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Abstract

Content-based Image Retrieval (CBIR) is the task of searching for the most similar images

to the query content from an extensive image database. Most existing feature extraction

methods and attention mechanisms for CBIR tasks are query non-sensitive, ignoring the

specifics of the query pattern, which may lead to focusing on irrelevant regions to the

query content. In this thesis, we explore query sensitive attention mechanisms for CBIR

task, which involves query feature information in the feature extraction procedure of the

candidate image.

Firstly, we propose the Conditional Attention Network (CANet). CANet takes the query

image and a candidate image as input, resulting in a co-attention map of the candidate

image under the condition of the query content. The generated co-attention map could

correctly highlight the target object and improve image retrieval performance when em-

bedded into a convolution neural network (CNN) based feature extraction pipeline.

Secondly, another more efficient co-attention method is proposed based on local feature

selection and clustering over candidate local features. Using local feature selection and

clustering dramatically reduces the computation costs caused by the query sensitivity but

still leads to accurate co-attention maps even under challenging situations. The proposed

clustering-based co-attention method leads to new state-of-the-art performance on several

benchmark datasets.

Lastly, we explore using clustered expressive local features to perform many-to-many local

feature matching for CBIR. We show that the proposed local feature matching method

implicitly generates co-attention-like local matching maps. In addition, a trainable binary

encoding layer is applied for network fine-tuning, enabling the model to generate compact

binary codes with slight performance degradation and greatly reducing computation costs.

In summary, we demonstrate that the query information could play an important role

in feature extraction for the CBIR task. With a simple design, co-attention could be

practical and effective even for large-scale image retrieval tasks.
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Chapter 1

Introduction

The development of modern technology has made photo-capture devices, such as cameras

and smart mobile phones, more accessible and widely used in different aspects of life.

Many image data are generated following various activities, such as social media, medi-

cal, industrial, educational, and others. Especially, with the advancement of the Internet,

many images are produced, stored, and spread worldwide every day. All these human

activities require a system to organize images so users can easily find them. Generally,

image retrieval represents the task of searching and retrieving images, which would se-

mantically match the query input, from a large database of digital images. The earliest

image retrieval work could track back to the conference: Database Techniques for Picto-

rial Applications [12] in the 1970s, after which image retrieval started to attract interest.

As shown in Figure 1.1, we can talk about different types of image retrieval systems

depending on the query format.

Initially, the most common image retrieval system would be text-based image retrieval

(TBIR). TBIR system utilizes textual image annotations, such as image file names, tags,

keywords, descriptions, or even GPS coordinates, to search desired images. TBIR is com-

putationally efficient as storing textual annotation for each image takes minimal space

and the text string matching is fast at the retrieval stage. However, it suffers from several

disadvantages. First, it is not feasible to manually annotate a large-scale image database

with descriptive texts. Second, the manually added textual annotations only reflect the

annotator’s understanding of the image, making it subject to individual human percep-

tion. In the worst case, if the end-user and the annotator have a different understanding

1



2 CHAPTER 1. INTRODUCTION

Figure 1.1: Illustration of different query formats and corresponding results. Images taken
from [156].

of the image, a TBIR system will likely return irrelevant results. Besides, the textual

annotation may not be able to comprehensively describe all content of the image, espe-

cially when there are multiple objects in a single image. Finally, the text-based approach

is also likely to be restricted by language. For example, if the user language changes,

pre-annotated descriptions would not work. To overcome these limitations of TBIR, an

alternative way of image retrieval, called content-based image retrieval, was proposed.

Content-based image retrieval (CBIR) is also known as Query By Image Content (QBIC).

CBIR is a more intuitive and user-friendly way of image retrieval as it does not require

written text information but directly takes an image as input, returning a set of similar

ones to the query content. In addition, directly utilizing image intrinsic information

instead of textual annotation makes the image retrieval system more practical, as the

text description may be inaccurate or not even related in any way to the content of the

images.

Apart from traditional TBIR and CBIR, some specialized query formats have also been
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developed in the image retrieval field. For instance, sketch-based image retrieval could be

treated as a related approach to sample-based image retrieval. Sketch-based approaches

allow the user to search images that would match the semantics corresponding to the

intuition from the user’s mind. It could be helpful, especially when the user’s search

intention is not well defined and there is no access to a proper sample image as query

item [16]. Although initial sketch-based image retrieval methods only work well for some

simple patterns or specific artworks [156], in some later research, such as the Edgel [15],

it is used with natural images. However, there are some non-trivial problems with the

sketch-based image retrieval approach. The major one could be that users may not be

able to draw the contour during the actual application quickly.

Another type of query format is the colour layout. It searches images that match the

colour spatial co-relation in different image regions. This approach provides the search

intention of the user in some specific situations, but it suffers from limited semantic

meaning that can be expressed by using only colour and layout information. Moreover,

significant changes in the illumination conditions or the image acquisition parameters

could also present a major challenge for this colour-based approach. Similar to the colour

layout format, the concept layout query format from [142] proposes to combine spatial

layout information with text information for image retrieval. This query format allows

the user to search for a more complex semantic representation and may be suitable for

particular specialized query intentions. However, such an approach requires that the

image database is pre-processed using an object recognition algorithm, annotating the

object class and spatial location.

Specialized CBIR has been employed in various applications such as medical images, satel-

lite images, remote sensing and others. Specialized image retrieval relies on identifying

and using specific features characteristic to the modalities of that domain. This thesis

focuses on content-based image retrieval (CBIR) in generic images. Lately, landmark

datasets, such as ROxford and RParis [96] that contain photos of landmark buildings

taken under various situations and conditions have become a prevalent CBIR research

task and application scenario in recent CBIR works [96]. Content-based image retrieval

in this thesis refers to retrieving images that contain the same object or content as the

query image. In other CBIR works, such as [128], the goal is to retrieve images from the

same class as those shown in the query image. Recent state-of-the-art works of CBIR
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[14, 123, 146] focus on the same object (or content) retrieval and the work in this thesis

follows this practice.

A general pipeline of content-based image retrieval is illustrated in Figure. 1.2. It consists

of two stages: the offline stage and the online stage. The offline stage mainly involves

feature extraction and caching for each candidate image from the image database. After

feature extraction, each candidate image will be mapped from the original RGB colour

pixels to compact feature vector representations. The candidate image feature extraction

would only need to be done once and extracted features will be cached permanently for

usage in the future online stage. Thus, it has memory usage limitations for the offline

stage. During the online stage, the query image is processed by the same feature extraction

module used for the database images. Then a similarity measure is employed between

the features of the query and each database’ image. If the feature extraction results in

some real-value feature vectors, the similarity measure can use the L2 distance (cosine

similarity). When the image representation consists of a binary code, then the Hamming

distance can be used. Moreover, some other works would extend the usage of deep learning

as the similarity evaluation module. Instead of applying such classic distance metric as

mentioned above, these works utilize a trainable layer, like a fully connected layer, to

directly learn a distance metric for image match [150, 34]. The processing time is essential

for the online stage module of the CBIR.

Image 
Database

Candidate 
Images

Query
Image

Similarity 
Measure

Retrieval
Result

Database 
Indexing

Re-rank

Offline stage

Online stage

Feature
Extraction

Feature
Extraction

shared

module

Figure 1.2: Illustration of content-based image retrieval pipeline.

To further improve the performance of the CBIR pipeline, there are two optional mod-

ules: database indexing and the re-ranking module, marked with dash-line rectangles in

Figure 1.2. Database indexing refers to the organization of the image database structure
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to improve the retrieval outcome. A database indexing method could significantly de-

crease the response time of the retrieval system and it plays a more and more critical role

as the database gets large. For example, the inverted file indexing has been successfully

implemented to speed up image retrieval [112]. Initially, inverted file indexing [159] was

a method implemented in text processing that can map the content to its location within

the documents or database files. Inverted file indexing is adapted for image retrieval to

help the retrieval system quickly pick out candidate images that share some common vi-

sual words with the query image [112]. This procedure reduces the number of candidate

images compared with the query, resulting in a more efficient response.

The re-ranking module aims to refine the initial retrieval results with some extra feature

information or processing procedure. It could be based on different techniques, such

as spatial verification [87] or query expansion [26]. For instance, query expansion, also

adapted from text retrieval, consists of reissuing the top rank retrieval results to generate

new queries. Because some relevant features or information may not be included with

the original query image, generating new queries and then using them for initial result

refinement can reduce the omission of related image retrieval.

Due to the variation of image content, crucial components within a CBIR pipeline are still

the feature extraction procedure and the corresponding similarity measure. Therefore,

most existing studies are also carried out around these two modules to improve image

retrieval performance. Early CBIR systems would employ hand-crafted feature extractors

using low-level features such as colour, texture features or characterizing the gradient

information to build compact feature representations for the input images. However,

due to the difficulty of bridging the gap between low-level feature information and high-

level semantic meaning, such hand-crafted approaches eventually reach their bottleneck.

Nevertheless, lately, the CBIR field was revolutionized by deep learning.

Deep learning uses huge image databases to train neural networks with multiple layers

for extracting complex features from images. The layer-wise operation within a deep

learning model would automatically extract features in different semantic levels from the

different layers. Thus, with proper structure and training, the deep learning model could

implicitly learn complex feature extraction functions without relying on low-level feature

information or domain knowledge from the algorithm designer. To be more specific, there

are several types of deep model structures used in deep learning, such as deep neural
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network (DNN), deep belief network [63] and convolutional neural network (CNN). Among

these deep models, due to attributes like parameter sharing and translation-invariance,

CNNs serve as a common backbone network structure choice for many deep learning

works [132, 144, 147, 155, 157] and exhibit outstanding performance in terms of both

accuracy and computation. In recent CBIR works [85, 138, 87, 14, 146, 80, 145], combining

with proper attention mechanism could further refine the feature output provided by the

CNN while improving the whole model’s retrieval performance. Currently, these CNN-

based works provide the newest state-of-the-art retrieval performance in major benchmark

datasets for content-based image retrieval.

However, most existing attention mechanisms [85, 138, 87, 14, 146, 80, 145] for CBIR are

query non-sensitive: they take single candidate images as input and predict the region of

interest purely based on the knowledge learned during the training, regardless of what the

query content is. This kind of attention mechanism tends to highlight the relevant objects

or regions from the image uniformly. As a result, the CBIR system could look for regions

outside the actual object of interest and is likely to fail. It happens especially when the

target object is not salient or is surrounded by distractors related to the training data.

Figure 1.3 shows some examples in which the query non-sensitive attention mechanism

from WGeM [138] fails. WGeM is a CBIR model trained on a landmark building dataset:

rSfM-120k [97, 98]. The Louvre Palace and the Louvre Pyramid building in images of

Figure 1.3 are both training data relevant and could be potential objects of interest. It

can be observed that when considering the Louvre Pyramid as the query, which is semi-

transparent and textured in Figure 1.3 (a), it is always ignored by the attention module.

At the same time, the adjacent building (the Louvre Palace) attracts the most attention,

as observed in Figure 1.3 (d).

Ideally, the attention should be query sensitive: it is supposed to be consistent with the

query content. For example, as shown in Figure 1.4, if we use the Louvre Pyramid as

the query item, the pyramid part should be highlighted, while if the Louvre Palace is the

query item, then the palace building should be highlighted. This kind of query sensitive

attention that is conditioned on the query content is called co-attention in this thesis.

For the CBIR task, the intuition of applying co-attention is that, given the query image,

we would pay more attention to regions from the target image which is similar to the query

content. For example, if the query image is a tower building, people would only care about
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(a) query image

(b) WGeM 

attention map 

for query image

(c) candidate 

image

(d) WGeM 

attention map for 

candidate image

Figure 1.3: An example in which the query non-sensitive, trainable convolution layer
based attention module from WGeM [138] fails. The examples show the query (a) and its
WGeM attention map (b) together with the search image and its corresponding WGeM
attention map. Images are taken from [138].

(b) query image

Louvre Pyramid

(c) co-attention 

conditioned on 

Louvre Pyramid  

(a) candidate 

image

(e) co-attention 

conditioned on 

Louvre Palace  

(d) query image

Louvre Palace

Figure 1.4: Examples of query sensitive co-attention maps. Image (a) shows the candidate
image. (c), (e) shows the co-attention map conditioned on query images (b) and (d)
separately.

tower-like content from the candidate image. If the candidate image contains several

potentially relevant objects, people would compare each of them to the query. If any of

them matches with the query, then only this region is supposed to be highlighted and the

candidate image should be treated as a positive match. In other words, the motivation

for using co-attention mechanisms is to generate attention maps that are dynamically

conditioned by the input query content for the candidate image, leading to better relevant

feature selection or re-weighting for CBIR. Actually, in some other computer vision tasks

[46, 83, 130], the query pattern has shown to be essential for feature extraction and image

recognition task.

Due to its query sensitivity, the co-attention mechanism could cause high extra compu-

tation costs for a CBIR system, from both aspects of memory usage at the offline stage

and time consuming at the online stage. On the one hand, as the attention score of each

candidate image local feature remains unknown before seeing the actual query image



8 CHAPTER 1. INTRODUCTION

at the online retrieval stage, all potentially useful local features of the candidate image

need to be cached. It will cause much more memory usage than the query non-sensitive

global feature methods, which would only need to cache a compact feature vector for

each candidate image. On the other hand, the co-attention map generation and the final

co-attention weighted feature vector building of each candidate image must be performed

before the similarity measure at the online stage. Consequently, considering a complex

co-attention generation procedure would cause extra time costs for the online retrieval

procedure. These extra computation costs could be unaffordable and make co-attention

impractical, especially for large-scale image retrieval. The work of this thesis focuses

on improving the performance of the CNN-base image retrieval pipeline by embedding

effective and efficient co-attention mechanisms into the feature extraction procedure.

1.1 List of contributions

The main contributions of this thesis are listed as follows:

• First, in Chapter 3, we propose a query-sensitive model, namely the Conditional

Attention Network (CANet), for localizing the object (region) of interest from the

candidate image that matches the content of the query image. A key-point based

region-level annotation generation pipeline is also provided. Thus, the whole model

is end-to-end trained in a self-supervised manner and can be combined with generic

CNN-based feature extraction methods to boost the original CBIR method’s re-

trieval performance.

• The second work in Chapter 4 proposes a more efficient clustering-based co-attention

method which greatly relieves the extra computation cost problem caused by query

sensitivity, making it practical in large-scale CBIR tasks and reaches new state-of-

the-art results with benchmark datasets.

• Based on the clustering-based feature extraction strategy from the former chapter, in

Chapter 5, we propose an effective many-to-many local match method applied with

those few but expressive clustered local features for image retrieval. Furthermore,

a trainable binary encoding layer is additionally embedded into the feature extrac-

tion pipeline, which further significantly reduces the computation cost but still can
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generate interpretable co-attention-like local match maps with slight performance

degradation.

1.2 Thesis outline

The rest of this thesis is organized as follows:

• Chapter 2 presents related works to the CBIR task, including the description of

major conventional image retrieval methods, deep convolutional neural networks and

deep learning-based CBIR methods. In addition, the achievements and drawbacks

of existing works are summarized and discussed.

• Chapter 3 represents our first research work: Conditional Attention Network (CANet).

The proposed CANet is a self-supervised co-attention network that aims to generate

query-sensitive attention maps for CNN-based image feature re-weighting, leading

to better retrieval results. The core component of CANet is the multi-scale con-

volution block, which is designed to fuse query image global feature and candidate

image local features. In addition, a SuperPoint [30] based data generation pipeline is

also proposed, which can automatically detect region-level correspondence between

existing matching image pairs from the rSfM-120k [98]. These detected matching

regions serve as the training data for CANet.

Hu, Zechao, and Adrian Gheorghe Bors. “Conditional attention for content-based

image retrieval.” British Machine Vision Conference (BMVC) 2020.

• In Chapter 4, we propose an improved non-trainable-parameter co-attention method

for large-scale image retrieval. The proposed co-attention method is based on L2-

norm feature selection and local feature clustering, which significantly relieves the

extra computation cost caused by the co-attention. Still, it can generate good

co-attention even under some challenging situations. Moreover, for quantitative re-

trieval results, the proposed co-attention method dramatically improves the original

baseline model performance and achieves new state-of-the-art results on common

benchmark datasets.

Hu, Zechao, and Adrian G. Bors. “Enabling large-scale image search with co-
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attention mechanism.” IEEE International Conference on Acoustics, Speech and

Signal Processing (ICASSP) 2023.

