Tsytovich et al. ( 1970) i - io -aln Cin a = empirical constant -

3. Goodman & Dubois ( 1972) 
i io {J - Cin l o-T=Co, --

CiT k = empirical constant 

4. Schneider ( 1976) e-kan d = dimensional constant 
i = io 

o-= tensile strength 
I 

k = a( CY,dfh a, b = empirical constants 

5. Barton et al. ( 1985) 
0.5JRC log (JCS ) 

JRC = Joint Roughness 
l = 

Cin Coefficient 

JCS= Joint Compressive 

Strength 

6. Leichnitz (1985) N c = empirical constant 
i = i

0 
+ cln(-) 

No N, 1V0= normal forces 

corresponding to i and i0 

7. Jing et al. ( 1992) 
i i0 (1- ;n f b = empirical constant 

--
a 

8. Gaziev (1976) (1- Cin )m m=JO o- =C 
i = la 

T o 

crr 

9. Heuze (1979) A, B, C = empirical 
i = ATAN(Ao-n + 2Bo-n + 

3Co-~) 
constants 

-¢ r 

to. Pease & Kulhawy (1984) ka,, k, n = empirical constants 
. nC 

tani - tanto e O -

1 I. Reeves ( I 985) i =mzdr) =mK(p)(Z1 I xD) m = constant, K(p)=f (p) 

Z/ xD average asperity 

gradient 

12. Gerrard ( 1986) Cin }n (j =0-
tan i= tan i

0
{ J - T C 

Cir n = empirical constant 

13. Leong & Randolph ( 1992) 
i A -B 1n crn 

A, B, = empirical constants 
= 

co 
14. Kulatilake et al.(1994) 

A(z~)8(log JCS f A, B, C = empirical 
l = 

an constants 
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Numerous models exist to describe peak shear strength. Empirical models may not 

explain the mechanisms involved, whereas theoretical models are complicated and do 

not accurately fit the experimental data. Due to difficulties in prediction of the effect 

of roughness on shear strength at any normal stress, there is no simple, accurate model 

which satisfactorily explains experimental observations in terms of basic theory. 
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CHAPTER4 

EXPERIMENTAL PROGRAMME 

The shear behaviour of rock joints is best studied experimentally by direct shear 

testing. A great number of studies, devoted to several aspects rock joint behaviour, 

describe both the method and results of direct shear tests. Notable examples include 

Patton (1966a), Goodman (1970), Jaeger (1971), Barton (1971a, b) Coulson (1970, 

1972), Lama (1978), Krahn and Morgenstern (1979), Bandis et al. (1981), Hassani and 

Scoble (1985), Hencher and Richards (1989) and Papaliangas et al. (I 990, 1993). 

The method adopted here is based on direct shear tests on replicas of natural joints. To 

avoid problems with friability, the synthetic rock described in Chapter 2 was used. 

Identical samples from several prototype rock surface were prepared and tested in 

direct shear under different normal stresses. A preliminary testing programme 

(Papaliangas et al., 1994) and other recent experimental results (Hencher et al. , 1993) 

indicated that previously widely accepted concepts regarding scale dependence of peak 

shear strength may not be valid, and a special part of the experimental programme was 

dedicated to this aspect of peak shear strength. 

The experimental part of the thesis is a straight-forward testing programme, consisting 

of three different series of direct shear tests: 

a) The first series involves tests on replicas of three natural joints with different 

roughness, under normal stresses in the range 0-2 MPa. 

b) The second series concentrated on the implications of sample size on peak shear 

strength. A replica of a natural rock joiflt, 354 mm long and 150 mm wide, was 

divided into 4 and 12 pieces and all sizes (full, 114th and 1112th) were tested under 

two different normal stresses, namely 25 kPa and 125 kPa. Three additional normal 

stress levels, namely 250 kPa, 1.0 MPa and 2.0 MPa were used for the smallest size 

samples. 

c) The third series of tests examines the affect of both the strength of the material and 

the sample size on peak shear strength. In order to carry out this programme it was 

necessary to use a weaker model material. Samples from the same joint were prepared 

in the same way as in b) and the results were compared. An additional small size 

(I/24th) was used at a normal stress of 125 kPa. The material used was the same as 

that used by Bandis (1980) and Toy (1993 ), so that a direct comparison with their 

results could be made. 
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4.2 Testing details 

4.2.1 Preparation of model joints 

A hot rubber melt moulding compound (Vinamold 9525, "Hard" variety) was used to 

obtain mating negative impressions of natural rock surfaces. From these Vinamold 

moulds, several identical positive casts was made of the model rock material. Details 

of the procedure followed to obtain the final pair of copies for each sample can be 

found elsewhere (Bandis, 1980 and Papaliangas, 1986). The natural rock surface from 

which impressions were made was a fine micaceous sandstone. For the first two 

series of tests the new synthetic rock was used. To prepare each one of the two halves 

of the samples, andalusite was first mixed dry with cement in a 5 litre HOMBART 

model A210 mixer for 5 minutes. The water was poured slowly and the whole mix 

continued for another 5 minutes. The mix was then poured into a steel frame 

surrounding the Vinamold impressions and vibrated with a 16 mm steel bar, attached 

to a small pneumatic vibrating plate. The time of vibration was ranged between 0.5 

and 2.0 minutes, depending on the size of the sample. With vibration, air bubbles were 

removed and the joint surface was freed of large pores, a problem which is inevitable 

with casting of materials. Although some water was concentrated on the free surface 

during compaction, segregation was not noticed. All the joint surfaces used were 

rough, and this was reproduced in the replicas. However, when seen on a microscopic 

scale their surfaces were smooth due to the nature of the rubber compound used to 

reproduce them. With this smooth texture the reproduced samples did not eventually 

represent the original sandstone surface, but another rock type with similar smooth 

surface texture and granular underlying material. This is not a problem since the 

original sandstone surface was used not for studying its shear behaviour but for 

producing a surface with a realistic natural roughness. 

The degree of fit between the two halves of the replicas depends on the accuracy of 

reproduction of the two halves of the corresponding Vinamold impressions, which 

were subsequently used for preparation of the replicas. Obviously, a perfect fit 

between the two halves is impossible, and the larger the sample the worse the joint 

mating. An acceptable degree of macroscopic fitting was achieved, but occasionally 

the two halves were rocked slightly. This may be more serious for samples of large 

size. 

4.2.2 Testing equipment 

In order to test both large size samples over a wide range of normal stresses, two 

different direct shear apparatuses were employed in this study. 

In the first series of tests where normal stresses up to 2.0 MPa were used, a Golder 

Associates Direct Shear Box, as described by Hencher and Richards (1989), was 
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employed (Fig. 4.1 ). Shearing is caused by pulling the lower surface from beneath a 

restrained upper surface. A constant normal load is applied by means of dead weights 

on a hanger at the end of a lever arm with a theoretical mechanical advantage of 11. A 

yoke driven by a hydraulic ram which enables the tests to be conducted at an 

approximately constant rate of shear displacement is used to apply the shear force. The 

maximum normal stress which could be applied for this size of sample was 2.0 MPa. 

The joints were sheared for up to 15 mm horizontal displacement, at constant normal 

load, following the recommended ISRM method (ISRM, 1981). The shear force is 

measured directly from a load cell mounted on the loading yoke and the horizontal and 

vertical displacements are measured using displacement transducers. The 

measurements are recorded on a computer via an analogue/digital interface, and are 

analysed to determine shear stress, dilation angle and other parameters throughout the 

test. From these results the peak and residual shear strengths, and the peak dilation 

angle for the discontinuity are determined. The shear rate was maintained at 

approximately 1 mm per minute, which was found not to have any effect on shear 

strength if small fluctuations in the shear rate occur (Hencher & Richards, 1989). 

In the second and third series of tests, where larger samples were used, the large 

purpose-built shear box in the Department of Earth Sciences (Bandis, 1980) was used. 

The loading arrangement of this shear box is given in Fig. 4.2. Shear rate was 0.4 

mm/min. The shear load was measured by means of a 5 kN proving ring, on which an 

L VDT was mounted. Normal load remained constant throughout the tests. Shear 

displacement was measured by a horizontal LVDT, whereas, for the normal 

displacement, three L VDTs were employed at three different points on the upper half 

of the sample. All measurements were recorded on a computer via analogue/digital 

interface. The shear tests on small samples at 1.0 MPa and 2.0 MPa were carried out on 

the Golder Associates shear box described above. 

4.2.3 Non-dilational shear strength 

The values of normal and shear stress acting on the sample are calculated by dividing 

the normal and shear loads by the apparent area of contact. Due to shear displacement, 

the apparent area of contact and therefore the normal stress changes continuously 

throughout the test, even if shearing takes place at constant normal load. This variation 

of normal stress with shear displacement was taken into account, when stresses were 

calculated. The calculated stresses differ significantly from the actual stresses acting at 

the points of contact as the actual area of contact is only a very small proportion of the 

apparent area of contact. The calculated stresses thus determined were subsequently 

separated into a dilational and a non-dilational component. The method of separation 

into these two components has been used by Ripley & Lee ( 1962), Hencher & 
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Richards (1982,1989) and has been suggested by CANMET (Gyenge & Herget, 1977) 

as a standard method. It involves resolution of the stresses measured in the horizontal 

and vertical planes, into the plane of shearing. Following Rencher & Richards (1989) 

for any rough surface the dilation angle i at any instance of the shear test can be 

calculated from the tangent to the normal displacement-shear displacement curve 

corresponding to that point (Fig 4.3): 

where 

• _1 dv 
1 =tan -

dh 

dv is the normal component of the tangent line and 

dh the shear component of the tangent line. 

(4.1) 

The more significant value of the dilation angle corresponds to the instant of peak shear 

strength (Figure 4.3a). This dilation angle does not necessarily coincide with the 

maximum dilation angle exhibited during a shear test (Arnold, 1992). 

The normal and shear stresses acting on the shearing plane at an angle i to the mean 

joint plane are given by the following equations: 

r; = ( r cos i - a sin i) cos i 

a; = ( a cos i + r sin i) cos i 

where 

r; is the shear stress in the plane of shearing and 

Oi the normal stress in the plane of shearing 

( 4.2a) 

(4.2b) 

These non-dilational values can then be plotted to obtain the non-dilational shear 

strength for the rock surface. The corresponding envelope normally will pass through 

the origin, unless rock bridges or locked asperities occur, when the envelope has a 

positive intercept on the shear stress axis ( Rencher, 1995). The non-dilational stresses 

will give the ''true" friction angle (Ripley & Lee, 1962), or the "basic" friction angle 

(Gyenge & Herget, 1977 which, according to Rencher & Richards (1989) corresponds 

to the frictional resistance of "effectively planar surfaces of natural texture and 

mineralogy". This friction angle is generally different from the "basic" or the "residual" 

friction angle, which is determined from saw-cut planar surfaces (Barton & Choubey, 

1977). 

4.2.4 Shear streng_th characteristics of rough model joints 

The suitability of the model material to replicate the behaviour of rock joints was 

checked by using four casts of the joint C, which were subjected to direct shear under 
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different normal stresses in the range 0-2.0 MPa, in a Golder Associates Direct Shear 

Box. The size of those specimens was 100x50 mm. Shear stress ratio ( z-/ a-) - relative 

shear displacement (dh/L) curves, where Lis the length of the specimen, are shown in 

Fig. 4.4a. These diagrams show a clear peak at small shear displacement, which 

depends on the normal stress acting on the joint surface, followed by a decrease, and 

then a constant value, which gives the ultimate shear strength (Krahn & Morgenstern, 

1979). It is worth noting that the ultimate shear stress ratio is almost the same for all 

joints (::::::1.05). The dilation characteristics of the model joints are shown in Fig. 4.4b. 

Dilation angles at the instant of peak shear strength were calculated and plotted against 

normal stress (Fig. 4.5). The behaviour shown in Figures 4.4 and 4.5 is typical of rough 

rock joints, thus justifying the replication by the synthetic rock. 

4.3 Shear strength of modelled rock discontinuities 

4.3.1 Sample details 

This programme involves direct shear tests on three different joints, named A, B and 

C, produced from different parts of a large sandstone surface, with different roughness. 

Five longitudinal opposing profiles at equal distances for joints A and B, taken by 

means of a Talycountour machine, are shown in Fig. 4.6a. The profiles were taken 

both from the top and bottom half of the joints. From post-test examinations the most 

critical asperities were identified and profiles through them were taken both before and 

after testing under various normal stresses. With these measurements the degree of 

damage can be quantified. The closeness of fit can be seen from opposing profiles 

taken for joints A and B and shown in Plate 4.1 and Fig. 4.6b. Although not perfect, a 

quite good fit has been achieved. The relevance of the shear behaviour of the model 

joints used to that of natural joints is shown in Plate 4.2, where post-test examination 

reveals a similar deformation behaviour. From the profiles taken the maximum slope 

was calculated using different base-lengths. Distribution of asperities slopes for profile 

No 2 of joint A and No l of joint B calculated over a base-length equal to 0.2% of the 

sample length is shown in Figure 4.7. 

4.3.2 Peak shear strength 

The main testing programme was based on direct shear tests on replicas of joints A, B 

and C. Pairs of profiles from both top and bottom half are shown in Fig. 4.6. Although 

not perfect, the fit is quite good. Each test was carried out under constant normal stress 

and only one test under constant normal stress was carried out on each sample. From 

each test a number of parameters were determined. Summarised data are given in 

Tables 4. la and b, where 

O"n is the normal stress, 

Z-p the peak shear strength 

a; and r; the normal stress and shear stress corresponding to non-dilatant behaviour 
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Plate 4.1: Photographs of joints A and B. 

Plate 4.2: Comparison of surface damage caused by direct shear testing of a model and a 

natural rock joint 
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Table 4.la: Shear stremrth characteristics of joint A 
~ 

0-n Tp a-, r, dh,, 1// µ p µm '//max 

(kPa) (kPa) (kPa) (kPa) (mm) (0) (0) 

0.6 35 .6 35.6 

6.9 36.8 36.8 

6.9 21.9 21.9 

6.9 34.l 34.1 

68.7 113 .02 94.82 89.9 J.15 14.3 1.646 0.948 19 

69.7 104.3 96.03 79.49 1.48 16.9 1.511 0.828 19.3 

91.4 123.6 118.51 101.98 1.99 12.8 1.353 0.86 13 .2 

210.8 376.9 277 339.45 1.44 10 1.788 1.225 14.2 

264.3 473.3 359.99 396.12 0.66 13.1 1.791 I.I 14.5 

492.9 717.3 619.2 644.32 1.88 9.4 1.455 1.041 10.5 

760.3 1105 1013.3 942.1 2.64 12.6 1.453 0.93 12.99 

1001 1200 1176 1158 2. 83 4.6 1.198 0.985 7.3 

1456.4 1771.5 1907 1875 4.71 6.1 1.216 0.983 7.66 

1500 2033 1757 2076 3.6 3.8 1.355 1.182 7.2 

2070 2378 2155 2298 3.8 2.1 1.154 1.073 2.63 

dhrpmax 

(mm) 

0.9 

0.45 

J.15 

1.067 

1.39 

1.63 

3.01 

0.93 

2.17 

2.71 

3.05 

6.54 

4.46 

3.79 
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dhP the peak shear displacement 

µP the measured peak stress ratio (r/a;,) 

µm the non-dilational stress ratio 

1// the dilation angle at peak shear stress 

'I/max the maximum dilation angle 

dhv,max the shear displacement corresponding to 'I/max 

Table 4.lb : Shear strength characteristics of joint B 

Test a;, 'P 0-1 r1 dhp 1// µp 

(kPa) (kPa) (kPa) (kPa) (mm) (0) 

B 00 0.8 - - - - 23 .30 -

B 01 6.8 9.8 - - 1.95 20.00 -

B 02 46.9 60.6 60.7 53.0 2.86 11.17 1.292 

B 03 47.0 61.7 52.2 61.7 0.26 9.70 1.312 

B 04 47.0 68.8 62.2 57.0 1.89 13 .20 1.463 

B 05 69.4 118.5 94.7 104.5 2.34 11.90 1.709 

B 06 93.0 132.2 120.9 109.4 1.59 12.70 1.422 

B 07 258.4 304.6 310.6 275 .2 2.36 8.10 1.179 

B 08 266.8 318.3 324.5 283.8 2.40 8.86 1.193 

B 09 582.4 757.0 702.0 724.0 2.98 6.51 1.300 

B IO 700.0 875 .6 845.0 843.0 2.80 6.40 1.250 

B 11 1027.0 1266.0 1196.0 1341.0 4.65 2.67 1.232 

B 12 1245.0 1451.0 1535.0 1616.0 4.71 2.89 1.165 

B 13 1354.0 1456.0 1657.0 1581.0 4.27 3.43 1.075 

B 14 1564.0 1756.0 1800.0 1862.0 4.64 2.34 1.123 

B 15 1572.0 1893.2 1878.0 1997.0 5.18 3.50 1.204 

B 16 1790.0 1931.0 2071.0 2234.0 3.73 1.28 1.128 

B 17 1990.0 2182.0 2121.0 2246.0 5.86 0.97 1.112 

µm 'I/max dhl{l'TIOX 
(0) (mm) 

- 23.30 -
- - -

0.872 13.27 3.46 

0.933 13.10 0.43 

0.916 17.10 1.64 

1.103 13.60 1.80 

0.905 16.70 1.70 

0.896 9.89 2.65 

0.875 9.89 2.22 

1.033 7.35 3.32 

0.998 7.85 3.11 

1.121 5.55 5.24 

1.053 3.36 5.27 

0.954 5.41 8.31 

1.034 4.38 3.90 

1.063 6.00 5.68 

1.078 2.39 5.98 

1.075 l.88 4.88 

Some indicative stress-shear displacement and normal displacement-shear displacement 

diagrams are shown in Figs. 4.8 a-f. The shape of these graphs with an early peak 

value and continuing reduction with shear displacement is typical for rough rock joints. 

The difference between the peak and the ultimate value reduces with normal stress, 

corresponding to values of the ratio peak/ultimate stress from as high as 2.0 at low 

normal stresses to about 1.0 at higher normal stresses. The non-dilational shear stress is 

more or less constant for the whole range of shear displacement with the exception of 

the initial pre-peak region, where generally an increased value is obtained. The 

resolution of the non-dilational shear stress versus horizontal displacement graph 

depends on the step-size used to calculate the dilation angle. This step-size must be 
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small enough to describe the detailed dilational behaviour, but very small step-sizes 

may result in meaningless spurious values of dilation. 

The measured peak shear strength envelopes from tests on the two joints A and B, 

tested in the normal stress range 0-2 MPa, are shown in Fig. 4.9a. When there are two 

peaks in a shear stress-shear displacement diagram, the peak which is closer to the peak 

dilation angle is used. It must be noted that some samples were tested first under their 

self weight and subsequently under a higher normal stress. The remaining samples were 

tested only at a single normal stress. The variation of peak shear strength with normal 

stress is non-linear and a curved envelope with the parameters shown is fitted to the 

experimental data. This envelope is based on a new peak shear strength criterion which 

is descnbed in Chapter 5. 

The peak shear strength was separated in a dilational component and a non-dilational 

component, as descnbed in chapter 4.2.3. The data for the non-dilational component 

were plotted and a straight line was fitted. This line defined a friction angle of 46.6° 

for joint A and 46.2° for joint B, as shown in Fig. 4.10. The results from joint C are 

quite similar to those of joint B, and this suggested that it would be better if the data 

were presented all together. This value of the non-dilational friction angle is almost 

identical to the friction angle of the intact material ( 46°) as determined from triaxial 

tests (see Chap. 2.4.5), from the stress state at the brittle-plastic transition. This is a 

key observation suggesting that, at the instant of peak shear strength, contacting 

asperities are in a state which is similar to that existing at the brittle-plastic transition of 

the intact material. The frictional component of peak shear strength can therefore be 

predicted either from direct shear test results after elimination of the effect of 

dilation or from triaxial shear tests on the rock wall material, under confining pressure 

sufficiently high to cause brittle-plastic transition. The fact that the value of the non

dilational component is almost identical for joints which have quite different surface 

characteristics emphasises its frictional origin. The use of the non-dilational (frictional) 

component of peak shear strength removes most of the scatter observed in measured 

peak shear strength. In terms of peak friction angle, the standard deviation is about 

10% for the measured values and only 3% for the non-dilational component. This 

suggests that variations measured in peak shear strength are due to different effective 

dilation angles. 

4.3.3 Deformation of modelled rock discontinuities 

4.3.3.1 Peak rate of dilation 

For each test the rate of dilation was calculated at every point from the normal 

displacement- shear displacement diagram. The dilation angle is a function of the shear 
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distance - step size over which is calculated and is known to decrease logarithmically 

with the step size (Barton, 1990, Papaliangas et al., 1994). The variation of the peak 

dilation rate ( tan If!) with the step-size over which it is calculated, as a percentage of the 

sample length, for joint A tested under its self weight is shown in Fig. 4.1 0. The 

average normal stress on these tests was approximately 0.6 kPa and each point on the 

diagram corresponds to the average value resulted from five tests on different samples. 

Also in the same figure the variation of the maximum asperity slope with step-size is 

shown for comparison. The values of the two quantities are identical for step-sizes 

greater than 0.2% of the sample length, suggesting that the maximum dilation rate of a 

sample with negligible damage is equal to the maximum asperity slope. Both the 

asperity slope and the dilation rate decrease considerably with the step-size. For 

example, for an increase in the step-size from 0.2% to 2.0%, there is a 50% decrease. 

Several researchers have used different step size, to calculate dilation angles. For 

example, Bandis et al. (1981) suggested 2% of the specimen length will give the 

effective dilation angle, whereas tests where step-sizes of 0.18 mm were used are 

described in Arnold (1992). If small scale roughness is to be considered, the step size 

must be small. Patton (1966a) suggested that second order roughness should be 

considered as that which corresponds to a base length equal to 0.2% of length. Barton 

(1971a) and Barton & Choubey (1977) found that peak shear displacement occurs at 

about 0.0 lL shear displacement, where L is the length of sample. In order to "catch" all 

micro-roughness responsible for peak shear strength, the step-size should be a 

fraction of 1 %L; Figure 4.10 suggests that a step size of 0.2% of the sample length is 

a limit above which the maximum dilation angle of a sample tested under very low 

normal stress (for example under its self weight) is equal to the maximum asperity 

slope. This step-size of 0.2% was selected to calculate dilation angles, throughout this 

study. 

The peak dilation rate (tanlfl) plotted against normal stress for all tests carried out on 

joints A and B is shown in Fig. 4.11. The variation is of logarithmic form over a range of 

normal stress of four orders of magnitude. The dilation is fully suppressed at a normal 

stress of about 3.8 MPa for both joints. This stress appears to be independent of the 

joint roughness and is only about 8% of th~ unconfined compressive strength and 11 % of 

the brittle-ductile transition stress (see Chapter 3.2), where the intact sample will behave 

in a purely frictional manner. Assuming that at the brittle-ductile stress there is 100% 

contact between the two surfaces, and proportionality between area and load exists, as it 

occurs when an exponential distribution of asperity heights is assumed (Greenwood & 

Williamson, 1966), these data indicate that dilation is fully suppressed when the area of 

contact is approximately 11 % of the gross area of the sample. The highest dilation rates 

were obtained from tests at "no load" conditions, i.e. where only the self weight of the 
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sample was acting. This was equivalent to 0.6 kPa for joint A and 0.8 kPa for joint B 

(average of 5-8 tests). There is a wide scatter at low normal stresses as the two 

samples have different roughness and exhibit different dilation angles, but as the normal 

stress increases, this scatter reduces considerably. This occurs in natural joints as well, as 

shown very clearly in Fig. 4.12, for the experimental data sets published by three 

different authors, shown on the figure. In this figure data from various sources on natural 

joints and artificially produced tensile fractures in natural rocks are included, which 

indicate that dilation is fully suppressed at a normal stress of about 10 MPa, which is 

about one order of magnitude lower than the unconfined compressive strength, assumed 

to be 100 MPa. These results are in agreement with the results shown in Fig. 4.11 for the 

artificial joints produced by the synthetic rock. Data published by other workers such as 

Goodman & Dubois (1972), Martin & Millar (1974), Schneider (1976), Bandis et al. 

(1981), Denby & Scoble (1984) and Hassani & Scoble (1985) are in line with these 

findings. Kutter & Otto ( 1990) suggested that the stress able to suppress all dilation is 

equal to the tensile strength of the rock material. This seems to be realistic as tensile 

strength is approximately one order of magnitude lower than the compressive strength, 

and for the synthetic material used (tensile strength 4.5 MPa and normal stress 

corresponding to zero dilation 3.8 MPa) this suggestion may lead to a reasonable 

approximation. However, in the authors opinion, this is a matter of actual area of contact 

and brittle-plastic transition stress, rather than tensile strength and compressive strength. 

In contrast, the assumption that dilation is fully suppressed only when the averaged 

normal stress is equal to the unconfined compressive strength, as assumed in some 

models, for example the JRC-JCS model (Barton & Bandis, 1990), is not confmned and 

may be unrealistic for most natural joints. 

A better correlation between dilation rate and normal stress is obtained if a graph of 

the normalised dilation rate tan lf/ltan If/ 0 and logCYn is plotted. In this way individuality 

of joints at low normal stress is lost and the critical normal stress CYnr can be estimated 

more confidently, as shown in Figure 4.13 in which the data plotted in Figure 4.11 

have been used. This logarithmic relation holds over four orders of magnitude of 

normal stress. A value of '1-'o for each individual sample can be obtained by self-weight 

tests prior to main testing at the appropriate normal stress. From the data presented, it 

is evident that the affect of roughness diminishes at normal stresses higher than CYnT· 

The value of CYnT is dependent upon the normal stress required to cause plastic 

deformation over the area around the tips of the most critical ( contacting) asperities. 

The results shown in Figure 4.8 suggest that CYnr is independent of roughness; similar 

results were obtained by Kutter & Otto (1990). 
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However, when large scale asperities exist on the surface, it is reasonable to assume 

that it increases, because a larger volume of material is needed to come to a brittle

plastic transition state. In this case, mechanisms other than plastic flow, i.e. tensile 

fracture, may dominate. Data published Hassani & Scoble (1984) for artificial joints 

with different number of grooves and ridges in siltstone indicate that O'nr is 

independent of roughness. The variation of dilation angle with normal stress for a series 

of direct shear tests on model joints published by Bandis et. al (1981) is shown in Fig. 

4.14. It is evident that three out of four joint types (JRC values 6.5, 7.5 and 10.6) give 

the same value for O'nr (about 140 kPa), whereas the fourth joint (JRC value 16.6) 

gives a higher value ( about 225 kPa). Those values are about one order of magnitude 

lower than the unconfined compressive strength of the rock model material (2000 kPa). 

Looking at the profiles provided by the authors, it is clear that the increase in the value 

of O'nr in the fourth joint is due to the large scale undulations which have a wave 

length approximately equal to half the length of the joint and a vertical amplitude larger 

than 1120th of that. At prototype scale these parameters represent a joint with a 

wavelength of about 1.35 m and a vertical amplitude of about 0.15 m, which are quite 

uncommon. Consequently, it can be assumed that, in general, the value of O'nT is 

independent of the joint roughness, unless large scale steep asperities exist on the 

surface, when this value will be higher. 

4.3.3.2 Failure characteristics 

The results from this series of tests indicate that the stress state existing on the tips of 

the contacting asperities, at the instant of peak shear strength, is similar to that occuring 

at the brittle-plastic transition stress. The deformation at the brittle-plastic transition is 

dominated by distnbuted and localised microcracking and/or local plasticity, as 

demonstrated by Evans et a/.(1990) and shown in Fig. 4.15. In the direct shear tests 

carried out in this series of tests, post test examination revealed various small fragments 

of rock mixed with disintegrated and fine powdery material as shown in Plate 4.3. The 

photographs shown correspond to tests at high normal stress (1 and 2 MPa), and it can 

be seen that with the exception of edge failures, no other tensile failure is observed. 

Although these observations correspond to accumulative damage after a 

considerable shear displacement (about 15 mm) and not up to the instant of peak shear 

stress, the presence of a combination of small pieces of rock and powdery material on 

the sheared joint surface is indicative of a stress state similar to that at the brittle-plastic 

state where distributed and localised microcracking occur simultaneously. Similar 

observations have been made on many occasions in natural rock joints (see for example 

Plate 4.2 and Chapter 3.3). 
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Fig. 4.16: Post-test photographs of joints sheared under various normal stresses 
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Post - test profiles of the joint surface corresponding to various normal stresses are 

shown in Figure 4.17. It is clear that the change in the profile increases with normal 

stress and at even at the highest normal stress where dilation approaches zero, only the 

highest part of the asperities are flattened. 

4.3.3.3 Peak shear displacement 

From the experimental results of this study, it has been shown that peak shear strength 

can be considered as a two component parameter over the whole range of normal stress 

where joint behaviour is dilational (i.e. up to 3.8 MPa). Since the frictional component 

is proportional to normal load, peak shear strength should occur at the instant of the 

full mobilisation of roughness, i.e. at the same shear displacement as the peak dilation 

angle. This is most commonly reported in the literature (for example, Barton & 

Choubey, 1977). However, there is some evidence that the maximum dilation may 

occasionally occur before or after the peak shear stress (Arnold, 1992, Bilgin & 

Pasamehmetoglou, 1990 and Toy, 1993). Chapell (1975) found that for relatively large 

joints, peak shear strength does not coincide with maximum dilation. The phase 

difference in the two quantities is probably due to the degree of interlocking at the 

commencement of sliding. A tightly interlocked joint will cause an initial suppression 

of dilation, and peak shear strength will be reached well before the maximum dilation 

angle. 
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The relation between the shear displacement corresponding to the maximum dilation 

rate and that corresponding to the peak shear strength for joints A and B is shown in 

Fig. 4.18. A common straight line passing through the origin has been fitted to the data 

corresponding to both joints. There is some scatter in the results, but there is a clear 

trend that the shear displacement required for the maximum dilation to mobilise is 

slightly larger (about 15%) than that corresponding to peak shear strength. In other 

words the maximum dilation angle occurs after the peak shear strength. 

The variation of the shear displacement which corresponds to peak shear strength o 
(peak shear displacement) for joints A and B is shown in Fig. 4.19. There is a wide 

scatter but a clear increase with normal stress of the o exists. Peak shear displacement 

values are lower for the rougher joint (A), but the rate of increase with normal stress is 

approximately the same for both joints. At zero normal stress the projected values of o 
are 1.2 mm and 1.8 mm for joints A and B respectively. These values which 

correspond to 1.2% and 1.8% of the sample length are higher than the 1 % L "rule of 

thumb" suggested by Barton & Choubey (1977). 

4.3.4 Concluding remarks 

The peak shear strength of rock joints can be considered as comprising two 

components, one frictional and one dilational, over the whole range of normal stress 

where dilation occurs. Therefore the " </J+i " principle is applicable over the whole 

range of dilatant shearing, with ¢ representing the friction angle of the rock wall 

material and i the dilation angle (geometrical component) at peak shear strength. 

Consequently, at least for rock joints similar to those used in this study, the "asperity 

failure component" can not be separated from the "basic friction component". 

The non-dilational component of peak friction angle is equal to the friction angle of the 

rock wall material, determined from the stress state at the brittle-plastic transition. This 

suggests that brittle-plastic transition state occurs at the tips of the contacting asperities 

and therefore, the frictional component of peak shear strength can be determined either 

from triaxial tests under sufficiently high confining pressure to produce a brittle-plastic 

transition stress or from direct shear tests after elimination of the effect of dilation. 

The friction angle of the synthetic rock used in this study is found from triaxial tests or 

direct shear tests after the effect of dilation is removed. The value of friction angle thus 

determined ( 46°) is 14 ° degrees higher than that of saw-cut surfaces and can be 

considered as representative of relatively soft artificial rock materials. Also it compares 

well with friction angle values corresponding to relatively soft natural rocks such as 

limestones, dolomites, marbles etc. Therefore, if the findings of this work are generally 



106 

7 

Y = l.145X (r2=0.77) ♦ / 

I 
6 0 / 

0 / 
'-" 

/ V - 5 i:<:l 
0 ... 

C 

/~Y=X 
0 

♦ ·.:: 
.;:! 
:.a 4 

/ 0 X e 0 - · / c<j ,., 
♦ ... .J 

✓ C 

E 
V /6 (.) 
c<j 

2 C. .4. 0 rfl :.a 
~ ... 

♦ Joint A i:<:l 
V ♦ -~ ..c o Joint B r/) 

~ 

0 
0 2 3 4 5 6 7 

Peak shear displacement (mm) 

Fig. 4.}8: Shear displacement at maximwn dilation rate vs. shear displacement 

· at peak shear strength 

'? 
E 
'-" -C 

E 
V 
(.) 
c<j 

C. 
rfl :.a ... 
c<j 
V ..c 
rfl 

~ 
i:<:l 
V 

i:i.. 

7.------------------------:--

6 

5 

4 

,., 
.J 0 

2 

♦ 

♦ 

0 
0 

0.5 

.o 0 

0 

♦ 

♦ Joint A 

Y = 1.2 I 5 + l.605X (r2= 0. 79) 

o Joint B 

Y = 1.846 + l.758X (r2= 0.77) 

1.0 1.5 2.0 

(MPa) 

2.5 

Normal stress 

3.0 

Fig. 4.19: Variation of peak shear displacement with normal stress 



107 

applicable, the use of the friction angle of a saw-cut surface m rock joint shear 

behaviour may be inappropriate. 

The dilation at peak shear strength reduces logarithmically with normal stress, over 

four orders of magnitude. The normal stress at which the specimen ceases to dilate is 

much lower than the unconfmed compressive strength, and about one order of 

magnitude lower than the brittle-plastic transition stress. It appears to be independent 

of roughness and can be experimentally derived from a series of direct shear tests. 

For the joints tested the peak shear strength occured slightly earlier than the peak 

dilation rate. 

The peak shear displacement increases with normal stress. For the synthetic rock 

used, at low normal stress it is about 1-2% of the sample length and becomes about 4-

5% of the sample length at a normal stress of2.0 MPa. 
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4. 4. The effect of sample size on peak shear strength: discontinuities modelled by 

the strong synthetic rock 

4.4.1 Introduction 

The strength values obtained from testing of rock samples of different volume are 

known to reduce with the sample size used. This is usually termed "scale effect" on 

rock strength, and is due to the nature of rock materials. Rocks are composed of 

crystals and grains in a fabric including cracks and fissures. Therefore, rather large 

samples are required to obtain statistically complete collections of all the components 

that influence strength. Unconfmed compression tests carried out in the field by 

Bieniawski (1968) and Pratt et al. (1972) have shown that a reduction in strength of up 

to one order of magnitude may result from samples of different size. 

Experimental work by several investigators including Pratt et al.(1974), Leichnitz & 

Natau (1979), Bandis (1980), Bandis et a/.(1981), Muralha & Cunha (1990), Maerz & 

Franklin (1990) and Y oshinaka et al. (1993), have shown that there is also an apparent 

reduction in peak shear strength of model and natural rock discontinuities with 

increasing sample size. Positive scale effects (increasing strength with increasing size) 

or no scale effect have also been reported, for example by Locher & Rieder (1970), 

Kutter & Otto (1990), Gianni et a/.(1992) and Ohnishi et al. (1993). The studies of 

Swan (1983, 1985) and Swan & Zongqi (1985) indicate that scale has negligible 

influence on predicted joint behaviour for surfaces of engineering interest. The 

fundamental mechanisms involved in the shearing of rock joints at different normal 

stresses have not yet been resolved; scale effect is a subject which remains 

controversial. 

It is widely accepted that the scale effect in peak shear strength is most marked for 

rough joints, and disappears for planar, smooth, residual surfaces, as does dilation. The 

results presented in Chapter 4.3 illustrate that dilation is the only cause for variations in 

peak shear strength. If this is true, then scale effect will be a result of different dilation 

mobilised by joints of different size. Joints in the same rock exhibiting the same peak 

dilation angle will have the same peak shear strength. If for some reason samples of 

different lengths, from the same rock surface, exhibit the same peak dilation angle, 

then they will have the same peak shear strength, as occurs in the case of saw-toothed 

joints (Ohnishi et al., 1993). 

Based on the reduction in unconfined compressive strength with scale reported by Pratt 

et al.(1972), Barton & Choubey (1977) interpreted experimental results on scale effects 

in peak shear strength of rock joints, published by Pratt et al. (1974), on the basis of a 

scale dependence of both peak dilation angle dn and asperity failure component. A 
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reduction of 60-75% in peak shear strength with scale was attributed to the reduction 

in the asperity failure component and the remaining 40-25% to the dilation angle. 

Direct shear tests on plaster modelled rock joints, carried out by Bandis ( 1980), and 

interpreted in the same way, confirmed the above findings of Barton (Fig. 4.20). 

Assuming that the value of </Jb is constant, the asperity failure component was 

calculated in angular form, from the formula 

where 

<pp is the measured peak friction angle 

</Ji, the ''basic" friction angle and 

dn the peak dilation angle. 

