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Abstract

Bilingual word embeddings, which represent lexicons from various languages in a
common embedding space, are critical for facilitating semantic and knowledge trans-
fers in a wide range of cross-lingual NLP applications. The significance of learning
bilingual word embedding representations in many Natural Language Processing
(NLP) tasks motivates us to investigate the effect of many factors, including syntac-
tical information, on the learning process for different languages with varying levels
of structural complexity. By analysing the components that influence the learning
process of bilingual word embeddings (BWEs), this thesis examines some factors for
learning bilingual word embeddings effectively. Our findings in this thesis demon-
strate that increasing the embedding size for language pairs has a positive impact
on the learning process for BWEs. While sentence length depends on the language.
Short sentences perform better than long ones in the En-ES experiment. However,
by increasing the sentence, En-Ar and En-De experiment achieve improved model
accuracy. Arabic segmentation, according to En-Ar experiments, is essential to the
learning process for BWEs and can boost model accuracy by up to 10%.

Incorporating dependency features into the learning process enhances the trained
models performance and results in more improved BWEs in all language pairs.
Finally, we investigated how the dependancy-based pretrained BWEs affected the
neural machine translation (NMT) model. The findings indicate that in various
MT evaluation matrices, the trained dependancy-based NMT models outperform
the baseline NMT model.
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Glossary

• (ARPA) Advanced Research Project Agency

• (MSA) Modern Standard Arabic

• (GloVe) Global Vectors

• (CFG) Context-free Grammar

• (NN) Neural Networks

• (NLP) Natural Language Processing

• (MT) Machine Translation

• (CBOW) Continuous Bag-of-Words

• (SG) Skip-Gram

• (RAE) Recursive Autoencoder

• (BRAE) Bilingually-constrained Recursive Autoencoder

• (BCorrRAE) Bilingual Correspondence Recursive Autoencoder

• (BattRAE) Bidimensional Attention-based Recursive Autoencoder

• (BilBOWA) Bilingual Word Embeddings Without Word Alignments

• (BRAVE) Bilingual paRAgraph VEctors

• (RBMT ) Rule−based Machine Translation

• (EBMT) Example−based Machine Translation

• (CBMT) Context−based Machine Translation

• (SMT) Statistical Machine Translation

• (PBM) Phrase-based Model
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• (FPBMT) Factored Phrase-based Model

• (HPBM) Hierarchical Phrase-Based Model

• (PoS) Part-of-Speech

• (NMT) Neural Machine Translation

• (RNN) Recurrent Neural Networks

• (PER) Position Error Rate

• (WER) Word Error Rate

• (BLEU ) Bilingual Evaluation Understudy

• (PSD) Population Standard Deviation

• (VSO) Verb-Subject-Object

• (SVO) Subject-Verb-Object

• (UD) Universal Dependencies

• (MT) Machine Translation

• (TER) Translation Error Rate
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Chapter 1

Introduction

Semantic representations play an important role in many Natural Language Process-
ing (NLP) tasks: Machine Translation (MT), information extraction and document
classifications. Word embeddings learned with Neural Networks (NN) have drawn
attention of many researchers due to their superior performance in many down-
stream tasks compared to traditional count-based distribution models [6]. They are
capable of capturing a words’ semantic and syntactic information. Driven by these
successes, many models have been developed, such as Word2Vec and GloVe.

Many Neural Network-based models have been presented in the context of learn-
ing cross-lingual embeddings, and they have proven to be effective at a variety of
NLP tasks (Chapter 2), including document classification, named entity recognition,
MT, and others. Despite their success, the structural complexity of languages have
not been taken into account in many of these areas. In this research, we investigate
the effect of many factors including syntactical information on the process of learning
bilingual word embeddings for different languages with different levels of structural
complexity. Also, we studied the effect of infusing dependency features on learning
bilingual word embeddings. We investigated how the pre-trained dependency-based
bilingual word embeddings perform on Neural Machine Translation (NMT) tasks.

1.1 Motivation

In this thesis, we use a variety of language pairs that span from comparable to
dissimilar language sentence structures: English-Spanish (En-Es), English-German
(En-De), and English-Arabic (En-Ar) language pairs. Arabic is still considered
a challenging language for automatic translation. In considering English-Arabic
language pairs, this thesis aims to address a known gap for Machine Translation.
Arabic is widely spoken and highly varied. Further, the structure of the language
differs significantly from that of English, Spanish, and German. In this thesis,

19
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we apply Modern Standard Arabic (MSA) as it is the most accessible version of the
Arabic language. We are motivated to investigate this topic because there is a dearth
of study in this field. As a result, the primary research question is: How can we
train NN-based bilingual word embeddings that will allow us to enhance Machine
Translation for languages of varying complexity?. In this thesis, we investigate
factors that affect the learning process of bilingual word embeddings on languages
with different morphological complexity. Therefore, we pose the following research
questions are:

• Which hyperparameters are most influential in affecting the learning process
of BWEs? For example: sentence length, embedding size and morphological
segmentation.

• How does incorporating additional features, like syntactic features and POS,
into the learning process of bilingual embeddings affect the model perfor-
mance?

• What is the effect of including these features in training word embeddings on
Neural Machine Translation as application?

1.2 Aims and Objectives

Despite the enormous variety of natural languages spoken throughout the world,
the majority of works are focused on language pairs such as English-European or
English-Chinese languages. Within Machine Translation, the main purpose is to
investigate the effect of different factors on the performance of learning bilingual
word embeddings for different language complexity pairs. This investigation can
improve the process of learning bilingual word embeddings. Learning better bilingual
word embedding results in minimising the distance (increasing semantic similarity)
between sentences from different languages. When doing this, it is important to
consider language complexity differentiation, as translating from a simple language
into a more complex one is still a challenging task, even for Statistical Machine
Translation (SMT). In order to achieve this goal, we investigate the effect of several
factors on training performance of the bilingual embeddings model. We specifically
consider: the size of the embeddings, the length of the sentences, and the process of
word segmentation (for Arabic). In addition, we examine the integration of syntax
features into the learning process.

To answer the research questions formulated in the previous section, the project
aim and objectives as follows:
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• Identify the effect of factors such as sentence length, embedding size, and
Arabic pre-processing settings (namely, segmentation schemes) on the learning
of bilingual word embeddings models.

• At the monolingual level, a significant amount of effort has been made on learn-
ing of syntax-based distributed representations of individual words. However,
there is a lack of research on syntax-based multilingual representations. Con-
sequently, we aim to improve the learning of bilingual embeddings for diverse
language pairs. This will be done through the following:

– Including a variety of knowledge-based techniques. For example: Learn-
ing dependency-based bilingual word embeddings. Research shows that
utilising a parsed datasets help the learning process for monolingual word
embeddings [7]. Thus, we aim to extend the work of [7] in order to inves-
tigate these features effect on learning bilingual word embeddings.

• Investigating the effect of using dependency-based pretrained BWEs on NMT
task.

1.3 Contributions

This thesis contributes to a better understanding of MT translation tasks and, as
a result, leads to learning better word representation models. To our knowledge,
this thesis is one of the first to investigate the effectiveness of learning models in
dealing with these language translation challenges. Therefore, this thesis makes the
following contributions:

• A word-word dictionary for En-Es, En-De and En-Ar. This dataset has been
created to be used in Chapters 4 and 5 and evaluated on Cross Language
Dictionary Induction (CLDI) task. We have created a test dataset for all used
language pairs: Es-En, De-En and Ar-En as has been explained in Chapter 4.

• Trained Bilingual Word Embeddings (BWEs) with different hyper-parameters:
namely sentence length and embedding size for En-Es, En-De and En-Ar lan-
guage pairs 1.

• Trained BWEs with different segmentation schemes for En-Ar language pair.

• Training different dependency-based bilingual word embeddings for En-Es,
En-De and En-Ar language pairs that will inform further research 2.

1https://github.com/totyqa/Dependency-Based-BWEs/blob/main/PRETRAINED-BWEs
2https://github.com/totyqa/Dependency-Based-BWEs/blob/main/PRETRAINED-BWEs
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• NMT systems that have been trained on the pre-trained dependency-based
BWEs are available upon request 3.

1.4 Chapter Overview

The remainder of the thesis is organised as follows. Chapter 2 provides an overview
of word embeddings from word-based to phrase-based. Also it presents Bilingual
word embedding methods in more detail. In addition, Word Embeddings for Ma-
chine Translation are presented in more details. Next, we present the history of
machine translation and how it has developed over time, including demonstrating
previous work on Statistical Machine Translation (SMT) and current approaches
and methods. We explain the existing evaluation methods for Machine Translation.
Additionally, Arabic language literature is presented.

Chapter 3 is the first experimental chapter, which investigates the effect of factors
including: sentence length, embedding size for English, Spanish, German and Arabic
languages in addition to word segmentation for Arabic language. It presents the
related work in this research area. We explain the used data sets, trained model
BilBOWA and evaluation method in greater detail.

Chapter 4 improves BWEs by incorporating syntax features on the learning
process. The BilBOWA model has been trained using different language pairs that
vary in sentence structures. Evaluation shows that the model performs better than
the baseline.

Chapter 5 presents NMT on knowledge bases. The NMT systems have been
trained using the pretrained syntax-based bilingual word embeddings from Chap-
ter 5. The results show that using dependency features improves the MT quality
comparing to the baseline.

Chapter 6 presents a summary of the finding of the thesis and future work.

3https://github.com/totyqa/Dependency-Based-BWEs/blob/main/PRETRAINED-BWEs



Chapter 2

Background

This chapter present a background on the area of research in general as well as
will discuss approaches and methods of related research work. Firstly, we give
an overview on history of translation systems and review the challenges that are
specific to the Arabic language. We then present existing methods and discuss their
limitations. Also, word embedding methods will be reviewed at monolingual and
bilingual levels.

2.1 Word Embeddings

An increasing number of researchers are studying neural networks, and they have
produced highly promising findings in a variety of applications of Natural Language
Processing (NLP). In recent years, a range of models, such as semantics and question
answering models [8, 9, 10], Machine Translation [11, 12], parsing [13, 14], have
been introduced. This chapter introduces a background on word embeddings. Word
embeddings are one of the most important NLP applications since they are capable
of capturing semantic similarities between words.

Learning word embeddings derives from the principle that words can be trans-
formed from a discrete space of features to a continuous vector space of features that
captures their syntactic and semantic information. In other words, words with sim-
ilar meanings are more likely to have vectors that are comparable. This similarity
can be measured using different distance methods such as cosine similarity and eu-
clidean distance. Many neural-based word embeddings models have been introduced
recently, and they show a significant improvement in a variety of NLP applications,
including language modelling [15, 16, 17], machine translation [18, 12, 19], named
entity recognition [20], document classification and sentiment analysis [21, 22, 23].

Word embeddings can be classified, based on the objective function that needs
to be learnt, into two main categories: Monolingual word embeddings - which is

23
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the process of learning similar word representations for similar word meaning within
the same language, and Bilingual/cross-lingual approaches - which is the process of
learning similar words between languages.

• Monolingual approach
Recently, various monolingual word embedding models have been introduced
which have demonstrated great performance across a range of natural lan-
guage processing applications. The majority utilise Word2Vec, which is a
log-linear, continuous Bag-of-Words (CBOW) or skip-gram (SG) model with
negative sampling (Section 2.1.1), that has been introduced by [24]. Word2Vec
models show a very efficient performance in terms of presenting words in con-
tinuous space and capturing their semantic information. A large number of
works are introduced that are based on Word2Vec with various modifications
to it, for example: GloVe model by[25] and the works of [26]. Ling et al. [26]
have introduced the Wang2Vec model, which utilises structural skip-grams
and a continuous window that adapted to be more sensitive to word posi-
tioning. The Wang2Vec model outperforms the Word2Vec model in terms of
performance and generalisation ability in noisy conditions and tasks involving
syntax. Therefore Wang2vec is effective at modelling intricate semantic and
syntactic word relationships.

Moreover, Trask et al. [27] introduce Sense2Vec model that is considered as
a state-of-the-art multi-sense embedding model due to its ability in capturing
more nuanced senses. In addition, dependency-based word embedding were
introduced by [28] and [7]. Omer and Yoav [28] produce dependency-base
word embedding models, which include arbitrary contexts with a skip-gram
model. Komninos and Manandhar [7] extended these works in [28], by con-
sidering co-occurrences in a dependency graph between word and dependency
context features. At phrase-level, Socher et al. [29] introduces a recursive
auto-encoder (RAE) model, which is a phrase-based word embedding model
that learn phrase representations as explained in more details later. Despite
the success that these models have achieved, word ambiguity continues to be
a challenge in natural language processing since it manifests itself at all levels
of language, particularly at the phrase and sentence level.

• Bilingual/Cross-lingual approach:
Bilingual or cross-lingual word embedding is the process of learning word em-
beddings in two or more languages using two or more corpora. The major-
ity of bilingual/cross-lingual word embedding models are simply extensions
of monolingual word embedding models, with some exceptions. Many suc-
cessful models for learning bilingual word embeddings have been developed,



2.1. WORD EMBEDDINGS 25

each of which makes use of a different corpus with a different level of align-
ment. Firstly, at word-level alignment, Luong et al. [30] extend the skip-gram
model to learn efficient bilingual word embeddings. Also, at phrase-level, a
bilingually-constrained phrase embeddings (BRAE) model learns source-target
phrase embeddings by minimising the semantic distance between translation
equivalents and maximising the semantic distance between non-translation
equivalents [31]. Su et al. [32] extend BRAE model by introducing a bilin-
gual correspondence recursive auto-encoder (BCorrRAE) model, which in-
corporates word alignment to learn bilingual phrase embeddings by captur-
ing different levels of their semantic relations. Zhang et al. [3] introduce a
bi-dimensional attention-based recursive auto-encoder (BattRAE) model to
learn bilingual phrase embeddings by integrating source-target interactions at
different levels of granularity using attention-based models. Using sentence-
aligned corpus, Gouws et al. [33] and Coulmance et al. [34] introduce BilBOWA
and Trans-gram methods to learn and align word embeddings without word
alignment. At document level aligned corpus, Vulic and Moens [35] present
a model that learns bilingual word embeddings from non-parallel document-
aligned data without using translation pairs. In addition, Mogadala and Ret-
tinger [36] introduce a Bilingual paRAgraph VEctors (BRAVE) model that
learns bilingual embeddings from either a sentence-aligned parallel corpus or
a label-aligned non-parallel document corpus. Vulic and Moens [35] introduce
a model that learns multilingual (two or more languages) words embeddings
using document-aligned comparable data.

2.1.1 Methods

NN-based word embedding methods improve many NLP tasks and outperform the
traditional word representation in many aspects by saving time and memory as well
as producing powerful word representations. Many word embedding methods have
been introduced: language models, Continuous Bag of Word (CBOW), and skip-
gram models. As these models are NN-based models, they learn continuous word
vectors using back-propagation and stochastic gradient descent algorithms which we
explain further in next sections.

Skip-Grams

Skip-gram was introduced by [24]. In this model, for a given sentence, the model
uses word wt to predict the context words (words before and after word wt). In
other words, the input is a single word wt and the output is a set of context words
{wt−C , . . . , wt−2, wt−1, wt+1, wt+2, . . . , wt+C} (See Figure 2.1). C is the word window
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Figure 2.1: The skip-gram model

size that defines the number of skipped words before and after the input word. For
example, in the sentence (The black fox jumps), considering the word (fox) as
an input word and C=2. Then the output words (context words) are [the, black,
jumps] and if C=1, the context words are [black, jumps]. To feed these data into
the model, all words (input and output) need to be encoded to one-hot vectors that
have the value of 1 at the index corresponding to the word in the vocabulary and
zeros on other indexes. As a NN-based model, the learning process can be divided
into two main phases: feed-forward propagation and back-propagation.

• Feed-forward Propagation:
As shown in (Figure 2.1), the NN consists of input layer, one hidden layer ,
output layer and two weights matrices W1 and W2. The goal of the model
building process is to learn these weights (words’ vectors). Here, W1 produces
word vectors for the target words and W2 produces the context word’s vectors.

In this phase, the input vector a, which is a one-hot vector, is multiplied by
W1 as:

h = aT .W1 (2.1)

as a has only one value of 1 in its correspondence index and the others are
zeros, h will be a vector of a row of W1 that corresponds to the index of a.
There is no activation function at this layer. So, h is the input to the next
layer.
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Figure 2.2: Continuous Bag-of-Word

After that, from the hidden layer to the output layer, h is multiplied by W2

for each context word:

u = h.W2
T (2.2)

Finally, softmax activation function, which is a combination of multiple sig-
moid functions, is applied to the output layer to produce the multinomial
distribution. In another words, it computes the probability distribution of a
word occurrence with a given size context window [37]. Softmax is defined as:

y = p(wc,j = w|w) = exp(uj)∑
expu′

j

(2.3)

• Back-propagation:
After producing the softmax’s output, the back-propagation algorithm is ap-
plied to learn both W1 and W2 that minimises the loss function.

