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Abstract

Directed evolution is a robust and powerful tool for engineering new and/or improved
functions in biomolecules for therapeutic and industrial applications, as well as to uncover
fundamental insights into protein behaviour. It works by exploiting the principles of natural
evolution and accelerating it through multiple rounds of gene diversification and selection.
In order to evolve the desired property, an appropriate assay for the property of interest
must be chosen. However, improving proteins often proves challenging as most mutations
are destabilising.

An in vivo TriPartite β-Lactamase Assay (TPBLA) has been shown to rapidly and
easily identify misfolded, unstable or aggregation-prone sequences without the need for
protein purification. Furthermore, TPBLA has successfully been utilised as a directed
evolution screen to evolve thermodynamic stability and aggregation-resistance in a protein
of interest. However, the methodology was limited in throughput, and due to the use of
first-generation sequencing techniques identification of improved variants was laborious
and high-cost. Chapter 3 in this thesis develops a new methodology for combining TPBLA
with next-generation sequencing to enable high-throughput identification of hotspot regions
and improved variants. This new approach has the potential to assess hundreds to thousands
of variants in a single experiment and give a more comprehensive and extensive overview
of a proteins’ fitness landscape. In Chapter 4, this new high-throughput methodology is
applied to biopharmaceutically-relevant targets to improve their aggregation behaviour.
Furthermore, the ability of TPBLA to screen and rank a panel of clinically-relevant
antibody therapeutics based on their developability is assessed. This demonstrated the
potential of TPBLA for identifying poorly developable candidates, as well as potential
late-stage clinical failures early in development prior to protein purification.

A common challenge for directed evolution studies is that often there is a trade-off
between particular properties, such as stability and function, and by selecting for one you
can negatively impact the other. Therefore, in the absence of a selection for function,
evolving biopharmaceutical test proteins using TPBLA to improve their aggregation
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resistance could result in evolved variants that no longer bind to their target. Therefore,
the work in Chapter 5 develops a novel assay, Solubility ‘n’ Affinity Coselection (SnAC),
which introduces a selection for binding into TPBLA evolution experiments to enable
evolution of biologics for both stability and function.

Overall, the work presented in this thesis details a novel and powerful approach for the
analysis and directed evolution of stability and binding in biopharmaceutically-relevant
proteins.
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Chapter 1

Introduction

1.1 Protein folding, misfolding and aggregation

1.1.1 Principles of protein folding

A protein’s three-dimensional structure is determined by its primary sequence, its amino
acid monomer chain linked together by peptide bonds. Proteins are thought to initially
fold by hydrophobic collapse and burial of non-polar amino acid residues within the pro-
tein core, termed the hydrophobic effect, a stabilising and thermodynamically favourable
process (Hartl et al., 2011). The structure they adopt, termed the native fold, is vital
for a protein’s function, and deviations from this can result in potentially catastrophic
consequences (Wang and Roberts, 2018; Hartl et al., 2011). Anfinsen’s pioneering re-
search showing ribonuclease A can refold after denaturation demonstrated that folding is
reversible, occurs without outside energy input, and proteins adopt the structure with the
lowest free energy (Anfinsen et al., 1961; Anfinsen, 1973). Furthermore, it was concluded
that all the information for a protein to adopt its final native state was contained within
its primary sequence. However, a question remained that how does a protein sample the
astronomically large number of potential conformations available to an unfolded polypep-
tide chain within a biologically relevant timescale? No protein, no matter how small,
could sample all of these conformations within this time, a notion known as Levinthal’s
paradox (Levinthal, 1968). It was therefore proposed that the path to the native state
takes more of a guided search, where it follows predetermined folding pathways using
specific and controlled mechanisms and the formation of rapid local interactions (Figure
1.1A) (Levinthal, 1968). Levinthal’s paradox led to a search for folding pathways, and
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Fig. 1.1 Protein folding pathway and energy landscape. A) Levinthal’s proposed protein fold-
ing theory whereby proteins fold to the native state via specific intermediates through a defined
pathway. Intermediates can become trapped in ‘kinetic wells’ (dotted lines). B) Folding funnel the-
ory whereby proteins fold energetically downhill making favourable intramolecular contacts and
decreasing conformational entropy to the native state at a local energy minima. Amorphous ag-
gregates and amyloid fibrils often exist in the global energy minima (they are more stable than
the native fold). Unfolded, misfolded, intermediate and native-state proteins can aggregate via
different pathways. Figure redrawn and adapted from (Jahn and Radford, 2005; Englander and
Mayne, 2014).
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the simplistic folding pathway theory whereby proteins fold via distinct intermediate
states through a distinct pathway eventually evolved into one of a funnel-shaped energy
landscape (Dill and Chan, 1997; Englander and Mayne, 2014). In this theory, the unfolded
polypeptide chain folds by forming energetically favourable intramolecular contacts and
reducing the conformational entropy as the protein is funnelled towards the local energy
minima, or native state (Figure 1.1B) (Dill and Chan, 1997; Englander and Mayne, 2014).
There is not one single folding pathway, but proteins may take various routes as they
move towards the native state. However, the pathway to the native state is often ‘rugged’,
meaning intermediate states must often pass so called ‘kinetic barriers’ during folding
whereby proteins must input energy to overcome these barriers (Hartl et al., 2011). This
can result in transient populations of partially folded states, as they are unable to overcome
this high free-energy barrier, which have the potential to lead to protein aggregation (Jahn
and Radford, 2005).

1.1.2 Mechanisms of aggregation

An aggregate can broadly be defined as any self-associated protein with a quaternary
structure different to that of the native fold (Ratanji et al., 2014). While oligomerisation
can be desirable for some proteins as it is required for function, for others this is detrimental.
Proteins are fundamentally aggregation-prone when unfolded or partially-folded, which
can lead to the formation of extremely stable and long-lived aggregates (Roberts, 2014b).
While various mathematical models exist to explain the phenomenon, there is no single
mechanism of aggregation as it depends on both the protein and its environment and
the same protein may aggregate via a variety of different mechanisms depending on
this environment and the particular stresses it is subjected to (Roberts, 2014a). The
formation of aggregates can be either reversible or irreversible depending on the strength
and amount of interactions involved, however, it is important to note that no aggregate
is technically completely irreversible, but it is irreversible within a biologically relevant
timescale (Cromwell et al., 2006). Furthermore, the stage of the aggregation process often
dictates reversibility of aggregate formation, as initial formation of aggregates is often
reversible whereas latter stage aggregates are often irreversible (Wang, 2005).

Proteins are inherently dynamic by nature and experience constant global structural
fluctuations in solution as well as local structural pertubations, which can result in exposure
of otherwise buried aggregation-prone regions (APRs) (Krause et al., 2012; Abbas et al.,
2013). These APR are often short hydrophobic stretches which when exposed can cause
proteins to self-associate and form oligomers, a process generally thought of as the initial
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aggregation event (Wang and Roberts, 2018). At this point aggregation can be easily
reversed by dilution or alteration of solution pH or salt concentration. These ‘nuclei’ can
grow into larger aggregates via monomer addition or aggregate association to form ordered
or disordered (amorphous) aggregates and eventually grow into amyloid fibrils or insoluble
macroscopic particles (Figure 1.2) (Amin et al., 2014). These aggregates are often termed
irreversible as they are extremely thermodynamically stable and can often have a lower
energy minima than the native state, meaning they are not easily reversible without the use
of high temperatures and pressures or highly concentrated chemical denaturants (Roberts,
2014a). A protein’s conformational stability can influence its aggregation propensity, as
low conformational stability of a protein can result in partial unfolding which can expose
APRs and result in aggregate formation. Furthermore, proteins can unfold as a result of
interactions at air-water and water-surface interfaces, a process that can be particularly
problematic for biopharmaceuticals (Amin et al., 2014). As previously mentioned, there
are a wide variety of different complex mechanisms whereby a nucleus might grow into a
larger aggregate such as a fibril or amorphous cluster, a detailed review of which is beyond
the scope of this thesis. Furthermore, different models have been developed to explain
the aggregation process but no universal model has yet been identified, partially due to
the dependence on the particular protein and its environment as well as the occurrence of
multiple different aggregation mechanisms in the same protein (Wang and Roberts, 2018).

While it is true that aggregation can occur as a result of unfolding, some proteins
are capable of forming aggregates from native-like conformations without undergoing
unfolding. Amyloid fibrils can be formed by self-association of monomeric peptides
that oligomerise to form a nucleus that rapidly elongates (Zapadka et al., 2017). The
homotetrameric transport protein transthyretin (TTR) can dissociate into monomers which
can initiate aggregation (Garcia-Pardo et al., 2014). Furthermore, proteins containing
transthyretin-like domains have been experimentally shown to form amyloid aggregates
without extensive unfolding (Garcia-Pardo et al., 2014). Intrinsically disordered proteins
lack a single stable three-dimensional structure and exist in a wide variety of conformations,
typically compacted forms due to the formation of hydrogen bonds and salt bridges (Kumari
et al., 2018). Abnormal regulation of these IDPs within the cell can result in aggregation,
which can have implications in health and disease. An example of this is α-synuclein, a
human IDP with a function in remodelling lipid vesicles where it binds to lipid membranes
and adopts an α-helical structure (Doherty et al., 2020). However, due to its aggregation
behaviour α-synuclein has been implicated in Parkinsons disease where it is thought to
form fibrilar aggregates that disrupt cellular homeostasis and cause massive neuronal
death (Stefanis, 2012).
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Fig. 1.2 Mechanisms of aggregation. Protein aggregation can occur by a variety of different
mechanisms, making it difficult to predict. As a protein folds from an unfolded polypeptide chain
via intermediate states to the final native fold it may aggregate at any step, either forming unstruc-
tured amorphous aggregates or structured amyloid fibrils. Redrawn and adapted from Ebo et al.
(2020a).
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1.1.3 Chemically induced protein aggregation

Chemical reactions between amino acid side chains can directly crosslink proteins and alter
their behaviour. Deviation from the native state can increase the rate of these reactions,
and so influence aggregation rate. Covalently bonded aggregates can typically arise
via chemical reactions between monomers (Cromwell et al., 2006). Common covalent
links include disulphide bridges that can be initiated between oxidising reduced cysteine
residues, resulting in exposure of hydrophobic residues and subsequent oligomerisation
and aggregation of proteins (Wang, 2005; Trivedi et al., 2009). The affect of disulfide
formation on protein aggregation is generally protein-specific, however non-native disulfide
bonds have been shown to result in precipitation of insoluble aggregates (Wang, 2005;
Ciaccio and Laurence, 2009). Additionally, oxidation of residues can alter the primary
sequence and result in the formation of protein oligomers via covalent bonds. For example,
oxidised tyrosine residues in α-synuclein amyloid fibrils have been shown to covalently
form dityrosine which contributes to the high stability of the complex (Al-Hilaly et al.,
2016).

A major cause of chemical degradation during storage and manufacture of mono-
clonal antibodies (mAbs) is deamidation of neutrally charged asparagine (Asn) residues
to negatively charged aspartate (Asp) residues (Yan et al., 2018). The introduction of an
unfavourable negative charge can influence a protein’s structure as well as its biophysical
properties, resulting in increased charge-mediated interactions which can lead to aggre-
gation. For this reason, low levels of deamidation impurities (less than 5% of the total
sample) have been shown to result in increased mAb aggregation (Nilsson et al., 2002).

1.1.4 Factors affecting protein aggregation

Broadly speaking, factors influencing protein aggregation can be categorised into structural
(internal factors) or environmental (external factors). Structural factors include the primary
sequence, which is widely accepted to modulate a protein’s aggregation propensity along
with the external environmental factors. Even single amino acid substitutions have been
shown to drastically alter a protein’s ability to aggregate (Ventura, 2005). Particularly,
alteration of the primary sequence to increase the amount of non-polar (hydrophobic) amino
acids has been shown to increase aggregation propensity (Kim and Hecht, 2006). Individual
residues have been shown to be important when determining a protein’s aggregation
propensity as stabilisation of non-native interactions can be regulated by key ‘gatekeeper’
residues (proline, arginine, lysine, aspartic acid and glutamic acid) (Rousseau et al.,
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2006). These are electrostatically charged residues (and proline) that specifically aid in
proper folding and oppose aggregation by blocking misfolding reactions via electrostatic
repulsion (Rousseau et al., 2006). Mutations of these residues can dramatically affect
protein aggregation, with a single mutation of a non-polar residue for a lysine in an
amyloid-forming de novo β-sheet protein being sufficient to instead result in the formation
of monomeric β-sheet proteins (Wang et al., 2002; Frokjaer and Otzen, 2005).

A protein’s secondary structure can influence its aggregation propensity, as proteins
rich in β-sheets are more prone to aggregation than those rich in α-helices (Shifman, 2008).
Moreover, transition of α-helical structures to β-sheet rich aggregates has been described
as a mechanism of amyloid fibril formation (Mudedla et al., 2018). The high propensity of
β-sheet rich proteins to aggregate makes rational design of soluble and monomeric β-sheet
proteins challenging (Shifman, 2008). However, advances in computational modelling
have enabled de novo design of soluble proteins of increasing complexity (Langan et al.,
2019; Ng et al., 2019; Silva et al., 2019), including the first examples of de novo design of
two functional soluble β-barrel proteins (Dou et al., 2018; Marcos et al., 2018). Design of
membrane proteins is more challenging again, although there have been various examples
of de novo designed α-helical membrane proteins (Lu et al., 2018; Joh et al., 2017). The
first example of de novo designed transmembrane β-barrel proteins that fold spontaneously
and reversibly into synthetic lipid membranes was in 2021, paving the way for design
of custom protein nanopores that have wide potential in biotechnology (Vorobieva et al.,
2021).

Various environmental factors can initiate protein aggregation. High temperatures in-
duce protein unfolding, exposing hydrophobic residues as well as increasing the frequency
of molecular collisions resulting in aggregation (Wang, 2005). pH and ionic strength of
a solution can influence aggregation behaviours by altering the strength of electrostatic
interactions between proteins (Zapadka et al., 2017). The type and distribution of surface
charges on a protein is governed by the solution pH, influencing intra- and inter-molecular
protein interactions and so the aggregation propensity (Wang et al., 2010). Furthermore,
high protein concentrations can result in increased aggregation as a result of macromolec-
ular crowding as excluded volume effects and high concentrations of macromolecules
restrict the volume of accessible solvent (White et al., 2010). This leads to limited entropic
freedom resulting in compact non-native forms of proteins being favoured, which can lead
to aggregation (Hong and Gierasch, 2010). Hydrodynamic forces including extensional and
shear flow have also been linked to biopharmaceutical aggregation, particularly as these
proteins undergo such stresses during manufacture (Willis and Chin, 2018; Willis et al.,
2020). Additional environmental factors include: shaking, increased pressure, addition
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of organic solvent, freeze-thawing, freeze drying, spray drying, spray freeze drying, or
reconstitution of lyophilised powder (Wang, 2005).

1.1.5 Structure and morphology of protein aggregates

Protein aggregate morphology can generally be categorised as amorphous or fibrillar.
Amorphous aggregates have no regular interactions, whereas fibrils are structurally ordered
aggregates comprised mainly of β-sheets. Fibrillar aggregates are commonly associated
with amyloid diseases caused by the formation of insoluble proteinaceous deposits resistant
to degradation (Seuma et al., 2021). Furthermore, aggregate size can vary from soluble
submicron to insoluble macroscopic particles depending on the type of aggregate (Wang,
2005). The morphology of aggregates is pathway dependent and can be influenced by a
variety of external factors (Wang et al., 2010). In some instances, the same protein can
form both amorphous or fibrillar aggregates depending on the environmental conditions,
demonstrating the primary structure is not the single determining factor of aggregate
morphology (Chaturvedi et al., 2016).

1.2 Antibody fragments and derivatives

1.2.1 Antibodies

Antibodies, or immunoglobulins, are ‘Y-shaped’ molecules functionally separated into two
regions: the variable (V) region which is involved in antigen binding, and the constant (C)
region which interacts with effector cells. There are five different classes of immunoglobu-
lins that differ in their C regions - IgA, IgD, IgE, IgM and IgG (Figure 1.3) (Wang et al.,
2007). The most abundant immunoglobulin in human serum, as well as the most widely
used for therapeutic purposes, is IgG which can be split into four subclasses (IgG1, IgG2,
IgG3, and IgG4) (Zhang et al., 2009). These subclasses differ in hinge region length as
well as number and location of interchain disulphide bonds (Wang et al., 2007).

IgGs are comprised of two heavy (H) and two light (L) chains joined by disulphide
bonds (Figure 1.4) (Safarnejad et al., 2011). Each of these chains consists of immunoglob-
ulin (Ig) domains with a structure consisting of 7-9 antiparallel β-strands organised into a
β-sandwich with an intersheet disulphide bond between β-strands B and F; each H chain is
comprised of four Ig domains (one variable, VH; three constant, CH1, CH2, and CH3) and
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Fig. 1.3 Classes of human immunoglobulins. The most common in human serum, IgG, is
the most predominant antibody in the secondary immune response and the most widely used
for therapeutic purposes. IgE has two additional constant domains and is involved in allergic
response. IgA is involved in immune function of mucosal areas, such as the gut or respiratory
tract. It exists as a dimer and has additional secretory component. IgM is the largest antibody
(pentameric) and is involved in the primary immune response. The function of IgD is not fully
known, however it is thought to have evolved soon after IgM after the emergence of the adaptive
immune system and it may have a function in regulating mucosal membranes (Ohta and Flajnik,
2006; Schroeder and Cavacini, 2010; Gutzeit et al., 2018)
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each L chain is comprised of two Ig domains (one variable, VL; one constant, CL) (Wang
et al., 2007; Bodelón et al., 2013). These chains combine to form the full IgG molecule
made of one crystallisable fragment (Fc) and two antigen binding domains (Fab) joined at
a hinge region (Figure 1.4). Within the Fab, each V domain contains three complementar-
ity determining regions (CDRs) - hypervariable regions which form the antigen binding
site (Schroeder and Cavacini, 2010). IgGs are N-glycosylated at Asn297 in CH2 domains
of the Fc domain (Jennewein and Alter, 2017). Glycosylation of the Fc has been shown to
influence stability, with deglycosylated antibodies exhibiting lower thermal stability and
higher aggregation rates compared with their glycosylated counterparts (Zheng et al., 2011).
Furthermore, the glycosylated Fc region plays a role in downstream immune responses
through binding to Fc receptors (Kennedy et al., 2017).

1.2.2 Antibody fragments

Immunoglobulins are modular in nature, a characteristic that has the potential to be ex-
ploited allowing engineering of therapeutics optimised for specific targets. Antibody
fragments include antigen-binding fragments (Fab), single chain variable fragments (scFv),
miniaturised antibodies such as nanobodies as well as bispecific antibodies. These are
taken from the antigen-binding part of antibodies and produced using recombinant pro-
cesses (Figure 1.4). These smaller fragments provide higher tissue penetration in com-
parison to full sized mAbs and are less costly to produce as they can be expressed in
prokaryotes due to the lack of glycosylation sites associated with the Fc domain (Roope-
nian and Akilesh, 2007; Nelson, 2010). Fab fragments were the first class of antibody
fragments to be developed, as well as the most successful as they represent around
half of all antibody fragments that have entered clinical trials (Nelson, 2010; Bates
and Power, 2019). However, to date only four Fab fragments have been approved by
the FDA (https://www.antibodysociety.org/resources/approved-antibodies/ accessed 10th
February 2023). The lack of Fc domain means the fragments have short circulating
half-lives as there is no interaction with the neonatal Fc receptor allowing FcR-mediated
recycling, a process that extends half-life by recycling IgGs and reducing lysosomal degra-
dation (Roopenian and Akilesh, 2007). This can therefore lead to needing larger and
more frequent doses (Bates and Power, 2019). Furthermore, as the presence of the Fc
domain increases the thermodynamic stability of antibodies, fragments lacking this domain
have reduced thermodynamic stability which can cause increased aggregation risk and
hence immunogenicity (Nelson, 2010). Attempts to increase half-life include chemical
conjugation to proteins such as albumin and PEGylation, which in itself can raise more
issues due to technical challenges and expense (Nelson, 2010).
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Fig. 1.4 Structures of mAbs and antibody fragments. IgG, immunoglobulin; Fab, antigen
binding fragment; scFv, single chain variable fragment; Fc, crystallisable fragment; VL, variable
light chain; VH, variable heavy chain; CH, constant heavy chain; CL, constant light chain; CDR,
complementarity determining region. scFv fragment showing CDRs is from PDB 5JZ7.
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scFvs are fusion proteins consisting of the VH and VL chains joined via a short
linker (Figure 1.4). Multiple variants of these fragments can be produced in order to
optimise both stability and affinity for the target (Nelson, 2010). However, their reduced
half-life due to the lack of Fc domain limits their application potential as therapeutics
and the only clinically approved molecule to date is Brolucizumab, a humanised scFv
targeting vascular endothelial growth factor-A to treat neovascular age-related macular
degeneration (Kaplon et al., 2020). Bispecific antibodies can be created with two different
antigen-binding domains exhibiting binding specificity to two different targets (Nelson,
2010). Many bispecifics are currently undergoing clinical trials or are awaiting approval,
such as Faricimab, targetting anti-vascular endothelial growth factor-A (VEGF-A) and
anti-angiopoietin-2 (Ang-2) for the treatment of ophthalmic disorders (Kaplon et al.,
2022). Heavy-chain only antibodies were first isolated from camelids in the early 1990s
(Figure 1.4) (Hamers-Casterman et al., 1993). This enabled development of single domain
antibodies, or "nanobodies", that comprise of a single VH domain. These molecules exhibit
high levels of tissue penetration, high stability and solubility as well as low immunogenicity,
making them potentially powerful therapeutic agents (Hu et al., 2017). Caplacizumab is a
nanobody targeting anti-von Willebrand factor for the treatment of acquired thrombotic
thrombocytopenic purpura (aTTP), a rare blood clotting disorder characterised by low
platelet number that can lead to anaemia and organ failure of varying severity (Peyvandi
et al., 2016). Caplacizumab was FDA approved in early 2019 and, in combination with
plasma exchange and immunosuppressive therapy, is currently being used to treat adult
patients with aTTP (Kaplon et al., 2020).

The advancement of genetic engineering techniques has enabled generation of combi-
nations of these modular antibody fragments to create novel complexes (Khatib and Salla,
2022). These include fragments with a wide range of specificities and valencies, expressed
either as a single chain, assembled in multimeric forms or stringed in tandem (Khatib and
Salla, 2022).

Finally, mAbs can be used to ‘deliver’ highly potent cytotoxic small molecule drugs to
the target using so called antibody-drug conjugates (ADCs). ADCs can reduce off-target
effects by exploiting the antibodies’ specificity in order to direct the drug conjugate to a
specific site. Drugs are joined to an antibody via a conjugating linker, typically via lysine
residues on the antibodies surface (Chudasama et al., 2016). Cysteine residues can also
be used for conjugation by reduction of existing disulphide bridges or introduction of
free cysteine residues via protein engineering. However, this poses the risk of increased
aggregation during the conjugation step by formation of disulphide bridges (Chudasama
et al., 2016).
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1.3 Biopharmaceuticals and the aggregation problem

1.3.1 History of biopharmaceuticals

Biopharmaceuticals are defined as therapeutics produced from biological sources (Rader,
2008). Generally, biopharmaceuticals are more effective at lower concentrations and
result in fewer side effects compared with their small molecule counterparts (Wang et al.,
2007). From the approval of Humulin (human insulin) as the first recombinant protein
therapeutic in 1982, the biopharmaceutical market has grown dramatically with total sales
reaching $188 billion in 2017 (Johnson, 1983; Walsh, 2018). Monoclonal antibodies
(mAbs) represent an important sector of biopharmaceuticals, with sales exceeding $123
billion in 2017 they represent almost two thirds of the biopharmaceutical market (Walsh,
2018).

1.3.2 Monoclonal antibodies and their generation

1.3.2.1 Hybridoma technology

Generally mAbs with a high affinity for the epitope are generated by two approaches,
both of which were recognised by award of a Nobel Prize. In 1975 Köhler and Milstein
developed mouse hybridoma technology to produce mAbs where immortalised myeloma
cells were fused with spleen cells (B-cells) from a mouse immunised against a particular
antigen (Kohler and Milstein, 1975). This generates a stable line of immortalised cells
(due to the myeloma) producing an antibody of interest (due to the spleen cells). Prior to
electrofusion, myeloma cells lacking the hypoxanthine-guanine phosphoribosyltransferase
(HGPRT) enzyme are selected for. After electrofusion cells are grown on HAT medium
(hypoxanthine-aminopterin-thymidine medium). This selection works by combining
aminopterin, a drug inhibiting de novo DNA synthesis, with thymidine and hypoxanthine,
which provide the cells with the tools to use the nucleotide salvage pathway (Ribatti,
2014). This pathway is only available to cells that have the right enzymes, including
HGPRT (Ribatti, 2014). B-cells are unable to survive long on their own, and since
myeloma cells lack the HGPRT gene they can only survive if they fuse into hybridomas.
This allows selection for hybridoma cells that secrete antibodies against the particular
antigen of interest representing a stable source of mAbs (Figure 1.5) (Rodgers and Chou,
2016).
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Fig. 1.5 Köhler and Milstein’s mouse hybridoma technique for producing mAbs. Mice are
immunised with antigen of interest and spleen lymphocytes (B-cells) are isolated. These are
fused with mouse myeloma cells that lack the hypoxanthine-guanine phosphoribosyltransferase
(HGPRT) enzyme required to grow on HAT medium. The resulting hybridoma cells are selected for
on HAT medium, as the myelomas fusing with the spleen lymphocytes (B-cells) allows growth on
HAT. B-cells do not survive long on their own and only survive if they fuse into a hybridoma. These
hybridomas have the antibody producing ability of a B-cell and the immortality of a myeloma,
representing a stable source of mAbs.
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This work led to Köhler and Milstein being awarded the Nobel Prize for Physiology or
Medicine in 1984 (Alkan, 2004). Building on this discovery, the first monoclonal antibody
therapy (Orthoclone OKT3) was approved in 1986 to prevent kidney organ transplant
rejection (Ecker et al., 2015). Since then the FDA have approved over 100 monoclonal
antibodies globally and there are currently over 570 in various stages of clinical trials (Cai,
2018; Kaplon et al., 2022). A drawback of mAbs produced via the hybridoma method
is that due to the murine lineage the use of such therapeutics can result in an immune
response in the patient, therefore various gene technologies to ‘humanise’ mAbs have been
developed (De Groot and Scott, 2007; Rodgers and Chou, 2016). Partially humanised
mAbs formed of mouse variable domains and human constant regions or fully humanised
mAbs formed of mouse CDRs and a human mAb scaffold were developed to reduce
immunogenicity (Figure 1.6) (Morrison et al., 1984; Jones et al., 1986). Furthermore,
fully human mAbs can be produced by means of genetic engineering to further reduce
the risk of immunogenic response (Lonberg et al., 1994; Mahler et al., 1997). UK based
biopharmaceutical company Kymab have created a fully human antibody system using
mice by replacing the mouse variable genes with human variable genes within the mouse
genome, resulting in production of high-affinity antibodies with human-like CDRs (Lee
et al., 2014). Mice are fertile and able to elicit typical immune responses to generate
high-affinity therapeutic human mAbs without the need for extensive optimisation. While
these methods are effective at minimising immunogenicity in patients as a result of mAbs,
even fully human mAbs have been shown to induce an immune response in patients (Kay
et al., 2008; Lee et al., 2014). This risk is increased by the presence of contaminants
and aggregates in the final formulated mAb. A recent study suggested the immunogenic
response associated with aggregation in biotherapeutics is due to specific epitopes in
mAbs that can be exposed as a result of aggregation and recognised by the immune
system (Eyes et al., 2019). This study used molecular dynamics simulations to show
biophysical stress as a result of aggregation can exacerbate epitope exposure. Other
studies have suggested a mechanism whereby aggregation leads to immunogenicity is a
result of ordered oligomerised antigens that may resemble structures of viruses or foreign
microorganisms, hypothesising the immune system has evolved to recognise and respond
to these repetitive epitopes (Hermeling et al., 2004; Kessler et al., 2006; Ratanji et al.,
2014; Kuriakose et al., 2016). Furthermore, these epitopes have been shown to specifically
activate B cell responses by cross-linking of antigen receptors (Kuriakose et al., 2016).
Interestingly, the route of mAb administration has been shown to contribute to aggregation,
with subcutaneous injection being the most immunogenic and intravenous being the least,
as subcutaneous injection results in prolonged and localised exposure of the mAb in close
proximity to the lymph nodes which are major sites of immune cells (Ratanji et al., 2014;
Kuriakose et al., 2016).
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Fig. 1.6 Humanisation of mAbs. To reduce the immunogenicity of murine mAbs (pink), various
technologies have been developed to ‘humanise’ them. Partially humanised ‘chimeric’ mAbs con-
sist of murine variable domains and human constant regions. Fully humanised mAbs consist of
murine CDRs grafted onto human frameworks. Techniques exist to produce fully human mAbs,
but these can still elicit an immmunogenic effect.

1.3.2.2 Phage display

In 2018 the Nobel Prize in Chemistry was awarded to Frances Arnold, George Smith and
Greg Winter for their pioneering work on directed evolution methods to design biological
molecules, namely enzymes and antibodies (Gibney et al., 2018). Arnold developed
directed protein evolution methods using random mutagenesis to rapidly evolve enzymes
with a desired characteristic (Chen and Arnold, 1993). In 1985, Smith reported that genes
inserted in the middle of the bacteriophage filamentous phage gene III (pIII) are displayed
on the surface of the bacteriophage (Smith, 1985). Winter and Smith developed this
technology, named phage display, as a way to develop antibodies with high affinity and
selectivity for a specific target by fusing VH and VL genes, generating an single chain Fv
(scFv), with pIII (Clackson et al., 1991; Winter et al., 1994). A library of phage expressing
various scFvs on their surface are screened against an immobilised antigen of interest,
unbound phage are washed away and bound phage are eluted. Various techniques exist
to elute bound phage, including low pH buffers, high ionic strength, reductants such as
DTT, or ultrasound (Vodnik et al., 2011). Isolated DNA from bound phage is extracted
and subjected to random mutagenesis to create a mutated library, which in turn is used
to produce more phage; repeated cycles are carried out to improve affinity for the target
(Figure 1.7) (Frei and Lai, 2016). The combination of phage display with Arnold’s directed
evolution methods led to the approval of the first fully human mAb Humira (adalimumab)
for the treatment of rheumatoid arthritis in 2002, which has gone on to be the top-selling
biopharmaceutical in the world with 2021 sales exceeding $20 billion (Mullard, 2022).
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Fig. 1.7 Phage display for producing mAbs. scFv gene is inserted between pIII so fragment
is displayed on the surface of filamentous M13 bacteriophage. Phage are screened for binding
against an immobilised antigen. During this step conditions can be modified (pH, temperature,
etc) to alter the selection pressure. Unbound phage are washed away, bound phage are eluted
and used to re-infect E. coli. DNA for binders is isolated and used in a second round of selection
to improve the affinity. Alternatively, mutated libraries of binders can be created to isolate unique
binders.
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1.3.2.3 Yeast surface display

Yeast surface display was first published in 1997 as an alternative method of producing
high affinity antibodies (Boder and Wittrup, 1997). A scFv library is incorporated into
Saccharomyces cerevisiae as a fusion protein with cell wall protein Aga2p mating adhesion
receptor which results in the scFv being presented on the surface of yeast (Boder and
Wittrup, 1997). Conjugation of the antigen of interest to magnetic beads or a fluorophore
allows sorting by magnetism-assisted cell sorting (MACS) or fluorescence-assisted cell
sorting (FACS), respectively (Cherf and Cochran, 2015). DNA of binders is isolated and
used to create a mutated library, which is used in subsequent cycles to optimise affinity
for the target (Figure 1.8) (Cherf and Cochran, 2015). Yeast surface display also has the
potential for displaying Fab libraries to isolate high-affinity binders (Rosowski et al., 2018).
Yeast surface display has been modified to include a selection for stability as well as affinity
by addition of a conformational ligand (Protein A) that is specific for folded VH domains,
meaning it recognises folded VH domains so can be used to select for variants that are
both folded and have affinity for the target (Julian et al., 2015). Using selection for protein
A binding alone without the additional selection for antigen binding allowed isolation of
variants that have enhanced stability but reduced affinity, showing the inevitable trade-off
between properties and how it is often the case that improving one property negatively
impacts the other as well as highlighting the importance of co-selection (Julian et al., 2015).
Yeast surface display has been widely utilised in various directed evolution studies for
improving both stability and affinity in antibody-based proteins (Julian et al., 2015, 2017,
2019; Tiller et al., 2017b,a).
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Fig. 1.8 Yeast surface display technique for producing mAbs. scFvs are presented on the
surface of Saccharomyces cerevisiae by fusion with the Aga2p protein. Cells are screened for
binding by incubating with antigens conjugated to magnetic beads or a fluorophore, allowing FACS
or MACS, respectively. Binders DNA is isolated and repeated rounds of mutation and cell sorting
can be used to isolate variants with improved binding affinities.
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Fig. 1.9 Ribosome display technique for producing mAbs. scFv DNA library lacking a stop
codon is PCR amplified and transcribed to mRNA in vitro. The lack of a stop codon causes the
mRNA transcript to stall on the ribosome forming an mRNA-ribosome-protein complex. These are
screened against an immobilised antigen and binders are isolated. mRNA of binders is isolated
and translated back to cDNA for analysis. Repeated cycles using mutated libraries can improve
the affinity for the target.

1.3.2.4 Ribosome display

Also published in 1997, ribosome display represents a cell-free method for antibody de-
velopment, overcoming ethical implications associated with the use of animals in mouse
hybridoma technology (Hanes et al., 1997). In this method, a scFv library is amplified
by PCR and transcribed to mRNA in vitro. The transcript lacks a stop codon causing
translation to stall and the protein and its encoding mRNA remain attached to the ri-
bosome (Hanes et al., 1997). mRNA-ribosome-protein complexes are screened against
immobilised antigens; unspecific complexes are washed away then bound complexes are
dissociated. RNA of binders is isolated and transcribed back to cDNA for amplification
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using reverse transcription PCR (RT-PCR) (Figure 1.9). This is used to create a mutated
library and the process repeated to increase antigen binding affinity (Hanes et al., 1997).
Similar to phage and yeast-surface display, the screening conditions can be modified to co-
evolve beneficial biophysical properties (such as stability or solubility) alongside binding
affinity. However, the instability of mRNA restricts the potential selection conditions (e.g.
temperature, pH) that can be applied to screen libraries (Galán et al., 2016). Ribosome has
the highest capacity of any of the display technologies, due to its cell-free nature it can
screen up to 1012-15 antibody variants in a single reaction (Kunamneni et al., 2020), and
it has been widely exploited to evolve antibody fragments including scFvs (Zhao et al.,
2009; Kunamneni et al., 2018) and single domain antibodies (Bencurova et al., 2015) with
high-affinity for their targets.

1.3.2.5 Mammalian display

A more recent approach for antibody display is mammalian display, in which the scFv (Ho
et al., 2006) or full-length IgG (Akamatsu et al., 2007) is displayed on the surface of a
mammalian cell via fusion to the transmembrane domain of human platelet-derived growth
factor receptor (PDGFR) and screened for binding to an antigen of interest (Ho and Pastan,
2009). This method has been demonstrated to not only enable isolation of high-affinity
binders, but also to isolate variants with improved solubility, reduced aggregation, and
reduced immunogenicity (Dyson et al., 2020).

1.3.3 Aggregation in biopharmaceuticals

Throughout their lifetime, biopharmaceuticals are exposed to a multitude of physical,
chemical and mechanical stresses that can result in formation of aggregates. These
aggregates pose a significant risk to patients as they can invoke an immune response,
causing side effects ranging from intolerance to adverse reactions and death (Jiskoot
et al., 2012). Typically, bioreactors house mammalian cell cultures secreting mAbs into
the growth medium (Cromwell et al., 2006). The protein is harvested and undergoes
various purification steps from centrifugation to Protein A chromatography, ion-exchange
chromatography and ultrafiltration/diafiltration during formulation before transportation
to patient for administration (Figure 1.10). The formulated protein can be frozen in order
to maintain stability for a period of time before filling and finishing into its vials or pre-
filled syringes (Cromwell et al., 2006). The high concentrations of mAbs required for
administration can pose an aggregation risk, as the maximum volume per dose is usually 1
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mL and can require over 200 mg of product (Roberts, 2014b). All these processing steps
expose mAbs to a host of aggregation-inducing stresses that can hinder or completely
derail commercialisation of the product, and can therefore contribute to the over 96 % of
drugs which fail development (Hingorani et al., 2019). Low pH conditions are used to
elute mAbs during Protein A chromatography and can induce protein aggregation, whereas
filtration and centrifugation exposes cells to harsh flow conditions which can cause protein
unfolding and formation of aggregates (Cromwell et al., 2006). Physical stresses that
may induce aggregation include changes in temperatures, such as high temperatures in
the bioreactor, or freeze-thaw processes for storage and transport. Furthermore, slower
rates of freezing can result in protein cryoconcentration leading to zones of higher protein
concentration that can harm proteins during thawing (Rayfield et al., 2017).

After the final product is filled into syringes or vials there are no further purification
steps (Cromwell et al., 2006). This process places mAbs under high hydrodynamic stress
that can induce the formation of aggregates; these aggregates can be injected into the
patient and may cause adverse reactions (Willis et al., 2020). Furthermore, the presence
of aggregates will increase the viscosity of the solution, making administration of the
drug slow and painful (Tomar et al., 2016). Studies have investigated the effectiveness of
using an inline filter during administration of intravenous drugs at reducing the amount of
particles injected into the patient (Pollo et al., 2019). While these filters were shown to
be effective at significantly reducing the concentration of particles ≥2 microns, particles
between 1 and 2 microns were still detected indicating these filters are not capable of
removing all particles. Limits of acceptable levels of soluble aggregates are determined on
a case-by-case basis as there are no general predefined acceptable levels in biopharmaceu-
ticals (Mahler et al., 2009). However, levels are commonly kept below 5% of the protein
mass in order to reduce any adverse reactions in patients (van Reis and Zydney, 2007). It
is important to detect aggregation-prone mAbs as early as possible in the manufacturing
process in order to reduce unnecessary time and expense. Effort to decrease aggregation
levels by investigation into a mAbs’ aggregation behaviour is vital to minimise cost and
time to market as well as immunogenicity of therapeutics (Roberts, 2014a).
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Fig. 1.10 Overview of mAb purification process. A biopharmaceutical undergoes upstream
and downstream processing before administration into patients, many of which can impart
stresses resulting in aggregation. Downstream processing starts with inoculation of cell culture
for large scale fermentation through to centrifugation and depth filtration. Upstream processing
involves chromatography steps, Protein A chromatography, anion- and cation- exchange chro-
matography, to remove residual impurities as well as nanofiltration (NF) and Ultra-/Dia-filtration
(UF/DF) which concentrates and buffer-exchanges into the formulation buffer.
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1.4 Methods to assess biopharmaceuticals

1.4.1 Analytical techniques

1.4.1.1 Assessing protein aggregation

Various analytical techniques can be employed to detect biopharmaceutical aggregation.
The most commonly used is size-exclusion chromatography (SEC) which separates macro-
molecules based on their hydrodynamic radius and produces an elution profile that can
be used to estimate molecular weight. The sample passes through a column packed with
porous beads; molecules with a large hydrodynamic radius (such as aggregates) do not
enter the pores and elute before molecules with a smaller hydrodynamic radius (such as
the natively folded protein) which are retarded by the pores and have a longer retention
time (Figure 1.11A) (Mahler et al., 2009). SEC analysis is often performed using high
performance liquid chromatography (HPLC) to provide a relatively easy and high through-
put method to rapidly analyse therapeutic samples. However, using this method may
be misleading as the conditions therapeutic proteins are analysed in are not necessarily
representative of the final formulation. The occurrence of protein adsorption to the media
can affect elution profiles, also indicating a poor IgG, although this can be minimised by
increasing salt concentration in the mobile phase or by the addition of arginine (Carpenter
et al., 2010). SEC is ineffective at analysing large, insoluble aggregates as they would clog
the column and are often removed by filtration of the sample prior to SEC (Mahler et al.,
2009). Various chromatography-based assays exist to probe antibody self-association,
such as self-interaction chromatography (SIC) (Patro and Przybycien, 2000) and cross-
interaction chromatography (CIC) (Jacobs et al., 2010), as well as antibody colloidal
stability, such as standup monolayer adsorption chromatography (SMAC) (Kohli et al.,
2015) and hydrophobicity, such as hydrophobic interaction chromatography (HIC) (Haver-
ick et al., 2014). SIC involves measuring an antibodies retention time as it passes through
a column conjugated with the same antibody, therefore a longer retention time correlates
to higher levels of self-interaction (Patro and Przybycien, 2000). Similarly, CIC measures
the retention time of an antibody as it passes through a column where the resin is coupled
to polyclonal IgGs from human serum, and studies have inversely correlated retention
times to the solubility of the candidate antibody (Jacobs et al., 2010). SMAC is a high-
throughput HPLC method whereby the retention time of an antibody is measured as it
passes through a column with a hydrophobic self-assembled monolayer in a ‘standing-up
phase’ (or a ‘standup monolayer’) covering terminal hydrophobic groups (Kohli et al.,
2015). The setup is hypothesised to mimic a protein exterior, and therefore proteins that
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Fig. 1.11 Overview of methods to detect protein aggregation. A) Size-exclusion chromatog-
raphy separates proteins based on hydrodynamic radius using porous beads. Proteins with a
smaller hydrodynamic radius (e.g. monomers) are trapped by the pores in the beads and there-
fore have a longer retention time (take longer to pass through the column) than those with a larger
hydrodynamic radius (aggregates). B) Analytical Ultracentrifugation (AUC) separates proteins of
different sizes by using a centrifugal force to redistribute them across the sample cell. C) Asym-
metrical Flow Field-Flow Fractionation (AF4) uses flow to separate molecules of different sizes.
Proteins pass through a thin flow channel with a perpendicular cross flow pushes them towards
an inpermeable membrane. Larger molecules take longer to diffuse back into the laminar flow and
so are separated from smaller molecules. AF4 diagram adapted from Cho and Hackley (2010).
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have low colloidal stability would be more prone to interact non-specifically with the
column leading to longer retention times. Similarly, HIC involves separating mAbs based
on their hydrophobicity using a column with a hydrophobic resin so that candidates with
increased surface hydrophobicity have an increased retention time (Haverick et al., 2014).
HIC has been employed to assess various post-translational modifications in mAbs such
as tryptophan oxidation and aspartic acid isomerization as well as protein hydrophobic-
ity which has been linked to increased aggregation due to association of hydrophobic
patches (Haverick et al., 2014). While chromatography-based assays are useful and widely
used for predicting protein solubility and colloidal stability, with SEC generally classed
as the gold standard in industry, they are still limited for assessing the many hundreds of
candidates that are generally identified during antibody discovery and affinity as they are
particularly low-throughput (Elgundi et al., 2017).

Analytical Ultracentrifugation (AUC) can be employed to characterise protein aggre-
gates and overcome some of the limitations of SEC. The differing masses, sedimentation
equilibrium and sedimentation velocity of monomers, oligomers and aggregates causes
them to redistribute when subjected to a centrifugal field (Figure 1.11B). This allows
molecular weight calculation using the sedimentation and diffusion coefficients as well
as quantification of aggregate level using optical detection (absorbance, interference or
fluorescence) (Cole et al., 2008). Results obtained by AUC can be representative of the final
formulated mAb as it can be carried out in the original buffer (Berkowitz, 2006). However,
AUC is a low-throughput/high cost method and sample concentrations are limited to less
than 50 mg/mL and at high concentrations require dilution prior to analysis therefore it
may not be fully representative of the final formulated mAb (Shah, 2018).

Asymmetrical Flow Field-Flow Fractionation (AF4) allows separation of particles
with diameters ranging from 1 nm to ~1000 nm (Fraunhofer and Winter, 2004). Samples
are separated using a thin flow channel with a perpendicular cross-flow that pushes pro-
teins towards an impermeable membrane; smaller molecules (monomers) diffuse back to
the channels’ laminar flow more rapidly than larger molecules (oligomers, aggregates)
(Figure 1.11C) (Den Engelsman et al., 2011). An important method to reinforce data
from SEC, AF4 lacks the capability to accurately quantify aggregation in comparison to
SEC (Berkowitz et al., 2013).

Dynamic Light Scattering (DLS) detects scattered light that arises from diffusion
of proteins and aggregates to determine the size distribution profile. The presence of
aggregates will result in detection of two or more populations, monomer and aggregates
(Figure 1.12A) (Li, 2011). DLS is a high-throughput, non-destructive method that is highly
sensitive to large particles; this sensitivity means DLS can even detect tiny contaminants
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Fig. 1.12 Overview of methods to detect protein aggregation. A) Dynamic Light Scatter-
ing (DLS) allows analysis of protein sizes (hydrodynamic radii) by assessing how much light the
sample scatters. Smaller molecules move faster than larger molecules and show faster fluctua-
tions of scattered light over time, whereas larger molecules result in larger differences between
the minima and maxima intensities. Using the intensity trace a correlation function can be deter-
mined by analysing the length of time a single particle is in the same place. As smaller molecules
move faster, this correlation function rapidly shows an exponential decay. As larger molecules
move slower, the exponential decay of the correlation function is delayed. B) Affinity-capture self-
interaction nanoparticle spectroscopy (AC-SINS) uses gold nanoparticles (AuNPs) coated with
polyclonal antibodies with a high affinity for human Fc regions. These bind to mAbs and the
coated AuNPs are used to monitor mAb self-association. As the mAbs self-associate, the inter-
particle distances between the AuNPs is decreased. This affects their absorbance properties,
resulting in a red shift of the maximum wavelength of absorbance. AC-SINS diagram redrawn
from (Wu et al., 2015).
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such as dust, therefore the sample must be filtered before analysis which may remove
aggregates (Den Engelsman et al., 2011). Additionally, highly concentrated samples (100
g/L), such as some mAbs, cannot be accurately analysed using this method (Shah, 2018).

Various spectroscopic and spectrometric technologies exist to detect and characterise
aggregation of biopharmaceuticals. Spectroscopic methods represent easy to perform
techniques that are not destructive to the sample (Den Engelsman et al., 2011). Circular
dichroism (CD) spectroscopy uses the difference in absorption of left- and right- handed
circularly polarised light in chiral molecules to determine secondary and tertiary structure
by UV analysis. CD requires low amounts of protein but is subject to interference from
excipients and solvents and the requirement for sample dilutions mean analysis is not
representative of the final formulated mAb (Den Engelsman et al., 2011).

Mass spectrometry (MS) is a powerful technique employed to determine the molecular
weight of an analyte. More accurately, MS analyses the mass to charge ratio (m/z) of
ions in a sample. For mAb analysis, MS can be used to determine amino acid sequence,
post-translational modifications (such as glycosylation) and chemical modifications, as
well as higher order structure and location of disulphide bridges (Zhang et al., 2009).
Typically the sample is ionised and transferred into a gas phase where ions are separated
based on their m/z ratio. So called "soft" ionisation sources such as electrospray ionisation
(ESI) and matrix-assisted laser desorption ionisation (MALDI) developed in the 1980s
allowed analysis of large intact biomolecules, widening the applications of such methods
for analysis of biologics (Tian and Ruotolo, 2018). MS provides precise, accurate, high
resolution analysis of proteins up to the MDa range. However, volatile buffers are required
as well as expensive equipment and expert personnel (Den Engelsman et al., 2011). While
proteins analysed under denaturing conditions provide greater sequence coverage and
higher mass accuracy, native MS exists to analyse proteins in their native fold. This can be
a powerful tool for detecting and analysing misfolding and aggregation of biopharmaceuti-
cals (Tian and Ruotolo, 2018). Various chemical labelling techniques can be combined
with MS to study protein structure and dynamics. Hydrogen/deuterium exchange (HDX)
can be used to label surface exposed areas of a protein by using the principle that deuterium
will exchange with the backbone amide hydrogens (and exchangeable protons on side
chains), resulting in an increase in mass that can be detected by MS (Cornwell et al., 2018).
Fast Photochemical Oxidation of Proteins (FPOP) uses a laser to split hydrogen peroxide
into hydroxyl radicals, which can covalently bond with surface exposed residues, again
producing an increase in mass that can be detected by MS (Cornwell et al., 2018). These
techniques can be used to study changes in a protein’s solvent exposure as a result of its
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environment, the addition of a stress, or just over time, and so aid in understanding how
this can influence the protein’s aggregation behaviour.

After affinity maturation many hundreds of candidates are identified, making it nec-
essary to screen these using quality control (QC) or "developability" assays which will
generally be highly robust and high-throughput techniques (Den Engelsman et al., 2011).
Often plate reader based assays are employed to quickly analyse large numbers of sam-
ples (Bhirde et al., 2018). However, when it comes to assessing aggregation what has
become clear is that no single assay has the power to assess aggregation-prone sequences
in isolation, presumably due to the various different complex pathways whereby a protein
might aggregate, therefore multiple assays are generally deployed in combination (Willis
et al., 2020). While SEC is the industry standard for analysing therapeutic protein aggre-
gates, AUC and plate reader-based DLS are also used (Bhirde et al., 2018). Affinity-capture
self-interaction nanoparticle spectroscopy (AC-SINS) is a high-throughput method capable
of screening large quantities of mAbs for their propensity to self-associate (Liu et al., 2014).
Gold nanoparticles (AuNP) are coated with polyclonal antibodies with high specificity for
the Fc region of human mAbs. These coated AuNP are then incubated with a mAb of in-
terest. If the mAb of interest (now immobilised on the AuNP) self-associates or aggregates
with other mAbs on other nanoparticles, this results in reduced inter-particle distances
between AuNP which changes the absorbance spectra of the AuNP (Figure 1.12B) (Liu
et al., 2014). Increased antibody self-association results in an increase of the wavelength at
maximum absorbance (plasmon wavelength) (Liu et al., 2014). The absorbance spectra
of AuNP incubated with the mAb of interest are compared with AuNP alone to calculate
a plasmon wavelength shift. This is a useful technique during early mAb development
stages as it can use low concentrations of unpurified mAbs (Liu et al., 2014). Capillary
electrophoresis (CE-SDS) is often used to characterise protein aggregates by separating
a sample in a capillary by size when subjected to an electric field (Den Engelsman et al.,
2011). This technique is usually combined with SEC in QC assays. CE-SDS is a rapid,
high resolution technique that only requires low amounts of sample and, unlike SDS-PAGE,
does not require staining for quantification as it uses UV absorption (Den Engelsman et al.,
2011). However, this technique is unable to detect noncovalent aggregates and results
may be impacted by the sample interacting with the capillary (Den Engelsman et al.,
2011). Antibody clone self-interaction by bio-layer interferometry (CSI-BLI) involves
immobilising an antibody of interest onto a bio-layer interferometry tip (Sun et al., 2013).
The white light is reflected from the tip of the biosensor as well as internal reference
layer, and the waves reflected from both these layers are combined to form the interference
pattern (Ciesielski et al., 2016). Self-association of antibodies increases the thickness of
the bio-layer, affecting the optical properties and resulting in a wavelength shift (Sun et al.,
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2013). CSI-BLI is a high-throughput, label-free technique where a 96 well plate can be
tested in as little as 2 hours, making it an attractive approach for screening early-stage dis-
covery candidates and strong self-interactions as detected by CSI-BLI have been correlated
to delayed retention times in SIC and CIC (Sun et al., 2013).

