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Abstract

Reservoir Computing is a framework for machine-learning that is derived from recurrent

neural networks and involves only training the output map of a randomly initialized high dimensional

neural network called reservoir.

This thesis addresses three significant gaps in the field of computational neuroscience,

reservoir computing architectures and training algorithms.

First, it is shown that the original proof of the Universal approximation property of Reservoir

Computing architectures does not hold, with regards to the lack of point separation of the output layer.

Specifically, based on the Stone-Weierstrass theorem, it has been proven that any n-dimensional

randomly generated Recurrent Neural Network could approximate any n-dimensional time-invariant

system arbitrarily close only by training the output layer. In practice, several early numerical

experiments raised the concern that this might not be the case as the approximation results seemed

to be lower bounded. Moreover, some papers suggest that replacing the output-feedback connection

of the reservoir with a state-feedback connection improves the approximation capabilities of the

Reservoir Computing architecture.

This thesis addresses this issue by conducting a more thorough theoretical analysis which

shows that indeed, the initial conditions set by the Stone-Weierstrass theorem which is used to prove

the Universal Approximation property of Reservoir Computing architectures are not met.

Secondly, a new type of architecture and training strategy is proposed to ensure closed-loop

stability and enhanced approximation capabilities for Echo State Networks. Current output-feedback

Echo State Network architectures do not guarantee closed-loop stability when training the readout

module, especially when the initial training errors are large. Moreover, the existence of the fixed

output-feedback loop overloads the trainable readout module with two separate tasks that converge

to different solutions: dynamical fitting of the reservoir with regards to the dynamics of the target

system and the output fitting of the target signal.

This thesis develops two new training algorithms for the Echo State Networks with

state-feedback gains. By using an Extended Kalmann Filter estimation method, training the

input layer and the state-feedback gain decouples the two aforementioned problems. The indirect

modification of the reservoirs dynamics via the state-feedback loop follows the rules of Reservoir
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Computing (i.e., by not training the connections between the neurons inside the reservoir) and, at

the same time, provides an enhanced level of accuracy compared to standard architectures and their

associated training algorithms.

The first methodology fully trains the input layer and state-feedback gain via the Extended

Kalmann Filter estimation method. After the dynamics of the closed-loop structure are set, an

Orthogonal Forward Regression method is used to tune the readout by selecting the most relevant

neurons and combination of neurons, in the case of non-linear readouts, to ensure maximum

accuracy whilst avoiding the over-tuning problems associated with fully training all of the readouts

components.

The second algorithm identifies the most relevant neurons that dictate the dynamics of the

reservoir with regards to the dynamics of the target task via an Orthogonal Forward Selection

algorithm. A reduced order input layer and state-feedback gain are then trained using the Extended

Kalmann Filter estimation algorithm. The aim is to reduce the number of trainable parameters

whilst keeping similar approximation accuracy to the previously mentioned algorithm. The readout

is similarly trained using the same principles as in the first algorithm.

Thirdly, a new Echo State Network architecture is designed for computing several tasks

given a randomly initialized reservoir with trainable input layers and state-feedback connections.

State-of-the-art architectures use an overly dimensioned reservoir to adapt to the individual dynamics

of each task whilst connecting several readouts in parallel. Because of the newly introduced trainable

internal structures, in the form of a state-feedback gain and input layer, this approach becomes

unfeasible as these structures alter the dynamics of the reservoir and cannot be used in a parallel

fashion.

In this setting, this thesis proposes a novel switching state-feedback Echo State Network

architecture. This new architecture enables processing multiple tasks, reduces the dimensionality of

the reservoir and provides good approximation performance.
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Chapter 1

Introduction

1.1 Background and Motivation

Artificial Intelligence refers to systems that resemble human intelligence with the aim of

performing certain tasks and improving iteratively based on their past experiences. Some important

applications include: in healthcare for early detection of COVID-19 infection [1], education for

developing intelligent tutoring systems [2] and in defense for developing cybernetic defense systems

in banking [3]. Furthermore, in the era of big data, when one hour of YouTube videos is uploaded

every second [4], automated methods for data analysis and decision making are paramount. In this

context, Artificial Intelligence based solutions that exploit the adaptability and computing power

of neural networks have been developed and deployed to identify patterns, predict future data and

perform decision making under uncertainty [4].

The key element of any Artificial Intelligence based solution is the neural network that

supports the learning and thinking processes. The term neural networks describes networks of

biological neurons that constitute the nervous systems of animals. More recently, the term is used

for a technology of parallel computation in which each element is an "artificial neuron" that is

modeled based on its biological counterpart [5].

One of the main advantages of Artificial Intelligence/ Machine Learning solutions is that they

can perform tasks without being explicitly programmed to do so. This is enabled by the fact that
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these kind of approaches identify patterns in the data provided and then apply these patterns on the

new data that is coming in. Traditional problem solving in computer science requires algorithms

that tell the machine how to execute all steps in order to find the solution. Hence, no learning is

involved in this process. In contrast, recent Artificial Intelligence based solutions are more effective

because they help the machine develop its own algorithm. This is particularly useful for more

advanced tasks in which manually creating the needed algorithms takes a long time [6].

The key elements of any machine learning-based solution are: the model training, validation,

testing and deployment [6]. The most important step is training the model, as it dictates the

performance of the overall model and ultimately, how well it will perform for the end-users. As part

of the training process, the developer needs to take important decisions with regards to the training

data to be used, the neural network architecture and the training algorithm. These decisions depend

on factors such as algorithm-model complexity, interpretability requirements, computational power

available and training time constraints.

The Artificial Neural Network (ANN) approach has been shown to be a general scheme for

nonlinear dynamic system modelling and identification. Several Feedforward Neural Network

(FNN) architectures have been considered in [7] and it has been demonstrated that FNNs have good

capabilities for representing complex nonlinear systems. The multi-layer perceptron proves to be a

universal model for non-linear systems. Unfortunately the error surface of a multi-layer perceptron

model is often highly complex. The radial basis function network provides an alternative two-layer

network structure. Each node in the hidden layer has a radially symmetric response around the

node centre and linear learning laws can be derived. The main drawback, however, compared to the

following two architectures, is that of computational complexity, as all the parameters of ANNs

need to be trained.

Reservoir Computing is a machine-learning paradigm [8],[9] that consists of a neural network,

in which only certain easy-to-train parameters are subject to modifications based on new tasks that

are learned. This type of approach facilitates the use of easier to apply and more time-efficient

training algorithms whilst having similar performances to that of fully trained neural networks.

Extreme learning machine (ELM) has been proposed for training single hidden layer FNNs

(SLFNs). In ELM, the hidden nodes are randomly initiated and fixed. The only parameters

susceptible to learning are the connections between the hidden layer and the output layer. In this

way, ELM is formulated as a linear-in-the-parameter model [10]. Hyper-dimensional projection

is a powerful computational tool itself and is used by ELMs in a manner similar to RCs reservoir

layer but without the short- term memory component [11], which is unrealistic from a biological

perspective.

This thesis addresses a number of dynamical fitting problems relevant to the field of Reservoir

Computing [8],[9],[12],[13],[14], developing new type of training algorithms for the state-feedback
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gain Echo State Network architecture [14] as well as developing a new type of Echo State Network

architecture for processing multiple tasks using the same reservoir.

One of the significant breakthroughs in the domain of Reservoir Computing is the proof that

this type of architecture is an Universal Approximator [15]. The main theorem in [15] relies on the

Stone-Weierstrass theorem of approximation and states that any given n-dimensional reservoir could

approximate arbitrarily close any given n-dimensional time-invariant target system with fading

memory. In practice, however, several numerical studies [8],[16],[17] and theoretical analysis papers

[13],[14] have shown that the current output-feedback Reservoir Computing architectures could

be improved to further enhance their approximation capabilities, by introducing a state-feedback

loop [14]. Moreover, numerical simulations show that current state-of-the-art algorithms and

architectures are lower bounded. However, these theoretical and numerical observations contradict

the Universal Approximation property of the original architecture.

This thesis covers an important theoretical advancement that analyses the theorems and results

on the approximation capabilities of current Reservoir Computing structures [8],[9],[12]. The

conditions that need to be met in order to apply the Stone-Weierstrass theorem of approximation,

used in the original proof [8], are not actually met.

An important problem for Echo State Networks is to develop mathematical formulations for

training the readout in different types of neural architectures, as well as fine-tune the initialization

hyper parameters [12],[16],[18],[19].

This problem was first addressed by Jaeger [9], who demonstrated that clamping the fixed

output-feedback loop with the target signal, instead of using the networks output during training,

would not lead to an unstable closed-loop system if the initial training errors between the original

target and the networks output were small. The major disadvantage, however, comes when these

initial errors are large, which usually lead to an unstable closed-loop system.

Sussillo [12] developed a new training strategy that removed the need for clamping the

output-feedback and relies on a recursive and efficient method that keeps the training error small

whilst making an impactful output weight modification. However, both strategies and derived

algorithms suffer from the problem mentioned above: the readout module is overloaded with solving

two problems that competing solutions: dynamical fitting of the reservoir via the output-feedback

gain loop and output fitting of the target signal. The field would benefit from a new training strategy

that would overcome the limitations imposed by using the readout, through a fixed and randomly

initialized output-feedback gain, as a mean of modifying the dynamics of the fixed reservoir at the

same time as fitting the output target signal.

To address this, a new architecture is introduced for improving the dynamical approximation

of Reservoir Computing systems represented in the form of trainable input layer - state-feedback

gain Echo State Networks. Based on this new architecture, new training algorithms are introduced
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for alternatively training the input layer - state-feedback gain to ensure that the dynamics of the

reservoir are fine-tuned to the dynamics of the target system, whilst training the readout for the

sole purpose of fitting the output of the network to the target signal. Two different methods of

training the input layer - state-feedback gain pairs via an Extended Kalmann Filter estimation

method [20],[21],[22] are introduced: a full training algorithm that modifies the behaviour of each

individual neuron inside the reservoir via their connections to the input layer and feedback gain,

and a reduced order method, where only the most relevant neurons are selected to approximate

the dominant dynamics of the target system. Then, the output layer is trained via an Orthogonal

Forward Regression algorithm [23],[24] that selects only the most important neuron connections in

order to avoid some over-fitting problems associated with fully training all the parameters whilst

keeping maximum approximation accuracy. The proposed approaches offer significantly faster and

more accurate results than the state-of-the-art FORCE method [12] and NG-RC algorithm [19].

One advantage of current generation Reservoir Computing architectures is that they are able

to perform multiple tasks in parallel, by coupling at the same time individual trainable readout

modules for each corresponding task to the randomly initialized reservoir. Due to the inherited

dynamical boundaries of this type of structure, a larger reservoir is required to obtain satisfactory

approximation results for each separate task. The dimensionality of the network is inefficiently

chosen as a trade-off to assure that the dynamics cover a larger frequency spectrum, that would

theoretically cover some of the dynamics of the unknown target tasks.

The field would benefit from a new architecture that would reduce the dimensionality of

the reservoir and would maximize the approximation capabilities of Echo State Networks with

respect to performing several target tasks. By using the newly trainable input layer - state-feedback

gain Echo State Network architecture and its proposed training methodologies, a novel switching

architecture is developed. Instead of using a parallel architecture that is over-dimensioned and not

specifically designed to the dynamics of the target tasks, it would be more efficient, memory-wise

to develop a smaller reservoir that would benefit from the trainable input layer - state-feedback gain

pairs that fine-tune the dynamics of the closed-loop reservoir for each individual task which, in turn,

would offer better approximation results. Necessary stability conditions are presented to guarantee

switching stability between the subsystems. The proposed approach offers significant improvements

with regards to the approximation capability for each task at the cost of higher free-running times

compared to the standard parallel architecture.
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1.2 Overview of the thesis

This section presents a brief overview for each chapter of this thesis.

• Chapter 2 gives an overview of the literature with regards to Reservoir Computing, with

a particular focus on Liquid State Machines and Echo State Networks. For each, generic

architectures and training algorithms are presented and the shortcomings of the most popular

approaches are discussed.

• Chapter 3 gives an overview of the theoretical framework of Liquid State Machines. The

chapter begins with a brief review of the fundamental theory behind operators. The existing

results regarding the Universal Approximation property and the Stone-Weierstrass theorem

that were presented in Chapter 2 are further discussed in this chapter by introducing

appropriate theoretical results which indicate some limitations regarding the approximation

capabilities of fixed output-feedback structures that were not considered throughout the

literature. The initial conditions of applying the Stone-Weierstrass theorem to prove that

current output-feedback Reservoir Computing architectures hold universal approximation are

analysed and show that actually, they cannot be met. Emphasis is put on an experimental

example that underpins the approximation boundaries, which are directly related to the

dynamics of the reservoir with regards to the dynamics of the linear target system.

• Chapter 4 introduces a novel training algorithm for Echo State Networks. The chapter begins

with the limitations introduced by the presence of a fixed output-feedback gain connection to

the reservoir, with regards to the approximation capabilities of the closed-loop architecture.

The algorithm reformulates the current architecture by changing the fixed output-feedback

gain with a trainable input layer - state-feedback gain pair that drastically improves the

approximation results when fitting the dynamics of the closed-loop structure to the dynamics

of the target system while the trainable readout is only used for the sole purpose of output

fitting the target signal. This new result forms the basis for two new training algorithms

that are significantly more efficient than the state-of-the-art methods. Numerical studies

were performed to show and isolate the advantages of the newly introduced algorithms with

regards to the state-of-the-art training methods and to show their increased approximation

performance.

• Chapter 5 builds on the theoretical highlights of the newly introduced training algorithm

presented in Chapter 4 by introducing a novel training algorithm which selects a dimensional

variable state-feedback gain and input layer based on the most relevant neurons that dictate

the dynamics of the reservoir with regards to the dynamics of the target system. The main
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advantage introduced by selecting the trainable parameters of the structure is that it avoids

certain over-fitting problems that might be present in fully trained structures. The same

numerical studies that were carried out in the previous chapter show similar, if not improved

performances in some cases, between a fully trained input layer - state-feedback gain Echo

State Network (algorithm presented in Chapter 4) and the reduced dimension version of the

input layer - state-feedback gain Echo State Network introduced in this chapter.

• Chapter 6 introduces a new type of architecture, namely Switching Echo State Networks.

State-of-the-art architectures perform multiple tasks on a single feed-forward reservoir

by coupling several trainable readout modules. Based on the advantages of the newly

introduced training algorithms presented in Chapter 4 and 5, having a flexible reservoir,

which switches between the pairs of input layers and state-feedback gains to match the

dynamics of each individual task, and switching between readouts to match the target signal,

offers better numerical approximation results when compared to the state-of-the-art fixed

output-feedback Echo State Network coupled with parallel readouts. Several closed-loop

construction conditions are also analysed and introduced in order to guarantee the stability

of the overall switching system. Experimental studies on data recorded from a fruitfly

photoreceptor were performed to show an increase in performance of the newly proposed

architecture when compared to previous NARMAX solutions.

• Chapter 7 contains concluding remarks and future work ideas.

26



Chapter 2

Overview of Reservoir Computing

2.1 Introduction

Recurrent Neural Networks (RNNs) are Artificial Neural Networks (ANNs) that incorporate

one or more feedback connections [25] that can be local, from the output to the input of individual

neurons, or global, from the outputs to the inputs of the network. The incorporation of feedback

connections means that RNNs are in fact non-linear dynamical systems that can be used to model

complex dynamical behavior [26],[27],[28], unlike feedforward ANNs that define a static mapping

between inputs and outputs [29],[30]. Haykin [5] identifies three fundamentally different classes

of networks: Single-Layer Feedforward Networks, where the input layer of neurons projects

information to the output layer of nodes, but not vice-versa, MultiLayer Feedforward Networks,

where, between the input and output layer of neurons, there exists one or more "hidden" layers of

nodes (the information that is transmitted by the input layer is first projected through the hidden

layers, in which a collection of neurons operate together at a specific depth inside the network, and

from those layers it is transmitted to the output layer), and Recurrent Networks that distinguish

themselves from MultiLayer Feedforward Networks by having at least one feedback loop that

transmits information to one or more previous layers.
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Several RNN architectures have been derived based on two main directions. First, according

to the type of neuron activation function, RNNs can be classified into spiking [8],[16],[17],[31],[32]

and non-spiking RNNs [9],[12],[19]. Secondly, according to the network parameters that are

modified in training, we distinguish fully trained RNNs [12],[33],[34],[35],[36], where all the

connections between neurons are constantly changed, and partially trained RNNs, where just a

particular set of connections are modified (e.g., changing only the connections of the output layer,

of the feedback loop, etc.) [8],[9],[12],[28],[32].

Figure 2.1: Different RNN architectures based on the employed training strategies. The red
arrows represent the parameters of the network that are trained: A) Fully trained RNN

structure B) Partially trained RNN structure

Widely used fully connected continuous RNN training algorithms, that are based on the

gradient descent method, such as: the Backpropagation Through Time (BPTT) algorithm [33], the

Atiya-Parlos Recurrent Learning (APRL) method [34], Extended Kalmann Filters (EKF) estimation
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[35], and Expectation Maximization algorithm [36], methods which minimize the error between

the output of the network and the target output, by modifying each weight in proportion to the

corresponding partial derivative of the error with respect to that weight. Atiya [34] mentions that this

class of recurrent training algorithms can be classified into five categories: the forward propagation

approach [37],[38], where the weights are updated on-line; the truncated Backpropagation Through

Time [39],[40],[41], where the RNN is transformed into an equivalent FNN off-line; the fast forward

propagation approach [42] which computes the gradients recursively, on-line; the Greens Function

approach [43] that improves the computational complexity of the previous category, and the block

update approach [44],[37],[45] which updates the weights by grouping the data points into blocks,

leading to a decrease in computational complexity. However, the biggest issue of the first generation

RNN architecture is that all the above training categories are more complex compared to the

methodologies used to train feedforward network structures, due to the presence of local and global

feedback loops. The difficulty in efficiently computing the gradient used to train the weights leads

to complex and slow converging methods [8],[15],[16],[18],[34]. This is due to the fact that the

on-line methods operate at a higher complexity of O(N3) and O(N4) making this class difficult to

scale to larger networks, whilst, the most efficient off-line method, the truncated Backpropagation

Through Time, operates at a lower complexity of O(N2), but is not practical for on-line applications

as the gradients have to be propagated to the initial time for each new data point.

If only the global feedback is present, from the output to the input, the RNN could be trained

using algorithms developed in the control space, such as the EKF [20],[21],[22] for the feedback

loop and input layer identification. This type of method has never been fully explored in this

space of RNNs [14], as Maass only suggests that training a state-feedback loop could improve the

approximation capabilities of RNNs at a fraction of the cost of fully training all the connections of

RNNs. Sussillo in [12] proposes a state-feedback loop gain represented in the form of a smaller

network. Only the input layer of the newly introduced structure is trained, which improves the

approximation results, but not in a substantial way. Other papers explored fully training the RNN

using the EKF with good results [46],[47]. Throughout this thesis, we will pick up on these methods

and follow up on the suggestions made by Maass [14] by using them efficiently in newly proposed

training algorithms for Echo State Networks. We will also comment on the architecture proposed

by Sussillo, in the sense that, training the parameters of the input layer of the feedback network will

not affect, in a qualitative manner, the approximation capabilities of the closed-loop structure.

In the direction of spiking RNNs, a series of gradient descent based supervised learning

algorithms have been proposed: the SpikeProp through time [48],[49],[50], which optimizes the

spiking RNNs dynamics on the timescale of individual spikes by introducing a differentiable

formulation of the spiking RNNs to derive the exact gradients calculation and the Kullback-Leibler

divergence algorithm [51],[52],[53] which minimizes the divergence between the distribution of the
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desired output spike trains and the spike trains produced by the network. Other algorithms with

different biologically plausible rules have been proposed, such as [54],[55],[56]. The main problem

with fully training spiking RNNs using these types of methods is that the gradient descent methods

do not guarantee the convergence of the solution, as the information used in the construction of

the gradients degenerates and might become ill-defined, due to the presence of the bifurcations

when choosing the path to the optimal solutions. Moreover, parameter updates are computationally

expensive, resulting in long training times, making it feasible only for networks with neurons in

the order of tens of units [18]. Thus, new developments had to be made in order to solve the

previously mentioned issues, either by creating more efficient training algorithms or by changing

the philosophy of the networks architecture design.

The following sections within this chapter will cover generic RC architectures, properties and

training methodologies, neuron models used in LSMs, LSM architectures, properties and training

algorithms, typical neuron activation functions for ESNs, ESN architectures, properties and training

algorithms accompanied by some concluding remarks regarding the advancements and gaps in the

literature.
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2.2 Reservoir Computing

2.2.1 Generic architecture and training algorithms

Reservoir Computing (RC) is a machine-learning paradigm that is based on the standard

state-space model RNN architecture and involves only training the output map of a randomly

initialized high dimensional dynamical reservoir [8],[9],[31]. A typical RC machine consists of an

input layer that passes the input signal to a fixed, randomly initialized dynamical system, in the form

of an NN, and a readout that performs a transformation on the systems states. Usually, the dynamical

system is chosen as a non-linear transformation of the input and the readout is typically chosen as a

linear combination of the RCs internal states. Figure 2.1 B) depicts a typical RC architecture.

The state space model of a generic RNN:

ẋ(t) = f (x(t),u(t),W ) (2.1)

with the output equation

y(t) = g(x(t)) = wout−1g1(x)+wout−2g2(x)+ ...+wout−pgp(x) (2.2)

Each neuron i, i≤ n from (2.1) can be described separately:

ẋi(t) = fi(xi(t),u(t)) (2.3)

where u : R→ Rm is the input injected in the network, x : Rn→ Rn are the states of the network,

y :Rn→Rp is the output, f :Rn→Rn, f = [ f1, ..., fn]
T is the network of neuron activation functions,

usually with f1 = ... = fn, W ∈ Rn×n is the connection matrix between neurons, g : Rn → Rm

represents the linear-in-the-parameter output mapping function of x, also referred to as the readout,

wout−1, ...,wout−p are the output weights and g1, ...,gp : Rn→ Rp. The most common choices for

the readout modules mapping function are represented by memory-less functions, that are not

required to retain any memory of previous states, and are linear g(x(t)) =Woutx(t),Wout ∈ Rp×n

[8],[9],[32] or non-linear (i.e., element-wise applied sigmoid, polynomial) when dealing with highly

non-linear tasks [18].