Continuous Bag-of-Words

Continuous Bag-of-Words (CBOW) is the opposite of the skip-gram (SG) model,
as it is a language model that learns word embeddings by predicting word wt from
given context words (previous and followed words) as inputs (Figure 2.2).
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Optimisation Techniques

The computation of both the SG and CBOW models is extremely time-consuming
because it is performed across the whole vocabulary. As a result, several strategies
are employed by researchers in order to make them more efficient and faster. These
techniques are: Hierarchical softmax and Negative Sampling. Hierarchical Softmax
is a model that representing all words in the vocabulary using a binary tree[38].

Negative sampling is a process of modifying the optimisation objective of the
skip-gram model to make it faster and improve its performance. It aims to update
only a small percentage of the weights of the training sample instead of updating
them across the whole vocabulary. The idea behind this technique is to randomly
sample a few words as negative examples. Depending on the amount of training
data available, the number of negative samples can range from 5 to 20 words (with
more data, fewer negative samples are needed).

Using negative sampling modifies the loss objective:

E = − log σ((−w2wo)
T .h)−

k∑
j=1

log σ((−w2wj
)T .h) (2.4)

where w2wo is the positive sample word vector, h = v, and wj is a word vector
negative sample. Therefore, the derivative of E with respect to u changes to:

dE

duc,j

= yc,j − tc,j (2.5)

where t = 1 in positive samples and t = 0 in negative samples.

GloVe Embeddings

Global vectors (GloVe) were introduced by [25]. This model learns the word embed-
dings via matrix factorisation by minimising the difference between the dot product
of the embeddings of a word xwi

and its context. GloVe is a new global log-bilinear
regression model for unsupervised word representation learning that outperforms
previous models on tasks such as word analogies, word similarity, and named entity
recognition. The training is based on a corpus’s aggregated global word-word co-
occurrence information. Glove has the advantage of incorporating both global and
local information into its vectors, whereas Skip-gram and CBOW techniques place
a greater emphasis on local information [39]. However, the main drawback of the
Glove model is how time-consuming it is.
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Figure 2.3: RAE: compute the parent node

Recursive Autoencoder

Recursive Auto-encoders (RAE) were introduced in [29]. RAEs capture the meaning
of phrases by computes the parent vector y for two children as shown in Figure 2.3.
Then it reconstructs the original children nodes to measure how well y presents its
children (See Figure 2.4).
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Figure 2.4: RAE: reconstruct the children nodes

2.2 Bilingual Word Embeddings

2.2.1 Methods

The process of learning the semantic similarity across two languages creates bilin-
gual word embeddings. Many learning methods have been introduced using different
learning algorithms. These algorithms differ in many aspects:model architecture, the
data-sets used, and learning algorithms etc.,. In terms of the bilingual learning step,
research presents three different bilingual embedding approaches: monolingual map-
ping, parallel corpus and joint optimisation approaches. Each methos is presented
below and for comprision see Table 2.1.

Monolingual Mapping

In this method, monolingual word representations are learnt separately for each
language using a large monolingual corpus. Then, using word translation pairs,
the model learns a transformation matrix that maps word representation from one
language to another. The main limitation of this method is that the performance
of mapping methods is dependent on the language pair, the comparability of the
training corpora, and the word embedding algorithm parameters [40]. Also it is
essential that embedding spaces in many languages have a similar structure for
mapping method to work.
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Table 2.1: Bilingual word embeddings methods’ advantages vs disadvantages

Monolingual Parallel Joint
Mapping learning

Advantages Very fast Use an efficient Train on any available
noise-contrasting training monolingual data

Disadvantages Ignore the multi- Train on limited parallel data Slow in training
sense polysemy

Parallel Corpora and Cross-Lingual Training

This approach tries to optimise the cross lingual objective and can be categorised
into two main methods: bilingual lexicon and sentence alignments methods. The
bilingual lexicon method requires word-level alignments and aims to ensure the
translated pairs of words have the same vector representation [41, 33]. In contrast,
the sentence aligned methods aim to minimise the distance between two sentence
representations [42, 43]. Many models have been introduced in the literature using
both approaches. We will discuss these models in later chapters.

Joint Learning

In this approach, the monolingual and cross-lingual objectives are optimised jointly.
This type of training is also often referred to as Joint Optimisation. Gouws et al. [33]
propose a bilingual bag-of-words without word alignment model that uses the skip-
gram model as a monolingual objective and jointly learns the bilingual embeddings
by minimising the distance between aligned sentences and through assuming that
each word in the source sentence is aligned to all words in the target sentence.
Coulmance et al. [34] introduce a bilingual skip-gram without word alignment model,
which assumes each source word is aligned to every word in the target sentence. This
model implements a skip-gram model in both monolingual and bilingual objectives.

2.2.2 Alignment-Level

Bilingual word embeddings methods can be categorised in terms of the alignment-
level of the used parallel data: word, phrase, sentence, document and non-document
alignment. This section highlights the relevant literature in these areas.
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Figure 2.5: Bilingual-constrained phrase embeddings

Word Level

Zou et al. [44] use MT alignments to learn bilingual word embeddings for unla-
belled data. Their model shows a good performance in different NLP tasks such as:
semantic similarity, phrase-based MT and named entity recognition. Moreover, Lu-
ong et al. [30] introduce an effective joint model that learns a high quality bilingual
representation by extending the skip-gram model.

Phrase Level

As mentioned above, research introduces many RAE-based Bilingual phrase embed-
dings models:

• Bilingual-Constrained Recursive Auto-encoder (BREA):
Zhang et al. [31] present BRAE, which learns the bilingual phrase-based em-
beddings by, firstly, learning two RAEs (Recursive Auto-encoders) for source
and target languages. Secondly, it fine-tunes the phrase embeddings to cap-
ture different levels of semantic relations within the bilingual phrases. It does
so by minimizing the euclidean distance between translation equivalents and
maximizing the euclidean distance between non-equivalents at different lev-
els of granularity (words, sub-phrases or phrases) (See Figure 2.5). Through
learning and employing these semantic representations, it leads to significant
improvements in machine translation performance.

• Bilingual Correspondence RAE (BCorrRAE):
BCorrRAE [32] is similar to BRAE in terms of learning two RAEs and ac-
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Figure 2.6: BCorrRAE

cessing bilingual constraints at different levels (phrase, sub-phrase, word) thus
incorporating word alignments into their model. BCorrRAE minimises the
joint objective on the combination of a RAE reconstruction error, structural
alignment consistency error and cross-lingual reconstruction error by using the
max-semantic-margin error, which is used to minimise the semantic difference
between translation equivalents and maximise the semantic distance between
non-translation pairings (See Figure 2.6).

• Bi-dimensional attention-based RAE (BattRAE):
Similar to BCorrRAE, BattRAE [3] employs two RAEs, one for source and one
for target, to generate embeddings using tree structures of a phrase at different
levels (words, sub-phrases, and phrase). The main difference in this model is
that it introduces a bi-dimensional attention network to learn interactions. So,
after learning the two RAEs (for source and target), [3] use a bi-dimensional
attention network to project embeddings into a common attention space as
shown in Figure 2.7.

2.3 Embeddings Used in Machine Translation

The introduced phrase models capture different levels of semantic relations within
bilingual phrases by minimizing the Euclidean distance between translation equiv-
alents and maximizing the euclidean distance between non-equivalents at different
levels of granularity (words, sub-phrases or phrases). Learning and employing these
semantic representations leads to significant improvements in machine translation
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Figure 2.7: BattRAE Model (on the left the whole model and on right the attention
computation process) [3]

performance.

2.3.1 Bilingually-constrained Recursive Autoencoder (BRAE)

BRAE is trained to minimise the semantic distance of translation equivalents while
concurrently maximising the semantic distance of non-translation pairings. The
model learns how to semantically embed each phrase in two languages after train-
ing, as well as how to change semantic embedding space from one language to the
other. The model learns two RAEs jointly (Recursive Auto-Encoders): one for
source language and the other for target language. Two types of errors are involved
for phrase pairs (f, e). Firstly, ’reconstruction error’ to show how well the learned
vectors represent their phrases f and e.

Erec (f, e; θ) = Erec (f ; θ) + Erec (e; θ) (2.6)

Secondly, ’semantic error’:

Esem (f, e; θ) = Esem (f |e, θ) + Esem (e|f, θ) (2.7)

where

Esem (f |e, θ) = 1/2∥pe − f
(
W (3)pf + b(3)

)
∥2 (2.8)



2.3. EMBEDDINGS USED IN MACHINE TRANSLATION 35

Compute the joint error with

E (f, e; θ) = αErec (f, e; θ) + (1− α)Esem (f, e; θ) (2.9)

and the objective function

Esem (f |e, θ) = 1/N
∑
s,tS,T

E (s, t; θ) + λ/2∥θ∥2 (2.10)

2.3.2 Bilingual Correspondence Recursive Autoencoder (BCor-

rRAE)

BCorrRAE [32], incorporating word alignments into their model to access bilingual
constraints at different levels (phrase, sub-phrase, word).

Minimises a joint objective on the combination of a RAE reconstruction error,
structural alignment consistency error and a cross-lingual reconstruction error using
the max-semantic-margin error. Learning two RAEs for source and target allows the
model to computes RAE reconstruction error and the consistency error as below:

Econ (f, e; θ) = Econ (Tf ; θ) + Econ (Te; θ) (2.11)

Then to assess whether nf is a structural alignment consistent (SAC) node or
not. the consistency inconsistency score is computed for each nf

s
(
nf̄

)
= W scorepnf̄

(2.12)

s (Tf ) =
∑

s
(
nf̄

)
(2.13)

Econ (Tf ; θ) = s (Tf )cns + s (Tf )ins (2.14)

Cross-lingual reconstruction error:

Eclre (f, e; θ) = E(f2e.rec) (Tf , Te; θ) + E(e2f.rec) (Te, Tf ; θ) (2.15)

where
E(f2e.rec) (Tf , Te; θ) = 1/2

∑
⟨nf̄ ,nē⟩∈S

∑
n∈T ′

e

∥pn − p′n∥2 (2.16)

Compute the final objective functions.

2.3.3 Bi-dimensional Attention-based Recursive Autoencoder

Similar to BCorrRAE, Bidimensional Attention-based Recursive Autoencoder (Bat-
tRAE) employ two RAEs for source and target in order to generate embeddings and
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tree structures of a phrase at different levels (words, sub-phrases, phrase). Then
they introduce a bi-dimensional attention network to learn their interactions.

Form matrix Ms and Mt from extracted word embeddings. Project embeddings
into a common attention space:

As = f
(
W (3)Ms + b[:]

A
)

(2.17)

At = f
(
W (4)Mt + bA[:]

)
(2.18)

Compute semantic matching score:

Bi,j = g
(
AT

s,iAt,j

)
(2.19)

Compute the matching score vectors:

ãs,i=
∑
j

Bi,j (2.20)

ãs,j =
∑
i

Bi,j (2.21)

Apply softmax on matching score vectors to keep their value at the same mag-
nitude.

as = softmax (ãs) (2.22)

at = softmax (ãt) (2.23)

Compute the final phrase representation:

ps =
∑

as,iMs,i (2.24)

pt =
∑

at,iMt,i (2.25)

Semantic similarity Transform Ps and Pt into a common semantic space:

ss = f
(
W (5)ps + bs

)
(2.26)

st = f
(
W (6)pt + bs

)
(2.27)

Compute semantic similarity score:

s (f, e) = sTSst (2.28)

Objective function Two errors involved Reconstruction error
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Semantic error function:

J (θ) = 1/N
∑
j=1

NαErec (fj, ej) + βEsem (fj, ej) +R (θ) (2.29)

To conclude, the three bilingual RAEs based models: BRAE, BcorrRAE and
BattRAE, trained to minimise the distance between translation equivalents and
maximise the distance between nonequivalents pairs. However, BcorrRAE model
enhances the learning process by incorporating word alignment at different levels
(word, sub-phrase and phrase). In contrast, BattREA model learns the interaction
between these RAEs by incorporating a bilingual attention network.

2.4 Machine Translation Systems

Rapid development of technologies in the field of Machine Translation have en-
abled application across many areas. Machine Translation systems have been im-
plemented across different organisations, businesses, governments and industry and
are involved in a multitude of tasks such as learning, entertainment, security, mul-
timedia, and many more. In multimedia, machine translation have been applied to
TV programmes including the news, movies, and live TV broadcasts to translate
the spoken language into the written form of another language. However, there
are still many aspects which present challenges to MT in terms of matching human
translation capabilities.

After inventing electronic computers in the 1950s, many researchers have since
been involved in developing automatic Machine Translation systems. They define
MT as the use of a computer to translate text from one natural language into another
[45] [46].

Machine Translation started with two categories: direct translation, as word-
to-word translation, and indirect translation [47][48][49]. The first MT system
was installed in 1959 and throughout the 1960s many MT systems were intro-
duced, however, their performance (in terms of results) was quite poor. In 1970,
a Russian-English MT system was installed in the US Air Force [50] and, in the
1980s, Example-Based translation systems were built in Japan as well as Statistical
Machine Translation (SMT) introduced by IBM’s labs in the 1990s [1]. Example-
Based MT and Statistical MT are Corpus-Based MT in addition to context-base
MT. Since then, statistical machine translation systems have drawn the attention of
many researchers. Recently Neural-based MT have been introduced and are showing
very promising results.
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2.4.1 Approaches

Many MT models have been introduced in the last few decades; Rule-Based, Example-
Based, Transfer-Based, Statistical MT, to name but a few. Each of these models
classifies into one of two main Machine Translation approaches; Rule-Based Ma-
chine Translation and Corpus-Based Machine Translation according to their core
methodology. Some models combine more than one approach such as hybird ma-
chine translation or use more than one model in the same approach, such as in
Hierarchical Phrase-Based Models.

• Rule-Based Machine Translation:
In the early 1970s, the first Rule-Based Machine Translation (RBMT) system
was developed. The basic idea of RBMT is that it relys on linguistic informa-
tion in both source and target languages. Consequently, RBMT is also known
as knowledge-Based Machine Translation. There are three types of RBMT
model: Direct Approach, Transfer-Based Approach, and Inter-lingual RBMT.

– Direct Approach, which is considered as the oldest approach, is a word
level translation [51].

– Transfer-Based Approach can use knowledge of both the source and tar-
get languages. This method involves three steps: analysing the source
language text to establish its grammatical structure, transferring the re-
sulting structure to a structure for generating text in the target language,
and finally generating this text [52].

– Interlingual RBMT, which is transforming the input sentence into ab-
stract representation and mapping it to the final output [53].

• Corpus-Based Machine Translation:
Over the last three decades, corpus-based machine translation methods have
become one of the most widely explored areas in machine translation. This is
due to the use of parallel corpora in machine translation which has enabled a
high level of accuracy to be achieved and has improved the translation per-
formance. Therefore, many corpus-based approaches have been introduced;
example-based, context-based, and statistical-based machine translation.

– Example-Based Machine Translation:
Example-based Machine Translation (EBMT) was suggested by [54] and
is based on the idea of translating by analogy. It is, therefore, also known
as the analogy-based, and memory-based approach. EBMT is defined
as the process of matching an input sentence with already translated
examples of a corpus or database in order to extract suitable examples.
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The extracted examples are then recombined in an analogical manner to
determine the correct translation [55].

– Context-based Machine Translation:
Context-based Machine Translation (CBMT) is another type of corpus-
based MT model. However, this model requires no parallel corpora. In-
stead, it utilises an extensive monolingual target text corpus and a full-
form bilingual dictionary as core requirements, with a smaller monolin-
gual source-text corpus as an optional requirement (which enables further
improvement of the translation performance) [56, 57].

– Statistical Machine Translation:
In 1949 Warren Weaver introduced Statistical Machine Translation (SMT)
[58]. Since then, numerous examples of SMT have been developed which
we will explore in more detail later.

• Hybrid-Based Machine Translation:
Hybrid-Based MT is defined as the use of multiple machine translation ap-
proaches within a single machine translation system. Many works have been
conducted using this combination of two or more machine translation ap-
proaches. The most popular combinations fall into the following three ap-
proaches; rule-based, example-based, and statistical MT. Examples of the hy-
brid approach include [59] and [60] who apply the rule-base hybrid approach,
and [61] who uses the rule/statistical-based hybrid approach.

To conclude, in the field of MT, numerous studies have been published, and
different approaches have been developed. The early approach, the Rule-based MT
method, is very expensive, time-consuming, and labor-intensive because it depends
on significant linguistic resources and requires linguistic knowledge. SMT approach
is much faster than the rule-based approach. However, it is costly to create the com-
positions and does not perform well for languages with various sentence structures.

Due to the success of SMT approach, the next section reviews this approach in
more details.

2.4.2 Statistical Machine Translation

Warren Weaver’s SMT approach, devised in the late 1940s, [58] has now been widely
applied and developed within the field. Firstly, IBM’s Candide Project developed
the the word-based model in the 1980s [62]. Following this, extensive research was
conducted to improve the quality of SMT systems. This led to numerous Phrase-
Based models being introduced which demonstrate better performance than word-
based models. The main weakness in word-based models was that one word in the
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source language (S) can be translated into many words in the target (T) language
and vice versa [1, 63]. As such, many researchers agree that the main problem
is finding the best translation in terms of fluency and adequacy [64, 1]. This has
resulted in a wealth of research in this area.