1.4.1.2 Assessing binding affinity

When developing a biopharmaceutical, there are a number of ‘drug-like properties’ to be
considered that contribute to that molecule being successful. This includes high affinity,
specificity, and solubility as well as low toxicity, low immunogenicity, and slow clearance
rates (Starr and Tessier, 2019). More than 20 methods to measure protein binding affinities
and kinetics have been described in the literature (Vuignier et al., 2010). However, the
most commonly used are isothermal titration calorimetry (ITC) (Ladbury and Chowdhry,
1996; Duff et al., 2011), surface plasmon resonance (SPR) (Willander and Al-Hilli, 2009;
Kastritis and Bonvin, 2013), as well as fluorescence-based methods which correlate binding
to a fluorescent output (Bee et al., 2013).

ITC measures heat uptake or release as a result of binding (Kastritis and Bonvin, 2013).
Two cells are held in a microcalorimeter, one a reference cell containing buffer and the
other containing the sample. An analyte is added by a series of injections. Binding of
the analyte to the sample will result in a small change in temperature, and this change of
temperature in the sample cell is compared with the reference cell (Vuignier et al., 2010).
Each injection of the analyte will lead to a specific amount of protein complex, which is
dictated by the binding affinity (Kastritis and Bonvin, 2013).

SPR measures the amount of protein complex formed between two molecules without
using fluorescent or radioisotopic labels (Myszka and Rich, 2000). It works by immobilis-
ing one binding partner onto a sensor surface. The second binding partner (the analyte)
is passed over the immobilised partner in a flow cell. Binding of the analyte to the im-
mobilised partner results in a change in the refractive index at the sensor surface, which
is measured over time (Figure 1.13) (Vuignier et al., 2010). Measuring this change of
refractive index over time once the analyte is added and then removed can also give the
equilibrium dissociation constant (Kd), or the propensity of the two molecules to dissociate,
therefore giving information about the strength of the interaction (Kastritis and Bonvin,
2013).
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Fig. 1.13 Surface Plasmon Resonance (SPR) to measure antibody-antigen binding affini-
ties. A) In SPR, one binding partner (here the mAb) is immobilised on the sensor surface. The
second binding partner (the analyte) is washed over the immobilised partner through a flow cell.
Binding of the analyte to the immobilised partner results in a change in refractive index at the
sensor surface, which can be detected. B) The change in the angle of the refracted light is indici-
tive of binding. C) By measuring this over time once the analyte is added then removed, binding
paramaters such as the association (Kon) and dissociation (Koff) constants can be calculated to
determine the strength of the interactions. Redrawn and adapted from Myszka and Rich (2000).

Enzyme-linked immunosorbent assays (ELISAs) are also commonly used to mea-
sure protein-protein interactions for biopharmaceuticals, however they are more often
employed to measure the presence of antibody in fluid or to look for promiscuous bind-
ing/polyspecificity rather than to determine specific binding affinities (Figure 1.14) (Syed-
basha et al., 2016).
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Fig. 1.14 Direct and indirect Enzyme-Linked Immunosorbent Assays (ELISAs). A) In direct
ELISA, an antigen of interest is immobilised on a surface. The antibody of interest, conjugated
to an enzyme (e.g. horseradish peroxidase) is incubated with the immobilised antigen. Unbound
antibody is washed off, and the presence of binders is detected using a substrate for the conju-
gated enzyme that gives a detectable response, such as a colourmetric change or releasing a
fluorophore. B) In indirect ELISA, the antibody of interst has no conjugated enzyme. Binding is
detected using an anti-Fc antibody conjugated to something detectable, such as a fluorophore.

1.4.2 Computational approaches

Aggregation-prone regions (APRs) of proteins in the primary sequence can be predicted as
they tend to be 5-15 amino acid long stretches of hydrophobic residues. However, depend-
ing on the tertiary structure of the protein these sequences may be packed into the core of
the protein so may have less of an impact on aggregation compared with a solvent accessi-
ble stretch of hydrophobic residues on the surface (Wang and Roberts, 2018). Conversely,
partial unfolding can expose otherwise buried APRs resulting in an enhanced probability
of self-association. Various algorithms exist to predict APRs in silico, either sequence-
based or structure-based. Sequence-based methods rely solely on analysis of the primary
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sequence whereas structure-based methods take into account 3D structure of a protein and
the solvent accessibility of residues (Elgundi et al., 2017). Examples of sequence-based
methods include TANGO (Fernandez-Escamilla et al., 2004), PASTA (Trovato et al., 2007),
Waltz (Maurer-Stroh et al., 2010; Louros et al., 2020) and AGGRESCAN (Conchillo-Solé
et al., 2007). TANGO considers the physicochemical properties, such as pH or ionic
strength, of a 5 residue segment to determine secondary structure formation propensity by
considering different competing conformations (Fernandez-Escamilla et al., 2004; Buck
et al., 2012). The probability of each residue in the segment occupying the β-aggregate
conformation gives the protein a β-sheet propensity score which is used to estimate the
probability of aggregation (Fernandez-Escamilla et al., 2004). Solubis is a combination of
TANGO and the FoldX force field (Stricher et al., 2005), an online server that analyses
the effect of mutations on a protein’s thermodynamic stability by calculating the free
energy based on structure (Rousseau et al., 2015). This algorithm mutates residues to gate-
keeper residues (proline, arginine, lysine, aspartic acid and glutamic acid) and evaluates
the impact on the TANGO score to identify APRs. Gatekeeper residues are electrostat-
ically charged residues (and proline) that specifically aid in proper folding and oppose
aggregation by blocking misfolding reactions and promoting proper folding (Rousseau
et al., 2006). Prediction of amyloid structure aggregation (PASTA) considers the likeli-
hood of sequences forming the cross-β core that stabilises amyloid fibrils (Elgundi et al.,
2017). Waltz predicts amyloid propensity based on a dataset of experimentally determined
amyloid-forming hexapeptide sequences (Maurer-Stroh et al., 2010). The dataset has
recently been updated to include 229 hexapeptides, some of which have been determined
to be amyloidogenic using electron microscopy and Thioflavin-T binding assays, others
were amyloidogenic peptides curated from the literature (Louros et al., 2020). Similar to
TANGO, Waltz considers the physicochemical properties of the amino acids and their in-
fluence on amyloid propensity to identify APRs (Louros et al., 2020; Navarro and Ventura,
2022). AGGRESCAN calculates the aggregation propensity of an amino acid taking into
account the neighbouring residues as well as the "hot spot" threshold (average aggregation
propensity of all 20 amino acids scaled by their % composition in the Swiss-Prot data
bank) to predict APRs or "hot spots" (Conchillo-Solé et al., 2007).

To overcome the limitations of sequence-based algorithms APRs can be mapped onto a
protein’s 3D structure in structure-based methods. AGGRESCAN 3D (A3D) is based on the
original AGGRESCAN algorithm but takes into account the protein’s 3D structure (Elgundi
et al., 2017). This significantly improves the algorithms’ ability to accurately predict
the aggregation propensity of globular proteins (Zambrano et al., 2015). Additionally,
AGGRESCAN 3D can incorporate molecular dynamics simulations to assess the influence
of dynamic structural fluctuations on aggregation propensity, to increase the accuracy of
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the algorithm (Zambrano et al., 2015). In 2019 an update for the AGGRESCAN 3D web
server was released (AGGRESCAN 3D 2.0) (Kuriata et al., 2019). This update included an
extension to the dynamic simulations to allow analysis of larger and multimeric proteins,
as well as to analyse the effect of mutations on the stability and solubility in parallel,
further improving the predictive ability of the algorithm. These dynamics simulations
allow modelling of the flexibility of the protein and analyses the influence of this on the
aggregation propensity, allowing detection of aggregation-prone regions that are exposed as
a result of dynamic fluctuations. Furthermore, AGGRESCAN 3D 2.0 can virtually mutate
all residues to charged residues (gatekeepers) and simultaneously evaluate their effect
on the solubility and stability of the molecule to suggest a variety of beneficial variants.
This can be particularly useful when studying scFvs, as the algorithm allows the user to
select any residues they want to omit from the screen (such as CDRs) so mutations do not
effect binding affinities (Kuriata et al., 2019). Spatial Aggregation Propensity (SAP) is a
structure-based algorithm to identify solvent accessible patches of hydrophobic residues.
SAP considers dynamic protein fluctuations that occur under physiological conditions
and the effect on the size of hydrophobic patches by performing molecular dynamics
simulations on the protein of interest (POI) (Buck et al., 2012). CamSol is a computational
method developed to aid in the prediction of protein solubility and the rational design of
therapeutics with improved solubility (Sormanni et al., 2015a). Unlike previously described
methods that consider aggregation, CamSol calculates intrinsic solubility from the primary
sequence of a protein then uses the solvent accessibility of residues to assess their impact
on the overall solubility. The algorithm takes into account the physicochemical properties
of amino acids to identify those that have the greatest impact on solubility. This is used to
provide a solubility score - a solubility score +1 indicates a highly soluble region, whereas
a score of -1 indicates a poorly soluble region.

The therapeutic antibody profiler (TAP) is a computational algorithm designed specif-
ically to assess antibodies, or more accurately scFv fragments (Raybould et al., 2019).
TAP was developed to assess five metrics that were thought to be related to poor developa-
bility in antibody therapeutics, with some potentially affecting a candidates aggregation
propensity - the total length of the CDRs, levels of surface hydrophobicity, positive and
negative charges in the CDRs and asymmetry in the net charges in the heavy and light
chains. Using a large set of antibodies that were post phase-I in their development stage
TAP was trained to identify threshold values for each metric, allowing identification of
metrics where the test candidate differs significantly from the clinical stage therapeutics
used to train the algorithm. This works under the assumption that clinical stage therapeutics
posess desirable properties that enhance their ‘developability’, and having properties that
differ from these may have detrimental effects. To assess an scFv, TAP requires the amino
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acid sequence of the VH and VL domains which it uses to build a structural model using
ABodyBuilder (also developed by the same group) (Leem et al., 2016). Candidates are
then compared to the database of clinical stage therapeutics to identify any significant
differences from this database, as judged by the threshold values. The original algorithm
was built using a database of 242 clinical stage therapeutics, however this is constantly
being updated to enhance the accuracy of the predictions; currently the model is tracking
591 post Phase-I therapeutics (https://opig.stats.ox.ac.uk/webapps/newsabdab/sabpred/tap
accessed 27th June 2022).

Another antibody-specific predictor algorithm is AbLIFT, an automated webserver
that takes a VH and VL amino acid sequence and predicts affinity and stability enhancing
mutations between the VH and VL interface (Warszawski et al., 2019). The model was
built using deep mutational scanning (DMS) data of an anti-lysozyme antibody D44.1
whereby 135 positions along the scFv were subjected to saturation mutagenesis to give
a library with every single amino acid at these positions. The library was transformed
into yeast cells and used to select for mutants with enhanced affinity and those variants
were subjected to deep sequencing using Illumina. Mutations that were enriched due to the
selection were identified, with the majority being within the CDRs. However, a cluster
of mutations was identified to be at the VH and VL interface, leading to the hypothesis
that mutations at this region can improve affinity while simultaneously enhancing stability
as mutations at this region have the potential to improve Fv assembly (Warszawski et al.,
2019). Using this dataset and Rosetta based design methods, AbLIFT was built through a
series of design-built-test cycles to predict potentially affinity enhancing and stabilising
mutations in scFv sequences. While not specifically an algorithm to detect protein aggre-
gation, suboptimal stability can often lead to increased levels of aggregation and mutations
predicted using this algorithm have been shown to improve thermal stabilities and aggre-
gation resistance (Warszawski et al., 2019). A similar algorithm has been developed by
the same group based on experimental data using an enzyme (human acetylcholinesterase)
has also been used to predict mutations that enhance protein expression and stability in
bacteria (Goldenzweig et al., 2016). Furthermore, when assessing antibody based therapeu-
tics in silico it may be more useful to use predictor algorithms that have been developed
specifically for antibodies, and use experimental data from antibody-based drugs as these
may be more accurate. In addition to algorithms for the prediction of antibody aggregation
propensity and stability, various machine learning algorithms to predict performance in
analytical developability assays such as hydrophobic interaction chromatography have
been developed (Jain et al., 2017).
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A complete description of all computational tools specifically developed for antibodies
is beyond the scope of this thesis, and an overview of these has already been described
elsewhere (Santos et al., 2020; Navarro and Ventura, 2022). These computational tools are
useful for providing an insight into the underlying aggregation propensities and stabilities
of proteins, however they have not yet surpassed in vitro techniques and so are still only
advisory. They should therefore be combined with experimental data to get a complete
understanding of a protein’s aggregation behaviour.

1.5 Prevention and inhibition of protein aggregates

1.5.1 Promotion of protein refolding

Controlling aggregation is imperative to ensure biopharmaceuticals retain their activity
while minimising adverse reactions in patients. This can be achieved by promotion
of protein refolding; methods include reduction of temperature, reduction of protein
concentration, or alteration of formulation (Wang, 2005). High temperatures and protein
concentrations can increase aggregation rates by increasing intermolecular interactions.
Furthermore, macromolecular crowding due to high protein concentrations present in final
formulations of biopharmaceuticals can favour aggregation. Levels of reversible aggregates
have been shown to decrease following dilution (Mahler et al., 2009). However, since
many mAbs are required to be at high concentrations for intravenous delivery, dilution to
reduce aggregation is often not an option.

Optimisation of the formulation buffer can be achieved using additives to promote
protein refolding. Denaturants impact protein solubility at different concentrations; high
denaturant concentrations weaken protein-protein interactions in water suppressing aggre-
gation and increasing solubility (Ho et al., 2003; Wang, 2005). Addition of L-arginine
has been shown to suppress protein aggregation and enhance solubility by blocking un-
favourable intermolecular hydrophobic interactions between mAbs (De Bernardez Clark
et al., 1999). Furthermore, the combination of L-arginine with L-glutamate has been shown
to be even more effective at suppressing aggregation of mAbs (Kheddo et al., 2014). Other
additives include; surfactants, cyclodextrins, PEG, Na2SO4, organic solvents, glycerol,
and sucrose (Frokjaer and Otzen, 2005; Wang, 2005). It is important to understand how
different additives impact the aggregation behaviour of different biologics in order to
design the best formulation buffer; this can prove to be vital at ensuring new therapeutics
are safe as well as reducing the time they take to get to market.
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1.6 Protein engineering

It is known that proteins are only marginally stable in their folded states, which greatly lim-
its their use in industrial and therapeutic applications (Taverna and Goldstein, 2002). Many
industrial applications require proteins to be stable and functional at extreme conditions
(such as high pH or temperature), functions that natural proteins rarely possess (Littlechild,
2015; Walia et al., 2017; Stimple et al., 2020). For a biopharmaceutical it is desirable
to maintain a low aggregation propensity and high stability, as well as low viscosity at
high concentrations and low off-target binding, amongst many other properties (Starr and
Tessier, 2019). New advances in protein design and genetic engineering technologies allow
structural modification of therapeutics to reduce aggregation propensity (Roberts, 2014a).
However, it is not as simple as identifying and removing hydrophobic patches as this may
impact folding and activity. Furthermore, when considering mAbs the most inherently
aggregation-prone regions that are commonly identified in computational algorithms are
often in functionally active regions such as the CDRs that are responsible for antigen
binding as constant domains have more evolutionary conserved residues making them less
prone to aggregation (Wang et al., 2009). Modification of these regions can affect binding
affinity and reduce the mAbs activity. Therefore, various in vivo techniques combined with
computational algorithms are employed to screen large libraries and detect aggregation-
prone "hot spots" within the primary sequence. These "hot spots" can be mapped onto the
protein structure to identify functionally active regions and used to inform rational design
of therapeutics (Roberts, 2014a) (Figure 1.15).

1.6.1 Rational design

Rational design of antibodies is generally used to engineer a number of drug-like properties,
such as aggregation resistance or affinity, and usually involves using either experimental
or computational tools (or a combination of both) to design variants with improved
properties. For aggregation resistance, commonly these approaches are used to identify
aggregation-prone regions and mutations designed to rectify this aggregation behaviour
(Figure 1.15). For rational design, it is required to have specific structural information
about the protein that is being designed, as well as information about their aggregation and
stability behaviours (if these are the properties being designed). The computational tools
described in Section 1.4.2 have been applied to specifically design improved variants of an
antibody of interest. Solubis has been exploited to aid in the rational design of mAbs with
reduced aggregation propensity (van der Kant et al., 2017). Although the presence of APRs
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Fig. 1.15 Overview of protein engineering techniques. In silico tools can be used to compu-
tationally mutate a test protein to assess the affect of these mutations on the aggregation propen-
sity and produce a list of potentially solubilising mutations. Rational design involves identifing
aggregation-prone regions, often utilising a combination of computational (using in silico predic-
tor softwares such as Aggrescan 3D 2.0) and experimental tools (e.g using NMR (spin labelling)
or mass-spectrometry (XL-MS or HDX)), and designing mutations to resolve the APR. Mutations
are then assessed using experimental biophysical methods. Directed evolution uses a mutated
library of a test protein and selects for beneficial mutations using a genotype-phenotype coupled
screen. Deep mutational scanning (DMS) is similar to directed evolution but uses high-throughput
sequencing to allow massively-parallel analysis of the functional effect of mutations. It usually
requires systematic libraries with every single amino acid mutation as single point mutations at
some or all of the residues in the test protein. Also, like directed evolution, requires a genotype-
phenotype coupled screen for selection. Redrawn and adapted from Ebo et al. (2020a).
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was detected in CDRs, variants with reduced aggregation propensity while still retaining
antigen binding affinity were designed by artificially mutating aggregation-prone residues
in other APRs to gatekeeper residues to identify stabilising mutants. Similarly SAP has
been used to reduce the aggregation propensity of bevacizumab, a therapeutic mAb used
for the treatment of various cancers (Courtois et al., 2016). SAP was used to identify APRs
and single point mutations were introduced by site-directed mutagenesis. Additionally,
four glycosylation sites were engineered on the Fab domain to mask residues in APRs
with a carbohydrate. These approaches led to significant decreases in aggregation without
compromising binding affinity (Courtois et al., 2016). AGGRESCAN3D 2.0 (A3D 2.0) has
been used to design a VH antibody with increased aggregation resistance (Gil-Garcia et al.,
2018). A VH segment of the human germline antibody DP47 was analysed using the A3D
2.0 algorithm that virtually mutated the strongest aggregation prone regions to gatekeeper
residues and analysed the impact of these mutations on the stability (FoldX) and solubility
(A3D) of the protein. Three APRs were detected and mutating a single residue within
each of these APRs to lysine was predicted to be both stabilising and solubilising. A triple
lysine mutant was engineered and analysis using light scattering showed this variant was
3-fold more resistant to aggregation compared with wild type (Gil-Garcia et al., 2018;
Kuriata et al., 2019).

Nanobodies specific to intrinsically-disordered proteins (IDPs) have been designed
using a computational approach. This approach seeks to identify pairs of short peptides
which interact via interfaces which are contiguous in their primary sequence. To do
this, they use the Protein Data Bank (PDB) to identify short peptides in β-strand to
β-strand interactions as unlike, for example, α-helical interactions each residue along
the chain interacts with a complementary residue in the opposing strand (Sormanni et al.,
2015b). This is used to generate a dataset of interacting peptides (complementary peptides),
which can be used outside of the structural context of the original protein in the PDB
to design binding peptides against a region of interest in an IDP of therapeutic interest.
These peptides are then grafted onto the CDR3 of a human VH domain and screened
for affinity to the target. Nanobodies specific for α-synuclein, Aβ42 and IAPP were
successfully generated and shown to have high affinities and specificities, as well as inhibit
aggregation of their targets at substoichiometric concentrations (Sormanni et al., 2015b).
An alternative approach to rationally design nanobodies against amyloid domain proteins
involved grafting short peptide segments from the target amyloid protein into CDR3 of a
VH domain creating so-called "grafted amyloid-motif antibodies", or gammabodies (Julian
et al., 2015; Lee et al., 2016). The resulting gammabodies bind to the amyloid proteins
with high specificity via homotypic interactions between the peptide fragment in HCDR3
and the corresponding peptide within fibrils (Lee et al., 2016). In other words, these
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nanobodies work like poisoned monomers which presumably terminate the elongation
of the fibril. Rational design of gammabodies was combined with directed evolution
approaches to develop nanobodies with conformational specificity for fibrils, using a
library design method that introduces mutations based on the relative frequency of specific
amino acids at specific positions within HCDR3 in human antibodies and exploiting yeast
surface display combined with MACS to identify variants that specifically bind to Aβ
fibrils (Julian et al., 2019). Combined computational analysis and directed evolution
methods have been used to engineer proteins with enhanced expression, solubility, and
stability. One study evolved two human proteins with known drug developmental issues
using ribosome display (Buchanan et al., 2012). Granulocyte colony-stimulating factor (G-
CSF) has solubility issues when expressed in Escherichia coli and erythropoietin (EPO) is
thermodynamically unstable and prone to aggregation at increased temperatures (Buchanan
et al., 2012). These were evolved using ribosome display, resulting in expression levels of
G-CSF improving 1000-fold and aggregation of EPO reducing from 80% to undetectable
levels. The predicted impact of mutations that arose as a result of directed evolution using
ribosome display were analysed using in silico methods to understand how these mutations
were improving the properties limiting production of these proteins.

1.6.2 Directed evolution

Over the last 3.5 billion years life on Earth has been adapting and evolving, facilitated
by proteins developing innovative and creative solutions to enable organisms to grow
and survive across a diverse range of environments. Since the advent of recombinant
DNA technology, protein engineers have been working to exploit and expedite Nature’s
evolutionary processes to evolve and improve various protein functions. Directed evolution
utilises the principles of Darwinian evolution whereby genetic diversity is introduced into
the test protein which is then subjected to a selective pressure (Figure 1.16A). Compared
with natural evolution, directed evolution has higher mutation rates to accelerate the process.
By using an appropriate genotype-phenotype screen, rare beneficial mutations are enriched
and can be identified (Figure 1.15) (Foit et al., 2009; Julian et al., 2017; Wang et al.,
2018). However, improving protein stability often proves challenging as most mutations
are destabilising. Furthermore, a common challenge for directed evolution studies is that
often there is a trade-off between particular properties, such as stability and function, and
by selecting for one you can negatively impact the other (Julian et al., 2017). Nevertheless,
directed evolution has proven to be invaluable for engineering proteins from developing
monoclonal antibodies that treat cancers to enzymes that produce biofuels (Smith, 1985;
Winter et al., 1994; Heater et al., 2019).
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1.6.2.1 Creating DNA libraries

1.6.2.1.1 In vitro mutagenesis

The first step in any directed evolution experiment is the creation of genetic diversity
upon which selection pressures can be applied. Early work developing directed evolution
techniques for engineering enzymes in the 1990s used random mutagenesis technologies
to create genetic diversity (Chen and Arnold, 1993, 1991; Currin et al., 2021). Error-prone
PCR (epPCR) is by far the most popular of these techniques owing to its ease of use. It
works by using an error-prone DNA polymerase (DNAP) to randomly generate mutations
during PCR amplification, or by modifying the buffer components to decrease the fidelity
of standard DNAP (Figure 1.16B) (Leung et al., 1989; Wang et al., 2021). Reaction
components can be modified to increase the mutation rate, such as by using unbalanced
dNTP concentrations, increasing the concentration of magnesium ions, increasing the
number of PCR cycles, or adding manganese ions (Wang et al., 2021). However, epPCR
has limitations: often the DNAP has a bias for certain nucleotide substitutions over others
which can affect the amino acids available for a particular codon. Additionally, consecutive
mutation of two bases is rare which can further reduce the possible amino acids available;
it requires large amounts of screening in order to sample the entire library; and can result
in stop codons as well as insertions and deletions (Leung et al., 1989; Wang et al., 2021).
Despite these limitations, epPCR is still widely employed and has been used successfully
to engineer the properties of proteins, such as to increase aggregation-resistance in biophar-
maceuticals (Ebo et al., 2020b), to increase enzyme activity (Nearmnala et al., 2021), and
to determine protein fitness landscapes using DMS (Seuma et al., 2021; Ren et al., 2021).
Another often-used method for in vitro gene diversification is DNA shuffling, wherein
libraries are created by random fragmentation and recombination of homologous DNA
sequences (Figure 1.16C) (Stemmer, 1994). This approach is especially useful for mixing
and combining a library of mutants that have already been evolved and selected as benefi-
cial, in order to combine advantageous characteristics and improve them further. Since its
invention, DNA shuffling has been widely used and adapted to engineer a wide range of
properties, including improved thermostability (Hao and Berry, 2004), improved catalytic
activity (Nearmnala et al., 2021), and to develop chemogenetic fluorescent reporters with
tuneable fluorescent properties (Benaissa et al., 2021).

Targeted gene mutagenesis methods have been developed to overcome the limitations of
classic random mutagenesis methods, and have been reviewed at length elsewhere (Currin
et al., 2021). In short, recent advances in solid-phase DNA synthesis methods allows
tight control over designed libraries, allowing the effect of defined sets of amino acid
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Fig. 1.16 Directed evolution and in vitro mutagenesis. A) A directed evolution experiment
works by creating a library of gene variants of a protein-of-interest and subjecting them to a selec-
tive pressure to identify beneficial mutations. B) Error-prone PCR (epPCR) uses an error-prone
DNA polymerase (EP DNAP) to amplify a gene of interest and introduce mutations. Alternatively,
the buffer conditions can be modified to increase the mutation rate of a standard DNAP, such as by
adding magnesium ions (pink) or having unbalanced dNTP concentrations (A, green; T, orange;
G, yellow; C, blue). C) DNA shuffling allows mixing of homologous sequences, such as variants of
the same protein with single point mutants, to create hybrid genes combining different mutations.
Libraries are created by random fragmentation of genes, which are then joined together using
primer-free PCR.

substitutions in focussed regions of interest (e.g. antibody CDRs) or the entire primary
sequence to be determined (Currin et al., 2021). Such libraries are particularly useful for
DMS experiments as they allow understanding of protein functional landscapes and can
be used to uncover the contribution of the identity (e.g., amino acid side chain chemistry)
and individual residues to protein function, stability and/or aggregation (Fowler and Fields,
2014).

Natural Diversity Mutagenesis is a more rational approach specifically designed to
create mutated libraries for antibody variable domains (Tiller et al., 2017b). Here a
computational alanine scan is utilised to identify permissive sites in the CDRs. Degenerate
codons are used at these permissive sites to introduce the most frequently occuring residues
at these positions in human antibodies, as determined by the abYss database (Swindells
et al., 2017; Tiller et al., 2017a). Libraries created using this method and screened by yeast
surface display were shown to result in >5-fold gains in affinity as a result of four to six
CDR mutations, highlighting both the success of this rational library design apporach as
well as the importance of assessing multiple amino acid mutations in combination to gain
large improvements in affinity (Tiller et al., 2017a).
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1.6.2.1.2 In vivo mutagenesis

In vivo mutagenesis approaches involve altering the genome sequence of an organism only,
or altering the sequence of genetic material within an organism (i.e. plasmids) via the
addition of mutagens (such as chemicals or UV light), or the use of hypermutator strains
that contain deletions or modifications in genes for enzymes involved in proofreading,
mismatch-repair, and base-excision (such as XL1-Red) (Badran and Liu, 2015; Greener
et al., 1997). Alternatively, various examples of mutagenic plasmids expressing different
mutagenic enzymes involved in mismatch repair, translesion synthesis, and proof-reading
have been developed with a wide range of induced mutagenic potency to globally increase
the mutation rate in E. coli (Badran and Liu, 2015). These strategies have the potential to
yield high mutation rates (up to 322 000-fold over wild type E. coli). Such methods can be
problematic as the accumulation of mutations throughout the E. coli genome can result in
toxic mutations if they occur within essential regions of the genome. Alternatively, these
mutations accumulating outside of the gene-of-interest (GOI) could allow the bacteria to
circumvent the selection pressure.

To overcome these limitations, targeted in vivo mutagenesis strategies have been
developed. An early example of this strategy is the use of a mutated E. coli polymerase I
(pol I) that selectively mutates genes on a ColE1 plasmid (although mutations are limited to
within a few kb of the ColE1 origin) (Allen et al., 2011; Camps et al., 2003). Furthermore,
pol I still replicates parts of the genome, which can result in off-target mutations (Allen
et al., 2011).

A popular method of in vivo mutagenesis is fusing specific DNA binding proteins to
DNA-mutating enzymes. An example of this is MutaT7, wherein a cytidine deaminase is
fused to T7 RNA polymerase (RNAP) to continuously direct mutations to specific, well-
defined, DNA regions of any length in E. coli (Moore et al., 2018). This allows targeted
mutagenesis of genes under the control of the T7 promoter (Figure 1.17A). However, this
approach has the potential to accumulate off-target effects, which can be problematic,
particularly in the promoter regions. For example, they can potentially inhibit expression
of the GOI, or lead to escape mutations, which allow the cells to evade the selection
pressure applied without evolving the GOI. Furthermore, as this method utilises cytidine
deaminases, their specific activity is limited to C>T and G>A mutations. Alternative
cytidine deaminases have been employed to increase the mutation rate and expand the
applicability of this method (Park and Kim, 2021), and MutaT7 has also been adapted for
use in eukaryotic cells (TRACE; T7 polymerase-driven continuous editing) (Chen et al.,
2020).
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Fig. 1.17 Schematic overview of in vivo diversification techniques. A) MutaT7 uses a T7
RNA polymerase (RNAP) fused to a cytidine deaminase (CD), which enables targeted mutations
to genes under the T7 promoter (PT7). B) EvolvR uses an error-prone DNA polymerase (DNAP)
fused to a nickase Cas9 (nCas9), which enables targeted mutation within regions adjacent to the
nick site via error-prone (EP) strand displacement. C) T7-targeted dCas9-limited in vivo mutage-
nesis (T7-DIVA) enables targeted mutagenesis of genes without altering their genomic promoter
(PWT). By introducing an antisense PT7, a T7 RNAP fused to a cytidine deaminase (CD) is able
to introduce mutations. A catalytically dead Cas9 (dCas9) is used as a ‘roadblock’ to demarcate
the boundaries of mutagenesis. D) Ty1 retrotransposon mutagenesis, or in vivo continuous evo-
lution (ICE), uses native yeast retrotransposon Ty1. The replication cycle of Ty1 is error-prone,
so by introducing an inducible gene-of-interest (GOI), each time Ty1 is replicated mutations will
accumulate. E) OrthoRep uses an orthogonal plasmid/polymerase pair (TP-DNAP1/p1) whereby
the error-prone TP-DNAP1 (expressed from a nuclear plasmid) replicates p1 and introduces mu-
tations. All accessory genes required for the replication of p1 are encoded on a second plasmid
(p2) to spare them from mutagenesis.
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A similar method (EvolvR), developed for use in both yeast and bacteria, utilises a fu-
sion between an error-prone DNA polymerase (DNAP) and a nickase-Cas9 (nCas9), which
allows mutations within a region adjacent to the Cas9 nick site (Figure 1.17B) (Halperin
et al., 2018; Tou et al., 2020). The mutation rate can be tuned by using polymerases
with different fidelities (~1 in 107 - 103) and this method enables all possible nucleotide
substitutions, unlike those utilising cytidine deaminases. The approach is limited due
to elevated off-target mutation rates (~1 in 1011 - 108) and the narrow mutation window
within the sequence (most mutations occur within 50 bp of the nick site).

T7-targeted dCas9-limited in vivo mutagenesis (T7-DIVA) utilises a similar method
whereby T7 RNAP fused to a cytidine deaminase is used to introduce mutations (Figure
1.17C) (Álvarez et al., 2020). The GOI can remain under the control of its genomic pro-
moter and a T7 promoter is inserted downstream of the GOI on the antisense strand. This
allows the T7 RNAP to translocate along the GOI and to introduce mutations without alter-
ing the endogenous 5′ promoter. A catalytically dead Cas9 (dCas9) is used as a ‘roadblock’
demarcating the boundaries of the mutagenesis, enabling targeted in vivo mutagenesis
of specific genes. However, as this method requires introduction of a downstream T7
promoter, it is unable to mutate specific regions of a GOI.

Error-prone DNA replication utilising the native yeast retrotransposon Ty1 has been
developed for selective mutation of genes inserted between long terminal repeats (Figure
1.17D) (Crook et al., 2016). The replication cycle of Ty1 occurs via an RNA intermediate
that is converted into complementary DNA through an encoded reverse transcriptase and
re-integrated back into the genome. Heterologous gene expression from Ty1 has previously
been demonstrated and the replication cycle has been shown to be error-prone (Crook
et al., 2016). This enables random mutations to accumulate within a GOI expressed off
Ty1, without any bias towards transitions or transversions over lengths of 5 kb (Crook
et al., 2016). However, as the diversification occurs across the whole length of the Ty1
retrotransposon element, mutations can accumulate within regulatory elements of the GOI
or retrotransposon leading to escape mutations to evade the selection pressure (Crook et al.,
2016). Nonetheless, its large mutagenesis window makes this approach a powerful tool for
in vivo continuous evolution of entire biosynthetic pathways (Crook et al., 2016).

OrthoRep is an extranuclear replication system in Saccharomyces cerevisiae consisting
of an orthogonal DNA polymerase-DNA plasmid (TP-DNAP1/p1) pair (Ravikumar et al.,
2014). It involves an engineered error-prone DNA polymerase (TP-DNAP1) that selectively
replicates a specific plasmid (p1) encoding the GOI and introduces mutations (Figure
1.17E). TP-DNAP1 is expressed in trans from a yeast nuclear plasmid and a second
polymerase/plasmid (TP-DNAP2/p2) pair encodes all the essential accessory genes for
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replication, transcription, and maintenance of p1 and p2, sparing them from error-prone
replication and reducing off-target effects (Javanpour and Liu, 2019). This method was
developed further to adapt the TP-DNAP2/p2 pair for error-prone replication, which would
allow two mutationally orthogonal DNA replication systems within the same cell, each
with different custom mutation rates (Arzumanyan et al., 2018). However, this method
still does not enable targeted mutagenesis of specific regions of a GOI, as the polymerase
replicates the entire plasmid. Nevertheless, OrthoRep has been used to evolve a wide
range of proteins, including enzymes with promiscuous activities (Rix et al., 2020), small
molecule biosensors (Javanpour and Liu, 2021), and antibody fragments (Wellner et al.,
2021).

1.6.2.2 Screening technologies

1.6.2.2.1 Display technologies

Phage (Wojcik et al., 2010), yeast surface (Julian et al., 2019) and ribosome (Buchanan
et al., 2012) display techinques, as described in Section 1.3.2, have all been utilised to
evolve affinity in antibody based drugs. These methods can also be utilised to evolve
thermodynamic stability and aggregation resistance by modifying the protein folding
conditions, such as carrying out display experiments at increased temperatures (Jespers
et al., 2004; Park et al., 2006; Jones et al., 2011; Pavoor et al., 2012). However, each
have their own negative aspects and so various modifications on these classic assays
have been developed for enhancing their evolutionary properties. Ribosome display has
been enhanced by combining it with next-generation sequencing (NGS) to allow the
high-throughput identification of antibody-specific peptide ligands to aid in analytical
identification of antibodies in human serum (Heyduk and Heyduk, 2014). Phage display
has been improved in a similar way by exploiting NGS techniques (Christiansen et al.,
2015). In a separate study phage display was enhanced by modifying various paramaters
within the display system; modifying the signal peptide that translocates the P3-scFv
fusion protein to the periplasm from the posttranslational OmpT signal sequence to the
co-translational DsbA signal sequence, as well as modifying the culture conditions to use
baffled flasks was shown to improve display levels over 1000 fold (Wojcik et al., 2010).
Furthermore, phage display has been modified to add in a selection for protein stability by
displaying nanobodies on the surface of phage, heating to induce unfolding followed by
cooling then screening displayed nanobodies against a coformational ligand specific for
folded VH domains (protein A), resulting in identification of soluble, aggregation-resistant
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nanobodies (Jespers et al., 2004). Yeast surface display has been modified in a similar way,
by utilising protein A to include a selection for protein stability (Julian et al., 2015).

1.6.2.2.2 Protein reporter biosensors

Green fluorescent protein (GFP) is able to be split into two halves that can generate
fluorescence via their noncovalent reassembly (Baird et al., 1999; Ghosh et al., 2000).
Making use of this property of GFP, an array of different systems has been developed
enabling fluorescence to be correlated with protein stability, solubility, or the ability of
a protein of interest (POI) to interact with a target protein (Figure 1.18) (Ghosh et al.,
2000; Lindman et al., 2010; Magliery et al., 2005; Golinski et al., 2021). However,
the main issue with using fluorescent proteins as reporters is that GFP itself, which
is added to the POI via a short linker, may alter the properties of the POI. Issues can
arise because the fluorescent protein itself can remain fluorescent even when the POI
aggregates if the rates of aggregation of the POI are slower than the rate of formation of
the chromophore (Kothawala et al., 2012). Early examples of using a split GFP assay for
evolving stability were relatively low throughput as they involved individually picking
colonies of E. coli displaying increased fluorescence levels (Lindman et al., 2010). More
recently, the split GFP assay has been expanded into a high-throughput assay by utilising
FACS and deep sequencing to identify soluble variants of Gp2 (an affibody) (Golinski
et al., 2021).

A number of alternative split fluorescent proteins have been developed to expand
the usefulness of these systems as they encompass a range of excitation and emission
wavelengths (Feng et al., 2017, 2019; Tamura et al., 2021). Recently, a split luciferase-
based biosensor was developed for detecting SARS-CoV-2 (anti-severe acute respiratory
syndrome coronavirus 2) antibodies in patient sera (Elledge et al., 2021; Yao et al., 2021).
This method has not yet been used for directed evolution, but it is similar in concept to
the split GFP assay for evolving binding affinity and has the potential to be utilised in the
same way (Magliery et al., 2005; Rozbeh and Forchhammer, 2021).

Recently a tripartite biosensor using E. coli uroporphyrinogen-III methyltransferase
CysGA was developed in which the POI is inserted into a loop of CysGA and used to
evolve protein stability (Figure 1.18) (Ren et al., 2021). CysGA catalyses the formation of
fluorescent compounds, therefore by inserting a POI within a permissive site in CysGA

protein stability can be correlated with a fluorescence readout (Ren et al., 2021). The
assay was first evaluated using variants of the E. coli immunity protein 7 (Im7), along
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with maltose binding protein and acylphosphatase. It was then used in a deep mutational
scan to unpick the contribution of individual residues of the catalytic domain of a histone
H3K4 methyltransferase to understand its stability landscape (Ren et al., 2021). As a
result of the reducing environment of the E. coli cytoplasm, proteins that require disulfide
bonds, such as antibody fragments and many enzymes, cannot be analysed using this
system. In the first report of the CysGA system the authors used manual inspection to
select bacteria with increased fluorescence. Combining the assay with FACS followed by
deep sequencing, however, has the potential to expand its capabilities so that variants with
improved properties can be selected in a high-throughput manner.

A number of groups have demonstrated that β-lactamase can be used as a selectable
reporter to assess stability and protein-protein interactions, as well as to engineer these
properties into POIs (Galarneau et al., 2002; Guntas and Ostermeier, 2004; Guntas et al.,
2005; Edwards et al., 2008, 2010; Foit et al., 2009; Saunders et al., 2016; Ebo et al., 2020b).
This is discussed in more detail in Section 1.7.

1.6.2.2.3 In vivo continuous evolution

Phage Assisted Continuous Evolution (PACE) uses filamentous bacteriophage (selection
phage, SP) to enable fully in vivo continuous evolution of a wide range of protein prop-
erties (Esvelt et al., 2011; Wang et al., 2018; Blum et al., 2021; Morrison et al., 2021;
DeBenedictis et al., 2022). In this method, a population of SP is continuously diluted in a
fixed volume of E. coli, known as the ‘lagoon’. The gene of interest (GOI) replaces the
gene (gIII) for the minor coat protein (pIII) within these SP, a protein which is required
for a phage to be infectious. Therefore, the gene for pIII is supplemented on an accessory
plasmid (AP), where its expression is dependent on the property of the GOI being evolved.
Variants are only able to persist if they are able to produce enough pIII before being
diluted out of the lagoon (Figure 1.19A) (Wang et al., 2018). To allow continuous directed
evolution, an arabinose inducible mutagenesis plasmid (MP) is used which increases the E.
coli global mutagenesis rate by expressing mutagenic enzymes involved in mismatch repair,
translesion synthesis and proof-reading (Section 1.6.2.1.1) (Badran and Liu, 2015). This
enables mutations to accumulate within a GOI. Since its conception, PACE has been used
to evolve a diverse range of proteins; including polymerases with new recognition sites (Es-
velt et al., 2011), dehydrogenases with improved activity (Roth et al., 2019), proteases with
novel specificities (Packer et al., 2017; Blum et al., 2021), biosynthetic pathways (Johnston
et al., 2020), antibody fragments (Wang et al., 2018; Morrison et al., 2021), proteins for
DNA binding and manipulation (Miller et al., 2020; Thuronyi et al., 2019; Richter et al.,
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plasmid; IM, inner membrane; MP, mutagenesis plasmid; SP, selection phage.
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2020), and novel quadruplet tRNAs for genetic code expansion (DeBenedictis et al., 2021,
2022).

As well as evolving protein function, PACE has been utilised to evolve protein solubility
(soluble expression PACE; SE-PACE) by linking pIII expression to the soluble expression
levels of a POI (Wang et al., 2018). By utilising a split intein pIII, the method has included
a selection for binding affinity of antibody fragments (scFvs) to ensure this property is
not lost when evolving solubiltiy (Figure 1.19B). SE-PACE has been successfully utilised
to evolve scFvs with soluble expression yields improved up to 5-fold with comparable
binding affinities to the wild type. However, its incredibly complex nature makes it difficult
to use as it requires technical expertise and equipment, and it is difficult to design the
genetic circuits to link pIII expression to the property being evolved. Furthermore, the
fact that screening for binding occurs in the cytoplasm could be problematic for assessing
antibody-based drugs as they contain disulphide bonds that may not form properly in this
oxidising environment.

Consequently, PACE has recently been adapted to carry out evolution in the oxidising
environment of the E. coli periplasm, termed periplasmic PACE (pPACE) (Morrison et al.,
2021). This approach uses the natural E. coli transmembrane transcriptional activator
CadC, which is part of a two-component sensor that transduces signals in the periplasm
to the cytoplasm. CadC senses acidic pH and high lysine levels in the periplasm, causing
the periplasmic sensor domain to dimerise and bind two motifs on the CadBA promoter
and initiate gene transcription(Figure 1.19C) (Kuper and Jung, 2005). By replacing the
periplasmic sensor domains of CadC with antigens and expressing a dimerising scFv,
binding of these two proteins in the periplasm can be linked to gene expression of pIII
which is under the control of CadBA promoter (Figure 1.19C) (Morrison et al., 2021).
pPACE has been used to evolve novel protein-protein interactions and restore binding
between subunits of the homodimeric YibK; to restore binding affinity of a non-binding
mutant of an anti-GCN4 Ω-graft antibody, as well as improve its soluble expression levels
~8-fold; and to evolve a ~2-fold improvement in binding affinity and ~5-fold improvement
in soluble expression of the scFv fragment Trastuzumab (Morrison et al., 2021).

Despite its advantages, a number of challenges remain to be overcome with PACE:
experiments have a high failure rate whereby phage expressing the evolving protein
frequently "wash out" meaning the selection pressure is too high, and experiments are
difficult to multiplex (DeBenedictis et al., 2022). To overcome this, PACE has been as
miniaturised and extended as Phage-and-Robotics-Assisted Near-Continuous Evolution
(PRANCE), which automates the process of continuous evolution utilising a liquid handling
robot and a 96-well plate format to enable multiplexing (DeBenedictis et al., 2022). To
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reduce the failure rate, PRANCE uses real-time monitoring of phage activity by expressing
luciferase alongside pIII to give a read-out of phage propagation and to trigger a feedback
control whereby selection pressure is modified depending on luminescence. PRANCE was
used recently to characterise the evolutionary fitness landscape of T7 RNAP to recognise
the foreign T3 promoter by conducting 90 simultaneous evolutions (DeBenedictis et al.,
2022). As small volumes are required, PRANCE also allows the evolution of aminoacyl-
tRNA synthetases to incorporate non-natural amino acids, as well as allowing multiplexed
evolution of quadruplet tRNAs (DeBenedictis et al., 2022), both of which require expensive
reagents.

1.6.3 Deep mutational scanning (DMS)

Next-generation sequencing (NGS) technologies have revolutionised the genomics field
due to their ability to provide sequencing analysis at a massively high-throughput scale,
from enabling de novo sequencing of genomes, allowing high-throughput analysis of
microbiomes, as well as assessing transcriptomes and enabling quantification of translation
levels (Wheeler et al., 2008; Huang et al., 2009; Qin et al., 2010; Schadt et al., 2010).
Furthermore, these technologies have subsequently facilitated huge advances in the protein
engineering field by enabling comprehensive analysis of the functional consequence of
thousands of variants when combined with a phenotypic screen (Fowler and Fields, 2014).
In contrast, first-generation sequencing is massively limiting due to its low-throughput
and high cost. NGS has been widely combined with directed evolution using systematic
libraries containing every single amino acid substitution at every position in a POI, which
enables comprehensive characterisation of the stability or functional consequence of
every possible substitution, a method known as deep mutational scanning (DMS). These
libraries will either be homemade using saturation mutagenesis or synthesised, meaning
they are either very time consuming or very expensive. For example, a synthesised
saturation mutagenesis library for a 300 amino acid protein would be around $15,000 (Twist
Bioscience, San Francisco, CA). Nevertheless, DMS using these saturation mutagenesis
libraries has proven to be incredibly useful in understanding health and disease, for example
when investigating amyloidogenic proteins α-synuclein (Newberry et al., 2020) and TDP-
43 (Bolognesi et al., 2019), involved in Parkinson’s disease and amyotrophic lateral
sclerosis (ALS), respectively. Furthermore, DMS has been successfully exploited to assess
therapeutic proteins such as for identifying regions of single-chain variable fragments
(scFvs) involved in aggregation, instability or affinity and driving development of predictor
algorithms (Warszawski et al., 2019). While DMS has proven to be a powerful method for a
number of applications, most notably gaining a broader understanding of sequence-function
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Fig. 1.20 Overview of Illumina sequencing technologies. The DNA to be sequenced is frag-
mented, using enzymatic approaches or sonication. Adapters are added onto the 5′ and 3′, allow-
ing hybridisation to complementary primers immobilised on a flow cell. A complementary strand is
synthesised, the double stranded DNA fragment is denatured and the original template is washed
away, leaving the fragment to be sequenced immobilised on the flow cell by its adapter. These
fragments are clonally amplified using bridge amplification, where the immobilised DNA fragment
folds over and hybridises with a complementary nearby primer and the complementary strand is
synthesised, resulting in clusters of the same fragment. Sequencing then is carried out by first
cleaving reverse strands and blocking the 3′ ends to avoid unwanted priming before supplement-
ing the reaction with forward primers and fluorescently-tagged nucleotides. After the addition of
each nucleotide the flow cell is excited using a light source to measure the characteristic fluores-
cent signal and identify the base. As a cluster represents many copies of the same fragment,
each cluster is read simultaneously to identify the consensus sequence and improve signal-to-
noise. After sequencing the synthesised fragment is cleaved and washed away. For paired-end
sequencing the reverse strand is sequenced after the forward strand by deprotecting the 3′ end
to allow the fragment to fold over and hybridise with a complementary primer on the flow cell for
a single round of bridge amplification. Forward strands are then cleaved and washed away, the
5′ ends are deprotected to avoid unwanted priming and the reverse strand is sequenced in the
same way as the forward strand. Figure adapted from Strausberg et al. (2008).
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or stability relationships, for simply evolving a protein to reduce its aggregation propensity
or increase its stability, for example a biotherapeutic, it is not necessary nor feasible for an
industrial lab to understand the functional consequence of each amino acid substitution
in an antibody. Moreover, it has been shown that multiple mutations are often necessary
to achieve large enough improvements in the property being enhanced, particularly when
evolving affinity or stability, and while single mutations identified using DMS could be
combined the collective effects are often not additive and very complex (Mateu et al., 1992;
Daugherty et al., 2000; Marvin and Lowman, 2003; Lippow et al., 2007; Goldenzweig
et al., 2016). Furthermore, often DMS experiments are limited by the length of the Illumina
fragment size, as the longest fragment currently available is 250 bp meaning experiments
are unable to sequence test proteins in one run that are longer than this. Illumina library
preparation can include longer amplicons being fragmented into shorter reads that can
be sequenced, and the short reads can then be mapped back onto a reference, a method
generally used for sequencing genomes. However this ‘shotgun library’ approach is not
currently supported by available packages for visualising and analysing DMS data such as
Enrich2 (Rubin et al., 2017). An approach for the directed evolution of biotherapeurics
that includes aspects from DMS would involve exploiting the power of NGS, but assessing
multiple point mutations using a genotype-phenotype screen to gain vast improvements
in various drug-like properties, such as stability, aggregation resistance or affinity. The
high-throughput nature of NGS would allow massively parallel analysis of a wide sequence-
space, and assessment of libraries before and after selection would allow identification of
sequences that have been enriched as a result of the selection. Utilising a suitable screen
which allows simultaneous selection of stability and function could enable isolation of
stable, high-affinity therapeutics against any target in a high-throughput manner.

With the reducing cost of next-generation sequencing technologies such as Illumina
(Figure 1.20), deep sequencing techniques are becoming more accessible to researchers and
an attractive alternative to low-throughput, high-cost first-generation sequencing. While
the Illumina method uses short read sequencing and therefore is unable to assess multiple
mutations within proteins larger than the read length, it represents a cheap, quick and easy
method for assessing the success of the experiment and for deciding whether to move
forward with the more costly Pacbio sequencing (Figure 1.21), that provides the long-reads
necessary for assessing co-evolution of larger proteins (Rhoads and Au, 2015).
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Fig. 1.21 Overview of Pacific biosciences (Pacbio) single-molecule real-time (SMRT) se-
quencing technologies. A) A template is prepared for Pacbio sequencing by the addition of
hairpin adapters to create the ‘SMRTbell’, a closed, circular piece of DNA. B) Sequencing is
carried out in a SMRT cell, a chip containing hundreds of thousands of sequencing units called
zero-mode waveguides (ZMW). At the bottom of each ZMW is an immobilised ϕ29 polymerase
with a short bound DNA fragment complementary to the SMRTbell adapters. A single SMRTbell
template diffuses into a ZMW and the adapter hybridises to the corresponding fragment bound
on the immobilised polymerase to allow sequencing by the addition of fluorescently-tagged nu-
cleotides. C) (1) The immobilised polymerase translocates along the SMRTbell template adding
the corresponding fluorescently-tagged nucleotide as it goes. (2) The incorporation of the nu-
cleotide results in an increase of the particular fluorescence signal linked to that nucleotide, which
is used to determine the base at that position. (3) The phosphodiester bond linking the nucleotide
and the fluorescence signal is broken, allowing the dye to diffuse out of the ZMW. (4) The poly-
merase translocates to the next position and the sequencing cycle continues by the addition of
the next fluorescently-tagged nucleotide. Figure adapted from Eid et al. (2009).
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1.7 Tripartite β-Lactamase Assay (TPBLA)

Within this thesis we make use of another protein reporter biosensor, the Tripartite β-
Lactamase Assay (TPBLA). This section examines in more detail the structure and function
of the β-lactamase enzyme, before giving an overview of the TPBLA and its previous
applications.

