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Abstract

This thesis focuses on advanced statistical methods for the analysis of correlated survival

times with a focus on investigation of twin data. The methods we will discuss were mo-

tivated by the TwinsUK study to investigate the relationships between fracture incidence

with covariates. To model the correlation between twins we use shared frailty models.

However, there is a potential danger of bias in the estimation if the frailty distribution is

misspecified. Frailties are often assumed to follow a gamma distribution. To safeguard us

from the impact of the misspecification of this distribution, we consider flexible baseline

hazards, for instance B-splines in addition to a parametric baseline hazard. We apply this

methodology to the TwinsUK cohort to predict the probability of experiencing a fracture

in the next five or ten years, given their bone mineral densities (BMD) and their health

status. The models with parametric and more flexible baseline hazards yield very close

results in estimating survival probabilities and thus a choice of parametric baseline haz-

ard is generally preferred. We find that bone mineral density is a statistically significant

predictor in the model whereas health status is not.

We then-via simulation studies-assess the consequences of frailty distribution misspecifi-

cation of estimation of parameters and survival probabilities. When the Weibull baseline

hazard is used, in most cases the scale parameter corrected for the wrong frailty. How-

ever, for some extreme cases it appears that the scale parameter cannot adjust and thus

parameters and survival probabilities are affected. However, using a flexible function for

the baseline hazard improves estimation of parameters as well as survival probabilities in

the presence of frailty distribution misspecification.

Often age is preferred underlying time scale. However, participants have different ages at

entry hence using age result in delayed entry. An additional challenge is clustering in the

twins data. In this thesis we will develop methods to estimate models for the relationship

between a time-varying covariate and age to an event while adjusting for delayed entry.

Four approaches for modeling time varying covariates namely, last observation carried

forward, risk set regression calibration, ordinary regression calibration, and joint modelling

approaches will be adapted to the situation of clustered data with delayed entry.
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Chapter 1

General introduction

1.1 Background

Time-to-event data are common in many disciplines including, but not limited to, medical

research. The time-to-event is often regarded as the survival time. The Cox proportional

hazard model is often used to investigate the effect of covariates on the hazards of an

event such as disease onset, death, or fracture. The Cox proportional hazard model has

two assumptions: first, the effect of the covariates on survival is proportional and, second,

the population is homogeneous given the covariates. To verify the first assumption, some

statistical tests have been developed (Grambsch and Therneau, 1994; Ng’andu, 1997).

However, the second assumption is more difficult to verify, although we can still address

that. For example, if we have correlated observations such as in twins, unobserved shared

effects can be modelled by a frailty as introduced by Vaupel et al. (1979). This thesis will

focus on the shared frailty model. The idea is to introduce an additional parameter to the

hazard rate to model the random frailties.

The shared frailty model involves the conditional specification of the hazard as if the frailty

would be observed. To derive the marginal likelihood for estimation of parameters we

have to specify a distribution for frailties which has a positive support, mean of one and a

positive variance. The gamma distribution has commonly been considered for the frailties

because of mathematical convenience since it produces a more tractable marginal likelihood

function for the parameters after integration. Some theoretical results in semi-parametric

gamma frailty models, in particular, estimators and asymptotic properties including when

1
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we have left truncation have been shown by Murphy (1994, 1995). However, other frailty

distributions have been proposed in the literature (Section 2.2.1 to Section 2.2.4).

The work in this thesis is motivated by the estimation of covariates effect and survival

probabilities of the TwinsUK study. We are particularly interested in survival probabilities

because hazard rates are hard to interpret. We consider data from the TwinsUK Study

in which we have fracture information, BMD and glycans measurements. The TwinsUK

Study is a well-known longitudinal study that is ideal for study of the process of ageing

and age related diseases (https://twinsuk.ac.uk). Specifically, we are interested to estimate

the probability of experiencing a fracture in the next five or ten years, given their bone

mineral densities (BMD) and their health status based on glycans. For the purpose of

our analysis, we consider the difference between the glycan age (as biological age) and the

chronological age. We term this difference as the frailty index (not to be confused with

frailties as random effects in survival models). Frailty index will represent a participants

health status. A positive frailty index indicates that the individual experiences faster

biological ageing than their chronological age (unhealthy) and the other way around with

a negative frailty index.

To achieve the objective in estimating the probability of fracture in the next time period

we specify the baseline hazard and consider to model the hazard of fracture with a gamma

distribution frailties for twin pairs. Unfortunately, it is hard to identify which frailty distri-

bution fits real data best. This is because in practice, the underlying frailty distribution is

unknown and thus the wrong frailty distribution might be chosen. However, because both

baseline hazard and frailty act multiplicatively on the hazard, we suggest that a flexible

baseline may compensate for a misspecification in the frailty distribution. We therefore

fit both parametric and flexible baseline hazards to the data. We also investigate how

specifying a frailty distribution may affect estimates of covariate effect and survival prob-

abilities assuming both parametric and flexible baseline hazards via simulations. Four

frailty distributions namely; gamma, inverse Gaussian, lognormal, and mixture normal

are considered for generating the data. For each of the frailty model, a gamma/inverse

Gaussian frailty model is then fitted to the data.

We then consider age as time scale especially because it is often used as an underlying

time scale in ageing studies. Using age as time scale also does not make the assump-

https://twinsuk.ac.uk
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tion that there is a linear relationship between age and hazard of event (Cologne et al.,

2012). However, participants have different ages at entry. In the data analysis partici-

pants’ inclusion criterion is dependent on a participant’s survivorship at a given enrolment

period. A participant was only included in the study if they are elderly (aged beyond 50).

Such a selection criterion results in left truncated observations as a result of delayed en-

try. Delayed entry results in non-random samples because inclusion in study depends on

the survivorship beyond truncation time i.e., truncation is dependent on survival of each

observation. In theory frailer individuals experience the event first and hence it implies

that individuals with higher frailty values are less likely to be observed after truncation.

Consequently the mean of frailty distributions becomes smaller and smaller as the frail in-

dividuals die and less frail individuals remain and so does the variance also become smaller

with time. Due to the selection criteria we are likely to be left with small frailty values.

This selection scheme is thus complex. If this sampling scheme is not well addressed the

assumed frailty distribution might not represent the observed values which consequently

may affect estimation of regression coefficients, hazard rate and survival probabilities.

When we have delayed entry and use age as the time scale then an updated frailty distri-

bution is used which assumes that the conditional density of the observed units within a

cluster is averaged over the conditional distribution given the entry times (Jensen et al.,

2004; Kvist et al., 2010; Rondeau et al., 2003; Van den Berg and Drepper, 2016). Al-

though this method may still give biased estimates when not all clusters are fully observed

(Rodríguez-Girondo et al., 2018).

Our work makes contributions in both statistical methodology and applications. In par-

ticular we make the following contributions:

• Via simulations we investigate how specifying a wrong frailty distribution may affect

estimates of time independent covariate effect and survival probabilities assuming

both parametric and flexible baseline hazard. We wrote an R code for fitting frailty

model using B-splines for baseline hazard.

• Existing methodology can deal with either delayed entry or time varying covariates

separately. We develop methodology for dealing with delayed entry and time varying

covariates simultaneously in clustered data when using age as a time scale.
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• Via simulations we investigate how different approaches model time dependent co-

variates generated with or without measurement error while adjusting for delayed

entry.

• With the proposed approaches in Chapter 7, we were able to assess the effect of time

varying covariate BMD on age specific fracture incidence for the TwinsUK study.

1.2 Structure of the thesis

This thesis has eight chapters. This section provides an overview of how the chapters are

organized. The current is Chapter 1 which is a general introduction of the thesis.

Chapter 2 will detail time independent covariate model mathematical formulation and as-

sumptions for Cox and shared frailty model including commonly used frailty distributions.

Chapter 3 extends the Cox model to deal with time varying covariates. Four existing ap-

proaches are discussed: last observation carried forward, risk-set regression calibration,

ordinary regression calibration and joint modelling. The regression calibration approach

attempts to model the time-varying covariate process using a linear mixed model and then,

in a second stage, plug the predicted response into the survival model.

Chapter 4 describes the TwinsUK study. We have data on fracture incidence, BMD and

glycomics for the twins. We would like to estimate the survival probabilities for the

occurrence of a fracture in the next time period given a participant’s BMD and health

status based on glycans using time to follow-up as underlying time scale (addressed in

Chapter 5). The analysis does not consider glycans directly as a predictor. However, we

consider the difference between the glycan age (as biological age) and the chronological

age. We term this as the frailty index. We would also like to estimate the effect of BMD

as a time dependent covariate on fracture incidence using age as time scale (addressed in

Chapter 7).

In Chapter 5 we apply shared frailty model to the TwinsUK cohort to predict the proba-

bility of experiencing a fracture in the next time period (e.g. five or ten years) given their

bone mineral densities (BMD) and their frailty index. The models with parametric and

flexible baseline hazards yield very close results in estimating survival probabilities. We
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find that bone mineral density is a significant predictor in the model whereas frailty index

is not. Low BMD leads to a larger probability of fracture.

Chapter 5 on analysis of twins data motivates us to also investigate if the parametric and

flexible baseline hazards will always yield close survival probabilities estimates for different

frailty distributions. This leads us to investigate the impact of frailty misspecification on

the estimation of parameters and survival probabilities as shown in Chapter 6. This is the

first study to investigate the effect of frailty distribution misspecification on the estimation

of survival probabilities. The simulation results show that the parametric baseline hazard

(Weibull) scale parameter corrects for the wrong distribution. This suggests that using

a flexible baseline hazard could correct for frailty misspecification. We investigate this

claim using two flexible approaches for the baseline hazard. The first one uses a plug-in

estimator for the baseline hazard while the second approach uses splines for the baseline

hazard. Results show that flexible baseline hazards appears to improve estimation of

population survival probabilities when a wrong frailty distribution is used. Therefore the

choice of baseline hazard plays a role in frailty misspecification correction.

Chapter 7 extends models for time dependent covariates to adjust for delayed entry in

twins. This is motivated by the analysis of the TwinsUK data done in Chapter 5. Since

we have multiple observations per subject we consider BMD as a time varying covariate.

The challenge faced will be to adjust for delayed entry because age at time of fracture

is used as time scale. We adapt the approaches for modeling time varying covariates

for singletons to modeling time varying covariates of clustered data with delayed entry.

Via simulations we investigate how the last observation carried forward and regression

calibration approach fit covariates generated with and without measurement error. We

then model effect of BMD as a time varying covariate on fracture using age as time scale

while taking into account delayed entry.

Chapter 8 gives our conclusions, future work and possible extensions of the thesis.



Chapter 2

Modelling time independent
covariates

Time-to-event is also called survival time, failure time or event time and is modelled as a

random variable. Some examples include time to disease onset, time to fracture time to

death, time to the appearance of a tumor or recurrence of a disease e.t.c Various survival

analysis methods exist in the literature to handle time-to-event data. These methods can

be broadly classified into parametric methods (for the case where we make an assumption

on the distribution of survival time) and non-parametric (does not make any assumption

on the survival time distribution) (Cox and Oakes, 1984; Kalbfleisch and Prentice, 2011;

Klein and Moeschberger, 2003)

A unique feature of survival data is that typically not all individuals experience the event

(eg, death) by the end of the study period, and hence actual survival times is unknown.

This phenomenon is referred to as censoring and has to be accounted for in the analysis

to allow for valid inferences. Censoring can broadly be classified to left censoring, right

censoring and interval censoring. Left censoring occurs when a subject is known to have

had the event before the start of the observation, but the exact time of the event is

unknown. Similarly, interval censoring is where it is only known that the event occurred

between two time points, but the exact time is unknown. Right censoring occurs when the

time-to-event cannot be determined because either the study ended and the event hasn’t

occurred yet or such subject was lost to follow-up at any time during the study. If censoring

is independent of the event process, then it is non-informative, otherwise it is informative.

Throughout the thesis the censoring process is considered to be non-informative. Let T ∗i

6
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denote the time elapsed for subject i to experience the event of interest, and let Ci denote

the censoring time for subject i. We define Ti as the minimum of the true event time,

T ∗i , and the censoring time, Ci, so Ti = min(T ∗i ;Ci). δi is the event indicator defined as

follows:

δi =
{

1 if event observed (i.e. T ∗i ≤ Ci)
0 if censored (i.e. T ∗i > Ci)

Another unique feature of survival data is referred to as truncation which is related to the

sampling mechanism. Right truncation occurs when only individuals who have experienced

the event of interest are observable. Left truncation occurs when subjects come under

observation only if their failure times exceed some given time t0. It is only because they

did not fail before t0 that we even know about their existence. Therefore, only individuals

with survival time greater than t0 are observed; see Figure 2.1.

Figure 2.1: Left truncation

Chapter 7 of this thesis will also entail a discussion on left truncation.

Relation between some basic survival quantities

Ways of characterizing the distribution of the time-to-event random variable T include:

h(t): Probability of experiencing an event in the next time instance given that you have

survived up to time t.

H(t): Cumulative hazard function

f(t): Unconditional probability density function of an event occuring at time t.
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F (t): Cumulative distribution function

S(t): Probability of surviving beyond time t.

The above quantities have the following relations

f(t) = lim
dt→0

Pr (t ≤ T < t+ dt)
dt

= dF (t)
dt

F (t) = Pr (T ≤ t) =
∫ t

s=0
f(s)ds

h(t) = lim
dt→0

Pr (t ≤ T < t+ dt|T ≥ t)
dt

= f(t)
S(t) = −d ln[S(t)]

dt

H(t) =
∫ t

s=0
h(s)ds = − ln[S(t)]

S(t) = Pr (T > t) = exp(−H(t)) = 1− F (t)

In order to explore the relationship between survival of an individual and time independent

variables, statistical modelling can be used. The most popular regression model is Cox

proportional hazard model. This model will be described in the next session. It can also

be referred to as a relative risk model.

2.1 Cox proportional hazards model

Let T denote a non-negative random variable representing survival time, with probability

density function f(t) and cumulative distribution function F (t). Let hi (t|xi) be the hazard

rate at time t for ith individual with risk covariate xi (1× p vector), β = (β1, β2, ..., βp)>

be a parameter vector, p is the number of predictors, and xiβ is a linear predictor or risk

score. h0 (t) be the baseline (the hazard function of the outcome occurring for subjects

with linear predictor zero.).

The Cox proportional regression model is given by (Cox, 1972)

hi (t|xi) = h0 (t) exp (xiβ) = h0 (t) exp
( p∑
k=1

βkxik

)
. (2.1)

This model describes the effect of the covariates on the hazard of the occurrence of the

event.

S(t|xi) is the survival function of an individual conditional to the risk covariate xi and is
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given by

S(t|xi) = exp [−H0(t) exp (xiβ)] .

The cumulative density function of the event times under the Cox proportional hazards

model is:

F (t|x) = 1− exp [−H0(t) exp (xiβ)] .

2.1.1 Estimation of βββ

The parameters (β) in the Cox model can be estimated by using partial maximum likeli-

hood estimation. Let t1 < t2 < . . . < tn denote ordered distinct event times. Let x(i)k be

the kth covariate associated with individual whose failure time is ti. Let δi be the censoring

indicator. Define the risk set at time ti to be R(ti) which is the set of all individuals who

are still under study at a time just prior to ti

The probability that an individual dies at time ti with covariates x(i), given one of the

individuals in R(ti) dies at this time, is given by

P [individual dies at ti |one death at ti] = P [individual dies at ti | survival to ti]
P [one death at ti | survival to ti]

=
h(ti | x(i))∑

j∈R(ti) h(ti | xj)

=
h0(ti) exp

(∑p
k=1 βkx(i)k

)
∑
j∈R(ti) h0(ti) exp

(∑p
k=1 βkxjk

)
=

exp
(∑p

k=1 βkx(i)k
)

∑
j∈R(ti) exp

(∑p
k=1 βkxjk

) . (2.2)

The partial likelihood for distinct event time censored data is given by

Lp (β) =
n∏
i=1

 exp
(∑p

k=1 βkx(i)k
)

∑
j∈R(ti) exp

(∑p
k=1 βkxjk

)

δi

. (2.3)



CHAPTER 2. MODELLING TIME INDEPENDENT COVARIATES 10

The corresponding partial log likelihood `p(β) = ln [Lp (β)] is

`p(β) = ln

 n∏
i=1

 exp
(∑p

k=1 βkx(i)k
)

∑
j∈R(ti) exp

(∑p
k=1 βkxjk

)

δi


=
n∑
i=1

δi ln

 exp
(∑p

k=1 βkx(i)k
)

∑
j∈R(ti) exp

(∑p
k=1 βkxjk

)


=
n∑
i=1

δi

ln
[
exp

( p∑
k=1

βkx(i)k

)]
− ln

 ∑
j∈R(ti)

exp
( p∑
k=1

βkxjk

)
=

n∑
i=1

δi


p∑

k=1
βkx(i)k − ln

∑
j∈R(ti)

exp
( p∑
k=1

βkxjk

) . (2.4)

Numerical methods can be used to maximize this partial log-likelihood function e.g by

Newton-Raphson procedure.

2.1.1.1 The Newton-Raphson procedure in matrix form

The partial likelihood for distinct event time censored data is given by

Lp (β) =
n∏
i=1

{
exp (xiβ)∑

j∈R(ti) exp (xjβ)

}δi
, (2.5)

where δi is an event indicator.

Let wi = exp (xiβ) , Yj(ti) be at risk indicator andWj = ∑
j∈R(ti) exp (xjβ) = ∑n

j=1 Yj(ti) exp (xjβ)

then equation (2.5) becomes

Lp (β) =
n∏
i=1

{
wi
Wj

}δi
,

The corresponding partial log-likelihood will be

`p (β) =
n∑
i=1

δi logwi −
n∑
i=1

δi logWi,

Let ηi = logwi = xiβ , Pn×n = ((πij))and πki = Yi(tk)wkWi
then,

∂`p
∂ηk

= δk −
∑
i

πkiδi,

U(η) = δ− Pδ,

U(β) = XT (δ− Pδ).
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For the second derivative

∂2`p
∂η2

k

= −
∑
i

δiπki(1− πki) Diagonal elements

∂2`p
∂ηk∂ηj

=
∑
i

δiπkiπji Off-diagonal elements

I(β) = XTWX.

W matrix with terms given above (diagonal elements and off-diagonal elements). There-

fore the Newton Raphson update will be

β̂m+1 = β̂m + I−1(β̂m)U(β̂m).

= β̂m +
(
XTWX

)−1
XT (δ− Pδ) (2.6)

Parametric proportional hazards model

A parametric form for the baseline hazard function in equation (2.1) leads to a parametric

proportional hazards model. Some common distribution for the baseline hazards include

the Weibull and exponential. The Weibull baseline hazard is characterized by two param-

eters i.e. shape parameter ρ and scale parameter λ. It is monotone increasing when ρ > 1,

monotone decreasing for ρ < 1, and constant for ρ = 1 (note that the Weibull distribution

reduces to exponential for ρ = 1).

Figure 2.2: Hazard function of Weibull for λ = 1 and ρ = 0.5, 1, 1.4.

Let ξ contain the parameters of the baseline hazard e.g for a Weibull hazard ξ = (λ, ρ).
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The full likelihood is given by

L(ξ,β) =
n∏
i=1

[hi(t|xi)]δi Si(t|xi)

=
n∏
i=1

[h0 (t) exp (xiβ)]δi exp [−H0(t) exp (xiβ)] . (2.7)

The log-likelihood function is

`(ξ,β) =
n∑
i=1

δi [xiβ + log h0(t)]−
n∑
i=1

H0(t) exp(xiβ). (2.8)

The assumption in the proportional hazard model is that the hazard function for each

individual is proportional to the baseline hazard, h0(t). This implies the hazard ratio is

fully determined by the covariate vector. However, there may be unobserved covariates

that cause this assumption to be violated hence the need for frailty models as discussed

in section 2.2.

2.2 Shared frailty model

The models introduced above (section 2.2) make an homogeneity assumption, i.e., condi-

tioned on covariates, all the individuals in the study population are assumed to have the

same risk of experiencing the event of interest (death, remission,relapse, etc.). However,

in practice, this homogeneity assumption may not often hold as most study samples are

heterogeneous in nature (comprising of individuals who have different risks). When we

have clustered data we may estimate a part of the heterogeneity when individuals within

a cluster share relevant unobserved covariates.

Clustered survival data are encountered in many disciplines including human and veteri-

nary medicine, biology, epidemiology, public health and demography. Example of studies

with clusters: family members, twins, multi-centre clinical trial, parent-child. In such

clustered settings, independence between the survival times cannot be assumed.

To model dependence of clustered event times is through the introduction of a cluster-

specific random effect - the frailty. Vaupel et al. (1979) introduced the term frailty in order

to account for individual unobserved heterogeneity in ageing studies. Here the frailty can

be estimated from deviations of the model assumptions such as proportional hazards.
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In a clustered setting frailty was introduced by Clayton (1978) (without referring it to

“frailty”) and extensively studied in Hougaard (2000). In particular, frailty model was

used by Hougaard et al. (1992) to measure the similarities between the lifetimes of twins

as they are correlated and thus have unobserved shared effects. In general, individuals in

a cluster are assumed to share the same frailty, which is why this model is called shared

frailty model. The survival times are assumed to be conditional independent with respect

to the shared (common) frailty.

A frailty model is a multiplicative hazard model consisting of the random effects (the

frailty), a baseline hazard function and a term modelling the influence of observed co-

variates. The advantage of frailty model over the Cox model is that the hazard ratio

incorporates the unobserved (random) effects with the observed (fixed) effects.

Model Description

Suppose that there are G groups of individuals with ni individuals in the ith group, i =

1, 2, ..., G and j = 1, 2, ..., ni. Let vi be the cluster frailty, β = (β1, β2, ..., βp)T be a

parameter vector, xij is an 1 × p vector, h0 (t) be the baseline (the hazard function of

the outcome occurring for subjects with risk vector and frailty equal zero). Let δij is the

censoring indicator. For the proportional hazards model, the hazard of death at time t for

the jth individual in the ith group conditional on vi , is then given by

hij (t|xij , vi) = h0 (t) vi exp (xijβ)

Sij(t|xij , vi) is the survival function of an individual conditional on the frailty vi and risk

covariate vector xij and is given by

Sij(t|xij , vi) = exp (−Hij(t|xij , vi))

= exp
(∫ t

0
−h0 (u) vi exp (xijβ) du

)
= exp [−H0(t)vi exp (xijβ)] .

The marginal survivor function will be

Sp (t) = E [S (t|x, v)]

= E [exp (−H0(t) exp (xβ) v)]

=
∫
v

exp (−vH0(t) exp(xβ)) g(v)dv
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This is referred to as marginal survivor function (Hougaard, 2000) because it is the ob-

served population survivor function after v has been integrated out. Therefore to derive

this function we have to specify a distribution for v say g(v) which has a positive support,

mean of 1 and variance θ. The variance θ determines the degree of heterogeneity (vari-

ability) in the population. Individuals with vi > 1 are at a higher risk of experiencing the

event (for negative events) and vice versa.

Integrating out the frailty reduces the problem to estimating the frailty variance. Therefore

the goal is to estimate the frailty variance θ.

Let ξ contain the parameters of the baseline e.g for exponential baseline ξ = λ and for

a Weibull hazard ξ = (λ, ρ). The conditional likelihood for the ith cluster is given by

Li(ξ,β|vi) =
ni∏
j=1

[hij(t|xij , vi)]δij Sij(t|xij , vi)

=
ni∏
j=1

[h0 (t) vi exp (xijβ)]δij exp [−H0(t) exp (xijβ) vi] . (2.9)

Therefore, the marginal likelihood function of the ith cluster will be

Li(ξ, θ,β) =
∫ ∞

0

ni∏
j=1

[h0 (t) v exp (xijβ)]δij exp [−H0(t) exp (xijβ) v] g(v)dv, (2.10)

where g(v) is the probability density function of the frailties. If parametric form for h0(t) is

assumed, then maximum likelihood estimates can be obtained by maximizing the marginal

likelihood function (Duchateau and Janssen, 2008).

Some common frailty distributions include gamma, log-normal frailty and inverse Gaussian

frailty and will be described in section 2.2.1 to section 2.2.4.

2.2.1 Gamma frailty

The gamma distribution has been widely applied as a frailty distribution (Congdon, 1995;

dos Santos et al., 1995; Hougaard, 2000; Vaupel et al., 1979). It has a closed form like-

lihood function that can be readily maximized. It is easy to also derive the closed form

expressions of unconditional survival, cumulative density and hazard function based on a

computational and analytical point of view. This is the main reason why this distribu-
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tion has been most commonly used. There is no biological reason that makes the gamma

distribution most used as compared to other frailty distributions.

If V follows a gamma distribution with mean 1 and variance θ then V has the density

function

g(v) =

(
1
θ

)1/θ
v1/θ−1 exp (−v/θ)

Γ1
θ

v > 0, θ > 0.

Figure 2.3: Probability density functions of different gamma distributions with mean 1
and variances θ = 0.1, 0.5 & 2.

The marginal likelihood function of the ith cluster will be

Li(ξ, θ,β) =
∫ ∞

0

{
ni∏
j=1

[
h0 (t) ve(xijβ)

]δij
e[−H0(t)v exp(xijβ)]

}
v

1
θ
−1 exp

(
−v
θ

)
θ

1
θΓ1

θ

dv, (2.11)

=
{

ni∏
j=1

[
h0 (t) e(xijβ)

]δij } 1
θ

1
θΓ1

θ

∫ ∞
0

vdie

[
−v
∑ni

j=1 H0(t) exp(xijβ)
]
v

1
θ
−1 exp

(
−v
θ

)
dv,

where di = ∑ni
j=1 δij . The marginal loglikelihood function for all the clusters is (Duchateau

and Janssen, 2008; Rodríguez-Girondo et al., 2018)

l (ξ, θ, β) =
G∑
i=1

log(Li(ξ, θ,β))

=
G∑
i=1

[di log(θ)− log (Γ (1 /θ)) + log (Γ (1/θ + di))−

(1
θ

+ di

)
log

1 + θ
ni∑
j=1

H0(t)exijβ
+

ni∑
j=1

δij [xijβ + log (h0(t))]

 (2.12)
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The population survival function is given by (Duchateau and Janssen, 2008)

Sp(t) = (1 + θH0(t) exp(xβ))−
1
θ . (2.13)

Figure 2.4: Population survival function i.e. Equation (2.13) for different gamma distri-
butions with mean 1 and variances θ = 0.1, 0.5 & 2 assuming no covariate (x = 0) and a
Weibull baseline hazard with parameters λ = 1 and ρ = 2.

Asymptotic properties of the non-parametric maximum likelihood estimates in the shared

gamma frailty model are well established. Murphy shows consistency (Murphy, 1994)

and asymptotic normality (Murphy, 1995) in the shared gamma frailty model without

covariates.

2.2.2 Lognormal frailty

The density function when V follows a lognormal distribution is

g(v) = 1
v
√

2πσ2
exp

(
−[log(v)− µ]2

2σ2

)
v > 0, σ2 > 0.

The mean and variance of V are given by

E(V ) = exp
(
µ+ σ2/2

)
Var(V ) = θ =

[
exp(σ2)− 1

]
exp

(
2 + σ2

)

The mostly considered model in literature as W ∼ N(µ, σ2), such that W = log(V ). The
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hazard model specification is therefore:

hij (t|xij , wi) = h0 (t) exp (xijβ + wi)

In such a transformation to have unity mean and variance θ for V then

W ∼ N

(
− log(1 + θ)

2 , log(1 + θ)
)
.

Let µ′ = − log(1+θ)
2 and σ′ =

√
log(1 + θ).

Figure 2.5: Probability density functions of different log-normal distributions with mean
1 and and variances θ = 0.1, 0.5 & 2.

The marginal likelihood function of the ith cluster will be

Li (ξ, θ,β) =
∫ ∞

0

{
ni∏
j=1

[h0(t) exp(xijβ + w)]δij e−H0(t) exp(xijβ+w)
}

1
σ′
√

2π
exp

(
−1

2

[
w − µ′

σ′

]2)
dw

=
{

ni∏
j=1

[h0(t) exp(xijβ)]δij
}

1
σ′
√

2π

×
∫ ∞

0
exp(w)die

−
(∑ni

j=1 H0(t) exp(xijβ+w)
)

exp
(
−1

2

[
w − µ′

σ′

]2)
dw

Taking log, we obtain

li (ξ, θ, β) =
{

ni∑
j=1

δij log [h0(t) + xijβ]
}
− log

(
σ′
)
− log(

√
2π)

+ log
{∫ ∞

0
exp(w)die

−
(∑ni

j=1 H0(t) exp(xijβ+w)
)

exp
(
−1

2

[
w − µ′

σ′

]2)
dw

}

Therefore, marginal loglikelihood function for all the clusters will be

l (ξ, θ, β) =
G∑
i=1

`i (ξ, θ,β) (2.14)
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No explicit form of the marginal likelihood exists and thus to obtain the parameter es-

timates ξ, θ,β numerical integration is required to maximize the marginal loglikelihood

functions Equation (2.14) above.

Figure 2.6: Population survival function for different lognormal distributions with mean
1 and variances θ = 0.1, 0.5 & 2 assuming no covariate (x = 0) and a Weibull baseline
hazard with parameters λ = 1 and ρ = 2.

Most used in literature is W ∼ N(0, σ2) (This is what has been used in R package parfm

(Munda et al., 2012)).

2.2.3 Inverse Gaussian frailty

The inverse Gaussian (inverse normal) distribution was introduced as an alternative to

the gamma distribution by Hougaard (1984).