The activation function of a neuron is a function that introduces non-linearities into the output

of that neuron given an input or set of inputs. The activation functions can be classified into two

main categories: continuous functions (e.g., linear, sigmoid functions, etc.) and spiking functions
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(e.g., Hodgkin-Huxley, Integrate-and-Fire, etc.). The choice of activation function has a large

impact on the capability and performance of the NN. Typically, the first category of functions are

differentiable, as the main method of training an NN is based on the backpropagation of errors [39]

that requires first-order derivation. The advantage of using spiking functions is that the associated

computational power costs are lower, compared to continuous signals whilst transmitting more

information through the exact spiking time or through the inter-spike time interval. However, the

main issue of fully training the connections of spiking RNNs is that the existing training methods

were developed for continuous (non-spiking) RNNs and the adapted methods are only reliable for

small networks (in the order of tens of neurons) [18] due to increased training times.

Existing artificial networks could not offer a numerical tractable problem in the representation

of highly connected recurrent circuits present in the neocortical column of the biological brain

[57] as it required ANNs to possess an immense number of states for processing and storing the

high-varying inputs, which made existing training algorithms time inefficient [8]. Thus, real-time

computing of time-varying inputs would be inspired by nature, namely, the liquid [58]. It only has

one stable state, that is, the resting state. Any other states are generated by the presence of an input,

considered as a perturbation to the system and are memorized by the liquids recurrent local and

global feedback loops.

A number of theoretical results regarding the approximation power and performance of

reservoir computing models have been formulated using dynamical systems theory [8],[14]. These

results will be reviewed in the following sections.

2.2.1.1 General learning framework and principles

The main training methodology that has been extensively used for conventional RC

architectures with linear-in-the-parameters readouts in fitting the output map parameters accordingly

is represented by the Least Squares (LS) algorithm [59],[60]. Other linear-in-the-parameters

optimization algorithms, such as the Orthogonal Forward Regression (OFR) algorithm [23],[32],

finds the minimum number of parameters that should be trained to avoid over-fitting problems and

maintain maximum approximation performance by minimizing the following cost function:

E = ||y− ytarget ||2 (2.4)

where ytarget is the target output signal.

Other approaches in improving the performance of existing training methods have been

mentioned in [18]. Finding a way to design and initialize the reservoir for a specific task would

dramatically improve the readout training time and reduce approximation errors as the dynamics
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of the liquid would be specifically designed for the task at hand. Moreover, having more neurons

in the network that are sparsely connected (establishing up to 20% of the total number of possible

connections) produces a "rich" set of dynamics. Decreasing the spectral radius of the connection

matrix of the network (ρ(W ) = max
i≤n

(λi), where λi is the i-th eigenvalue of W ), could represent

another solution in improving training results for particular tasks (i.e., when the target system

is represented by a fast response linear discrete system with small spectral radius, the reservoir

can be initialized with a spectral radius lesser than 1, which is the condition for stability in the

case of discrete systems, in order to only capture fast dynamics). Other developments of reducing

approximation errors suggested by the survey paper [18] include using supervised pre-training

evolutionary algorithms for tuning the reservoir. Based on key parameters such as size, maximum

eigenvalue, connection topology, etc., several candidate networks are generated and the best

candidates, with regards to the approximation error, are chosen to be the parents of the next

generations evolution. The new candidates are created by either mating two or more parent NNs by

randomly combining the weights of the connectivity matrices or by self-mating, meaning that the

parent becomes the new child. After the childs are created, they become subject to mutation, by

adding or removing nodes, adding noise to the weights, changing the activation functions, etc. Such

methods include the Kroenecker extension [61], which is a self multiplication evolutionary method,

and the Evolino method [62], which, in the first instance, computes the readout for each candidate

reservoir via standard regression and, in the second phase, selects the best reservoirs as the parents

for the new generation and creates the childs by mating between them.

Several construction methods of the neurons functions are suggested in [18], such as: Support

Vector Machines [63], Radial Basis Functions [64], Slow Feature Analysis [65] and Probability

Mixture Models [66]. While usually the reservoir dynamics are non-linear and the readout is a linear

map, an alternative reversed architecture with a linear dynamic reservoir and non-linear readout

has also been taken into consideration [67],[68],[69]. When memory-less readouts are ineffective,

coupling standard readouts with delays can solve the issue of learning the long-term dependencies

present inside multi-time-scale tasks.

2.2.2 Universal approximation properties of Reservoir Computers

A machine possesses the universal approximation property [8] if any time-invariant filter F that

has fading memory which maps input functions u(t) to output functions y(t) can be approximated

to any degree of precision.

Definition 2.1 Functions F : C(R)→C(R) that map input functions u(·) on output functions

y(·) are referred to as filters in neuroscience and engineering.
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Definition 2.2 A filter F : C(R)→C(R) is time-invariant if:

UτFu = FUτu,∀u ∈U ,τ ∈ R

where Uτu(t)≜ u(t− τ) is the τ-delay operator.

Definition 2.3 A filter F : C(R)→C(R) has fading memory on a subset U ⊂C(R) if there

exists a decreasing function µ(t) : R+→ (0,1], lim
t→∞

µ(t) = 0, such that ∀u ∈ U and ε > 0 there

exists δ > 0 such that ∀v ∈U satisfies:

sup
t≤0
|u(t)− v(t)|µ(−t)< δ =⇒ |(Fu)(0)− (Fv)(0)|< ε.

In particular, [70] define operators as having fading memory if two input signals which are

relatively close from a temporal perspective, yield present outputs which are close.

Definition 2.4 A class CB of filters is a class of functions which has the point-wise separation

property with regards to a class of input functions U , if for any two functions u(·),v(·) ∈U,u(s) ̸=
v(s),s ⩽ 0 there exists B ∈CB such that (Bu)(0) ̸= (Bv)(0).

Theorem 2.1 from [15]. Consider a space Un of input functions where U = {u : R→ [−B,B] :

|u(t)−u(s)|⩽ B′ · |t− s| ∀t,s ∈R} for some B,B′ > 0 (thus, U is a class of uniformly bounded and

Lipschitz-continuous functions). Assume that CB is some arbitrary class of time-invariant filters

with fading memory that has the point-wise separation property. Furthermore, assume that CF is

some arbitrary class of functions that satisfies the approximation property.

Then any given time-invariant filter F that has fading memory can be approximated by

Liquid State Machines (LSMs) with liquid filters LM composed from basis filters in CB and readout

maps f M chosen from CF. More precisely, for every ε > 0, there exist m ∈ N,B1, ...,Bm ∈CB and

f M ∈CF so that the output y(·) of the LSM M with liquid filter LM composed of B1, ...,Bm, that is,

(LMu)(t) = ⟨(B1u)(t), ...,(Bmu)(t)⟩, and readout map f M satisfies for all u(·) ∈Un and all t ∈ R
||(Fu)(t)− y(t)||⩽ ε .

Theorem 2.2 from [14]. A large class Sn of systems of differential equations of the form

x′i(t) = fi(x1(t), ...,xn(t))+gi(x1(t), ...,xn(t))v(t), i = 1, ...,n (2.5)

are in the following sense universal for analog computing:

This system (2.5) can respond to an external input u(t) with the dynamics of any nt order

differential equation of the form

z(n)(t) = G(z(t),z′(t), ...,z(n−1)(t))+u(t) (2.6)
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(for arbitrary smooth functions G : Rn→ R) if the input term v(t) is replaced in Equation (2.5)

by a suitable memoryless feedback function K(x1(t), ...,xn(t),u(t)), and if a suitable memoryless

readout function h(x(t)) is applied to its internal state x(t) =< x1(t), ...,xn(t)>: one can achieve

then that h(x(t)) = z(t) for any solution z(t) of Equation (2.6).

Also the dynamic responses of all systems consisting of several higher order differential

equations of the form Equation (2.6) can be simulated by fixed systems of the form (2.5) with a

corresponding number of feedbacks.

The main result stated by Theorem 2.1 implies that an LSM defined by equations (2.8)-(2.9)

can theoretically approximate any dynamical system arbitrarily close by only optimizing the readout

parameters. In a follow-up paper [14], it is argued that introducing a state-feedback that improves

the dynamic response of the arbitrary reservoir offers a much stronger universal approximation

property compared to standard feedforward networks, which seems to undermine the results in

Theorem 1. From the perspective of Control Theory, the Universal Approximation property of

RC stated in Theorem 1 cannot hold only by training the readout. Take for example, a linear

input-state-output system. Changing only the output matrix does not modify the dynamics of the

system, which inherently, sets some boundaries to how close can such a system approximate the

behaviour of another system with different dynamics and similar structure.

Theorem 2.2 that is presented in the form of Theorem 1 in [14] states that a dynamical

system of the form given in (2.6) can perform highly accurate tasks and outperforms the standard

LSM architecture provided by equations (2.8)-(2.9), as a state-feedback gain is able to modify the

dynamics of the initial reservoir to be better suited for a particular target task. However, the major

drawback of the proposed randomly initialized state-feedback LSM is that the state-feedback gain

can only be trained when a priori information is known about the target system or via an estimation

method.

Similar to Theorem 2.1, a number of approximation theorems and properties have been

proposed for generic ANNs:

1. Kolmogorovs superposition theorem [71] is one of the first results in universal approximation

theory and states that every continuous function can be represented as a superposition of

continuous functions of 3 variables.

2. Cybenko in [72] proposed approximating arbitrary functions using a finite sum of sigmoidals.

3. Hornik in [73] showed that multilayer FNNs are universal approximators.

4. Leshno in [74] and Pinkus in [75] showed that the universal approximation property is

equivalent to having a nonpolynomial activation function for the neurons. It was shown that
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there exists a sigmoidal function such that two hidden layer NNs with bounded number of

neurons are universal approximators.

5. For arbitrary depth networks, a number of authors [76],[77],[78],[79] contributed to the

result obtained by Park [80] where the minimum network width required for universally

approximating Lp functions using FNNs has been determined.

6. The authors in [81] proved that single hidden layer networks with bounded width are still

universal approximators for univariate functions. This property does not stand when it comes

to approximating multivariable functions.
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2.3 Liquid State Machines

The Liquid State Machine is a type of Reservoir Computer proposed by Maass [58] which

implements a recurrent Spiking Neural Network (SNN) reservoir. The main motivation behind

LSMs was to develop a biologically plausible model of computation to describe cortical circuits [8].

2.3.1 LSM Architectures

A typical LSM consists of a fixed SNN that is connected to a bank of memory-less filters and

an adjustable readout. The spiking neurons that form the reservoir are randomly initialized and do

not require training. The trainable readout is linear in the parameters, represented as a weighted

sum between the states of the reservoir.

The spike trains are elements of the following space [8]:

S0 = {s|s = {tk}P
k=1, tk+1 > tk ≥ 0,∀k = 1, ...,P−1} (2.7)

where t1, ..., tP are distinct times, P the total number of spike occurrences.

Consider the following liquid [8]:

xM(t) = F(LM(u(t))) (2.8)

with the readouts equation:

y(t) = f M(xM(t)) (2.9)

where u(·) : R→ RNin is the input injected in the network, LM : SNin
0 → SN is the liquid, xM(·) are

the states of the liquid, y(·) is the output of the liquid and Nin and N are the number of inputs and

number of neurons in the SNN, respectively.

Definition 2.5 The bank of memory-less filters F : SN
0 → L2(R)N are included in a class of CB

filters (e.g., delay filters, linear filters with impulse responses of the form h(t)= e−at ,a> 0 defined as

in [15]) that have the point-wise separation property, as per [15],[31] if ∀u(·),v(·)∈Un,u(s) ̸= v(s)

for some s ⩽ 0, ∃B ∈CB such that (Bu)(0) ̸= (Bv)(0).

In other words, from Definition 2.2, the equation of the memory-less delay filters F on a spike
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train sn = {tn
k }

P
k=1, as defined in [32]:

F(sn) =
Pn

∑
k=1

e−
t−tnk

τs ·1[tn
k ,∞)(t) (2.10)

where Pn denotes the number of spikes in sn, 1[tn
k ,∞) denotes the characteristic function on the interval

[tn
k ,∞) and τs ∈ R+ is the time constant that describes the characteristics of the filtering circuit (i.e.

it interprets the filters response in the time domain, and relates to the time it takes for the response

to reach a defined percentage of the final value).

Definition 2.6 The readout function f M(·) : L2(R)N→ L2(R) is chosen to be from an arbitrary

class CF of functions, from [15], having the approximation property: ∀m ∈ N, any compact set

X ⊆ R, any continuous function h : X → R, and ∀ρ > 0, ∃ f ∈CF : |h(x)− f (x)|⩽ ρ,∀x ∈ X.

The most common readout is the linear unit:

y(t) = f M(x(t)) =
N

∑
n=1

wnxn(t) (2.11)

A more detailed analysis in [8] showed that the new proposed architecture solved the problems

of traditional RNNs regarding training and scalability by only training the readout module.

In [16], Maass has analysed and compared different implementations of modeling networks

of biological neurons such as Markov Chains [82] or Boltzmann machines [83] with the LSM

architecture [8] on the classic travelling salesman problem. The results show that the superior

computational power of the spiking architecture comes from the fact that the transition between the

states of the reservoir are substantially fewer for finding the optimal solution compared to the other

architectures. Moreover, the afferent stochastic training strategies of SNNs offer improved energy

consumption and faster running times compared to the traditional computing machines.

The shortcoming of this first generation of LSM architectures is that, in practice, the state of

the liquid is uniformly sampled and that xM(·) is not bandlimited. This means that the samples of

the states are affected by aliasing, due to Shannons law, which leads to imprecise predictions of the

final output.

One new architecture has been proposed in [32] which solves the limitations regarding the

fitting imprecision of the last generation architecture, by eliminating the bank of filters F , by using

a spike time based readout and by using a more appropriate spike space.

The spike trains are mapped in the extended Carnell-Richardson spike train space [84]:

S= {s = {(ak, tk)}P
k=1,P ⩾ 1, tk,ak ∈ R, tk ̸= tl,∀k, l ∈ {1, ...,P},k ̸= l} (2.12)

with the following three operations:
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• Vector sum: s1 + s2 = {(a1
k , t

1
k )}

M1
k=1∪{(a

2
k , t

2
k )}

M2
k=1

• Scalar Multiplication:α · s = {(α ·ak, tk)}M
k=1,∀α ∈ R

• Inner Product: {s1,s2}S = ∑∑
k1=M1,k2=M2
k1=1,k2=1 a1

k1
a2

k2
· e−

|tk1
−tk2

|
τs

It is preferred to use the Carnell-Richardson inner product space, compared to the original

space of all possible spikes defined in (2.7) as the initial space proposed in [8] does not form a linear

space because the condition for the scalar multiplication operation cannot be met:

α · s = {(α, tk)}M
k=1 /∈ S0

In the newly proposed architecture, the bank of filters F is removed from the state equation in

(2.8) whilst the output equation with the modified spiking readout structure f M(·) : SN → L2(R) is

in the following form:

y(t) = f M(xM(t)) = Rwsout =
Pout

n

∑
n=1

wnsout
n = sy

w (2.13)

where sout = [sout
1 , ...,sout

n ] and Pout
n denotes the number of spikes.

2.3.2 Spiking Neuron Models

The spiking neuron model has been introduced as a biological plausible mathematical model

that describes, to some extent, the functionality of a real neuron. The operating principle of all

spiking models is that the membrane voltage of the neuron evolves under the effect of the input.

When a certain threshold is met, a spike is released and the neurons membrane voltage is reset to a

default value. Compared to traditional non-spiking neurons, temporal information is encoded within

the spikes that are released by triggering the spiking neurons. This grants SNNs more computational

power at a fraction of the energy cost used by ANNs [85].

2.3.2.1 Integrate and Fire model

The Integrate-and-Fire neuron [86] is the simplest, most commonly used mathematical model

of a biological neuron [8],[24],[32],[87], given by:

Cm
dVm(t)

dt
= I(t) (2.14)
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Figure 2.2: LSM architecture generations: A) First generation continuous-time output response
LSM architecture B) Second generation spiking output response LSM architecture

where Cm is the membrane capacity and Vm is the membrane voltage.

The condition of firing is given by:

1
Cm

∫ tk+1

tk
I(t)dt = ∆ (2.15)

where {tk} is the spike time sequence.

The output function is of the following form:

y(t) = ∑
k

δ (t− tk) (2.16)

where δ (t) is the Dirac delta function and ∆ ∈ R+ is the membrane voltage threshold.

The shortcoming of this neuronal model is represented by the lack of a time-dependent

memory, meaning that the membrane voltage does not decay with time [88]. Past and current

information have the same effect on the neurons output, which is unrealistic from a biological point

of view. Naturally, past information should become less relevant, compared to current input signals

that should have the highest impact on the neurons response.
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2.3.2.2 Leaky Integrate-and-Fire model

The Leaky Integrate-and-Fire (LIF) neuron [24],[32],[89] has been introduced as an

improvement to the IAF model by adding a time-dependent memory in the form of a leaky

resistor, which overcomes the main drawback that the previous generation of neurons had in

modelling the membrane voltage.

The improved equation is presented as following:

Cm
dVm(t)

dt
= I(t)− Vm(t)

Rm
(2.17)

where Rm is the membrane resistance.

The condition of firing is given by:

1
Cm

∫ tk+1

tk
I(t)− Vm(t)

Rm
dt = ∆ (2.18)

where {tk} is the spike time sequence and ∆ ∈ R+ is the membrane voltage threshold.

The output function is of the following form:

y(t) = ∑
k

δ (t− tk) (2.19)

where δ (t) is the Dirac delta function.

2.3.2.3 Resonate and Fire model

This model is obtained by linearising the non-linear neuron membrane potential function [90]:

ẋ = bx−ωy

ẏ = ωx+by
(2.20)

which has the following equivalent complex form:

ż = (b+ iω)z (2.21)

where z = x+ iy ∈ C describes the oscillatory activity of the neuron, x is the current variable, y is

the voltage variable, ω,b ∈ R.
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2.3.2.4 Hodgkin-Huxley model

The most important and biological relevant neuron model has been proposed by Hodgkin

and Huxley [91] in 1952. The highly complex model [92] focuses on describing the relationship

between the ion currents crossing the neural membrane and the membrane voltage, with several

applications in pattern recognition using LSMs [93],[94],[95],[96].

The models set of equations:

Cm
dVm

dt
= I− ḡKn4(Vm−VK)− ḡNam3h(Vm−VNa)− ḡl(Vm−Vl)

dn
dt

= αn(Vm)(1−n)−βn(Vm)n

dm
dt

= αm(Vm)(1−m)−βm(Vm)m

dh
dt

= αh(Vm)(1−h)−βh(Vm)h

(2.22)

with

αn(Vm) =
0.01(10−Vm)

e
10−Vm

10 −1
;αm(Vm) =

0.1(25−Vm)

e
25−Vm

10 −1
;αh(Vm) = 0.07e−

Vm
20

βn(Vm) = 0.125e−
Vm
80 ;βm(Vm) = 4e−

Vm
18 ;βh(Vm) =

1

e
30−Vm

10 +1

(2.23)

where αi,βi are rate constants for the i-th ion channel, which depend on voltage and not time, n,m,h

are dimensionless quantities between 0 and 1 that are associated with the potassium and sodium

channels, ḡ is the maximal value of the conductance and I is the injected input.

Other simplified Hodgkin-Huxley (HH) models have been developed, such as the Morris-Lecar

(ML) [97], Poisson-Nerns-Planck (PNP), Poisson-Boltzmann-Nernst-Planck (PBNP) [98] and

FitzHugh-Nagumo (FHN) [99], which aim to reduce the complexity of the HH model by reducing

the order of the non-linear differential equations.

2.3.2.5 Morris-Lecar model

The ML model [97] proposes a differential equation where the inward current is calcium,

rather that the sodium current modelled by the HH. Bursting was implemented by including an
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intracellular pool of calcium and a second calcium-dependent potassium conductance:

Cm
dVm
dt = I−gCam∞(Vm−ECa)−gKn(Vm−EK)−gL(Vm−EL)−gK(Ca)

[Ca]
[Ca]+K (Vm−EK)

d[n]
dt = n∞−n

τn
d[Ca]

dt = k1ICa− k2[Ca]
(2.24)

where IK(Ca) is the calcium-dependent current, [Ca] is the calcium concentration.

2.3.2.6 FitzHugh-Naguomo model

The FHN model [99] is a simplification of the HH model by describing only two variables

v(t), which is the voltage, and w(t), which is a recovery variable:

ε
dv
dt = F(v)−w+ I

dw
dt = v− γw

F(v) = v(1− v)(v+a)

(2.25)

where ε << 1,a,γ are constants and I is the injected current.

2.3.2.7 Hindmarsh-Rose model

This model [90] is based on the FHN model:

dx
dt = y− f (x)− z+ I
dy
dt = g(x)− y
dz
dt = ε(h(x)− z)

f (x) = ax3−bx2

g(x) = c−dx2

(2.26)

where ε is a time scale of the slow adaptation current and h(x) is the scale of influence of the slow

dynamics that determines how the neuron fires.
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2.3.2.8 Izhikevich model

Finally, the model proposed by Izhikevich [100] is given by:

dv
dt = 0.04v2 +5v+140−u+ I
du
dt = a(bv−u)

v≥ 30mV,v← c,u← u+d

(2.27)

where a,b,c,d are parameters, v is the membrane potential of the neuron and u is the recovery

variable of the membrane.

An in-depth analysis of the aforementioned models has been made in [96] for a facial

recognition task. The results revealed that the ML model overall performs best in recognizing 8

different emotions (surprise, happiness, disgust, fear, anger, sadness, neutral). For disgust, it has

been observed that the IF model is superior to the other models, whilst the FHN performed best for

the classification of the neutrality expression. Although the Izhikevich model performed weakest

overall, it had the best accuracy for classifying sadness. From these results, the authors concluded

that there is no model that is clearly superior and that each particular task can yield for a particular

neuron model to obtain maximum performance.