1.7.1 Peptidoglycan biosynthesis inhibition by β-lactam antibiotics

β-lactam antibiotics are, to date, the most prescribed antibiotic drugs in the world, mainly
due to their low toxicity and broad-spectrum activity against both Gram-negative and Gram-
positive bacteria (Bozcal and Dagdeviren, 2017; Kaderabkova et al., 2022). They contain a
four-membered β-lactam ring which is key for their function as a compeititve inhibitor of
the penicillin binding proteins (PBPs) which are involved in the final step of cross-linking
disaccharide components of peptidoglycan during cell wall biosynthesis (Tooke et al.,
2019). Bacteria surround their cell membrane with a net-like peptidoglycan layer, which
is comprised of repeating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic
acid (MurNAc), which are added to a growing glycan chain by transglycosylation (Figure
1.22A). Glycan chains are cross-linked by a peptide chain of 5 amino acids by penicillin
binding proteins in a process known as transpeptidation (Egan et al., 2020). β-lactam
antibiotics bind to PBPs as competitive inhibitors as they are structurally similar to the
cross-linked C-terminal dipeptide D-Ala-D-Ala (Figure 1.22B, C) (Tipper and Strominger,
1965; Tooke et al., 2019). β-lactamase hydrolyses the amide bond in the β-lactam ring of
the antibiotic, thereby providing bacterial resistance (Kaderabkova et al., 2022).

1.7.2 β-lactamase enzyme

The most widespread route of resistance to β-lactam antibiotics is via the hydrolysis of
their central β-lactam ring by a group of enzymes known as β-lactamases. More than 6500
unique enzymes capable of degrading β-lactam antibiotics and thus providing antibiotic
resistance have been identified to date (Furniss et al., 2022). The most well-studied and
highly encountered of these is TEM-1 β-lactamase, named "TEM" after the patient it was
isolated from (Temoniera), was first isolated from penicillin-resistant bacteria in Athens
1963 (Datta and Kontomichalou, 1965; Turner, 2005; Salverda et al., 2010).
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Fig. 1.22 Biosynthesis of peptidoglycan and its inhibition by β-lactam antibiotics. A) Pepti-
doglycan is comprised of repeating units of N-acetylglucosamine (GlcNAc) and N-acetylmuramic
acid (MurNAc), which are added to a growing glycan chain by transglycosylation. Glycan chains
are cross-linked by a peptide chain of 5 amino acids (pentapeptide) by penicillin binding proteins
in a process known as transpeptidation. (B) The C-terminus of the peptide cross-link is D-Ala-D-
Ala, which bears structural similarity to β-lactam antibiotics. (C) This structural similarity enables
β-lactam antibiotics to competitively inhibit penicillin binding proteins, hindering the maturation of
the bacterial cell wall leading to loss of cellular integrity and cell death (Kaderabkova et al., 2022).
Figure redrawn from Saunders (2014).
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TEM-1 β-lactamase is a 29 kDa, monomeric protein comprised of two globular do-
mains; an α/β domain (three α helices and five β sheets), and an α domain (eight α helices)
(Figure 1.23) (Fonzé et al., 1995). The α/β domain is formed by the 36 N-terminal and the
76 C-terminal residues of the protein chain (residues 26-62 and 215-290), whereas the α
domain is formed by residues 63-214 (Vandenameele et al., 2010). The catalytic site is
located at the cleft between these two domains and contains the active serine (Ser70), which
serves as the nucleophile for attack on the β-lactam carbonyl of the amide bond (Palzkill,
2018; Tooke et al., 2019). The isomerization of the Glu166-Pro167 bond from a trans to a
cis conformation has been shown to be the rate limiting step for enzyme folding (Vande-
nameele et al., 2010). The position of Glu166 is key for the function of β-lactamase, as
along with Ser70 and Lys73 it forms the catalytic site (He et al., 2020).

1.7.3 β-lactamase as a reporter protein

In a similar way to the protein reporters described in Section 1.6.2.2, β-lactamase has
been exploited as a protein reporter biosensor making use of its enzymatic readout of
antibiotic resistance, or with colourmetric assays using chromogenic substrates. Opposite
the catalytic site between Gly196 and Leu198 was proposed as a site to dissect the protein
in half, so that each domain would fold but be inactive on its own (Figure 1.23B) (Galarneau
et al., 2002). β-lactamase can be split at this site to form two fragments, these can be fused
to two POIs and used to assess protein-protein interactions (Galarneau et al., 2002). If
the two POIs interact, this will bring the two domains of β-lactamase into close proximity
enabling them to form the active site via their non-covalent assembly. Antibiotic resistance
is only generated if these two domains of β-lactamase are fused to interacting proteins; if
they are expressed independently or fused to proteins which do not interact the resulting
E. coli do not retain β-lactamase activity (Galarneau et al., 2002). This first example of
using β-lactamase in a protein complementation assay was successfully used to assess
protein-protein interactions of the homodimeric GCN4 leucine zipper, apoptotic proteins
Bcl2 and Bad, and homodimeric Smad3 (Galarneau et al., 2002). This method used
cephalosporin nitrocefin as a substrate for β-lactamase as it undergoes a colourmetric
change following hydrolysis of its β-lactam ring from yellow (380 nm) to red (492 nm),
which can be detected visually or using the change in absorbance.

Since the development of this protein complementation assay, β-lactamase has been
widely exploited to assess protein-protein interactions in vivo (Wehrman et al., 2002; Spotts
et al., 2002; Cavrois et al., 2002), as well as to screen libraries of scFvs (Secco et al.,
2009). This method has also been used in more novel approaches including screening for
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Fig. 1.23 Structure of E. coli TEM-1 β-lactamase. A) β-lactamase is comprised of an αβ

domain (blue, residues 26-62 and 215-290) and an α domain (orange, residues 63-214). The
catalytic site residues Ser70, Lys73 and Glu166 are highlighted in red. B) To use β-lactamase as
a protein biosensor, the protein is split between residues 196 and 197 to allow insertion of a POI.
PDB ID 1BTL (Jelsch et al., 1992). Figure created with PyMOL 2.5.2 (Schrödinger)



60 Introduction

Fig. 1.24 In vivo tripartite β-lactamase assay (TPBLA). A) TPBLA construct. Test protein
(green) is inserted between two domains of genetically separated TEM-1 β-lactamase via a 28
residue glycine/serine linker inserted between residues 196/197. B) Correct folding of the test
protein results in association of the two β-lactamase domains to form an active enzyme able to
hydrolyse β-lactam antibiotics (purple). Figure created in PyMol 2.5.2 and Blender 3.4. Maltose
Binding Protein (MBP) is shown as the test protein (PDB 1ANF) between TEM-1 β-lactamase
(PDB 1BTL) with bound ampicillin.

open reading frames (ORFs) by cloning a library between the signal sequence and mature
sequence of β-lactamase so that only those containg ORFs can translate and express the
β-lactamase, resulting in antibiotic resistance (D’Angelo et al., 2011).

1.7.4 Tripartite β-Lactamase Assay (TPBLA)

A TPBLA was developed to assess protein folding and stability by inserting a POI between
residues 196 and 197, joined via a 28 residue glycine/serine linker (Figure 1.24A, Figure
1.25A) (Foit et al., 2009). Previous studies have assessed test proteins with linkers of 33
and 68 residues in length, but the 28-residue linker was demonstrated to be the most broadly
applicable to different sized test proteins (Foit et al., 2009; Ebo et al., 2020b; Saunders
et al., 2016; Saunders, 2014). Correct folding of the test protein allows association of the
two domains of TEM-1 β-lactamase to form a functional enzyme that provides resistance
to β-lactam antibiotics by hydrolysis of the β-lactam ring (Figure 1.24B, Figure 1.25B).
However, misfolding, aggregation or instability of the test protein blocks association of
TEM-1 β-lactamase as the misfolded test proteins associate and form aggregates and/or
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Fig. 1.25 Assessing aggregation using TPBLA. A) The fusion protein consisting of a test pro-
tein (purple) inserted between two domains of genetically separated TEM-1 β-lactamase (yellow
and blue) is translocated to the periplasm via SecYEG using the β-lactamase signal sequence.
B) If the test protein folds properly and is not aggregation-prone, β-lactamase is able to hydrolyse
ampicillin and E. coli resistance to the antibiotic. C) Misfolding, aggregation or instability of the
test protein blocks association of β-lactamase, inhibiting formation of the catalytic site. Therefore,
β-lactamase will be inactive and unable to provide antibiotic resistance.
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the construct is degraded by cellular machinery, causing E. coli to lose its resistance to
β-lactam antibiotics (Figure 1.25C). This methodology was able to correlate antibiotic
resistance with thermodynamic stability by assessing variants of immunity protein 7
(Im7), granulocyte colony-stimulating factor (GCSF), maltose binding protein (MBP) and
cytochrome b562 (Foit et al., 2009). Furthermore, by introducing variance into the POI by
epPCR and screening for improved antibiotic resistance, TPBLA was successfully used to
evolve thermodynamic stability in Im7 (Foit et al., 2009). This evolution demonstrated the
stability:function trade-off in Im7, as many of the stabilising mutations map predominantly
to the surface used to bind its cognate toxin colicin E7. The TPBLA for measuring protein
folding has been applied to assess the thermodynamic stability and proper folding of de
novo designed proteins, and to evolve these proteins to improve their thermodynamic
stability by more than 20 °C following six rounds of directed evolution (Xiong et al., 2014;
Wang et al., 2017).

Throughout their lifetime, biopharmaceuticals are exposed to a multitude of physical,
chemical and mechanical stresses that can result in aggregation from expression through
processing to finally delivery to patients. These aggregates pose a significant risk to patients
as they can invoke an immune response, causing side effects ranging from intolerance
to adverse reactions and death (Jiskoot et al., 2012). Therefore, the main challenge for
the biopharmaceutical industry is to identify aggregation-prone proteins early in develop-
ment as well as the environmental factors that trigger aggregation in order to minimise
unnecessary effort and expense. TPBLA has been adapted to assess proteins based on
their aggregation propensity, including Aβ40 and Aβ42, wild type/D76N β2-microglobulin
(β2m), and human/rat islet amyloid polypeptide (hIAPP/rIAPP) (Saunders et al., 2016;
Guthertz et al., 2022), as well as antibody fragments (single domains and scFv) relevant
to the biopharmaceutical industry (Ebo et al., 2020b). Making use of the porosity of the
E. coli outer membrane to small molecules (<600 Da), the assay has also been used as a
screening method for identifying excipients (Hailu et al., 2013) and small molecules (Saun-
ders et al., 2016) that inhibit protein aggregation. As this assay is carried out in the
oxidising environment of the E. coli periplasm, it permits the proper formation of disulfide
bonds, allowing analysis and evolution of proteins such as peptide hormones (e.g., hIAPP),
immunoglobulin domains (i.e., β2m), or antibody fragments (such as scFvs). In contrast to
the split β-lactamase protein complementation assay described in Section 1.7.3 analysing
protein-protein interactions, TPBLA enables analysis of test proteins based on their bio-
physical properties and therefore has great potential for assessing the developability of
candidate biotherapeutics.
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As well as evolving thermodynamic stability into a POI, TPBLA has been successfully
exploited to evolve aggregation-resistance in a model scFv as modification of the antibiotic
concentration allows tight control over the level of selective pressure (Ebo et al., 2020b).
Using deep sequencing to identify fitter variants that enable bacterial growth at increas-
ingly high antibiotic concentrations, the TPBLA has the potential to unpick the complex
relationship between sequence, thermodynamic stability, and aggregation for intrinsically
disordered proteins, as well as globular POIs. However, as TPBLA selects for correct
protein folding and/or aggregation-resistance it neglects to select for function. This could
be problematic when evolving a protein for enhanced biophysical properties that needs
to maintain a function, such as an antibody fragment or an enzyme, as it could result in
stability:function trade-off costs. Indeed, functional residues were found most often to
be mutated when evolving protein stability using TPBLA, consistent with the concept
of protein frustration (stability:function trade-off) (Foit et al., 2009). This highlights the
importance of choosing an appropriate selective assay for the system under investigation.
Consequently, it can be necessary to develop orthogonal selection platforms with the ability
to simultaneously evolve function and biophysical properties.

TPBLA represents a powerful tool for assessing innate aggregation propensity with
the potential application as a developability assay for detecting aggregation-prone bio-
pharmaceutical candidates early, without the need for purified protein. Furthermore, the
use of TPBLA as a directed evolution screen has great potential for evolving stability
and aggregation-resistance in a POI, importantly without requiring any prior structural
knowledge of the protein or its mechanism of aggregation (Ebo et al., 2020a). However,
previous work using this assay for directed evolution studies was limited by first-generation
sequencing techniques, making the process laborious, low-throughput and high cost.
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1.8 Aims of this thesis

Biopharmaceutical aggregation can occur at any stage in the developmental pipeline,
and despite a range of developability screens available these are commonly employed
late in the developmental pipeline as they require large amounts of purified protein. If
aggregation-prone candidates could be identified early, this would significantly minimise
unnecessary time and expense. TPBLA could be a powerful tool for identifying these
aggregation-prone candidates quickly and easilly, without the need for purified protein.

With the reducing cost of NGS technologies such as Illumina, deep sequencing tech-
niques are becoming more accessible to researchers and an attractive alternative to low-
throughput, high-cost first-generation sequencing. TPBLA has previously been used as a
directed evolution screen, but was limited in throughput by first-generation sequencing tech-
nologies. Combining TPBLA with NGS for directed evolution has the potential to assess
hundreds to thousands of variants in a single experiment and give a more comprehensive
and extensive overview of a protein’s fitness landscape.

The golden rule of directed evolution is ‘you get what you screen for’ (You and Arnold,
1996), and using the appropriate screen is paramount. This can be difficult as selecting
for one property, such as stability, can have a negative effect on another, such as function.
Often affinity-matured antibodies have decreased stability or increased aggregation, due
to this trade-off between different properties (Rabia et al., 2018). In the absence of a
selection for function, evolving test proteins using TPBLA to improve their aggregation
resistance could result in evolved variants that no longer bind to their target. Therefore,
including a selection for binding into TPBLA evolution experiments could enable evolution
of biologics for both stability and function.

Therefore, the overall objectives of this thesis are to:

• Design a robust methodology to create large error-prone PCR libraries for TPBLA

• Adapt TPBLA into a high-throuhgput directed evoution assay using NGS

• Apply this to therapeutically-relevant proteins to improve their developability

• Investigate the use of TPBLA as a developability screen

• Correlate TPBLA with other developability assays and biophysical properties to
better understand how it assesses and evolves target proteins

• Develop a novel assay to enable dual selection of stability and binding with TPBLA
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Materials and methods

2.1 Materials

2.1.1 Chemicals and kits

Deionised 18 MΩ water used in all methods.

Table 2.1 Materials

A Supplier Catalogue Number

Acetic acid, glacial
Fisher Scientific, Loughborough,
UK

A/0400/PB17

Acrylamide 30 % (w/v):bis-acrylamide 0.8 %
(w/v)

Severn Biotech, Kidderminster, UK 20-2100-10

AffiniPure goat anti-human IgG Fcγ Fragment
specific

Jackson ImmunoResearch, PA,
USA

109-005-008

Agar Melford Laboratories, Suffolk, UK A20250-500.0
Fisher Scientific, Loughborough,
UK

BP-1423-500

Agarose Melford Laboratories, Suffolk, UK MB1200
L-(+)-Arabinose Sigma Life Sciences, MO, USA A3256
Ammonium persulfate (APS) Sigma Life Sciences, MO, USA A7460
Ampicillin sodium salt Formedium, Norfolk, UK AMP25

Anti-β-Lactamase IgG Cusabio, TX, USA
CSB-
PA352353YA01ENL

Anti-mouse IgG horseradish peroxidase conjugate Cell Signaling Technology 7076S
Anti-rabbit goat IgG horseradish peroxidase
conjugate

New England Biolabs, MA, USA 7074
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B
Bromophenol blue Sigma Life Sciences, MO, USA B0126
C
Caffeine Sigma Life Sciences, MO, USA W222402
Carbenicillin disodium Formedium, Norfolk, UK CAR0025

ChromePure Goat IgG, whole molecule
Jackson ImmunoResearch, PA,
USA

005-000-003

Citrate-stabilized 20nm gold nanoparticles Expedeon, UK 741965-25ML
D
Deoxynucleotide (dNTP) Solution Mix New England Biolabs, MA, USA N0447S
Dithiothreitol (DTT) Formedium, Norfolk, UK DTT025
Dimethyl sulfoxide (DMSO) Sigma Life Sciences, MO, USA P841

Fisher Scientific (Invitrogen),
Loughborough, UK

D12345

DNA ladders New England Biolabs, MA, USA N0552G
Promega, WI, USA G5711

E
Ethanol Sigma Life Sciences, MO, USA E/0650DF/17
Ethidium bromide (EtBr) Sigma Life Sciences, MO, USA E-8751
Ethylenediaminetetraacetic acid (EDTA) Acros Organics, Geel, Belgium 409930010
Mini, EDTA-free protease inhibitor cocktail
tablets

Roche Applied Science 11836170001

G
Gel loading dye, purple (6×) New England Biolabs, MA, USA B7024S

Glycerol
Fisher Scientific, Loughborough,
UK

G/0650/17

Glycine
Fisher Scientific, Loughborough,
UK

G/0800/60

H

Hydrochloric acid (HCl)
Fisher Scientific, Loughborough,
UK

H/1100/PB17

I
Imidizole Sigma Life Sciences, MO, USA I202
Instant Blue Coomassie Blue Stain Expedeon, CA, USA ISB1LUK

Isopropanol
Honeywell Research Chemicals,
Seelze, Germany

190764

Isopropyl β-D-1-thiogalactopyranoside (IPTG) Formedium, Norfolk, UK IPTG100
K
Kanamycin Formedium, Norfolk, UK KAN0025
L
α-Lactose Sigma Life Sciences, MO, USA L8783

LB Broth
Fisher Scientific, Loughborough,
UK

1289-1650

M
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Magnesium sulphate
Fisher Scientific, Loughborough,
UK

7487-88-9

Methanol
Fisher Scientific, Loughborough,
UK

M/4000/17

Molecular weight marker (Precision Plus Dual
Xtra Standards)

Bio-Rad Laboratories, CA, USA 161-0377

MOPS Sigma Life Sciences, MO, USA 69947
N
NEB Golden Gate Assembly Kit New England Biolabs, MA, USA E1601L

Nickel sepharose
GE Healthcare, Buckinghamshire,
UK

17531802

Nickel(II) sulfate heptahydrate Fluorochem, Hadfield, UK 510236
Nickel nitrilotriacetic acid (Ni-NTA) QIAGEN, Crawley, UK 30210
NucleoSpin Gel and PCR Clean-up Kit Macherey-Nagel, Düren, Germany 740609.50
P

Phosphate buffered saline (PBS) tablets
Fisher Scientific, Loughborough,
UK

BR0014G

Potassium chloride (KCl)
Fisher Scientific, Loughborough,
UK

P/4200/60

Potassium hydroxide (KOH)
Fisher Scientific, Loughborough,
UK

P/5600/53

Precision Plus Protein Dual Xtra Prestained
Protein Standard

Bio-Rad, CA, USA 1610377

Q
Q5 Site-directed mutagenesis kit New England Biolabs, MA, USA E0554
QIAquick PCR Purification Kit QIAGEN, Crawley, UK 28106
QIAquick Spin Miniprep Kit QIAGEN, Crawley, UK 27106X4

Qubit dsDNA Assay Kit
Invitrogen, Carlsbad, California,
USA

Q32851Q32851

S

SnakeSkin dialysis tubing, 3.5K MWCO
Fisher Scientific, Loughborough,
UK

68035

Sodium chloride (NaCl)
Fisher Scientific, Loughborough,
UK

S/3160/60

Sodium dodecyl sulphate (SDS)
Fisher Scientific, Loughborough,
UK

S/P530/53

Severn Biotech, Kidderminster, UK 20-4000-01
Sigma Life Sciences, MO, USA L4509

Sodium hydroxide (NaOH)
Fisher Scientific, Loughborough,
UK

S/4920/60

Syringe filter (nylon) (0.22 µm) Camlab Ltd., Cambridge, UK 1181466

Syringe filter (PES) (0.22 µm & 0.45 µm) Jet Biofil, Guangzhou, China
FPE-204-025,
FPE-404-025

Sucrose
Fisher Scientific, Loughborough,
UK

S/8600/53
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Super Optimal Catabolite (SOC) New England Biolabs, MA, USA B90205
SuperSignal™ West Pico PLUS
Chemiluminescent Substrate

Thermo Scientific, MA, USA 34580

SYBR safe DNA gel stain
Invitrogen, Carlsbad, California,
USA

S33102

T
Tetracycline Sigma Life Sciences, MO, USA 87128
Triton X-100 Sigma Life Sciences, MO, USA X100-500

Calbiochem, CA, USA 648463-50

Tris
Fisher Scientific, Loughborough,
UK

BP152-1

Tetramethylethylenediamine (TEMED) Sigma Life Sciences, MO, USA T9281
Tris-tricine SDS running buffer 10X, cathode
buffer, pH 8.3

Alfa Aesar, Heysham, UK J60992

Tryptone
Fisher Scientific, Loughborough,
UK

1285-1660

U

Urea
MP Biomedicals, Loughborough ,
UK

04821527

Fisher Scientific, Loughborough,
UK

29700

V
Vivaspin 20 centrifugal concentrators (10K
MWCO)

Sartorius, Göttingen, Germany S2002

W
Wizard Plus SV Minipreps DNA purification
systems

Promega, WI, USA A1460

Y
Yeast Extract Melford Laboratories, Suffolk, UK Y20025-2000.0
Z

ZebaSpin Desalting Column 7K MWCO (0.5 ml)
Fisher Scientific, Loughborough,
UK

89883
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2.1.2 Enzymes for molecular biology

Table 2.2 Enzymes for molecular biology.

Ezyme Supplier Catalogue Number

Antarctic phosphatase New England Biolabs, Hitchin, UK A/0400/PB17
BamHI-HF restriction endonuclease New England Biolabs, Hitchin, UK 20-2100-10
Q5 High-Fidelity DNA polymerase New England Biolabs, Hitchin, UK A20250-500.0
T4 Quick ligase New England Biolabs, Hitchin, UK MB1200
Vent DNA polymerase New England Biolabs, Hitchin, UK A3256
XhoI restriction endonuclease New England Biolabs, Hitchin, UK A7460

2.1.3 Media

Table 2.3 Media used in this study.

Medium Components

Lysogeny broth (LB) medium

10 g Tryptone
5 g Yeast extract
10 g NaCl
Up to 1L in purite 18 MΩ H2O
Autoclave 20 min at 121°C, 15 psi

Autoinduction (AI) medium

10 g Bactotryptone
5 g Yeast Extract
Up to 500 ml in purite 18 MΩ H2O
Autoclave 20 min at 121°C, 15 psi
1 ml 1M MgSO4

25 ml 20× NPSC
10 ml 50× LAC

50× LAC

125 g Glycerol
12.5 g Glucose
50 g Lactose
Up to 500 ml in purite 18 MΩ H2O
Filter sterilise using 0.22 µM filter

20× NPSC

53.52 g NH4Cl
32.2 g Na2SO4

68 g KH2PO4

70 g Na2HPO4

Up to 1L in purite 18 MΩ H2O
Autoclave 20 min at 121°C, 15 psi
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2.1.4 Buffers

Table 2.4 Buffers used in this study.

Buffer Components

Lysis buffer

20 mM Tris.HCl
300 mM NaCl
5 mM Imidazole
0.5% Triton X-100
1 mM PMSF (Stock = 200 mM)
2 mM Benzamidine
pH 8

Wash buffer

20 mM Tris.HCl
300 mM NaCl
10 mM Imidazole
pH 8

Elution buffer

20 mM Tris.HCl
300 mM NaCl
250 mM Imidazole
pH 8

Equilibration buffer
50 mM Tris.HCl
300 mM NaCl
pH 8.0

Phosphate-buffered saline (PBS)

137 mM NaCl
2.7 mM KCl
10 mM Na2HPO4

1.8 mM KH2PO4

pH 7.4

Electrophoresis cathode buffer

100 mM Tris.HCl
100 mM tricine
0.1 % (w/v) SDS
pH 8.25

Electrophoresis anode buffer
200 mM Tris.HCl
pH 8.9

2× SDS-PAGE loading dye

50 mM Tris.HCl
100 mM DTT
2 % (w/v) SDS
0.1 % (w/v) bromophenol blue
10 % (v/v) glycerol
pH 6.8
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Buffer Components

1× Tris-acetate-EDTA (TAE)
40 mM Tris.HCl
20 mM acetic acid
1 mM EDTA pH 8.0

1× Lithium-acetate-borate (LAB)
10 mM lithium acetate
10 mM boric acid

2.1.5 Antibiotics

Table 2.5 Antibiotics used in this study.

Antibiotic Solvent Stock solution
(mg/mL)

Working concentration
(µg/mL)

Sterilisation

Ampicillin Purite 18 MΩ H2O 100 100
Filter sterilised
through 0.22 µm
filter

Kanamycin Purite 18 MΩ H2O 50 50
Tetracycline 100 % (w/v) ethanol 3 10
Chloramphenicol 100 % (w/v) ethanol 25 25

2.2 Molecular biology methods

2.2.1 Bacterial strains

E. coli DH5α derivative strain NEB5α (New England Biolabs, Cat#: C2987H)
F- fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1
thi-1 hsdR17
E. coli NEB10β (New England Biolabs, Cat#: C3019H)
Δ(ara-leu) 7697 araD139 fhuA ΔlacX74 galK16 galE15 e14- Φ80dlacZΔM15 recA1
relA1 endA1 nupG rpsL (StrR) rph spoT1 Δ(mrr-hsdRMS-mcrBC)
E. coli SCS1 (Agilent, Cat# 200231)
recA1 endA1 gyrA96 thi-1 hsdR17 (rK– mK+) supE44 relA1
E. coli TG1 (Lucigen, Cat# 60502-2)
supE thi-1 Δ(lac-proAB) Δ(mcrB-hsdSM)5 (rK– mK-) [F´ traD36 proAB lacIq ZΔM15]
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2.2.2 E. coli transformation

Chemically competent E. coli cells (10 µl SCS1, 50 µl DH5α or NEB10β) were thawed on
ice for 10 minutes. Cells were transformed with 50-200 ng DNA and incubated on ice for
30 minutes. Cells were heat shocked at 42°C for 30 seconds (DH5α/NEB5α, NEB10β) or
45 seconds (SCS1) then returned to ice for 5 minutes before the addition of 950 µL (DH5α)
or 100 µL (SCS1) of SOC medium or 950 µL NEB10β Stable Outgrowth Medium (NEB
B9035S, NEB10β). These were cultured at 37°C, 200 rpm for 1 hr. Cultures of laboratory
generated competent cells (DH5α) were centrifuged (3000xg, 3 min) and the resulting
pellet was resuspended in 100 µL supernatant before plating on LB agar containing the
appropriate antibiotic (Table 2.5) and grown overnight at 37°C. 100 µL commercial cells
(NEB5α, NEB10β, SCS1) were plated on LB agar containing the appropriate antibiotic
and grown overnight at 37°C.

2.2.3 Polymerase chain reaction

Polymerase chain reaction (PCR) was carried out for selective amplification of DNA
sequences. All enzymes and buffers used were from New England Biolabs (NEB). The
components for a typical 50 µL reaction using Vent polymerase are detailed in Table 2.6 and
the thermocycling conditions used detailed in Table 2.7. Components for a typical 50 µL
reaction using Q5 High-Fidelity polymerase are detailed in Table 2.8 and the thermocycling
conditions used detailed in Table 2.9. PCR reactions were set up on ice and thermocycling
was carried out using a BioRad T100 thermal cycler. For each PCR reaction, a control
without the template DNA was carried out to ensure specificity of amplification. The
New England Biolabs Ta calculator tool was used for accurate calculation of annealing
temperature as it incorporates information from both sequence and buffer composition.

To clone into the β-lactamase vector, the genes of test proteins were amplified using
Vent polymerase using primers with 5′ overhangs to add XhoI and BamHI restriction sites
onto the 5′ and 3′ ends for ligation. Primers used are detailed in Appendix A, Table A.1.
MBP variants were amplified from pMal-c5x, other genes were synthesised using Twist
bioscience (HA4 and SH2) or UCB (scFvs).

5 µL of PCR product was visualised using agarose gel electrophoresis (Section 2.2.4),
and the remaining PCR product was purified using QIAquick PCR Purification Kit (QIA-
GEN, Crawley, UK) according to the manufacturer’s instructions.
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Table 2.6 Components for a typical Vent PCR.

Component Volume (µL) Final concentration

10× Thermopol reaction buffer 5 1×
10 mM dNTPs 1 200 µM
10 µM Forward primer 1 0.2 µM
10 µM Reverse primer 1 0.2 µM
1-25 ng/µL Template DNA 1 1-25 ng
Vent DNA polymerase 0.5 1 unit
MgSO4 Optional 1-6 mM
Nuclease-free water Up to 50

Table 2.7 Thermocycling conditions for a typical Vent PCR.

Step Temperature (°C) Time

Initial denaturation 95 2-5 minutes

25-30 cycles
Denaturation 95 15-30 seconds
Annealing Tm of primer 15-30 seconds
Elongation 72 1 minute/kb

Final extension 72 5 minutes
Hold 4

Table 2.8 Components for a typical PCR using Q5 high-fidelity DNA polymerase.

Component Volume (µL) Final concentration

5× Q5 reaction buffer 10 1×
10 mM dNTPs 1 200 µM
10 µM Forward primer 2.5 0.5 µM
10 µM Reverse primer 2.5 0.5 µM
1-25 ng/µL Template DNA 1 1-25 ng
Q5 High-Fidelity DNA polymerase 0.5 1 unit
5× Q5 high GC enhancer (optional) (10) (1×)
Nuclease-free water Up to 50
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Table 2.9 Thermocycling conditions for a typical Q5 PCR or site-directed mutagenesis.

Step Temperature (°C) Time

Initial denaturation 98 30 seconds

25-30 cycles
Denaturation 98 5-10 seconds
Annealing Tm of primer 10-30 seconds
Elongation 72 20-30 seconds/kb

Final extension 72 2 minutes
Hold 4

2.2.4 Agarose gel electrophoresis

1.5 % (w/v) agarose gels were created by dissolving agarose in 1× Tris-acetate-EDTA
(TAE) or Lithium-acetate-borate (LAB) buffer (Table 2.4) and heating. Once this had
cooled < 50 °C, 0.001 % (v/v) SYBR safe was added and the solution mixed before pouring
into a gel tray (12 × 15 cm) with a comb and allowed to set. Samples were diluted in 6×
Purple gel loading dye and 5 µL 100 bp and 1 kb Quick-load purple DNA ladders (NEB)
were used to provide a size standard (Table 2.1). Agarose gel electrophoresis was carried
out in 1× TAE or LAB buffer at 100V until fragments were resolved. Gels were visualised
under ultraviolet (UV) light and imaged using UVItec Q9 Alliance Gel Doc.

2.2.5 Restriction digest of plasmid DNA

Restriction digests were carried out using enzymes and buffers from NEB. Components for
a 50 µL double digest are detailed in Table 2.10. Control reactions were set up containing
either one or no enzymes. Digests were incubated at 37 °C for 1 hr. 5 µL of digest was
visualised using agarose gel electrophoresis (Section 2.2.4), and the remaining digest was
purified using QIAquick PCR Purification Kit according to the manufacturer’s instructions.
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Table 2.10 Components for a double digest using XhoI and BamHI restriction endonucle-
ases.

Component Volume (µL) Final amount

Plasmid DNA or PCR product Variable 1 µg
20 U/µL XhoI restriction endonuclease 1 20 U
20 U/µL BamHI-HF restriction endonuclease 1 20 U
10× BSA 5 1×
10× Cutsmart buffer 5 µL 1×
Nuclease-free water Up to 50 1 unit

2.2.6 Dephosphorylation of restriction digests

The 5′- ends of the restriction digested vector were dephosphorylated using Antarctic
phosphatase to prevent re-ligation of the plasmid. Components for a typical dephospho-
rylation reaction are detailed in Table 2.11. Reactions were incubated at 37 °C for 15
minutes, followed by 65 °C for 5 minutes for enzyme inactivation. Following dephos-
phorylation, DNA was purified using QIAquick PCR Purification Kit according to the
manufacturer’s instructions and the concentrations of the restriction digested insert and
restriction digested and dephosphorylated vector were quantified using NanoDrop 2000
UV-VIS spectrophotometer (Thermo Scientific).

Table 2.11 Components for dephosphorylation of restriction digested vector using Antarc-
tic phosphatase.

Component Volume (µL)

PCR purified restriction digested vector 30
5 U/µL Antarctic phosphatase 1
10× Antarctic phosphatase reaction buffer 3.5
Nuclease-free water Up to 50

2.2.7 Ligation of DNA

Ligation of DNA fragments was carried out using T4 quick ligase from NEB. Components
for a typical ligation are detailed in Table 2.12. A control reaction was set up containing
no insert. Reactions were set up on ice then incubated for 5 minutes at room temperature
before immediate transformation into E. coli DH5α cells (Section 2.2.2).
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Table 2.12 Components for ligation of vector and insert using T4 quick ligase.

Component Volume (µL) Final amount

Digested and dephosphorylated vector DNA (6kb) Variable 50 ng
Digested insert DNA (1kb) Variable 25 ng
2× Quick ligase buffer 10 1×
T4 Quick ligase 1
Nuclease-free water Up to 20

2.2.8 Q5 site-directed mutagenesis

2.2.8.1 Amplification of DNA

Components for a typical 25 µL Q5 mutagenesis using Q5 Hot Start High Fidelity DNA
polymerase are detailed in Table 2.13. Reactions were set up on ice and thermocycling was
carried out using a BioRad T100 thermal cycler. Thermocycling conditions for a typical
Q5 mutagenesis reaction are detailed in Table 2.9. Mutagenic primers used are detailed in
Appendix A, Table A.1.

Table 2.13 Components for a typical Q5 mutagenesis.

Component Volume (µL) Final amount

Q5 Hot Start High-Fidelity 2× Master Mix 12.5 1×
10 µM Forward primer 1.25 0.5 µM
10 µM Reverse primer 1.25 0.5 µM
1-25 ng/µL Template DNA 1.0 1-25 ng
Nuclease-free water 9.0

2.2.8.2 Kinase, ligase, Dpnl (KLD) treatment

Following PCR amplification using mutagenic primers, the PCR product was treated with
kinase, ligase, and DpnI enzymes. Kinase phosphorylates the 5′ end to allow intramolecular
ligation by ligase, whereas DpnI digests methylated template DNA. Components for a
typical KLD reaction are detailed in Table 2.14. Reactions were incubated for 5 minutes at
room temperature before immediate transformation into E. coli DH5α cells (Section 2.2.2).



2.2 Molecular biology methods 77

Table 2.14 Components for kinase, ligase, DpnI (KLD) treatment for Q5 mutagenesis.

Component Volume (µL) Final amount

PCR product 1 1 µL
2× KLD reaction buffer 5 1×
10× KLD enzyme mix 1 1×
Nuclease-free water 3

2.2.9 Sequencing and storage of plasmid DNA

10 mL 2.5 % (w/v) LB with the appropriate antibiotic was inoculated with single colonies
from transformation plates and grown overnight at 37°C, 200 rpm. DNA was extracted us-
ing QIAquick Spin Miniprep Kit (QIAGEN, Crawley, UK) according to the manufacturer’s
instructions. DNA to be used in molecular biology experiments was eluted in the elution
buffer provided in the kit. DNA for long term storage was eluted in TE buffer (Table 2.1)
and stored at -80°C. DNA concentrations were measured using NanoDrop 2000 UV-VIS
spectrophotometer by measuring absorbance at 260 nm (A260) using the relationship that
an A260 of 1.0 = 50 µg/mL pure dsDNA. 15 µL of DNA was sent with the required primers
(Appendix A, Table A.3) for sequencing by Eurofins Genomics.

2.2.10 Plasmids and primers

Plasmids used in this study are summarised in Table 2.15. The vector used for the TPBLA
contained β-lactamase (βLa) with a 28-residue glycine-serine (GS) linker in a pBR322
derivative encoding a pBAD promoter and was provided by Jim Bardwell, University of
Michigan. E. coli MBP in a pMAL-c5x vector containing a tac promoter under control
of the lac operon was obtained from New England Biolabs. All subsequent mutant MBP
plasmids were derived from this and the genes cloned into the βLa vector for analysis using
TPBLA. Genes encoding HA4 and SH2 were synthesised by Twist bioscience using the se-
quences from Wang et al. (2018). Split sfCherry2 was cloned from a pETDuet_sfCherry2(1-
10)_sfCherry2(11)-SpyCatcher gifted from Bo Huang (Addgene plasmid # 117656 ;
http://n2t.net/addgene:117656 ; RRID:Addgene_117656) (Feng et al., 2019). Split mNG2
was cloned from a pET_mNG2(1-10)_32aalinker_mNG2(11) gifted from Bo Huang (Ad-
dgene plasmid # 82611 ; http://n2t.net/addgene:82611 ; RRID:Addgene_82611) (Feng
et al., 2017). mScarlet-I was cloned from a pEB2-mScarlet-I gifted from Philippe Cluzel
(Addgene plasmid # 104007 ; http://n2t.net/addgene:104007 ; RRID:Addgene_104007)
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(Balleza et al., 2018). pET28a-sfGFP was a gift from Ryan Mehl (Addgene plasmid #
85492 ; http://n2t.net/addgene:85492 ; RRID:Addgene_85492) (Peeler and Mehl, 2012).
pHJ12-CadC-VHH-Caffeine (No linker) was a gift from Jerome Bonnet (Addgene plasmid
# 108244 ; http://n2t.net/addgene:108244 ; RRID:Addgene_108244). Primers used in this
study are detailed in Appendix A.

Table 2.15 List of plasmids used in this thesis and description of gene insert and muta-
tions.

Plasmid name and
vector

Description of sequence Resistance marker

pBR322-βLa-28GS
β-lactamase with a 28-residue GS linker under a pBAD
promoter used for TPBLA.

Tetracycline

pMAL-c5x MBPWT
pMAL-c5x vector with E. coli wild type maltose binding
protien (MBP) under a tac promoter under the control of
the lac operon.

Ampicillin

pMAL-c5x MBP4A As above but with four point mutations
(L160A+I161A+L192A+L195A).

Ampicillin

pMAL-c5x
MBPY283D

As pMAL-c5x MBP but with single point mutation
Y283D.

Ampicillin

βLa-MBPWT β-lactamase with wild type MBP insert between
28-residue GS linker. For TPBLA.

Tetracycline

βLa-MBP4A As above but with MBP4A insert. Tetracycline

βLa-MBPY283D As above but with MBPY283D insert. Tetracycline

βLa-AMSXXX
As above but with AMSCI scFv insert where XXX is 106,
122, 132, 134, 137, 147, 148, 155, 197, 198, or 214.

Tetracycline

βLa-HA4WT As above but with monobody HA4 insert. Tetracycline

βLa-HA4Y87A As above but with Y87A point mutation in HA4 gene to
create a non-binding mutant.

Tetracycline

βLa-HA4WT-VHH
β-lactamase with wild type HA4 insert and caffeine
inducible nanobody fused to the C-terminus. For SnAC.

Tetracycline

βLa-HA4Y87A-VHH
As above but with Y87A point mutation in HA4 gene.
For SnAC.

Tetracycline

pETDuet_sfCherry2(1-
10)_sfCherry2(11)-
SpyCatcher

pET vector with split sfCherry2 used to clone into βLa
vector.

Ampicillin

pET_mNG2(1-10)
32aalinker_mNG2(11)

pET vector with split mNeonGreen2 used to clone into
βLa vector.

Kanamycin
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Plasmid name and
vector

Description of sequence Resistance marker

pEB2-mScarlet-I
pEB2 plasmid with mScarlet-I gene used to clone into
βLa vector.

Kanamycin

pET28a-sfGFP pET28a vector with sfGFP gene used to clone into βLa. Kanamycin

pHJ12-CadC-VHH-
Caffeine (No linker)

pHJ12 vector with CadC gene and VHH caffeine. Kanamycin

2.3 Protein expression and purification

2.3.1 Purification of MBP constructs

2.3.1.1 Small-scale expression trials

Small scale expression trials were carried out to assess the amount of soluble protein
expressed for each of the MBP constructs. E. coli BL21(DE3) cells were transformed with
the relevant plasmid (Table 2.15) as described in Section 2.2.2. 100 mL autoinduction
medium containing 100 µg/mL carbenicillin was inoculated with 250 µL overnight culture
and incubated (37°C, 220 rpm) for 30 h, taking two 1 mL samples at 2 h intervals between
24 and 30 hrs. The OD600 was corrected to 0.5 and cells were harvested by centrifugation
(13000 rpm, 10 min). 50 µL lysis buffer (Table 2.4) was added to the cell pellet and
vortexed. The soluble and insoluble fractions were separated by centrifugation (13000
rpm, 10 min) before addition of 2× SDS-PAGE loading dye (Table 2.4) and samples were
analysed by SDS-PAGE (Section 2.3.1.5).

2.3.1.2 Large-scale expression of protein constructs

Expression plasmids were transformed into E. coli BL21 (DE3) cells by heat shock
(Section 2.2.2). Successful transformants were selected on LB agar containing 100 µg/mL
carbenicillin after growth overnight at 37°C. Single colonies were used to innoculate 100
mL LB containing 100 µg/mL carbenicillin and incubated overnight (37°C, 220 rpm). 2
mL starter culture was used to innoculate 2× 500 mL autoinduction medium (Table 2.3)
prepared in 2 L conical flasks and incubated for 48 hours (37°C, 220 rpm). Cells were
harvested by centrifugation at 8000 rpm at 4°C and the pellet resuspended in lysis buffer
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(Table 2.4) before homogenesis, addition of DNase and incubation with roller agitation at
4°C for 1 hr. Lysate was passed through a cell disruptor at 30 kpsi, 25°C and centrifuged
to separate out the soluble and insoluble fractions (15000 rpm, 4°C, 30 mins).

2.3.1.3 Refolding of protein from inclusion bodies

MBP4A was expressed in the insoluble fraction so the inclusion body pellet was first
washed three times in 20 mM Tris.HCl, 300 mM NaCl (pH 8) and centrifuged (16000 rpm,
4°C, 20 mins). The pellet was then dissolved in 100 mL 20 mM Tris.HCl, 300 mM NaCl
(pH 8) 8M Urea and centrifuged (16000 rpm, 4°C, 30 mins). The supernatant was diluted
1:5 with 0.7 M arginine (pH 8) and dialysed overnight at 4°C into 20 mM Tris, 300 mM
NaCl (pH 8) to remove all the urea. The refolded MBP4A was centrifuged and filtered
before adding imidazole to give a final concentration of 5 mM and loaded onto the column
in the same way as MBPWT and MBPY283D (Section 2.3.1.4).

2.3.1.4 HisTrap purification

Samples were filtered (0.45 µm) prior to loading onto the column. MBPWT and MBPY283D

soluble fractions and refolded MBP4A were loaded peristaltically overnight at 2 mL/minute
onto 20 mL Ni-NTA resin (HisTrap) pre-equilibrated with lysis buffer. The resin was
washed with 5 column volumes wash buffer (Table 2.4). Protein was eluted with 5 column
volumes elution buffer (Table 2.4) and the fractions containing protein were determined
using SDS-PAGE (Section 2.3.1.5). These fractions were pooled, concentrated using
VivaSpin 10 kDa molecular weight cut-off (MWCO) concentrator (GE Healthcare).

2.3.1.5 Sodium dodecyl sulfate polyacrylamide gel electrophoresis

Tris-tricine buffered SDS-PAGE gels were made using components in Table 2.16 in 8×
10 cm casts using a 1.5 mm spacer. Samples were diluted in 2× SDS-PAGE loading dye
(Table 2.4), boiled for 10 mins and centrifuged before loading 15 µL into the well. 5 µL
protein standard was loaded into the first well of the gel for estimation of molecular weight
(Table 2.1). The inner reservoir was filled with cathode buffer (100 mM Tris.HCl, 100 mM
tricine, 0.1 % (w/v) SDS, pH 8.25) and the outer reservoir was filled with anode buffer
(200 mM Tris.HCl, pH 8.9), both diluted from a 10× stock (Table 2.1). Gels were run at
35 mA until samples entered the resolving gel, when the current was increased to 65 mA
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until the dye front reached the bottom of the gel. Gels were then stained for 15-60 mins
using Coomassie Instant Blue Stain (Table 2.1), washed, and visualised using a white light
transilluminator.

Table 2.16 Recipe for two 12.5% Tris-tricine SDS-PAGE gels.

Solution component Resolving gel (ml) Stacking gel (mL)

30 % w/v acrylamide:0.8 % w/v bis-acrylamide 6.25 0.83
3 M Tris.HCl, 0.3 % (w/v) SDS, pH 8.45 5 1.55
H2O 1.64 3.72
Glycerol 2 0
10 % (w/v) ammonium persulfate 0.1 0.2
TEMED 0.01 0.01

2.3.1.6 TEV protease treatment

5 mg TEV protease kindly provided by Sophie Cussons, University of Leeds, was added
and the protein isolated in Section 2.3.1.4 was dialysed into 50 mM Tris, 0.5 mM EDTA
and 1 mM DTT (pH 8.0) overnight at 4°C. Digested protein was then loaded onto 5 mL
Ni-NTA resin pre-equilibrated with 50 mM Tris, 300 mM NaCl (pH 8) and the flow through
collected. Resin was washed with 1 column volume 50 mM Tris, 300 mM NaCl (pH 8)
then 2 column volumes elution buffer. Presence of the digested protein in the elution was
determined by SDS-PAGE (Section 2.3.1.5).

2.3.1.7 Gel filtration chromatography

The purified TEV digested protein (Section 2.3.1.6) was concentrated using VivaSpin
10 kDa MWCO concentrator to a final volume of 10 mL and filtered (0.22 µm) before
loading onto a HiLoad 26/600 Superdex 75 gel filtration column (GE Life Sciences) pre-
equilibrated with 20 mM Tris (pH 8.0). The protein was eluted from the column at a flow
rate of 1 mL/min (Table 2.17). Protein elution was monitored by absorbance at 280 nm.
Fractions corresponding to the monomeric protein were analysed by SDS-PAGE (Section
2.3.1.5) and dialysed into purite 18 MΩ H2O before lyophilising.
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Table 2.17 AKTA program for purification of MBP and derivatives by size exclusion chro-
matography.

Breakpoint (mL) Flow rate (mL/min) Fraction size (mL) Injection valve position Auto zero

0 1 0 Load No
10 1 0 Inject Yes
20 1 0 Load No
90 1 1.5 Load No
320 1 0 Load No

2.3.1.8 Mass spectrometry

The molecular mass of purified MBP proteins was measured using electrospray ionisation
mass spectrometry (ESI-MS) carried out by Samantha Lawrence (University of Leeds).
The molecular masses of purified IgG and Fab proteins was measured using ESI-MS
carried out by Adam Long (UCB).

2.3.2 Purification of IgG and Fab proteins from chinese hamster ovary
(CHO) cells

Expression and purification of IgG and Fab antibodies was undertaken at UCB (Slough).
Variants were expressed in proprietary UCB CHO cell line (CHO SXE cells). Sequences
were eukaryote codon-optimised and the heavy and light chains cloned into a proprietary
UCB mammalian expression vector with a human serum albumin (HSA) signal sequence.
The plasmids were co-transfected into CHO SXE cells for expression and grown for 7 days.
The proteins were harvested by centrifugation (4,000 × g, 30 min, 4 °C) and filtered using a
0.22 µm filter. The supernatent was loaded onto Protein A (IgG) or Protein L (Fab) agarose
(MabSelect SuRe; GE Healthcare Life Sciences) pre-equilibrated in PBS. Columns were
washed in 6 column volumes PBS before eluting in 100 mM citric acid pH 3.5 (Protein
A) or pH 2.5 (Protein L) in 2 mL fractions. Elutions were immediately neutralised using
250 µL 1.5 M Tris to give pH 6-7. Fractions were buffer exchanged into PBS and presence
of the purified protein in the elution was determined by SDS-PAGE (Section 2.3.1.5) and
Mass Spectrometry (Section 2.3.1.8).
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2.4 In vitro techniques

2.4.1 Size exclusion chromatography multi angle light scattering (SEC-
MALS)

The oligometric states of MBPWT and MBP4A were analysed by size exclusion chro-
matography (SEC) coupled to a multi-angle light scattering detector (MALS) (miniDAWN
TREOS, Wyatt) using a TSKgel G3000 SWxL column (Tosoh Bioscience) equilibrated
with PBS at room temperature. 50 µL of sample at 51.9 µM (MBPWT) or 51.7 µM (MBP4A)
was loaded onto the column at 0.75 mL/min. Samples were analysed using UV absorbance
at 280 nm, with 3-angle static light scattering and refractive index (Wyatt Optilab T-rEX
detector) also measured. Together they can be analysed to assess the absolute molecular
weight and concentration. Data were collected and analysed using the software ASTRA
version 6.1 (Wyatt), using the Debye model to fit the data.

2.4.2 Circular dichroism (CD) spectroscopy

Far- and near- UV CD were used to assess the secondary and tertiary structures of MBPWT

and variants. To measure secondary structure using far-UV CD, 0.2 mg/mL sample in 10
mM potassium phosphate (pH 7.4) was analysed in a 1 mm cuvette and measurements
were taken from 250 to 180 nm at 25°C. To measure tertiary structure using near-UV CD,
0.6 mg/mL sample in 10 mM potassium phosphate (pH 7.4) was analysed in a 0.1 mm
cuvette and measurements were taken from 350 to 250 nm at 25°C. For both far- and
near-UV CD, empty cuvette and buffer samples were measured as blanks. To assess the
thermal stabilities, the far-UV CD spectra of the proteins at 0.2 mg/mL in a 1 mm cuvette
was measured from 20°C to 90°C in 1°C steps.

2.4.3 Urea denaturation

All urea denaturation experiments were carried out in 10 mM potassium phosphate (pH 7.4)
at 25°C. Solutions of buffer and concentrated urea in buffer were dispensed into Corning
96-well, half-area, black polystyrene plates (3881) using a Microlab ML510B dispenser in
0.2 M denaturant steps. The protein was then dispensed from a 10× concentrated stock
to give a final well volume of 150 µL and final protein concentration of 0.1 µM. All plate
measurements were carried out on a CLARIOstar Plate Reader (BMG Labtech) using an
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excitation wavelength of 280 nm and collecting emission spectra between 335 and 345
nm. Plates were covered with a Corning 96-well microplate aluminium sealing tape to
minimise evaporation (Perez-Riba and Itzhaki, 2017). Urea denaturation curves were fitted
using IgorPro.

2.4.4 8-Anilinonapthalene-1-sulphonic acid (ANS) fluorescence spec-
troscopy

A 1 mM ANS stock was prepared in 1 mL MΩ H2O. The stock concentration was de-
termined using ε350 = 4900 M-1 cm-1 (Azzi, 1974). Samples for fluorescence emission
spectroscopy were prepared in 10 mM potassium phosphate (pH 7.4) with a final con-
centration of 1 µM protein and 100 µM ANS. Fluorescence experiments were carried out
using an excitation wavelength of 380 nm and collecting emission spectra between 400
nm and 600 nm with 1 nm slit widths. Three spectra were recorded and averaged for each
sample. A control was carried out with the dye in buffer.

2.4.5 X-ray crystallography

A protein stock solution of MBPWT (18.4 mg/mL), MBPY283D (20.1 mg/mL) and MBP4A

(21.7 mg/mL) was prepared in 20 mM MES pH 6.2. Maltose was added to the MBPWT

and MBPY283D stocks at a molar ratio of 1:1. Crystals were grown by mixing 0.1 µL
(MBP4A) or 0.2 µL (MBPWT, MBPY283D) of the protein sample and 0.1 µL (MBP4A) or
0.2 µL (MBPWT, MBPY283D) of the crystallization solution in sitting drop plates at 293 K.
The crystallization solution for MBPWT (40% (w/v) PEG 300, 0.1 M Phosphate-Citrate
pH 4.2) and MBPY283D (39-48% (w/v) PEG 300, 0.1 M Phosphate-Citrate pH 4.11) was
prepared from stock solutions. The crystallization solution for MBP4A (50 mM HEPES,
50 mM MOPS, pH 7.5, 7.03% (v/v) MPD, 7.03% (w/v) PEG 1000, 7.03% (w/v) PEG 3350,
and 27 mM each of sodium nitrate, sodium dibasic, and ammonium sulfate) was prepared
from Morpheus Buffer System 2 at pH 7.5, Morpheus Precipitant Mix 4, and Morpheus
NPS Mix (all from Molecular Dimensions).