Word Models

The IBM Candide Project[62] developed the first word-based model in the late 1980s
(known as IBM1). This was a simple machine translation model based on lexical
translation. The main idea of this model was to map words from the source language
to the target language using a dictionary. The IBM1 model is defined as the process
of generating a number of different translations for a given sentence using lexical
translation probabilities and the notion of alignment [65], [1] and [62].

Numerous word-based models have subsequently been introduce by IBM, namely;
IBM2, IBM3, IBM4, and IBM5 [1]. Each of these models has improved the MT per-
formance. Their importance is relay on the alignment and probability distribution
[1].

The main disadvantage in the word-based model is that the textual information is
not taken into account and the lexicon probabilities are based on single words only.
Therefore, the language model is not capable of solving ambiguity as translation
depends on the surrounding words. As a result, this model is very weak at solving
re-ordering problems [66].

Phrase Models

The Phrase-Based Model (PBM) is an example of a noisy-channel approach (which
was introduced for translating French into English in 1993). Examples of PBM that
have been introduced include; [67], [66] and [63]. All these model have the same
basic PBM architecture; phrase segmentation (or generation), phrase reordering,
and phrase translation, which is defined as:

argmax
e

P (e|f) = argmax
e

P (e, f) = argmax
e

(P (e)× P (f |e)) (2.30)

where P (f |e) is the translation model that encodes e into f by: segmenting e,
which is a sentence of target language into phrases e1 . . . eI . Then reordering ei based
on distortion model and finally translating each of the ei into the target language
using the estimation of P (f |e) from the training data [68].

Many researchers agree that phrases of more than three words long increase
the performance of the translation for training a corpus of up to 20 million words
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[67],[63], [66]. Nowadays, the most used PBMT models are; Koehn’s Phrase-Based
Model, Factored Phrase-Based Model, and Hierarchical Phrase-Based Model.

• Koehn’s Phrase-Based Model:
In this research, [1] is the main reference for MT system. Koehn [1] has pointed
out that their phrase-based model has obtained the highest levels of perfor-
mance through the heuristic learning of phrase translation from word-based
alignments and through the lexical weighting of phrase translations to find
the best translation [63]. They apply the Bayes rule to invert the translation
direction and integrate a pre-trained language model (PLM). The best target
(e) translation for a source (f) is defined as:

ebest = argmax
e

p (e|f) = argmax
e

p(f |e)PLM(e) (2.31)

Despite defining the best target translation exactly as the same reformulation
in word-based models, Koehn et al. have decomposed P (f |e) into:

p
(
f̄ I
1 |ēI1

)
= ΠI

i=1ϕ
(
f̄i|ēi

)
d (starti − endi−1 − 1) (2.32)

where ϕ (fi|ei) is phrase translation probability, d is a reordering model and
(starti − endi − 1) is a reordering distance. As such, they break up the source
sentence f into I phrases and each source phrase of f̄i is translated into a
target phrase ēi. The phrase translation probability is modelled as translation
from target to source. This is the standard model for phrase-based statistical
machine translation.

After this stage, phrases may be reordered. Many researchers agree that deal-
ing with word reordering is a big challenge in MT, as phrase order can vary
from one language to another [69, 1]. However, they agree that a reorder-
ing model that reorders translated words to give a good translation should be
used at some points to solve the various language structures [46, 70]. There are
many lexicalised reordering models that can predict the orientation (monotone
(M), swap (S), and discontinuity (D)) of phrase pairs such as LRMs, HRM
[70]. However, Koehn has handled the reordering phase using a distance-based
reordering model, which has been defined as the number of skipped words as
shown in (2.32) [1]. He points out that a limited number of these words
produce better translations than large reordering, which can result in worse
translation [1].
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Then, Koehn [1] extends the standard model to improve the translation qual-
ity by giving the language model more weights λϕ, λd, λLM for scaling the
contributions of the three components as:

ebest = argmax
e

I∏
i=1

ϕ(f̄i|ēi)λϕd(start − endi−1 − 1)λd

|e|∏
i=1

PLM(ei|e1...ei−1)
λLM

(2.33)

while ϕ(f̄ |ē) phrase translation table, d reordering model , and PLM(e) lan-
guage model. By adding weights, he creates a long-linear model, which is used
widely in the machine learning community. The long-linear formulae is:

p (e|f) = exp
n∑

i=1

∏
i

λihi (e|f) (2.34)

where e is the translation, f the input sentence, hi an evaluation of each feature
function, and λi feature weight [71].

Finding the best scoring translation according to the model is still a compli-
cated problem in MT. The process of identifying the best scoring translation
is called decoding [1]. In SMT, a phrase-translation table is used to test
the translation options for a given sentence. Finding the best translation, in
terms of language influence, is the ’search problem’ in this task. Koehn [1] em-
ploys heuristic search methods in their work. However, heuristic searches are
not guaranteed to find the best translation and this can lead to search error.
Highest-probability translation also fail to provide a good translation (referred
to as model error). Therefore, decoding algorithms are used in the SMT model
to identify the best translation, such as: stack decoding [72]: beam search and
A∗ search, Greedy hill climbing decoding and Finite State Transducers De-
coding (FSTD) [1]. Currently, there are many popular decoding toolkits for
building MT such as Moses and FSTD. These are efficient and help save time.

• Factored Phrase-Based Model:
A Factored Phrase-Based Model (FPBMT) is an extension to Phrase-Based
MT. The main difference is the added linguistic factors at the word level
in both source and target training data. The linguistic factors are usually;
surface form, POS, lemma, and morphological features such as gender, count,
case etc.. These factors are added to each token to become a vector of factors.
Each factor presents a different level of annotation [71]. This also uses a log-
linear approach as shown in equation 2.34.
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Mapping lemmas haus − > house, home, building, shell
Mapping morphology NN |plural − nominative− neutral− > NN |plural,NN |singular
Generating surface forms house|NN |singular − > houses

Table 2.2: Translate the German one-word phrase hauser into English [1]

Input factored representations will translate into output factored representa-
tions. This process is broken into three mapping processes; 1) Translate input
lemmas into output lemmas, 2) translate morphological and POS factors, and
3) generate a surface from a given lemma and linguistic factors [71]. In this
model, all translation steps operate on phrase level and generation steps on the
word level [71]. For example, when translating the German one-word phrase
Huser into English. The input representation of Huser is:
surface-form Huserr | lemma Hus | POS NN | count plural case | nominative

| gender neutral. The three mapping steps are shown in table 2.2.

Each step will be given multiple choices. The number of given choices is
reflective of the translation ambiguity. The factored model shows improvement
in SMT. Adding linguistic factors plays a core role in solving some of the
morphological and ambiguity problems and leads to better phrase mapping
from source to target languages [73]. As in PBMT models, factored models use
a combination of the same components (e.g., LM, reordering model, translation
and generation steps).

• Hierarchical Phrase-Based Model:
The Hierarchical Phrase-Based Model (HPBM) [74] takes the fundamental
ideas of syntax-based modelling (i.e., the hierarchical structure of the lan-
guage) and integrates it into a PBM. The name ’hierarchical’ comes form
using hierarchical phrases (phrases that consist of sub-phrases). Chiang [68]
points out that the main motivation for proposing HPBM is solving reordering
problems in PBMT. As in PBMT, learning reordering is done at the phrase
level. In other words, learning reordering of words can be efficiently achieved
using phrases. However, when it comes to reordering phrases, it fails. There-
fore, HPBM uses hierarchical phrases (consisting of words and sub-phrases) to
learn the reordering of phrases [74].

HPBM uses a synchronous context-free grammar (CFG) rules, which is a for-
malism consisting of terminals and non-terminals as symbols in addition to
rewritten rules. Terminals are words while non-terminals are POS tags and
phrase categories. The rewritten rules in CFG align to a single non-terminal
symbol on the left-hand side with at least one either terminal or non-terminal
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symbol on the right-hand side [1]. The CFC formula is:

X → ⟨γ, α,∼⟩ (2.35)

where X is a non-terminal symbol, γ and α are strings of terminals and non-
terminals, and ∼ is an one-one correspondence between non-terminals occur-
rences in γ and α [74].

The weight of each rule in HPBM has been computed from the use of both
the noisy-channel approach and log-linear model as:

w (X → ⟨γ, α⟩) =
∏
i

ϕi (X → ⟨γ, α⟩)λi (2.36)

where ϕi are defined as features by rules. In spite of the use of CFG in HPBM,
it can be considered as a move toward syntax-based MT. The main difference
between HPBM and syntax-based models is that HPBM is learned from bitext
without any syntactic information. So, HPBM is formally syntax-based (uses
CFG) not linguistically-based [74]. HPBM uses minimum-error-rate training
of log-linear models and uses n-gram language models the same as PBMT.
However, HPBM has displayed better performance in terms of the reordering
model compared to PBMT models.

Syntax or Structure Models

In spite of the similarity between the PBMT model and the syntax-based model in
the training pipeline, syntax-based MT models require adding linguistic annotation
to the translation rules. These annotations can be added to the source or the target
training data, or to both of them [75]. Capturing the language differences is the
main advantage of using linguistic annotations in this model which leads to better
MT performance specially for language pairs with different morphology [75, 76].
However, the availability of the parser is a limitation for this approach.

2.4.3 Statistical Machine Translation Tools

Despite improvements in this field, MT still faces big challenges due to the complex-
ity of natural languages. Individual words may have alternative meanings and many
possible translations. Moreover, natural languages from different language families
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vary significantly in their morphological or syntactical complexity. Therefore, re-
searchers agree that language complexity at the morphological and syntactical levels
is the core challenge. However, a significant body of research has been published
that shows performance increases. The achieved improvements target the three main
components of statistical methods: (Cross) Language Modelling, Translation Model
and Decoder. As a result, many tools have been introduced across each of these
components.

Statistical Decoder

Decoder is a SMT system toolkit that is used to find the highest scoring sentence
in the target language for a given source sentence. SMT decoder requires Paral-
lel data for training the translation model automatically. Sentences in the Parallel
are aligned so as to have the same numbers of lines in both source and target
languages. Nowadays, many software tools are freely available to build SMT sys-
tems. The Center for Language and Speech Processing at Johns-Hopkins University
(CLSP/JHU) has implemented GIZA++ as an extension of the program GIZA
(word-based models) [77], which is commonly used in word alignment. Also, the
University of Edinburgh has implemented phrase-based MT decoders; Pharaoh(a
beam search decoder) and Moses (which is the most popular decoder for SMT).
In addition to, SAMT (a tree-based model), Joshua (for Parsing-based Machine
Translation) [78], MARIE (n-gram-based SMT Decoder), and several more.

• Pharaoh:
Pharaoh decoder was first introduced by [79] in 2003. It implements a beam
search algorithm for phrase-based MT. In 2004 the decoder was improved by
recombining hypothesis in order to reduce search space and has demonstrated
better performance through faster processing [80].

• Moses:
Moses is an open-source toolkit for statistical MT, it is used for building an
Arabic-English SMT system. It involves taking the rules of each language
to transfer the grammatical structure of the source language into the target
language [45]. Moreover, the toolkit (Moses) also includes a wide range of tools
for building a statistical MT system, such as a word alignment tool, language
model tool and a reordering tool, as well as an automatic machine translation
evaluation tool [81, 1].

• Joshua:
Joshua also is an open source toolkit for SMT [78]. It is implements all syn-
chronous context-free grammar (SCFGs) algorithms. Li et al. [78] state that
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great effort has been applied to building this toolkit to enable it to be used
and extended easily.

To reiterate: SMT decoder can produce SMT systems for any pairs of languages
using the parallel corpus, which is a collection of aligned sentences in two different
languages. Many corpus are freely available through multiple sources and across a
wide range of language pairs.

Language Models

Language models (LM) have been used in speech recognition tasks since their in-
troduction in 1983 [82]. They were initially proposed for NLP tasks such as: MT
[83] and automatic spelling correction [84]. As in NLP, SMT uses large scale n-gram
language models. The original framework of n-gram LM was developed in 1999 [85].
There are many proposed LM algorithm that have been implemented and tested for
SMT and other NLP tasks: SRILM [86], IRSTLM [85, 87], RandLM , KenLM [88].
Each of these LMs has shown good performance over many NLP tasks. Researchers
have focused their studies on the differences between these LM’s performances. Fed-
erico and Cettolo [85] state that when running Moses with SRILM and IRSTLM ,
in terms of memory size, IRSTLM requires less memory (about half that of SRILM)
during decoding. While SRILM outperforms IRSTLM in terms of speed (as IRSLM
is 44% slower). KenLM uses a two data structures library (PROBING, and TRIE
models) for language modelling. It has outperformed both SRILM and IRSTLM as
it uses less memory and is 2.4 times faster than SRILM [88] and significantly faster
than IRSTLM. However, in MT, to truly compare the performance of LMs, building
a baseline MT is required.

Word Alignment

Word alignment is one of several steps in training a phrase-based SMT system. This
process helps to extract the phrase pairs that are needed in translation system. Word
alignment is a time consuming process and requires the majority of the time taken
to build a SMT system [89]. The statistical alignment models: IBM1, IBM2, IBM3,
IBM4, IBM5 [65] IBM6 [77] and GIZA++ are available, with Giza++ currently
being the most popular word alignment tool for bilingual parallel training corpora
[89].

PGIZA++ and MGiza++ have recently been implemented to improve Giza++
(in terms of speeding-up the alignment process). Gao and Vogel [89] studied the
performance of PGIZA++ and MGiza++ and their experiments show a significant
improvement in terms of speeding-up the training process compared to Giza++.
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2.4.4 Neural Machine Translation

In many tasks neural models have shown significant improvements: semantics and
question answering [8, 9, 10], Machine Translation (MT) [11, 12], parsing [13, 14] and
lexical representations, which will be explained in detail in Chapter 5. Within the
last decade, research has achieved a great success following phrase-based approaches,
like log-linear models. However, there are still many limitations. Particular weak-
nesses are; word alignment, reordering and Out-Of-Vocabulary Handling (OOV).
Most of these problem are caused by data sparsity.

Therefore, many researchers have introduced different neural networks to im-
prove machine translation quality. The proposed models can be categorised into
two main categories. Firstly, hybrid approaches which are apply neural models to
capture statistical sub problems. Secondly, end-to-end NN MT approaches, which
encode the source sentence into the target sentence.

End-to-end approaches using Neural Machine Translation contain only a single
component: A neural network trained to maximise the conditional likelihood on
bilingual training data. Basic Architecture includes: an encoder (to encode the
variable-length source sentence into a real-valued vector), and a decoder (to decode
the real-valued vector into a variable-length target sentence) [90]. Liu et al. [91]
propose a semi-supervised method that models the end-to-end decoding process for
SMT using a Recursive Recurrent Neural Network (RRNN), which is a combination
of recursive neural networks and recurrent neural networks.

Despite the success of NMT, it still has many limitations. One of these lim-
itations is producing high OOV rate due to using a fixed sized of vocabulary to
reduce training and encoding time. Moreover, end-to-end NMT encodes the source
sentence into a fixed-length vectors that are unable to capture all the necessary fea-
tures of long sentences. Finally, NMT cannot benefit from the large monolingual
data needed to train good LMs for the source language. These limitations encour-
age researchers to incorporate NMT with SMT models in order to produce more
powerful MT models. Recently, the Attention-based encoder-decoder model was
introduced [92]. This model uses attention mechanism to connect the encoder with
the decoder. Attention function is defined as the process of mapping a query and a
set of key-value pairs into output (the weighted sum of the values) [92].

2.4.5 Hybrid Methods

In the past decade, various neural architectures have been introduced. From the sim-
ple feed-forward neural networks (FNN), through recurrent neural networks (RNN),
to autoencoders. The rapid development in NN-based NLP models, namely, word
embeddings (learning syntactic and semantic word representations) models has im-
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proved different NLP tasks and led to better context modelling. Therefore, many
NN-based models have been proposed to solve different SMT problems [93, 94, 95].
He et al. [94] incorporate SMT models; namely language modelling and translation
models with NMT in order to get the power of training these models using a large
monolingual corpus which is not possible with a NMT model alone. Their model
improves the translation quality and outperforms the state-of-the-art NMT system
over the 2 BLEU score. Moreover, Luong et al. [96] translate the OOV words using
a dictionary as a post-processing step.

Xiong et al. [97] propose a reordering model using a maximum entropy (MaxEnt)
based on ITG (Max-Ent ITG) using the two reordering rules (straight and inverted).
As fore-mentioned, learning word embeddings motivates researchers to investigate
the effect of learning vector space representations for words/phrases on modelling
word order. Thus, Li et al. [98], use the ITG reordering clarifier to introduce a NN-
based reordering model based on recursive auto-encoders. RNN-based models have
also been used for language and translation modelling. Sundermeyer et al. [99] use
RNN to propose two translation models: word-based and phrase-based. Both models
rely on in-source and target-word vocabulary to build word/phrase representations.
For the phrase-based translation model, they introduce a bi-directional NN-based
architecture to model unlimited past and future dependencies.

2.5 Machine Translation Evaluation

Due to the rapid development of MT systems and their importance within the
field, evaluating each system’s performance is a vital step in understanding which
system to use. Koehn [1] points out that MT is not as easy to evaluate as other
natural language tasks such as speech recognition, which gives one correct answer
to match. In contrast, different MT systems can translate one sentence in multiple
ways. Therefore, Machine Translation Evaluation (MTE) becomes a very active
field of research [1]. There are two ways of achieving MT evaluation: manual/human
evaluation, and automatic evaluation. Each of which, have outputs based on fluency
and adequacy criteria.