Lazar [101] proved that the IAF neurons are input-output equivalent with the HH models.

By introducing a variable threshold sequence, that is identical to the inter-spike interval sequence

generated by the HH, it allows for the more simple IAF model to generate spikes at the exact same

spiking times as the HH. This means that the multiplicative coupling of the IAF is I/O equivalent:

for the same input, the same output is generated. This represents a major breakthrough in modelling

biological neurons as IAFs offer better numerical tractability and scalability by reducing the

complexity of HH architectures whilst maintaining the same output behaviour.

2.3.3 LSM Training Algorithms

2.3.3.1 Standard approach

As LSMs fall under the RC framework hypotheses and do not require full training, there is a

direct solution for finding the optimal readout, in the sense of LS [59],[102].

The first step is to randomly initialize the reservoir LM and ensure that it possesses input

separability and fading memory, based on a set of hyper parameters such as connection topology

and reservoir dimensionality. As mentioned in earlier sections, genetic algorithms are useful in
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generating these kind of successful topologies.

Consider a non-linear dynamical target system:

ẋ = f (x,u)

ytarget = g(x)
(2.28)

where x : R→ RN the states of the target, f : RN ×RNin → RN a non-linear dynamical function,

ytarget : R→ RNout the target output, g : RN → RNout the non-linear output function.

Next, from the input sequence u : R→ RNin ,u(0), ...,u(nmax), the network is stimulated

to generate states for post-processing, in order to train the readout to match the desired output

ytarget(0), ...,ytarget(nmax) of system (2.28), with nmax +1 number of training data points.

For the most common readout layer, i.e., the linear readout f M(xM(t)) = WoutxM(t), the

solution is computed directly:

Wout = (S−1D)T (2.29)

where S = [xM(0), ...,xM(nmax)] is a matrix in which each row is composed of the state vector for

all the nmax training points and DT =

 ytarget(0)

...

ytarget(nmax)

.

2.3.3.2 Parameter selection approach

One new approach for training LSMs is presented in [32] in the form of an Orthogonal

Forward Regression for Spike Trains (OFRST) algorithm. The proposed method relies on precise

spike timing to select the neurons that are relevant to each learning task.

The problem addressed is to learn a target output function y∗(t), given a N-dimensional liquid

that generates outputs {sout
k }

N
k=1 in response to input stimuli {sin

k }
Nin
k=1. The algorithm proceeds, in a

greedy fashion, by selecting the spike trains that are most relevant for the learning task using an

OFR algorithm [23] applied on spike trains.

Start from the complete set of SNN outputs s⊥(1)k = sout
k ∈ S,∀k ∈ {1,2, ...,N} and select the

most significant spike train sout
l1

that maximizes the error-reduction-ratio, which expresses the effect

of each spike fired by the neurons of the reservoir with respect to the target output:

ERR(i)
k =

⟨s⊥(i)k ,sy∗⟩2S
||s⊥(i)k ||2S||sy∗||2S

(2.30)

where sy∗ is the target spike train and s⊥(i)k is the complete set of outputs of the LSM, orthogonal on
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the most significant spike train sout
li at step i.

The algorithm works iteratively by orthogonalising the remaining spike trains using a

Gram-Schmitt routine and selects the next most significant spike trains. The following step is to

generate the SNN outputs and corresponding output vector weights and evaluate the approximation

performance of the current selection of parameters. The final step is to select the smallest number

of neurons that lead to the maximum prediction accuracy on the validation dataset.

Experiments carried out by Florescu et. al. [32] show that for binary classification tasks, their

proposed algorithm has the highest accuracy, compared to the state-of-the-art LS [59],[102] and

OFR [23] algorithms while using the lowest number of readout connections.

2.3.3.3 The STDP application on LSM readouts

The introduction of the Spike-Timing-Dependent-Plasticity (STDP) rule [103],[104],[105]

specifies how the synaptic efficacies should be adjusted, depending on the relative timing of

presynaptic and postsynaptic neuron activations.

Paper [106] proposes a readout architecture in which, one readout circuit is connected to all

the neurons in the liquid for each signal. Each connection from the neuron to the readout circuit has

m different delay-weight paths.

The weight change of a synapse from a presynaptic neuron j to the postsynaptic neuron i:

∆w j =
N

∑
k=1

N

∑
n=1

gM(s(tn
i )− s(tk

j )) (2.31)

where tk
j ,k = 1,2,3, ... are the presynaptic spike times, tn

i ,n = 1,2,3, ... are the postsynaptic times.

The function gM(xM) is defined as:

gM(xM) =

{
A+e−

∆t
τ2 ,∆t < 0

−A−e
∆t
τ2 ,∆t > 0

(2.32)

where A+,A− ∈ R and τ = 2ms controls the time amplitude of the modification window.
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2.4 Echo State Networks

Echo State Networks (ESNs) are non-spiking RNNs [9],[12],[107],[108] that emerged at the

same time as LSMs [15]. It is an approach to RNNs based on generating a large randomly and

sparsely connected neural network where only a single layer of output weights from the reservoir

are trained as the target function. Different to LSMs, ESNs use non-spiking activation functions

(e.g. linear functions, sigmoidal functions, etc.)

2.4.1 ESN Architectures

The basic discrete-time equations [18] of an ESN are given by:

x(k+1) = f (Wx(k)+Winu(k)+Wf by(k)) (2.33)

and the output equation follows as:

y(k) = H(x(k),Wout) (2.34)

where x : Rn→Rn is the n-dimensional state of the system, u : R→Rl is the l-dimensional input of

the system, y : Rn→Rp is the output of the system, f : Rn→Rn is the reservoir activation function

W ∈Rn×n is the reservoirs connection matrix, Win ∈Rn×l is the input-to-reservoir connection matrix,

Wf b ∈ Rn×p is the fixed, randomly initialized output-feedback weight matrix and H : Rn→ Rp is

the output function. Generally, the readout is a linear function H(x) =Woutx, where Wout ∈ Rp×n

is the output weight matrix. The readout could also be represented by a linear-in-the-parameters

non-linear map H(x) =Woutg(x) with a set of basis functions in x, g : Rn→ Rp.

The non-spiking artificial neuron receives multiple inputs that are passed through a non-linear

continuous function and produces an output. One of the most popular non-linear activation functions

is the hyperbolic tangent function:

f : R→ (−1,1), f (x) =
e2x−1
e2x +1

(2.35)

The major advantage of artificial neurons is that they facilitate the use of fast computational

gradient descent training methods to modify the weights and biases of the NN, compared to the

more complex, biological spiking neuronal models. However, the major drawback of this class of

models is that they are incapable of accurately representing more complex behaviours that biological
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neuronal models exhibit. Namely, the activity evoked by real neurons is irregular as they do not

transmit information at each input propagation cycle, but only when the electrical potential inside

the soma (the trunk in where the nucleus of the neuron lies and where the proteins are made to be

transported throughout the dendrites and axons) reaches a certain threshold, whilst continuous and

discrete non-spiking models propagate data at fixed cycles.

ESN architectures possess the echo state property, where the activations of the RNN neurons

are systematic variations of the driver signal with respect to the spectral radius of W :

ρ(W )< 1 (2.36)

From a control perspective, equation (2.36) ensures that the randomly initialized reservoir is

stable when f is a linear function.

Various extensions and refinements of the original ESN model have been proposed in

order to reduce the limitations imposed by a fixed reservoir regarding dynamics and improve

the approximation performance of the current architectures. This includes ESN models with

reservoirs that have uniformly distributed poles and adaptive bias [109], that aim to adjust the

spectral radius of the fixed weight reservoir by only training the bias:

x(k+1) = f (Wx(k)+Winu(k)+Winb) (2.37)

where b ∈ R is the adaptive bias.

For the processing of noncircular complex signals, augmented complex ESNs with non-linear

readout layers [110] improve the approximation results over standard architectures. The non-linear

readout offers more computational power compared to linear ones, whilst the augmented complex

reservoir is more suited in processing complex inputs when compared to the standard reservoirs

with real eigenvalues.

The echo state Gaussian process [111] is another architecture in which the high-dimensional

feature projections are explicitly computed as the reservoir states, defined in (2.33).

The network output y(t) is considered to be consisting of M component responses y(t) =
[y j(t)]Mj=1, where each component:

y j(t) = wT
j φ(t) (2.38)

where φ(t) = [x(t);u(t)].
Note that, the readout weights w j are under a Gaussian distribution w j ∼N (0,I).
From this, it turns out that the ESN readout components yield a Gaussian Process (GP) form:

[y j(t)]Mj=1 ∼N (0,Kr(φ ,Φ)) (2.39)
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where Φ = [φ(t1), ...,φ(tT )] is the design matrix and Kr is given by:

Kr =

 φ(t1)
T

φ(t1) ... φ(t1)
T

φ(tT )

... ...

φ(tT )
T

φ(t1) ... φ(tT )
T

φ(tT )

 (2.40)

where φ(t1)
T

φ(t2) are functions of the reservoir state vectors.

One other type of reservoir kernel is introduced as a Gaussian radial basis function:

kr(φ(t1),φ(t2)) = e−
||φ(t1)−φ(t2)||

2

2λ2 (2.41)

where λ ∈ R is a trainable parameter.

Training this structure is done by employing a conjugate gradient descent method [112].

The main disadvantage of using this type of architecture is that the approximations of the

model covariance functions φ(ti)T φ(t j) is slow.

A more recent paper [113] introduces the concept of continuous-time ESNs. The state

equation:

ẋ(t) = tanh(Wx(t)+Winy(p∗, t)) (2.42)

and the output equation:

y(t) =Woutx(t) (2.43)

with the same definitions as in equations (2.33)-(2.34) and where P is a Cartesian space of parameters

under which the model is expected to operate.

A new type of ESN equivalent architecture has been proposed in [19] called NG-RC. A feature

vector is created directly from the sampled input data without the need of an NN. Namely,

Ototal = c⊕Olin⊕Ononlin (2.44)

where c ∈ R is a constant, Olin is the linear feature vector and Ononlin is the non-linear part of the

feature vector.

The linear feature vector at time i:

Olin,i = Xi⊕Xi−s⊕ ...⊕Xi−(k−1)s (2.45)

where Xi = [x1,i,x2,i...xd,i]
T is a d-dimensional input vector and s is the space between observations.
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The non-linear feature vector:

O(p)
nonlin =Olin⌈⊗⌉Olin⌈⊗⌉...Olin (2.46)

where ⌈⊗⌉ is the operator that collects the unique monomials in a vector.

The output of the NG-RC:

Yi+1 =WoutOtotal,i+1 (2.47)

where Wout is the trainable output weight matrix that is trained with the conventional LS algorithm

[59],[102].

The advantages of the new non-NN architecture include faster computational times, compared

to standard RC architectures. This is due to smaller feature vector sizes, meaning that there are

fewer trainable parameters that must be determined. Moreover, the size of the training data set could

also be reduced as a consequence to the latter observation.

ESNs were primarily designed to model time series, but a recent study [114] showed that this

network architecture can be also used for static data classification and clustering in the correlations

between human emotions and brain activity.

2.4.2 ESN Training Algorithms

2.4.2.1 Echo State and FORCE learning

The presence of an output-feedback that feeds the output signal back into the ESNs reservoir

shapes the network dynamics to better approximate the observed behaviour of the unknown

dynamical target system through the trainable readout in the form of Echo-State [9] and First-Order,

Reduced and Controlled Error (FORCE) learning [12],[108],[115]. The first training algorithm

proposed by Jaeger [9] uses the target output as the feedback signal during training.

Thus, the state equation during training becomes:

x(k+1) = f (Wx(k)+Winu(k)+Wf bytarget(k)) (2.48)

The readout is computed via an LS, as in equation (2.29).

Later studies [12] showed that the Echo State training only worked when the initial errors

between the target and output signals were small, otherwise, clamping the feedback with the target

signal would usually lead to instability. The development of the FORCE algorithm [12] addressed

this issue by removing the need to clamp the feedback and feeding the actual output of the network

back into the reservoir. The goal of the algorithm is not to reduce the errors by a large amount, but
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to keep the changes done to the feedback and readout as small as possible because large changes

can drive the network into instability during the initial training phase.

We recall the notions from from [12] to underlie a more detailed overview of the FORCE

algorithm:

The ESN equation:

ṙ(t) = h(Wresr(t)+Winu(t)+Wf bz(t))

z(t) = wT r(t)
(2.49)

where u = [u1, ...,um]
T ,r ∈ Rn,z ∈ Rp denote the input, state and output vectors, h : R→ Rn is the

reservoir activation function, Wres ∈ Rn×n is the reservoir connection matrix, Win ∈ Rn×m is the

input-to-reservoir connection matrix, Wf b ∈ Rn×p is the output-feedback matrix, w : Rp×n are the

output weights, the interval of time between modifications of the readout weights ∆t and the desired

target output f (t).

The error prior to the weight update at time t is defined as:

e−(t) = wT (t−∆t)r(t)− f (t) (2.50)

The main idea behind the training process of the FORCE methodology is to update the weights

in such a way that the magnitude of e−(t) is reduced. The subsequent weight modification employs

a Recursive Least Squares (RLS) algorithm [116],[6] that controls the magnitude of the error in a

rapid and effective manner.

w(t) = w(t−∆t)− e−(t)P(t)r(t) (2.51)

where P(t) ∈ RN×N is updated according to the following rule:

P(t) = P(t−∆t)− P(t−∆t)r(t)rT (t)P(t−∆t)
1+ rT (t)P(t−∆T )r(t)

(2.52)

The initial value of P is taken to be

P(0) =
IN

α
(2.53)

where α ∈ R is a constant parameter that acts as a learning rate. Small values of α imply fast

learning of the FORCE algorithm, but, depending on the learning task, an α that is too small could

make the weight changes so fast that the algorithm becomes unstable. Larger values of α imply

slow learning. Values that are too large can lead the algorithm into not keeping the output close to
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the target function, causing the learning to fail.

The new error after the update procedure:

e+(t) = wT (t)r(t)− f (t) (2.54)

where |e+(t)|< |e−(t)| with |e+(t)||e−(t)| → 1, t→ ∞.

Using the readout to indirectly modify the dynamics of the reservoir is a compromise solution.

Although the main goal of the output map is to closely mimic the output response of the target

system, training the parameters will not lead to the optimal solution regarding output approximation

for all types of tasks. This is due to the fact that through the output-feedback connection, the readout

indirectly modifies the dynamics of the reservoir and these two aforementioned problems usually

have distinct solutions. Moreover, it is not possible to train the output-feedback gain to compensate

for the compromise made by the readout in finding the solution between output signal fitting and

reservoir dynamical fitting as the two main problems are interconnected. The modification of

the gain would lead to a modification of the readout for the output fitting task. The subsequent

modification of the output map would lead to a modification of the gain in the reservoirs dynamical

fitting problem. Theoretically, the modifications would oscillate indefinitely, without a palpable

solution.

One improvement to current architectures provided by Sussillo [12], that can be observed

in Figure 2.3 B, is to replace the output-feedback gain with a separate network that acts as a

state-feedback gain. The only parameters suited for modification are in the form of the newly

introduced networks input layer. Although this might be seen as an immediate improvement, in

control theory, the dynamics of the secondary network are not modified by the input matrix. They are

dictated by the system matrix, which in this case, is represented by all the inter-neural connections

of the smaller network that are randomly initialized. Hence, the overall dynamics of the closed loop

system are heavily biased by the dynamics of the smaller network. Moreover, without identifying

the key dynamics of the target task, when there is no a priori knowledge, there is no practical

solution of a precise initialization that would bridge the gap, in an effective manner, between the

current dynamics of the closed-loop reservoir and the dynamics of the target. As a matter of fact, in

the case of linear reservoirs, a random initialization could lead the closed-loop system to instability

without placing appropriate constraints on setting the new eigenvalues of the resulting system.

The last solution presented in [12],[28], allow full training of the network, which will not be

discussed in this thesis as it violates the main principle in RC - non-trainable reservoirs.

In the following Chapters, This thesis will present an extended mathematical analysis of the

limitations of the current FORCE methodology and a solution that separates the two main problems

via a trainable state-feedback gain ESN architecture.
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Figure 2.3: FORCE ESN architectures. The red arrows represent the parameters of the
network that are trained: (A) Standard ESN architecture (B) State-feedback gain via a smaller

NN ESN architecture (C) Fully trained network architecture
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2.5 Conclusions

The major success of the RC framework, i.e., performing on par with fully trained RNNs by

training only the readout of a randomly initialized feedback network architecture, reveals some

important aspects:

• First of all, the feedback connection plays an important role in fitting the dynamics of the

reservoir. The first improvement made in [14] by considering a state-feedback gain instead

of an output-feedback gain should represent the way to go for current architectures. The

state-feedback improves the approximation capabilities of RC architectures as the problems

of output fitting and dynamical fitting would become separate. Explicitly, first training the

state-feedback gain would allow the reservoir to represent the targets dynamics as close as

possible. At a later stage, training the readout for fitting the target output should ensure

maximum approximation of the overall structure. One downside to this approach can be

represented by the fact that without a priori knowledge of the target task, it is difficult to find

the optimum training strategy for the feedback weights. Thus, the existing training methods

can be improved by using estimation methods such as the EKF [20],[21],[22] that would lead

to optimum solutions for the state-feedback gain. This observation shall be further discussed

in the following chapters.

• Secondly, introducing a trainable state-feedback gain into the current ESN architecture makes

processing several tasks in parallel using the same reservoir impossible. This is due to the

fact that each state-feedback gain is trained to minimize the differences in dynamics between

each unknown target system and the closed-loop reservoir structure. As current developments

in the literature have not considered a switching ESN structure for solving several tasks

using state-feedback ESNs, it should be necessary and would be useful to analyse this new

perspective for multiple-task computations.

• From the OFRST method proposed by [24] and its observations regarding low readout

connectivity, it is clear that certain neurons are redundant when comes to output fitting. It

should be interesting to see if an Orthogonal Forward Selection algorithm could be applied to

the input layer and state-feedback gain in order to only select the most relevant nodes of the

reservoir that should be modified to capture the important dynamics of a target task.

Based on the literature gaps identified in this chapter, the next chapter presents the theoretical

limitations of classical Reservoir Computing implementations.
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Chapter 3

Theoretical limitations of classical Reservoir
Computing implementations

3.1 Introduction

This chapter revisits the original theoretical result concerning the computational power of

classical reservoir computing implementations, i.e., the Universal Approximation property as stated

in Theorem 1 [8] in Chapter 2, Section 2.2, under the assumption that only the parameters (weights)

of the readout function are learned.

Specifically, it is shown that the original proof of the Universal Approximation Theorem of

Reservoir Computing architectures in [8] does not hold.

This work is motivated by observing that in numerous numerical experiments the errors of

approximation cannot be made arbitrarily small by learning only the output weights. To address

these limitations is the reason why alternative RC architectures incorporating feedback loops and

associated learning algorithms have been developed [9],[12],[14],[15],[16].

One important property possessed by the architectures within the Reservoir Computing

framework is that of Universal Approximation, which states that any n-dimensional neural network
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can approximate any n-dimensional system however close by only training the readout layer.

This chapter aims to conduct a more thorough theoretical analysis in which the conditions of

applying the Stone-Weierstrass theorem of approximation underpinning the proof of the Universal

Approximation property are analyzed. Our study shows that these conditions are not actually met,

as training only the readout module does not guarantee operator separability, enforcing earlier

observations in the literature that stated that current Reservoir Computing structures could be further

improved.

In the following sections of this chapter, the reader will be presented with the short review of

algebraic operators, theoretical limitations of the Universal Approximation property, some numerical

studies and concluding remarks.
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3.2 Notations and definitions

Let U be a compact metric space and

C(U ,R)≜ { f : U → R} (3.1)

with f continuous and equipped with the uniform norm:

|| f ||∞ ≜ sup
x∈[0,1]

| f (x)| (3.2)

For any f ,g ∈C(U ,R) and x ∈U we define f g by:

( f g)(x) = f (x)g(x) (3.3)

It follows that C(U ,R) forms an algebra over R.

Definition 3.1 An algebra A is a vector space equipped with a bilinear product m : A×A→ A.

A is an unital algebra if 1 ∈ A, where 1 is the identity element such that 1 · f = f ,∀ f ∈ A.

Definition 3.2 AΨ is a subalgebra of A with generator Ψ ⊂ AΨ if ∀ f ,g ∈ AΨ,α,β ∈ R we

have α f +βg ∈ AΨ and AΨ is the smallest subalgebra such that Ψ⊂ AΨ.

Definition 3.3 A subalgebra AΨ ⊂C(U ,R) separates points in U if for any x,y ∈U ,x ̸= y

there exists f ∈ AΨ such that f (x) ̸= f (y).

Definition 3.4 Let F a field, and A be an F-vector space on which we define the vector product

(·) : A×A→ A. Then A is called an algebra over F if (A,+, ·) is a ring and (·) is bilinear.

Definition 3.5 A subalgebra A′ is a subset of an algebra A, if A′ is carrying the induced

operations of A and is closed under all those operations.

Stone-Weierstrass Theorem. Let E be a compact metric space. If a subalgebra A of CR(E)

contains the constant functions and separates points on E, A is dense in the Banach space CR(E).