• Chapter 5 proposes an expressive local feature match method for CBIR. It is also

based on L2-norm feature selection and local feature clustering. Instead of gen-

erating co-attention for feature re-weighting, it explores performing local feature

matching in a many-to-many manner for image retrieval. Additional binary encod-

ing and fine-tuning techniques are embedded, significantly reducing the computation

cost at the retrieval stage with only a slight performance deterioration. Experimen-

tal results also demonstrate that with much lower computation requirements, the

local matching method could generate high-quality co-attention-like matching maps

between pairs of images.

Hu, Zechao, and Adrian G. Bors. “Expressive Local Feature Match for Image

Search.” IEEE International Conference on Pattern Recognition (ICPR) 2022.

Hu, Zechao, and Adrian G. Bors. “Few but informative local hash code matching for

image retrieval.” IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP) 2023

• Chapter 6, the conclusion, explains the connection and relation among the research

studies from the three research chapters while also providing a summary. Possible

future research directions are also discussed.



Chapter 2

Related work

In this chapter, related works to the CBIR task are reviewed. As the feature extraction

module is the central module of the image retrieval pipeline, the literature review starts

with some early conventional hand-crafted feature extraction methods. These early stage

works lay a solid foundation for image retrieval research. Some classic ideas or module

designs still play an important role in recent deep learning based CBIR works. Then,

it follows by deep learning based feature extraction methods. After that, in a separate

section, we discuss existing attention mechanisms, which can serve as an important add-

one module for feature selection and re-weighting in recent CBIR works. Finally, some

additional works about database indexing and re-ranking technology that also contributes

to CBIR system performance are introduced.

2.1 Conventional feature method

In this section, some representative conventional CBIR methods are reviewed. First, some

early hand-crafted feature extractors based on different types of low-level feature infor-

mation are introduced. These approaches aim to transform raw input pixel images into

compact feature representations for efficient image retrieval. Then, some more complex

feature aggregation methods are illustrated. These feature aggregation methods could be

treated as a separate post-processing module, taking pre-extracted local features as input

while building a more meaningful and compact representation for CBIR.

11
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2.1.1 Low-level features

As mentioned in Chapter 1, early stage conventional CBIR methods are commonly based

on hand-crafted feature extractors, using low-level feature information, such as colour,

texture, shape or gradient. In the following, some representative works corresponding to

each category of features are discussed.

Color

As one of the most extensive vision characteristics of colour images, colour information is

invariant to changes in multiple image acquisition parameters, such as scale, translation,

rotation or minor changes in camera viewpoint. It has been widely used in early image or

object search works. The colour histogram [117] is one of the earliest and most popular

colour information based image representation methods for image comparison. The colour

histogram represents an empirical probability density function of the colour distribution.

The size of each colour bin is used to represent the global feature vector to describe the

image. The work in [117] demonstrates the effective role that colour histogram based

image representation can play in the object identifying task. It also proposes histogram

interaction for similarity measure and histogram back-projection for target object local-

ization, making colour histogram based image indexing more practical and interpretable

for large-scale image search. However, simple colour histograms can only provide very

limited characteristics of the input image. It is likely to fail when two images have similar

colour distribution but different content. To improve the colour histogram representation,

the colour coherence vector (CCV) [91] embeds the spatial coherence information into the

colour histogram feature vector by partitioning each colour bin into coherent and inco-

herent. The distance calculation is conducted only between bins with the same coherence

status. The colour correlograms [48] further improve the colour histogram representation

by considering spatial co-relation (distance) changes between colour pairs when build-

ing the image representation. Apart from these global histogram based methods, there

are some other forms of colour representation, such as colour moments [49] and colour

co-occurrence matrix [95]. However, despite the success of the application of colour in-

formation for image retrieval, purely colour-based image representation still suffers from

limited spatial information and lack of perceptual similarities [3].
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Texture

Texture features could be defined by overall image information representation considering

colour, shape, image structure, randomness, granularity, linearity, roughness, and homo-

geneity [3]. Since texture characteristics are also presented in most real-world images,

many texture-based feature extraction methods have been proposed for compact image

representation building. The Gabor wavelet features [78] could be one of the earliest works

that utilize texture as an image feature for image retrieval. The Gabor wavelet features

are extracted by a set of Gabor filters with different orientation settings. Each Gabor filter

could be treated as an analyzer or feature extractor for specific image content patterns.

The final compact global feature vector is constructed by concatenating feature compo-

nents from all Gabor filters’ output. Apart from Gabor features, there are also many other

texture-based feature extraction methods or algorithms, such as edge histogram descrip-

tor (EHD) [90], Discrete Wavelet Transform [2]. In general, texture feature extraction

methods tend to capture specific patterns from the input image. Such methods describe

the surface properties of each object as well as its relationship to surrounding regions.

However, textures may suffer from noise sensitivity and the computational complexity

required for full information representation [3].

Shape

Different from the previously mentioned elementary feature information: colour and tex-

ture, shape information is considered to carry strong semantic information [134, 3], as

people sometimes can recognize the target object solely based on the contour shape of the

object. However, a single shape-based feature suffers from variations in the scale, rotation

or even some tiny differences in the object contour [3]. Accordingly, in the content-based

image retrieval task, the shape feature normally serves as a complementary to colour and

texture feature information1. For instance, in [134], a CBIR pipeline, which combines

colour, texture and shape feature information, is proposed. The shape information is

described by Pseudo-Zernike moments. The similarity scores with colour, texture and

shape feature vectors are weighted and summed to get the final match result.

1To distinguish with shape-based image retrieval task, we do not consider shape retrieval methods
where the query input is a contour.
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Gradient

Gradient information here refers to the magnitude and orientation of texture, edges

or other features with respect to the neighbourhood. Scale-invariant feature transform

(SIFT) [77] could be one of the most popular gradient-based image local feature extrac-

tors.

The pipeline of SIFT algorithm consists of 4 main steps:

Step 1: it finds potential interest points by using a difference-of-Gaussian [77] function,

which is invariant to image scaling.

Step 2: key-points, derived from those potential interest points of step 1, are localized

to sub-pixel accuracy and the unstable ones will be removed.

Step 3: around each key-point, the gradient of the neighbourhood (orientation and mag-

nitude) is calculated and each area is divided into 4 or 8 blocks. Within each block,

all pixel’s gradient orientation is assigned to 8 directions and a gradient histogram

is built, as shown in Figure 2.1.

Step 4: local descriptor (local feature vector) is built for each key-point centred area by

concatenating each block’s gradient histogram vector.

SIFT can well capture the invariant feature information to rotation and scaling transfor-

mation and is robust to illumination change. In addition, as SIFT is based on key-point

localization and only extracts local features centred around these key-points, it is also

robust to occlusion and clutter. As one of the most successful image local feature ex-

tractors, SIFT has been applied in a variety of computer vision tasks, including image

retrieval. For instance, in [61], SIFT local features are compressed by Principal Compo-

nent Analysis (PCA) algorithm and perform well in image retrieval. One main drawback

of SIFT is that it is mathematically complicated and computationally heavy due to the

gradient calculation of each key-point. To relieve this problem, the Edge-SIFT [153] im-

proves the original SIFT method by extracting binary coded local features based on the

binary edge map of the image, making it more applicable for large-scale image retrieval

and getting higher accuracy. Moreover, instead of solely relying on the gradient infor-

mation, the coupled MultiIndex (c-MI) framework [154] proposes to fuse the local colour
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Figure 2.1: Illustration of building gradient orientation histogram from region blocks [77]

feature information into the SIFT features, improving the retrieval accuracy at half of the

computational requirements by SIFT.

Inspired by SIFT, another robust image local feature descriptor, Speeded Up Robust

Features (SURF) [9], was proposed. SURF describes the intensity content of each de-

tected key-point along with its neighbouring regions by the distribution of first-order

Haar wavelet responses instead of the simple magnitude and orientation as in SIFT. In

addition, SURF represents the whole image with only 64 dimension feature vectors. This

approach speeds up the feature extraction and matching procedure.

2.1.2 Feature aggregation

Apart from methods like those mentioned above that focus on extracting and encoding

low-level feature information from raw input images into compact feature vectors, some

other works turn to feature aggregation: how to more effectively utilize extracted feature

vectors to build more comprehensive image representation form as well as studying the

similarity measure to be used for retrieval. These methods normally work with a pre-

defined local feature extractor and serve as a post-processing module to generate better
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compact image representations from pre-extracted local features.

The bag of visual words (BoV) [112]2 could be one of the most successful and representa-

tive feature aggregation methods. This idea is adapted from the text-processing method

called the bag of words (BoW). In text processing, bag of words treats each document

as a set of unordered keywords and uses the frequency of each keyword to represent each

document. In the bag of visual words [112], it also uses the frequency of ”words” to

represent each image, while the “words” here means image region characteristic features

or the local image descriptor. The bag of visual word pipeline is illustrated in Figure 2.2.

At the training stage, as shown in the top part of Figure 2.2, with a set of sample images,

a local feature extractor (like SIFT [77]) is implemented to get local descriptors for each

image. Then, k-means clustering is applied over these local descriptors, resulting in the

cluster centres. These cluster centres are treated as “visual words” and make up a code-

book. At the retrieval stage, each image’s local descriptors are extracted and clustered

on those visual words, building the frequency histogram of each visual word. The global

feature vector of each image is also composed of the frequency of each visual word. With

these visual words frequency-based feature vectors, cosine similarity between the query

image and each candidate image from the database is calculated to get retrieval results.

Although the idea of BoV is essentially just an extension or transfer application from

text-processing to image-processing, it influences many other methods employing local

feature aggregation.

For instance, instead of simply using the frequency of each visual word to construct the

global feature vector, the vector of locally aggregated descriptors (VLAD) [57] accumulates

and concatenates residuals between each image local descriptor and the visual word to

build the final compact image global descriptor.

The Fisher Vector [104] is also a successful feature aggregation method that can generate

compact feature vectors for image representation. Given a set of pre-extracted image local

features, the Fisher Vector transforms them into a fixed-size vector by the gradient of the

log-likelihood function with respect to a set of parameter vectors. In [92], a Gaussian

Mixture Model (GMM) is employed to aggregate the normalized gradient vectors of all

local descriptors into a uniform Fisher Vector using an average pooling scheme. In a

2The name “bag of visual word” is also referred to as “bag of feature” or just “bag of word” in some
other papers. Here to distinguish the origin of this idea in text-processing, we call this framework “bag
of visual word (BoV)” throughout the thesis.
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Figure 2.2: Illustration of bag of visual word pipeline [112]

way, the Fisher Vector can be regarded as a generalized representation of the BoV or a

probabilistic version of VLAD.

Moreover, unlike previous works that attempt to aggregate local features into one compact

global descriptor, the Aggregated Selective Match Kernel (ASMK) [121] encompasses

many-to-many matching techniques with pre-extracted local feature vectors. Similar to

the VLAD method, ASMK also first calculates the residual vector between each local

feature vector and the corresponding visual word. However, instead of concatenating

them into a compact global feature, ASMK aggregates the residual vectors corresponding

to the same visual word by summation, resulting in a set of aggregated local feature

vectors as the final representation of the original image. Then, a matching kernel is

employed with these local features to perform the many-to-many similarity evaluation

between images and get retrieval results.

2.2 Deep learning feature based methods

In this section, deep learning based feature extraction methods for CBIR are reviewed.

It starts with an introduction to the development of convolution neural network (CNN)

during the decade. Although CNNs had initially been used in other computer vision tasks,

such as classification or object detection, they are also commonly applied as backbone net-
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works, extracting feature tensors from RGB images for deep learning based CBIR. After

that, we present more feature processing methods, aiming to transform the convolution

feature tensor output by CNN into a more compact feature code for image retrieval.

2.2.1 Deep convolution neural network

The earliest multi-layer convolution neural network could be the ConvNet [68] back in

1989. ConvNet performs well for handwriting digit recognition and lays a foundation for

modern 2-dimension CNN. Later in 1998, a well-known improved version of ConvNet,

called LeNet [70, 69], was proposed. The success of LeNet advances the application of

neural networks for recognition tasks in specific image domains, such as optical characters

or fingerprints. Nevertheless, due to the limited computational power and access to the

large-scale dataset in diverse image categories, CNNs did not perform that well in natural

image recognition tasks at that development stage.

The first deep convolution neural network (DCNN) that brings milestone breakthroughs

for general natural image recognition is the AlexNet [64]. AlexNet consists of 5 convo-

lution layers followed by three fully connected layers. It is trained on ImageNet dataset

[103], which contains more than 1 million images in 1000 classes, and achieves significant

performance improvement over other conventional methods in the ImageNet Large Scale

Visual Recognition Challenge 2012 (ILSVRC2012)3. Since then, the DCNN has drawn

great research interest in a long term and several attempts have been made to improve

its performance in computer vision tasks further.

The VGG network [111] explored using deeper layers but small 3 × 3 convolution ker-

nel to compose the CNN. This design brings several advantages. First, the deeper stack

of convolution layers (with non-linear activation function, like ReLU [64], injected in

between) makes the feature extraction function that the CNN implicitly learns at the

training stage more discriminative. Second, compared with larger convolution kernel size,

stacks of small convolution kernels could lead to the same receptive field size at their

output while requiring fewer parameters. VGG gives good results on both image classifi-

cation and localization tasks, ranking second in ImageNet Large Scale Visual Recognition

3https://image-net.org/challenges/LSVRC/2012/index
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Challenge 2014 (ILSVRC2014)4 competition.

Compared with VGG, which mainly works on the depth of network structure, GoogleNet

[119], the champion of the ILSVRC2014 competition, proposes a deeper and wider CNN

structure for image feature extraction. Instead of simply using single convolution layers,

GoogleNet repeatedly utilizes the Inception module [119] towards the output layers to

build the CNN. Each Inception module consists of 4 branches, where each branch contains

convolution layers with different kernel sizes. In order to reduce the computation burden,

before each expansive large kernel convolution layer, a 1 × 1 small kernel convolution

layer is applied for dimension reduction. The design of the inception module enables each

layer to process visual information at different scales, which is more intuitive and leads to

better feature extraction. More importantly, it improves computational efficiency, making

it feasible to build deeper architecture, which is beneficial for high-level feature learning

[20] and mitigating the semantic gap [72].

Although many deep learning based computer vision works [37, 44, 36] have demonstrated

to benefit from deep CNN models, a too deep architecture also makes the training harder.

One problem is the vanishing/exploding gradient [11, 38]. Fortunately, this problem has

been largely addressed by network parameter initialization [71, 105, 43] and intermediate

layer normalization [50]. Another problem is the degradation: as reported in [42, 115, 45],

excessively increasing the depth of CNNs by simply stacking convolution layers would

result in saturated performance. To solve this problem, ResNet [45] introduces a deep

residual learning framework into the CNN pipeline. By applying a short connection within

each convolution bottleneck [45], the CNN model would learn a residual mapping instead

of the original, unreferenced mapping [45]. Compared with a traditional plain network,

the residual network is easier to be optimized and can continually benefit from deeper

convolution layers. Specifically, ResNet successfully increases the depth of CNN from 16

(VGG16 [111]) or 22 (GoogleNet [119]) to more than 100 layers (ResNet-101 and ResNet-

152) with significant improvements in the results. After that, more efforts are made to

improve CNNs when used in computer vision tasks. For instance, the Inception-ResNet

[118] employs the idea of residual connection into Inception network. The Xception [23]

proposes a depth-wise separable convolution layer to replace the original convolution op-

eration and reduce the computation cost while achieving a similar performance output.

4https://image-net.org/challenges/LSVRC/2014/
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ResNeXt [140] proposes a more modularized convolution block, which also contains mul-

tiple branches but does not require specific designs for each branch as the inception mod-

ule. DenseNet [47] extents the idea of the short connection between only specific layers

to every other layer. Despite so many derivative CNN structures, ResNet still serves as

the most commonly used backbone structure in recent deep learning based CBIR works

[98, 87, 14, 146].