After 2 weeks, crystals were fished and flash-frozen in liquid nitrogen. The diffraction
data were collected on beamline I24 at Diamond Light Source (U.K.). The data were
processed using the xia2 (Winter, 2010) bundle, with DIALS (Winter et al., 2018) for
integration and using Pointless/Aimless (Evans, 2006; Evans and Murshudov, 2013)
for scaling and merging. The data were processed using CC1/2 and completeness as
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cutoff criteria (Karplus and Diederichs, 2012). The structures were solved by molecular
replacement, using apo MBPWT (PDB 1OMP (Sharff et al., 1992)) as the search model in
PHASER (McCoy et al., 2007). COOT (Emsley et al., 2010) and REFMAC5 (Murshudov
et al., 2011) were used for refinement. The quality of the final structure was assessed using
MolProbity (Chen et al., 2010). Data collection and refinement statistics are shown in
Table 3.1. Figures were prepared using PyMOL (version 2.7, Schrödinger).

2.4.6 Hydrophobic interaction chromatography (HIC)

5 µg IgG samples (1 mg/mL) were spiked in with a mobile phase A solution (1.8 M
ammonium sulfate and 0.1 M sodium phosphate at pH 6.5) to achieve a final ammonium
sulfate concentration of about 1 M before analysis. A Sepax Proteomix HIC butyl-NP5
4.6x 35mm column was used with a linear gradient of mobile phase A and mobile phase B
solution (0.1 M sodium phosphate, pH 6.5) over 26 min at a flow rate of 1 mL/min with
UV absorbance monitoring at 280 nm.

2.4.7 Affinity-capture self-interaction nanoparticle
spectroscopy (AC-SINS)

AC-SINS experiments were undertaken at UCB (Slough). AffiniPure goat anti-human IgG
Fcγ fragment specific (IgGα-Fc) antibodies were buffer exchanged into 20 mM potassium
acetate, pH 4.3 and diluted to 0.4 mg/mL. 50 µL IgGα-Fc was added to 450 µL 20 nm
gold nanoparticles (BBI solutions) and briefly vortexed before being incubated overnight
at room temperature. 55.5 µL 1 µM thiolyated PEG 2000 was added and the particles
incubated at room temperature for 1 hr. Nanoparticles were centrifuged (15,000 rpm, 6
min) and the supernatent carefully removed without disturbing the pellet. Nanoparticles
were resuspended in 120 µL 20 mM potasisum acetate, pH 4.3 and used the same day.
Polyclonal goat IgG (pol-IgG) was buffer exchanged into PBS and diluted to 222 µg/mL.
200 µL pol-IgG was combined with 20 µL mock supernatent and 180 µL 22 µg/mL test
antibody before brief vortexing. 72 µL of this mix was combined with 8 µL nanoparticle
solution in a 384-well polystyrene plate. Samples were incubated at room temperature for
2hrs before measuring the absorbance on a FLUOstar Omega Microplate Reader (BMG
Labech) from 500 nm to 600 nm in 1 nm increments. The maximum absorbance (λmax,
plasmon wavelength) was determined and the relative shift compared to nanoparticles with
the test antibody replaced with PBS was calculated.
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2.4.8 Differential scanning fluorimetry (DSF)

NanoDSF experiments were undertaken at UCB (Slough). 9 µL of 1 mg/mL IgG was
heated from 15-95 °C at a rate of 0.4 °C/minute while monitoring fluorescence (UNcle,
Unchained Labs). Protein unfolding was measured using intrinsic protein fluorescence
by exciting with a 266 nm laser and measuring emission from 315-430 nm. Static light
scattering (SLS) was measured at each temperature to delineate unfolding and aggregation.
Dynamic light scattering (DLS) reads were 4 acquisitions of 5 seconds each and were
taken at the beginning and end of the thermal ramp. Tm and Tagg were determined by
the UNcle Analysis software by using the first derivative (for Tm determination). The
barycentric mean (BCM) of the fluorescence intensity curves from 315-430 nm was used
to plot against temperature, which is defined by Equation 2.1.

λ BCM =

∑
λ

λ I(λ )

∑
λ

I(λ )
(2.1)

Each wavelength value (λ) between 315-430 nm is multiplied by the tryptophan
fluorescence intensity (I) at that wavelength, and the sum of that value for all wavelengths
between 315 to 430 nm is divided by the sum of the fluorescence intensities at those
wavelengths. This results in an ‘averaged’ peak wavelength (λBCM) for a given spectrum
which eliminates noise and accommodates for changes in the shape of the spectrum.

The transition mid-point temperatures (Tm) were calculated using the first derivative
of the fluorescence raw data. This was fitted to one or more gaussians using Origin Pro
2020 version 9.7.0.118. First derivative data displayed in Appendix B.

The temperature onset of aggregation (Tonset) was calculated from the first derivative
of the static light scattering raw data. This was fitted to one or more gaussians using Origin
Pro 2020 version 9.7.0.118. The fit from the first gaussian was normalised between 0 and
1, and the Tonset was defined as the point at which the slope (first derivative) exceeded 0.1
% of the peak value of the first derivative. In other words, a threshold value (0.1 %) was
assigned to measure the point at which the static light scattering began to increase above
the baseline. First derivative data displayed in Appendix B.
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2.4.9 Dot blot analysis

A single colony of fresh E. coli SCS1 cells (transformed with the appropriate plasmid)
was used to inoculate 100 mL sterile LB containing 10 µg/mL tetracycline. Cultures were
incubated overnight at 37°C with shaking (200 rpm). 1 mL of overnight culture was used to
inoculate 100 mL sterile LB containing 10 µg/mL tetracycline and grown at 37°C (shaking
at 200 rpm) until an OD600 of 0.6 was obtained. 10 mL of culture was removed for the
uninduced sample and centrifuged at 4,000 g for 10 min (4°C). Expression of β-lactamase
MBP fusion constructs were induced by the addition of filter-sterilized arabinose to a final
concentration of 0.075 % (w/v) arabinose. Cultures were incubated for 1 h (37°C, 200
rpm) and 10 mL was removed from each (representing the induced sample). The 10 mL
cultures were harvested by centrifugation at 4,000 g for 10 min (4°C). The cell pellets
(uninduced and induced with arabinose) were resuspended in phosphate buffered saline
(PBS, Dulbecco’s PBS, Sigma) to obtain an OD600 of 5. For whole cell samples, 300 µL
of the OD600 = 5 sample was combined with 60 µL 6X loading buffer (150 mM Tris pH
6.8, 300 mM DTT, 6% (w/v) SDS). For soluble samples, 400 µL of the OD600 sample
was centrifuged (16,000 g for 10 min) and the pellet resuspended in 400 µL bacterial
protein extraction reagent (B-PER, ThermoFisher) and incubated with agitation for 10
min. The sample was then centrifuged at 16,000 g for 10 min and the supernatant was
carefully pipetted off. 300 µL of soluble sample was combined with 6× loading buffer.
The remaining insoluble pellet was resuspended in 1× loading buffer and the whole cell,
soluble and insoluble samples were boiled for 10 min. Samples were then centrifuged at
16,000 g for 3 min.

1 µL of protein samples were applied to nitrocellulose membrane and left to dry. Blots
were blocked using 5 % (w/v) milk powder in TBST (Tris-buffered saline Tween; 20 mM
Tris.HCl, 150 mM NaCl, 0.2 % (v/v) Tween-20). Membranes were incubated overnight
with the anti-β-lactamase antibody (CSB-PA352353YA01ENL, Cusabio) diluted 1:10,000
in 5 % (w/v) milk powder in TBST. The membranes were washed for 3× 10 min in
TBST. Membranes were then incubated with goat anti-rabbit IgG horseradish peroxidase
conjugate (7074, New England BioLabs) diluted 1:10,000 in TBST. Membranes were
then washed 3× 10 min in TBST before incubation with SuperSignalTM western pico
chemiluminescent substrate (Thermo Fisher Scientific). The emitted signal was visualised
and imaged using UVItec Q9 Alliance Gel Doc.
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2.5 Tripartite β-lactamase assay (TPBLA)

2.5.1 Preparation of 48-well agar plates

LB agar was autoclaved for 20 minutes at 121°C, 15 psi and left to cool to < 50°C. Tetracy-
cline and arabinose were added to give 10 µg/mL and 0.075 % (w/v) final concentrations,
respectively. Using a multichannel pipette in a sterile environment, 300 µL of medium was
added to the first column of wells in the 48-well plate. The required amount of ampicillin
was added to the agar and mixed before 300 µL was added to each well of the next row
(Table 2.18). This was repeated so that ampicillin concentration increases in predetermined
increments. Plates were left to set in a sterile environment.

Table 2.18 Components required to make four 48-well plates with an ampicillin range of
0-280 µg/mL ampicillin increasing in 40 µg/mL increments.

Ampicillin concentration (µg/mL) Agar volume (mL) 100 mg/ml ampicillin required (µL)

0 200 0
40 192.8 77
80 185.6 74
120 178.4 71
160 171.2 68
200 164 66
240 156.8 63
280 149.6 60

2.5.2 Culture inoculation and induction

A single colony of SCS1 cells transformed with the required plasmid was used to inoculate
100 mL LB containing 10 µg/mL tetracycline. This was incubated overnight at 37°C, 200
rpm. 1 mL of this overnight culture was used to inoculate 100 mL LB containing 10 µg/mL
tetracycline. Cultures were grown at 37°C, 200 rpm until OD600 = 0.6. Expression was
induced by the addition of arabinose to give a final concentration of 0.075 % (w/v) and
cultures were grown for 1 hr, 37°C, 200 rpm. Log10 cell dilutions were performed from
this culture into sterile 170 mM NaCl. 3 µL from each dilution was pipetted onto each
ampicillin concentration and plates were incubated at 37°C for 18 hrs. Following this the
maximal cell dilution allowing growth (MCDGROWTH) was determined for each ampicillin
concentration. The area under the survival curve is calculated as a sum of the areas of 7
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trapezia to give a single value using Equation 2.2 where xi and yi are the x and y values at
any given concentration of ampicillin.

Acurve =
7

∑
i+1

2+ yi + yi+1

2
(xi+1 − xi) (2.2)

2.6 β-lactamase evolution bioassay

2.6.1 Vector design

First design of an appropriate vector was needed, named blaGGSTOP, whereby all the BsaI
sites within the vector were removed and two were introduced within the βLa GS linker.
As BsaI is a Type IIS restriction enzyme it recognises non-palindromic sites and cleaves
outside this site, the vector can be designed so that the final ligated product has no BsaI
sites as they cut themselves out. Between the two BsaI sites in blaGGSTOP a premature stop
codon was introduced as well as the 7bp Bsu36I restriction site. This prematurely ends
translation as well as introducing a frame shift. Consequently, if this template is carried
over into selection, only the first domain of βLa is translated and so it cannot withstand the
ampicillin selection.

2.6.2 Library creation

2.6.2.1 Error-prone PCR

GeneMorph II Random Mutagenesis Kit (Agilent) was used to synthesise an error-prone
PCR (epPCR) product of the test protein (estimated error rate of 4.5 mutations per 1000
bp, Table 2.19) using forward and reverse primers that anneal to the GS linker regions up-
and down-stream of the MBP sequence. The amount of template DNA used in the epPCR
amplification varies depending on the required mutation rate and is detailed in Table 2.19.
The initial amount of target DNA required to achieve a particular mutation frequency refers
to the amount of target DNA to amplify, not the total amount of plasmid DNA template to
add to the reaction. For example, to mutate a 1 kb fragment at a low mutation rate Table
2.19 recommends 500 ng, if this insert is in an overall 4 kb vector then 2 µg of the plasmid
construct should be added to give 500 ng of target DNA. Components for an epPCR
reaction are detailed in Table 2.20 and the thermocycling conditions used are outlined in
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Table 2.21. The epPCR product was purified on a 0.8% (w/v) agarose gel (Section 2.2.4)
using a QIAquick Gel Extraction Kit (Qiagen) according to the manufacturer’s instructions
and used as the template in a second round of PCR to introduce BsaI sites onto the 5′

and 3′ ends using Vent polymerase (Section 2.2.3). For libraries of scFvs AMS134 and
AMS197 (Chapter 4), only one round of PCR was carried out where primers that add
the 5′ and 3′ BsaI sites were used in the epPCR step to increase the library diversity and
reduce the number of steps (Primers are detailed in Appendix A). This second PCR product
was purified in the same way and cloned into blaGGSTOP using the NEB Golden Gate
Assembly Kit (BsaI-HFv2) with an insert to vector molar ratio of 2:1, components are
detailed in Table 2.22. This was transferred to a thermocycler and conditions are detailed
in Table 2.23. Five golden gate reactions (100 µL total) were carried out. These were
pooled and purified using a NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel)
according to the manufacturer’s instructions, eluted in 15 µL purite 18 MΩ H2O and the
concentration determined using NanoDrop (Thermo).

Table 2.19 Mutation frequency vs. initial target quantity for epPCR using Genmorph II
random mutagenesis kit.

Mutation rate Mutation frequency (mutations/kb) Initial target amount (ng)

Low 0-4.5 500-1000
Medium 4.5-9 100-500
High 9-16 0.1-100

Table 2.20 Components for an epPCR using Genmorph II random mutagenesis kit.

Component Volume (µL) Final amount

10× Mutazyme II reaction buffer 5 1×

40 mM dNTP mix 1 200 uM

Primer mix 0.5 250 ng/uL

Mutazyme II 1 2.5 U/uL

Template Variable

Nuclease-free water Up to 50
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Table 2.21 Thermocycling conditions for an epPCR using Genmorph II random mutagene-
sis kit.

Step Temperature (°C) Time

Initial denaturation 95 2 minutes

30 cycles
Denaturation 95 1 minute
Annealing Tm of primer - 5°C 1 minute
Elongation 72 1 minute/kb

Final extension 72 10 minutes

Table 2.22 Components for library generation using golden gate.

Component Amount

Vector (blaGGSTOP) 75 ng
Insert (gel extracted) 25 ng
NEB golden gate enzyme mix 2 µL
T4 ligase buffer 2 µL
Nuclease-free water Up to 20 µL

Table 2.23 Thermocycling conditions for library generation using golden gate.

Step Temperature (°C) Time (min)

Digestion 37 1
45 cycles

Ligation 16 1
Denaturation 60 5
Hold 4

During method development the epPCR step was replaced with a traditional PCR
(Vent polymerase, Section 2.2.3) using WT MBP as a test protein to create a ‘test library’
allowing assessment and identification of any issues with the method and to estimate the
potential library size. Restriction digests (Section 2.2.5) of 1 µg blaGGSTOP, blaMBP and
the test library using Bsu36I were carried out to assess whether the golden gate reaction
had gone to completion. No enzyme controls for the restriction digestion and golden gate
reactions were carried out.

2.6.2.2 Electroporation of TG1 cells

A 1.0 mm cuvette (BioRad) and 1.5 mL Eppendorf were cooled on ice. 150 µL TG1 cells
(Lucigen) in 25 µL aliquots were thawed on ice before being transferred into the Eppendorf
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carefully avoiding introducing bubbles. 240 ng of library was added to the TG1 cells and
the tube carefully stirred to avoid bubbles. The cells were incubated on ice for 1 minute
before being transferred to the 1.0 mm cuvette and electroporated using a MicroPulser
Electroporator (BioRad) (2.5 kV field strength, 335 Ω resistance and 15 µF capacitance).
Within 10 seconds of the pulse, 6 × 1 mL recovery medium was used to wash the cuvette
and transfer the cells to a sterile falcon tube. The 6 mL of culture was incubated at 37°C,
250 rpm, for 1 hr. Serial dilutions were performed and 100 µL of these dilutions was plated
on LB agar with 10 µg/mL tetracycline. The remaining culture was centrifuged (3000xg, 3
min) and the pellet resuspended in 1 mL of supernatent before plating on a pre-prepared
LB agar plate with 10 µg/mL tetracycline. The plates were incubated overnight at 37°C
and the serial dilutions used to estimate the library size. Single colonies were picked for
sequence analysis before the remaining colonies were removed from the bioassay plates
by addition of 10 mL LB medium and 10 mL 50% (v/v) glycerol before scraping off. The
culture was centrifuged (5000xg, 10 min) and purified using a PureYield Plasmid Midiprep
System (ProMega), according to the manufacturer’s instructions.

2.6.3 Directed evolution

SCS1 cells were defrosted on ice for 10 minutes. 100 µL was added to a prechilled
falcon tube. 4 µL of 100 ng/µL of the prepared plasmid library was added to the cells and
incubated on ice for 30 minutes, subjected to 42°C heat shock for 45 seconds followed
by 5 minutes on ice. 950 µL SOC medium (NEB) was added to each falcon tube and the
cultures were incubated (37°C, 200 rpm) for 1 hr. 3 mL SOC medium and tetracycline
(final concentration 10 µg/mL) was added to each falcon tube and the cells were grown
until OD600 = 0.6 (MBP constructs) or for 1 hr (biopharmaceutical derivatives). Expression
of the β-lactamase construct was induced with 0.075% (w/v) arabinose (final concentration)
and grown for a further 1 hour. 1 mL of culture was spread on a bioassay plate containing
2.5% (w/v) LB, 1.5% (w/v) agar, 10 µg/mL tetracycline, 0.075% (w/v) arabinose and three
different ampicillin concentrations and incubated overnight at 37°C. The evolved libraries
were purified in the same way as the naïve libraries using a PureYield Plasmid Midiprep
System (ProMega), according to the manufacturer’s instructions.



2.7 Next-generation sequencing 93

2.7 Next-generation sequencing

2.7.1 Illumina and Pacbio Sequencing

Naïve and evolved libraries were amplified by PCR using primers that bound to the 28-
residue glycine/serine linker that flank the gene of interest within the βLa construct to
add ~150 bp on the 5′ and 3′ ends of the test protein to ensure full coverage by Illumina
sequencing (Appendix A, Table A.4). PCR products were separated on 0.5 % (w/v) agarose
gel (Section 2.2.4), eluted in water and the concentration determined using Qubit (Thermo
Fisher). Two technical repeats of each sample were sent for 150 bp paired end Illumina
sequencing using the Illumina NextSeq 550 at the Microbial Genome Sequencing Centre
(Pittsburgh, PA). One technical repeat of each sample was sent for Pacbio sequencing using
the Sequel® system by Genewiz UK.

2.7.2 EZ-Amplicon sequencing

Naïve and evolved libraries from Section 2.10.5 were amplified with primers that added
Illumina adapters onto the 5′ and 3′ ends (Appendix A, Table A.4). The resulting fragment
covered 199 bp of the gene of interest (HA4). This was sufficient to sequence all the
positions of interest while maximising sequencing depth. 5 µL of PCR product was
visualised using agarose gel electrophoresis (Section 2.2.4), and the remaining PCR
product was purified using NucleoSpin Gel and PCR Clean-up Kit (Macherey-Nagel)
according to the manufacturer’s instructions, eluted in 30 µL purite 18 MΩ H2O and the
concentration determined using Qubit (Thermo Fisher). The concentration was corrected to
20 ng/µL and 25 µL of each sample was sent for 250 bp paired end Illumina EZ-Amplicon
sequencing (Genewiz, UK).

2.7.3 Illumina fragment and Pacbio sequencing analysis

Illumina paired end reads were filtered using cutadapt version 1.18 (Martin, 2011) to
remove adapter sequences, low quality reads (average quality of the read below Q30) and
reads shorter than 40 bp. Reads were aligned to a reference sequence using breseq version
0.34.1 (Deatherage and Barrick, 2014) using bowtie2 version 2.3.4.3 and R version 3.2.2.
The resulting *.bam file was converted to *.sam using samtools (Li et al., 2009; Li, 2011),
INDELS were filtered out and the remaining aligned fragments were translated in frame



94 Materials and methods

using Biopython (Cock et al., 2009; Chapman and Chang, 2000). Mutation frequencies
normalised by coverage and mutated residue counts at each position were calculated using
python 3.7 and plotted using Origin Pro 2020 version 9.7.0.118. The mean mutation
rate at the unmutated GS linker upstream and downstream of the gene of interest was
used as a threshold; a mutation rate below this was classed as zero. This was used to
calculate the log2(fold change) at each residue. Hotspot residues were identified as those
with a log2(fold change) of more than 10% of the maximum log2(fold change) and being
identified in both technical repeats (MBP), or as having a log2(fold change) of more than
two standard deviations from the mean (>2σ) (scFvs). Scripts were written with the help
of Dr Michael Davies, University of Leeds.

Circular consensus sequences (CCS) were generated from raw PacBio reads by Ge-
newiz UK to improve the sequence accuracy. Reads were aligned to a reference sequence
using bowtie2 version 2.3.4.3. INDELS were filtered out and the remaining reads were
translated using Biopython (Cock et al., 2009; Chapman and Chang, 2000), then reads
with premature stop codons were discarded. Mutation frequencies, log2(fold change) and
mutated residue counts at each position were calculated using python 3.7 and plotted using
Origin Pro 2020 version 9.7.0.118. The mean mutation rate at the unmutated GS linker
upstream and downstream of the gene of interest was used as a threshold; a mutation rate
below this was classed as zero. This was used to calculate the log2(fold change) at each
residue. Hotspot residues were identified as those with a log2(fold change) of more than
10% of the maximum log2(fold change) and being identified in both technical repeats.

2.7.4 Illumina EZ-Amplicon sequencing analysis

Paired end reads were merged using BBMerge (Bushnell et al., 2017). Merged reads were
filtered using cutadapt version 1.18 to remove adapter sequences, low quality reads (below
Q40) and reads shorter than 100 bp. Reads were aligned to a reference sequence using
bowtie2 version 2.3.4.3. INDELS were filtered out and the remaining reads were trans-
lated using Biopython, then reads with premature stop codons were discarded. Mutation
frequencies normalised by coverage and mutated residue counts at each position were
calculated using python 3.7 and plotted using Origin Pro 2020 version 9.7.0.118. The
mean mutation rate at the unmutated GS linker upstream and downstream of the gene of
interest was used as a threshold; a mutation rate below this was classed as zero. This was
used to calculate the log2(fold change) at each residue.
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2.8 Hierarchical clustering

To assess correlations and similarites between 13 commonly deployed developability
assays and TPBLA, a hierachical clustering analysis was performed on the Jain Abs
dataset. First, a Spearman’s rank correlation was calculated for each developability assay
to find its correlation with each other developability assay (Equation 2.3).

ρ = 1− 6∑d2
i

n(n2 −1)
(2.3)

Where ρ is the Spearman’s rank correlation coefficient, d2
i is the difference between

two ranks of each observation, and n is the number of observations. The Spearman’s
rank correlation coefficient can be anywhere between +1 to -1, where +1 is a perfect
positive correlation, 0 is no correlation, and -1 is a perfect negative correlation. Then, the
Spearman’s rank was used as an input for the hierachical clustering analyis in Origin Pro
2020 version 9.7.0.118.

2.9 Multiple linear regression analysis for predicting TP-
BLA score

2.9.1 AMSCI mAbs

A multiple regression analysis was conducted in R-studio to examine the correlation be-
tween assays and properties which measure thermal stability, aggregation, self-association
and hydrophobicity with TPBLA score for 12 IgGs provided by UCB Biopharma UK
(Chapter 4). These were; first transition mid-point temperatures (Tm1) calculated us-
ing differential scanning fluorimetry (DSF) or differential scanning calorimetry (DSC),
temperature onset of aggregation (Tonset) calculated using static light scattering (SLS)
or dynamic light scattering (DLS), Affinity-Capture Self-Interaction Nanoparticle Spec-
troscopy (AC-SINS) (Liu et al., 2014), Hydrophobic Interaction Chromatography (HIC)
(Estep et al., 2015), size in kDa, and theoretical pI. A multiple linear regression is defined
by Equation 2.4.

y = β 0 +β 1x1 +β 2x2...+β pxp (2.4)
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Where y is the response variable, x1, x2 and xp are predictor variables, and β1, β2

and βp are coefficients or parameters to be estimated for x1, x2 and xp predictor variables,
respectively. p represents the number of predictor variables used in the model.

To assess the statistical significance of a regression model, an F-test is carried out to
compare the model with zero predictor variables (the intercept only model, or a straight
line), and decide whether the coefficients (β) for each variable improve the models pre-
dictive ability (Figure 2.1). In order for the regression to be statistically significant, the
f-statistic needs to be higher than the critical f-statistic which is a set value based on the
number of degrees of freedom (the number of independent pieces of information that went
into calculating the estimate, or the sample size minus the number of restrictions). The
f-statistic is defined in Equation 2.5.

f =
MSR
MSE

(2.5)

Where MSR is the mean sum of squares for regression, and MSE is the mean sum of
squares for error. The variance explained by the regression model is represented as the
mean sum of squares for the model, or sum squares regression (SSR) (Figure 2.1). This
is essentially assessing whether the regression model is better at explaining the predictor
variable than a straight line. The variance not explained by the model is the sum of squares
for error (SSE), or the sum of squares for residuals (Figure 2.1). The SSE and SSR are
used to calculate the MSE and MSR, respectively. The f-statistic is defined from SSR and
SSE by Equation 2.6

f =
(SSR/DFssr)

(SSE/DFsse)
(2.6)

Where DFssr, or p, is the degrees of freedom for the regression model, or the number
of paramaters or coefficients, and DFsse is the degrees of freedom for error, or the total
number of records (N) minus the number of coefficients (p) minus one (Equation 2.7).

DFsse = N − p−1 (2.7)

Therefore, the f-statistic can be written as in Equation 2.8.
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Fig. 2.1 Mean sum of squares regression and error. The variance explained by the regression
model is represented as the mean sum of squares for the model, or sum squares regression
(SSR). This is essentially assessing whether the regression model is better at explaining the
predictor variable than a straight line. The variance not explained by the model is the sum of
squares for error (SSE), or the sum of squares for residuals. The f-statistic is defined from SSR
and SSE by Equation 2.6. Redrawn with permission from Kumar (2022).

f =
(SSR/p)

(SSE/(N − p−1))
(2.8)

The f-statistic is reported as f(DFssr, DFsse). If the f-statistic is above the critical value,
which is defined based on the degrees of freedom, the model is assumed to be significant.
Furthermore, the absolute value of the f-statistic is used to calculate an exact p-vaue to
determine the significance. Here, a p-value of < 0.05 is classed as statistically significant.
As a rough rule of thumb, the higher the f-statistic the lower the p-value, and thus the more
significant the model.

As well as the f-statistic and p-value, the Pearson correlation coefficient (r) and coeffi-
cient of determination (R2) were used to assess the links between predicted TPBLA score
using these models, and experimental TPBLA score. r represents the correlation between
experimental and predicted TPBLA, whereas R2 measures the proportion of the variance
in predicted TPBLA which can be explained by the predictor variables in the model. In
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other words, r is used to identify patterns within the data, whereas R2 is used to assess the
strength of the model.

For each individual variable (assay or property) used in the model to predict TPBLA
score, there is a β, t-value, and p-value associated with it to measure the statistical signifi-
cance. Essentially, to measure how much the individual variable is significantly predicting
TPBLA score. β is the value used in the model to multiply that metric by, and essentially
the weighting of that metric. The t-value is used to calculate the p-value, which as with
before is used to determine significance where a p-value of < 0.05 is classed as statistically
significant. As a rough rule of thumb, the further the t-value from 0 the lower the p-value,
and thus the more significant the model.

A model including theoretical pI, Tonset by DLS, Tonset by SLS, Tagg by SLS, and
Camsol score was statistically significant (f(5, 5) = 5.142, R2 = 0.787, r = 0.887, p < 0.05).
The fitted model was: TPBLA score = 1490.76 - 398.92(Theoretical pI) + 50.33(Tonset
by DLS) - 54.75(Tonset by SLS) + 36.2(Tagg by SLS) + 476.7(Camsol score). Detailed
statistics for the model can be found in Appendix C, Table C.1.

By removing Tagg by SLS and including theoretical pI, Tonset by DLS, Tonset by SLS,
and Camsol score, the model was statistically significant (f(4, 6) = 5.537, R2 = 0.837, r =
0.915, p < 0.05). The fitted model was: TPBLA score = 1093.66 - 282.79(theoretical pI) +
45.8(Tonset by DLS) - 18(Tonset by SLS) + 512.47(Camsol score). Detailed statistics for
the model can be found in Appendix C, Table C.2.

A model using only Tonset DLS, Camsol score, and theoretical pI is able to predict
TPBLA score reasonably well. The overall regression was statistically significant (f(3, 7)
= 7.147, R2 = 0.754, r = 0.868, p < 0.05). The fitted model was: 756.443 - 226.442(Theo-
retical pI) + 25.882(Tonset by DLS) + 493.901(Camsol score). Detailed statistics for the
model can be found in Appendix C, Table C.3.

The most parsimonious model was using Tonset by DLS and theoretical pI to give:
TPBLA score = 1495.59 + 24.24(Tonset by DLS) - 311.62(theoretical pI). The overall
regression was statistically significant (f(2, 8) = 6.192, R2 = 0.608, r = 0.779, p = 0.0237).
Both parameters were significant predictors of TPBLA score (Tonset by DLS: β= 24.24, t
= 3.194, p = 0.01; theoretical pI: β= -311.62, t = -3.028, p = 0.02). Detailed statistics for
the model can be found in Appendix C, Table C.4.
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2.9.2 Jain mAbs

A multiple regression analysis was conducted in R-studio to examine the influence of com-
mon developability assays on TPBLA score for 35 clinically relevant therapeutics (Chapter
4). The developability assays were; HEK titer, Thermal midpoint (Tm) determination
using differential scanning fluorimetry (DSF) (He et al., 2011), Hydrophobic Interaction
Chromatography (HIC) (Estep et al., 2015), Standup Monolayer Adsorption Chromatog-
raphy (SMAC) (Kohli et al., 2015), Cross Interaction Chromatography (CIC) (Jacobs
et al., 2010), Polyspecificity Reagent (PSR) binding (Xu et al., 2013), Accelerated stability
(AS), Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS) (Liu et al.,
2014), Salt-Gradient AC-SINS (SGAC-SINS) (Estep et al., 2015), Clone Self-Interaction
by Biolayer Interferometry (CSI-BLI) (Sun et al., 2013), Enzyme-Linked Immunosorbent
Assay (ELISA) (Mouquet et al., 2010), Baculovirus particle (BVP) assay (Hötzel et al.,
2012), and Extensional and shear flow device (EFD) (Willis et al., 2020).

An initial model included 7 assays: Tm by DSF, SMAC, AS, PSR binding, CIC, theo-
retical pI, and scFv molecular weight. The fitted model was: TPBLA score = 2402.4209 +
19.5714(Tm by DSF) - 44.9978(SMAC retention time) + 783.8614(AS) - 362.7396(PSR
binding) + 122.7285(CIC retention time) - 122.1716(theoretical pI) - 0.1154(scFv molecu-
lar weight). The overall regression was statistically significant (f(7, 27) = 3.968, R2 = 0.51,
r = 0.71, p = 0.004). Detailed statistics for the model can be found in Appendix D, Table
D.1.

Individual parameters were removed systematically to find the most parsimonious
model. Removing AS gives a statistically significant model: TPBLA score = 2075.57155
+ 18.09389(Tm by DSF) - 50.23715(SMAC retention time) - 218.10491(PSR binding)
+ 115.68934(CIC retention time) - 135.80606(theoretical pI) - 0.08861(scFv molecular
weight). The overall regression was statistically significant (f(6, 28) = 3.913, R2 = 0.46, r =
0.68, p = 0.005), however using this model PSR and molecular weight do not significantly
predict TPBLA score (p > 0.1). Detailed statistics for the model can be found in Appendix
D, Table D.2.

Removing molecular weight gives a statistically significant model: TPBLA score =
-268.19 + 17.47(Tm by DSF) - 61.70(SMAC retention time) - 263.78(PSR binding) +
134.40(CIC retention time) - 132.78(theoretical pI). The overall regression was statistically
significant (f(5, 29) = 4.116, R2 = 0.42, r = 0.64, p = 0.006) where all parameters signifi-
cantly predict TPBLA score (p < 0.1). Detailed statistics for the model can be found in
Appendix D, Table D.3.



100 Materials and methods

The model with 5 parmeters was re-calculated without 6 mAbs to see if it could be
used to predict their TPBLA score. This fitted model was: -158.507 + 16.164(Tm by DSF)
- 65.309(SMAC retention time) - 288.447(PSR binding) + 142.548(CIC retention time) -
137.56(theoretical pI). The overall regression was statistically significant (f(5, 23) = 3.375,
R2 = 0.42, r = 0.64, p = 0.01971) where all parameters significantly predict TPBLA score
(p < 0.1). Detailed statistics for the model can be found in Appendix D, Table D.4.

2.10 Towards an assay for the simultaneous evolution of
aggregation resistance and binding affinity

2.10.1 Western blot analysis

A single colony of fresh E. coli SCS1 cells (transformed with the appropriate plasmid)
was used to inoculate 100 mL sterile LB containing 10 µg/mL tetracycline. Cultures were
incubated overnight at 37°C with shaking (200 rpm). 1 mL of overnight culture was
used to inoculate 100 mL sterile LB containing 10 µg/mL tetracycline and grown at 37°C
(shaking at 200 rpm) until an OD600 of 0.6 was obtained. 10 mL of culture was removed
for the uninduced sample and centrifuged at 4,000 g for 10 min (4°C). Expression of
HA4-β-lactamase-mNG2 and SH2-mNG2 fusion constructs were induced by the addition
of filter-sterilized arabinose to a final concentration of 0.075 % (w/v) arabinose. Cultures
were incubated for 1 h (37°C, 200 rpm) and 10 mL was removed from each (representing
the induced sample). The 10 mL cultures were harvested by centrifugation at 4,000 g for
10 min (4°C). The cell pellets (uninduced and induced with arabinose) were resuspended
in phosphate buffered saline (PBS, Dulbecco’s PBS, Sigma) to obtain an OD600 of 5. For
whole cell samples, 20 µL of the OD600 = 5 sample was combined with 8 µL PBS, 2 µL 1
M DTT and 10 µL of 4× loading dye (200 mM Tris.HCl, pH 6.8, 6 % (v/v) SDS, 0.3 %
(w/v) bromophenol blue, 40 % (v/v) glycerol).

For the periplasmic fraction, 1 mL of OD600 = 5 culture was pelleted by centrifugation
at 4,000 g for 3 min and the supernatant discarded. The pellet was resuspended in 900
µL 0.1 M Tris pH 8.0, 500 mM sucrose, 0.5 mM EDTA pH 8.0 and incubated for 5 min
at room temperature. The cells were centrifuged (4,000 g, 3 min) and the supernatant
discarded. The pellet was resuspended in 400 µL purite 18 MΩ H2O and incubated on ice
for 15 seconds before the addition of 20 µL 20 mM MgSO4. The sample was centrifuged
(14,000 g, 5 min) and the supernatant (periplasmic fraction) was carefully pipetted off. 28
µL of the periplasmic fraction was combined with 2 µL 1 M DTT and 10 µL 4× loading
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dye. For the cytoplasmic fraction, the resulting pellet was resuspended in 400 µL 400 µL
bacterial protein extraction reagent (B-PER, ThermoFisher) and incubated with agitation
for 10 min. The sample was then centrifuged at 16,000 g for 10 min and the supernatant
was carefully pipetted off. 28 µL of this was combined with 2 µL 1 M DTT and 10 µL
4× loading dye. The resulting insoluble pellet was resuspended in 400 µL PBS and 28
µL of this was combined with 2 µL 1 M DTT and 10 µL 4× loading dye. The whole cell,
periplasmic fraction and cytoplasmic fraction, and insoluble samples were then incubated
at 90°C for 10 min.

Protein samples were separated on a BIORAD Mini-PROTEAN TGX precast elec-
trophoresis gel and were transferred to a BIORAD 0.2 µm polyvinylidene fluoride mem-
brane using a Trans-Blot Turbo Semi-Dry (Bio-Rad Ltd). Blocking was performed using 5
% (w/v) milk powder in TBST (Tris-buffered saline Tween; 20 mM Tris.HCl, 150 mM NaCl,
0.2 % (v/v) Tween-20). Membranes were incubated overnight with the anti-β-lactamase
antibody (CSB-PA352353YA01ENL, Cusabio) or anti-Abl SH2 domain antibody (06-465,
Sigma-Aldrich) diluted 1:10,000 in 5 % (w/v) milk powder in TBST. The membranes were
washed for 3 × 10 mL in TBST. Membranes were then incubated with goat anti-rabbit IgG
horseradish peroxidase (HRP) conjugate (7074, New England BioLabs) or anti-mouse IgG
HRP conjugate (Cell Signaling Technology, 7076S) diluted 1:10,000 in TBST. Membranes
were then washed 3 × 10 mL in TBST before incubation with SuperSignalTM western pico
chemiluminescent substrate (Thermo Fisher Scientific). The emitted signal was visualised
and imaged using UVItec Q9 Alliance Gel Doc.

2.10.2 Fluorescence spectroscopy

A single colony of SCS1 cells transformed with the appropriate plasmid was used to
innoculate 5 mL LB containing 10 µg/mL tetracycline. This was incubated overnight
at 37°C, 200 rpm. 0.2 mL of this overnight culture was used to inoculate 20 mL LB
containing 10 µg/mL tetracycline. Cultures were grown at 37°C, 200 rpm until OD600

= 0.6. 5 mL of culture was removed for the uninduced sample and centrifuged at 4,000
g for 10 min (4°C). Expression was induced by the addition of arabinose to give a final
concentration of 0.075 % (w/v) and cultures were grown for a further 3 hr, 37 °C, 200
rpm. 5 mL of culture was harvested by centrifugation at 4,000 g for 10 min (4°C). The cell
pellets (uninduced and induced with arabinose) were resuspended in phosphate buffered
saline (PBS, Dulbecco’s PBS, Sigma) to obtain 1 mL at OD600 = 1.
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To isolate the periplasmic fraction, 1 mL of OD600 = 1 culture was pelleted by centrifu-
gation at 4,000 g for 3 min and the supernatant discarded. The pellet was resuspended in
900 µL 0.1 M Tris pH 8.0, 500 mM sucrose, 0.5 mM EDTA pH 8.0 and incubated for 5
min at room temperature. The cells were centrifuged (4,000 g, 3 min) and the supernatant
discarded. The pellet was resuspended in 400 µL purite 18 MΩ H2O and incubated on ice
for 15 seconds before the addition of 20 µL 20 mM MgSO4. The sample was centrifuged
(14,000 g, 5 min) and the supernatant was carefully pipetted off. 300 µL of this was mixed
with 300 µL PBS to give the periplasmic fraction. To isolate the cytoplasmic fraction, the
resulting pellet was resuspended in 400 µL bacterial protein extraction reagent (B-PER,
ThermoFisher) and incubated with agitation for 10 min. The sample was then centrifuged
at 16,000 g for 10 min and the supernatant was carefully pipetted off. 300 µL of this was
mixed with 300 µL PBS to give the cytoplasmic fraction.

mNeonGreen2 fluorescence in the periplasm was measured using an excitation wave-
length of 488 nm and collecting emission spectra between 500 nm and 530 nm with 1 nm
slit widths. mScarlet-I fluorescence in the cytoplasm was measured using an excitation
wavelength of 569 nm and collecting emission spectra between 580 nm and 600 nm with 1
nm slit widths. A control was carried out with PBS only.

2.10.3 Plate reader fluorescence

A single colony of SCS1 cells transformed with the appropriate plasmids were used to
innoculate 5 mL LB containing 10 µg/mL tetracycline and 50 µg/mL kanamycin. This
was incubated overnight at 37°C, 200 rpm. 0.1 mL of this overnight culture was used to
inoculate 10 mL LB containing 10 µg/mL tetracycline and 50 µg/mL kanamycin. Cultures
were grown at 37°C, 200 rpm until OD600 = 0.3. Expression was induced by the addition
of arabinose (β-lactamase fusion) and IPTG (CadC-SH2). Dimerisation of the VHH
domain was induced via the addition of 50 - 100 µM caffeine. 100 µL of culture was
added to the wells of a 96-well flat bottom assay plate and sealed with adhesive sealing
film. Green fluorescence was monitored in a FLUOstar Omega plate reader at 37 °C with
continuous orbital agitation at 200 rpm. The fluorescence of sfGFP was excited at 488 nm
and fluorescence emission was monitored at 561 nm.
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2.10.4 Fluorescence activated cell sorting

Cells from an overnight culture (Section 2.10.3) were centrifuged and resuspended in PBS
to OD600 = 0.01. For visualisation, individual cells were sorted using a Cytoflex S Flow
Cytometer (Beckman Coulter). Green fluorescence (mNeonGreen2, sfGFP) was measured
using an excitation laser at 488 nm and measuring emission using an excitation band pass
filter of 525/40 nm. Side and forward scattering was measured and used to identify whole
cells and to filter out lysed or doublet cells. For sorting, individual cells were sorted using
a FACS Melody (BD Biosciences). Sorting experiments were carried out at the University
of Leeds Bioimaging Facility with Dr Ruth Hughes. Green fluorescence was measured
using an excitation laser at 488 nm and measuring emission using an excitation band pass
filter of 510/10 nm. Cells with positive fluorescence were sorted into LB. Sorted cells were
used to inoculate 20 mL LB containing 10 µg/mL tetracycline and 50 µg/mL kanamycin
and grown overnight at 37°C, 200 rpm. The resulting DNA was sequenced using Sanger
sequencing (Section 2.2.9) and Illumina EZ-Amplicon sequencing (Section 2.7.2).

2.10.5 Dual selection screening

2.10.5.1 TPBLA screen for solubility

A ‘library’ was created mixing equal molar amounts of blaHA4WT-VHH, blaHA4Y87A-
VHH, blaHA42A-VHH, and blaHA4Y87A 2A-VHH (in the pBR322 TPBLA plasmid, Table
2.15). 100 µL of SCS1 cells were transformed with 2 µL of this ‘library’ and 2 µL of
pHJ12 CadC-SH2. Cells were incubated on ice for 30 minutes, subjected to 42°C heat
shock for 45 seconds followed by 5 minutes on ice. 950 µL SOC medium (NEB) was
added to each falcon tube and the cultures were incubated (37°C, 200 rpm) for 1 hr. 3
mL SOC medium, tetracycline (final concentration 10 µg/mL), and kanamycin (final
concentration 50 µg/mL) was added to each falcon tube and the cells were grown for 1 hr.
Expression of the β-lactamase-VHH construct was induced with 0.075% (w/v) arabinose
(final concentration) and grown for a further 1 hour. 1 mL of culture was spread on a
bioassay plate containing 2.5% (w/v) LB, 1.5% (w/v) agar, 10 µg/mL tetracycline, 50 µg/mL
kanamycin, 0.075% (w/v) arabinose and three different ampicillin (5, 10, and 15 µg/mL)
concentrations and incubated overnight at 37°C. The evolved libraries were scraped and
used to inoculate 10 mL LB containing 10 µg/mL tetracycline, 50 µg/mL kanamycin. Cells
were grown overnight (37 °C, 200 rpm) and the resulting DNA purified using a QIAquick
Spin Miniprep Kit (QIAGEN, Crawley, UK), according to the manufacturer’s instructions.
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2.10.5.2 FACS screen for binding affinity

20 µL of SCS1 cells were transformed with 2 µL of the DNA purified in Section 2.10.5.1.
A control was set up using 2 µL of an equal mix of pBR322 blaHA4-VHH blaHA4Y87A-
VHH, and 1 µL of pHJ12 CadC-SH2 to transform 20 µL SCS1 cells. Cells were incubated
on ice for 30 minutes, subjected to 42°C heat shock for 45 seconds followed by 5 minutes
on ice. 200 µL SOC medium (NEB) was added to each falcon tube and the cultures were
incubated (37°C, 200 rpm) for 1 hr. These cells were used to inoculate 5 mL LB containing
10 µg/mL tetracycline, 50 µg/mL kanamycin and grown overnight at 37 °C, 200 rpm.

The overnight grow was diluted 1:1000 into LB containing 10 µg/mL tetracycline and
50 µg/mL kanamycin and grown at 37°C, 200 rpm until OD600 = 0.3 (Section 2.10.3).
Expression and dimerisation of VHH was induced via the addition of 0.01 mM arabinose,
25 µM IPTG, and 100 µM caffeine (final concentrations). 100 µL of culture was added
to the wells of a 96-well flat bottom assay plate and sealed with adhesive sealing film.
Green fluorescence was monitored in a FLUOstar Omega plate reader at 37 °C with
continuous orbital agitation at 200 rpm. The fluorescence of sfGFP was excited at 488 nm
and fluorescence emission was monitored at 561 nm.

Cells were sorted using FACS Melody as described in Section 2.10.4, and the resulting
DNA sequenced using Sanger sequencing (Section 2.2.9) and Illumina EZ-Amplicon
sequencing (Section 2.7.2).



Chapter 3

Combining deep sequencing with
TPBLA for directed evolution

3.1 Introduction

The TPBLA described in Section 1.7.4 has previously been utilised to successfully assess
and evolve thermodynamic stability (Foit et al., 2009) and aggregation propensity (Ebo
et al., 2020a) in a wide range of proteins, as well as to identify small molecule inhibitors
of the aggregation of amyloid proteins (Saunders et al., 2016). However, previous work
using TPBLA for directed evolution studies was limited by first-generation sequencing
techniques, making the process laborious, low-throughput and high cost. This chapter
aimed to combine TPBLA with the power of deep sequencing to enhance the throughput of
the assay and create large datasets of mutational data to better understand the mechanisms
whereby TPBLA evolves protein behaviour. For a directed evolution experiment a random
mutated library must be created, however common approaches to create these libraries
have their own limitations, particularly when utilising error-prone PCR (epPCR). Often
the rate-limiting step for these libraries is the cloning of the epPCR fragment back into
the template vector (Abou-Nader and Benedik, 2010). Therefore, we sought to develop
a robust methodology for creating large randomly mutated plasmid libraries by utilising
golden gate assembly, and future selection of improved properties using TPBLA.
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Fig. 3.1 Sequence alignment of MBPWT, MBPY283D, and MBP4A Amino acid sequences of
the variants used in this study. MBPY283D has been previously shown to introduce a folding de-
fect (Chun et al., 1993). MBP4A was designed by introducing four mutations L160A, I161A, L192A
and L195A to reduce the thermodynamic stability by introduction of a cavity. Sequences aligned
using MultAlin (Corpet, 1988), figure made using ESPript 3.0 (Robert and Gouet, 2014).
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3.1.1 Maltose binding protein

This chapter utilises maltose binding protein (MBP) as a model test protein, providing an
example of a well-studied, highly soluble, and highly expressed protein. MBP is a 42 kDa
periplasmic protein comprised of two globular domains separated by a groove in which
maltose binds (Duan et al., 2001). Upon binding to maltose these two domains rotate to
clamp down on the ligand so that it is bound between both domains, forming a "closed"
structure (Duan et al., 2001). In the unbound state, both domains rotate and form an "open"
structure, exposing the sugar binding cleft (Duan et al., 2001). MBP is often exploited
as a solubility tag to aid in folding and solubility of difficult to express proteins (Salema
and Fernández, 2013; Costa et al., 2014; Nguyen et al., 2016; Lénon et al., 2021; Raran-
Kurussi et al., 2022; Jo, 2022). To evaluate the ability of TPBLA to selectively evolve
aggregation resistance and thermodynamic stability, two distinctive sequence liabilities
were introduced into MBP (Figure 3.1). A Y283D substitution which has been shown
previously to introduce a folding defect, resulting in the accumulation of kinetically
trapped folding intermediates, however the extent by which this mutation impacts protein
aggregation is unclear (Chun et al., 1993). This variant has been used in folding studies as
a "slow-folding species that does not aggregate by fluorescence spectroscopy" (Sparrer
et al., 1997), however it has also been exploited in directed evolution studies to evolve
solubility as it was shown to have reduced soluble expression in E. coli when compared
with wild-type MBP (Wang et al., 2018). Furthermore, a study assessing various MBP
point mutants and their effect on their fusion proteins demonstrated that MBPY283D is
thermodynamically destabilised with respect to wild-type and has significantly lower
expression of soluble protein in E. coli when analysed by SDS-PAGE (~35% soluble
MBPY283D compared with ~100% soluble MBPWT) (Fox et al., 2001). Moreover, when
used as a fusion protein MBPY283D significantly reduced the soluble expression of the
fusion construct with <10% soluble protein expressed for 3 different fusion constructs (Fox
et al., 2001). The rationale was that the rate of MBP folding is crucial for promoting
solubility of the fusion construct. Also in the same study, MBPY283D was shown to have a
higher thermodynamic stability than other single point mutants assessed, however these
mutants displayed soluble phenotypes. Nevertheless, this mutation was selected to develop
our high-throughput evolution methodology using a slow-folding, potentially aggregating
variant.

The second MBP variant assessed is MBP4A, a variant designed in this study used
to analyse the effect of solely reducing the thermodynamic stability without altering the
overall global fold. Simple ‘large-to-small’ substitutions of buried leucine or isoleucine
residues to alanine residues (L160A, I161A, L192A, L195A) were introduced within the
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hydrophobic core of MBP, as such mutations have been shown to result in destabilisation
by introduction of a cavity (Eriksson et al., 1992). Using MBP and these two variants as a
model system we develop a next-generation sequencing approach to enhance TPBLA and
enable massively parallel analysis of thousands of variants in a high-throughput manner.

3.1.2 Directed evolution

As discussed at length in Section 1.6.2, directed evolution is a widely exploited technique
for the selective evolution of desirable properties in a protein. In contrast to rational
design (Section 1.6.1), directed evolution does not require prior knowledge about the
protein of interest, making it a powerful tool for biopharmaceutical engineering and for the
development of novel therapeutics. Often antibodies identified during affinity maturation
have reduced thermodynamic stability or an increased aggregation propensity, as proteins
are only marginally stable the majority of mutations are likely to be destabilising (Julian
et al., 2017). The complex mechanisms governing thermodynamic stability and aggregation
propensity will differ between proteins, making it incredibly difficult to predict. Therefore,
it is of vital importance to have a robust tool for identifying stabilising and solubilising
mutations in a high-throughput manner to streamline the development pipeline and vastly
improve the developability of a biotherapeutic.

3.1.3 Aims of the study

This chapter adapts the previously developed TPBLA to increase its throughput and ease
of use to evolve variants of maltose binding protein (MBP). Combining TPBLA with
Illumina and Pacbio sequencing is shown to have the potential to assess thousands of
evolved variants to identify stabilising and solubilising mutations in a high-throughput
manner. The relative ease and low-cost of our method make TPBLA a powerful tool for
the high-throughput engineering of protein solubility.
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3.2 Results

3.2.1 TPBLA can be used to assess different sequence liabilities

TPBLA has previously been used to assess the aggregation propensity of intrinsically
disordered proteins as well as various therapeutic scaffolds and has additionally been
correlated to the thermodynamic stability of proteins (Foit et al., 2009; Saunders et al.,
2016; Ebo et al., 2020a). The question remains as to which property is the driving
force for performance in TPBLA. To test this, we assessed wild-type MBP, as well
as a known slow folding mutant (Y283D) that reduces the folding rate and causes the
protein to be caught in kinetic traps and form insoluble aggregates (Chun et al., 1993).
In addition, a thermodynamically destabilised mutant (4A) which was designed in the
current study by mutating leucine or isoleucine to alanine (L160A, I161A, L192A, L195A)
within the core of the second domain of the protein was generated. These substitutions
should reduce the thermodynamic stability of MBP by introducing a cavity within its
hydrophobic core (Eriksson et al., 1992) (Figure 3.1). These proteins are referred here to
as MBPWT, MBPY283D and MBP4A, respectively (Figure 3.2C). MBP4A was designed by
systematically introducing one (L160A), two (L160A + I161A), then four (L160A, I161A,
L192A, L195A) point mutations until the desired destabilising affect had been achieved,
as assessed by TPBLA (Figure 3.2D, E).