Definition 3.6 from [70]. A non-linear operator N : C(R)→C(R) has fading memory on a

subset U ⊂C(R) if there exists a decreasing function µ(t) : R+→ (0,1], lim
t→∞

µ(t) = 0 such that

for ∀u ∈U and ε > 0 there exists δ > 0 for ∀v ∈U satisfying:

sup
t≤0
|u(t)− v(t)|µ(−t)< δ =⇒ |(Nu)(0)− (Nv)(0)|< ε

In other words, the functional Ñu(0) = (Nu)(0), Ñ : ΠU → R is continuous with respect to

the weighted norm, where Π : C(R)→C(R),Πu(t) = u(t), t ≤ 0. Moreover, µ will be called the

weighting function and will say that N has w-fading memory.
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Definition 3.7 Let Uτ be the τ-delay operator defined by:

Uτu(t)≜ u(t− τ)

Definition 3.8 A non-linear operator N : U →C(R) is time-invariant if:

UτNu = NUτu,∀u ∈U ,τ ∈ R

Definition 3.9 N is causal if u(τ) = v(τ) for τ < t, which implies that:

(Nu)(t) = (Nv)(t)

Here, (Nu)(t) is a real valued functional Ñ : U → R, Ñu(t)≜ (Nu)(t).

Definition 3.10 N is continuous on U if for any ε > 0 there is a δ > 0 such that for any

u,v ∈U the following condition is satisfied:

||u− v||< δ =⇒ ||Nu−Nv||< ε

Definition 3.11 Let U = {u ∈ C(R) | ||u||µ < M1, ||Uτu− u||µ < M2τ,τ ≥ 0} and U− =

{Πu | u ∈U } where U is bounded and Uτ : U →U is bounded and continuous with respect to

the µ−weighted norm. For any u ∈U , t ≤ 0, we have u(t− τ) =Uτu(t) ∈U .

Definition 3.12 A subset A of a topological space X is said to be dense in X if every point of

X either belongs to A or else is arbitrarily "close" to a member of A. Formally, A is dense in X if the

smallest closed subset of X containing A is X itself.

3.2.1 Volterra Series Operator

Consider the non-linear dynamical system:

ẋ = f (x,u)

y = h(x)
(3.4)

where f : Rn→ Rn and h : Rn→ R are smooth functions, u ∈C(R+) and (x∗,u∗) ∈ R×R is an

equilibrium point for the system f (x∗,u∗) such that the linearised system around the equilibrium

point ẋ = J f (x∗,u∗)x is controllable and asymptotically stable and x(t, t0 = 0,x0,u∗)→ x∗,∀x0 ∈
X ⊂ Rn,x∗ ⊂ X , where J f is the Jacobian, X is the domain of attractors of x∗ and x(t, t0 = 0,x0,u∗)

is the solution of (3.4) at time t with initial condition x(t0) = x(0) = 0 and input u = u∗ = ct.

Let Ψ = {ψk}n
k=1,ψk : C(R+,R)→C(R+,R) with the system (3.4) with y = yk = xk.
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It follows [117] that ψk has a Volterra Series representation:

(ψku)(t) = w0 +
∞

∑
i=1

∫
∞

0
...

∫
∞

0
wi,k(τ1, ...,τi)u(t− τ1)...u(t− τi)dτ1...dτi (3.5)

with wi,k ∈ L1(Rn
+) and

∫
∞

0
...

∫
∞

0
wi,k(τ1, ...,τi)u(t− τ1)...u(t− τi)dτ1...dτi ≤ ∞ (3.6)
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3.3 The main theoretical results

Lemma 3.1 Let N1,N2 : U →C(R) be two non-linear operators with fading memory such

that the associated functionals Ñ1, Ñ2 satisfy:

|Ñ1u(0)− Ñ2u(0)|< ε,∀u ∈U−

It follows that:

||N1u−N2u||µ < ε,∀u ∈U

Proof.

||N1u−N2u||µ = sup
t≤0
|N1u−N2u|µ(−t)

Since U− is compact [70], it follows by the extreme value theorem that ∃t1 ∈ (−∞,0] :

sup
t≤0
|N1u−N2u|µ(−t) = |Ñ1u(t1)− Ñ2u(t1)|µ(−t1) =

= |Ñ1U−t1u(0)− Ñ2U−t1u(0)|µ(−t1)

Since U−t1u(0) ∈U− it follows that:

||N1u−N2u||µ = |Ñ1U−t1u(0)− Ñ2U−t1u(0)|µ(−t1)≤

≤ |Ñ1U−t1u(0)− Ñ2U−t1u(0)|< ε

Let N be a non-linear, causal, time-invariant and continuous operator N : C(R)→C(R) and

Ñ : C(R−)→ R such that the functional associated with N is defined by:

ÑΠu .
= Nue(0),ue =

u(t) t < 0

u(0) t ≥ 0

where Π : C(R)→C(R−),Πu(t) = u(t), t ≤ 0
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Theorem 3.1 Let ε > 0 and {ψi}i=1,ψi : C(R)→C(R) be a set of operators with w-fading

memory. Let {ψ̃i}i=1, ψ̃i : C(R)→C(R) be the set of functionals defined by:

ψ̃iu(t) = (ψiu)(t)

which are continuous with respect to the µ-weighted norm and separate points. Then there is a

polynomial P̃(ψ̃1, ..., ψ̃n) : U → R and an associated polynomial operator P : U →C(R) that:

a)|Ñu(t)− P̃(ψ̃1, ..., ψ̃n)u(t)|< ε

b)||NUtu−P(ψ1, ...,ψn)Utu||µ < ε

for all u(t) ∈U and t ∈ R.

Proof. Since the functionals ψ̃1, ..., ψ̃n are continuous and separate points in U the subalgebra AΨ

with generator Ψ = {ψ̃1, ..., ψ̃n} over R is dense in C(U ,R). It follows that for any ε > 0 there

exist a polynomial P̃(ψ̃1, ..., ψ̃n) such that:

|Ñu(t)− P̃(ψ̃1, ..., ψ̃n)u(t)|< ε

for all u(t) ∈U and t ∈ R.

Since u(t) =Utu(0) ∈U− we have :

|ÑUtu(0)− P̃(ψ̃1, ..., ψ̃n)Utu(0)|< ε

From lemma 3.1 it follows that:

||NUtu−P(ψ1, ...,ψn)Utu||µ < ε

for any t ∈ R and u ∈U .

Note that this does not imply that:

||Nu−P(ψ1, ...,ψn)u||< ε

where || · || is the uniform norm on C(R), because U is not compact and so, we cannot apply the

extreme value theorem.
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Remark 3.1 The non-compactness of U in Theorem 3.1 is due to the fact that U is only

defined on the µ-norm and not on the uniform norm [70].
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3.4 LSMs limitation result

Theorem 3.2 Consider the non-linear dynamical system:ẋ = f (x,u)

y = x
(3.7)

where f :Rn×U →Rn is a smooth function, u∈C(R) and (x∗,u∗) is an equilibrium point such that

the linearised system around the equilibrium point ẋ = J(x∗,u∗)x is controllable and asymptotically

stable and let Vu be the domain of attraction of (x∗,u∗).

Let Ψ = {ψi}n
u, ψi : C(R+,R)→C(R+,R) be the input output maps associated to the system

(3.7) with y = xi and {ψ̃i} the associated functionals ψ̃i : C(R+,R)→ R defined by:

ψ̃iu(t) = (ψiu)(t)

which are continuous with respect to the µ-weighted norm.

It follows that the algebra generated by {ψ̃i}n
i=1 is not dense in C(R).

Proof. Let x0 = x(t0) and x ∈ V . Given that the system is controllable, then there exist u1,u2 :

(−∞,T )→ R such that:

u1(t) = u2(t), t ≤ t0,u1 ̸= u2, t ∈ (t0,T ]

drive the system from initial state x0 to x in finite time T along different state trajectories :

x1(T, t0,x0) ̸= x2(T, t0,x0)

originating in x0.

It is easy to see that since the system is controllable, for every t ∈ (t0,T ), we can find

u1,u2 ∈ (−∞, t) such that:

γ1(t, t0,x0,u1) = x1(t, t0,x0)

γ2(t, t0,x0,u2) = x2(t, t0,x0)

It follows that there are u1 ̸= u2 : (−∞,T )→ R such that ψ̃i(u1(T )) = ψ̃i(u2(T )), i = 1, ...,n

for any T > t0 and hence, the algebra generated by {ψ̃i}n
i=1 does not separate points in C(R).
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Remark 3.2 In other words, Theorem 3.2 shows that starting from an initial state, we can

find two different control sequences that would lead the controllable system (3.7), to a final state,

via two different state trajectories. Hence, the separability condition required to apply the Stone

Weierstrass theorem of approximation is not met.

Theorem 3.3 A liquid state machine defined by:x(t) = (Ψu)(t)

y(t) = h(x(t),W )

where u(t) ∈U ⊂C(R),x ∈ Rn,y ∈ R,h : Rn×Rn→ R is smooth and Ψu = [ψ1u, ...,ψnu] where

ψi : C(R)→C(R) are input-output operators with fading memory associated with the dynamical

system: ẋ = f (x,u)

yi = xi

where f is a smooth functional, W = [w1, ...,wN ] ∈ Rn is a vector of adjustable parameters, cannot

approximate arbitrarily close any given non-linear, time invariant operator N : C(R)→C(R) that

has fading memory on U ⊂C(R).

Proof. Let’s assume without loss of generality that the readout/output map is given by:

h(x(t),W ) =
n

∑
i=1

wigi(x)

where g : Rn→ R is a smooth function.

It follows that the subalgebra defined as Aψg ⊂C(U ,R) with the generator function G(u) =

{g1( ˜Ψ(u)), ...,gn(Ψ̃(u))}where Ψ̃= [ψ̃1, ..., ψ̃n] and ψ̃i(u)= (ψiu)(t) are the functionals associated

with the input output operators ψi does not separate points in U since we can find u1 ̸= u2 ∈U

such that ˜Ψ(u1(t)) = ˜Ψ(u2(t)) and therefore

gi( ˜Ψ(u1(t))) = gi( ˜Ψ(u2(t))), i = 1, ...,n

This applies to every linear combinations of gi and therefore h( ˜Ψ(u1),W ) = h( ˜Ψ(u2),W ) for

any choice of W ∈ Rn.

64



Remark 3.3 Following Theorem 3.2 and Remark 3.2, Theorem 3.3 shows that LSMs cannot

approximate arbitrarily close any given non-linear target function through a simple example.

Because we can find two control sequences that lead us to the same final state via two different state

trajectories, it is obvious that the readout function h will have the same results, even though the

control sequences differ. Hence, it cannot separate points and thus, the Stone-Weierstrass theorem

of approximation cannot be applied in proving that LSMs represent Universal Approximators.
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3.5 Conclusions

This chapter has revisited a fundamental thoeretical result that underpinned the assertion that

basic reservoir computing architecture, consisting of a non-linear, randomly initialised dynamical

reservoir and a readout map with tunable weights has universal approximation properties, if it is

assumed that only the readout weights are modified through training. This applies to reservoir

computing architectures with general linear or non-linear readouts so for example, the Universal

Approximation property will not hold even if polynomial readouts of arbitrary order are considered.

While increasing the reservoir dimension and using a non-linear readouts improves accuracy, the

resulting RC models cannot achieve arbitrarily small approximation error even in a noise-free case.

The alternative is to either train the reservoir weights or modify the reservoir dynamics through

feedback as shown in Maass and Sontag [31]. This strategy has been adopted by a number of

authors [9],[12],[14],[15],[16] and forms the basis for the well known FORCE learning algorithm.

Along this line, the following chapter introduces a novel RC architecture with trainable

state-feedback gains and input layers, and associated learning algorithms.
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Chapter 4

A novel state-feedback training algorithm for
ESNs

4.1 Introduction

Following the conclusions of the previous chapter, it is necessary to develop new types of RC

architectures and algorithms in order to ensure system stability and enhanced processing power.

Recurrent neural networks are artificial neural networks [39],[118],[119],[120] that incorporate

feedback connections. These enable RNNs to learn and predict complex dynamical behaviors

[26],[27],[28] and thus provide plausible models of brain architecture and computation [121].

Historically, compared to standard feedforward neural networks, RNNs have been considered to

be difficult to train [122] which has prompted the development of novel network architectures and

training algorithms to address challenges of learning long-range dependencies.

Echo-state networks are RNNs that exploit the properties of the RC architectures and its

efficient training methods [9],[17],[107],[123] to achieve performance comparable to that of fully

trained RNNs while incurring a fraction of the computational cost associated with training a RNN

in full.
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Specifically, ESNs consists of a dynamic reservoir – typically a RNN with sigmoid

neurons having fixed, randomly assigned synaptic weights - that maps the inputs u : R→ R
to a high-dimensional state-space x : R→ Rn [14], and a feedforward readout, with adjustable

synaptic weights that maps the reservoir state x to the network output y : R→ R. Since only the

weights of the readout or output map are trained, an obvious advantage of RC is that training an

ESN network is computationally efficient and fast compared to training all the parameters of the

network [124]. Various extensions and refinements of the original ESN model have been proposed

to improve performance including ESN models with state-feedback and reservoirs exhibiting

scale-free and small-world characteristics [125], reservoirs with uniformly distributed poles and

adaptive bias [109], augmented complex ESNs with non-linear readout layers [110], and echo state

Gaussian process [111]. While usually the reservoir dynamics are non-linear and the readout is a

linear map, an alternative architecture with linear dynamic reservoir and non-linear readout has also

been considered [19],[67],[68],[69].

Typically, for a fully connected readout, the connection weights are trained using a LS

optimization algorithm [8],[9],[12],[18],[108]. It has been shown that by selecting the readout

connectivity as part of the optimization procedure, resulting to a sparse connectivity between the

readout and reservoir neurons, improves accuracy [32]. This mirrors the existence in the brain of

highly connected neurons with static connectivity, which implement generic functional roles in

information processing, as well as of sparsely connected neurons exhibiting dynamic and plastic

patterns of connectivity associated with task learning [126].

Alternative, more powerful methods for training RC network architectures involve shaping

the dynamics of the reservoir through the introduction of a feedback loop , whilst still adjusting only

the weights in the output layer. To avoid feeding back erroneous output to the reservoir in [9], the

target output is fed back to the reservoir during training, instead of the actual network output. The

network output is reconnected to the reservoir once the training phase has been completed. This

approach works if the initial errors between the two output signals are small. If the initial errors

are large, clamping the feedback usually leads to instability [108]. This issue is addressed by the

FORCE learning approach [12] that eliminates the requirement to feed back the target output during

training.

Whilst the introduction of a fixed output or state-feedback [14] shapes the dynamics of the

system (i.e., the eigenvalues of the resulting closed-loop system) helping to bring the output closer

to the target, optimizing the readout weights alone does not guarantee that these often competing

goals can be achieved. In theory, matching the eigenvalue structure and the output map of a target

dynamical system would require optimizing the feedback gains as well as the readout weights.

In this chapter, we propose a new method for training ESN with state-feedback which

optimizes both the input layer - state-feedback gain pairs and readout weights, producing models
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that significantly outperform ESNs in which only the readout weights are trained [8],[9],[12]. To that

end we adopt the ESN architecture [109] consisting of a linear dynamic reservoir and a non-linear

readout (polynomial) map. Training the input layer - state-feedback gain is realised using the EKF

estimation method [20],[21],[22]. Training the readout implements the greedy optimization strategy

proposed in [32] to identify the best synaptic connectivity for the readout module.

In the following sections of this chapter, the reader will be presented with the theoretical

limitations of current output-feedback architectures, the advantages of full state-feedback ESNs,

a novel training algorithm for state-feedback gain ESNs, some numerical studies and concluding

remarks.

Specifically, the following section presents the theoretical limitations of the state-of-the-art

output-feedback ESN training algorithms.
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4.2 Theoretical limitations of output-feedback ESN training
algorithms

A discrete-time ESN with m inputs, n units (neurons) and p outputs has the following

state-space representation:

x(k+1) = f
(
Wx(k)+Winu(k)+Wf by(k)

)
y(k) = H(x(k),Wout)

(4.1)

where u = [u1, ...,um]
T ,x,y denote the input, state and output vectors, f : R → Rn is the

reservoir activation function, W ∈ Rn×n is the reservoir connection matrix, Win ∈ Rn×m is the

input-to-reservoir connection matrix, Wf b ∈ Rn×p is the output-feedback matrix and H : Rn→ Rp

is the output (readout) function. Generally [8], H(x) = Woutx, where Wout ∈ Rp×n is the output

weight matrix. However, the readout could also be a linear-in-the-parameters non-linear map

H(x) =Woutg(x) , where g : Rn→ Rp represents a set of basis functions in x.

Figure 4.1: Network architecture and adjustable weights for FORCE training

In the following sections, both linear and non-linear activation functions will be considered,

specifically the hyperbolic tangent function f (x) = e2x−1
e2x+1 .

The FORCE algorithm provides a solution for training the readout weights Wout of an ESN

with the fixed output-feedback loop presented in equation (4.1) using an RLS algorithm [12]. ESNs
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with linear reservoirs and non-linear readout have also been considered. A linear-in-the-parameters

non-linear readout map H(x) =Woutg(x) where g are multivariate monomials, for example, has the

advantage that weights can still be trained using a least-squares algorithm.

Lemma 4.1 Training only the output weights in equation (4.1) for a linear reservoir, does not

guarantee that the ESN can approximate arbitrarily close a target dynamical system.

Proof. Consider a SISO linear continuous-time ESN with output-feedback:

ẋ(t) = (W −Wf bWout)x(t)+Winu(t)

y(t) =Woutx(t)
(4.2)

where W ∈ Rn×n,Win ∈ Rn×1,Wf b ∈ R1×n,Wout ∈ R1×n are the reservoir connectivity matrix, input

layer, state-feedback gain and linear readout.

The equivalent transfer function representation of equation (4.2) is given by:

T (s) =Wout(sIn− (W −Wf bWout))
−1Win (4.3)

Let us assume that the target system is described by the following state space model:

ẋt(t) = Axt(t)+Bu(t)

y(t) =Cxt(t)
(4.4)

where A ∈ Rn×n,B ∈ Rn×1,C ∈ R1×n are the system, input and output matrices.

The equivalent transfer function representation of target system is given by:

T ∗(s) =C(sIn−A)−1B (4.5)

Training the ESN to match the target is equivalent to finding Wout ,Win,Wf b that satisfy the

functional equation T (s) = T ∗(s). If only the output weights Wout are trained, as in the case of

FORCE, even if we assume Win = B, in general we cannot find Wout to satisfy the following two

equations:

The equation of dynamical fitting:

det(sIn−A) = det(sIn− (W −Wf bWout)) (4.6)

The equation of output fitting:

Woutx =Cx (4.7)

where the unknowns are the output weights Wout .
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In order to exactly match the target, matching the dynamics of the system is equivalent to

solving (4.6) which has unique solution if the pair W,Win is controllable. However, in general, the

solution is Wout ̸= C and so the ESN output will not match the target. In practice, the reservoir

dimension is larger than that of the target system and the FORCE algorithm achieves a good

compromise in matching the dominant (slow) dynamics and the output of the target even when

Win ̸= B. However, finding (training) the output as well as the feedback and input weights of the

linear ESN would allow matching the dynamics of an arbitrary (stable) linear system of the same

order.

More generally, an input affine non-linear ESN:

ẋ = f (x(t))+g(x(t))u(t)
y = h(x(t))

(4.8)

can match the dynamics of an arbitrary non-linear system described by the input-output equation:

yn(t) = G(yn−1(t),yn−2(t), ...,y(t))+u(t) (4.9)

by finding suitable state-feedback u = K(x(t),u(t)) and readout h(x(t)) functions [14].

To address some of the limitations presented above, the following section introduces full

state-feedback ESNs with their advantages.
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4.3 Full state-feedback ESN

Consider the alternative ESN architecture with state-feedback, illustrated in Figure 4.2:

x(k+1) = f
(
(W −WinWf b)x(k)+Winu(k)

)
y(k) = H(x(k),Wout)

(4.10)

where u = [u1, ...,um]
T ,x,y denote the input, state and output vectors, f : Rn → Rn is the

reservoir activation function, W ∈ Rn×n is the reservoir connection matrix, Win ∈ Rn×m is the

input-to-reservoir connection matrix, Wf b ∈ Rn×p is the output-feedback matrix and H : Rn→ Rp

is the output (readout) function with Wout ∈ Rp×n the output weight matrix.

Here we introduce an Alternate FORCE learning algorithm (aFORCE) for ESNs with trainable

state-feedback gains. The algorithm is similar to the conventional FORCE [12] in the sense that

it employs a similar strategy to control the magnitude of the error. The key difference in the case

of aFORCE is that the output weights and the input layer - state-feedback gain pair are alternately

trained. The learning process has two distinct components. First, an EKF algorithm [20],[21],[22] is

employed to control the magnitude of the training error with respect to the state-feedback gain and

input layer. Then the output (readout) weights are estimated with the feedback gains fixed. During

the second phase of the algorithm, the number of input lags and the polynomial readout model

structure are selected.

We have chosen the EKF estimation method for training the state-feedback gain and input

layer as it conserves the advantage of the standard Kalmann filter which has been specifically

designed for offering good estimation results for linear systems. The main drawback however, of

the classical Kalmann filter is that it cannot be used for approximating non-linear systems. The EKF

solves this issue by propagating the estimated state distribution through a first-order linearization of

the non-linear system [127]. In general, one particular disadvantage of the EKF is that the goodness

of the approximation is dependant on the degree of nonlinearity of the functions it approximates.

Fortunately, in our case, using the hyperbolic tangent does not affect the precision of approximation

as its Taylor series expansion is highly dependent on its first two terms (x− x3

3 + 2x5

15 +O(x6)).

Lemma 4.2 aFORCE does not modify, in a direct manner, the weights of the reservoir and

eliminates the severe limitation of the FORCE method of using the output layer for controlling the

reservoirs dynamics.
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Figure 4.2: Network architecture and adjustable weights for aFORCE training

Proof. The state-space representation of the target system:

xT (k+1) = AT xT (k)+BT u(k)

yT (k) =CT xT (k)
(4.11)

where n ∈ N∗ is the dimension of the system, l ∈ N∗ the dimension of the input, p ∈ N∗ the

dimension of the output, AT ∈ Rnxn the system matrix, BT ∈ Rnxl the input matrix, CT ∈ Rpxn the

output matrix, u : R→Rl the input, xT : R→Rn the states of the target and yT : R→Rp the output

of the target.