2.5.1 Human Evaluation

In 1990s, the Advanced Research Projects Agency (ARPA) introduce a MT evalu-
ation methodology using fluency, adequacy, and comprehension manual evaluation
for measuring MT quality [100]. Adequacy is calculated sentence by sentence using
evaluators based on human judgement [1] and its correctness relies on two criteria:
fluency and accuracy [1]. All manual evaluators use scores around the same average
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x̄ , which consists of a set of judgements (x1, ..., xn) and is defined as:

x̄ =
1

n
Σn

i=1xi (2.37)

However, there are several disadvantages of manual evaluation metrics. These
issues are:

• Speed: it takes a lot of time.

• Size: it is not suitable for long documents.

The MT manual evaluation assesses and measures the translation quality (accu-
racy and fluency). In translation quality, accuracy is understood by whether, or
not, the target text reflects the source text accurately. While fluency is whether
features are presented correctly such as grammar, spelling, typography, etc. Multi-
dimensional Quality Metrics (MQM) are one of the most effective translation quality
assessment tools. MQM categorises issues into 5 error analysis types: fluency, accu-
racy, verity, design, and internationalization. Each of these are further broken-down
into many branches. Design is a physical design or presentation include character,
paragraph, and UI element formatting and markup, text integration with graph-
ics, and page or window layout. While verity is the text contains statements that
contradict its setting. Finally, internationalization error, which is an issue about
the internationalisation of contents. The first three issues are considered the MQM
’core issues’ [101].

2.5.2 Automatic Evaluation Metrics

An automatic evaluation method for MT has recently attracted researchers’ atten-
tion. The main objective of this method is to evaluate MT system quality in a
cheap and rapid way [102, 1]. The big challenge in automatic machine translation
is how quickly it produces a good similarity measure. Recently, automatic machine
translation evaluation has become an active research field in MT, with many metrics
being proposed:

• Precision and Recall compare each translation system against one or more
reference translations (human translations) of the same sentence.

• (Balanced) F1-Measure (F1-Score) is a a combination of recall and precision.

• Word Error Rate (WER) is the rate of translation errors for each word. This
metric requires the translation to have the correct order. For a perfect WER
the word order in the hypothesis and reference must be identical.
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• Position-Independent Word Rate Error (PER) is an error rate metric intro-
duced by [103], where word order is fully ignored. Instead it calculates the
difference between the number of words found in hypotheses and references.
The resulting value is divided by the reference’s word count.

• Translation Error Rate (TER) was introduced by [104]. The TER is an evalu-
ation method that avoids the labor-intensiveness of human judgments and the
knowledge-intensiveness of more meaning-based approaches. Machine Trans-
lation specialists utilise the Translation Error Rate (TER) to estimate how
much post-editing is required for machine translation tasks. The automatic
metric counts how many steps it takes to change a translated segment in a
given line with one of the reference translations. It is simple to use, language
agnostic, and aligns with post-editing effort.

• Bilingual Evaluation Understudy (BLEU) Score: BLEU scores are widely used
as an automatic evaluation metric [1, 102, 105]. BLEU was introduced by
Papineni et al. [106]. It is similar to PER in terms of mismatch measuring but
considers matches of large n-grams against reference translations. Despite the
main use of BLEU being MT evaluation, it is also used as a loss function for
discriminative training [81, 78, 102]. The BLEU method is based on N-gram
models as well as a set of human reference translations [105] and is defined as:

BLEU − n = brevity − penalty expΣn
i=1λi log precisioni (2.38)

while brevity − penalty defined as:

brevity-penalty = min(1,
output-length

reference-length
) (2.39)

However, the maximum order n for n-grams to be matched is set to 4 and the
weights λi is set to 1. Therefore, the metric is called BLEU-4 and simplifies
as:

BLEU − 4 = min(1,
output-length

reference-length
)Π4

i=1precisioni (2.40)

In spite of BLEU methods giving a score from 0 to 100, [1] believes that the
actual score is meaningless as there are many factors which can affect the
results, such as the number of reference translations, language pair and the
tokenization scheme. NIST works similar to BLEU and has been developed
by Edinburgh University Statistical Machine Translation Group [107].
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• METEOR is an automatic machine translation metrics based on a concept of
uni-gram (word-word) matching between the output of a machine translation
and one or more human reference translations [108]. For more than one hu-
man reference translation, the output translation is scored by matching each
reference independently and then taking the best scoring pairs [109]. It also
incorporates a stronger emphasis on recall and functions in a similar way to
BLEU by ignoring the near matches [1]. However, it has been developed to
address BLEU’s weaknesses [108].

• (Rouge-L) Recall-Oriented Understudy for Gisting Evaluation has tools for au-
tomatically evaluating a summary’s quality by contrasting it with other ideal
summaries written by humans. Between the computer-generated summaries
being evaluated and the ideal summaries created by humans, the measurements
count the amount of overlapping units, such as n-grams, word sequences, and
word pairs. Rouge-L has an impact on MT despite being successful in auto-
matic evaluation for summeries [110].

• CIDEr (Consensus-based Image De-scription Evaluation) a novel paradigm
for evaluating image descriptions based on human consensus introduced by
[111]. The CIDEr metric compares the similarity of a generated sentence to
a set of human-written ground truth sentences. This metric demonstrates
high agreement with consensus as determined by humans. The notions of
grammaticality, saliency, importance, and accuracy (precision and recall) are
inherently captured by this metric when using sentence similarity.

2.6 Syntactic and Semantic Parsing

The syntactic and semantic parsing process, from the point of view of linguistics,
is to disclose how words are combined to form sentences and calculate the relations
between these words [112]. In other words, the purpose of parsing is to reveal how
words are combined to make sentences and the rules that control their construction.
This process is useful for a variety of tasks in NLP applications, including machine
translation, question answering, information extraction, sentiment analysis, and in-
formation extraction [113, 114, 115]. The performance of parsing is critical, as such,
it has received extensive research attention in the past decades.

Syntactic parsing is the process of extracting syntax information from sentences,
such as subjects, objects, modifiers, and topics. Parsing frequency uses grammars
to refine the output structures of syntax and semantics. Many advanced grammars
are available for accurately expressing syntactic and semantic information at the
sentence level. For example: Context-free Grammar (CFG) [116], which is known
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as constituent parsing (or phrase-structure parsing), and Dependency Grammar for
syntactic and semantic parsing, where words are linked directly by dependency con-
nections, and labels indicate their syntactic or semantic meaning. There have been
several successful solutions posed with large-scale corpora for a variety of languages
are already available.

With regard to machine translations, syntactic and semantic parsing are impor-
tant because as research state that integrating syntax features improve many NLP
tasks [117]. This thesis investigates the impact of such features in learning BWEs
and NMT as shown in Chapter 5.and 6.

2.7 Summary

This chapter presents a background on the field of research of word embeddings.
It explain this approach at monolingual and bilingual levels. Also, we discuss ap-
proaches and methods of related research work in more details. In addition, this
chapter provides an overview of the history of translation systems and its evaluation
methods. In this thesis, in Chapter 6, a syntax-based NMT models is trained to
investigate the effect of syntax features on the quality of MT task at the phrase
level.



Chapter 3

Challenges for Machine
Translation of Arabic Language

Arabic language structure is described in this section, including its morphology and
semantics. From the Gulf to Morocco, 22 countries use Arabic as their official lan-
guage. Countries and even areas within the same country have their own unique
versions. Classical Arabic, Modern Standard Arabic (MSA), and Arabic dialects
are only a few of the various varieties of Arabic. When it comes to news broad-
casts, MSA, a form of Arabic based on classical Arabic syntax and morphology and
phonology, is written and spoken. However, Arabic dialects are the genuine native
language forms for everyday communication. The Arabic language is still a problem
in MT because of its complexity. This thesis focuses on MSA.

3.1 Arabic Alphabets

As with any language, the Arabic language has vowels and consonants. It consists
of many types of letters written from right to left [118, 119]; the basic 28 letters (see
Figure 3.1), the Hamzated Alif letters (see Figure 3.2), the Ta-Marbuta letter (see
Figure 3.3), and the Alif-Maqsura letter (see Figure 3.4) [118].

Arabic letter formats can vary depending on the letter’s position in the word
[119] as some letters can take up to three different shapes. For examples see Figure
3.5.

3.2 Arabic Words

Words in Arabic, like those in many other languages, can take on different meanings
depending on the prefix or suffix they’re attached to. It is common for prefixes to
express the tense and gender, whereas suffixes are used to specify the number of

53
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Figure 3.1: The Basic 28 letters in Arabic language

Figure 3.2: Hamzated Alif letters
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Figure 3.3: Ta-Marbuta letter in its different forms

Figure 3.4: Alif-Maqsura letter

Figure 3.5: Variation in Arabic letters shapes sample
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people and the gender [69]. As a result, a single Arabic word can be translated into
as many as three different English words. Thus, an Arabic word can be interpreted
in several ways by modifying its affixation. Affixation is a problem in SMT within
the Arabic language. Researchers have used morphological analysis to handle Arabic
affixes in order to improve the Arabic-English MT System [120].

3.3 Arabic Morphology

In the Arabic language, the morphology and syntax are difficult to understand [121].
Despite the fact that numerous publications focus on translating Arabic to English,
their authors are frequently constrained by the complexity of the morphology they
encounter.

Firstly, verb tenses in the Arabic Language are: Madi (past), Modare (present)
and Amr (order). The future tense is indicated by adding a word

	
¬ñ�

or the letter
�

before the present tense verb. Regardless of the verb tense, verb structures vary in
Arabic and rely on many factors: gender, single or plural.

For example, the verb:
I. ë

	
Y
�
K

in English means ’she goes’. The first letter
�
H

indicates the female gender, while the verb
	
àñJ.ë

	
YK


means ’they go’. The letter (prefix):
ø



indicates the tense, which is present in this case,
while the (suffix):

	
àð

indicates plural and gender (male).

3.4 Lexical Semantics

Getting the same meaning over from one language to another is the primary goal
of translation. Researchers, on the other hand, agree that determining what a word
means depends on the word that comes after it in many languages. This is in
addition to whether it is a noun, proper noun, verb, or particle [1, 69].
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The lack of regular use of diacritization (marking to denote short vowels) creates
uncertainty, particularly in Arabic. Although they share the same spelling, these
two terms mean very distinct things, are called homonymy words or word sence.
It has been defined as the task of determining the right word sense for a given word
as word sense, disambiguation [1].

3.5 Sentence Structure

The Arabic language has two types of sentences: nominal (starts with a name) and
verbal (starts with a verb). The Arabic and English languages are very different
from a structural point of view. One of the main differences between Arabic and
English is the order of words. As with other languages, Arabic sentences are built
using a verb, subject and object. Usually, an Arabic sentence is post-verbal (VSO)
so the verb comes first and then the subject is followed by the object. However,
it is possible to be pre-verbal (SVO) as in the English language, however, this is
not always preferable [122]. In both cases, VSO or SVO, an Arabic sentence is
flexible with its verb position. However, the subject must come before the object
(with the exception of passive sentences, which can be either before their subject
or without their subject). Secondly, in Arabic, the adjective always comes after its
noun, which is not the case in English. So a reordering rule should move the object
of an Arabic sentence to the right of the adjective. Finally, indicating possession
and compounding in Arabic is called Idafa. Idafa consists of one or more nouns that
have been defined by the following noun [122].

3.6 Phonemes

Phonology has been defined as the study of how phonemes are organised in natural
languages by [118]. Phonemes are defined as small linguistic units used to present
speech [123]. Sibawayh identified Arabic phonemes in the thirteenth century [124].

The Arabic language has six different vowels. These vowels are divided into two
categories [124]: Short vowels and Long vowels

The long vowels are letters, so they are easily recognised automatically, even by a
recognition system in speech data or a translation system in text data. On the other
hand, there are no special letters for short vowels. Instead, special marks above and
beneath the consonants are used [119]. These marks are called diacritisation (Fatha,
Kasrah and Dammah (See Figure 4)) [120, 69]. Consonants can be un-vowelled in
the Arabic language by placing Skoon above the consonant.

Un-vowelled and short vowels are still big challenges in speech recognition sys-
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tems and machine translation systems when using the Arabic alphabets corpus as
they are not written letters . However, such issues can be managed using the En-
glish alphabets Arabic corpus. Moreover, in the Arabic language there are Sun and
Moon laams, which means the in English. They are written exactly the same but
they are pronounced differently depending on the following consonant. The Moon
laam is pronounced as written /al/ while the Sun laam is pronounced with silent l.

3.7 Challenges

Compared to English, Arabic is considered a very rich morphological language. This
morphological complexity increases the challenge when translating from and into
Arabic language in MT, specifically SMT. Word order and word agreement can be
considered as main issues for Arabic language in SMT in addition to some other
issues. These issues can be explained briefly as follow:

• Arabic Word-Order and MT:
Similar to many other languages, Arabic has different types of sentence struc-
tures which can create issues for MT. One of the main problems is deciding
the position in which the verb and subject should be placed. An Arabic sen-
tence can be either post-verbal (VSO) or pre-verbal (SVO) meaning the verb
can take either position. We note that the VSO order is the more common
(which is not the case in English word order) and in many cases the word order
is fixed. Noun-Adjective positions are also a problem. In Arabic, adjectives
follow their noun while in English the noun follows its adjective. This word
order differentiation between these two language pairs makes SMT task more
challenging.

• Arabic Word-Agreement and MT:
Word-agreement is the most challenging issue in MT for Arabic language as
there are many word-agreement rules. These can be broadly classified into
three main word-agreement issues in Arabic language MT; verb-subject, noun-
adjectives, and numbers quantification.

Firstly, in verb-subject agreement, the verb must agree with its subject across
many aspects; gender, number, and person. These rules can vary depending
on the rationality status and can change depending on the sentence structure.
For example; in verbal sentence, the verb must agree with its noun in gender
and person but not in number, while in nominal sentences the verb must agree
with its noun in gender, number and person.
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Secondly, there is variance in noun-adjective agreement between the two lan-
guages. In Arabic an adjective must agree with its noun in both number and
gender while this is not the case in English. In English, the adjective has one
form regardless its noun case.

Finally, there is the problem of numbers quantification as numbers have unique
agreement rules [125]. These rules can be classified into many main cases:

– The numbers 1 and 2 in Arabic must follow the gender of the noun they
refer to and are positioned after the noun. For example;

Yg@ð H. A
�
J»

– Numbers 3 to 10 always take the opposite gender to the noun they rep-
resent and are positioned before the noun. For example;

H. C£
�
é
�
KC

�
K

"Three students"
the word

�
é
�
KC

�
K

which means "Three" is in female gender form while the word
H. C£

which means" Students" is indicates male gender.

�
HAgA

	
®
�
K ©K. P



@

"Four apple".
the word

©K. P


@

which means "Four" is in a male gender form while the word
�
HAgA

	
®
�
K

which means" apples" is female.

– multiple digit numbers are considered as consisting of two or more words.
For example 13 is considered as 3 and 10. Numbers that consist of two
words (or two parts) have two rules as follow:

∗ Numbers 11 and 12; always agree with the gender of the noun.

∗ Numbers 13 to 19; the first part of these numbers, which is a number
between 3-9, must take the opposite gender to its noun, while the
second part, indicating the 10, must agree with the gender of its
noun. For example; take the sentence

�
èPAJ
�

�
èQå
�
�« �Ô

	
g
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which means "Fifteen cars". The word car is a female single noun.
The number 5 must, therefore, take the male gender, whilst the num-
ber 10 must take the female gender.
the word

�Ô
	
g

which means "Five" is in male gender form while the word
�
èQå
�
�«

which means "Ten" is in female form
�
èPAJ
�

which means" car" is female so the first part of the number take
contrary gender of its noun and in single form.

A contrasting example would be
H. A

�
J» Qå

�
�«

�
é�Ô

	
g

which means "Fifteen books". In this case books is a male plural noun.
The 5 must therefore be female whilst the 10 male.
the word

�
é�Ô

	
g

which means "Five" is in female gender form while the word
Qå
�
�«

which means "Ten" is in male form.
And the word

H. A
�
J»

which means" book" is in male and single form.

– Numbers {20, 30....90}; have one form regardless of their noun’s gender.

– The 100s numbers always take the female form when they are written as
one word but follow the 13-19 rules if written in two parts.

• Affix and Clitics in Arabic:
In Arabic, affix and clitic have been defined as the small liguistic units that
attach to the stem. The main difference between them is that clitic is gram-
matically independent [126]. Therefore, in Arabic, one word can be translated
as upto four words in another language. The reason behind this ambiguity is
that the word consists of an affix (prefix and suffix) in addition to its stem and
sometimes a clitic as well. A clitic is considered as a word in other languages.
Therefore, researchers have done a great deal to reduce such ambiguity by
proposing preprocessing techniques such as Word Segmentation. In Arabic,
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affixes can not always be translated into the target language. In a noun, the
affix indicates the gender and number. For example; take the word

�
H@Q�
Ó



@

which means "Princesses " in English. The suffix
�
H@

indicates the number(plural) and the gender (female) and it is not a word
itself. In contrast in verbs the affix can be more than one word and indicates
gender, number, person, and tense. For example; the word

Ñî
	
Eñ«YJ
�

which means "they will invite them". This word has a clitic:
�

which means "will" and also two suffixes
	
à

which indicates the subject’s number (plural) and gender (male).
Ñë

refers to the object and indicates its number(plural) and gender (male). Clitics
increase the lexicon size and cause alignment and matching issues [126].