If V follows a inverse Gaussian distribution with parameters µ and θ0 then V has the

density function

g(v) =
[ 1

2πθ0

]−1/2
v−3/2 exp

(
−(v − µ)2

2vθ0µ2

)
v > 0, θ0 > 0.

The mean and variance of V are given by

E(V ) = µ

Var(V ) = θ = µ3θ0

For mean= 1 and variance of θ then

g(v) =
[ 1

2πθ

]−1/2
v−3/2 exp

(
−(v − 1)2

2vθ

)
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Figure 2.7: Probability density functions of different inverse Gaussian distributions with
mean 1 and variances θ = 0.1, 0.5 & 2.

The marginal likelihood function of the ith cluster will be

Li (ξ, θ, β) =
∫ ∞

0

ni∏
j=1
{h0(t)v exp(xijβ)}δij e−H0(t)v exp(xijβ) 1√

2πθ
1
v3/2 exp

(
−(v − 1)2

2vθ

)
dv

=
ni∏
j=1
{h0(t) exp(xijβ)}δij 1√

2πθ

∫ ∞
0

vdi−
3
2 e
−v
{∑ni

j=1 H0(t) exp(xijβ)
}
e−

(v−1)2
2vθ dv.

Taking log, we obtain

li (ξ, θ, β) =
ni∑
j=1

δij {log (h0(t)) + xijβ} − log
(√

θ
)
− log(

√
2π)

+ log
{∫ ∞

0
vdi−

3
2 e
−v
{∑ni

j=1 H0(t) exp(xijβ)
}
e−

(v−1)2
2vθ dv

}
. (2.15)

The marginal loglikelihood function for all the clusters is

l (ξ, θ,β) =
G∑
i=1

li (ξ, θ,β) (2.16)

The population survival function is given by (Duchateau and Janssen, 2008)

Sp(t) = exp
(

1−
√

1 + 2θH0(t) exp(xβ)
θ

)
. (2.17)
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Figure 2.8: Population survival function i.e Equation (2.17) for different inverse Gaussian
distributions with mean 1 and variances θ = 0.1, 0.5 & 2 assuming no covariate (x = 0)
and a Weibull baseline hazard with parameters λ = 1 and ρ = 2.

2.2.4 Truncated Gamma frailty

Consider a random variable V following Gamma distribution g(v;α, β) with parameters

α (shape) and β (rate). Suppose a < V < b, then, the truncated gamma distribution will

be (Okasha and Alqanoo, 2014)

g(v;α, β|a < V < b) = g(v;α, β)∫ b
a g(v;α, β)dv

= βαvα−1e−vβ

Γ (α, aβ)− Γ (α, bβ) , (2.18)

where

Γ (p, q) =
∫ ∞
q

yp−1e−ydy.

The rth moment of the truncated Gamma distribution is given by (Okasha and Alqanoo,

2014)

E (V r) = Γ (α+ r, aβ)− Γ (α+ r, bβ)
βr [Γ (α, aβ)− Γ (α, bβ)] . (2.19)
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So, the mean and variance of a left truncated Gamma distribution (a < V < ∞) will be

given by

E (V ) = Γ (α+ 1, aβ)
βΓ (α, aβ) , (2.20)

E
(
V 2
)

= Γ (α+ 2, aβ)
β2Γ (α, aβ) ,

Var(V ) = E
(
V 2
)
− [E (V )]2 . (2.21)

In order to satisfy the identifiability assumption of a frailty distribution, the mean is set

to unity and the variance is set to a preset value of θ, these two equations are solved

numerically to obtain α′ and β′, where α′ and β′ denote the values of α and β that satisfy

the constraints (i.e. Equation (2.20) = 1, and Equation (2.21)= θ).

Figure 2.9: Probability density functions of different left truncated gamma distributions
with mean 1 and a = 0.4 for θ = 0.1, 0.5 while a = 0.15 for θ = 2.

The choice for a above is user-defined. The population survival function given left trun-

cated gamma frailty is

Sp(t) :=
∫ ∞
a

exp (−vH0(t) exp(xβ)) g(v;α, β|a < V <∞)dv

=
∫ ∞
a

exp (−vH0(t) exp(xβ)) β
αvα−1e−vβ

Γ (α, aβ) dv. (2.22)
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Figure 2.10: Population survival function i.e Equation (2.22) corresponding to left trun-
cated distributions given above (Figure 2.9) assuming no covariate (x = 0) and a Weibull
baseline hazard with parameters λ = 1 and ρ = 2.

Note that different frailty distributions yield different survival probabilities and this is

more evident for larger values of θ.

This section assumes time independent covariates. Incorporating time-dependent covari-

ates in to the model is discussed in the next chapter (Chapter 3)).

2.2.5 Generating survival time

We generate survival time for use in simulation studies to assess the performance of current

or novel statistical models. T (defined in section 2.2) cannot be generated directly but can

be generated by inverting the cumulative hazard function as follows. Let Y be a random

variable with distribution F , then U = F (Y ) follows a uniform distribution on interval 0

to 1 i.e U ∼ Uni[0, 1]. It follows also that (1− U) ∼ Uni[0, 1]. Let T be the survival time

of the Cox model then it follows that

U = exp [−H0(t)vi exp (xiβ)] ∼ Uni[0, 1]

log(U) = −H0(t)vi exp (xijβ)

− log(U)vi exp (−xijβ) = H0(t).
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If h0(t) > 0 for all t, then H0 can be inverted and the survival time T can be generated

by (Bender et al., 2005).

T = H−1
0 [− log(U)vi exp (−xijβ)] , (2.23)

where U ∼ U(0, 1) i.e the standard uniform distribution vi follows distribution g(vi) with

mean of 1 and variance θ..

Commonly used distributions for baseline hazard are exponential, the Weibull, and the

Gompertz distributions with their characterization given in Table 2.1 below. This proce-

Table 2.1: Characterization of the exponential, Weibull, and Gompertz distributions in
simulating survival time.
Characteristic Exponential distribution Weibull distribution Gompertz distribution
Parameter Scale λ > 0 Scale λ > 0 Scale λ > 0

Shape ρ > 0 Shape −∞ < η <∞

Hazard function h0(t) = λ h0(t) = λρtρ−1 h0(t) = λ exp(ηt)

Cumulative hazard H0(t) = λt H0(t) = λtρ H0(t) = λ

η
(exp(ηt)− 1)

Inverse cumhaz H−1
0 (t) = 1

λ
t H−1

0 (t) =
(

1
λ
t

)1/ρ
H−1

0 (t) = 1
η

log
(η
λ
t+ 1

)
Survival time T = − log(U)

λvi exp (xijβ) T =
(
− log(U)
λvi exp (xijβ)

)1/ρ
T = 1

η
log
(

1− η log(U)
λvi exp (xijβ)

)

dure will be used for data generation in the simulations performed in chapter 6.
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2.3 Software

Table 2.2: Overview of existing R packages for shared frailty model

Function Package Frailty distribution Baseline hazard dis-
tribution

Left-truncation/
Time varying covari-
ates

parfm parfm Log-normal, Positive
stable, Inverse Gaus-
sian, Gamma

Exponential,
Weibull, inverse
Weibull, Gompertz,
lognormal,log-skew-
normal, and loglogis-
tic

Left truncation

frailtyPenal frailtypack Gamma and Log-
normal

Piecewise constant,
Cubic M-splines,
Weibull, splines

Fits left truncation
or time varying sep-
arately.

coxph survival Gamma, Log-normal,
log-t

Non-parametric Time varying covari-
ates

coxme coxme Normal Non-parametric Time varying covari-
ates

frailtyEM frailtyEM Gamma, Inverse
Gaussian, Positive
stable, PVF-family

Breslow-type non-
parametric baseline
hazard

Left truncation

fitfrail frailtySurv Gamma, Power
variance function,
Log-normal, and
Inverse Gaussian
frailty model

Breslow-type non-
parametric baseline
hazard

frailtyHL frailtyHL Gamma and lognor-
mal

Non-parametric

phmm phmm Log-normal Non-parametric
survBayes survBayes Gamma and Log-

normal
Non-parametric

sscox gss Log-normal Non-parametric



Chapter 3

Modelling time varying covariates

Time varying covariate (also called time-dependent covariate) occurs when a given co-

variate changes over time during the period under study. In practice, many studies that

generate time-to-event data, record other variables whose value vary in time and it is of-

ten of interest to investigate the relationship between such variables and the time-to-event

outcome. Time varying covariates, in particular, provide us with important information

on how changes in a subject’s history effect survival.

Time varying covariates can be categorical or continuous. An example of a binary variable

is transplantation in the Stanford heart transplant (Crowley and Hu, 1977). Patients are

admitted to a waiting list, the time to event is time from admittance to the waiting list

until death, which may be subject to censoring, and the interest is in the effect of a heart

transplant on survival. The time varying covariate heart transplant is initially equal to

0, and attains the value 1 when the patient is given a heart transplant. If the patient

never receives a heart transplant, the value remains 0 throughout his/her follow-up. In

this scenario, the time varying covariate is fully observed. Example of a continuous time

varying covariate include BMI when investigating it’s effect on mortality (Kovesdy et al.,

2007) and CD4+ T-cell counts on the occurrence of AIDS or death for HIV-infected

patients (Tsiatis et al., 1995). In these cases, one wants to make use of the longitudinal

covariate information that is available.

Time varying covariates can be either external and internal (Collett, 2015; Kalbfleisch and

Prentice, 2011). It is classified as internal when the path is affected by survival status. An

internal covariate is typically the output of a stochastic process generated by an individual

25
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under study and observed only as long as the subject survives and uncensored. Examples

would include the blood pressures and CD4 counts measured over the course of the study.

An external covariate does not necessarily require the subject’s survival for their existence,

they remain measurable and their distributions unchanged after the occurrence of the

event. Examples of external covariates are BMD as a predictor of fractures, or a measure

of airborne pollution as a predictor of the frequency of asthma attacks. For internal

time-varying covariates other alternatives like joint models may be considered.

Suppose that there are n individuals, i = 1, 2, ..., n. Let Ti be the random variable repre-

senting time, δi is the event indicator, and Yi = {Yil (til) ; l = 1, . . . , ni} be a time varying

covariate. Let α be the time varying covariate effect. Let ξ be the parameters of the base-

line hazard h0 (t) and θ be the frailty variance. The hazard at time t for the ith individual

is given by

hi (t|Yi) = h0(t) exp (αyi(t)) .

The risk parameter α represents the effect on the hazard of a unit difference in the covariate

at time zero or at any time after entry under the assumption that the effect of the covariate

is time invariant.

In this approach the hazard at time t is assumed to depend on the current value at time

t of the time varying covariate yi(t), through the product of the baseline hazard and

exp (αyi(t)). This approach yields valid inference if the value of the time varying covariate

is known for all subjects at all event time points without error, and the regression model

is correctly specified. However, in most cases the time varying covariate is measured

only intermittently. Since time varying observations are only available at the time of

measurements, a simple and frequently used estimator is to impute the last observed

covariate value (Therneau et al., 2017) as discussed in section 3.1. Other methods of

modelling a time varying covariate discussed in this chapter are two stage approaches as

discussed in section 3.2 and joint models as discussed in section 3.3.
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3.1 Last observation carried forward

Suppose the varying covariate yi(t) takes the value yil within a given time interval (til, ti(l+1))

at time points l = 0, ...., (ni − 1). The contribution of the ith individual within a given

time interval (til, ti(l+1)) is given by (Klein and Moeschberger, 2003)

f(ti(l+1)|yil)δilS(ti(l+1)|yil)1−δil/S(til|yil).

i.e for an individual to contribute to the likelihood within the interval (til, ti(l+1)) an

individual needs to have survived until time til.

Therefore the full likelihood is given by

L =
n∏
i=1

ni−1∏
l=0

f(ti(l+1)|yil)δilS(ti(l+1)|yil)1−δil

S(til|yil, )

=
n∏
i=1

ni−1∏
l=0

h(ti(l+1)|yil)δilS(ti(l+1)|yil)δilS(ti(l+1)|yil)1−δil

S(til|yil)

=
n∏
i=1

ni−1∏
l=0

h(ti(l+1)|yil)δilS(ti(l+1)|yil)
S(til|yil)

=
n∏
i=1

ni−1∏
l=0

h(ti(l+1)|yil)δil exp(−H(ti(l+1)|yil))
exp(−H(til|yil))

=
n∏
i=1

ni−1∏
l=0

h(ti(l+1)|yil)δil exp(−[H(ti(l+1)|yil)−H(til|yil)]) (3.1)

=
n∏
i=1

ni−1∏
l=0

[h0(ti(l+1)) exp (αyil)]δil exp(−[H0(ti(l+1))−H0(til)]eαyil) (3.2)

The log-likelihood function is

`(ξ, α) =
n∑
i=1

ni−1∑
l=0

δil
[
αyil + log h0(ti(l+1))

]
−

ni∑
i=1

ni−1∑
l=0

[H0(ti(l+1))−H0(til)] exp(αyil) (3.3)

The maximum likelihood estimates of ξ,γ are obtained by maximizing the loglikelihood

function given in equation (3.3).

This method does not account for measurement error in the covariate value. This causes

the estimated relative risk parameter to be biased toward the null (i.e underestimated),

with the extent of this bias directly proportional to the amount of measurement error in

the observed covariate (Prentice, 1982; Raboud et al., 1993).



CHAPTER 3. MODELLING TIME VARYING COVARIATES 28

This carrying forward of the longitudinal measurements between examination times and

assuming that a longitudinal covariate does not change from the time of last measurement

is a further limitation of this model, especially if measurements are sparse or taken a con-

siderable time before failure. The nearest preceding marker value may not be biologically

plausible if the covariates change a lot over time, such as CD4 counts for HIV patients.

To weaken the assumption of longitudinal covariate remaining constant between measure-

ments two stage approach methods were introduced and will be described in next section

(Section 3.2).

3.2 A two stage approach

A two-stage or regression calibration approach models the time-varying covariate process

using a linear mixed model in the first stage to obtain the MLE of the fixed-effect pa-

rameters and best linear unbiased predictors (BLUPs) of the random effects. Then in a

second stage, plugs the predicted covariate into the survival model (Bycott and Taylor,

1998; Dafni and Tsiatis, 1998; Self and Pawitan, 1992; Sweeting and Thompson, 2011;

Tsiatis et al., 1995; Ye et al., 2008)

Since the predicted covariate value can be evaluated continuously throughout time, the

data set can be split into fine time-intervals, so that the assumption of constant longi-

tudinal measurements between examination times is weakened (Sweeting and Thompson,

2011). Note that we split data into fine-time intervals when we consider a parametric

baseline hazard but for a Cox model, the value of the covariate is only required at the

event times, and thus there is no need to split the data further.

We consider two different two regression calibration methods: risk-set regression calibra-

tion and the ordinary regression calibration.

3.2.1 Risk set regression calibration (RRC)

Stage I

Multiple mixed-effects models are fit to the dataset, one for each of the unique event times

in the dataset. For an event time Tr only individuals still at risk i.e {i : Ti ≥ Tr} are
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included in estimation in the mixed model, and only the covariate measurements of these

individuals taken before the event time are used Yi(Tr) = {Yi(til) : til < Tr}. The predicted

value of the covariate for individuals still at risk at event time Tr is then computed as

follows: Y ∗i (Tr) = E{Yi(Tr)|Yi(til) : til < Tr}, β̂0, β̂1, σ̂
2
b}

3.2.1.1 Linear mixed model specification

In this thesis we consider the following random intercept model

yi(t | bi) = β0 + bi + β1t+ εi(t)

bi ∼ N(0, σ2
b ), where bi individual specific random effect

εi ∼ N(0, σ2
ε), and εi ⊥ εi′ , ∀i 6= i′.

β0, β1 : the regression coefficients.They represent the population intercept and slope respectively.

yil ⊥ yil′ |bi

yi ⊥ yi′ ∀i 6= i′

bi and εi are independent of each other

The random effects in the linear mixed model the correlation from repeated measures of

the outcome variable across time.

Figure 3.1: The points represent hypothetical longitudinal responses of two subjects in a
longitudinal study. The dashed lines represent the subject-specific longitudinal evolutions.
The solid line represents the population-averaged evolution.



CHAPTER 3. MODELLING TIME VARYING COVARIATES 30

The population mean trajectory is represented by β0 + β1t. The random effects bi are

subject-specific deviations with respect to the population intercept.

This is a two-level linear mixed model and could be represented in matrix form as follows:

Y = Xβ+Zb+ ε

where X is the m × 2 design matrix for the fixed effects and Z is m × 1 design matrix

associated to the random effects (bi); m is the total number of repeated measurements

for all subjects. Let Σb = var(b) = σ2
b1n, var(ε) = σ2

ε1m and β =
[
β0 β1

]
. 1m is the

identity matrix.

3.2.1.2 Linear Mixed Model Estimation

In this model, the fixed effects are directly estimated from the data. In contrast, the ran-

dom variables bi are not estimated directly, but rather the parameter of variance σ2
b . The

complete set of parameters to estimate in this model are Φ =
(
β0, β1, σ

2
b , σ

2
ε

)
. Maximum

likelihood estimates of Φ are obtained by maximizing the log-likelihood function.

`(Φ) =
n∑
i=1

log
{∫

b
f(yi | bi)f(bi)dbi

}
, (3.4)

where

f{yil | bi} = 1√
2πσ2

ε

exp
(
− [yil − (β0 + bi + β1til)]2

2σ2
ε

)
f(yi | bi) =

ni∏
l=1

f(yil | bi) = (
√

2πσ2
ε)−ni/2 exp

(
−
∑ni
l=1[yil − (β0 + bi + β1til)]2

2σ2
ε

)
f(bi) = 1√

2πσ2
b

exp
(
− [bi]2

2σ2
b

)

Estimation of Φ is done iteratively by splitting into the parameters of the fixed effect

(β0, β1), and the variance parameters (σ2
b , σ

2
ε).

A consequence of the normal distribution and independence assumptions of the random

effects and the measurement error vectors is that, the m response vectors are conditionally

independent and normally distributed given the random effects i.e Y ∼ N
(
Xβ,ZΣbZ

> + σ2
ε1m

)
while Y |b ∼ N

(
Xβ+Zb, σ2

ε1m
)
.
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Let Σy = var(Y ) = ZΣbZ
> + σ2

ε1n.

If Σy is assumed to be known, then the maximum likelihood estimator of the fixed-effects

β is

β̂ =
(
X>Σ−1

y X
)−1

X>Σ−1
y Y (3.5)

When Σy is not known then Σy in Equation (3.5) is replaced with Σ̂y. To obtain this

estimate Σ̂y, we employ the maximum likelihood method, and maximize the log-likelihood

`(σ2
b , σ

2
ε) for a given value of β. An estimate of the variance parameters can be obtained

by replacing β̂ in the log-likelihood function given in Equation (3.4) and maximizing

`(σ2
b , σ

2
ε |β = β̂) then iterative procedures like Newton–Raphson can be used to obtain

(σ2
b , σ

2
ε) estimates.

By asymptotic maximum likelihood theory and under certain regularity conditions the

maximum likelihood estimate of Σy will be asymptotically unbiased. However, in cases

of small samples, the maximum likelihood estimate of Σy will be biased because it does

not take into account the fact that β is estimated from the data as well. To address this

problem the theory of restricted maximum likelihood (REML) estimation was developed

(Harville, 1977; Patterson and Thompson, 1971). The main idea behind REML estimation

is to separate the part of the data used in the estimation of Σy from the part used for

the estimation of β. Rather than maximizing the log-likelihood given in Equation (3.5),

REML maximizes the modified log-likelihood function given by

`REML(σ2
b , σ

2
ε) = `(σ2

b , σ
2
ε |β = β̂)− 1

2 log |X>Σ−1
y X| (3.6)

where |X>Σ−1
y X| denotes the determinant of the square matrix X>Σ−1

y X.

The estimate Σ̂y obtained by maximizing `REML(σ2
b , σ

2
ε) corrects for the fact that β has

also been estimated.

The random effects can be predicted by obtaining the expectation of the posterior distri-

bution of the random effects given the observed data (Fitzmaurice et al., 2012; Laird and

Ware, 1982).

E(b|Y ) = E(b) + cov(b;Y ) var(Y )−1[Y − EY ]

= 0 + ΣbZ
>Σy

−1[Y −Xβ] (3.7)
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The parameters β and Σy are replaced by their estimators in Equation (3.7) to obtain

the empirical Bayes estimator, b̂ = ΣbZ
>Σ̂−1

y [Y −Xβ̂]

Stage II

Let Yi(t) = Y ∗i (t)+εi(t). From the non-differential measurement error assumption (Carroll

et al., 2006) we have hi (t|Y ∗i ,Yi) = hi (t|Y ∗i ). Non-differential measurement error is an

error that is independent of outcome status (Fosgate, 2006).

The hazard at time t, based on the history of the observed covariate measurements Yi
upto time t can be expressed as the conditional expectation as follows (Prentice, 1982)

hi (t|Yi) = E{hi (t|Y ∗i ,Yi, ti ≥ t)}

= E{hi (t|Y ∗i , ti ≥ t)} from the nondifferential measurement error assumption

As a result the induced hazard function based on observed covariate measurements is given

by:

hi (t|Yi) = h0(t)E(exp[αY ∗i (t)]|Yi, ti ≥ t) (3.8)

Yu et al. (2018) and Dafni and Tsiatis (1998) propose to approximate this expectation by a

first-order approximation i.e the regression calibration approximation. This approximation

holds when predicted values are less variable.

Let g(Y ) = E(Y ∗i (t)|Yi, ti ≥ t) and EY = µ then by a first-order approximation we have

g(Y ) ≈ g(µ) + (Y − µ)g′(µ) (3.9)

E[g(Y )] = E[g(µ)] + E(Y − µ)g′(µ) but E(Y − µ)g′(µ) = 0 since g′(µ) is a constant

E[g(Y )] = g(µ)

Therefore

E(exp[αY ∗i (t)]|Yi, ti ≥ t) ≈ exp[αE(Yi(t)|Yi, ti ≥ t)] (3.10)

Replacing this approximation (Equation (3.10)) into Equation (3.8) yields;

hi (t|Yi) = h0(t)E{exp[αY ∗i (t)]|Yi, ti ≥ t}

≈ h0(t) exp(αE[Yi(t)|Yi, ti ≥ t]) (3.11)

= h0(t) exp(αY ∗i (t))
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Note that Y ∗i (t) = E[Yi(t)|Yi, ti ≥ t] is what was obtained in stage I.

The last observation carried forward full likelihood approach (equation (3.2) of section

3.1) is again used but now with covariate predictions i.e.

L(ξ, α) =
n∏
i=1

ni−1∏
l=0

[h0(ti(l+1)) exp (αy∗il)]δil exp{−[H0(ti(l+1))−H0(til)] exp(αy∗il)}

The log-likelihood function is then

`(ξ, α) =
n∑
i=1

ni−1∑
l=0

δil
[
αy∗il + log h0(ti(l+1))

]
−

n∑
i=1

ni−1∑
l=0

[H0(ti(l+1))−H0(til)] exp(αy∗il) (3.12)

The maximum likelihood estimates of ξ,γ are estimated by maximizing the loglikelihood

function given in equation (3.12).

3.2.2 Ordinary regression calibration (ORC)

Ordinary regression calibration as proposed by Tsiatis et al. (1995) fits a single mixed-

effects model using all individuals and data in the first stage. The predicted value of the co-

variate at any time t for individuals are computed as follows: Y ∗i (t) = E{Yi(t)|Yi(til), β̂0, β̂1, σ̂
2
b , σ̂

2
u}

Stage II is obtained similarly to the RRC procedure discussed in section 3.2.1.

In the RRC procedure, Y ∗i (t) are obtained through extrapolation in time in each risk set,

whereas in the ORC procedure interpolation is used to predict these covariate values for

most of the time points (i.e. ORC procedure uses future data to calculate Y ∗i (t) for each

t). According to Ye et al. (2008) when withdrawal from the risk set is related to the

covariate, subjects at higher risk tend to have fewer covariate measurements. When the

failure of the event strongly depends on the longitudinal covariate of using the ORC can be

biased due to the informative dropout, and the corresponding Y ∗i (t) would be biased. In

contrast, the RRC estimator can accommodate this change of risk set over time, and the

best linear unbiased predictors of the random effects estimates using the RRC procedure

tend to have less bias than those in the ORC procedure. However, in a finite sample

situation, the risk-set regression calibration procedure is subject to a decreasing number

of subjects in risk set over time. Hence for large t, RRC-predicted values may be more

variable thus may have a large error.
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The two stage approaches do not incorporate the uncertainty of estimation in the first stage

into the second stage, possibly leading to under-estimation of the standard errors (Sweeting

and Thompson, 2011). Furthermore, the form of the best linear unbiased predictors of

the random effects in stage I depends critically on the validity of normally distributed

random effects and error terms, an assumption which becomes less satisfactory as time

increases and subjects suffer informative drop-out (Tsiatis and Davidian, 2004). Two stage

approaches have less bias as compared to last observation carried forward but may still

have biased estimators when the measurement error is large (Tsiatis and Davidian, 2001).

3.3 Joint model approach

To circumvent the limitation of two stage approaches not incorporating the uncertainty of

estimation of the first stage into the second stage, a joint model was introduced. In general

the joint model consists of a survival submodel and a longitudinal submodel (Crowther

et al., 2013; Henderson et al., 2000; Rizopoulos, 2008; Wulfsohn and Tsiatis, 1997). Let

yil denote the value of the lth repeated measure of the longitudinal outcome for subject i

taken at time point til, i = 1, . . . , ni, l = 1, . . . , n. Hence the vector of observed repeated

measures of the longitudinal outcome for subject i consists of yi = {yil; l = 1, . . . , ni}. Let

the longitudinal model have random intercepts only and assume a link function of current

value i.e β0 + bi + β1t. Considered in this chapter and throughout the thesis is a random

intercept model. Let bi be the individual specific random effect.

The standard joint model for a longitudinal and a time-to-event outcome is as follows:

yi(t | bi)
(Longitudinal)

= β0 + bi + β1t+ εi(t) (3.13)

hi(t | bi)
(Survival)

= h0(t) exp{α(β0 + bi + β1t)} (3.14)

We assume that measurement error and random effects are independent, εi(t) ⊥ bi, and

that the repeated measures and the time-to-event outcomes are conditionally independent

given the random effects, yi ⊥ {Ti, δi} | bi.

The following need to be estimated in the joint model formulation:

Φ =
(
ξ,β, α, σ2

ε , σ
2
b

)
.
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where

ξ : the baseline hazard parameters

β : Linear mixed model regression coefficients

α : the regression coefficient for association of time-varying covariate and hazard model

σ2
ε : is a constant variance for the error term.

σ2
b : is variance of the random effects.

Suppose that data, D = {ti, δi,yi; i = 1, . . . , n}, of both longitudinal and time-to-event

outcomes are collected on subjects i = 1, . . . , n. Maximum likelihood estimates of Φ

are obtained by maximizing the log-likelihood function of the joint distribution of the

longitudinal and the time-to-event outcomes, {yi, ti, δi}:

`(Φ|D) =
n∑
i=1

log
(∫

b
f(yi | bi)f(ti, δi | bi)f(bi)dbi

)
, where (3.15)

f(yi | bi) =
ni∏
l=1

f(yil | bi) = (
√

2πσ2
ε)−ni/2 exp

(
−
∑ni
l=1[yil − (β0 + bi + β1til)]2

2σ2
ε

)
f(bi) = 1√

2πσ2
b

exp
(
− [bi]2

2σ2
b

)
f(ti, δi | bi) = [hi (ti | Yi(ti))]δi Si (ti | Yi(ti)) ,

hi (ti | Yi) = h0(ti) exp{α(β0 + bi + β1ti)}

Si (ti | Yi) =
∫ ti

0
hi (t | Yi) dt.

h0(t) = λρtρ−1

The hazard rate hi (ti | Yi) depends on the current covariate value β0 + bi + β1ti whereas

the survival function Si (ti | Yi) depends on knowing the whole trajectory of the longitudi-

nal outcome up to time ti. Numerical methods can be used to maximize this loglikelihood

function e.g by Newton-Raphson procedure. Note that the integrals of the random ef-

fect require numerical methods (with the Gauss-Hermite quadrature technique the most

commonly used).

A joint model is appropriate when interest lies in association between a time varying

covariate measured with error in a survival analysis. The main limitation of this approach

is that it is computationally intensive (Furgal et al., 2019).



Chapter 4

TwinsUK data

4.1 Data processing

The TwinsUK study is a longitudinal cohort of both monozygotic and dizygotic twins for

research on multiple diseases and conditions. The cohort was first set up 1992 to investigate

the incidence of osteoporosis and other rheumatologic diseases in monozygotic twins. The

cohort has twins aged between eighteen and one hundred. The longitudinal nature of

TwinsUK makes it an ideal cohort to study the process of ageing and age related diseases.

The data can be obtained through https://twinsuk.ac.uk and is predominantly female.

Ageing is a complex process of accumulation of molecular, cellular, and organ damage,

leading to loss of function and increased vulnerability to disease. Ageing leads to increased

bone loss leading to low bone density and increasing the probability of developing frac-

tures. The increasing rate of fracture occurrence in the elderly population has become a

major public health problem worldwide and has resulted to increased morbidity, decreased

quality of life, increased risks of dependence in daily living activities, and increased health

care budgets (Marques et al., 2015; Wiklund et al., 2016). Furthermore, in addition to

losing their independent mobility, fracture patients may be subject to a lot of psycholog-

ical, physical, economic, and social stress during the perioperative period and may end

up developing other complications such as deep venous thrombosis, pulmonary embolus,

wound problem, and urinary retention (McLaughlin et al., 2006). It is estimated that the

annual hip fracture incidence will be at least 4.5 million by the year 2050 from just 1.6

million in the year 2000 primarily as a result of an increased ageing population (Gullberg

36
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et al., 1997).