The state-space representation of the network:

xN(k+1) = (AN +BNKN)xN(k)+BNu(k)

yN(k) =CNxN(k)
(4.12)

where AN ∈ Rn×n is the reservoir weight matrix, BN ∈ Rn×l the input weight matrix, KN ∈ Rn×p

the output-feedback matrix, CN ∈ Rp×n the output matrix, xN : R→ Rn the states of the network

and yN : R→ Rp the output of the network.

Start from the Input-Output representation of systems (4.11) and (4.12).

The state and output representations of target (4.11):

XT (s) = (AT − sIn)
−1BTU(s) (4.13)
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YT (s) =CT XT (s) =CT (AT − sIn)
−1BTU(s) (4.14)

The state and output representations of network (4.12):

XN(s) = [(AN +BNKN)− sIn]
−1BNU(s) (4.15)

YN(s) =CNXN(s),

YN(s) =CN [(AN +BNKN)− sIn]
−1BNU(s)

(4.16)

Target (4.14) can be dynamically approximated by the network (4.15) if and only if the

Input-Output representations of the two systems coincide. Hence, the targets equations (4.13)-(4.14)

would be equal to the networks equations (4.15)-(4.16).

Start with the output equality between (4.14) and (4.16):

CT XT (s) =CNXN(s)

CT (AT − sIn)
−1BTU(s) =CN(AN +BNKN− sIn)

−1BNU(s)| BT
T

||BT ||2

CT (AT − sIn)
−1 =CN(AN +BNKN− sIn)

−1 BNBT
T

||BT ||2
|(AT − sIn)

CT
N

||CN ||2
|CT =CN(AN +BNKN− sIn)

−1 BNBT
T

||BT ||2
(AT − sIn)

(AN +BNKN− sIn)|
CT

NCT
||CN ||2

= (AN +BNKN− sIn)
−1 BNBT

T
||BT ||2

(AT − sIn)

(AN +BNKN− sIn)
CT

NCT
||CN ||2

=
BNBT

T
||BT ||2

(AT − sIn)

AN
CT

NCT
||CN ||2

+BNKN
CT

NCT
||CN ||2

− sIn
CT

NCT
||CN ||2

=
BNBT

T
||BT ||2

AT − s BNBT
T

||BT ||2
In AN

CT
NCT
||CN ||2

+BNKN
CT

NCT
||CN ||2

=
BNBT

T
||BT ||2

AT

In
CT

NCT
||CN ||2

=
BNBT

T
||BT ||2

In

(4.17)

For the presumption of a true dynamical approximation to hold, the following two equations

must be satisfied at the same time:

AN
CT

NCT

||CN ||2
+BNKN

CT
NCT

||CN ||2
=

BNBT
T

||BT ||2
AT (4.18)

In
CT

NCT

||CN ||2
=

BNBT
T

||BT ||2
In (4.19)

Equation (4.19) yields a direct solution:

CT =CN
BNBT

T
||BT ||2

In

CN =CT BT
BT

N
||BN ||2

(4.20)
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Solution (4.20) yields a direct solution of equation (4.18):

AN

BN
||BN ||2

BT
TCT

T CT

||CT BT
BT

N
||BN ||2

||2
+BNKN

BN
||BN ||2

BT
TCT

T CT

||CT BT
BT

N
||BN ||2

||2
=

BNBT
T

||BT ||2
AT

AN
BNBT

T
||BT ||2

+BNKN
BNBT

T
||BT ||2

=
BNBT

T
||BT ||2

AT
BT

N
||BN ||2

|BNKN
BNBT

T
||BT ||2

=
BNBT

T
||BT ||2

AT −AN
BNBT

T
||BT ||2

KN
BNBT

T
||BT ||2

=
BT

T
||BT ||2

AT −
BT

N
||BN ||2

AN
BNBT

T
||BT ||2

| ||BT ||2BT BT
N

||BT BT
N ||2

(4.21)

KN = BT
NAT

BT BT
N

||BT BT
N ||2
−

BT
N

||BN ||2
AN (4.22)

From (4.20)-(4.22) we can observe that the equality between system (4.11) and (4.12) always

has a solution that does not depend on the networks trainable parameters KN and CN .

Thus, the aFORCE algorithm performs without any compromise solution, for any type of

target system. This is due to the fact that the two interdependent problems of dynamic and output

representation fitting between the two systems are handled by three independent trainable variables:

the state-feedback gain KN , the input layer BN and the readout CN .

By having two trainable structures, each focusing on one individual problem (tuning the

dynamics of the reservoir and tuning the output representation of the network), aFORCE improves

the approximation capabilities of current RC structures.

When analyzing the architecture proposed by the aFORCE algorithm in Figure 4.2, one could

argue that the reservoir is an equivalent to the main cortical area of unspecialized neurons that

transmit lots of types of data. By attaching a feedback to this reservoir (coupling specialized neurons

to the main area in a feedback loop), the whole dynamic of the cortex changes: the specialized

neurons are able to guide the unspecialized neurons into performing certain tasks (e.g., object

recognition, color recognition, depth analysis, etc.). By having several such structures, that have

been observed through MRI scans [128] for different tasks, the brain is able to process several

types of data without spending much energy into training and reshaping the whole cortex for each

different task. The biological role of the readout can be viewed from the opposite perspective: the

closed-loop reservoir is coupled to a final layer of specialized neurons that transform and assemble

the internal information into a desired, final representation (e.g., thoughts, memories, etc.).

In view of this, the following section introduces the proposed algorithm in more detail,

followed by a series of numerical experiments that benchmark the new approach against the

state-of-the-art FORCE method [12].
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4.4 A novel methodology for training state-feedback ESNs

This section introduces aFORCE as a novel algorithm for training state-feedback ESNs. Given

the training input-output data, the first stage of the proposed algorithm is to train the state-feedback

gain and input layer using the EKF estimation [20],[21],[22]. The next stage is to determine the

optimal non-linear readout, assumed to be in the form of a polynomial, for a selected order o. For

that, the target output vector is projected onto the basis of the extended state vector x (terms up to the

n-th polynomial order) of the reservoir. The selection of the optimal polynomial terms is done in a

greedy fashion, using a standard OFR algorithm [23]. The final number of presynaptic neurons that

form the optimal readout are selected as the smallest number of neurons that leads to the maximum

prediction accuracy on the validation data set. If the results do not meet the approximation error

requirements, the order o of the multi-variate polynomial should be increased and the OFR selection

should be redone.

The following section presents the novel aFORCE algorithm.

4.4.1 aFORCE Learning for ESN with Trainable Input Layers and Trainable

State-Feedback Gains

Consider the following single-input-single-output ESN with state-feedback:

x(k+1) = f
(
Wx(k)+Winu(k)−WinWf bx(k)

)
y(k) = H(x(k))

(4.23)

where f : Rn → Rn is the activation function, the input with l ∈ N delays u : R→ R,u : R→
Rl,u(k) =

[
u(k) u(k−1) ... u(k− l)

]T
, x : R→ Rn,x =

[
x1 x2 ... xn

]T
the states of

the network, W ∈ Rn×n the weight matrix, Win ∈ Rn×l the input-to-reservoir connection matrix,

Wf b ∈ Rl×n the state-feedback matrix, the output functional H : Rn→ R , y : Rn→ R the output

and n ∈ N∗ the number of neurons in the reservoir,.

We can write in a more compact from as:

y(k) = M( f (x(k),u(k),Wf b,Win),H(x(k),Wout)) (4.24)

where M : Rn toR is the maps the input u to output y.
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An example of a 3rd order multivariate in x polynomial readout equation:

H(x) =
n
∑

i=1
w0ixi +

n
∑

i=1

n
∑

j=i+1
w1i jxix j +

n
∑

i=1
w2ix2

i +

+
n
∑

i=1

n
∑

j=i+1
w3i jx2

i x j +
n
∑

i=1

n
∑

j=i+1

n
∑

k= j+1
w4i jkxix jxk +

n
∑

i=1
w5ix3

i

(4.25)

The goal is to learn the weights Wout ,Win,Wf b that minimize the empirical risk:

argmin
Win,W f b,Wout

1
m

N

∑
k=1

(z(k)−M( f (x(k),u(k),Wf b,Win),H(x(k),Wout)))
2 (4.26)

given the input and output observations {u(1), ...,u(N)},{z(1), ...,z(N)} generated by a target

dynamical system:

z(k) = T ( f̄ (x̄(k),u(k)), H̄(x̄(k))) (4.27)

where H̄ represents the output target function, f̄ is the state target function.

4.4.1.1 INITIALIZATION AND STATE-FEEDBACK, INPUT LAYER ESTIMATION

Step 1 - O(3n): Extend ESN states with the input layer Win and state-feedback gain Wf b:

x :→ R3n,x =
[

x1 x2 ... xn win−1 win−2 ... win−n w f b−1 w f b−2 ... w f b−n

]T

W in ∈ R3n,W in =

[
Win

O2n

]
W f b ∈ R1×3n,W f b =

[
Wf b O1x2n

]
W ∈ R3n×3n,W =

[
W O2n

On I2n

]
(4.28)

when l = 1. We have presented this extension for simplicity, but it can be applied for all l ∈ N∗.
Step 2 - O(n2): Identify the feedback gain Wf b and input weights Win using the EKF estimation

method on the following equation:

x(k+1) = f
(

Wx(k)+W inu(k+1)−W inW f bx(k)−W inxT (k)W f b
T
)

(4.29)

with xi(k) =

{
f (xi(k−1)), i≤ n

xi(k−1), i > n

}
.
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4.4.1.2 FITTING THE READOUT MAP H

The state selection error:

ERR(p)
j =

〈
x̄⊥(p−1)

j ,y∗
〉

L2

||x̄⊥(p−1)
j ||2L2||y∗||2L2

(4.30)

where y∗ is the target output signal, x̄⊥(p−1)
j is the orthogonalized state of the initial state x̄ j at step

p−1.

Step 3 - O(1): Setting the order of the multivariate polynomial readout map H in x o = 2 and

the minimum cross-validation error threshold emin = 0.15 for the stopping criteria.

Step 4 - O(1): Initialize the OFR algorithm:

Compute reservoir state vector x =
[

x1 ... xn

]
using equation (4.23). Generate the

candidate model terms {x̄⊥(0)1 , ..., x̄⊥(0)q } of the multivariate polynomial readout of order o ∈ N in

x , where q ∈ N is the total number of terms associated to the polynomial order o. Set the error

tolerance ρ = 10−6 and p = 1.

Step 5 - O(2(q− p)+N +1): Perform OFR iteration:

x̄⊥(p)
j = x̄⊥(p−1)

j −
〈

x̄⊥(p−1)
j ,x̄⊥p−1

〉
L2

||x̄⊥p−1||2L2
x̄⊥p−1, j ∈ {1, ...,q}\L(p−1)

lp = argmax
j∈{1,...,q}\L(p−1)

ERR(p)
j ,L(p) = L(p−1)∪{lp}

ERRp = ERR(p)
lp

, x̄⊥p = x̄⊥(0)lp

W (p) =
[

w(p)
1 ... w(p)

p

]
= y∗

 x̄⊥(0)1

...

x̄⊥(0)p


−1

, ŷ(p) =
p
∑

k=1
w(p)

k x̄⊥(0)lk

(4.31)

Step 6 - O(2N): Current model validation:

If

N
∑

i=1
(ŷ(p)(i)−y∗(i))

2

N
∑

i=1
(y∗(i)−mean(y∗))2

≤ e , e =

N
∑

i=1
(ŷ(p)(i)−y∗(i))

2

N
∑

i=1
(y∗(i)−mean(y∗))2

select p,W (p),L(p).

Step 7 - O(p): Calculate model prediction error for the validation data set:

ERRt =
p
∑

l=1
ERRl , if 1−ERRt ≤ ρ , p = q.

Increment p , if p < q , repeat step 5.

Step 8 O(o): Cross-validation of the polynomial order:

If emin < e and o≤ 5 , increment o and repeat step 4.

Because q is of the order n3 for a 3rd order polynomial, the total complexity of the aFORCE
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is in the order of O(n3).

Using non-linear activation functions for the neurons inside the reservoir improves the

approximation capabilities of the FORCE and aFORCE algorithms, at the expense of increasing the

numerical complexity in determining the feedback gain using the EKF, in the case of aFORCE. It is

worth observing that there is no increase in computation complexity for determining the trainable

parameters when using the FORCE algorithm. However, the following sections, which present

some numerical results, show that using more complex neuron models increase the approximation

performance gap even further between the two aforementioned algorithms.
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4.4.2 Simulation framework

In this section, we consider three types of target systems, to test and compare the novel

aFORCE algorithms fitting performance with the state-of-the-art FORCE method [12]: a linear

dynamical system with a linear output function, a linear state target system representation coupled

to a non-linear output and a complete non-linear system in the form of the fruitfly photoreceptor

model presented in [129].

For the first example, in the form of a linear-linear system, synthetic input-output data is

created by having unfiltered white-noise as the input signal, in order to completely explore the

frequency spectrum (i.e., phase and magnitude) which will lead us and the reader to a better

understanding of the functionality and differences between the proposed aFORCE method and the

state-of-the-art FORCE algorithm.

In the second linear - non-linear case study, the output response of the target system is

generated by a filtered white-noise signal. The filter that has been used is in the form of a 7-th

order Butterworth low-pass filter that has the following parameters: Fs = 1Hz;Fn = 0.5Hz;Fco =

0.1Hz;ws = 0.32Hz;Rp = 3dB;Rs = 20dB where Fs,Fn,Fco are the sampling, Nyquist and cutoff

frequencies, ws is the stopband frequency and Rp,Rs are the passband and stopband ripples.

The input-output data for the fruitfly photoreceptor has been selected from paper [129]. The

authors present the response function of the photoreceptor to 5 different light stimuli, from which,

our experiment considers Level 2.

The proposed state-feedback ESN architecture (4.23) and aFORCE algorithm is compared

to the state-of-the-art output-feedback ESN (4.1) trained using the FORCE algorithm. The input

layer and reservoirs are fully connected and randomly initialized. A number of different reservoir

dimensionalities are tested to understand how the approximation performances of both algorithms

and architectures are affected by the number of neurons in the reservoir. Linear and non-linear

reservoirs are considered for a complete overview of the differences between the two methods.

To test the noise robustness of both methodologies, consider χ : R∗ → [0,1] normally

distributed (0,1) additive white noise and the following 3 types of Signal-to-Noise Ratios (SNRs):

S = y(t)χ−1(t): noiseless (S = ∞), low noise levels (S = 50) and high noise levels (S = 10).

For the the first numerical example, consider both readouts to be linear, in order to observe the

benefits of a having the reservoir coupled with a state-feedback gain compared to an output-feedback

coupling. The dominant dynamics are captured by training the input layer - state-feedback gain

pair and the readout is only used to fit the targets output representation. The readout of the standard

output-feedback architecture struggles to mimic the target output as the readout module is also used

in modifying the internal dynamics of the reservoir.
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For the second example, the readout of the state-feedback gain ESN that is trained using the

aFORCE methodology is a non-linear 3rd order polynomial, compared to the linear readout of the

output-feedback gain ESN trained using FORCE. This differentiation allows the reader to observe

all the benefits of the enhanced proposed architecture. Instead of expanding the dimensionality of

the reservoir, in order to capture the non-linearities, using a non-linear, easy to train, polynomial

readout shows that the performance of a reservoir coupled with a non-linear output layer offers

better approximation accuracy whilst keeping the reservoir small, when compared to the standard

high-dimensionality reservoir-linear readout architecture.

For the third experiment, the input layer is coupled with delays for better dynamical

approximation results. Both readouts that are trained using the aFORCE and FORCE algorithms

are non-linear 3rd order polynomials in order to highlight the impact of non-linear components

in capturing the dynamics of high non-linear tasks. As in the first simulation, having the same

structures underlines the pivotal change made in swapping the type of feedback for better dynamical

approximation that ultimately leads to better fitting results. The Wiener linear - non-linear system

identification toolbox from MATLAB is considered as a benchmark in the case of linear reservoirs.

Moreover, changing the eigen-spectrum radius of the reservoir (i.e., R ∈ (0,1], |λW | ≤ R≤ 1)

depending on the dynamical evolution speed of the target system can represent another method

that can dramatically affect the approximation capabilities of ESNs [18],[108]. The latter is best

observed in the first example, where, the target has been chosen to have very small eigenvalues

(|λ | ≤ 0.2), whereas the initial reservoirs have been chosen to have eigenvalues on the verge of the

unitary circle (0.8≤ |λW | ≤ 0.9).

The performance of both algorithms is measured using the Normalised Mean Squared Error

(NMSE) given by:

NMSE =

M
∑

i=1
(y(i)− y∗(i))2

M
∑

i=1
(y∗(i)− ȳ∗)2

(4.32)

where ȳ∗ = 1
M

M
∑

i=1
y∗(i).
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4.4.3 Synthetic linear - linear systems approximation

Consider the random stable linear discrete target systems of the following form:

x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k)+χ(k)

(4.33)

where T = 1,k ∈ N∗ are the sampling time and sampling periods, A ∈ R40×40,B ∈ R40×1,C ∈
R1×40,x : N∗→ R40×1 are the system matrix, input matrix, output matrix and state vector, u ∈
R∗→ (0,1) is the uniformly distributed white noise input and y ∈ N∗→ R is the output.

The eigenvalues of the system described in (4.33) are chosen to be very small, namely,

0 < |λA| ≤ 0.2 which indicate very fast dynamics.

To illustrate the importance of having a state-feedback gain coupled to the reservoir of the

ESN compared to a randomly initialized output-feedback gain, consider the initial reservoir to have

slow evolving dynamics. Namely, in this experiment, eigenvalues that are close to the unitary circle:

0.8≤ |λW | ≤ 0.9 are considered.

Figure 4.3 depicts the input-output representation of (4.33) and an average response of

aFORCE and FORCE methodologies.

Dimension SNR NMSE
Target Network aFORCE FORCE

40

20
∞ 0.0489 0.4473
50 0.0512 0.4516
10 0.0532 0.4920

40
∞ 0.0817 0.5280
50 0.0867 0.2589
10 0.1025 0.5203

80
∞ 0.0669 0.1484
50 0.0505 0.2329
10 0.0301 0.1805

Table 4.1: NMSE Comparison between the aFORCE and the FORCE methodologies of
different reservoir dimensionalities, with respect to the linear-linear target system dimensionality

and different SNRs

This numerical study has been specifically designed to show that when the eigenvalues of the

target system are far from the initial reservoirs eigenvalues, increasing the reservoirs dimensionality

of a fixed feedback structure [108] can not outperform a structure that includes an adapting feedback

gain. Figure 4.3 c. shows that the output fitting of the target system (black) using the aFORCE

method (red) is far more accurate than using the FORCE method (blue).
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Figure 4.3: ESN response to a synthetic linear-linear system : a) uniformly distributed (0,1)
white noise input signal b) response of the linear-linear target system used to fit the ESN model c)
aFORCE ESN model predicted mean output (red) superimposed on the simulated estimation data

(black) and on the FORCE ESN model predicted mean output (blue) for a linear reservoir with
N = 40 neurons, maximum input lags l = 1 , 1 output lag and SNR = 10 with aFORCE NMSE =

0.10, FORCE NMSE = 0.52 carried out on 100 tests

The results in Table 4.1 show that the aFORCE algorithm outperforms, on average, the

state-of-the-art FORCE method. This suggests that the readout trained using the FORCE method

cannot fit the output, whilst, at the same time, change the dynamics of the reservoir via the fixed

output-feedback gain. This highlights the major advantage of the two separate trainable structures

(i.e., input layer and state-feedback gain) exploited by the aFORCE.

The results in Table 4.1 also depict that the proposed algorithm is far less sensitive to the

reservoirs dimensionality. It can be observed from Table 4.1 that the increase in performance from

N = 20 to N = 80 is about 20% for the aFORCE, whilst the FORCE performs, on average 50%,

better when the reservoir consists of more neurons. For this particular example, both algorithms

are robust to different noise levels, as the difference in results for the same dimensionality, with

different SNRs are negligible.

Analysing the Bode plot from Figure 4.4 shows that the ESN architecture trained using the

FORCE method (blue) struggles to match the phase and magnitude of the target system (black),
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Figure 4.4: Bode plot comparison: aFORCE state-feedback gain ESN model (red) superimposed
on the synthetic target system (black) and on the FORCE output-feedback gain ESN model (blue)

whilst the ESN trained using the aFORCE (red) matches the behavior of the target (black). This

is to be expected as the EKF works perfectly for approximating linear systems such as the target

chosen for this example, as defined in equation (4.33).

The next section introduces the second example that looks at the advantages that a non-linear

polynomial readout has over a linear output structure.
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4.4.4 Synthetic linear - non-linear systems approximation

Consider the randomly initialized stable linear - non-linear discrete target systems of the

following form:
x(k+1) = Ax(k)+Bu(k)

y(k) =
39
∑

i=1
[0.5(xi+1− x2

i )
2
+(0.5− xi)

2]+χ(k)
(4.34)

where T = 1,k ∈ N∗ are the sampling time and sampling periods, A ∈ R40×40,B ∈ R40×1,x : N∗→
R40×1 are the system matrix, input matrix and state vector, u ∈ R∗ → (0,1) is the uniformly

distributed white noise input and y ∈ N∗→ R is the output.

Figure 4.5 depicts the Input-Output representation of equation (4.34) and an average response

of aFORCE and FORCE methodologies.

Figure 4.5: ESN response to a synthetic linear - non-linear system: a) uniformly distributed (0,1)
filtered white noise input signal b) response of the linear - non-linear target system used to fit the
ESN model c) aFORCE ESN model predicted mean output (red) superimposed on the simulated
estimation data (black) and on the FORCE ESN model predicted mean output (blue) for a linear

reservoir with N = 80 neurons, maximum input lags l = 1 , 1 output lag and SNR = 50 with NMSE
= 0.05 carried out on 100 tests

This numerical study has been specifically designed to show that for a linear - non-linear
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target system, a linear-linear ESN with uniformly spread eigenspectrum cannot capture the behavior

of a non-linear output representation with the same accuracy as a non-linear output layer. Moreover,

the observations made in the previous section regarding the sepparation of the two main problems of

dynamical and output fitting still hold. Figure 4.5 c. shows that the output fitting using the aFORCE

approach is more accurate than the FORCE method.