Input
image Convolution neural 

network (CNN)
3D feature 

tensor

Figure 2.3: Illustration of image feature tensor extraction with CNN

Using CNN for image feature extraction helps people eliminate the reliance on domain

knowledge for specialized algorithm design with low-level features. Instead, as shown

in Figure 2.3, the hierarchical structure of CNN could automatically transform the input

image into 3D feature tensors, where each entry on the feature tensor could be treated as a

local descriptor, which contains rich local feature information and corresponds to a specific

region from the original image. How to utilize this feature tensor for image retrieval is the

central purpose of recent deep learning based CBIR research. In the following, this review

will focus on representative methods that utilize the feature extracted by the convolution

layers for the CBIR task.

2.2.2 Fully connected layer

The earliest work that utilizes the feature tensor output by convolution neural network

(CNN) for content-based image retrieval is the Neural Code model [8]. In this work,

AlextNet [64] is pre-trained on ImageNet [103] database with classification task then

fine-tuned on the Landmark dataset [8] also with classification task. After fine-tuning, a

fully connected layer is applied to map the 3D feature tensor from the last convolution
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layer to a compact global feature vector to be used for image retrieval. In addition, the

performance of the compressed Neural Code feature vector is also investigated. More

specifically, principle component analysis (PCA) is used for feature dimension reduction

leading to compressions to 256 or even 128 dimensions with almost no quality loss. In

a way, it also proves that, without compression, the original feature output by CNN

contains redundant information for image retrieval. After that, some other works try to

further improve fully connected layer based features from different aspects. For example,

the CBIR framework proposed in [59] concatenates features from multiple fully connected

layers to build the final image global descriptor. The work from [114] achieves coarse-to-

fine improvement by connecting different fully connected layers.

Different from the Neural Code model that utilizes a fully connected layer to transform the

convolution feature tensor into a one-row feature vector in real-value elements, some other

works explore using stacks of fully connected layers to approximate the real-value feature

vector into binary hash codes for efficient and faster image retrieval [66, 75, 17, 58, 21],

especially when it comes to large-scale databases. For instance, the approach from [74]

fine-tunes a pre-trained CNN with additional latent layers on the target image domain to

generate binary-like codes for coarse-level image retrieval.

2.2.3 Spatial pooling

Despite the success of fully connected layer based methods, the study from [99] demon-

strates that spatial pooling is more appropriate for object retrieval than using fully con-

nected layers. Thus, a series of spatial pooling methods are proposed to extract (or

construct) a compact global feature vector from the output of the last convolution layer,

including sum-pooling [7], max-pooling [124] and generalized mean pooling [98].

Considering an input image I, after feeding forward a fully convolutional backbone net-

work, it is mapped to a feature tensor X ∈ RH×W×D, where H, W , D represent the

height, width and number of feature channels. The most intuitive pooling strategy to

transform the 3D feature tensor X into a compact one-row feature vector could be the

sum-pooling [7] and the max-pooling [124, 99]. They are also the earliest spatial pooling

methods proposed for CBIR.
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With L = H ×W , l = 1, . . . , L indicating entries on X and xl ∈ R1×D indicates the local

feature vector from location l of X. The simple sum-pooling5 could be defined by:

Vsum =

(
1

L

L∑
l

xl

)
, (2.1)

Let X = {Xd ∈ RH×W |d = 1, 2, 3, ..., D}, Xd indicates the feature map slice at channel

d from feature tensor X, xd,l indicates the value at location l, The max-pooling could be

defined by:

Vmax = [f1,L, f2,L, ..., fd,L, ..., fD,L],with fd,L = max
l∈L

xd,l (2.2)

According to equations (2.1) and (2.2), it can be observed that the main difference between

these two pooling methods is the way how the local context or neighbouring information

is used. Sum-pooling uniformly extracts feature information from all locations of the

convolution feature tensor, while the max-pooling only focuses on locations with the

highest activation value across all channels. Although it is argued that sum-pooling

performs better than max-pooling when the image representation is PCA-whitened [7],

the work of [124] proves this is not always true in the context of object localization or

when it comes to describing region level features.

After them, a new spatial pooling method called generalized mean pooling (GeM) was

proposed, which could be defined by:

VGeM =

(
1

L

L∑
l

xl
p

) 1
p

(2.3)

Where p is a power coefficient. By setting a proper value for p, the GeM pooling leads to

the best retrieval performance compared to other spatial pooling methods.

As the similarity measure between these pooled global features is normally performed

with cosine similarity, at the training stage, the optimization of these CNN-based spatial

pooling CBIR models is also normally conducted with loss functions that optimize the

cosine similarity (or L2 distance) between labelled image pairs, such as contrastive loss

[24] or triplet loss [4]. Recent works have proposed a more comprehensive loss function

5In some places, it is also referred to as global average pooling
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for CBIR model training. For example, the listwise loss [101], ranked list loss [133] and

Smooth-AP loss [13] all propose a training framework to directly optimize the average

precision or rank order within each image batch, which is more intuitive and leads to better

retrieval accuracy. Moreover, unlike the learning procedure mentioned above that only

optimizes the metric distance between specific image samples at each training step, the

NCA-proxy loss [82] proposes to represent image class with a trainable proxy feature and

directly optimize the distance between the training sample image and each class proxy at

every training step. This proxy-based loss leads to higher retrieval accuracy and speeds up

model convergence during the training. The only drawback of this proxy-based learning

could be that it requires additional class label information for each training image.

2.2.4 Convolution feature aggregation

Unlike methods mentioned above that tend to extract the compact global feature vectors

by one single forward through the network structure, some other works treat each entry

of the feature tensor output by the final convolution layer as a dense local feature vector

and combine these convolution local features with classic feature aggregation methods.

For instance, the Bag of Local Convolutional Features (BLCF) [81] represents a method

combining CNN-based local features with the bag of words (BoV) [112]. BLCF adapts

the pipeline of the bag of visual words (as shown in Figure 2.2) to build a compact feature

vector selected from the convolution feature tensor. Basically, BLCF replaces the SIFT

local features from Figure 2.2 with local features output by pre-trained CNN. Similarly,

in [149], VLAD [57] is adapted and combined with CNN-based local features. Moreover,

NetVLAD [4] modifies VLAD as an end-to-end trainable layer at the tail of the CNN

structure. The experimental results show that the trainable VLAD outperforms the local

feature fusion methods, which are not based on deep learning.

2.2.5 Self-supervised feature learning

Apart from those works mentioned above that require annotated image data for super-

vised feature representation learning, other works try to train the whole model in a self-

supervised (unsupervised) manner. At the early stage, self-supervised feature learning
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for image retrieval is mainly based on hashing. It could either utilize some generative

mechanisms [27, 113, 158, 31] or apply with some graph-based techniques [107, 108]. The

recent work the Self-supervised Product Quantization (SPQ) network [54] adapts the self-

supervised contrastive learning framework [18, 67, 19] to learning visual representation for

content-based image retrieval. Instead of directly optimising features between annotated

image pairs, SPQ applies visual transforms on a single input image, resulting in descrip-

tors corresponding to two different “views” of the same image. Then, the cross-similarity

between the correlated deep descriptor and the product quantized descriptor is maximized

and the whole model could be optimized in an end-to-end manner.

2.3 Attention mechanism for CBIR

In the following, CBIR papers with different types of attention mechanisms are reviewed.

Generally, depending on how the attention weights are applied to the image features,

the attention mechanism could be divided into two groups: spatial attention and channel

attention.

2.3.1 Spatial attention

Spatial attention focuses on where is the important part of the current vision task. It is

usually used for weighting the extracted image features according to the location. Ac-

cording to the origination of the attention information, spatial attention could be either

guided by human perception or driven by training data.

Human perception guided attention

Spatial attention has been applied for feature selection and weighting for more than ten

years [41, 52]. Unlike later trainable neural network based attention modules that can

automatically learn the attention mechanism in an end-to-end manner from large-scale

training data, conventional methods can only obtain visual attention through a hand-

crafted attention mechanism or algorithm. Under this circumstance, one popular visual
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attention mechanism was saliency. Saliency refers to the local region highlighting or re-

weighting mechanism that matches with human perception of the input image. In a way,

it reflects the probability that each region is likely to catch human attention. Several

algorithms have been used to model human perception based saliency from images such

as the classic algorithm of Itti & Koch [53], Graph-based Visual Saliency (GBVS) [41],

ittiKoch [52], SUN [152] and FTS [1]. These saliency detection methods are normally

embedded into the feature extraction procedure for local feature selection or re-weighting,

leading to more comprehensive feature output and more reliable model performance.

For instance, based on the classic saliency method Itti & Koch [53], the global feature

extraction model: ”gist” [109] proposes a framework that efficiently generates both the

saliency map and global feature of the input image from shared low-level feature infor-

mation, including orientation, colour and intensity. The gist feature has been applied in

several image search works [65, 56, 125].

The work from [89] gives a comprehensive study of combining saliency map and low-level

features for content-based image retrieval. In this work, each image is segmented into

sub-regions, and each region feature is extracted based on colour, texture and contrast.

The saliency map is extracted with a separate saliency module. Figure 2.4 shows the

saliency map provided for a given image by various saliency extraction methods. The

saliency map is used to select saliency regions and give these regions a higher weight

when applying the similarity measure. With these region-level features, Earth Mover’s

distance [102] was utilized for similarity measure at the retrieval stage.

Figure 2.4: Saliency maps generated by different saliency methods. Image taken from
[89].
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After stepping into the age of deep learning, saliency was also applied in the CNN-enabled

feature extraction pipeline for image retrieval. For instance, the work from [80] proposes

a CBIR framework with two branches, one for feature extraction and one for saliency

extraction. The feature extraction branch is similar to the Bag of Local Convolutional

Features (BLCF) [81]. For the saliency extraction, the author tested different methods,

including some deep network based saliency extraction methods such as Saliency GAN

[88], or the conventional saliency method like GBVS [41]. The visual word assignment

map [80] and the saliency map are fused by element-wise multiplication. In other words,

the saliency map serves as a weight mask on the assignment map, and then a weighted

frequency histogram of visual word [112] is built to get the feature vector. The work

from [80] is not an end-to-end trainable deep learning model for CBIR. It just combines

a pre-trained deep learning based feature extractor and a pre-defined saliency extraction

method. In other words, the feature extraction branch and the saliency extraction branch

can not be jointly fine-tuned or optimized on the target image domain.

Another model, the Two-Stream model [145], also uses one branch for feature map ex-

traction and another for saliency information extraction. The output of the saliency map

branch and feature extraction branch are fused and fed into fully connected layers. The

output of the fully connected layer serves as a global feature vector for image retrieval.

Compared with the work from [80], the Two-stream model also utilizes pre-trained feature

extractors and saliency extractors but makes them trainable on the target image dataset.

However, as the human-perception-based saliency module is designed to model how hu-

mans would pay attention to locations over the image, regions that are likely to catch

human attention may not always be consistent with the actual region (object) of inter-

est. This is likely to happen when the target object is not salient or more eye-catching

distractors are nearby in the input image. As a result, the saliency attention module may

look toward regions outside the correct target.

Training data guided attention

Instead of imitating how humans would pay attention to the image content, another

approach to spatial attention mechanisms is driven by the training data. This kind of

attention is usually generated by a trainable network branch which is end-to-end optimised
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with the whole network model at the training stage or would directly derive its feature

output by an intermediate layer.

For example, in [39, 40], a Region Proposal Network (RPN) [100] is implemented to

pick out regions of interest, improving the max-pooling global feature vector for image

retrieval. The whole model is end-to-end trainable and gives better retrieval results than

simple global pooling. The Weighted Generalized Mean pooling (WGeM) [138] applies a

trainable spatial weighting module by adding an extra convolutional layer at the end of

a CNN backbone structure. It can effectively localise objects of interest while ignoring

redundant regions. However, the spatial weighting may fail when the target object is

not discriminating or not matching the training data [138]. The Deep Orthogonal Local

and Global (DOLG) [146] also utilises a convolution layer based spatial attention module

for local feature re-weighting from a shallower convolution layer. Then, a comprehensive

global feature extraction pipeline, in which an Orthogonal Fusion module is implemented

to complement the global feature vector with re-weighted local features, leading to the

current state-of-the-art results for CBIR.

The Second-Order Loss and Attention for image Retrieval (SOLAR) [85] explored the co-

relations between each location from the CNN feature map using the second-order spatial

information. Unlike the attention methods mentioned above that would only generate one

attention map applied on the CNN feature map, in the SOLAR pipeline, for each location,

a second-order attention map is generated to indicate its connection to all other locations.

SOLAR is trained on the Google Landmark Dataset (GLD) [87], so the model tends to

treat all landmark relevant regions as regions of interest. For the irrelevant locations that

correspond to common background noises, such as grass or sky, the second-order attention

will sparsely distribute over all landmark-like regions. Meanwhile, for a location from a

landmark, the second-order attention would highlight the most distinctive part of that

landmark.

Unlike the methods mentioned above that introduce extra trainable layers or parameters

for spatial attention generation, the architecture proposed by Tolias et al. for HOW [123]

directly uses the L2-norm of each entry in the convolution feature tensor as spatial atten-

tion for local feature selection. The chosen local features are applied with the Aggregated

Selective Match Kernel (ASMK) [121] for many-to-many local feature matching. Within

the framework of HOW, k-means clustering is also applied with local features to build
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a codebook, which is similar to the bag of visual words [112]. The HOW-MDA [137]

develops the Multiple Dynamic Attention (MDA) module for refining the local features

resulting in better retrieval results than HOW.

Compared with human-perception-based saliency attention, the spatial attention driven

by training data is specifically optimised on the target image domain during the training.

At the evaluation stage, it tends to highlight training data relevant regions (objects). Most

recent works also consider attention mechanism driven by training data [14, 146, 123].

However, as mentioned in Chapter 1, most existing attention mechanisms are query non-

sensitive. Therefore, they may still fail when similar class distractors surround the target

object, or there are multiple potential objects of interest in the input image.

2.3.2 Channel-attention

As each convolution kernel could be treated as a feature detector sensitive to specific

patterns [151], channel attention aims to find which channel of the feature tensor output

by the convolution layer contains the most critical information for the current task.

Motivated by the finding that the sparsity pattern of convolution feature channels could

contain discriminative information and those infrequently activated feature channels could

still carry important signals for image retrieval, the cross-dimensional weighting and pool-

ing (CroW) model [60] proposes a non-parametric channel-wise attention mechanism to

boosts the contribution of rarely found, but important features before the global pooling

operation. Furthermore, the fully cross-dimensional weighting pooling (FCroW) [129] fur-

ther improves CroW by incorporating multi-layer fusion and more comprehensive weight-

ing into the feature extraction pipeline.

The Multiple Saliency and Channel Sensitivity Network (MSCNet) [139] utilizes the Gram

matrix [35] for correlation analysis between feature channels. It is combined with the

sparsity-sensitive channel weights (SSW) [139, 60] to construct the channel-wise attention

module, leading to more discriminative feature extraction.

The part-based weighting aggregation (PWA) [143] considers that each convolution feature

channel implicitly contains a different semantic meaning and represents a specific part of
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the input image. Based on the variance of each feature channel output, a “probabilistic

proposals” [143] is built to emphasize those channels corresponding to discriminative

regions.

2.3.3 Co-attention

Co-attention has drawn research interest from various computer vision tasks but was

hardly considered for CBIR.

For instance, the query-guided end-to-end person search network (QEEPS) [83] proposes

three novel query-guided sub-networks: QSSE-Net, QRPN and QSimNet that would em-

bed query information into the CNN feature channel by re-weighting, using relevant region

proposal or considering the similarity score prediction, respectively.

The co-attention and co-excitation (CoAE) framework [46] utilizes the non-local operation

[132] to explore the correlated evidence revealed by the query-target pairs. The extended

feature maps are then channel-wise re-weighted by using the squeeze-and-co-excitation

(SCE) technique. The Region Proposal Network (RPN) [100] selects relevant regions

based on the extended target image feature map. RPN can predict relevant regions with

respect to the query content even when images from the query class have not been seen

during training.

The SiamMask [130] uses depth-wise cross-correlation to generate response maps of the

target image with respect to the query. Then the response map is fed into the convolution

layers for pixel-wise classification to generate binary co-attention masks.

2.4 Re-ranking

Among recent CBIR works, there are three frequently used re-ranking strategies for initial

retrieval result refinement: spatial verification [93, 106, 6], query expansion [26, 25, 122]

and diffusion [51].