(4.1) 

The reduction in the dilation angle and the asperity failure component was quantified 

by Barton & Bandis ( 1982), by using the following empirical relationships 

JRC ::::: JRC ( Ln )--0.02JRC. 
n o L 

0 

(4.2) 

(4.3) 

where JRC0 and JCS0 correspond to laboratory scale sample and JRCn and JCSn to 

field scale. The graphical form of equations ( 4.2) and ( 4.3) is shown in Figure 4.21. 

Hencher et al. (1993) discussed tests carried out by Toy (1993) to investigate the 

mechanisms contributing to changes in strength with size of sample. The tests were 

carried out on replicas of a natural limestone joint made with the same model material, 

in the same shear box and under the same conditions as used by Bandis (1980), i.e. the 

same normal stress (24.2 kPa) and at a shear rate of0.4 mm/min. Tests were conducted 

on full size (354 mm x 150 mm), quarter size ( 4 blocks 177 mm x 75 mm each) and 

I/12th size (12 blocks 88.5 mm x 50 mm each). Profiles of the joint surface and 

positions of numbered samples at the different scales are given in Fig. 4.22. Within the 

limitations of the data, Hencher et al. ( op. cit.) confirmed the broad negative scale 

dependence of measured strength data reported by Bandis. However, following detailed 

analysis, they found no evidence of a scale-dependent asperity failure component as 

postulated by Bandis et al.(1981). Furthermore, they found that there was a wide 

scatter in measured friction values, which for sanded flat surfaces was in the range 9° -

34° (Fig 4.23). They concluded that this model material had severe limitations for 

accurately and consistently simulating shear behaviour of most rocks. For the same 
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Fig. 4.23: Joint profiles indicating sub-samples positions and sizes (after Toy, 1993) 
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model material, Band.is (1980) used a basic friction angle of 32°, which was detennined 

from surfaces prepared by direct casts onto a glass plate. It is questionable how the 

frictional properties of such surfaces, influenced by the surface plaster layer, are related 

to the frictional properties of the underlying material. From the evidence of the damage 

sustained by the underlying material after shearing of a rough joint, it is the frictional 

properties of this lower layer which has the greater influence on shear strength and 

which is therefore more relevant. 

4.4.2 Peak shear strength 

The results reported in Chapter 4.3 suggest that variations in peak shear strength can be 

explained by changes in the mobilised dilation angle. This holds from very low to 

stresses high enough to eliminate dilation. If this argument is true, then there is a 

contradiction with the scale effect on the asperity failure component found by Bandis 

(op. cit.) and the basic assumption of the JRC-JCS model (Barton & Bandis, 1990) 

where not only the dilation component ( expressed by JRC ) but also the asperity failure 

component (as expressed by JCS) is stated to be scale dependent (equations 4.2 and 

4.3 and Figures 4.20, 4.21). 

A series of direct shear tests was carried out in order to investigate these differences. It 

was considered essential to employ a much less powdery model material than had been 

used previously. Accordingly, a variation of the synthetic rock descnbed in Chapter 2 

with unconfined compressive strength 60 MPa, and tensile strength (Brazilian) 5.5 

MPa was used. Identical joint replicas were prepared from the same moulds as used by 

Toy (1993) -see Plate 4.2. The same shear box and procedures were used except that 

an additional series of tests was carried out at the higher normal stress of 125 kPa. 

Tests were carried out on medium sized samples in opposing shear directions to 

investigate the influence of roughness anisotropy. Three sets of the smallest block size 

were tested at higher normal stresses. Some preliminary results of these tests have 

been published by Papaliangas et al. (1994) . 

Measured peak shear stress values as a function of normal stress for all sizes are given 

in Fig. 4.24, and after the effect of dilation was removed, in Fig. 4.25. There is a wide 

variation in the measured peak shear stress which is shown by different blocks of the 

same size, and which decreases with sample size. Particularly at the lower normal stress 

leveL the peak shear stress ratio shows a generally negative scale effect, although the 

medium size blocks gave the highest average value (Table 4.2). Non-dilational data at 

all scales gave consistent average friction angles to within ±0.5°. The difference in the 

average value of friction angle at 24.5 kPa and 125 kPa is attributed to the variations in 

surface finish produced by different mixtures. It is worth noting that samples with quite 
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Plate 4.3 : (a) Sample sizes and positions of individual blocks. 

(b) texture of model joint surface. 
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Table 4.2: Summary of peak shear stress ratios 

Peak measured Non- dilational 

Block size Range Mean St.dev. Range Mean St.dev. 

cr = 24.2 kPa 

Small 1.38-3.32 1.81 0.54 0.50-1.03 0.83 0.16 

Medium- 1.08-2.79 1.87 0.76 0.72-1.02 0.83 0.14 

forward 

Medium- 1.17-1.61 1.42 0.22 0.71-1.00 0.84 0.09 

reverse 

Large 1.45-1.62 1.53 0.08 0.77-0.94 0.84 0.09 

cr = 125 kPa 

Small 1.00-2.78 1.42 0.51 0.53-1.14 0.78 0.19 

Medium 1.04-2.03 1.42 0.47 0.77-0.82 0.80 0.02 

Large 1.46 1.46 - 0.77 0.77 -

400 

o small 
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Figure 4:25: Variation of measured peak shear strength with normal stress for all sizes 
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different peak shear strength give almost the same non-dilational friction angle. For 

example, the small block with the highest peak friction angle (with a peak friction angle 

of 73° at normal stress 25 kPa and 70° at 125 kPa ), has a non-dilational friction angle 

of 38.7° and 39.8° respectively. The relatively high value of mean peak measured 

stress ratio and standard deviation, shown by the medium size blocks, is due to a 

dominant asperity on the joint surface (see Fig. 4.22 and Plate 4.4). When the same 

blocks were sheared in the reverse direction, where this asperity has no effect, the mean 

and the standard deviation of peak shear strength was considerably reduced. 

The non-dilational peak shear strength data for the two normal stress levels and all 

scales are all very close and define a friction line of 38. 7° with a correlation coefficient 

of 0.906 (Fig. 4.25a). For reasons of clarity, the data have been redrawn in Figures 

4.25b (small samples) _and 4.25c (medium and large samples). The data for the small 

samples show some scatter, especially at normal stress 125 kPa, but large and medium 

(forward and reverse direction) size blocks show a remarkable correlation with a 

coefficient of friction equal to 0.80 (friction angle approximately 39°). 

The variation of peak shear stress ratio with scale for the two normal stress levels is 

shown in Figures 4.26 and 4.27. It is clear that the scatter is considerably reduced in the 

case of non-dilational shear strength. 

These results lend further confirmation of the results presented in chapter 4.3, that the 

non-dilational peak shear strength is purely frictional, and suggest that it is independent 

of scale and roughness. Any apparent scale effect in measured strength can be 

attributed to the effect of change in geometry on the mobilised dilation angle at peak 

strength. On joints of different roughness the mobilised dilation varies both with 

normal stress and scale. Irrespective of the peak shear strength of four different blocks 

of the same size, the non-dilational shear strength is the same, as shown very 

convincingly in Fig. 4.28. When the results from all the tests are plotted (Fig. 4.29), it 

becomes clear that the only factor contnbuting to the change in strength with scale is 

the mobilised instantaneous dilation angle. 

Shear stress - shear displacement curves for all 12 blocks of the same size tested under 

a normal stress of 1.0 MPa is shown in Fig. 4.30. The data were plotted all together in 

order to obtain the general trend of the relation between peak shear stress and shear 

displacement. Two clear trends can be seen: a) the peak shear displacement depends 

on the roughness of the sample. AB the roughness (and the peak shear strength) 

decreases, the peak shear displacement increases (Fig. 4.30 a). From a comparison 

between Figures 4.30a and 4.21 it becomes evident that the effects on peak shear 
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Figure 4.27. Variation of peak shear stress ratio with sample size. 

(a) cr=24.5 kPa. (b) cr=125 kPa. 
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displacement of the sample size and the sample roughness are quite similar. This 

implies that a possible explanation of the scale effect seen in Fig. 4.21 is the different 

roughness mobilised at different scales. The values of peak shear displacement for 

these 12 blocks are between 2.0 mm an 4.0 mm. b) the non-dilational shear stress after 

a small initial peak falls to a constant value for the remaining shear displacement. This 

constant value is generally reached before the measured peak shear strength, and 

irrespective of the sample roughness, it falls within a narrow band corresponding to an 

average value of shear stress I normal stress ratio of about 1.0. 

Peak friction angles both measured and non-dilational (frictional) at normal stress 1.0 

MPa, 2.0 MPa and maximum dilation angles under self-weight tests (0.9 kPa) are 

shown in Table 4.3. The average non-dilational peak friction angle values for the two 

normal stresses differ only by 0.1 ° and by less than 1 ° from the value obtained from the 

main testing programme presented in Chapter 4.3 ( 46.1 °). 

Table 4.3: Peak friction angles of individual small sub-samples (85 mm long) 

at normal stress 1.0 and 2.0 MPa (degrees) 

cr crn=0.9 kPa 0"0 = 1.0 MPa O"n = 2.0 MPa 

Block No ao measured non-dilational measured non-dilational 

1 41.9 51.1 47.2 44.2 45 .9 

2 29.5 44.2 44.8 47.5 45.6 

3 32.9 51.8 42.4 45.6 43 .3 

4 37.5 54.8 44.20 46.2 43.3 

5 45.6 53.0 44.3 52.1 42.1 

6 51.0 56.5 43.0 53.8 47.2 

7 29.5 55.5 44.2 42.1 42.7 

8 33.4 46.5 43.0 46.5 45.3 

9 27.6 54.6 44.2 50.0 49.9 

10 40.9 59.6 46.0 52.3 43.3 

11 34.2 50.6 47.1 50.2 46.4 

12 41.0 53.6 44.4 44.9 46.4 

Mean 37.1±6.9 52.7±4.1 44.6±1.5 48.0±3.5 45.1±2.2 

The difference in the value of the non-dilational friction angle at low and high normal 

stress is attributed to the thin cement layer existing on the surface, whose properties are 

different than those of the underlying material. The smooth layer was formed as a result 

of casting (the aggregate grains are covered by cement and are not exposed to the free 

surface) and the smooth texture of the Vinamold impressions produce samples which 
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microscopically are smooth. This surface layer controls shear strength at low normal 

stresses, whereas as the normal stress increases, the underlying material is involved and 

the true friction angle of the material is revealed. 

4.4.3. Dilation rate at peak shear strength 

The variation with normal stress of the peak rate of dilation for small size samples, 

tested over four orders of magnitude of normal stress is shown in Fig. 4.30. The 

variation is logarithmic with very high correlation coefficient and over the whole range 

of normal stress where dilation occurs. The data at normal stress of 3.0 kPa correspond 

to self-weight shear tests, after the samples have been subjected to previous tests at a 

normal stress 24.5 kPa. The lower values are due to the surface damage caused by the 

previous testing and suggest that the logarithmic variation is valid for identical surfaces. 

Therefore, it is not applicable for multi-stage tests. For this reason these data have not 

been taken into account for the determination of the regression line shown on Fig. 4.30. 

The dilation diminishes at a normal stress of 3.8 MPa, for the average of 10 blocks and 

somewhat higher for the blocks nos. 6 and 10 plotted separately because they are 

affected by the large dominant asperity on the joint surface. With the exception of these 

two blocks, the average value of normal stress where dilation becomes zero (3.8 MPa), 

found for all others is identical to that found for the three different joints studied in 

Chapter 4.3. These results indicate that if the shear behaviour of a joint is not 

dominated by large scale asperities, the normal stress able to suppress all dilation will 

be independent of roughness. In other words this characteristic normal stress is 

independent of the second-order roughness. 

As with the data presented in Chapter 4.3, the logarithmic relation between dilation 

rate and normal stress holds over four orders of magnitude, from the lowest normal 

stress produced by the self weight of the sample up to the normal stress which 

suppresses all dilation. This relation was not affected by changes with normal stress in 

the purely frictional characteristics of the joint surface ( due to the surface cement 

layer). Therefore, the dilational behaviour is dependent only on the surface geometry, 

irrespective of the frictional characteristics of the surface. This is valid for every 

individual sub-sample and for the average of all sub-samples (see the two lines on Fig. 

4.30). This suggests that shearing of rock joints involves two independent mechanisms: 

one frictional and one geometrical. The latter depends only on the surface 

characteristics and the normal stress. 

Shear tests under the self-weight of the samples, were carried out for all the samples 

prior to main testing, and the maximum dilation angle was calculated. This angle can be 

used as a reference value for the peak dilation angles measured at higher normal 



~ 
e 
.9 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0 I 
10-

122 

◊ 

• 

1.0 

◊ Blocks No 6 & 10 
y=l .007-0.260logx (r2= 1.00) 

• Average ofall other blocks 

y=0.696-0. l 9751ogx (r2= 1.00) 

Normal stress (kPa) 

Fig. 4.31a: Variation of dilation rate tan\j/ with normal stress for small size samples 

1.0 .--~----.------------------------, 

2 

0.8 

0.6 

0.4 

0 tan\JI = 1.087 - 0.456 log (L) 0.2 

♦ tan\jf = l.197 - 0 .462 log (L) 

( r2 = 0.97) 

0.0 '----'-----'---'L........1.----'-~~-~-~~~--L..L~--~~~~~~ 

I 10 100 1000 

Sample length (cm) 

Fig. 4.31b: Variation of dilation angle at "no normal load" coo.dition with sample size. 



123 

stresses. The average normal stress at these self-weight tests were 0.9 kPa for the small 

size samples, 1.6 kPa for the medium-size samples and 2.9 kPa for the full-size sample. 

The maximum dilation angle for these eventually damage-free shear tests was found to 

decrease logarithmically with the sample length (Fig. 4. 31, closed symbols). The data 

were all normalised at 0.9 kPa normal stress, assuming logarithmic decrease with 

normal stress and a value of zero-dilation normal stress of 3.8 J\.1Pa. The data points 

shown in Figure 4.31 are too few to define a reliable relation which correlates the peak 

dilation rate with the sample length. However, if we assume that the relation shown in 

Figure 4.31 holds at larger scales, then extrapolation at zero dilation results in a scale

free block length of about 3.9 m This value of scale-free block length is believed to be 

affected by the large dominant asperity on the surface and thus may be atypical for 

more regular natural joints. A crude estimation of this effect can be made if the blocks 

affected by the large asperity are considered. For the small sub-samples 2 of 12 blocks 

( 17%) are affected, 1 out of 4 (25%) for the medium size sub-samples and the whole 

(100%) full-size sample. An estimation of the scale-free block length for joints of more 

typical roughness may be obtained if these blocks are not taken into account. In this 

case the resulted scale-free block length is approximately 2.4 m ( open symbols in 

Figure. 4.31 ). 

3000,--------------------~ 

t = 1.00 a cr2= 0.99) 

2500 

2000 

• 1500 

1000 

samples 85x50 mm 

1000 1500 2000 2500 3000 
Nonnal stress (kPa) 

Fig. 4.32: Non-dilational peak shear strength for samples of different roughness and size 

tested under various normal stresses 
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The non-dilational peak shear strength for all samples of this series is shown in Figure 

4.32. The data represent samples of various roughness and lengths from 85 mm to 354 

mm, tested under various normal stresses in the range 0-2.0 MPa. Also the results 

described in section 4.3 are included. These data indicate clearly that the non-dilational 

shear strength is independent of roughness, normal stress and scale. 
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4. 5. The effect of sample size on peak shear strength: discontinuities modelled by 

a weak artificial model material 

4.5.1 Introduction 

The results reported in Chapters 4.3 and 4.4 have shown that the "asperity failure" 

component of peak shear strength can not be separated from the ''basic friction" 

component; together they are independent of normal stress, scale, and roughness. This 

contradicts the basic assumption of the JRC-JCS model that asperity failure component 

is scale dependent. The normal stresses used in the previous investigation were 24.5 

kPa and 125 kPa, corresponding to a ratio of compressive strength to normal stress 

equal to 1918 and 376 respectively. Although these ratios are relatively low, visual 

post-test examinations revealed surface damage which was larger at the higher normal 

stress. Dilation was fully suppressed at a normal stress of about 3.8 MPa and this value 

was only 30 times higher than the highest normal stress used. Therefore, asperity 

damage took place. 

In order to confirm previous findings at higher normal stress: compressive strength 

ratios, a new series of direct shear tests was undertaken. Given the sample dimensions 

chosen and the capacity of the available direct shear test equipment, this could only be 

achieved if a weaker artificial material was used. The model material used in the 

Department of Earth Sciences of The University of Leeds for an investigation of the 

scale effect on peak shear strength of rock joints (Bandis, 1980), was recently 

employed by Toy (1993) and was readily available. Thus it was very convenient to use 

this material, which would give the additional advantage of comparison of the 

experimental results with those obtained by Bandis (1980) and Toy (1993), and extend 

them over a wider range of normal stress. 

4.5.2. Properties of the model material 

The model material consisted of: silver sand 1000 gr., barytes 375 gr., calcined 

alumina 125 gr., plaster of Paris 157.5 gr. and water 375 cm3
• The following properties 

were measured by Bandis (1980): density 1.85 g/cm3
, porosity 36%, unconfined 

compressive strength 2.0 MPa, strain at failure: 0.36%, Young's modulus 867 MPa, 

modulus ratio E/crc ~ 421, tensile strength 0.288 MPa and basic friction angle 32°. 

4.5.2.1 Frictional properties 

According to Bandis et al. ( 1981 ), the basic friction angle of the model material, 

determined from direct shear tests on surfaces produced by direct casting of the wet 

mix against a glass plate, was 32° (Figure 4.33a). However, Toy (1993) found the basic 

frictional behaviour of the same material quite unreliable, with friction angles varying 

from 9° to 35° (Fig. 4.33b). He used both sanded surfaces and casts against glass and 
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attributed the variation to different mechanisms operating at different normal stresses. 

Of these, rolling friction may have a predominant affect. This may offer a reasonable 

explanation for sanded surfaces, but it is not convincing for surfaces cast against glass. 

When the results from both researchers are plotted together as shown in Fig. 4.33c, 

the view that two different mechanisms are operating appears to be valid; one at low 

normal stress and one at higher normal stresses, with the transition zone at about 25 

kPa, which is the normal stress where their tests were carried out. 

4.5.2.2 Behaviour in triaxial compression 

The results reported in Chapter 4.3 have shown that frictional behaviour is best studied 

under triaxial testing. Especially for this weak and friable material with variable 

frictional behaviour, triaxial tests will provide more reliable information. Friction 

angles, determined from the brittle-plastic state, would give information equivalent to 

the non-dilational component of peak shear strength. Triaxial tests were carried out 

using a Hoek triaxial cell and a Wykeham Farrance 50KN testing frame. Samples were 

cylindrical 50 mm x 100 mm. As was expected, the results were quite scattered, due to 

the weakness of the material. Consequently, a great number of tests were carried out, 

to allow a reliable estimate of the brittle-plastic state. All tests at confining pressures 

less than 200 kPa exhibited brittle behaviour, whereas all tests at confining pressures 

higher than 500 kPa were ductile. Within the 200-500 kPa confining pressures, both 

ductile and brittle behaviour was observed. Different results were obtained from 

different mixes, although the same proportions were used. Even the unconfined 

• compressive strength was found to have a value in the range 1.0-1.3 MPa, which is 

50%-32.5% lower than that measured by Bandis (1980). From the tests carried out the 

area of brittle-plastic transition was identified in the range 200-300 kPa and a number 

of triaxial tests were carried out in this range. The failure mode exhibited by some 

samples tested under different confming pressures is shown in Plate 4.5, where tensile 

failure, shear failure, and ductile deformation are shown for unconfmed compression 

and triaxial compression under confining pressures 100 and 500 kPa. Stress-strain 

curves are shown in Figure 4.34. Although the behaviour of the material is quite 

variable, it appears that the curve corresponding to a confming pressure of 230 kPa, 

with an axial strength of 1150 kPa adequately represents the brittle-plastic transition. 

The friction angle is then calculated as 
CJ'1 - C1'3 

sin</>= ---= 0.67 
(]'I +CJ'3 

(4.4) 

and ¢ ~ 42° . This value is 10° higher than that coITesponding to the smooth surface 

produced by direct casting against glass (Fig. 4.33). 



Plate 4.4: Failure of 50x100 mm cylindrical samples in triaxial compression under different confining pressures 
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Figure 4.34: Axial stress - axial strain curves of the model material at the confining pressures 

indicated on each curve 

4.5.3. Testing details 

This series of tests was a duplicate of those described in Chapter 4.4, with the 

exception of the model material used. The same prototype large joint surface was used, 

of approximate dimensions 354x150mm, which was divided into 4 and 12 pieces (Fig. 

4.22). Each joint block was tested in direct shear at a shearing rate of 0.40 mm/min 

under constant normal stress conditions. An additional size was added to the testing 

programme, by cutting the blocks of 1112th size into two, thus four different sizes were 

available as shown in Figure 4.35, namely full size (354x150), quarter size (177x75), 

1112th size (88.5x50) and 1124th size ( 44x50). 

The surface texture produced by the Vinamold negative impressions was smooth (Plate 

4.6). The degree of smoothness varied depending upon the number surface pores 

Careful preparation and compaction resulted in reduction of pores existing on the 

surface and consequently in a smoother texture. The fit of the two sample halves was 

satisfactory, but occasionally some pairs rocked slightly. Misfit increased with sample 

size, and may become a serious problem at larger sizes. 

All samples were tested at a normal stress of 125 kPa, which corresponds to a ratio of 

compressive strength to normal stress equal to 16, if a value of2.0 MPa is assumed for 

the compressive strength. But since the unconfined compressive strength found here 
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Fig. 4.35: Full size, 114th, 1112th and 1124th sub-samples used 

with the weak modelling material 
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Plate 4.5: Photograph indicating different textures of the surface layer 

and the underlying material 
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was of the order of 1 MPa these ratio was approximately 8. A series of samples from 

the three larger sample sizes was subjected to self-weight direct shear tests to 

determine their maximum dilation angle. The ratio of lengths between the largest and 

the smallest sample was 8. All four sizes were tested under 125 kPa and under self

weight conditions and when combined with tests carried out by Toy (1993) on the same 

joint and using the same material, adequate data was available for analysis. The whole 

range of tests carried out is shown in Table 4.4, where the actual average dimensions of 

each size are shown. These dimensions were generaly smaller than the nominal ones for 

all sub-samples, due to loss of material during cutting. 

Table 4.4: Tests carried out on all sizes of sub-samples produced 

from the same original full-size sample 

Sample size Full Quarter 1112th 

Actual average 354xl50 177x75 85x50 

Dimensions (mm) 

0.5 kPa (self weight) ✓ ✓ ✓ 

24.5 kPa (Toy, 1993) ✓ ✓ ✓ 

125 kPa ✓ ✓ ✓ 

1124th 

42.5x50 

✓ 

Some quarter size sub-samples were tested independently under additional normal 

stress, in order to define a more complete shear strength envelope. 

4.5.4. Peak shear strength 

4.5.4.1. Tests on 42.5 mm blocks 

These blocks were produced by splitting small blocks 85x50 mm which had been 

previously sheared under 24.5 kPa. Sub-samples A1 and B1 were produced by splitting 

the 85 mm sub-sample no 1, A2 and B2 were produced by splitting the 85 mm sub

sample no 2 and so on. They are the only samples which had been previously sheared at 

a lower normal stress. Thus they had suffered some previous surface damage, and 

results on dilation angles are not directly comparable with unused samples. Provision 

was made to ensure that all samples were sheared with their mean plane either 

horizontal or at a positive angle (uphill sliding) to the mean shearing plane. This 

ensured some minimum surface damage during shearing and elimination of of any 

possible "surface effects" due to the superficial plated layer formed on the sample 

surface due to casting. A total of 24 blocks were tested. The results of measured peak 

friction angle and non-dilational friction angle are given in Table 4.5 and Fig. 4.36. The 

average value of measured peak friction angle is ¢p= 46.4° ±5.1 ° whereas the average 

non-dilational friction angle ¢m=42.6° ±1.4°. The difference in the average values of 

measured and non-dilational peak friction angle is only 3.8°, which is due to previous 

testing at 24.5 kPa. However, the standard deviation from 5.1 ° (11.0 % ) in the first 
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case reduces to only 1.4° (3.3 %) in the case of the non-dilational friction angle. This is 

a direct indication that variation in peak shear strength is due to dilation. The value of 

42.6° found for the non-dilational friction angle is very close to the value of friction 

angle of the material determined from triaxial tests (42°). 

Table 4. 5: Measured and non-dilational peak friction angles of 

24 blocks 42.5 mm long tested at 125 kPa (in degrees, standard deviation in parenthesis) 

Block measured non-dilational Block measured non-dilational 

Al 48.2 43.6 Bl 51.1 44.3 

A2 38.7 42.1 B2 43.9 39.6 

A3 43.3 43.3 B3 49.0 44.2 

A4 39.4 43 .0 B4 50.4 41.6 

AS 42.0 41.3 BS 43.1 42.4 

A6 52.8 42.7 B6 52.8 43.7 

A7 46.2 43.2 B7 44.5 43.0 

A8 43.4 42.7 B8 46.1 42.1 

A9 39.8 40.7 B9 47.1 43.0 

Al0 57.1 40.4 Bl0 49.1 42.4 

Al 1 46.6 44.5 Bl 1 37.5 40.9 

Al2 46.5 44.9 B12 54.5 43.4 

Mean of24 blocks 46.4(5.1) 42.6(1.4) 

4.5.3.2. Tests on 85 mm long sub-samples 

The results from two series of tests carried out at 125 kPa normal stress are shown in 

Table 4.6 and Fig. 4.37 plotted all-together, for peak friction angles both as measured 

and non-dilational. The average value for the measured peak friction angle is 46.3°. 

The values for the non-dilational friction angle for the two different mixtures are 40.7° 

and 42.9° with an average of 41.8°, very close to the predicted from triaxial testing 

value of 42°. It can be seen that a whole 2.8° difference in the frictional properties is 

due to the variability of the material. There are two exceptions: two blocks (no 6 and 

10) which contained the large steep asperity gave considerably higher non-dilational 

friction angles (average 50.9°), which suggests that a different mechanism operates in 

this case. The same applies for 3 blocks (B3, B7 and B9), all from the same original 

parent sample, which gave a lower average value for the non-dilational friction angle of 

35.7°. These latter samples were actually sheared downslope, and this resulted in less 

surface damage, so that the smooth surface plaster layer reduced the overall peak 

friction angle (both measured and non-dilational). In contrast, when blocks are sheared 

upslope, the material underneath the surface layer is involved in shearing; thus the true 
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Table 4.6: Measured and non-dilational peak friction angles 

of 2 sets of 12 blocks 85 mm long tested at 125 kPa (in degrees) 

Block measured non-dilational Block measured 

Al 43.3 40.0 Bl 43.0 

A2 43.0 42.2 B2 48.1 

A3 47.2 43.1 B3 40.8 

A4 46.3 40.9 B4 45.9 

A5 51.3 39.0 B5 40.2 

A6 58.0 45.3 B6 55.3 

A7 42.4 44.2 B7 40.4 

A8 48.8 44.6 B8 45.4 

A9 45.7 43.7 B9 38.5 

Al0 55.5 51.3 BIO 47.7 

Al 1 53.0 40.3 Bl 1 42.6 

A12 45.1 40.3 B12 43.4 

12 blocks~~-9) 42.9(3.2) II 12 blocks 44.3(4.4) 

41.8(1.9) !110 blocks 10 blocks 11 "tt.ul._'·t.u) 42.8(2.8) 

non-

dilational 

39.7 

42.7 

34.8 

43.3 

40.2 

50.5 

36.9 

43.0 

35.5 

40.1 

39.4 

41.8 

40.7(4.0) 

39.7(2.9) 

friction angle controls the shear behaviour. To check the validity of this argument, in 

the second series of tests (series B), provision was made for these three blocks to have 

their mean plane horizontal. The results obtained were then in line with that of the 

remaining sub-samples. The results for series B shown in Table 4.9 are more consistent, 

and more representative of the true friction angle of the material. The average non

dilational friction angle is 42.9°, reducing to 42.1 °, if the highest value of 51.3° 

corresponding to block no 10 (affected by the large asperity) is excluded from the 

sample population. This value is almost identical with the friction angle of the model 

material, determined from triaxial tests, and to that found for the 42.5 mm long sub

samples. 

With regard to the behaviour of the sub-samples containing the large asperity, no 

explanation could be offered. The shear stress-shear displacement and normal 

displacement - shear displacement diagrams for the block A6 (Table 4.6), which gave a 

non-dilational friction angle are shown in Fig. 4.38a, together with calculated dilation 

angles and non-dilational shear stress. For a more detailed observation, the portions of 

the same diagrams corresponding to the instant of peak shear strength are shown in Fig. 

4.38b. It can be seen that peak shear strength occurs at a shear displacement of 2.8 

mm, whereas the maximum dilation angle (approximately 16°) occurs at about 2.4 mm. 

As the peak shear strength is approached, the dilation angle drops and the sample is not 
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moving in the normal direction (see the small plateau on the normal displacement -

shear displacement diagram). At the instant of peak shear strength the dilation is at a 

minimum and the corresponding corrected shear stress at a maximum. Careful visual 

observation has shown that, at the instance of peak shear strength, the material 

collapses, i.e. the bond between sand grains and plaster is destroyed. This leads to a 

relatively abrupt drop in shear stress as the sand grains and the other powdery material 

are rearranged ( compaction). This rearrangement occurs with minimum dilation, and 

eventually the mechanism of deformation is a compaction of a soil-like material in the 

horizontal direction. When this compaction is completed and the densest state is 

reached, dilation again rises, reaching a value of approximately 10°. With the properties 

so fundamentally altered, it is eventually a different material which is tested, unlike the 

initial rock-like material. This peculiar mechanism is due to the weakness of the model 

material and it seems unlikely that the mechanism can occur in real rocks, as it was not 

observed in the tests carried out on the same blocks made from the stronger synthetic 

rock described in Chapter 2. This model material-induced mechanism may lead to 

erroneous conclusions when the test results are extrapolated to real rocks. The 

temporarily reduced rate of dilation leads to a non-dilational friction angle which is 

considerably higher than the average of all the remaining blocks. Both before and after 

peak shear strength the non - dilational shear stress ratio is just below 1.0, a value 

which is in agreement with the general average of the remaining blocks. This suggests 

that the results from the blocks which are affected by similar large asperities must be 

separated and analysed individually. 

The behaviour observed for these blocks may be typical for samples with unrealistically 

high roughness amplitudes, made of this weak model material, but it may not be 

applicable to natural rocks. Consequently, extrapolation of such results to full scale 

may be erroneous. 

The average value of the non-dilational peak friction angle of the two blocks with the 

unrealistically high vertical amplitudes is 50.9°. This value is exactly the same as the 

average of the non-dilational friction angle calculated for the data published by Bandis 

et al. (1981) for the small blocks (5 , 6 cm long) of the roughest joints used. From Table 

2 of their paper, where values for the asperity failure component are given for each 

joint, the average of the asperity failure component for the small size (5, 6 cm long) of 

the roughest 8 joints (nos. 1-8), descnbed as strongly or moderately undulating, very 

rough to moderately rough, is 18.9°±1.3°, which if added to the assumed basic friction 

angle of 32° gives 50.9°. Of the remaining three joints, no 9 had a similar magnitude of 

asperity failure component ( 16.3 °), no 10 had 13 .1 ° resulting in a non-dilational 

friction angle of 45.1 °, and no 11 had 7.5° which gives a non-dilational peak friction 

angle of 39.5°. This remarkable agreement may suggest that the values of non-dilational 
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friction angle obtained by the authors may be due to the peculiar deformation 

mechanism described earlier, which is indicative of samples with unusually high 

asperities in a weak model material. Indeed, some of the full-size model joints used 

were unrealistically rough when considered at full scale. Obviously, the problem 

becomes much more serious when the full size joints are cut into 6 or 8 to produce the 

smallest sub-samples. For example model no 1 at full scale had a wave length of 3.5 m 

and a vertical amplitude 25 cm. When the full size length was reduced to 116th, the 

length obtained was 58 cm, but the vertical amplitude remained 25 cm. Such a joint is 

very unlikely to occur in nature, and the simulation may fail adequately to describe real 

joint behaviour. This emphasises the difficulties and the care which must be taken when 

roughness is to be scaled. 

4.5.3.3. Tests on 175 mm long sub-samples 

These blocks were tested under self-weight, 48 kPa and 125 kPa, which when 

combined with the results from tests at 24.5 kPa carried out by Toy (1993), they can 

define a complete shear strength envelope. The results are shown in Table 4. 7 and Fig. 

4.39. There is a wide scatter for the measured peak friction angle from 39° to 65°. It 

appears that the measured peak friction angle changes with each mix, as shown by the 

two data sets at 125 kPa, where a difference of 2.9° is observed, which diminishes 

when the non-dilational friction angle is considered. Nominally identical samples may 

differ in the non-dilational friction angle by 5° ( compare sub-samples MB3 and MG3). 

Differences of the same magnitude (3°) may be observed in the non-dilational friction 

angle at different normal stresses. These differences are attributed to the variability in 

the strength of the material and the degree of surface smoothness achieved. The latter 

depends on the number of pores, and the degree of damage suffered on removal of the 

Vinamold. Toy (1993) attributed similar differences in measured and non-dilational 

peak shear strength for nominally identical samples to the model material properties, 

the quality of the cast and the degree of mating fit. The average non-dilational friction 

angle for all the samples under the normal stresses used is 41.8° (41.7° if block no 3 is 

not included). 

Some blocks were separately tested under higher normal stresses (200-400 kPa), are 

shown in the left bottom of Table 4.7. At this high normal stress the resistance to 

sliding is higher than that required for the material to disorder and deform in 

compression, as shown in Plate 4. 5 where the total shear displacement was equal to 

the shortening of the top-half. In these tests the joint is not the weakest element and 

thus the results can not be used for direct comparison with the rest shown on the same 

Table. Actually this behaviour is also seen in some tests at cr = 125 kPa, where 

fracture of the top half in many fragments takes place in addition to sliding along the 
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Plate 4.6: Defonnation of mediwn-sized block under a nonnal stress of 125 kPa 
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Table 4.7: Measured and non-dilational peak friction angles of 4 sets of 4 blocks 175 mm long 

tested at different normal stresses 125 kPa (in degrees) 

Block No measured non-dilational Block No measured non-

dilational 

CTn = 24.5 kPa* CTn = 48 kPa 

MAI 54.8 43.2 l\1El NIA NIA 

MA2 54.6 44.0 l\1E2 52.2 43.1 

MA3 64.4 46.7 l\1E3 60.4 44.7 

MA4 53.5 41.2 l\1E4 53.6 42.4 

Mean 56.8 (54.3) 43.8(42.8) Mean 55.4(52.9) 43.4(42.8) 

CTn = 125 kPa CTn = 125 kPa 

MBl 38.8 37.8 MGl 45.9 40.2 

MB2 43 .3 43.3 MG2 42.6 42.0 

MB3 46.2 41.5 MG3 46.9 36.5 

MB4 41.9 38.7 MG4 46.0 42.1 

Mean 42.6 (41.3) 40.3(39.9) Mean 45.5(45.0) 40.2(4 1.4) 

CTn = 200-400 kPa 

A41200 53.5 44.1 A31300 45.4 43 .2 

A41400 46.0 40.8 B41300 50.5 43.8 

Mean 48.9 43 .0 * After Toy (1993) 

* Results after Toy (1993) - In brackets mean values without block no 3 

joint surface (Plate 4. 7). This situation is equivalent to the state at the brittle-plastic 

transition stress. 

4.5.3.4 Tests on full-size samples (L=354 mm) 

Two full-size samples were tested at 125 kPa, which gave values for the non-dilational 

friction 43.5° and 40.0° correspondingly, with an average of 41.8°, which is in 

agreement with other sizes. 

4.5.3.5 Comparison of results 

The values of the non-dilational peak shear strength obtained from tests on samples 

having a length varying from 42.5 mm to 354 mm (i.e. over one order of magnitude) 

are very close. The non-dilational peak friction angles at four different sizes give a 

consistent average value of 42°±0.5° which is identical to the friction angle of the intact 

material obtained from triaxial tests at the brittle-plastic transition. These results 

further confinn that the effect of scale on peak shear strength is the result of different 

dilation angles mobilised at different scales. 
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A plot of peak stress ratio ( -rp/a) both measured and non-dilational for all the data of 

this series is shown in Fig. 4.40, from which the following conclusions can be drawn: 

a) A wide scatter of the experimental results exists at all scales, but it reduces with 

scale. The consistency of the data for the smallest scale is due to the more uniform 

surface finish, resulted from previous shearing of these samples, so the true friction 

angle of the underlying material is involved. The same reason explains the slightly 

above average mean value of this group. 

The average non-dilational friction angle is shown to be independent of scale. 

Due small variations in the preparation procedure, the model material used could not 

give identical surface finish properties, resulting in samples with different degree of 

surface smoothness and number of pores. 