Dimension SNR NMSE
Target Network aFORCE FORCE

40

20
∞ 0.0392 0.6513
50 0.0433 0.6490
10 0.2721 0.6240

40
∞ 0.0142 0.4997
50 0.0148 0.4021
10 0.2722 0.4759

80
∞ 0.0601 0.2159
50 0.0705 0.2162
10 0.1799 0.2664

Table 4.2: NMSE Comparison between the aFORCE and the FORCE methodologies of
reservoir dimensionalities, with respect to the linear - non-linear target system dimensionality and

different SNRs

The results in Table 4.2 show that the aFORCE algorithm outperforms, on average, the

state-of-the-art FORCE method. This is due to the fact that the linear readout of the FORCE ESN

cannot capture the important non-linearities exhibited by the output function of the target system.

In contrast, the polynomial readout of the aFORCE ESN, coupled with the trainable state-feedback

gain and input layer prove to be superior in terms of approximation error with regards to reservoir

dimensionality.

The results Table 4.2 also depict that the proposed algorithm is far less sensitive to the

reservoirs dimensionality and noise. It can be observed from Table 4.2 that the increase in

performance from N = 20 to N = 80 is about 50% for the aFORCE, whilst the FORCE performs,

on average 70%, better when the reservoir contains more neurons.

Furthermore, aFORCE is more robust to different noise regimes. Interestingly, the standard

FORCE architecture performs better under noisy conditions, compared to noiseless, for low

dimension reservoirs.

The next section presents the last example using real data from the response of a fruitfly

photoreceptor to light stimuli.
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4.4.5 Fruitfly non-linear photoreceptor approximation

The data used in this study has been recorded in vivo from the photoreceptor of a fruitfly in

the presence of different intensity light stimulus [129]. The light stimuli have been sampled at 2 kHz

that have been low-pass filtered by elliptic filters with a 500 Hz cut-off frequency. The authors in

[129] use five different intensities that were concatenated, in order to resemble light fluctuations that

are present in a flies natural habitat. The light pattern has been selected as a naturalistic time-series

of intensities specific to the Van Hateren natural stimuli collection. For this particular example,

level 2 (L2) has been selected.

Figure 4.6 illustrates the input and output response of the fruitfly photoreceptor using the L2

stimuli, as well as the average response of a state-feedback gain ESN, using linear and non-linear

reservoirs:

Figure 4.6: ESN response to real-life data recorded from the photoreceptor of a Fruit Fly: a)
naturalistic stimuli b) in vivo photoreceptor responses used to fit the ESN model c) aFORCE ESN
model predicted output (red) superimposed on the validation data extracted from the experimental
photoreceptor response (black) for a hyperbolic tangent reservoir with N = 11 neurons, maximum

input lags l = 5 and 1 output lag with NMSE = 0.12 d) ESN model predicted output (red)
superimposed on experimental photoreceptor responses (black) for a linear reservoir with N = 13

neurons, maximum input lags l = 7 and 1 output lag with NMSE = 0.17
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The original signal that has been recorded experimentally from the fruitflies photoreceptor

consists of 2 second representative naturalistic time-series of intensities signal sampled initially

at a frequency of 500 Hz. The data has then been preprocessed for analysis and experimental

purposes to 400 Hz, has been concatenated eight times and the first 200 points representing the

transitory regime have been eliminated, as suggested in [129] for single level characterization to

ensure that the photoreceptor response is stationary. The eight newly created periods are split as

follows: the first six periods are considered for training and model cross-validation. Each period has

been sub sectioned as follows: from each period, the first 600 points are used for training purposes

and are concatenated into a 3600-point training signal. The last 200 points from each period are

concatenated into an 1200-point signal that is used to cross-validate and select the best model that is

obtained from the OFR algorithm. The last two periods are used to test the final model.

The resulted values for the NMSE of both algorithms for a linear ESN with non-linear readout

modules and the control identification method are presented in Tables 4.3, 4.4 and 4.5.

aFORCE NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

11 0.28 0.26 0.23 0.21 0.19 0.18 0.17
12 0.33 0.26 0.23 0.21 0.19 0.18 0.16
13 0.28 0.23 0.22 0.23 0.24 0.21 0.18
14 0.30 0.26 0.21 0.20 0.19 0.18 0.18

Table 4.3: aFORCE NMSE with regards to different reservoir dimensionalities, different number
of input delays and 1 output lag

FORCE NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

11 0.25 0.30 0.26 0.28 0.26 0.25 0.26
12 0.26 0.25 0.24 0.26 0.24 0.25 0.24
13 0.25 0.24 0.25 0.26 0.26 0.25 0.24
14 0.27 0.24 0.23 0.23 0.23 0.25 0.23

Table 4.4: FORCE NMSE with regards to different reservoir dimensionalities, different number of
input delays and 1 output lag

The results in Tables 4.3, 4.4 and 4.5 show that the state-of-the-art method has an overall lower

accuracy compared to the proposed method. Introducing input delays did improve the accuracy of

the FORCE method, but it could not change the dynamics of the reservoir to approximate the target

tasks dynamics, compared to the aFORCE. When taking into consideration the variation of the

structural parameters of system dimensionality and the number of input delays, the Wiener method

outperforms the aFORCE algorithm for some cases (e.g., dimensionality 11, delay 7).
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Wiener NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

11 0.13 0.48 0.25 0.70 0.16 0.15 0.13
12 0.95 0.12 0.13 0.16 0.13 0.14 0.17
13 0.13 0.12 0.12 0.16 0.17 0.13 0.19
14 0.14 0.13 0.15 0.17 0.59 0.15 0.21

Table 4.5: Wiener NMSE with regards to different reservoir dimensionalities, different number of
input delays and 1 output lag

Using a non-linear reservoir, namely, the hyperbolic tangent function, reveals that the

approximation results could be further improved and proves the completeness of the proposed

algorithm as it can be extended to non-linear, invertible reservoirs. The resulted values for the

NMSE of both methodologies for non-linear differentiable ESNs coupled with non-linear readout

modules are presented in Tables 4.6 and 4.7.

aFORCE NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

11 0.28 0.29 0.22 0.20 0.19 0.18 0.16
12 0.29 0.25 0.22 0.20 0.19 0.18 0.17
13 0.27 0.24 0.22 0.20 0.19 0.18 0.17
14 0.29 0.25 0.22 0.21 0.19 0.18 0.17

Table 4.6: aFORCE NMSE with regards to different reservoir dimensionalities, different number
of input delays and 1 output lag

.

FORCE NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

11 0.46 0.38 0.56 0.34 0.36 0.47 0.47
12 0.28 0.35 0.40 0.36 0.28 0.27 0.32
13 0.45 0.57 0.43 0.31 0.25 0.20 0.25
14 0.78 0.75 0.33 0.38 0.25 0.21 0.23

Table 4.7: FORCE NMSE with regards to different reservoir dimensionalities, different number of
input delays and 1 output lag - with red is highlighted the cases where FORCE performs better than

aFORCE

The results in Tables 4.6 and 4.7 show that the state-of-the-art method has an overall lower

accuracy compared to the proposed method. Introducing input delays did improve the accuracy

of the FORCE method, but it could not change the dynamics of the reservoir to approximate the

target tasks dynamics, compared to the aFORCE. Furthermore, changing the type of reservoir to
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non-linear does not have a significant impact on the performance of the FORCE method when

compared to the results presented in table 4.4. The only case when FORCE slightly outperforms

aFORCE is for a reservoir of 12 neurons with 1 input delay.
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4.5 Conclusions

This chapter proposed a new training algorithm that uses an alternative training procedure

for computing the input layer and state-feedback gain via an EKF method [20],[21],[22] whilst

training a non-linear readout module via an OFR algorithm [32]. The overall linear - non-linear

structure allows learning of non-linear dynamics. The selection of the state-feedback gain such that,

the dynamics of the network closer mimic the dynamics of the target system, enhances the overall

approximation of a desired output target. Moreover, having a trainable state-feedback enforces the

stability of the closed-loop network, compared to a randomly initialized output-feedback.

Compared to one-step prediction models, this algorithm falls under the category of model

prediction, which offers better dynamical approximation results with the advantage of having access

to more than one prediction step for the tuned model.

The new theoretical results proposed in Sections 4.2 and 4.3 indicate that the proposed

aFORCE algorithm outperforms the standard readout training methods coupled with fixed, randomly

initialized output gains, such as the FORCE algorithm [12]. This is due to the fact that a trainable

separate state-feedback gain is able to model the closed-loop dynamics to be close to the dynamics of

the unknown target system whilst the trainable readout module is only tasked to fit the target output.

Numerical simulations carried out with synthetic and real data confirmed the theoretical findings and

have showed that our proposed algorithm leads to much smaller reservoirs for similar approximation

performance and better approximation results for higher reservoir sizes when compared to the

dimensionalities of a target system. Moreover, the simulations highlight that the non-linear reservoir

aFORCE performs better than the linear aFORCE. The numerical results show that the state-feedback

plays a pivotal role in improving the approximation results.

Our study considered filtered and unfiltered data, simulated or collected in the real world with

different levels of noise. Each study highlights different aspects in which the newly introduced

aFORCE outperforms the standard FORCE method.

In all scenarios, the numerical results shown by the proposed aFORCE method outperform

the ones shown by the state-of-the-art FORCE method. Moreover, our proposed method shows

that the reservoir dimensionality can be reduced without a significant impact of the approximation

capability, as a smaller reservoir is still able to capture the dominant dynamics of a given target

system. Evaluating different levels of noise highlights the robustness of both methods.

It is worth noting that around less than 5% of the total possible connections between the

reservoir and readout are required and that fully connected readouts achieve less accuracy on

dynamical approximation tasks. This suggests that besides decoding stimulus features from the
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evoked neuron activity, the new training method could be also used to characterize the functional

specificity of neurons in the reservoir.

Due to the fact that in some cases, an increase in reservoir dimensionality does not translate

into an increase in approximation performance, selecting the dominant neurons with regards to

the dynamics of a target task would further improve the proposed algorithm. Along this line,

the following chapter introduces a selection algorithm for the input layer and state-feedback gain

parameters.

93



Chapter 5

State-feedback connectivity optimization of
state-feedback ESNs

5.1 Introduction

Following the conclusions from Chapter 4, this chapter focuses on improving the performance

of the aFORCE algorithm by optimizing the connectivity of the input layer and state-feedback gain

with respect to the estimated dynamics of the target task.

To that end, let us reintroduce the basic concept of ESNs which consist of a dynamic reservoir

in the form of an RNN, usually with sigmoid neural activation functions, having fixed, randomly

assigned synaptic weights. The neurons map the inputs u : R→ R to a n-dimensional state-space

x : R→ Rn whilst the feedforward readout, having adjustable synaptic weights, maps the reservoir

state x to the network output y : Rn → R. Typically, an output-feedback gain that connects the

output of the network with the input layer is attached to maximize the approximation capabilities of

the ESN [9],[12].

The introduction of a fixed output or state-feedback gain [14] shapes the dynamics of the

system via the eigenvalues of the closed-loop system which helps in bringing the networks output
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Figure 5.1: Geeneric ESN architectures. The red arrows represent the parameters of the
network that are trained

closer to the target output. Optimizing the readout weights alone does not guarantee that these

often competing goals can be achieved. In theory, matching the eigenvalue structure and the output

map with the equivalent components of the target dynamical system would require optimizing the

feedback gains as well as the readout weights.

In Chapter 4 we have introduced a novel training algorithm (aFORCE) which optimizes the

input layer and state-feedback gain via an EKF procedure [20],[21],[22] in the first instance, and

then, selects only the relevant parameters of the readout and computes their optimal value via

an OFR algorithm [32]. This succession of steps, proved both theoretically and experimentally,

produces models that significantly outperform randomly initialized output/state-feedback ESNs in

which only the readout weights are trained [8],[9],[12].

The experiments conducted in Chapter 4 have shown that increasing the dimensionality of

the reservoir does not necessarily translate into an increase in approximation performance. Hence,

although fully trained state-feedback gains modify the dynamics of the reservoir, the readout

consists of less than 5% of the total possible connections between the readout and the reservoir.

This indicates that only some neurons dictate the dominant and most relevant dynamics of the given

reservoir with regards to a specific target task.

In this chapter, we improve on the previously introduced aFORCE algorithm for state-feedback

ESNs by reducing the number of trainable parameters in the input layer and state-feedback gain

via an Orthogonal Forward Selection method which selects only the most relevant neurons with

regards to the target output. To that end, we consider the classical ESN architecture [109] consisting

of a linear dynamic reservoir and a non-linear readout (polynomial) map. The algorithm starts by

selecting the dominant neurons and then train their corresponding parameters of the input layer

and state-feedback gain. This is done in a similar fashion to the the original aFORCE, by applying

an EKF estimation method as proposed in [20],[21],[22]. Note that the training is done only for
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the selected dominant neurons. Finally, the readout training is done using the greedy optimization

strategy, in the form of OFR [32] to identify the best synaptic connectivity for the readout module.

In the following sections of this chapter, the reader will be presented with the novel selection

and training algorithm for state-feedback gain ESNs, some numerical studies and concluding

remarks. Specifically, the following section presents partial state-feedback ESNs.
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5.2 Partial state-feedback ESN

Consider the alternative ESN architecture having a variable dimension input layer and

state-feedback gain, illustrated in Figure 5.2:

x(k+1) = f
(
(W −WinWf b)x(k)+Winu(k)

)
y(k) = H(x(k),Wout)

(5.1)

where u = [u1, ...,um]
T ,x,y denote the input, state and output vectors, f : Rn → Rn is the

reservoir activation function, W ∈ Rn×n is the reservoir connection matrix, Win ∈ Rn×m is the

input-to-reservoir connection matrix, Wf b ∈ Rn×p is the output-feedback matrix and H : Rn→ Rp

is the output (readout) function with Wout ∈ Rp×n the output weight matrix and Nred ⩽ N is the

number of non-zero trainable components in the state-feedback gain and input layer.

Figure 5.2: Network architecture, connection selection and adjustable weights for
aFORCE-redux training algorithm

Note that equation (5.1) is similar equation (4.23). In this context, the newly introduced

aFORCE algorithm starts the first training phase using an Orthogonal Forward Selection (OFS)

algorithm to determine the most relevant nodes of the network with respect to the target task. After

that, an EKF algorithm [20],[21],[22] is employed to control the magnitude of the training error

with respect to the corresponding state-feedback gain and input layer parameters of the selected
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dominant neurons. During this phase, selecting the optimal number of trainable parameters (in the

form of the maximum number of trainable neurons) is also addressed. The output weights are then

computed using an OFR algorithm [23]. During the second phase of the algorithm, the number of

input lags and the polynomial readout model structure are selected.

Using a selection algorithm for identifying only the most relevant neurons, the aFORCE-redux

algorithm avoids overfitting and reduces the computational costs associated with the previous

aFORCE algorithm presented in Chapter 4.

From the proof of the original aFORCE algorithm presented in Section 4.3 regarding the

state-feedback gain solution (4.22), it is likely that the inverse of BN does not exist, because of the

presence of multiple zeros that correspond to the neurons that have not been selected. To avoid this,

a small noisy vector can be added in the form:

BN = BN +δ ,δ : R→ Rn×l,δ → 0 (5.2)

In view of this, the following section introduces the proposed algorithm in more detail,

followed by a series of numerical experiments that benchmark the new approach against the original

aFORCE algorithm presented in Chapter 4.
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5.3 A novel state-feedback gain dimensionality reduction and
selection ESN training algorithm

This section introduces aFORCE-redux as a novel parameter dimensionality reduction and

selection algorithm for training state-feedback ESNs. Given the training input-output data, the first

stage of the algorithm is to identify the most relevant neurons with respect to the target task, and

train the corresponding state-feedback gain and input layer parameters using the EKF estimation

[20],[21],[22] for a selected number of trainable neurons Nred . The selection of the relevant nodes

is done in a greedy fashion, using standard OFS. If the results do not meet the requirements, Nred is

increased, the additional neuron is selected via OFS and the EKF procedure is redone. The next

stage is to determine the optimal non-linear readout, assumed to be in the form of a polynomial,

for a selected order o. The selection of the optimal polynomial terms is done in a Greedy fashion,

using a standard OFR algorithm [23]. The final number of presynaptic neurons that form the

optimal readout are selected as the smallest number of neurons that leads to the maximum prediction

accuracy on the validation data set. If the results do not meet the approximation error requirements,

the order o of the multi-variate polynomial should be increased and the OFR selection should be

redone.
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5.3.1 Algorithm presentation

Consider the following single-input-single-output ESN with state-feedback:

x(k+1) = f
(
Wx(k)+Winu(k+1)−WinWf bx(k)

)
y(k) = H(x(k))

(5.3)

where n ∈ N∗ is the number of neurons in the reservoir, f : Rn → Rn the activation function,

u : R → R,u : R → Rl,u(k) =
[

u(k) u(k−1) ... u(k− l)
]T

the input with l ∈ N delays,

x : R→ Rn,x =
[

x1 x2 ... xn

]T
the states of the network, W ∈ Rn×n the weight matrix,

Win ∈ Rn×l the input-to-reservoir connection matrix, Wf b ∈ Rl×n the state-feedback matrix, the

output functional H : Rn → R , y : R→ R the output and Nred ⩽ N is the number of non-zero

trainable components in the state-feedback gain and input layer.

We can write in a more compact from as:

y(k) = M( f (x(k),u(k),Wf b,Win),H(x(k),Wout)) (5.4)

where M : Rn→ R is the mapping function that maps the input u to output y.

An example of a 3rd order multivariate in x polynomial readout equation:

H(x) =
n
∑

i=1
w0ixi +

n
∑

i=1

n
∑

j=i+1
w1i jxix j +

n
∑

i=1
w2ix2

i +

+
n
∑

i=1

n
∑

j=i+1
w3i jx2

i x j +
n
∑

i=1

n
∑

j=i+1

n
∑

k= j+1
w4i jkxix jxk +

n
∑

i=1
w5ix3

i

(5.5)

The goal is to learn the weights Wout ,Win,Wf b that minimize the empirical risk:

argmin
Win,W f b,Wout

1
m

N

∑
k=1

(z(k)−M( f (x(k),u(k),Wf b,Win),H(x(k),Wout)))
2 (5.6)

given input and output observations {u(1), ...,u(N)},{z(1), ...,z(N)} generated by a target

dynamical system:

z(k) = T ( f̄ (x̄(k),u(k)), H̄(x̄(k))) (5.7)

where H̄ represents the output target function, f̄ is the state target function.
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5.3.1.1 RESERVOIR STATE SELECTION

The state selection error for determining the optimal state-feedback gain states is given by:

ERRS(p)
j =

〈
x̄⊥(p−1)

j ,y∗
〉

L2

||x̄⊥(p−1)
j ||2L2||y∗||2L2

(5.8)

where y∗ is the target output signal, x̄⊥(p−1)
j is the orthogonalized state of the initial state x̄ j at step

p−1.

Step 1: Initialize the OFS algorithm:

Set the error tolerance ρ = 10−6, p = 1, choose the number of trainable parameters Nred ⩽ n

and set cross-validation error threshold esmin = 0.1 for the stopping criteria.

Step 2: Select optimal reservoir states corresponding to the target output:

x̄⊥(p)
j = x̄⊥(p−1)

j −
〈

x̄⊥(p−1)
j ,x̄⊥p−1

〉
L2

||x̄⊥p−1||2L2
x̄⊥p−1, j ∈ {1, ...,q}\LS(p−1)

lp = argmax
j∈{1,...,q}\LS(p−1)

ERRS(p)
j ,L(p) = LS(p−1)∪{lp}

ERRSp = ERRS(p)
lp

, x̄⊥p = x̄⊥(0)lp

(5.9)

Increment p , if p < Nred , repeat step 2.

5.3.1.2 INITIALIZATION, STATE-FEEDBACK AND INPUT LAYER ESTIMATION

Step 3: Extend ESN states with the input layer Win and state-feedback gain Wf b:

x :→ Rn+2Nred ,

x =
[

x1 x2 ... xn win−1 win−2 ... win−Nred w f b−1 w f b−2 ... w f b−Nred

]T

W in ∈ Rn+2Nred ,W in =

[
Win

On+Nred

]
W f b ∈ R1×2n+Nred ,W f b =

[
Wf b O1x(n+Nred)

]
W ∈ Rn+(2Nred)×3n,W =

[
W O2Nred

On I2Nred

]
(5.10)

when l = 1. We have presented this extension for simplicity, but it can be applied for all l ∈ N∗.
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Step 4: Identify the feedback gain Wf b and input weights Win using the EKF estimation

method on the following equation:

x(k+1) = f
(

Wx(k)+W inu(k+1)−W inW f bx(k)−W inxT (k)W f b
T
)

(5.11)

with xi(k) =

{
f (xi(k−1)), i≤ n

xi(k−1), i > n

}
and fixed readout Wout = [11...1].

Step 5: Cross-validation of the number of trainable parameters:

If esmin < e, e =

M
∑

i=1
(Woutx−y∗(i))2

M
∑

i=1
(y∗(i)−mean(y∗))2

and Nred ≤ n , increment Nred and repeat step 2.

5.3.1.3 FITTING THE READOUT MAP H

The state selection error for determining the optimal output layer states is given by:

ERR(p)
j =

〈
x̄⊥(p−1)

j ,y∗
〉

L2

||x̄⊥(p−1)
j ||2L2||y∗||2L2

(5.12)

where y∗ is the target output signal, x̄⊥(p−1)
j is the orthogonalized state of the initial state x̄ j at step

p−1.

Step 6: Setting the order of the multivariate polynomial readout map H in x o = 2 and the

minimum cross-validation error threshold emin = 0.15 for the stopping criteria.