• The Absence of Short Vowels:
Short vowels absence in Arabic language is also considered as one of the chal-
lenges in Arabic Natural Language Processing (ANLP). As one word can has
many meanings depending on these unwritten vowels. Therefore, the correct
translation can be only found depending on the context. Thus, in MT, pre-
dicting the correct translation (especially when translating from Arabic) is the
main challenge caused by such ambiguity.

• Ta-Marbota and Haa:
The letter Ta-Marbuta is usually written without its dots (see Table 2.3), this
causes MT to treat it as

è

, which is a different letter all together (the same shape without dots).

• Alif-Maqsura and Ya:
Alif-Maqsura and Ya have similar issues. Alif-Maqsura is rarely written with
its dots making it appear the same as Ya (which doesn’t have dots).

These issues within the Arabic orthography, where multiple forms of the same
word can be interpreted, lead to increased ambiguity [126]. In addition, Arabic is
written from right to left (similar to Chinese and Korean) and has no capitalisation,
both of which are considered complex problems in ANLP [127]. Also, Part of Speech
(POS) are difficult to define as Arabic linguistics are unclear [46].
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Despite improvements, the fore-mentioned issues still have not been solved. They
can be clearly seen in the En-Ar MT except "short vowels absence" issue. Trans-
lating between two different morphological languages, specifically from English into
Arabic, is still far from the optimal. Picking the best translation, in terms of match-
ing meaning, morphology and sentence structure, is still a big challenge for En-Ar
SMT. In order to solve these issues more work need to be done in ANLP [127][128].

3.8 Arabic Language Preprocessing

In pre-processing, extensive research has been conducted into the impact of morpho-
logical pre-processing techniques on statistical machine translation (SMT) quality.
Researchers agree on the importance of morphological and syntactic pre-processing
in MT in terms of reducing both sparsity and the number of "out of vocabulary"
words (OOV) [69, 129]. At pre-processing level, current research focuses on two
main pre-processing techniques: word segmentation and word pre-ordering. Many
tools have been introduced: AMIRA [130], MADA [131], MADA+TOKAN [132],
Farasa [133], AlKhalil Morpho [134] and MADAMIRA [135].

MADAMIRA is a tool for morphological analysis and the disambiguation of
Arabic including normalisation, lemmatisation and tokenisation. It can tokenise the
input text with 11 different tokenisation schemes and normalise Alif and Ya char-
acters. MADAMIRA has been developed in the same way as MADA to accept two
input forms: MSA and Egyptian Arabic (EGY). Pasha et al. [135] have pointed out
that MADAMIRA has outperformed both AMIRA and MADA and is state-of-the-
art. In our work, as word order and language modelling have not been considered, we
only applied segmentation and orthographic normalisation in the training datasets.

3.8.1 Word Segmentation

Word segmentation has been considered the same process as tokenisation within the
Arabic language. It is one of many techniques that have been proposed to reduce
morphological differences between languages such as Arabic and English [126]. Many
tokenisation schemes have been introduced for Arabic and have been successfully
applied. Researchers have studied the positive effect of morphological pre-processing
on En-Ar SMT. El Kholy and Habash [129] found that tokenisation and orthographic
normalisation improves the performance on SMT, especially when translating from
a rich into a poor morphological language. Their work also shows that lemma-based
word alignment improves the translation quality in En-Ar SMT.

Many researchers have studied the effect of different segmentation schemes in MT
quality on both En-Ar and Ar-En SMT. For example, Habash and Sadat [136] show
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that rule-based segmentation improves the translation quality for a medium-sized
corpus, but the benefit of word segmentation decreases when the corpus size is in-
creased. Other researchers Al-Haj and Lavie [2] believe that tokenisation schemes
with more splitting lead to a decrease in the OOV rate. On the other hand, in-
creasing the number of token types can affect word alignment, translation model,
and language model negatively as predicting these tokens correctly becomes more
complex [129].

Researchers consider the Arabic tokenisation process one of the main solutions
helping to decrease Arabic ambiguities in MT. There have been various rule-base
segmentation schemes introduced (See Table 3.1). Some of these schemes are used in
En-Ar SMT and they show the importance of word segmentation as a pre-processing
step to minimise the differences between Arabic and English as well as its effects
on SMT quality. The work of [137] shows a significant improvement in En-Ar SMT
performance when combining segmentation with pre-processing and post-processing
steps for small training data. Al-Haj and Lavie [2], El Kholy and Habash [129]
have studied the effect of different segmentation schemes in En-Ar phrase-based
machine translation (PBMT). Al-Haj and Lavie [2], in contrast to the previous work,
investigate the effect of different segmentation schemes on a very large amount of
training data of at least 150M words. Their work shows that simple segmentation
performs better than complex segmentation as the complex segmentation has a
negative effect by increasing the size of the phrase table.

3.8.2 Orthographic Normalization

Orthographic normalisation is an important process at the pre-processing stage.
El Kholy and Habash [129] have introduced two schemes of orthographic normali-
sation: enriched Arabic (ENR) and reduced Arabic (RED). RED is used at the pre-
processing level to convert all Hamzat-Alif forms to bare Alif (taking out Hamza)
and Alif-Maqsura forms to Ya (add dots). ENR selects the correct Alif and Ya form
in order to generate the correct Arabic form at the post-processing level.

3.9 Summary

In summary, machine translation offers a wide range of benefits. However, there are
still many challenges. This is especially problematic when attempting to translate
from complex language morphologies such as Arabic. Arabic has several features
that make it challenging for MT (see Section 3.7). Bilingual word emeddings is
the main aim in this research. According to research, joint learning produces more
isomorphic embeddings, is less susceptible to hubness, and produces stronger out-
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Table 3.1: Existing tokenisation schemes for Arabic [2]

D0/UT No tokenization.
D1 Separates the conjunction proclitics.
D2 D1 + Separates prepositional clitics and particles.

D3/S1 Separates all clitics including the definite article and the pronominal enclitics.
S0 Splitting off the conjunction proclitic w+.
S2 Same as S1 but all proclitics are put together in a single proclitics cluster.

ATB The Arabic Treebank is splitting the word into affixes.
S3 Splits off all clitics from the (CONJ+) class and all suffixes form the (+PRON)class.

In addition to splitting of all clitics of (PART+) class except s+ prefix.
S0PR S0 + splitting off all sufixes from (+PRON) class.

S4 S3 + splitting off the s+ clitics.
S5 Splits off all possible clitics (CONJ, PART, DET and PRON) classes.

S4SF S4 + the (+PRON) clitics.
S5SF S5 + the (+PRON) clitics.
S5ST S5 + prefixes concatenated into one prefix.
S3T S3 + prefixes concatenated into one prefix.

DIAC One of MADA features that add diactresation to Arabic text.

comes in bilingual lexicon induction, indicating that current mapping methods have
significant limitations. Therefore, BilBOWA model, which is a joint learning BWEs
model, is used in this thesis. Thankfully a solution lies in incorporating dependency
features has improved the learning process of BWEs for all used langauge pairs in
this thesis and dramatically for Arabic-Englaish. In the following chapters we will
apply these models experimentally to demonstrate how they can be used to translate
different language pairs including Arabic.



Chapter 4

Bilingual Word Embeddings
Without Word Alignments

Part of the following chapter has been published in the proceedings of the ACL
Fourth Arabic Natural Language Processing Workshop [138].

A first attempt has been made in this chapter to address the research question
what are the impacts of a variety of factors on learning bilingual word embeddings,
including sentence length, and embedding size for three language pairs, including
En-Es and En-De, in addition to morphological segmentation for En-Ar language
pairs. Rather than aligning words, we used a bilingual word embeddings model
without aligning words (BilBOWA).

According to our findings, for all language pairs, increasing the embeddings size
leads the model to learn better bilingual word embeddings (BWEs). However, sen-
tence length has different effects on the used language pairs. Using short sentences
datasets improves the learning process of BWEs in En-Es language pairs. While it
gives different effects on En-De and En-Ar language pairs. According to our results,
for Arabic, utilising the D3 (more segmentation) segmentation scheme for morpho-
logical segmentation improves the accuracy of learning bilingual word embeddings
by up to 10 percentage points when compared to the ATB (some segmentation) and
D0 (no segmentation) schemes See (Table 3.1) in all training settings.

This chapter presents the related work as well as explains the used model Bil-
BOWA, datasets and evaluation method. Finally, it shows the experiments in de-
tails.

4.1 Introduction

In the last decade, neural networks (NN) have attracted much attention and have
shown very promising results in many natural language processing (NLP) tasks.

65
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Many models have been introduced including: semantics and question answering
[8, 9, 10], Machine Translation (MT) [11, 12], parsing [13, 14] and many works in
word embeddings. Word embedding is one of the most important NLP tasks due to
its ability to capture the semantic similarities between words.

The main idea behind learning word embeddings is to transform words from dis-
crete space into a continuous vector space of features that capture their syntactic and
semantic information. In other words, words that have similar meaning should have
similar vectors. This similarity can be measured using different distance methods
such as cosine similarity and Euclidean distance.

Now a days, many word embedding models have been introduced which show a
significant improvement across different NLP tasks; language modelling [15, 16, 17],
MT [18, 12, 19], named entity recognition [20], document classification and sentiment
analysis [21, 22, 23] etc. Word embeddings can be classified, based on the objective
function that needs to be learnt, into two main categories. Firstly, Monolingual
word embedding, which is the process of learning similar word representations for
similar word meaning within the same language. Secondly, Bilingual/cross-lingual
approaches, which is the process of learning similar words between languages.

In this chapter, we investigate the effect of factors on learning bilingual word
embeddings for En-Es, En-De and En-Ar language pairs. These factors are: sen-
tence length and embedding sizes, in addition to different segmentation schemes for
Arabic. The experiments show a noticeable accuracy change using different training
settings. Firstly, we give an overview of some related recent works on bilingual word
embeddings in Section 2.2. Chapter 3 gives a brief introduction to the Arabic lan-
guage, and it describes the details of Arabic language morphological complex and
preprocessing techniques. Next we present the experimental section that contains a
description of the model architecture, training dataset, preprocessing settings and
training hyper-parameters. The evaluation section presents the evaluation meth-
ods used as well as discussing the trained models’ evaluation results. Finally, we
conclude by demonstrating the outcomes and implications in Chapter 7.

4.2 Related Work

Bilingual or cross-lingual word embedding is the process of learning the semantic
similarity across two or more languages word embeddings using two or more corpora.
Many successful models have been introduced which use different model architec-
tures and training corpora (with different alignment levels) to learn bilingual word
embeddings. A selection of these are now discussed.

Firstly, at word-level alignment, Luong et al. [30] extend the skip-gram model
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to learn efficient bilingual word embeddings. Also, at phrase-level, a Bilingually-
constrained Recursive Auto-encoder (BRAE) model learns source-target phrase em-
beddings by minimising the semantic distance between translation equivalents and
maximising the semantic distance between non-translation equivalents [31]. Su
et al. [32] extend the BRAE model by introducing a "bilingual correspondence recur-
sive auto-encoder" (BCorrRAE) model, which incorporates word alignment to learn
bilingual phrase embeddings by capturing different levels of their semantic relations.
After that, Zhang et al. [3] introduce a Bi-dimensional attention-based recursive
auto-encoder (BattRAE) model to learn bilingual phrase embeddings by integrat-
ing source-target interactions at different levels of granularity using attention-based
models.

Using a sentence-aligned corpus, both Gouws et al. [33], Coulmance et al. [34] in-
troduce BilBOW and Trans-gram methods to learn and align word embeddings with-
out word alignment. With a document level aligned corpus, Vulic and Moens [35]
present a model that learns bilingual word embeddings from non-parallel document-
aligned data without using translation pairs. In addition, Mogadala and Rettinger
[36] introduce a Bilingual paRAgraph VEctors (BRAVE) model that learns bilin-
gual embeddings from either a sentence-aligned parallel corpus or label-aligned non-
parallel document corpus. Vulic and Moens [35] also introduce a multilingual (two
or more languages) word embeddings learning model using document-aligned com-
parable data.

In the literature we found three different bilingual embedding approaches: mono-
lingual mapping, parallel corpus and joint optimisation. In monolingual mapping,
word representations are learnt separately for each language using large monolin-
gual corpora. Then, using word translation pairs, the model learns a transformation
matrix that maps word representation from one language to the other [40]. Parallel
corpus models require either word-level [41] or sentence level alignments [42, 43, 33].
These models aim to have same word/sentence representations for equivalence trans-
lations.

Finally, in the joint optimisation method, the monolingual and cross-lingual
objectives are optimised jointly [33, 34]. Gouws et al. [33] propose a bilingual Bag-
of-Words without word alignment model (BilBOWA) that uses a skip-gram model as
the monolingual objective and jointly learns the bilingual embeddings by minimising
the distance between aligned sentences, by assuming that each word in the source
sentence is aligned to all words in the target sentence. This model shows success in
translation and document classification tasks on Es-En and En-De languages pairs.

In the context of the Arabic language, no prior work has investigated learning
bilingual word embeddings applied to such a morphologically complex language.
Thus, in our work, due to the speed and success of BilBOWA models on learning



68 CHAPTER 4. BWES WITHOUT WORD ALIGNMENTS

bilingual words embeddings without word alignments, we train the model on Arabic
because of its different language structure. This enables us to investigate the effects
of complex language morphology in learning bilingual word embeddings. In addi-
tion, as this chapter addressing the RQ1, we investigate the factors effect namely:
embedding size, sentence length on En-Es, En-De and En-Ar language pairs.

4.3 Experimental Setup

Due to the lack of research in investigating the effects of the used factors in this
chapter: sentence length, embedding size (For all language pairs) and morphological
segmentation (For Arbic language), the aim of this set of experiments is to evaluate
the effect of these factors on the process of learning bilingual embeddings for all
used language pairs (En-Es, En-De and En-Ar). We start with explaining the used
model BilBOWA model in terms of model’s architecture and learning objectives.

4.3.1 Model Architecture

The Bilingual Bag-of-Words without Alignments (BilBOWA) introduced in [33], is a
simple and efficient model to learn bilingual distributed word representations with-
out word alignment. In addition to these advantages, BilBOWA does not require
the alignment process, which is a costly phase in NLP tasks. These advantages
motivated us to use this model in our research. It assumes each word in the source
language sentence is aligned to every word in the target language sentence, and vice
versa, by using a sentence level aligned corpus, See Figure 4.1. This feature is an
advantage of this model as the word alignment process is very time consuming. In
this thesis, we adopt this model in addition to the effective and simplest BilBOWA
model because it does not require the time-consuming alignment process. In the
BilBOWA model both monolingual and bilingual objective functions are optimized
jointly. The monolingual word representations are obtained by training word2vec
using a skip-gram model which uses the negative sampling approach by [24]. The
bilingual objective aims to minimise the distance between source and target sen-
tences by minimising the mean of word representations in each aligned sentences
pair.

4.3.2 Monolingual Objective

Instead of using softmax, Gouws et al. [33] implemented word2vec model using a
simplified version of a noise-contrasting approach. The negative sampling training
objective by [139] is modified as:
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Figure 4.1: BilBOWA model

log p(w|c) = log σ(v
′T
w vcp)+

K∑
i=k

Ewi
∼ Pn(w)[log σ(−v

′T
w vcn)]

(4.1)

where vw is word vector and vcp, vcn positive and negative context vectors respec-
tively and K is the number of negative samples. This approach learns high-quality
monolingual features and speeds up the computation process in this model architec-
ture by converting the multinomial classification problem to a binary classification
problem [139, 33].

4.3.3 Bilingual Objective

Gouws et al. [33] believe that, as is important between words in the same language,
learning word representations that capture the relations and structure across lan-
guages may also improve performance. Therefore, the BilBOWA model learns word
representations by updating the shared embeddings jointly for both monolingual
and bilingual objectives. With the cross-lingual objective, this model minimises the
loss between sentence representation pairs computed as the mean of Bag-of-Words
of the parallel corpus. The bilingual objective is defined as:

Ω = || 1
m

m∑
i=1

ri −
1

n

n∑
j=1

rj||2 (4.2)

where m and n are the number of words in the source and target language, and ri

and rj is a word representation for each language respectively.
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4.3.4 Training Data

In this experiments, we used the most common parallel corpus, that been used for
MT tasks, for all language pairs: En-Ar , En-De and En-Es. For En-Ar, we used
Web Inventory of Transcribed and Translated Talks (WIT3), plain MSA Arabic and
English language parallel corpus [140]. While Europarl-v7 and News Commentary-
v6403 used for En-Es and En-De languages pairs monolingual and bilingual objec-
tives respectively. The dataset has been divided into a 50,000 monolingual-dataset
and a 24,000 bilingual-dataset to train the monolingual and bilingual objectives.
After preprocessing (See Table 4.1), two different bilingual training datasets have
been extracted based on sentence length: 5 - 10 and 17 - 80 tokens sentence length.
Giving the distribution of sentence length in the corpus, these sentence lengths (5-10
and 17-80 tokens) give us a reasonable size of dataset and distinction between short
and long sentences. For the test dataset, similarly to [33], we created a set of 3K
words by extracting the most common words in the training datasets. Then, the ex-
tracted words were translated word by word using Google translator (as is common
practice in the field) to create a word-based dictionary for all language pairs.