Spatial verification utilizes local features to perform spatial information matching for re-
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trieval result re-ranking. It is normally achieved with the help of the RANSAC algorithm

[33]. The DEep Local Feature (DELF) [87] could be a representative two-stage local fea-

ture model that utilizes local features to perform spatial verification for initial retrieval

results re-ranking. It implements a score function with two processing layers on top of

the final convolution layer for relevant local feature selection. During the first initial re-

trieval stage, the compact global feature vector is built by a weighted sum of selected

local features. During the re-ranking stage, after dimension reduction, geometry verifi-

cation is performed with these local features to get the final retrieval result. Based on

DELF, Detect-to-Retrieve (D2R) [120] proposes the Regional Aggregated Selective Match

Kernel (R-ASMK), which unifies the region of interest detection, regional local feature

aggregation and the similarity measure into one pipeline. Deep Local and Global features

(DELG) model [14], also based on DELF, unifies the training procedures of global and

local features into a single pipeline and further improves the performance of this two-stage

image retrieval framework.

Query expansion (QE) was originally proposed as a standard method for performance

improvement of text processing and retrieval. The core idea of QE consists of reusing high-

ranked initially retrieved items to construct a new query, providing more comprehensive

query information and getting better retrieval results in the second round of search. In

[26], the standard average query expansion (AQE) was first introduced to the field of

CBIR and it was widely applied in compact global feature based CBIR works [7, 60, 124].

The α-weighted query expansion (αQE) [98] improves the AQE by introducing a cosine

similarity measure to each top-ranked retrieved image, leading to a more robust query

expansion strategy for the CBIR task. As query expansion is sensitive to the initial

retrieval accuracy, some works propose to use spatial verification, reducing the negative

impact caused by the false positive match among top-ranked retrieval results [25]. The

Hamming Query Expansion (HQE) [122] proposes a simpler but still effective method

for reliable image selection before performing query expansion, leading to better retrieval

results even without spatial verification.

Diffusion [51] could be treated as an extension of query expansion, as QE only acts

on top-n retrieval results for the new query item building, while diffusion performs an

online exploration of the nearest neighbour, with respect to the query, by constructing a

neighbor graph of the entire dataset. Like query expansion, diffusion is also sensitive to the
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initial retrieval results. The deep spatial matching (DSM) [110] proposes a deep learning

feature based spatial matching framework to refine the initial retrieval results before

performing diffusion. This approach combines the advantage of both local and global

features, achieving a larger performance improvement margin than directly employing

diffusion with the initial retrieved images.

2.5 Benchmark datasets

Commonly used benchmark datasets for CBIR model performance evaluation are listed

below:

INSTRE [131] is an instance-level retrieval dataset collected from multiple source and

has been utilized in many computer vision tasks, including content-based image retrieval.

It is composed by two subsets: INSTRE-S and INSTRE-M. The former one contains

23,070 images in 200 categories and each image only contains one object of interest. The

latter one consists of 5,473 images and each image contains two instances from 100 object

categories.

University of Kentucky Benchmark Dataset (UKB) [86] contains 10,200 images in

2,550 groups. Each group contains 4 images of the same object under different acquisition

conditions. By default, the retrieval accuracy on UKB dataset is reported with the average

number of same-object images within the top 4 results.

INRIA Holidays Dataset (Holiday) [55] contains 1,491 images collected from per-

sonal holiday photo albums. Some images are taken on purpose with different acqusition

condition, such as rotation, illumination change, different view point, etc. All images are

divided into 500 groups, with Each group corresponds to a different scene or object.

Oxford Building Dataset (Oxford5k) [93]: Oxford5k dataset contains 5062 images

which are collected from Flickr with 17 tags, such as Balliol Oxford, Christ Church Oxford,

Hertford Oxford, Jesus Oxford, Keble Oxford, etc. All images are manually annotated

and it contains retrieval ground-truth images in 11 categories. For each landmark cate-

gory, there are 5 query images, so it gives 55 images in all as queries for image retrieval

evaluation.



32 CHAPTER 2. RELATED WORK

Pairs Building Dataset (Paris6k) [94]: Paris6k dataset consists of 6412 images and

is also collected from Flickr by searching for 12 different particular Paris landmarks, such

as La Defense Paris, Eiffel Tower Paris, Hotel des Invalides Paris, Louvre Paris. And it

also gives 55 queries with which the image retrieval model can be evaluated.

By considering an additional set of 100K distractor images collected from Flickr, Oxford5k

and Paris6k can be expanded to Oxford105k and Paris106k, providing a more challenging

image retrieval scenario for CBIR model performance evaluation.

Revisited Oxford (ROxf) and Paris (RPar) Datasets [96]: ROxf/RPar are ex-

panded versions of Oxford [93] and Paris [94] datasets after removing the images with

incorrect annotation and adding several new query images. ROxf contains 4993 images

while RPar has 6322 images. Both datasets contain 70 query images. The ground-truth

matching images to each query image are divided into 3 groups, Easy, Medium, Hard,

according to the level of difficulty in assessing the similarity of their image representation

with the corresponding query. In addition, R1M [96] is a new distractor set containing 1

million unbiased high-resolution (1024× 768 pixels) images for ROxf and RPar.

Dataset Method Result

INSTRE BLCF-SalGAN [80] 69.8

UKBench R-MAC [40] 3.90

Holiday R-MAC [40] 94.0

Oxford-5k WGeM [138] 88.8

Oxford-105k WGeM [138] 85.6

Paris-6k R-MAC [40] 93.6

Paris-106k DELF [87] 81.7

ROxf-5k (hard) DOLG [146] 64.9

ROxf-5k+1M (hard) DOLG [146] 51.6

RPar-6k (hard) DOLG [146] 81.7

RPar-6k+1M (hard) DOLG [146] 62.9

Table 2.1: Quantitative retrieval results on common benchmark datasets. All results are
reported with mAP [93] except on the UKB dataset, which is reported with the average
number of same-object images within the top 4 results. The “Method” shows the name
of the model.

Table 2.1 presents the current state-of-the-art retrieval results over these common bench-

mark datasets. For the ROxf/RPar datasets, we focus on the most challenging hard set

of them.
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2.6 Summary

Generally speaking, CNN-enabled CBIR could be divided into two categories according to

the feature representation level: global feature and local feature. Global feature methods

tend to extract a compact feature vector for each image by single forward processing

passing through the network. The feature tensor provided by the final convolution layer

is used by a fully connected layer or by a global spatial pooling layer. Then, a similarity

measure is directly performed with these global feature vectors corresponding to a query

and a search image, usually by calculating the L2 distance between them after being

normalized.

Local feature methods treat each entry of the feature tensor output by the last convolution

layer as a feature representation of a specific region from the input image. Depending on

the usage of local features, they could be further categorized into different approaches.

The first category implements a separate aggregation method to encode local features

into a compact feature vector. On the contrary, instead of aggregating local features

into a compact code, the second category keeps several local features from each image

and employs a similarity measure in a many-to-many manner. The final category of

local feature methods uses the spatial information of each local feature from the original

convolution feature tensor to perform spatial verification only for the initial retrieval

results refinement at the re-ranking stage.

Most recent CBIR methods, such as DELF [87], DELG [14], DOLG [146], or HOW [123]

are based on the spatial attention driven by training data. However, all these existing

attention mechanisms are all query non-sensitive, they just predict the likely region of

interest based on the knowledge learned during the training regardless of the actual query

information. As discussed in Chapter 1, these query non-sensitive attention tend to

fail when the object is not salient or surrounded by similar class distractors. On the

contrary, introducing the query sensitive co-attention mechanism into the CNN-enabled

CBIR pipeline represents a promising direction for research studies aiming to achieve

further performance improvement in CBIR.
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Chapter 3

Conditional attention network

3.1 Introduction

Existing spatial attention mechanisms for content-based image retrieval are all query non-

sensitive: they only consider a single candidate image as input for spatial attention map

generation. This kind of attention works great for filtering out training data irrelevant

clutters or background noises. Moreover, once the training procedure is done and the

module is fixed, the resulting attention map is also fixed for each candidate image. How-

ever, in real-life image retrieval situations, one candidate image could contain multiple

training data relevant items or potential regions of interest. The actual region of interest

will subjectively vary with the query content or the search purpose of the CBIR system

user. When the target object is not salient or surrounded by distractors relevant to the

training data, these query non-sensitive spatial attention modules are very likely to focus

on incorrect regions and ignore the object of interest, as shown in Figure 1.3. To solve

this problem, only the query sensitive attention: co-attention could be a good solution.

Query sensitive means the attention module’s output changes with the query content. In

other words, it considers the content of both the query image and candidate image for

spatial attention generation. The resulting co-attention map is supposed to be consistent

with the input query content.

In this chapter, a co-attention model, namely the Conditional Attention Network (CANet),

is proposed for localizing the object (region) of interest from the candidate image that

35



36 CHAPTER 3. CONDITIONAL ATTENTION NETWORK

matches the content of the query image. Unlike previous query non-sensitive attention

modules, which rely only on the single candidate image’s feature tensor to generate atten-

tion maps, the CANet considers both candidate and query images as input. Their features

are fused and transformed into a focused spatial attention map by stacks of convolution

layers. The whole model is end-to-end trainable and can be combined with generic CNN-

based feature extraction methods for feature re-weighting, boosting the original method’s

retrieval performance.

An essential training requirement of a deep learning model is access to a large enough

annotated dataset. However, most image retrieval training datasets would only provide

matching image pairs or different classes of images without ground-truth matching re-

gions or target objects’ locations. It is impractical to manually mark matching regions

within large datasets. To obtain accurate region-level match labels for training the pro-

posed conditional attention model, the pre-trained key-point detector SuperPoint [30] is

considered to find correspondences of existing matching image pairs. Then a simple but

effective trick is proposed to transform matching key-points into matching regions. The

SuperPoint model is a fully self-supervised model. Accordingly, the training of the pro-

posed conditional attention network does not require any extra ground-truth region-level

labels.

The rest of this chapter contains the following sections. The design of the proposed

CANet structure is presented in Section 3.2 while the pipeline of region-level training

data generation is outlined in Section 3.3. Section 3.4 details how CANet can be inte-

grated into a deep learning CBIR pipeline. Section 3.5 includes experiment setting detail,

image retrieval results and comparison to existing CBIR works. Ablation studies and

more discussion are provided in Section 3.6. The conclusions of this chapter is drawn in

Section 3.7.

3.2 Conditional attention network structure

In the following, the characteristics of the Conditional Attention Network (CANet) archi-

tecture are described.
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Network architecture. The proposed Conditional Attention Network (CANet) is de-

signed to define Regions Of Interest (ROI) in candidate images under the condition of the

content in the query image. Its architecture is shown in Figure 3.1. The co-attention map

generation pipeline consists of three processing stages: visual encoding, feature fusion and

attention map generation.

Visual feature encoding. A convolution neural network serves as the backbone network

to encode the feature tensor from both query and candidate images. Given the candidate

image Ic, the output of the backbone network is a feature tensor X ∈ RH×W×D, where H,

W , D represent the height, width and dimension (channel count) of the feature tensor.

The query image Iq is also fed into the backbone network followed by Global Average

Pooling (GAP), yielding the query global feature vectorV ∈ R1×D. The goal is to compare

the query feature vector V with the information from each location of the candidate

feature tensor X.

Feature fusion. As shown in Figure 3.1 (a), the proposed attention model fuses the

3D feature tensor X of a candidate image Ic with the global query feature vector V

representing Iq. First, the feature tensor X is location-wise L2 normalized. The query

feature vector V is also L2 normalized then expanded to Vdup ∈ RH×W×D by simple

duplication. The feature tensors X and Vdup are concatenated and then fed into a fusion

module for feature fusion and the final co-attention map generation.

The pipeline of the fusion module is shown in Figure. 3.1 (b). Within the fusion module,

the concatenated feature tensor is processed by several multi-scale convolution blocks

followed by convolution layers for further channel reduction. The final convolution layer

with convolution kernel size of 1 × 1 serves as the output head to transform multiple

channel feature tensors into a single channel attention map. The major component of this

fusion module is the multi-scale convolution block. The details of multi-scale convolution

block are shown in Figure 3.1 (c). Given that the target object size can vary, due to

changes in the image acquisition conditions, with different candidate images, each multi-

scale convolution block consists of several convolution layers with different kernel sizes:

{1×1, 3×3, 5×5, 7×7}. Each convolution layer takes a feature tensor with Din channel

as input, and outputs a feature tensor with Dout/4 channels. All convolution layers’

outputs are then concatenated, resulting in the final output feature tensor with Dout

channels. Intuitively speaking, the fusion module ensures the interaction and evaluation
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Figure 3.1: The architecture of the proposed Conditional Attention Network (CANet).
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of the consistency between the candidate image’s local feature from each location and the

global query feature in a trainable manner. In addition, the multiple kernel size design of

the multi-scale block enables each location of the resulting feature tensor with different

receptive field sizes, being aware of more context information.

Co-attention generation. After the fusion step, a Sigmoid activation function is em-

ployed to normalize each location value within range of [0, 1] and generate the final one-

channel co-attention map A ∈ RH×W×1 for the candidate image Ic under the condition

of the query image content from Iq. In a way, the generated co-attention map models the

likelihood that each location from Ic would match with Iq.

3.3 Data generation and training

In this section, the pipeline of training data generation and the training procedure are

illustrated.

3.3.1 Defining image correspondence features

In the following, it is assumed that pairs or sequences of corresponding images have been

collected, which represent sections of the same scene but are acquired at different times,

under different conditions, and characterized by different image acquisition parameters in

general. These paired images, displaying parts of the same scene, are used to find the

matching regions and corresponding ground-truth attention maps, which serve as training

data for the proposed CANet.

First, the SuperPoint model [30] is used as an intermediate feature descriptor to extract

local image descriptors and find key-point correspondences among matching image pairs,

as shown in Figure 3.2 (a). In order to obtain more robust key-points, for each match-

ing image pair, both query and positively matching images are separately resized while

keeping their original image aspect ratio. The key-point detection and matching are

performed with multiple resolutions for each image. In practice, 4 different resolutions

with {128, 256, 362, 512} for the long side are considered. Figure 3.2 (b) shows how the
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(a) Visualization of SuperPoint key-point detection with single image resolution (image long
side:{362}) as input.
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(b) Visualization of SuperPoint key-point detection with multiple image resolutions (image long
side:{128, 256, 362, 512}) as input.

Figure 3.2: Visualization of SuperPoint key-point detection with different image resolu-
tions.

matching key-point pairs detected by SuperPoint with different input image resolution

works. All detected key-point coordinates are scaled and projected back into the original

image for visualization. From the examples in Figure 3.2, it can be observed that when

considering multiple input image resolutions, the resulting key-points are more dense and

comprehensive. As a result, even matches from some tiny detail regions can be accurately

detected.

Then, for each image, the key-point map M that represents the locations of the non-

parametric distributions defined by the density of matching key-points is created. The

key-point map is much smaller than the original image while keeping the original image’s
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ratio. As shown in Figure 3.3, projecting key-points detected by the SuperPoint model

from the original image to a smaller key-point map M could be treated as splitting the

original image with small grids and evaluating the density of the key-points within each

grid location, resulting in a localized clustering. In addition, among the key-point regions,

like the main tower structure in Figure 3.3 that contain dense matching key-points, after

projection, neighbouring key-points would be connected with each other into larger and

more reliable structures on the key-point map.

key-points
key-points 

with grid
Key-point map

Figure 3.3: Merging and concatenating matching key-point into local regions on a grid
leading to well defined structured regions.

As shown in Figure 3.4, matching key-points of the query image and the corresponding

positive image are separately projected to the key-point map MQ of size HMQ × WMQ

and MP of size HMP ×WMP while keeping the original aspect ratio of the image. With

key-point maps, two criteria are considered for defining the matching regions: 1. The

region is defined within the top-left and bottom-right key-points; 2. The region is defined

by connected key-point regions from the key-point map, which is larger than a small

neighbourhood such as that of 3 × 3 pixels. All locations within matching regions are

labelled by 1 or 0 otherwise, resulting in the final binary ground-truth attention map.

Based on the SuperPoint outputs, each image pair can generate several estimates of

matching regions Â. In other words, one positively paired image can generate several sets

of (Iq, Ic, Â), which can be used as training data.