The in vivo growth score of bacteria expressing tripartite β-lactamase with MBPWT,
MBPY283D or MBP4A as the test protein was measured in a 48 well plate format over
an ampicillin concentration range of 0-280 µg/mL. Both MBPY283D and MBP4A show
reduced growth in the assay with respect to MBPWT, with MBPY283D having the lowest in
vivo growth (area under the antibiotic survival curve, Figure 3.2D, E).

MBPWT, MBPY283D and MBP4A were expressed and purified in E. coli for biophysical
characterisation. MBPWT (Figure 3.3) and MBPY283D (Figure 3.4) were purified from the
soluble fraction by Immobilized-metal affinity chromatography (IMAC) using a HisTag.
MBP4A (Figure 3.5) expressed almost exclusively in the insoluble fraction, so needed to be
re-folded prior to HisTag purification. For all three proteins, the HisTag was then cleaved
off using TEV protease before a final polishing gel filtration step was carried out to isolate
the monomer. The monomeric protein for MBPWT (Figure 3.3D), MBPY283D (Figure 3.4D)
and MBP4A (Figure 3.5E) was analysed using mass spectrometry to confirm its purity.
These purified proteins were then characterised based on their structure, stability, and
aggregation behaviours to provide a starting point for future directed evolution experiments
using TPBLA.
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Fig. 3.2 In vivo tripartite β-lactamase assay (TPBLA). A) TPBLA construct. Test protein
(green) is inserted between two domains (D1, domain 1; D2, domain 2) of genetically separated
β-lactamase (orange and blue), joined by a 28-residue glycine/serine linker (grey). B) Correct
folding of the test protein results in association of the two β-lactamase domains, forming the
active enzyme that can hydrolyse β-lactam antibiotics. Aggregation of the test protein blocks
association of the two β-lactamase domains, increasing the E. coli ’s sensitivity to β-lactams. C)
Position of the Y283D and 4A mutations. D) In vivo screen of MBPWT and variants. Antibiotic
survival curve showing the maximum cell dilution allowing growth (MCDGROWTH) over an ampicillin
concentration range of 0-280 µg/mL. Error bars show standard error of the mean (S.E.M) from
three independent experiments. E) Area under the antibiotic survival curve (AUC) calculated for
MBPWT, MBPY283D and MBP4A, screened at 0-280 µg/mL ampicillin. Error bars show standard
error of the mean (S.E.M) from three independent experiments. Dotted line shows the maximum
AUC attainable at this antibiotic concentration range. F) MBP4A was designed by systematically
introducing one (L160A, MBP 1A), two (L160A + I161A, MBP 2A), then four (L160A, I161A, L192A,
L195A, MBP 4A) point mutations until the desired destabilising affect had been achieved. This
was measured as a reduction in in vivo growth score. Error bars show standard error of the mean
(S.E.M) from three independent experiments. G) Area under the antibiotic survival curve (AUC)
calculated for MBP1A, MBP2A and MBP4A. Error bars show standard error of the mean (S.E.M)
from three independent experiments. Dotted line shows the maximum AUC attainable at this
antibiotic concentration range.
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Fig. 3.3 Purification of MBPWT in autoinduction media. A) HisTrap fractions from purification of
MBPWT. The eluted protein was cleaved using TEV protease to remove the HisTag. B) Cleaved
MBPWT was separated from uncleaved his-MBPWT by running over a HisTrap column and col-
lecting the unbound protein (flow through). C) The resulting protein was purified on a HiLoad
Superdex 75 gel filtration column to isolate the monomeric protein. D) Deconvoluted mass spec-
tra. Peak A corresponds to MBPWT. Peak B is one additional species +41 Da, which corresponds
to a single molecule of acetonitrile likely picked up during sample preparation as this is the solvent
used in the mobile phase. Mass spectrometry experiments and analysis carried out by Samantha
Lawrence, University of Leeds.
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Fig. 3.4 Purification of MBPY283D in autoinduction media. A) HisTrap fractions from purifi-
cation of MBPY283D. The eluted protein was cleaved using TEV protease to remove the HisTag.
B) Cleaved MBPY283D was separated from uncleaved his-MBPY283D by running over a HisTrap
column and collecting the unbound protein (flow through). C) The resulting protein was purified
on a HiLoad Superdex 75 gel filtration column to isolate the monomeric protein. D) Deconvoluted
mass spectra. Peak A corresponds to MBPY283D. Peak B is one additional species +41 Da, which
corresponds to a single molecule of acetonitrile likely picked up during sample preparation as this
is the solvent used in the mobile phase. Mass spectrometry experiments and analysis carried out
by Samantha Lawrence, University of Leeds.
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Fig. 3.5 Refolding and purification of MBP4A in autoinduction media. A) MBP4A was not ex-
pressed in the soluble fraction so could not be purified in the same way as MBPWT or MBPY283D.
The insoluble protein was unfolded in 8M Urea before being re-folded (For a more detailed method,
see Section 2.3.1.3). B) The refolded his-MBP4A was then purified on a HisTrap column. The
eluted protein was cleaved using TEV protease to remove the HisTag. C) Cleaved MBP4A was
separated from uncleaved his-MBP4A by running over a HisTrap column and collecting the un-
bound protein (flow through). D) The resulting protein was purified on a HiLoad Superdex 75
gel filtration column to isolate the monomeric protein. E) Deconvoluted mass spectra. Peak A
corresponds to MBP4A. Peak B is one additional species +41 Da, which corresponds to a single
molecule of acetonitrile likely picked up during sample preparation as this is the solvent used in the
mobile phase. Mass spectrometry experiments and analysis carried out by Samantha Lawrence,
University of Leeds.
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Fig. 3.6 Biochemical characterisation of MBPWT, MBPY283D, and MBP4A. A) Far and B) near
UV CD spectra in 10 mM potassium phosphate pH 7.4. Dotted line shows zero, near UV spectra
is zeroed. All proteins show characteristic α helical spectra. C) Position of MBP4A mutations rela-
tive to intrinsic tryptophans. These mutations could alter the tryptophan environment, explaining
the change in the near UV CD spectra (particularly at 290-300 nm). C) Circular dichroism thermal
melt (temperature range 25 °C to 80 °C, protein concentration 0.15 mg/mL) fitted with a sigmoidal
curve and D) urea denaturation of MBPWT, MBPY283D and MBP4A (protein concentration 0.1 µM)
measured using Trp fluorescence in 10 mM potassium phosphate (pH 7.4) fitted to a two state
unfolding curve. E) 8-Anilinonapthalene-1-sulphonic acid (ANS) fluorescence spectroscopy show-
ing increased binding for MBP4A indicating more exposure of hydrophobic patches on the surface,
or a ‘loosening’ of the core structure allowing ANS in to bind. F) Gel filtration chromatography of
MBPWT, MBPY283D and MBP4A showing high molecular weight species for MBP4A and a lower elu-
tion volume. G) Size exclusion chromatography multi angle light scattering (SEC-MALS) shows
MBP4A and MBPWT are both monomeric (MBPWT = 39.8 kDa, MBP4A = 39.2 kDa), although
MBP4A has a smaller elution volume. Dashed lines represent MALS data.
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MBPY283D retains the same overall global fold as MBPWT, having comparable sec-
ondary and tertiary structures as determined by far and near UV circular dichroism (Figure
3.6A,B). MBP4A has a reduction in helicity and slight change in tryptophan environment,
as assessed by far and near UV circular dichroism, respectively (Figure 3.6A-C). Both
variants are thermally destabilised with respect to MBPWT, as determined by circular
dichroism thermal melt (Figure 3.6D). MBP4A had the lowest thermal melting midpoint
(Tm) (45.4 °C), compared with MBPY283D (Tm = 48.0 °C) and MBPWT (Tm = 53.2 °C).

As the pre- and post- transitions from the urea denaturation curves have low signal to
noise, the data was used to calculate the midpoint denaturant concentration (Cm) rather
than ΔG (Figure 3.6E). ΔG is very sensitive to changes in the pre- and post- transitions,
therefore any calculation of ΔG from this data would be inaccurate. As with the thermal
stability, MBP4A had the lowest Cm (1.87 M), compared with MBPY283D (Cm = 2.97
M) and MBPWT (Cm = 3.19 M). This again demonstrates the effect of the destabilising
mutations on MBP4A.

MBPWT, MBPY283D and MBP4A were crystallised to determine the affect of the point
mutations on the overall structure of MBP. The crystal structure also gives something
to map mutational hotspots on to following directed evolution with TPBLA. The crystal
structures of MBPWT, MBPY283D, and MBP4A were solved at 1.7 Å, 1.4 Å, and 2.1 Å,
respectively. MBPY283D has a similar crystal structure to MBPWT (RMSD = 0.159Å)
although the Asp283 introduced eliminates a polar interaction between the wild-type
Asp30 potentially exposing an otherwise buried patch of hydrophobic residues that may
have been protected in the wild-type structure (Figure 3.7). This mutation may slow down
folding resulting in aggregation (Figure 3.7). MBP4A has undergone significant domain
movement in the crystal structure compared with MBPWT, and part of the second domain
(residues 149-207) is poorly resolved, indicating the protein is more dynamic (Figure 3.8A).
Data collection and refinement statistics for the crystal structures are shown in Table 3.1.
MBP4A forms a dimer in the crystal structure (Figure 3.9) but is monomeric in solution
(SEC-MALS, Figure 3.6G-H) suggesting the dimeric state is a crystal packing artefact.
Nonetheless, the lack of density in the crystal structure indicates the second domain has
been highly destabilised. The 4A mutations may destabilise the protein by removing van
der Waals interactions within the core and forming a cavity (Figure 3.8B). This results
in the formation of a less packed core that allows 8-Anilinonaphthalene-1-sulfonic acid
(ANS) in to bind and creates a more open monomer that has a shorter retention time on a
SEC column compared with MBPWT (Figure 3.6F).
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Fig. 3.7 Comparison of MBPWT, MBPY283D and MBP4A crystal structures. A) Tyr283 makes
a polar contact with Thr286 and Asp30 in MBPWT, and is involved in π-π stacking with Phe279. B)
The polar contact between Tyr283 and Asp30 and π-π interaction between Tyr283 and Phe279 is
lost in MBPY283D, potentially exposing otherwise buried hydrophobic aggregation prone residues.
Hydrophobic residues are coloured in red. MBPWT vs MBPY283D RMSD = 0.159 Å. C) 2Fo-Fc
electron density map showing Tyr283 in MBPWT contoured at 1.5σ with a 1.6Å carve radius. D)
2Fo-Fc electron density map showing Asp283 in MBPY283D contoured at 1.5σ with a 1.6Å carve
radius. Crystallographic data collection and analysis was carried out with the help of Dr Nicolas
Guthertz, University of Leeds.
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Fig. 3.8 MBP4A crystal structure. A) MBPWT (grey) aligned to MBP4A (orange). Positions of
the original 4A mutations are shown by the red arrow as black sticks on the MBPWT structure.
Residues 149-207 and 352-370 had no density in the MBP4A crystal structure. B) The positions
of the original 4A mutations (L160, I161, L192, L195) shown on the MBPWT crystal structure.
Mutating these residues to alanine may destabilise the protein by removing van der Waals inter-
actions within the core, creating a cavity and potentially exposing an internal APR. Hydrophobic
residues are coloured in red. Crystallographic data collection and analysis was carried out with
the help of Dr Nicolas Guthertz, University of Leeds.
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Fig. 3.9 MBP4A forms a dimer in the crystal structure. A) Ribbon and B) surface representation
of the dimer. (C and D) Views similar to those in A and B after a 90 ° rotation. Residues 149-207
and 352-370 had no electron density in the crystal structure. Crystallographic data collection and
analysis was carried out with the help of Dr Nicolas Guthertz, University of Leeds.
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Table 3.1 Crystallographic data collection and refinement statistics for MBP crystal struc-
tures. Values for the highest-resolution shell are shown in parentheses. Crystallographic data
collection and analysis was carried out with the help of Dr Nicolas Guthertz, University of Leeds.

MBP_WT MBP_Y283D MBP_4A

Data Collection

Beamline I24 I24 I24
Space group P 1 21 1 P 1 21 1 P 43 21 2
PDB ID - - -
Cell dimensions
a, b, c (Å) 43.91 64.11 56.78 43.92 64.22 57.66 83.60 83.60 120.25
α, β, γ (°) 90.00 100.30 90.00 90.00 100.74 90.00 90.00 90.00 90.00

Resolution (Å) 1.51 – 55.86
(1.51 – 1.55)

1.40 – 43.15
(1.40 – 1.42)

2.10 – 83.60
(2.10 – 2.14)

Rpim (%) 0.039 (0.668) 0.033 (0.287) 0.071 (3.788)
I / σ(I) 11.7 (1.2) 20.7 (6.8) 3.8 (0.1)
Completeness (%) 100.0 (99.9) 100.0 (100.0) 100.0 (99.6)
Redundancy 6.5 (5.7) 12.8 (11.3) 48.4 (40.0)
CC(1/2) 0.998 (0.316) 0.998 (0.930) 0.998 (0.131)

Refinement

Resolution (Å) 1.51 – 55.86
(1.51 – 1.55)

1.40 – 43.15
(1.40 – 1.42)

2.10 – 83.60
(2.10 – 2.14)

No. of reflections 315012 (20544) 791206 (35101) 1241273 (49635)
No. of unique reflections 48690 (3597) 62019 (3095) 25628 (1240)
Rwork / Rfree (%) 0.17 / 0.20 0.16 / 0.19 0.22 / 0.27

No. of atoms

Protein 2876 2874 2265
Non-covalent ligands 0 0 0
Water 203 335 28

RSMD

Bond lengths (Å) 0.011 0.014 0.005
Bond angles (°) 1.688 1.870 1.410
B-factor (Å2) 24.660 16.990 69.582
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3.2.2 Golden gate assembly can be used to robustly create large li-
braries

Error-prone PCR (epPCR) is often the method of choice for creating random mutated
plasmid libraries, however the rate-limiting step is often cloning of the epPCR insert into
an appropriate vector for screening (Abou-Nader and Benedik, 2010). Here the highly
efficient Golden Gate cloning is used to overcome this bottleneck.

First an appropriate vector was designed, blaGGSTOP, whereby all the BsaI sites within
the vector were removed and two new BsaI sites were introduced within the β-lactamase GS
linker (Figure 3.10, Section 2.6.2). As BsaI is a Type IIs restriction enzyme it recognises
non-palindromic sites and cleaves outside this site, the vector can be designed so that the
final ligated product has no BsaI sites as they cut themselves out. Between the two BsaI
sites in blaGGSTOP a premature stop codon was introduced, as well as the 7bp Bsu36I
restriction site. This prematurely ends translation as well as introduces a frame shift so
that if this template is carried over into selection, only the first domain of β-lactamase
is translated and so it cannot withstand the ampicillin selection. The test protein was
amplified using epPCR then used in a second round of PCR to introduce corresponding
BsaI sites onto the 5’ and 3’ ends. During initial testing of this method the epPCR step
was replaced with traditional PCR to amplify wild-type MBP and clone it into blaGGSTOP

to create a ‘test library’. This was to estimate the potential library size and to assess the
viability of the method. Using a thermocycler to cycle between 37°C and 16°C for 1
minute each with 45 cycles the ligation reaction was able to go to completion, as after
digestion of the test library with Bsu36I there was no product (Figure 3.11, lane 10 =
undigested, lane 11 = digested).

This method using epPCR to was used to create libraries for MBPY283D and MBP4A

of 2.4 × 109 and 4.6 × 1011 mutants, respectively, estimated by the number of colony
forming units. A colony PCR was performed to confirm the error-prone PCR product was
successfully cloned into the β-lactamase vector, and showed that of the 40 colonies assessed
100 % were successfully incorporated (Figure 3.12). The low cost of this technique (~£130
per library) and its ability to consistently produce large libraries makes it an attractive
method for directed evolution studies.
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Fig. 3.10 Golden gate library preparation for directed evolution. epPCR of the gene of inter-
est with 5′ and 3′ BsaI sites is combined with blaGGSTOP, a variant of the β-lactamase vector for
TPBLA with two BsaI sites introduced to allow cloning of the epPCR insert. blaGGSTOP includes
a premature stop codon and the 7 bp Bsu36I restriction site to prematurely stop translation and
introduce a frame shift so that any template carried over into the library would produce a non-
functional β-lactamase.
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Fig. 3.11 1.5% (w/v ) agarose gel showing restriction digestion and golden gate reactions
to assess the success of the golden gate library method. PCR product of MBP (‘Insert’)
is cloned into the library vector template (blaGGSTOP) using golden gate. blaGGSTOP has an
internal Bsu36I site that is replaced with the MBP insert (which would be an epPCR product when
creating a library). A restriction digestion of the final golden gate reaction with Bsu36I shows that
the golden gate reaction goes to completion and there is no identifiable blaGGSTOP left over. Filled
in purple spots indicate presence of particular component in the reaction. Plasmids blaGGSTOP
and blaMBP in wells 1 and 2 are shown as controls. Restriction digestions of these plasmids are
shown to indicate that blaGGSTOP (the template used for the library reaction) is cleaved by Bsu36I
whereas blaMBP (the product being created by golden gate) is not.
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Fig. 3.12 1.5% (w/v ) agarose gel colony PCR of blaMBP4A and blaMBPY283D libraries.
Colony PCR using primers that bind within the glycine-serine linker of the TPBLA construct to
amplify the test protein. This performed to confirm the error-prone PCR product for (A) MBP4A

or (B) MBPY283D has been successfully cloned into the β-lactamase vector. A negative control
(blaGGSTOP) was included as a control.
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Fig. 3.13 Overview of directed evolution and data analysis of Illumina sequencing. A) Cells
expressing the mutated library are grown on ampicillin concentrations the wild-type was unable
to survive at. B) Successful mutants are analysed by 150 bp paired end Illumina sequencing.
Fragments are filtered by trimming adapter sequences and low-quality reads (shorter than 40
bp and average Illumina quality score higher than 30 (Q30)). Fragments are aligned to the wild-
type DNA sequence and the fragments in the resulting alignment file are filtered to remove indels
before being translated in frame. The mutational frequency at each residue is calculated and
normalised by coverage.
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3.2.3 Illumina shotgun libraries allow identification of hotspots and
single point mutations enriched due to selection

MBP4A and MBPY283D were evolved using the in vivo assay by introducing genetic varia-
tion into the respective genes and creating a mutated plasmid library within the β-lactamase
vector (Section 2.6.2) to produce βLa MBP4A* and βLa MBPY283D*, respectively (Figure
3.10). For screening, the libraries were transformed into E. coli SCS1 cells and plated
onto agar containing 280 µg/mL for βLa MBP4A* and 50 µg/mL for βLa MBPY283D*
(Figure 3.13A). At these concentrations, the ‘wild-type’ MBPY283D and MBP4A sequences
were unable to survive (refer to Figure 3.2D). Therefore, variants growing should have
beneficial mutations that improve the expression of a folded and soluble fusion protein.
The DNA from >700 colonies of MBP4A and >1500 colonies of MBPY283D were pooled,
purified, and the genes amplified using PCR before two technical repeats were sent for
Illumina sequencing along with two technical repeats of the respective unselected (naive)
libraries. Paired end fragments were aligned to a reference sequence (the respective ‘wild-
type’ sequence) and the aligned fragments were translated in frame with respect to the
reference sequence (Figure 3.13B). By comparing the aligned translated fragments to the
original ‘wild-type’ sequence, mutational frequency at each position was calculated and
normalised by read coverage (Figure 3.13B). The number of mapped bases aligned to
MBPY283D and MBP4A represented an average 353,079 read depth for MBPY283D and
285,112 for MBP4A. The mutation frequency was normalised by coverage, and this was
used to calculate the log2(fold change) at each residue. Hotspot residues were identified
as having a log2(fold change) above 10% of the maximum log2(fold change) and being
identified in both technical repeats.

For MBPY283D a single obvious hotspot residue was identified, 283, which was reverted
to the wild-type Y in 98.3% of cases (Figure 3.14A). Four additional hotspot residues
were identified (G5, L7, R367, I368) at the N and C-termini (Figure 3.14B, Figure 3.14C).
However, as a result of mapping the Illumina reads onto the reference sequence, the
termini have low sequence coverage, meaning there were less reads mapped in these areas,
resulting in higher than average scores after normalisation and so should be interpreted
with caution.

For MBP4A multiple hotspot residues were identified located in and around the core
of the second domain and the positions of the original 4A mutations. Three out of the
four positions of the 4A mutations were identified as hotspots (A160, A192 and A195
were identified as hotspots; A161 was not), with the most common mutation being back to
the wild-type residue validating the ability of the evolution assay to identify more stable
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Fig. 3.14 Evolution of MBPY283D and MBP4A analysed by Illumina sequencing. A) MBPY283D

selected library mutational frequency normalised by coverage. B) log2(fold change) of the mu-
tational frequency calculated using the naive and selected libraries of MBPY283D. C) hotspots
mapped onto the structure of MBPY283D crystal structure, D283 hotspot shown as sticks. D)
MBP4A selected library mutational frequency normalised by coverage. E) log2(fold change) of
the mutational frequency calculated using the naive and selected libraries of MBP4A. F) hotspots
mapped onto the structure of MBP4A crystal structure, hotspots shown as sticks. Residues 149-
207 and 352-370 had no electron density in the crystal structure, so hotspots are shown mapped
onto the MBPWT crystal structure. Three of the original 4A mutations that were identified as
hotspots are labelled with an orange background, the other residue (A161) was not identified as
a hotspot. Sequencing was repeated and showed similar results.
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variants (Figure 3.14D). Eight residues were identified as hotspots that form a cluster
within the core of this second domain (A160, A188, A192, F194, A195, M204, D207,
I348) (Figure 3.14E, Figure 3.14F). Five of these identified hotspots were most commonly
mutated to bulkier side chains (A160L, A192L, A195L, I348L), potentially to re-fill the
cavity initially introduced by the original 4A mutations and to restore the stabilising Van
der Waals forces. To understand the extent by which TPBLA has evolved MBP4A, the most
frequent residue identified at each of the hotspots was introduced back into MBP4A as a
single point mutation and assessed using TPBLA. 11 out of 13 variants showed improved
growth compared with MBP4A, with one variant (A63T) having a 2.2-fold increase in in
vivo growth (Figure 3.15). Two variants, D207V and M204V, showed a reduction in in vivo
growth compared with MBPWT (Figure 3.15). These two hotspots were identified at a low
frequency compared with the other hotspots, and had a log2(fold change) close to the 0.25
fold change threshold. It is possible these mutations were carried over with other more
beneficial mutations, perhaps picked up early in an epPCR cycle. Together MBPY283D and
MBP4A evolution analysis using Illumina sequencing demonstrate the ability of TPBLA to
assess thousands of sequences in a high-throughput manner and rapidly identify beneficial
mutations.

The short fragment length of Illumina sequencing limits this method in assessing
co-evolution and whether multiple mutations are selected for in combination. Therefore,
libraries were subsequently analysed using long read NGS technique Pacbio.

Fig. 3.15 In vivo screen of evolved MBP4A point mutants identified by Illumina sequencing.
Area under the antibiotic survival curve calculated for evolved MBP4A point mutants identified by
Illumina sequencing, screened at 0-280 µg/mL ampicillin. Error bars show standard error of the
mean (S.E.M) from three independent experiments.
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3.2.4 Pacbio sequencing allows analysis of co-evolution and identifica-
tion of sequences with enhanced properties

The naive and selected libraries from the evolution of MBP4A and MBPY283D were am-
plified using PCR and sent for Pacbio sequencing (Section 2.7.1). As with the Illumina
sequencing, the naive and selected libraries were used to calculate the log2(fold change) of
mutation frequency at each residue.

For both MBPY283D and MBP4A, Pacbio sequencing identified the same hotspot
residues as Illumina sequencing by looking at the log2(fold change) (Figure 3.16). The
additional information Pacbio provides is the ability to distinguish whether mutations are
found alone or in combination with others. For MBPY283D in the majority of cases the
reversal to wild-type mutation D283Y occurred as a single point mutation (Table 3.2).

Table 3.2 Top 20 single- and double-point mutation counts identified in MBPY283D evolution
by Pacbio sequencing

Mutation Count

D283Y 4449
P123S D283Y 85
D283Y A360V 80
P254S D283Y 68
G16D D283Y 63
A71V D283Y 59
D283Y P331S 55
D283Y R367S 52
P159S D283Y 52
A63T D283Y 51
K1Q D283Y 47
D283Y A342V 47
A84V D283Y 46
P248S D283Y 44
G101D D283Y 43
A71T D283Y 41
G174D D283Y 40
G5A D283Y 39
G56D D283Y 38
D283Y A364T 38

For MBP4A the same hotspot residues that were identified in our Illumina dataset
were identified using Pacbio sequencing, demonstrating the power of Illumina sequencing
at unpicking large mutational datasets at a fraction of the cost of Pacbio (Figure 3.16B).
Furthermore, out of the top 100 mutations identified in Pacbio sequencing, 84 % were single
point mutations. This therefore demonstrates the relevance of the Illumina sequencing
methodology for identifying beneficial mutations.
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Fig. 3.16 Evolution of MBPY283D and MBP4Aanalysed by Pacbio sequencing. Naive and se-
lected library mutational frequencies, and log2(fold change) of the mutational frequency calculated
using the naive and selected libraries for (A) MBPY283D and (B) MBP4A.
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Table 3.3 Top 20 single- and double-point mutation counts identified in MBP4A evolution
by Pacbio sequencing

Top single mutations Top double mutations
Mutation Count Mutation Count

A141V 1265 A160L A161I 287
A63T 384 A63T A190S 67
A188T 336 G69D I348L 37
F61I 150 H203Y D207V 34
D358N 136 A63T G191S 33
V343G 124 A192L A195L 30
G69D 106 A63T A141V 29
T237I 89 A52T A63S 27
A269T 81 A63T V246A 26
V110I 77 A63T A206V 23
P248S 69 A63T A292V 22
A21T 64 A63V A160T 22
A192V 64 A292V T356S 18
A163T 63 G69D A141V 18
V181M 53 T225I V347E 18
A231T 53 A141V A269T 15
P331S 53 W62L A192V 14
G101D 49 A141V T237I 14
A77T 49 A186T F194I 14
I348L 48 A63T F194I 14

Multiple double mutations were identified, with the most frequent variants detailed in
Table 3.3. Furthermore, triple and quadruple mutations were identified containing some or
all of the original 4A residues mutated back to the wild-type. During library generation,
the epPCR was tuned to give an average of one amino acid mutation per gene. Due to this
low mutation rate, it is extremely unlikely all of these reversal to wild-type residues came
about via epPCR. The most likely explanation is that these are a result of homologous
recombination with the E. coli genomic copy of MBP, which has 99 % nucleotide similarity
to our MBP sequence. Consistent with this hypothesis, the revertants also contained two
silent nucleotide substitutions that matched those in E. coli K12 (G60C and A828G,
nucleotide number). Therefore, reversal to wild-type mutations (any combination of
single, double, triple or quadruple) at nucleotide or residue level were omitted from further
investigations. The top 20 single and double substitutions identified from the MBP4A

Pacbio sequencing are detailed in Table 3.3. The top 5 single (F61I, A63T, A141V,
A188T, D358N) and double (A63T+A141V, A63T+A190S, A63T+G191S, G69D+I348L,
H203Y+D207V) substitutions were introduced back into the original MBP4A sequence
for further analysis. All of the mutations displayed improved growth in TPBLA when
compared with MBP4A (Figure 3.17A). Again, the best performing variant was A63T as
a single point mutation. When A63T was combined with A141V, A190S or G191S as
a double point mutant the in vivo growth score was lower than A63T as a single point
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mutation. The fact that the combined effect of two beneficial mutations (A63T and A141V)
is not additive demonstrates the complexity of protein engineering and the inter-residue
interactions governing protein stability and solubility. Interestingly, double mutation
H203Y+D207V was identified in Pacbio sequencing. These mutations had been identified
as single point mutants in Illumina sequencing, and D207V was one of the mutations that
resulted in a decrease in in vivo growth score in TPBLA. However, the double variant
H203Y+D207V shows an increase in in vivo growth score in TPBLA that is significantly
higher than either H203Y or D207V alone, indicating these residues have been co-evolved
to improve stability and/or solubility together. This demonstrates the power of TPBLA for
co-evolving mutations that could otherwise be more complex to rationally design.

To understand how TPBLA is evolving these proteins, seven variants (F61I, A63T,
A141V, A188T, I348L, D358N, H203Y+D207V) were expressed and purified for further
characterisation (Figure 3.18). Binding of the evolved MBP4A variants to ANS was
measured to identify any conformational changes that might reduce the exposure of
hydrophobic patches on the protein. All variants except H203Y+D207V displayed reduced
binding to the ANS probe (Figure 3.17B), indicating a reduction in exposed hydrophobic
side chains on the surface, or a stabilisation of the core preventing ANS from getting in
and binding. This could result in a reduction of aggregation by preventing hydrophobic
interactions. H203Y+D207V showed significantly increased binding to the ANS probe,
indicating an increase in exposed hydrophobics on the surface or a further destabilisation
of the core thereby enabling ANS to get in and bind to hydrophobic residues in the core.

Interestingly, the majority of variants displayed similar thermal melting midpoint (Tm)
to those of MBP4A (Figure 3.17C, Table 3.4, 45 °C, assessed by circular dichroism, CD).
However, only two variants showed an increase in Tm compared with MBP4A (F61I, 47
°C; A63T, 48 °C). To assess the effect of these evolved mutations on the thermodynamic
stability of MBP4A, urea denaturation curves for all variants were measured. As the
pre- and post- transitions from the urea denaturation curves have low signal to noise, the
data was used to calculate the midpoint denaturant concentration (Cm) rather than ΔG
(Figure 3.17D, Table 3.4). ΔG is very sensitive to changes in the pre- and post- transitions,
therefore any calculation of ΔG from this data would be inaccurate. As with Tm, only
A63T showed a significant increase in midpoint denaturant concentration (Cm) compared
with MBP4A (Figure 3.17D, Table 3.4). When compared with in vivo growth score, Tm
and ANS binding showed poor correlation (Spearmans rank = 0.17 and -0.21, respectively),
whereas Cm showed moderate correlation (Spearmans rank = 0.47; Figure 3.19A-C).
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Fig. 3.17 Analysis of evolved MBP4A point mutants identified by Illumina and Pacbio se-
quencing. A) Area under the antibiotic survival curve calculated for evolved MBP4A variants
identified by Illumina and Pacbio sequencing, screened at 0-280 µg/mL ampicillin. The most fre-
quent amino acid identified at the Illumina hotspots are shown, alongside the top 5 single- and
double- point mutants from Pacbio. Error bars show standard error of the mean (S.E.M) from
three independent experiments. Highlighted variants (solid coloured bars) were expressed and
purified for further analysis. B) 8-Anilinonapthalene-1-sulphonic acid (ANS) fluorescence spec-
troscopy shows extent of exposed hydrophobic patches on the protein’s surface, or a ‘loosening’
of the core structure allowing ANS in to bind. 1 µM protein and 100 µM ANS final concentration
in 10 mM potassium phosphate (pH 7.4). C) Circular dichroism thermal melt (temperature range
25 °C to 80 °C) of MBPWT, MBPY283D, MBP4A and MBP4A evolved variants (protein concentra-
tion 0.15 mg/mL) in 10 mM potassium phosphate (pH 7.4). Temperature ramps were fitted to a
sigmoidal curve. Dashed lines show Tm for MBPWT, MBPY283D and MBP4A. D) Urea denatura-
tion (denaturant range 0-8 M urea) of MBPWT, MBPY283D, MBP4A and MBP4A evolved variants
(protein concentration 10 µM) in 10 mM potassium phosphate (pH 7.4). Data points were fitted
to a two state unfolding curve using IgorPro 7. Dashed lines show Cm for MBPWT, MBPY283D

and MBP4A. E) In vivo growth (AUC) plotted against the percentage of soluble protein expression
of β-lactamase fusions. Soluble protein expression was calculated from densitometry analysis
of a dot blot (see Methods). A188T showed low soluble expression (0.04 %) and is denoted by
an asterix. F) In vivo growth rank plotted against the soluble protein expression rank of MBP4A

β-lactamase fusions. Spearmans rank correlation = 0.74.
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Fig. 3.18 Expression trial of evolved MBP4A selected point mutants identified by Pacbio
sequencing. Soluble (S) and insoluble (I) protein fractions of MBP4A point mutants after 24 hrs
growth in autoinduction media. A) Single point mutants and B) double point mutants as identified
by Pacbio sequencing.

Table 3.4 Thermal and thermodynamic stabilities of MBP variants. Transition mid-point tem-
peratures (Tm) and midpoint denaturant concentration (Cm) calculated using circular dichroism
thermal melt and urea denaturation, respectively.

Variant Tm (°C) Cm (M)

WT 53.20 3.19
Y283D 47.97 2.97
4A 45.45 1.87
4A+F61I 47.03 1.93
4A+A63T 47.96 2.20
4A+A141V 43.71 1.73
4A+A188T 43.79 1.89
4A+I348L 41.63 N/A
4A+D358N 42.37 1.81
4A+H203Y D207V 45.03 1.92

To assess the affect of these mutations on the in vivo solubility of MBP4A, a dot
blot against the variants as β-lactamase fusions was performed to calculate the fraction
of soluble protein expressed (Table 3.5, Figure 3.20). Unlike the measures of ANS
binding, Tm, and Cm, the soluble protein fraction showed strong correlation with in vivo
growth score (Spearmans rank correlation = 0.74; Figure 3.17E-F, Figure 3.19D) and all
the evolved variants assessed except A188T displayed elevated levels of soluble protein
expressed compared with MBP4A.
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Fig. 3.19 Analysis of evolved MBP4A selected point mutants identified by Illumina and
Pacbio sequencing. In vivo growth of MBPWT, MBPY283D, MBP4A and evolved variants com-
pared with Tm, Cm, ANS binding and soluble protein expression. In vivo growth (AUC) plotted
against A) thermal melting midpoint (Tm) as calculated by circular dichroism, B) midpoint denat-
urant concentration (Cm) as calculated from urea denaturation, C) normalised max fluorescence
excitation from 8-Anilinonapthalene-1-sulphonic acid (ANS) fluorescence spectroscopy and D)
soluble protein expression calculated using densitometry of a dot blot.
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Fig. 3.20 Dot blot against β-lactamase for MBPWT, MBPY283D, MBP4A and evolved variants.
Soluble (A) and insoluble (B) protein expression of β-lactamase fusion MBP variants. Left to right:
MBPWT, MBPY283D, MBP4A, MBP4A F61I, MBP4A A63T, MBP4A A141V, MBP4A A188T, MBP4A I348L,
MBP4A D358N, MBP4A A63T + A141V, MBP4A A63T + A190S, MBP4A G69D + I348L, MBP4A H203Y + D207V.

Table 3.5 Soluble and insoluble protein expression of β-lactamase fusions with MBP vari-
ants as the test protein. Densitometry analysis of dot blot showing soluble and insoluble protein
expression for MBP variants. Intensities analysed using ImageJ.

Variant Soluble Insoluble Fraction soluble (%)

WT 4972.569 790.87 86.3
Y283D 1781.284 1305.698 57.7
4A 3517.113 2134.527 62.2
4A+F61I 4114.527 872.87 82.5
4A+A63T 4938.941 1294.406 79.2
4A+A141V 4054.82 1653.234 71.0
4A+A188T 359.062 8023.761 0.04
4A+I348L 3601.991 554.87 86.7
4A+D358N 4736.234 2681.355 63.9
4A+A63T A141V 2776.326 942.456 74.7
4A+A63T A190S 3491.113 970.042 78.3
4A+G69D I348L 2410.284 1351.113 64.1
4A+H203Y D207V 4149.134 1446.87 74.1
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3.3 Discussion

We demonstrate how the TPBLA can be used to assess different sequence liabilities that
might otherwise limit their use in industrial and therapeutic applications. Protein stability
is of vital importance for such applications, for example as industrial enzymes are often
required to be stable in extreme environments (Littlechild, 2015). Furthermore, protein
instability may lead to protein aggregation, another undesirable property in a biophar-
maceutical, for example, where it may lead to reduced activity or even immunogenicity
and anti-drug antibodies produced in the patient, as well as result in difficulties in man-
ufacture (Jiskoot et al., 2012). As the TPBLA does not use a perturbant to accelerate
aggregation, such as increased temperature, pH or addition of a chemical denaturant, it
probes the innate aggregation propensity of the test protein which is most likely to reflect
the behaviour of a biopharmaceutical during manufacture. This has been demonstrated by
previous work correlating performance of various scFv fragments in TPBLA with their
aggregation behaviour as full length IgGs (Ebo et al., 2020b). Additionally, the complex
nature of aggregation and the variety of different mechanisms it may occur by make it dif-
ficult to predict by in silico methods as not one single mechanism drives aggregation (Ebo
et al., 2020a). Therefore, the TPBLA represents an attractive alternative for assessing the
innate aggregation propensity stability of a protein, and in the case of a biopharmaceutical
to flag up any potential developability issues.

TPBLA has previously been used to assess protein thermodynamic stability (Foit
et al., 2009) and aggregation propensity (Ebo et al., 2020b), as well as to identify small
molecule inhibitors of amyloid formation (Saunders et al., 2016). It has also been used
as a directed evolution screen to increase the thermodynamic stability of Im7 (Foit et al.,
2009), to reduce the aggregation propensity of aggregation-prone IgG WFL (Ebo et al.,
2020b), and through directed evolution to understand the individual residue contribution to
aggregation propensity and amyloidogenicity within β-2-microglobulin (β2m) (Guthertz
et al., 2022). Therefore, TPBLA has been widely and successfully utilised to assess and
evolve distinct behaviours in different test proteins - thermodynamic stability in Im7,
aggregation resistance in WFL, and reduced amyloidogenicity in β2m. In this chapter
we have demonstrated the relationship between TPBLA growth score and solubility for
variants of maltose binding protein. Together this demonstrates the complexity of TPBLA,
and that the driver for directed evolution is generally protein dependent.

In vitro analysis of MBPWT, MBPY283D and MBP4A indicate MBP4A might perform
worse in TPBLA. During purification the protein is expressed almost exclusively in the
insoluble fraction and needs to be refolded. Furthermore, the presence of high molecular
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weight species in SEC, low thermodynamic stability, ability to bind ANS and unresolved
patches in the crystal structure indicate that MBP4A may have the potential to aggregate
from both the native state and via partially unfolding. This could be initiated by the lack
of a packed stable core that may increase the dynamic fluctuations resulting in exposure
of otherwise buried aggregation-prone regions (APRs) (Eyes et al., 2019; Kuriata et al.,
2019; Maas et al., 2007). MBPY283D has a structure very similar to MBPWT, whereas
MBP4A has a less structured and more dynamic second domain when fully folded which
has the potential to expose the highly hydrophobic and aggregation-prone core. In the
case of MBPY283D, it is known this variant is slow folding compared with MBPWT (Chun
et al., 1993). MBPY283D loses a polar interaction the wild-type residue makes with
Asp30, potentially exposing an otherwise buried hydrophobic APRs that could lead to
aggregation during folding (Figure 3.7), resulting in insoluble aggregates that would have
been separated out before column purification and so would not be identified as high
molecular weight species in SEC. However, once the native state is achieved the potential
to aggregate from this fold would theoretically be lower than MBP4A, if the mechanism
whereby MBPY283D aggregates is not via the native state. Together these demonstrate
how the TBPLA is able to assess aggregation from folding intermediates as well as the
intrinsic aggregation propensity of the folded state without the addition of any aggregation
accelerant. In addition, we demonstrate how TBPLA can rapidly identify developability
issues in a high-throughput manner when the alternative would be using a multitude of
additional in vitro techniques in combination, an extremely low-throughput and laborious
process.

We present here a robust and reproducible method for the high-throughput evolution of
protein solubility and aggregation resistance. Our library generation method consistently
creates large libraries, overcoming the common bottleneck in random mutated library
generation of cloning the epPCR fragment into the selection vector (Alejaldre et al., 2021;
Pai et al., 2012). Previous work using TPBLA for protein evolution used the megaprimer
method to create libraries of 104 - 106 variants (Ebo et al., 2020b). In comparison, our
simple and robust method was able to make libraries for MBPY283D and MBP4A with
an estimated 2.4 x 109 and 4.6 x 1011 mutants, respectively. MBPY283D introduced a
folding defect resulting in protein aggregation and using TPBLA to evolve this variant we
identified a reversion back to the wild-type sequence to resolve this folding defect. MBP4A

differed from MBPY283D at five residues and had a reduced thermodynamic stability (Figure
3.17D). Evolving MBP4A using TPBLA we identified 13 hotspot residues using Illumina
sequencing and 15 using Pacbio sequencing, none of which overlapped with hotspots
identified in MBPY283D evolution. Assessing the variants identified in our evolution
using TPBLA we showed most mutants displayed enhanced in vivo growth (3.17A).



138 Combining deep sequencing with TPBLA for directed evolution

Furthermore, most of these variants displayed reduced binding to the ANS probe, indicating
a reduction in surface exposed hydrophobic side chains or potentially a stabilisation of
the core to prevent ANS from penetrating and binding (Figure 3.17B). This reduction in
surface exposed hydrophobic side chains could result in reduced aggregation by preventing
hydrophobic interactions. Only F61I and A63T displayed significant improvement in
Tm or Cm compared with MBP4A. Interestingly, residue A63 is involved in binding
maltose (Quiocho et al., 1997). The selection of this residue in our assay could point
to a stability-function trade off in MBP. It is commonly observed that regions evolved
for function can be more aggregation prone than other solvent exposed regions, and the
absence of a selection pressure to bind maltose could have exposed this residue as a region
of frustration. Furthermore, the evolved variants displayed higher levels of soluble protein
expression compared with MBP4A. Soluble protein expression also correlated well with in
vivo growth (Figure 3.17E, F; Spearmans rank correlation = 0.74), demonstrating the ability
of our assay to both assess and evolve protein solubility and therefore in vivo aggregation
resistance.

Hotspots were initially identified using Illumina sequencing, a fragment-based ‘se-
quence by synthesis’ method yielding massive datasets and allowing sequencing of po-
tentially thousands of variants at once. However, the fragment length limits this methods’
ability to assess co-evolution and the presence of multiple mutations. Therefore, we sought
to combine our screen with Pacbio sequencing to read the entire sequence in one run and
identify full-length enriched sequences. However, we showed our evolved library was
made up of mostly single point mutants (in the 4A evolved library, 84% of the top 100
mutants were single), demonstrating Illumina short read sequencing was sufficient for
accurately assessing mutational profiles within our libraries.

In summary, we demonstrate here a high-throughput methodology to assess and evolve
protein solubility. Previous work using TPBLA to evolve aggregation resistance in antibody
fragments allowed identification of improved variants (Ebo et al., 2020b). However, the
method was labour intensive as it involved manual picking of colonies, low-throughput
Sanger sequencing, and manual identification of mutated variants. Our next-generation
sequencing methodology improves upon this by using high-throughput next-generation
sequencing to identify mutational hotspots, and by automating data analysis and mutant
identification using custom scripts. Our improved assay has the ability to rapidly probe
thousands to millions of variants of a protein to select for those with increased in vivo
solubility, making it a powerful tool for assessing and evolving beneficial biophysical
properties in a protein of interest. This by extension could be useful for assessing and
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evolving biopharmaceutical developability or understanding a protein’s mechanism of
aggregation.





Chapter 4

Applying TPBLA to assess and evolve
therapeutically relevant proteins

4.1 Introduction

In Chapter 3 we developed a high-throughput directed evolution methodology utilising
the power of TPBLA combined with next-generation sequencing to engineer improved
biophysical characteristics in proteins. This method could be utilised for proteins of interest
to biotechnology or biopharmaceuticals in order to create highly developable candidates.

The developability of a biopharmaceutical is its potential to pass through the devel-
opment process. This is influenced by its biophysical and physicochemical properties
including thermal stability, colloidal stability, aggregation propensity, binding affinity,
and polyspecificity (Bailly et al., 2020). These properties can be assessed and charac-
terised using a range of ‘developability’ assays, and improved via protein engineering
techniques. Often these developability assays only assess one single property at a time,
and require purified protein to do so (Jain et al., 2017). TPBLA could potentially be a
powerful technique to assess the developability of a panel of biotherapeutics as (1) it is
influenced by multiple properties (thermal stability, aggregation propensity, solubility) that
would negatively impact the test protein’s developability, and (2) it can be performed in
high-throughput without the need for purified protein.
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4.1.1 Aims of this chapter

The aim of this chapter is to demonstrate the broad applicability of the TPBLA to assess
therapeutically relevant proteins. As TPBLA is able to report on a protein’s aggregation
propensity, solubility, and stability, it could easily be employed as a developability screen
early in a biopharmaceuticals developmental pipeline to screen out unviable candidates
quickly and easily (Foit et al., 2009; Saunders et al., 2016; Ebo et al., 2020b). In this chapter,
we apply TPBLA to various antibody therapeutics to assess their behaviour and correlate
TPBLA to their biophysical properties to understand better what the assay is screening
for. Secondly, we apply our directed evolution methodology (Chapter 3) to improve the
biophysical properties of two selected variants. We then characterise these evolved variants
to investigate the extent by which the TPBLA has improved their biophysical properties in
vitro. Finally, we assess the potential for using TPBLA as a developability screen using the
scFv sequences from 35 clinically relevant mAbs, correlating their performance in TPBLA
with various currently employed biophysical assays.

4.2 Results

4.2.1 TPBLA can be used to screen and rank biotherapeutics

As described in Section 4.1, traditional individual characterisation assays for biopharmaceu-
tials tend to assess a single particular property; e.g. differential scanning fluorimetry (DSF)
measures thermal stability, Hydrophobic Interaction Chromatography (HIC) measures
hydrophobicity, Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS)
measures self-interaction, and PEG precipitation measures solubility (Gibson et al., 2011;
Jain et al., 2017). It has been shown that TPBLA can be correlated to a wide range of
properties depending on the test protein; thermodynamic stability (Foit et al., 2009), amy-
loidogenicity (Saunders et al., 2016), mAb aggregation propensity (Ebo et al., 2020b), and
soluble protein expression (Chapter 3). It is likely this is because the assay is influenced
by multiple factors that can affect the POI’s stability and folding (e.g thermal stability,
conformational stability, aggregation, colloidal stability, solubility), meaning each individ-
ual property will have a different level of impact depending on how strongly it affects the
specific test protein.

11 mAbs were provided by UCB Biopharma UK taken from a larger dataset of IgGs
designed as a well-characterised set of antibodies whose use is not restricted by intellectual
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property (IP) restrictions with a range of sequence liabilities (e.g. methionine oxidation,
deamidation). Out of this larger dataset, only some were UCB molecules and therefore
had a common IgG1 scaffold. These molecules had been characterised and classed based
on their aggregation as having ‘high’, ‘medium’ or ‘low’ aggregation. 3 molecules were
chosen from each category, making a total of 9 IgGs. 2 additional approved mAbs
were included as controls in this dataset, AMS106 and AMS122. These are the VH and
VL domains of infliximab (a known aggregation-prone, highly immunogenic mAb) and
trastuzumab (a known aggregation-resistant, low immunogenic mAb), respectively (Jain
et al., 2017; Kurki et al., 2021; Mosch and Guchelaar, 2022), grafted onto a common
IgG1 scaffold which was shared by all the other 9 mAbs. The original dataset was part
of the £11.2 million BioStreamline project, a collaborative project between six industrial
partners (Lonza Biologics, UCB Biopharma UK, Sphere Fluidics, Horizon Discovery,
Alcyomics Ltd, and CPI) and supported by funding from the UK Government’s Advanced
Manufacturing Supply Chain Initiative (AMSCI), designed to study the affects of these
sequence liabilities on mAb developability (Centre for Process Innovation, 2022). From
here on, the 11 chosen mAbs will be referred to as the AMSCI mAbs.

The IgG format of the AMSCI mAbs were assessed using a suite of biophysical
characterisation assays (Figure 4.1). They have similar thermal stabilities as measured by
differential scanning fluorimetry (DSF), which assesses protein unfolding by measuring
intrinsic tryptophan fluorescence (Figure 4.2, Figure 4.3, Table 4.1). Transition midpoint
temperature (Tm) and temperature onset of aggregation (Tonset) was calculated using the
first derivative (Appendix B, see Methods Section 2.4.8). Most have the first transition
mid-point temperature (Tm1) of around 68-70 °C, except for AMS134 (Tm = 65.11
°C), AMS148 (Tm = 60.00 °C), and AMS155 (Tm = 62.45 °C). The highest Tm was
that of AMS122 (trastuzumab) at 70.70 °C. The increase in static light scattering while
increasing temperature was used to measure the temperature onset of aggregation (Tonset)
of the AMSCI mAbs. This combined with the DSF measurements can be used to identify
whether the POI is aggregating from the native or the unfolded state. Like Tm, the mAbs
had similar Tonset with an average of 67.23 °C (standard deviation = 8.93) (Figure 4.2,
Figure 4.3, Table 4.1). The highest Tonset was AMS122 (Tonset = 79.80 °C), followed by
AMS197 (Tonset = 79.32 °C), and the lowest was AMS155 (Tonset = 54.48 °C). The scFv
segment of the AMSCI mAbs was introduced into the TPBLA construct to assess using
the assay (Figure 4.1). By contrast to the lack of differentiation using thermal stability,
when analysed using TPBLA across an ampicillin concentration range of 0-140 µg/mL,
the AMSCI mAbs show a wide range of responses (Figure 4.4). TPBLA growth score
shows no correlation with Tm by DSF alone. Likely this ranking is due to a combination of
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unwanted biophysical properties (protein stability, solubility, and aggregation propensity),
enabling TPBLA to identify unviable candidates based on their performance.

Fig. 4.1 Structures of mAbs and antibody fragments. Biophysical characterisation was carried
on full-length mAbs, or IgGs, whereas analysis using TPBLA used the variable domains (VH and
VL) joined by a glycine-serine rich linker to create a single-chain variable fragment, or scFv.
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Fig. 4.2 Thermal stability and aggregation behaviour characterisation of 11 AMSCI mAbs
in IgG format differential scanning fluormietry (DSF) using intrinsic protein fluorescence by excit-
ing with a 266 nm laser and measuring emission from 315-430 nm. The first transition mid-point
temperature (Tm1) was calculated based on the barycentric mean (BCM) of the fluorescence in-
tensity curves from 315-430 nm. Static light scattering (SLS) was measured at each temperature
to calculate the temperature onset of aggregation (Tonset) and to delineate unfolding and aggre-
gation. Tm and Tonset values are shown in Figure 4.3 and Table 4.1 to enable comparison. Data
collected using UNcle system (Unchained Labs).

Table 4.1 Stability and aggregation behaviours of AMSCI mAbs in IgG format. First transition
mid-point temperatures (Tm1) and temperature onset of aggregation (Tonset) calculated using
differential scanning fluorimetry (DSF) and static light scattering (SLS), respectively.