Table 4.1: Number of tokens in training datasets with different segmentation
schemes. Note that preprocessing changes sentence length, and different methods
therefore produce different datasets

Datasets 5-10 17-80 Mono50K-data
Arabic ATB 195985 901013 902307
English ATB 153111 551508 554338
Arabic D3 187612 975221 1033188

English D3 132687 520190 553414
Arabic D0 190854 773826 771512
English D0 158577 557664 553414

Both sides of the datasets, are tokenised, cleaned, normalised and stop-words
have been removed. For Arabic, a morphological segmentation process is applied in
order to minimise the differences between each En and Ar language pair. The lit-
erature shows many different segmentation schemes for the Arabic language (Table
3.1). We use MADAMIRA, a state-of-the-art Arabic morphological analyser, [135]
for Arabic tokenisation, segmentation, and normalisation processes in this work.
Three different training datasets with different segmentation schemes were gener-
ated: D0, ATB, and D3. For an example see Table 4.2. For English, Spanish and
German languages, we used the Moses toolkit [81] for tokenising the English dataset,
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Table 4.2: Used Arabic tokenisation schemes examples

Arabic Form AÒ» AêkQå
�
� 	á« 	Qj. «



@
�
ék. PYË

	
­K
QËAK. ú




�
æËñ

	
®£

�
HQ

�
KA
�
Kð

. Õº
�
KAª

�
¯ñ
�
K

�
�ñ

	
®K
 AÖß. Qº

	
®ËAK.

�
H

	Q�
Ö
�
ß

D0 wtAvrt Tfwlty bAlryf ldrjp qd AEjz En $rHhA kmA
tmyzt bAlfkr bmA yfwq twqEAtkm.

D3 wtAvrt Tfwlp +y b+ Al+ ryf l+ drjp qd AEjz En $rH +hA
k+ mA tmyzt b+ Al+ fkr b+ mA yfwq twqEAt +km.

ATB wtAvrt Tfwlp +y b+ Alryf l+ drjp qd AEjz En $rH +hA
k+ mA tmyzt b+ Alfkr b+ mA yfwq twqEAt +km .

and for cleaning both sides.

4.3.5 Training

After preprocessing, we trained a BilBOWA model using datasets with different set-
tings: two sentence-length (5-10 and 17-80). For Arabic, three different segmentation
schemes that give a range of segmentation amounts from no segmentation to more
complex segmentation (D0, ATB and D3). The trained models produce different
embedding sizes: (100D , 200D and 300D). As mentioned in [33], the Asynchronous
Stochastic Gradient Descent (ASGD) algorithm has been used to train the model
and updating all parameters for each objective function (monolingual and bilingual
threads) with a learning rate of 0.1 with linear decay. The number of negative sam-
ples is set to NS=5 for the skip-gram negative sampling objectives as we examined
NS=15 and it didn’t show an improvement in our language pairs. All trained models
were trained on a machine that was equipped with four Quad-Core AMD Opteron
processors running at 2.3 GHz and 128 GB of RAM. The training process took up
to 30 minutes depending on the model’s embeddings size and sentence length.

4.4 Evaluation

As with word-level bilingual word embeddings (BWEs), similarly to [33], the trained
BWEs were evaluated on a word translation task using EditDistance [139]. First,
we extracted the most frequent 3K words from the Ar-En, De-En and Es-En datasets
and preprocessed them similarly to the training dataset. Then, we translated the
extracted words using Google translator to create a dictionary. After that, for
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source and target, we computed the distances between vectors in order to extract
the embeddings of the k nearest neighbours for a given source word embedding in
the target word embeddings.

After computing the similarity, we computed accuracy. The top k nearest neigh-
bours (for k = 1, 3, 5) were selected to compute the accuracy among the test dataset,
which consists of 3000 words and their translations. We computed the accuracy of
10 runs randomly selecting 500 source words and their k nearest neighbours as:

Acc =
ct

T
(4.3)

where ct is the number of correct translations and T is the number of all test samples.
The accuracy was computed for all experiments across all settings: sentence-

length, embeddings size and segmentation schemes. The results are discussed below.
We also took into account the observed variance when considering the significance
of the observed differences in performance.

4.5 Results

After computing the accuracy of each run, we computed the model final perfor-
mance by computing the mean of the output values for each experiment as shown
in Tables 4.3, 4.4, 4.5 4.6, and 4.7. Based on the observed accuracy and using sam-
ple/population standard deviation (SSD and PSD) to indicate significant differences
our results cover three aspects of the problem:

• Embeddings size:
Training the model on different embeddings sizes (100D, 200D and 300D)
showed that, for all language pairs, increasing the vector size allowed the
model to capture more information and lead it to learn better Es-En, De-En
and Ar-En BWEs. Figures 4.2 ,4.3, 4.4 and 4.5 show an increase in accuracy
when the size of word representation is increased.

• Sentence length:
Comparing results from using short and long sentences, we found that using
language pairs with different language structures affect the learning process dif-
ferently. For Ar-En language pairs, long sentences (which increase the number
of words "tokens") outperformed the short sentences in 300D embeddings size
models across all three segmentation schemes. While short sentences perform
better only with 200D embeddings size and ATB segmentation scheme trained
models. In De-En language pairs, training the model using long sentences im-
prove the results in all embeddings sizes. However, training the BWEs models
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Table 4.3: 100D Models’ Results

En-Ar 100D k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 17.86 1.82 1.73 23.45 1.89 1.79 28.31 2.01 1.91
D0 15.32 0.97 0.92 18.82 3.85 3.65 20.99 2.44 2.31
D3 18.98 1.87 1.78 26.04 2.28 2.17 28.32 2.62 2.49
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 17.88 1.32 1.25 23.85 1.86 1.77 27.49 1.24 1.17
D0 16.14 1.76 1.67 19.99 1.74 1.65 21.94 2.37 2.25
D3 22.92 1.09 1.04 31.59 2.6 2.5 33.82 1.9 1.8

using a more similar language pair (Es-En) shows that when short sentences
are used, training data outperforms models trained on long sentences. Thus,
for more complex language pairs, long sentences with 300D embeddings size
allowed trained models to capture more information and learn better bilingual
word representations. For more details see Tables 4.3, 4.4, 4.5 4.6, and 4.7.

• Segmentation schemes:
For Ar-En language pair, different segmentation schemes showed different lev-
els of learning BWEs. D3, which is more segmentation (breaking the word
into more tokens: and splitting all clitics), has a significant effect on the model
learning process as it outperforms both D0 and ATB segmentation schemes
(See Tables: 4.3, 4.4, and 4.5). In other words, increasing the number of tokens
in training datasets using the D3 segmentation scheme, as shown in Table 4.1,
leads to better word alignment and consequently improves the model perfor-
mance.

For languages with different morphology and sentence structure namely Ar-En
and De-En language pairs, increasing embedding size, sentence length and more
Arabic segmentation allows the model to capture more information and leads it to
learn better BWEs (Figures 4.2, 4.3 and 4.5).

For Figure 4.2, short sentences training dataset shows that both segmented
datasets: ATB and D3 give better results compared to D0 (No segmentation). D3
slightly outperforms ATB. In Figure 4.3, using the long sentence training dataset,
D3 gives a much better performance compared to either of the other segmentation
schemes, and increases the accuracy dramatically up to 10 %. For similar language
pairs (Es-En language pair), increasing the embedding size improved the learning
process. However, in contrast to Ar-En and De-En language pairs, short sentences
training datasets allowed the model to learn better BWEs compared to models
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Table 4.4: 200D Models’ Results

En-Ar 200D k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 25.86 1.23 1.16 33.14 1.53 1.46 37.6 2.46 2.33
D0 21.19 1.65 1.56 27.71 2.12 2.01 30.28 1.81 1.72
D3 26.34 2.58 2.44 34.74 1.53 1.45 37.02 2.03 1.92
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 22.89 2.18 2.07 30.19 2.66 2.52 31.6 1.38 1.31
D0 22.22 2.17 2.06 28.87 1.67 1.58 31.32 1.55 1.47
D3 32.83 1.48 1.41 41.06 2.35 2.23 43.9 1.39 1.32

Table 4.5: 300D Models’ Results

En-Ar 300D k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 31.12 1.96 1.86 39.94 3.4 3.29 42.72 1.63 1.55
D0 26.88 1.65 1.56 33.99 1.10 1.04 37.67 2.63 2.50
D3 31.8 1.86 1.77 42.48 1.93 1.84 44.74 1.61 1.53
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
ATB 33.81 3.29 3.12 43.73 2.76 2.62 46.04 1.92 1.83
D0 30.38 2.09 1.98 37.09 1.73 1.64 40.39 1.98 1.88
D3 40.38 1.99 1.89 49.16 1.54 1.46 51.25 2.94 2.79

trained using long sentences See Figure 4.4.

4.6 Summary

In this chapter, to address our research question, we have trained a BilBOWA model
to investigate the effect of different training settings on learning BWEs for Es-En,
De-Es and Ar-En language pairs. We studied the effect of different training settings
(sentence-length and embeddings size in addition to morphological segmentation
for Ar-En language pair ). For Arabic, as a morphological segmentation process is
essential in many Arabic NLP tasks, segmentation has a positive effect and leads
to learning better bilingual word embeddings. Going from D0 (full word form) to
D3 (more segmentation, which increases the number of tokens in training dataset),
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Table 4.6: En-Es Results

En-Es k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
100D 22.22 1.47 1.39 26.29 2.68 2.55´ 28.04 1.69 1.60
200D 31.34 1.49 1.41 35.56 3.0 2.84 38.98 2.02 1.91
300D 36.34 2.78 2.64 42.9 2.36 2.24 44.48 2.04 1.93
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
100D 18.72 1.10 1.04 23.62 1.63 1.37 27.1 1.75 1.66
200D 31.07 2.42 2.30 37.12 1.81 1.72 38.34 1.77 1.68
300D 34.26 2.12 2.01 43.18 2.64 2.51 44.28 2.39 2.27

En-De k=1 k=3 k=5

5-10 Mean SSD PSD Mean SSD PSD Mean SSD PSD
100D 31.5 1.636 1.552 37.7 1.833 1.739 39.18 2.825 2.68
200D 43.14 2.45 2.325 50.78 2.226 2.11 51.26 2.42 2.296
300D 47.02 2.27 2.154 53.32 2.549 2.418 55.5 1.914 1.816
17-80 Mean SSD PSD Mean SSD PSD Mean SSD PSD
100D 41.6 2.03 1.926 49.32 2.253 2.137 51.14 2.074 1.967
200D 50 2.458 2.332 57.48 2.274 2.158 60.52 1.953 1.852
300D 52.56 2.64 2.505 62.24 2.427 2.3026 62.48 2.059 1.9538

Table 4.7: En-De Results

decreases the distance between Ar-En pairs and increases the similarity more than
10 percentage points. For all language pairs, our results show that increasing the
word embedding size leads to improvement in the learning process of bilingual word
embeddings. When we compared the findings from using short sentences to those
from using long sentences, we discovered that the learning process is affected differ-
ently when applied to language pairings with distinct grammatical structures. Long
sentences performed better than short sentences in 300D embeddings size models
when employing any of the three different segmentation schemes for the Ar-En lan-
guage pair. This is because long sentences increase the total amount of words, or
"tokens." While shorter phrases tend to perform better, this is only the case when
the trained model on En-Es language pair. When training the model on the De-
En language pair using long sentences, the results are improved across the board
at all embedding sizes. However, as mentioned above, training the BWEs models
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Figure 4.2: Ar-En translation accuracy using training samples of sentence length 5
- 10

Figure 4.3: Ar-En translation accuracy using training samples of sentence length 17
- 80

using a language pair that is more comparable to each other, such as Spanish and
English, suggests using short phrases as training data outperforms models trained
on long sentences. Therefore, the model training should depend on the complex-
ity and difference between the language pairs. For example: for more complicated
language pairs, training models with long sentences that have an embedding size of
300D enables them to collect more information and develop stronger bilingual word
representations. To conclude, to answer RQ1, our experiments show that increas-
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Figure 4.4: Es-En language pair models’ results

Figure 4.5: De-En language pair models’ results

ing the embeddings size has a positive effect in all involved language pairs in this
research, While sentence length is a language dependant feature. For Arabic, more
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segmentaion leads to learn better BWEs.



Chapter 5

Syntax-based Bilingual Word
Embeddings without Word
Alignments

Part of the following chapter was published in the proceedings of the International
joint conference on neural network (IJCNN), 2020. In this chapter, we address-
ing second research question by investigating how incoroprating dependancy featues
affect the learning process of bilingual word embeddings. We train Bilingual Bag-of-
Words without Alignments (BilBOWA) models using linear Bag-of-Words contexts
and dependency-based contexts. BilBOWA embedding models learn distributed rep-
resentations of words by jointly optimizing a monolingual and a bilingual objective.
We include dependency features in the training of the embeddings. When using
these features to train towards the monolingual objective only, the accuracy im-
proves by up to 6% in English-Spanish and up to 2.5% in English-German language
pairs compared to the baseline model. However, using these dependency features
in both objectives simultaneously, monolingual and bilingual, does not lead to any
improvement in the English-Spanish language pair and only shows minor improve-
ment for English-German translation. Moreover, our results provide evidence that
using dependency features in bilingual word embeddings has a different effect based
on the syntactic and sentence structure similarity of the language pair.

5.1 Introduction

Word embedding has improved across various Natural Language Processing (NLP)
tasks by distributing word embeddings into a low dimensional continuous vector
space. Dependency Parsing is the process of analysing a sentence’s grammatical
structure to identify related words and the sort of relationship between them. In

79
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our research, we integrate these features to learn bilingual word embeddings models
based on the syntactic and semantic similarities between similar words in different
languages. At monolingual level, Mikolov et al. [24] introduced a bag-of-words-based
word embedding method that demonstrated a successful implementation on many
NLP applications, including language modelling ([15, 16, 17]), machine translation
([141, 12, 19]), named entity recognition [20], document classification, sentiment
analysis [142],[22] and [23] and parsing [143]. In cross-lingual word embeddings,
many methods have been introduced for bi/cross-lingual word embedding. These
methods drive similar words into a shared vector space of two or more languages.
Bilingual word embeddings methods can be classified into four categories based on
how the parallel corpus is used with different alignment levels: 1. A word aligned
dictionary [30, 31, 32, 3], 2. Phrase/Sentence-aligned parallel corpus [33, 34], 3.
Word and sentence level alignment datasets [33, 34] and 4. None aligned compa-
rable datasets [35]. Luong et al. [30] extends the skip-gram model to learn an effi-
cient bilingual word embedding. The bilingually-constrained recursive auto-encoder
(BRAE) model learns source-target phrase embeddings by minimising the semantic
distance between translation equivalents and maximising the semantic distance be-
tween non-translation equivalents (introduced by [31]). Su et al. [32] extended the
BRAE model to produce a ”bilingual correspondence recursive auto-encoder” (BCor-
rRAE) model by incorporating a word alignment that learns better bilingual phrase
embeddings by capturing different levels of their semantic relations. Zhang et al. [3]
introduced an attention-based method which uses a Bi-dimensional Attention-based
Recursive Auto-Encoder (BattRAE) model that learns bilingual phrase embeddings
by integrating source-target interactions at different levels of granularity.

Regarding sentence level alignment, many models have recently been developed
including: the BilBOWA model [33] and the Transgram method [34]. These models
learn and align word embeddings without word alignment. Moreover, Mogadala and
Rettinger [36] proposes a Bilingual paRAgraph VEctors (BRAVE) model that learns
bilingual embeddings from either a sentence-aligned parallel corpus or label-aligned
non-parallel document corpus. While a multilingual (two or more languages) word
embeddings model that uses document-aligned comparable data has been proposed
by [35]. Xu et al. [144] utilise bilingual word embeddings with syntactic dependency
(DepBiWE). They extract context from dependency parsed trees to be used jointly
with Bag-of-Words context to learn bilingual word embeddings.

Obtaining word alignment is an expensive and time consuming process. In this
thesis we follow the work of [145] and use an extension to the BilBOWA model,
integrating it with syntax features. The BilBOWA model is trained by jointly op-
timising a monolingual objective for each language and a bilingual objective that
aligns the representations of the two languages. The skip-gram objective with neg-
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ative sampling is used as the monolingual objective while the bilingual objective
minimises the Euclidean distance of the Bag-of-Words representation between the
two languages in the embedding space. We compare four different methods by
adding syntactic information to the BilBOWA model. We use a dependency based
skip-gram model for the monolingual objective while keeping the bilingual objective
the same (MonoDep-BilBOWA), or extending the Bag-of-Words representation with
dependency features for the bilingual objective (BiMonoDep-BilBOWA).