Our event of interest from this cohort is time to fracture for elderly twin pairs (aged 50

and above). The choice of age 50 and above is because a fracture is more likely to be due

to ageing/osteoporosis and not other factors such as an accident. Previous studies that

have considered fractures above age 50 include Agrawal and Sharma (2013); Baddoura

et al. (2001); Lee and Khir (2007); Siris et al. (2006); Svedbom et al. (2014).

We used R for data processing and the code is available in Github (Data Processing,

Muli (2022)). The raw data has a total of 17,108 individuals. We will consider only the

dizygotic twins/singletons in this dissertation. We had a total of 50 variables (responses

based on questionnaires) in different excel sheets with different visit dates that provided

information on fractures.

The next step was to follow up each individual across the 50 variables to obtain their first

visit and last visit dates and the age at which fracture occurred during the study. Here,

the first visit was taken to be the first year of response after a twin turned 50 years of

age. We let age-at-entry to study be defined by the age at the first visit. The age at end

of study is defined as the age at the time of the occurrence of a fracture or the last visit

after 50 years of age, whichever is earlier. If an individual had not reported any fracture

at the last visit, the individual’s time is considered censored at that last visit. We ignored

any fracture below age 50. For individuals with multiple fractures above 50, we reported

the first fracture as our age at fracture and ignored any subsequent fractures. We omit

twins who were aged below 50 at the time of last visit.

Based on this criteria of being included in the study the inclusion/exclusion criteria is as

show in the flowchart in Figure 4.1.

https://github.com/Annah92/Data-Processing
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Figure 4.1: Flowchart for inclusion in study.

We consider female only because we have few males. 1497 is our sample size before

inclusion of covariates. Note that only the year of birth (without day/month) and the age

at fracture in years was provided and so the Kaplan Meier plot events occur at the end of

the year.

4.2 Covariates

4.2.1 Time independent covariates

The most important risk factor for a fracture is bone mineral density (BMD) as demon-

strated in multiple epidemiologic studies (Cummings et al., 1993; Group and O’Neill, 2002;

Marshall et al., 1996; Miller et al., 2002). For our cohort, we have access to BMD measured



CHAPTER 4. TWINSUK DATA 39

through dual-energy X-ray absorptiometry (DEXA). We shall therefore consider BMD as

a covariate in this study. In particular, we use hip BMD because hip fractures has widely

been studied in literature (Farzi et al., 2022; Marshall et al., 1996; Miller et al., 2002) .

We assume the covariate value is missing at random for 112 participants who lack any

BMD measurements taken after 50 years and omit them from study.

The other covariate we shall consider is health status which will be based on glycans.

Glycans are one of the four primary components of the cell (alongside DNA, proteins

and lipids). Glycans are important for maintenance of tissue structure, porosity, and in-

tegrity. We have access to glycans measured with Ultra-Performance Liquid Chromatog-

raphy (UPLC) technology. Accuracy of this high-throughput glycomic methods is highly

affected by complicated experimental procedure. The UPLC glycans were globally nor-

malized to account for multiplicative error, log transformed, batch/plate normalised by

ComBat based on methodology given in Menni et al. (2018). Normalization helps to make

the measurements comparable. Since normalized glycans are right skewed, log transfor-

mation is performed on the data before batch correction is done. 303 participants lack

glycan measurements taken after 50 years and are thus omitted. Therefore while consid-

ering BMD and health status as covariates the pre-processed data contains 1082 female

dizygotic participants (411 twin pairs and 260 singletons). For this we let baseline BMD

and glycomics be the first individual specific BMD measurements taken after age of 50.

Glycans have been shown to change with age, so can be used to predict biological age

(Dall’Olio et al., 2013; Krištić et al., 2014; Vanhooren et al., 2007, 2010). Glycan age

is a function of three immunoglobulin G (IgG) glycans (Krištić et al., 2014). The three

UPLC glycans are a nongalactosylated (GP6) and two digalactosylated glycans (GP14

and GP15). We will use these UPLC glycans to compute Glycan age.

We do not consider glycans directly as a predictor. For the purpose of our analysis, we

consider the difference between the glycan age (as biological age) and the chronological

age. We term this as the frailty index (not to be confused with frailties as random effects

in survival models). More details on frailty index are in Section 5.2. This frailty index is

what will represent an individuals health status. A positive frailty index indicates that

the individual experiences faster biological ageing than their chronological age (i.e. they

are unhealthy) and the other way around with a negative frailty index.
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To compute glycan age for our dataset, we fitted a linear model with age as the dependent

variable and GP6,GP62, GP14 and GP15 as fixed independent variables (Krištić et al.,

2014). The following formula was obtained

Glycan age = 59.20 + 2.10×GP6− 0.09×GP62 − 0.94×GP14− 1.12×GP15. (4.1)

Some individuals had multiple fractures after entry in the study. About 18% (194 individ-

uals) experienced a fracture within the study period of 20 years. Figure 4.2 below shows

there is decrease in survival probabilities with increasing time to follow up. Therefore,

there is increase in risk of fracture with increasing time to follow up.

Figure 4.2: Kaplan Meier for fractures using time to follow up as time scale.

4.2.2 Time varying covariate

Since we have multiple BMD observations for subjects as shown in Table 4.1 we would

like to use this data to model BMD as a time-varying covariate. Also, based on Figure

4.3 BMD appears to change slightly with age. Let BMD at entry to be individual specific

BMD measurements taken at entry while for individuals lacking BMD at entry age we

carry forward the previous BMD taken after 50 years to be the BMD at entry.

We omit 357 participants who lack BMD measurement to carry forward to be BMD at

entry (they have no BMD measurement between 50 and age at entry to study). After

data processing this leaves us with 1028 female dizygotic participants ( 262 singletons and
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383 twin pairs). This will be the dataset used to address question 2 of interest in Section

4.4. Table 4.1 below shows number of BMD measurements for the 1028 individuals when

they are elderly. Figure 4.5 shows there is increase in risk of fracture with increasing age.

Different subjects join the study at different entry ages as shown in Figure 4.4.

Table 4.1: BMD measured on different visits (from age 50 to end of study).

No. of BMD Measurement visits Number of people
1 332
2 367
3 219
4 102
5 8

Figure 4.3: Spaghetti plot for 50 participants (a subset of the data) using BMD measure-
ments taken after age 50.

Figure 4.4: The following histogram shows the distribution of age at entry for the 1028
subjects.
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Figure 4.5: Kaplan Meier for fractures using age as time scale.

4.3 Time scale

Possible approaches for the time scale include time-to-follow and age at time of fracture.

Time-to-follow up is defined as time a participant is in study i.e difference between age at

entry and age at the end of study. When time-to-follow up is used as the time scale, age at

entry is included as a covariate. The follow-up time approach makes the assumption that

the relative change in rate of experiencing event is the same for a single unit increase in

age in any follow-up interval. This may be unrealistic sometimes; for instance in chronic

diseases the effect of age is often absent in the young and strong in the old (Cologne

et al., 2012). Using time to follow up brings a challenge in interpretation. Age is a

commonly used time scale in ageing studies that are analysed using the proportional

hazards model (Cologne et al., 2012). We therefore consider to use age in order to be have

easier comparison with other studies. When age is used as time scale in shared frailty

model we need to take into account the delayed entry age as participants do not join at

origin but rather at different ages. More details on delayed entry are in Chapter 7.

4.4 Questions of interest

(1) To estimate the survival probabilities for the occurrence of a fracture in the next

time period given a participant’s BMD and health status (i.e frailty index) using time to
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follow-up as underlying time scale.

(2) To estimate the effect of BMD as a time dependent covariate on fracture incidence.

Since we have multiple BMD observations for subjects we would like to use this data to

construct a model to fit BMD as a time-varying covariate. Using BMD as time-varying

covariate brings a challenge as the covariate measurements are taken on a few time-points

within the study and not necessarily at event/censoring time-point. The question is there-

fore what to fill in for a persons covariate value at event ages. We will use age at time of

event as time scale (instead of time to follow-up as time-scale) for better interpretation

of the results. Using age as time scale means that an individual is only included in the

study if their age at event/censoring is greater than age at which they join the study. This

leads to the presence of left-truncated survival times due to delayed entry. If not carefully

modelled, this will lead to selection bias, since more frail individuals tend to experience the

event at younger age and thus less likely to be included in the study (Rodríguez-Girondo

et al., 2018). For this case the frailty distribution needs to be updated with a new defini-

tion of the frailty distribution among survivors at the times of delayed entry. This will be

the first study to incorporate time varying covariates and delayed entry in shared frailty

models while using age as time-scale.

Note that the sample sizes considered in the above research questions differs. In the first

question of interest two covariates are included in the study (i.e. BMD and Glycans) while

in the second question only one covariate is considered(BMD).



Chapter 5

Analysis of the TwinsUK data

5.1 Introduction

This chapter is motivated by the the TwinsUK cohort described in Chapter 4. The cohort

provides details on fracture incidence, BMD and glycans measurements. To model the

effect of covariates on the hazards of an event Cox proportional hazard model is often

used. For the Cox proportional hazard model, the effect of a covariate on the outcome is

reported in a hazard rate. However, hazard rates are hard to interpret (Hernán, 2010). For

an individual with a specific covariate profile the probability of the occurrence of the event

in the next time period is more easily interpretable. In this chapter, we are specifically

interested in estimating the probability of experiencing a fracture in the next five or ten

years, given a participants bone mineral density (BMD) and health status (represented by

frailty index and obtained from difference between glycan age and calendar age).

For a frailty model, the survival probability given a covariate profile is a function of frailty

variance, the baseline hazard and the parameters modelling the effect of the covariates.

Here, the frailty represents unobservable random effects which are shared by the twins

and influence fracture incidence. In this chapter to model the fracture incidences, we shall

consider proportional hazard models with gamma distributed random effects. We use the

gamma frailty distribution in our analysis because of its mathematical convenience. Given

a gamma frailty distribution the marginal survival probability exists in closed form. The

marginal survival probability will be the probability of no fracture up to time t given the

covariates. To compute the above marginal survival probability we need to specify the

44
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baseline hazard. We will consider a parametric and flexible baseline hazard as will be

described in section 5.4. Because both baseline hazard and frailty act multiplicatively on

the hazard, we suggest that a flexible baseline may compensate for a misspecification in

the frailty distribution in case a wrong frailty distribution is used.

To address the first question of interest described in Section 4.4 we consider BMD and

health status as time independent risk factors for a fracture while using time to follow-up

time-scale.

5.2 Materials

From TwinsUK we have follow up data from 932 females (313 twin pairs and 306 singletons)

older than 50 years of age. The data was after removing those without glycan information

and any BMDmeasurement taken after they were age 50. Note that this is slightly different

dataset to what was described in Section 4.2.1 due some differences during data pre-

processing (Section 4.2.1 has 150 more individuals). I used excel previously in performing

the pre-processing which brings about challenge of reproducibility (some of the steps were

manual while others were using a command). We defined follow up time as age at entry

to age at the end of study. The entry age was defined as the age at the first visit after a

twin turned 50 years of age. The average age at entry was 57.21 with sd 5.54. The age

at end of study was defined as the age at the time of the occurrence of a fracture or the

last visit after 50 years of age, whichever was first. If an individual had not reported any

fracture at the last visit, the individual was censored at that last visit. For individuals

with multiple fractures above 50, we reported the follow up time to the first fracture and

ignored any subsequent fractures. About 16% (150 individuals) experienced a fracture

within the study period of 20 years. We will model twins only data and both singletons

with twins. We consider age at entry, BMD and frailty index as covariates. The data are

described in table 5.1.

In addition to modelling BMD as a continuous variable, we also considered it as a cat-

egorical variable (low BMD, medium BMD, and high BMD) to enable estimation of the

survival probability for different BMD categories. Here, low BMD was defined as a BMD

value below the 15th percentile, medium BMD was defined as a BMD value between the
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15th and 85th percentile, and high BMD was defined as a BMD value above the 85th

percentile. The 15 percentile of our data was approximately equal to the 15th percentile

of Finkelstein et al. (2008) who analysed BMD of a multiethnic cohort of menopausal

women in America. Summary of BMD categories is given in Table 5.2. The measurement

times varied across the twins. In Figure 5.1 the time between fracture occurrence or end

of follow and BMD measurement is depicted. Twenty-two subjects appeared to have their

BMD measured after the censoring/fracture age. For censored subjects, this means that

the update on the occurrence of a fracture was prior to the BMD measurement. Our model

assumes that the BMD does not change over the studied follow up time (mean=0.92, min=

0.55 max=1.38). To investigate this assumption, we used data on 822 individuals who had

two BMD measurements. It appeared that BMD varies slightly with age (see Figure 5.3).

Analogously to BMD also the time between fracture occurrence or end of study and the

first glycan measurements after entry differed between subjects (see Figure 5.2). For

67 subjects the glycans were measured after the censoring/fracture age. Analogously to

BMD, our models assume that the frailty index which is the difference between glycan and

calendar age will not change over the considered follow up time. To verify this assumption

we used data of 40 subjects with two glycan measurements. It appeared that the frailty

index only slightly changes with age (see Figure 5.4).

Table 5.1: Descriptives of age at entry (years), glycanage (years), and BMD (g/cm2).

Covariate N Mean ± Std. deviation Min Max
Glycanage 932 60.42± 2.85 50.49 68.51
Frailty index 932 0.00± 6.00 −20.28 15.89
BMD 932 0.92± 0.12 0.55 1.38
Low BMD 140(15%) 0.75± 0.05 0.55 0.80
Medium BMD 652(70%) 0.92± 0.07 0.80 1.06
High BMD 140(15%) 1.12± 0.06 1.06 1.38
Age at entry 932 57.21± 5.54 50 80
Duration of follow up 932 9.33± 5.32 1 20
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Figure 5.1: The time between fracture occurance and BMD measurements

Figure 5.2: The time between fracture occurrence and glycan measurements.

Figure 5.3: Scatter plot BMD at different visits. The straight line represents the identity
line.

Figure 5.4: Scatter plot of glycan age − Calendar age at different visits. The straight line
represents the identity line.
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We also arbitrarily categorised frailty index into unhealthy, healthy, and very healthy

subgroups in order to fit an interaction between BMD and frailty index. The unhealthy

group comprises of individuals with higher glycan age than their corresponding calendar

age by more than 2 years (i.e frailty index > 2). For the healthy group, the difference

between glycan age and calendar age is 2 years or below (i.e −2 ≤ frailty index ≤ 2). The

very healthy group includes individuals with lower glycan age than calendar age by more

than 2 years (i.e frailty index < −2). Summary of frailty index categories is given in Table

5.3.

Number of fractures in different categories is as follows:

Table 5.2: Categorized by BMD

Category No. of individuals No. of observed fractures % of fracture
LowBMD 92 26 0.28
MediumBMD 428 66 0.15
HighBMD 92 10 0.11

Table 5.3: Categorized by frailty index

Category No. of individuals No. of observed fractures % of fracture
Very healthy 203 45 0.22
Healthy 152 28 0.18
Unhealthy 257 29 0.11
Total 612 102 0.17

Table 5.4: Categorized by health status interaction with BMD

LowBMD MediumBMD HighBMD
Very healthy No. of people 43 134 26

No. of observed fractures 14 24 7
% of fractures 0.33 0.18 0.27

Healthy No. of people 20 107 25
No. of observed fractures 6 20 2
% of fractures 0.30 0.19 0.08

Unhealthy No. of people 29 187 41
No. of observed fractures 6 22 1
% of fractures 0.21 0.12 0.02
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5.3 Shared frailty model

Our goal is to estimate survival probabilities of fracture given covariates such as BMD

and frailty index from twin data. To achieve this we use a shared frailty model. Suppose

that there are G groups with ni individuals in the ith group, i = 1, 2, ..., G. Here, ni = 2

for the case of twin pairs and ni = 1 for the case of singletons. Let Tij be the random

variable representing time to fracture.

The hazard at time t for the jth individual in the ith group is then given by

hij (t|xij , vi) = h0 (t) vi exp (xijβ) .

We consider the gamma distribution to model the frailty in our analysis because of its

mathematical convenience. The marginal loglikelihood function for all the clusters assum-

ing gamma frailty distribution is given in Equation (2.12):

l (ξ, θ, β) =
G∑
i=1

[di log(θ)− log (Γ (1/θ)) + log (Γ (1/θ + di))−

(1
θ

+ di

)
log

1 + θ
ni∑
j=1

H0(t)exijβ
+

ni∑
j=1

δij [xijβ + log (h0(t))]

 .(5.1)
where di = ∑ni

j=1 δij . The parameters of interest ξ, θ,β are estimated by maximizing

Equation 5.1. Given gamma frailty distribution the survival probability exists in closed

form and is given in Equation (2.13) i.e.

Sp(t|xij) = [1 + θH0(t) exp(xijβ)]−1/θ . (5.2)

This will be the probability of no fracture up to time t given the covariates.

5.4 Baseline hazard

To compute the marginal survival probability given in equation (5.2) above we need to

specify the baseline hazard. We will consider both parametric and flexible baseline hazards.

Because both baseline hazard and frailty act multiplicatively on the hazard, we suggest

that a flexible baseline may compensate for a misspecification in the frailty distribution

in case the wrong frailty distribution is chosen.
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5.4.1 Parametric baseline

For this we consider the Weibull baseline hazard with shape parameter ρ and scale pa-

rameter λ:

h0(t) = λρtρ−1. (5.3)

The Weibull baseline hazard is computationally attractive and can take different shapes

depending on the value of the shape parameter ρ. The scale parameter λ of the baseline

hazard acts multiplicatively on the hazard. Because both the frailty variable and λ act

multiplicatively on the hazard, the scale parameter may adjust for frailty misspecification.

For a more flexible alternative to the Weibull, we also consider non-parametric baseline

hazard.

5.4.2 Flexible baseline hazard

We consider two options here: splines as described in section 5.4.2.1 and plug-in estimator

for baseline hazard as described in section 5.4.2.2. Splines is a function defined piecewise

by polynomials. It involves breaking time interval into sections and fit polynomials to

the data in each one of these sections. The plug-in estimator for the cumulative hazard

function is given by a step function with jumps at the ordered observed failure times.

5.4.2.1 Splines

We consider using B-splines for the baseline hazard. B-splines are known to be optimally

stable (Peña, 1997; Perperoglou et al., 2019). Optimal stability implies that the numerical

errors are not amplified when evaluating spline approximations.

h0(t) =
q∑
ι=0

γιBι,κ(t), q ≥ κ− 1. (5.4)

where {γι ι = 0, 1, 2, · · · , q} are the control points. The control points are like the data

used for interpolation; they will determine the shape of the resulting B-spline curve and

the curve may not intersect with these points. κ is the order of the polynomial segments

of the B-spline curve (order κ means that the curve is made up of piecewise polynomial

segments of degree κ − 1). The degree of a polynomial corresponds with the highest
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coefficient that is non-zero. B(.) denotes the B-spline basis functions described by the

order κ and by a non decreasing sequence of real numbers {τι : ι = 0, · · · , q+κ} called the

“knot sequence”. Knots are points along a B-spline curve where the curve sections meet

and connect. The basis functions are described as follows

Bι,1(t) =
{

1 for t ∈ [τι, τι+1),
0 otherwise.

and if κ > 1

Bι,κ(t) = t− τι
τι+κ−1 − τι

Bι,κ−1(t) + τι+κ − t
τι+κ − τι+1

Bι+1,κ−1(t).

The above basis functions equations have the following properties

• Positivity: Bι,κ(t) > 0, for τι < t < τι+k.

• Local support: Bι,κ(t) = 0, for τ0 ≤ t ≤ τι and τι+k ≤ t ≤ τq+κ.

• Partition of unity: ∑q
ι=0Bι,κ(t) = 1, for t ∈ [τ0, τq].

• Continuity: Bι,κ(t) has Cκ−2 continuity at each simple knot. For cubic spline Bι,κ(t)

has C2 continuity. This ensures that curve segments are joined at ends and tangent

vectors point in same direction.

Conditional on the knots, the Bι,κ(t) are known functions of t and the γi are the parameters

to be estimated. When maximizing the likelihood we obtain estimates of (γ0, γ1, · · · , γq)

that maximize the marginal loglikelihod for a chosen number of knots and order of poly-

nomial. In the simulations we chose to arbitrarily use 7 knots and cubic splines. We also

tried fewer knots and more knots and the output was the same.

5.4.2.2 Plug-in estimator

This involves using a plug-in estimator for the cumulative hazard function given by a

step function with jumps at the ordered observed failure times tf , f = 1, ..., F defined by

(Gorfine et al., 2006; Zucker et al., 2008)

∆Ĥ0(tf ) = df∑n
i=1 ψi

(
β, θ, Ĥ0(t), tf − 1

)∑mi
j=1 Yij (tf ) exijβ

(5.5)
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where df is the number of failures at time tf ,

ψi (β, θ,H0(t), t) =
LDi+1

{∑ni
j=1H0(tij)exijβ

}
LDi

{∑ni
j=1H0(tij)exijβ

} . (5.6)

ψi (β, θ,H0(t), t) denotes the conditional expectation of the frailty term, given the observed

data from cluster i and the parameters and Di denotes the number of uncensored obser-

vations of cluster i, L{.} denotes the laplace transform of the term in the curly bracket,

ni represents cluster sizes, xij denotes the covariate, and Yij = I(tij ≥ t) with I denoting

the indicator function.

In summary, the estimation procedure of the loglikelihood approach consists of the follow-

ing steps (Gorfine et al., 2006) :

• Step 1. Use standard Cox regression software to obtain initial estimates of the

regression coefficient β , and set the initial value of frailty variance θ to be its value

under within-cluster independence or under very weak dependency.

• Step 2. Use the current values of β and θ to estimate the cumulative baseline hazard

H0(t) based on the estimation procedure defined by Equation 5.5.

• Step 3. Using the current value of Ĥ0(t), estimate β and θ by maximizing the log

likelihood function.

• Step 4. Iterate between Steps 2 and 3 until convergence.

The above algorithm is implemented in the fitfrail() function of frailtySurv R pack-

age which implements semi-parametric estimators for a variety of frailty distributions

including gamma frailty distribution.

Software implementation

To fit the models we used R. The models with Weibull baseline hazard can be fitted by

using the parfm package. The parfm fits a gamma frailty model using the maximum

marginal likelihood estimation. The frailtySurv package fits semi-parametric shared

gamma frailty model using a non-parametric plug-in estimator for the baseline hazard and

involves optimization of the pseudo full likelihood. For the models where the baselines
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are modelled with splines we developed our own code. The code requires the user to

specify the observed time to event, censoring indicator, cluster identifier, and the matrix

of covariates. It uses the nlminb function to optimize the maximum marginal likelihood.

The nlminb function did not converge in some models resulting into singular convergence.

In these cases, one cannot obtain the corresponding standard error of the variables. To

solve this convergence problem we used a relative tolerance value of rel.tol=1e-6 which

did not yield different results for parameter estimates as compared to the default relative

tolerance value in the nlminb function. For all models, we wrote R functions to estimate

marginal survival probabilities from the output of model fitting functions. This code is

also available on Github (frailtySurvSplines).

5.5 Data analysis

We aim to estimate survival probabilities of fracture using a shared frailty model. As

covariates, we consider, age at entry, BMD and frailty index. Based on Figure 5.3, BMD

on second visit was slightly lower than BMD on first visit. However, for this analysis we

only consider BMD at first visit. We also use frailty index at first visit as it appears not

change over time as shown in Figure 5.4. In particular we model BMD as a continuous

variable (model 1) and as a categorical variable (model 4), frailty index as a continuous

variable (model 2) and as a categorical variable (model 5), both BMD and frailty index

as continuous variables (model 3) and their categories interactions (model 6). We fit the

categories (models 4,5 and 6) in order to make curves of the survival probabilities for

different categories. Age at entry appeared to have no effect in the models and thus we

did not consider it as covariate for fracture. For instance, considering both singletons and

twin pairs data and using Weibull baseline hazard to fit model 1 to include age at entry

as a covariate we have

Variable Estimate(s.e)
Model 1. BMD −2.808(0.715)

Age at entry (θ) 0.013(0.015)
Frailty variance (θ) 0.360(0.395)

We therefore exclude age at entry as covariate and fit all the models using (a) twin pairs

only dataset(parameter estimates given in Table 5.5) and (b) both singletons and twin

https://github.com/imforfuture/frailtySurvSplines
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pairs data (parameter estimates given in Table 5.6).

Table 5.5: Comparison of parameter estimates for the three specifications of baseline
hazard assuming gamma frailty distribution using hip BMD for twin pairs only. The bold
typeface indicates cases where use of plug-in estimator approach had convergence problems
with estimating frailty variance.

Weibull Splines Plug-in
Variable Estimate(s.e) Estimate(s.e) Estimate(s.e)

Model 1. BMD −3.164(0.885) −3.153(0.898) −3.302(1.176)
Frailty variance (θ) 0.285(0.373) 0.321(0.383) 0.310(0.397)

Model 2. frailty index −0.037(0.018) −0.037(0.018) −0.038(0.022)
Frailty variance (θ) 0.395(0.399) 0.448(0.404) 1.000(0.849)

Model 3. BMD −2.936(0.880) −2.930(0.898) −2.948(2.832)
frailty index −0.027(0.017) −0.026(0.017) −0.028(0.025)
Frailty variance (θ) 0.192(0.355) 0.243(0.364) 1.000(1.024)

Model 4. Low BMD 0.265(0.272) 0.283(0.277) 0.313(0.268)
Medium BMD 1 1 1
High BMD −1.024(0.433) −1.004(0.435) −1.015(0.448)
Frailty variance (θ) 0.348(0.400) 0.393(0.413) 0.371(0.452)

Model 5. Unhealthy −0.103(0.272) −0.120(0.284) −0.171(0.313)
Healthy 1 1 1
Very healthy 0.154(0.252) 0.146(0.263) 0.247(0.272)
Frailty variance (θ) 0.486(0.422) 0.532(0.425) 0.467(0.439)

Model 6. Veryhealthy?LowBMD 0.071(0.379) 0.063(0.383) −0.008(0.393)
Unhealthy?LowBMD 0.147(0.491) 0.176(0.495) 0.088(0.467)
Healthy/Medium BMD 1 1 1
Veryhealthy?HighBMD −1.091(0.732) −1.052(0.735) −1.135(0.718)
Unhealthy?HighBMD −1.664(1.017) −1.653(1.019) −1.774(1.051)
Frailty variance (θ) 0.465(0.423) 0.509(0.432) 0.405(0.434)

frailty index = glycan age − calendar age.
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Table 5.6: Comparison of parameter estimates for the different specifications of baseline
hazard assuming gamma frailty distribution using hip BMD for both singletons and twin
pairs. The bold typeface indicates cases where use of plug-in estimator approach had
convergence problems with estimating frailty variance.

Weibull Splines Plug-in
Variable Estimate (s.e) Estimate (s.e) Estimate (s.e)

Model 1. BMD −2.918 (0.726) −2.901 (0.730) −2.927(0.939)
Frailty variance (θ) 0.351 (0.390) 0.320 (0.377) 0.276(0.386)

Model 2. frailty index −0.021 (0.015) −0.021 (0.015) −0.024(0.0166)
Frailty variance (θ) 0.539 (0.438) 0.529 (0.425) 1.000(0.784)

Model 3. BMD −2.816 (0.732) −2.788 (0.737) −2.775(2.107)
frailty index −0.011 (0.014) −0.011 (0.014) −0.014(0.018)
Frailty variance (θ) 0.312 (0.384) 0.300 (0.375) 1.000(0.928)

Model 4. Low BMD 0.339 (0.219) 0.356 (0.221) 0.356(0.217)
Medium BMD 1 1 1
High BMD −0.663 (0.314) −0.637 (0.314) −0.644(0.322)
Frailty variance (θ) 0.402 (0.411) 0.397 (0.404) 0.326(0.424)

Model 5. Unhealthy −0.026(0.227) −0.042(0.234) −0.094(0.251)
Healthy 1 1 1
Very healthy 0.110(0.216) 0.104(0.222) 0.194(0.230)
Frailty variance (θ) 0.599(0.451) 0.586(0.439) 0.506(0.450)

Model 6. Veryhealthy?LowBMD 0.218(0.307) 0.215(0.307) 0.133(0.322)
Unhealthy?LowBMD 0.181(0.394) 0.201(0.394) 0.121(0.356)
Healthy/Medium BMD 1 1 1
Veryhealthy?HighBMD −1.010(0.603) −0.971(0.602) −1.046(0.585)
Unhealthy?HighBMD −0.472(0.474) −0.457(0.474) −0.585(0.488)
Frailty variance (θ) 0.552(0.446) 0.535(0.434) 0.422(0.434)

frailty index = glycan age − calendar age.

In Table 5.6 and Table 5.5, the parameter estimates for the fitted models are given. It

appears that the models with Weibull baseline and the models with non-parametric base-

line hazards yield similar estimates of the parameters and their standard errors. However

is some scenarios, the frailtySurv approach (plug-in baseline hazard) had convergence

problems especially with estimating frailty variance as shown model 2 and model 3 of

Table 5.6 and Table 5.5. In model 1, BMD appears to be significantly associated with

fracture incidence (a covariate effect of −2.918, p−value of < 0.001 for Weibull baseline

considering whole dataset and a covariate effect of −3.164, p−value of < 0.001 for Weibull

baseline considering twin pairs only dataset ). A lower BMD value increases the risk for

a fracture.

In model 2 of Table 5.5, frailty index is significantly associated with fracture incidence

(a covariate effects of −0.037, p−value of 0.04). However, when we consider both twin

pairs and singletons dataset frailty index becomes not significantly associated with fracture
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incidence (a covariate effects of −0.021, p−value of 0.16).