Variant Tm1 by DSF (°C) Tonset by SLS (°C)

AMS106 68.42 62.94
AMS122 70.70 79.81
AMS132 69.18 63.31
AMS134 65.11 57.30
AMS137 70.14 71.99
AMS147 69.19 67.00
AMS148 60.00 55.79
AMS155 62.45 54.48
AMS197 69.46 79.32
AMS198 69.83 78.25
AMS214 69.16 69.34
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Fig. 4.3 Biophysical characterisation of 11 AMSCI mAbs in IgG format. First transition mid-
point temperature (Tm1) calculated by differential scanning fluorimetry (DSF). Protein unfolding
was measured using intrinsic protein fluorescence. The barycentric mean (BCM) of the fluores-
cence intensity curves from 315-430 nm was used to plot the Tm curves (Section 2.4.8). The
temperature onset of aggregation (Tonset) calculated by measuring static light scattering (SLS)
at increasing temperatures for each of the full-length AMSCI mAbs. Variants are arranged by
increasing in vivo growth score (TPBLA) from left to right. Tm and Tonset values are shown in
Table 4.1 to enable comparison. Data collected using UNcle system (Unchained Labs).

Fig. 4.4 TPBLA analysis of AMSCI mAbs in scFv format. Area under the antibiotic survival
curve calculated for the scFv regions of the AMSCI mAbs, screened at 0-140 µg/mL ampicillin.
Data points are from three independent experiments. Error bars show standard error of the mean.
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To understand what determines the ranking of the AMSCI mAbs in TPBLA, they were
subjected to a panel of developability assays to compare their performance to TPBLA.
These assays were chosen based on a landmark study by Jain et al. (2017) assessing the
output of 12 commonly employed developability assays on 137 monoclonal antibody
therapeutics. Jain et al. (2017) found that many of these developability assays gave similar
outputs, and grouped these assays based on their relatedness. Tm by DSF, HIC and AC-
SINS (Section 1.4) were chosen to assess the AMSCI mAbs as they each represent one
of the ‘branches’ of relatedness. HIC is a column based method that separates molecules
based on their surface hydrophobicity, or their tendency to associate with a column matrix
comprised of hydrophobic molecules (Estep et al., 2015). The retention time of the POI is
directly related to its association with the column matrix; the least hydrophobic molecules
will have a shorter retention time, and the most hydrophobic molecules will have a longer
retention time. AMS134 had the longest retention time (18.4 min), indicating it is the
most hydrophobic, whereas AMS106 (infliximab) had the shortest retention time (8.3 min),
indicating it is the least hydrophobic, despite being the aggregation-prone control (Figure
4.5A, B). The elution profile of AMS148 had two peaks, indicating this variant forms a
dimer creating a mixed monomer/dimer population that can interact with the column matrix
in different ways. This could potentially be the monomer is interacting via a hydrophobic
surface patch, creating a dimer that now has less exposed hydrophobic side chains.

AC-SINS (Section 1.4) is a high-throughput plate-based method designed to assess
mAbs based on their propensity to self-associate (Liu et al., 2014). Gold nanoparticles
(AuNP) are conjugated to anti-human Fc IgGs and incubated with the mAb of interest.
The absorbance spectra of the AuNP are measured and compared with naked AuNP. Self-
association of the mAb of interest results in a red shift in the wavelength of maximum
fluorescence intensity (λmax). A wavelength shift of 5 nm is often used as a threshold, with
shifts larger than this classed as high self-association (Liu et al., 2014). The absorbance
spectrum for each AMSCI mAb was measured between 500 - 600 nm and compared
with two internal controls; CDP850 (aggregation-resistant), and infliximab (aggregation-
prone). It is important to note that the infliximab used here as an internal control is
the therapeutic, which has different constant regions to AMS106 (which contains the
infliximab VH and VL domains grafted onto a common AMSCI scaffold). AMS134
has the biggest wavelength shift (mean, M = 20.92 nm; standard deviation, SD = 0.12),
followed by AMS137 (M = 16.07 nm, SD = 0.09) and AMS214 (M = 8.89 nm, SD =
0.20), all indicating a high propensity to self-associate (Figure 4.5C, D). The aggregation-
prone control of infliximab shows a wavelength shift of 35.85 nm (SD = 0.28), whereas
the AMSCI variant of infliximab AMS106 only shifts 0.64 nm (SD = 0.14) (Figure
4.5C, D). The aggregation mechanism of therapeutic infliximab has been shown to be
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Fig. 4.5 Biophysical characterisation of 11 chosen IgGs. A) Hydrophobic Interaction Chro-
matography (HIC) chromatograms of the 11 full-length AMSCI mAbs (5 µg/mL, PBS). The reten-
tion time is shown by an elution peak for each IgG and the corresponding absorbance at 220
nm. B) Retention time values from HIC chromatograms. The chromatogram for AMS148 had two
peaks so has two retention times, peak 1 (pink, square) and peak 2 (green, circle). Variants are ar-
ranged by increasing in vivo growth score (TPBLA) from left to right. HIC experiments carried out
with Ailsa MacRae, University of Leeds. C) Affinity-Capture Self-Interaction Nanoparticle Spec-
troscopy (AC-SINS) of the 11 full-length AMSCI mAbs (1 mg/mL, PBS) alongside two internal
controls; CDP850 (aggregation-resistant), and infliximab (aggregation-prone). Larger plasmon
wavelength shifts correlate with higher self-association. D) Plasmon wavelength shifts calculated
compared with AuNP alone. Variants are arranged by increasing in vivo growth score (TPBLA)
from left to right. Data points are from five technical repeats, error bars show standard deviation.



150 Applying TPBLA to assess and evolve therapeutically relevant proteins

as a result of both Fab-Fab interactions in a head-to-tail conformation as well as Fab-Fc
interactions (Lerch et al., 2017; Domnowski et al., 2021). As AMS106 only contains the
variable domains of therapeutic infliximab with different constant regions, it is possible
this disrupted the interfaces involved in these interactions. AMS106, AMS122, AMS132,
AMS147, AMS148, AMS155, AMS197, and AMS198 all showed a wavelength shift of
below 5 nm, indicating low self-association (Figure 4.5C, D).

4.2.2 TPBLA does not correlate to one single biophysical parameter

Previous studies have correlated aggregation propensity, solubility, and thermodynamic
stability to performance in TPBLA. We sought to use the AMSCI mAb dataset to identify
the main drivers in performance in TPBLA. The full length IgG fragments were analysed
using HIC, AC-SINS, DSF, and SLS to assess hydrophobicity, self-association, thermal
stability, and aggregation (Section 4.2.1). The scFv models from ABodyBuilder were
assessed using structurally corrected Camsol to assess the predicted solubility (Leem et al.,
2016; Sormanni et al., 2015a). These were then plotted against in vivo growth score in
TPBLA (Figure 4.6, Figure 4.7). Alternative Tm and Tonset values of the AMSCI mAbs
using differential scanning calorimetry (DSC) and dynamic light scattering (DLS), respec-
tively, from the original BioStreamline project was provided by Dr Michael Knight (UCB).
Additionally, theoretical pI and IgG size in kDa was included as a metric to plot against
TPBLA. TPBLA shows poor correlation with all metrics assessed. Thermal stability (Tm1
by DSF and DSC), aggregation (Tonset by DLS and SLS, Tagg by SLS), hydrophobicity
(HIC retention time), self-association (AC-SINS wavelength shift), predicted solubility
(Camsol score), and size in kDa all showed no correlation (R2 < 0.25). Looking at the
data using Spearmans rank, some metrics show a moderate correlation with TPBLA score
(Figure 4.7). The strongest correlation is Tonset by SLS, with a Spearmans rank of 0.51
(Figure 4.7B). Theoretical pI shows a moderate negative correlation, with a Spearmans
rank of -0.48 (Figure 4.7G). From these data, it is clear there is no single metric that can
individually explain the performance of the AMSCI mAbs in TPBLA.
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Fig. 4.6 TPBLA score shows no strong correlation with any single parameter. in vivo growth
score from TPBLA plotted against (A) First transition mid-point temperatures (Tm1) by DSF, (B)
temperature onset of aggregation (Tonset) by SLS, (C) HIC retention time, (D) AC-SINS plasmon
wavelength shift, (E) Tm1 by DSC, (F) Tonset by DLS, (G) Theoretical pI, (H) IgG size in kDa, (I)
Camsol solubility score and (J) temperature midpoint of aggregation (Tagg) by SLS. (E) and (F)
data provided by Dr Michael Knight (UCB). Linear regression was performed using Orign pro.
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Fig. 4.7 TPBLA score does not correlate with any single parameter. Rank of in vivo growth
score from TPBLA plotted against ranks of (A) First transition mid-point temperatures (Tm1) by
DSF, (B) temperature onset of aggregation (Tonset) by SLS, (C) HIC retention time, (D) AC-SINS
plasmon wavelength shift, (E) Tm1 by DSC, (F) Tonset by DLS, (G) Theoretical pI, (H) IgG size in
kDa, (I) Camsol solubility score and (J) temperature midpoint of aggregation (Tagg) by SLS. (E)
and (F) data provided by Dr Michael Knight (UCB). Spearmans rank and linear regression was
performed using Orign pro.
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4.2.3 Multiple regression can be used to rationalize performance in
TPBLA

Anything that affects the active concentration or activity of β-lactamase in TPBLA will
influence the resulting in vivo growth score. This is included but not limited to; soluble
expression levels, proper folding, thermodynamic stability, thermal stability, colloidal
stability, self-association, aggregation, and degradation by proteases. As these parameters
overlap with those that affect a biopharmaceuticals developability, TPBLA has the potential
to be used to identify poorly developable candidates. However, it is important to understand
which parameters are having the biggest impact on TPBLA score, that is the growth score
in the TPBLA (Figure 4.4). In Section 4.2.2, TPBLA score does not correlate with any
single parameter assessed. Therefore, we sought to explain TPBLA in vivo growth score
for the AMSCI mAbs using a combination of the developability assays listed in Figure 4.6
which measure particular biophysical properties. In other words, can the TPBLA score
be explained as a function of multiple physicochemical properties of the molecule and
what is the minimum number of properties required to do this. This was achieved by using
multiple regression models to compare the TPBLA growth score against the output of a
combination of the aforementioned developability assays.

A multiple linear regression analysis was used to test associations between TPBLA
score and the biophysical characterisation assays used to assess the stability, aggregation,
and solubility of the AMSCI mAbs. Essentially, this was to test which parameters can be
combined to significantly predict TPBLA score. For a more detailed description of the
regression model analysis, see Methods (Section 2.9).

Combinations of parameters from Figure 4.6 were used in a linear regression model, and
parameters were systematically removed until a model was found where all the parameters
were having a statistically significant influence on predicting TPBLA score (p < 0.05).

A model including theoretical pI, Tonset by DLS, Tonset by SLS, Tagg by SLS, and
Camsol score was statistically significant (f(5, 5) = 5.142, R2 = 0.787, r = 0.887, p < 0.05)
(Figure 4.8A). Detailed statistics for the model can be found in Appendix C, Table C.1.
However, the model has almost as many parameters as AMSCI mAb variants which can
result in overfitting. Therefore, parameters were systematically removed and to find the
most parsimonious model.

By removing Tagg by SLS and including theoretical pI, Tonset by DLS, Tonset by SLS,
and Camsol score, the model was statistically significant (f(4, 6) = 5.537, R2 = 0.837, r =
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0.915, p < 0.05) (Figure 4.8B). Detailed statistics for the model can be found in Appendix
C, Table C.2.

A model using only Tonset DLS, Camsol score, and theoretical pI is able to predict
TPBLA score reasonably well. The overall regression was statistically significant (f(3, 7)
= 7.147, R2 = 0.754, r = 0.868, p < 0.05) (Figure 4.8C). Detailed statistics for the model
can be found in Appendix C, Table C.3.

The most parsimonious model was using Tonset by DLS and theoretical pI, where the
overall regression was statistically significant (f(2, 8) = 6.192, R2 = 0.608, r = 0.779, p <
0.05) (Figure 4.8D). Both parameters were significant predictors of TPBLA score (Tonset
by DLS: β= 24.24, t = 3.194, p < 0.05; theoretical pI: β= -311.62, t = -3.028, p < 0.05).
Detailed statistics for the model can be found in Appendix C, Table C.4.

Using a Spearmans rank to assess correlations between the ranked predicted and
experimental TPBLA scores for the models gave similar R2 values as the unranked data
(Figure 4.9). While none of these models can be used to accurately predict de novo TPBLA
scores as the dataset is small and does not have many different antibodies, it can be used
to show trends and highlight links within the dataset. Specifically, the final model using
Tonset by DLS and theoretical pI suggests that both aggregation and solubility have a
strong influence on TPBLA score. This analysis would need to be carried out on a larger
dataset to be more confident in this hypothesis.
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Fig. 4.8 Multiple regression models to predict TPBLA score from biophysical parameters.
Experimental TPBLA score plotted against predicted TPBLA score using multiple regression mod-
els utilising different biophysical parameters. A)Uses theoretical pI, Tonset by DLS, Tonset by SLS,
Tagg by SLS, and Camsol score. B) Omits Tagg by SLS and uses only theoretical pI, Tonset by
DLS, Tonset by SLS, and Camsol score. C) Omits Tonset by SLS and uses theoretical pI, Tonset
by DLS, and Camsol score. D) Is the most parsimonious model, using only Tonset by DLS and
theoretical pI.
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Fig. 4.9 Multiple regression models to predict TPBLA score from biophysical parameters.
Experimental TPBLA rank plotted against predicted TPBLA rank using multiple regression models
utilising different biophysical parameters. A) Uses theoretical pI, Tonset by DLS, Tonset by SLS,
Tagg by SLS, and Camsol score. B) Omits Tagg by SLS and uses only theoretical pI, Tonset by
DLS, Tonset by SLS, and Camsol score. C) Omits Tonset by SLS and uses theoretical pI, Tonset
by DLS, and Camsol score. D) Is the most parsimonious model, using only Tonset by DLS and
theoretical pI.
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4.2.4 TPBLA can be used to evolve therapeutic scaffolds to improve
their biophysical properties

We wanted to apply the high-throughput evolution protocol developed in Chapter 3 to
some of the AMSCI mAbs to see if this could be used to evolve poorly developable
candidates and improve their developability. AMS134 was chosen as it performs poorly in
all the biophysical characterisation assays; it has one of the lowest in vivo growth scores in
TPBLA, the largest wavelength shift in AC-SINS, longest retention time on a HIC column,
and it has one of the lowest Tm1 (DSF) and Tonset (SLS) values of all the AMSCI mAbs.
Conversely, AMS197 has one of the highest in vivo growth scores in TPBLA apart from
the aggregation-resistant therapeutic control (AMS122, trastuzumab). It has no significant
wavelength shift in AC-SINS, one of the shortest retention times on the HIC column, one
of the highest Tm (DLS) and the highest Tonset (SLS) of the AMSCI mAbs. Therefore, it
represents a highly stable and aggregation-resistant variant to test the dynamic range of the
evolution methodology.

AMS134 and AMS197 were evolved using the in vivo assay by introducing genetic
variation into the respective genes and creating a mutated plasmid library within the
β-lactamase vector (Section 2.6.2) to produce βLa AMS134* and βLa AMS197*. For
screening, the libraries were transformed into E. coli SCS1 cells and plated onto agar
containing 40 µg/mL for βLa AMS134* and 180 µg/mL for βLa AMS197*. At these
concentrations, the ‘wild-type’ AMS134 and AMS197 sequences were unable to survive.
Therefore, variants growing should have beneficial mutations that improve the total activity
of folded and soluble fusion proteins. The DNA from the resulting colonies were pooled,
purified, and the genes amplified using PCR before being sent for Illumina sequencing
along with the respective unselected (naive) libraries. Paired end fragments were aligned
to a reference sequence (the respective ‘wild-type’ sequence) and the aligned fragments
were translated in frame with respect to the reference sequence. By comparing the aligned
translated fragments to the original ‘wild-type’ sequence, mutational frequency at each
position was calculated and normalised by read coverage. At each position the mutation
frequency was normalised by coverage. The mean mutation rate at the unmutated GS
linker upstream and downstream of the scFv gene was used as a threshold; a mutation rate
below this was classed as zero. This was used to calculate the log2(fold change) at each
residue. Hotspot residues were identified as having a log2(fold change) of more than two
standard deviations from the mean (>2σ).

For AMS134, a cluster of hotspots was identified in and around HCDR3 (Figure 4.10,
Figure 4.11). Three residues were identified within VH CDR3, W113, Y114, F115. This
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correlates with the only hotspot identified in Aggrescan3D comprising of G112 - F115,
essentially the VH CDR3. These were most commonly mutated to less hydrophobic
residues (W113R, Y114H, and F115S), forming a patch of less aggregation-prone residues
on the surface (Figure 4.12). Four other hotspot residues were identified in the VH domain,
four after CDR3 (G119, G121, V124, I125), and one between CDR1 and CDR2 (P46).
M123 was above the 2σ threshold in the normalised mutation frequency but just below
the threshold for the log2(fold change) (Figure 4.10, Figure 4.11). In the ABodyBuilder
model, M123 forms a hydrophobic surface patch with P46, G119, G121, V124, and I125.
Therefore, it was included as a hotspot residue for further analysis (Figure 4.12). The
hotspots were most commonly mutated to P46L, G119D, G121D, M123K, V124D, and
I125T. These were often charged residues (G119D, G121D, M123K, V124D), which
are widely accepted to oppose protein aggregation via electrostatic repulsion (Sant’Anna
et al., 2014). All of these hotspots were mutated to less hydrophobic residues, except
for P46 which was mutated to leucine. In the ABodyBuilder model,G119, G121, M123
and I125 seem to form the edge strand of a β-sheet, a region commonly accepted to be
involved in mediating protein aggregation via edge-strand interactions (Trinh et al., 2002;
Richardson and Richardson, 2002; Siepen et al., 2003). Furthermore, this region was
identified as being within an APR using Waltz, a sequence-based algorithm for predicting
amyloidogenic peptides (Louros et al., 2020). Therefore, this region could be involved in
driving self-association of AMS134, and mutating it could disrupt this association. No
hotspots were identified in the VL over the 2σ threshold (Figure 4.10, Figure 4.11). The
closest was R93, which was most commonly mutated to glycine. To understand the affect
of mutations on the VL as well as the VH, R93G was included in future analysis.

Looking at the normalised mutation frequency, AMS197 shows a huge cluster in
hotspots between residues 57-86 (Figure 4.13). However, this ‘hotspot cluster’ is present
within the naive library, likely as a result of the error-prone PCR (Figure 4.13). This
highlights the importance of looking at the log2(fold change), to identify positions whose
mutation rate has been enriched as a result of the selection. For AMS197, only 5 hotspots
were identified as being above the 2σ threshold for the log2(fold change) (Figure 4.13,
Figure 4.14). Two residues were identified in HCDR1, T29 and D38, which were most
commonly mutated to A and N, respectively (Figure 4.15). One hotspot residue was
identified within HCDR2, S65, which was most commonly mutated to N (Figure 4.13,
Figure 4.14). Unlike in AMS134, the hotspot residues identified in the evolution of
AMS197 form no patches on the surface (Figure 4.15).

To assess the impact of the hotspot mutations on the stability, aggregation propensity,
and in vivo growth in TPBLA, they were introduced as single point mutations back into
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Fig. 4.10 Evolution of AMS134 analysed by Illumina sequencing. Mutational frequency nor-
malised by read coverage for AMS134 showing the naive library, selected library at 20 µg/mL
ampicillin, and selected library at 40 µg/mL ampicillin. Hotspots are identified as having a muta-
tional frequency of more than two standard deviations from the mean (>2σ). Grey boxes denote
residues in CDRs. Evolution experiments carried out with Ailsa MacRae, University of Leeds.
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Fig. 4.11 Evolution of AMS134 analysed by Illumina sequencing. log2(fold change) of the
mutational frequency calculated using the naive and selected libraries of AMS134 evolved at
at 20 µg/mL and 40 µg/mL ampicillin. Hotspots are identified as having a log2(fold change) of
more than two standard deviations from the mean (>2σ). Grey boxes denote residues in CDRs.
Evolution experiments carried out with Ailsa MacRae, University of Leeds.
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Fig. 4.12 AMS134 hotspots identified in Illumina sequencing mapped onto the scFv struc-
ture. Hotspot residues (red) identified as having a normalised mutational frequency or log2(fold
change) of more than two standard deviations (>2σ) from the mean in Illumina sequencing
mapped onto the scFv structure of AMS134 predicted by ABodyBuilder (Leem et al., 2016). R93
was included as a hotspot in the VL although it was slightly below the 2σ cutoff as a representative
position in the VL. VH is shown in purple and VL is shown in blue.
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Fig. 4.13 Evolution of AMS197 analysed by Illumina sequencing. Mutational frequency nor-
malised by read coverage for AMS197 showing the naive library, selected library at 140 µg/mL
ampicillin, and selected library at 180 µg/mL ampicillin. Hotspots are identified as having a muta-
tional frequency of more than two standard deviations from the mean (>2σ). Grey boxes denote
residues in CDRs. Evolution experiments carried out with Ailsa MacRae, University of Leeds.
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Fig. 4.14 Evolution of AMS197 analysed by Illumina sequencing. log2(fold change) of the
mutational frequency calculated using the naive and selected libraries of AMS197 evolved at at
140 µg/mL and 180 µg/mL ampicillin. Hotspots are identified as having a log2(fold change) of
more than two standard deviations from the mean (>2σ). Grey boxes denote residues in CDRs.
Evolution experiments carried out with Ailsa MacRae, University of Leeds.
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Fig. 4.15 AMS197 hotspots identified in Illumina sequencing mapped onto the scFv struc-
ture. Hotspot residues (red) identified as having a normalised mutational frequency or log2(fold
change) of more than two standard deviations (>2σ) from the mean in Illumina sequencing
mapped onto the scFv structure of AMS197 predicted by ABodyBuilder (Leem et al., 2016). VH
is shown in purple and VL is shown in blue.
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AMS134 and AMS197 and assessed them using TPBLA. All 10 point mutants of AMS134
displayed improved growth in TPBLA compared with AMS134 wild-type (Figure 4.16A).
The most improved was V124D, with a 1.5-fold increase in in vivo growth (Figure 4.16A).
For AMS197, 3 out of the 4 point mutants assessed displayed slightly improved growth in
TPBLA compared with wild-type (Figure 4.16B). It is possible the variants identified in
the evolution screen came about as multiple point mutants, rather than single point mutants.
To test this, the evolved libraries of AMS134 at 40 µg/mL ampicillin and AMS197 at 180
µg/mL ampicillin were transformed into E. coli SCS1 cells and single colonies were picked
to be screened by TPBLA. If these single colonies showed significantly improved in vivo
growth scores compared to the single point mutants assessed, this could be due to them
containing multiple mutations. For both libraries, the single colonies showed similar in
vivo growth scores compared with the single point mutants, suggesting the evolved mutants
are likely single point mutants (Figure 4.16).

The single point mutants and single colonies (from the transformation of the evolved
library) of AMS197 do not display significantly improved growth in TPBLA relative to the
wild-type (Figure 4.16B). For comparison, the best point mutant identified for AMS134
was V124D. This showed an improvement in in vivo growth score of 93, which corresponds
to a 1.5-fold improvement relative to wild-type AMS134. The best point mutant identified
for AMS197 was D38N. This showed an improvement in in vivo growth score of 127,
which corresponds to only a 1.1-fold improvement relative to wild-type AMS197. This is
potentially due to the fact that AMS197 is already a highly stable and aggregation-resistant
molecule. Therefore, in order to significantly improve its in vivo growth score it may
require multiple point mutations in combination, and to be evolved at a higher ampicillin
concentration.

4.2.5 Evolved single point mutations of AMS134 improve aggregation
behaviours

To understand how TPBLA has evolved these antibodies, three variants of AMS134 as well
as the wild-type were expressed and purified in Chinese Hamster Ovary (CHO) cells as
full-length IgG fragments for further characterisation. R93G in the VL domain was chosen
as it is the only residue close to the 2σ cutoff in the VL domain. M123K in the VH domain
was chosen as it is an example that is near the 2σ cutoff. It was over the 2σ threshold in
the normalised mutation frequency but just below the threshold for the log2(fold change),
therefore representing a residue that is just on the threshold (Figure 4.10, Figure 4.11).
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Fig. 4.16 In vivo screen of evolved AMS134 and AMS197 point mutants identified by Illu-
mina sequencing. Area under the antibiotic survival curve calculated for evolved (A) AMS134,
and (B) AMS197 point mutants identified by Illumina sequencing, screened at (A) 0-70 µg/mL
ampicillin, and (B) 0-280 µg/mL ampicillin. Error bars show standard error of the mean (S.E.M)
from three independent experiments. TPBLA carried out with Ailsa MacRae, University of Leeds.
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Table 4.2 Stability and aggregation behaviours of AMS134 mAbs. First (Tm1) and second
(Tm2) transition mid-point temperatures and temperature onset of aggregation (Tonset) calculated
using differential scanning fluorimetry (DSF) and static light scattering (SLS), respectively.

Variant Tm1 (°C) Tm2 (°C) Tonset (°C)

AMS134WT 64.26 83.63 54.81
AMS134R93G VL 63.28 83.53 52.29
AMS134M123K VH 65.13 84.05 54.70
AMS134V124D VH 65.33 88.24

Table 4.3 Hydrodynamic radius (Rh) of AMS134 IgGs measured by dynamic light scattering
(DLS) before and after temperature ramp.

Rh at 25 °C (nm) Rh at 95 °C (nm)
AMS134WT 9.5 23.8
AMS134R93G VL 9.5 23.8 & 79.9
AMS134M123K VH 9.5 18.6
AMS134V124D VH 8.1 1.4 & 13.5

Conversely, V124D in the VH is above both thresholds and has the highest in vivo growth
score of the AMS134 point mutants assessed (Figure 4.10, Figure 4.11, Figure 4.16A).

The AMS134 point mutants have similar thermal stabilities as measured by DSF
(Figure 4.17A, Table 4.2). AMS134R93G VL had the lowest Tm (63.28 °C), whereas with
AMS134V124D VH which had the highest Tm (65.33 °C) (Table 4.2). At the start (25 °C) and
end (95 °C) of the temperature ramp in DSF, the size of the molecule (hydrodynamic radius,
Rh) was measured using DLS. AMS134WT, AMS134R93G VL, and AMS134M123K VH

showed a shift in hydrodynamic radius following temperature ramp from 9.5 nm to 23.8
nm (WT and R83G) or 18.6 nm (M123K) (Table 4.3, Figure 4.17B, Figure 4.18A, B,
C). AMS134R93G VL also formed a larger aggregate of 79.9 nm (Table 4.3). However,
AMS134V124D VH remained around the same size (8.1 nm at 25 °C, 10.6 nm at 95 °C,
Table 4.3, Figure 4.17B, Figure 4.18D). Consistent with this, AMS134V124D VH abolishes
aggregation at high temperatures compared with AMS134WT, as measured by SLS at 266
nm (Figure 4.17C, Figure 4.19).

AMS134M123K VH has a similar Tonset of aggregation compared with AMS134WT

(Table 4.2, Figure 4.17C, Figure 4.19). This is consistent with the fact that M123 was only
just at the 2σ cutoff of normalised mutation frequency, and was below the 2σ cutoff of
log2(fold change), so was not expected to confer vast improvements in stability or aggre-
gation resistance. AMS134R93G VL has a similar Tm to AMS134WT, but has significantly
increased aggregation (Table 4.2, Figure 4.17C, Figure 4.19). This is consistent with the
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Fig. 4.17 Biophysical characterisation of evolved AMS134 variants. A) differential scanning
fluormietry (DSF) using intrinsic protein fluorescence by exciting with a 266 nm laser and measur-
ing emission from 315-430 nm. The first transition mid-point temperature (Tm1) was calculated
based on the barycentric mean (BCM) of the fluorescence intensity curves from 315-430 nm. B)
Dynamic light scattering (DLS) was measured at 25°C and 95°C to see the change in hydrody-
namic radius following thermal melt. C) Static light scattering (SLS) was measured at each tem-
perature to calculate the temperature onset of aggregation (Tonset) and to delineate unfolding and
aggregation. Data collected using UNcle system (Unchained Labs). D) HPLC chromatograms of
the 3 full-length AMS134 point mutants compared with AMSWT (1 mg/mL, PBS) on an XBridge
Protein BEH SEC Column, 200Å, 3.5 µm (Waters). The retention time is shown by an elution
peak for each IgG and the corresponding absorbance at 280 nm.
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Fig. 4.18 Dynamic light scattering (DLS) of AMS134 evolved point mutants measured
before and after thermal melt. Dynamic light scattering (DLS) measured before (25°C) and
after (95°C) thermal melt to see the change in hydrodynamic radius. Variants shown are (A)
AMS134WT, (B) AMS134R93G VL, (C) AMS134M123K VH, and (D) AMS134V124D VH.
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Fig. 4.19 Thermal stability and aggregation behaviour of evolved AMS134 variants. differ-
ential scanning fluormietry (DSF) using intrinsic protein fluorescence by exciting with a 266 nm
laser and measuring emission from 315-430 nm. The first transition mid-point temperature (Tm1)
was calculated based on the barycentric mean (BCM) of the fluorescence intensity curves from
315-430 nm. Static light scattering (SLS) at 266 nm was measured at each temperature to calcu-
late the temperature onset of aggregation (Tonset) and to delineate unfolding and aggregation.



4.2 Results 173

fact that R93 was below the 2σ cutoff of both normalised mutation frequency and log2(fold
change), so was not expected to improve the stability or aggregation resistance.

The variants were analysed by HPLC to measure their retention time as well as their
proportions of high- and low- molecular weight species. All variants showed the same
retention time for the monomeric species (Figure 4.17D). They all showed similar levels
of high-molecular weight species, but only AMS134WT showed significant levels of low-
molecular weight species as well as a small shoulder in the monomeric peak. This suggests
the wild-type is more susceptible to degradation than the evolved point mutants, which
may give some insight into the fact these variants showed improved in vivo growth scores
in TPBLA.

The variants were assessed by AC-SINS to measure their propensity to self-associate.
AMS134R93G VL showed an increased wavelength shift (increased self-association) com-
pared with AMS134WT (one way ANOVA: p < 0.001, Tukey’s HSD: p < 0.001), con-
sistent with the SLS and DLS data showing the increase in aggregation (Figure 4.20).
AMS134M123K VH showed an almost 1 nm reduction in wavelength shift (reduced self-
association) compared with AMS134WT (one way ANOVA: p < 0.001, Tukey’s HSD: p
< 0.001) (Figure 4.20). AMS134V124D VH showed a wavelength shift of 0.5 nm less than
compared with AMS134WT, indicating reduced self-association (one way ANOVA: p <
0.001, Tukey’s HSD: p < 0.05), consistent with the decrease in aggregation seen in the
SLS and DLS data (Figure 4.20).

All three point mutants show improvement in in vivo growth scores in TPBLA com-
pared with AMS134WT, although it is not clear exactly what is driving this change.
AMS134V124D VH no longer aggregates at high temperatures as measured by SLS, but it
self-associates in AC-SINS at almost the same level as AMS134WT. AMS134R93G VL has
a higher growth score in TPBLA, but has a massive increase in aggregation compared with
AMS134WT as measured by SLS. AMS134M123K VH has no change in aggregation or ther-
mal stability compared with AMS134WT, but shows a slight reduction in self-association
as measured by AC-SINS. Nevertheless, the improvements that are seen with these point
mutants are very slight. However, the library was designed to contain on average one
amino acid substitution per scFv gene. It is likely that to get significant improvements
in stability and aggregation behaviour this mutation rate needs to be increased to allow
multiple mutations. However, this would not be possible with our currently employed
shotgun Illumina sequencing methodology, where shorter fragments are aligned on a longer
reference sequence, as it makes it impossible to know if identified point mutations are
found alone or in combination with others. Furthermore, this makes it complicated to
try and understand exactly how TPBLA is improving these test proteins, as well as the
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Fig. 4.20 AC-SINS absorbtion spectra and wavelength shifts of AMS134 evolved point mu-
tants. A) Affinity-Capture Self-Interaction Nanoparticle Spectroscopy (AC-SINS) of AMS134WT

(green) and 3 evolved point mutants formatted as full-length IgGs (1 mg/mL, PBS), and AuNP
alone (black). Larger plasmon wavelength shifts correlate with higher self-association. Represen-
tative spectra from 1 of 5 technical repeats. B) Normalised absorbance spectra of all 5 repeats
between 540 - 590 nm. C) Plasmon wavelength shifts calculated compared with AuNP alone.
Data points are from five technical repeats, error bars show standard deviation. ‘*’ = p < 0.05, ‘***’
= p < 0.001.
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individual impact of the single point mutations. This could be addressed by analysing
the VH and VL domains separately as individually they are small enough to be read in a
single Illumina read. Alternatively, barcoding or a long-read sequencing technique such as
Pacbio could be used to read the entire mutated gene in one run and therefore enabling
analysis of multiple mutations.

4.2.6 Analysis of 35 clinical late stage therapeutics demonstrates no
correlation between MIC and any single developability assay

The AMSCI dataset was useful initially to demonstrate the potential of TPBLA to (1) screen
and rank test proteins, and (2) evolve test proteins to improve their developability. The
models presented in Section 4.2.3 demonstrate links between TPBLA and mAb stability,
solubility, and aggregation. However, the small size of the dataset limits the applicability
of these models. In order to probe this further, we utilised a well-characterised dataset
of late stage clinical therapeutics (Phase 2, Phase 3, or Approved) from a study by Jain
et al. (2017) characterised using a suite of developability assays summarised in Table 4.4.
The scFv encoding 35 of these mAbs were screened using TPBLA to correlate with other
developability assays and identify the main factors influencing TPBLA growth score and
to identify correlations.

The in vivo growth score of E. coli SCS1 cells expressing the scFv of each of the 35
chosen mAbs within the TPBLA construct was measured in a 48 well plate format over
an ampicillin concentration range of 0-140 µg/mL. The dataset showed a wide range of
responses (Figure 4.21A). Looking at the in vivo growth score of the scFvs based on their
approval rating, there is a statistically significant difference between Phase 2, Phase 3, or
Approved scFvs when analysed using ANOVA (p = 0.04). However, further assessing this
using a post-hoc Tukey test demonstrates the individual differences are not statistically
significant between Phase 2 and Phase 3 (p = 0.96). The differences between Approved
and Phase 2 or Phase 3 also do not reach the threshold of statistical significance (p = 0.08),
however the median and mean in vivo growth scores for Approved scFvs are improved
compared with Phase 2 and Phase 3 (Figure 4.21B). Furthermore, the interquartile range of
Approved scFv TPBLA growth scores is tighter and shifted up compared with Phase 2 and
Phase 3, which agrees with the idea that to be approved the antibodies need a certain level
of stability and aggregation resistance. The approval ratings used were true as of 2017,
when the paper by Jain et al. (2017) was published. Since then, many of the Phase 2 and
Phase 3 mAbs have been discontinued. The difference between the TPBLA growth scores
of the approved mAbs compared with the discontinued mAbs is statistically significant
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(Welch two sample t-test: t = 3.28, df 81.5, p = 0.0015), where the discontinued mAbs have
on average a lower TPBLA score than the approved mAbs (Figure 4.21C). There are some
outliers that were discontinued but have high TPBLA growth scores. However, these could
have been discontinued for reasons other than aggregation or stability problems, such as
potency issues or activity. Overall, this demonstrates the ability of TPBLA to identify and
separate poorly behaved antibody fragments.

Table 4.4 Developability assays used to characterise the Jain dataset (Jain et al., 2017;
Willis et al., 2020)

Assay Description Biophysical
property assessed

HEK titer The expression titer (mg/L) of mAb produced in
HEK cells

Aggregation
propensity and
stability

Thermal midpoint (Tm)
determination using differential
scanning fluorimetry (DSF) (He
et al., 2011)

mAb mixed with fluorescent dye (SYPRO orange)
which is sensitive to protein unfolding. The
fluorescent signal is measured over 40 °C to 95 °C
in 0.25 °C per minute steps.

Thermal stability

Hydrophobic Interaction
Chromatography (HIC) (Estep et al.,
2015)

Retention time of mAbs on a butyl-NP5 HIC
column which contains resin with hydrophobic
groups. Longer retention times correlate with
increased hydrophobicity.

Hydrophobicity

Standup Monolayer Adsorption
Chromatography (SMAC) (Kohli
et al., 2015)

Retention time of mAbs on a Zenix SEC-300
column which contains a monolayer of silica.
Longer retention times correlate with poor
colloidal stability.

Colloidal stability

Cross Interaction Chromatography
(CIC) (Jacobs et al., 2010)

Retention time of mAbs on a column where
polyclonal antibodies have been conjugated to the
column matrix. Longer retention times correlate
with increased polyspecificty.

Polyspecificity

Polyspecificity Reagent (PSR)
binding (Xu et al., 2013)

Biotinylated membrane proteins used as the
polyspecificity reagent (PSR). Binding was
measured by presenting IgGs on the surface of
yeast and incubating with PSR before quantifying
binding using a fluorescent signal.

Polyspecificity
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Accelerated stability (AS) mAbs (1 mg/mL) were incubated at 40 °C for 30
days. Timepoints were taken over the 30 days and
the amount of aggregate calculated using gel
filtration chromatography.

Aggregation
propensity, thermal
stability, shelf life

Affinity-Capture Self-Interaction
Nanoparticle Spectroscopy
(AC-SINS) (Liu et al., 2014)

Gold nanoparticles conjugated to anti-human Fc
IgGs and incubated with mAb of interest. The
absorbance spectra of the nanoparticles is
measured. Aggregation of the nanoparticles by
IgG self-interaction results in a wavelength shift.

Aggregation
propensity,
self-association

Salt-Gradient AC-SINS
(SGAC-SINS) (Estep et al., 2015)

Gold nanoparticles (as above) incubated with mAb
of interest then diluted in 0.3-1M ammonium
sulphate. The wavelength shift in absorbance is
plotted against salt concentration.

Aggregation
propensity, solubility

Clone Self-Interaction by Biolayer
Interferometry (CSI-BLI) (Sun
et al., 2013)

mAb of interest in solution was incubated with a
biosensor with surface immobilised mAb of
interest. Binding was measured using bio-layer
interferometry system Octet (Section 1.4)

Self-association,
aggregation

Enzyme-Linked Immunosorbent
Assay (ELISA) (Mouquet et al.,
2010)

mAb of interest is screened for binding against
multiple antigens (Cardiolipin, keyhole limpet
haemocyanin, lipopolysacchaaride, ss- and
ds-DNA, and insulin). Antigens immobilised on
ELISA plates, incubated with mAb of interest.
Binding detected using anti-human IgG-HRP.

Promiscuous binding,
Polyspecificity

Baculovirus particle (BVP) assay
(Hötzel et al., 2012)

As in ELISA, except uses baculovirus particles in
place of antigens. Binding of mAb to BVP
correlates with rapid clearance in vivo.

Unfavourable
pharmokinetics (e.g.
rapid clearance)

Extensional and shear flow device
(EFD) (Willis et al., 2020)

mAb of interest is subjected to defined
hydrodynamic forces which mimic those
experienced in bioprocessing. The affect of these
flow forces on the amount of monomeric species is
quantified and compared to before flow.

Flow-induced
aggregation

To understand which biophysical properties have the biggest impact on in vivo growth
in TPBLA of the 35 late stage clinical therapeutics, this was correlated with their perfor-
mance in 13 commonly employed developability assays (Table 4.4) (Jain et al., 2017; Willis
et al., 2020). These assays individually probe the proteins’ thermal stability, aggregation
propensity, self-association, hydrophobicity, colloidal stability, hydrophobicity, polyspeci-
ficity, solubility, shelf-life, promiscuous binding, and unfavourable pharmokinetics (Jain
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Fig. 4.21 TPBLA analysis of 35 chosen Jain mAbs as scFvs. A) Area under the antibiotic
survival curve calculated for the scFv regions of the 35 Jain mAbs, screened at 0-140 µg/mL
ampicillin. Data points are from three independent experiments. Error bars show standard error
of the mean. Bars coloured by approval rating as of 2017 (Jain et al., 2017). mAbs that have
been discontinued since 2017 are coloured in red. B) Box plot showing TPBLA scores based on
approval rating published by Jain et al. (2017). Outliers are values that fall outside 1 interquartile
range (IQR). C) Box plot showing TPBLA scores of approved mAbs vs those that have been
discontinued since Jain et al. (2017). Outliers are values that fall outside 1 interquartile range
(IQR). ‘**’ = p < 0.01.
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et al., 2017). (Figure 4.22, Figure 4.23). None of the 13 developability assays showed
a correlation with TPBLA score (R2 < 0.15). When analysed using a Spearmans rank
correlation, Fab Tm by DSF had the highest correlation with TPBLA score (Spearman’s
rank = 0.28) (Figure 4.24A, Figure 4.23B). Although this is a weak correlation, it is similar
to that seen within the AMSCI mAbs dataset. Using a Spearmans rank correlation, TPBLA
shows an unexpected negative correlation with ELISA, although this again very weak
(Spearman’s rank = -0.27, Figure 4.23C). The Spearmans rank correlations between TP-
BLA and the other 13 developability assays were used in a hierarchical clustering analysis
to identify related assays. TPBLA clusters with Fab Tm by DSF, which is then most
closely related to HEK titer and Salt-Gradient AC-SINS (SGAC) (Figure 4.24B). All other
assays cluster together on a separate branch, indicating TPBLA is reporting on something
different and novel that is not encompassed by these commonly employed developability
assays (Figure 4.24B).

4.2.7 Multiple regression models can be used to rationalise TPBLA
score

In Section 4.2.3 we attempted to explain TPBLA score by performing a multiple regression
model and identifying parameters that influence the in vivo growth of the AMSCI mAbs.
However, the dataset was too small for statistically significant analysis. The larger size of
the Jain dataset enables more statistically robust analysis of correlations between TPBLA
and these 13 developability assays, all of which probe particular and individual biophysical
characteristics.

A multiple linear regression model was used to test which parameters can significantly
predict TPBLA score. An initial model included 7 assays: Fab Tm by DSF, Standup Mono-
layer Adsorption Chromatography (SMAC), Accelerated Stability (AS), Polyspecificity
Reagent (PSR) binding, Cross Interaction Chromatography (CIC), theoretical pI, and scFv
molecular weight. The overall regression was statistically significant (f(7, 27) = 3.968, R2

= 0.51, r = 0.71, p = 0.004) (Figure 4.25A). Detailed statistics for the model can be found
in Appendix D, Table D.1. Individual parameters were removed systematically to find the
most parsimonious model. Removing AS gives a statistically significant model (f(6, 28)
= 3.913, R2 = 0.46, r = 0.68, p = 0.005). Detailed statistics for the model can be found
in Appendix D, Table D.2. However, using this model PSR and molecular weight do not
significantly predict TPBLA score (p > 0.1) (Figure 4.25B).
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Fig. 4.22 TPBLA plotted against biophysical characterisation of 35 Jain mAbs.in vivo growth
score from TPBLA plotted against (A) HEK titer, (B) Fab transition mid-point temperatures (Tm)
by DSF, (C) Hydrophobic Interaction Chromatography (HIC), (D) Standup Monolayer Adsorption
Chromatography (SMAC) retention time, (E) Accelerated stability slope, (F) Enzyme-Linked Im-
munosorbent Assay (ELISA), (G) Polyspecificity Reagent (PSR) binding, (H) Cross Interaction
Chromatography (CIC) retention time, (I) scFv molecular weight, and (J) theoretical pI. Data for
developability assays plotted against TPBLA from A-J was taken from Jain et al. (2017). Linear
regression was performed using Orign pro.
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Fig. 4.23 Ranked TPBLA plotted against HEK titre, Tm1 by DSF, and ELISA for 35 Jain
mAbs. Ranked in vivo growth score from TPBLA plotted against ranked (A) HEK titer, (B) Fab tran-
sition mid-point temperatures (Tm) by DSF, (C) Enzyme-Linked Immunosorbent Assay (ELISA).
HEK titre, Tm, and ELISA data taken from Jain et al. (2017). Spearmans rank and linear regres-
sion was performed using Orign pro.
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Fig. 4.24 Spearmans rank correlation and hierachical clustering of developability assays
compared with TPBLA for 35 Jain mAbs. A) Matrix showing Spearmans rank correlation of
developability assays. B) Hierachical clustering of developability assays.

Removing molecular weight gives a statistically significant regression model (f(5, 29)
= 4.116, R2 = 0.42, r = 0.64, p = 0.006) where all parameters significantly predict TPBLA
score (p < 0.1) (Figure 4.25C). Detailed statistics for the model can be found in Appendix
D, Table D.3.

In agreement with the models generated with the AMSCI mAbs dataset, this model
demonstrates that Tm and pI have the most significant impact on TPBLA score (p < 0.01).
The link between TPBLA and pI is likely due to protein solubility, in agreement with the
data presented in Chapter 3. CIC and SMAC have a significant impact on TPBLA score
(p < 0.05), likely due to them measuring unwanted protein-protein interactions which can
lead to protein aggregation. Similarly, PSR has a moderately significant impact on TPBLA
score (p < 0.1).

Using a Spearmans rank to assess correlations between the ranked predicted and
experimental TPBLA scores for the models gave similar R2 values as the unranked data
(Figure 4.26).



184 Applying TPBLA to assess and evolve therapeutically relevant proteins

Fig. 4.25 Multiple regression models to predict TPBLA score from biophysical parame-
ters. Experimental TPBLA score plotted against predicted TPBLA score using multiple regression
models utilising different developability assays and biophysical parameters. A) Uses Fab Tm by
DSF, Standup Monolayer Adsorption Chromatography (SMAC) retention time, Accelerated Stabil-
ity (AS), Polyspecificity Reagent (PSR) binding, Cross Interaction Chromatography (CIC) retention
time, theoretical pI, and scFv molecular weight. B) Removes AS and uses only Tm, SMAC, PSR,
CIC, pI, and molecular weight. C) The most parsimonious model. Removes molecular weight and
uses only Tm, SMAC, PSR, CIC, and pI.
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Fig. 4.26 Multiple regression models to predict TPBLA score from biophysical parameters.
Ranked Experimental TPBLA score plotted against ranked predicted TPBLA score using multiple
regression models utilising different developability assays and biophysical parameters. A) Uses
Fab Tm by DSF, Standup Monolayer Adsorption Chromatography (SMAC) retention time, Accel-
erated Stability (AS), Polyspecificity Reagent (PSR) binding, Cross Interaction Chromatography
(CIC) retention time, theoretical pI, and scFv molecular weight. B) Removes AS and uses only
Tm, SMAC, PSR, CIC, pI, and molecular weight. C) The most parsimonious model. Removes
molecular weight and uses only Tm, SMAC, PSR, CIC, and pI.
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4.2.8 Multiple regression models can predict TPBLA score based on
performance in other developability assays

To assess the potential for this multiple regression model to accurately predict TPBLA
score, 6 mAbs were removed at random from the dataset. A multiple regression was
performed to generate a model using Tm, SMAC, PSR, CIC, and pI to predict TPBLA
score. The model was statistically significant (f(5, 23) = 3.375, R2 = 0.42, r = 0.64, p =
0.02) (Figure 4.27A). Detailed statistics for the model can be found in Appendix D, Table
D.4. This was then used to predict TPBLA for the 6 random mAbs that had been removed
from the dataset (Figure 4.27B). The predicted TPBLA scores for the 6 mAbs correlated
well with the experimental TPBLA scores (R2 = 0.65, r = 0.78, Spearmans rank = 0.83).

Fig. 4.27 Testing the regression model to predict TPBLA score for 6 test mAbs. A) Exper-
imental TPBLA score plotted against predicted TPBLA score using multiple regression models
utilising Tm, SMAC, PSR, CIC, and pI. 6 test mAbs were removed from the dataset of 35 Jain
mAbs to create the model. B) The model using the 29 mAbs was used to predict the TPBLA
score for the 6 test mAbs.

These multiple linear regression models are not able to perfectly predict TPBLA
score. Clearly TPBLA reports on a complex set of metrics, including; thermal stability,
protein aggregation, solubility, colloidal stability, and self-association. The fact that the
models are unable to perfectly predict TPBLA score is likely that TPBLA is probing novel
characteristics these developability assays do not monitor, highlighting its potential for use
as a developability assay within the bioprocessing pipeleine. While TPBLA is not always
able to identify the best antibodies, it is able to distinguish problematic sequences and
would be a useful tool for identifying problematic molecules from a panel of variants prior
to protein purification.
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4.3 Discussion

Biopharmaceutical aggregation can occur at any stage of its lifetime, from expression in
cell culture through to purification, formulation, transportation, and storage (Willis et al.,
2020; Fukuhara et al., 2021). The resulting particulates can compromise the safety and
efficacy of the final product (Starr et al., 2021). Therefore, protein aggregation can be a
major hinderance to biopharmaceutical development as the identification and removal of
these aggregates can be both costly and time-consuming (Jiskoot et al., 2012; Wolf Pérez
et al., 2019). It is therefore of interest to the biopharmaceutical industry to develop methods
to identify aggregation-prone sequences early in the developmental pipeline in order to
minimise unnecessary time and expense. However, identification of aggregation-prone
regions (APRs) can be difficult as these may be buried and only exposed upon partial
or full unfolding of the protein, which may only occur under certain stresses or during
manufacture (Wang and Roberts, 2018; Eyes et al., 2019).

There are many techniques available for identifying protein aggregates and assessing
the developability of a biopharmaceutical candidate, as discussed in Section 1.4. However,
this still remains a significant feat as it requires extensive purification of many different
candidates and characterisation using a plethora of developability assays. In contrast,
TPBLA could be employed as a developability screen following affinity maturation to
filter out poorly developable candidates prior to protein purification as it can screen
a large number of variants relatively quickly. Unlike some other assays that measure
protein solubility, TPBLA enables the proper formation of disulfide bonds within antibody
fragments as it is carried out in the E. coli periplasm (Cabantous and Waldo, 2006; Morell
et al., 2011; Espargaró et al., 2012; McLure et al., 2022). TPBLA uses no perturbant
to accelerate aggregation or destabilise the test protein, such as increased temperature,
pH, or chemical denaturant, so it measures the innate stability of the molecule within a
cellular environment. The multiple regression models presented in this chapter demonstrate
TPBLA is influenced by a multitude of factors, including; thermal stability, solubiltiy,
aggregation propensity, self-association, and colloidal stability. Therefore, TPBLA may
give a more rounded readout of a molecule compared with developability assays that
measure only a single characteristic.

This chapter focusses mainly on IgGs, as the biopharmaceutical sector is currently
dominated by mAbs (Walsh, 2018; Khetan et al., 2022). We demomstrate how TPBLA is
able to rank a panel of antibodies and identify problematic sequences. All of the AMSCI
mAbs, apart from AMS197 and AMS214, score worse than the AMS106 aggregation-prone
control (infliximab), consistent with the fact they were designed to have developability
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problems. All of the variants that have low Tm and Tonset, high HIC retention times, or
large AC-SINS wavelength shifts score below AMS106 in TPBLA. This suggests TPBLA
could be used to identify these problematic variants. Characterising multiple approved
mAbs would be useful to ascertain a relevant threshold TPBLA score, below which would
be considered ‘poorly developable’ and discarded. AMS197 and AMS214 both have
similar Tm, Tonset, and HIC retention times to the aggregation-resistant control AMS122
(trastuzumab), with AMS197 having a higher Tonset (65.09 °C) than AMS122 (63.51 °C).
Unlike all the other AMSCI mAbs, they both score better than AMS106 in TPBLA. This
is likely due to a combination of improved stability, aggregation-resistance, and solubility.

A downside of TPBLA is that it only measures the scFv. If the aggregation of a
mAb is due to its framework regions, this will not be represented in the assay. This
is demonstrated by the difference in AC-SINS wavelength shift between therapeutic
infliximab and AMS106 (infliximab scFv on a different scaffold), where therapeutic
infliximab shows a wavelength shift of 35.85 nm compared with AMS106 shifting 0.64
nm. The aggregation mechanism of therapeutic infliximab has been shown to be as
a result of both Fab-Fab interactions in a head-to-tail conformation as well as Fab-Fc
interactions (Lerch et al., 2017; Domnowski et al., 2021). As AMS106 only contains the
variable domains of therapeutic infliximab with different constant regions, it is possible
this disrupted the interfaces involved in these aberrant interactions.