Choosing the right size for the key-point map is important. If the key-point map is too

small, the precision of the generated matching region will be very low. If the key-point

map size is too large, then the key-points will be too sparse to localize and represent

the appropriate regions in the given image pair. According to the experimental tests,

setting the long side of key-point map around 20 pixels can generate accurate matching
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Figure 3.4: The pipeline of training data generation. Selected matching regions are
projected back into the original images in order to define the regions of interest. The
long side of all key-point maps and the final generated ground-truth attention map is
considered as 22 in the experiments while preserving the original image ratio.

region pairs and corresponding ground-truth co-attention maps for later CANet training.

Examples of generated training data are shown in Figure 3.5. Some generated matching

regions do not even correspond to an intact building or object, but they are just some

image regions characterized by certain properties. However, according to the experimental

results, even when CANet is trained with such matching local patches, it can generate

good co-attention maps.

3.3.2 Learning image correspondences

A good example of image dataset containing a sizeable number of annotated matching

image pairs is the image tuple dataset rSfM-120k [97, 98], which contains 91,642 images

divided into 551 clusters, while 181,697 matching image pairs are annotated. Each pair

of matching images can be used for generating matching key-points and correspondence

regions as described in Section 3.3.1. Each annotated image pair could generate 1 to 4

sets of local matching regions along with corresponding ground-truth co-attention maps.

Meanwhile, those matching image pairs that are not able to generate any local matching

regions will not be used for training.

During the training, each input is a data tuple consisting of 1 query image, 1 positive

image and 5 negative images, which are randomly selected from the unmatching im-

ages. Within each tuple, given the positive image pair, several pairs of query regions
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Figure 3.5: Examples of generated training data.
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and corresponding ground-truth attention maps Iq and Â, are generated, as described

in Section 3.3.1. These query regions and ground-truth attention maps are then used

for training. When considering each negative image pair, it is enforced that Iq, defined

through positive matches, would not match any region within the negative image. In this

case, Âneg ≡ 0.

Let A denote the generated co-attention map of the candidate image Ic conditioned on

the content from the query Iq. Â denotes the ground-truth co-attention map and has

been interpolated to be of the same size as A. The loss function for training the CANet

is represented by the mean square error (MSE) between the two maps:

MSE(A, Â) =
1

L

∑
l∈L

∥Al − Âl∥2, (3.1)

where L represents all locations on the generated co-attention map and Al is the attention

map value at location l ∈ L. This loss function would enable the CANet to learn the

matching regions from image pairs and then to use such matching knowledge for co-

attention generation and feature re-weighting at the retrieval stage, as described in the

next section. We consider mean square error loss instead of the cross entropy loss because,

according to our tests, applying MSE loss would make the final generated co-attention map

more accurate, with fewer uncertainties and better contrast around the target objects.

3.4 Embedding co-attention into the CBIR pipeline

The proposed Conditional Attention Network (CANet), described in Section 3.3, rep-

resents an independent co-attention generator module that can be embedded into the

existing deep learning CBIR feature extraction pipeline. As spatial pooling has been suc-

cessfully used for feature extraction from images in general applications and the General-

ized Mean pooling (GeM) [98] provides state-of-the-art performance for image retrieval,

the GeM model from [98] is considered as the baseline model. In the following, the details

of the baseline GeM model are introduced, and how to embed the co-attention feature

map generated by CANet into the GeM feature extraction pipeline is explained.

Baseline GeM model. The original GeM feature extraction pipeline, proposed in [98],
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consists of 3 parts: a fully convolutional backbone network for feature tensor extraction,

a generalized mean pooling layer to transform the feature tensor into a compact feature

vector and a whitening layer for feature normalization. The off-shelf pre-trained GeM

model from [98] is used as the baseline CBIR model to more clearly show the relevance

of the proposed CANet on the retrieval performance. It needs to point out that there are

two different versions of the GeM pooling implementation provided by the authors. In the

original GeM paper [98], the author states that the whitening module works better when

it is learned and applied as a post-processing module after the backbone network has been

trained. However, according to the results and description from the author’s latest code

release page6, implementing the feature whitening by a fully connected layer and training

it jointly with the backbone network could lead to better retrieval results. In this work,

both versions of the GeM with different backbone structures are tested. Retrieval results

when using GeM with and without CANet are provided in Section 3.5.

Combining the co-attention map with GeM pooling. At the retrieval stage, as-

suming that the global feature vector Vq of the query image Iq is extracted by the original

GeM model. The feature tensor Xc ∈ RHc×Wc×D of the candidate image Ic is extracted by

the GeM backbone network, where Hc,Wc, D represent the height, width and dimension

(channel count) of the feature tensor, respectively. The co-attention map of Ic, under the

condition of the query Iq generated by CANet is denoted by A and has been interpolated

to the size of Hc × Wc × 1. The feature tensor Xc is location-wise re-weighted by the

co-attention map A followed by GeM pooling to get the final co-attention weighted GeM

feature vector Vc for the candidate image Ic, as illustrated in Figure 3.6. The final simi-

larity measure between Iq and Ic is performed by using the cosine similarity between Vq

and Vc.

In practice, the actual output attention score is not likely to cover the whole range of

the Sigmoid function output of (0, 1). Instead, it would be concentrated within a specific

localized range [a, b], with a > 0 and b < 1, leading to an insignificant difference between

attention scores of the foreground region of interest and that of the background noises.

Accordingly, before re-weighting the candidate image feature tensor Xc, values of the

co-attention map output by the Sigmoid function are stretched and re-normalized by the

6https://github.com/filipradenovic/cnnimageretrieval-pytorch
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Figure 3.6: Embedding the co-attention map into GeM feature extraction.

min-max normalization:

A′ =
A− Amin

Amax − Amin

, (3.2)

where A represents the original co-attention map output by the Sigmoid function, Amin =

min(A) and Amax = max(A) are the minimum and maximum values in A.

Multi-scale scheme for co-attention generation. The multi-scale feature extraction

scheme has been widely applied in image feature extraction for CBIR. In the original GeM

pipeline, global feature vectors from different input images, of various scales, are fused by

average pooling, then L2 normalized.

At the retrieval stage, in order to obtain more accurate co-attention maps, a multi-scale

scheme is also applied for the co-attention map generation before combining it with GeM

features [98]. As shown in Figure 3.7, the query image Iq is fed into the CANet, together

with the candidate image Ic represented at several different scales, while preserving the

initial aspect ratio. All attention maps generated at different scales are resized to the

same resolution and then weighted summed before the min-max normalization. The

weights are evaluated by applying max pooling and the Softmax activation function on

the co-attention maps from different candidate image scales.

Re-ranking with query expansion. Query expansion has been widely used for im-

proving image retrieval results [7, 124, 60]. In the CANet enabled CBIR pipeline, the

α-weighted query expansion (αQE) [98] is applied for retrieval result re-ranking. αQE

acts on the feature vectors of top-ranked nQE images from the initial retrieval result by

applying weighting averaging and re-normalization. The weight of the i-th ranked image
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Figure 3.7: Attention map generation and refinement with the multi-scale scheme during
the retrieval (testing) stage.

descriptor is defined by (VT
q Vi)

α where Vq and Vi are the feature vectors corresponding

to the query image and the i-th ranked retrieval image. The aggregated feature vec-

tor serves as a query descriptor for a second-round retrieval test and produces the final

retrieval result.

3.5 Experiments

3.5.1 Evaluation datasets

For retrieval performance evaluation, two benchmark datasets: Oxford5k [93] and Paris6k

[94] (Oxf/Par) are considered. Oxford5k contains 5062 images which are collected from

Flickr with 17 tags of buildings from Oxford. All images are manually annotated. Paris6k,

consisting of 6412 images, is also collected from Flickr by searching for 12 Paris landmark

tags. Both of them provide 55 images as queries for the image retrieval evaluation.

Oxford105k and Paris106k are expanded versions of the Oxford5k and Paris6k by adding

100K distractor images from Flickr. In addition, ROxford5k and RParis6k (ROxf/RPar)

are revisited versions of Oxford5k and Paris6k. Each contains 15 extra new challenging

queries and re-arrange the potential positive images of each query into three groups:Easy,

Medium, Hard, corresponding to different difficulty levels.
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All these evaluation datasets provide bounding boxes for each query image, outlining

the object of interest. Following the standard evaluation protocol, each query image is

cropped with its bounding box. The cropped query image serves as input for both the

GeM model and the proposed CANet. During the evaluation, all input images are limited

to a maximum size of 1024× 1024 pixels. The mean average precision (mAP) [93] is used

as a performance measure for the results on all datasets.

3.5.2 Implementation details

The backbone network of the proposed CANet, considered as VGG16 [111], is pre-trained

on ImageNet [103] for classification as up-stream task training. During the training stage,

all input images are resized to a maximum of 362× 362 pixels while keeping the original

image ratio. After processing by VGG16 and being down-sampled four times by four

max-pooling layers, where each max-pooling layer would reduce the size of its input by

half, the output co-attention map has a maximum size of 22×22 (362
16

≈ 22). The ground-

truth attention map’s size is supposed to equal that of the generated attention map for

the mean square error calculation. By taking all these aspects into consideration, the

long side of both key-point maps MQ and MP is set to be 22 while keeping the original

image’s aspect ratio for training data generation. The CANet is trained with the Adam

optimizer [62], using an initial learning rate l0 = 10−4, momentum of 0.9 and weight

decay of 5 × 10−4. A cosine learning rate decay strategy is applied, and the training is

performed for 100 epochs. For each epoch, 2000 image tuples are randomly selected from

the rSfM-120k [98] dataset with a batch size of 5 tuples.

At the evaluation stage, 3 scales: {1,
√
2, 1√

2
} are considered for both GeM feature ex-

traction and co-attention generation. For the re-ranking with query expansion, nQE =

10 for Oxford, nQE = 50 for Paris dataset and α = 3, as explained in Section 3.4.

3.5.3 Co-attention generation results

Figure 3.8 shows some examples of generated attention maps when considering various

pairs of candidate and query images. Examples 1-4 show that the proposed co-attention

model can accurately locate the target object under various challenging situations, such
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as when the images are characterized by different acquisition parameters, changes in

the light condition or when the object of interest is small and far away. Examples 5

and 6 show the generated attention map for the same candidate image but consider

different query images. Unlike the wGeM failure example, shown in Figure 1.3, CANet

can correctly highlight the target query object based on the input query image, even

when there are two potential objects of interest in the same image. Example 7 shows

how the proposed conditional attention model works with unseen image content during

the training. Although the network was trained with landmark building images from

rSfM-120k dataset [97, 98], which displays architecture buildings, it is also sensitive to

human face content and highlights corresponding regions. However, it can not distinguish

different human faces but just uniformly highlight all potential match regions. Example

8 shows a case where the CANet fails. Because the global pooling is used to extract the

feature from the query image, the retrieval could fail if it contains too much distraction

content. As shown in example 9, if the target pyramid is manually cropped out and all

background is masked by 0, the quality of the generated attention map is improved.

3.5.4 Image retrieval results

Impact of CANet. The retrieval results when combining off-shelf pre-trained GeM

models with the co-attention generated by CANet are presented in Table 3.1. In total,

four off-the-shelf pre-trained GeM models are provided in [98]. They have either different

ways of feature whitening or different backbone structures. The re-ranking with query

expansion using α-weighted query expansion (αQE) [98] is also considered. According to

the results from Table 3.1, no matter which one of the pre-trained GeMmodels, embedding

co-attention generated by the proposed CANet into the GeM pipeline can stably improve

the original model’s performance.

Comparison with other works. The retrieval results comparison of the proposed

method (GeM+CANet) and other existing works on Oxford5k, Paris6k, Oxford105k and

Paris106k datasets are shown in Table 3.2. When VGG16 [111] is used as the backbone

network of GeM, GeM+CANet outperforms other methods shown in the table. When

ResNet101 [45] is implemented as the backbone network of GeM and combined with αQE

re-ranking with query expansion [98], GeM+CANet+αQE provides new state-of-the-art
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Figure 3.8: Attention map results for the proposed conditional attention model. Can-
didate images and the query images are displayed in the first and second rows, respec-
tively. Third and fourth rows represent the generated attention maps and corresponding
heatmaps, after min-max normalization and up-sampling to the original image size.
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Method Backbone Whiten Oxford5k Oxford105k Paris6k Paris106k

(A) Off-shelf GeM without re-ranking

GeM [98]

VGG16 Lw 87.9 83.3 87.7 81.3

Res101 Lw 87.8 84.6 92.7 86.9

Res50 Fw 86.9 83.8 90.8 85.8

Res101 Fw 88.4 85.5 92.3 87.0

(B) Off-shelf GeM + CANet without re-ranking

GeM+CANet

VGG16 Lw 89.1 85.8 90.7 85.9

Res101 Lw 89.6 86.7 93.2 88.5

Res50 Fw 89.6 87.4 93.3 88.6

Res101 Fw 91.0 88.6 94.7 90.6

(C) Off-shelf GeM with QE re-ranking

GeM+αQE [98]

VGG16 Lw 91.9 89.6 91.9 87.6

Res101 Lw 91.0 89.5 95.5 91.9

Res50 Fw 90.8 89.9 92.8 89.2

Res101 Fw 92.0 91.0 94.2 92.0

(C) Off-shelf GeM + CANet with QE re-ranking

GeM+CANet+αQE

VGG16 Lw 93.0 90.5 93.0 88.6

Res101 Lw 92.4 89.6 96.1 92.1

Res50 Fw 93.4 91.8 94.3 91.0

Res101 Fw 93.6 92.0 96.5 93.5

Table 3.1: Image retrieval performance using the mean average precision (mAP) when
considering different off-shelf pre-trained GeMmodels. The column“Whiten” indicates the
way of feature whitening implementation. “Lw” means the feature whitening is applied
as a learned post-processing module while “Fw” means the feature whitening is applied
as an end-to-end fully trained connected layer.

results on these four datasets.

The retrieval results comparison of our method GeM+CANet and other works on ROxf/RPar

datasets are shown in Table 3.3. It can be observed that even on the hard set of ROxf/RPar

dataset, the proposed method GeM+CANet still gives the best retrieval results. The

only exception is on the hard set of ROxf/RPar when compared to DELF-HQE+SP with

query expansion. However, DELF-HQE+SP utilizes the local features for second-round

re-ranking. It is trained on the Google Landmark dataset [87], which is a much larger

dataset than the rSfM-120k dataset used for training the CANet and the baseline GeM

model. Even under these circumstances, the proposed method still shows comparable

results and outperforms the other methods when considering mAP in the top 10 results.



52 CHAPTER 3. CONDITIONAL ATTENTION NETWORK

Method Backbone Oxford5k Oxford105k Paris6k Paris106k

(A) No re-ranking

BoW-CNN [81] VGG16 73.9 59.3 82.0 64.8

NetVLAD [4] VGG16 71.6 – 79.7 –

SPoC [7] VGG16 68.1 61.1 78.2 68.4

CroW [60] VGG16 70.8 65.3 79.7 72.2

R-MAC [40] VGG16 83.1 78.6 87.1 79.7

GeM [98] VGG16 87.9 83.3 87.7 81.3

GeM+CANet* VGG16 89.1 85.8 90.7 85.9

R-MAC [40] Res101 86.1 82.8 94.5 90.6

WGeM [138] Res101 88.8 85.6 92.5 –

GeM [98] Res101 87.8 84.6 92.7 86.9

GeM+CANet* Res101 91.0 88.6 94.7 90.6

(B) re-ranking with query expansion (QE)

CroW+QE [60] VGG16 74.9 70.6 84.8 79.4

BoW-CNN+QE [81] VGG16 78.8 65.1 84.8 64.1

R-MAC+QE [40] VGG16 89.1 87.3 91.2 86.8

GeM+αQE [98] VGG16 91.9 89.6 91.9 87.6

GeM+CANet+αQE* VGG16 93.0 90.5 93.0 88.6

R-MAC+QE [40] Res101 90.6 89.4 96.0 93.2

WGeM+QE [138] Res101 91.7 89.7 96.0 –

GeM+αQE [98] Res101 91.0 89.5 95.5 91.9

GeM+CANet+αQE* Res101 93.6 92.0 96.5 93.5

Table 3.2: Image retrieval performance (mAP) comparison on Oxford5k, Oxford105k,
Paris6k and Paris106k dataset. “*” marks the proposed method. The highest mAP score
is highlighted in bold.