The main contribution of this research is to consider different syntactic structures
in learning bilingual word representations without word alignment. In this chapter,
we show that the MonoDep-BilBOWA model, learns better bilingual word embed-
dings using Bag-of-Words and dependency contexts. We extend the BilBOWA model
by integrating dependency features in both monolingual and bilingual objectives to
investigate their effects on learning bilingual word embeddings on the cross-lingual
dictionary induction (CLDI) task.

In Section 5.2, we give an overview of some related recent work on dependency-
based word embeddings. Section 5.4 describes the proposed models. This is followed
by the implementation section which contains the training dataset, preprocessing
settings and training hyper-parameters for each trained model. The evaluation sec-
tion explains the methods used to evaluate and presents our findings which are sub-
sequently discussed in more detail. Finally, we draw our conclusions within section
5.7.

5.2 Related Work

In this section we describe existing work that is used as a basis for our experiments.

5.2.1 Monolingual Dependency-based Word Embeddings

Recently, estimating word representation has attracted attention as it shows very
promising results across many Natural Language Processing (NLP) applications.
Since the success of word2vec’s skip-gram and CBOW models, several modifications
have been proposed to integrate syntax features in the learning process [146], [7],
[28]. The research shows that syntax-based embeddings capture better functional
properties of words compared to their window-based counterparts. Omer and Yoav
[28] modified the skip-gram model by replacing the linear Bag-of-Words context
with features from a word’s neighbourhood in a dependency graph. Komninos and
Manandhar [7] propose another variation of dependency-based skip-gram word em-
bedding model which extends the notion of token co-occurrence in a dependency
neighbourhood to include additional pairs. This is compared to the model of [28].
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They show that the dependency features can be used in various sentence representa-
tions to improve performance in several sentence classifications tasks. Li et al. [146]
also introduces a multi-order dependency-based context into the skip-gram model
with adaptive dependency weights.

5.2.2 Bilingual Dependency-based Word Embeddings

In terms of the learning process, bilingual word embeddings have been classified into
three categories, 1. monolingual mapping, 2. cross-lingual training and 3. joint op-
timisation approaches. In monolingual mapping, after learning word representations
separately for each language, the model learns a transformation matrix to map the
word representation from one language to the word representation from another, us-
ing word translation pairs [40]. Parallel corpus models require either word-level [41]
distributed or sentence-level alignments [42], [43] . These models aim to have the
same word/sentence representations for equivalent translations. In the joint opti-
misation method, the monolingual and cross-lingual objectives are optimised jointly
to enforce bilingual constraints[33], [34]. Gouws et al. [33] proposes a bilingual Bag-
of-Words without word alignment model (BilBOWA) that uses a skip-gram model
as the monolingual objective. It jointly learns the bilingual embeddings by min-
imising the distance between aligned sentences, by assuming that each word in the
source sentence is aligned to all words in the target sentence. The model can utilize
large amounts of monolingual data along with a few translation pairs of sentences.
The model shows success in the English-Spanish (En-Es) translation task and the
English-German (En-De) languages pair in document classification task. 19

Recently, Xu et al. [144] proposed the first model that learns bilingual word
embeddings using syntactic dependencies. Their model learns the bilingual word
embeddings using both dependency context and Bag-of-Words context. As with
the Bag-of-Words method, word order has been ignored in cross-lingual scenarios
as it can produce context words that are not related to the target words. Xu et al.
[144] obtains the dependency contexts of aligned words to capture the syntactic
information among languages.

5.3 Languages Syntax Differentiation

In our work, we use different language pairs with range from similar to different lan-
guage sentence structures. English-Spanish (En-Es), English-German (En-De) and
English-Arabic(En-Ar) language pairs. The Arabic language, which is the official
language of 22 countries from the Arabic Gulf to Morocco with variant dialects be-
tween countries or within regions in the same country, has been chosen for our work
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as it is still a challenging language in MT. Arabic language structure is in many
ways very different from English, Spanish and German languages. In this research,
we focus on the Arabic language from Modern Standard Arabic (MSA) as it is the
most accessible form. The Arabic language has two types of sentences: nominal
(starts with a name) and verbal (starts with a verb). One of the main differences
between Arabic and English is the order of words. As with other languages, Ara-
bic sentences are built of verb, subject and object. Usually, an Arabic sentence is
post-verbal (VSO) so the verb comes first and then the subject is followed by the
object, whereas English, Spanish, and German are (SVO) or (SOV). However, it
is possible to be pre-verbal (SVO) as in the English language, although not always
preferred [122]. In both cases, VSO or SVO, an Arabic sentence is flexible with
its verb position. However, the subject needs to come before the object (except in
passive sentences in which it can be either before its subject or without its subject).

Secondly, in Arabic, the adjective always comes after its noun. While in English
and German, the adjective comes before the noun. In Spanish, it may come either
before or after. Finally, indicating possession and compounding in Arabic is called
Idafa. Idafa consists of one or more nouns that have been defined by the following
noun [122]. In our work, it is interesting to investigate how a neural network learns
these languages’ complexities by integrating more features, namely syntax features
in the learning process and what benefit can the model gain from infusing these
features.

5.4 Models

We extend the work of [145] and propose a dependency-based model. We investigate
the effect of integrating the syntax features on different sizes of training data-sets for
languages with different sentence structures. As in the work of [145], we used the Bil-
BOWA model 1 , which is a simple model that shows efficiency in learning bilingual
word embeddings, to train our proposed models with variant syntax information.
Alqaisi et al. [145] state that a syntax-based representation of a sentence is a directed
graph with one node per word and type labelled edges representing the syntactic
relations between nodes. For the syntactic relation types, we used Universal Depen-
dencies (UD) [147]. The UD types are specifically designed to be consistent among
different languages, making them suitable for multilingual syntactic analysis. The
dependency features were extracted from the parse tree. This enabled BilBOWA-
Dep models to be implemented using different settings–modelling dependency fea-
tures at the monolingual objective (words-relation-contexts (Mono-DepWRC) and

1https://github.com/gouwsmeister/bilbowa
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words-contexts only without relations (Mono-DepWC)), and modelling dependency
features at both monolingual and bilingual objectives (BiMonoDep-WRC) as de-
scribed below.

5.4.1 Bilingual Word Embeddings without Word Alignment

(BilBOWA)

Using a sentence-level aligned corpus, BilBOWA models was trained for En-Es, En-
De and En-Ar language pairs as a baselines. The baseline model assumes that
each word in the source language sentence is aligned to every word in the target
language sentence and vice versa (this feature is an advantage of this model as the
word alignment process is very time consuming). In the BilBOWA model, both
monolingual and bilingual objective functions are learnt jointly.

• Monolingual Features:
The BilBOWA model learns monolingual word representations using a skip-
gram model with the negative sampling approach by [139]. The skip-gram
model learns distributed representations of words by estimating the condi-
tional probability of a target word w occurring in the context of word c. The
(target, context) pairs are determined by a context definition function, which
is typically a predefined window around each target word. To avoid the com-
putational cost of estimating a categorical distribution over all possible words,
the objective is converted to a binary classification problem. The target word
is assigned a positive label and a small number of sampled words are used as
the negative samples. The skip-gram with negative sampling training objective
for a single sample is given in [139] as:

log p(w|c) = log σ(v
′T
w ucp) +

NG∑
i=ng

Ewi∼Pn(w)[log σ(−v
′T
w ucn)] (5.1)

where vw denotes the target word representation and vcp, vcn represent posi-
tive and negative context representations respectively. NG is the number of
negative samples and σ is the sigmoid logistic function. The objective is av-
eraged over each word instance in the corpus and maximised by a stochastic
gradient ascent. The skip-gram model maintains two different representations
of each word:vw to be used as the target word and vc to be used a context
word. The sampling distribution Pn(w) is the unigram distribution of words
estimated by their frequency in the training corpus, raised to the power of 3/4.
skip-gram also sub-samples training instances based on the frequency of the
target word, i.e., frequent words have a higher probability of being modelled.
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• Bag-of-Words Bilingual/Cross-lingual Features:
The bilingual word embeddings are learned by minimising the distance between
source and target sentence representations in each aligned sentence pair. In
other words, the model minimises the mean square error loss between sentence
representation pairs, where sentence representations are computed as the mean
of their word embeddings.[33] defines the bilingual objective as:

Ω = || 1
m

m∑
i=1

ri −
1

n

n∑
j=1

rj||2 (5.2)

where m and n are the number of words in the source and target language,
and ri and rj denote the word representation for each language respectively.
While this objective can be trivially minimised by setting all the vectors equal
to zero, when used along with the monolingual objective it acts as a regularizer
that forces the word representations of the two languages to share a common
aligned space, where translation word pairs are close.

5.4.2 Dependency Based Bilingual Word Embeddings with-

out Word Alignment (Dep-BilBOWA)

We used three different dependency-based BilBOWA models that learn word rep-
resentations by updating the shared embeddings jointly for both monolingual and
bilingual objectives using dependency context features. The BilBOWA model uses
a skip-gram model to learn monolingual relations between words in the same lan-
guage. In this chapter, we follow the work of [7], to extend the use of the skip-gram
model and integrate dependency contexts with Bag-of-Words contexts, as explained
below. The main purpose of the proposed models is investigate the effect of different
levels of dependency features on the learning BWES.

• Model 1: BilBOWA Model(The Baseline)
In This chapter, BilBOWA model is considered as the baseline model to com-
pare with.

• Model 2: Monolingual Dependency-Based words-relations-contexts model (MonoDep-
WRC)
At the monolingual level, dependency-based skip-gram embedding models
learn representations by extracting (target, context) token pairs from depen-
dency graphs instead of word sequences. To encode the graph’s structure, they
use two types of tokens: words and dependency features. Words correspond
to nodes of the dependency graph and dependency features are composite
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features representing a node and an incident edge as a unit. We denote de-
pendency features as a concatenated string of the edge type and word. The
direction of the edges are encoded by adding a−1 to the edge type if it is an
outgoing edge. Dependency-based skip-gram models jointly learn distributed
representations of both token types using the same objective as skip-gram,
but change the context definition that determines co-occurring tokens from a
window to a node neighbourhood. The extended dependency-based skip-gram
[7] defines context as the (target, context) token pairs that can be extracted
within the one-hop neighbourhood of a dependency graph node. In particular,
pair extraction is performed by visiting each node in the dependency graph
and constructing one bag with the neighbouring words and one bag with the
dependency features formed by the neighbouring nodes and their edges. The
centre node is added to both bags. The (target, context) pairs are then all
the ordered pairs of tokens that can be formed within each of the two bags.
In this model, the bilingual objective remains the same as the baseline model
(Bag-of-Words sentence representations). For more details See Figure. 5.1

Figure 5.1: Model 2 input features example

• Model 3: Monolingual Dependency-Based words-contexts model (MonoDep-
WC)
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This is similar to model 2 with the main difference that relations have not been
included from the training dataset. In another words, only words and words
contexts that have a syntax’s relations have been considered in the learning
process (See Figure 5.2).

Figure 5.2: Model 3 input features example

• Model 4: Bi/Monolingual Dependency-Based model (BiMonoDep-WRC)
In addition to the dependency-based monolingual WRC objective, and similar
to the baseline, the dependency-based bilingual objective minimises the loss
between sentence representation pairs. The Bag-of-Words representation for
sentences is modified to include syntactic information by adding dependency
features extracted from the sentence’s dependency graph. The sentence’s dis-
tributed representation is then formed by the mean of embeddings of all the
sentence tokens (words and dependency features) in the bag. As the number
of dependency features (twice the number of edges in the graph) is larger than
the number of words in the sentence, a weighting scheme can be applied to
balance their contribution in the representation [144]. Alternatively, we can
represent each sentence with two separate feature bags, one for each token
type, and form two aligned representations for each parallel sentence pair as
shown in Figure 5.3.
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Figure 5.3: Model 4 input features example

5.5 Implementation

We trained four different versions of the BilBOWA model for En-Es, En-De and
En-Ar language pairs: Baseline-BilBOWA, MonoDep-WRC, MonoDep-WR and
BiMonoDep-WRC models. We use the same code as [33] to train the models. Our
implementation is based on the observation that the extended dependency skip-gram
can be trained as a window-based skip-gram by an appropriate transformation of
the input. For each context neighbourhood in the corpus we create two auxiliary
sentences, one with the word context features and one with the dependency context
features. Each sentence consists of all the tokens in the target word’s neighbour-
hood in any order. Setting the window size larger than the length of the longest
auxiliary sentence (or equivalently larger than the maximum degree of the depen-
dency graphs in the corpus) results in creating all the positive pairs defined by the
extended dependency skip-gram model. We note that no undesired pairs are cre-
ated by having a large window because windows do not go across line breaks. We
can create a Bag-of-Words sentence representation with dependency features for the
bilingual objective by including all the dependency context features to the Bag-of-
Words representation of the sentence. To implement the weighting scheme of [7]
where word and dependency tokens are given equal weight, we instead form two
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aligned sentences per original sentence pair, one for each type of token. The models
were trained with 200 dimensional word embeddings, with window size 35, and 15
negative samples for 5 epochs using stochastic gradient decent.

5.5.1 Dataset and Preprocessing

In this chapter, for En-Es and En-De languages pairs, we used Europarl-v7 and
News Commentary-v6 monolingual and bilingual objectives respectively. We used a
Single-labeled Arabic News Articles Dataset (SANAD) [148], which is a large Arabic
dataset of textual data collected from three news portals, for Arabic monolingual
training. WIT3, Web Inventory of Transcribed and Translated Talks, plain MSA
Arabic and English language parallel corpus [140] were used for bilingual objective
training. In all our experiments, the datasets used were tokenised (See Table 5.1),
and lower-cased and empty lines were removed. For the dependency -based models,
a dependency parser was used to parse all training datasets. Then, we extracted
the dependency contexts from the parsed training datasets and used for monolin-
gual and bilingual training. For parsing, we used a neural network based model for
joint part-of-speech (POS) tagging and dependency parsing, introduced by [4]2 (For
model structure see Figure 5.4). This model is an extension of the BIST graph-based
dependency parser proposed by [149]. They incorporated BiLSTM-based tagging to
predict POS tags for the parser automatically. We parsed the En, Es and De Eu-
roparl datasets and SANAD dataset for Ar language and used in the monolingual
objective to train MonoDep-WRC and MonoDep-WC models. BiMonoDep, Eu-
roparl and News Commentary datasets were used for training the En-De and En-Es
languages pairs and SANAD and WIT3 for Arabic with monolingual and bilingual
objectives respectively. Parsing the datasets increased the number of features (to-
kens) dramatically as shown in Table 5.1. The increase happens due to multiple
dependency features being extracted for each word.

2https://github.com/datquocnguyen/jPTDP
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Figure 5.4: JPTDP model [4]
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Figure 5.5: En-Es Results

5.6 Evaluation

Similarly to [33], as has been explained in Section 4.4, we used a word translation
task, namely the Cross Language Dictionary Induction (CLDI) task, to evaluate
the trained bilingual word embeddings using the same setting introduced by [24].
We created three test dataset pairs, for En-Es, En-De and En-Ar language pairs.
Firstly, we extracted the most frequent 4,000 words from the training corpus for
En-Es, En-De and SANAD Arabic datasets. Then we used the Google translator to
translate the extracted words to form a dictionary for each language pair. Having
these translation pairs (wl1,wl2), allow us to calculate the precision at k for word
translation by finding target word wl2 in the nearest k neighbourhoods (1,3 and 5)
to a given source word wl1 in the embedding space. Finally, we computed the mean
precision from 10 runs, by selecting random 500 source words and their k (1, 3, and
5) nearest neighbours.

5.6.1 Results and Discussion

In these experiments, we compared the four different trained models using differ-
ent dependency settings: BilBOWA-Baseline No Dependency features, MonoDep-
WRC, MonoDep-WC and MonoBiDep-WRC dependency features. This comparison
allowed us to investigate the effect of utilising dependency context features on lan-
guages pairs with different sentence structures and using different training datasets
sizes at both monolingual and bilingual objectives. Our experiments demonstrate
that language sentence structure differentiation affects the learning process differ-
ently for each training sitting as shown in Table 5.2. Based on the observed accuracy,
our results cover two aspects:
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Figure 5.6: En-De Results

Figure 5.7: En-Ar Results

• Datasets size:
Using small datasets shows variant effects on all three languages pairs. For En-
Es, the baseline model outperformed the other three dependency-based mod-
els. While there is a slight benefit of the use of dependency features on En-De
language pairs. For En-Ar, using these features improved the models per-
formance dramatically for all dataset sizes. As incorporating syntax features
with language pair that has language structure differentiation helps the model
to improve the learning process. However, Trained models using medium and
large training datasets show that, incorporating dependency-based features
has improved the model performance to learn better word embeddings for all
three languages pairs: En-De, En-Es and En-Ar (Figures 5.5, 5.6, and 5.7).
Also, for En-Ar language pair, Figure 5.7 shows that MonoDep-WRC has out-
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perform other dependency-based models in all dataset sizes experiments, while
not the case in the other language pairs.