4.5.4. Peak shear strength envelopes 

Peak shear strength envelopes from all tests in this series are shown in Fig. 4.41 both 

for the measured and the non-dilational peak shear strength. The best fit straight line 

for the non-dilational data falls very close to the friction line corresponding to 42°. 
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4.5.5 Variation of dilation rate with normal stress 

The variation of the dilation rate with normal stress for all data is shown in Figure 4.43 

The data for the quartered and I/12th sizes has been grouped into two categories: one 

corresponding to blocks which are affected by the large steep asperity (block no 3 for 

quartered sub-samples and blocks nos. 6 and 10 for the I/12th sub-samples) and the 

other corresponding to the average of the dilation rate of the remaining blocks. This has 

been done because, due to the effect of the dominant asperity, these produced 

systematically higher dilation angles than the remaining blocks. Obviously, the affect of 

this asperity on the full-size sample could not be separated. The variation of dilation 

rate with normal stress is logarithmic. The lowest value corresponding to normal stress 

0.6 kPa has been obtained by self-weight shear tests. Extrapolation of the best-fit line 

to zero dilation rate defines the normal stress at which dilation is fully suppressed. 

Allowing for experimental error, this normal stress is the same at all scales ( with the 

exception of the block no 3 of the quarter size) and approximately equal 400 kPa, 

which is clearly lower than the unconfined compressive strength. Therefore, with the 

exception of joints with unusually high vertical amplitudes, dilation is eliminated at a 

normal stress which is scale-independent. The average value of the maximum dilation 

angle obtained by self-weight tests is 27.4°, which when compared to the 

corresponding value of identical samples made of CAC (37.1 °) is one order of 

magnitude lower. This is due to the surface damage produced by the self-weight tests in 

the case of the weak model material, where the normal stress produced by the self

weight of the sample (0.6 kPa) were sufficient to produce surface damage. This normal 

stress is 3 orders of magnitudes lower than that which suppresses dilation fully. In the 

case of samples made of CAC, where the self-weight tests were practically damage

free, the corresponding normal stresses differed by 4 orders of magnitude. 

Therefore, the maximum dilation angle determined from direct shear tests under the 

self-weight of the sample can be considered as "no-normal load" dilation angle and 

therefore equivalent to the maximum asperity angle of the sample only if the acting 

Table 4.8: Maximum dilation angles of individual small sub-samples (85 mm long) 

at normal stress 0.6 k.Pa (degrees) 

Block No 1 2 3 4 5 6 

Sliding angle a0 29.5 19.2 23.1 21.6 23.0 52.4 

Block No 7 8 9 10 11 12 

Sliding angle a0 24.9 27.8 20.7 39.5 23.6 23.9 

Average of 12 blocks: 27.4°±9.9° Average of 10 blocks: 23 . 7°±3 .1 ° 
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normal stress is at least 4 orders of magnitude lower than the normal stress which 

eliminates dilation. The variation of dilation rate at peak shear strength with normal 

stress for medium size blocks (L=l 78 mm) is shown in Fig. 4.44. The variation is of a 

logarithmic form, the three blocks (nos. 1,2,4) give quite similar results, whereas the 

remaining one (no 4), which contained the large dominant asperity, gives systematically 

higher dilation rates. The difference is about 4°, which can be considered as the effect 

of the first-order asperity. 

The dilation rate becomes equal to that of the same blocks made of CAC which can be 

considered as "no-damage" shearing, suggests that both for CAC and plaster at a 

normal stress which is approximately equal to 104 times the normal stress suppressing 

all dilation. 

4.5.6. Variation of dilation rate with size 

The variation with size of the dilation rate is shown in Fig. 4.45 for three different 

normal stress levels. The lowest corresponds to self-weight direct shear tests at 0.5-1.0 

kPa, the second at 24.5 kPa and the third at 125 kPa. A good logarithmic correlation 

exists for the data at 24.5 kPa and 125 kPa. The best-fit lines define a zero dilation 

sample length of 0.7 m and 1.5 m respectively, which give the scale-free length Lcr, if 

the assumption that these relations hold at larger sizes is made. The correlation for the 

data from self weight tests is not as good for the other two stress levels. Both average 

values from all blocks of each size and values from the blocks which are affected by the 

large asperity are given. The average values of the two larger sizes and the scale-free 

block defined by the 24.5 kPa are on the same straight line, which seems to represent 

reasonably the poor quality data at this stress level. However, the dilation rates 

obtained for the blocks affected by the large asperity are on the same line which, when 

extrapolated to zero dilation, defines the same scale-free block size of 0.7 m with the 

data corresponding to 125 kPa normal stress. 

Allowing for experimental error due to the limited number of data points and assuming 

that the logarithmic relation between the peak rate of dilation and the sample size holds 

at larger scales, Fig. 4.45 suggests that the scale free-block size is little dependent on 

normal stress. The values obtained from extrapolation at zero dilation are between 

0.7m and 1.5 m for the three stress levels. Therefore, the value of-the scale-free block 

can be estimated from the top line which gives the maximum dilation rates mobilised at 

different scales. This line can be defined if the profiles at two different scales (for 

example at laboratory and field sise) are available. 

Blocks with length greater than that, will exhibit a purely frictional shear behaviour, as 

described in Chapter 5. 
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4.6 Concluding remarks 

The model material used for this part of the research was proved to be inadequate to 

represent the frictional behaviour of rock joints with sufficient accuracy. Its friction 

angle was not consistent, and mechanisms such as reduction of friction angle due the 

smooth plaster layer formed on the surface or rolling friction due to the weak bonding 

between the sand particles and the plaster may cause problems in the interpretation of 

the measured shearing resistance, especially at low normal stresses. The procedure of 

producing artificial joints by casting against a rubber compound produces smoothly

textured surfaces, due to a surface layer formed by the wet plaster. This exists only up 

to a shallow depth, whereas the underlying material behaves in a different manner. A 

difference in friction angle of the order of 10° appears to be possible due to this effect. 

Therefore such surfaces as well as similar surfaces produced by casting against glass, 

can not give the real friction angle of the material. 

The properties of the material are quite variable differing even from one mix to another. 

Eventually they can not be accurately reproduced. Nominally identical samples may 

give different peak friction angles both as measured and non-dilational. The reasons for 

these variations are the strength of the material, the surface smoothness which depends 

on the number of pores ( a result of the degree of compaction) and the surface damage 

produced on removal of the rubber mould. Variations with normal stress in peak shear 
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strength may occur due to the different degree of surface damage produced under 

different normal loads. 

Despite the above limitations, it has been found, that the non-dilational component of 

peak shear strength is identical to the frictional strength of the rock wall material, as 

determined from triaxial tests under confining pressure equal to the brittle-plastic 

transition pressure. This suggests that the stress state at the contacting asperities is the 

same as that existing at the brittle-plastic transition state. 

The tests results presented in this chapter, carried out on samples with length over one 

order of magnitude, and two different materials suggest that the value of non-dilational 

peak friction angle is independent of scale. The measured peak shear strength showed 

considerable variation, especially at the lower normal stress. When the dilational 

component was separated, the result for all samples, irrespective of scale, normal stress 

and anisotropy, was the same. Consequently, the non-dilational peak shear strength 

can be considered as purely frictional and any variations in peak shear strength must be 

attributed to different dilation angles mobilised under different circumstances. 

The limited number of data points is not enough to establish an accurate relation 

between the peak rate of dilation and normal stress, however the results indicate that a 

logarithmic relation exists and the peak dilation rate tends to zero at a critical normal 

stress which with the exception of joints with asperities of large scale waviness, is 

independent of scale. 

The experimental results suggest that the scale-free block length obtained from 

extrapolation of dilation-sample size data is relatively small (for the joint tested less 

than 2-3 m) and appears to be independent of normal stress. Therefore, it can be 

estimated from self weight tests or from profiles of samples of different size. This 

suggestion is based on the results of one single joint surface; other surfaces may exhibit 

different behaviour, If the conclusion that the effect of scale dies out at small block 

lengths is generally valid, then natural blocks exceeding this critical length, will exhibit 

purely frictional behaviour · and therefore, the field shear strength can be estimated from 

the frictional component only, i.e. by ignoring the effect of dilation. However, if large 

scale undulations exist on the joint surface, then the roughness is. expected influence 

the shear resistance of larger blocks. 
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CHAPTERS 

A NEW COMPREHENSIVE CRITERION FOR PEAK SHEAR STRENGTH 

OF ROCK DISCONTINUITIES 

5.1 Introduction 

A new, simple, comprehensive peak shear strength criterion for rock joints is 

proposed. The criterion is derived from experimental results produced in by this study 

and accurately fits published shear strength data on natural rock joints. It is based on a 

realistic mechanism of shearing, which is that peak shear strength at any normal stress 

is the result of two components, one purely frictional, and one dilational. The origin 

and magnitude of the frictional component are explained by the adhesion theory, 

whereas the dilational component may be predicted from consideration of surface 

morphology and normal contact theory. The maximum asperity slope, which is easily 

determined from surface measurements, is used as the sole parameter to describe 

roughness. The criterion is developed without reference to empirical parameters but all 

parameters used are physically meaningful. 

5.2. Mechanism of shearing of rough rock discontinuities 

In the following analysis only rough fresh, unweathered, uncoated and unfilled joints 

with unrestricted dilation are considered. 

When two rock surfaces are brought together surface roughness causes contact to 

occur at discrete contact spots. The true contact area is the aggregate of the individual 

contact spot areas. Deformation occurs in the region of contact spots, establishing 

stresses which oppose the applied load. The mode of deformation may be either elastic, 

plastic or mixed elastic-plastic and depends on normal load, surface roughness and 

material constants (Young' s modulus, Poisson' s ratio and the hardness). At low normal 

loads the deformation is elastic, but beyond a certain load plastic flow starts within an 

asperity, and as the load is increased the zone of plastic flow increases until eventually 

the entire asperity deforms plastically. Since surface roughness is a random process 

there will inevitably be some high, sharp asperities which deform plastically even at the 

lightest loads. Therefore, rough rock surfaces will have some plastically deformed 

asperities at any normal load. The magnitude of normal load required to cause plastic 

flow of the rock substance is that which corresponds to brittle-plastic transition. The 

deformation at this state may be macroscopically plastic, but microscopically brittle 

fracture occurs as well. Under these circumstances, the adhesion theory originally 

proposed for metals (Bowden & Tabor, 1950), can be used for friction of rock 

surfaces. 
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Fig. 5.1: Formation of friction junctions at the regions of real contact 

(after Bowden & Tabor, 1973) 

In the case of macroscopically flat joints, the regions of contact are under high normal 

stress and adhered to form ')unctions", as shown in Fig. 5.1. The shearing resistance S, 

will then be 

S= A,s (5.1) 

where Ar is the area of contact and s the shear strength of junctions. 

In the case of macroscopically rough rock joints, upon the application of a normal 

load, the asperities of opposing rock walls deform, resulting in an area of contact, the 

magnitude of which depends on the normal stress and the roughness. 

As shearing begins, the joint dilates, the contact area decreases and the normal stress 

increases accordingly until, at the instant of peak shear strength, the regions of real 

contact reach their brittle-plastic transition stress (Chap. 3.2.3). At this state, the joint 

ceases to be the weak element and the contacting asperities are adhered together to 

form junctions. These junctions are now formed on the sides of the asperities. The 

average slope of these inclined areas, define the mean angle of sliding relative to the 

shearing direction, i.e. the dilation angle. The plastically deformed areas extend only to 

a certain depth which depends on the normal stress, whereas the surrounding regions 

are deformed elastically (Fig. 5.2). At low normal stresses, this depth is small and the 

inclination of the mean plane of sliding is large, close to the maximum inclination of 

asperities without any deformation. At high normal stress, where the asperities deform 

heavily, the inclination will be small. In any case it can be determined from shear and 

normal displacement measurements. As shearing proceeds, different contact regions are 

deformed at a different rate, i.e. smaller asperities will deform faster than larger ones, 

therefore the average sliding angle will continuously change and therefore it must be 
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DETAIL A 

Cb ) 

Fig. 5.2 : Deformation of asperities during shearing 

(a) contacts with different incl.ination. (b) detail of an individual contact with assumed brittle

plastic transition state. (c) deformation of a model joint tested under a normal stress of 125 kPa. 
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Fig. 5.3: Analysis of forces on an inclined plane 

considered on an instantaneous basis. The shear strength in this case can be determined 

from consideration of the forces acting on the contact area. If H and V are the 

horizontal and vertical forces (measured in direct shear tests), as shown in Fig. 5.3, the 

shear and normal force T and N acting along the inclined contact will be: 

T = H cos 1/f - V sin 1/f 

(5.2) 

N = H sin 1/f + V cos 1/f 

T H cos 1/f - V sin 1/f 
- = 
N H sin 1/f + V cos 1/f 

(5.3) 

H 
T - -tanl/f 

V = 
N H 

- tanlff + l 
V 

(5.4) 

Due to the existing stress state existing on the contacts (brittle-plastic transition stress) 

the shear strength of the rock material is equal to the frictional strength, thus 

T 
- = tan"' N 'f'm 

whereas 
H 
-=tan</> 
V P 

where tan</>p is the measured peak coefficient of friction. Therefore, equation (5.4) 

gives 

or 

tan </>m + tan 1/f 
tan</> = ---- - = tan( </>m + 1/f ) 

P 1 - tan <f>m tan 1/f 
(5 .5) 
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(5.6) 

Equation (5.6) suggests that the total friction angle is composed of the friction angle of 

the rock material </Jm arising from shearing of rock junctions and the geometrical 

component 1// as a result of roughness. Its form is the same as the widely accepted 

"</J+i" principle of peak shear strength of rock joints proposed by several investigators. 

The difference is that in the present approach, the </J component is due to the friction 

angle of the rock wall material, whereas the term i is the purely dilational component 

1//· In other words, regardless of the normal stress level, the peak friction angle of a 

rock joint is the sum of the friction angle of the rock wall materia~ plus the dilation 

angle. The friction angle </Jm is higher than that of a saw-cut. The peak shear strength 

will be given by the formula 

(5.7) 

where 

'p is the peak shear strength 

a-n the effective normal stress 

</Jm the friction angle of the rock wall material and 

1// the dilation angle at the instant of peak shear strength 

It is emphasised that this relation is valid over the whole range of normal stress. At low 

normal stress, the dilation angle will be high and the area and the number of contacts 

small. As apparent normal stress increases, so the area and the number of contact 

increases, and a larger total area reaches the brittle-plastic state. 

5.3 The frictional component of peak shear strength 

The brittle-plastic transition pressure is the confining pressure at which friction along 

the sliding surface is equal to the shear strength of intact rock (Orowan 1960, Byerlee 

1967). Accordingly, the fracture envelope of the rock material and the envelope of 

frictional strength are intersected at the normal stress o-r which corresponds to the 

brittle ductile transition state. Since at this high normal stress joints are not the weak 

elements, their shear strength envelope will pass through the same point. Above this 

stress, dilation is zero and the shear strength of the joint coincides with that of the 

intact material. If this transition stress is known, the friction angle of the joint can be 

found from the shear strength envelope of the intact rock (Fig. 5.4). 

The shear strength of the rock material can be determined by any of the existing 

criteria, some of which have been described in Chapter 3.2. If, for simplicity, the 

parabolic criterion described in Chap. 3.2 (Fairhurst, 1964) is used 
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1 
"' 

A 

Normal stress 

B 

Brittl~plastic 

transition stress 

Fig. 5.4: Shear strength and frictional strength of intact rock 

C (~-1)( <Yn) r = ---- l+n-
' o C n o 

(5.8) 

and, at first approximation, the transition pressure is considered to be equal to the 

unconfined compressive strength, as proposed by Ladanyi & Archambault ( 1970), 

Goodman (1976), Franklin & Dusseault (1989) and others, equation (5.3) 

(5.9) 

where µm is the coefficient of friction of the rock material. 

The friction coefficient µm ranges from 0.71 (¢m = 35.4°) when n = 5, to 0.91 ( ¢m = 

42.3°) for n = 100. For an average ratio of compressive to tensile strength n = 15, the 

coefficient of friction is µm= 0.8 (¢m = 38.7°). Using the summarised data given by 

Kulhawy (1976) for several rock types, equation (5.9) produces the results shown in 

Table 5.1. An average material friction angle for all rock types is equal to ¢m = 39.2°. 

This value is in a remarkable agreement with a friction angle 39° at the brittle-plastic 

transition found by Mogi ( 1966) for a number of silicate rock types. Therefore 
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Fairhurst's criterion appears to give a good prediction of the friction angle of the 

material, for silicate rocks. Equation (5.4) implies that the coefficient of friction is 

related only to the ratio of unconfined to tensile strength and is almost independent of 

rock type, as found by Maurer (1965), Raleigh & Paterson (1965), Mogi (1966), 

Byerlee (1972), Dieterich (1972), Stesky et a/.(1974) and others. Mogi (1966) found 

an average friction angle of 39° for silicate rocks and somewhat higher for carbonate 

rocks, whereas Byerlee (1972) found an average coefficient of friction for many rock 

types of 0.85 (friction angle~ 40°). 

The assumption made earlier, that the transition pressure is equal to the unconfined 

compressive strength, is a crude approximation only. Some strong rocks, such as 

granites, may have a transition pressure as high as five times the unconfined 

compressive strength, whereas limestones and marbles may have a transition pressure 

much lower than the unconfined compressive strength (Paterson, 1978). Mogi (1966) 

observed that the transition pressure of carbonate rocks was appreciably lower than 

that of silicate rocks, which results in a higher friction angle. The difference in 

frictional behaviour between hard and soft rocks have been noticed in sliding 

experiments by many investigators, including Patton (1966a), Hoskins et al. (1968), 

Coulson (1970), Ohnaka (1975) and Scholz & Endelger (1976). 

Table 5.1: Average friction angles for different rock types determined by equation (5.9) 

Compres. Tensile Compressive/ µm (f)m Average 

ROCK TYPE strength strength tensile strength (f)m 

(MPa) (MPa) (0) (0) 

I.Igneous 

Plutonic 145.4 9.1 15.09 0.81 38.8 

Volcanic 123.9 9.0 13.77 0.79 38.4 38.6 

2.Metamorhic 

Non-foliated 150.0 5.6 25 .79 0.84 40.0 

Foliated 79.6 7.5 10.61 0.77 37.7 38.9 

3. Sedimentary 

Clastic 95 .3 3.0 32.10 0.85 40.4 

Chemical 88 .1 3.9 22.59 0.83 39.7 40.0 

Average 114.1 5.4 20.32 0.81 39.2 39.2 

St. Deviation 30.37 2.60 8.26 0.03 1.04 0.75 
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The actual transition pressure can be determined experimentally from triaxial tests 

under different confining pressures. The pressure at which the frictional strength 

becomes equal to the shear strength corresponds to the brittle-plastic state. However, 

the shear strength of some rocks such as granite and quartzite is so high that often 

exceeds the friction at the maximum confining pressure that can be applied in most 

laboratories and the transition from brittle to plastic failure can not be produced. 

A compilation of published data on brittle-plastic transition for a number of rock types 

is given in Table 5.2. Friction angles and transition stresses have been determined from 

more than 110 data sets from triaxial tests on 26 different rock types where the 

confining pressure was sufficiently high to produce a brittle-plastic state. The friction 

angles range from 14° to 55°, depending on the rock type. Lack of sufficient number of 

tests from each set does not allow an accurate determination of the transitional state, so 

the values shown must be used as approximate. Increased reliability is obtained where 

a larger number of data of the same lithological type exists. The values given in Table 

5.2.b were produced on this basis and correspond to rock types with 5 or more data 

sets, excluding shale, because of its unusual behaviour (Maurer, 1965, Mogi, 1966). It 

becomes evident that for carbonate rocks ( dolomite, limestone and marble) the friction 

angle is well within 41.5° and 43° with an average value of 42°. On the other hand the 

average values obtained for silicate rocks (sandstones and granites) are in the range 

32°-34°. The average value for the seven rock types shown in Table 5.2b is 39°. This 

value is in good agreement with that of 40° found for a number of different rock types 

by Byelee (1978), who concluded that friction angle has little or no dependence on 

rock type. The results shown in Table 5.2 suggest that friction angles depend on rock 

type and clearly that carbonate rocks have higher friction angles than silicate. However, 

with the exception of some low friction rocks such as chlorite, graphite and talc which 

may have friction angles lower than 20° and rock salt for which a very high value (55°) 

was obtained, friction angles are in the range 30° - 43°. The transition stress is between 

0.80C0 -l.4C0 for carbonate rocks and 3.1Co-5.2Co for silicates, where Co is the 

unconfined compressive strength. Therefore the assumption made often that the 

transition stress is approximately equal to the unconfined compressive strength of the 

rock (Ladanyi & Archambault, 1970, Goodman, 1976 etc.) is reasonable for carbonates 

but not for silicates. 

It must be born in mind that these values have been derived from triaxial tests on fresh 

rocks, thus they may not be valid for weathered rocks, which are expected to have 

lower values. 
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Table 5.2: Approximate transition stress and friction angle for various rock types 
No of Mean Estimated Ratio References 

No Rock type values (7 Friction angle (0
) <7 /C 

I 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

(7 
T 

C 
0 

T T 0 

(MPa) range mean range mean 

Andesite 1 165 - 43 .2 - 1.5 1 

Anhydrite 3 185 33.9-41.8 38.6 2.1-2.4 2.2 2,3,4 

Basalt I 420 - 37.6 - 2.3 5 

Chalk 4 9.5 37.9-39.5 36.7 0.9-2.4 1.5 6,7 

Chlorite 2 375 16.9-20.9 18.9 5.9 5.9 8,9 

Claystone 4 84 32.0-37.2 34.1 1.3-2.2 1.8 10 

Dolomite 5 234 39.7-44.9 41.5 0.3-2 .0 1.3 4, 11 

Dunite 2 940 37.9-40.3 39.1 3. 1-8.5 5.6 12, 13 

Eclogite I 3020 - 31.2 - 15.1 12 

Gabbro 2 821 29.2-33.4 31.3 1.9-5.4 3.6 12, 13 

Granite 5 1243 27.7-37.3 32.0 3.3-6.8 5.2 13, 14, 15, 16, 17 

Graphite I 135 - 22.0 - - 18 

Gypsum I 53 - 30.2 - I. I 9 

Limestone 17 138 34.6-48.6 41.6 0.4-4.0 1.4 3,4, 13, 18, 19,20,21 , 

22,23 ,24,25,26 

Liparite 2 160 38.4-40.5 39.4 1.3-2.1 1.7 10 

Marble 11 64 39.9-45.7 42.9 0.5-1.1 0.8 1, I I, 18,24,27,28,29 

Marl I 22 - 34.6 - 2.2 22 

Quartzite I 952 - 35.9 - 2.8 30 

Rock salt 2 55 48.8-61.2 55.0 0.3-0.8 0.6 31 ,32 

Sandstone 20 186 26.2-41.6 34.2 1.8-4.1 3.1 4, 10, 18, 19,27,33 , 

34,35,36,37 

Serpentinite 5 441 33 .1-45.6 37.7 1.3-4.3 2.5 9,38,39 

Shale 11 200 25.2-38.4 32.1 1.2-7.6 2.9 3,4, 10 

Siltstone 2 214 22.5-36.6 29.5 1.7-2.1 1.9 4, 10 

Talc I 240 - 14.0 - - 18 

Trachyte I 59 - 40.5 - - 1 

Tuff 8 53 38.3-52.5 43.2 0.8-1.9 1.2 1, 10 

is the brittle-plastic transition stress determined from the principal stresses a, and a3 as shown 
in Figure 2.13 (page 27) 
is the unconfined compressive strength 
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Table 5.2a.: Sources of data in Table 5.2 

Mogi (1965) 2 Muller & Siemes (1974) 3 Bredthauer ( 1957) 

Handin & Hager (1957) 5 Shimada (1986) 6 Siwak et al.(1993) 

Loe et al. (1992) 8 Murphy (1971) 9 Murrell & Ismail (1976) 

Hoshino et al. ( 1972) 11 Mogi (1971) 12 Shimada et al. (1983) 

Byer lee ( 1968) 14 Bergues et al. (1974) 15 Ryabinin et al.(1971) 

Shimada (1981) 17 Tullis & Yud (1977) 18 Edmond & Paterson(l972) 

Blanton ( 1981) 20 Bemaix (1967) 21 Elliot (1982) 

Price (1979) 23 Chitty & Blouin (1992) 24 Friedrich et al. ( 1990) 

Mogi (1972) 26 Robertson (1955) 27 von Karman (191 I) 

Mogi (1964) 29 Paterson ( 1958) 30 Hadizabeh et al. ( 1983) 

Handin ( 1953) 32 Campos de Orellana( 1996) 33 Friedman & Logan (1973) 

Mureil (I 965) 35 Stavropoulou ( 1988) 36 Shock et al. (1973) 

Gowd & Rummel(I 980) 38 Raleigh & Paterson ( 1965) 39 Rummell et al (1978) 

Table 5.2b. Friction angle and transition stress for rock types of Table 5.2 

with more than 5 data sets 

No of Estimated Transition stress Ratio 

Rock type values friction angle (0
) cr (MPa) cr /C 

T T 0 

mean st. dev. mean st. dev. mean st. dev. 

Dolomjte 5 41.5 2.1 234 109 1.3 0.7 

Limestone 17 41.6 4.0 138 77.3 1.4 I.I 

Marble 11 42.9 2.1 64 20.5 0.8 0.2 

Granite 5 32.0 3.4 1243 492 5.2 1.9 

Sandstone 20 34.2 3.3 186 110 3.1 0.6 

Serpentinite 5 37.7 4.8 441 163 2.5 1.3 

Tuff 8 43.2 4.3 89.3 52.3 1.2 0.4 

AVERAGE 39.0 4.5 
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Transition pressure decreases with porosity. Correlations between transition pressure 

and porosity of some sandstones are given by Scott & Nielsen ( 1991 ), Logan( 1987) 

and Wong (1990). 

The use of Fairhurst's equation for an estimate of friction angle is satisfactory for many 

rock types, when the transition stress is taken equal to the unconfined compressive 

strength. However, when the transition pressure is appreciably higher or lower than the 

unconfined compressive strength, this equation fails to make accurate predictions. For 

example, for the synthetic rock used in this study, which had a ratio of unconfined 

compressive to tensile strength equal to 11, Fairhurst ' s equation predicts µm = 0.78 (<Pm 

= 38°), which is much below the measured value ( 46°). However, if the same equation 

is used not with the unconfined compressive strength but with the actual transition 

stress, it predicts a value of 43° approximately, for the friction angle of the rock 

material which is closer to the measured value of 46°. When the transition stress is 

much higher than the unconfined compressive strength, the predictions are 

unrealistically low. 

The empirical criterion proposed by Hoek & Brown ( 1980), may provide a little better 

estimate of the friction angle. The criterion is expressed as 

(5.10) 

where o-c is the uniaxial compressive strength of intact rock, m is an empirical constant 

that depends upon rock type and rock conditions, and 0-1 and 0-3 denote the maximum 

and minimum principal stresses. The parameter m is a measure of the inclination of the 

o-1 - o-3 envelope near the o-1 axis and values for a number of rock types have been 

published by Hoek et al. (I 992) and Hoek (1994b ). A correlation between the friction 

angle <Pm given in Table 5.2 and the parameter m is given in Fig. 5.5. It can be seen 

that, with the exception of claystone and siltstone, all other rock types fall within a 

narrow band. A curved line has been fitted to the data, which is described by the 

equation 

<Pm= 69.2m -0.225 (5.11) 

The adhesion theory provides an explanation of the fact that friction coefficient is quite 

similar for a wide range of different rock types. The friction coefficient is given by 

equation (3.13) 

µ =s I p 
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Fig. 5. 5: Relation between estimated friction angle and Hoek & Brown's parameter m 

Both s (shear strength) and p (penetration hardness) are very similar quantities 

depending in almost the same way on such properties of the materials as bond strength, 

nature of dislocations etc. (Rabinowicz, 1995). Thus, materials with quite different 

values of s and p have nearly the same ratio of these quantities. Rabinowicz ( op. cit.) 

mentioned the case of two metals (lead and low carbon steel) which vary by nearly a 

factor of 100 in shear strength and penetration hardness, but the coefficient of friction, 

representing the ratio of these two quantities, is nearly the same for steel (1.0) as is for 

lead (1.2). This may offer the explanation for observing quite similar friction 

coefficients for most rocks. The average value of 0.80 which is supposed to be a mean 

representative value for rocks, is also typical for contacts between identical 

unlubricated metal surfaces (Rabinowicz, 1995). 

From the above analysis and the values given in Table 5.2b, it is clear that an average 

friction angle for some common rock types is 39°. This means that joints in fresh 

rock, if they do not exhibit any dilation will have an average friction angle of this 

magnitude and a shear strength envelope descnbed by the 39° friction angle will be a 

typical lower bound for shear strength of unwethered rock joints. Baldovin (1970) 

carried out direct shear tests on joints from 20 different, mainly weak rocks, under 

normal stresses in the range 0-1 MPa. When contacts having the same rock type in both 

sides are considered, all the contacts define a lower bound of 39°. Similarly, Gianni 

(1992) presented data from several rock types, including some weak ones (Fig. 5.6). 
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(a) after Baldovin (1970) (b) after Giani (1992) 
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Fig. 5. 7: Byerlee's law at nonnal stresses up to 100 MPa 

Again, the 39° friction line provides a lower bound for all the envelopes, except for 

phyllite and schist, perhaps due to their schistosity. Byerlee (1978) summarised 

frictional strength data for a variety of rocks and surface types including initially finely 

ground surfaces, initially totally interlocked surfaces and irregular faults produced in 

initially intact rocks. He found that at low normal stresses encountered in most civil 

engineering problems the friction of rock depends on surface roughness and can vary 

between very wide limits. At intermediate normal stresses such as encountered in 

mining engineering problems and at high stresses involved during sliding on faults in 

the deep crust the initial surface has little or no effect on friction. At normal stresses 

up to 200 MPa, Byerlee fitted the data with the envelope 

-r = 0.850- (5.11) 
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It is accepted that this friction law (Byerlee's law) is generally independent of lithology 

and holds over a wide range of hardness and ductility, from carbonates to silicates and 

to first order is independent of sliding velocity and roughness, and, for silicates, to 

temperatures of 400° C (Stesky et al., 1974). The friction coefficient, of 0.85 (~=40°) 

at the low normal stress range, is in very good agreement with the average value 

shown in Table 5.2b. (~~39°) . Ohnaka (1975) argued that frictional behaviour greatly 

depends not only upon rock type, but upon such surface condition as roughness. 

Indeed, a scrutiny of the data shown on Fig. 5.7, reveals that some rock types may 

have friction coefficients as high as 1.13 (limestone) or as low as 0.64 (quartz 

monzonite) or even lower at low normal stresses (fmely ground granite and gabbro 

surfaces). Therefore, Byerlee's law may be used as a crude relation to describe the 

average behaviour of various rock types, rather than as an accurate representation of 

actual frictional behaviour of an individual rock type. 

From an analysis of several published experimental results of shear tests on rock joints 

carried out by the author, it has been found that the non-dilational friction angle in most 

cases is in the range 38°- 40°, which is in good agreement with the lower boundaries of 

shear strength shown in Fig. 5.6 and with Byerlee's law of friction, and supports the 

basic hypothesis of the· preceding theory, that peak shear strength arises from shearing 

of plastically deformed rock junctions. 

Values of that magnitude have been obtained in direct shear tests of surfaces lapped 

with #80 grit from some investigators including Dieterich ( 1972) and Krahn & 

Morgenstern (1976), but Ripley & Lee (1962) demonstrated that the non-dilational 

friction angle is higher than that obtained from sand-blasted surfaces (see Table 3.5) . 
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5.5 The dilational component of shear strength 

The frictional term in equation 5.7 has been defined and its origin explained. It now 

remains to determine and explain the dilational term I//, at any normal stress level, so 

that a full criterion for peak shear strength can be developed. 

Consider an individual asperity with a base-length equal to 2L (Fig. 5.8a). Under a 

certain normal stress O"n, the asperity will deform and a total normal deformation 

(closure) equal to d will take place. Assuming that the highest point B will be normally 

displaced by 5 (Fig. 5.8b) whereas the lowest point will remain in place, sliding will 

then occur along the plane AB', inclined at an angle I// to the horizontal, which will be 

equal to the instantaneous measured dilation angle. 

From the simplified geometry of deformation shown in Fig 5.8b, the closure 8 can be 

expressed as 

5 = L( tan l/f'
0 

-tan 1/f') (5.12) 

It is assumed that the distribution of peaks of the rock surface is of exponential form, 

and according to the model proposed by Greenwood & Williamson (1966) - see Chap. 

3.3.5-

5 =A+ Blna 

or 

L(tan 1/f' 
0 

- tan 1/f') = A + B In a 

and 

tan 1/f' =tan 1//o -C-Dlnan 

where 

C=AIL, 

D=BIL and 

2L the base length of the asperity. 

(5.13) 

(5.14) 

When the normal stress is small enough to guarantee that deformation of asperities will 

be negligible, 

On = O"no ➔ 0, 

tanl/f' :::::tanl/f'o 

where I// 
0 

is the maximum asperity angle before any deformation of the initial surface 

and equation (5.14) becomes: 
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(5. 15) 

The value of o;,0 can not be equal to zero but to a minimum "seating pressure" 

(Goodman, 1976), for example 1 kPa. The constant D can be obtained if the dilation 

angle lf/=lf/1 at a normal stress CTn1 is known. In this case the relations ( 5 .14) and ( 5 .15) 

give 

or 

tan If/ 1 = tan If/ 0 + D(ln CT no - In CT nl) 

D = tan If/ 0 - tan If/ 1 

I 
CT nl n -
CTno 

Equation (5.14) then becomes 

(5.16) 

(5.17) 

(5.18) 
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Equation (5.18) gives the value of dilation angle at any nonnal stress a;, when the 

dilation angles at two different normal stresses CTno, CTnJ are known. When CTnJ becomes 

equal to CTnT , the transition normal stress able to suppress all dilation (tan If/ = 0), 
equation ( 5 .18) leads to 

or 

l 
CT nT n --
CT 

tan If/ = tan If/ 0 n 

l 
CT nT n --
CT no 

CT nT 
log10 - -

CT n 
tan If/= tan If/ 0 - ---

CT nT 
log10 --

CT no 

(5.19a) 

(5.19b) 

Relations ( 5. l 9a and 5. l 9b) give the dilation angle at any normal stress CTn , as a 

function of the angle lf/o, and the two boundary normal stresses a;,0 and CTnr- If CTnr is 

not known, a pair of (CTn1, lf/1) and equation (5.12) can be used instead. The logarithmic 

variation of dilation over a wide range of nonnal stresses (four orders of magnitude), 

has been experimentally shown in chapter 4.3, and has been used in various forms by 

several authors, such as Barton (1971a,b) and Leichnitz (1985). The importance of 

relation (5.19) lies on the use of only one single surface parameter, the maximum 

asperity slope, which can be directly measured for any surface, to determine dilation 

angle at any given normal stress. The strong correlation of the asperity angle with shear 

strength has been stressed by several authors including Myers (1962), Tabor (1975) 

and Koura & Omar (1981 ). 

The angle lf/o is the dilation angle of a rock joint when all the roughness is mobilised 

(negligible surface damage), and can be obtained from a shear test under nominally zero 

normal loading conditions. It is a physical parameter used in constitutive laws of 

shearing of rock joints (Plesha, 1987, Qiu et al., 1993) and can be most satisfactorily 

determined by surface measurements on the actual joint samples. Methods employing 

photogrammetric techniques (Ross-Brown et al. , 1973, Patton, 1966a), profilometer 

(Fecker, 1970, Rengers, 1970) can be used to provide an appropriate value of If/a• The 

value of this angle depends on the base-length over which is calculated and a problem 

arising from this is the magnitude of the base length to be used for the determination of 

the angle If/a• Measurements on second order (base length 0.2%L) joint asperities made 

by Patton (1966a) indicated a typical range of values between 10° and 46°, although 

values up to 60° might be expected, especially for tensile fractures (Barton, 1973, 

Barton & Choubey, 1977, Selby 1987, Aydan & Kawamoto, 1990 etc.), at laboratory 

scale. It appears that this base length is appropriate, for small scale roughness and has 

been used throughout in this study. Rengers ' (1970) method for calculating the slope 
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angle envelopes provides information, which is approximately equivalent to that 

obtained by performing a shear test under a very low normal stress which causes no 

asperity damage (Swan & Zongqi, 1985). This method has been used by Schneider 

(1976) and adopted for the experimental programme conducted in this study. The value 

of tan 'f/o was obtained from the normal displacement-shear displacement diagram for a 

shear displacement step-size equal to 0.2% of the sample length. 

Several authors including Ladanyi & Archambault (1970) and Barton (197la,b) 

suggested that the normal stress able to suppress all dilation, a nt' is equal to the 

unconfined compressive strength of the rock wall, and this has been incorporated in 

their models. Goodman (1974) stated that this stress is of the order of the unconfined 

compressive strength of the rock wall material. The experimental data of the present 

study indicate that the dilation is fully suppressed at a much lower normal stress, i.e. 

when the normal stress is approximately 3.8 MPa which is less than 10% of the 

unconfined compressive strength. It is believed that this normal stress is related to the 

real area of contact and to the plastic deformation of asperities and it is inappropriate 

to equate or even correlate with the compressive strength. Rather it should be related 

to the brittle-plastic transition stress. 