3.6 Ablation study and discussion

This section presents the results of ablation experiments to show the impact of different

hyper-parameter settings on retrieval performance. By default, the off-shelf GeM model,

with VGG16 as the backbone and whitening applied by a learned post-processing module,

serves as the baseline model.
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Method Backbone

ROxford5k RParis6k

Medium Hard Medium Hard

mAP mAP@10 mAP mAP@10 mAP mAP@10 mAP mAP@10

(A) No re-ranking

SPoC VGG16 38.0 54.6 11.4 20.9 59.8 93.0 32.4 69.7

CroW VGG16 41.4 58.8 13.9 25.7 62.9 94.4 36.9 77.9

NetVLAD VGG16 37.1 56.5 13.8 23.3 59.8 94.0 35.0 73.7

MAC VGG16 58.4 81.1 30.5 48.0 66.8 97.7 42.0 82.9

GeM VGG16 61.9 82.7 33.7 51.0 69.3 97.9 44.3 83.7

GeM+CANet* VGG16 66.0 86.9 39.0 56.4 73.2 99.1 49.2 87.0

DELF–ASMK+SP Res50 67.8 87.9 43.1 62.4 76.9 99.3 55.4 93.4

GeM+CANet* Res50 70.8 89.6 45.5 62.7 78.9 99.3 58.5 92.0

SPoC Res101 39.8 61.0 12.4 23.8 69.2 96.7 44.7 78.0

CroW Res101 42.4 61.9 13.3 27.7 70.4 97.1 47.2 83.6

R-MAC Res101 60.9 78.1 32.4 50.0 78.9 96.9 59.4 86.1

GeM Res101 64.7 84.7 38.5 53.0 77.2 98.1 56.3 89.1

GeM+CANet* Res101 72.2 91.0 46.8 64.3 80.3 99.1 60.9 93.3

(B) re-ranking with query expansion (QE)

GeM+αQE VGG16 66.6 85.7 38.9 57.3 74.0 98.4 51.0 88.4

GeM+CANet+αQE* VGG16 73.2 88.3 44.4 63.3 78.3 99.4 56.3 91.4

DELF-HQE+SP Res50 73.4 88.2 50.3 67.2 84.0 98.3 69.3 93.7

GeM+CANet+αQE* Res50 75.6 92.0 48.6 68.1 84.3 99.6 68.7 94.0

R-MAC+αQE Res101 64.8 78.5 36.8 53.3 82.7 97.3 65.7 90.1

GeM+CANet+αQE* Res101 76.3 92.3 49.9 70.0 84.5 99.3 66.5 94.7

Table 3.3: Image retrieval performance (mAP) comparison on Oxford5k, Oxford105k,
Paris6k and Paris106k dataset. “*” marks the proposed method. All mAP results of
existing works are provided by [96]. The highest mAP score is highlighted in bold and
mAP@10 indicates that the mAP is calculated on top 10 results.

3.6.1 Impact of re-normalization

As described in Section 3.4, min-max normalization is applied, according to Eq. (3.2), to

enhance the contrast in the attention results over the entire image. Figure 3.9 shows the

co-attention result with and without the min-max normalization for a pair of query and

candidate images showing a building from Oxford. Before the min-max normalization,

the target tower from the candidate image is not well emphasized when compared with

the heat-map resulting after applying min-max normalization in the fourth image from

Figure 3.9. The min-max normalization enhances the contrast between the foreground

target object and the irrelevant regions, even when multiple similar architectural features

are present in the candidate image. Table 3.4 contains the statistical retrieval results with

and without the min-max normalization. Although without the min-max normalization,

the CANet can still improve the original GeM model’s performance. By applying it, the

image retrieval performance (mAP) on Oxford5k (Paris6k) is further improved by 0.3%

(1.6%).
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query candidate
Co-attention 

before MinMax

Co-attention 

after MinMax

Figure 3.9: Co-attention map visualization with and without min-max normalization.

Method
GeM

Backbone
min-max Oxford5k Paris6k

GeM+CANet* VGG16 % 88.8 89.1

GeM+CANet* VGG16 " 89.1 90.7

baseline GeM [98] VGG16 - 87.9 87.7

Table 3.4: Image retrieval performance (mAP) comparison when considering the min-max
re-normalization from Eq. 3.2 and without.

3.6.2 Impact of the multi-scale scheme

Figure 3.10 shows some co-attention examples when using a single, three or five scaling

factors for the same query as in Figure 3.9, but considering a candidate image under

utterly different lighting conditions. It can be observed that implementing the co-attention

generation with three scales can greatly improve the accuracy and quality of generated co-

attention map when compared to using a single scale. However, using five scales does not

make much difference. Table 3.5 statistically compares the image retrieval performance

when combining the baseline GeM model with co-attention maps from different input

image scale settings. Combining GeM with the co-attention map from a single scale could

only bring minimal improvement. However, using five scales would not bring significant

additional improvement while requiring more computation costs. The default setting of

the three scales reaches a good balance between the computation cost and performance

improvement.



3.6. ABLATION STUDY AND DISCUSSION 55

query candidate
Co-attention 

with 1 scale

Co-attention 

with 3 scales

Co-attention 

with 5 scales

Figure 3.10: Co-attention map visualization with different input candidate image scales.

Method
GeM

Backbone

Co-attention Scales
Oxford5k Paris6k

1 1√
2

√
2

1
2
√
2

1
2

GeM+CANet* VGG16 " - - - - 88.6 90.0

GeM+CANet* VGG16 " " " - - 89.1 90.7

GeM+CANet* VGG16 " " " " " 89.2 90.5

baseline GeM [98] VGG16 - - - - - 87.9 87.7

Table 3.5: Image retrieval performance (mAP) when considering different image scales of
co-attention generation.

3.6.3 Impact of CANet backbone structure

The impact caused by the choice of CANet backbone structure is explored. Apart from

the default VGG16 backbone structure, ResNet50 and ResNet101 are also tested as back-

bone networks. Figure 3.11 presents the co-attention visualization with different back-

bone structures for CANet. All these networks correctly highlight the target object. An

interesting observation is that the co-attention generated with the shallowest VGG16

structure tends to uniformly highlight the whole target building. As the depth of the

backbone network increases from VGG16 to ResNet101, the co-attention tends to more

and more focus on the specific representative part of the building. For example, the

co-attention with ResNet101 would lay much more emphasis on the sharp top part of

the target building than the co-attention with VGG16. Table 3.6 provides the retrieval

performance of GeM+CANet when considering different backbone network structures for

the CANet. Deeper networks usually provide a more comprehensive feature extraction,

leading to better results. However, according to the results in Table 3.6, using ResNet101

or ResNet50 as a backbone for CANet would not further improve the retrieval perfor-

mance. Considering the co-attention visualization from Figure 3.11, one possible reason

could be that deep backbone networks, like ResNet101/ResNet50 make the co-attention

too focused on the local part of the target object, ignoring the contextual content.
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Figure 3.11: Co-attention map visualization when considering different backbone network
structures.

Method
GeM

Backbone
CANet

Backbone
Oxford5k Paris6k

GeM+CANet* VGG16 VGG16 89.1 90.7

GeM+CANet* VGG16 ResNet50 88.5 89.0

GeM+CANet* VGG16 ResNet101 88.6 89.7

baseline GeM [98] VGG16 - 87.9 87.7

Table 3.6: Image retrieval performance (mAP) when considering different backbone struc-
tures for CANet.

3.6.4 Impact of feature fusion module

Count of multi-scale block. As illustrated in Figures 3.1(c) and 3.7, the proposed

CANet utilizes stacks of multi-scale blocks for feature fusion. Results when considering

various numbers of scaling blocks are provided in Figure 3.12 when considering a church

tower from Oxford as a query image. Considering stacks of multi-scale blocks can lead to

wider receptive fields and better feature detection under perspective projection changes

leading to comprehensive feature object or region representation. From Figure 3.12, it

can be observed that employing 3 multi-scale blocks leads to the most comprehensive

co-attention map, in which the whole target object is encompassed. Otherwise, the co-

attention maps tend to be disconnected. Quantitative retrieval results when varying the

number of multi-scale block7 are provided in Table 3.7. As we can see, it gives the

best mAP results on both Oxford5k and Paris6k datasets when considering 3 multi-scale

blocks.

Convolution with dilation. The impact that could be caused by the dilation of con-

7When reducing the number of multi-scale blocks, they are replaced by simple convolution layers with
kernel size of 3 × 3 while keeping the input and output channel count.
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Figure 3.12: Co-attention map visualization when considering between zero and three
multi-scale blocks.

Method
GeM

Backbone
No. of Multi-scale

Blocks
Oxford5k Paris6k

GeM+CANet* VGG16 0 88.5 90.0

GeM+CANet* VGG16 1 88.9 90.4

GeM+CANet* VGG16 3 (default) 89.1 90.7

baseline GeM [98] VGG16 - 87.9 87.7

Table 3.7: Image retrieval performance (mAP) when varying the number of Multi-scale
blocks in the CANet backbone structure.

volution layers is also tested. Dilation [148] is a technique that extends the convolution

kernel size by inserting zero weights among the elements of the extended kernel. This

leads to a wider receptive field of each convolution layer without significantly increasing

the computation cost. When considering convolution with dilation, the convolution layers

of kernel sizes 5× 5 and 7× 7 in all multi-scale blocks are replaced by convolution layers

of kernel size 3× 3 but with dilation rates of 2 and 3 respectively. The results provided in

Figure 3.13 qualitatively compare the co-attention maps with and without convolution di-

lation. When can observe that when considering kernel dilation, CANet can still correctly

highlight the target building, but it does not cover the whole salient tower from the query

as the co-attention generated by the kernel without dilation. Table 3.8 provides the mAP

retrieval results of GeM+CANet with and without dilation. Applying the fusion module

with dilation could still improve the baseline GeM model’s performance. However, the

improvement is not as great as considering convolution kernels without dilation.
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query candidate
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without dilation

Co-attention 
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Figure 3.13: Co-attention map visualization with and without convolution dilation.

Method
GeM

Backbone
Convolution

dilation
Oxford5k Paris6k

GeM+CANet* VGG16 % 89.1 90.7

GeM+CANet* VGG16 " 88.8 90.1

baseline GeM [98] VGG16 - 87.9 87.7

Table 3.8: Image retrieval performance (mAP) when considering convolution dilation for
the feature fusion module.

3.6.5 Using key-point matching as co-attention

CANet is trained with data resulting from the key-points detected by the SuperPoint

model. In other words, CANet training can be seen as being supervised by the features,

representing the output of the SuperPoint model. In the following, it is considered to

directly apply matching key-points resulting from the SuperPoint output and use these as

co-attention to re-weight the GeM features. Generally speaking, there are two main draw-

backs of directly using SuperPoint based key-point matching as co-attention for feature

extraction and re-weighting. Firstly, SuperPoint is initially trained with code vectors de-

fined by constraints of simple shapes, such as triangles, quadrilaterals, polygons and so on.

Accordingly, SuperPoint detection is sensitive to corners, vertices or high-contrast edges of

objects. In real-world images, SuperPoint works well with dense, complex textured areas

but would not identify matching points on large smooth areas with no or minor variation.

In example 1 from Figure 3.14, there are many dense, complex textures from historic

buildings, resulting in multiple correct matching key-points detected by the SuperPoint

model. However, in example 2, the query object has a relatively simpler body texture.

We can observe that only a few key points are detected, which are mainly distributed over
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the upper structure of the tower. In a way, simple SuperPoint based key-point matching

has poor generalization ability when used for real-world CBIR tasks. Secondly, the Super-

Point model only performs point-level matching. In other words, it does not consider the

higher-level semantic meaning and is likely to mismatch in certain circumstances. From

example 2 of Figure 3.14, it can be seen that there are some mismatching key-point pairs

in the third column of images under “match line”. The SuperPoint model considers that

the edge points from the windows of the query tower building match with the window

from the bottom area of the tower from the candidate image. If visualizing these match-

ing points based on the local match scores output by SuperPoint model, as shown in the

images from the fourth column of Figure 3.14, the resulting co-attention is not only very

sparse and too localized but also incorrect. In Table 3.9 we provide statistical retrieval

results when considering the co-attention based on using the proposed CANet and when

directly applying the SuperPoint. We can observe that CANet significantly improves the

original GeM model’s performance when directly using SuperPoint to guide the feature

re-weighting for CBIR.

In summary, applying the data generation described in Section 3.3 and training CANet

for the co-attention generation achieves better generalization ability, resulting in more

comprehensive co-attention maps for CBIR feature re-weighting.

query candidate match line
key-point based 

co-attention
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p
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E
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Figure 3.14: Key-point match and key-point based co-attention visualization.
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Method
GeM

Backbone
Co-attention Oxford5k Paris6k

GeM+CANet* VGG16 SuperPoint 87.2 85.3

GeM+CANet* VGG16 CANet 89.1 90.7

baseline GeM [98] VGG16 - 87.9 87.7

Table 3.9: Image retrieval performance (mAP) when considering the SuperPoint directly
as co-attention.

3.6.6 Computation cost

Considering a pair of the query image and candidate image of size 512 × 512 in original

scale as input, ResNet101(R101) [45] as the backbone network for GeM feature extraction,

VGG16 [111] as the backbone network for the CANet, Table 3.10 (a) and (b) compare

the time cost of the GeM model at the online retrieval stage with or without the proposed

CANet. All experiments were performed 100 times, and we report the average time cost

in Table 3.10.

As illustrated in Figure 1.2, candidate images’ features are supposed to be pre-cached

at the offline stage, what we need to do at the online stage is extract the query image’s

feature and perform similarity measure. As shown in Table 3.10 (b), following the standard

CBIR pipeline, the original GeM model only takes around 16ms to get the final match

score between one pair of the query image and candidate image.

However, when considering the proposed CANet, as the convolution feature tensor of the

candidate image needs to be re-weighted by the co-attention map before pooling, the

feature extraction of the candidate image and the co-attention map generation both need

to be conducted at the online stage. As shown in Table 3.10 (a), the extra time cost of

CANet is mainly caused by candidate feature extraction and forward through the CANet

structure. Compared with the original GeM pipeline, it takes around extra 21ms for one

candidate image.

3.6.7 Limitations and future work

Although the proposed CANet can be used to generate good co-attention maps and im-

prove the original GeM model performance, as discussed in Section 3.6.6, a major draw-
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For query feature extract For candidate feature extract For CANet Cosine
similarityBackbone(R101) Pool and whiten Backbone(R101) Backbone(VGG16) Fusion module Re-weight and pool

16 0.2 16 3.4 2.4 0.27 0.05

(a) Time cost of each component within the proposed clustering-based co-attention pipeline at
the online evaluation stage.

For query feature extract Cosine
similarityBackbone(R101) Pool and whiten

16 0.2 0.05

(b) Time cost of each component within the original GeM [98] pipeline at the online evaluation
stage.

Table 3.10: Time cost analysis of each component within the CANet pipeline (a) and
the GeM pipeline (b) at the online evaluation stage. A pair of one query image and
one candidate image serves as input. The time cost of each component is reported in
milliseconds (ms).

back of the proposed CANet is the computation cost caused by the query sensitivity. As

each candidate image’s global feature vector needs to be built under the condition of the

input query image, feeding the candidate image through the CANet and GeM model both

have to be performed at the online retrieval stage. Given one query image and process

candidate images in batch-wise manner, it takes around one hour to search on the Ox-

ford5k or Paris6k dataset. The retrieval time cost is linearly increased to about one day

when considering the 100k distractor set. Addressing extra computation costs caused by

query sensitivity would be the next step in this research direction.

3.7 Conclusion

In this research study, an independent conditional attention model is proposed for content-

based image retrieval, which does not require any manual annotations for training. In-

stead, the model is trained on automatically generated training data by finding corre-

spondences from existing matching image pairs, using pre-trained SuperPoint model. As

shown in the experiments, the proposed attention model can accurately highlight the re-

gion, matching the content of the query image onto the candidate image. It performs well

even under various challenging situations such as when significantly changing the illumi-

nation conditions or when the image acquisition parameters change significantly under

different perspective projection conditions. When combined with the GeM feature extrac-

tion method, the proposed methodology achieves state-of-the-art image retrieval results
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on Oxford5k and Oxford105k datasets. However, the huge extra computation cost caused

by the query-sensitivity could be a critical problem for the proposed CANet, especially

when considering large-scale image retrieval. How to further simplify the co-attention

generation procedure, reducing the cost at online retrieval stage is the central question of

next work.