Model 3 of both Table 5.5 and Table 5.6 shows that the parameter representing the effect

of frailty index on fracture incidence is even smaller when controlling for BMD. All of

the categories in model 4, model 5 and model 6 of both Table 5.5 and Table 5.6 are

not significantly associated with fracture incidence with exception of high BMD category.

High BMD effect is −0.663, p−value of 0.03 for model 4 of Table 5.6 and High BMD effect

is −1.024, p−value of 0.02 for model 4 of Table 5.5.

To check the fit of the models, we tested the null hypothesis of proportional hazards

assumption using scaled Schoenfeld residuals Grambsch and Therneau (1994). For all

residuals models the null hypothesis could not be rejected. Models fitted with Weibull

baseline hazard and with flexible baseline hazards yield same results of residuals because

they had same estimates of parameters and their standard errors. Therefore we report

residuals based on Weibull baseline hazard. For residuals of model 3, based on p−values

the test is not statistically significant for both BMD (p−value 0.71) and frailty index

(p−value 0.54) and the global test (p−value 0.86) is also not statistically significant. By

graphical inspection of the scaled Schoenfeld residuals figure 5.5 shows that there is zero

slope with time for both BMD and frailty index as covariates. For residuals of model 4 with

categorical BMD as covariate, based on p−values the test is not statistically significant for

low BMD (p−value 0.45) and high BMD (p−value 0.67) and the global test (p−value 1)

is also not statistically significant. For model 5 with categorical frailty index as covariate,

based on p−values the test is not statistically significant for unhealthy (p−value 0.80)

and very healthy (p−value 0.56) and the global test (p−value 1) is also not statistically

significant. Therefore, we can assume the proportional hazards for all the fitted univariate

and multivariate models.
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Figure 5.5: Graph of the scaled Schoenfeld residuals for model 3 against the time assuming
Weibull baseline hazard for both singletons and twin pairs.

Figure 5.6: Graph of the scaled Schoenfeld residuals for model 4 against the time assuming
Weibull baseline hazard for both singletons and twin pairs.

Figure 5.7: Graph of the scaled Schoenfeld residuals for model 5 against the time assuming
Weibull baseline hazard for both singletons and twin pairs.
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Since in the multivariate models, frailty index is not significant, we proceed with estimating

survival probabilities as function of BMD. To facilitate this computation, we categorize

BMD in three categories.

Figure 5.8: Comparison of the three specifications of baseline hazards in estimation of
survival probabilities for model 4 of Table 5.6 for both singletons and twin pairs.

.
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Figure 5.9: Comparison of the three specifications of baseline hazards in estimation of
survival probabilities for model 4 of Table 5.5 for only twin pairs data.

.

In Figure 5.8 and Figure 5.9, the survival probabilities for subjects entering the study

as function of time is given for the three categories of BMD. Regardless of the BMD

category, the probability of fracture increases with follow up time. Subjects with low

BMD have higher probability of fracture compared to the other groups at any given time.

For instance, in the model with both singletons and twin pairs (Figure 5.8), assuming

a Weibull baseline hazard the survival probability for the low BMD group is about 79%

after 10 years of follow-up, while this probability is 84% for the medium BMD group and

92% for the high BMD group. Note that the curves for the Weibull, splines, and plug-in

baseline hazards are very similar, which suggests that the Weibull hazards fit the data

well.
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5.6 Discussion

We estimated the survival probabilities for the occurance of a fracture in the next time

period given a person’s BMD value from twin data. A proportional hazard model with a

gamma frailty is fitted. To estimate the survival probability we have to specify the baseline

hazard. We considered a Weibull baseline and a non-parametric baseline hazard. BMD

appeared to have a significant effect on fracture risks which is not a new finding as it has

also been shown in literature (Cummings et al., 1993; Group and O’Neill, 2002; Marshall

et al., 1996; Miller et al., 2002). The subjects with low BMD have a higher probability

of fracture followed by the medium BMD group then the high BMD group. We also

consdired the covariate frailty index. This covariate appeared not to have a significant

effect on fracture risks.

In our analysis we considered gamma frailty distribution because it is the most commonly

used distribution. However a miss-specified frailty distribution may result in biased es-

timates of the survival probabilities. Therefore we considered a model with a flexible

baseline hazard as well as a parametric model. Both model gave the same estimates for

the parameters representing the effect of the covariates on the survival and similar survival

probabilities. We therefore conclude that the gamma distributed frailty and the weibull

model probably fits the data well.

In this chapter we used follow up time as time scale. The advantage is that for females

around 50 years this gives the probability of a fracture as function of the number of years

in the future. Alternatively age as time scale could be used. Then survival probabilities

for a fracture in the next five years can be computed for different ages. However by using

age as underlying variable need to take into account delayed entry of the twins as will

be discussed in Chapter 7. This brings a challenge in that the distance to the entry time

varies between subjects, hence the assumption of non changing covariates becomes more

critical.

A shortcoming of our model is that it assumes that the frailty index and BMD do not

change over the studied period. Moreover we assume that the values of these covariates

are not subject to measurement error. Frailty index was not significant probably because

glycan age was estimated from the same dataset which is not correct and also it could be
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frailty index plays a role in later ages while we only have it at baseline here. Since we have

multiple BMD observations for subjects, a model to fit BMD as a time-varying covariate

has been constructed in Chapter 7.

The analysis of twins data motivated us to also investigate if the parametric and non-

parametric baseline hazards will always yield close survival probabilities estimates for

different frailty distributions. This motivates the next chapter which is on investigating

the impact of frailty misspecification on estimation of survival probabilities.

5.7 Conclusion

The parametric and flexible baseline hazards with gamma frailty yield similar results of

parameter estimates and survival probabilities. BMD is a significant risk factor of fracture

incidence whereas frailty index is not for the dataset of both singletons and twin pairs.

Although frailty index is not a significant predictor, a person with a high value of frailty

index (unhealthy person) has a smaller probability of developing a fracture. Also, low

BMD value leads to higher probability of fracture.



Chapter 6

The role of baseline hazard in
frailty misspecification correction

The analysis of twins data in Chapter 5 yielded similar survival probabilities estimates

on fitting gamma frailty model with both parametric and flexible baseline hazards. We

would therefore like to investigate if the parametric and flexible baseline hazards will al-

ways yield similar survival probabilities estimates for different frailty distributions. The

choice of gamma distribution in Chapter 5 was for mathematical convenience since it pro-

duces a more tractable marginal likelihood function for the parameters after integration.

However, in practice, the underlying frailty distribution is unknown and thus the gamma

distributed frailty assumption might be wrong. This leads us to investigate the impact

of using the wrong frailty distribution on estimation of regression coefficients, baseline

hazard parameters and survival probabilities. This question has been partly addressed in

literature.

Omori and Johnson (1993) investigated the influence of ignoring random effects on the

unconditional hazard rate, survival function and other measures of dependence. The con-

clusion is that when the existence of random effects is ignored, the hazard rate will be

underestimated regardless of heterogeneity distribution and the survival times are stochas-

tically larger than expected. The paper only considers ignoring frailty and does not show

the impact of misspecifying the frailty distribution.

Gasparini et al. (2019) investigated (using a simulation based study) the effect of misspec-

ification of baseline hazard and frailty distribution in survival models with shared frailty

62
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on estimation of regression coefficients as a measure of relative risk and on estimation of

loss in life expectancy (the loss in life expectancy is defined as the difference in expectancy

between exposed and non-exposed individuals). Data are generated to follow a gamma

distribution, a log-normal distribution and a mixture normal distribution then a gamma

frailty and log-normal frailty are fitted to the data. When a wrong frailty distribution is

fitted we may obtain biased estimate of loss in life expectancy (largest bias is 16% bias).

Hence misspecifying the frailty distribution may have an effect on estimation of loss in life

expectancy (LLE). This investigation is the closest to our research question. Gasparini

et al. (2019) investigates misspecification effect on estimation of LLE as a measure of abso-

lute risk, our project however will be interested on investigating the effect of misspecifying

the frailty distribution on population survival probabilities as a measure of absolute risk.

Also, the paper does not report on effect of frailty mispecification on hazard parameters.

Note that Gasparini et al. (2019) generates the lognormal and mixture normal frailties

in the linear predictor additive with mean zero but models a gamma distribution which

affects the hazard in a multiplicative manner assuming a mean of one. However the mean

of such a model will not result in an additive zero mean in the linear predictor.

To show the effect of misspecifying frailty distribution on hazard ratio in order to build con-

fidence in using frailty models, Munda and Legrand (2014) investigated robustness prop-

erties of parameters against frailty misspecification via simulations. Munda and Legrand

(2014) generated frailty using inverse Gaussian, lognormal and positive stable then fitted a

semi-parametric gamma distribution. The results show that inferences on the covariate ef-

fect are robust against misspecification of the frailty distribution and are under-estimated

(biased) when the standard Cox model without frailty is assumed. Abiodun (2008); Gas-

parini et al. (2019); Glidden and Vittinghoff (2004); Henderson and Oman (1999) have

also investigated and their finding is that the covariate effect is robust to misspecification

of frailty distribution. Glidden and Vittinghoff (2004) generated data using inverse Gaus-

sian and positive stable frailty distribution then fitted a gamma frailty distribution. If

we compute the relative bias of covariate effect (which the paper didn’t compute as they

reported mean covariate effect), there is a noticeable negative relative bias of about 10%

when the true underlying frailty distribution is positive stable.

Hsu et al. (2007) investigated the effect of frailty distribution misspecification on the
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population averaged hazard function estimators when the marginalized hazard function

obeys the Cox proportional hazard model for the case of case-control family data. The

covariate effect and marginal hazard functions appear to be robust to frailty distribution

misspecification.

Jiang et al. (2021) investigated the impact of misspecification of the frailty distribution

on frailty prediction by simulation studies. The frailty term being predicted here is is the

sum of the fixed effect and the cluster-level random effect. Six frailty distributions namely

compound Poisson, inverse Gaussian, lognormal, positive stable, and the power variance

function were considered. Jiang et al. (2021) restricted their attention onto the gamma

distribution as the assumed frailty distribution, mostly because it is the most commonly

used distribution in practice and its closed form of the marginal likelihood under the Cox

proportional hazard shared frailty models can be obtained. The simulation results in Jiang

et al. (2021) suggest that using a gamma frailty distribution in the Cox proportional hazard

shared frailty models can produce robust frailty prediction even when the gamma frailty

is a misspecified frailty model. However, when the underlying true frailty distribution

is an extreme distribution such the positive stable frailty but a working gamma frailty

distribution is employed, the prediction on frailty terms could be biased.

This chapter is organized as follows: section 6.1 is on simulation study to investigate the

performances of the frailty model when the frailty distribution is misspecified while section

6.2 provides a discussion of the results.

6.1 Simulation Study

6.1.1 Aims

In this section, we perform simulations to investigate the effect of frailty misspecification on

the estimation of regression coefficient β, baseline hazard parameters and the estimation

of survival probability Sp(t). Mutual dependence between lifespans of individuals in a

cluster(twins in this case) is introduced. Data are generated using four frailty distributions;

gamma, truncated gamma, lognormal , and mixture normal distribution. We then fit a

gamma frailty and inverse Gaussian to the simulated data. The data is simulated to mimic

real life scenarios.
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6.1.2 Estimands

The estimands of interest include regression coefficient β, baseline hazard parameters, and

population survival probability Sp(t).

• Regression coefficient β - this is the log-covariate effect conditional on the value of

frailty term.

• Baseline hazard parameters when a parametric form of the baseline hazard is con-

sidered. In this investigation we use the Weibull distribution with scale parameter

λ and shape parameter ρ.

• Population survival probability Sp(t) - this gives an interplay between parameter

estimates of frailty variance, baseline hazard, and regression coefficient and is given

by

Sp(t) :=
∫
v

exp [−vH0(t) exp(xβ)] g(v)dv.

6.1.3 Performance Measures

The misspecification effect on the estimation parameters was measured via the metric of

relative bias, standard deviation and mean square error (MSE). The relative bias is used

to quantify how far the estimator targets the true value on average relative to true value.

Let m represents the number of Monte Carlo trials and θ in this subsection represents any

parameter in general (and not necessarily frailty variance). If θ̂ is the estimator of θ then,

Bias = E
(
θ̂
)
− θ

Relative bias =
E
(
θ̂
)
− θ

θ

MSE = E
(
θ̂ − θ

)2

sd =

√√√√∑m
i=1

(
θ̂i − E

(
θ̂
))2

m− 1
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A negative relative bias implies an underestimation of the estimand whereas a positive

relative bias implies overestimation of the estimand.

6.1.4 Simulation design

We simulate data from the following theoretical model

hij (t) = h0 (t) vi exp (xijβ) j = 1, ..., ni i = 1, ..., G.

If h0(t) > 0 for all t and assuming that the baseline hazard follows a Weibull distribu-

tion with scale parameter λ and shape parameter ρ then simulated survival time can be

generated by (Bender et al., 2005)

T =
(
− log(u)
λvi exp (xijβ)

)1/ρ

(6.1)

where u ∼ U(0, 1) i.e the standard uniform distribution and vi follows a distribution with

mean 1 and variance θ.

The corresponding frailty model with a Weibull baseline hazard is given by

hij (t) = λρtρ−1vi exp (xijβ) j = 1, ..., ni i = 1, ..., G.

Note that when ρ = 1 we have a exponential baseline as a special case. The simulation

here in done for twin pairs (fixed cluster size ni = 2) followed from birth and assuming no

delayed entry.

The shared frailty vi is simulated to follow a distribution with mean 1 and variance θ.

Four frailties distributions are considered in data simulation; gamma, truncated gamma,

lognormal, and mixture normal frailty distribution. Gamma distribution is most com-

monly used frailty distribution (discussed in section 2.2.1). For the lognormal frailty

(discussed in section 2.2.2), we let µ = −θ/2 to achieve E(v) = 1. We consider left trun-

cated gamma distribution (discussed in section 2.2.4) with the following sets of values:

a = 0.4, η1 ≈ 9.565, η2 ≈ 9.625 for θ = 0.1; a = 0.4, η1 ≈ 0.0419, η2 ≈ 0.932 for θ = 0.5;

and a = 0.15, η1 ≈ 1.876 × 10−5, η2 ≈ 0.363 for θ = 2. Note that the choice for a was

arbitrarily and user-defined. For the mixture normal frailty (discussed in Gasparini et al.
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(2019)) we assume g = 2 hidden groups in each cluster (e.g an unmeasured binary co-

variate). Let πg be the proportion in the groups and ∑g πg = 1. The hazard of the jth

individual in cluster i with gth hidden group will be

hij (t) = h0 (t) exp
(
xijβ +

∑
g

πgHg

)
j = 1, ..., ni i = 1, ...,M and g = 1, 2.

where ∑g πgHg follows a mixture normal distribution with mixing probabilities πg and

Hg ∼ N
(
µg, σ

2
g

)
. For this simulation study we let π1 = π2 = 0.5, σ2

1 = σ2
2 = θ (Gasparini

et al., 2019), and µ = {−6θ, log(2 exp(−θ/2)− exp(−6θ))}.

The following settings are fixed in simulation of survival time: a binary covariate x with

P(x = 1) = 0.5, covariate effect β fixed to be 1.5, censoring is assumed to follow U(0, 4),

and the Weibull baseline hazard parameters are fixed to λ = 1 and ρ = 2.

We vary frailty variance θ (θ = 0.1, 0.5 and 2) and number of clusters G (G = 100, 200, 400

and 800) when generating data for every frailty distribution used to generate the data.

The settings for β, θ and G are based on Rodríguez-Girondo et al. (2018) We then fit the

simulated data using both gamma frailty and inverse Gaussian frailty model and under

three baseline hazards (B-splines, plug-in estimator and Weibull discussed in section 5.4).

The simulated data will consist of generated survival times, censoring indicator, cluster

identifier and a covariate. 1000 Monte Carlo trial are generated.

To fit the simulated data with a parametric baseline (Weibull) hazard we use parfm R

package by Munda et al. (2012). The package allows one to fit proportional hazards frailty

models with gamma frailty distribution and the inverse Gaussian frailty. To analyse the

simulated data with the first flexible baseline hazard (i.e plug-in estimator for cumulative

hazard function given by a step function as discussed in section 5.4.2.2) we use the R

package frailtySurv. Lastly, we fit B-splines for baseline hazard using a code which we

developed (code is available in Github frailtySurvSplines).

6.1.5 Simulation Results

In all the simulated scenarios results are presented for relative bias, standard deviation, and

mean square error across the 1000 Monte Carlo trials of regression coefficient (regression

coefficient) β, baseline hazard parameters λ and ρ, and the survival probability Sp(t).

https://github.com/Annah92/frailtySurvSplines
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Two values of t (t = 0.3 and t = 1) have been considered when computing the population

survival probability. t = 0.3 is considered in order to be able to capture more individuals

with high frailty.

Only graphical representation of results on relative bias for β, θ and Sp(1) are provided in

this section. The actual values of relative bias, standard deviation and mean square error

are provided in the Appendix A.
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In this study we consider an absolute bias greater than 5% as biased estimation. We will

discuss the results per every distribution used to generate the data.

For the first case we simulated data using a gamma frailty and then fitted gamma and

inverse Gaussian frailty models with three baseline hazards(Weibull, plug-in and splines).

From the plots in Figure 6.1, we observe that the regression coefficient β, is well estimated

by true frailty model for all θ and for all G. The Weibull baseline hazard parameters λ

and ρ, and the population survival probability Sp(t) are all well estimated by true frailty

model. For the wrong choice of an inverse Gaussian frailty, the regression coefficient β

is underestimated with largest relative bias upto 20% at G = 100, θ = 2 irregardless of

the baseline hazard used. Similarly, the Weibull baseline hazard shape parameter ρ is

underestimated with bias of about 10% at G = 800, θ = 2. The Weibull baseline hazard

scale parameter λ is overestimated. with a bias of about 13% at G = 100, θ = 2. This

overestimation in λ corrects for underestimation in β in this scenario. The population

survival probability at time t = 1 is poorly estimated. Use of a more flexible baseline does

not reduce the bias in estimators of covariate effect β when an inverse Gaussian frailty

model is fitted although using splines performs better.

In the second case we simulated data using a truncated gamma frailty and then fitted

gamma and inverse Gaussian frailty models with three baseline hazards(Weibull, plug-

in and splines). We observe that the covariate effect β, and the population survival

probability Sp(t) appear to be less sensitive to the frailty misspecification as shown in

Figure 6.2. (the largest bias is about 6% in estimators of β at θ = 0.2, G = 200 and

the largest bias is 8% in estimators of Sp(1) at θ = 0.1, G = 200). The Weibull baseline

hazard shape parameter ρ seems to be sensitive to frailty misspecification (the largest bias

is about 9% at θ = 0.1, G = 100). The Weibull baseline hazard scale parameter λ seems

to be affected by the wrong choice of frailty distribution. In particular, fitting the gamma

misspecified frailty model has a bias of about 35% (at θ = 2, G = 800) whereas the inverse

Gaussian has a bias of about 16% (at θ = 2, G = 100). λ seems to correct for bias in

β estimation in this scenario. Use of a more flexible baseline(nonparametric) reduces the

bias in estimators of covariate effect β.

In the third case we simulated data using a unity mean lognormal frailty and then fitted

gamma and inverse Gaussian frailty models with three baseline hazards(Weibull, plug-in
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and splines). Based on the plots in Figure 6.3, we observe that the estimation of the

covariate effect β is less sensitive to the choice of gamma and inverse Gaussian frailty

models (largest bias ≈ 6%). The Weibull baseline scale parameter λ is affected by both

gamma and inverse Gaussian wrong frailty distributions. In particular, when θ = 2 gamma

yields a bias of about 30% for all considered G, inverse Gaussian has a bias of about 12%

for G = 100. The Weibull baseline hazard shape parameter ρ is is less sensitive to any of

the considered wrong frailty distributions. The population survival probability seems to be

insensitive to the wrong choice of frailty distributions. Use of a more flexible baseline(plug-

in estimator or splines) reduces the bias in estimators of covariate effect β.

In the fourth case we simulated data using a mixture normal frailty and then fitted gamma

and inverse Gaussian frailty models with three baseline hazards(Weibull, plug-in and

splines). From the plots in Figure 6.4, we observe that the estimation of the covariate

effect β is affected by the inverse Gaussian wrong frailty with a bias of about 40% (at

θ = 2 for all considered G) but it is less affected by the wrong choice of gamma frailty

(here, the largest bias is 6% at θ = 2, G = 100). The population survival probability at

t = 1 i.e. Sp(1) appear to be sensitive to the frailty misspecification (the largest bias is

17% at θ = 2, for all G and x = 1 when Inverse Gaussian model is fitted). We observe

that the estimation of the Weibull baseline hazard scale parameter λ is affected by the

wrong choice of gamma frailty (here, the largest bias is 25% at θ = 2, G = 100) but is

less affected by fitting inverse Gaussian frailty (largest relative bias of 14% at θ = 0.5,

G = 100, G = 100). The estimation of the Weibull baseline hazard shape parameter ρ

is affected by fitting inverse Gaussian frailty with a bias of about 22% (at θ = 2 for all

considered G) but it is much less affected by the wrong choice of gamma frailty (here, the

largest bias is about 8% at θ = 0.5, G = 100). Use of a more flexible baseline does not

reduce the bias in estimators of covariate effect β when inverse Gaussian frailty model is

fitted although using splines performs better.

The number of clusters does seems not to have an effect on bias of estimation of parameters

which means that misspecification effect cannot be compensated by using more clusters.

We also observe that as the frailty variance increases, the estimates of the baseline hazard

and the regression coefficient move further away from their true values. Note that increase

in variance increases the dissimilarity in shapes between the true and wrong frailty distri-
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butions. Different frailty distributions yield different survival probabilities. We have more

bias when the true frailty distribution is more dissimilar to fitted distribution.

Overall, the results suggest that the estimation of regression coefficient β, the baseline

hazard scale parameter λ and baseline hazard shape parameter ρ may be affected by frailty

misspecification with λ being most affected. The population survival probability Sp(t) is

also affected by wrong choice of frailty distributions especially for small probabilities and

large frailty variance. However, use of a flexible baseline hazard may compensate for a

misspecified frailty distribution.

6.2 Discussion

The effect of frailty misspecification on survival probability Sp(t) has not been investigated

in the literature. It is also often concluded that regression coefficient β is robust with

regard to use of wrong frailty. In this study, we have conducted extensive simulations

to investigate the effect of frailty misspecification on the estimation accuracy of model

parameters of interest namely regression coefficient β, baseline hazard scale parameter λ

and baseline hazard shape parameter ρ, and survival probability Sp(t).

Four frailty distributions namely gamma, truncated gamma, lognormal, and mixture nor-

mal are considered for generating the data. For each of the frailty model, a gamma/inverse

Gaussian frailty model is then fitted to the data. The percentage (%) threshold of mis-

specification is an open question subject to debate, in this study we considered an absolute

bias greater than 5% as biased estimation but one could consider other values depending

on application.

From the simulations results in Section 6.1.5 β is affected by use of a wrong frailty es-

pecially with increasing the amount of heterogeneity in sample. This is contrary to the

existing literature that estimation of regression coefficient is robust with respect to frailty

misspecification which has been reported by previous studies including Gasparini et al.

(2019), Munda and Legrand (2014), Abiodun (2008). Gasparini et al. (2019) considers

lower values of frailty variance (largest is θ = 1.25) but we consider high values of frailty

variance (largest is θ = 2) and does not include inverse Gaussian as a wrong choice of

frailty distribution which we fit in our simulations. Gasparini et al. (2019) considers clus-
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ters of size two (which is similar to our simulations) and clusters of size 150. Munda

and Legrand (2014) does not fit a parametric gamma frailty model hence its a possibility

that fitting a semi-parametric gamma distribution (baseline is not specified) corrected for

any bias in the regression coefficient. This paper also considered smaller values of frailty

variance (largest is θ = 1.33) and larger cluster sizes (clusters of size 6 and 48). Lastly,

Abiodun (2008) considered a larger cluster size of 10 and gives results based on only one

replicate while in our simulations perform simulations based on 1000 replicates and assume

a cluster size of size 2.

We observe from our simulation results that in the case of small frailty variance using a

wrong frailty distribution still allows us to measure the fixed regression coefficient without

underestimation or overestimation of the regression coefficient. However, this robustness

does not seem to hold in several cases at larger frailty variances. Increase in variance

increases the dissimilarity in shapes between the true and wrong frailty distributions.

When the Weibull baseline hazard is used, in most the scale parameter λ corrected for

the wrong frailty. However, for some extreme cases it appears that λ cannot compensate

and thus the baseline hazard shape parameter ρ and regression coefficient β and survival

probabilities are affected. Using a flexible function for the baseline hazard improves es-

timation of parameters as well as survival probabilities in presence of frailty distribution

misspecification.

This study focused only on fitting gamma frailty and inverse Gaussian frailty distribu-

tions. This is a limitation as there is a wider variety of frailty distributions which can be

considered for fitting (e.g. positive stable, log-normal, power variance function, etc). Also

considered here is shared frailty model which assumes that the frailty value is same for

individuals within a cluster. One could also examine the effect of misspecification in the

case of correlated frailty or shared frailty with time varying covariates. The simulation

study involves clusters of size 2 limiting generalization to cluster of size two like twins

data. One could consider clusters of large sizes (> 2). One could also incorporate different

levels of censoring to examine if censoring could have an effect on frailty misspecification.

In practical situations, the parametric assumption of the frailty distribution may not hold

when one assumes a wrong frailty distribution. Most parametric models are sensitive to

model assumptions and often lead to misleading results if some of the underlying model
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assumptions are violated. The correct choice of frailty distribution is important especially

when the frailty variance is large because the degree of bias is expected to increase with

amount of heterogeneity in the data.



Chapter 7

Time dependent covariate model
adjusting for delayed entry

This chapter is motivated by the TwinsUK study discussed in Chapter 5 where the aim

was to predict what happens in the next time interval given the current values of covari-

ates. The aim of analysis in this chapter is to model the relationship between BMD and

fractures. Since BMD changes over time and we have longitudinal BMD information, in

this chapter we will consider BMD as a time varying covariate and use age as underlying

time scale to model the relationship between BMD and fractures. The challenge faced

will be to adjust for delayed entry because individuals enter at various ages. We therefore

propose to develop methodology that deals with delayed entry as well as time varying co-

variates simultaneously for clustered data. Previous methodological work that attempted

to address these include; studies which fit a joint model while adjusting for delayed entry

for singletons (Crowther et al., 2016; Schluchter and Piccorelli, 2019) and studies for clus-

tered data without delayed entry (Brilleman et al., 2019; Chen, 2016; Elmi et al., 2018;

Ratcliffe et al., 2004).

This chapter is organized as follows: Section 7.1 is on shared frailty model for time in-

dependent covariates incorporating delayed entry, Section 7.2 is on shared frailty model

with time varying covariates, and Section 7.3 is on shared frailty model for time varying

covariates and delayed entry.

78
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7.1 Shared frailty model incorporating delayed entry and
time independent covariate

Suppose that there are G groups with ni individuals in the ith group, i = 1, 2, ..., G and

j = 1, ..., ni. Let Tij be the random variable representing survival time given in age scale

and Tij0 be the random variable representing the age at enrolment to the study. An

individual is included in the study if tij > tij0. Let xij be a row vector of individual

specific time independent covariates. Let β = (β1, β2, ..., βp)T be a parameter vector for

the time independent covariates. Let ξ be the parameters of the baseline hazard h0 (t), θ

be the frailty variance and δij be the event indicator.

The hazard at time t for the jth individual in the ith group conditional on vi is given by

hij (t|xij , vi) = h0(t)vi exp (xijβ) .

The contribution of individual j in the ith cluster in time interval (tij0, tij) conditional on

vi is given by f(tij |xij , vi)δijS(tij |xij , vi)1−δij/S(tij0|xij , vi). i.e for an individual to con-

tribute to the likelihood within the interval (tij0, tij) an individual needs to have survived

beyond time tij0. The likelihood for cluster i conditional on vi is given by

Li = f(ti1, ..., tini |ti1 > ti10, ..., tini > tini0, vi,xij)

=
ni∏
j=1

f(tij |xij , vi)δijS(tij |xij , vi)1−δij

S(tij0|xij , vi)

=
ni∏
j=1

h(tij |xij , vi)δijS(tij |xij , vi)δijS(tij |xij , vi)1−δij

S(tij0|xij , vi)

=
ni∏
j=1

h(tij |xij , vi)δijS(tij |xij , vi)
S(tij0|xij , vi)

=
ni∏
j=1

h(tij |xij , vi)δij exp(−H(tij |xij , vi))
exp(−H(tij0|xij , vi))

=
ni∏
j=1

h(tij |xij , vi)δij exp(−[H(tij |xij , vi)−H(tij0|xij , vi)])

=
ni∏
j=1

[h0(tij)vi exp(xijβ)]δij exp(−[H0(tij)−H0(tij0)]vi exp(xijβ))

The marginal likelihood function is obtained by integrating out vi from the likelihood

function. Since age has been chosen as the basic timescale, the frailty distribution needs
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to be updated with a new definition of the frailty distribution among survivors at the times

of delayed entry. Specifically, when we have delayed entry there is informative selection

of individuals. Frail individuals (higher v) have a higher hazard hence may experience

event first, therefore are less likely to be observed. As a result, the frailty distribution

among survivors at a given age t differs from the original one given by g(v). The frailty

distribution g(v) corresponds to the distribution of the frailty values at origin time of the

study. Specifically, the mean of the frailty distribution at a given age becomes smaller as

the stronger individuals remain (i.e mean of EV 6= 1 but rather E (V |T > t) ≤ 1). At

the same time, the variance also becomes smaller since the remaining individuals at risk

are more alike (i.e. var(V |T > t) ≤ θ). Since we do not have all subjects of the birth

cohort, but only the ones surviving we need to use an updated frailty distribution. The

frailty distribution at the left-truncation times is g(v|ti1 > ti10, ..., tini > tini0) (Jensen

et al., 2004; Rodríguez-Girondo et al., 2018; Van den Berg and Drepper, 2016). This

updated frailty distribution allows the ni members of a cluster i to enter at different entry

times. The correction factor for delayed entry can be seen as a weights and these are

simultaneously estimated with the model parameters. By doing so, the correct weights to

estimate the parameters of the model are obtained.