Assuming that the logarithmic variation of tan If/ with normal stress over four orders of 

magnitude, found for the experimental data of this study is general, i.e. CYno = 10
4 

CYn r 

equations (5. 19a, b) then become 

or 

tan If/ 0 I a nT tan 'f/ ~ --- n --
9 .21 CYn 

tan 'f/ 0 a nT 
tan 'f/ = -- log JO --

4 an 

(5.20a) 

(5.20b) 

For normal stress above a;. r, the peak shear stress is proportional to normal stress until 

the brittle-plastic transition stress, , i.e. 

(5.21 ) 

Beyond the brittle-plastic transition stress, the shear strength of the joint is equal to that 

of the intact rock material. 

At very low normal stresses and high values of 'f/o equations 5.19a and 5.19b tend to 

infinity. For practical purposes the suggestion of Barton (1973) to use a total peak 
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friction angle of 70° can be adopted. Typical families of curves for different parameters 

of the new criterion is shown in Fig. 5.9. 

The data shown in Chapter 4.5.6 suggested that the geometrical component of shear 

strength diminishes when the size of the sample approaches a critical value of a few 

meters. If this is generally true, then the field shear strength of rock blocks larger than 

this critical value can be considered as frictional only and predicted by equation 

(5.21). This conclusion is supported by the results of back-analyses of failed slopes 

published by several authors including Krahn & Morgenstern (1976) and McMahon 

(1985). 

5.6 Transition from dilational to pure frictional sliding 

The experimental data of this work show that dilation becomes zero when the apparent 

normal stress is about 3.8 MPa, i.e. at normal stresses in excess of 3.8 MPa roughness 

has no effect on shear strength. Zero dilation implies that all critical asperities have 

reached their transitional state. This value of CYnT may be representative for some soft 

and weak rocks, with a behaviour similar to that of the artificial rock used in this study, 

but for harder rocks is expected to be higher. 

Proportionality between normal stress and real area of contact gives 

Ar = O"nT = 3.8 ;::::,0.10 
A ar 34 

The joints tested here had a maximum roughness angle in the range of 20° - 40°, and the 

value of anT appeared to be independent of roughness. Most natural joints are of similar 

roughness and if this 10% "rule of thumb" holds, then some strong rocks, such as 

granite, with a transition pressure of the order of 1000 MPa or higher, will be expected 

to have anT values of the order of 100 MPa, whereas most rocks, with a transition 

stress in the range 100-200 MPa, will be expected to have a zero-dilation normal stress 

O"nr between 10 and 20 MPa. 

Analyses of experimental results of natural joints are in agreement with this argument. 

It has been shown in Chapter 4 that O"nr is independent of scale. However, in cases 

where large scale asperities dominate the behaviour of the joint, higher stress is 

required to bring it to a plastic state, and as a result of this, the values of anr will be 

higher. 

In cases where the joint is mated and asperities are locked, dilation is prevented partly 

or fully, the contact area is large and the formation of plastic junctions is not possible. 
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In this case the peak shear strength will be due to deformation or shearing through of 

large asperities. The mechanism of shearing described in Chapter 5.2 does not operate, 

and shear strength may be predicted from shear strength criteria taking into account 

shearing of intact material, such as that proposed by Lajtai (1969a,b). This author 

carried out direct shear tests on stepped plaster joints with an unconfmed compressive 

strength of 4.14 MPa (600 psi). With this geometry, joints were prevented to dilate and 

failure occurred by tension. However, at normal stress higher than 1.4 MPa (about 

one third of the unconfined compressive strength), the effect of interlocking 

disappeared and the shear strength became proportional to normal stress (Fig. 5.10). 

This purely frictional behaviour indicates that at high normal stresses, the asperities 

reached their brittle-plastic transition stress. 

Analysis of experimental data for natural joints indicate that the value of the critical 

normal stress CYnr is commonly around 10 MPa for silicate (hard) rocks (Leichnitz, 

1985, Gyenge & Herget 1977), 5 MPa for carbonate (soft) rocks ( Krsmanovic 1967) 

and 2-3 MPa for weak or weathered rocks (Denby & Scoble 1984, Martin & Millar 
' 

1974). These data imply that in most cases initial roughness has no significant affect 
I 

for normal stresses in excess of 10 MPa (as pointed out by Byerlee 1978). As an 

example, the results from direct shear tests on natural joints published by Yamaguchi 

& Shimotani (1986) are shown in Fig. 5.11. At low normal stress there is a wide scatter 

(20°-60° ) in friction angle due to different degrees of surface roughness, but this 

scatter reduces progressively with normal stress until a value of about 8 MPa, beyond 

which there is direct proportionality of shear strength and normal stress, and uniquely 

defmed friction line of 40°. This example gives a complete picture of the shear 

behaviour of rock over a wide range of normal stress, indicating that at low normal 

stress the shear strength may be high or low depending on the surface fmish whereas at 

high normal stress the individuality of joints are lost and the behaviour becomes purely 

frictional, revealing the true friction angle of the material. At low normal stresses the 

shear strength may be higher than that corresponding to the friction line due to surface 

roughness, or lower due to surface smoothness. Due to the logarithmic form of the 

equation (5.19), over-estimation or under-estimation of the value of CYn r has no serious 

consequences on the prediction of peak shear strength, as shown in Tables 5.3a and b. 

Errors are higher for higher normal stresses and roughness. 

The form of the new criterion is similar in some respects to Barton's empirical formula 

(Barton, 1973). The new criterion, however, has a sound theoretical base and employs 

physically meaningful parameters which can be readily established through careful 

testing, measurement and analysis. There is no need for any index tests or preparation 
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Table 5.3a: Predicting errors of peak dilation angle (in degrees) 
due to overestimation of a. r by I 00o/c n 0 

O'nt 5 MPa 10 MPa 50 MPa 100 MPa 

---+ 
lfO Normal stress 

(-!-) 0.IMPa 1 MPa 0. IMPa I MPa 0.lMPa I MPa 0. lMPa I MPa 
20° 0.8 1.3 0.7 I. I 0.5 0.8 0.5 0.7 

40° 1.7 2.9 1.4 2.3 1.0 1.7 0.9 1.4 

50° 2. 1 3.9 1.7 3.2 1.2 2.2 1.1 1.9 

Table 5.3b: Predicting errors of peak dilation angle (in degrees) 
due to underestimation of O'n r by 50% 

O'nt 5 MPa I0MPa 50 MPa 100 MPa 

---+ 
lfO Nonna! stress 

(-!-) 0. IMPa I MPa 0.IMPa I MPa 0. IMPa I MPa 0. IMPa I MPa 

20° 1.0 1.5 1.3 1.3 0.6 0.9 0.5 0.8 

40° 2.1 3.4 1.7 2.9 1.1 2.0 1.0 1.7 

50° 2.6 4.7 2.1 3.9 1.4 2.5 1.2 2.2 

of surfaces. A comparison between the two criteria is shown in Figure 5.10. 

Values of ¢b = 30, JCS = 100 and JRC = 10 were assumed for Barton's criterion, and ¢m 

= 39°, a;, r= 10 MPa and I/lo= 40° for the new criterion. The value of lflo was selected on 

the basis of the following relation with JRC suggested by Kimura et al. (1993): 

JRC = -3.74 + 0.361/f 0 
(5.22) 

Identical results may be obtained at low normal stresses, but at higher normal stresses 

where Barton's formula is known to under-estimate the measured strength (Barton, 1976) 

the new criterion predicts a peak friction angle value equal to the friction angle of the 

rock wall material ( ¢p= ¢m ) - similarly to the criterion of Ladanyi & Archambault ( 1970) 

- which is considered to be a more realistic value. 

5. 7 Application of the new criterion 

The values required for the complete definition of the proposed criterion may be 

obtained as follows: 

The angle ~m from triaxial tests at confining pressures sufficiently high for the rock to 

reach its brittle-plastic transition state. The values given in Table 5.2 can be used as 

guide. This Table will be expanded later to include more data, as such data become 

available. Alternatively, ¢m can be deduced from careful direct shear testing after 

correction for dilation of the measured peak shear strength . This correction reveals the 
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underlying frictional component. An average value is about 39°, but see Table 5.2 for 

variations between various rock types. 

The critical normal stress at which the joint ceases to dilate ( anr) can be deduced from 

a plot tan f// vs. log( a,J and extrapolation of the best fit line at tan f// = O (Fig. 4.11 ). 

Finally, f//o can be directly measured in the field, as discussed in Chapter 3, or it can be 

determined by contacting "no normal load" shear tests and extrapolation to the field 

scale. It is suggested that, before testing at the appropriate normal stress, each sample 

be tested under zero normal load first, so that a reliable average value of f// 0 is 

obtained. Because wide variation in the values of f//o , for the same sample tested 

under its self- weight are expected, it is useful to carry out a number of tests under the 

self-weight on the same sample, so that a reliable average can be found. However, it 

must be emphasised, that some weak rocks may suffer some damage even under the 

self-weight of the sample. In this case, repetitive testing should be avoided (which 

would give reducing values for f//o with increasing number of repetitive tests). 

5.8 Concluding remarks 

A new, simple, theoretical, comprehensive peak shear strength criterion for rock joints 

has been proposed. It is based on a realistic mechanism of shearing, which suggests that 

peak shear strength at any normal stress is the result of two components, one purely 

frictional, and one geometrical. 

The theory behind the criterion explains the origin and magnitude of the frictional 

component from considerations based on adhesion theory, whereas the dilational 

component may be predicted from consideration of surface morphology and normal 

contact theory. 

The new criterion is developed without reference to empirical parameters but all 

parameters used are physically meaningful. The maximum asperity slope which is used 

as the only parameter to describe surface roughness can be determined in-situ by 

routine methods and is a convenient parameter for use in constitutive laws concerning 

shear behaviour of rock joints. All the necessary parameters can be found from a series 

of carefully conducted direct shear tests on samples from the natural surface, without 

the need for any other index tests, specially prepared surfaces, etc. 

The good agreement with typical shear strength experimental results implies that the 

proposed theory contains the essential physics of the rock joint shearing. 
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CHAPTER6 
APPLICATION OF THE NEW CRITERION ON PUBLISHED 

EXPERIMENT AL RESULTS 

6.1 Introduction 

The basic principle of the new criterion is that variations in peak shear strength of 

rock joints are due to dilation only, and what remains after that is purely frictional, i.e. 

proportional to normal load. In order to test the validity of this principle and the ability 

of the new criterion to describe adequately the peak shear strength in joints other than 

those used in the present study, the author carried out analyses of a number of 

published experimental data sets both from natural and artificial joints. Five examples 

based on well-known experimental data, are presented below: 

a) Artificial tensile fractures in sandstone (Kutter, 1974) 

b) Artificial tensile fractures in a weak model material (Barton, 1971) 

c) Natural joints through weathered granite (Barton & Choubey, 1977) 

Two data sets are examined with regard to the effect of scale on peak shear strength. 

d) Natural joints in quartz diorite (Pratt et al. , 1974) 

e) Artificial joints in a weak cast material (Bandis et al. , 1981) 

Finally, results from tightly interlocked joints through quartz syenite (Arnold, 1992) are 

analysed and the behaviour of coated joints is discussed. 

6.2 Tensile fractures on sandstone (Kutter, 1974) 

Kutter (1974) carried out direct shear tests on artificial tensile fractures on Darley Dale 

sandstone, on a specially designed 100 ton capacity shear box at Imperial College. 

These test results superficially appear strange, as they show a concave upwards peak 

shear strength envelope. When the non-dilational peak shear strength was considered, a 

straight line of 36.5° was obtained (Fig. 6.1 ). Ripley & Lee (1962) found a non

dilational friction angle of 36° for sandstone and Ross-Brown & Walton (1975) a 

friction angle of 33° for saw-cut and sandblasted surfaces of Darley Dale sandstone. 

These three values are in good agreement and compare quite well with the average 

predicted value for sandstone given in Table 5.2 (34.1 °). 

6.3 Tensile fractures on a weak model material (Barton, 1971a) 

Barton ( 1971 a) carried out direct shear tests on tension fractures generated in different 

strengths of a weak, brittle model material. Peak dilation angles and peak friction angles 

were calculated for eight different joint types of the model material, shown in Table 6.1 

in descending order of roughness. The distribution of data for peak arctan(rlcr,J versus 

peak dilation angle (d,J is shown in Fig. 6.1 and the variation of peak dilation angle 

with the ratio normal stress/compressive strength in Fig. 6.2. 
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The best-fit straight lines of the form 

T 
arctan(-) = C + Mdn (6.1) 

CY n 

for each joint type were fitted and the gradients Mand the intercepts C are shown in 

Table 6.1. The values of these parameters suggest that the frictional behaviour of the 

eight joint types can be classified into two groups: the first group consists of the first 

five joint types which have unconfined compressive strength 70-140 kPa and give a 

consistent value of intercept C between 40.6° and 44.4°. The second group consists of 

the remaining three joint types which have a compressive strength between 385 and 820 

kPa (average 594 kPa) and values for the intercept 26.2°-30.0°. The difference in the 

values of intercept C, which gives the non-dilational friction angle of each model type, 

indicates that two shear mechanisms operate. It is believed that these mechanisms are 

related to the role of the glass ballotini filler, which was used for the preparation of the 

samples C. Although more regular, the stronger model joints (C4, C9 and C25) exhibit 

higher peak dilation angle than that of the weaker ones at the same normal 

stress/compressive strength ratio, whereas their peak friction angle is lower, as shown 

in Fig. 6.2a and b. This can be explained by an increased affect of the glass ballotini, 

which was used for the preparation of these models. In stronger mixes, the plaster 

matrix is strong and shearing takes place mainly along glass-glass contacts. 
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Table 6.1: Relation between peak friction angle and peak dilation angle 

for eight different joint types (after Barton, 197la,b) 

Joint type No of tests Gradient (M) Intercept ( C) UCS (kPa) 

C3 (S) 6 1.16 44.4° 140 

A3 (P) 7 1.50 42.7 125 

C2 (P) 7 0.92 42.6° 70 

C3 (P) 7 1.28 40.6° 140 

C3 (PCJ) 7 1.34 41.0° 140 

C4 (P) 7 1.91 30.0° 385 

C9 (P) 7 2.04 26.2° 610 

C25 (P) 7 1.94 26.2° 820 

The value of 26.2° for the non-dilational friction angle of the two strongest mixes is 

almost identical to the constant volume friction angle of glass ballotini found by 

Skinner (1969). In weaker materials such as C3, the sand-plaster matrix is not strong 

and fails during shearing, so the non-dilational friction angle (average of 42°) is related 

to the friction angle of sand-plaster mixes (see Chapter 4.5). This value is in very good 

agreement with that of the similar model material described in chapter 4.5 and with that 

of limestone (Table 5.2) which the material C3 resembles (Barton, 1970). Therefore, 

in the case of this particular model material, stronger types (group II) when compared 

to weaker ones (group I), show lower peak friction angle and higher peak dilation 

angle, and as a result the gradient Min equation 6.1 is higher whereas the intercept is 

lower. Accordingly, the data shown in Figures 6.2a and b were analysed as two 

independent groups and the following best-fit straight lines were obtained (the data 

were obtained from the graphs provided by Barton, thus they may carry a small 

approximation). The results for the first group which comprises the majority of the 

whole sample population, are in line with the results presented in Chapter 4, 

conforming to the general relationship 

(6.2) 

Table 6.2: Relation between peak friction angle and peak dilation angle 

for two groups of joint types 

Group No of points Gradient (M) Intercept ( C) UCS (kPa) 

I 34 1.06 44.7° 123 

II 21 1.74 31.5° 605 

For the second group, the deviation from this relation is attributed to the special role of 

the glass ballotini, which is not expected to occur in most natural rock joints. Barton 
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( I 971 a) found that relation ( 6.2) was valid for the joint type C3 with 'Pm = 45° but he 

felt that this value was too high to be true for real rocks. However, as the results of 

this study show, a friction angle of 45° for the weak model material found by Barton is 

quite reasonable. Therefore, except for the three strongest mixes, where a very special 

role of the glass beads is believed to occur, the peak shear strength can be considered 

as comprising two components: one purely frictional and one dilational, as suggested 

by the theory presented earlier. 

The new criterion was applied to the data corresponding to joint types C2(p ), C3(p ), 

C3(pcj) and C3(s), which correspond to fractures of 4 different roughness produced 

from model material of the same constituents (material C) and almost with the same 

compressive strength, so they can be treated as a whole. First, the non-dilational 

stresses were calculated from the measured peak shear strength (fig. 6.3a) and the 

corresponding peak dilation angles and plotted in Fig. 6.3b. From the best - fit line a 

non-dilational friction angle of 43.5° was obtained. The variation of dilation rate with 

normal stress is shown in Fig. 6.4 from which the normal stress which suppresses all 

dilation is about 34 kPa, which is approximately equal to I/4th of the unconfined 

compressive strength of material C3 and half that of C2. Assuming that zero surface 

deformation occurs at a normal stress CT no = 10-4 CTnr , the corresponding value for the 

maximum asperity slope tan1J10 is equal to 1.00 (I/lo = 45°), which seems quite 

reasonable for these rough tensile fractures. Therefore the parameters necessary for the 

new criterion are: 

</>m= 43 .5, CTnr= 34 kPa and I/lo= 45° 

The envelope fitted to the measured data (Fig. 6.5) will be: 

-r = CT tan( 43 .5 ° + IJI) 

where 

1 34 
tan IJI = - tan 1/f O log(-) 

4 CT n 

with 

'Pm = 43.5, CTnr= 34 kPa and 1/fo = 45° and 

and the value of CTn expressed in kPa. Therefore, the new criterion is quite accurately 

applicable to this set of experimental data. 
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6. 4 Natural weathered joints through granite (Barton & Choubey, 1977) 

Barton & Choubey (1977) used 136 samples from 8 different rock joint types, the one 

with the largest population (38) representing weathered rough planar tectonic joints 

through Drammen granite, as the basis for their JRC-JCS shear strength criterion. For 

a study of the scale effect on peak shear strength, a second set of data comprising 18 

samples from the same rock and including results from push and tilt tests were provided 

in the paper. The average JRC values for the two sets were 8.9 and 8.8 respectively, so 

they could be treated together as a whole. The information provided in the paper is 

enough to define the parameters needed for the new theoretical criterion. 

Shear strength and normal stress for each sample of the first data set were calculated 

from Fig. 14 of the paper, whereas for the second set of data they are given by the 

authors in Table 8 of the paper. A summary of the main data from the two data sets is 

given in Table 6.3. 

TABLE 6.3: Summary of data from tests in Drammen granite (</>r=29°) 

DATA SET SET 1 SET2 COMBINED 

Type of test Tilt/shear Push/shear Combined shear 

No of tests 6 12 18 38 

Sliding angle a (0
) 67.2 70.5 69.4 

Max asperity angle l/'o (0
) 38.1 41.4 40.3 

(l/f0 =a-29.1 °) 

Normal stress CJn 0.429 0.743 0.638 0.611 

Peak shear strength r 0.445 0.743 0.721 0.689 

Peak friction angle ¢p 46.6 49.4 48.5 50.0 

Dilation angle l/' (0
) 17.5 20.3 19.4 20.9 

(ll' = ¢P-29.1° ) 

JRC 6.2 10.2 8.8 8.9 

log10 (JCS/an) 2.26 2.36 

From the first data set (38 samples) the following information is obtained: 

a) average peak friction angle : 

JCS 
~ =~ +JRClog-=29° +21 ° =50° 

p r CY n 

b) average peak dilation angle: 20.9° 

c) average non-dilational friction angle: 50°-20.9° =29.1 ° 

shear 

56 

0.622 

0.689 

49.4 

20.3 

8.9 

2.33 
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This value of non-dilational friction angle for weathered Drammen granite is lower than 

that given in Table 5.2 for fresh granite by 2.9°, which can be attributed to weathering. 

The mean value of angle I/lo is calculated as difference between the measured sliding 

angle and the non-dilational friction angle (29. l 0 ) , and the mean dilation angle 1/f is 

calculated as difference between the measured peak friction angle and the non-dilational 

friction angle. The mean dilation angle thus calculated for the first set is 19 .4 °, lower 

than that of the first set (20.9°) by 1.5°, whereas the quoted average JRC values are 

8.8 and 8.9 respectively. The combined dilation angle for both sets (20.3°) is identical 

to that corresponding to the tests subjected to push tests, therefore the value of \\f o for 

these tests ( 41.4°) is directly applicable to the who le data sample. 

The average normal stress CJno acting on the samples subjected to push tests is 

calculated from their average thickness (23 mm) and the rock unit weight (24.7 

kN/m3): 

CJ00 = 24. 7 kN/m3 x 0.023 m = 0.57 kPa 

In the case of tilt tests cr,10 is calculated by using the following relation suggested by 

Barton & Choubey (1977) : 

crno = y h cos2a (6.3) 

where a is the sliding angle. Thus the average normal stress acting on the samples is 

crno = 24. 7 x 0.023 x cos267.2° = 0.09 kPa 

The variation of predicted dilation rate determined as tan ( ¢p,ak - 29.1 °) with the normal 

stress is shown in Fig. 6.6. From the best fit straight line the normal stress cr,,r at which 

dilation becomes zero is 46.3 MPa, whereas the predicted dilation angle at a normal 

stress of 0.57 kPa (which corresponds to push tests) is 42.5°. This value is only 1.1 ° 

higher than that determined from push tests (41.4°). This indicates that the logarithmic 

variation of \fl holds over five orders of magnitude for this set of data. When the 

average dilation angle (41.4°) from push tests is included in the data, the projected 

value of CJn r is 52.8 MPa and the mean predicted dilation angle is 20.5° 

Finally, the new theoretical peak shear strength criterion for this set of data has the 

expression: 

-r = CJ n tan( 29.1° + 1/f ) 

where 
53 53 53 

tanlJI = tan42° fog 10(-) / log10 ( 4 ) = 0.181 log10 ( - ) 
CJ

11 
5.7x10- CJn 
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and CYn is the normal stress in MPa. Using this equation for the prediction of peak shear 

strength for each individual shear test, the resulted average peak friction angle is 49.6° 

which is 0.2° higher than the measured value ( 49.4°). 

The quality of the fit is shown in Fig. 6.7 where the data from both sets (56 tests) have 

been included. The example illustrates the ability of the new criterion to predict 

accurately shear strength from only a series of direct shear tests on samples from 

natural joints. Barton and Choubey (1977), used additional shear tests on saw-cut 

surfaces and Schmidt hammer tests to estimate the basic or residual friction angle and 

the joint compressive strength (JCS) used in their model. As shown, all the parameters 

needed for the new criterion can be obtained from a series of direct shear tests on 

samples which, prior to main testing, have been subjected to "self-weight" shear tests. 

It has also shown that the basic principle adopted in this study that peak shear strength 

is the sum of a frictional and a dilational component is valid. Barton and Choubey 

( 1977) used the damage coefficient M to describe the observed relation between peak 

friction angle ( ¢p) and peak dilation angle ( 1/1) for the seven joint types used. 

No 

1 

2 

3 

4 

5 

6 

7 

8 

Table 6.4: Mean dilation angle and damage coefficient for different rock types 

(after Barton & Choubey, 1977) 

Rock type Number Dilation angle Damage 

of samples dn coefficient M 

Aplite 36 25 .5° 0.92 

Granite 38 20.9° 1.00 

Hornfels 17 26.5° 0.99 

Gneiss 17 17.3° 1.01 

Cale. Shale 11 14.8° 1.39 

Slate 7 6.8° 0.78 

Soapstone 5 16.2° 1.53 

Model fractures 130 13.2° 2.00 

They found that M varies between I and 2, as shown in Table 6.4. Although ¢m is in 

general different than ¢r it is apparent from Table 6.4 that the first four natural rock 

joint types (aplite, granite, hornfels and gneiss), with the largest population, have an M 

value which is exactly or very close to unity. The remaining three natural joint types 

(calcareous shale, slate and soapstone) have M values higher or lower than 1.0 but the 

number of samples is considerably lower, so the reliability is lower. It may not be 

coincidental that the largest deviation from 1.0 (1.53) corresponds to the rock type 
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with the smallest number of tested samples (soapstone, only 5 samples). Another 

reason for this difference may arise from the empirical relation used to estimate the 

residual friction angle. 

In conclusion, it can be considered that within experimental scatter Mis equal to unity 

for all the natural joints from 7 different rock types. The model fractures which show a 

value of M equal to 2.0 when a basic friction angle of 30° is assumed (Barton, 1971a, 

b) have already been separately analysed in section 6.3. 

6.5 Natural joints in quartz diorite (Pratt et al., 1974) 

Pratt et al. (1974) carried out shear tests on joints in quartz diorite both in the 

laboratory and in-situ on sample sizes ranging from 60 cm2 to 5000 cm2
• Peak shear 

strength envelopes from in-situ shear tests on joints of three different sizes are given 

in Fig. 6.8. A series of peak shear strength - normal stress values from each of the 

three curves was taken and peak friction angles were calculated. Dilation angles were 

not given in the paper, thus an indirect approach was followed for the determination of 

<Pm and CJnT• Assuming an arbitrary friction angle of 30° for the rock wall materia~ a 

graph of the corresponding dilation rate, calculated as tan (</>p,ak-30°), versus normal 

stress was plotted (Fig. 6.9). The calculated dilation rates reduced logarithmically with 

normal stress for the three different sizes. The points of intersection of the three best

fit lines define a small triangle, which indicates that the three lines can be considered as 

passing through the same point, which corresponds to a normal stress of about 17.5 

MPa and a dilation rate of 0.05 (dilation angle ~ 3°). If this is generally true, it implies 

that irrespective of size, the effect of dilation is eliminated at the same normal stress. 

Accordingly, the friction angle of the rock wall material is 33° (30°+3°), and the 

normal stress CJn r which eliminates dilation is 17.5 MPa. 

The value of 33° for the rock wall material was used to fit the new criterion to the 

original data published by Pratt et al. (op. cit.). The curved envelopes shown in Fig. 

6.10 were fitted assuming that </Jm= 33°, CJnr = 17.5 MPa and lf/o= 68°, 52° and 39° for 

the small, medium and large size respectively. The three curves fit the data quite well. 

The value of 68° represents probably an upper limit of maximum asperity angle 

measured for rock surfaces and corresponds to a dilation angle at a normal stress CJno = 

I 04 
crnr = l. 75 kPa. Onalp (1993) reported values for the maximum asperity angle up 

to 76°. The value of dilation angle at a normal stress of 1.75 MPa is 32°, giving a 

total friction angle of 65°. This value may seem high, but dilation angles of similar 

magnitudes have been reported in the literature for tensile fractures. For example, the 

value of dilation angle corresponding to the normal stress of 1.4 MPa for the tensile 

fractures in sandstone shown in Fig. 6.1 is 30° and to normal stress of 2.2 MPa is 25°. 
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No roughness details were given in the paper, but from the shape of the shear strength 

envelope corresponding to the lower normal stress range, it appears that the joints 

were either very rough or discontinuous. Barton (1976) adopted the highest JRC value 

possible (20) for all three sizes and scale-reducing JCS values to fit the envelopes 

shown in Figure 6.10 to the same data. 

The variation of predicted dilation rate tan (~p,ar33 °) with sample length is shown in 

Fig. 6.11 for normal stresses 2.0, 3.0, 4.0 and 5.0 MPa. Also included in the same 

figure are the values of I/lo for the three sizes (68°, 52° and 39° ), which correspond to 

"no normal load" condition. It is very interesting to note that the five best-fit lines 

intersect the size axis approximately almost at the same point, which for these very 

rough joints is 1.45m. This point where dilation becomes zero, gives the scale-free 

block length, which is independent of the normal stress. Therefore, it can be estimated 

if values of the maximum asperity angle I/lo at different sizes (for example laboratory 

and field block sizes) are measured. 

The value of 1.45 m for the scale-free block found for the data of Pratt et al. (1974) is 

in agreement with that found for the model joints used in this study (see Figures 4.31 b, 

4.45) and according to the proposed theory suggests that the effect of scale disappears 

for relatively small block lengths. Following a different approach, Barton (1976) 

suggested that for the same experimental data, scale effect might die out for joint 

lengths in excess of 2 to 3 m. If this is generally true, the scale effect on peak shear 

strength is restricted to small size blocks only, whereas large in-situ joints will be 

generally scale-free. In this case, the peak shear strength envelope will be linear, and the 

peak friction angle equal to the non-dilational friction angle as determined from 

laboratory-scale samples. 

6.6 Artificial joints in a weak model material (Bandis et al., 1981) 

Bandis et a/. (1981) reported the results of a series of direct shear tests on replicas of 11 

different types of rock joints and four different sizes from 5 cm to 40 cm, under a 

constant normal stress of 24.5 kPa, using the model material described in Chapter 4.4. A 

series of tests was carried out on one type of joint (no 2) at two additional normal 

stresses, namely 36.75 kPa and 61.25 kPa and the peak shear stress envelopes for all sizes 

are shown in Fig. 6.12. The fitted envelopes were based on Barton's criterion assuming 

scale-reduced values of JRC and JCS. The dilation angles corresponding to the peak 

shear strength for every sample size were calculated as accumulated averages of the 

different sub-blocks comprising this size block, so the same approach as in section 6.5 

was used for the determination of ~"' and crnr, Assuming that the friction angle of the 

rock wall material was 32°, as suggested by the authors a graph of the corresponding 
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dilation rate, calculated as tan(q>p,0 .-32°), versus normal stress was plotted (Fig. 6.13), 

which showed that the dilation rates reduced logarithmically with normal stress for all 

sizes. Three of the four best-fit lines corresponding to sample lengths 6 cm, 12 cm and 

36 cm intersect almost at the same point, which is defined by a normal stress value of 225 

kPa and a dilation rate of about 0.185 ( dilation angle ;:::: 10°). The fit line for the fourth 

size ( 18 cm) shown on the graph, was forced to pass through the same point. This point 

defines a friction angle of the rock wall material </>m of 42° (32°+ 10°), and a normal stress 

CJnr which suppresses all dilation of 225 kPa. The graph suggests that both parameters 

are scale - independent. The value of 42° for the friction angle of the rock wall material is 

identical to that determined from triaxial testing at the brittle-plastic transition stress and 

from direct shear testing (Chapter 4.5.2.2 and 4.5.4), but 10° higher than the friction 

angle of flat surfaces prepared by direct casting against a glass plate used by Bandis et al. 

(op. cit.) - see Fig. 4.33-. The value of CJnr is almost identical to that found for a rough 

undulating joint of similar roughness shown in Fig. 4.16. 

The curved envelopes shown in Fig. 6.14 were fitted assuming that </>m = 42°, CJnr = 225 

kPa for all sizes and IJlo = 60°, 51 °, 46° and 36° for the 6 cm, 12 cm, 18 cm and 36 cm 

long samples respectively. The curve fitting is at least as good as that shown in Fig. 6.12, 

which was based on variable JCS values ( compare the envelopes corresponding to the 

smallest sample size). The values of IJl0 correspond to a normal stress CJn0=104 crnr 

(0.0225 kPa), which appear quite reasonable, considering the joint surface (strongly 

undulating rough bedding plane in limestone) and the JRC value of 16.8 back-calculated 

at a sample length of 6 cm (Bandis et al, 1981 ). 

The variation of predicted dilation rate calculated as tan(q>p,ar 42°), with sample length is 

shown in Fig. 6.15 for normal stresses 24.5 kPa, 36. 75 kPa and 61.25 kPa. It is very 

interesting to note that the four best-fit lines intersect on the size axis approximately at 

the same length (1.20 m), which gives the scale-free block length. As with the data of 

Pratt et al (1974) shown in Fig. 6.11 a remarkable agreement exists on the scale-free 

block defined by the best-fit line of the tanlJI vs. sample size plot for the four different 

normal stresses. Again the scale-free block is of similar magnitude (;::::1.25m) and can be 

deduced from the top line, which corresponds to the maximum asperity slope determined 

at different scales. 

The dilation rates used by Band is et al. ( 1981 ) were determined as accumulative 

averages of all the sub-blocks at each scale, a procedure which tends to change the 

typical S-shaped normal displacement-shear displacement curve in a more linear form, 

so giving systematicalJy lower values than the maximum dilation angle corresponding to 

the individual samples. A direct comparison between the predictions made with the 
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new criterion and Bandis' s measured results can only be made on the largest size (36 

cm), for which the averaging process was not used and the quoted dilation angles 

correspond to one single test. The predicted dilation angle at a normal stress of 24.5 

kPa using the relation 5.20 (with ~111 = 42°, CJnr= 225 kPa and l/'o = 36°) is 9.9°, which 

is only 0.1 ° higher than that measured by Bandis (1980). At a normal stress 36. 75 kPa 

the predicted dilation angle is 8.1 ° and the measured 8.2°, whereas at 61.25 kPa the 

predicted dilation is 5.9° and the measured 6.4°. This remarkable agreement underlines 

the predicting capabilities of the new criterion. 

The variation with sample length of the maximum dilation angle calculated for three 

independent experimental sets (Pratt et al. , 1974, Bandis et al. , 1981 and this study ), 

where joints of different roughness and rock wall strength were used, is shown in Fig. 

6.16. It is remarkable that the resulting scale-free block is almost the same for the three 

data sets, irrespective of the material and roughness. This scale-free block length, 

which is in the range 1.25-1.5 m, can be determined if 1/fo values for (at least two) 

different sample sizes are available. Therefore, if l/f o for a laboratory size sample ( e.g. 

10 cm) and a block 50-100 cm long are measured, the scale-free block length can be 

deduced from a graph like that shown in Fig. 6.15 or by the equivalent formula: 

where 

Jog Ln tan IJI n 

Jog Lo tan IJI 0 
log Lcr = log Lo 

1 
_ tan IJI n 

tan IJI 0 

Lcr is the critical scale-free block length 

Lo and Ln the sample lengths at two different scales and 

tan1J10 and tanlJln the corresponding maximum asperity slopes. 

(6.7) 

The maximum asperity slope tamp at any length L can then be determined from 

Lcr 
tan IJI 

log -. L 
(6.8) = 

tanlJI 0 
Lcr 

log -
Lo 

If we assume that Lcr=l 30 cm as suggested from Fig. 6.15 and Lo= IO cm, then 

tan IJI = 0 _9 Jog 130 
tan IJI O L 

(6.9) 

where Lis the sample length in cm. 
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This relation gives a prediction of dilation angle tam/I for any sample length L assuming 

that the scale-free block is 1.30 m. If a kind of factor of safety is needed, Lcr can be 

taken equal to 1.0 m and the relation (6.8) becomes 

tan 1/f 1 --= log - = - Jog L 
tan 1/f O L 

(6.10) 

where L is in m. 

If the scale-free block size resulted from the above analysis is generally applicable, the 

majority of in-situ blocks are not affected by scale, which appears to be a laboratory

scale phenomenon. 

The relations 6. 9 and 6.10 give an estimation of the maximum asperity slope of a rock 

joint in-situ, from measurements of the corresponding slope at laboratory scale, which 

can be used when direct measurements on the in-situ block are not available. These 

relations when combined with the formulation presented in Chapter 5 define a complete 

peak shear strength criterion, which takes into account the effect of scale. 
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The data shown here suggest that the geometrical component of shear strength 

diminishes when the size of the sample approaches a critical value of a few meters ( say 

less than 3.0 m), i.e. the scale effect on peak shear strength is a parameter which is 

irrelevant to field scale, where the length of the joints are expected to be larger. 

Therefore, the field shear strength can be determined by measuring the friction angle 

</>m in the laboratory and ignoring the field roughness. This will give a safe value for 

design. In the case of joints with large-scale undulations, the large scale roughness 

angle must be added to the value of </>m• McMahon (I 985) back-analysed natural failed 

slopes and concluded that only large-scale roughness ( with a base length of 2% of the 

length of the sliding block) contributes to the field shear strength. More specifically the 

friction angle of a natural slope with 1 ° large scale roughness which occurred along a 

joint in quartzite was found to be 36°. Therefore, the non-dilational friction angle for 

this block was 35°. This value is in very good agreement with the friction angle of 

quartzite given in Table 5.2 (35.9°), although the latter is based only in one data set. 
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6. 7 Tightly interlocked joints 

When the maximum asperity angle 1/fo of a rock surface is so high that the total friction 

angle (ef>m +l/fo ) approaches 90°, it is impossible for the dilation to mobilise fully. The 

asperities are forced to shear through, even at extremely low normal stresses, and a 

cohesion component is introduced. This is the case with some tensile fractures, where 

asperities are "locked" and prevent free dilation at the initial stage of the shearing 

process. After some shear displacement when enough asperity deformation has taken 

place, free dilation may occur. The result is that the maximum dilation appears with a 

hysteresis relative to peak shear strength. Joints of this type i.e. tight, unweathered 

hard-surfaced joints, are found in nature, for example in jaspers, cherty limestones, and 

granitic rock masses (Obert et al. , 1976). In this case, besides the frictional and the 

dilational component, the peak measured strength will include an extra component due 

to cohesion of locked asperities (Hencher, 1995). This extra component substitutes a 

part of the potential -but suppressed- dilational component. 