Regarding the experimental results of the CANet, we can draw some conclusions. First,

as CANet utilises stacks of convolution layers to fuse the query global feature and each

candidate image local feature, each co-attention score on the resulting co-attention map

could be treated as deriving from interaction between the query global feature and cor-

responding candidate image local feature. In other words, this global-to-local framework,

in which the query global feature is considered to each candidate image’s local feature,

could work as an effective manner for attention generation. Even though they may con-

tain unequal amounts of information, as the query global feature contains the information

of the whole query image while each entry on the candidate image feature tensor only

contains features from the neighbour region. Second, as discussed in the Section 3.6.5,

although the CANet is under the supervision of the SuperPoint model, the CANet still

leads to better co-attention generation as well as better final retrieval results than directly

utilising the key-point output by SuperPoint as co-attention. Even though the training

data generation pipeline sometimes could only generate patch-level matches as training

data, as shown in Figure 3.5. The training procedure seems to enable CANet with better

generalisation ability and accuracy than the original SuperPoint model. Third, according

to the ablation study in Section 3.6.4, the number of multi-scale blocks greatly affects the

comprehensiveness of the generated co-attention. In general, deeper convolution layers

enable the fusion module with a larger receptive field, making each entry of the fused

feature tensor aware of more context content and leading to more comprehensive atten-

tion cover on the whole object of interest (as shown in Figure 3.12). In other words,

if more comprehensive spatial attention is desired, which can comprehensively cover the

whole object of interest, enriching each local feature with more context information is

necessary.



Chapter 4

Clustering based co-attention

4.1 Introduction

Although the CANet, proposed in the former chapter, could generate accurate co-attention

maps even under challenging situations and lead to better retrieval accuracy, the extra

computation cost caused by co-attention generation makes it impractical for large-scale

image retrieval, as the computation costs, including both time cost and memory cost, are

important performance metric of a CBIR framework. However, the good co-attention map

output provided by CANet leads us to consider comparing the global feature extracted

from the query image with each local feature extracted from a candidate image, resulting

in the co-attention map generation. The central problem is to figure out a more efficient

co-attention enabled CBIR framework that still keeps the advantage of co-attention but

with acceptable extra computation cost.

This chapter proposes a more straightforward, efficient, and effective co-attention mecha-

nism for large-scale image retrieval. Following the conclusion drawn from the CANet ex-

periments, the proposed co-attention method also generates query sensitive co-attention

maps in a global-to-local manner. Unlike the CANet proposed in the former chapter,

which still requires separate attention network branch training, the co-attention method

described in this chapter is based on feature tensor output by pre-trained CNN back-

bone networks without any extra trainable layer or network structure modification. In

other words, the proposed co-attention method could be treated as a post-processing

63



64 CHAPTER 4. CLUSTERING BASED CO-ATTENTION

module for convolution feature re-weighting conditioned on query content. To reduce the

computation cost caused by query sensitivity, the L2 norm based feature selection and

local feature clustering are applied, making the proposed co-attention practical even for

large-scale image retrieval. According to experimental results, the proposed co-attention

method could also generate good co-attention maps even for some really hard image re-

trieval cases. When embedding the generated co-attention method into the image feature

extraction pipeline, image retrieval performance is significantly improved, leading to new

state-of-the-art results on the benchmark evaluation datasets.

The rest of the chapter has the following content. Some insights into the generalized mean

pooling and the baseline model structure are introduced in Section 4.2. The pipeline of

the proposed co-attention method is illustrated in Section 4.3, followed by some extra

processing steps for further computation cost reduction and online retrieval speeding

up. Experimental results are demonstrated in Section 4.5. Moreover, Section 4.6 shows

comprehensive ablation studies about the impact of different modules or hyper-parameter

settings within the proposed co-attention method on the image retrieval performance.

The final conclusions are drawn in Section 4.7.

4.2 Preliminary

The proposed co-attention mechanism could be treated as a post-processing module for

feature re-weighting on the convolution feature tensor. In other words, it does not involve

any training but is directly applied with the feature tensor output by pre-trained CNN-

based spatial pooling CBIR model. Accordingly, in this section, we first discuss some

insights about spatial pooling. Then, we introduce the structure and training details of

the baseline model which serves as the feature extractor for the co-attention method.

4.2.1 Spatial pooling

Let us consider that an input image I, after feeding through a convolution neural network,

it is mapped into a feature tensor X ∈ RH×W×D, where H, W , D represent the height,

width and channel counts. Global spatial pooling compresses the feature tensor X =
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[xl,d] ∈ RL×D into a compact feature vector V = [vd] ∈ RD using :

vd =

(
1

L

L∑
l=1

xpl,d

) 1
p

, (4.1)

where L = H × W , l = 1, . . . , L and xl,d indicates the element from channel d of X at

location l. p is a trainable power coefficient. Each element vd of global spatial pooling

feature vector V is a sum of feature maps at the channel d from the original feature tensor

X raised to the power p. The ratio between each specific feature tensor element xl,d and

the feature vector element vd is expressed as:

rxl,d
=

xl,d
vd

=
xl,d(

1
L

) 1
p

(
L∑

l′=1

xl′,dp
) 1

p

= L
1
p

(
xl,d

p

x1,d
p + x2,d

p + . . .+ xl,dp + . . .+ xL,dp

) 1
p

= L
1
p

(
1

(
x1,d

xl,d
)
p
+ (

x2,d

xl,d
)
p
+ . . .+ 1 + . . .+ (

xL,d

xl,d
)
p

) 1
p

.

(4.2)

When p = 1, vd is the mean of each feature map element xl,d at channel d, and the pooling

result equals to the global average pooling (sum-pooling) [7]. When p → ∞, according to

Eq. (4.2), rxmax,d
→ 1 (xmax,d = max

l
xl,d), and it has vd → xmax,d, and the pooling gives

similar result to the max-pooling [124]. When p ∈ (1,∞) it is the so called Generalized

Mean pooling (GeM) [98]. Thus, the sum-pooling and the max-pooling could be treated as

special cases of the GeM. This also explains why GeM outperforms the other two pooling

methods. Due to the usage of the power coefficient p, the GeM is more selective than

simple sum-pooing while involving more local feature information than the max-pooling

into the estimation process, leading to more comprehensive feature extraction.

Normally, the similarity measure between global spatial pooling feature vectors is per-

formed using cosine similarity or L2 distance (after being L2-normalized). Considering

the query image Iq, candidate image Ic along with corresponding feature tensors Xq, Xc
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and global spatial pooling feature vectors Vq and Vc, their cosine similarity is given by:

cos(Vq,Vc) = (η(Vq)Vq)(η(Vc)Vc)
T

= η(Vq)η(Vc)
D∑
d=1

vq,dvc,d

=
η(Vq)η(Vc)

(LqLc)
1
p

D∑
d=1

 Lq∑
lq=1

Lc∑
lc=1

(
xq,lq,dxc,lc,d

)p 1
p

(4.3)

where L2 normalization is defined by η(V) = 1/ ∥V∥. As claimed by Eq. (4.3), the cosine

similarity between two global spatial pooling feature vectors can be treated as the sum of

dimension-wise multiplications between the entries of the feature tensors, which represent

the query image and candidate image separately.

According to [123], at the training stage, any loss function, such as the contrastive loss

[24] or the triplet loss [4], that tries to optimize the cosine similarity between global

spatial pooling feature vectors, would implicitly optimize the following aspects: first, the

content from locations that contain background characterized by uniformly consistent

information, such as sky, sand, and grass, is usually shared among many images. They

are not distinctive and could not be utilized to distinguish two distinct images or to find

correspondences between two matching ones. Accordingly, the activation value across all

channels when considering such plain background locations tends to be zero (xlbg ,d → 0),

leading to little or no contribution to the final similarity score. On the contrary, locations

of distinct foreground objects or regions tend to have large absolute values across all

channels (
∣∣xlfg ,d

∣∣ is maximized), resulting in significant contributions to the final similarity

score. Meanwhile, for foreground location pairs, which depict the matching objects or

regions between Iq and Ic, their feature representations are pushed closer together such

that it yields a large positive product value. Conversely, for the location pairs that

depict unmatching objects, their feature representations are pushed away from each other,

yielding negative values for the final similarity score in Eq. (4.3).

The cosine similarity between spatial pooling feature vectors from Eq. (4.3) provides a

useful hint to the CNN model training: optimizing the global spatial pooling feature vec-

tor’s cosine similarity between image pairs implicitly optimizes the local feature matching.

Foreground locations on the feature tensor X would be activated with high absolute fea-
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ture values across all channels, resulting in large L2 norms (as well as L1 norms), while

the background locations would have low feature activation values. Accordingly, the L2

norm of each entry on the feature tensor could be treated as spatial attention that the

spatial pooling model implicitly learns at the training stage.

4.2.2 Baseline model structure and training

The general framework of using a deep CNN for feature tensor extraction followed by a

global spatial pooling layer for building a compact global feature vector has been used in

recent state-of-the-art works, such as DELG [14] and DOLG [146]. In this chapter, we also

use ResNet [45] as the backbone network for feature tensor extraction. The feature tensor

output by the final convolution layer is pooled by a generalized mean pooling layer from

Eq. (4.1), with a fixed power co-efficient p = 3, followed by a trainable fully connected

layer for feature whitening.

Following the approach in DELG [14], we also consider image-level class labels and the

ArcFace margin loss [29] for the model training, defined by:

L(V̂g,y) = − log

(
exp(γ × AF(V̂gŵ

T
i , yi))∑Nc

j=1 exp(γ × AF(V̂gŵT
j , yj))

)
, (4.4)

where V̂g is the whitened L2 normalized global GeM feature vector for each input training

image, ŵi refers to the trainable L2 normalized classifier weights for class i from the

ArcFace weight matrix W ∈ RNc×D. Nc is the number of classes in the training dataset,

y is a one-hot class label vector and i is the index of the ground-truth class of V̂g (yi = 1)

and γ is a trainable temperature parameter. AF(u, y) is the ArcFace-adjusted cosine

similarity [14]:

AF(u, y) =

 cos(arccos(u) +m), if y = 1

u, if y = 0

(4.5)

where u is the cosine similarity, y indicates whether it is the ground-truth class and m is

the ArcFace margin.
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The ArcFace margin loss from Eq. (4.5) could also be referred as a “cosine classifier” [14].

Within the ArcFace weight matrix W , each row wi ∈ R1×D, i ∈ {1, 2, 3, . . . , Nc} can be

treated as a proxy feature vector for class i. In other words, each proxy feature models

representative information of each class and the ArcFace loss potentially optimizes the

cosine similarity not between single image pairs but between each training image and

proxies of classes. Compared to the traditional image pair similarity loss (contrastive loss

or triplet loss) this kind of proxy-based similarity loss does not need hard sample mining

and would converge faster than the simple similarity loss between specific image pairs

[82].

4.3 Enabling CBIR with co-attention

In the following, we consider using the convolution feature tensor output by the pre-

trained CNN model for enabling the co-attention generation process. The baseline GeM

model, which is trained as described in Section 4.2.2, is used for feature extraction without

considering any parameter fine-tuning or structure modification.

4.3.1 A naive way for co-attention generation

Let us consider a pair of images, representing the query image Iq and the candidate image

Ic from a given database. After feeding through the backbone CNN, these images yield the

feature tensors Xq ∈ RHq×Wq×D and Xc ∈ RHc×Wc×D as the outputs. The former query

tensor is transformed into a compact query feature vector Vq ∈ RD by the spatial pooling

using Eq. (4.1). The latter feature tensor Xc, resulting from the final convolutional layer,

models the grid-structured representations according to the corresponding locations for

the candidate image. The precision of the correspondence between each entry on the

feature tensor and regions on the input image depends on the processing properties of

the CNN backbone structure. For example, ResNet [45] contains 5 blocks, each down-

sampling the input feature tensor by half. After feeding through it, each local feature

from the output feature tensor Xc corresponds to a 32× 32 (25 = 32) pixels region from

the input image.
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A naive and straightforward way to get the co-attention map anaive = [alc ] ∈ RHc×Wc of

candidate image Ic with respect to the query image Iq could be simply calculating the

cosine similarity between the global query feature vector Vq and the candidate feature

tensor Xc from each location, as

alc = V̂qx̂
T
c,lc , (4.6)

where V̂q represents the whitened (by the pre-trained fully connected layer) and L2 nor-

malized query feature Vq. x̂c,lc ∈ RD is a local feature vector at location lc from the

candidate image feature tensor Xc that has been whitened and then L2 normalized. Soft-

max operation is applied on alc ∈ [−1, 1] to normalize their values into the range [0, 1]:

a′lc =
exp(alc)
K∑
i=1

exp(ai)

. (4.7)

The visualization comparison between the L2 norm attention and the naive co-attention

is provided in Figure 4.1. The L2 norm attention maps, shown in the third column of Fig-

ure 4.1, are obtained by calculating the L2 norm for each location on the feature tensorXc.

The resulting attention map is then resized to the original image size and overlapped on

the image as a heat-map. We can observe that L2 norm attention maps tend to highlight

representative parts of all landmark buildings. The naive co-attention maps, shown in the

fourth column of Figure 4.1, are visualizations of the results provided by Eq. (4.6) and

Eq. (4.7). We can observe that simple cosine similarity between candidate local features

and query global features could already give some generally good co-attention results.

The first row from Figure 4.1 shows an easy case of image retrieval, in which the target

object is salient and rather large scale in the candidate image without any distractors

around, both L2 norm attention and the naive co-attention show corresponding reason-

able highlight regions. For the hard case from the second row of Figure 4.1, the target

object is not only small and remote but there are some similar class building architectures

nearby, the naive co-attention highlights the correct region while the L2 norm highlights

many irrelevant distractor objects and regions.

Although the discussions mentioned above demonstrate the validity of co-attention that

is generated based on global-to-local feature match using cosine similarity, there are still

two main problems with this naive implementation of co-attention. First, although the
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query 

image
candidate 

image

L2 norm

attention

naive 

co-attention

Figure 4.1: Visualization comparison of L2 norm attention and the naive co-attention.
The first column shows the query images with a yellow bounding box outlining the target
object. The second column shows the candidate image. The third column shows the L2
norm attention while the fourth column represents the result of the naive co-attention as
described in Section 4.3.1.

deep structure of deep CNN enables them with large receptive fields, they may still not

be comprehensive enough, as each local feature only corresponds to a grid local region

on the original image. For example, it may only correspond to a small part of the target

object and miss the high-level semantic meaning, which could result in some unwanted

highlight regions or even noisy undefined regions.

Second, but also the most critical problem with the method described above is its com-

putation cost. Consider an input image I of size h × w, after feeding through ResNet

[45], the output feature tensor X is of size h
25

× w
25
. For a high-resolution image, such of

1024× 1024 pixels, the output candidate feature tensor size could be as large as 32× 32.

For each element of these local features, if we have a 4 Byte float number for repre-

sentation, the total memory cost for each candidate image local feature caching will be

2048× (1024
32

)2 × 4 Bytes ≈ 8 MB, where 2048 is the channel count for the feature output

by ResNet. If considering the multi-scale feature extraction scheme [98], the memory

cost would increase exponentially. Pre-caching that many local features for a large image

retrieval database is impractical.

In the following, we aim to make the co-attention mechanism described in Section 4.3.1
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efficient and practical even for large-scale image retrieval task.

4.3.2 Co-attention enabled through feature selection and clus-

tering

Local feature selection and clustering. As mentioned above, the most critical prob-

lem for using co-attention is the computation cost caused by the large number of local

features that could possibly be extracted from a single image. An intuitive way to re-

duce the extra cost is to decrease the number of local features kept for each database

image. Not all these local features from the feature tensor are relevant for CBIR tasks.

Many irrelevant local features, such as those corresponding to the background, should

be discarded from further processing, ensuring robustness and computational efficiency.

Accordingly, we first perform local feature selection over the feature tensor output by

the backbone network. As discussed in Section 4.2.1, the L2 norm of each entry from

the CNN feature tensor can reflect its importance. With the input image I as input, the

feature selection is performed based on the L2 norm attention of its feature tensor X.

We keep the top N features with the highest L2 norm, resulting in a set of local features

XN = [xn] ∈ RN×D, where n = 1, . . . , N and xn ∈ R1×D indicates the n-th local feature

vector from the set XN .