The marginal likelihood for cluster i is

Li = Ev[f(ti1, ..., tini |ti1 > ti10, ..., tini > tini0,Xi, vi)]

=
∫
v

ni∏
j=1

[h0(tij)v exp(xijβ)]δij exp{−[H0(tij)−H0(tij0)]v exp(xijβ)} ×

dG(v|ti1 > ti10, ..., tini > tini0)

For instance, suppose v follows gamma distribution then:

g(v|ti1 > ti10, ..., tini > tini0) = g(v)Si(tij0|v)
Si(tij0)

= P (ti1 ≥ ti10, ..., tini ≥ tini0, v)
P (ti1 ≥ ti10, ...tini ≥ tini0)

=
exp(−v∑ni

j=1H0(tij0) exp (xijβ))v
1/θ−1 exp(−v/θ)

θ1/θΓ
θ∫

v exp(−v∑ni
j=1H0(tij0) exp (xijβ))v1/θ−1 exp(−v/θ)

θ1/θΓ
θ

dv

=
exp(−v∑ni

j=1H0(tij0) exp (xijβ))v1/θ−1 exp (−v/θ)∫
v exp(−v∑ni

j=1H0(tij0) exp (xijβ))v1/θ−1 exp (−v/θ) dv
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=
v1/θ−1 exp

(
−v

[
1
θ +∑ni

j=1H0(tij0) exp (xijβ)
])

∫
v v

1/θ−1 exp
(
−v

[
1
θ +∑ni

j=1H0(tij0) exp (xijβ)
])
dv

=
v1/θ−1 exp

(
−v

[
1
θ +∑ni

j=1H0(tij0) exp (xijβ)
])

Γ
θ[

1
θ

+
∑ni

j=1 H0(tij0) exp(xijβ)
] 1
θ

Since
∫∞

0 e−vBvκ−1dv = Γ(κ)
Bκ the denominator of equation above simplifies and thus

g(v|ti1 > ti10, ..., tini > tini0) =

[
1
θ +∑ni

j=1H0(tij0) exp (xijβ)
] 1
θ

Γ
θ

v1/θ−1

× exp

−v
1
θ

+
ni∑
j=1

H0(tij0)exijβ
 (7.1)

where Γ
θ

= Γ
(

1
θ

)
. Thus if v follows gamma distribution then at the delayed entry

times v ∼ Γ(1
θ ,

1
θ +∑ni

j=1H0(t0ij) exp (xijβ)) as shown above in equation (7.1). Note that

this updated method assumes fully observed clusters i.e all ni entered study (Rodríguez-

Girondo et al., 2018).

Substituting g(v|ti1 > ti10, ..., tini > tini0) obtained in Equation (7.1) gives the following

marginal likelihood for cluster i

Li =
∫
v

[
ni∏
j=1

[h0(tij)v exp(xijβ)]δij exp{−[H0(tij)−H0(tij0)]v exp(xijβ)}
]

×dG(v|ti1 > ti10, ..., tini > tini0)

=
∫
v

[
ni∏
j=1

[h0(tij)v exp(xijβ)]δij exp{−[H0(tij)−H0(tij0)]v exp(xijβ)}
]

×

[
1
θ +∑ni

j=1H0(tij0) exp(xijβ)
] 1
θ

Γ
θ

v1/θ−1 exp

−v
1
θ

+
ni∑
j=1

H0(tij0) exp(xijβ)

 dv
=

ni∏
j=1

[h0(tij) exp(xijβ)]δij
(1
θ

) 1
θ

[
1 + θ

∑ni
j=1H0(tij0) exp(xijβ)

] 1
θ

Γ
θ

×
∫
v
vdi+

1
θ
−1 exp

−v
1
θ

+
ni∑
j=1

H0(tij0) exp(xijβ) +
ni∑
j=1

[H0(tij)−H0(tij0)] exp(xijβ)

 dv
=

ni∏
j=1

[h0(tij) exp(xijβ)]δij
(1
θ

) 1
θ

[
1 + θ

∑ni
j=1H0(tij0) exp(xijβ)

] 1
θ

Γ
θ

×
∫
v
vdi+

1
θ
−1 exp

−v
1
θ

+
ni∑
j=1

H0(tij) exp(xijβ)

 dv
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=
ni∏
j=1

[h0(tij) exp(xijβ)]δij
[
1 + θ

∑ni
j=1H0(tij0) exp(xijβ)

] 1
θ

Γ
θ

Γ
θ′(

1
θ

)di [1 + θ
∑ni
j=1H0(tij) exp(xijβ)

]
where Γ

θ′ = Γ
(
di + 1

θ

)
and di = ∑ni

j=1 δij .

Taking the log we obtain the marginal loglikelihood function for cluster i as follows:

li (ξ, θ,β) = di log(θ)− log (Γ
θ
) + log

(
Γ
θ′

)
−
(1
θ

+ di

)
log

1 + θ
ni∑
j=1

H0(tij) exp (xijβ)


+

ni∑
j=1

δij [xijβ + log (h0(tij))] + 1
θ

log

1 + θ
ni∑
j=1

H0(tij0) exp (xijβ)

 .(7.2)
The marginal loglikelihood function for all the clusters is

l (ξ, θ,β) =
G∑
i=1

li (ξ, θ,β) (7.3)

The maximum likelihood estimates ξ, θ,β are obtained by maximizing the loglikelihood

function given in equation (7.3). Numerical methods can be used to maximize this log-

likelihood function e.g by Newton-Raphson procedure.

7.2 Shared frailty model incorporating time varying covari-
ates

Let Yij = {Yij (tijl) ; l = 1, . . . , nij} be a vector of length nij representing individual specific

time varying covariate measurements. Let α be a time varying covariate effect. Let ξ be

the parameters of the baseline hazard h0 (t) and θ be the frailty variance. The hazard at

time t for the jth individual in the ith group conditional on vi is given by

hij (t|Yij , vi) = h0(t)vi exp (αyij(t)) .

The risk parameter α represents the effect on the hazard of a unit difference in the covariate

at time zero or at any time after entry.

Methods of modelling a time dependent covariate discussed here include last observation

carried forward in Section 7.2.1, two stage approaches in Section 7.2.2 and joint models in

Section 7.2.3.
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7.2.1 Last observation carried forward (LOCF)

Suppose the time varying covariate yij(t) takes the value yijl within a given time interval

(tijl, tij(l+1)) at timepoints l = 0, ...., (nij−1). The contribution of an individual j in the ith

cluster within a given time interval (tijl, tij(l+1)) in presense of right censoring conditional

on vi is given by (Klein and Moeschberger, 2003)

f(tij(l+1)|yijl, vi)δijlS(tij(l+1)|yijl, vi)1−δijl/S(tijl|yijl, vi).

Note that for an individual to contribute to the likelihood within the interval (tijl, tij(l+1))

an individual needs to have survived until beyond time tijl.

Therefore the likelihood for cluster i conditional on vi will be

Li =
ni∏
j=1

nij−1∏
l=0

f(tij(l+1)|yijl, vi)δijlS(tij(l+1)|yijl, vi)1−δijl

S(tijl|yijl, vi)

=
ni∏
j=1

nij−1∏
l=0

h(tij(l+1)|yijl, vi)δijlS(tij(l+1)|yijl, vi)δijlS(tij(l+1)|yijl, vi)1−δijl

S(tijl|yijl, vi)

=
ni∏
j=1

nij−1∏
l=0

h(tij(l+1)|yijl, vi)δijlS(tij(l+1)|yijl, vi)
S(tijl|yijl, vi)

=
ni∏
j=1

nij−1∏
l=0

h(tij(l+1)|yijl, vi)δijl exp(−H(tij(l+1)|yijl, vi))
exp(−H(tijl|yijl, vi))

=
ni∏
j=1

nij−1∏
l=0

h(tij(l+1)|yijl, vi)δijl exp(−[H(tij(l+1)|yijl, vi)−H(tijl|yijl, vi)])

=
ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))vi exp (αyijl)]δijl exp(−[H0(tij(l+1))−H0(tijl)]vieαyijl) (7.4)

The marginal likelihood for cluster i will be

Li =
∫
v

ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))v exp (αyijl)]δijl

× exp(−[H0(tij(l+1))−H0(tijl)]v exp (αyijl))dg(v) (7.5)

When a gamma frailty distribution is considered the the marginal likelihood is as follows:
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Li =
∫
v

[
ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))v exp (αyijl)]δijl

× exp(−[H0(tij(l+1))−H0(tijl)]v exp (αyijl))
]
v1/θ−1 exp(−v/θ)

θ
1
θΓ
θ

dv

=
ni∏
j=1

nij−1∏
l=0

[h0(tijl) exp (yijlβ)]δijl
(1
θ

) 1
θ 1

Γ
θ

×
∫
v
vdi+

1
θ
−1 exp

−v
1
θ

+
ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp (αyijl)

 dv
=

ni∏
j=1

nij−1∏
l=0

[h0(tijl) exp (αyijl)]δijl
1
Γ
θ

×
Γ
θ′(1

θ

)di 1 + θ
ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp (αyijl)

di+ 1
θ

where di =
ni∑
j=1

nij−1∑
l=0

δijl.

Taking the log we obtain the marginal loglikelihood function for cluster i as follows:

li (ξ, θ, α) = di log(θ)− log (Γ
θ
) + log

(
Γ
θ′

)
+

ni∑
j=1

nij−1∑
l=0

δijl
[
yijlβ + log

(
h0(tij(l+1))

)]

−
(1
θ

+ di

)
log

1 + θ

 ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp(yijlβ)

 .
The marginal loglikelihood function for all the clusters is

l (ξ, θ, α) =
G∑
i=1

li (ξ, θ, α) (7.6)

The maximum likelihood estimates ξ, θ, α are estimated by maximizing the loglikelihood

function given in equation (7.6). Numerical methods are used to maximize this loglikeli-

hood function e.g by Newton-Raphson procedure.
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7.2.2 A two stage approach (TSA)

This section is an extension of Section 3.2 on singletons to considering clustered data. We

consider the two different two regression calibration methods: risk-set regression calibra-

tion and the ordinary regression calibration.

7.2.2.1 Risk set regression calibration (RRC)

Stage I

For each of the unique event times in the dataset we fit a mixed-effects model. For an event

time Tr only individuals still at risk i.e {ij : Tij ≥ Tr} are included in the mixed model, and

only the covariate measurements of these individuals taken before the event time are used

i.e. Yij(Tr) = {Yij(tijl) : tijl < Tr}. We then compute the predicted value of the covariate

for individuals still at risk at event time Tr as follows: Y ∗ij(Tr) = E{Yij(Tr)|Yij(tijl) : tijl <

Tr}, β̂0, β̂1, σ̂
2
b , σ̂

2
u}

Linear mixed model specification

In this thesis we consider the following model

yij(t | bij , ui) = β0 + bij + ui + β1t+ εij(t) (7.7)

bij ∼ N(0, σ2
b ), where bij represents the individual specific random effect

ui ∼ N(0, σ2
u), where ui represents the cluster specific random effect

εijl ∼ N(0, σ2
ε),

β0, β1 : the regression coefficients.They represent the population intercept and slope respectively.

bij , ui and εij are independent of each other

This is a three-level linear mixed model and could be represented in matrix form as follows:

Y = Xβ+Zd+ ε
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where X is m× 2 design matrix for the fixed effects and Z is m× (n+G) design matrix

associated to the random effects (both bij and ui). Here n =
G∑
i=1

ni∑
j=1

nij is the total number

of subjects and m =
G∑
i=1

ni∑
j=1

nij−1∑
l=0

nijl is the total number of responses for all subjects.

Illustration of model representation: assume groups of size two i.e. (ni = 2). Suppose

we have G = 3 groups and two measurements taken per individual (i.e nij = 2) then the

model would be:

Y =



y111
y112
y121
y122
. . . .
y211
y212
y221
y222
. . . .
y311
y312
y321
y322



, X =



1 t111
1 t112
1 t121
1 t122
. . . . . . .
1 t211
1 t212
1 t221
1 t222
. . . . . . .
1 t311
1 t312
1 t321
1 t322



, Z =



1 0 0 0 0 0
... 1 0 0

1 0 0 0 0 0
... 1 0 0

0 1 0 0 0 0
... 1 0 0

0 1 0 0 0 0
... 1 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 1 0 0 0
... 0 1 0

0 0 1 0 0 0
... 0 1 0

0 0 0 1 0 0
... 0 1 0

0 0 0 1 0 0
... 0 1 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 0 1 0
... 0 0 1

0 0 0 0 1 0
... 0 0 1

0 0 0 0 0 1
... 0 0 1

0 0 0 0 0 1
... 0 0 1



, d =



b11
b12
b21
b22
b31
b32
. . .
u1
u2
u3



Let Σd = var(d) = var
[
b
u

]
=
[
σ2
b1n 0
0 σ2

u1G

]
, var(ε) = σ2

ε1m and β =
[
β0 β1

]
.
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Linear Mixed Model Estimation

Maximum likelihood estimates of Φ =
(
β0, β1, σ

2
b , σ

2
u, σ

2
ε

)
are obtained by maximizing the

log-likelihood function.

`(Φ) =
G∑
i=1

log
∫
u

{ ni∏
j=1

∫
b
f(yij | bij , ui)f(bij)dbij

}
f(ui)dui, (7.8a)

where

f{yijl | bij} = 1√
2πσ2

ε

exp
(
− [yijl − (β0 + bij + ui + β1tijl)]2

2σ2
ε

)
f(yij | bij , ui) =

nij∏
l=1

f(yijl | bij , ui) = (
√

2πσ2
ε)−nij/2 exp

(
−
∑nij
l=1[yijl − (β0 + bij + ui + β1tijl)]2

2σ2
ε

)
f(bij) = 1√

2πσ2
b

exp
(
− [bij ]2

2σ2
b

)

f(ui) = 1√
2πσ2

u

exp
(
− [ui]2

2σ2
u

)

Estimation of Φ is done iteratively by splitting into the parameters of the fixed effect

(β0, β1), and the variance parameters (σ2
b , σ

2
u, σ

2
ε).

Note that Y ∼ N
(
Xβ,ZΣdZ

> + σ2
ε1m

)
while Y |d ∼ N

(
Xβ+Zd, σ2

ε1m
)
.

Let Σy = var(Y ) = ZΣdZ
> + σ2

ε1m.

The maximum likelihood estimator of the fixed-effects β and estimators of the variance

parameters (σ2
b , σ

2
u, σ

2
ε) are obtained similarly to Section 3.2.1.2.

The random effects are predicted by obtaining the expectation of the posterior distribution

of the random effects given the observed data (Fitzmaurice et al., 2012; Laird and Ware,

1982).

E(d|Y ) = E(d) + cov(d;Y ) var(Y )−1[Y − EY ]

= 0 + ΣdZ
>ΣdZ

>Σy
−1[Y −Xβ] (7.9)

The parameters β and Σy are replaced by their estimators in equation (7.9) to obtain the

empirical Bayes estimator, d̂ = ΣdZ
>Σ̂y

−1[Y −Xβ̂]
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Stage II

Let Yij(t) = Y ∗ij(t)+εij(t) where Y ∗ij(t) = E[Yij(t)|Yij(t)]. Similar to Equation (??) while as-

suming non-differential measurement error assumption the induced hazard function based

on observed covariate measurements is given by:

hij (t|Yij , vi) = h0(t)viE(eαY
∗
ij(t)|Yij , tij ≥ t) (7.10)

Similar to Yu et al. (2018) and Dafni and Tsiatis (1998) we propose to approximate this

expectation by a first-order approximation i.e the regression calibration approximation.

hij (t|Yij , vi) = h0(t)viE[eαY
∗
ij(t)|Yij(t), tij ≥ t]

≈ h0(t)vieαE[Yij(t)|Yij(t),tij≥t] (7.11)

= h0(t)vieαY
∗
ij(t)

Note that Y ∗ij(t) = E[Yij(t)|Yij(t), tij ≥ t] which was obtained in stage I.

The corresponding likelihood for cluster i conditional on vi will therefore be

Li(ξ, θ, α) =
ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))vi exp
(
αy∗ijl

)
]δijl exp

(
−[H0(tij(l+1))−H0(tijl)]vi exp

(
αy∗ijl

))

For an individual j in the ith cluster we can therefore arrange the data obtained from

Stage I in start stop format with intervals (tijl, tij(l+1)).

The marginal log-likelihood function for cluster i will be:

li (ξ, θ, α) = di log(θ)− log (Γ
θ
) + log

(
Γ
θ′

)
+

ni∑
j=1

nij−1∑
l=0

δijl
[
αy∗ijl + log

(
h0(tij(l+1))

)]

−
(1
θ

+ di

)
log

1 + θ

 ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp(αy∗ijl)

 .
where di = ∑ni

j=1
∑nij−1
l=0 δijl and Γ (1/θ) =

∫∞
0 e−tt1/θ−1.

The marginal loglikelihood function for all the clusters is

l (ξ, θ, α) =
G∑
i=1

li (ξ, θ, α) (7.12)

Numerical methods are used to maximize this loglikelihood function e.g by Newton-

Raphson procedure.
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7.2.2.2 Ordinary regression calibration (ORC)

We propose to extend ordinary regression calibration for (Tsiatis et al., 1995) which fits

a single mixed-effects model using singletons and all data to the case of shared frailty

model. In this approach the estimated random effects for an individual stay constant over

follow-up.

Stage I

We fit one mixed-effects models using all available covariate measurements. We then

compute the predicted value of the covariate for individuals as follows:

Y ∗ij(t) = E{Yij(t)|Y , β̂0, β̂1, σ̂
2
b , σ̂

2
u}.

Stage II

Stage II proceeds similarly to the RRC procedure discussed in section 7.2.2.1 where the

prediction Y ∗ij(t) = E{Yij(t)|Y , β̂0, β̂1, σ̂
2
b , σ̂

2
u} are now used.

7.2.3 Joint model approach

Let the longitudinal model have random intercepts only (as described in Equation (7.7))

and assume a link function of current value i.e β0 + bij +ui+β1t. This function of random

effects will model correlation between longitudinal and the survival outcomes.

The standard joint model for a longitudinal and a time-to-event outcome will be

yij(t | ui) = β0 + bij + ui + β1t+ εij(t)

hij(t | bij , ui, vi) = h0(t)vi exp
{
α(β0 + bij + ui + β1t)

}
i = 1, 2, ..., G and j = 1, ..., ni.

α : the regression coefficient of the time-varying covariate

yijl ⊥ tij |bij , ui

Suppose that data, D = {tij , δij ,yij}, of both longitudinal and time-to-event outcomes

are collected on subjects j = 1, . . . , ni and i = 1, . . . , G.

The estimation of Φ =
(
ξ, θ, α, σ2

u, σ
2
ε

)
is based on maximum likelihood principles by

maximizing the log-likelihood function of the joint distribution of the longitudinal and the
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time-to-event outcomes, {yij , tij , δij}. ξ contains the parameters of the baseline hazard

h0(t).

`(Φ|D) =
G∑
i=1

log
(∫

u

∫
v

[ ni∏
j=1

∫
b
f(yij | bij , ui)f(tij , δij | bij , ui, v)f(bij)dbij

]
g(vi)f(ui)dvidui

)
,

(7.13)
where

f{yijl | ui} = 1√
2πσ2

ε

exp
(
− [yijl − (β0 + bij + ui + β1tijl)]2

2σ2
ε

)
f(yij | ui) =

nij∏
l=1

f(yijl | ui) = (2πσ2
ε)−nij/2 exp

(
−
∑nij
l=1[yijl − (β0 + bij + ui + β1tijl)]2

2σ2
ε

)
f(bij) = 1√

2πσ2
b

exp
(
− [bij ]2

2σ2
b

)

f(ui) = 1√
2πσ2

u

exp
(
− [ui]2

2σ2
u

)
f(tij , δij | ui, vi) = [hij (tij | Yij , vi)]δij Sij (tij | Yij , vi) ,

hij (tij | Yij), vi) = h0(tij)vi exp {α(β0 + bij + ui + β1tij)} ,

Sij (tij | Yij , vi) = exp
(
−
∫ tij

0
hij (s | Yij , vi) ds.

)
h0(t) = λρtρ−1

Numerical methods can be used to maximize this loglikelihood function e.g by Newton-

Raphson procedure. Note that the integrals of the random effects require numerical meth-

ods (with the Gauss-Hermite quadrature technique the most commonly used).

7.3 Shared frailty model incorporating time varying covari-
ates and delayed entry

Section 7.1 models delayed entry while Section 7.2 models time varying covariates. This

section will simultaneously model time varying covariates and delayed entry. Let Tij0 be

random variable representing the age at enrollment to study. An individual is included in

the study if and only if tij > tij0.

The hazard at time t for the jth individual in the ith group conditional on vi is given by

hij (t|Yij , vi) = h0(t)vi exp (αyij(t)) .
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Methods of modelling time dependent covariates simultaneously with delayed entry dis-

cussed in this chapter are last observation carried forward as will be discussed in 7.3.1 ,

two stage approaches as will be discussed in section 7.3.2 & section 7.3.3 and joint models

as will be discussed in section 7.3.4.

7.3.1 Last observation carried forward (LOCF)

When we have time varying covariates then the likelihood for cluster i conditional on vi
as shown in Equation (7.4) of section 7.2.1 is

Li =
ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))vi exp (αyijl)]δijl exp(−[H0(tij(l+1))−H0(tijl)]vieαyijl) (7.14)

However, because of delayed entry let the first time interval given by (tij(l=0), tij(l=1)) be

represented by (tij0, tij1) and let the time varying covariate measurement at this interval

be yij0.

The updated frailty distribution in this case is similar to Equation (7.1) by replacing

xijβ with αyij0. Therefore, if v follows gamma distribution then at delayed entry times

v ∼ Γ(1
θ ,

1
θ +∑ni

j=1Hij(tij0)eαyij0).

Therefore the marginal likelihood for cluster i will be

Li =
∫
v

[
ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))v exp (αyijl)]δijl exp(−[H0(tij(l+1))−H0(tijl)]v exp (αyijl))
]

×dG(v|ti1 > ti10, ..., tini > tini0) (7.15)

=
∫
v

[
ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))v exp (αyijl)]δijl exp(−[H0(tij(l+1))−H0(tijl)]v exp (αyijl))
]

×

[
1
θ +∑ni

j=1Hij(tij0)eαyij0
] 1
θ

Γ
θ

v1/θ−1 exp

−v
1
θ

+
ni∑
j=1

Hij(tij0)eαyij0

 dv
=


ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1)) exp (αyijl)]δijl

[

1
θ +∑ni

j=1Hij(tij0)eαyij0
] 1
θ

Γ
θ

×
∫
v
vdi+1/θ−1 exp

(
− v

ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp (αyijl)
)

× exp

−v
1
θ

+
ni∑
j=1

Hij(tij0)eαyij0

 dv
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=


ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1)) exp (αyijl)]δijl

[

1
θ +∑ni

j=1Hij(tij0)eαyij0
] 1
θ

Γ
θ

×
∫
v
vdi+

1
θ
−1 exp

−v
1
θ

+
ni∑
j=1

Hij(tij0)eαyij0 +
ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp (αyijl)

 dv
=


ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1)) exp (αyijl)]δijl

[
1 + θ

∑ni
j=1Hij(tij0)eαyij0

] 1
θ

Γ
θ

× Γ(di + 1/θ)(
1
θ

)di [1 + θ
∑ni
j=1Hij(tij0)eαyij0 + θ

∑ni
j=1

∑nij−1
l=0 [H0(tij(l+1))−H0(tijl)] exp (αyijl)

]di+ 1
θ

(7.16)

Taking the log we obtain the marginal loglikelihood function for cluster i as follows:

li (ξ, θ, α) = di log(θ)− log (Γ
θ
) + log

(
Γ
θ′

)
+

ni∑
j=1

nij−1∑
l=0

δijl
[
αyijl + log

(
h0(tij(l+1))

)]
+ 1
θ

log

1 + θ
ni∑
j=1

Hij(tij0)eαyij0


−
(1
θ

+ di

)
log

1 + θ
ni∑
j=1

Hij(tij0)eαyij0 + θ
ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp (αyijl)

 .
(7.17)

where di = ∑ni
j=1

∑nij−1
l=0 δijl and Γ (1/θ) =

∫∞
0 e−tt1/θ−1.

The marginal loglikelihood function for all the clusters is

l (ξ, θ, α) =
G∑
i=1

li (ξ, θ, α) (7.18)

The maximum likelihood estimates ξ, θ, α are estimated by maximizing the loglikelihood

function given in equation (7.18).

7.3.2 Risk set regression calibration (RRC)

Stage I

The difference of this case as compared to the case of no delayed entry (Section 7.2.2.1)

is that we only observe individuals with Tij ≥ Tij0 i.e. to be at risk at time T we require

{Tij ≥ T ≥ Tij0}. Fit multiple mixed-effects models, one for each of the unique event

time in the dataset. Compute the predicted value of the covariate for individuals still
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at risk at event time Tr as follows: Y ∗ij(Tr) = E{Yij(Tr)|Yij(tijl) : tijl < Tr, Tij ≥ Tr ≥

Tij0}, β̂0, β̂1, σ̂
2
b , σ̂

2
u}

Stage II

The hazard at time t, based on the history of the observed covariate measurements Yij up

to time t can be expressed as the conditional expectation as follows (Prentice, 1982)

hij (t|Yij) = E
{
hij
(
t|Y ∗ij ,Yij , tij ≥ t ≥ tij0

)}
= E

{
hij
(
t|Y ∗ij , tij ≥ t ≥ tij0

)}
from the nondifferential measurement error assumption

The induced hazard function based on observed covariate measurements is:

hij (t|Yij , vi) = h0(t)viE(eαY
∗
ij(t)|Yij , tij ≥ t ≥ tij0) (7.19)

Similar to Section 7.2.2.1 we propose to approximate this expectation by a first-order

approximation

hij (t|Yij , vi) = h0(t)viE[eαY
∗
ij(t)|Yij , tij ≥ t ≥ tij0]

≈ h0(t)vieαE[Yij(t)|Yij ,tij≥t≥tij0] (7.20)

= h0(t)vieαY
∗
ij(t)

Y ∗ij(t) = E[Yij(t)|Yij(t), tij ≥ t ≥ tij0] which was obtained in stage I.

The corresponding likelihood for cluster i conditional on vi will therefore be

Li(ξ, θ, α) =
ni∏
j=1

nij−1∏
l=0

[h0(tij(l+1))vi exp
(
αy∗ijl

)
]δijl exp

(
−[H0(tij(l+1))−H0(tijl)]vi exp

(
αy∗ijl

))
For an individual j in the ith cluster we can therefore arrange the data obtained from

stage I in start stop format with intervals (tijl, tij(l+1)).

The marginal loglikelihood function for cluster i as follows (similar to LOCF likelihood

obtained in equation (7.17) ):

li (ξ, θ, α) = di log(θ)− log (Γ
θ
) + log

(
Γ
θ′

)
+

ni∑
j=1

nij−1∑
l=0

δijl
[
αy∗ijl + log

(
h0(tij(l+1))

)]
+ 1
θ

log

1 + θ
ni∑
j=1

Hij(tij0)eαy
∗
ij0


−
(1
θ

+ di

)
log

1 + θ
ni∑
j=1

Hij(tij0)eαy
∗
ij0 + θ

ni∑
j=1

nij−1∑
l=0

[H0(tij(l+1))−H0(tijl)] exp
(
αy∗ijl

) .
(7.21)
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The marginal loglikelihood function for all the clusters is

l (ξ, θ, α) =
G∑
i=1

li (ξ, θ, α) (7.22)

The maximum likelihood estimates ξ, θ, α are estimated by maximizing the loglikelihood

function given in equation (7.18). Numerical methods can be used to maximize this

loglikelihood function e.g by Newton-Raphson procedure.

7.3.3 Ordinary regression calibration (ORC)

We propose to extend ordinary regression calibration discussed in section 7.2.2.2 to simul-

taneously model time varying covariate while adjusting for delayed entry. Stage I involves

fitting one mixed-effects models using the whole dataset which comprises of measurements

of only individuals with Tij ≥ Tij0. The predicted value of the covariate for individuals

are then computed as: Y ∗ij(t) = E{Yij(t)|Yij(tijl, Tij ≥ Tij0), β̂0, β̂1, σ̂
2
b , σ̂

2
u}. Y ∗ij(t) can be

calculated for either unique event times for non-parametric baseline or fine grid for the

parametric baseline. Stage II proceeds similarly to the RRC procedure discussed in section

7.3.2 but using ORC predictions in the survival model.

7.3.4 Joint model approach

This is an extension of joint model described in Section 7.2.3 but now only individuals with

Tij ≥ Tij0 are observed. The standard joint model for a longitudinal and a time-to-event

outcome will be

yij(t | ui) = β0 + bij + ui + β1t+ εij(t)

hij(t | bij , ui, vi) = h0(t)vi exp
{
α(β0 + bij + ui + β1t)

}
.