A typical example of this category of joints is shown in Fig. 6.17, where a single direct 

shear test is presented from a series of tests on an artificial tensile fracture through very 

strong quartz syenite carried out by Hencher and reported by Arnold (1992). Dilation 

angles calculated over horizontal displacements of 0.18 mm and ratios of shear to 

normal stresses (measured and non-dilational) are shown. It can be seen that the peak 

measured strength occurs at a shear displacement of about 1 mm when the dilation 

angle is only 13°, whereas the maximum dilation angle of 30° occurs at a shear 

displacement of 1.5 mm when the measured strength is already reducing. The measured 

and non-dilational peak shear strength from 15 runs on the same sample is shown in 

Fig. 6.18. The value of 55° for the non-dilational peak friction angle (line 1) 1s 

considerably higher than those predicted in Table 5.2, and in the author' s opinion, is 

due to the extra cohesional component introduced by the tight interlocking of small 

scale asperities. This component is independent of normal stress and therefore, in this 

case the non-dilational shear strength is not purely frictional in nature, even if it 

appears to be proportional to normal load over the limited normal stress range used, as 

shown in Fig. 6.18. The more realistic value of 39° (line 2) for the frictional component 

is obtained if the shear strength due to maximum dilation angle is subtracted from the 

measured peak shear strength. This value which would result if the joint was free to 

dilate, is in agreement with the predicted values for many rock types given in Table 

5 .2. The variation of the maximum dilation rate and that corresponding to peak shear 

strength with normal stress is shown in Fig. 6.19. Since the data correspond to one 

single sample which was repeatedly tested under different normal stresses, the reliability 

of the "peak strength" results is not the same for all tests. The first test carried out at a 

normal stress equal to 60 kPa corresponds to the initial surface; the remainder 
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corresponds to joints which have been smoothened to some degree by the previous 

shearing. So, except for the first run, the measured maximwn dilation angles are lower 

than those corresponding to the initial undamaged surface. This is clear from the two 

tests at the lowest normal stress shown in Figure 6.19, where the maximum dilation 

rate from 0.87 (\II = 41 °) at the first run carried out at a normal stress crn = 60 kPa, 

reduces to 0.60 (\II = 31 °) at the second run ( crn = I 00 kPa) and 0.55 (\II = 29°) at the 

third run (crn = 60 kPa). So a decrease of 12° has taken place between two runs (nos. 1 

and 3) at the same normal stress (60 kPa), after a run at normal stress of 100 kPa has 

taken place between them (run no 2). For this reason, only the data corresponding to 

the first test at each normal stress are included in Figure 6.19. On the other hand, the 

data for the dilation angles corresponding to the peak shear strength are relatively low 

for this type of joints ( extension fractures) and are not seen to be affected by previous 

shearing, as suggested by the data points corresponding to the two runs carried out 

under 60 kPa normal stress. The maximum dilation rate tends to zero at a normal stress 

crnr of about 5MPa whereas the dilation rate corresponding to the peak shear strength 

at a normal stress which is one order of magnitude lower. The corresponding projected 

values at a normal stress cr00=104 crnr are about 1.5 (56°) and 0.95 (43.5°). 
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The value of 43.5° combined with a friction angle of 40° gives a value of 83.5° for the 

total friction angle, which can be considered as a practically maximum value (the 

theoretical maximum value being 90°). The two best fit lines are almost parallel, their 

difference in the tam/I axis giving the suppressed amount of dilation or the equivalent 

cohesional component (independent of normal stress). This suggests that the cohesional 

component can be estimated as a difference between the maximum asperity angle \j/0 

and the maximum permitted dilation angle (maximum 90-~m), 

A similar behaviour is observed in rock/concrete contacts (see for example Krsmanovic 

& Popovic, 1966, Ruiz et al. 1968 and Tsytovic et al. , 1970), where true cohesion is 

provided by the adhesion between rock and concrete. This adhesion is important at low 

normal stresses but has no significant effect at higher normal stresses (Krsmanovic & 

Popovic, 1966). 

6.8 Joints with coated surfaces 

The values for the friction angle of the rock wall material determined from triaxial tests 

and the non-dilational component of the peak friction angle determined from direct 

shear tests coincide if the frictional properties of the superficial layer in contact are the 

same as those of the underlying material. However, there are joint types, such as those 

where the surface is altered, covered by a mineral coating, or smoothed, where the 

surface layer has different frictional properties than those of the underlying material. 

The experimental procedure used in this study for the preparation of the model joints 

resulted in samples with a superficial layer of cement, which had properties different 

from the underlying material. This may result in a non-linear peak shear strength -

normal stress envelope for the dilation-corrected peak shear strength due to different 

degree to which this layer influences the shearing mechanism. For the synthetic rock 

developed in this study, at low normal stresses (0-125 kPa) the non dilational peak 

friction angle was found to be 39° due to the superficial cement layer, whereas at 

higher normal stresses the friction angle was found to be about 46°, due to the 

properties of the underlying material. Similar results are shown in Fig. 4.21 for the 

plaster-based model material used in this study and are expected for all surfaces 

produced by casting, because although the surface macroscopically may appear to be 

rough, at smaller scale is smooth, because of the thin layer of the cementing material 

formed in contact with the mould. The transition from the lowest to the highest friction 

angle may take up to 2 orders of magnitude to occur. At low normal stresses the depth 

of deformation is small, the contact is only between the superficial layers and the 

friction coefficient will be that of the layer. As the normal stress increases the thin layer 

breaks down, the deformation extends to the underlying material, and the frictional 
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resistance will be somewhere between that of thin layer and that of the underlying 

material. The relative contribution of each one of these coefficients will depend on the 

value of normal stress. The friction coefficient will increase with normal stress, and at 

some normal stress level will become equal to that of the underlying material. 

Natural joints covered by mineral coatings behave in a similar manner. Such coatings 

consist of a continuous layer of minerals which form an entirely new surface of small 

thickness whose frictional properties may be quite different from those of the 

underlying material. In most cases the friction coefficient of a coating is lower than that 

of the rock itself, but the reverse may occur especially in iron stained rock surfaces 

(Brown et al., 1977). According to Welsh (1994), if the surface is coated with massive 

minerals, i.e. quartz, feldspar, calcite etc. the friction coefficient of the coating does not 

differ from that of natural rock surfaces, but if it is coated with platy minerals, i.e. mica, 

chlorite etc. , the coefficient of friction of the surface will be much less than that for the 

massive minerals. In such cases, the value of friction angle determined from triaxial 

tests on intact samples does not reflect the frictional properties of the surface coating 

and therefore is not as reliable as that determined from direct shear tests. The difference 

is more pronounced at lower normal stresses where the surface material is more 

relevant to the shearing process and may be diminished at higher normal stresses where 

the adjacent wall material plays an increasingly important role. 

The analogy in metallic friction is the case of an oxide film covering a surface. 

According to Bowden & Tabor (1964) the overriding factor which determines whether 

a coating will support a given load depends on the hardness of the coating relative to 

that of the underlying material. In the case of a soft and plastic coating covering the 

surface of a harder rock material, the coating will fracture progressively with normal 

load and the friction coefficient will be low at low normal stresses, but as the normal 

stress increases, the friction coefficient will increase. 

In this case the peak shear strength envelope is curved upwards, which shows that with 

increasing normal stress the underlying material has a greater influence. Such curved 

envelopes have been observed in data reported by a number of different authors, such 

as Manolopoulou (1994) for kaolin coated model rock joints, Hencher & Richards 

(1989) for bitumen/calcite coated joints in dolomite and Arnold (1992) for iron-coated 

joints in quartz syenite. The results shown in Figure 4.33 may be interpreted on the 

same basis. 
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6.9. Concluding remarks 

The new peak shear strength criterion has been successfully applied to a number of 

published experimental data. The basic principle that peak friction angle is a two

component parameter proved valid throughout. Variations in peak shear strength can 

therefore be attributed to changes in the dilation, whereas the frictional component 

remains constant. 

The experimental results used as the basis for the JRC-JCS model, where both dilation 

angle and joint wall compressive strength are considered to be scale-dependent, have 

been used to show that the effect of sample size on peak shear strength is due to 

different dilation mobilised at different scales, and therefore JCS is scale-independent. 

The scale-free block length can be determined from measurements of the maximum 

asperity slope on samples at different scales. Quite good agreement between different 

data sets on the magnitude of the scale-free block length (in the range 1.0-1.5 m) has 

been found. 

A simple relation is proposed to estimate the maximum asperity slope at any scale from 

the maximum asperity slope of a laboratory-size sample. The experimental results 

indicate that in-situ shear strength of joints is dilation-free and therefore in-situ shear 

strength can be predicted from the frictional component only. 
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The values of the non-dilational friction angle may be affected by the presence of 

mineral coatings on the joint surface and the degree of surface finish imposed by natural 

or artificial processes. The theory presented in Chapter 5 for the origin of peak friction 

angle remains valid, but the magnitude of the non-dilational friction angle at low normal 

stresses can not be accurately predicted from triaxial tests, because they can not reflect 

the frictional properties of a surface when these are different from that of the adjacent 

material. In such cases, a peak friction angle which increases with normal stress and 

under sufficiently high normal stress becomes equal to that of the underlying material 

must be used. The non-dilational peak friction angle can be determined preferably from 

direct shear tests at the appropriate normal stress. Triaxial tests in this case give reliable 

predictions only at high normal stress. 
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CHAPTER 7 

SINGLE SOIL-ROCK INTERFACES 

7.1 Introduction 

Interfacial problems are encountered in many geotechnical projects at different scales. 

Soil-rock interfaces involve contacts between two different lithological units one of 

which is classified as soil and the other one as rock. The distinction between soil and 

rock is not clear as the boundary between a weak rock and a hard soil is not defined. 

Interfaces usually have lower strength than the parts they separate and provide the 

weakest stress path in various circumstances. Some examples of such interfaces involve 

natural boundaries between rock and soil layers, transition zones in weathering profiles 

between soil-like and adjacent rock-like zone, boundaries between infill and rock wall 

in filled joints, etc. Such interfaces are commonly responsible for large scale landslides. 

Another type of interface which is of primary importance in civil engineering is that 

between soil and structures such as embankments, darns, retaining structures, 

foundations, grouting, bored piles etc. Usually, it forms a weak element in the 

transmission of forces from the structure to the ground. The extensive use of 

geosynthetics in recent years gave rise to interfacial problems between the geosynthetic 

liner and the soil. Some typical examples of interfaces between soils and rocks or 

construction materials are given in Figure 1.1. Contacts between natural rock and 

concrete structures such as pier sockets, tunnel linings, grouting etc. form an artificial 

discontinuity between two rock-like materials. The behaviour of these contacts is 

similar to that of natural rock discontinuities (Johnston Lam, 1989a and b) which has 

been discussed in Part I. The case of interfaces between two different soils is not 

considered here. 

A number of investigators including Potyondy (1961), Brwnund & Leonards (1973), 

Kulhawy & Peterson (1979), Desai (1981), Acar et al. (1982), Kishida & Uesugi 

(1987) and Al-Douri & Poulos (1991) have studied the shear behaviour of soil

structure interfaces, mainly aiming to resolve problems related to the shearing 

resistance between soil (particularly sand) and various construction materials (steel, 

wood, concrete, mortar etc.) as applied to foundation engineering. Kanji (1970 and 

1974) and Bosscher & Ortiz (1987) used geological materials (granite, limestone, 

sandstone) and sand and kaolinite as soils. A number of numerical models have been 

proposed to describe characteristic shear behaviour of interfaces (e.g. Desai, 1987, 

Aydan et al. , 1990). The relation between the shear strength of infill-rock wall 

interfaces and the shear strength of an infilled joint has been discussed by Kutter & 

Rautenberg (1979) and Papaliangas et al. (1990 and 1993). 
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7.2 Parameters affecting the shear behaviour of interfaces 

As a boundary between different materials, a rock-soil interface is affected by both the 

properties of the rock and the soil. As far as the rock is concerned, the surface 

roughness is of primary importance (as discussed in Part I). Generally, a smooth 

interface has lower friction angle than a rough interface. Sowers & Sowers ( 1970) 

suggested that for a "smooth" concrete-sand interface the friction angle 8 can be taken 

as equal to (1/2-2/3)¢ , where ¢ is the friction angle of the sand, whereas in the case of 

a "rough" interface 8 can be taken as equal to ¢. Brumund & Leonards (1973) 

compared the surface roughness to the grain size and concluded that when the rock 

surface is rough in comparison to the grain size of the sand, the interface friction angle 

exceeds the friction angle of the sand and the failure surface will be within the sand. In 

the case of interfaces between geotextiles and soils the shear strength of the interface 

is in the range 0.60tan¢ ~ tan8 ~ tan¢, where ¢ is the friction angle of the soil 

(Jewell, 1996), whereas the minimum direct sliding resistance is obtained for soils 

siding on a smooth metal surface and is of the order of tan5:::::: 0.4tan¢ (Potyondi, 

1961; Kishida & Uesugi, 1987). 

The quantification of an interface roughness imposes some difficulties, as both the 

roughness of the rock surface and the grain size, shape and texture of the soil must be 

considered. Kulhawy & Peterson ( 1979) defined a relative roughness of the interface as 

follows 

where 

R s1ructure is the roughness of the structural face and 

R soil the roughness of the soil described as 

(7.1) 

where R is the roughness and D60, D 1o and Dso the 60%, 10% and 50% finer particle 

sizes. A soil-soil interface gives RR=l and is the boundary between smooth (RR<l) and 

rough (RR>l) interfaces. They found that in general for a smooth interface (RR<l) 81¢ 

< 1 and for a rough interface (RR> 1) 51¢ 2:'.:l. 

Kishida & Uesugi (1987) used a normalised roughness Rn, to describe the behaviour of 

sand-steel interfaces. This is defined as 

Rn= Rmax(L=D/D 50 (7.2) 

where Rmax(L=D) is the Rma:c value of steel surface with gauge length L =D5o. A high 

correlation between Rn and the coefficient of interface friction over a wide range of 

sand diameter (D50 = 0.16-1.82 mm) was found. When Rma:c(L=0.2mm) is larger than 100-

150 times shear failure occurs in the sand, which is the weakest element. 
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The parameters which affect the shear strength of a soil such as voids ratio, grain size, 

angularity and surface texture of soil particles, grain-size distnbution and normal stress 

also influence the shear behaviour of a soil-rock interface as found by several 

researchers, including Brumund & Leonards (1973), Kulhawy & Peterson (1979), 

Acar et al. (1982) and Al-Douri & Poulos (1991). For the same density, the interface 

friction angle is affected by the mineralogy of both the rock and the soil. For example 

Al-Douri & Poulos (1991) found that for the same density the interface friction angle 

for calcareous sand is greater than that for silica sand. This is in agreement with the 

results obtained by Koerner (1970) for quartz and calcite sands in triaxial tests and also 

with the results presented in Chapter 5, where silicate rocks were found to have lower 

friction angles than carbonates. Some rock surfaces covered with low friction minerals 

such as talc, chlorite etc. may experience much lower friction angle than most other 

rocks with clean surfaces. 

Most studies related to the soil-rock interfaces are oriented to the determination of 

friction properties of construction materials faces (mainly steel and concrete) against 

sand. The purpose of the present series of tests is to examine the effect on the shear 

strength and deformation of roughness at larger scale, applicable to interfaces between 

various rocks and soils such as those between a rockfill dam and its foundation rock. 

7.3 Experimental procedure 

7.3.1 Materials tested 

The experimental programme of this series of tests involves direct shear tests of soils 

of different size on rock surfaces with different roughness, including smooth planar, 

saw-toothed, and rough planar. Two different materials were used as soils, namely 

Leighton Buzzard standard sand and glass ballotini. 

7.3.1.1 Soil Characteristics 

Leighton Buzzard sand is a pure siliceous material with almost spherical particles, 

specific gravity 2.65 and bulk density 1.40 g/cm3
. The following standard grades, used 

for testing cement according to BS 4550:Part 5, were employed: 

a) fine sand (Sl) : 150/90µm, Fraction E, having a mean particle diameter of 115µm, 

and a uniformity coefficient of 1.4 

b) medium/coarse sand (S2) : l.18mm/600µm, Fraction B having a mean particle 

diameter of 850 µm and a uniformity coefficient of 1.5 and 

c) coarse sand (S3): 2.36/ 1.18 mm, Fraction A, which had a mean particle diameter of 

1.70 mm and a uniformity coefficient of 1.5. 

The range of grain size distribution for the three sands is shown in Figure 7 .1. 
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Figure 7.1 : Grain size distribution of sands 

Soda-lime glass ballotini with al.most spherical particles (less than 3% max by number 

angular particles), was used in 2 different sizes with D = 1mm and D=3 mm which 

according to the manufacturer has a specific gravity 2.45-2.55 g/cm3, bulk density 1.5 

glee approx. and hardness Mohs 6, Rockwell 47 HRC or Knoop 518 kg/mm2. The 

static and dynamic coefficient of friction is 0.9-1.0 and 0.7-0.8 respectively. Young's 

modulus (tensile) is 6.89xl04 N/mm2, the rigidity modulus (flexural) 2.96xl04 N/mm2 

and Poisson's ratio is 0.21. A typical analysis gives the following composition: SiO2 · 

72.5%, NaO 13.7%, CaO 9.8%, MgO 3.3%, AhO3 0.4%, FeO;Fe2O3 0.2%, K2O 0.1 %. 

The two soil materials were chosen for the following reasons: 

1) Their behaviour (ballotini and uniform sands) is easier to understand than non

uniformly graded soils because the different shapes and particle sizes bring more 

complicated interparticle mechanisms. 

2) They have been used as standard materials m research. As a consequence their 

behaviour is very well documented by high quality experimental data reported in the 

literature e.g. Skinner (1969), Stroud (1971 ), Jewell (1980), Palmeira (1987) and 

others. On the contrary, the idealised shape of the soil particles make the use of the 

results in a real situation questionable. However, the main aim of th.is study is to 

examine the mechanisms involved when a soil is sheared against a rock surface and in 

th.is context the selection is appropriate. Microphotographs of the three sands and the 

two glass ballotini grades used are shown in Plates 7.1 and 7.2. 
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Plate 7.1: Microphotographs of the sands tested 
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(a) 

(b) 

Plate 7.2: Microphotographs of glass ballotini: (a) D = 1 mm. (b) D = 3 mm. 
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7.3.1.2 Rock Characteristics 

The synthetic rock described in Chapter 2 was used to produce several surface 

roughness configurations, saw-toothed and random. It was easy to use and could 

produce samples with repeatable geometrical and mechanical properties. The following 

different types of surfaces were used: 

(a) Planar (Pl): smooth planar surfaces produced by direct casting against a glass plate 

(b) Indented (I): Three surfaces of saw-teeth shape were used having inclinations 10°, 

20° and 30° (and occasionally 5°), as shown in Figure 7.2. The surfaces were first 

produced in an aluminium block by machining, from which an impression was made by 

using VINAMOLD. This impression was then used as mould to produce as many 

samples as required. The procedure is described in detail in Section 4.2.1. 

(c) Rough (R): These surfaces were produced by brushing the free surface of the 

sample from the synthetic rock after setting and hardening, so that the aggregate grains 

were exposed at the surface. By changing the size of the aggregate, surfaces with 

different roughness could be produced. Brushing the surface of sample was easy as the 

synthetic rock tends to dry on the free surface if it is left to dry in the free air. 

7.3.2 Sample preparation 

A standard Wykeham Farrance shear box was used for all tests of this series. The 

sample size was l00xl00mm and the shear load was applied by pulling of the lower 

half. This mode was found to be more reliable than the pushing mode (West, 1992). 

Automatic recording system with LVDT's was used. According to Kishida & Uesugi 

( 1987), direct shear tests are suitable only to obtain the peak friction angle and not for 

modelling the full behaviour of the interface, since the measured shear displacement 

includes the deformation of the soil within the frame as well as the sliding displacement 

of the interface. The height of the soil mass would influence this value. However, the 

results compare well with those obtained from simple shear tests. Peak shear strength 

and frequently residual shear strength occurred at relatively small shear displacements 

( <5% of the shear box length) and well within the range of movements which 

corresponds to an acceptable level of deformation, with respect to the boundary effect. 

Serious reliability problems may occur when the grain size of the soil is large. The 

coarser material used in this study is the 3 mm glass ballotini. According to Roscoe 

(1970) the shear band thickness is approximately 10 times the diameter of the soil. For 

a diameter D = 3 mm, the estimated band thickness is about 30 mm, which is less than 

the height of the sample (about 40 mm). since the main purpose of this study is to 

examine the effect of roughness and soil size on the shear behaviour of soil-rock 

interfaces and provided that all the samples are prepared in the same way, the use of the 

direct shear apparatus is very advantageous. In addition, there are several published 

direct shear tests results for comparison. All tests of this series were performed by the 

author at normal stresses in the range 0-400 kPa and shearing rate 0.36 mm/min. 
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During the sample preparation special care was taken to ensure that the top of the 

rock surface was aligned with the top of the lower box frame. To achieve this, a 

standard technique was adopted, which included the following steps: the bottom frame 

of the shear box was placed upside down on a horizontal bench. The rock sample which 

had a thickness 5 mm smaller than that of the frame was then inserted into the frame 

with the rough side looking downwards to rest on the bench. Dental plaster was then 

used to fill the 5 mm gap. The test setup is shown schematically in Fig. 7.3. A problem 

which may arise is due to the small gaps existing between the perimeter of the sample 

and the frame, where sand grains may be locked and result in an increase in shear 

strength. For this reason every effort was made to ensure that the rock sample fitted 

closely to the box frame. After the plaster set the lower box was placed into the shear 

box, the top half was placed and sand was poured in. To minimise density variations, 

the sand was poured at a constant rate of flow approximately 1 0g/sec from a height of 

about 450 mm above the sample surface. The average values of voids ratio obtained in 

this way are given in Table 7.1. 

Table 7.1: Average values of voids ratio 

Material Glass ballotini Sand 

Designation B2 B3 SJ S2 S3 

Initial 0.46±0.02 0.45±0.00 0.86±0.05 0.73±0.03 0.64±0.02 

After 0.45±0.02 0.44±0.00 0.82±0.05 0.71±0.03 0.62±0.02 

consolidation 

7.3.3 Methods of analyses 

The stress-dilatancy relation has been studied extensively for soils and several models 

have been proposed, for example by Newland & Allely (1957), Rowe (1969), Bishop 

(1972), and Bolton (1986). From these relations the "constant volume" fuction angle 

is obtained at zero dilatancy. Newland & Allely (1957), proposed a relation of the 

form 

(7.3) 

where ¢ is the observed angle of shearing in direct shear, </Jcv the fuction angle which 

corresponds to shearing with constant volume and If/ the observed dilation angle. 

Bishop (1952) proposed the following relation to describe the behaviour in direct shear: 

tan ¢ - tan If/ = tan ¢ cv (7.4) 

Jewell (1989) derived the following formula from the energy correction proposed 

originally by Taylor ( 1948): 

tan¢- tan If/ = sin¢ cv (7.5) 

Finally Bolton (1986) suggested the following empirical formula 
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tan¢ = tan (<Pcv +0.81f/) cos</Jcv (7.6) 

The relations 7.3 to 7.6 can be used to analyse direct shear test results on granular 

materials. The relation 7.3 proved to describe very accurately the stress-dilatancy 

relation of rock joints, at any normal stress and independent of the joint roughness and 

scale (Part I). However, according to Bolton (1986), when applied to granular soils, for 

a certain constant volwne friction angle </h , it overestimates the observed <P-<Pcv by 

about 20%. This happens because the asswnption that shearing is equivalent to sliding 

along an inclined plane is accurate for rock joints but not for soils due to the wide range 

of inclinations of sliding contacts. 

A comparison of the relations 7.3 - 7.6 s shown in Figure 7.4. A constant value of0.60 

is asswned for the shear stress/normal stress ratio at zero dilation for all relations, so 

that 7.4 and 7.5 become equivalent. According to Jewell (1989) the relation 7.5 is the 

most convenient to describe the behaviour of Leighton Buzzard sand in direct shear. 

However, shearing of interfaces may involve sliding of sand along the rock surface, 

and thus relation 7.3 may give acceptable results. For the purpose of analysis, the 

instantaneous dilation rate at failure tan If/ was calculated as the ratio of the vertical dy 

to horizontal dx increments. The increment dx used was about 0.20 mm, which gives a 

quite detailed dilation curve, but smooth enough to be meaningful, as smaller intervals 

result in spurious values of dilation. The dilation angle at failure f//f was calculated as 

arctan(dyldx) . The direct shear angle of friction </J can be determined by using the 

constant volwne angle of friction <Pcv and the measured dilation angle If. Throughout 

the analysis in this work, the peak friction angle is meant to be the secant value, which 

results from the ratio of the peak shear stress to the normal stress ( r/CY). This must be 

clarified since the peak friction angle of soils is normal stress dependent ( e.g. Lupini et 

al. , 1981 and Bolton, 1986). 

7.4. Results and discussion on glass interfaces 

7.4.1 Preliminary tests 

A set of tests were carried out to determine the basic properties of ballotini. A nwnber 

5 mm soap washed glass ballotini were put in a cylindrical aluminiwn tin 60 mm 

diameter x 20 mm deep, and oven dried. Immediately after removing from the oven, a 

glass plate was placed on top and the whole system was turned upside down and 

placed on the tilt table. The mean value of sliding angle was equal to 10°. No particle 

rotation during sliding was observed from underneath the transparent tilting table. The 

same sample cleaned with water and tested in the same way in wet condition resulted in 

an average value of sliding of 24°. In a third configuration 100 glass spheres (5 mm 

dia) were fixed on a l0xl0mm grid in mortar and subjected to sliding against a glass 

plate (cleaned with acetone) on the tilt table. The average value of the friction angle 
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stress/ normal stress ratio of 0.6 

obtained was 16°±2°. Rolling-free sliding was secured, since the balls were fixed. In 

another configuration 5 mm glass balls were fixed with resin on a planar mortar block, 

washed with liquid soap and tested against a cleaned (with acetone) glass plate in the 

Wykeham Farrance shear box, with a total weight of 2365 g, which corresponds to a 

normal stress of 2.32 kPa. This resulted in a friction angle of 36°. These values suggest 

that the surface conditions largely affect the friction coefficient as noticed by many 

researchers (Skinner, 1969, Procter & Barton, 1974 and others). Clean dry particles 

have lower values than wet by a factor of 2. One of the disadvantages of the tilt table is 

that independent of the rate of tilting, small vibrations may occur, but the results 

obtained here are in very good agreement with published results by Procter & Barton 

(1974) who found for particle to plane sliding a mean value of friction angle of 15.5° 

for saturated balls and 5-10° for dry sample and for particle to particle sliding 17.9° 

(saturated) and 5°-10° (dry). Rowe (1962) reported values of 15° for 5 mm glass 

ballotini cleaned with soap, water and acetone. This value is higher than that observed 

in the tilt tests. A summary of results from these preliminary tests is given in Table 7 .2. 

The results from some direct shear tests on 1mm and 3mm glass balls sliding against a 

"smooth" steel plate under normal stresses up to 500 kPa are shown in Figure 7.4. The 

peak friction coefficient is 0.192 (¢ =10.9°) for 1 mm balls and 0.181 (¢ = 10.3°) for 

3mm. The residual value is somewhat lower: µr = 0.15 (¢,. = 8.5°) for both sizes. As 
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expected, these are lower, than those found by other researchers for steel - sand 

interfaces (Potyondi, 1971 , Acar et al. , 1982). 

Table 7.2: Summary of friction coefficient of glass ballotini under various conditions 

Apparatus Configuration Surface condition Mean size r/Jµ 

Tilt table Free particles on flat cleaned with soap and 5 mm 10° 

surface. dried 

Tilt table Free particles on flat surface wet 5mm 24° 

Tilt table Particles fixed with resin on cleaned with acetone 5 mm 16° 

flat surface 

Direct Particles fixed in mortar on cleaned with acetone 5mm 36° 

shear box flat surface 

Two tests with 1mm ballotini sliding on an a flat aluminium plate and two others on 

saw-toothed aluminium blocks, under normal stresses 100 kPa and 220 kPa revealed 

small scratches of the ballotini on the soft aluminium surface in the form of a number of 

small lines parallel to the direction of sliding, showing particle parallel movement. The 

peak shear strength of the saw-toothed interface with 20° inclination was 6.3° higher 

than that of the flat interface, whereas the residual and non-dilational shear strength 

were about the same. The residual shear strength is almost identical for both flat (µp = 

0.39) and saw-toothed interface (µp = 0.38) and equal to that of ballotini. Obviously 

the inclination of the teeth (20°) induces a dilation angle which is much lower (9°). 

7.4.2 Direct shear tests on glass ballotini alone 

In order to determine the frictional properties of a mass of ballotini particles D = 1 mm 

and D = 3mm a series of tests was carried out. A summary of the results are given in 

Table 7.3 . The average voids ratio for these tests was ed = 0.46±0.02 and ed= 

0.45±0.01 respectively. The shear stress - shear displacement and normal displacement 

- shear displacement diagrams shown in Figures 7.5 and 7.6 are of typical dense 

granular materials. The tests were run at normal stresses up to 500 kPa. It can be seen 

that for D = 3mm stick-slip occurs, which is characterised by an increasing with normal 

stress amplitude of oscillations. A similar phenomenon was not be observed for D = 
1mm. Stick-slip is a function of natural friction behaviour of a material, in that 

coefficient of static and kinetic friction differ, allied to the stiffness of the apparatus 

(Jaeger, 1971), which is the prime cause of the phenomenon (Byerlee, 1970). 

According to Procter & Barton (1974) it is inherent in all single contact friction tests 

and particularly so for glass ballotini, perhaps due to rapidly varying surface conditions. 

For ballotini with D = 3 mm stick-slip behaviour is observed at all normal stresses. 

Typically, it begins when the shear stress approaches its peak value. The mechanism of 
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stick-slip is dependent upon the stiffness of the testing machine and is caused by 

various factors, as will be discussed later. Generally, at some shear stress near the 

peak, the static friction coefficient was exceeded and slip occurred until the proving 

ring reached a lower value, corresponding to a stress ratio below the kinetic friction 

coefficient µk . The stress ratio increased again and the cycle was repeated. Each slip 

Table 7.3: Summary of direct shear tests on glass ballotini 

Normal Dilation rate Peak shear Non-dilational peak Residual shear 

stress o-(kPa) at failure stress tamp shear stress tan¢!- stress tan </)ds 

D=lmm (ect=0.46±0.02) 

25 0.198 0.684 0.428 0.46 

50 0.247 0.698 0.384 0.42 

100 0.194 0.625 0.380 0.39 

200 0.246 0.659 0.354 0.40 

300 0.193 0.626 0.387 0.38 

400 0.185 0.612 0.383 0.40 

500 0.200 0.627 0.380 0.39 

D= 3mm (ect=0.45±0.0l) 

25 0.240 0.768 0.448 0.440 

50 0.257 0.738 0.398 0.420 

100 0.203 0.732 0.465 0.460 

150 0.198 0.675 0.420 0.393 

200 0.200 0.659 0.399 0.400 

300 0.151 0.610 0.419 0.373 

400 0.173 0.583 0.372 0.350 

500 0.125 0.555 0.403 0.360 

was usually accompanied by an acoustic emission (AE) event from within the sample. 

The stick-slip behaviour is believed to be due to failure of particles to override a 

neighbouring particle. This is supported by the observation that when slip occurs, the 

shear stress and the vertical displacement drops. AE always accompanies a stress drop. 

Stick-slip increased with normal stress. At a relatively low normal stress ( cr = 50 kPa), 

neither stick-slip nor acoustic emission was noticed. The features became stronger at 

normal stress higher than 300 kPa, whereas they were lower at normal stresses lower 

than 200 kPa. It follows that different mechanisms are involved in the two cases. The 

only difference between these two cases is the size of the particles and at the same 

normal stress, the load per particle is higher in the case of the coarser particles. 

Assuming that there are only two ways in which a particle can move relative to its 

neighbours, i.e. sliding or rolling, the balance of these two mechanisms differs in the 
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two cases. At high normal stresses particle crushing occurred which was proved by 

glass fragments found after the tests. Acoustic emission was generally stronger at 

peak shear stress. This event can be due either to a sudden movement e.g. particle 

rolling or failure to override neighbouring particles. 

The variation of measured stress ratio at failure r/ o- with the dilation rate is given in 

Figure 7.7, from which the constant volume friction angle of glass ballotini is obtained 

by extrapolating the best fit line to zero dilation rate. The resulting value of -r/cr is 0.431 

which is equivalent to a constant volume friction angle <Pcv = 25.5° if it is calculated as 

asin(r/a) as the relation (7.5) suggests or 23.3° if it is calculated as atan('rla), 

according to the relation 7.4. When a plot of¢ versus tan If was produced the resulting 

value for r/>cv was 24.5°. This may suggest that the true constant volume friction angle 

is somewhere between the values predicted by the two stress dilatancy relations. The 

values of constant volume friction angle for glass ballotini obtained here are in 

agreement with those obtained by other authors. Rowe (1972) mentioned a value of 

23° whereas Skinner (1969) found a value of 26°. 

Peak shear strength envelopes are given in Figure 7.8. A straight friction line has been 

fitted for D= l mm, corresponding to a friction angle of 31 .8°, whereas for the residual 

shear strength the best-fit straight line passes through the origin and corresponds to 

21 °. This linear relation, which passes through the origin, indicates that errors 

associated with frictional resistance in the equipment are negligible. For glass ballotini 

D=3 mm the peak shear strength envelope decreases with increasing normal stress. No 

differences in the non-dilational shear strength or residual shear strength envelope for 

the two sizes of ballotini are observed. 

Scott (1963) calculated the apparent coefficient of friction for a hexagonal close

packed array of equal spheres as: 

✓3 + 4-.fi_µ 
µ obs= 2(✓6 _ µ) (7.7) 

where µ is the coefficient of mineral (particle to particle) friction for the spheres. 

Assuming that for 1 mm ballotini the mineral coefficient of friction is 0.18 ( rjJµ = I 0°), as 

suggested by Table 7.2, then the resulted coefficient of friction for the pack will be 

✓3 + 4✓2 0.18 
µ = ----- = 0.606 

obs 2( ✓6 - 0.18) 

which corresponds to a friction angle of 31.2°. This is in a very good agreement with 

value of 31.8° for the peak shear strength which was calculated from the direct shear 

tests. If this is not a coincidence, then it suggests that theoretical predictions can be 
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made for the friction angle of a mass of particles when they are considered as spheres. 

From the above tests it is seen that although the friction coefficient of glass is very 

sensitive to surface condition, the shear behaviour of a mass of glass ballotini was 

adequately reproduced. According to Procter & Barton (1974), in any conventional 

laboratory test the dry behaviour of a single contact point is irrelevant to the 

behaviour of a large mass of particles. This conclusion is fully supported by the results 

of this study. Skinner (1969) showed that a change of friction angle between particle 

contacts by a factor of at least 5 does not significantly change the effective shear 

strength of the mass. Given this, this testing programme could be carried out without 

any reservations regarding special precautions about the surface condition of the glass 

balls. 

7.4.3. Interfaces between glass ballotini and flat glass surfaces 

A number of tests were carried out on 1 mm glass ballotini sliding on a glass plate. A 

typical shear stress - shear displacement diagram shows a clear peak followed by a 

drop to a residual value (Figure 7.9). The values of the friction angle obtained were in 

the range 10-15°, which is comparable with those obtained in the tilt table. After the 

end of the tests, scratches on the surface could be observed by visual examination. 
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Figure 7.9: Shear stress shear displacement diagrams for glass ballotini 1mm, sliding on flat 

glass under various normal stresses, shown on each curve. 
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Their number increased with increasing normal stress. Stick-slip was shown to be 

favoured by high normal stress and smoothness of the surface and was noticeable for 

tests at normal stress above 200 kPa. The mechanism of stick-slip of a mass of particles 

subjected to shearing is irrelevant to that of ballotini sliding on glass plate. In the latter 

case, it appears that stick-slip correlates with indentation and ploughing. The 

phenomenon became more intense as the normal stress increased, where indentation 

and ploughing were considerable. At 500 kPa the stick-slip oscillation is about 5% of 

the value of peak shear stress. These results are in agreement with those of Engelder 

(1976) who showed that stick-slip for polished granite and quartzite occurs above a 

minimum normal load able to cause indentation and ploughing. This normal stress for 

the present series of tests was about 200 kPa. Microscopic observations suggest that 

stick-slip is associated with the brittle fracture of the flat glass surface, which 

according to Engelder & Scholz ( 1976) occurs in the flat surface regardless of the 

hardness contrast between the two contacting surfaces. Indentation is possible if the 

soil particle is small and the normal stress high. For large particles, indentation is not 

favoured, and sliding resistance becomes very high due to the high normal load applied. 

The alternative possible mechanism is rolling. An illustration of the different shear 

mechanisms observed is given in Plate 7.3 , in which the top mark (a) corresponds to an 

interface between 1 mm glass ballotini and flat glass, whereas the other three 

correspond to an interface between 5 mm glass ballotini and flat glass, both sheared 

under a normal stress of 500 kPa. The test with the smaller particles shows indentation 

and ploughing, whereas in the second case it is clear that the marks vary in size and 

direction and have been produced by rolling. Some fractures of an arc form can also be 

seen. 