• Dependency Features:
At the monolingual level, except in small dataset for En-Es language pair
experiment, incorporating syntax features has a positive effect on the learn-
ing process. These dependency contexts lead to better learning of bilingual
word embeddings in the CLDI task compared to the baseline BilBOWA model.
In contrast, the BiMonoDep-BilBOWA model, that uses dependency features
with monolingual and bilingual objectives, has demonstrated dramatic im-
provements in the En-Ar bilingual word embeddings models, slight improve-
ments in En-De models and no improvement (or similar results to the Bil-
BOWA baseline model) when using En-Es language pairs (See Table 5.2).
Our experiments show that training models with language pairs which have
different sentence structures produces most benefits when using dependency
features. For the medium dataset, the accuracy was found to increase in the
CLDI task by more than 10% points in En-Ar compared to the baseline, as
shown in Figure 5.7 and 1.34%, 1.57% for En-Es and En-De respectively (See
Figures 5.6, and 5.7).

5.7 Summary

This chapter aims to answer the second research question, which is " How would
incorporating syntax features on the learning process of BWEs affect the model
performance?". We compared four different BilBLOWA models using a range of
contextual features: no dependency features BilBOWA baseline, dependency fea-
tures at monolingual level word context and relation WCR and word context no
relation WC and dependency features at both mono/bilingual levels MonoBil Dep.
We used different language pairs with different language complexity levels: EN-Es
, En-De and En-Ar pairs. Our results show that dataset size plays a core role
in the learning process regardless the variant affects of the language differentiation.
Moreover, by increasing the dataset size, dependency word embeddings at the mono-
lingual level learned better bilingual word embeddings. This was found to improve
the performance of word translation tasks across all three language pairs: En-Es,
En-De and En-Ar in medium and large datasets compared to the baseline model.
However, these features showed no improvement in the learning process of En-Es
language pair using small datasets. Similarly, while the BiMonoDep features im-
proved the performance on En-De and En-Ar language pairs, almost no impact on
En-Es language pair was found. As a result, incorporating syntax features in model
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training leads to an improved learning process where languages pairs have different
languages structure.



Chapter 6

Dependency-based Neural
Machine Translation

In this chapter we transfer our trained dependency-based bilingual word embed-
dings from Chapter 5 into neural machine translation models. We show that the
machine translation quality has been affected positevily by utilizating pretrained
depedancy-based BWEs (MonoWRC and MonoWC BWEs) to train attention-based
NMT models comparing to the baseline. This chapter is addressing the third re-
search question which requires studying the effect of dependency-based BWEs on
NMT. Therefore, improving MT quality is the contribution of this chapter.

6.1 Introduction

As has been mentioned earlier in Chapter 2, machine translation (MT) is one of the
most important topics in the field of Natural Language Processing (NLP), and it has
been studied in depth in the last few decades. Its goal is to use computers to translate
real sentences from one language to another [150]. From parallel corpora, SMT learns
word alignment and phrases. Despite its success, this method is unable to simulate
long-distance dependencies between words, which has had an impact on translation
quality. Because of the encouraging development made thus far, NMT has got
even more attention and many models have been introduced as shown in Chapter
2. Unlike SMT, NMT uses an end-to-end model that trains the entire translation
process using a single NN with a basic architecture and is capable of capturing long
dependencies in the phrase. The discrete symbolic representation is utilised by SMT,
whereas the continuous representation is utilised by NMT [150]. Word embedding
is the term used to describe this continuous form. It shows its ability to capture
the syntactic and semantics relation in different NLP tasks: semantics and question
answering model [8, 9, 10], Machine translation [11, 12], and parsing [13, 14].

97
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[151] state that syntactic analysis is playing a core role in understanding natu-
ral language. In this chapter, we experiment with the effects of integrating syntax
features, mainly using our trained embeddings above dependency-based word em-
beddings to build NMT models. We trained a NMT-Keras attention-based model
using two different language pairs: Es-En and De-En. We used these different lan-
guages to investigate how language differentiation can affect the learning process.
Due to less research study the effect of pretrained BWEs on building NMT system,
we aim in this chapter to investigate the impact of syntax-based BWEs on learning
NMT. As translation can be modeled at different levels: words, sentence, paragraph
and document levels, we focus on sentence level translation and other levels are
left for future research. Thus, our contribution is improving the NMT quality by
incorporating dependency features that have been learnt from Chapter 5.

6.2 Related Work

NMT models range from very simple network architecture to deep learning networks.
A simple NMT model architecture consists of embedding layers, a classification
layers, an encoder and decoder network. At sentence level translation, encoder-
decoder NMT model can be viewed as a sequence-to-sequence model. This NMT
model called autoregressive NMT [150]. In this model, the encoder encodes a source
sentence into a fixed-length vector and the decoder generate the translation [152].
This is considered a limitation that affects the model performance. Therefore, many
models have been introduced to solve this problem [152, 153]. The out-of-vocabulary
(OOV) words is another limitation of using NMT that occurs due to the limited
target vocabulary number. Jean et al. [153] address this problem Using an approach
similar to those provided by [154], they replace generated out-of-vocaulary tokens
with the corresponding source words.

Researchers have adopted autoregressive NMT model and have employed a re-
current neural network (RNN) to the encoder and the decoder to represent the
source sentence and generate a target sentence respectively. Recurrent Neural Net-
works (RNNs) to handle the variable-length source and target sentences is used
and a variety of RNNs, including the LSTM and GRU variations, have been im-
plemented [155]. A significant improvement in SMT has been demonstrated using
the sequence-to-sequence framework in conjunction with the combined attention
mechanism. Many attention-based NMT models have been developed as a result
[152, 19, 93]. Bahdanau et al. [152] proposed a soft-search model, which is a first an
attention model, that translate and align jointly.

Later, Luong et al. [19] introduced two attention-based mechanisms: global and
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local attention models. The global approach considers all source words , and a
local approach that only considers a selection of source words at a time. Their
models improve the NMT performance dramatically compared to the basic NMT
models. As one of the limitation of sequence to sequence NMT models is sentence
length, research shows that incorporates syntactic information in the learning pro-
cess has improve the NMT performance due to the long distance relations that can
be obtained from using syntactic trees [156, 157, 158]. Chen et al. [159] incorporate
source-side syntactic trees to improve NMT model performance. They introduce
two NMT models: a bidirectional tree encoder and a tree-covarege model and their
models improve the MT quality on Chinese-English. Similarliy, Zhang et al. [160]
proposed a syntax-aware word representations (SAWRs) model that incorporate
source-side implicitly. Then, to improve the fundamental NMT models, they simply
concatenate SAWRs with ordinary word embeddings.

In neural network models for NLP applications, pre-trained word embeddings
have proven to be very effective in text classification [22] and sequence tagging
[161]. However, research show that it is much less common to use pretrained word
embeddings in NMT. The existed work use monolingual word embeddings in NMT
models. Qi et al. [162] proof that using pretrained word embeddings improve the
translation quality. Their experiments show that a better encoding of the source
sentence accounts for the majority of the gain from pretrained word embeddings.
Some researchers show the effect of pretrained monolingual word embeddings [94,
163, 164]. Thus, in the next section, we study the effect of integrating dependancy-
based BWEs in NMT by investigating their effect on machine translation quality
from word to word to phrase to phrase translation.

6.3 Experiments

In our experiments we are using the pretrained dependency-based BWEs from Chap-
ter 5. Our aim is to investigate transfer learning for BWEs infused with depen-
dency in NMT models. This investigation allow us to identify strength and limita-
tions of incorporating syntax features on learning NMT models. We built different
NMT models with and without dependency features to compare as fallow: Base-
line (Random Initilising the word embedding), MonoDep-WRC and MonoDep-WC
NMT models. Based on the previous chapter’s results, BioMono-WRC experiment
is avoided.
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Language pair En-De Dataset En-Es Dataset
En De En Es

Training sentences 115231 115231 101688 101688
Training tokens 2128396 2121680 1979087 1794377
Dev sentences 2056 2056 1938 1938
Dev tokens 34961 35957 34539 32794
Test sentences 1399 1399 1344 1344
Test tokens 22654 24285 22328 22599

Table 6.1: Tokenised and cleaned large datasets

6.3.1 Tools and Datasets

There are several publicly available parallel corpora for MT. In this experiment, we
use Europarl-v7 for En-De and En-Es language pairs [165]. En-Ar language pair due
to the lack of resources has been excluded. For prepossessing, similarly to Chapter
5, all datasets have bees tokenised and clean by removing empty lines ( See Table 6.1
for more details). To train the NMT-Keras, we use the attention-based model using
pre-trained bilingual word embeddings [5] for En-De and En-Es language pairs. The
embeddings have been trained on BilBOWA model ( See Chapter 4 for more details)
using dependency-parsed datasets [33] ( See Chapter 5). These embeddings have
been evaluated on word sense induction task and show an improvement on learning
bilingual word embeddings by capturing the semantic proprieties of words as shown
in Table 5.2.

6.3.2 Models

In this chapter, we use NMT-Keras, which is a flexible toolkit for neural machine
translation. This tool is an extension of Keras library for deep learning [5]. It has
been introduced to allow users to develop neural machine translation models using
attention. NMT-Keras also can be applied to other problems including: image and
video captioning, sentence classification and visual question answering.

6.3.3 Hyperparameters

In this experiment, we built NMT systems using NMT-Keras [5]. We used a pre-
trained dependency-based BWEs: MonoWRC and MonoWC from Chapter 5 for Es-
En and De-En language pairs. The primary justification for choosing these models
is because they outperformed other proposed models. Due to resources limitations,
the models were trained using 200 dimensions word embeddings. And Adam was
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the learning algorithm for all base NMT systems with learning rate 0.001.

6.3.4 Model Architecture

For Keras-NMT, due to the success of attention-based methods in MT, we used
attentional NMT model developed by [5] (See Figure 6.1).
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6.4 Results and Discussion

In this chapter, different metrics were used to assess the quality of the trained NMT
systems: BLEU, CIDEr, METEOR, ROUGE_L and TER (See Section 2.5.2 for
evaluation methods more details).

In all used evaluation scores, our results show that training NMT models using
pretrained dependancy-based BWEs improve the phrase-based machine translation
quality comparing to the baseline in both language pairs. However, BLEU and
TER give a slight different results on En-De language pair. As has been mentioned
above, in En-De results, the translation quality are vary form word-level transla-
tion (BLEU-1) to phrase-levels ( BLEU-2,3 and 4). The baseline gives the best
results at word-level translation ( Best BLEU-1 score). At two words phrase long
MT evaluation (BLEU-2) , MonoDep-WRC NMT model outperforms other models.
While in longer phrases (3 and 4 words phrase), MonoDep-WC NMT model gives
the best evaluation results on BLEU-3 and BLEU-4 scores. For En-ES language
pairs, MonoDep-WRC NMT model outperforms other NMT models in all BLEUs
scores (1,2,3 and 4) comparing to the baseline and MonoDep-WC NMT models. Ac-
cording to our results, utilising other evaluation methods: CIDEr ,METEOR, and
ROUGE show that MonoDep-WRC NMT models improve the translation quality in
both language pairs and outperform the base line as well as the MonoDep-WC NMT
models (See Table 6.2). At the most common phrase level MT evaluation method
BLEU-4, our results show that MonoDep-WC NMT model outperforms the baseline
by 0.34% in En-De language pair. While for En-Es language pair, the MonoDep-
WRC NMT model improved the translation quality up to 0.68% comparing to the
baseline NMT model.

6.5 Summary

In this chapter, we used our pretrained syntax-based BWEs form Chapter 5 to in-
vestigate their effects on the quality of MT task. To answer our RQ3, we trained
different NMT models using our trained dependency-based bilingual word embed-
dings. At pharse-level MT, our results show that using pretrained depedancy-based
BWEs (MonoWRC and MonoWC BWEs) to train NMT-Keras (attention-based
NMT) models has a positive impact on machine translation quality comparing to
the baseline. In specific MonoDep-WRC BWEs in all evaluation methods scores
apart of BLEU and TER, which give different outcomes on En-De language pair
(See Table 6.2). Thus, this chapter contribute to improve the MT quality. En-Ar
language pair has not been used in this work due to resources limitations. In addi-
tion, BiMonoDep BWEs have not been evaluated due to its results from the previous
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task.
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Chapter 7

Conclusion

7.1 Thesis summary and contributions

In this thesis, we investigate the effects of different training settings (sentence-length
and embedding size) in addition to different morphological segmentations on learning
BWE for Ar-En language pairs. Also, the effect of integrating syntax features has
been investigated. Our research has improved the BWEs and led to better MT
quality. In Chapter 4 and 5, we used En-Ar language pair as to our knowledge,
there is lack of research in this area using Arabic language.

In Chapter 4, to assess RQ1, our results proved that increasing the vector size al-
lowed the models to capture more information and consequently learn better Es-En,
De-En, and Ar-En BWEs and improves the accuracy. However, when we compared
the effects of using short and long sentences, we discovered that using language pairs
with distinct language structures has a different effect on the learning process. In
all three segmentation approaches for Ar-En language pairs, long sentences (which
increase the number of words "tokens") beat short sentences in 300D embeddings
size models. On the other hand, short sentences only perform better when models
are trained with 200D embeddings and the ATB segmentation scheme. Using long
sentences to train the model in De-En language pairs shows that findings improve
the accuracy across all trained BWEs models. However, training the BWEs mod-
els with a more similar language pair (Es-En) reveals that models that are trained
on short sentences lead to better results. Long sentences with 300D embeddings
allowed trained models to capture more information and acquire stronger bilingual
word representations for more different sentence structure language pairs. A mor-
phological segmentation approach is required for many Arabic NLP tasks. As shown
in Chapter 4 segmentation also had a good effect since it led to the learning of better
multilingual word embeddings. Moving from D0 (complete word form) to D3 (more
segmentation, which increases the number of tokens in the training dataset) reduced
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the distance between Ar-En pairs and increased similarity significantly.
In Chapter 5, we employ a variety of dependence settings, including BilBOWA-

Baseline No Dependency features, MonoDep-WRC, MonoDep-WC, and MonoBiDep-
WRC (For more details see Chapter 6). We were able to explore the effect of in-
tegrating dependency context features on language pairings with varying sentence
structures and different training dataset sizes for both monolingual and bilingual
objectives. Our results answering RQ2 in this research by suggesting that language
sentence structure differentiation influences the learning process differently for each
training setting. When small datasets are used, variational effects are visible in all
three language pairs. The baseline model performed better than the other three
dependency-based models for En-Es. For En-De language pairs, there is a slight ad-
vantage to using dependence features. Using these features significantly enhanced
the En-Ar model’s performance.

Trained models utilising medium and large training datasets, on the other hand,
reveal that including dependency-based features improves model performance in
learning better word embeddings for all three language pairs: En-De, En-Es, and
En-Ar. The BiMonoDep-BilBOWA model, has shown significant improvements in
the En-Ar bilingual word embeddings models, minor improvements in En-De models,
and no improvement (or similar results to the BilBOWA baseline model) when
utilising En-Es language pairs.

When using dependency features, our findings indicate that training models using
language pairs that have different sentence structures yields better results. Thus, to
conclude, our findings show that more comparable language pairs, namely En-Es,
are more likely to benefit from incorporating the dependency features (edges) in
training datasets. However, language pairs with different sentence structures are
gaining fewer benefits from using these features. And incorporating word contexts,
that are related to the words in the syntactic consistently improved the learning
process of BWEs.

In Chapter 6, to answer RQ3, we looked at how our dependancy-based BWEs
that were trained in Chapter 5 affected the quality of MT tasks. We used the
dependancy-based BWEs we had produced to train a variety of NMT models. When
compared to the baseline, NMT-Keras (attention-based NMT) models trained with
pre-trained BWEs (MonoWRC and MonoWC) improve the quality of machine trans-
lation. All evaluation methods apart from BLEU and TER yield different results on
the En-De language pair in certain MonoDep-WRC BWEs (See Table 5.2). Thus,
this chapter helps to increase the quality of the MT output.

This thesis makes a valuable contribution to the field of machine learning by in-
vestigating the factors that affect the learning process of BWEs for different language
pairs with different language structure levels: En-Es, En-De and En-Ar. Further-
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more, this research improved the BWEs by incorporating syntax features into the
learning process, and the trained BWEs are available for further studies. From a
NMT point of view, our research proves that using pre-trained dependency-based
BWEs has a positive effect on MT quality. The main limitation in this research
is the lack of the Segmented Arabic Language Parsing dataset. This prevents us
from examining the impact of dependency features on the NMT and BWE learning
processes for the Arabic segmented dataset.

7.2 Future Work

By extending our experiments, there are many research opportunities for future
work in the area of learning BWEs and NMT as following:

• As incorporating knowledge-based information (syntax features) leads to bet-
ter results in machine translation task, integrating POS can also improve the
learning process of BWEs and consequently improving NMT.

• Investigating the effect of incorporating dependency features and POS tags on
languages with complex sentence structures (for example, Turkish, Polish, and
Danish languages) needs more research.

• To investigate the effect of incorporating syntax features on the learning pro-
cess of BWEs on Arabic , a dataset for Arabic language parsing must be
generated.

• Investigating the effect of syntax features on:

– Different NLP tasks such as name entity and question answering.

– Other levels than word and sentence levels machine translation such as
paragraph and document levels.

– comparable dataset language pairs MT.
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