To obtain the marginal likelihood it involves integrating out all random effects. For this

section we make a modification to reduce the complexity of the joint model by plugging in

an estimate of one of the two random effects and hence integrating just over one random

effect. It will thus be a modified two stage approach, where we first fit a mixed effect

longitudinal model to predict the individual random intercept bij and assume it does not
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change over time. Let the longitudinal model have random intercepts only and assume a

link function of current value i.e β̂0 + b̂ij + ui + β̂1t.

The standard joint model for a longitudinal and a time-to-event outcome will therefore be

yij(t | ui) = β̂0 + b̂ij + ui + β̂1t+ εij(t)

hij(t | bij , ui, vi) = h0(t)vi exp
{
α(β̂0 + b̂ij + ui + β̂1t)

}
.

Suppose that data, D = {tij , tij0, δij ,yij}, of both longitudinal and time-to-event outcomes

are collected on subjects j = 1, . . . , ni and i = 1, . . . , G. tij0 denotes age at which individual

enters the study. An individual included in the study only if tij > tij0

The estimation of Φ =
(
ξ, α, σ2

u, σ
2
ε

)
is based on maximum likelihood principles by max-

imizing the log-likelihood function of the joint distribution of the longitudinal and the

time-to-event outcomes, {yij , tij , δij} conditional on an individual being in the study:

`(Φ|D) =
G∑
i=1

log
(∫

u

∫
v

[ ni∏
j=1

f(yij | ui)f(tij , δij | ui, v)
]
g(v|tij > tij0)f(ui)dvdui

)
,

where

f{yijl | ui} = 1√
2πσ2

ε

exp
(
− [yijl − (β̂0 + b̂ij + ui + β̂1tijl)]2

2σ2
ε

)
f(yij | ui) =

nij∏
l=1

f(yijl | ui) = (2πσ2
ε)−nij/2 exp

(
−
∑nij
l=1[yijl − (β̂0 + b̂ij + ui + β̂1tijl)]2

2σ2
ε

)
f(ui) = 1√

2πσ2
u

exp
(
− u2

i

2σ2
u

)
f(tij , δij | ui, vi) = [hij (tij | Yij), vi)]δij Sij (tij | Yij), vi)

Sij (tij0 | Yij(tij0), vi)

= [hij (tij | Yij), vi)]δij exp
(
− [Hij (tij | Yij), vi)−Hij (tij0 | Yij0(tij0), vi)]

)
= [hij (tij | Yij), vi)]δij exp

(
−
∫ tij

tij0

hij (s | Yij , vi) ds.
)

=
[
h0(tij)vi exp

{
α(β̂0 + b̂ij + ui + β̂1tij)

}]δij
× exp

(
−
∫ tij

tij0

h0(s)vi exp
{
α(β̂0 + b̂ij + ui + β̂1s)

}
ds
)

h0(t) = λρtρ−1
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Updating the frailty distribution at the times of delayed entry will be as follows:

g(v|tij > tij0) = g(v)S(tij0|v)
S(tij0) = exp(−H(tij0|v))g(v)

exp(−H(tij0))

= P (ti11 ≥ ti10, ..., tini1 ≥ tini0, v)g(v)
P (ti11 ≥ ti10, ...tini1 ≥ tini0)

=
exp(−v∑ni

j=1
∫ tij0

0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds)v
1/θ−1 exp(−v/θ)

θ1/θΓ
θ∫

v exp(−v∑ni
j=1

∫ tij0
0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds)v1/θ−1 exp(−v/θ)

θ1/θΓ
θ

dv

=
exp(−v∑ni

j=1
∫ tij0

0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds)v1/θ−1 exp (−v/θ)∫
v exp(−v∑ni

j=1
∫ tij0

0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds)v1/θ−1 exp (−v/θ) dv

=
v1/θ−1 exp

(
−v

[
1
θ +∑ni

j=1
∫ tij0

0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds
])

∫
v v

1/θ−1 exp
(
−v

[
1
θ +∑ni

j=1
∫ tij0

0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds
])
dv

=
v

1
θ
−1 exp

(
−v

[
1
θ +∑ni

j=1
∫ tij0

0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds
])

Γ
θ[

1
θ

+
∑ni

j=1

∫ tij0
0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds

] 1
θ

.

Therefore for joint model

g(v|ti1 > ti10, ..., tini > tini0) =

[
1
θ +∑ni

j=1
∫ tij0

0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds
] 1
θ

Γ
θ

v
1
θ
−1

× e
−v
[

1
θ

+
∑ni

j=1

∫ tij0
0 h0(s)eα(β̂0+b̂ij+ui+β̂1s)ds

]
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7.4 Simulation study

We perform simulations for the following scenarios: dense grid and no measurement error

(section 7.4.1) and sparse grid with/without measurement error (Section 7.4.2 and Section

7.4.3).

The aims of simulation study are to investigate:

• Influence of magnitude of measurement error.
• Influence of magnitude of time varying covariate effect.
• Influence of grid of measurements.

The estimands of interest include time varying covariate effect α, frailty variance θ, and

Weibull baseline hazard parameters. For all the simulated scenarios, the estimated relative

bias (reBias), standard deviation (SD) and mean square error (MSE) for estimation of

parameters are reported.

Simulation Design

We simulate from a joint model of longitudinal and time to event data. Suppose that

there are G groups with ni individuals in the ith group, i = 1, 2, ..., G and j = 1, ..., ni.

Let yijl = yij(tijl) denote the response of subject j in cluster i at time tijl, l = 1, . . . , nij .

We simulate data to follow the following theoretical model:

yij(t | bij , ui) = 1 + bij + ui + 0.01t+ εij(t)

hij(t | bij , ui, vi) = h0(t)vi exp
{
α(1 + bij + ui + 0.01t)

}
(7.25)

bij ∼ N(0, 0.12), where bij individual specific random effect

ui ∼ N(0, 0.12), where ui cluster specific random effect

εij(t) ∼ N (0, σ2
ε) where σε = 0, 0.1, 0.2, 0.3, 0.6.

α = 1, 2, 3.

β0 = 1, β1 = 0.01

Weibull baseline with shape parameter ρ = 2 and scale parameter λ = 0.001. Thus

h0(t) = λρtρ−1 = 0.002t.
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In general the cumulative hazard function will be

H (t|Yij , vi) =
∫ t

0
λρsρ−1vi exp (α(β0 + bij + ui + β1s)) ds.

but
U = S (t|Yij(t), vi) = exp [−H (t|Yij(t), vi)] ∼ Uni[0, 1]

− log(U) = H (t|Yij(t), vi)

=
∫ t

0
λρsρ−1vi exp(α(β0 + bij + ui + β1s))ds. (7.26)

Given a realization of U , numerical integration is used to solve for t in equation 7.26.

If the Weibull baseline hazard shape parameter ρ = 1 (equivalent to exponential distribu-

tion) then t exists in closed format and is given by:

t = 1
αβ1

log
(

1 + αβ1[− log(u)]
λvi exp [α(β0 + bij + ui)]

)
(7.27)

where vi follows a gamma distribution with mean 1 and variance θ.

Algorithm

• Generate frailties vi and random effects bij , ui

• Generate u∼ Uni(0, 1).

• Compute tij the time-to-event by solving Equation (7.26).

• Simulate individual specific entry time points tij0 by some chosen mechanism. In

our case we assume 0.5 probability of truncation and let tij0 ∼ Uni(0, t0).

• Generate follow-up times tijl, at points l = 0, ..., nij − 1 for an individual such that

tij0 ≤ tijl then compute yij(t) at time points.

Assume random censoring to follow Uni(0, 15). We report the relative bias (reBias), stan-

dard deviation (SD), and mean square error (MSE), coverage probabilities for estimation

of parameters across 1000 Monte Carlo trials (100 Monte Carlo trials for the joint model).

The data is generated using a joint model given in equation (7.25) above with gamma

frailty (frailty variance θ = 0.5). Let number of clusters be 2000. Inc.G represents the

number of clusters included in the analysis after truncation and removal of singletons

(i.e. we only consider fully observed clusters). For all models we fit a parametric Cox

proportional hazards model (Weibull baseline) while adjusting for delayed entry.
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Results

7.4.1 Scenario 1: Dense and no measurement error

For this scenario, the longitudinal measurements are taken with a regular gap/interval

of 2 for all individuals i.e. at regular time points 0, 2, 4, 6, · · · and no measurement error

(σε = 0). Table 7.1 shows the performance of the methods in estimating the parameters of

the gamma shared frailty model in presence of delayed entry and time varying covariates

for LOCF and ’naive’ method (done using frailtypack R package which models time

varying covariate without adjusting for delayed entry) .

Simulation Results

Table 7.1: Simulation to investigate the effect of the magnitude of the time varying co-
variate effect α. Naive is set up for modelling time-varying covariates without adjusting
for delayed entry.

Naive LOCF
α Par. Inc.G Events reBias SD MSE CP reBias SD MSE CP

1

α 1637 578 −0.029 0.300 0.091 0.962 −0.022 0.301 0.091 0.965
θ 1637 578 0.027 0.181 0.033 0.957 0.034 0.181 0.033 0.960
λ 1637 578 0.085 0.000 0.000 0.081 0.000 0.000
ρ 1637 578 0.001 0.079 0.006 0.003 0.079 0.006

2

α 1584 1135 −0.031 0.242 0.062 0.954 −0.012 0.246 0.061 0.948
θ 1584 1135 −0.004 0.093 0.009 0.949 0.012 0.095 0.009 0.948
λ 1584 1135 0.104 0.000 0.000 0.072 0.000 0.000
ρ 1584 1135 −0.001 0.062 0.004 0.003 0.062 0.004

3

α 1465 1633 −0.054 0.228 0.078 0.896 −0.016 0.242 0.060 0.940
θ 1465 1633 −0.032 0.062 0.004 0.939 −0.002 0.063 0.004 0.950
λ 1465 1633 0.221 0.000 0.000 0.105 0.000 0.000
ρ 1465 1633 −0.009 0.052 0.003 0.003 0.052 0.003

The LOCF is the standard method for scenario for the case of singletons, so should also

be with twins. We therefore only compare LOCF to existing naive methodology. LOCF

performs well in estimation of parameters.

7.4.2 Scenario 2: Sparse and no measurement error

For this scenario, all individuals have ≤ three measurements during the study (i.e nij ≤ 3)

and assume no measurement error (σε = 0). The methods compared in this scenario are:

LOCF approach discussed in section 7.3.1, RRC approach discussed in section 7.3.2 and

ORC approach discussed in section 7.3.3.
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Simulation Results

Table 7.2: Simulation to investigate the effect of the magnitude of the time varying co-
variate effect α.

LOCF RRC ORC
α Par. Inc.G Events reBias SD MSE CP reBias SD MSE CP reBias SD MSE CP

1

α 1637 577 −0.306 0.342 0.211 0.805 −0.031 0.365 0.134 0.933 0.040 0.466 0.218 0.951
θ 1637 577 −0.062 0.159 0.026 0.953 −0.018 0.178 0.032 0.957 −0.043 0.175 0.031 0.955
λ 1637 577 0.439 0.001 0.000 0.000 0.331 0.001 0.000 0.000 0.256 0.001 0.000 0.000
ρ 1637 577 0.009 0.084 0.007 0.000 −0.033 0.087 0.012 0.000 −0.032 0.089 0.012 0.000

2

α 1584 1136 −0.187 0.252 0.203 0.675 −0.021 0.296 0.089 0.950 −0.054 0.228 0.078 0.896
θ 1584 1136 −0.079 0.087 0.009 0.915 −0.019 0.099 0.010 0.930 −0.032 0.062 0.004 0.939
λ 1584 1136 0.500 0.000 0.000 0.000 0.275 0.000 0.000 0.000 0.221 0.000 0.000 0.000
ρ 1584 1136 0.011 0.060 0.004 0.000 −0.030 0.064 0.008 0.000 −0.009 0.052 0.003 0.000

3

α 1464 1633 −0.140 0.231 0.229 0.565 −0.020 0.272 0.077 0.965 −0.037 0.361 0.143 0.929
θ 1464 1633 −0.093 0.060 0.006 0.868 0.005 0.068 0.005 0.950 −0.066 0.066 0.005 0.929
λ 1464 1633 0.595 0.000 0.000 0.000 0.252 0.000 0.000 0.000 0.390 0.001 0.000 0.000
ρ 1464 1633 0.005 0.052 0.003 0.000 −0.027 0.055 0.006 0.000 −0.036 0.053 0.008 0.000

Based on Table 7.2, for LOCF increasing α leads to better estimation. This is as a result

of the current data generation mechanism. Note that we hold all other settings constant

and change the value of α during generation. All individuals have ≤ three measurements

during the study (not taken at regular time-points). Generally for larger α while holding

other settings constant results in lower values of generated survival time while smaller α

results in larger values of generated survival time. Thus we have less sparse measurements

for larger α. Both α and sparseness of measurements are changing in this case. This

behaviour is also depicted in LOCF results in Table 7.3. Overall, the two stage approaches

outperform the LOCF.

7.4.3 Sparse with measurement error.

The simulations performed in section 7.4.1 and 7.4.2 assume no covariate measurement

error. We now extend to the scenario when you have covariate measurement error. Similar

to Section 7.4.2 we consider all individuals to have ≤ three measurements during the study.

We perform simulations to investigate the effect of:

• The magnitude of measurement error σ2
ε

• The magnitude of the time varying covariate effect α
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Table 7.5: Estimation of other parameters : Effect of magnitude of covariate effect α

Joint model
α Par. reBias SD MSE

1
σu −0.180 0.004 0.000
λ −0.018 0.000 0.000
ρ 0.008 0.092 0.009

2
σu −0.182 0.004 0.000
λ −0.008 0.000 0.000
ρ 0.005 0.062 0.004

3
σu −0.187 0.004 0.000
λ 0.075 0.000 0.000
ρ 0.004 0.058 0.003

Table 7.6: Estimation of other parameters : Effect of magnitude of measurement error σ2
ε

Joint model
σε Par. reBias SD MSE

0.1
σu −0.182 0.004 0.000
λ −0.008 0.000 0.000
ρ 0.005 0.062 0.004

0.2
σu −0.184 0.007 0.000
λ −0.007 0.000 0.000
ρ 0.003 0.062 0.004

0.3
σu −0.193 0.013 0.001
λ −0.006 0.000 0.000
ρ 0.004 0.065 0.004

0.6
σu −0.150 0.025 0.001
λ 0.103 0.001 0.000
ρ 0.005 0.063 0.004

Tables 7.3 and Table 7.4 show the performance of the proposed methods (LOCF, RRC,

ORC, and joint model) in estimating the parameters of the gamma shared frailty model

in presence of delayed entry and time varying covariates. When using the LOCF approach

the time-varying covariate effect α is estimated with bias in all scenarios (i.e. when

varying either the magnitude of the time varying covariate effect α or the magnitude of

measurement error σ2
ε). From Table 7.3 the largest bias in LOCF estimator of α is about

54% when α = 1 and from Table 7.4 the largest bias in LOCF estimator of α is about

96% when σε = 0.6.

The two stage approaches yield similar results apart from when we have large magnitude of

time varying covariate effect (α=3) and large magnitude of measurement error (σε = 0.6).

For large magnitude of the time varying covariate effect (α=3), RRC performs better than
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ORC. From Table 7.3 the largest bias in RRC estimator of α is about 3% while largest bias

in ORC estimator of α is about 8%. For large magnitude of measurement error (σε = 0.6),

ORC performs better than the RRC. From Table 7.4 the largest bias in RRC estimator of

α is about 50% while the largest bias in ORC estimator of α is less than 10% .

The joint modelling approach performs well in estimation of the time-varying covariate

effect α with varying either the magnitude of the time varying covariate effect α or the

magnitude of measurement error σ2
ε . From Table 7.3 the largest bias in joint model

estimator of α is about 5% when α = 1 while from Table 7.4 the largest bias in joint

model estimator of α is about 6% for large σε.

All the methods appear to estimate θ with low bias with varying either the magnitude of

the time varying covariate effect α or the magnitude of measurement error σ2
ε (largest bias

for LOCF estimator of θ is about 10% when α = 3, largest bias for two stage approach

estimators of θ is about 8% when α = 1 and largest bias for joint model estimator of θ is

about 3% when α = 3 as shown in Table 7.3).

Overall the two stage approach and joint model yields less bias in estimation of parameters

as compared to the last observation carried forward approach in all scenarios. Bias in

estimation of α increases when measurement error increases with the exception of fitting

a joint model. Both last observation carried forward and the two stages approach method

results in consistent underestimation of the time varying covariate effect α with the last

observation carried forward under-estimating more. The coverage probabilities especially

for the time varying covariate effect α increases when two stage approach or joint model

is used. It appears that for the two stage approach the ordinary regression calibration is

sufficient in estimation of the time varying covariate effect, even for large measurement

error as it yield notably low bias.

The joint model had convergence issues (about 10% of the simulated datasets do not yield

standard error estimates of parameter α).
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7.5 Data Analysis - BMD as a time varying covariate

In chapter 5 we performed analysis of the twinsUK data using BMD as a time fixed

covariate to estimate the probability of a fracture in the next time period. The paramet-

ric (Weibull) and non-parametric (frailtysurv,B-splines) baseline hazards with gamma

frailty yielded similar results for survival probabilities. BMD at baseline was also shown

to be a significant risk factor of fracture incidence. The goal of these analysis is to address

question 2 in Section 4.4 to model the relationship between BMD and fracture incidence.

We would like to use the proposed approaches in this chapter (LOCF, ORC, RRC and

joint model) to deal with delayed entry and model BMD as a time varying covariate as

we have longitudinal BMD measurements for individuals in the study.

In this analysis we consider BMD measurements after age 50 for the 1028 individuals

(383 twin pairs and 262 singletons). We perform analysis on the whole dataset (both

singletons and twin pairs) and on twin pairs only. For the ordinary regression calibration

we fit a single mixed effect model in the first stage using all available data to compute

predicted covariate values at any age (age at entry/event times). For the risk set regression

calibration, the data has 30 unique age at entry/event times (minimum age at entry=50,

minimum event time = 52 years while maximum event time = 85 years). This is equivalent

to intervals of gap 1. For age 51 and 52 we fit a random intercept at cluster-level (twin

grouping) because individuals do not have repeated measurements at those time-points.

For the other unique age at entry/event times, we fit random intercepts for both individual

and twin pair levels. Next we compute the predicted value of the covariate for individuals

still at risk at a specific event time, arrange data in start stop format then fit a frailty

model.
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Table 7.7: Parameter estimates assuming gamma frailty distribution and BMD as a time
varying covariate in presence of delayed entry for only twin pairs. The number of observed
events is 138. s.e represents the standard error.

LOCF RRC ORC Joint model
Variable Estimate (s.e) Estimate (s.e) Estimate (s.e) Estimate (s.e)
BMD −2.507 (0.881) −3.519 (1.220) −3.569 (1.305) −4.435 (1.491)
θ 0.280 (0.291) 0.425 (0.413) 0.277 (0.284) 0.374(0.285)
λ <0.001 0.001 0.002 0.011
ρ 2.579 2.297 2.234 1.999
σu 0.047
σe 0.080
σb 0.084

Table 7.8: Parameter estimates assuming gamma frailty distribution and BMD as a time
varying covariate in presence of delayed entry for both singletons and twin pairs. The
number of observed events is 170. s.e represents the standard error.

LOCF RRC ORC Joint model
Variable Estimate (s.e) Estimate (s.e) Estimate (s.e) Estimate (s.e)
BMD −2.900 (0.768) −3.627 (1.040) −3.809 (1.106) −4.797 (1.278)
θ 0.123 (0.212) 0.285(0.327) 0.099 (0.201) 0.217 (0.195)
λ 0.003 0.003 0.049 0.215
ρ 1.944 2.072 1.528 1.415
σu 0.046
σe 0.077
σb 0.084

For all the approaches considered in Table 7.8 and Table 7.7, BMD appears to be sig-

nificantly associated with fracture incidence (for instance last observation carried forward

yields a covariate effect of −2.900, p-value of < 0.001 considering both twins and singletons

dataset and yields a covariate effect of −2.507, p-value of < 0.001 considering twins only

dataset). The two stage approaches and joint model yield larger BMD effect as compared

to the last observation carried forward. There is a lower θ estimate for ordinary regression

calibration as compared to risk set regression calibration which could be attributed to the

difference in estimate of the Weibull scale parameter λ. The residual variance of the mixed

model was quite small (σe = 0.084 for twins only dataset and σe = 0.077 for case of both

singletons and twins dataset).

7.6 Discussion and Conclusion

This chapter has developed novel methodology for modeling time varying covariates and

delayed entry in frailty models. Four approaches for modeling time varying covariates
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namely, last observation carried forward, risk set regression calibration, ordinary regression

calibration, and joint modelling approaches were adapted to the situation of clustered

data with delayed entry. Based on simulations, without covariate measurement error,

with a dense grid of measurements, and with observations not changing drastically in the

observed intervals the last observation carried forward approach has been shown to well

estimate parameters. However, with covariate measurement error the last observation

carried forward approach becomes biased (it is the worst option as compared to two stage

approaches and joint model). The naive method gives biased estimated. This is because

it does not use correct estimates of the weights during parameter estimation.

Two stage approaches can estimate parameters well for less dense grid of measurements

and low values of measurement error. For large measurement error ordinary regression

calibration performs better than risk-set regression calibration however it uses future data.

Risk-set regression calibration probably works less due to more error in estimation (less

data). It appears that the ordinary regression calibration is sufficient in estimation of the

time varying covariate effect for large measurement error. Based on the data analysis,

the two stage approaches and joint model yield larger BMD effect as compared to the

last observation carried forward. The R codes used in the simulation study and the data

analysis are in Github (Time-Varying-Covariate).

In the data application, results of ordinary regression calibration and risk-set regression

calibration are similar. This is probably because we have a large dataset or maybe the

underlying covariate measurement error is relatively small. For a smaller dataset, the

ordinary regression calibration or joint model would be preferred depending on the as-

sumptions. There is some little differences in the parameter estimates when we consider

twin pairs only versus when we consider both singletons and twin pairs. This differences

could be due to randomness or due to having more data when we consider both singletons

and twin pairs. Overall we have a larger BMD effect if we use BMD as a time-varying

covariate as compared to BMD as a time fixed covariate. Therefore use of BMD as a time

fixed covariate could potentially lead to underestimation of it’s effect on fracture incidence.

An extension of simulation study in section 7.4.2 would be to investigate the magnitude of

varying frailty variance θ. The joint model fitted here updates the frailty distribution only,

an extension would be to update both frailty and twin effect from the longitudinal model.

https://github.com/Annah92/Time-Varying-Covariate
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This would be challenging as the updating the normal random effect distribution would

increase the complexity of the marginal likelihood. This chapter considered one random

effect (random intercept) in the longitudinal model. This could be extended to two random

effects (random intercept and random slope) which would be more complicated to deal

with multi-dimension in integration.



Chapter 8

Conclusion and future work

This chapter summarizes the main results of the thesis, provides future works and includes

suggestions which could be improved further.

In summary: Chapter 1 gave a general introduction of the thesis, Chapter 2 gave a back-

ground of time independent covariate model while Chapter 3 gave a background of Cox

model when dealing with with time varying covariates. Chapter 4 described the TwinsUK

study on fracture incidence, BMD and health status. Chapter 5 applied shared frailty

model to the TwinsUK cohort to predict the probability of experiencing a fracture in

the next time period (e.g. five or ten years) given their bone mineral densities (BMD)

and their frailty index. We considered models with both parametric and flexible baseline

hazards. Chapter 6 is a simulation based study on investigating the impact of frailty

misspecification on estimation of parameters and survival probabilities. This was the first

study to investigate the effect of frailty misspecification on survival probabilities. In Chap-

ter 7 novel methodology for modeling time varying covariates and delayed entry in frailty

models using age as time scale was developed. In particular, four approaches for mod-

eling time varying covariates for singletons namely, last observation carried forward, risk

set regression calibration, ordinary regression calibration, and joint modelling approaches

were adapted to the situation of clustered data with delayed entry. Via simulations we

investigated how the last observation carried forward and regression calibration approach

fit covariates generated with and without measurement error. We then model effect of

BMD as a time varying covariate on fracture using age as time scale while taking into

account delayed entry.

109
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8.1 Summary of results

From this thesis we make the following conclusions:

1. From data analysis in Chapter 5 the gamma distributed frailty model with Weibull

baseline probably fits the data well. This is because the parametric and flexible

baseline hazards with gamma frailty yielded similar results of parameter estimates

and survival probabilities. BMD is a significant risk factor of fracture incidence

(which is in line with literature) whereas frailty index is not. Overall, low BMD

value leads to higher probability of fracture.

2. From simulation results in Chapter 6 we observe that in the case of small frailty vari-

ance using a wrong frailty distribution still allows us to measure the fixed regression

coefficient and survival probabilities without bias (underestimation or overestima-

tion). However, this robustness does not seem to hold in several cases at larger

frailty variances. The Weibull baseline hazard scale parameter corrected for the

wrong frailty in most scenarios. However, for some extreme cases it appears that

the scale parameter cannot adjust and thus parameters and survival probabilities

are affected. Using a flexible function for the baseline hazard (plug-in estimator or

splines) improves estimation of parameters as well as survival probabilities in the

presence of frailty distribution misspecification.

3. From simulation results in Chapter 7 we observe that without covariate measure-

ment error, with a dense grid of measurements, and with observations not changing

drastically in the observed intervals the last observation carried forward approach

has been shown to well estimate parameters but becomes the worst option when we

have covariate measurement error. Two stage approaches can estimate parameters

well for less dense grid of measurements and low values of measurement error. It

appears that the ordinary regression calibration is sufficient in estimation of the time

varying covariate effect for large measurement error as it performs notably better

than risk-set regression calibration.
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8.2 Publishable material

The publishable material from the thesis is as follows:

1. Title:Use of shared gamma frailty model in analysis of survival data in

twins (Muli et al., 2021). This paper is already published. It is based on Chapter

5 and contains results on analysis of the TwinsUK cohort with an aim of estimating

survival probabilities of fracture incidence in the next time period for elderly.

2. Title:The role of baseline hazard in frailty misspecification correction.

This paper will be based on Chapter 6 and will contain results on the investiga-

tion of the impact of using the wrong frailty distribution on estimation of regression

coefficients, baseline hazard parameters and survival probabilities.

3. Title: Modeling the effect of time varying covariate on survival subject

to delayed entry in twins. This paper will be based on Chapter 7 and will

develop novel methodology that deals with delayed entry as well as time varying

covariates simultaneously for clustered data when using age a time scale. Results on

application of developed methodology to the TwinsUK cohort will also be provided.

Also included in this paper will be simulation results on how different approaches fit

covariates generated with or without measurement error.

8.3 Improvement of the study and future work

In the joint model discussed in Section 7.3.4 we chose to estimate ui and not bij because

of mathematical convenience. Fixing bij leaves out only outer integrals in the likelihood

shown in Equation (7.13). This could be improved to considering either a full joint es-

timation of all the parameters or fixing ui and estimating bij . However, we hypothesize

that this would be more computational complex. Also, sensitivity analysis is required.

In this dissertation we consider random intercept only for the longitudinal regression

model. This could be extended to include a random slope. The challenge would be

increasing random effects increases the complexity of the model because of increase di-

mension in integrating out random effects when computing marginal likelihood when a
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joint model is fitted. This complexity could be dealt with by considering the two stage

approaches. An extension of simulation study in Section 7.4.2 would be to investigate the

magnitude of varying frailty variance θ. All simulations considered in this thesis (Chapter

6 and Chapter 7) involves clusters of size 2 limiting generalization to cluster of size two

only like twins data. An extension would be to consider clusters of large sizes (> 2).

Glycan age changes with age but we do not have enough glycan information to be able

to fit it as a time varying covariate. This is a limitation of the dataset and could be why

frailty index was not significant. An extension for using glycomics would be to consider

use of age specific profiles from other studies.

Analysis in both Chapter 5 and Chapter 7 considered modeling only dizygotic twin pairs,

this could be extended to model both dizygotic and monozygotic twin pairs. This would

bring about a challenge on assumptions to make to differentiate between dizygotic and

monozygotic in the model. An approach to this would be to model with two variance

components.

An extension of Chapter 5, Chapter 6 and Chapter 7 is updating the survival probability

each time. This will allow to dynamically predict the risk of event for a subject, given

the subject’s history of covariates. A further extension would be to analyze fractures as a

recurrent event. Recurrent event analysis covers situations where the event of interest may

occur multiple times per subject. This increases the complexity of the model as it would

require an additional random effect for the recurrent event. Competing risks could also be

considered to model drop outs due to severe illness and death. In the dissertation the frailty

term does not change over time or age. It may also be of interest in some applications

to model time-varying frailties, for instance we could have time varying frailties to model

changes in lifestyle (Gottard et al., 2012).



Appendix A

Simulation results

A.1 The role of baseline hazard in frailty misspecification
correction

113



APPENDIX A. SIMULATION RESULTS 114

Relative bias (Bias), standard deviation (SD), and mean square error (MSE) for covariate
effect β across 1000 Monte Carlo trials. The data are generated using gamma, truncated
gamma, mixture normal, and lognormal frailty distributions and then Gamma frailty
models (different baseline hazards) are fitted. The bold typeface indicates cases where the
relative bias is greater than 5%.