A typical behaviour can be described by that observed for the test carried out with 

ballotini 1mm at a normal stress of 400 kPa. The glass plate was first cleaned with 

acetone, whereas except that it was from a newly opened bag the ballotini was used 

without any treatment, like all other tests. The peak stress ratio was 0.177 ( <Ai = 10°) 

which is good agreement with the friction angle for dry glass mentioned by other 

authors (e.g. Rowe, 1972 and Procter & Barton, 1974). The approximate load per 

particle was 40 gr. (assuming uniform distribution of load among l00xl00=l0000 glass 

balls). No visible damage was observed, but when the sample was examined under a 

Reichart Optical microscope, small scratches parallel to the direction of shearing was 

seen as well as some small fractures at several points. One deep scratch was about at 

right angle to the direction of shearing, showing either direction of particle movement 

or crack propagation between fractures caused by neighbour particles. The density of 

small spot fractures was not the same but it was concentrated on one quarter of the 

sample, showing non-uniform load distribution during shearing, which is one of the 
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Plate 7.3: Grooves produced on a glass plate by shearing of a mass of glass ballotini under a 

normal stress of 500 kPa. (a) Ballotini 1 mm. (b)-(d) Ballotini 5 mm. 
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Their number increased with increasing normal stress. Stick-slip was shown to be 

favoured by high normal stress and smoothness of the surface and was noticeable for 

tests at normal stress above 200 kPa. The mechanism of stick-slip of a mass of particles 

subjected to shearing is irrelevant to that of ballotini sliding on glass plate. In the latter 

case, it appears that stick-slip correlates with indentation and ploughing. The 

phenomenon became more intense as the normal stress increased, where indentation 

and ploughing were considerable. At 500 kPa the stick-slip oscillation is about 5% of 

the value of peak shear stress. These results are in agreement with those of Engelder 

(1976) who showed that stick-slip for polished granite and quartzite occurs above a 

minimum normal load able to cause indentation and ploughing. This normal stress for 

the present series of tests was about 200 kPa. Microscopic observations suggest that 

stick-slip is associated with the brittle fracture of the flat glass surface, which 

according to Engelder & Scholz (1976) occurs in the flat surface regardless of the 

hardness contrast between the two contacting surfaces. Indentation is possible if the 

soil particle is small and the normal stress high. For large particles, indentation is not 

favoured, and sliding resistance becomes very high due to the high normal load applied. 

The alternative possible mechanism is rolling. An illustration of the different shear 

mechanisms observed is given in Plate 7.3, in which the top mark (a) corresponds to an 

interface between 1 mm glass ballotini and flat glass, whereas the other three 

correspond to an interface between 5 mm glass ballotini and flat glass, both sheared 

under a normal stress of 500 kPa. The test with the smaller particles shows indentation 

and ploughing, whereas in the second case it is clear that the marks vary in size and 

direction and have been produced by rolling. Some fractures of an arc form can also be 

seen. 

A typical behaviour can be described by that observed for the test carried out with 

ballotini 1mm at a normal stress of 400 kPa. The glass plate was first cleaned with 

acetone, whereas except that it was from a newly opened bag the ballotini was used 

without any treatment, like all other tests. The peak stress ratio was 0.177 ( <A = 10°) 

which is good agreement with the friction angle for dry glass mentioned by other 

authors (e.g. Rowe, 1972 and Procter & Barton, 1974). The approximate load per 

particle was 40 gr. ( assuming uniform distribution of load among 1 00xl 00= 10000 glass 

balls). No visible damage was observed, but when the sample was examined under a 

Reichart Optical microscope, small scratches parallel to the direction of shearing was 

seen as well as some small fractures at several points. One deep scratch was about at 

right angle to the direction of shearing, showing either direction of particle movement 

or crack propagation between fractures caused by neighbour particles. The density of 

small spot fractures was not the same but it was concentrated on one quarter of the 

sample, showing non-uniform load distribution during shearing, which is one of the 
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disadvantages of the direct shear test. Due to this problem, the marks of any shape on 

the surface are mainly concentrated one half of the surface. 

7.4.4. Interfaces between glass ballotini and saw-toothed modelled rock surfaces 

Several tests on interfaces between glass ballotini and saw-toothed surfaces were 

carried out. It must be born in mind, when interpreting these results, that the surfaces 

of the saw-toothed blocks were smooth, because they were produced originally from a 

smooth aluminium block from which a VINAMOLD impression was made, which gives 

always a smooth finish (Chapter 4.2.1 ). 

Values of the secant peak friction angle of the glass ballotini (tanrp), the interface (tano) 

and the ratio tan5/tan¢ at different normal stresses are given in Tables 7.5a and 7.5b. 

The friction angle of the interface is always lower than that of the glass ballotini, 

irrespective of normal stress and angle of inclination of the rock surface. The ratio of 

tan5/tan¢ is between 0.757 and 0.923. Higher values correspond to rougher surface 

and lower normal stress. When the normal stress is high the particles are forced to 

move along the interface, the failure path thus involves higher proportions along the 

interface. Peak shear strength envelopes are shown in Figure 7.10. 

Only one type of saw-toothed surface with i=30° was used with ballotini D = 3 mm. 

The results are shown in Table 7.5.b, from where it is seen that the shear stress ratio of 

the interface is about the same with that of the ballotini itself. This is because, the 

inclined rock surface due its steepness does not offer an easier path, thus failure plane 

entirely through the sand is established. 

Table 7.Sa: Peak values of tan¢ , tan6 and ratio tan <5/tan¢ for rock saw-toothed surfaces 

with ballotini D = 1 mm 

Normal stress (kPa) 100 200 300 400 

Glass ballotini tan¢ 0.625 0.659 0.626 0.61 2 

Glass ballotini vs. tan5 0.540 0.499 0.497 0.488 

saw-toothed 10° (I1B2) tan5/tan¢ 0.864 0.757 0.794 0.797 

Glass ballotini vs. tan5 0.540 0.525 0.516 0.495 

saw-toothed 20° (I2B2) tan5/tan¢ 0.864 0.797 0.824 0.809 

Glass ballotini vs. tan5 0.577 0.589 0.558 0.538 

saw-toothed 30° (I3B2) tan5/tan¢ 0.923 0.894 0.891 0.879 
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Table 7.5b: Peak stress ratio tan¢ , tan5 and ratio tan JI tan¢ for rock saw-toothed surfaces 

with ballotini D = 3 mm 

Normal stress (kPa) 100 200 300 400 

Glass ballotini tan¢ 0.732 0.659 0.610 0.583 

Glass ballotini vs. tan5 0.733 0.668 0.654 0.579 

30°(I3B3) tan5/tan¢ 0.999 1.013 1.072 0.993 

The non-dilational shear strength is almost identical for both flat and saw-toothed 

interface, as well as the ballotini itself. 

It must be noted that the top of the teeth of the rock block is on the shear plane and 

therefore the teeth do no not prevent the failure plane to form along the shear plane of 

the box. So the shear strength of the sand should be always an upper bound, if the 

failure path is free to form. If higher shear strength is measured, this must be due to 

boundary effects, or the sample is due shear through rock asperities. Boundary effects 

imposed by the top platen of the shear box may generate load-bearing bridges formed 

by particles. This is of special interest for the case of double soil-rock interfaces. 

Stick-slip and acoustic emission was observed in these tests , but no particle crushing 

was noticed even at normal stress 400 kPa and 500 kPa. This suggests that the stick

slip which is always connected to AE event, is caused by indentation, which was 

observed by examination after testing. The nature of acoustic emission due to particle 

crushing is different, i.e. a continuous low volume noise. 

7.5. Results and Discussion on sand interfaces 

7.5.1. Sands alone 

The shear behaviour of three grades of Leighton Buzzard sands was examined by a 

series of direct shear tests under normal stress 100,200, 300 and 400 kPa. the initial 

voids ratios used in these tests were 0.86 for sand 1, 0. 73 for sand 2 and 0.64 for sand 

3. The results are presented in Figures 7.11 to 7.13. The two coarser sands show a 

clear peak at a shear displacement 2.5-3 .0 mm, whereas for the fine sand, after a certain 

shear stress is reached, the curve becomes flat and a residual value is established. The 

difference in the behaviour is due to the different voids ratios (Table 7 .1) resulted from 

the procedure followed for the placement of the three sands. Figure 7 .11 indicates that 

there is a tendency for stick-slip behaviour as the normal stress and the grain size 

increases, similar to that observed for ballotini (see Figure 7.5). The reason for this 

stick-slip is attributed to particle breakage, which occur at high normal stresses. This 

deformation mechanism is common in structures like tall earth dams which subject the 

underlying soils to significant stresses, resulting in significant changes in the grain

size curve of the original soil (Lade et al. , 1996). Uniform sands like those used in this 
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study, are more susceptible to particle breakage than uniformly graded ones, because 

there are lesser interparticle contacts and the load per contact is more than those in a 

well-graded soil (Lambe & Whitman, 1969). For the same reason coarse particles of 

sand are more prone to particle crushing than finer particles. 

For the coarser sand (S3) the average peak friction angle 1s 43.5° and the 

corresponding instantaneous dilation angle 12.4°, occurring at an average shear 

displacement of 2.8 mm. The range of the peak shear displacement is between 2.5 and 

3.1 mm, with the larger values corresponding to higher normal stresses. For sand 2 the 

average peak friction angle is 37.6° and the average dilation angle 8°. The mean peak 

shear displacement is somewhat lower than that of the coarser sand (2.5 mm) and again 

increases with normal stress. Similarly, for sand 1 the average peak friction angle is 

33° and the dilation 2.3°. In this case, the average peak shear displacement is 3.9 mm, 

which is higher than that corresponding to other sizes, due to the flat shape of the shear 

stress - shear displacement graphs and some uncertainty on the exact position of the 

peak caused by this .. With the above three sets of </>-I// values, a comparison of the 

stress-dilatancy relations referred to in Section 7.3.4 is made. From Table 7.6, the 

results shown in column 3, correspond to the relation 7.4, proposed by Bishop (1972). 

The value for the constant volume friction angle for the three sand grades vary from 

31.3° to 36°, with an average of 33.2°. 

The results shown in column 5 correspond to the relation proposed by Bolton (1986), 

which gives very consistent and realistic results. It must be noted that Bolton ( 1986) 

suggests r/Jcv = 33° for quartz sand, whereas Jewell (1989) accepts values of ¢cv 

between 33° and 35°. The sand 2 specifically is the same with that tested by several 

researchers at Cambridge (e.g. Stroud, 1971, Jewell, 1980, Palmeira, 1987 etc.) and 

the accepted value of constant volume friction angle is 35°, which matches very closely 

the value resulted from these tests by using Bolton's relationship. According to Jewell 

( 1989), differences up to 1.5° in the value of the constant volume friction angle of 

Leighton Buzzard sand can occur even between different batches of the same sand. 

The relation 7.5 gives unacceptably high values (column 4), whereas it is worth to note 

the consistent values for the three sands obtained by using the relation 7.3 (column 2), 

which however, are about 20% lower than that obtained by Bolton's relation. 

The peak shear strength and residual shear strength envelopes are shown in Figure 

7 .13. The residual values are taken from the last portion of the shear stress - shear 

displacement diagram. Generally, the results from direct shear tests become increasingly 

inaccurate with shear displacement due to rotation of the upper box, material lose etc. 

Therefore, values of shear stress obtained at large shear displacement are unreliable 

but they can be used for comparison with values of the same or other materials 



2 ·; ; 

400 
■ sand 3 ■ 

350 • sand 2 

♦ sand 1 

300 

,....._ 250 
Ct! 

(a) ~ .._, 
en 

200 en 
C!) 

b 
en .... 
Ct! 
C!) 
.c 150 Cl') 

100 

so 

0 
0 100 200 300 400 500 

Normal stress (kPa) 
300 

■ sand 3 

• sand 2 

250 • sand 1 

200 

(b) ,....._ 
Ct! 

c... 
..:.: 
'--' 
en 

150 en 
C!) 

b 
en 
.... 
C':l 
C!) 
.c 
Cl') 

100 

50 

100 200 300 400 500 
Nom1al stress (kPa) 

Figure 7.13: Shear strength envelopes for sands : (a) Peak. (b) Residual 



234 

obtained in similar conditions. The sand 2 has a residual friction angle of 28.5°, which 

is about 2° lower than the other two sands. Probably this fraction has somewhat more 

round particles, which causes the reduction in friction angle. 

Table 7.6: Comparison between various stress-dilatancy relations 

Relation </>- If/ = </>cv tan</>- tan If tan</> - tan If tan</> I cos <f>cv = 
= tan</>cv = sin</>cv tan { </>cv +O. 8 If/) 

(1) (2) (3) (4) (5) 

Sand 1 30.7° 31.3° 37.5° 36.7° 

(¢=33 °, f/F2 .3°) 

Sand 2 29.6° 32.2° 39.0° 35.4° 

(¢='37.6°, f/F8.0°) 

Sand 3 31. l 0 36.0° 46.8° 37.8° 

(¢=43.5°, 

f/Fl2.4°) 

Average 30.5° 33 .2° 41.1 ° 36.6° 

7.5.2 Interfaces between sands and flat surfaces 

Eight samples consisted of the coarser sand (sand 3) were sheared on flat glass 

surfaces under normal stress of 100, 200, 300 and 400 kPa. Some typical shear stress

shear displacement graphs are shown in Figure 7.14. The resulted peak friction angle is 

32°. Almost all tests are accompanied by stick-slip. Stick-slip begins in the region of 

peak shear stress and is accompanied by acoustic emission events. The shear stress 

oscillations and the magnitude of the acoustic emission increase with normal stress. 

Post-test examination of the glass surface revealed grooves with depth which increases 

with normal stress. The reason for the stick-slip is believed to be the indentation caused 

by the sand particles in the glass. Plate 7.4 is from a test of sand 3 on flat glass under 

normal stress of 400 kPa. Two parallel grooves can be seen about 1.2 mm apart and at 

least 3mm long, which show that neighbour particles move parallel to the shearing 

direction by sliding. Note that the distance between the two grooves (1.2 mm) is 

comparable to the mean diameter of the sand (1.70 mm). 

A series of tests was carried out on interfaces between sand and planar modelled rock 

surface. The latter was produced by direct casting against a glass plate. It had smooth 

finish but sporadically some pores of various sizes were present. Only the coarser sand 

(sand 3) was used in these tests. An interesting feature is that the peak shear strength 

envelope is curved upwards. This shows an increasing with normal stress involvement 

of the subsurface material which is caused by indentation. A similar mechanism 

operates in rock joints with smooth surface and the reason is the same: At low normal 



,-._ 
c:':l 

C. 
~ 
'--' 

"' "' II) 

.t:: 
"' ... 
c:':l 
II) 

..::: 
"' 

300 

250 

200 

150 

100 

50 

0 
0 2 

235 

350 kPa 

250 kPa 

100 kPa 

4 6 8 10 12 14 

Shear displacement (mm) 

Figure 7.14: Shear stress-shear displacement diagrams for interfaces between sand and flat 

rock surf aces 

,-._ 
c:':l 

32 
'--' 

"' "' II) 

.t:: 
"' .... 
c:':l 
II) 

..::: 
U') 

400 

300 

200 

100 

0 
0 100 

Sand 3 sliding on smooth surface 

• 
• I 

• • 
• 

• 

200 300 400 500 

Normal stress (kPa) 

Figure 7.15: Peak shear strength envelopes for interfaces between sand and flat rock surfaces 



 

 

 

 

 

 

 

 

PAGE NUMBERING AS 
ORIGINAL 



236 231 )- 105 1 c,110 

Plate 7.4: Parallel grooves caused by sliding of sand 3 on a flat glass 

under a nonnla stress of 400 kPa 

stresses the sand particles slide on the smooth surface and the coefficient of friction is 

relatively low. As the normal stress increases, indentation and ploughing occurs, and 

the material underneath the top smooth layer contributes to the shearing resistance. 

This contribution becomes higher for higher normal stress, as the depth of indentation 

increases. This mode of deformation is usually accompanied with a strain hardening 

behaviour. 

Most of the tests in this series also exhibited stick-slip behaviour even at the lowest 

normal stress (100 kPa). An example of stick-slip behaviour is provided by the curve 

corresponding to normal stress 200 kPa. This curve shows an increasing with shear 

displacement stick-slip amplitude which is about 15% of the peak shear stress. This 

amplitude is only a measure of the relative stiffness of the testing system and depends 

on the ability of the shear loading system to catch up with the sudden displacement 

occurring at the point of instability (Lajtai & Gadi, 1989). The pattern of scratches 

observed in these tests is shown in Plate 7.5, which corresponds to shearing under a 

normal stress of 300 kPa. As before, the stick-slip begins when peak shear strength is 

approached and usually results in a strain - hardening shear stress - shear displacement 

diagram, due to the new material which is subjected to ploughing. 

Microscopic post-test examination of the surface revealed some fine grooves parallel 

to the sliding direction, with small amount of crushed ( or worn) sand on the surface. 

At higher normal stresses, much deeper grooves were observed and also cross 
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Plate 7.5: Typical grooves of interfaces between sand and flat rock surface 

from two samples (a) and (b) tested under 400 kPa normal stress 

(a) 

(b) 
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fracturing at some points. This could be associated with the stick-slip occurring at the 

peak shear stress. Acoustic emission events accompany each slip, with loudness 

proportional to the amplitude of the oscillations. A possible explanation of the observed 

phenomena is provided when most of the observations are combined. The occurrence 

of grooves implies that indentation by sand grains has taken place. The increasing 

with normal stress ploughing brings andalusite grains (hardness 7) from the synthetic 

rock with the quartz sand grains ( hardness 7) and this may cause stick-slip, as contact 

between quartz surfaces is conductive to stick-slip (Paterson, 1978), maybe because 

of the sudden brittle failure of small irregularities (Byerlee, 1970). Evidence for this is 

given by some white marks on the tested rock surface which are due to quartz-quartz 

contact, in contrast to other brown marks due to sand crushing or wear. From this 

mechanism the sand particles are worn and new fmer particles are produced which are 

seen in the grooves. Similar observations were made by Engelder & Scholz ( 1976) who 

suggested that stick-slip movement is associated with grooving of the surface. 

Fracture of sand grains may be caused in case of existing gap between the rock sample 

and the surrounding box frame. Some grains are then trapped in this gap and are 

subjected to high stresses which cause fracture. For this reason, the rock has to fit 

precisely in the shear box frame. 

The stick-slip is normal stress dependent. The normal stress where stick-slip begins can 

not be defmed easily. For the finer sand, no such phenomenon was observed, even at 

the very high normal stress of 500 kPa, which was occasionally used. 

7 .5.3. Interfaces between sand and saw-toothed modelled rock surfaces 

Three types of sand were used for each of the three different saw-toothed surfaces. 

The results are shown in Figures 7.16-7.17 and Tables 7.8a and 7.8b. The peak friction 

angle reduces with normal stress for all three sands, resulting in a small "cohesion" 

intercept. A straight line passing through the origin was fit to the data. For sand I , the 

peak shear strength is lower than that of the sand at normal stresses lower than 200 kPa 

but becomes increasingly higher at normal stresses above 200 kPa. This is independent 

of the inclination of the surface. 

The range of the peak stress ratio 'pea/a= tant5 for the interfaces involving the fmer 

grade (sand 1), is between 0.91 and 1.11 of that of the sand alone. The lower values 

correspond to the lower normal stress ( 100 kPa) and the highest to the highest normal 

stress. More specifically, for normal stress 100 kPa tant5 is lower and for the higher 

stresses higher than that of the sand alone. From the Table 7.8b , it becomes clear that 

the same trend exists for the peak rate of dilation, where the range now is much 
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wider, between 0.36 and 2. 78, and as before, the highest values correspond to higher 

normal stresses. 

Table 7 .Sa: Peak values of tan¢, tantS and ratio tan&tanr/J for rock saw-toothed surfaces 

with sands 

Normal stress (kPa) 100 200 300 400 

SAND I 

Sand 1 alone tan¢ 0.718 0.670 0.632 0.622 

sand 1 vs. tan5 0.654 0.677 0.638 0.689 

saw-toothed l 0° (Il S l) tan5/tan¢ 0.911 1.010 1.010 1.108 

sand 1 vs. tan5 0.699 0.650 0.685 0.651 

saw-toothed 20° (12S1) tan5/tan¢ 0.974 0.970 1.084 1.047 

sand 1 vs. tan5 0.712 0.671 0.682 0.652 

saw-toothed 30° (I3Sl) tan5/tan¢ 0.992 1.000 1.080 1.048 

SAND 2 

Sand 2 alone tan¢ 0.792 0.769 0.763 0.755 

sand 2 vs. tan5 0.724 0.740 0.707 0.708 

saw-toothed 10° (Il S2) tan5/tan¢ 0.914 0.962 0.927 0.938 

sand 2 vs. tan5 0.748 0.774 0.742 0.731 

saw-toothed 20° (I2S2) tan5/tan¢ 0.944 1.007 0.972 0.968 

sand 2 vs. tan5 0.834 0.785 0.772 0.755 

saw-toothed 30° (13S2) tan5/tan¢ 1.053 1.021 1.012 1.000 

SAND3 

Sand 3 alone tan¢ 0.998 0.929 0.918 0.898 

sand 3 vs. tan5 0.858 0.789 0.795 0.796 

saw-toothed 10° (IlS3) tan5/tan¢ 0.860 0.849 0.866 0.886 

sand 3 vs. tan5 0.876 0.893 0.862 0.831 

saw-toothed 20° (12S3) tan5/tan¢ 0.877 0.961 0.939 0.925 

sand 3 vs. tan5 0.910 0.906 0.848 0.814 

saw-toothed 30° (12S3) tan5/tan¢ 0.912 0.975 0.924 0.906 

For interfaces involving sand 2, the peak stress ratio depends on the inclination of the 

interface. For i= 10° , it is lower than that of the sand alone by 6% -9%, with an 

average of 7%. The corresponding peak rate of dilation of the interface is between 19% 

lower and 0.81 and 1.06 of that of the sand alone (average 0.92). There is a good 

agreement between the amount by which the stress ratio and the rate of dilation are 

reduced (7% and 8% respectively) and this indicates that the difference is mainly due to 

dilation. 
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Table 7.8b: Dilation rate at peak shear stress for sands tan 1/1,; and saw-toothed surfaces tan I/lo 

Normal stress (kPa) I 100 200 300 400 

SAND l 

Sand 1 alone tan If/¢ 0.097 0.043 0.025 0.032 

sand vs. tanlf/8 0 0.056 0.040 0.089 

saw-toothed 10° (I 1 S 1) tan lf/8 / tan If/¢ 0 1.318 1.600 2.781 

sand vs. tan lf/rS 0.061 0.019 0.046 0.054 

saw-toothed 20° (12S 1) tan lf/rS / tan If/¢ 0.629 0.442 1.840 1.688 

Glass ballotini vs. tan lf/rS 0.035 0.044 0.038 0.028 

saw-toothed 30° (13Sl) tan lf/rS / tan If/¢ 0.361 1.023 1.52 0.875 

SAND 2 

Sand 2 alone tan If/,, 0.139 0.132 0.129 0.148 

sand 2 vs. tan lf/rS 0.112 0.112 0.137 0.142 

saw-toothed 10° (11S2) tan lf/rS / tan If/¢ 0.806 0.848 1.062 0.959 

sand 2 vs. tanlf/o 0.125 0.133 0.137 0.098 

saw-toothed 20° (l2S2) tan lf/rS / tan If/¢ 0.899 1.008 1.062 0.662 

sand 2 vs. tan lf/rS 0.167 0.130 0.125 0.125 

saw-toothed 30° (13S2) tan lf/rS / tan If/¢ 1.201 0.985 0.969 0.845 

SAND3 

Sand 3 alone tan If/,, 0.224 0.229 0.211 0.189 

sand 3 vs. tanlf/o 0.243 0.200 0.212 0.157 

saw-toothed 10° (11S3) tan lf/rS / tan If/¢ 1.085 0.873 1.005 0.831 

sand 3 vs. tanlf/o 0.232 0.235 0.228 0.220 

saw-toothed 20° (l2S3) tan If/a / tan If/¢ 1.036 1.026 1.081 1.164 

Sand 3 vs. tanlf/o 0.220 0.238 0.225 0.182 

saw-toothed 30° (13S3) tan If/a / tan If/¢ 0.982 1.039 1.066 0.963 

For i=20°, the stress ratio of the interface is less than that of the sand by an average of 

3%, whereas the peak rate of dilation by about 10%. In the latter case however, the 

value of the rate of dilation is in disagreement with the general trend, and this may be 

due to experimental error. It must be noted that most of the values given for each case 

in Tables 7.8a and b are based in one single test, and may not agree with other 

values, due to small density variations or other experimental errors. Finally, for i=30° 

the peak stress ratio of the interface is equal or up to 5% higher than that of the sand 

(with an average of 2%). The corresponding ratio of dilation rate ranges between 0.85 

and 1.20 (average 1.00) of that of the sand. This suggests that the dilational 

characteristics of the interface and the sand are the same, which means that eventually 

the failure path must be entirely within the sand. The interface is so steep that 

eventually is not involved in the shearing process. 
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For the coarser sand (sand 3) the stress ratio of the interface is in all cases lower than 

that of the sand, whereas the rate of dilation is about the same. The ratio tanciltan¢ has 

an average value of 0.86 (ranges between 0.85 and 0.89) for i = 10°, 0.93 for i = 20° 

and i =30° (ranges 0.88-0.96, and 0.91-0.97 respectively). The ratio of the rate of 

dilation of the interface to the rate of the dilation of the sand (tan lf/,s /tan If/¢) is between 

0.83 and 1.06 (with an average of 0.95) for i= 10°, between 1.03 and 1.16 (average 

1.08) for i =20° and between 0.96 and 1.07 (average 1.01) for i =30°. 

The peak friction angle on the inclined interface is lower than that of the sand alone. 

Therefore, sand particles tend to move along the interface, so that the failure paths are 

composite though the sand and along the interface. When the inclination of the 

interface is low, larger portions of the failure path will be along the interface, whereas 

for steeper planes, this may occur only near the tips of the interface. The movement 

along the interface may occur by sliding or rolling. In both cases increased dilation 

angles will be observed. This is clear for the finest sand, where this mechanism appears 

to be favoured by increased normal stress, because the strength difference is larger. 

On microscopic examination the mechanisms described earlier were also present in this 

case. For some tests involving the coarser sand fine grooves parallel to the direction of 

sliding and brown dust was observed on the surface, as a result of sand crushing or 

wear. Stick-slip and acoustic emission events also accompanied these tests. The latter 

was small at the beginning of the tests but increased as the sample dilated. As a main 

cause of dilation is particle rolling, it seems that at higher normal stresses the stick-slip 

occurred as a result of sand particle rolling on the surface. 

It was also observed that when the sand was removed from the rock surface, there was 

most of the times, a certain amount of sand in the rock valleys which was so highly 

stressed that on turning the sample upside down, it remained in place (Plate 7.6). It 

can be assumed that this area is totally excluded from the shearing process and is an 

indication of the lower boundary of the potential shear zone. Really, from observations 

on the rock teeth there was no sign of particle movement in this area, whereas several 

scratches were seen in the top part of the teeth. The shear band was experimentally 

defined by using ballotini and sand of the same size but of different colour. From 

examination of the deformed sample after the end of the test, the shear band thickness 

was measured. The results, shown in Figure 7 .19, compare quite well with similar 

results for sands given by Palmeira & Milligan (1989). Based on this results, possible 

modes of shear bands are suggested, as shown in Figure 7.20. 
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Plate 7 .6: Highly stressed sand 1 in the groove of the saw-toothed surface. This sand remained 

in place when the sample was turned upside down 

7.5.4 Interfaces between sand and rough planar surfaces 

Rough planar swface were prepared by brushing hardened the free surface of hardened 

synthetic rock where aggregates of various sizes were used , as described in section 

7.3.2. Sand 2 and sand 3 were used as soils and the interfaces were tested repeatedly 

several times, whereas before every test the reduced roughness was measured by a 

stylus type Talysurf machine. A constant normal stress of 300 kPa was used 

throughout. The results are given in Figure 7. 20, where the peak shear strength is 

plotted against the roughness Rr, which represents the maximum peak to valley height 

of the profile. It can be seen that the shear strength of the interface is lower of that of 

the sand when the roughness R1 is low and increases with increasing value of R1• If a 

normalised roughness R11 is used defined as 

Rr 
R = -

n Dso 
(7.7) 
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and the ratio (tan5/tan<fi) are used then the results for the two cases can be combined 

to give Figure 7.21 , which indicates that when the roughness of the interface is less 

than two mean diameters of the soil, then the peak shear stress of the interface is lower 

than that of the soil. If the roughness is higher than two mean diameters then the 

weakest path is through the soil, and its shear strength govern the shear behaviour of 

the system. 

To examine the effect of repetitive loading, some tests were carried out on interfaces 

between planar surfaces with an average roughness of about 0. 7 mm and sand 2 (which 

has a mean diameter of 0.85 mm) under a normal stress of 300 k.Pa. After the 5th to 7th 

run (total shear displacement between 70 and 100 mm), the values obtained were 

unchanged, suggesting that the effect of roughness diminishes after a shear 

displacement of about 100 times the mean particle diameter. 

7.6 Concluding remarks 

The results were presented of an experimental program, involving more than 200 

direct shear tests of soil-rock interfaces. Various flat and saw-shaped modelled rock 

surfaces were used and various sand types and glass ballotini. 
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The shear strength of the interface can be expressed as a ratio of the peak stress ratio of 

the interface to the peak stress ratio of the soil ( tan<5/tan<p ). For this series of tests the 

ratio (tan<5/tan¢) was found to vary with the type of material, and the grain size. For 

glass ballotini, the interfacial friction angle was always lower than that of the ballotini 

alone. For sands it depended upon the grain size and the roughness of the surface. In 

general, the ratio (tan5/tan¢) is lower than 1, except for the fine sand used, where it 

was higher. Similar trends were followed by the peak dilation rate. 

For planar rough surfaces the peak shear strength of the interface is lower than that of 

the soil, if the roughness of the rock surface does not exceed two mean diameters. 

Several deformation mechanisms were identified: sliding, rolling and crushing of 

particles, indentation and ploughing. Stick-slip behaviour was typical for many tests. 

This is favoured by the smoothness of the surface and the soil particles , the roundness 

of the particles and the normal stress. 
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CHAPTER 8 

DOUBLE SOIL-ROCK INTERFACES 

8.1 Introduction 

Double soil-rock interfaces in this work are defined occurrences where a soil layer is 

contained between two rock strata. Soil thickness is relatively small, so that interaction 

between the two adjacent rock walls is possible. This interaction may make the shear 

strength of the system different to the shear strength of the soil itself or the single soil

rock interface. Particular examples of such interfaces which are of geotechnical 

interest are filled rock joints. The author has investigated and published the main 

findings of this research in a number of papers where relative information can be 

found. Three of these papers are listed below, and must be considered to be part of the 

thesis. Reprints are attached at the end of this chapter. 

No 1. Papaliangas T., Lumsden A.C., Manolopoulou S. and Rencher S.R. (1990). 

Shear strength of modelled filled joints. Rock Joints; Proc. Int. Symp. on 

Rock Joints, Loen, Norway (Barton N. & Stephansson 0., Eds), pp. 275-282. 

Balkema, Rotterdam. 

No 2. Papaliangas T., Rencher S.R .. & Lumsden A.C. (1995). Laboratory testing and 

parameters controlling the shear strength of filled rock joints. Discussion. 

Geotechnique 45, No 1, 175-183. 

No 3. Papaliangas T., Manolopoulou, S. (1995). Side resistance of bentonite-coated 

pile-rock interfaces. Proc. 11th ECSMFE, Copenhagen, Vol. 2, Bull. 11 , pp. 

107-112. 

In the following sections an outline of the shear behaviour of filled joints will be given, 

some recent result will be presented and some aspects of the shear behaviour will be 

discussed. 

8.2. Parameters affecting the shear behaviour of double soil-rock interfaces 

As with the single soil-rock interfaces both the properties of the soil layer and the 

adjacent rock walls affect the shear behaviour of double soil-rock interfaces. An 

additional effect arises from the geometry of the interface, i.e. the thickness of the soil 

layer as compared to the rock wall roughness. The effect of these parameters is briefly 

discussed below. 
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The obvious effect of a thin soil layer between two rock walls is to keep the two rock 

surfaces apart. If the soil thickness is smaller tqan the mean roughness amplitude of the 

rock walls, then contact between the two rock surfaces is possible after some shear 

displacement. The introduction of the soil layer between the two rock walls causes a 

reduction in shear strength in the following ways: a) by change of the frictional 

properties of the rock surface caused by the different value of particle friction. b) by 

reducing the micro-roughness, i.e. the effect of surface textural interlocking and c) by 

reducing the "effective roughness", i.e. caused by a continuous layer between the two 

rock walls. Consequently a certain amount of shear displacement is required for rock

rock contact to establish. 

The following factors were found to affect the shear behaviour of double interfaces. 

a) the nature and the shear strength of the soil alone when the thickness of the soil layer 

is large relative to the roughness of the rock wall and the failure path passes entirely 

through the soil. 

b) the shear strength of the interface when the thickness is large and the failure path 

passes entirely through the soil-rock interface. As shown in Chapter 7 the shear 

strength is usually lower than that of the soil alone. 

c) both the above, which is most common, when the failure path passes partly along 

the interface and partly though the infill. 

d) the strength and roughness of the rock walls and 

e) the thickness of the soil layer as compared to the surface roughness of the wall. 

Although not a definitive parameter, in filled joint practice the mean roughness 

amplitude (a) of a rock surface is commonly used to characterise roughness. 

An experimental investigation of the above parameters involved direct shear tests on 

modelled filled joints. These tests have been carried out on a large shear box especially 

modified to accommodate model filled joints up to 40 mm long (Figure 8.1 ). Various 

model joints, infill materials and rock model materials were used. The results from 

tests on a modelled rock joint with mean roughness amplitude 7 mm and as soil 

artificial material with round particles, namely pulverised fuel ash, are shown in Figure 

8.2. It can be seen that the shear strength of the interface is clearly lower than that of 

the soil alone. The influence of the roughness of the rock surface is demonstrated by 

the two shear ;trength envelopes nos. 5 and 6, of which the first corresponds to saw

cut rock surface/ PF A interface and the second to a smooth surface-PF A interface. The 

smooth surface was produced by direct casting against glass. The shear strength of the 

filled joint is always lower than that of the soil alone and higher than that of the 

interface, as shown in Figure 8.3, and this is so irrespective of the normal stress. similar 

observations have been made by Kanji (1970 and 1974). 



252 

(a) 
(b) 

1fGa!Q: 
1 )Trolley 2)Aock sample 3) Filling material 4)_5ample caners SJ Longitudinal teflon-coated wOOden 
stnps S)Transv~ teflon-coated wooden stnps 7)Defcrmable rubber piece B)Spacer 9)Sleel 
plate 1 O) Normal displacemem measurements 11 )Lateral horizomal displacemem measu 
and 12)shear displacemem measurements. remems 
S-Shear load, N-Normal Load 

Figure 8.1: Direct shear box set-up for testing filled joints 
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Figure 8.3: Comparison of peak shear strength of system components and peak shear strength 

of filled joint, with different values of relative thickness f/a. 
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The general shear behaviour of double interfaces with a granular soil infill is given by 

the typical fl a curves shown in Figure 8.4, where f is the thickness of the soil layer and 

a the mean roughness amplitude of the rock walls. 

The effect of the relative thickness fl a on peak shear strength is given in Fig.8.5 , where 

the striking difference between the behaviour of a granular soil and a weak wet clayey 

soil is obvious. The shear strength reduces with the relative thickness of the soil, and 

remains constant after a minimum value is reached. This value represents the minimum 

shear strength of the system which is usually a value between the shear strength of the 

interface and the soil alone. This is explained by the assumption that the failure path is 

partly along the interface and partly through the soil. The minimum value is reached 

when the soil thickness becomes equal to a critical value f cr;r which is approximately 

equal to the mean roughness amplitude ifcnr = a) in the case of clayey soils, but for 

granular soils, this is considerably higher. Values of f cr;r up to 2.3 times the mean 

roughness amplitude have been reported by de Toledo & de Freitas (1995), as shown in 

Figure 8.6. An explanation for this will be attempted later in this Chapter. 

Even when the thickness of the soil layer is very small a considerable reduction in shear 

strength may occur due to the alteration of the surface properties of the rock. This 

reduction maybe much higher for clayey soils or for granular soils with round particles 

which are prone to rolling when placed between two rock blocks with a spacing about 

the same as the particle diameter. 

8.3 The load bearing "grain bridge" model 

Mand! et al. ( 1970) observed that deformation within a granular mass in a rotary shear 

box is by continual and changing formation of grain ''bridges". Large fluctuations in 

the magnitude of stress at a given point within the soil were measured, which may be 

associated with the formation and destruction of such load-bearing bridges. Biegel et 

al. (1989) proposed a model to explain the shear behaviour of a simulated fault gouge, 

where it is assumed that the applied normal and shear loads are supported by a finite 

number of "grain bridges" which span the soil layer and carry the applied load. 