We demonstrate the evolution methodology developed in Section 3 can be applied
to therapeutic scaffolds, however evolution of an already stable variant (AMS197) likely
requires a high mutation rate library and to be evolved at a higher selection pressure (Drum-
mond et al., 2005). For AMS134, hotspot residues on the surface were generally substituted
for less hydrophobic residues, consistent with the idea that aggregation could be driven
through self-association via hydrophobic surface patches. These hotspots were mainly
clustered in and around the HCDR3, highlighting a potential affinity-stability trade-off.
This could potentially be problematic, as evolution using TPBLA does not include a
selection for binding affinity, which may result in evolved antibodies that no longer bind
to their therapeutic targets. This issue is investigated further in Chapter 5. Characterising
three evolved point mutants of AMS134 (R93G, M123K, and V124D) indicates that the
absolute intensity of the log2(fold change) is indicative of the mutants beneficial capacity.
AMS134R93G VL was below both 2σ thresholds from normalised mutation frequency and
log2(fold change) and displayed increased aggregation propensity in both SLS and AC-
SINS. AMS134M123K VH was below the 2σ threshold for log2(fold change), but above the
threshold for normalised mutation frequency, but displayed similar aggregation behaviour
to AMS134WT in both SLS and AC-SINS. AMS134V124D VH was above both 2σ thresh-
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olds from normalised mutation frequency and log2(fold change) and displayed reduced
self-association in AC-SINS as well as abolished aggregation at high temperatures in SLS.

The error-prone PCR library size was estimated to be ~2.4 × 1011 for AMS134 and
~1.9 × x 1011 for AMS197, based on the number of colony forming units growing on an
agar plate. This is likely an overestimation, as every individual colony is unlikely to contain
a unique clone. The sequencing methodology using Illumina shotgun libraries is limited as
it is unable to identify mutliple mutants, but it can be used to identify hotspot residues and
APRs within the molecule. The libraries generated in the chapter were designed to have
an average of one mutation per gene, therefore limiting the potential for improvement as
multiple mutations are often required for significat improvements in protein stability or
aggregation-resistance (Yu and Dalby, 2018). To identify significantly improved variants, a
library with a high mutation frequency should be used. This library could then be plated at
a high selection pressure, and individual colonies picked and assessed using TPBLA before
sequencing to identify significantly improved variants. In this instance, NGS using the
shotgun library approach developed in Section 3 would still be a useful step in measuring
the mutational frequency accross the whole molecule, identifying APRs, and seeing the
overall frequency of individual mutations to give an idea of which ones are found more
often and therefore are influencing TPBLA the most.

The Jain dataset assessing 35 late stage clinical mAbs using TPBLA demonstrated
there was no significant difference in TPBLA score between the approval ratings (Phase
2, Phase 3, or Approved). However, this was using the approval rating published in the
2017 paper by Jain et al. (2017). Since then, many of the mAbs that were in Phase 2 or
Phase 3 clinical trials have been discontinued. Comparing the TPBLA score between these
Discontinued mAbs and the approved mAbs showed a statistically significant difference,
where the Discontinued mAbs showed a lower TPBLA score compared with the Approved
mAbs. There were some mAbs that had high scores in TPBLA but have been discon-
tinued, however this could be due to issues unrelated to stability or aggregation, such as
potency issues or activity. This demonstrates how TPBLA could be used to identify poorly
developable candidates from a pool of variants. It is important to note that all the Jain
Abs are late-stage therapeutics, and are unlikely to have any significant developability
issues. If used early in the developmental pipeline, prior to protein purification, TPBLA
could be used to identify sequences that do have significant developability issues (such as
low solubility, high aggregation, high self-association, or low stability) before they reach
pre-clinical trials.

The multiple regression models using a combination of classic developability assays
and biophysical parameters are able to reasonably predict TPBLA score for the Jain mAbs.
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The most parsimonious model included Tm, SMAC, PSR, CIC, and pI, all of which have
a significant impact on predicting TPBLA score. This is the first example of evidence
that TPBLA is influenced by a combination of thermal stability, self-association, colloidal
stability, and solubility and could therefore be useful at ranking test proteins based on
these characteristics. The model is not perfect, indicating TPBLA is measuring some
other paramater that is not measured by any of the other 13 developability assays tested in
this study. Therefore, alongside a combination of these parameters that affect a proteins’
developability, TPBLA is measuring something novel which highlights the relevance of
using TPBLA to rank candidate mAbs. Furthermore, whatever TPBLA is reporting on is
clearly important as it is able to distinguish between the late-stage clinical failures and
approved mAbs in the Jain dataset (Figure 4.21). The success of these multiple regression
models indicate experimental and predicted biophysical parameters could be used to design
a machine learning model to predict TPBLA. The data generated in this chapter could be
used to inform such a model, and could be used to gain a better understanding of what
properties TPBLA is measuring that the other developability assays are not.

In summary, the data presented in this chapter demonstrates the potential of TPBLA for
screening and ranking candidate mAbs based on their developability. The high-throughput
directed evolution methodology developed in Section 3 can be used to selectively evolve an-
tibody fragments to improve their developability, however to gain significant improvements
it likely requires a higher mutation rate library than those used in this study. Additionally,
the directed evolution methodology enables hotspot residues involved in mediating pro-
tein aggregation to be identified, which could be used to guide rational design of better
biologics. The multiple regression models highlight the influence of thermal stability,
self-association, colloidal stability, and solubility on TPBLA, demonstrating the relevance
of the in vivo growth score to mAb developability. The fact that TPBLA can be reasonably
explained using these experimental and predictive parameters suggests this data could be
used to inform a novel machine learning model to predict TPBLA score.



Chapter 5

Towards simultaneous improvement of
both aggregation and binding with
TPBLA

5.1 Introduction

It is well known in the protein engineering field that there is a trade-off between different
biophysical properties in proteins, such as between stability and function (McLure et al.,
2022). Engineering of biopharmaceuticals is generally to enhance a number of drug-like
properties, such as; low clearance rates, low self-association (homotypic interactions) or
aggregation, low off-target binding (heterotypic interactions), high stability, high solubility,
and low viscosity at high concentrations (Starr and Tessier, 2019). Arguably the most
important property is that the biopharmaceutical must bind to its target and produce the
desired effect. Often affinity-matured antibodies have decreased stability or increased
aggregation, due to the trade-off between different properties - when you evolve one you
lose another (McLure et al., 2022; Rabia et al., 2018). There have been a number of
studies detailing this trade-off during directed evolution, particularly between affinity and
stability or specificity (Julian et al., 2017; Tiller et al., 2017b; Stimple et al., 2020). In
Chapters 3 and 4, TPBLA is used to assess and evolve both increased solubility and reduced
aggregation in a variety of different proteins, including biopharmaceuticals. However,
selecting for these properties while neglecting function could result in evolved antibodies
that no longer bind to their target. A way to address this would be to modify the assay to
include a selection for binding. This chapter investigates the possibility of introducing a
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selection for function into TPBLA to create the Solubility ‘n’ Affinity Coselection (SnAC)
assay. We assess the potential for this new assay to both screen and select for binding
affinity alongside beneficial biophysical characteristics.

5.1.1 Aims of the study

This chapter adapts the previously developed TPBLA (Chapter 3) to introduce a co-
selection for cognate binding alongside the selection for aggregation resistance to create
the SnAC assay by correlating binding to expression of a fluorescent reporter protein.

5.2 Results

5.2.1 Split fluorescent proteins as sensors

Various fluorescent proteins have been utilised as biosensors and correlated with protein
stability, solubility, or its ability to interact with a target (Ghosh et al., 2000; Lindman et al.,
2010; Magliery et al., 2005; Golinski et al., 2021). Green fluorescent protein (GFP) can be
split into two halves which are able to fluoresce upon interaction; if the two halves are fused
to two different proteins, the ensuing fluorescent signal can be correlated with protein-
protein interactions (Baird et al., 1999; Ghosh et al., 2000). The β-lactamase construct
in TPBLA is directed to the periplasm, therefore a fluorescent protein that is active in
this oxidising environment is required. GFP is inactive if translocated to the periplasm
prior to folding, however the red fluorescent mCherry and green fluorescent mNeonGreen
are active in the periplasm (Dammeyer and Tinnefeld, 2012). A red fluorescent mCherry
was engineered for improved stability and fluorescence, dubbed superfolder mCherry
or sfCherry, however its split version has low levels of fluorescence (Feng et al., 2017).
This split variant was engineered to create sfCherry2 which showed a 10-fold increased
fluorescence compared to its split superfolded mCherry counterpart (Feng et al., 2017).
This study also reported an engineered split mNeonGreen variant (split-mNeonGreen2
or mNG2) that has improved background to noise ratio compared with superfolder GFP
(sfGFP). These engineered split proteins were selected in this chapter to assess the potential
for adding a selection for function to the TPBLA. This same group that designed split
sfCherry2 and mNG2 published a study in 2019 with further work on their split sfCherry2
construct (Feng et al., 2019). Here they showed the limiting factor to fluorescence in
these split fluorescent proteins is the association of the two split fragments. To improve
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their split FP they used a SpyTag/SpyCatcher interaction where they fused SpyCatcher
to sfCherry21-10 and SpyTag to sfCherry211 to enhance the association of the fluorescent
protein fragments. This demonstrates how fusing two fragments of a split fluorescent
protein (sfCherry2) to two proteins that bind together (SpyTag/SpyCatcher) can be used to
link protein-protein interactions to a fluroescent output.

To assess the potential of introducing a selection for binding affinity into TPBLA,
the HA4 monobody was utilised as a model system as a single point mutation Y87A
can inhibit binding while maintaining stability (Figure 5.1) (Wojcik et al., 2010). HA4
binds to the SH2 domain of AB1 kinase with high affinity (Kd ~7 nM), the oncogenic
counterpart of which is implicated in chronic leukaemia (Wojcik et al., 2010). HA4
and SH2 are both around 10 kDa single domain proteins, representing a simple model
system to use when designing our dual selection assay. Furthermore, the HA4:SH2 system
has been used previously to develop techniques for the directed evolution of protein
binding affinity (Wang et al., 2018; Morrison et al., 2021). The assay was designed so
that the fluorescence intensity of the split fluorescent protein would be correlated to the
binding affinity between the test proteins (HA4:SH2). Adding one fragment of the split
fluorescent protein to the β-lactamase construct, with HA4 as the test protein, and the
other corresponding fragment as a fusion protein with SH2 domain, cells expressing both
constructs could be sorted based on the fluorescence signal of the split fluorescent protein,
which would increase as a result of increased HA4/SH2 interaction (Figure 5.2).

One issue would be if there was differential expression of β-lactamase fusion between
different cells. To correct for this, another fluorescent protein (mScarlet-I) was included
on the same transcript as the tripartite β-lactamase construct. This protein would remain
in the cytoplasm, and its fluorescence intensity would be correlated to the expression of
the tripartite β-lactamase construct. While this would not account for post-translational
changes in expression levels between cells, such as due to protease degradation, this is not
an issue as it is exactly the kind of instability we aim to be able to test for using this assay.
With these two different fluorescent signals, two colour FACS could be used to correct for
changes in the split fluorescent protein emission as a result of differential expression.

5.2.2 Split mNeonGreen2 combined with TPBLA is not able to detect
binding affinity in vivo

In order to introduce a selection for binding into the TPBLA, binding was linked to a
fluorescent output. As described in Section 5.2.1, a split fluorescent biosensor was utilised
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Fig. 5.1 Crystal structure of the HA4 monobody bound to the SH2 domain of human Ab1
kinase A) HA4 (pink) bound to Ab1 SH2 domain (purple). The residues involved in the binding
interaction are highlighted. B) Zoomed view of the binding interaction. A85, G86, and Y87 of HA4
interact with R153 and S173 of Ab1 SH2. Polar interactions are shown by dashed yellow lines.
Mutating Y87 in HA4 to alanine removes key interaction with S173 of Ab1 SH2, thereby reducing
the binding affinity (Wojcik et al., 2010). PDB ID 3K2M.
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Fig. 5.2 Overview of Solubility ‘n’ Affinity Coselection (SnAC) 1.0 to simultaneously as-
sess affinity and aggregation propensity. A) The DNA sequence encoding the 11th strand of a
split fluorescent protein (mNeonGreen2, mNG2) is added onto the C-terminal end of the TPBLA
construct (with the HA4 monobody as the test protein) via a flexible linker under the control of
the pBAD promoter. mScarlet-I is expressed as the second cistron in a bicistronic construct to
provide a proxy for expression and allow two colour FACS to correct for different levels of mNG2
fluorescence as a result of differential expression rather than improved binding affinity and com-
plementation. The two open reading frames (ORF) are shown as ORF 1 and ORF 2. B) A second
construct expressing SH2 (the binding partner of HA4) fused to the corresponding strands 1-10
of the split fluorescence protein via a flexible linker is controlled via the pBAD weak promoter
(pBAD*), a variant of pBAD with a single point mutation incorporated to reduce its sensitivity to
arabinose and therefore reduce expression levels. This is to ensure the construct does not aggre-
gate in the cytoplasm. This construct is directed to the periplasm via the DsbA signal sequence.
C) Both fusion constructs are directed to the periplasm. Binding of HA4 to SH2 brings the two
split fluorescent protein fragments in close proximity, forming the active fluorescent protein and
giving a readout that can be assessed using FACS.
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to achieve this to develop SnAC 1.0 (Figure 5.2). The 11th strand of mNeonGreen2
(mNG211) was fused to the C-terminus of the TPBLA construct (TPBLA-mNG211), which
was expressing the HA4 monobody as the test protein (blaHA4-mNG211). A second
construct, expressed under the control of the pBAD weak promoter, contains strands 1-10
of mNG2 (mNG21-10) fused to the SH2 domain of human AB1 kinase, the epitope for HA4.
mNG21-10 can fold into a barrel but cannot form the fluorescent chromophore without
fusing with mNG211. Binding of the HA4 monobody in TPBLA-mNG211 to the SH2
domain fused to mNG21-10 would bring these two fragments into contact, enabling them
to come together and form the complete fluorescent protein and give a fluorescent signal
(Figure 5.2). This would enable binding of two proteins in the periplasm to be correlated
with a fluorescent signal. To measure this, the wild type HA4 monobody (HA4WT) and
the reduced binding point mutant Y87A (HA4Y87A) were utilised (Wojcik et al., 2010).
HA4Y87A was designed by removing the key residue in binding SH2 and showed no
binding when using a fluorescence polarization competition assay (Wojcik et al., 2010). A
second fluorescent protein (mScarlet-I) was expressed bicistronically with TPBLA. This
would enable us to correct for expression levels, where there may be increases in the
fluorescent signal but only due to increases in expression.

Fig. 5.3 Western blot against SH2 showing SH2-mNG21-10 localisation in the cell. L, ladder;
U, uninduced; WC, whole cell; I, insoluble; C, cytoplasm; P, periplasm. A) Levels of SH2-mNG21-10
in different cellular fractions when directed to the periplasm using different signal sequences and
a pBAD WT promoter. B) Reducing the overall expression level using a pBAD weak promoter
increases soluble protein expression in the periplasm.

The SH2-mNG21-10 construct was expressed under the pBAD weak promoter and
directed to the periplasm using a DsbA signal sequence, which enables co-translational
export of a passenger protein via the Sec pathway (Schierle et al., 2003). The reduction in
expression levels compared with pBAD wild-type prevented the fusion protein from just
aggregating in the cytoplasm and not being exported to the periplasm (Figure 5.3). A TorA
signal peptide with the wild-type pBAD promoter gave low levels of export to the periplasm,
however this utilises the more complex and less well-studied Tat pathway exporting folded
proteins, compared with the more commonly used Sec pathway exporting unfolded proteins
either co- or post- translationally (Palmer and Berks, 2012). However, cells expressing the
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blaHA4WT-mNG211 and blaHA4Y87A-mNG211 constructs alongside mNG21-10 showed
little difference in their fluorescent signal after 3hr expression (Figure 5.4A). Furthermore,
the positive control expressing split mNG2 (mNG21-10 and mNG211 fused via a flexible
linker) targeted to the periplasm using a DsbA signal sequence had a slightly red-shifted
emission spectra compared with the HA4WT and HA4Y87A (Figure 5.4A). Two negative
controls were designed where either mNG21-10 or mNG211 was deleted from the HA4WT

plasmid, creatingΔmNG21-10 andΔmNG211, respectively. Unfortunately, cells expressing
both of these negative controls gave similar fluorescence emission spectra and intensities as
the those expressing the HA4WT and HA4Y87A constructs (Figure 5.4B). The fluorescent
signal over time of cells expressing a positive control (expressing split mNG2), negative
control (blaGGSTOP-mNG211, only expresses the first domain of β-lactamase due to a
premature stop codon and frame shift mutation between the G/S linkers, so does not
express mNG211), alongside HA4WT and HA4Y87A, growing at 37 °C over 400 minutes
was measured, which showed no difference in fluorescence signal between induced and
uninduced cells from either HA4WT and HA4Y87A (Figure 5.4C).

The low fluorescence signal of the periplasmic split mNG2 positive control, as well
as the lack of fluorescence output from the HA4WT, highlighted the need for a stronger
reporter protein. As mNG2 is the brightest split fluorescent protein developed with the
ability to be periplasmically expressed, the assay needed to find a way to link binding in
the periplasm to a cytoplasmic reporter protein.

5.2.3 CadC periplasmic sensor for screening binding affinity

For the split fluorescent protein system to work, the pool of potential reporters is limited
by its need to be active in the oxidising environment of the periplasm. Furthermore,
the fluorescence intensity of split fluorescent proteins is never as high as their intact
counterparts, which could limit the potential dynamic range of the assay (Feng et al.,
2017). An alternative option would be to use an intact fluorescent reporter in the E.
coli cytoplasm. To do this, protein binding in the periplasm needed to be linked to to
mRNA transcription in the cytoplasm. The E. coli transmembrane transcriptional activator
CadC has been successfully utilised to screen and evolve binding affinity in therapeutic
scaffolds (Morrison et al., 2021). As described in Section 1.6.2, CadC is made up of
an N-terminal cytosolic DNA binding domain (DBD) and a C-terminal periplasmic pH
sensor domain (Lindner and White, 2014; Chang et al., 2018). It senses acidic pH and
high lysine levels in the periplasm, causing the periplasmic sensor domain to dimerise and
bind two motifs on the CadBA promoter and initiate gene transcription (Kuper and Jung,
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Fig. 5.4 SnAC 1.0 using a split fluorescent protein is not able to measure binding affinity in vivo. A) Fluorescence spectra of periplasm
and cytoplasm fractions from cells grown at 37 °C, 200 rpm expressing SH2-mNG21-10 and either blaHA4WT-mNG211 (strong binder) or blaHA4Y87A-
mNG211 (weak binder) before and after a 3 hr induction. blaHA4 and mNG2 were measured as negative and positive controls, respectively. mNG2 and
mScarlet-I were excited at 488 and 569 nm, respectively. B) Control fluorescence spectra of periplasm and cytoplasm fractions from cells grown at 37
°C, 200 rpm expressing SH2-mNG21-10 and either blaHA4WT-mNG211 or blaHA4Y87A-mNG211 before and after a 3 hr induction. blaHA4WT ∆mNG21-10
and blaHA4WT ∆mNG211 were used as negative controls. C) mNG2 fluorescence signal over time from uninduced and induced cells expressing
blaHA4WT-mNG211 or blaHA4Y87A-mNG211, as well as mNG2 (positive control), or blaGGSTOP-mNG211. Cells were grown overnight at 37 °C, 200
rpm.
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2005). By replacing the periplasmic sensor domain with an caffeine-inducible dimerising
nanobody (VHH), and placing sfGFP under the control of the CadBA promoter, gene
transciption can be switched on via addition of caffeine (causing the dimerisation of CadC
and enabling it to bind to CadBA) (Chang et al., 2018) (Figure 5.5). We hypothesised the
system could be adapted and combined with TPBLA to enable dual screeing and evolution
of developable characteristics alongside binding affinity within therapeutic proteins. This
would work by initially fusing a C-terminal caffeine-inducible dimerising nanobody to the
TPBLA construct, which would contain the HA4 monobody between the two domains of
β-lactamase (Figure 5.5A). The periplasmic sensor domain of CadC would be replaced by
the SH2 domain, and sfGFP would be placed under the control of the CadBA promoter
(Figure 5.5B). Upon addition of caffeine, the VHH domain on the C-terminus of TPBLA
would dimerise, enabling the now dimeric construct to bind to the SH2 domain on CadC
and cause CadC to dimerise (Figure 5.5D). This allows CadC to bind to the CadBA
promoter and induce transciption of sfGFP, therefore enabling the fluorescence intensity of
sfGFP to be correlated to the binding affinity of HA4 for SH2 (Figure 5.5D). Cells could
be sorted by FACS pre- or post-evolution to separate out variants that no longer bind to
their target, with the intention in the future to carry out the evolution and FACS within a
single experiment.

5.2.4 Adapting the E. coli CadC transmembrane transcriptional acti-
vator to include a selection for binding affinity into TPBLA

As described in Section 5.2.3, the wild-type E. coli transcriptional activator CadC has
the potential to be exploited to link protein-protein interactions in the periplasm to gene
expression in the cytoplasm (Figure 5.5). For SnAC 2.0, a construct from a previous
study which replaced the transmembrane domain with an artificial transmembrane domain
made of 16 leucine repeat residues, Leu(16), was utilised (Chang et al., 2018). This has
previously been shown to enable the formation of correctly oriented chimeric CadC into
the inner membrane (Chang et al., 2018; Lindner and White, 2014). Previous studies
using CadC with the periplasmic sensor domain replaced with the dimerising leucine
zipper domain (forcing dimerisation and therefore gene expression) demonstrated higher
activity when using a Leu(16) transmembrane domain compared with the wild type
transmembrane domain (Chang et al., 2018). To create a positive control, the periplasmic
sensor domain of CadC was replaced with a caffeine inducible nanobody (VHH) to
create CadC-VHH (Chang et al., 2018). sfGFP was placed under the control of the
CadBA promoter, thereby enabling gene transcription to be switched on via the addition of
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Fig. 5.5 Overview of TPBLA-SnAC 2.0 to simultaneously assess affinity and aggregation
propensity. A) A caffeine-inducible dimerising nanobody (VHH) is fused to the C-terminus of
the TPBLA construct, which contains the HA4 monobody within the two domains of β-lactamase.
B) A second plasmid where SH2 (the binding partner of HA4) replaces the periplasmic sensor
domain of E. coli transmembrane transcriptional activator CadC and is connected to the DNA
binding domain (DBD) via an artificial transmembrane domain composed of 16 Leucine repeat
residues, which has previously been demonstrated to support the expression of correctly oriented
chimeric CadC proteins into the E. coli inner membrane (Lindner and White, 2014; Chang et al.,
2018; Morrison et al., 2021). On this same plasmid, sfGFP is placed under the control of the
CadBA promoter. C) (i) The aggregation screen will be carried out in the same way as TPBLA, by
screening for ampicillin resistance. (ii) Correct folding of the test protein enables the two domains
of β-lactamase to come together and form the active enzyme, with the ability to hydrolyse β-
lactam antibiotics. (iii) Misfolding, aggregation or instability of the test protein blocks association
of β-lactamase, inhibiting formation of the catalytic site. D) (i) Upon addition of caffeine, the
TPBLA construct will dimerise via its C-terminal VHH domain and can bind to the SH2 domain,
which has replaced the periplasmic sensor domain of CadC. (ii) This forces dimerisation of the
chimeric CadC construct, (iii) thereby enabling it to bind to the two operator motifs of the CadBA
promoter and induce expression of sfGFP. Carrying out this screening assay alongside or following
ampicillin selection could result in identification of proteins with improved biophysical properties
that maintain binding to their targets.



5.2 Results 201

caffeine (causing the dimerisation of VHH and therefore of CadC, enabling it to bind to
CadBA) (Chang et al., 2018) (Figure 5.5).

To assess whether this system could be used in conjunction with TPBLA, the dimerising
nanobody VHH was fused to the C-terminus of the TPBLA construct, which was itself
expressing the HA4 monobody as the test protein, enabling caffeine-inducible dimerisation
of TPBLA (Figure 5.5A). The periplasmic sensor domain of CadC was replaced with
the SH2 domain (Figure 5.5B). In the presence of caffeine, binding of the HA4 within
dimeric TPBLA to the SH2 domain fused to CadC should induce dimerisation of CadC,
and enabling binding to the CadBA promoter and inducing expression of sfGFP (Figure
5.5D). To assess the potential of this system, HA4WT and HA4Y87A were used to see
if SnAC 2.0 could distinguish between a strong and weak binder (blaHA4WT-VHH or
blaHA4Y87A-VHH, respectively). Cells would be co-transformed with CadC-SH2 and
TPBLA-VHH containing either HA4WT or HA4Y87A, and the fluorescence intensity of
sfGFP measured over time. As controls, cells would be transformed with CadC with the
periplasmic sensor domain replaced with either SH2 (CadC-SH2, negative control) or
VHH (CadC-VHH, positive control) only.

5.2.5 Fusion of caffeine-inducible dimerising nanobody (VHH) to
TPBLA does not inhibit β-lactamase activity

In order to co-evolve aggregation resistance and binding affinity using our new assay,
fusion of the caffeine-inducible dimerising nanobody VHH to TPBLA must not inhibit
β-lactamase activity. A traditional TPBLA screen was performed on cells co-transformed
with CadC-SH2 and TPBLA-VHH containing a HA4 variant. Therefore, the TPBLA
plates contained both tetracycline and kanamycin, as they are the corresponding resistance
markers on the TPBLA and CadC-SH2 plasmids, respectively. As well as HA4WT and
HA4Y87A, two destabilised mutants were designed, HA42A and HA4Y87A 2A, where two
isoleucine to alanine mutations (I39A and I75A) were introduced within HA4 to destabilise
the core by creating a cavity (Eriksson et al., 1992), similar to MBP4A in Chapter 3. The
traditional TPBLA screen was able to distinguish between the stable and destabilised
variants of HA4 using their β-lactamase activity (Figure 5.6A,B). The two destabilised
variants have a higher AUC than the negative control (blaGGSTOP-VHH + CadC-SH2),
indicating they are not completely unfolded and therefore are still somewhat selective.
The fact that all variants are better than the negative control, and that the destabilised
variants are better than the stable variants, shows the fusion of VHH to the C-terminus of
β-lactamase does not completely inhibit enzymatic activity. Furthermore, the dimerisation
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of TPBLA with HA4WT via its VHH domain has no impact on β-lactamase activity (Figure
5.6C). Therefore, this would enable screening of a library by its ampicillin resistance to
identify the most stable variants.

Fig. 5.6 TPBLA screen of cells co-transformed with CadC-SH2 and either blaHA4WT-
VHH (strong binder), blaHA4Y87A-VHH (weak binder), blaHA42A-VHH (destabilised),
blaHA4Y87A 2A-VHH (destabilised), or blaGGSTOP-VHH (negative control). Area under the
antibiotic survival curve (AUC) calculated for blaHA4WT-VHH, blaHA4Y87A-VHH, blaHA42A-VHH,
blaHA4Y87A 2A-VHH, or blaGGSTOP-VHH, screened at (A) 0-7 µg/mL or (B) 0-17.5 µg/mL ampi-
cillin. (C) Separate experiments of AUC calculated for blaHA4WT-VHH at 0-17.5 µg/mL ampicillin
with and without the addition of 100 mM caffeine. Error bars show standard error of the mean
(S.E.M) from three independent experiments.

5.2.6 CadC can be used to measure cognate binding in the periplasm

The expression conditions were optimised by varying the amounts of IPTG (induces
CadC expression), caffeine (induces VHH dimerisation), and arabinose (induces TPBLA
expression) to find a condition whereby HA4WT (strong binder) and HA4Y87A (weak
binder) can be clearly distinguished. Furthermore, optimal screening condition should
display low non-specific activation of CadC-SH2 alone (negative control), yet be able to
activate CadC-VHH (positive control). Initially, the IPTG concentration (25, 50, or 100
µM) and caffeine concentration (50 or 100 µM) was varied, while keeping the arabinose
concentration the same as was used in traditional TPBLA experiments (0.075 % (w/v)).
The fluorescence intensity of sfGFP in cells transformed with CadC-SH2 or CadC-VHH
alone, or co-transformed with CadC-SH2 and TPBLA-VHH containing either HA4WT

(blaHA4WT-VHH) or HA4Y87A (blaHA4Y87A-VHH) was measured over time (Figure
5.7). Looking at the endpoint fluorescence intensity after 1500 minutes and assessing the
relative increase in fluorescence intensity compared with uninduced samples, high IPTG
concentrations (50 and 100 µM) resulted in increased levels of non-specific activation of
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CadC-SH2, whereas at 25 µM this was less prominent (Figure 5.9). Caffeine concentration
has less of an impact, but looking at the negative control CadC-SH2 at 100 µM there is less
non-specific activation of CadC compared with 50 µM. Future experiments consequently
used 25 µM IPTG and 100 µM caffeine, which was consistent with conditions used in
previous studies using a CadC-VHH chimera (Chang et al., 2018).

It is known that the Y87A point mutation in HA4 has a significant impact on bind-
ing affinity, where it has previously been shown to completely abolish binding using a
fluorescence polarization competition assay (Wojcik et al., 2010). However, as it was a
competition assay it does not completely preclude the possibility of very weak binding.
We hypothesised that the positive fluorescence signal from HA4Y87A was because the
localised concentration in the periplasm was so high. Therefore, the fluorescence inten-
sity of cells co-transformed with CadC-SH2 and TPBLA-VHH containing either HA4WT

(blaHA4WT-VHH) or HA4Y87A (blaHA4Y87A-VHH) induced with varying concentrations
of arabinose (0 mM, 0.001 - 10 mM in 10-fold steps) was measured over time. At 0.01 mM
arabinose, blaHA4WT-VHH gives a strong positive signal whereas blaHA4Y87A-VHH has
the same signal as the 0 mM arabinose (uninduced) sample (Figure 5.8). Concentrations of
arabinose above 0.01 mM resulted in a fluorescent signal from blaHA4Y87A-VHH (Figure
5.8). The increase in green fluorescence signal from the 0 mM arabinose (uninduced)
sample over time is likely due to autofluorescence increasing as the OD600 of the cells
increases. Nevertheless, this data shows the CadC strategy can be used to distinguish
between strong and weak binding in the E. coli periplasm.
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Fig. 5.7 Fluorescence intensity endpoints of cells co-transformed with CadC-SH2 and ei-
ther blaHA4WT-VHH (strong binder) or blaHA4Y87A-VHH (weak binder), or transformed with
only CadC-SH2 (negative control) or CadC-VHH (positive control) alone. Endpoint sfGFP
fluorescence intensity of whole cells grown overnight at 37 °C, 200 rpm, induced at a range
of IPTG (25, 50, 100 µM) and caffeine (50, 100µM) concentrations, with 0.075 % (w/v ) arabi-
nose. Cells transformed with (A) CadC-SH2 and either blaHA4WT-VHH or blaHA4Y87A-VHH, or
(B) CadC-VHH or CadC-SH2. C) Heatmaps showing the log2(fold change) of fluorescence inten-
sity endpoints compared with the uninduced sample of cells co-transformed with CadC-SH2 and
either blaHA4WT-VHH (strong binder) or blaHA4Y87A-VHH (weak binder), or transformed with only
CadC-SH2 (negative control) or CadC-VHH (positive control) alone.
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Fig. 5.8 Fluorescence intensity over time of cells co-transformed with CadC-SH2 and either
blaHA4WT-VHH (strong binder) or blaHA4Y87A-VHH (weak binder) at varying arabinose con-
centrations. sfGFP fluorescence spectra over time of whole cells co-transformed with CadC-SH2
and either blaHA4WT-VHH or blaHA4Y87A-VHH, grown overnight at 37 °C, 200 rpm and induced at
a range of arabinose concentrations (10, 1, 0.1, 0.01, 0.001, 0 mM) with 25 µM IPTG and 100µM
caffeine. The two shades of blue (HA4WT) or pink (HA4Y87A) represent two technical repeats (n =
2).
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Fig. 5.9 Fluorescence intensity over time of cells co-transformed with CadC-SH2 and either blaHA4WT-VHH (strong binder) or blaHA4Y87A-
VHH (weak binder), or transformed with only CadC-SH2 (negative control) or CadC-VHH (positive control) alone. sfGFP fluorescence intensity
over time of whole cells grown overnight at 37 °C, 200 rpm, induced at a range of IPTG (25, 50, 100 µM) and caffeine (50, 100µM) concentrations, with
0.075 % (w/v ) arabinose. At each IPTG concentration, blaHA4WT-VHH (strong binder) and blaHA4Y87A-VHH (weak binder) are plotted on the same
Y-axis. Similarly, at each IPTG concentration CadC-SH2 (negative control) and CadC-VHH (positive control) are plotted on the same Y-axis.
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5.2.7 Flow cytometry can be used to identify binders

To screen a library of variants based on their binding affinity and identify the best binders,
individual positive cells need to be distinguished from individual negative cells. This can
be acheived using flow cytometry, or fluorescence activated cell sorting (FACS). Cells co-
transformed with blaMBP and either CadC-SH2 (negative control) or CadC-VHH (positive
control) were grown and the sfGFP fluorescence was measured over time (Figure 5.10A).
blaMBP was included as a control so that the E. coli could be grown in both tetracycline
and carbenicillin, to maintain both plasmids expressing blaMBP and CadC, respectively.
Furthermore, the addition of blaMBP means that the cellular machinery is split between
expressing both fusion proteins, enabling a more fair comparison to those expressing
blaHA4 and CadC-SH2. Following an overnight grow, these cells were visualised using
flow cytometry. In the CadC-VHH cells, there is a clear emergence of a strong sfGFP
positive population (Figure 5.10B, C), showing FACS could be used to sort the positive
variants from the negative variants to identify binders.

To identify the optimal arabinose concentration for both distinguishing strong and
weak binding, as well as reducing autofluorescence background versus true signal, the
fluorescence intensity over time of cells co-transformed with CadC-SH2 and TPBLA-
VHH containing either HA4WT (blaHA4WT-VHH), HA4Y87A (blaHA4Y87A-VHH), HA42A

(blaHA42A-VHH), or HA4Y87A 2A (blaHA4Y87A 2A-VHH) induced with 0.01 mM - 0.05
mM arabinose in 0.01 mM steps was measured (Figure 5.11A). After an overnight grow,
these cells were visualised using flow cytometry to see the proportions of sfGFP positive
cells (Figure 5.11B). At 0.01 mM arabinose, there is a clear positive population emerging
with around a 50:50 split between positive:negative in the blaHA4WT-VHH cells compared
with the uninduced cells (Figure 5.11B). At this concentration, the other three variants show
no or little positive cells. As the arabinose concentration increases, so does the amount of
sfGFP positive cells in the blaHA4Y87A-VHH, blaHA42A-VHH, or blaHA4Y87A 2A-VHH
samples. This could be due to the expression levels increasing the localised concentration
of monobody in the periplasm enabling the monobody to bind SH2, whereas at the lower
concentrations only the strongest binder (blaHA4WT-VHH) is able to bind. Therefore, for
further studies the 0.01 mM arabinose concentration was chosen, as at this condition there
is a clear difference between blaHA4WT-VHH and the other variants.

Originally, the two destabilised variants (HA42A and HA4Y87A 2A) were designed to rep-
resent a destabilised strong binder (HA42A) and a destabilised weak binder (HA4Y87A 2A),
as the destabilised strong binder would retain the wild-type binding residue Y87. However,
both destabilised variants give the same fluorescent signal as the weak binder HA4Y87A. It
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Fig. 5.10 CadC-based sensor can measure binding in the periplasm and be used to sort
positive cells using FACS. A) sfGFP fluorescence intensity over time from cells co-transformed
with blaMBP and either CadC-SH2 (negative control) or CadC-VHH (positive control). Cells were
induced with 0.01 mM arabinose, 25 µM IPTG, and 100µM caffeine. B) FACS histogram showing
individual cell fluorescence intensities from these cells expressing blaMBP and CadC-SH2 or
CadC-VHH following an overnight grow. Green line shows GFP positive cells. C) Side scattering
vs fluorescence intensity from these cells following an overnight grow.
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is possible that HA42A does have a higher affinity than HA4Y87A 2A, but that the destabili-
sation reduces the active concentration of protein in the periplasm and therefore results
in reduced binding. However, without purifying these proteins and performing binding
assays this cannot be known for certain. Nevertheless, both destabilised variants represent
useful tools for assessing the potential of SnAC to screen out variants with poor stability
and affinity.

5.2.8 SnAC can be used to screen a library of variants to identify the
most stable and highest affinity variant

The power of the SnAC assay would be to use it to screen a library to identify both high
solubility and high affinity variants from a pool. To assess the potential of this assay, we
developed a proof of principle experiment. A mock library was created mixing equal
amounts of blaHA4WT-VHH (strong binder), blaHA4Y87A-VHH (weak binder), blaHA42A-
VHH (destabilised), and blaHA4Y87A 2A-VHH (destabilised). This was co-transformed
with CadC-SH2 into SCS1 cells and screened for their resistance to ampicillin (for methods,
see Section 2.10.5.1). This removed the two destabilised variants, as confirmed by next-
generation sequencing (Figure 5.12). The resulting ‘TPBLA screened’ library was re-
transformed into E. coli SCS1 cells and sorted using a FACS melody to identify positive
fluorescent clones (Section 2.10.4).

From the naive to the TPBLA screened library, the normalised frequency of the 2A point
mutations (I39A and I75A) dropped to almost zero, with a log2(fold change) reduction of
4.9 and 5.0, respectively (Figure 5.12, Figure 5.13A). The frequency of HA4WT dropped
as a result of the ampicillin screen (log2(fold change) = -2.2), whereas HA4Y87A frequency
increased (log2(fold change) = 0.84). This demonstrates the need for this new assay, as by
only using the original ampicillin resistance screen the only variant enriched would be the
weak binder HA4Y87A.

From the TPBLA screened to the FACS screened library, the frequency of HA4WT

increased from 0.11 to 0.55 (log2(fold change) = 2.4), whereas the frequency of HA4Y87A

decreased from 0.89 to 0.44 (log2(fold change) = -0.99) (Figure 5.12). Following a second
round of FACS, the frequency of HA4WT increased to 0.83, whereas the frequency of
HA4Y87A decreased to 0.17. Prior to FACS, the frequencies of HA4WT and HA4Y87A

were 0.11 and 0.89, respectively. Therefore, from this after the second round of FACS
the frequency of HA4WT had increased by a log2(fold change) of 2.9, whereas HA4Y87A

had decreased by -2.4. This demonstrates how the SnAC assay can successfully screen a
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Fig. 5.11 SnAC assay can identify positive binders in the periplasm and be used to sort pos-
itive cells using FACS. A)sfGFP fluorescence spectra over time of whole cells co-transformed
with CadC-SH2 and either blaHA4WT-VHH, blaHA4Y87A-VHH, blaHA42A-VHH, or blaHA4Y87A 2A-
VHH, grown overnight at 37 °C, 200 rpm and induced at a range of arabinose concentrations (0 -
0.5 mM) with 25 µM IPTG and 100µM caffeine. B) FACS histogram showing fluorescence intensi-
ties from these cells following an overnight grow. Green line shows GFP positive cells.
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Fig. 5.12 Proof of principle screening using SnAC and analysed using Illumina amplicon
sequencing. Normalised population density of each residue at each position within a fragment
of HA4 for the respective libraries indicated above each panel. The wild type residue at positions
other than 39, 75, and 87 were omitted for clarity. This shows the proportion of HA4WT (strong
binder), HA4Y87A (weak binder), and the two destabilising 2A mutations (I39A and I75A) from
HA42A and HA4Y87A 2A in the unselected library (Naive), post-ampicillin screen (TPBLA screen),
first FACS screen (FACS 1), and second FACS screen (FACS 2). The proportion of alanine (pink),
tyrosine (blue), and isoleucine (green) residues at each position are highlighted. n = 1.
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Fig. 5.13 CadC-based sensor can measure binding in the periplasm and be used to sort
positive cells using FACS. Normalised frequencies of (A) the 2A point mutations (I39A and I75A),
and (B) HA4WT and HA4Y87A, at each step over the selection experiment. Error bars show two
standard deviations from the average normalised frequency at every position except 39, 75, and
87. This assumes mutations detected at any position other than 39, 75, and 87 are sequencing
errors. (C) log2(fold change) of the frequency calculated using the naive and TPBLA selected
libraries, and the TPBLA selected libraries vs FACS 1 and FACS 2, for HA4WT and HA4Y87A. n =
1.
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library of variants based on their stability and binding affinity in order to identify the most
stable and highest affinity variant, HA4WT.

5.3 Discussion

Having established that TPBLA can be used to screen and evolve protein solubility in
Chapter 3, used it as a developability screen on 35 clinically relevant scFv’s and to evolve
aggregation resistance in Chapter 4, this chapter sought to expand the assay further to
introduce a selection for binding affinity. Often affinity matured antibodies have a reduction
in stability; one study showed nanobodies affinity-matured using a single round of yeast
surface display resulted in 18 °C reduction in melting temperature (Julian et al., 2015;
Rabia et al., 2018). This highlights the need for a method that enables co-selection of both
stability and aggregation resistance. Phage (Wojcik et al., 2010), yeast surface (Julian
et al., 2019) and ribosome (Buchanan et al., 2012) display techinques have all been utilised
to evolve affinity in antibody based drugs. These methods can be utilised to evolve
thermodynamic stability and aggregation resistance by modifying the protein folding
conditions, such as carrying out display experiments at increased temperatures (phage and
yeast surface display) (Jespers et al., 2004; Park et al., 2006; Jones et al., 2011; Pavoor
et al., 2012) or in the presence of reductants such as DTT (ribosome display) (Buchanan
et al., 2012). Phage display has been modified to add in a selection for protein stability by
displaying nanobodies on the surface of phage, heating to induce unfolding followed by
cooling then screening displayed nanobodies against a coformational ligand specific for
folded VH domains (protein A), resulting in identification of soluble, aggregation-resistant
nanobodies (Jespers et al., 2004). Yeast surface display has been modified in a similar way,
by utilising protein A to include a selection for protein stability (Julian et al., 2015).

Periplasmic phage-assisted continuous evolution (pPACE, Section 1.6.2) has been
recently developed to co-evolve binding affinity and soluble expression of scFvs in the E.
coli periplasm (Morrison et al., 2021). While a powerful tool, pPACE has a number of
challenges: experiments are complex and require specialist equipment, they require the
ability to genetically modify phage, they have a high failure rate whereby if the selection
pressure is too high, phage expressing the evolving protein frequently "wash out", where
the phage are diluted in host E. coli faster than they can propogate, and experiments
are difficult to multiplex (DeBenedictis et al., 2022). In contrast, the SnAC assay uses
commonly available lab reagents and equipment, can be carried out in small volumes, and
the fluorescence-based binding affinity screen can be carried out in a 96-well plate with
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the potential for multiplexing. This can potentially be used to carry out multiple biological
repeats of evolution experiments simultaneously to enable exploration of a wider sequence
space.

SnAC 1.0 utilising split fluorescent proteins was unsuccessful; while all the fusion
proteins were successfully secreted to the periplasm (Figure 5.3), the fluorescent reporter
signal was not bright enough to be seen - if the method was working at all. The signal
from positive control (split mNG2) was already not very bright highlighting the need for a
brighter fluorescent reporter protein. mNG2 is currently the brightest split FP available
that would work in the periplasm, therefore we needed to turn to cytoplasmic fluorescent
reporters and find a way to link periplasmic protein-protein interactions to gene expression
in the cytoplasm. In contrast, SnAC 2.0 utilising CadC was successfully able to link protein-
protein interactions in the periplasm to sfGFP expression in the cytoplasm by fusing SH2
to CadC and having blaHA4-VHH construct binding to SH2 as a dimer. The caffeine-
inducible dimerising nanobody is important as it enables switching the dimerisation on
and off, in case this inhibits β-lactamase activity and hinders the TPBLA part of the SnAC
method. However, a traditional TPBLA of blaHA4WT-VHH with and without 100 mM
caffeine showed no significant differences in growth, indicating eventually the system
could move towards selection of binding affinity and aggregation resistance simultaneously
(Figure 5.6C).

As it stands, SnAC requires optimisation of IPTG, arabinose, and caffeine concen-
trations for each system. As shown by comparing signals from E. coli co-transformed
with CadC-SH2 and either blaHA4WT-VHH or blaHA4Y87A-VHH, if the expression levels
are too high, you can get non-specific activation of the CadC. This is likely either due
to over-expressing CadC so that single CadC molecules are more likely to find another
by chance and dimerise, or by over-expressing blaHA4Y87A-VHH thereby increasing the
active concentration in the periplasm enabling binding to SH2. However, by reducing
the expression levels and reducing the active concentration of TPBLA-VHH, only those
with the strongest affinity for the target (HA4WT) are able to bind. Future experiments
could look at changing the pBAD promoter for a more dialable promoter, or changing the
plasmid origin to a higher copy number to widen the dynamic range of expression levels.

HA4 binds to SH2 with high affinity (Kd ~7 nM), demonstrating SnAC can be used
to assess and maintain binding affinities at this high level (Wojcik et al., 2010). This is
important, as affinities of approved antibodies are generally within the range of picomolar
to nanomolar (Brown et al., 2020). It is possible the fluorescence part of SnAC could be
used alone to screen for both stability and binding affinity. If a test protein has reduced
stability or increased aggregation propensity, this limits the active concentration of protein
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available to bind to its target. By limiting the expression levels, the only way a test protein
would be able to give a detectable fluorescence signal is to either (1) evolve stronger
binding affinity, or (2) increase the active concentration of protein by improving its stability
and/or aggregation resistance. This is demonstrated by HA42A, which still retains the
binding site residue Y87 but does not give a fluorescence signal at low expression levels
(0.01 mM arabinose), likely due to reduced stability or increased aggregation resulting in a
reduction of the concentration of active protein free to bind to SH2 (Figure 5.11).

FACS can successfully be used to screen and sort negative and positive binders. In
cells transformed with CadC-VHH (positive control) and induced with caffeine and IPTG,
there is a clear emergence of a positive fluorescent population which is not visible in
the CadC-SH2 (negative control) cells (Figure 5.10). When looking at the fluorescent
signal over time, the CadC-SH2 cells show a low uptick in green fluorescence. It is known
that E. coli autofluoresce green due in part to increased expression of flavins, which are
involved in energy production and reactive oxygen species detoxification, indicating a
response to cellular stresses (Mihalcescu et al., 2015; Surre et al., 2018). This could result
in individual cells being falsely sorted as positive, if their autofluorescence is bright enough.
Changing the reporter protein from sfGFP for a different fluorescent protein, such as the
red fluorescent mScarlet-I, could alleviate this.

To demonstrate the potential of the SnAC method for evolving both stability and
binding affinity, four variants of HA4 with a mix of stabilities and binding affinities were
identified. These were initially screened based on their antibiotic resistance (correlated to
stability and aggregation-resistance), which removed the two destabilised variants with
a log2(fold change) frequency reduction of ~5. This screen reduced the frequency of the
high-affinity binder HA4WT (log2(fold change) = -2.2), whereas the frequency of HA4Y87A

increased (log2(fold change) = 0.84). Tyrosine residues are often involved in antibody
CDRs where they are generally thought to be "sticky" and promiscuous binders (Collis
et al., 2003; Clark et al., 2006), in contrast to arginine and other charged residues which
are thought to mediate more precise electrostatic interactions (Sheinerman et al., 2000).
However, it has been shown that tyrosine residues are capable of mediating high affinity
and specificity interactions (Birtalan et al., 2008). While these residues are important for
binding and mediating protein-protein interactions with an antigen, they can also result in
increased non-specific self-association due to this "stickyness" resulting in formation of
amorphous aggregates. This is demonstrated by the fact that HA4Y87A performs slightly
better than HA4WT in the TPBLA (Figure 5.6B). Therefore, it makes sense that HA4Y87A

would outcompete HA4WT in the ampicillin resistance screen. Traditionally, this is where
the evolution screen would end. HA4Y87A would be identified as a stable and aggregation-
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resistant variant, whereas HA4WT, HA42A, and HA4Y87A 2A would be discarded. This
again highlights the importance of developing an assay that enables co-selection of these
two desirable properties.

The remaining variants can then be sorted using FACS based on sfGFP expression,
and therefore binding affinity. The first FACS screen resulted in an frequency increase of
HA4WT from 0.11 to 0.55, while the frequency of HA4Y87A decreased from 0.89 to 0.44
(Figure 5.12). Often screening using FACS requires multiple rounds of selection, with
some methods having up to 8 (Desai et al., 2021; Lou et al., 2021). The second FACS
screen increased the frequency of HA4WT to 0.83, and reduced the frequency of HA4Y87A

to 0.17. From the original TPBLA screened library to the final FACS screened library, the
log2(fold change) of frequencies for HA4WT and HA4Y87A were 2.9 and -2.4, respectively.
This demonstrates the ability of the SnAC assay to selectively enrich highly stable and
high affinity variants.

Future work with SnAC could look at changing the pipeline. For example, take a
library and first screen for binding affinity to remove all non binders. Then take this library
and screen for the most stable. This would reduce the chances of a highly stable non-binder
from outcompeting the binders in the antibiotic resistance screen, and therefore reduces
the library size to only functionally active variants.

In summary, the work in this chapter presents a novel and powerful assay for screening
protein aggregation and binding affinity. SnAC can be used to screen and sort a library of
variants to identify the most stable, without compromising on binding affinity, and has the
potential to be used as a directed evolution tool to co-evolve both aggregation resistance
and binding affinity in biotherapeutics.



Chapter 6

Final conclusions

6.1 Overall conclusion of results

Understanding the underlying cause of protein instability and aggregation is of great
importance to both the biopharmaceutical industry and to human health and disease. The
cost of bringing a single biopharmaceutical drug to market is reported to be upwards of
$2 billion, with some estimates putting it as high as $4 billion (Farid et al., 2020). As
a biopharmaceutical can aggregate at any point throughout its lifetime, from expression
and purification through to storage and administration to patients, it is important to have
methods to identify aggregation-prone or unstable molecules early in development as
well as to engineer them to improve their biophysical properties in order to minimise
unnecessary time and expense (Willis et al., 2020; Fukuhara et al., 2021). Additionally,
the formation of amyloid deposits has been associated with more than 50 human diseases,
including Alzheimer’s, Parkinson’s and type II diabetes (Guthertz et al., 2022; Chiti
and Dobson, 2017). Understanding the mechanisms underlying protein stability and
aggregation is therefore of ever-increasing interest in order to develop treatments for such
diseases.

Understanding the molecular mechanisms governing protein aggregation in a single pro-
tein is no small feat. It is often a result of a combination of competing interactions govern-
ing protein solubility, stability, hydrophobicity, and inherent aggregation-propensity (Ebo
et al., 2020a). This can be inherent in the molecule due to the primary and tertiary sequence,
and/or due to various environmental factors that can cause aggregation, such as hydro-
dynamic flow which can unfold proteins and expose otherwise buried aggregation-prone
regions (Willis et al., 2020). Various methods exist to characterise a proteins biophysical
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properties, however many of these interrogate only a single property; such as HIC mea-
suring a protein’s hydrophobicity, or DSF measuring thermal stability. As aggregation
results from this combination of interactions, these methods cannot always easily iden-
tify aggregation-prone candidates. Furthermore, they are often laborious as they require
variants to be expressed and purified prior to characterisation.