Gamma _Weibull Gamma _Plug-in Gamma _Splines
θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.1
100 0.005 0.209 0.043 0.050 0.230 0.059 −0.011 0.196 0.038
200 0.003 0.137 0.019 0.057 0.168 0.035 0.044 0.171 0.033
400 0.005 0.099 0.010 0.073 0.133 0.030 0.026 0.113 0.014
800 0.000 0.072 0.005 −0.006 0.091 0.008 −0.001 0.081 0.006

0.5
100 −0.001 0.235 0.055 −0.031 0.235 0.057 0.014 0.241 0.057
200 0.005 0.178 0.032 −0.017 0.183 0.034 0.002 0.228 0.052
400 0.004 0.115 0.013 −0.015 0.127 0.017 0.004 0.130 0.017
800 −0.002 0.080 0.006 −0.010 0.019 0.008 −0.001 0.088 0.008

2
100 0.008 0.308 0.095 −0.029 0.304 0.094 0.034 0.312 0.100
200 0.008 0.217 0.047 −0.012 0.216 0.047 0.013 0.216 0.047
400 0.003 0.147 0.022 −0.009 0.150 0.023 0.003 0.155 0.024
800 0.005 0.103 0.011 −0.004 0.098 0.010 0.005 0.106 0.011

Tr
un

ca
te

d
G

am
m

a

0.1
100 0.002 0.210 0.044 0.016 0.208 0.044 0.004 0.154 0.023
200 0.007 0.143 0.021 −0.004 0.147 0.022 0.008 0.159 0.025
400 0.003 0.104 0.011 0.000 0.105 0.011 0.010 0.123 0.015
800 0.000 0.072 0.005 −0.002 0.076 0.006 −0.003 0.074 0.006

0.5
100 −0.016 0.225 0.051 −0.006 0.257 0.066 −0.021 0.239 0.057
200 −0.034 0.153 0.026 −0.034 0.157 0.027 −0.011 0.172 0.030
400 −0.029 0.103 0.013 −0.002 0.118 0.014 −0.018 0.181 0.033
800 −0.027 0.073 0.007 −0.014 0.081 0.007 −0.019 0.088 0.009

2
100 −0.044 0.253 0.068 −0.047 0.265 0.075 −0.041 0.255 0.069
200 −0.064 0.172 0.039 −0.043 0.201 0.045 −0.048 0.179 0.037
400 −0.062 0.119 0.023 −0.046 0.123 0.020 −0.047 0.128 0.021
800 −0.062 0.081 0.015 −0.042 0.085 0.011 −0.048 0.083 0.012

Lo
gn

or
m

al

0.1
100 0.025 0.237 0.051 0.043 0.241 0.062 −0.020 0.227 0.052
200 0.011 0.122 0.015 0.007 0.147 0.022 0.025 0.195 0.039
400 0.008 0.119 0.014 −0.002 0.110 0.012 0.001 0.107 0.011
800 −0.002 0.072 0.005 −0.003 0.075 0.006 −0.004 0.078 0.006

0.5
100 −0.007 0.231 0.053 −0.024 0.249 0.063 −0.024 0.385 0.142
200 −0.011 0.157 0.025 −0.020 0.164 0.028 −0.034 0.235 0.058
400 −0.018 0.116 0.014 −0.024 0.121 0.016 −0.018 0.181 0.033
800 −0.019 0.078 0.007 −0.021 0.082 0.008 −0.015 0.085 0.008

2
100 −0.048 0.278 0.083 −0.055 0.281 0.086 −0.030 0.291 0.087
200 −0.053 0.184 0.040 −0.032 0.201 0.043 0.031 0.204 0.044
400 −0.061 0.137 0.027 −0.044 0.142 0.025 −0.034 0.147 0.024
800 −0.060 0.093 0.017 −0.041 0.097 0.013 −0.041 0.100 0.014

M
ix

tu
re

N
or

m
al

0.1
100 0.005 0.266 0.065 −0.014 0.234 0.055 −0.009 0.245 0.060
200 −0.012 0.132 0.017 0.001 0.158 0.025 −0.044 0.352 0.118
400 −0.011 0.107 0.012 −0.008 0.112 0.013 −0.059 0.166 0.034
800 −0.013 0.078 0.006 −0.013 0.085 0.008 −0.053 0.180 0.038

0.5
100 0.012 0.310 0.096 −0.026 0.307 0.096 −0.005 0.285 0.081
200 0.007 0.218 0.048 −0.012 0.216 0.047 −0.008 0.210 0.044
400 −0.003 0.155 0.024 −0.013 0.156 0.025 −0.021 0.141 0.021
800 −0.007 0.108 0.012 −0.010 0.112 0.013 −0.016 0.103 0.011

2
100 0.063 0.434 0.197 0.030 0.398 0.160 0.066 0.403 0.172
200 0.038 0.300 0.093 −0.017 0.291 0.085 0.051 0.289 0.089
400 0.032 0.208 0.046 −0.009 0.203 0.041 0.029 0.198 0.041
800 0.020 0.145 0.022 −0.011 0.145 0.021 0.031 0.140 0.022
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) for covariate
effect β across 1000 Monte Carlo trials. The data are generated using gamma, truncated
gamma, mixture normal, and lognormal frailty distributions and then inverse Gaussian
frailty models (different baseline hazards) are fitted. The bold typeface indicates cases
where the relative bias is greater than 5%.

IG _Weibull IG _Plug-in IG _Splines
θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.1
100 0.034 0.175 0.028 0.016 0.222 0.050 −0.009 0.212 0.044
200 0.016 0.162 0.025 0.004 0.153 0.023 0.014 0.165 0.028
400 −0.011 0.122 0.015 0.007 0.112 0.013 −0.008 0.111 0.012
800 −0.013 0.081 0.007 −0.008 0.092 0.008 0.004 0.079 0.006

0.5
100 −0.008 0.239 0.057 −0.042 0.238 0.061 0.002 0.249 0.062
200 −0.004 0.175 0.031 −0.029 0.176 0.033 −0.014 0.168 0.029
400 −0.010 0.117 0.014 −0.032 0.119 0.016 −0.019 0.127 0.017
800 −0.009 0.084 0.007 −0.031 0.085 0.009 −0.024 0.086 0.009

2
100 −0.170 0.265 0.135 −0.216 0.250 0.168 −0.144 0.257 0.113
200 −0.156 0.187 0.090 −0.196 0.182 0.120 −0.157 0.177 0.087
400 −0.167 0.126 0.079 −0.205 0.124 0.110 −0.161 0.124 0.074
800 −0.167 0.085 0.070 −0.204 0.086 0.101 −0.161 0.089 0.066

Tr
un

ca
te

d
G

am
m

a

0.1
100 0.047 0.209 0.038 0.009 0.219 0.048 0.029 0.229 0.054
200 −0.011 0.127 0.016 −0.007 0.154 0.024 0.003 0.143 0.020
400 0.018 0.143 0.020 −0.003 0.112 0.012 0.006 0.113 0.013
800 −0.005 0.083 0.007 −0.002 0.079 0.006 0.008 0.077 0.006

0.5
100 −0.024 0.216 0.045 0.005 0.244 0.060 0.019 0.265 0.070
200 −0.012 0.155 0.024 −0.012 0.168 0.028 −0.001 0.170 0.029
400 −0.008 0.114 0.013 −0.003 0.129 0.017 0.003 0.127 0.016
800 −0.007 0.078 0.006 −0.002 0.088 0.008 0.000 0.085 0.007

2
100 0.036 0.274 0.078 0.006 0.265 0.070 0.023 0.091 0.009
200 0.012 0.182 0.033 0.012 0.187 0.035 0.025 0.193 0.038
400 0.014 0.131 0.018 0.014 0.134 0.018 0.024 0.138 0.020
800 0.014 0.088 0.008 0.018 0.091 0.009 0.023 0.091 0.009

Lo
gn

or
m

al

0.1
100 0.020 0.257 0.059 0.018 0.216 0.047 0.043 0.201 0.044
200 0.017 0.127 0.016 0.002 0.152 0.023 0.021 0.169 0.029
400 0.010 0.121 0.014 −0.005 0.116 0.013 0.007 0.118 0.014
800 0.001 0.073 0.005 −0.003 0.078 0.006 0.006 0.073 0.005

0.5
100 0.015 0.236 0.056 −0.017 0.247 0.062 0.014 0.252 0.064
200 0.011 0.163 0.027 0.007 0.166 0.028 0.008 0.184 0.034
400 0.001 0.121 0.015 −0.006 0.128 0.016 0.005 0.125 0.016
800 0.000 0.081 0.006 −0.004 0.085 0.007 −0.001 0.086 0.007

2
100 −0.028 0.274 0.077 −0.071 0.264 0.081 −0.037 0.267 0.074
200 −0.034 0.182 0.036 −0.059 0.178 0.039 −0.036 0.172 0.032
400 −0.038 0.137 0.022 −0.056 0.135 0.025 −0.037 0.139 0.022
800 −0.041 0.091 0.012 −0.055 0.092 0.015 −0.043 0.097 0.014

M
ix

tu
re

N
or

m
al

0.1
100 0.014 0.262 0.064 −0.014 0.245 0.060 0.015 0.244 0.060
200 0.004 0.145 0.021 0.000 0.171 0.029 0.012 0.180 0.033
400 0.005 0.112 0.013 0.004 0.121 0.015 −0.001 0.121 0.015
800 0.002 0.080 0.006 0.004 0.089 0.008 0.001 0.088 0.008

0.5
100 −0.113 0.257 0.095 −0.174 0.246 0.128 −0.111 0.262 0.097
200 −0.114 0.188 0.065 −0.168 0.185 0.098 −0.113 0.194 0.066
400 −0.117 0.132 0.048 −0.167 0.130 0.080 −0.124 0.134 0.053
800 −0.124 0.093 0.043 −0.171 0.094 0.074 −0.123 0.100 0.044

2
100 −0.393 0.289 0.431 −0.473 0.293 0.589 −0.343 0.312 0.362
200 −0.404 0.209 0.411 −0.480 0.212 0.563 −0.343 0.215 0.310
400 −0.400 0.143 0.381 −0.477 0.150 0.534 −0.359 0.156 0.314
800 −0.406 0.100 0.381 −0.478 0.112 0.527 −0.357 0.113 0.299
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(0.3) without covariate (x = 0) across 1000 Monte Carlo trials. The
data are generated using gamma, truncated gamma, and mixture normal frailty distribu-
tions and then gamma frailty models (different baseline hazards) are fitted.

True Gamma _Weibull Gamma _Plug-in Gamma _Splines
Sp(0.3) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.914 0.1
100 −0.001 0.017 0.000 0.004 0.019 0.000 −0.002 0.016 0.000
200 0.000 0.011 0.000 0.006 0.013 0.000 0.003 0.014 0.000
400 0.000 0.008 0.000 0.007 0.010 0.000 0.001 0.008 0.000
800 0.000 0.006 0.000 0.000 0.007 0.000 0.000 0.007 0.000

0.916 0.5
100 −0.002 0.017 0.000 −0.004 0.019 0.000 0.002 0.021 0.000
200 0.000 0.013 0.000 −0.002 0.015 0.000 −0.006 0.031 0.001
400 0.000 0.009 0.000 −0.001 0.010 0.000 0.000 0.010 0.000
800 0.000 0.006 0.000 −0.001 0.008 0.000 0.000 0.007 0.000

0.921 2
100 −0.001 0.020 0.000 −0.002 0.022 0.000 0.001 0.020 0.000
200 0.000 0.013 0.000 −0.001 0.015 0.000 0.000 0.015 0.000
400 0.000 0.010 0.000 −0.001 0.011 0.000 0.000 0.010 0.000
800 0.000 0.007 0.000 0.000 0.008 0.000 0.000 0.007 0.000

Tr
un

ca
te

d
G

am
m

a

0.914 0.1
100 0.003 0.014 0.000 0.002 0.018 0.000 0.000 0.014 0.000
200 0.002 0.012 0.000 −0.001 0.013 0.000 0.000 0.013 0.000
400 0.001 0.008 0.000 0.000 0.009 0.000 0.000 0.010 0.000
800 0.000 0.006 0.000 0.000 0.007 0.000 −0.001 0.007 0.000

0.916 0.5
100 0.003 0.015 0.000 0.001 0.021 0.000 −0.001 0.019 0.000
200 0.001 0.012 0.000 −0.001 0.013 0.000 0.000 0.013 0.000
400 0.000 0.008 0.000 0.002 0.010 0.000 −0.001 0.018 0.000
800 0.001 0.006 0.000 0.001 0.007 0.000 0.000 0.007 0.000

0.913 2
100 0.003 0.018 0.000 0.002 0.022 0.000 0.000 0.020 0.000
200 0.003 0.013 0.000 0.002 0.015 0.000 0.000 0.014 0.000
400 0.002 0.009 0.000 0.002 0.010 0.000 0.001 0.010 0.000
800 0.003 0.006 0.000 0.002 0.007 0.000 0.001 0.007 0.000

Lo
gn

or
m

al

0.914 0.1
100 −0.001 0.024 0.001 0.003 0.019 0.000 −0.001 0.017 0.000
200 0.001 0.011 0.000 0.001 0.013 0.000 0.002 0.014 0.000
400 0.000 0.009 0.000 0.000 0.010 0.000 0.000 0.009 0.000
800 0.000 0.006 0.000 0.000 0.007 0.000 0.000 0.006 0.000

0.916 0.5
100 0.001 0.019 0.000 −0.002 0.020 0.000 −0.027 0.054 0.003
200 0.001 0.012 0.000 0.000 0.014 0.000 −0.005 0.021 0.000
400 0.000 0.009 0.000 −0.001 0.010 0.000 −0.001 0.018 0.000
800 0.001 0.006 0.000 0.000 0.007 0.000 0.000 0.007 0.000

0.927 2
100 0.004 0.017 0.000 0.002 0.019 0.000 0.003 0.019 0.000
200 0.005 0.012 0.000 0.005 0.014 0.000 0.002 0.013 0.000
400 0.004 0.009 0.000 0.004 0.010 0.000 0.003 0.010 0.000
800 0.005 0.006 0.000 0.004 0.007 0.000 0.003 0.007 0.000

M
ix

tu
re

N
or

m
al

0.915 0.1
100 0.000 0.018 0.000 0.000 0.019 0.000 −0.003 0.020 0.000
200 0.001 0.010 0.000 0.001 0.013 0.000 −0.009 0.025 0.001
400 0.000 0.009 0.000 0.000 0.010 0.000 −0.027 0.052 0.003
800 0.000 0.006 0.000 −0.001 0.007 0.000 −0.021 0.046 0.002

0.921 0.5
100 0.000 0.019 0.000 −0.002 0.022 0.000 −0.003 0.020 0.000
200 0.000 0.014 0.000 −0.001 0.015 0.000 −0.004 0.015 0.000
400 −0.001 0.010 0.000 −0.001 0.011 0.000 −0.004 0.010 0.000
800 −0.001 0.007 0.000 −0.001 0.008 0.000 −0.003 0.007 0.000

0.949 2
100 −0.014 0.020 0.001 −0.015 0.021 0.001 −0.012 0.020 0.001
200 −0.014 0.014 0.000 −0.015 0.015 0.000 −0.012 0.014 0.000
400 −0.014 0.010 0.000 −0.015 0.011 0.001 −0.012 0.010 0.000
800 −0.015 0.007 0.000 −0.016 0.008 0.000 −0.012 0.007 0.000
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(0.3) with covariate (x = 1) across 1000 Monte Carlo trials. The
data are generated using gamma, truncated gamma, and mixture normal frailty distribu-
tions and then gamma frailty models(different baseline hazards) are fitted.

True Gamma _Weibull Gamma _Plug-in Gamma _Splines
Sp(0.3) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.673 0.1
100 −0.003 0.038 0.001 −0.003 0.045 0.002 0.002 0.041 0.002
200 0.001 0.026 0.001 −0.005 0.032 0.001 −0.006 0.029 0.001
400 0.000 0.018 0.000 −0.008 0.023 0.001 −0.008 0.022 0.001
800 0.000 0.013 0.000 0.005 0.016 0.000 0.001 0.015 0.000

0.693 0.5
100 −0.001 0.038 0.001 0.003 0.044 0.002 0.008 0.039 0.002
200 0.003 0.028 0.001 0.006 0.032 0.001 −0.012 0.043 0.002
400 0.001 0.019 0.000 0.003 0.023 0.001 −0.001 0.022 0.000
800 0.000 0.014 0.000 0.001 0.015 0.000 −0.001 0.016 0.000

0.744 2
100 0.002 0.038 0.001 0.007 0.042 0.002 −0.001 0.041 0.002
200 −0.001 0.028 0.001 0.002 0.031 0.001 −0.001 0.029 0.001
400 0.000 0.019 0.000 0.001 0.021 0.000 0.001 0.021 0.000
800 0.000 0.013 0.000 0.000 0.015 0.000 −0.001 0.014 0.000

Tr
un

ca
te

d
G

am
m

a

0.673 0.1
100 −0.015 0.034 0.001 0.005 0.046 0.002 −0.001 0.027 0.001
200 0.010 0.026 0.001 0.001 0.031 0.001 −0.001 0.030 0.001
400 −0.002 0.015 0.000 0.001 0.022 0.000 −0.003 0.024 0.001
800 0.001 0.013 0.000 0.000 0.015 0.000 −0.001 0.016 0.000

0.690 0.5
100 −0.006 0.033 0.001 0.003 0.047 0.002 0.000 0.040 0.002
200 0.005 0.027 0.001 0.002 0.031 0.001 −0.003 0.032 0.001
400 0.004 0.019 0.000 −0.002 0.023 0.001 −0.002 0.031 0.001
800 0.005 0.013 0.000 −0.002 0.016 0.000 0.000 0.015 0.000

0.711 2
100 0.002 0.040 0.002 −0.001 0.047 0.002 −0.008 0.041 0.002
200 0.004 0.029 0.001 −0.003 0.032 0.001 −0.008 0.032 0.001
400 0.005 0.020 0.000 −0.004 0.023 0.001 −0.007 0.023 0.001
800 0.006 0.015 0.000 −0.006 0.016 0.000 −0.008 0.015 0.000

Lo
gn

or
m

al

0.673 0.1
100 −0.009 0.048 0.002 −0.003 0.043 0.002 −0.001 0.035 0.001
200 0.002 0.019 0.000 0.002 0.030 0.001 −0.003 0.034 0.001
400 −0.004 0.021 0.000 0.000 0.023 0.001 −0.002 0.020 0.000
800 0.002 0.013 0.000 0.001 0.016 0.000 0.001 0.017 0.000

0.696 0.5
100 0.006 0.034 0.001 0.000 0.044 0.002 0.065 0.072 0.007
200 0.003 0.026 0.001 0.002 0.031 0.001 −0.006 0.030 0.001
400 0.002 0.020 0.000 0.001 0.023 0.001 −0.002 0.031 0.001
800 0.003 0.013 0.000 0.001 0.016 0.000 −0.001 0.015 0.000

0.771 2
100 −0.002 0.038 0.001 −0.006 0.043 0.002 −0.011 0.043 0.002
200 −0.002 0.027 0.001 −0.006 0.030 0.001 −0.014 0.031 0.001
400 −0.001 0.020 0.000 −0.007 0.022 0.001 −0.013 0.021 0.001
800 −0.001 0.014 0.000 −0.007 0.016 0.000 −0.011 0.015 0.000

M
ix

tu
re

N
or

m
al

0.684 0.1
100 −0.008 0.045 0.002 0.007 0.043 0.002 −0.002 0.047 0.002
200 0.008 0.029 0.001 0.002 0.032 0.001 −0.007 0.046 0.002
400 0.003 0.019 0.000 0.001 0.022 0.000 −0.055 0.090 0.009
800 0.003 0.013 0.000 0.001 0.016 0.000 −0.037 0.064 0.005

0.748 0.5
100 0.005 0.040 0.002 0.008 0.044 0.002 −0.007 0.039 0.002
200 0.003 0.027 0.001 0.006 0.030 0.001 −0.004 0.029 0.001
400 0.003 0.019 0.000 0.004 0.021 0.000 −0.001 0.021 0.000
800 0.003 0.013 0.000 0.003 0.015 0.000 −0.002 0.014 0.000

0.838 2
100 −0.005 0.033 0.001 −0.003 0.037 0.001 0.000 0.031 0.001
200 −0.006 0.023 0.001 −0.005 0.026 0.001 −0.002 0.023 0.001
400 −0.006 0.015 0.000 −0.007 0.017 0.000 −0.001 0.017 0.000
800 −0.007 0.011 0.000 −0.008 0.012 0.000 −0.002 0.011 0.000
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(0.3) without covariate (x = 0) across 1000 Monte Carlo trials. The
data are generated using gamma, truncated gamma, and mixture normal frailty distribu-
tions and then inverse Gaussian frailty models (different baseline hazards) are fitted.

True IG _Weibull IG _Plug-in IG _Splines
Sp(0.3) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.914 0.1
100 0.007 0.010 0.000 0.000 0.019 0.000 −0.006 0.018 0.000
200 0.004 0.017 0.000 0.000 0.012 0.000 0.000 0.013 0.000
400 −0.003 0.010 0.000 0.000 0.009 0.000 −0.002 0.009 0.000
800 −0.001 0.006 0.000 0.000 0.007 0.000 0.001 0.007 0.000

0.916 0.5
100 −0.006 0.018 0.000 −0.007 0.002 0.000 −0.003 0.020 0.000
200 −0.004 0.013 0.000 −0.005 0.014 0.000 −0.004 0.014 0.000
400 −0.005 0.009 0.000 −0.005 0.010 0.000 −0.004 0.010 0.000
800 −0.005 0.006 0.000 −0.005 0.007 0.000 −0.004 0.007 0.000

0.921 2
100 −0.016 0.019 0.001 −0.022 0.023 0.001 −0.013 0.020 0.001
200 −0.015 0.012 0.000 −0.022 0.016 0.001 −0.014 0.014 0.000
400 −0.016 0.009 0.000 −0.023 0.012 0.001 −0.014 0.010 0.000
800 −0.016 0.006 0.000 −0.023 0.008 0.001 −0.014 0.008 0.000

Tr
un

ca
te

d
G

am
m

a

0.914 0.1
100 −0.008 0.013 0.000 0.001 0.019 0.000 0.001 0.020 0.000
200 0.003 0.012 0.000 −0.001 0.013 0.000 0.000 0.013 0.000
400 0.001 0.008 0.000 0.000 0.009 0.000 0.000 0.009 0.000
800 0.001 0.007 0.000 0.000 0.007 0.000 0.000 0.006 0.000

0.916 0.5
100 0.001 0.018 0.000 0.002 0.019 0.000 0.001 0.022 0.000
200 0.001 0.011 0.000 0.000 0.014 0.000 0.001 0.012 0.000
400 0.001 0.009 0.000 0.001 0.010 0.000 0.001 0.010 0.000
800 0.001 0.006 0.000 0.001 0.007 0.000 0.001 0.007 0.000

0.913 2
100 0.001 0.019 0.000 0.000 0.021 0.000 0.002 0.007 0.000
200 0.002 0.013 0.000 0.002 0.015 0.000 0.001 0.014 0.000
400 0.002 0.010 0.000 0.002 0.010 0.000 0.002 0.010 0.000
800 0.002 0.007 0.000 0.002 0.007 0.000 0.002 0.007 0.000

Lo
gn

or
m

al

0.914 0.1
100 −0.001 0.024 0.001 0.001 0.018 0.000 0.001 0.019 0.000
200 0.001 0.011 0.000 0.000 0.013 0.000 0.003 0.012 0.000
400 0.000 0.009 0.000 −0.001 0.010 0.000 0.001 0.009 0.000
800 0.000 0.006 0.000 0.000 0.007 0.000 0.001 0.006 0.000

0.916 0.5
100 0.000 0.019 0.000 −0.003 0.019 0.000 −0.002 0.020 0.000
200 0.000 0.012 0.000 −0.005 0.014 0.000 −0.001 0.013 0.000
400 −0.001 0.009 0.000 −0.001 0.010 0.000 0.000 0.010 0.000
800 0.000 0.006 0.000 0.000 0.007 0.000 0.000 0.007 0.000

0.927 2
100 −0.004 0.018 0.000 −0.005 0.020 0.000 −0.003 0.019 0.000
200 −0.004 0.013 0.000 −0.004 0.014 0.000 −0.007 0.014 0.000
400 −0.004 0.009 0.000 −0.004 0.010 0.000 −0.003 0.010 0.000
800 −0.004 0.007 0.000 −0.005 0.008 0.000 −0.003 0.007 0.000

M
ix

tu
re

N
or

m
al

0.915 0.1
100 0.000 0.018 0.000 −0.002 0.190 0.000 −0.003 0.020 0.000
200 0.001 0.011 0.000 0.000 0.014 0.000 −0.001 0.013 0.000
400 0.000 0.009 0.000 0.000 0.010 0.000 −0.001 0.009 0.000
800 0.000 0.006 0.000 0.000 0.007 0.000 0.000 0.007 0.000

0.921 0.5
100 −0.006 0.017 0.000 −0.020 0.023 0.001 −0.010 0.020 0.000
200 −0.007 0.012 0.000 −0.020 0.016 0.001 −0.009 0.015 0.000
400 −0.007 0.009 0.000 −0.020 0.011 0.000 −0.009 0.011 0.000
800 −0.008 0.006 0.000 −0.021 0.008 0.000 −0.010 0.008 0.000

0.949 2
100 −0.014 0.014 0.000 −0.035 0.022 0.002 −0.019 0.018 0.001
200 −0.015 0.010 0.000 −0.037 0.016 0.001 −0.021 0.014 0.001
400 −0.015 0.007 0.000 −0.038 0.011 0.001 −0.020 0.010 0.000
800 −0.016 0.005 0.000 −0.038 0.008 0.001 −0.020 0.007 0.000
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(0.3) with covariate (x = 1) across 1000 Monte Carlo trials. The
data are generated using gamma, truncated gamma, and mixture normal frailty distribu-
tions and then inverse Gaussian frailty models (different baseline hazards) are fitted. The
bold typeface indicates cases where the relative bias is greater than 5%.

True IG _Weibull IG _Plug-in IG _Splines
Sp(0.3) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.673 0.1
100 0.024 0.041 0.002 0.002 0.044 0.002 −0.010 0.041 0.002
200 0.018 0.022 0.001 0.001 0.032 0.001 −0.003 0.029 0.001
400 −0.001 0.015 0.000 0.000 0.023 0.001 −0.001 0.022 0.000
800 0.004 0.011 0.000 0.006 0.015 0.000 0.004 0.015 0.000

0.693 0.5
100 0.000 0.037 0.001 0.007 0.044 0.000 0.009 0.041 0.002
200 0.003 0.027 0.001 0.010 0.031 0.001 0.006 0.030 0.001
400 0.001 0.180 0.000 0.008 0.022 0.001 0.007 0.022 0.000
800 0.000 0.013 0.000 0.007 0.015 0.000 0.007 0.015 0.000

0.744 2
100 0.042 0.032 0.002 0.038 0.040 0.002 0.043 0.037 0.002
200 0.039 0.023 0.001 0.033 0.029 0.001 0.043 0.026 0.002
400 0.040 0.016 0.001 0.034 0.020 0.001 0.043 0.019 0.001
800 0.040 0.011 0.001 0.033 0.014 0.001 0.042 0.014 0.001

Tr
un

ca
te

d
G

am
m

a

0.673 0.1
100 −0.026 0.024 0.001 0.006 0.046 0.002 −0.002 0.046 0.002
200 −0.013 0.021 0.000 0.001 0.031 0.001 −0.003 0.029 0.001
400 0.008 0.018 0.000 0.001 0.022 0.000 0.000 0.022 0.000
800 −0.002 0.014 0.000 0.000 0.015 0.000 −0.002 0.014 0.000

0.690 0.5
100 0.010 0.030 0.001 0.003 0.046 0.002 0.002 0.048 0.002
200 −0.001 0.027 0.001 0.001 0.031 0.001 −0.001 0.032 0.001
400 0.002 0.019 0.000 −0.001 0.023 0.001 −0.002 0.022 0.001
800 0.001 0.013 0.000 −0.002 0.016 0.000 −0.003 0.015 0.000

0.711 2
100 0.003 0.039 0.002 0.001 0.046 0.002 −0.005 0.015 0.000
200 0.000 0.028 0.001 0.000 0.031 0.001 −0.004 0.030 0.001
400 0.000 0.010 0.000 −0.001 0.022 0.000 −0.004 0.022 0.000
800 −0.001 0.013 0.000 −0.003 0.015 0.000 −0.005 0.015 0.000

Lo
gn

or
m

al

0.673 0.1
100 −0.009 0.047 0.002 −0.001 0.043 0.002 −0.011 0.045 0.002
200 0.001 0.019 0.000 0.002 0.030 0.001 0.001 0.030 0.001
400 −0.005 0.021 0.000 0.001 0.023 0.001 0.001 0.009 0.000
800 0.001 0.013 0.000 0.002 0.016 0.000 0.000 0.015 0.000

0.696 0.5
100 0.003 0.033 0.001 0.002 0.043 0.002 −0.004 0.043 0.002
200 0.000 0.025 0.001 0.003 0.030 0.001 0.000 0.030 0.001
400 −0.001 0.019 0.000 0.001 0.023 0.001 0.000 0.022 0.000
800 0.000 0.013 0.000 0.002 0.016 0.000 0.001 0.015 0.000

0.771 2
100 0.005 0.033 0.001 0.007 0.039 0.002 0.012 0.035 0.001
200 0.005 0.023 0.001 0.008 0.028 0.001 −0.001 0.028 0.001
400 0.004 0.017 0.000 0.007 0.020 0.000 0.006 0.019 0.000
800 0.005 0.012 0.000 0.007 0.014 0.000 0.007 0.014 0.000

M
ix

tu
re

N
or

m
al

0.684 0.1
100 −0.011 0.045 0.002 0.009 0.043 0.002 −0.006 0.041 0.002
200 0.006 0.029 0.001 0.004 0.031 0.001 −0.002 0.030 0.001
400 0.001 0.019 0.000 0.002 0.022 0.001 0.001 0.020 0.000
800 0.001 0.013 0.000 0.001 0.016 0.000 0.000 0.015 0.000

0.748 0.5
100 0.060 0.030 0.003 0.040 0.040 0.002 0.052 0.036 0.003
200 0.058 0.021 0.002 0.039 0.027 0.002 0.050 0.025 0.002
400 0.057 0.015 0.002 0.038 0.019 0.001 0.052 0.019 0.002
800 0.057 0.010 0.002 0.037 0.013 0.001 0.051 0.013 0.002

0.838 2
100 0.058 0.023 0.003 0.031 0.034 0.002 0.045 0.030 0.002
200 0.057 0.016 0.003 0.030 0.024 0.001 0.041 0.020 0.002
400 0.057 0.011 0.002 0.029 0.017 0.001 0.045 0.015 0.002
800 0.056 0.008 0.002 0.028 0.011 0.001 0.045 0.012 0.002
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(1) without covariate (x = 0) across 1000 Monte Carlo trials. The
data are generated using gamma, truncated gamma, and mixture normal frailty distribu-
tions and then gamma frailty models (different baseline hazards) are fitted.