Rotation of a bridge increases the stress which it supports until it fails and the stress 

is supported by other newly formed bridges. Such structures have been described by 

Gallagher et al. (1974), Oda & Konishi (1974) and others. According to this model a 

grain bridge can fail in any of the following modes (Figure 8.8) : a) crushing of 

particles b) slip between particles c) slip along the interface and d) failure of the 

surface of rock. The contribution of each one of these four mechanisms to the overall 

deformation depends on various parameters such as normal stress, particle size 

distribution, the soil layer thickness, the roughness of the rock surface and the sliding 
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(a) (b) (c) (d) 

Figure 8. : Modes of deformation of a grain bridge: (a) tensile failure of a particle under 

compression; (b) slip between particles within the bridge; ( c) failure of the rock surface; and ( d) 

slip along the soil-rock interface ( after Biegel et al. , 1989). 

velocity. For a smooth interface, failure occurs along the soil-rock interface. For rough 

surfaces slip may occur anywhere within the bridge. The longer a grain bridge, the 

higher the probability of finding a weak link within it, and therefore the lower the 

observed coefficient of friction. 

A few direct shear tests were carried out on interfaces consisting of saw-toothed 

surfaces and a mass of 3 mm diameter steel rods placed on top. A specially designed 

transparent shear box 100x100x50 mm, developed by West (1992), was used. Detailed 

observations showed that during shearing, rods formed bridges between the bottom 

rock sample and the top platen of the shear box, which forms the upper boundary. The 

bridges start from the loading edge (right on Plate 8.1) and extend progressively to the 

rest of the specimen. As they advance, they rotate and after some shear displacement 

they collapse and new bridges are formed. During this continuous rearrangement, 

some rods may be found floating between the bridges, without carrying any load. Many 

of them are kept in place by the bridge action (i.e. contact at two point only) as shown 

in Figure 8.9. In tests were the saw-toothed surface was aluminium, only two from the 

four modes of failure suggested by Biegel et al. (1989), namely sliding along the 

interface and between rods, could be possible. Both of these pattem5 were observed as 

shown in Plate 8.1, where the deformation at an initial stage and after some 6 mm shear 
( 

displacement is shown. Note that after the initial rearrangement, the rods tend to form 

bridges at about 45°. Failure was taking place mainly along the interface by sliding and 

rolling or by sliding between rods. Note that movement along the interface, begins from 

the right and advances progressively to the left. Plate 8.2 is from a similar test where 

the saw-toothed surface was from the synthetic rock descnbed in Chapter 2. In this 

case tensile fracture of the rock teeth of the type shown in figure 8.6c occurs from 

right to left. These observations indicate that the stress state in the mass is not 

homogeneous and progressive failure occurs. Note also that the a number of rods in 
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Plate 8.1: Deformation of an assembly of 3 mm steel rods sheared on an aluminium saw

toothed surface under a normal stress of 400 kPa: 

(a) after I mm shear displacement. (b) after 6 mm shear displacement 

Plate 8.2: Tensile failure of teeth of a rock saw-toothed surface sheared with an assembly 

of 3 mm steel rods under a normal stress of 400 kPa 
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the valleys are almost untouched after some shear displacement. This agrees with the 

observation made in tests on sand/saw-toothed rock interfaces, already discussed in 

Chapter 7.5.4. 

A similar deformation pattern is also seen in Plate 8.3, which corresponds to an 

interface between Leighton Buzzard sand 3 ( see Chapter 7) and a saw-toothed surface 

made from the synthetic rock with inclination 30°. The interface was tested under 

normal stress of 400 kPa, and after the end of the test, the sample was unloaded and 

a thin resin was poured to occupy the spaces between the grains. After hardening, 

the sample was cut and the microphotograph shown was taken. Note that the grain 

bridges and the voids are aligned as previously, at an angle of about 45° to the plane of 

shearing. Mandi et al. ( 1977) measured the stress orientation within a granular mass 

in simple shear and found that the principal stress er, was inclined at 45±2° to the 

interface such that all planes parallel to the boundary are planes of maximum shear. It 

is believed that joints filled with granular material have shear strength higher than that 

of the soil alone even ifthere is no rock-rock contact, due to the mechanism described 

earlier. As the thickness of the soil increases so the bridge weakens and there is a 

thickness beyond which there is no any effect of the rock walls. 

The bridge pattern of deformation seems to occur also within the shear zone of planar 

rough interfaces. Plate 8.4 is from a single interface forn1ed between a rough planar 

surface (Chapter 7.5.4) and sand 3 tested under a normal stress of 400 kPa. The shear 

zone is seen clearly on the bottom (right) about 4 grains thick above the rock surface 

(grey coloured). Grain bridges are seen to link the rock surface with the soil mass 

above the shear zone. It seems that these bridges continue well beyond the shear band 

boundary. Therefore this mechanism appears to be a typical one at least for the 

materials tested. 

8.4. Critical thickness of soil layer 

The question now is what is the magnitude of the soil thickness beyond which the rock 

walls have no any effect. A simple estimation can be made if we consider the thickness 

of the shear band which is formed when granular materials are subjected to shearing. 

Measurements of the shear zone in some tests on single soil-rock interfaces were made 

and the results are shown in Figure 7.18, together with results from other researchers. 

The case of double interfaces is not exactly the same as the single rock-soil interface, 

where the failure plane may be well defined. The state existing in a soil is more 

appropriate. The effect of the rock walls will diminish when the distance between them 

is such that the shear zone within the soil does not reach the rock walls (Figure 8.9). 

According to Roscoe (1970) the thickness of the shear band is about 10 times the mean 
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surface under a normal stress of 400 kPa 
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Plate 8.4: Deformation near a single interface between a rough planar rock surface and sand, 

tested under a normal stress of 400 kPa. 
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diameter of the soil. Wernick (1979) suggested 14 times the mean diameter, whereas 

Muhlhaus & V ardulakis (1987) and Bridgwater ( 1980) predicted similar values. If this 

value is accepted, then the critical relative thickness will be given by 

where D50 is the mean diameter of the soil and 

a the mean roughness amplitude of the joint. 

For cohesive materials 

(8.1) 

(8.2) 

Where the roughness amplitude is 20 times the mean diameter of the soil, equation 

(8 .1) predicts a value of 1.50 for the critical relative thickness, which is a value quite 

commonly found in the literature. The results shown in Figure 8.6 , from de Toledo & 

de Freitas (1995) correspond to tests on saw-toothed surfaces with a mean roughness 

amplitude a = 1.6mm and infill with a mean diameter of 0.2 mm. From equation 8.1 

the value of ifcrila) is 2.25. The above authors mentioned a value of 2.3. The relation 

does not take into account the inclination of the asperities, which is at least equally 

relevant to shearing as is the roughness amplitude. However, given the uncertainties of 

the problem and the current practice of using only the roughness amplitude to describe 

roughness, it can be considered as an adequate approximation The very good 

agreement with the experimental results is an indication that it may be applicable in 

general, and this may be proved quite useful in predicting the shear strength of infilled 

joints, by eliminating one unknown in the from the existing empirical criteria. 

8.5. Empirical criterion for peak shear strength of filled joints 

An empirical criterion was developed which can be applied in the case of double soil

rock interfaces, with the soil layer consisting either granular or clayey material. 

Detailed description of the criterion is presented in the accompanying papers. 

There is a debate on the shape of the shear strength - relative infill thickness envelope 

The empirical criterion gives an envelope of exponential form concave upwards (Figure 

8.10) De Toledo and de Freitas (I 993) presented data which show that the opposite 

may occur and a discussion on this matter is presented in Paper No 3. From Figure 8.7 

they used the curve corresponding to a normal stress of 25 kPa to indicate that this is 

true also for data presented by the author. However, these data correspond to a thin 

layer of an artificial material (PF A) with spherical particles, which was tested between 

two rock walls. Obviously, the constant values for the shear strength obtained in the 
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low range off/a, are due to rolling, as mentioned in our original paper, and they do not 

reflect the general behaviour of frictional layers, as many experimental results indicate 
' 

including those shown in Figure 8.7 from de Toledo & de Freitas (1995). 

The relevance of the double soil-rock interfaces to the case of concrete bored piles 

covered with a layer of bentonite is discussed in Paper No 3, where an illustration of 

the application of the empirical criterion is given . 

8.6. Summary 

An outline of the shear behaviour of double rock-soil interfaces was presented. 

Deformation mechanisms were studied by means of transparent shear box. Grain 

bridges spanning the two rock walls were observed, under various conditions. This 

deformation mechanism is of primary importance and explains the geometrical effect of 

the rock walls on the shear strength of a double interface where the thickness of the 

soil layer is thick enough not to allow contact between the adjacent rock walls. A 

simple expression was derived for the estimation of the critical thickness of the soil 

layer beyond which, the rock walls do not affect the shear strength of the interface. 
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8. 7 Published work on shear behaviour of filled joints 
Rock Joints. Barton & Stephansson {eds)© 1990 Balkema, Rotterdam. ISBN 90 6191 109 5 

Shear strength of modelled filled rock joints 

T.Papaliangas 
Department of Earth Sciences, Universiry of Leeds, UK 
& Department of Civil Engineering, Technowgicai Education Instirute, Thessaloniki, Greece 

A.C.Lmnsden & S.R.Hencher 
Department of Earth Sciences, University of Leeds, UK 

S.Manolopoulou 
Department of Civil Engineering, Arist.oteiian University, Thessaloniki, Greece 

ABSTRACT: The experimental results of direct shear tests on models of rock joints with 
two different mean roughness amplitudes (a) and using pulverised fuel ash (PFA), marble 
dust and kaolin as infill show that the shear strength decreases with increasing infill 
thickness (f). For kaolin-filled joints, shear strength reduced by 507. from that of the 
clean joint with f/a as low as 0.1 and continues to decrease slowly with increasing 
f/a. For frictional infill, decrease in shear strength is much less rapid and overall 
loss of strength is much smaller. The lowest strength of the infilled joint system lies 
between the strengths of infill alone and the fill-rock interface. This minimum shear 
strength is approached when f/a approaches 1.0 for kaolin and 1.5 for marble dust and 
PFA. A simple empirical relation is derived from the experimental results and is 
proposed for the prediction of the shear strength of infilled joints. 

1 INTRODUCTION 

The most obvious effect of a filling 
material is to separate the discontinuity 
walls and thereby reduce rock-rock 
contact, but shear strength will also be 
influenced by the surface texture, the 
nature of the filling material itself and 
the characteristics of the wall-fill 
interface. Because of the lack of 
reliable and realistic theoretical or 
empirical relationships and the 
difficulties in obtaining and testing 
representative samples, engineers 
generally rely on judgement, often taking 
the shear strength of the infill itself on 
the assumption that this is a conservative 
lower bound. The results of a systematic 
study of the shear behaviour of infilled, 
rough discontinuity models are reported in 
this paper. Models were used to ensure 
uniform geometrical and strength 
characteristics throughout the test 
programme. The number of variables was 
reduced by using a dry cohesionless fill 
material and shearing the system at 4 
different normal stress levels. To 
provide data for comparison, a second 
model material with different properties, 
representing a second rock type, was 
prepared and sheared with different 
filling material under one normal stress. 

2 EXPERIMENTAL PROCEDURE 

Impressions of 2 natural coarse grained 
sandstone (Millstone Grit) discontinuity 
surfaces were prepared using VINAMOULD 
9525 (hard variety), a rubber hot melt 
compound, and used to cast joint surface 
models. The specimens were obtained from 
Bramhope Quarry, West Yorkshire. 
Roughness profiles are shown in Figure 1. 
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Fig. 1 Profiles of joint surfaces 
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Joint roughnesi coefficients are 10 and 
8 for joints A and B respectively. The 
mean roughness amplitudes determined as an 
average from the profiles according to 
I.S.R.M. recommendations (1981) were found 
to be 7.0 mm for joint A and 6.0 mm for 
joint B. Details of the procedure used to 
prepare filled model joints are given by 
Bandis (1980), Bandis et al. (1981) and 
Papaliangas (1986). Extrusion of fill 
during shearing occurred only to a very 
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limited extent and then only when fills 
were thick and under high normal stress. 
Ratios of fill thickness (f) to mean 
roughness amplitude (a) of between 0.05 
and 2 were used. The test programme 
consisted mainly of shearing 
discontinuities filled to several thick
nesses of filling material under a range 
of normal stresses. For joint A with PFA 
infill, the normal stresses used were 25, 
50, 75 and 100 kN/m2, and for joint B with 
marble dust or kaolin, the normal stress 
was 50 kN/m2• Preliminary tests were 
carried out to determine the shear 
characteristics of the clean 
discontinuities, saw-cut planar surfaces 
of the model material, the filling 
material alone and the interfaces between 
rock and infill material. 

The purpose-built shear box for testing 
model materials provides shear and normal 
loads up to 8 kN and accomodates specimens 
up to 400 mm in l~ngth. A maximum stress 
of about 170 kN/m could be applied to the 
specimens which were 120 mm wide x 250 mm 
long. The maximum shear displacement was 
36 mm, i.e. 157. of the specimen length. 
Constant shear rate was 0.4 mm/min. The 
shear load was measured by means of a 5 kN 
proving ring, and shear, normal and 
lateral displacements were recorded 
throughout the tests. 

3 PROPERTIES OF MATERIALS 

3.1 Hodel material 

Two different multi-component model 
materials were used for modelling the 
discontinuities: A was plaster based and B 
was cement based. The measured properties 
for A and B respectively are: density 1.85 
and 2.23 Hg/m3; unconfined compressive 
strength 3.5 and 6.0 HN/m2; Young's 
Modulus 0.6 and 2.0 GN/m2; friction angle 
of saw cut, planar surfaces 30.0 and 33.0 
degrees. 

3.2 Shear strength of moael joints 

Results of direct shear tests on joints A 
and Bare presented in Figure 2 and Figure 
3 respectively. 

Peak strength data are presented both 
uncorrected (as measured) and with 
stresses corrected for dilation as 
proposed by Hencher and Richards (1989). 
The corrected data points describe 
essentially frictional behaviour, once 
dilation is accounted for, with a friction 
angle of 39 degrees (A) and 38 degree~ (B). 
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Fig. 2 Shear strength evelopes for joint 
A and PFA 

As discussed by Hencher (1987) and Hencher 
and Richards (1989), that corrected value 
will include a component due to surface 
textural interlocking (non-dilational). 
Tests on smoother textured saw-cut surfaces 
define a much lower friction angle of 30 
degrees. 

3.3 Infill material 

Pulverised fuel ash (PFA) from Eggborough 
Power Station, South Yorkshire, was used 
as infill material for joint A. PFA is a 
non-cohesive, fine-grained material with 
almost spherical particles of glass, 
specific gravity of 2.39 Hg/m3 and mean 
particle diameter 10 micrometres. Marble 
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Fig. 3 Shear strength envelopes for joint 
B, marble dust and kaolin 
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dust and kaolin were used with joint B. 
Marble dust was used as a denser frictional 
material with angular particles and kaolin 
with a moisture content of 507. was used as 
weak non-frictional infill. Full details 
of composition, grain size, etc. of the 
infill materials can be found in 
Papaliangas (1986) and Manolopoulou (1990). 

The shear strength of the PFA was 
determined by placing a thick ·layer 
(200-400 mm) between flat surfaces of the 
model majerial and consolidating under 
200 kN/m for one hour before shearing. 
Results are presented in Figure 2, 
together with results obtained from 
shearing model/fill interfaces for two 
types of joint wall surface, the first 
using planar saw-cut surfaces, the second 
using smooth surfaces (formed by pouring 
the model material against a glass plate). 
In both cases the interface sh~ar strengths 
were below that of the PFA itself, which 
suggests that in infilled joints the 
weakest part of the system may not a l ways 
be within the fill material . The tests 
involving the use of PFA all resulted in 
linear strength envelopes with apparent 
negative intercepts (extrapolated) on the 
shear strength axis. The explanation is 
probably that used by Hencher (1977) i.e. 
uplift pressure cause by trapped air. 

The shear strengths for marble dust and 
kaolin are presented in Figure 3. 

4 EXPERIMENTAL RESULTS 

Normal and shear stresses were calculated 
from normal and shear loads divided by the 
gross area of contact adjusted for shear 
and lateral horizontal displacement. The 
data were corrected for dilation in the 
manner described by Hencher and Richards 
(1989), as mentioned earlier. 

Correcting data to remove the effect of 
dilation, which is a sample variable, 
allows the fundamental basic shear 
strength to be measured. Considering the 
tests reported here, for cohesionless 
filling materials the values represent the 
shear strength due to internal friction 
only, and for a filled joint the shear 
strength under conditions of constant 
volume during shearing. Because of the 
variation in dilation angle, correction of 
the data produced considerable variation 
in normal stress values which were 
normalised and referred to a common 
nominal normal stress, i.e. the normal 
stress at the beginning of the test. 

Shear stress-horizontal displacement 
curves for joint A with ~FA infill, with 
normal stress at 75 kN/m and corrected 
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Fig. 4 Shear stress - shear displacement 
graphs for PFA infilled joint A ( corrected 
for dilation) 

for dilation are shown for illustration in 
Figure 4. These curves show that under 
shear the infilled joint may behave in 
various ways, primarily according to the 
ratio of fill thickness to roughness 
amplitude. Various aspects of this 
behaviour are discussed below. 

4.1 Shear strength 

Peak shear strength is defined as the 
maximum shear strength at any stage in the 
test. Peak shear strength is mobilised at 
different shear displacements, according 
to f/a ratio. For clean joints shear 
strength rose to a clear peak followed by 
a steady decline to an almost constant 
(residual) value with shear displacement 
(corTected data). For thin infills, the 
peak is still relatively sharp and occurs 
afteT small shea·r displacement, but with 
increasing f/a the peak becomes less well 
defined and generally occurs after greater 
displacements. For joint A with PFA 
infill the variation of peak shear strength 
with the ratio f/a is shown in Figures 5 
and 6. It can be seen that, for example, 
at a normal stress level of 50 kN/m2 the 
strength is reduced to just over 807. of 
that of the clean joint for f/a = 0.10 and 
to 457. for f/a = 0.50. For joint B with 
marble dust infill at the same normal 
stress, Figure 7, shear strength reduces 
at a similar rate as for joint A and PFA, 
but for joint Band kaolin infill the 
strength is reduced by almost 507. for f/a 
of only 0.10. Similar results for clay 
infilled joints have been reported by Lama 
(1978) . 
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For joint A/PFA and B/marb~e dust, ·peak 
shear strength approaches a constant 
minimum value for f/a between 1. 25 (low 
normal stress) and 1. 50 (higher normal 
stress). For B/kaolin, peak shear 
strength approaches a constant minimum 
when f/a. o.6. 

In the joint A/PFA system, for high f/a 
ratios and high normal stress levels, 
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residual shear strength of PFA filled 
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measured shear strengths were lower than 
that for the PFA alone. 

Residual shear strength is taken here as 
the shear strength at maximum shear 
displacement, although the term is perhaps 
misleading because of the strain hardening 
behaviour observed in many tests. 
Residual shear strength is plotted against 
the ratio f/a in Figure 8. For f/a > 1, 
where the influence of rock walls is 
unlikely to be significant, residual shear 
strength is almost constant and would be 
unlikely to decrease further with 
continued shearing. 
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4.2 Shear stiffness 

Shear stiffness is defined as tn~ initial 
tangent to the shear stress - shear 
displacement curve. The variation of 
shear stiffness with the -thickness of the 
filling material for PFA filled joint A 
for tests carried out with normal stress 
at 50 kN/m2 is shown in Figure 9. The 
data indicate essentially constant 
stiffness for thin infills (f/a < 0.25) 
followed by a decrease for thicker 
infills. 
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Fig. 9 Variation of shear stiffness with 
infill thickness. Joint A/PFA 

4.3 Normal displacement 

Representative normal displacement - shear 
displacement graphs are shown in Figure 
10. Tests carried out under low normal 
stress or with thin infill were dilatant, 
whereas tests at higher normal stress and 
with thicker infill were compressive. At 
low shear displacement, joints with thin 
infill showed slightly less compression 
than the unfilled joints. This is due to 
the filling material occupying the space 
between the imperfectly matching joints, 
limiting the initial closure and is more 
evident for tests carried out at higher 
normal stresses. The dilation angle at 
peak shear strength for different f/a 
ratios is shown in Figure 11, indicating a 
change in behaviour from dilatant to 
compressive for f/a > 0.25. Rather 

.... tr> • 75 kJf/■2 
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Fig. 10 Normal displacement-shear 
displacement curves for different f/a 
ratios. Joint A/PFA 

surprisingly, there is apparently no c lear 
relationship between dilation ang l e and 
normal stress level over the range of 
stresses used in this test programme • 

5 DISCUSSION 

Typical shear behaviour of the filled 
joints tested in this study is illustrated 
in Figure 12. Joints with very little 
fill show a clear early peak strength 
followed by a residual strength of similar 
value (curve 2). As the thickness of the 
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Fig. 11 Effect of infill thickness on 
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infill increases, the peak disappears and 
a gradual change of slope in the init i al 
part of the shear stress-shear 
displacement curve is observed wi th a 
maximum shear stress at a relatively large 
(20-25 mm) displacement (curve 3). Wi th 

thicker layers of filling material the 
joint shows a strain-hardening behaviour 
with maximum shear stress at maximum shear 

bi S residual value displacement and no o v ou 
which is then taken as equal to shear 
stress at maximum shear displacement 
(curve 4). When the thickness of infill 
approaches mean asperity amplitude a 
residual value is usually reached at 
relatively small shear displacements (5 to 
10 mm, depending upon the normal stress). 
When the infill thickness is greater than 
mean asperity amplitude the shear stress
shear displacement graph shows a small 
initial peak followed by a constant 
residual value (curve 6). While these 
results are considered of general intereS t 

and illustrative of the true behaviour of 
naturally infilled joints, the behaviour 
might be expected to be affected by the 
detailed morphology of the discontinuity 
walls and not simply the ratio f/a. 

Generally, the shear strength decreases 
with increasing fill thickness and lies 
between a maximum value, which is the peak 
strength of the same unfilled joint, and a 
minimum value which is in the st reng th 

range between filling material and the 
shear strength of the rock-fill interface. 
The filling material may reduce shear 
resistance of a joint in the following 

ways: 
1. Reduction of the micro-roughness/ 

change in surface texture (surface 
textural contribution - non dilational). 
The particles of filling material will 
occupy the spaces between the coarser 
grains of the j oint rock walls, hence 
altering surface texture and reducing peak 
shear strength. 

2, Change in frictional properties, 
Occupation of spaces between coarser 
grains of the rock walls by filling 
material may change the basic frictional 
properties of the shear surface. An 
increase or decrease will depend upon the 
relative values of particle friction, and 
this may have played a particularly 
important role in the very marked decrease · 
in strength noted for joint B with thin 
layers of kaolin infill. The introduction 
of a layer of freely mobile particles 
may cause a reduction in friction due to 
rolling, and this must be a particularly 
important consideration for fillings like 
PFA which have round particles. 

3. Reduction of the "effective 
roughness". The presence of fill will 
change the geometry of the shear surface, 
allowing shear displacement with lower 
dilation than for the clean discontinuity, 
The effect is greater with increasing f/a. 
For idealised discontinuity geometry, 
when the thickness of the fill is greater 
than the mean roughness amplitude, 
rock-rock contact does not normally occur 
and the internal failure planes through 
the fill and/or along the interfaces are 
free to form with minimal influence of the 
rock surface asperities. However, for 
this series of tests it should be noted 
that whenever f/a > 0,28, behaviour was 
non-dilatant, which may be taken as 
indicative of the loss of the influence of 
surface morphology with the effective 
roughness amplitude being much lower than 
the mean amplitude as otherwise defined. 
For thick layers of infill, when f/a > 
1.0, almost all tests showed shear 
strength of the filled joint less than 
that of the infill but higher than that of 
a planar rock-fill interface. These 
results are explained by the laboratory 
observation that the failure plane 
developed partly along the interface and 
partly through the infill. 

6 PROPOSED EMPIRICAL RELATION 

Using the results of these tests the 
relationship shown in Figure 13, expressed 
in terms of percentages of stress ratios, 
is proposed for the prediction of the 
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Fig. 13 Proposed empirical relation 
between shear strength of infilled joints 
and ratio f/a 

shear strength of filled rock joints. 

µ = ( )n µmin+ µmax - µmin ' 
( 1) 

where µ = (T/o ) x 100, µm = (Tmax/ o) 
x 100, µ = (T /a) x i~o and n is a 
functionm~¥ the ~ir1ing thickness: 

n = (1 - 1/c (f/a)]m ( 2) 

for 0 < f/a < c, where f = thickness of 
filling material, and a= mean roughness 
amplitude of the discontinuity . 

Tmax is the maximum shear strength of 
the system which is the same as the peak 
shear strength of the same joint unfilled. 
Tmin is the potential minimum shear 
strength of the system for a critical 
thickness of infill, which varies with the 
thickness of the rock walls and the normal 
stress. Ti may be the strength of the 
fill of th! ~hear strength of the rock
fill interface. For rough, undulating 
Joints or strongly stepped discontinuities 
it is reasonable to assume Tmin equal to 
the shear strength of the fill, but for 
planar or slightly und_ulating 
discontinuities Ti will be equal to the m n 
strength along the interface, which is 
often lower than the shear strength of the 
infill. 

The constant c, which is the critical 
ratio f/a for minimum shear strength of 
the system, Figure 13, depends on the 
properties of the filling material, the 
normal stress and the roughness of the 
joint surface. For the tests reported 
here the value of c can be taken as 1 . 5 
for PFA and marble dust, and 1.0 for 
kaolin. 

From the curves shown in Figures 5, 7, 
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Fig. 14 Application of proposed relation 
on published data (Lama, 1978) 

t 

and 8 the values of m, which indicates the 
rate of decrease in shear strength with 
increasing filling thickness, are 1.0 and 
0.75 for peak and residual shear strengths 
respectively for joint A/PFA and 1.5 and 3 
for the peak shear strengths of joint 
B/marble dust and joint B/kaolin. 

The proposed relation can be applied for 
peak and residual shear strength, using 
the appropriate values for µmax and µmin" 
For f/a = 0, µ = µm x which gives the peak 
shear strength of t~e clean joint. As the 
ratio f/a increases the curve tends to 
µmin' where f/a = c. When the above 
equation is applied with f/a = c, which is 
the upper limit for f/a, the result is an 
over-estimation of strength by 17. ofµ • 
The above relationship provides a goodmin 
fit to th~ experimental data on rough, 
infilled Joints presented by Lama (1978), 
with cs 1 and m = 3, as shown in Figure 
14. 

7 CONCLUSIONS 

The tests reported here were carried out 
on carefully scaled models and indicate 
that the shear strength of a joint 
infilled with frictional material will 
fall somewhere between the shear strength 
of the clean joint and the minimum shear 
strength of the system which is 
particularly difficult to determine as in 
some cases shear resistance along the 
interface between fill and rock wall will 
be lower than that through the fill 
material itself. 

Friction coefficients (peak and 
residual) are expressed as percentages and 
may be predicted by an equation of the 
form: 
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µ=µmin+ (µmax - µmin)n 

whereµ is the friction coefficient (i.), 

µ~ax is the friction coefficient for the 
clean discontinuity, µmin is the minimum 
for the system, and 

n • (1 - 1/c [f/a])m, 

where f/a is the ratio of infill 
thickness to asperity height, and c and m 
are experimentally derived constants. 

The shear stiffness is essentially 
constant for thin infills, f/a < 0.25, and 
decreases for thicker infills. 

The dilation angle at peak shear 
s-trength indicates a change in behaviour 
from dilatant to compressive for f/a 
> 0.25. 
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DISCUSSION 

Laboratory testing and parameters controlling 
the shear strength of filled rock joints 

P. E. C. DE TOLEDO and M. H. DE FREITAS (1993). Geotechnique 43, No. 1, 1-19 

T. Papaliangas, University of Leeds and Techno
logical Education Institute, Thessaloniki, Greece, 
and S. R. Bencher and A. C. Lumsden, University 
of Leeds 

The Authors provide an account of the param
eters affecting the behaviour of infilled rock joints 
when subjected to shear. Results of rotary shear 
box tests on an idealized saw-toothed joint infil
led with overconsolidated clay show the different 
influences of the rock walls and the infill material 
on shear behaviour. On the shear stress
displacement diagram in Fig. 10 two peaks are 
observed: the first relates to yielding of the infill 
at an early stage and the second apparently 
results from contact with the rock walls. We offer 
some explanation for these results and discuss 
their relevance to the shear strength of rough, 
natural infilled joints. 

The data in Fig. 21 indicate that the peak shear 
strength of the unfilled joint is reduced by about 
40% by the introduction of only a thin (about 
0· 13 mm) infill. Similar results, partly reproduced 

_ as Fig. 19, were presented by Papaliangas, 
Lumsden, Hencher & Manolopoulou (1990), who 
attributed a reduction of almost 50% in strength 
to a fundamental change in frictional properties 
of the shear surface by the introduction of kaolin. 
Such a reduction is not usually seen with granu
lar infills unless the particles are rounded, in 
which case a considerable decrease in strength 
may be observed as a result of rolling friction 
(Papaliangas et al., 1990). 

Unfortunately, except for those shown in Fig. 
21, the Authors do not provide any new data. 
Nevertheless, they propose a model (Fi~. 22) 
Which, it is suggested, is general and apph~a~le 
for all types of infill (clayey or granular) and JOmt 
(regular saw-toothed or natural rough). There is 
little discussion of the origin or physical meaning 
of the various parameters. Furthermore, the pro
posed general relationship 'l ...... <Punfilled + <Psoil 

- </>b . seems to be of questionable use when 
sever;i'ctata sets for the shear behaviour of filled 
joints indicate that ,

2 
_,. , 1 (Figs 14 and 18-20). 

In order to understand any differences between 
the behaviour of filled natural rough and ideal
ized saw-toothed joints it must first be accepted 
that the ratio of thickness of infill to mean rough-

175 

ness amplitude t/a is by itself unlikely to account 
for variations in shear behaviour, just as it is not 
reasonable to try to predict the behaviour of a 
rough unfilled joint solely from the mean rough
ness amplitude a. The frictional behaviour 
between sliding rough surfaces will be influenced 
by the number, shape and distribution of the 
peaks on the surfaces (Halling, 1978). In the case 
of a regularly saw-toothed joint, the number, 
shape and distribution of peaks remain 
unchanged as the infill thickness increases 
whereas they change dramatically in the case of 
rou~ natur~I jo_ints for _which there is a relatively 
rapid reduction m effective roughness (the equiva
lent of bearing areas of Abbot & Firestone, 1933) 
with increasing infill thickness (Papaliangas et al. 
1990), as shown in Fig. 23. ' 

Differences in shear behaviour for regular and 
irregular joints can be related to the areas of 
damage to the two rock walls during shearing. To 
investigate the area of damage for saw-toothed 
joints, a few direct shear tests were carried out in 
a Golder Associates shear box (Hencher & 
Richards, 1989). Before shearing the two sample 
halves (unfilled) were brought into contact, but 
with asperity tips and troughs separated by a ver-

(a) 

(b) 

Fig. 23. Bearing area diagrams: (a) saw-toothed surface· 
(b) irregular rough surface ' 
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t la = 0-66 

Fig. 24. Damaged areas for different ratios of t /a for a 
regular saw-toothed joint 

tical distance t . With this special test arrangement 
the pure geometrical effect of the rock wall 
separation for saw-toothed joints can be seen. 
After shearing, areas of damage to asperities were 
measured (Fig. 24). Areas of joint wall damage 
were also measured for natural rough joints filled 
with pulverized fuel ash of various thicknesses of 
infill (Fig. 25) ; the results are given in Fig. 26 for 
comparison with those from saw-toothed sur
faces . It is clear that, with increasing infill thick
ness, the reduction in rock wall contact is more 
rapid for natural rough joints than for saw
toothed joints. Consequently, the critical thick
ness of infill t 0,i, at which the rock walls cease to 
affect strength is smaller for natural rough than 
for saw-toothed surfaces. This also explains why 
the step in the shear strength envelope at t = a 
reported in the Paper is not seen in the case of 
natural rough joints. 
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In the case of the saw-toothed surfaces, the 
relationship between area of damage and t/a is 
convex upwards, which is similar to the plot of 
shear strength against t/a achieved by the 
Authors. The equivalent curve for infil!ed, natural 
rough discontinuities obtained by many 
researchers is concave, which in turn relates to 
the curve for wall contact area against t/a. Other 
workers using saw-toothed joints have also pro
duced results which are concave upwards. The 
unique results of the Authors can probably be 
attributed to the relatively high contrast in 
strength and stiffness between rock walls and 
infill used in their tests. 

It is commonly observed in tests on joints with 
clayey infills that the shear stress-displacement 
diagram has two different portions ; the first 
reflects the dominant influence of the shear char
acteristics of the infill at the early stage of the test 
and the second shows the increasing influence of 
the rock walls during later stages. However, two 
distinct peaks are seldom seen. In the tests carried 
out with kaolin infill (Papaliangas et al., 1990) 
such behaviour was seen in only one test, 
although in other tests the two portions (infill and 
wall influenced) in the shear stress-displacement 
diagram were generally clear. For frictional infills 
the shear stress-displacement diagram was 
always smooth and the soil and wall-influenced 
zones could not be distinguished. For a natural 
rough joint, generally the infill itself will produce 
a clear peak only when it is thick enough to mask 
the roughness of the rock walls. A second clear 
peak arising from the influence of the rock wall 
contact is therefore unusual, progressive strain
hardening being more common. 

Further examples are given by de Toledo & de 
Freitas (1992) who report that clear soil peaks 

• 

Natural joint 

• 

Normal stress 
• u = 25 kPa 
• u = 50 kPa 
■ u = 100 kPa 
• u = 500 kPa 

Saw-toothed 
joint 

Relative infill thickness t/a 

Fig. 26. Reduction in damaged area with t/a for natural 
and saw-toothed joints 

~ere not ?bse~ved in tests on saw-toothed joints 
mfilled with either normally consolidated Gault 
clay or ~layey sa~d. :inese results (Fig. 27(a)) are 
for medium to thick mfills and are very similar to 
the relevant general curves (curves 3-6 in Fig. 
27(b)) proposed by Papaliangas et al. (1990) and 
Papaliangas, ~encher, Lumsden & Manolopou
~ou (1993) for irregular rough joints with granular 
mfill. The peak shear strength-infill thickness 
enve_lope from de Toledo & de Freitas (1992) (Fig. 
28) 1s concave upwards (with r 2 -+ r ) and not 
convex (with 1"2-+ ¢unfilled+ ¢soil - ¢~ .. ;J, as is 
propos~d to be the general case in the Paper. The 
model 1~ the Pa~~r may perhaps be valid only for 
the special condition of a saw-toothed joint with 
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Fig. 27. (a) Shear stress-displacement curves for nor
mally consolidated joint filled with clayey sand (after de 
Toledo & de Freitas, 1992); (b) typified shear stres£
displacement curves for natural rough joints with granu
lar infill (after Papaliangas et al., 1990, 1993) 
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Fig. 28. Peak shear str- of saw-toothed joint filled with 
clayey sand plotted against iofi)l tbickn- for two over
consolidation ratios (after de Toledo & de Freitas, 1992) 
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Fig. 29. Empirical model for the prediction of the shear 
strength of filled joints ( after Papaliangas et al., 1990, 
1993) 

overconsolidated clayey infill tested in the ring 
shear box. 

In summary, various well-d'?c~mented _aspects 
of shear behaviour of infilled JOmts, particularly 
those of natural roughness, do not comply with 
the model proposed in the Paper based _on results 
from saw-toothed joints infilled with over-
consolidated clay. . 

As suggested by the Authors, the mfill-rock 
wall interface may often represent the weakest 
part of a filled joint system. In an empirical model 
proposed by Papaliangas et al. (1990, 1993) for 
the prediction of the shear strengt~ of a ~led 
rock joint, this aspect was given s1:1ec1al ~ons1der
ation. This simple model (Fig. 29) 1s apJ_>hcable to 
all infilled joints regardless of the. thickn.ess of 
infill and not solely to the interfenng region as 
reported by the Authors. The model has the form 

where 

µ = -r/a(%) 

.. 
a. .,. 
£ 
g> 
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Fig. 30. Application of the empirical model shown in Fig. 
29 to different sets of data: (a) rough joints filled with 
marble dust and kaolin (after Papaliaogas et al., 1990); 
(b) rough joints filled with kaolin (after Lama, 197B) 

µmu= 'maJa(¾) 

µmin = 'tm;,,/a(¾) 

n = [1 - (1/c)(t/a)]'" 

and -r is the shear strength of the filled joint -r 
is the potential maximum shear strength df tfi~ 
same joint (i.e. the peak shear strength of the 
same joint without infill), 'tmin is the potential 
minimum shear strength of the infilled joint (i.e. 
the peak shear strength of the infill itself or of the 
rock wall-infill interface or an intermediate 
value), tis the thickness of the infill, a is the mean 
roughness amplitude of the joint, c is the critical 
t/a at which -r/-rmin and m is an experimentally 
derived constant. 