The TriPartite β-Lactamase Assay (TPBLA) was previously developed to assess protein
thermodynamic stability (Foit et al., 2009) and aggregation propensity (Ebo et al., 2020a),
as well as to identify small molecule inhibitors of amyloid formation (Saunders et al.,
2016). It has also been used as a directed evolution screen to increase the thermodynamic
stability of Im7 (Foit et al., 2009), to reduce the aggregation propensity of the Fv region of
the aggregation-prone IgG WFL (Ebo et al., 2020a), and to understand the aggregation
mechanisms of β-2-microglobulin (Guthertz et al., 2022). As this all occurs in the E. coli
periplasm, the oxidising environment supports proper formation of disulfide bonds, which
are key components of antibody-based therapeutics. Previous work using TPBLA had
only compared point mutants of a single scFv to themselves, rather than comparing the
scores of different scFvs. Furthermore, the directed evolution methodology was limited
by first-generation sequencing making it laborious, low-throughput, and high-cost. The
work in Chapter 3 aimed to develop TPBLA into a high-throughput screening technology
capable of screening hundreds to thousands of variants in a single experiment based on
their stability and aggregation-propensity. This chapter also developed a more efficient
methodology to create error-prone PCR libraries, using Golden Gate assembly to clone the
error-prone PCR fragment seamlessly into the β-lactamase vector at 100 % efficiency. This
enabled the generation of libraries containing ~× 109 to × 1011 variants, estimated based
on the number of colony forming units. This is a 3- to 5-fold improvement compared with
the original megaprimer method which generated libraries containing ~× 106 variants (Ebo
et al., 2020a). The increase in library size increases the probability the library contains
optimal variants by enabling exploration of a wider sequence space (Saito et al., 2021).
TPBLA was developed into a high-throughput screening assay using these large error-prone
libraries to evolve variants of MBP and combining this with the power of next-generation
sequencing enabled rapid and robust identification of hotspot regions and beneficial point
mutations. Initially, short-read Illumina sequencing was used to identify these hotspot
regions and improved variants, whereas long-read Pacbio was used to see whether these
point mutants were found alone or in combination with other mutations. Pacbio sequencing
of the evolved MBP4A library showed it was made up of mostly single point mutations
(84% of the top 100 mutants were single), demonstrating Illumina short read sequencing
was sufficient for accurately assessing mutational profiles within these libraries. The
methodology has the potential for use as a deep mutational scanning screen, where libraries
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are synthesised to have every single point mutant at every position. As this library would
be synthesised to contain only single point mutants, the Illumina shotgun approach would
be sufficient to assess changes in mutation frequency following evolution. Ideally a higher
read depth would be used when sequencing both naive and selected libraries. This would
enable more robust log2(fold change) calculations as the frequency of erroneous reads
at each position would be lower. Moving TPBLA from solid to liquid culture could
represent a powerful assay for deep mutational scanning experiments. This would enable
timepoints to be taken over the course of the evolution experiment to look at mutational
frequency changes over time, which could give more insight into the positions and residues
involved in governing stability and aggregation. However, previous work attempting to
carry out TPBLA in liquid culture instead of solid agar where score was measured as
E. coli growth rates over time found a counterintuitive correlation between growth score
and developability (Golinski et al., 2021). This could have been due to increased protein
production of highly expressed and stable variants resulting in a decrease in E. coli growth
rate (Golinski et al., 2021). Furthermore, it has been demonstrated that β-lactamases can
be secreted into the extracellular medium, a process shown to be partially dependent on
Type I Secretion System component TolC (Rangama et al., 2021). Therefore, carrying out
the TPBLA evolution screen in liquid culture has the potential to result in ‘protection’ of
cells expressing inactive β-lactamase (test protein aggregated/unstable) by β-lactamase
being secreted into the media. It has been shown that outer membrane vesicles (OMVs)
from a β-lactam resistant E. coli strain contain β-lactamase and when purified they exhibit
β-lactamase activity (Kim et al., 2018). Additionally, supplementing β-lactam susceptible
E. coli with OMVs from the β-lactam resistant strain allows them to grow in the presence of
ampicillin (Kim et al., 2018). Therefore, converting TPBLA from solid to liquid medium
likely requires significant optimisation to overcome these issues.

Chapter 4 applied TPBLA to biopharmaceutically relevant proteins and assessed its
potential for use as a devleopability screen during initial drug development. Multiple
regression models demonstrated TPBLA is influenced by a multitude of factors, includ-
ing; thermal stability, solubility, aggregation propensity, self-association, and colloidal
stability. Therefore, TPBLA may give a more rounded readout of a molecule compared
with developability assays that measure only a single characteristic which could provide
invaluable information for identifying poorly developable candidates. The high-throughput
directed evolution methodology developed in Chapter 3 was applied to two antibody
fragments, however evolution of an already stable variant (AMS197) likely requires a
high mutation rate library and to be evolved at a higher selection pressure (Drummond
et al., 2005). Evolution of an aggregation-prone candidate (AMS134) identified multiple
improved variants, with the highest performing variant in TPBLA completely abolishing
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aggregation at high temperatures when measured by SLS. Furthermore, assessing evolved
mutations of AMS134 demonstrated the validity of using the log2(fold change) value to
identify improved variants. Three point mutants were assessed; one below the 2σ threshold
(AMS134R93G VL), one just at the threshold (AMS134M123K VH), and one above the thresh-
old (AMS134V124D VH). The variant below the 2σ threshold (AMS134R93G VL) showed an
increase in aggregation propensity, the variant at the threshold (AMS134M123K VH) showed
no significant difference, and the variant above the threshold (AMS134V124D VH) showed
aggregation was abolished at high temperatures. The libraries used for this evolution were
designed to have one mutation per gene on average, which therefore limits the potential
for improving as multiple mutations are often required for significant improvements in
protein stability or aggregation-resistance (Yu and Dalby, 2018). However, increasing
the mutation rate could result in accumulating mutations that could then have a knock-on
effect on target affinity, as many hotspots identified in the evolution of AMS134 were
within HCDR3. This highlights the importance of including a selection for binding affinity
into TPBLA when evolving antibody-based therapeutics.

Chapter 4 assessed 35 late stage clinical mAbs using TPBLA and compared this to
their performance in other common developability assays. The TPBLA score showed no
significant difference between the approval ratings (Phase 2, Phase 3, or Approved) using
those published in 2017 (Jain et al., 2017). Since then, many of those in Phase 2 and 3
clinical trials have been discontinued. Comparing TPBLA score between the discontinued
mAbs and those already approved showed a significant difference in TPBLA score, where
the discontinued mAbs generally showed lower growth scores, demonstrating how TPBLA
could be used to identify candidates likely to fail at clinical trials. Multiple regression
models were used to explain TPBLA score using the other common developability assays,
highlighting links between TPBLA and assays that measure thermal stability, polyspecificty,
colloidal stability, self-interactions, and solubility, demonstrating TPBLA could be useful
at ranking candidate mAbs based on these properties. The model is not perfect, indicating
TPBLA is probing an unknown mechanism or parameter not measured by any of the
other 13 developability assays. Since the discontinued mAbs showed significantly lower
TPBLA scores compared with the approved mAbs, whatever TPBLA is measuring is
clearly relevant when identifying positive candidates. The TPBLA scores for these 35
mAbs compared with their performance in the other 13 developability assays could be
used to inform a machine learning model to predict TPBLA score, and potentially even
antibody developability. This could be used to gain a better understanding of to what extent
these different properties are influencing TPBLA, and identify the property or properties
TPBLA is measuring that the other developability assays are not.
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The basic rule of directed evolution is ‘you get what you screen for’ (You and Arnold,
1996), and evolving to improve a proteins’ thermodynamic stability or reduce their aggre-
gation propensity commonly comes at a cost to target affinity (McLure et al., 2022; Rabia
et al., 2018). Chapter 5 investigated the potential of introducing a selection for binding into
TPBLA to create the Solubility ‘n’ Affinity Coselection (SnAC) assay. By using E. coli
transmembrane transcriptional activator CadC, SnAC was successfully able to link protein-
protein interactions in the periplasm to sfGFP expression in the cytoplasm. SnAC enables
the fluorescence intensity of sfGFP to be correlated to the binding of HA4 to SH2 and
positive binders to be isolated by FACS. SnAC was successfully used to sort HA4 variants
with a mix of stabilities and binding affinities to enrich for the most stable and high-affinity
variant, HA4WT. E. coli co-transformed with CadC-SH2 and TPBLA-VHH containing a
HA4 variant (HA4WT (strong binder), HA4Y87A (weak binder), HA42A (destabilised), and
HA4Y87A 2A (destabilised)) were initially screened by their antibiotic resistance, which
removed the two destabilised variants. The stability screen also reduced the frequency
of strong binder HA4WT, while increasing the frequency of weak binder HA4Y87A. Tyro-
sine residues are commonly involved in antibody CDR regions due to their "stickiness"
and involvement in promiscuous binding, and it is due to this propensity for mediating
protein-protein interactions that tyrosines can result in increased self-interactions or ag-
gregation (Collis et al., 2003; Clark et al., 2006; Ausserwöger et al., 2022). This explains
how HA4Y87A outcompetes HA4WT in the antibiotic resistance screen, and highlights the
importance of including a selection for binding affinity into TPBLA. Traditionally, the
antibiotic resistance screen is the only step in the directed evolution experiment, which
in this case would identify weak binder HA4Y87A as a stable and aggregation-resistant
variant, whereas HA4WT, HA42A, and HA4Y87A 2A would be discarded. The FACS screen
sorting HA4WT and HA4Y87A based on their sfGFP fluorescence increased the frequency
of HA4WT to 0.83, and reduced the frequency of HA4Y87A to 0.17, after two rounds of
FACS sorting. Looking at the log2(fold change) in frequency of these two variants from
the original TPBLA screened library to the second FACS screened library, HA4WT and
HA4Y87A were 2.9 and -2.4, respectively. This demonstrates the power of the SnAC assay
as a directed evolution screen to selectively sort a library of variants to enrich highly-stable
and high affinity variants.
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6.2 Future work

The directed evolution methodology developed in this thesis has great potential for use
as a deep mutational scanning screen to better understand the aggregation mechanisms
of disease-relevant aggregation-prone proteins, such as α-synuclein (Newberry et al.,
2020; Doherty et al., 2020) or amyloid-β42 (Aβ42) (Seuma et al., 2021), both of which
are currently being investigated within the laboratory. The data collected from such
experiments could be used to inform machine learning algorithms to better understand the
aggregation mechanisms of these disease-relevant proteins.

Chapter 4 demonstrated TPBLA could be used as a developability screen to rank
candidates based on their beneficial biophysical properties. The data collected in this
chapter on the 35 clinically relevant mAbs alongside biophysical metrics calculated from
the primary and tertiary structure could be used to inform machine learning algorithms to
predict TPBLA score. This could also be used to better understand what properties are
influencing TPBLA and to what extent, to understand what property or properties TPBLA
is measuring that the other 13 developability assays are missing, and how this could all be
used to predict mAb developability.

The SnAC assay developed in Chapter 5 has wide and exciting potential. Further work
could be done to characterise the range of stabilities and affinities attainable with the assay;
this could be done by using a well-characterised model system, such as Im7/Im9/Im2, all
of which share high sequence identity and bind colicin E9 with different affinities (Meenan
et al., 2010; Friel et al., 2009; Foit et al., 2009). Furthermore, there have been a range
point mutations particularly of Im7 which have been well-characterised for their effect on
thermodynamic stability and binding affinity (Friel et al., 2009; Foit et al., 2009). This or a
similar system would be useful to see how accurately SnAC is able to specifically correlate
binding affinity with fluorescence intensity, as the HA4/SH2 system used in Chapter 5 only
assessed positive or negative binding. For the directed evolution methodology, changing
the order of the screens could be beneficial. For example, if the FACS screen was carried
out first to screen the library based on their binding affinity. This would ensure only
binders would be taken forward and screened based on their stability. This FACS screened
library would be taken and screened based on the E. coli antibiotic resistance, reducing the
chances of a highly stable non-binder (such as HA4Y87A) from outcompeting the slightly
less stable binders in the this screen. Additionally, this reduces the library size for the
stability screen to only functionally active variants.
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SnAC could also be used to engineer biopharmaceuticals to bind to otherwise un-
druggable targets. For example, G protein-coupled receptors (GPCRs) are involved in
over 100 human diseases and approximately 34 % of all drugs approved by the Food and
Drug Administration (FDA) target members of this family (Hauser et al., 2018; He et al.,
2022; Meltzer et al., 2022). However, they are difficult to purify for use in drug discovery,
both structure-based or for use in affinity maturation techniques such as phage or yeast
display (Magnani et al., 2016). As SnAC occurs in vivo, it could be used as a directed
evolution screen to engineer stable and high-affinity binders to these otherwise difficult to
target epitopes. Furthermore, extensive research currently goes in to engineering GPCRs
to improve their thermostability for use in drug discovery (Magnani et al., 2016). SnAC
could be adapted to engineer the epitope rather than the biopharmaceutical by replacing
the periplasmic sensor domain of CadC with the dimerising nanobody (VHH), and in the
place of the transmembrane domain insert a GPCR to be targetted. Therefore, the only
way to switch on sfGFP expression using CadC is for the GPCR to fold stably into the
membrane enabling dimerisation by VHH. The GPCR could be evolved to improve its
stability by limiting the expression level of CadC-GPCR-VHH, introducing variance into
the GPCR, and sorting cells based on their sfGFP expression. This could drive a selection
for stability and proper folding to raise the active concentration of GPCR.
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6.3 Final remarks

The adapted TPBLA for high-throughput directed evolution developed in this thesis has
been shown to rapidly evolve protein solubility, improve thermodynamic stability, and to
identify mutational hotspots involved in limiting protein developability. The combination
with next-generation sequencing enables a more comprehensive analysis of a protein’s
mutational landscape following evolution, allowing a more in-depth understanding of
the individual proteins stability and aggregation mechanisms. Furthermore, the high-
throughput TPBLA has the potential for use as a deep mutational scanning screen to better
understand the molecular mechanisms underlying protein aggregation. This could be of
particular use for understanding disease relevant proteins, such as α-synuclein or Aβ42,
which has the potential to lead to the development of novel therapeutic strategies and
earlier identification of disease. TPBLA has the potential for use as a biopharmaceutical
developability screen, as it can identify problematic sequences based on a combination of
their stability, solubility, and aggregation, without the need for purified protein. Further-
more, TPBLA has been successfully adapted into SnAC, enabling co-screening of binding
affinity alongside stability to ensure resulting molecules retain their function following
evolution. With the biopharmaceutical industry beginning to develop novel therapeutic
scaffolds (Luo et al., 2022), TPBLA and SnAC can be exploited to assess these for their
aggregation and binding behaviours, in order to both predict and evolve the developability
and manufacturability of these novel molecules.

Directed evolution is a powerful tool for improving the biophysical properties of pro-
teins for biopharmaceutical and industrial processes, for engineering new functions such as
enzymes with new activity or tRNAs that incorporate noncanonical amino acids (DeBene-
dictis et al., 2022; Chin et al., 2002), as well as DMS experiments to uncover protein fitness
landscapes and understand proteins in disease models (Bolognesi et al., 2019; Newberry
et al., 2020; Seuma et al., 2021). While there are many potential avenues that remain to
be explored, the palette of selection techniques now available to researchers, combined
with the advent of low-cost NGS to allow high-throughput identification and analysis of
the variants unmasked by these screens, is democratizing access to this incredible tool.
The screens developed in this thesis could enable high-throughput directed evolution of
stability and affinity, and have wide potential for application to biopharmaceuticals and
beyond. It is now up to researchers to unleash this power onto new and exciting targets, but
all without forgetting the golden rule of directed evolution: ‘you get what you screen for’.
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Appendix A

Primers used in this study

Table A.1 Primers used in Q5 mutagenesis and restriction digest cloning

Code Sequence Use

RJM001 GAAGAGTTGGcGAAAGATCCGC
V312A into lab MBP

RJM002 CTCGTAAGACTTCAGCGC

RJM003 GAAAGATACCgatccgAAAGTCACCG
G32D+I33P into MBP

RJM004 TCGAATTTCTTACCGACTTC

RJM005 CCTCGAAAACgacCTGCTGACTG
Y283D into MBP

RJM006 AACTCTTTTGCCAGCTCTTTG

RJM007 CACCTGGCCGgcgATTGCTGCTG
L160A into MBP

RJM008 AAGTACGGTTCTTGCAGG

RJM009 accaagAACAACAACAACAATAACAATAACAAC
Mutate TSSS -> RITK C-term MBP

RJM010 gatacgAGTCTGCGCGTCTTTCAG

RJM011 taaAACAACAACAACAATAACAATAAC
Add stop codon to MBP

RJM012 CTTGGTGATACGAGTCTG

RJM013 CTTTCAGGGAAAAATCGAAGAAGGTAAACTG Insert TEV cleavage site after his tag

in pMal-c5x MBPRJM014 TACAGGTTTTCGTGATGGTGATGGTGATG

RJM015 CTGGCCGGCGgcgGCTGCTGACG
I161A into L160A MBP

RJM016 GTGAAGTACGGTTCTTGCAGG

RJM017 GAAAGCGGGTgcgACCTTCCTGGTTG
L192A into L160A + I161A MBP

RJM018 GCGCCAGCGTTATCCACG

RJM019 TGCGACCTTCgcgGTTGACCTGATTAAAAACAAACACATGAATGCAGAC
L195A into L160A + I161A + L192A MBP

RJM020 CCCGCTTTCGCGCCAGCG

RJM021 ttcgcgGTTGACCTGATTAAAAACAAACACATGAATGCAGACAC
L192A + L195A into L160A + I161A MBP

RJM022 ggtcgcACCCGCTTTCGCGCCAGC

RJM023 ATAACGGTCTgGCTGAAGTCG
Remove Bsa1 site from MBP

RJM024 AGCCTTTATCGCCGTTAATC

RJM025 GTGAGCGTGGtTCTCGCGGTA
Remove Bsa1 site in bla domain 2

RJM026 CGGCTCCAGATTTATCAGCAATAAAC

RJM027 GGTAGTGTGGaGTCTCCCCATGC Remove Bsa1 site in bla vector non

coding regionRJM028 ATCGGCGCTACGGCGTTT

RJM029 CACCTGGCCGgcggcgGCTGCTGACG
L160A + I161A into TEV MBP STOP

RJM030 AAGTACGGTTCTTGCAGG

RJM035 gagaccTCGAGCTCAGGATCCGGG
Add first Bsa1 site to blaGS

RJM036 GCCACCACCACCAGAACC

RJM037 ggtctcGGAGCGGTTCCGGAAGCG
Add second Bsa1 site to blaGS
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Code Sequence Use

RJM038 CGGATCCTGAGCTCGAGG

RJM039 taaggTCAGGATCCGGGTCTCGG Add Bsu36I site and stop codon between

BsaI sites in blaGGRJM040 ggttaGCTCGAGGTCTCGCCACC

RJM041 ggggatccTTCCGGGAGCGGGAGCTC Swap XhoI and BamHI restriction sites

in b-lactamase 64 GS linkerRJM042 accctcgagTGAGCCACCACCACCAGATC

RJM053 TGACATTATCattTGGGCACACGACCGC
F61I substitution in MBP 4A

RJM054 GGGCCATCGCCAGTTGCC

RJM055 TATCTTCTGGaccCACGACCGCTTTGG
A63T substitution in MBP 4A

RJM056 ATGTCAGGGCCATCGCCA

RJM057 AGAACTGAAAgtgAAAGGTAAGAGCG
A141V substitution in MBP 4A

RJM058 TTATCCAGCGCCGGGATC

RJM059 CACCTGGCCGctGGCGGCTGCT
A160L substitution in MBP 4A

RJM060 AAGTACGGTTCTTGCAGGTTG

RJM061 TAACGCTGGCaccAAAGCGGGTG
A188T substitution in MBP 4A

RJM062 TCCACGCCCACGTCTTTA

RJM063 GAAAGCGGGTctgACCTTCGCGG
A192L substitution in MBP 4A

RJM064 GCGCCAGCGTTATCCACG

RJM065 TGCGACCTTCctgGTTGACCTGATTAAAAACAAACACATGAATGCAGAC
A195L substitution in MBP 4A

RJM066 CCCGCTTTCGCGCCAGCG

RJM067 CAACATCGACattAGCAAAGTGAATTATGGTGTAACGGTACTGCCG
T237I substitution in MBP 4A

RJM068 GACCATGCCCACGGGCCG

RJM069 AAACAAACACgTGAATGCAGAC
M204V substitution in MBP 4A

RJM070 TTAATCAGGTCAACCGCG

RJM071 CATGAATGCAtACACCGATTAC
D207Y substitution in MBP 4A

RJM072 TGTTTGTTTTTAATCAGGTC

RJM073 ATGAATGCAGtCACCGATTAC
D207V substitution in MBP 4A

RJM074 GTGTTTGTTTTTAATCAGGTC

RJM075 GCTGCCTTTAtTAAAGGCGAAAC
N218I substitution in MBP 4A

RJM076 TTCTGCGATGGAGTAATC

RJM077 TACTGCGGTGcTCAACGCCGC
I348L substitution in MBP 4A

RJM078 CGCACGGCATACCAGAAAG

RJM079 TAGCGCGGGTgcgATGTTCATGTATTCTCC Y87A substitution in HA4 monobody in

MBP 4ARJM080 TCTTCGCCCCATGCATAA

RJM081 tagTCCATAAGATTAGCGGATC 5 substitution mutations to create

pBADSTRONGRJM082 tcttGCTATGGCATAGCAAAGTG

RJM084 GGTGGTGGCTCGAGCggcagctc
Clone HA4 into bla vector

RJM085 ACCGCTCCCGGATCCgcaggtgc

RJM128 CACCTGGCCGctgGCGGCTGCTG
A160L substitution in MBP 4A

RJM129 AAGTACGGTTCTTGCAGGTTGAAC

RJM144 GGGTGCGACCatcGCGGTTGACC
F194I substitution in MBP 4A

RJM145 GCTTTCGCGCCAGCGTTATC

RJM165 TGACATTATCatcTGGGCACACGACCG
F61I mutation in MBP 4A

RJM166 GGGCCATCGCCAGTTGCC

RJM167 TGGCGCGAAAtcgGGTGCGACCT
A190S in MBP 4A

RJM168 GCGTTATCCACGCCCACGTC

RJM169 CCGCTTTGGTgacTACGCTCAAT
G69D in MBP 4A

RJM170 TCGTGTGCCCAGAAGATAATG

RJM171 TAAAAACAAAtacATGAATGCAGTCAC
H203Y in MBP 4A

RJM172 ATCAGGTCAACCGCGAAG

RJM173 CGCGAAAGCGagtGCGACCTTCG
G191S in MBP 4A

RJM174 CCAGCGTTATCCACGCCC

RJM175 TCAGACTGTCaatGAAGCCCTGAAAGACGC
D358N in MBP 4A

RJM176 CGACCGCTGGCGGCGTTG

RJM185 CTTCCAGGTCTCGAGTAATTAAATAAGCTTCAAATAAAACGAAA Amplify pMAL vector to clone in MBP 4A

evolved variantsRJM186 CTTCCAGGTCTCGTTTCCCTGAAAGTACAGGTTTT
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Code Sequence Use

RJM187 CTTCCAGGTCTCCGAAAAATCGAAGAAGGTAAACTGG Amplify MBP 4A evolved variant from bla

vector to clone into pMAL vectorRJM188 CTTCCAGGTCTCCTACTTGGTGATACGAGTCTGC

RJM193 GTGAGCAAGGGTGAGGAGGATAACATGG
remove ATG from mNG2 1-10

RJM194 ACCAGGGCCCCCGCTACC

RJM223 TAAAAACAAAtACATGAATGCAGACAC
H203Y in MBP 4A

RJM224 ATCAGGTCAACCGCGAAG

RJM273 tcgctgttcatgttgccagctttttcgAGTCTGGAAAAACACAGC
Replace DsbA signal peptide with TorT

RJM274 caaaagtaaaaacagcaggacccgcatGAATTCCTCCTGGTACCG

RJM275 tctcattctctgggcgagcgtactgcacgcgAGTCTGGAAAAACACAGC
Replace DsbA signal peptide with TolB

RJM276 aacccaaaagcgacacgtaatgcctgtttcatGAATTCCTCCTGGTACCG

RJM286 ATGCCATAGCtTTTTTATCCATAAGATTAGC
Create pBAD weak promoter

RJM287 AGCAAAGTGTGACGCCGT

RJM290 ATGAAAAAGATTTGGCTGGCGC Amplify pSNAC to remove split bla and

keep only pBAD DsbA-SH2-mNG2RJM291 gaattcctcctggtaccgagc

RJM292 GGTACAGGTCTCCTaagaaaccaattgtccatattgc Amplify pSNAC DsbA to add split

bla-mNG2 and mScarlet-IRJM293 GGTACAGGTCTCCttctctgaatggcgggagta

RJM294 GGTACAGGTCTCCagaagaaaccaattgtccatattgc

Amplify split bla-mNG2 and mScarlet-I

to clone into pSNAC DsbA

RJM295 GGTACAGGTCTCCcttAAATAAACAAAAGAGTTTGTAGAAACG

RJM298 TGACGAGGTCTCCAACTGCAGGTAATTAAATAAGCTTCA

RJM299 TGACGAGGTCTCCcttAAATAAACAAAAGAGTTTGTAGAAACG

RJM300 TGACGAGGTCTCGTaagaaaccaattgtccatattgc

RJM301 TGACGAGGTCTCGAGTTAcatggagtgcttgagc

RJM303 GTGGTGGCTCGAGCGAACTGAAAAATAGTATTAGTGAT
Amplify Im7 to clone into pSNAC

RJM304 GCTCCCGGATCCGCCCTGTTTAAATCCT

RJM309 GTTCGAGGTCTCCtcgggaagggaaggttct
pSNAC_mNG2_weakDsbA

RJM310 GTTCGAGGTCTCCACCTAGTTCGCCAGTTAATAGTTTG

RJM311 GTTCGAGGTCTCGAGGTGGTGGTGGTTCTGGT
pBR322_blaGG_STOP

RJM312 GTTCGAGGTCTCGccgaCCAATGCTTAATCAGTGAGG

RJM315 GGGAATGGTCTCGGTGGCTCGAGCGAACTGAAAAATAGTATTAGTGAT
Amplify Im7 to clone into pSNAC_GG_STOP

RJM323 ACATGCGGTCTCCGCTCCCGGATCCGCCCTGTTTAAATCCT

RJM367 TAATCTACAAATAATTTTGTTTAACTTTTC
Cut off mNG2(11) from pSNAC weak mNG2

RJM368 CCAATGCTTAATCAGTGAG

RJM369 tcaagcactccatgTAACTGCAGGTAAT
Cut off mNG2(1-10) from pSNAC weak mNG2

RJM370 TTAgcgtttcggcgccggataa

RJM371 CCCCAGTTCGcgtTCAGCCTCGG
L11R mutant in bevacizumab scFab

RJM372 GATTGCGTCATTTGGATGTCGCTC

RJM373 AGCCTCGGTTcgtGACCGTGTTA
G16R mutant in bevacizumab scFab

RJM374 GAAAGCGAACTGGGGGATTG

RJM375 TGACCGTGTTgcaATCACTTGTTC
T20A mutant in bevacizumab scFab

RJM376 CCAACCGAGGCTGAAAGC

RJM377 CCGTGTTACAttcACTTGTTCAGC
I21F mutant in bevacizumab scFab

RJM378 TCACCAACCGAGGCTGAA

RJM379 CCCGAAGGTAccgATCTACTTCAC
L47P mutant in bevacizumab scFab

RJM380 GCCTTACCTGGCTTTTGT

RJM381 GTTACACTCTagtGTCCCAAGTC
G57S mutant in bevacizumab scFab

RJM382 GAGGATGTGAAGTAGATG

RJM383 TCAACAATACccgACTGTTCCCTG
S92P mutant in bevacizumab scFab

RJM384 CAGTAGTAAGTAGCGAAG

RJM385 ACAATACTCTgctGTTCCCTGGA
T93A mutant in bevacizumab scFab

RJM386 TGACAGTAGTAAGTAGCG

RJM387 CTGGACATTCgatCAAGGTACTAAG
G99D mutant in bevacizumab scFab

RJM388 GGAACAGTAGAGTATTGTTGAC

RJM389 GACATTCGGTcatGGTACTAAGG
Q100H mutant in bevacizumab scFab

RJM390 CAGGGAACAGTAGAGTATTG

RJM391 ATTGAAGTCAgatACAGCTTCAGTAGTTTGTTTGC
G128D mutant in bevacizumab scFab

RJM392 TGCTCGTCACTGGGCGGG
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Code Sequence Use

RJM393 GTTCAATCGTagtGAGTGTGGTG
G212S mutant in bevacizumab scFab

RJM394 GACTTCGTGACAGGAGATG

RJM395 AGCCCCAGGAatgGGACTTGAGT
K317M mutant in bevacizumab scFab

RJM396 TGACGAACCCAATTCATACCG

RJM397 AGGTACGTTAgatACTGTTAGTAGTG
V393D mutant in bevacizumab scFab

RJM398 TGACCCCAAACGTCGAAG

RJM399 CCCTTCATCAaacTCTACAAGTGGC
K413N mutant in bevacizumab scFab

RJM400 GCAAGAGGGAAGACACTTG

RJM401 GAAGGTTGAGaccAAGAGTTGTG
P497T mutant in bevacizumab scFab

RJM402 TTGTCTACCTTCGTATTGC

RJM485 aggtcaggatccgggtctcGGAGCGGTTCCGGAAGCG
Create pSNAC blaGGSTOP-VHH

RJM486 taggttagctcgaggtctcGCCACCACCACCAGAACC

AKM3 CCGTCAAGCCctcGGCCAAGGAC
Create bla AMS134 P41L

AKM4 ACCCAGTGCATATAGTGTCCGGTGAAC

AKM5 AGGATACTTTcgcTATTTCGACTTATGGGGTCGCGG
Create bla AMS134 W107R

AKM6 GGGCGACCAGGGTCACGA

AKM7 ATACTTTTGGcatTTCGACTTATGGGGTCGC
Create bla AMS134 Y108H

AKM8 CCTGGGCGACCAGGGTCA

AKM9 CTTTTGGTATtccGACTTATGGGGTCG
Create bla AMS134 F109S

AKM10 TATCCTGGGCGACCAGGG

AKM11 CGACTTATGGgatCGCGGCACCA
Create bla AMS134 G113D

AKM12 AAATACCAAAAGTATCCTGGGCGACC

AKM13 ATGGGGTCGCgatACCATGGTCA
Create bla AMS134 G115D

AKM14 AAGTCGAAATACCAAAAGTATCCTG

AKM15 TCGCGGCACCaaaGTCATCGTCT
Create bla AMS134 M117K

AKM16 CCCCATAAGTCGAAATACC

AKM17 CGGCACCATGgatATCGTCTCTT
Create bla AMS134 V118D

AKM18 CGACCCCATAAGTCGAAATAC

AKM19 CACCATGGTCaccGTCTCTTCTG
Create bla AMS134 I119T

AKM20 CCGCGACCCCATAAGTCG

AKM21 GAAAATCAGCggtGTAGAGGCGG
Create bla AMS134 R220G

AKM22 AGCGTGAAATCGGTGCCT

AKM23 ATCAGGATTCgcaTTCAGTAATTACGACATGGCGTG
Create bla AMS197 T28A

AKM24 GCCGCGCACGACAGACGC

AKM25 CAGTAATTACaacATGGCGTGGG
Create bla AMS197 D33N

AKM26 AATGTGAATCCTGATGCC

AKM27 CCGTGGTACCcatGTGACAGTGT
Create bla AMS197 L114H

AKM28 CCCCAATACACGAACGGAATG

AKM29 CTATAAGGCTaatCGTCTTCAATCAGGG
Create bla AMS197 S187N

AKM30 ATGAGCAACTCGGGCGCC



259

Table A.2 Primers used in golden gate cloning

Code Sequence Use

RJM033 GGGAATGGTCTCGGTGGCTCGAGC
Add Fwd BsaI site to blaMBP epPCR

product to clone into blaGGSTOP

RJM034 ACATGCGGTCTCCGCTCCCGGATCC
Add Rev BsaI site to blaMBP epPCR

product to clone into blaGGSTOP

RJM086 CGAAGTGGTCTCGaaTCTAGAGTCGACCTGCAG

RJM087 CGAAGTGGTCTCGATgaattcctcctggtaccg

RJM088 CGAAGTGGTCTCCtcATGAAAAAGATTTGGCTGGC

RJM089 CGAAGTGGTCTCCtCGCCGATGCGCTAAACGC

RJM090 CGAAGTGGTCTCCGCGatggtgagcaagggtgag

RJM091 CGAAGTGGTCTCCGAttacatcatatcggtaaaggcc

RJM092 GTGGAAGGTCTCCaccTAATCTAGAGTCGACCTGCA

Create control vector with split

sfCherry2

RJM093 GTGGAAGGTCTCCTgaattcctcctggtaccg

RJM094 GTGGAAGGTCTCGttcATGAAAAAGATTTGGCTGGCG

RJM095 GTGGAAGGTCTCGcatCGCCGATGCGCTAAACGC

RJM096 GTGGAAGGTCTCGGatggaggaggacaacatg

RJM097 GTGGAAGGTCTCGtcgtcctcgttgtggctggt

RJM098 GTGGAAGGTCTCGacgacgttggtggtggcgga

RJM099 GTGGAAGGTCTCGatagaccccccgccagcgct

RJM100 GTGGAAGGTCTCGctatgtacaccatcgtggag

RJM101 GTGGAAGGTCTCGAggtgctgtgtctggcctc

RJM102 TCCGATGGTCTCGATGTTTATTTTTCTAAATACATGCGGC

Create pSNAC with mNeonGreen2

RJM103 TCCGATGGTCTCGaCCAATGCTTAATCAGTGAGG

RJM104 TCCGATGGTCTCGTGGtcgggaagggaaggttct

RJM105 TCCGATGGTCTCGgattacatcatatcggtaaaggcc

RJM106 TCCGATGGTCTCGaatctacaaataattttgtttaacttttctag

RJM107 TCCGATGGTCTCGTCCttatttgtatagttcatccatgcc

RJM108 TCCGATGGTCTCGaGGAGTCTCCCCATGCGAG

RJM109 TCCGATGGTCTCGcttAAATAAACAAAAGAGTTTGTAGAAACGC

RJM110 TCCGATGGTCTCCTaagaaaccaattgtccatattgc

RJM111 TCCGATGGTCTCCTgaattcctcctggtaccg

RJM112 TCCGATGGTCTCCttcATGAAAAAGATTTGGCTGGCG

RJM113 TCCGATGGTCTCCataccagggcccccgctacc

RJM114 TCCGATGGTCTCCgtatggtgagcaagggtgag

RJM115 TCCGATGGTCTCCAGTTAcatggagtgcttgagctc

RJM116 TCCGATGGTCTCGAACTGCAGGTAATTAAATAAGCTTCA

RJM117 TCCGATGGTCTCGACATTTGTCCTACTCAGGAGAGC

RJM118 TTCGTCGGTCTCCgacTAACTGCAGGTAATTAAATAAGCTTCAAATAAAACGAAAGGCT

Create pSNAC with sfCherry2

RJM119 TTCGTCGGTCTCCtagaccccccgccagcgct

RJM120 TTCGTCGGTCTCCtctatgtacaccatcgtggag

RJM121 TTCGTCGGTCTCCgTTAggtgctgtgtctggcctc

RJM122 TTCGTCGGTCTCCTAAcctctagaaataattttgtttaactttaag

RJM123 TTCGTCGGTCTCCCCtttatacagttcatccataccgt

RJM124 TTCGTCGGTCTCGaaGGAGTCTCCCCATGCGAG

RJM125 TTCGTCGGTCTCGataccagggcccccgctacc

RJM126 TTCGTCGGTCTCGgtatggaggaggacaacatg

RJM127 TTCGTCGGTCTCGAgtcctcgttgtggctggt

RJM130 GATGACGGTCTCGaaTCTAGAGTCGACCTGCAG

Create control vector with mNG2 - using

bla signal sequence

RJM131 GATGACGGTCTCGatAGCAAAAACAGGAAGGCA

RJM132 GATGACGGTCTCGCTatggtgagcaagggtgag

RJM133 GATGACGGTCTCGGAttacatcatatcggtaaaggcc

RJM225 AGCAGAGGTCTCgagtctggaaaaacacagct Amplify pSNAC delta mScarlet-I to

replace DsbA signal sequenceRJM226 AGCAGAGGTCTCGggaattcctcctggtaccg

RJM227 GATGCAGGTCTCCttccatgaaatacctgctgccgaccgc Amplify pelB signal sequence to replace

DsbA in pSNAC delta mScarlet-IRJM228 GATGCAGGTCTCCgactggccatcgccggctgggc

RJM229 TGTCACGGTCTCCttccatgaacaacaacgatctgtttcaggcgagccgcc Amplify Tora signal sequence to replace

DsbA in pSNAC delta mScarlet-IRJM230 TGTCACGGTCTCCgactcgcggtcgcgcggcgcgg

RJM231 CGACAAGGTCTCGttccatgaaaattaaaaccggcgcgcg Amplify malE signal sequence to replace

DsbA in pSNAC delta mScarlet-IRJM232 CGACAAGGTCTCGgactggccagcgcgctagcgct

RJM233 CAGTGAGGTCTCCttccatgaaaaaaaccgcgattgcgattgcgg Amplify ompA signal sequence to replace

DsbA in pSNAC delta mScarlet-IRJM234 CAGTGAGGTCTCCgactggcctgcgccacggtcgc

RJM235 TCGAGTGGTCTCGttccATGAGTATTCAACATTTCCGTG Amplify b-lactamase signal sequence to

replace DsbA in pSNAC delta mScarlet-IRJM236 TCGAGTGGTCTCGgactAGCAAAAACAGGAAGGCA

RJM238 TGTCACGGTCTCCgactcgcggtcgcgcggcg Shorter TorA reverse primer

RJM324 ACGTCAGGTCTCGATGCGGCCGCTCATGTTTGACA

Amplify bits to replace split

mNeonGreen2 with split mCherry2, and

mScarlet-I with superfolder GFP
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Code Sequence Use

RJM325 ACGTCAGGTCTCGatagaccccccgccagcgct

RJM326 ACGTCAGGTCTCCctatgtacaccatcgtggagc

RJM327 ACGTCAGGTCTCCcTTAggtgctgtgtctggcctc

RJM328 ACGTCAGGTCTCCTAAgaaataattttgtttaactttaagaagga

RJM329 ACGTCAGGTCTCCgaTTAtttatacagttcatccataccgt

RJM330 ACGTCAGGTCTCGAAtcccgccattcagagaag

RJM331 ACGTCAGGTCTCGGCATGTATTTAGAAAAATAAACATTTGTCC

RJM332 GGCTTAGGTCTCCACAAATGTTTATTTTTCTAAATACATGCGGCCGCTCATG

RJM333 GGCTTAGGTCTCCagaccccccgccagcgct

RJM334 GGCTTAGGTCTCGgtctatgtacaccatcgtggagc

RJM335 GGCTTAGGTCTCGTAggtgctgtgtctggcctc

RJM336 GGCTTAGGTCTCCccTAAcctctagaaataattttgtttaactttaag

RJM337 GGCTTAGGTCTCCagtTTAtttatacagttcatccataccgt

RJM338 GGCTTAGGTCTCCAacttttcatactcccgccattcaga

RJM339 GGCTTAGGTCTCCtcaccagggcccccgctacc

RJM340 GGCTTAGGTCTCGgtgaggaggacaacatggcc

RJM341 GGCTTAGGTCTCGGCAGGTTAgtcctcgttgtggctggt

RJM342 GGCTTAGGTCTCGCTGCAGGTAATTAAATAAGCTTCA

RJM343 GGCTTAGGTCTCGTTGTCCTACTCAGGAGAGC

RJM439 GAACACGGTCTCGTAAGTCTCCCCATGCGAGAGT

Create pSNAC HA4 VHH-caffeine
RJM440 GAACACGGTCTCGGAACCGCCACTTCCGCCTGATCCACCCCAATGCTTAATCAGTGAGG

RJM441 GAACACGGTCTCGGTTCAGGTGGGAGTGGTGGCAGCgaagttcaactgcaagctt

RJM442 GAACACGGTCTCGCTTATTAacgaggttccagaggatc

RJM443 TGTGGAGGTCTCGgctaaactttatctgagaatagtcaatcttcg

Create CadC-SH2
RJM444 TGTGGAGGTCTCGctgccacctggacccaacag

RJM445 TGTGGAGGTCTCGgcagtctggaaaaacacagctggt

RJM446 TGTGGAGGTCTCGtagcgtttcggcgccggata

RJM481 GGTACTGGTCTCCCTAAtaaactttatctgagaatagtcaatcttcg
Amplify pHJ12 CadC-SH2 to make CadC-MBP

RJM482 GGTACTGGTCTCCTTgccacctggacccaacag

RJM483 GGTACTGGTCTCGgcAAAATCGAAGAAGGTAAACTGG Amplify wild type MBP from RM11 blaMBP

no BsaI to make CadC-MBPRJM484 GGTACTGGTCTCGTTAGGATCCCTTGGTGATACG

Table A.3 Primers used in sequencing

Code Sequence Sequencing use

Fullb-lac-F TAGCGGATCATACCTGACG
Full b-lactamase

Fullb-lac-R CGCTTCTGCGTTCTGAT

b-lac-linker-F CGGAGCTGAATGAAGCCATACC
Between 28-GS linker

b-lac-linker-R TCACCGGCTCCAGATTTATCAGC

RJM083 aagaaaccaattgtccatat From pBAD promoter

RJM150 GACCACTTCTGCGCTCGGCC

Walking primers for pSNAC splitFP
RJM151 agacgatgggttgggaggcg

RJM152 ACAAACTCTTTTGTTTATTT

RJM153 aacatggcctctctcccagc

RJM154 cgatctcgatcccgcgaaat pET sfCh2

RJM159 GCCAGCCAAATCTTTTTCAT pSNAC from DsbA

RJM160 aggtcacccttggtggactt pSNAC sequencing primer reverse

RJM163 ACGCTACTCACAGAGCTGCC Reverse sequencing of domain 1 bla in pSNAC

RJM164 tccttgaagttgagctcggt Reverse sequencing of domain 2 bla in pSNAC

RJM237 caggtattcggccgcgttac pSNAC sequencing primer reverse SH2 for signal sequence

RJM285 tctgatccgccaccaccaac pSNAC reverse sequencing primer SH2-mNG2 16aa link

RJM302 atatcccggactattata mScarlet-I

RJM352 ataatttcaacagccataat

Walking primers for pSNAC-VHHRJM353 ATGAAAAAGATTTGGCTGGC

RJM354 acggcggcgtggtgaccgtg

RJM453 ccccagttaaaagcaaacga Sequencing primer binding at C-term of CadC

RJM454 aacaagatactgagcacagc Sequencing primer binding upstream of lac operator
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Table A.4 Primers used to amplify libraries for NGS

Code Sequence Use

b-lac-linker-F CGGAGCTGAATGAAGCCATACC Amplify between 28-GS linker for

Illumina and Pacbio sequencingb-lac-linker-R TCACCGGCTCCAGATTTATCAGC

RJM493 ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCTAGTAGCTCTGTGTATTAC Amplify HA4 WT and variants for

EZ-ampliconRJM494 GACTGGAGTTCAGACGTGTGCTCTTCCGATCTACTAATCGGAGAATACATGAA
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Fig. B.1 Thermal stability of 11 AMSCI mAbs. Differential scanning fluorimetry (DSF) mea-
surements of the full-length AMSCI mAbs. Protein unfolding was measured using intrinsic protein
fluorescence. Data is presented as first derivatives of barycentric mean (BCM) versus tempera-
ture (°C). The transition mid-point temperatures (Tm) were calculated using the first derivative of
the fluorescence raw data. This was fitted to one or more gaussians using Origin Pro 2020 version
9.7.0.118. calculated by differential scanning fluorimetry (DSF). Protein unfolding was measured
using intrinsic protein fluorescence. The barycentric mean (BCM) of the fluorescence intensity
curves from 315-430 nm was used to plot the Tm curves (Section 2.4.8). Data collected using
UNcle system (Unchained Labs).
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Fig. B.2 Biophysical characterisation of 11 AMSCI mAbs. Static light scattering (SLS) was
measured at each temperature throughout the differential scanning fluorimetry (DSF) experiment.
Data is presented as first derivatives of SLS versus temperature (°C). The temperature onset of
aggregation (Tonset) was calculated from the first derivative of the SLS raw data. This was fitted
to one or more gaussians using Origin Pro 2020 version 9.7.0.118. The fit from the first gaussian
was normalised between 0 and 1, and the Tonset was defined as the point at which the slope (first
derivative) exceeded 0.1 % of the peak value of the first derivative. Data collected using UNcle
system (Unchained Labs).
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Fig. B.3 Thermal stability of AMS134WT and evolved variants. Differential scanning fluorime-
try (DSF) measurements of the full-length AMSCI mAbs. Protein unfolding was measured using
intrinsic protein fluorescence. Data is presented as first derivatives of barycentric mean (BCM)
versus temperature (°C). The transition mid-point temperatures (Tm) were calculated using the
first derivative of the fluorescence raw data. This was fitted to one or more gaussians using
Origin Pro 2020 version 9.7.0.118. calculated by differential scanning fluorimetry (DSF). Protein
unfolding was measured using intrinsic protein fluorescence. The barycentric mean (BCM) of the
fluorescence intensity curves from 315-430 nm was used to plot the Tm curves (Section 2.4.8).
Data collected using UNcle system (Unchained Labs).
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Fig. B.4 Aggregation behaviour of AMS134WT and evolved variants. Static light scattering
(SLS) was measured at each temperature throughout the differential scanning fluorimetry (DSF)
experiment. Data is presented as first derivatives of SLS versus temperature (°C). The temper-
ature onset of aggregation (Tonset) was calculated from the first derivative of the SLS raw data.
This was fitted to one or more gaussians using Origin Pro 2020 version 9.7.0.118. The fit from the
first gaussian was normalised between 0 and 1, and the Tonset was defined as the point at which
the slope (first derivative) exceeded 0.1 % of the peak value of the first derivative. Data collected
using UNcle system (Unchained Labs).
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Table C.1 Linear regression statistics for AMSCI mAbs regression model with 5
parameters. Includes: theoretical pI, Tonset by DLS, Tonset by SLS, Tagg by SLS, and
Camsol score. f(5, 5) = 5.142, R2 = 0.787, r = 0.887, p = 0.04829.

Estimate (β) Standard error t value p value

(Intercept) 1490.76 835.41 1.784 0.1344
Theoretical pI -398.92 143.17 -2.786 0.0386
TOnset by DLS 50.33 21.07 2.388 0.0625
TOnset by SLS -54.75 34.54 -1.585 0.1738
Tagg by SLS 36.2 29.11 1.244 0.2688
Camsol score 476.7 235.46 2.025 0.0988

Table C.2 Linear regression statistics for AMSCI mAbs regression model with 4
parameters. Includes: theoretical pI, Tonset by DLS, Tonset by SLS, and Camsol score.
f(4, 6) = 5.537, R2 = 0.837, r = 0.915, p = 0.03255.

Estimate (β) Standard error t value p value

(Intercept) 1093.66 806.38 1.356 0.2238
Theoretical pI -282.79 113.37 -2.494 0.0469
TOnset by DLS 45.8 21.68 2.112 0.0791
TOnset by SLS -18 18.69 -0.963 0.3727
Camsol score 512.47 244.11 2.099 0.0805

Table C.3 Linear regression statistics for AMSCI mAbs regression model with 3
parameters. Includes: Tonset DLS, Camsol score, and theoretical pI. f(3, 7) = 7.147, R2 =
0.754, r = 0.868, p = 0.01548.

Estimate (β) Standard error t value p value

(Intercept) 756.443 722.622 1.047 0.32998
Theoretical pI -226.442 96.598 -2.344 0.05153
TOnset by DLS 25.882 6.475 3.997 0.00521
Camsol score 493.901 242.082 2.04 0.08069

Table C.4 Linear regression statistics for AMSCI mAbs regression model with 2
parameters. Includes: Tonset DLS and theoretical pI. f(2, 8) = 6.192, R2 = 0.608, r =
0.779, p = 0.0237.

Estimate (β) Standard error t value p value

(Intercept) 1495.59 738.56 2.025 0.0775
Theoretical pI -311.62 102.9 -3.028 0.0163
TOnset by DLS 24.24 7.59 3.194 0.0127
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Table D.1 Linear regression statistics for Jain mAbs regression model with 7 pa-
rameters. The model includes: Fab Tm by DSF (TM), Standup Monolayer Adsorption
Chromatography (SMAC), Accelerated Stability (AS), Polyspecificity Reagent (PSR)
binding, Cross Interaction Chromatography (CIC), theoretical pI (PI), and scFv molecular
weight (MW). f(7, 27) = 3.968, R2 = 0.51, r = 0.71, p = 0.004.

Estimate (β) Standard error t value p value

(Intercept) 2402.421 1.66E+03 1.446463 0.159557
TM 19.57136 5.29E+00 3.702668 0.000967
SMAC -44.9978 2.35E+01 -1.91229 0.066503
AS 783.8614 4.69E+02 1.671366 0.106202
PSR -362.74 1.66E+02 -2.17947 0.038193
CIC 122.7285 4.57E+01 2.687265 0.012181
PI -122.172 3.44E+01 -3.54679 0.001448
MW -0.11543 6.13E-02 -1.88315 0.070495

Table D.2 Linear regression statistics for Jain mAbs regression model with 6 pa-
rameters. The model includes: Fab Tm by DSF (TM), Standup Monolayer Adsorption
Chromatography (SMAC), Polyspecificity Reagent (PSR) binding, Cross Interaction Chro-
matography (CIC), theoretical pI (PI), and scFv molecular weight (MW). f(6, 28) = 3.913,
R2 = 0.46, r = 0.68, p = 0.005.

Estimate (β) Standard error t value p value

(Intercept) 2075.572 1701.342238 1.219961 0.232656
TM 18.09389 5.3756093 3.365923 0.00223
SMAC -50.2372 24.0563486 -2.08831 0.045984
PSR -218.105 146.6511444 -1.48724 0.148128
CIC 115.6893 46.9095995 2.466219 0.020042
PI -135.806 34.5208732 -3.93403 0.000501
MW -0.08861 0.0610233 -1.45205 0.157602



273

Table D.3 Linear regression statistics for Jain mAbs regression model with 5 pa-
rameters. The model includes: Fab Tm by DSF (TM), Standup Monolayer Adsorption
Chromatography (SMAC), Polyspecificity Reagent (PSR) binding, Cross Interaction Chro-
matography (CIC) and theoretical pI (PI). f(5, 29) = 4.116, R2 = 0.42, r = 0.64, p = 0.006.

Estimate (β) Standard error t value p value

(Intercept) -268.19 547.979393 -0.48942 0.628228
TM 17.47368 5.460062 3.200271 0.003316
SMAC -61.6977 23.154955 -2.66456 0.01246
PSR -263.781 145.949603 -1.80734 0.081094
CIC 134.404 45.958224 2.924482 0.006633
PI -132.775 35.110052 -3.78168 0.000721

Table D.4 Linear regression statistics for 29 Jain mAbs regression model with 5 pa-
rameters. The model includes: Fab Tm by DSF (TM), Standup Monolayer Adsorption
Chromatography (SMAC), Polyspecificity Reagent (PSR) binding, Cross Interaction Chro-
matography (CIC) and theoretical pI (PI). f(5, 23) = 3.375, R2 = 0.42, r = 0.64, p = 0.01971.

Estimate (β) Standard error t value p value

(Intercept) -158.507 725.375 -0.462 0.64872
TM 16.164 6.855 2.805 0.01032
SMAC -65.309 27.399 -2.573 0.01733
PSR -288.447 186.172 -1.739 0.096
CIC 142.548 51.558 2.901 0.00828
PI -137.56 45.525 -3.131 0.00486
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