True Gamma _Weibull Gamma _Plug-in Gamma _Splines
Sp(1) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.386 0.1
100 −0.005 0.052 0.003 0.033 0.058 0.004 −0.028 0.052 0.003
200 −0.001 0.030 0.001 0.043 0.042 0.002 0.029 0.044 0.002
400 0.003 0.022 0.000 0.054 0.035 0.002 0.008 0.025 0.001
800 −0.001 0.015 0.000 0.003 0.014 0.000 0.002 0.017 0.000

0.444 0.5
100 −0.010 0.047 0.002 −0.004 0.054 0.003 0.016 0.056 0.003
200 0.002 0.033 0.001 −0.001 0.037 0.001 0.003 0.041 0.002
400 −0.002 0.023 0.001 −0.005 0.027 0.001 0.002 0.026 0.001
800 0.000 0.017 0.000 −0.003 0.019 0.000 0.000 0.018 0.000

0.577 2
100 0.000 0.046 0.002 0.005 0.050 0.003 0.003 0.050 0.002
200 0.001 0.032 0.001 0.003 0.036 0.001 0.001 0.036 0.001
400 0.000 0.023 0.001 0.000 0.026 0.001 0.001 0.025 0.001
800 0.000 0.016 0.000 0.000 0.018 0.000 0.000 0.018 0.000

Tr
un

ca
te

d
G

am
m

a

0.386 0.1
100 −0.015 0.043 0.002 0.017 0.054 0.003 −0.003 0.033 0.001
200 0.005 0.031 0.001 −0.004 0.038 0.001 0.016 0.034 0.001
400 0.002 0.022 0.000 0.003 0.026 0.001 −0.001 0.024 0.001
800 0.000 0.015 0.000 0.002 0.019 0.000 0.000 0.018 0.000

0.431 0.5
100 −0.011 0.044 0.002 0.027 0.061 0.004 0.005 0.052 0.003
200 −0.006 0.033 0.001 −0.005 0.039 0.002 0.003 0.038 0.001
400 −0.002 0.023 0.001 0.021 0.033 0.001 0.006 0.030 0.001
800 −0.004 0.016 0.000 0.013 0.023 0.001 0.006 0.019 0.000

0.505 2
100 −0.011 0.050 0.003 0.013 0.057 0.003 0.002 0.055 0.003
200 −0.023 0.036 0.001 −0.003 0.041 0.002 −0.003 0.039 0.001
400 −0.016 0.024 0.001 0.000 0.028 0.001 0.001 0.027 0.001
800 −0.018 0.017 0.000 −0.003 0.020 0.000 0.001 0.019 0.000

Lo
gn

or
m

al

0.386 0.1
100 0.003 0.047 0.002 0.029 0.057 0.003 0.014 0.043 0.002
200 −0.014 0.026 0.001 0.006 0.037 0.001 −0.002 0.033 0.001
400 0.002 0.022 0.000 0.002 0.026 0.001 0.004 0.027 0.001
800 −0.001 0.016 0.000 0.002 0.019 0.000 −0.003 0.018 0.000

0.449 0.5
100 0.005 0.048 0.002 0.007 0.055 0.003 −0.055 0.055 0.003
200 0.000 0.033 0.001 0.006 0.038 0.001 −0.013 0.038 0.001
400 −0.004 0.024 0.001 −0.004 0.027 0.001 0.006 0.030 0.001
800 −0.005 0.017 0.000 −0.005 0.019 0.000 0.002 0.018 0.000

0.608 2
100 −0.021 0.049 0.003 −0.002 0.051 0.003 −0.007 0.053 0.003
200 −0.019 0.035 0.001 −0.002 0.038 0.001 −0.007 0.038 0.001
400 −0.019 0.025 0.001 −0.005 0.028 0.001 −0.007 0.027 0.001
800 −0.020 0.018 0.000 −0.005 0.019 0.000 −0.006 0.019 0.000

M
ix

tu
re

N
or

m
al

0.418 0.1
100 −0.001 0.046 0.002 0.021 0.056 0.003 −0.004 0.054 0.003
200 0.007 0.030 0.001 0.025 0.043 0.002 −0.026 0.032 0.001
400 0.001 0.023 0.001 0.009 0.028 0.001 −0.023 0.022 0.001
800 0.001 0.016 0.000 0.005 0.020 0.000 −0.006 0.021 0.000

0.598 0.5
100 0.011 0.046 0.002 0.036 0.051 0.003 0.007 0.047 0.002
200 0.007 0.033 0.001 0.029 0.037 0.002 0.005 0.033 0.001
400 0.007 0.023 0.001 0.026 0.026 0.001 0.005 0.023 0.001
800 0.005 0.016 0.000 0.023 0.018 0.001 0.007 0.016 0.000

0.743 2
100 0.014 0.038 0.002 −0.004 0.043 0.002 0.005 0.040 0.002
200 0.011 0.027 0.001 −0.008 0.031 0.001 0.003 0.028 0.001
400 0.011 0.019 0.000 −0.007 0.021 0.000 0.003 0.020 0.000
800 0.010 0.013 0.000 −0.009 0.015 0.000 0.004 0.014 0.000
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(1) with covariate (x = 1) across 1000 Monte Carlo trials. The data
are generated using gamma, truncated gamma, and mixture normal frailty distributions
and then gamma frailty models (different baseline hazards) are fitted. The bold typeface
indicates cases where the relative bias is greater than 5%.

True Gamma _Weibull Gamma _Plug-in Gamma _Splines
Sp(1) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.025 0.1
100 0.071 0.039 0.002 0.000 0.014 0.000 −0.016 0.013 0.000
200 0.017 0.009 0.000 −0.069 0.010 0.000 −0.064 0.007 0.000
400 −0.004 0.006 0.000 −0.151 0.008 0.000 −0.017 0.005 0.000
800 0.005 0.004 0.000 0.010 0.005 0.000 0.003 0.005 0.000

0.095 0.5
100 −0.010 0.026 0.001 0.014 0.030 0.001 0.020 0.032 0.001
200 0.004 0.018 0.000 0.024 0.020 0.000 0.024 0.020 0.000
400 −0.001 0.013 0.000 0.016 0.014 0.000 0.010 0.014 0.000
800 0.003 0.009 0.000 0.014 0.010 0.000 0.001 0.010 0.000

0.317 2
100 0.006 0.043 0.002 0.007 0.047 0.002 −0.004 0.046 0.002
200 −0.004 0.032 0.001 −0.005 0.035 0.001 0.003 0.033 0.001
400 0.000 0.021 0.000 −0.001 0.023 0.001 0.004 0.024 0.001
800 −0.002 0.015 0.000 −0.003 0.016 0.000 0.000 0.016 0.000

Tr
un

ca
te

d
G

am
m

a

0.024 0.1
100 0.013 0.011 0.000 0.081 0.012 0.000 0.019 0.008 0.000
200 0.003 0.008 0.000 0.053 0.009 0.000 0.000 0.008 0.000
400 −0.011 0.006 0.000 0.021 0.006 0.000 −0.003 0.007 0.000
800 −0.001 0.004 0.000 0.011 0.005 0.000 0.007 0.005 0.000

0.051 0.5
100 −0.003 0.018 0.000 0.024 0.021 0.000 0.002 0.021 0.000
200 0.024 0.012 0.000 0.030 0.014 0.000 0.018 0.013 0.000
400 0.018 0.009 0.000 −0.019 0.012 0.000 0.032 0.026 0.001
800 0.008 0.006 0.000 −0.007 0.008 0.000 0.028 0.007 0.000

0.149 2
100 −0.056 0.028 0.001 −0.007 0.034 0.001 −0.012 0.033 0.001
200 −0.054 0.020 0.000 −0.007 0.025 0.001 −0.006 0.024 0.001
400 −0.053 0.014 0.000 −0.013 0.017 0.000 −0.008 0.016 0.000
800 −0.055 0.010 0.000 −0.013 0.012 0.000 −0.013 0.011 0.000

Lo
gn

or
m

al

0.024 0.1
100 0.028 0.013 0.000 0.027 0.014 0.000 0.009 0.014 0.000
200 0.033 0.007 0.000 0.054 0.009 0.000 −0.013 0.009 0.000
400 0.008 0.005 0.000 0.023 0.006 0.000 0.022 0.007 0.000
800 0.006 0.004 0.000 0.018 0.005 0.000 −0.011 0.004 0.000

0.082 0.5
100 0.010 0.024 0.001 −0.001 0.026 0.001 −0.002 0.030 0.001
200 −0.004 0.016 0.000 0.012 0.019 0.000 0.063 0.020 0.000
400 −0.011 0.011 0.000 0.015 0.013 0.000 0.032 0.026 0.001
800 −0.005 0.008 0.000 0.027 0.010 0.000 0.011 0.009 0.000

0.292 2
100 −0.054 0.038 0.002 −0.019 0.044 0.002 0.024 0.044 0.002
200 −0.045 0.028 0.001 −0.012 0.032 0.001 −0.016 0.032 0.001
400 −0.048 0.020 0.001 −0.024 0.022 0.001 −0.021 0.021 0.000
800 −0.047 0.013 0.000 −0.024 0.015 0.000 −0.021 0.015 0.000

M
ix

tu
re

N
or

m
al

0.053 0.1
100 −0.007 0.021 0.000 0.038 0.022 0.000 0.048 0.021 0.000
200 −0.018 0.011 0.000 −0.022 0.016 0.000 −0.025 0.011 0.000
400 −0.020 0.009 0.000 −0.016 0.011 0.000 0.007 0.009 0.000
800 −0.013 0.006 0.000 0.004 0.007 0.000 0.036 0.008 0.000

0.395 0.5
100 −0.088 0.042 0.003 −0.066 0.047 0.003 −0.102 0.042 0.003
200 −0.095 0.028 0.002 −0.077 0.033 0.002 −0.107 0.031 0.003
400 −0.095 0.021 0.002 −0.079 0.024 0.002 −0.102 0.021 0.002
800 −0.095 0.014 0.002 −0.079 0.016 0.001 −0.104 0.015 0.002

0.599 2
100 0.048 0.048 0.003 0.019 0.051 0.003 0.038 0.047 0.003
200 0.045 0.033 0.002 0.017 0.035 0.001 0.036 0.034 0.002
400 0.045 0.023 0.001 0.018 0.025 0.001 0.038 0.024 0.001
800 0.043 0.015 0.001 0.018 0.017 0.000 0.037 0.017 0.001
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(1) without covariate (x = 0) across 1000 Monte Carlo trials. The
data are generated using gamma, truncated gamma, and mixture normal frailty distribu-
tions and then inverse Gaussian frailty models (different baseline hazards) are fitted. The
bold typeface indicates cases where the relative bias is greater than 5%.

True IG _Weibull IG _Plug-in IG _Splines
Sp(1) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.386 0.1
100 −0.033 0.045 0.002 0.011 0.054 0.003 −0.035 0.053 0.003
200 0.009 0.030 0.001 0.010 0.037 0.001 0.005 0.036 0.001
400 −0.008 0.025 0.001 0.008 0.027 0.001 −0.014 0.020 0.000
800 −0.004 0.013 0.000 0.003 0.015 0.000 0.001 0.016 0.000

0.444 0.5
100 0.011 0.045 0.002 −0.001 0.053 0.003 0.012 0.049 0.002
200 0.021 0.032 0.001 0.003 0.036 0.001 0.003 0.036 0.001
400 0.017 0.022 0.001 −0.003 0.026 0.001 0.002 0.026 0.001
800 0.019 0.016 0.000 −0.003 0.018 0.000 −0.001 0.018 0.000

0.577 2
100 0.077 0.043 0.004 −0.009 0.047 0.002 0.022 0.048 0.002
200 0.078 0.030 0.003 −0.009 0.033 0.001 0.021 0.034 0.001
400 0.077 0.022 0.002 −0.014 0.025 0.001 0.020 0.024 0.001
800 0.077 0.015 0.002 −0.015 0.017 0.000 0.019 0.018 0.000

Tr
un

ca
te

d
G

am
m

a

0.386 0.1
100 −0.040 0.008 0.000 0.018 0.054 0.003 −0.001 0.057 0.003
200 −0.036 0.030 0.001 −0.002 0.038 0.001 0.001 0.033 0.001
400 0.012 0.019 0.000 0.004 0.026 0.001 0.003 0.025 0.001
800 −0.003 0.018 0.000 0.002 0.019 0.000 0.009 0.018 0.000

0.431 0.5
100 −0.001 0.037 0.001 0.022 0.055 0.003 −0.037 0.044 0.002
200 −0.016 0.034 0.001 −0.003 0.039 0.001 −0.004 0.038 0.001
400 −0.005 0.023 0.001 0.005 0.028 0.001 0.001 0.026 0.001
800 −0.006 0.016 0.000 0.002 0.020 0.0008 0.002 0.018 0.000

0.505 2
100 0.002 0.047 0.002 0.019 0.054 0.003 0.004 0.018 0.000
200 −0.011 0.033 0.001 0.005 0.039 0.001 0.002 0.037 0.001
400 −0.006 0.023 0.001 0.009 0.027 0.001 0.005 0.026 0.001
800 −0.008 0.016 0.000 0.007 0.019 0.000 0.004 0.018 0.000

Lo
gn

or
m

al

0.386 0.1
100 −0.001 0.047 0.002 0.017 0.051 0.003 0.005 0.048 0.002
200 −0.014 0.026 0.001 0.007 0.037 0.001 0.000 0.035 0.001
400 0.002 0.022 0.000 0.003 0.026 0.001 0.013 0.026 0.001
800 −0.001 0.016 0.000 0.002 0.019 0.000 0.005 0.017 0.000

0.449 0.5
100 0.013 0.045 0.002 0.005 0.054 0.003 0.004 0.056 0.003
200 0.007 0.032 0.001 0.007 0.037 0.001 0.002 0.037 0.001
400 0.003 0.023 0.001 0.001 0.027 0.001 0.005 0.026 0.001
800 0.002 0.016 0.000 0.000 0.019 0.000 0.001 0.018 0.000

0.608 2
100 0.012 0.043 0.002 −0.005 0.047 0.002 −0.003 0.046 0.002
200 0.015 0.030 0.001 −0.005 0.034 0.001 −0.010 0.034 0.001
400 0.012 0.022 0.001 −0.007 0.025 0.001 −0.001 0.025 0.001
800 0.012 0.015 0.000 −0.008 0.017 0.000 −0.002 0.017 0.000

M
ix

tu
re

N
or

m
al

0.418 0.1
100 0.000 0.045 0.002 0.014 0.054 0.003 −0.001 0.054 0.003
200 0.009 0.029 0.001 0.015 0.039 0.002 0.004 0.037 0.001
400 0.003 0.022 0.000 0.008 0.026 0.001 0.002 0.025 0.001
800 0.003 0.016 0.000 0.008 0.019 0.000 0.003 0.018 0.000

0.598 0.5
100 0.114 0.041 0.006 0.041 0.049 0.003 0.066 0.048 0.004
200 0.111 0.030 0.005 0.034 0.035 0.002 0.064 0.036 0.003
400 0.111 0.021 0.005 0.032 0.029 0.001 0.064 0.025 0.002
800 0.108 0.015 0.004 0.030 0.017 0.001 0.064 0.018 0.002

0.743 2
100 0.089 0.032 0.005 −0.028 0.043 0.002 0.025 0.045 0.002
200 0.085 0.023 0.005 −0.035 0.031 0.002 0.021 0.028 0.001
400 0.086 0.017 0.004 −0.035 0.022 0.001 0.021 0.021 0.001
800 0.084 0.012 0.004 −0.037 0.016 0.001 0.022 0.016 0.001
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) of population
survival probability Sp(1) with covariate (x = 1) across 1000 Monte Carlo trials. The data
are generated using gamma, truncated gamma, and mixture normal frailty distributions
and then inverse Gaussian frailty models (different baseline hazards) are fitted. The bold
typeface indicates cases where the relative bias is greater than 5%.

True IG _Weibull IG _Plug-in IG _Splines
Sp(1) θ G Bias SD MSE Bias SD MSE Bias SD MSE

G
am

m
a

0.025 0.1
100 0.065 0.012 0.000 0.031 0.014 0.000 0.025 0.014 0.000
200 0.076 0.008 0.000 0.007 0.010 0.000 −0.014 0.009 0.000
400 0.080 0.006 0.000 −0.029 0.007 0.000 −0.032 0.006 0.000
800 0.019 0.003 0.000 0.008 0.005 0.000 0.009 0.005 0.000

0.095 0.5
100 0.007 0.029 0.001 −0.017 0.030 0.001 −0.028 0.030 0.001
200 0.026 0.021 0.000 −0.009 0.021 0.000 −0.019 0.020 0.000
400 0.020 0.014 0.000 −0.017 0.015 0.000 −0.014 0.015 0.000
800 0.025 0.010 0.000 −0.014 0.011 0.000 −0.020 0.010 0.000

0.317 2
100 0.153 0.053 0.005 0.014 0.052 0.003 0.017 0.054 0.003
200 0.138 0.040 0.004 0.000 0.038 0.001 0.026 0.038 0.002
400 0.147 0.026 0.003 0.004 0.026 0.001 0.026 0.027 0.001
800 0.146 0.018 0.002 0.003 0.018 0.000 0.024 0.019 0.000

Tr
un

ca
te

d
G

am
m

a

0.024 0.1
100 0.022 0.012 0.000 0.048 0.012 0.000 −0.004 0.012 0.000
200 −0.068 0.006 0.000 0.027 0.009 0.000 −0.004 0.009 0.000
400 −0.030 0.004 0.000 0.002 0.006 0.000 −0.001 0.006 0.000
800 −0.023 0.003 0.000 0.001 0.005 0.000 −0.014 0.004 0.000

0.051 0.5
100 0.017 0.019 0.000 0.029 0.020 0.000 0.048 0.018 0.000
200 0.025 0.011 0.000 0.035 0.015 0.000 0.033 0.014 0.000
400 0.019 0.009 0.000 0.030 0.010 0.000 0.036 0.010 0.000
800 0.022 0.006 0.000 0.034 0.007 0.000 0.037 0.007 0.000

0.149 2
100 −0.030 0.030 0.001 0.006 0.035 0.001 −0.004 0.012 0.000
200 −0.023 0.022 0.000 0.003 0.025 0.001 −0.003 0.025 0.001
400 −0.020 0.015 0.000 −0.001 0.018 0.000 −0.003 0.017 0.000
800 −0.011 0.010 0.000 −0.002 0.012 0.000 −0.004 0.012 0.000

Lo
gn

or
m

al

0.024 0.1
100 0.020 0.013 0.000 0.018 0.012 0.000 −0.017 0.014 0.000
200 0.030 0.007 0.000 0.026 0.010 0.000 −0.032 0.009 0.000
400 0.003 0.005 0.000 0.002 0.007 0.000 0.026 0.007 0.000
800 0.005 0.004 0.000 0.008 0.005 0.000 −0.009 0.004 0.000

0.082 0.5
100 0.026 0.026 0.001 −0.005 0.026 0.001 −0.023 0.028 0.001
200 0.009 0.017 0.000 0.009 0.020 0.000 0.015 0.018 0.000
400 0.001 0.012 0.000 −0.005 0.013 0.000 0.002 0.013 0.000
800 0.008 0.008 0.000 0.006 0.009 0.000 0.003 0.009 0.000

0.292 2
100 0.035 0.043 0.002 0.012 0.047 0.002 0.009 0.049 0.002
200 0.048 0.032 0.001 0.017 0.034 0.001 −0.004 0.033 0.001
400 0.042 0.022 0.001 0.011 0.024 0.001 0.015 0.025 0.001
800 0.046 0.015 0.000 0.017 0.016 0.000 0.018 0.017 0.000

M
ix

tu
re

N
or

m
al

0.053 0.1
100 −0.016 0.022 0.000 0.043 0.021 0.000 0.000 0.022 0.000
200 −0.015 0.011 0.000 −0.009 0.014 0.000 −0.003 0.015 0.000
400 −0.019 0.009 0.000 −0.020 0.010 0.000 −0.001 0.010 0.000
800 −0.012 0.006 0.000 −0.011 0.007 0.000 −0.014 0.007 0.000

0.395 0.5
100 0.049 0.048 0.003 −0.045 0.054 0.003 −0.042 0.053 0.003
200 0.043 0.034 0.001 −0.058 0.037 0.002 −0.046 0.039 0.002
400 0.042 0.025 0.001 −0.065 0.027 0.001 −0.039 0.027 0.001
800 0.043 0.016 0.001 −0.063 0.018 0.001 −0.042 0.019 0.001

0.599 2
100 0.175 0.048 0.013 0.012 0.058 0.003 0.050 0.060 0.005
200 0.173 0.033 0.012 0.004 0.041 0.002 0.043 0.040 0.002
400 0.172 0.024 0.011 0.004 0.030 0.001 0.050 0.030 0.002
800 0.171 0.016 0.011 0.003 0.020 0.000 0.050 0.023 0.001
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) for baseline
hazard scale parameter λ across 1000 Monte Carlo trials. The data are generated using
gamma, truncated gamma, and mixture normal frailty distributions and then gamma and
inverse Gaussian frailty models (Weibull baseline hazard) are fitted. The bold typeface
indicates cases where the relative bias is greater than 5%.

Gamma _Weibull Inverse Gaussian _Weibull
θ G Bias SD MSE Bias SD MSE

G
am

m
a

0.1
100 0.026 0.283 0.081 0.048 0.151 0.021
200 0.006 0.100 0.010 0.015 0.092 0.008
400 0.000 0.072 0.005 0.027 0.081 0.007
800 0.002 0.048 0.002 0.008 0.039 0.002

0.5
100 0.032 0.196 0.039 0.112 0.248 0.074
200 0.006 0.125 0.016 0.084 0.154 0.031
400 0.001 0.088 0.008 0.078 0.108 0.018
800 0.003 0.064 0.004 0.072 0.076 0.011

2
100 0.053 0.300 0.093 0.130 0.313 0.115
200 0.015 0.190 0.036 0.103 0.200 0.050
400 0.011 0.134 0.018 0.096 0.141 0.079
800 0.000 0.094 0.009 0.093 0.101 0.019

Tr
un

ca
te

d
G

am
m

a

0.1
100 −0.117 0.220 0.062 0.101 0.087 0.016
200 −0.140 0.097 0.029 0.047 0.097 0.011
400 −0.136 0.073 0.024 −0.008 0.051 0.003
800 −0.038 0.052 0.022 0.003 0.055 0.003

0.5
100 −0.176 0.186 0.066 −0.056 0.169 0.030
200 −0.199 0.124 0.055 −0.019 0.133 0.018
400 −0.201 0.098 0.051 −0.044 0.091 0.010
800 −0.201 0.060 0.044 −0.044 0.063 0.006

2
100 −0.322 0.250 0.166 0.163 0.430 0.211
200 −0.334 0.158 0.136 0.136 0.260 0.086
400 −0.346 0.107 0.131 0.094 0.167 0.037
800 −0.348 0.091 0.126 0.092 0.116 0.022

Lo
gn

or
m

al

0.1
100 0.026 0.150 0.020 0.003 0.143 0.018
200 0.041 0.090 0.009 0.026 0.086 0.008
400 −0.011 0.064 0.004 −0.004 0.065 0.004
800 −0.004 0.051 0.003 0.005 0.055 0.003

0.5
100 −0.059 0.184 0.037 0.044 0.253 0.066
200 −0.064 0.115 0.017 0.022 0.157 0.025
400 −0.066 0.079 0.011 0.007 0.100 0.010
800 −0.064 0.058 0.007 0.010 0.076 0.006

2
100 −0.274 0.183 0.109 0.119 0.697 0.499
200 −0.285 0.128 0.098 0.028 0.276 0.077
400 −0.296 0.084 0.095 −0.009 0.180 0.032
800 −0.295 0.062 0.091 −0.011 0.121 0.015

M
ix

tu
re

N
or

m
al

0.1
100 −0.037 0.152 0.024 0.009 0.181 0.032
200 −0.038 0.105 0.017 0.007 0.120 0.014
400 −0.031 0.077 0.007 0.013 0.093 0.009
800 −0.032 0.055 0.004 0.011 0.066 0.004

0.5
100 0.031 0.328 0.108 0.146 0.328 0.129
200 0.010 0.228 0.052 0.123 0.229 0.068
400 −0.012 0.145 0.021 0.105 0.149 0.033
800 −0.008 0.102 0.011 0.111 0.107 0.024

2
100 0.253 0.644 0.478 −0.058 0.408 0.170
200 0.174 0.406 0.195 −0.092 0.229 0.061
400 0.122 0.239 0.072 −0.110 0.151 0.035
800 0.108 0.165 0.039 −0.103 0.110 0.023
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Relative bias (Bias), standard deviation (SD), and mean square error (MSE) for baseline
hazard shape parameter ρ across 1000 Monte Carlo trials. The data are generated using
gamma, truncated gamma, and mixture normal frailty distributions and then gamma and
inverse Gaussian frailty models (Weibull baseline hazard) are fitted. The bold typeface
indicates cases where the relative bias is greater than 5%.

Gamma _Weibull Inverse Gaussian _Weibull
θ G Bias SD MSE Bias SD MSE

G
am

m
a

0.1
100 0.009 0.155 0.024 −0.001 0.083 0.006
200 0.004 0.106 0.011 0.031 0.171 0.030
400 0.002 0.076 0.006 0.000 0.086 0.007
800 0.000 0.054 0.003 −0.001 0.063 0.004

0.5
100 0.007 0.169 0.029 0.006 0.170 0.029
200 0.007 0.124 0.016 0.006 0.121 0.015
400 0.001 0.080 0.006 0.001 0.079 0.006
800 0.000 0.056 0.003 −0.001 0.057 0.003

2
100 0.015 0.199 0.040 −0.096 0.136 0.056
200 0.005 0.135 0.018 −0.097 0.095 0.047
400 0.004 0.091 0.008 −0.100 0.066 0.044
800 0.002 0.064 0.004 −0.101 0.046 0.043

Tr
un

ca
te

d
G

am
m

a

0.1
100 0.092 0.213 0.079 0.051 0.055 0.013
200 0.085 0.143 0.049 0.003 0.090 0.008
400 0.013 0.081 0.007 0.005 0.108 0.011
800 0.072 0.074 0.026 −0.002 0.078 0.006

0.5
100 0.085 0.238 0.085 −0.004 0.113 0.012
200 0.072 0.161 0.046 −0.003 0.111 0.012
400 0.070 0.112 0.033 −0.009 0.090 0.008
800 0.067 0.078 0.024 −0.008 0.063 0.004

2
100 0.075 0.266 0.093 0.021 0.204 0.043
200 0.058 0.178 0.045 0.015 0.133 0.019
400 0.053 0.122 0.026 0.009 0.097 0.010
800 0.051 0.096 0.012 0.009 0.063 0.005

Lo
gn

or
m

al

0.1
100 0.022 0.155 0.023 0.013 0.151 0.021
200 0.032 0.102 0.014 0.023 0.102 0.012
400 −0.003 0.086 0.007 0.000 0.089 0.008
800 0.000 0.055 0.003 0.003 0.058 0.003

0.5
100 −0.011 0.174 0.030 0.014 0.190 0.036
200 −0.016 0.116 0.014 0.008 0.128 0.017
400 −0.020 0.079 0.008 0.000 0.086 0.007
800 −0.019 0.055 0.004 0.002 0.060 0.004

2
100 −0.055 0.172 0.042 −0.010 0.173 0.030
200 −0.060 0.123 0.030 −0.018 0.122 0.016
400 −0.067 0.082 0.025 −0.023 0.086 0.009
800 −0.065 0.058 0.021 −0.022 0.057 0.005

M
ix

tu
re

N
or

m
al

0.1
100 −0.010 0.192 0.036 0.007 0.200 0.039
200 −0.009 0.097 0.010 0.008 0.112 0.013
400 −0.011 0.081 0.007 0.004 0.089 0.008
800 −0.013 0.056 0.004 0.002 0.061 0.004

0.5
100 −0.003 0.201 0.040 −0.081 0.137 0.045
200 −0.007 0.143 0.021 −0.084 0.094 0.037
400 −0.016 0.098 0.011 −0.089 0.069 0.036
800 −0.017 0.067 0.006 −0.090 0.047 0.034

2
100 0.075 0.256 0.087 −0.217 0.118 0.203
200 0.059 0.183 0.047 −0.221 0.082 0.203
400 0.051 0.126 0.026 −0.223 0.059 0.202
800 0.042 0.083 0.014 −0.225 0.040 0.204
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