The critical thickness ratio c varies with the 
nature of the infill, the roughness of the rock 
walls and the normal stress. Experimental results 
indicate that in practice c can be taken as 1 ·0 for 
clayey infills and 1·5 (in the range 1·2-2·0) for 
granular infills. 
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The constant m depends on the degree to which 
the frictional properties of the rock surface are 
altered by the introduction of a thin layer of infill. 
It is higher for clayey infills (lubrication effect) 
and lower for frictional infills. For the granular 
materials (marble dust and pulverized fuel ash) 
reported by Papaliangas et al. (1990) m may vary 
within the range l ·0-1 · 5, whereas for clayey infills 
m varies between 2 and 4. Applications of this 
model for rough joints filled with marble dust 
(c = 1·5, m = l·0) and kaolin (c = l, m = 3) are 
shown in Fig. 30. The two different data set~ for 
kaolin infill fit the same values of c and m, irre
spective of the normal stress; the two frictional 
infills have the same values for c and m. 

Authors' reply 
For many practical purposes the shear strength 

of infilled surfaces is taken as the strength of the 
infilling itself, in either its drained or undraiz:e~ 
condition according to the circumstances az:t1cr
pated, even though the interface between the mfil
ling material and the rock surface can have a 
strength that is lower than that of the infill itself. 
Attempts to improve this state of knowledge have 
concentrated on the ratio of infilling thickness t 
to the amplitude of surface roughness a, although 
neither parameter can be measure_d adequ~tely 
for many field situations and the ratio t/a by itself 
is an incomplete measure of the parameters 
involved. 

All experimental work has shown the general 
trend of decreasing shear strength with increasing 
values of the ratio t/a. Powerful though such 
empirical approaches are in providing a value of 
immediate relevance to the problem in hand, they 
usually prove Jess useful for revealing the mecha
nics of the system they quantify and, as stated in 
the introduction to the Paper, our work, which 
was based on the performance of 61 tests, was 
~esigned to investigate the mechanisms involved 
in the failure of an infilled joint. 

The Paper, which records work done indepen
dently from that of Papaliangas et al. (1993), 
shows significant agreement between the factual 
results obtained; in many respects the two data 
sets are complementary. 

Rock failure 
One of the difficulties with this work is knowing 
how to separate the relative contributions of soil 
deformation and asperity interaction from the 
overall result of shear strength at a given dis
placement. This cannot be done easily using 
natural joints and was one reason why we did not 
USe them. Rock asperities rarely fail as shown in 

Fig. 23 unless the rock is exceedingly weak: they 
fail in tension. This creates an arcuate failure 
surface which separates the top of an asperity 
from its root and permits the separated fragment 
to rotate forward on its toe, so generating a ten
dency for severe vertical dilation at the moment 
of peak shear stress. Such behaviour occurs in the 
shearing of both natural and sculptured surfaces; 
examples of the latter are given by Xu & de 
Freitas (1988). 

Rock asperity failure is by no means uniform in 
its occurrence, even for sculptured surfaces; the 
sequential nature of the damage caused to rock 
surfaces is shown by Pereira & de Freitas (1993) 
(Fig. 31). 

Failure envelopes 
Figures 21 and 22 show, as others have shown 

previously, that for a given asperity angle fl the 
peak shear strength of an infilled joint increases 
as the thickness of infilling decreases, and that the 
shear strength obtained for a rock joint of given 
roughness will depend on the grain size of the 
filler; it will be lowest for clays and increase with 
increasing granularity. 

For infilling material with an overconsolidation 
ratio of greater than unity there is a clear double 
peak in shear strength when other factors
principally asperity contact--<io not combine to 
disguise its presence. The first peak-that of the 
infilling material-increases its contribution to 
the shear strength at small displacements with 
decrease in its thickness. However, this contribu
tion cannot continue indefinitely, and for the sur
faces we tested its presence becomes 
indistinguishable from that of the second peak 
below a relative thickness t/a of about O· l. 

The second peak is controlled by asperity 
contact. When this occurs the shear strength 
rapidly increases towards that defined by their 
failure, shown as the envelope for rock peaks in 
Fig. 21. A dramatic rise in shear strength occurs 
as soon as any trace of infilling is removed from 
the sliding surfaces (see the highest values of shear 
strength: 2200-2400 kPa). 

The validity of such results for natural surfaces 
has been questioned and Fig. 26 presented as evi
dence of the difference in behaviour between 
natural and saw-toothed profiles. Care has to be 
exercised here for three reasons. First, the results 
in Fig. 26 were obtained using a range of normal 
loads under which conditions the surfaces would 
be expected to behave differently; to draw the 
conclusions that Messrs Papaliangas, Hencher & 
Lumsden make, the profiles should have been 
tested at the same normal loads. Second as 
shown in Fig. 31, damage to a rock su;face 
develops sequentially, even on regular surfaces, 
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Fig. 31. Progressive destruction of uniform teeth loaded in direct shear: material and teeth dimen
sions as used in the Paper, normal load 1200 kPa (from Pereira & de Freitas, 1993) 
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because the magnitude, orientation and distribu
tion of stress close to points of asperity contact 
constantly change with displacement (Pereira & 
de Freitas, 1993). Figs 24 and 25 are presented as 
evidence of the differences between the behaviour 
of natural and unnatural profiles although they 
show only the damage accumulated after a given 
displacement. Conclusions concerning t0 ,;, cannot 
be drawn from such data because it is the total 
resistance to shear from all the points of contact 
at the moment of peak failure that defines t . . 
Third, Messrs Papaliangas, Rencher & Lumsd;~ 
present a form of results using moulds of natural 
surfaces which is similar to the results we 
obtained using saw-cut profiles. Fig. 32 repro
duces data of Papaliangas et al. (1993) before 
treatment to remove the effects of dilation; in this 
form it is most comparable with the data in the 
Paper, which do not have the effects of dilation 
removed, such effects being work of relevance to 

0 0-4 
Infill thickness: Ila 

Fig. 32. Effect of infill thickness on peak shear strength 
(from Papaliangas et al-. 1993). 
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the total shear resistance of such surfaces. The 
form of the envelope obtained from tests con
ducted at 25 kN/m2 is exactly the same as that 
shown in Fig. 21. A similar trend can be seen in 
the results for tests conducted at 50 kN/m

2
, 

although the trend is lost at higher normal 
stresses. If the exponential correlation lines are 
removed from the results shown in Fig. 30(a), 
trends similar to those shown in Fig. 21 can be 
discerned. With such results as these, our results 
cannot be described as unique. 

Messrs Papaliangas, Rencher & Lumsden also 
believe their tests do not reveal a discontinuity in 
the trend of the envelopes at about the point 
where the thickness of infilling equals the height 
of the asperities, although the results shown in 
Fig. 32 indicate that a change in the balance of 
operating mechanisms at a ratio of about 0·5 for 
the tests at 25 kN/m2 and 0·9 for the tests at 50 
kN/m 2 is just as apparent as that which we 
recorded. 

Possible mechanisms 
With overconsolidation ratios of greater than 

unity, failed samples had a form which clearly 
implied failure of the infilling as shown in Fig. 33 
prior to asperity contact. As failure of asperities 
in contact is generally in tension the shear resist
ance of an asperity, other than that offered by 

(b) 

Fig. 33. (a) The volume of infill that has to he squeezed 
from between advancing asperities. represented by the 
dotted area A, and its influence on the areas of asperity 
contact, represented by L (a basal shearing surface ci 

exists, inclined at 5°); (b) the resulting contact (failure 
then develops either as a sliding interface or as failure in 
tension 7) 

sliding, i~ related to the tensile strength of the 
rock (which for the purpose of this discussion can 
be taken as a constant; Butenuth, de Freitas AI
Sam~iji, Park, Cosgrove & Schetelig, i993) 
multiplied by the area of tensile failure. Thus the 
nearer the area of contact is to the root of an 
asperity the greater will be the area of tensile 
failure required, and hence the resistance to shear 
offered by the asperity. This is one reason why 
shear strength of rough surfaces is a function of 
normal load, because the magnitude of normal 
!oad is a_ powerful contribution to the degree of 
mterlockmg that two rough surfaces can achieve. 
AI_thoug~ our test~ were not designed to study 
this particular subject the following observations 
seem pertinent. 

Consider the final position of points of contact 
between asperities when an infilling material has 
first to be failed : Fig. 33(a) shows the situation 
that would be typical for our tests when the infil
ling was_ su~ciently strong for a basal shearing 
surface, mchned at about 5°, to develop within it 
(see Fig. 11); here /3 = 30° and asperities are the 
equivalent of 1 ·6 mm high. Fig. 34 plots the areas 
involved against t/a; a turning point is present 
and the relationship is convex. This is just one of 
many such curves, as the curve is defined by both 
a and t. Asperity contact (i.e. t0 ,iJ is predicted in 
this case when t/a = 0·83. 

When peak shear strength for the normal load 
operating is limited by the area of tensile failure 
T (Fig. 33(b)) the relationships between the area 
T , the length L and the infilling A which has to 
be displaced for asperity contact L to occur have 
to be considered. If the area A has a c~nvex 
re!ationship with t/a (Fig. 34) shear strength 
might also be expected to exhibit a convex 
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Fig. 34. Area of infill to be removed as defined in Fig 
33(a), plotted against t/a for ~ = 30° ;nd ci = 5° · 
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relationship with t/a, and this is evident (Figs 21 
and 32) when the overconsolidation ratio is 
greater than unity. 

For normally consolidated infillings the first 
peak is rarely seen as noted by us previously (de 
Toledo & de Freitas, 1992) and shown in Fig. 27. 
Furthermore, the rock peak envelope appears to 
be concave. We do not know whether these fea
tures are linked but suspect that they may be 
because normally consolidated materials deform 
differently from overconsolidated materials when 
they are between rough rock surfaces. Numerical 
simulations are currently being undertaken to 
study this aspect (Moosavi, 1992). Messrs Papa
liangas, Hencher & Lumsden believe this smooth, 
concave envelope is the correct response for infil
led rough rock surfaces and cite our work (Fig. 
28) as further evidence of this, even though data 
from their tests (Fig. 32) and ours show that this 
is not so : the smooth concave envelope is just one 
type of response. 

When clayey infilling is either overconsolidated 
or strengthened by some other means, the 
envelope is more variable (Figs 21 and 32). When 
more granular infilling is involved (the results in 
Fig. 28 were for joints filled with clayey sand) the 
envelope assumes a smoother concave form, even 
in overconsolidated conditions. The fact that 
Papaliangas et al. (1993) record envelopes which 
become progressively smoother with increasing 
normal load (see data points as distinct from the 
exponential curve in Fig. 32) suggests that the 
behaviour of their specimens was changing as 
normal loads increased. 

Which model? 
It is claimed that the behaviour of infilled sur

faces does not comply with the model we 
describe. Our reasons for disagreeing with this 
contention have now been explained. 

For practical purposes the model required 
depends on the use to which it will be put ; guid
ance on the behaviour of rock surfaces, especially 
at different displacements, is needed in the model
ling of rock mass deformation. 

Three basic starting points can be expected 
(Fig. 22). 

(a) Small displacements of joints having no infil
ling will have a maximum value that cannot 
exceed r 

1 
equal to <Punfillcd joint for the normal 

load operating. 
(b) When peak shear strength requires shear dis

placements to squeeze infilling from between 
the asperities, even if t/a is very small, the 
shear strength will be unlikely to exceed r 2 , 

equal to <Punflllcd joint> but one which has been 
smeared, plus <Psoil minus </>bas ic for the rock. 

(c) When shear displacements are associated with 
a valll:e oft/a that pe?IDts the infilling to gen
erate its own perceptible peak, shear strength 
is unlikely to exceed r 3 , equal to ef, .1 plus the 
angle of sliding /3. '°' 

Wi~h increasing values oft/a conditions (b) and 
(c) will tend to develop as shown in Fig. 22 
although, as shown in Figs 33 and 34, the form of 
the envelopes at small displacements will reflect 
th~ inclination and amplitude of roughness oper
atmg at the normal loads used. This is evident 
from the results reported in Fig. 32; as normal 
stress increases ~o the . form of these envelopes 
changes to even mcreasmgly smoother concavity. 
The same trend occurs with increasing granular
ity of the infill. 

Conclusions 
Messrs Papaliangas, Hencher & Lumsden 

draw attenti~n ~o their approach for providing an 
overall descnptlon of the shear strength of infilled 
surfaces as a function of infilling thickness and 
surface roughness, and in so doing question our 
experimental results. However, beneath their 
exponential curves many similarities appear to 
exist between the performance of their tests and 
our own, which is interesting as their results are 
for copies of natural surfaces and ours are not 
Th~ d!fference betw~en the work does not appea; 
to he m ~he mechamsms operating, so far as they 
can be discerned, and the data sets obtained but 
in the interpretation and use of the data.' We 
related the data to the mechanisms perceived 
whereas the~ ~ave concentrated on defining a~ 
overall descnptlon for the behaviour of their sur
faces. It_ seems evident that the constants they 
define with the exponential function incorporate a 
mixture of mechanisms, making the extension of 
their approach to other scales and materials 
beyond the ones used to define these empirical 
values-a matter that may require further study. 
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Side resistance of bentonite-coated pile-rock interfaces 

T. Papaliangas 
Department of Civil Engineering, Technological Educational Institution of Thessaloniki, Greece 

S. Manolopoulou 
Department of Civil Engineering, Aristotle University of Thessaloniki, Greece 

SYNOPSIS : The behaviour of concrete pile-rock interfaces covered by a layer of bentonite, is 
simulated by direct shear tests on naturally rough rock joints filled \vith a soft clayey material . 
These tests indicate a considerable reduction in shear strength even when the infill is very thin. A 
comparison is made with results from in-situ tests reported in the literature. A simple empirical 
model for the prediction of the side resistance of pile-rock interface covered with a layer of 
bentonite is proposed. This model uses simple and easy to measure parameters, both in the 
laboratory and the field, such as the shear strength and roughness of the clean interface, and the 

shear strength and thickness of the bentonite layer. 

l. INTRODUCTION 

A considerable portion of the applied load on 
a concrete pile socketed in rock is carried by 
the side wall resistance of the concrete-rock 
interface. The excavation of such sockets may 
require drilling and concreting under bentonite 
slurry and as a result loose drill cuttings and/or 
bentonite cakes may be present on the rock 
wall surface. The various devices developed by 
contractors for cleaning socket wall are not as 
effective as desired and drill cuttings may be 
removed by washing the socket with water jets, 
but bentonite cakes of. various thicknesses 
often remain on the rock wall. The presence 
of these bentonite cakes may significantly 
reduce the side resistance of rock sockets, by 
preventing the contact between rock and 
concrete. Thin bentonite cakes act as 
lubricants and may significantly reduce the 
fiiction angle of the rock-concrete contact 

(Papaliangas et al, 1990). In some cases 
bentonite cakes may be as thick as 100 mm 
(Holden, 1981) and may completely prevent 
the contact between concrete and rock. The 

mechanism of side resistance of socketed piles 
is a special case of the general problem 
concerning the shear behaviour of rock joints 
(Johnston & Lam, 1989). Rough rock joints 
tend to dilate and shear strength at a particular 
normal stress is the result of a purely fiictional 
(normal stress-independent) and a dilational 
component which is a function of the surface 
roughness and the normal stress (Papaliangas 
et al., 1994a). In a socketed pile, dilation is 
generated either by the elastic deformation of 
the pile due to the applied compressive load or 
by the shear displacement of the pile relative to 
the rough rock wall. The degree of dilation that 
occurs depends on the roughness of the 
walls of the socket and the strength of the rock 
that forms the asperities. 

Because of the state of confinement existing 
around the pile, dilation causes an increase in 
normal (radial) stress. Simulations of the 
behaviour of rock sockets have been carried out 
in laboratory tests using constant normal 
stiffness (CNS) direct shear tests (Ooi & Carter, 
1987, Lam & Johnston , 1987). Similarly, the 
behaviour of a pile-rock interface covered with 
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Figure I. (a) Pile-rock interface: (i) clean (ii) covered with bentonite. (b) Rock joint: (i) clean 
. (ii) filled 

a layer of bentonite may be simulated by the 
behaviour of a rock joint filled with a soft 
clayey material. Although the normal load 
acting on the socket wall is not necessarily 
constant, a condition of constant normal load 
(CNL) can be used as a first approximation. 
The factors which greatly affect the shear 
behaviour of filled rock joints are: a) the 
roughness of the rock wall and b) the nature 
and thickness infill (Papaliangas et al., 1990, 
1994b). The effect of roughness on the side 
resistance of piles socketed in rock has been 
illustrated by published laboratory and in-situ 
test results (Ooi & Carter, I 987, Williams & 
Pelis, 1981). 

In practice, an increase in side resistance of 
smooth sockets may be achieved by grooving, 
for example 20mm deep helical grooves at 500 
pitch. Such grooving may be fairly readily 
achieved by the action of either a specially fitted 
oversize drill tooth on the auger, or by utilising 
a specially fitted hinged reamer type device, 
usually fitted to the top of a bucket auger 
(Kingwell & Albrecht, l 989). With grooving, 
pile-rock contact is established after some shear 
displacement and there is no significant adverse 
effect of bentonite on side resistance. However, 
in sockets drilled by auger, a layer of bentonite 
on the walls of the socket may cause a 
reduction in strength as high as 75% (Williams 
& Pelis, I 981 ). 

In the present paper some data are presented 

on the effect of the thickness of soft coatings on 
shear resistance of naturally rough joints and an 
empirical model is proposed to predict the shear 
resistance from parameters related to the 
roughness of the socket wall and the 
characteristics of the coating. 

2. EXPERilvtENTAL RESULTS 

A research programme on naturally rough filled 
rock joints was carried out, consisted of a series 
of direct shear tests on modelled rock joints. 
Replicas of natural joint surfaces were made 
and a layer of wet kaolin was placed between 
the rock walls to simulate coatings of various 
thicknesses. A special cement mortar was used 
to model walls with: density 2.2 Mg!m3, 
unconfined compressive strength 6.0 .MPa, 
tensile strength (Brazilian) 0.9 MPa, point load 
strength 0.9 MPa, porosity 30% and friction 
angle of flat saw-cut surfaces 33°. The emphasis 
of the programme was on the effect of the 
thickness of coating and the roughness of the 
rock wall on the shear strength under different 
constant normal stresses. Details of the 
procedure followed and experimental data for 
smooth and naturally rough kaolin-coated 
modelled JOmts are given elsewhere 
(Manolopoulou, I 991, 1994). 

Figure 2a shows typical shear stress-shear 
displacement diagrams corresponding to a 



284 

Normal stress = 100 kPa 
150 

Clean ! 
,_ 1 · 5 r---.--.----r-----.----,--"T-----, 
ctt 

Q., 

~ -ctt 
Q., 
~ -"' "' QJ 

.l:: 
"' .... 
ctt 
QJ 

..c:: 
C/1 

100 

Coated 

-"' "' QJ .... ..... 
"' .... 
ctt 
QJ 

..c:: 
~ 05 
00 
ctt .... 
QJ 
:> 

<t:: 0 L------~-_.,__.._____.. _ __.___. 

5 10 15 20 25 30 35 0 5 10 15 20 25 3J 35 
Shear displacement (mm) Displacement (mm) 

(a) (b) 

Figure 2. (a) Typical shear stress-shear displacement diagrams for clean and coated joints. 
(b) Effect of bentonite on shear resistance of rock sockets (after Williams & Pe/ls, 1981) . 

rough rock joint (RJl) having a mean roughness 
amplitude of 10.4 mm and tested both clean 
(uncoated) and with a kaolin coating having a 
thickness of less than 0.5mm, under constant 
nonnal stress cr= 100 kPa. The peak shear 

strength of the coated joint is considerably 
lower (approximately 35% ) than that of the 

uncoated joint (lubrication effect) . For thicker 
layers of kaolin the shear strength is even lower, 
approaching a value of the order of only 25% 
of that of a clean joint. 
The shear stress-shear displacement diagram is 
similar to that given by Williams & Pelis (1981) 
for sockets in sandstone covered with bentonite 
(Figure 2b). In practice, it is difficult to remove 
completely bentonite cakes from rock walls, 
therefore a considerable strength reduction 
might be expected, even when the bentonite 
layer is very thin. 

The variation of shear strength with the 
thickness of coating for two surfaces with 
different roughness (RJl and RJ2) is shown in 
Figure 3a. and peak shear strength envelopes 
for joint RJl filled with kaolin of different 
thickness express as ratio thickness:mean 

roughness amplitude is shown in Figure Jb. For 
thick layers (say greater than 0.Sa, where a is 
the mean roughness amplitude of the surface), 
the shear strength of the filled joint approachesa 
a minimum value, equal to the shear strength of 

coating (29 kPa), which when compared to the 
shear strength of the two clean joints (I 05 and 

142 kPa) is only 27.6% and 20.4% (or 24% 
average) . This is in close agreement with the 
value of 25% suggested by Williams & Pelis ( op. 
cit.) for sockets covered with bentonite or 
smear layers fonned by augering in slightly 
moist rock. 

3. PROPOSED MODEL 

The empirical model for the prediction of the 
side resistance of concrete piles proposed 
here, is a special case of a general model for 

filled rock joints ( Papaliangas et al., 1993, 
1994b ). This model has been successfully 
tested for a number of experimental data sets 
published by different authors. The model is 
based on the following principle: the shear 
resistance of a filled rock joint falls between 

two limits, tmax , the maximum shear strength 
of the same joint unfilled ( clean) and tmin the 
potential minimum shear strength of the 
system, and varies with the thickness and type 

of the infill, the roughness of the rock walls 
and the normal stress. The potential minimum 

shear strength tmin may be the shear strength 
of the infill, but it may be lower in cases where 
the shear strength of the rock-infill interface is 

lower. The shear strength of a rough filled joint 
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Figure 3. (a) Effect of thickness of coating on shear strength. (b) Peak shear strength envelopes 
for Joints with different fla ratios shown on each curve. 

at a particular nonnal stress level, is a function 
of "max and "min and the thickness of the 
infill, and can be expressed as follows: 

(1) 

where µ, µmax and µmin the corresponding 
stress ratios ('r/cr) expressed as percentages 
and 

l f m 
n = (l - --) 

ca 
(2) 

where f is the mean thickness of infill, and a the 
mean roughness amplitude of the rock surface. 

The constant c depends mainly on the 
nature of infill and for bentonite it can be taken 
equal to unity, whereas m gives the rate of 
decrease in shear strength with the thickness of 
infill and has a value of about 4 for a very low 
shear strength material like bentonite. 

For f/a=0, µ=µmax, which gives the shear 
strength of the joint unfilled. 

For f/a>c, µ should be taken equal to µmin 
which gives the minimum shear strength of the 
system. 

In the case of a pile socketed in rock: 
µ is the stress ratio of the coated concrete-

rock interface µmin the stress ratio of the 
bentonite layer, 

µmax the stress ratio of the clean (uncoated) 
concrete-rock interface, 

f the mean thickness of the bentonite layer, 
and a the mean roughness amplitude of the 
rock wall. 

Equation (2) in this case becomes 

f4 n = (1- -) 
a (3) 

The mean roughness amplitude of the rock 
socket and the average thickness of coating can 
be measured according to the ISRM 
recommendations (ISRM, 1981 ), as shown in 
Figure 4b. 

The shear strength of the clean concrete
socket contact may be estimated by one of the 
various methods existing for rock joints, for 
example Barton & Choubey (1977), Hencher 
& Richards (1989), Johnston & Lam (I 989) 
etc. whereas the shear strength of bentonite 
may be determined by employing soil 
mechanics principles and testing methods. 

Example 

A socket m sandstone having a mean 



286 

D - µ=.Umin+ (~ax -Anin) 
~ - fl 0 -µmax .... n =(I-- t; 
~ a a=a1+"'.? .... 
U') 2 U') 

I\J t; ·. .... 
vi 
'- ' ~ I f=fj_+f2+~ 
11) ,, 

...c:: fj 
U') I 3 

.!<: ' 
~ Arnn --- -- I 
I\J I 

~ 

0.0 0.5 1.0 1.5 ¾ 

Relative thickness of coating f/a (b) 
(a) 

Figure -1. (a) Graphical representation of the proposed model. (b) Definition of mean roughness 
amplitude and mean infill thickness (after ISRM. 1981). 

roughness amplitude of 20mm and a peak 
friction angle of 45°, is covered with a layer of 
bentonite 1 O mm thick and having a friction 

angle of 6°. 
The maximum stress ratio µmax of the socket 
is ~= tan45°xl00=100 (%) 
The minimum stress ratio µmin is 
µmin= tan6°xl00 = 10.5 (%) 
n is given by 

10 4 
n=(l--) = 0.0625 

20 . 
and the stress ratio for the coated socket 1s 

µ = 10. 5 + (100 - 10.5)°-0625 = 11. 32(%) 

If a normal stress of 500 kPa is acting around 
the socket, the side resistance of the coated 

interface will be 
r-500 x 0.1132= 56.6 kPa 

4. CONCLUSIONS 

Experimental results from direct shear tests on 
rough rock joints filled with a soft clayey 
material were used to simulate the behaviour of 
pile-socket interfaces with rock walls covered 
with a layer of bentonite. These tests showed 
that even a thin coating of a soft material may 

cause a considerable reduction in shear 
strength of the pile-socket interface. For thick 
layers of coating, where maximum concrete
rock contact is prevented, shear strength 
decreases with the thickness of coating, up to a 
minimum value, which is equal to the shear 
strength of the soft layer. Comparison with 
results from in-situ tests indicated a similar 
behaviour of rock-pile interfaces covered with 
bentonite or smear layers formed by augering in 
slightly. moist rock .. A simple empirical model is 
proposed for the prediction of the side 
resistance of pile-socket interface covered with 
a layer ofbentonite. All the parameters used by 
this model (shear strength and roughness of the 
clean pile-socket interface, and shear strength 
and thickness of the bentonite layer), are simple, 
clearly defined and easy to measure both in the 
laboratory and the field. 
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9.1 Aim of work 

CHAPTER 9 
SUMMARY AND CONCLUSIONS 

Rock-rock and rock-soil interfaces occur in many geotechnical environments, yet their 

shear behaviour has not been fully explored and certainly not accurately quantified. The 

origin and magnitude of the various components of shear strength of rock discontinuities 

is a matter of dispute. The effect of scale on peak shear strength still remains a 

controversial subject. The use of empirical relations proved to be inadequate to describe 

the shear behaviour of rock discontinuities, as they do not consider the physical 
mechanisms involved. This study has been aimed at 

• separately investigating the role of the various strength components by studying the 

fundamental mechanisms of deformation of rock discontinuities and thus becoming 

able to explain the effects of various parameters such as sample size. 

• attempting to incorporate the findings into a simple, but readily applicable model 

which accurately predicts the peak shear strength by taking into account the physical 

mechanism involved. 

• identifying the basic mechanisms of deformation and the geotechnical behaviour of 
soil-rock interfaces. 

9.2 Approach 

The approach was to carry out a systematic laboratory based experimental programme 

consisting of direct shear tests at various constant normal stresses on sets of identical 

samples of interfaces. A synthetic rock was developed as a rock substitute and used in the 

experimental programme. For the investigation of rock-rock interfaces various types of 

natural rock surfaces were reproduced by casting a number of identical copies which were 

then tested at the appropriate normal stress. All samples were tested in the same relative 

shearing direction, under constant normal stress which varied from very low values up to 

a sufficiently high values to suppress dilation. A special programme comprising direct 

shear tests on joints of different sizes and rock strength was used to examine the effect of 

scale and rock strength on peak shear strength of rock discontinuities. 

For the investigation of the shear behaviour of soil-rock interfaces the experimental 

programme consisted of direct shear tests, using the newly developed synthetic rock to 

form surfaces with various roughness, from very smooth to very rough planar and saw

toothed. Granular natural and artificial materials with spherical, round and subround 

particles of various sizes were used to investigate the effect of grain size as compared to 

the surface roughness. 
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9.3 Conclusions 
The conclusions of each of the various aspects of the research have been summarised at 

the end of the relevant preceding chapters. The more important conclusions of the study 

are summarised below: 

1. The use of casting materials to reproduce vanous rock surfaces is a convenient 

technique which has the advantage of making samples of nominally identical geometry 

and strength. However, care has to be taken when the frictional properties of the surface 

are of concern. Plaster or cement-based casting materials form on the reproduced surface 

a thin layer whose frictional properties have little relevance to those of the underlying 

material, especially at low normal stresses. Up to 10° difference in friction angle has been 

found due to this effect. In addition weak materials may form considerable surface debris 

which may induce mechanisms such as rolling friction, which are difficult to quantify. 

2. The peak friction angle of modelled discontinuities, when the effect of dilation is 

removed, was found to be equal to the friction angle of the intact rock material as 

determined from the brittle-plastic transition state. This is valid for the whole spectrum of 

the dilatant behaviour of the rock discontinuity, which for the tests reported in this study 

was about 4 orders of magnitude This suggests that irrespective of normal stress, the state 

of stress at the contacts between the two rock walls of the discontinuity is the same as that 

of the brittle-plastic transition. For the synthetic rock used in this study, this value was 

found to be 46°. Such high values of friction angle at the brittle - plastic transition have 

been calculated for some fresh carbonate rocks, which this synthetic rock resembles. This 

value was 14° higher than that of a saw-cut surface from the same material. If this 

difference is independent of normal stress for natural joints as well, then the use of the 

friction angle of a saw-cut surface and an additional asperity failure component (which is 

difficult to determine independently) for modelling the shear behaviour of rock joints has 

no any obvious advantage. 

3. The effect of scale was studied by conducting direct shear tests, using a weak plaster

based model material in addition to the newly developed synthetic rock. Considerable 

scatter was observed in the values of peak dilation angle especially for self weight tests. 

Again the peak friction angle was found to comprise one frictional and one geometrical 

component as described in (2) above. From both shear tests with dilation removed and 

triaxial tests in the brittle-ductile transition, the friction angle of the rock wall material was 

found to be 420. The test results on the effect of scale, carried out on samples with length 

over one order of magnitude, ·suggest that the value of the non-dilational peak friction 

angle is independent of scale. The variation with sample length of the dilation rate is 

logarithmic and extrapolation to zero dilation will define the scale-free block size. For the 

joint type used this block size was found to be less than 2-3 m, and it can be estimated 
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from profiles of segments of various sizes from the rock surface. Blocks longer than this 

critical size will not dilate and therefore will exhibit purely frictional behviour. However, 

the limited number and scatter of the data, as well as the use of only one rock joint type 

do not permit generalisation of this conclusion. 

4. The instantaneous rate of dilation at the instant of peak shear strength reduces 

logarithmically with normal stress, over four orders of magnitude. The critical normal 

stress at which the specimen ceases to dilate can be experimentally derived from a series 

of direct shear tests. It was found to be much lower than the unconfined compressive 

strength and about one order of magnitude lower than the brittle-plastic transition stress. 

It appears that it is independent of roughness and with the exception of discontinuities 

with large scale waviness, independent of scale. These findings indicate that the 

assumptions made by most models that the dilation is suppressed at a normal stress equal 

to the unconfined compressive strength of the material may not be always realistic. 

5. The peak shear strength of a joint at a particular normal stress can be predicted by 

means of a new, simple, theoretical peak shear strength criterion which has been 

developed from the results of this study. The criterion suggests that the peak shear strength 

of a rock discontinuity arises from shearing of rock junctions under sufficiently high 

normal stress for the rock wall material to reach its brittle-plastic transition, and therefore 

the peak shear strength at any normal stress is the result of two components, one purely 

frictional, and one geometrical. This theory explains the origin and magnitude of the 

frictional component: the dilational component may be predicted from consideration of 

surface morphology and normal contact theory. The criterion is developed without 

reference to empirical parameters but all parameters used are physically meaningful. The 

maximum asperity slope which is used as the only parameter to describe surface 

roughness can be determined in-situ by routine methods and is a convenient parameter for 

use in constitutive laws concerning shear behaviour of rock joints. All the necessary 

parameters can be found from a series of carefully conducted direct shear tests on samples 

from the natural surface, without the need for any other index tests or specially prepared 

surfaces, etc. The form of the criterion and the nature of the parameters used make it quite 

convenient to incorporate into numerical models of rock mass . 

6. For planar rough surfaces the peak shear strength of a single soil-rock interface is 

lower than that of the soil, provided that the roughness of the rock surface does not exceed 

two mean particle diameters. Several deformation mechanisms were identified: sliding, 

rolling and crushing of particles~ indentation and ploughing. 

7. The shear behaviour of double soil-rock interfaces depends on the nature and the 

thickness of the soil layer and the type and roughness of the rock wall surfaces. Evidence 
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is provided that in the case of granular soils the load is carried by grain bridges spanning 

the two rock walls. This explains the geometrical effect of the rock walls on the shear 

strength of a double interface where the thickness of the soil layer is greater than the 

amplitude of the rock walls surface. The critical thickness of a granular soil layer beyond 

which there is no effect of the rock walls on the shear strength of the interface, is a 

function of the mean particle diameter. 

9.4 Practical recommendations 
a) The newly developed criterion can be used directly in rock engineering practice for 

easy determination of the peak shear strength of unfilled rock discontinuities. The 

parameters needed are a) the friction angle of the rock wall material b) the maximum 

asperity slope of the surface and c) the critical normal stress which suppresses the dilation 

fully. All these parameters can be derived experimentally from a series of carefully 

conducted direct shear tests on samples of the discontinuity concerned. No other tests on 

prepared or other surfaces are needed nor are any other index tests or empirical 

correlations. The exclusive use of a set of samples from the natural surface emphasises 

the relevance of the acquired data to the problem in contrast to reliance on indirect 

determinations through empirical correlations. 

b) The indications provided by this study that n-situ rock blocks longer than the critical 

scale-free size will not dilate, suggests that their behaviour will be purely frictional. 

Therefore, with the exception of surfaces dominated by large scale undulations, an 

estimation of in-situ shear strength can be made on the basis of the frictional component 

only. In the absence of any relevant data, the set of values for fresh rocks provided in this 

thesis can be used, at least for preliminary assessment of slope stability problems. Other 

parameters which may influence the overall shear behaviour such as water, infill, etc. 

must be considered independently. Analyses of rock slopes must be carried out on a c = O 

assumption. Laboratory and field tests should always be carried out following the ISRM _ 

recommendations and measuring the dilatancy of sample. Reports of test results without 

dilation measurement, as happens frequently in practice, are not adequate. 

c) For coated or smooth surfaces, variable values of the frictional component which 

increases with normal stress are expected. In this case any direct shear tests on samples 

from the surface concerned must be carried out at the appropriate normal stress. 

d) Assessment of shear strength of double soil-rock interface systems requires 

determination of the critical soil layer thickness beyond which the rock walls have no 

effect on the shear strength of the interface. This critical thickness can be estimated by a 

simple expression derived in this thesis. 



292 

9.5 Suggestions for further research 

The newly developed criterion and the theory behind it proved to be valid for many 

published data sets. However, further validation is desirable. From testing of 

discontinuities of various types of rocks, various values of the required parameters 

(friction angle, dilation angle, critical normal stress) will be obtained, and used to update 

the values given in this work which can form the basis of a data-base. It should then be 

possible to estimate friction angles according to the rock origin and mineralogy 

The appropriate step-size for the calculation of the instantaneous dilation angle needs to be 

investigated. Analysis of normal displacement - shear displacement behaviour from 

laboratory tests should be compared with analyses of data from surface profiles. Back

analyses of failed slopes where information on mineralogy and roughness characteristics 

of the failed rock are available would increase confidence in the use of the new criterion. 

The variation of shear stress with shear displacement in terms of the asperity angle needs 

further study and evaluation for better understanding of the full shear-normal behaviour. 

Surface measurements at various shear displacements made on identical samples sheared 

under the same conditions will provide much information on the relation of the dilation 

angle and the shear displacement, which can be extended to the fully coupled 

hydromechanical behaviour. 

The case of supersmooth and tightly interlocked surfaces needs to be studied, particularly 

where the controlling factor i.e. the dilation, is not free. Tests carried out under conditions 

of constant normal stiffness may provide an answer to this problem. 

Single rock-soil interfaces with soils of particular interest, like rockfill, can be investigated 

by means of physical modelling. Double soil-rock interfaces are more complicated. 

Physical and numerical modelling could give some answers to various aspects of shear _ 

behaviour. Finite element methods used for different properties of the soil layer and the 

adjacent rock walls will give much information on the deformation of the interfaces, 

which if combined with physical modelling, will provide an adequate understanding of 

their shear behaviour. 
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APPENDIX I 

Table I.l Chemical Analysis ofCAC (according to the manufacturer) 

Main constituents 
AbO1 CaO SiO? Fe?O1 FeO 
39.0 38.5 4.5 12.0 4.0 

Minor constituents 
TiO2 MgO K?O Na?O so~ s Cl 
2.5 0.6 0.15 0.10 0.15 0.02 0.01 

T bl I 2 Ch a e . enuca 1 An l a1ys1s o f And l ·t a USI e 
AbO1 SiO2 Fe?O1 MgO TiO? MnO CaO Na2O K2O P2O5 
58.61 

AbO1 
47.51 

37.92 1.35 0.79 0.25 0.02 0.25 0.20 0.29 

a e . T bl I 3 Ch enuca analysis o f syn e 1c roe 0 th f k (o/c) 
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Figure 1.1: Grain size distribution of andalusite 
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