Step 7: Initialize the OFR algorithm:

Compute reservoir state vector x =
[

x1 ... xn

]
using equation (5.3). Generate the

candidate model terms {x̄⊥(0)1 , ..., x̄⊥(0)q } of the multivariate polynomial readout of order o ∈ N
in x , where q ∈ N is the total number of terms associated to the polynomial order o. Set the error

tolerance ρ = 10−6 and p = 1.
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Step 8: Perform OFR iteration:

x̄⊥(p)
j = x̄⊥(p−1)

j −
〈

x̄⊥(p−1)
j ,x̄⊥p−1

〉
L2

||x̄⊥p−1||2L2
x̄⊥p−1, j ∈ {1, ...,q}\L(p−1)

lp = argmax
j∈{1,...,q}\L(p−1)

ERR(p)
j ,L(p) = L(p−1)∪{lp}

ERRp = ERR(p)
lp

, x̄⊥p = x̄⊥(0)lp

W (p) =
[

w(p)
1 ... w(p)

p

]
= y∗

 x̄⊥(0)1

...

x̄⊥(0)p


−1

, ŷ(p) =
p
∑

k=1
w(p)

k x̄⊥(0)lk

(5.13)

Step 9: Current model validation:

If

M
∑

i=1
(ŷ(p)(i)−y∗(i))

2

M
∑

i=1
(y∗(i)−mean(y∗))2

≤ e , e =

M
∑

i=1
(ŷ(p)(i)−y∗(i))

2

M
∑

i=1
(y∗(i)−mean(y∗))2

select p,W (p),L(p).

Step 10: Calculate model prediction error for the validation data set:

ERRt =
p
∑

l=1
ERRl , if 1−ERRt ≤ ρ , p = q.

Increment p , if p < q , repeat step 8.

Step 11: Cross-validation of the polynomial order:

If emin < e and o≤ 5 , increment o and repeat step 7.

In the following sections, the considered numerical examples test and compare the novel

aFORCE-redux algorithms fitting performance with the previously introduced aFORCE method: a

linear dynamical system with a linear output function, a linear state target system representation

coupled to a non-linear output and a complete non-linear system in the form of the fruitfly

photoreceptor model presented in [129].
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5.3.2 Synthetic linear - linear systems approximation

For the first example, in the form of a linear-linear system, synthetic input-output data

is created by having unfiltered white-noise as the input signal, in order to completely explore

the frequency spectrum (i.e., phase and magnitude) which will lead us and the reader to a better

understanding of the functionality and differences between the proposed aFORCE-redux method and

the original aFORCE algorithm. Both of the readouts trained by the aforementioned methodologies

are linear.

Consider the random stable linear discrete target systems of the following form:

x(k+1) = Ax(k)+Bu(k)
y(k) = Cx(k)+χ(k)

(5.14)

where T = 1,k ∈ N∗ are the sampling time and sampling periods, A ∈ R40×40,B ∈ R40×1,C ∈
R1×40,x : N∗→ R40×1 are the system matrix, input matrix, output matrix and state vector, u ∈
R∗→ (0,1) is the uniformly distributed white noise input, y∈N∗→R is the output, 0 < |λA| ≤ 0.2,

and the ESN eigenvalues 0.8≤ |λW | ≤ 0.9.

Analysing the Bode plot from Figure 5.3 shows that the ESN architecture trained using the

aFORCE-redux algorithm (blue) closely matches the phase and magnitude of the ESN architecture

trained using the original aFORCE algorithm (red), the behavior of the original target (black)

and an 8-dimensional truncated version (green). Furthermore, it is also revealed that the classic

output-feedback ESN architecture trained using the FORCE learning method (cyan) [12] does not

follow the same trajectory as the rest of the systems, which is also supported by the results in the

Tables provided in Section 4.3.3.

The results in Tables 5.1 and 5.2 show that the aFORCE-redux algorithm outperforms, on

average, the original aFORCE method for different numbers of selected trainable neurons (NG).

A possible explanation can be consisted of the fact that selecting only the relevant neurons of the

reservoir with respect to the specific task reduces overfitting when compared to fully trained ESNs.

This is supported by the fact that for some instances, a larger reservoir with less trainable parameters

performs better than a smaller reservoir with fully trained parameters (e.g., aFORCE-redux N =

80,SNR = inf,NG = 40 performs better than the aFORCE for N = 40,SNR = inf)

The results in Tables 5.1 and 5.2 also depict that optimizing the connectivity of the

state-feedback gain and input layer are consistent with the observations made in Chapter 4,

in the sense that aFORCE based algorithms are robust to reservoir dimensionality and noise.

The next section introduces the second example which analyses the fitting performance of

the aFORCE-redux algorithm compared to the original aFORCE method with respect to a linear -
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Figure 5.3: Bode plot comparison: ESN model aFORCE predicted bode (red) superimposed on
the ESN model aFORCE-redux predicted bode (blue) superimposed on the simulated target system

bode (black) superimposed on the truncated target system bode (green) superimposed on the
output-feedback ESN FORCE predicted bode (cyan) for a linear reservoir having N = 40 neurons,
maximum input lags l = 1 , trained states NG = 10, 1 output lag, truncation 8 and SNR = 50 with

NMSE = 0.012

Dimension SNR NG NMSE
Target Network aFORCE aFORCE-redux

40

20
∞ 10 0.0489 0.0250
50 10 0.0512 0.1075
10 10 0.0532 0.0071

40
∞ 10 0.0817 0.0432
50 10 0.0867 0.0517
10 10 0.1025 0.0138

80
∞ 10 0.0669 0.0021
50 10 0.0505 0.0443
10 10 0.0301 0.0174

Table 5.1: NMSE Comparison between the aFORCE and the aFORCE-redux methodologies
of different reservoir dimensionalities, with respect to the linear-linear target system dimensionality

and different SNRs

non-linear target system.
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Dimension SNR NG NMSE
Target Network aFORCE aFORCE-redux

40

20
∞ 10 0.0489 0.0250
50 10 0.0512 0.1075
10 10 0.0532 0.0071

40
∞ 20 0.0817 0.0523
50 20 0.0867 0.0741
10 20 0.1025 0.0842

80
∞ 40 0.0669 2.7254e-06
50 40 0.0505 0.0441
10 40 0.0301 0.0191

Table 5.2: NMSE Comparison between the aFORCE and the aFORCE-redux methodologies
of different reservoir dimensionalities, with respect to the linear-linear target system dimensionality

and different SNRs
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5.3.3 Synthetic linear - non-linear systems approximation

In this linear - non-linear case study, the output response of the target system is generated by

a filtered white-noise signal. The filter that has been used is in the form of a 7-th order Butterworth

low-pass filter that has the following parameters: Fs = 1Hz;Fn = 0.5Hz;Fco = 0.1Hz;ws =

0.32Hz;Rp = 3dB;Rs = 20dB where Fs,Fn,Fco are the sampling, Nyquist and cutoff frequencies,

ws is the stopband frequency and Rp,Rs are the passband and stopband ripples.

The readouts trained using the aFORCE and aFORCE-redux are non-linear 3rd order

polynomials.

Consider the randomly initialized stable linear - non-linear discrete target systems of the

following form:
x(k+1) = Ax(k)+Bu(k)

y(k) =
39
∑

i=1
[0.5(xi+1− x2

i )
2
+(0.5− xi)

2]+χ(k)
(5.15)

where T = 1,k ∈ N∗ are the sampling time and sampling periods, A ∈ R40×40,B ∈ R40×1,x : N∗→
R40×1 are the system matrix, input matrix and state vector, u ∈ R∗ → (0,1) is the uniformly

distributed white noise input and y ∈ N∗→ R is the output.

Figure 5.4 depicts the Input-Output representation of equation (5.15) and an average response

of the aFORCE-redux method.

Dimension SNR NG NMSE
Target Network aFORCE aFORCE-redux

40

20
∞ 10 0.0392 0.1015
50 10 0.0433 0.0986
10 10 0.2721 0.1951

40
∞ 10 0.0142 0.0641
50 10 0.0148 0.1089
10 10 0.2722 0.0842

80
∞ 10 0.0601 0.0912
50 10 0.0705 0.0799
10 10 0.1799 0.0742

Table 5.3: NMSE Comparison between the aFORCE and the aFORCE-redux methodologies
of different reservoir dimensionalities, with respect to the linear - non-linear target system

dimensionality and different SNRs

The results in Tables 5.3 and 5.4 show that increasing the number of trainable parameters (NG)

did improve the approximation results of the aFORCE-redux algorithm, but there are cases where

the novel proposed algorithm is outperformed by the original aFORCE. This suggests that training
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Figure 5.4: ESN response to a synthetic linear - non-linear system: a) uniformly distributed (0,1)
filtered white noise input signal b) response of the linear - non-linear target system used to fit the

ESN model c) aFORCE-redux ESN model predicted mean output (red) superimposed on the
simulated estimation data (black) and on the FORCE ESN model predicted mean output (blue) for a

linear reservoir with N = 40 neurons, maximum input lags l = 1 , 1 output lag, NG = 20 and
SNR = 50 with NMSE = 0.09 carried out on 100 tests

Dimension SNR NG NMSE
Target Network aFORCE aFORCE-redux

40

20
∞ 10 0.0392 0.1015
50 10 0.0433 0.0986
10 10 0.2721 0.1951

40
∞ 20 0.0142 0.0541
50 20 0.0148 0.0589
10 20 0.2722 0.0242

80
∞ 40 0.0601 0.0834
50 40 0.0705 0.0510
10 40 0.1799 0.0713

Table 5.4: NMSE Comparison between the aFORCE and the aFORCE-redux methodologies
of different reservoir dimensionalities, with respect to the linear - non-linear target system

dimensionality and different SNRs
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the parameters corresponding to the unselected neurons can capture additional subtle dynamics

of the target task. It can be observed from Tables 5.3 and 5.4 that for some instances, a larger

reservoir with less trainable parameters performs better that a smaller reservoir with fully trained

parameters (e.g., aFORCE-redux N = 80,SNR = 10,NG = 40 performs better than the aFORCE

for N = 40,SNR = 10). It is interesting to highlight that, under heavy noise conditions, training less

parameters offer better results when compared to training all the parameters.

The next section presents the last example which uses real data from the response of a fruitfly

photoreceptor to light stimuli.
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5.3.4 Fruitfly non-linear photoreceptor approximation

The data used in this study has been recorded in vivo from the photoreceptor of a fruitfly in

the presence of different intensity light stimulus [129]. The light stimuli have been sampled at 2 kHz

that have been low-pass filtered by elliptic filters with a 500 Hz cut-off frequency. The authors in

[129] use five different intensities that were concatenated, in order to resemble light fluctuations that

are present in a flies natural habitat. The light pattern has been selected as a naturalistic time-series

of intensities specific to the Van Hateren natural stimuli collection. For this particular example,

level 2 (L2) has been selected.

The input layer of the neural networks are coupled with delays for better dynamical

approximation results. Both readouts that are trained using the aFORCE-redux and aFORCE

algorithms are non-linear 3rd order polynomials in order to highlight the impact of non-linear

components in capturing the dynamics of high non-linear tasks.

Figure 5.5 illustrates the input and output response of the fruitfly photoreceptor using the L2

stimuli:

Figure 5.5: Real-life data recorded from the photoreceptor of a Fruit Fly: a) naturalistic stimuli
b) in vivo photoreceptor responses used to fit the ESN model

The original signal that has been recorded experimentally from the fruitflies photoreceptor

consists of 2 second representative naturalistic time-series of intensities signal sampled initially
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Figure 5.6: ESN response to real-life data recorded from the photoreceptor of a Fruit Fly:
ESN model predicted output (red) superimposed on the experimental Fruitfly photoreceptor

response (black) for a linear reservoir having N = 13 neurons, l = 5 input lags, NG = 4 states
trained and 1 output lag with NMSE = 0.12

aFORCE-redux NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

7 0.52 0.48 0.50 0.38 0.38 0.25 0.21
8 0.33 0.37 0.32 0.34 0.32 0.26 0.20
9 0.25 0.27 0.24 0.21 0.27 0.24 0.16

10 0.18 0.16 0.16 0.15 0.15 0.12 0.13
11 0.12 0.14 0.12 0.13 0.12 0.12 0.13
12 0.12 0.11 0.11 0.11 0.11 0.10 0.09
13 0.11 0.10 0.09 0.10 0.09 0.09 0.09

Table 5.5: aFORCE-redux NMSE with regards to different reservoir dimensionalities, different
number of input delays and NG = 4 trained states for a linear ESN

at a frequency of 500 Hz. The data has then been preprocessed for analysis and experimental

purposes to 400 Hz, has been concatenated eight times and the first 200 points representing the

transitory regime have been eliminated, as suggested in [129] for single level characterization to

ensure that the photoreceptor response is stationary. The eight newly created periods are split as

follows: the first six periods are considered for training and model cross-validation. Each period has

been sub sectioned as follows: from each period, the first 600 points are used for training purposes
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Figure 5.7: ESN response to real-life data recorded from the photoreceptor of a Fruit Fly:
ESN model predicted output (red) superimposed on experimental photoreceptor responses (black)

for a non-linear reservoir having N = 13 neurons, l = 7 input lags, NG = 4 states trained and 1
output lag with NMSE = 0.13

aFORCE-redux NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

7 0.29 0.29 0.24 0.16 0.16 0.16 0.13
8 0.28 0.31 0.27 0.25 0.19 0.17 0.15
9 0.26 0.36 0.36 0.29 0.20 0.19 0.13

10 0.36 0.42 0.36 0.26 0.20 0.15 0.15
11 0.34 0.42 0.39 0.29 0.23 0.21 0.20
12 0.43 0.43 0.42 0.23 0.17 0.15 0.13
13 0.38 0.31 0.27 0.20 0.22 0.13 0.13

Table 5.6: aFORCE-redux NMSE with regards to different reservoir dimensionalities, different
number of input delays and NG = 4 trained states for a non-linear ESN

and are concatenated into a 3600-point training signal. The last 200 points from each period are

concatenated into an 1200-point signal that is used to cross-validate and select the best model that is

obtained from the OFR algorithm. The last two periods are used to test the final model.

Comparing the results of the original aFORCE algorithm on the Fruifly data presented in

Tables 4.3 and 4.6 with the results of the newly introduced aFORCE-redux presented in Tables 5.5

and 5.6, shows that the aFORCE-redux performs better, on average, compared to the original method.
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A possible explanation is that selecting only the relevant neurons of the reservoir with respect to

the specific task reduces overfitting when compared to fully trained ESNs. It is interesting to

highlight that, compared to the original aFORCE method, where the non-linear reservoir performed

better than the linear reservoir, for the newly proposed aFORCE-redux method, the linear reservoir

performs better than the hyperbolic tangent one.

The next section presents the main conclusions of this chapter.
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5.4 Conclusions

This chapter proposed a new training algorithm that improves on the aFORCE method

proposed in Chapter 4. The aFORCE-redux is an alternative training procedure that selects only

the relevant neurons that dictate the dynamics of the reservoir with regards to the target task and

computes the input layer and state-feedback gain via an EKF method whilst training a non-linear

readout module via an OFR algorithm. The advantages that have been highlighted in Chapter 4 are

preserved, whilst reducing the number training parameters.

For benchmarking purposes, the same experiments conducted in Chapter 4 regarding filtered

and unfiltered data, simulated or collected in the real world with different levels of noise were

conducted.

Numerical simulations carried out with synthetic and real data have showed that the parameter

reduction training algorithm leads to smaller reservoirs for similar approximation performance

and better approximation results for higher reservoir sizes when compared to the dimensionalities

of the target system and to the same reservoir trained with the original aFORCE. Moreover, the

simulations highlight that the non-linear reservoir trained with the aFORCE-redux performs better

than the linear reservoir trained with the aFORCE-redux for linear - linear and linear - non-linear

tasks, whilst a linear reservoir performs better in the Fruifly experiment.

The numerical analysis of the novel aFORCE-redux method show that the number of trainable

parameters can be reduced with negligible impact on the approximation capability as the dominant

trained neurons are still able to capture the most important dynamics of a given target system.

Comparing to the original aFORCE, shows that reducing the number of trainable parameters

decreases the risk of overfitting. For instances, the aFORCE-redux performs slightly better than the

original aFORCE in high noise conditions.

On the other hand, in some particular noise-free non-linear examples, the aFORCE performs

better than the aFORCE-redux, which highlights the utility and importance of training all parameters

when it comes to approximating highly complex tasks. In contrast, in all high noise scenarios

across all simulation settings considered training less parameters is more efficient. For example, the

aFORCE-redux outperforms the original aFORCE method.

One limitation of this approach is that running multiple tasks in parallel using the same

reservoir is not feasible due to the trainable internal structures (state-feedback gain and input layer)

directly modify the dynamics of the closed-loop. In this context, the next chapter introduces a

novel switching state-feedback ESN architecture which offers increased approximation accuracy by

taking advantage of the proposed aFORCE based methods.
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Chapter 6

A novel architecture for ESNs by using
switching input layers, state-feedbacks and
readouts

6.1 Introduction

Given the limited applicability of the proposed aFORCE based methods to process multiple

tasks in parallel, this chapter addresses this shortcoming by proposing a novel switching

state-feedback ESN architecture. The novel structure offers increased approximation accuracy by

taking advantage of the proposed aFORCE based methods.

To that end, let us reintroduce the basic concept of ESNs which consist of a dynamic reservoir

in the form of an RNN, usually with sigmoid neural activation functions, having fixed, randomly

assigned synaptic weights. The neurons map the inputs u : R→ R to a n-dimensional state-space

x : R→ Rn [14], whilst the feedforward readout, having adjustable synaptic weights, maps the

reservoir state x to the network output y : Rn→ R. Typically, an output-feedback gain that connects

the output of the network with the input layer is attached to maximize the approximation capabilities

of the ESN [9],[12].
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Current RC architectures [124] exploit efficient readout training methods [9],[17],[107],[123]

that achieve comparable approximation results to that of fully trained RNNs whilst requiring

minimal computational power. Moreover, the flexibility of only training the output layer allows RC

networks to perform multiple tasks simultaneously by using the same input layer, output-feedback

loop and reservoir whilst connecting additional trainable readouts in parallel.

In Chapters 4 and 5, we have analysed the limitations of closed-loop ESNs in the presence of

an output-feedback gain with the role of altering the dynamics of the reservoir to closer match the

dynamics of the unknown target system. Because the output-feedback gain is directly connected to

the readout layer, training the readout and the output-feedback gain is unlikely to offer the optimal

solution with regards to the two competing different problems: dynamical fitting of the reservoir

and output fitting of the target signal. Often, the aforementioned problems have competing solutions

(observed in [12] and proven in Section 4.2).

State-feedback RC architectures offer better numerical tractability compared to the classical

output-feedback RC architectures [12], observed by Maass [14]. In Chapter 4, we have proven

that it is necessary to change the output-feedback gain with a state-feedback gain to obtain better

approximation results. Moreover, separating the two main problems of fitting the reservoir to match

the dynamics of the target state via a state-feedback loop and output fitting of the target signal via

a trainable readout eliminates the risk of the reservoir becoming unstable [9],[12],[14]. This also

improves the approximation results as the two main training variables become independent. This is

particularly useful as the two aforementioned problems often have competing solutions.

It is also worth preserving the advantages mentioned in Sections 4.5 and 5.4 of the aFORCE

based methods by training the input layer and state-feedback and selecting the readout connectivity

via OFR [23],[24].

Previous types of parallel computations consists of neural network ensembles [5],[41] and

network committees [5],[130]. Instead of employing a single, larger network for single-task

computing, several smaller networks are trained in parallel having their responses combined to

obtain optimal task approximation. Frequently an ensemble of models performs better than any

individual model, because the various errors of the models "average out." Ensemble averaging

creates a group of networks, each with low bias and high variance, then combines them to a new

network usually with low bias and low variance. This gives an obvious strategy: create a set of

experts with low bias and high variance, and then average them. In other words, the main goal is to

create a set of experts with varying parameters; frequently, these are the initial synaptic weights,

although other factors (such as the learning rate, momentum etc.) may be varied as well. The

resulting committee is almost always less complex than a single network that would achieve the

same level of performance

Current generation parallel computing network architectures are in the form of RCs with
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parallel trainable readouts [9],[12],[15]. Instead of employing multiple smaller and trainable

networks that combine their response for single task approximation, this new approach prefers a

randomly-initialized high-dimensional reservoir coupled with parallel trainable readouts used for

performing multi-task computations.

The introduction of a trainable state-feedback gain for shaping the dynamics of the system and

a trainable input layer for maximizing the approximation capabilities of the ESN, makes running

several tasks in parallel unfeasible. This is due to the fact that each input layer and state-feedback

gain is specifically designed for each target task and should be retrained when a new task is added or

updated. Thus, we propose a novel switching Echo State Network (SESN) architecture to provide

better approximation capabilities than current parallel structures.

In this chapter, we propose a new architecture using state-feedback ESNs that switch between

input layers, state-feedback gains and readout modules for each individual task to produce models

that significantly outperform the output-feedback ESNs in which only the parallel readout layers

are trained for each task [8],[9],[12]. To that end, we adopt the ESN architecture [109] consisting of

a linear dynamic reservoir and a non-linear (polynomial) readout map. Training the input layer -

state-feedback gain - readout module pairs is implemented using the aFORCE methodology that

has been presented in Chapter 4. For an in-depth analysis of the newly introduced architecture, we

also analyse the impact and switching stability [131],[132] of non-linear differentiable reservoirs

(e.g., hyperbolic tangent activation functions).

In the following sections of this chapter, the reader will be presented with the novel

architecture, theoretical stability analysis, the additional steps required to implement the architecture

based on the aFORCE algorithm, numerical study using real data from the fruitfly photoreceptor

and concluding remarks. Specifically, the following section introduces the novel architecture.
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6.2 Novel switching ESN architecture

Consider a discrete-time non-linear family of target systems described by the following

equation [133]:

xk+1 = Gτ(k)(xk,uk),k ∈ Z+ (6.1)

with the output equation:

yk = Mτ(k)(xk) (6.2)

where xk ∈ Rn is the state, uk ∈ Rdu is the input, yk ∈ Rdy is the output, Gτ(k) : Rn×Rdu → Rn are

arbitrary non-linear state functions and, Hτ(k) : Rn→ Rdy the output functions. The logical rule that

governs the switching between the arbitrary non-linear functions Gτ(k) and output functions Mτ(k)

is represented by a class of piecewise constant sequences τ : Z+→I ,I = {1, ...,K}.
Consider the state-feedback gain ESN architecture initially introduced in Chapter 4 and altered

here by using a decoupled state-feedback gain as illustrated in Figure 4.2:

x(k+1) = f
(
(W −Win f ixWf b)x(k)+Winu(k)

)
y(k) = H(x(k),Wout)

(6.3)

where u = [u1, ...,um]
T ,x,y denote the input, state and output vectors, f : Rn → Rn is the

reservoir activation function, W ∈ Rn×n is the reservoir connection matrix, Win ∈ Rn×m is the

input-to-reservoir connection matrix, Win f ix = [11....1]T an additional feedback gain, Wf b ∈ Rn×p is

the state-feedback matrix and H : Rn→ Rp is the output (readout) function with Wout ∈ Rp×n the

output weight matrix.

Classical output-feedback ESN architectures [9],[12],[28],[123] use the same output-feedback

gain to run multiple tasks in parallel, at the expense of approximation accuracy, as the dynamics of

the reservoir are not specifically designed each individual task. It is proven in Chapters 4 and 5, that

introducing and training a state-feedback gain, via the aFORCE and aFORCE-redux algorithms,

to specifically tune the dynamics of the open-loop reservoir to each particular task. This proves

to outperform state-of-the-art output-feedback gain ESN architectures and their specific training

algorithms, such as the Echo State feedback clamping method [9] and the FORCE algorithm [12].

In order to preserve the advantages of the state-feedback ESN architecture and the aFORCE based

training algorithms, some changes are required to facilitate running multiple tasks using the same

reservoir. However, this can only be achieved in a serial fashion because of the state-feedback

loop that alters the dynamics of the reservoir and of an input layer which further improves the

approximation capabilities of the network.
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Hence, let us consider the discrete-time switching ESN architecture given by:

x(k+1) = f
(
(W −Win f ixWf bσ(k))x(k)+Winσ(k)u(k)

)
y(k) = Hσ(k)(x(k),Woutσ(k))

(6.4)

with the same notations as in equation (6.3). The logical rule that governs the switching between

the H ∈ N closed-loop subsystems generated by the input layer, state-feedback gain and the output

map is represented by a class of piecewise constant sequences σ : Z+→I ,I = {1, ...,K}.
In [12], the authors proposed training the input layers of subnetworks included in the reservoir

that can act like state-feedback gains for modeling the overall closed-loop dynamics of the network

with respect to different target tasks. The input layer of the subnetwork is the only trainable

component and the training is done the same way as for the readout module presented in Section

2.4.2.1. In this setting, Figure 6.1 depicts the exact architecture proposed in [12].

Figure 6.1: Switching FORCE ESN architecture and adjustable weights

Lemma 6.1 Training the input layer JFG of subnetwork S does not modify the dynamics of

the reservoir.
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Proof. Consider the subnetwork equation given by:

xnet(k+1) = f
(
Sxnet(k)+ JFGx(k)

)
y(k) = f (xnet(k),Jout)

(6.5)

where x ∈ Rn are the reservoirs states, xnet ∈ Rg are the subnetwork states, S ∈ Rg×g is the system

matrix, JFG ∈ Rg×n the input layer, Jout ∈ Rn×g is the output layer.

For simplicity, consider f : Rg→ Rg, f = 1. The equivalent transfer function of (6.5):

T F(s) = Jout(sI−S)−1JFG (6.6)

Equation (6.6) shows that modifying JFG does not change the eigenvalues of sI−S, which

dictates the dynamics of system (6.5). This also shows that the subnetwork acts like a randomly

initialized state-feedback gain.

In other words, the overall state-feedback structure is still randomly initialized and the authors

basically proposed a switching ESN structure with random feedback gains. The only special

characteristic of the proposed architecture is that these specific neurons that form the subnetwork

inside the reservoir do not receive direct inputs.

It is worth noting that switching systems require further stability guarantees, in addition to

the stability of each subsystem [131]. Although each subsystem is stable, the resulting switching

sequence can lead the overall system into instability. In the following section we explore different

global asymptotic stability conditions are explored for both linear and non-linear reservoirs.

In this context, the following section introduces the required stability condition for both linear

and non-linear reservoirs. The additional steps required to deploy aFORCE or aFORCE-redux in

this setting are also introduced.
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Figure 6.2: Novel switching ESN architecture and adjustable weights

6.3 Stability Analysis

This section analyses the stability of the overall switching architecture for linear and non-linear

reservoirs. In particular, the following section focuses on the linear case.

6.3.1 Linear reservoirs

Consider the linear discrete-time switching ESN architecture:

x(k+1) = (W −Win f ixWf bσ(k))x(k)+Winσ(k)u(k)
y(k) = Hσ(k)(x(k),Woutσ(t))

(6.7)

with the same notations as in (6.3) and (6.4).

To facilitate the introduction of the stability guarantees, let us recall key theoretical aspects

from [132]:

Let M = {M1, ...,MK} ∈ Rn×n be a set of essentially nonnegative and Schur stable matrices.

Consider the map π : {1, ...,n} → {1, ...,K} with P = [π(1), ., , , .π(n)] the corresponding n-tuple
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and Π the set of all n-tuples. Construct all the row and column representatives:

(M)row
P =


row1(Mπ(1))

...

rown(Mπ(n))

 ∈ Rn×n

(M)col
P = [col1(Mπ(1)) . . .coln(Mπ(n))] ∈ Rn×n

(6.8)

Subsequently, each row and column representative have an eigenvalue that satisfies:

Re{λi((M)row
P )} ≤ λPF((M)row

P ), i ∈ {1, . . . ,n}
Re{λi((M)col

P )} ≤ λPF((M)col
P ), i ∈ {1, . . . ,n}

(6.9)

Define the dominant PF eigenvalues of the row and column representatives:

λ row
repr(M ) = max

P∈Π
λPF((M)row

P )

λ col
repr(M ) = max

P∈Π
λPF((M)col

P )
(6.10)

If the dominant representative eigenvalues satisfy:

λ
row
repr(M ) ·λ col

repr(M )< 1 (6.11)

then the switching system represented by the set of system matrices M is asymptotically globally

stable.

Since the reservoir matrix is randomly initialized, through the aFORCE training algorithm,

we can construct closed-loop essentially nonnegative Schur stable matrices with respect to each

target system to verify equation (6.11) from [132] as follows:

• Step 1: Extend ESN states with the input layer Winσ(k) and state-feedback gain Wf bσ(k) for

all K subsystems.

• Step 2: Identify the input layer Winσ(k) and state-feedback gain Wf bσ(k) for each subsystem,

using the EKF.

• Step 3: Construct an essentially nonnegative matrix Wnonnegσ(k) having the eigenvalues of

W −Win f ixWf bσ(k).

• Step 4: Compute the new Win f ix σ(k) = (W −Wnonnegσ(k))
W f b

T
σ(k)

||W f bσ(k)||2
to obtain an essentially

nonnegative closed-loop system matrix.
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In the end, we obtain a set of switching nonnegative Schur stable matrices which can then be used

to verify the asymptotic global stability of (6.7) through condition (6.11).

For the aFORCE algorithm, these four steps replace Step 1 and 2 presented in Section 4.4.1.1.

6.3.2 Non-linear differentiable reservoirs

Consider the discrete-time non-linear switching ESN architecture:

x(k+1) = f
(
(W −Win f ixWf bσ(k))x(k)+Winσ(k)u(k)

)
y(k) = Hσ(k)(x(k),Woutσ(t))

(6.12)

with f : Rn→ Rn, f (x) = tanh(x), the same definitions as in (6.3) and (6.4), x∗ = 0 the equilibrium

point for u = 0 and B the vecinity of x∗.
Consider the following candidate Lyapunov function:

V (x) = 1− tanh2
(
(W −Win f ixWf bσ(k))x(k)+Winσ(k)u(k)

)
(6.13)

It is obvious that because tanh : R→ [−1,1]:

V (x)⩾ 0,∀x ∈ R (6.14)

Now, consider the derivative:

dV
dx =−2tanh2

(
(W −Win f ixWf bσ(k))x(k)+Winσ(k)u(k)

)
·

sech2
(
(W −Win f ixWf bσ(k))x(k)+Winσ(k)u(k)

)
·
(
(W −Win f ixWf bσ(k))x(k)+Winσ(k)u(k)

)
(6.15)

The function candidate (6.13) represents a Lyapunov function if equation (6.15) satisfies:

dV
dx

< 0,∀x ∈ B−{0} (6.16)

The latter condition holds if and only if the closed-loop system matrices are positive:

(W −Win f ixWf bσ(k))> 0 (6.17)

If conditions (6.14) and (6.17) hold, then (6.13) represents a Lyapunov function for (6.4),

which guarantees global asymptotic stability for the non-linear switching ESN system.
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This means that, in the aFORCE or aFORCE-redux training procedures, the latter constraint

can be integrated as follows:

• Step 1: Extend ESN states with the input layer Winσ(k) and state-feedback gain Wf bσ(k) for

all K subsystems.

• Step 2: Identify the input layer Winσ(k) and state-feedback gain Wf bσ(k) for each subsystem,

using the EKF.

• Step 3: Construct a positive definite matrix Wpozσ(k) having the eigenvalues of W −
Win f ixWf bσ(k).

• Step 4: Compute the new Win f ix σ(k) = (W −Wpozσ(k))
W f b

T
σ(k)

||W f bσ(k)||2
to obtain a positive definite

closed-loop system matrix.

For the aFORCE algorithm, these four steps replace Step 1 and 2 presented in Section 4.4.1.1.

In the following section, the numerical experiment is presented to benchmark the new

switching architecture against state-of-the-art control-based alternatives.
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6.4 Numerical study - Switching ESN approximation of fruitfly
photoreceptor on different light intensity levels

This section presents the numerical study using real data from a fruitfly photoreceptor [129]

to benchmark the proposed switching ESN architecture.

For this experiment, the input layer is coupled with delays and all the readouts are trained

using the original aFORCE algorithm presented in Chapter 4 and consist of non-linear 3rd order

polynomials.

Compared to the original condition in the form of Proposition 3.5 from [131], it is more

advantageous to use the more relaxed condition presented in equation (6.11) from [132] as it covers

a larger class of switching systems.

The data used in this numerical example has been recorded in vivo from the photoreceptor

of a fruitfly in the presence of different intensity light stimulus [129]. The light stimuli have been

sampled at 2 kHz that have been low-pass filtered by elliptic filters with a 500 Hz cut-off frequency.

The authors in [129] present four different intensities that were concatenated, in order to resemble

light fluctuations that are present in a flys natural habitat. The light pattern has been selected as a

naturalistic time-series of intensities specific to the Van Hateren natural stimuli collection. In Figure

6.3, the input and output response of the fruitfly photoreceptor is presented.

The original signal that has been recorded experimentally from the fruitflies photoreceptor

consists of 2 second representative naturalistic time-series of intensities signal sampled initially

at a frequency of 500 Hz. The data has then been preprocessed for analysis and experimental

purposes to 400 Hz, has been concatenated eight times and the first 200 points representing the

transitory regime have been eliminated, as suggested in [129] for single level characterization to

ensure that the photoreceptor response is stationary. The eight newly created periods are split as

follows: the first six periods are considered for training and model cross-validation. Each period has

been sub sectioned as follows: from each period, the first 600 points are used for training purposes

and are concatenated into a 3600-point training signal. The last 200 points from each period are

concatenated into an 1200-point signal that is used to cross-validate and select the best model that is

obtained from the OFR algorithm. The last two periods are used to test the final model.

The next section presents the results using linear switching state-feedback ESNs trained using

the aFORCE algorithm.
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Figure 6.3: Experimental data recordings of a) naturalistic stimuli and b) in vivo Fruitfly
photoreceptor responses used to fit the ESN model

6.4.1 Linear reservoir

This section presents the numerical results for linear switching state-feedback ESNs trained

using the aFORCE algorithm.

Table 6.1 shows the resulted NMSE using the original aFORCE algorithm for a linear SESN

with respect to the 4 indicated levels of light intensity fed to the photoreceptor of the fruitfly. Note

that the NMSE reported in [129] for the NARMAX model is 0.85. In this context, it is worth

noting that the proposed architecture outperforms the NARMAX model proposed in [129] for all

combinations of reservoir dimensionality and input delays.

Linear SESN aFORCE NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

11 0.55 0.38 0.34 0.27 0.21 0.21 0.23
12 0.24 0.32 0.27 0.29 0.26 0.2 0.2
13 0.49 0.28 0.26 0.26 0.21 0.2 0.22
14 0.28 0.36 0.28 0.26 0.22 0.17 0.22

Table 6.1: Linear SESN NMSE with regards to different reservoir dimensionalities, different
number of input delays and 1 output lag
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Figure 6.4: ESN response to real-life data recorded from the photoreceptor of a Fruit Fly:
ESN model predicted output (red) superimposed on experimental photoreceptor responses (black)

for a linear reservoir having N = 14 neurons, maximum input lags l = 5 and 1 output lag with
NMSE = 0.19

6.4.2 Non-linear invertible reservoir

This section presents the numerical results for linear switching state-feedback ESNs trained

using the aFORCE algorithm.

Table 6.2 shows the resulted NMSE using the original aFORCE algorithm for a non-linear

SESN with respect to the 4 indicated levels of light intensity fed to the photoreceptor of the fruitfly.

Note that the NMSE reported in [129] for the NARMAX model is 0.85. In this context, it is worth

noting that the proposed architecture outperforms the NARMAX model proposed in [129] for all

combinations of reservoir dimensionality and input delays.

Non-linear SESN aFORCE NMSE
Dimensionality/Delay 1 2 3 4 5 6 7

11 0.33 0.34 0.18 0.23 0.41 0.14 0.49
12 0.24 0.32 0.27 0.21 0.21 0.18 0.2
13 0.25 0.23 0.38 0.23 0.24 0.32 0.15
14 0.28 0.23 0.12 0.15 0.31 0.17 0.22

Table 6.2: Non-linear SESN NMSE with regards to different reservoir dimensionalities, different
number of input delays and 1 output lag
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Figure 6.5: ESN response to real-life data recorded from the photoreceptor of a Fruit Fly:
ESN model predicted output (red) superimposed on experimental photoreceptor responses (black)
for a non-linear reservoir having N = 13 neurons, maximum input lags l = 4 and 1 output lag with

NMSE = 0.14

Comparing Tables 6.2 and 6.1 shows that the non-linear reservoir SESN provides better

approximation accuracy over the linear SESN. However, the main advantage of the linear SESN is

in its monotonic behavior with respect to the NMSE when increasing the number of neurons and

delays. In contrast, the non-linear SESN exhibits a non-monotonic behavior for the same scenario.

For instance, in Table 6.2 it can be seen that for N = 13, increasing the delay from 2 to 3 results in

higher a higher valued NMSE.

The following section presents the concluding remarks of the chapter.
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6.5 Conclusions

This chapter proposes a new type of ESN architecture that uses switching input layers,

state-feedback gains and readout modules for processing multiple tasks. Training the architecture is

done via the aFORCE algorithm proposed in Chapter 4, which uses an alternative training strategy

for computing the input layer and state-feedback gain via an EKF estimation method [20],[21],[22]

and finds the optimal parameters of a polynomial readout module via an OFR algorithm. The

selection of the state-feedback gain and input layer allows the closed-loop structure to better

approximate the dynamics of target system, which enhances the outputs fitting performance in the

second stage of the aFORCE algorithm.

Section 6.2 presents an in-depth analysis of the overall stability of the switching system,

for both linear and non-linear reservoirs. It has been shown that the standard non-linear reservoir

structure (e.g., the hyperbolic tangent activation function) guarantees asymptotical stability on

the entire definition domain of the tanh function via Lyapunov function, when the closed-loop

subsystem matrices are positive definite. In the case of linear reservoirs when Lyapunov functions

cannot be found, stability can still be verified through other means [132]. In the first instance,

applying an EKF [21],[22] to compute the input layer and state-feedback gain allows finding

appropriate eigenvalues for fitting the dynamics of the unknown target tasks. Then, computing

the decoupled state-feedback gain ensures essentially non-negative closed-loop system matrices

[134],[135]. This allows for a convenient stability verification, namely, on the dominant row and

column eigenvalues earlier defined in equation (6.11) from [132].

Based on the theoretical analysis presented in Chapter 4, the SESN architecture outperforms

standard ESNs coupled with parallel readouts. The main drawback however, is that the computations

of each task have to be carried out serially due to the switching nature of the input layer and

state-feedback structures that modify the dynamics of the reservoir. Although this approach leads to

increased running times, SESN provides higher output approximation accuracy.

The numerical study used real world data extracted from the photoreceptor of a fruitfly in

the presence of different intensity light stimulus [129]. In all considered scenarios, the numerical

results show that the proposed SESN architecture trained using the aFORCE method performs better

than the NARMAX approach proposed in [129]. The simulations also highlight that the non-linear

reservoir SESN performs better than the linear SESN. However, the performance of the linear SESN

is more consistent across reservoir dimensionality and input delay regimes.

The next chapter draws the final conclusions of the thesis and identifies future work directions

based on the current findings.
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Chapter 7

Conclusions and future work

The National Academy of Engineering in the US published a list in 2008 regarding the grand

challenges for engineering in the 21st century. From the 14 challenges that have been identified

in their report, one is of particular interest for the subject debated in this thesis and it consists in

the "reverse engineering" of the brain. However, in order to understand how the brain works, an

in-depth analysis of current theoretical frameworks as well as the development of new theoretical

results and architectures are required for inferring the general principles and underlying particular

mechanisms of the brains functionality.

To this end, this thesis has proposed a new in depth analysis on the theoretical framework

that addresses the ability of current Reservoir Computing architectures to represent Universal

Approximators, which revealed some limitations regarding their approximation performance.

Training only a structure that is used to deal with two separate problems, namely, output signal

matching and internal dynamical fitting with respect to a target task, does not guarantee that these

competing goals can be achieved. Ultimately, this leads to a compromise solution for the readout

module, which introduces some lower boundaries to the approximation capability of the reservoir.

This new discovery led to the development of two new training algorithms for the

underdeveloped state-feedback Echo State Network architectures, namely, the aFORCE and

the aFORCE-redux, that efficiently train the state-feedback and input layer. An in depth theoretical

analysis revealed that separating the two aforementioned problems of internal dynamical fitting
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and output signal approximation via two sepparate trainable structures, namely, a state-feedback

gain and a readout module, could, in theory, offer perfect approximation results. These facts are

backed up by the numerical simulations that show the improved accuracy of state-feedback Echo

State Networks trained using either of the proposed training algorithms over the state-of-the-art

output-feedback Echo State Network models and their afferent training strategies, such as the

FORCE. Moreover, the ability to select the most relevant neurons that dictate the behavior of the

reservoir with respect to the dynamics of the target task, in the case of the aFORCE-redux algorithm,

as well as the components of the polynomial readout module increases the noise robustness of the

overall structure and lowers the risk of overfitting the trainable parameters in certain scenarios.

For some cases, lower dimension reservoirs with less trainable parameters trained using the

aFORCE-redux perform better compared to higher dimension reservoirs that have fully trained

parameters trained using the original aFORCE. However, in some examples, it is still beneficial to

train all the parameters using the aFORCE method, as the approximation results are improved when

compared to the more time and space efficient aFORCE-redux method.

Analyzing the proposed training algorithms and architectures reveals certain limitations:

1. Using the EKF estimation for training the state-feedback gain and the input layer of

ESNs via aFORCE and aFORCE-redux does not guarantee optimal solutions in the case

of approximating non-linear tasks. Because the EKF approximates state transitions and

measurements using linear Taylor expansions, the approximation accuracy is dependent on

the degree of non-linearity of the functions that are approximated.

2. Although SESN offers better approximation results when compared to the traditional parallel

ESN, due to the nature of serially computing each task, SESN is constrained by the complexity

of the tasks, their number, the frequency of switching and by the computational power of the

machine it operates on. A large number of complex target tasks with a high-frequency of

switching do not recommend using SESN when the main goal is real-time computing, as the

required computational power is higher to that of less accurate parallel architectures.

All computations have been made using a i7-10700K chip-set coupled with 32GB of DDR4

3600Mhz RAM.

In order to maximize the training capacities of current algorithms that mimic the brain

computation, the huge amount of neuroscience data that is available can be exploited for developing

new types of architectures and training strategies that eliminate the downsides of current Reservoir

Computing architectures and, even benefit from certain advantages observed in the biological brain.

A better understanding of how the brain works and how it is internally organised will not only

enable the treatment of damaged brains, the enhancement of brains via wearable devices, or the
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improvement of machine learning techniques, but will also enable the development of microchips

that could mimic the neural architecture and implement similar training strategies.

The results presented in this thesis could be further developed is a number of ways.

1. Similar to the Orthogonal Forward Selection methods that have been used in Chapters 4 and 5,

other efficient selection methods could be applied, which could improve the proposed training

methods for certain tasks. It would be beneficial to explore other mathematical algorithms

related to parameter selection and design new training methodologies specifically for certain

task-related constraints.

2. The training algorithms introduced in Chapters 4 and 5 are developed exclusively for Echo

State Networks with discrete linear and non-linear neurons. It would be extremely useful to

extend the framework to other types of networks and architectures and to the more complex

neuron models that operate in the spiking domain.

3. The new switching Echo State Network architecture introduced in Chapter 6 is stable only

when the closed-loop reservoir meets a set of constraints, related to the type of the closed-loop

system matrix. It would be interesting to further analyse and develop a set of more relaxed

conditions. Moreover, an external switching sequence could be designed to eliminate the

constraints entirely.

4. The literature would benefit from advancements regarding the development of new

architectures by continuing the work developed in Chapter 6. The perspective of switching

can be expanded to network architectures that use other types of neural activation functions,

such as Liquid State Machines or to entirely other types of architectures, such as Deep Neural

Networks.
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