At this stage, each local feature can be treated as corresponding to a localized region from

the input image. As mentioned before, these localized features may not be comprehensive

enough to represent the whole object or regions of interest. Meanwhile, we want to further

reduce the number of candidate local features for the sake of controlling the computational

complexity at the online retrieval stage. Clustering is well known as an unsupervised

approach for data reduction and we employ k-means clustering in order to extract fewer

but more representative features from XN . However, the clustering result for k-means

could vary with the cluster center initialization. This is an unwanted attribute for a stable

image retrieval system, so we adapt the k-means++ [5] for the cluster center initialization.

Considering the candidate image local features XN as input, we consider the following

steps for k-means clustering initialization:

1. Let O represent the local features from XN that have not been selected as initial
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centers, while Z represents the chosen local features set. In the beginning, O =

{xi|i = 1, . . . , N} and Z = ∅.

2. Choose xm ∈ O, such that m = argmax
xi∈O

∥xi∥, as the first cluster center. Meanwhile,

add Z = Z
⋃

xm, while this is deleted from O = O \ xm.

3. For each local feature vector xi ∈ O that has not been chosen as a center yet,

compute the smallest distance with respect to all chosen initial centers d(xi) =

min ∥xi − xj∥, xj ∈ Z, j = 1, . . . , |Z|, where | · | denotes the cardinality of a set.

4. Choose xl ∈ O, such that l = argmax
xi∈O

d(xi) as another cluster center, adding it to

Z = Z
⋃

xl and deleting it from O = O \ xl.

5. Repeat Steps 3) and 4) until |Z| ≡ K.

The selected cluster centres are then used to initialise the standard k-means clustering.

After clustering, we perform generalized mean pooling as in Eq. (4.1) within each cluster

followed by whitening to obtain a set of clustered local features XK ∈ RK×D, where

k = 1, . . . , K, for the input image.
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GeM+Whiten

...
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L2 norm 

attention
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Figure 4.2: Illustration of clustering based co-attention generation and weighted feature
extraction.

Co-attention generation with clustered local features The pipeline of co-attention

generation and weighted feature extraction is illustrated in Figure. 4.2. Still consider the

pair of images, representing the query image Iq and the candidate image Ic. After feeding

through the backbone network, followed by the local feature selection based on the L2

norm, selected query local features Xq,N are directly GeM pooled and whitened to obtain

the query global feature Vq. Selected candidate local features Xc,N are clustered and
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then whitened as in Figure 4.2, resulting in the clustered local feature set Xc,K . Then,

the co-attention weights a = [ai] ∈ RK are obtained by calculating the cosine similarity

between Vq and each local feature from Xc,K . As the attention weights are calculated by

cosine similarity between the query and candidate image features, its range is between

[−1, 1] which may not ensure a high contrast among the results. To normalize values into

the range [0, 1] and better control the weight distribution, a SoftMax function defined by

a temperature parameter T is applied on a:

a′i =
exp(aiT )

K∑
j

exp(ajT )

(4.8)

The final co-attention weighted candidate image global feature vector Vc is defined by

weighted sum pooling:

Vc =
1

K

K∑
i

aiXc,i. (4.9)

The similarity measure is performed by evaluating the cosine similarity between Vq and

Vc.

4.4 Further computation cost reduction

In this section, to make the proposed co-attention more practical for large-scale image

retrieval and to further reduce the computation cost we propose two extra processing

steps during the retrieval stage.

4.4.1 Dimension reduction by PCA

Principal component analysis (PCA) has been used as a common method for feature

dimension reduction. Unlike some other works that jointly perform dimension reduction

and feature whitening by one fully connected layer [123], we perform dimension reduction

by employing Principal Component Analysis (PCA) as a post-processing step. There

are two main reasons to use the PCA: first, we found that training with the original

feature dimension (2048 for ResNet) makes the model converge faster; second, it is more
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convenient and fair to compare retrieval performance with different dimension settings

as all experiments are based on one same pre-trained model. For the query image, PCA

dimension reduction is applied on its whitened global feature vectorVq. For the candidate

image local features, PCA is applied on each whitened local feature from Xc,K before L2

normalization.

In our implementation, PCA parameters: mean and eigenvectors, which are denoted as

mv ∈ R1×D and Pv ∈ RD
′×D and used for dimension reduction ofVq andXc,K , are learned

from whitened global GeM pooling feature vectors (without L2 normalization) of random

images from the training dataset. D equals to the original feature dimension output

by the backbone network while D
′
denotes the feature dimension after PCA dimension

reduction.

4.4.2 Speed up retrieval with inverted file indexing

For image retrieval, especially on a large-scale candidate image database, it may not

necessary to apply co-attention for each candidate image feature extraction. Actually,

some candidate images are quite distinguishable and they are not worth performing careful

similarity measures with the query. To reduce the candidate image count that needs to be

compared with the query image at the online retrieval stage, inverted file indexing [112] is

added to the proposed co-attention method pipeline. This technique has been applied in

previous work. For example, HOW [123] only performs feature comparison between the

local features that share the same visual word. Similarly, after dimension reduction, we

use local features from the feature tensor output by the final convolution layer to train

the codebook. At the feature extraction stage, both query image and candidate image

local features Xc,N and Xq,N , after dimension reduction and whitening, are clustered over

visual words from the codebook and we record the visual word indices that each image

is assigned to. Then, at the retrieval stage, for each query image, we only pick out those

candidate database images that at least share one visual word with the query image to

perform co-attention generation and assess their similarity. Other candidate images which

are not selected are simply set to have zero similarity score with the query image.

The global picture of the proposed co-attention enabled CBIR framework when consider-

ing the inverted file indexing is shown in Figure. 4.3.
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Figure 4.3: Illustration of our method pipeline with inverted file indexing.

Codebook training. The inverted file indexing starts with the codebook training. As

shown in Figure 4.3 (a), at the codebook training stage, each sample image is fed through

the pre-trained backbone network followed by the L2 norm based feature selection, re-

sulting in Ncdb local features. With Ns sample images from the training dataset, there

would be Ns ×Ncdb sample local features. To reduce the computation cost, PCA dimen-

sion reduction is applied with parameters mcdb ∈ R1×D and Pcdb ∈ RDcdb×D, which are

learned from these local features. After the PCA dimension reduction, k-means cluster-

ing is employed to get the final Kcdb visual words, of indexes {v1, v2, . . . , vKcdb
}, as the

codebook.
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Feature caching. As shown in Figure 4.3 (b), during the offline database image feature

extraction and caching stage, each database image Ic is fed through the backbone net-

work. After the feature selection, with the output selected local features Xc,N , one branch

performs k-means clustering followed by PCA dimension reduction with parameters mv

and Pv, resulting in the dimension reduced clustered local features Xc,K
′ ∈ R1×D

′
. An-

other branch, after PCA dimension reduction with parameters mcdb and Pcdb, Xc,N are

clustered over the codebook, assigning each local feature to the closest visual word. A

dictionary is used to record the database image ID for each visual word index. Each key

of this dictionary is a visual word index. Each visual word index corresponds to a set of

database image IDs whose local features are assigned to this visual word. The dictionary

is updated when considering each database (candidate) image as input.

Online retrieval. As shown in Figure 4.3 (c), at the online retrieval stage, the selected

query image local features Xq,N , after PCA dimension reduction with mcdb and Pcdb, are

also clustered over the codebook. Then, based on the cached dictionary, we only pick out

those database images that would share at least one visual word with the query image

for later co-attention weighted feature extraction (as shown in Figure. 4.2) and similarity

measure. All other candidate images are treated as having a 0 similarity score to this

query and removed from the image search. Remember that with inverted file indexing,

the only extra thing that needed to be cached is the visual word index dictionary and the

codebook, so it would hardly require extra memory.

4.4.3 Multi-scale feature extraction scheme

The size of the objects in the image could change dramatically when changing the image

acquisition parameters. For example, when shooting images under various perspective

projection conditions, objects may be located at various distances from the image plane

and they would appear larger or smaller under different views and with various distortions.

To solve identifying the scene from images taken under various acquisition conditions, at

the retrieval stage, following the common practice from [98], we implement the multi-

scale image feature extraction scheme. The multi-scale scheme is performed by resizing

the input image with several scale factors and then considering the images of all scales.

For the baseline GeM model without co-attention, the global feature vectors from different
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scales are fused by average-pooling and then L2 normalized again as described in [98]. In

our proposed co-attention enabled pipeline, local features from all scales are merged and

selected jointly according to their corresponding L2 norm attention scores.

4.5 Experiments

We initially discuss the experiment setup, including the hyper-parameter setting and

implementation details. Then, we provide visualizations of co-attention generation results

and the retrieval results of the proposed co-attention methods along with comparisons to

existing state-of-the-art works.

4.5.1 Experiment setup

Implementation details. We consider ResNet101 (and ResNet50) [45] as the backbone

network (D = 2048). For the baseline GeM model training, we set the margin m = 0.15

and temperature γ = 30 for the ArcFace loss in Eq. (4.4), respectively. We train the model

on a clean subset of Google landmark dataset version 2 (GLDv2) [136], which contains

more than 1.5M images grouped in 81,313 classes. GLDv2 was also used for training the

state-of-the-art DELG [14] and DOLG [146] models. We consider data augmentation by

randomly cropping, ratio distorting and then resizing images to 512 × 512 pixels. The

model is optimized using the SGD optimizer with an initial learning rate of 0.05, weight

decay of 0.0001, and batch size of 128 images. A cosine learning rate decay strategy is

applied. The generalized mean pooling power coefficient from Eq. (4.1) is fixed as p = 3.

The baseline model is trained with 4 NVIDIA Tesla GPUs and the model is trained for

50 epochs.

At the retrieval stage, for the co-attention mechanism described in Section 4.3.2, if not

otherwise specified, we set the local feature selection count N = 500 and the number of

clusters as K = 10 for k-means clustering and T = 10 for the SoftMax temperature in

Eq. (4.8).

For dimension reduction of query image and candidate image features, the PCA compo-
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nents mv and Pv are learned with whitened global GeM pooling feature vectors (without

L2 normalization) of 50,000 random images from the training dataset. After whitening,

the global query image feature vector Vq and clustered candidate image local features

Xc,K are compressed using the PCA dimension reduction with parameters mv and Pv to

dimenstion D
′
= 512.

For the inverted file indexing, we use Ns = 60, 000 random images in a single original scale

from the training dataset (GLDv2), with Ncdb = 300 local features being selected from

each of them to train the codebook. The size (cluster count) of codebook Kcdb = 65536.

For computation cost reduction, PCA parameters mcdb and Pcdb are learned from these

sample features and used to compress them to dimension Dcdb = 128.

For the implementation of the multi-scale scheme feature extraction, as described in Sec-

tion 4.4.3, when not considering co-attention, we use 3 scales {1,
√
2, 1√

2
} as in other global

feature approaches [98, 14]. When considering the co-attention, we have feature selection

from 5 scales: { 1
2
√
2
, 1
2
, 1√

2
, 1,

√
2}, as in [121].

Evaluation datasets. Revisited Oxford and Paris datasets [96] have commonly been

used for large-scale CBIR performance evaluation in recent years. These databases are

expanded versions of Oxford [93] and Paris [94] datasets after removing the images with

incorrect annotations and adding several new query images. Revisited Oxford (ROxf)

contains 4993 images while Revisited Paris (RPar) has 6322 images. Both datasets contain

70 query images. The ground-truth matching images to each query image are divided

into 3 groups, Easy, Medium, Hard, according to the level of difficulty in assessing the

similarity of their image representation with the corresponding query. In addition, R1M

[96] is a new distractor set containing 1 million unbiased high resolution (1024 × 768

pixels) images for ROxf and RPar. All retrieval results are reported with mean average

precision (mAP), [93]. It should be mentioned that ROxf/RPar datasets provide bounding

boxes for each query image, outlining the query object region. Meanwhile, the standard

evaluation protocol requires cropping the query image with the bounding box as input.
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4.5.2 Visualization of feature selection and clustering

We exemplify the results provided by the L2 norm based feature selection and k-means

clustering on a set of images showing architectural landmarks in Figure 4.4. We can

observe that the selected features are mainly distributed in the regions of the main land-

marks displaying architectural details. The most representative parts of the buildings,

like the two towers on the top of the building in the top row of images from Figure 4.4,

have relatively higher attention scores. When applying k-means clustering, it tends to

group the locations which are visually similar to each other while different parts of the

building are assigned to different clusters through k-means clustering. The positions as-

signed to the same cluster, marked with the same color in the third column of images

from Figure 4.4, are considered to share the corresponding clustered local feature from

Xc,K , as their representation. These examples show that the latent space clustering leads

to dividing and grouping the local image features into fewer, but more comprehensively

representative feature vectors, which are used for co-attention generation later.

4.5.3 Visualization of co-attention

Examples of co-attention generation, considering the baseline GeM model trained on

the GLDv2 dataset with local feature selection and clustering, are shown in Figure. 4.5.

The first and second columns show the query and target images. For the third column

co-attention map, local features that are grouped into the same cluster share the cor-

responding clustered local feature as their representation. Co-attention scores for the

locations that are not selected are set to zero. Co-attention scores of all local features

from different input image scales are projected back to the corresponding regions on the

original image and accumulated to get the final co-attention map. The L2 norm atten-

tion of the baseline GeM model is also visualized in the fourth column of Figure 4.5 for

comparison. As discussed in Section 4.2.1, the L2 norm reflects the importance of each

location with respect to how much it contributes to the final feature vector obtained by

global pooling. In other words, the L2 norm is also a query non-sensitive attention that

the spatial pooling model implicitly learned at the training stage.

In examples 1-4 from the top rows of Figure 4.5 some typical situations are shown, in
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Figure 4.4: Visualization of the feature selection and k-means clustering for the proposed
co-attention mechanism. The first column represents the original images, while on the
images from the second column, we indicate the selected local features with circles. The
radius size in the circles indicates the scale of the image where they originate. The colour
variation for circles, from yellow to red, indicates an increasing L2 norm attention score,
with red indicating the highest score. Finally, the third column of images shows the result
of the k-means clustering over selected local features, where the local features assigned
to the same cluster are marked with the same colour. In these examples, we consider
N = 500 feature vectors and K = 10 clusters selected by the k-means clustering.

which the target object is not salient or there are similar distractors nearby. The L2 norm

attention tends to uniformly highlight all potential relevant regions as it has no access

to the actual query information, and its action is only driven by the knowledge learned

during training. As a consequence, the L2 norm attention could successfully discard

background regions, but it has no idea for which foreground object to look at. In example

4, the L2 norm attention almost ignores the desired query house from the remote part

of the scene while wrongly laying most emphasis on the tower building which is more

salient and appears as more significant. Example 5 shows another really hard example,

in which the target building is not intact and only shows a small part of the resized tower

in the top-left corner of the target image. Moreover, there is a spire at the right side of

the target building, which is very similar to the top part of the query object. The L2

norm highlights mostly the area around that spire, while the proposed co-attention pays
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attention to the window and edge structure for the correct target object. Examples 6

and 7 show the co-attention with the same target image but different query content. In

example 6, when considering the whole building as a query, the dome region is central

for co-attention generation. However, when using only a window as the query, the co-

attention correctly focuses on the corresponding region on the target image, despite the

dramatic change in the image acquisition conditions. These results indicate the high level

of sensitivity of the proposed co-attention method to the query content.

For another set of cases, examples 8 and 9 from Figure 4.5 show some easy situations

where the target object is salient enough and not surrounded by hard distractors. In this

case, the co-attention mechanism and L2 norm both correctly highlight the target objects

despite the challenges in the scene representations in these images due to illumination

changes and the view perspective changes during image acquisition.

Examples 10-12 from the bottom three rows of images from Figure 4.5 show some cases

when the proposed co-attention method fails or does not provide good enough results.

In example 10, the co-attention pays more attention to regions outside the target ob-

ject. Example 11 represents another very challenging case, in which there is not only a

massive change in scaling but also the target skyway is blocked by the foreground gate

structure, the proposed co-attention fails to accurately localize the target but just equally

highlights some surrounding buildings. Example 12 is one of the hardest cases in which

the query content is not even an intact building but a small sculpture attached as one of

the architectural elements on the skyway between two historic buildings. In this case, the

co-attention fails to highlight the target region accurately while it also pays attention to

the surrounding regions.



82 CHAPTER 4. CLUSTERING BASED CO-ATTENTION

query image target image co-attention L2 norm attention

E
x
am

p
le

 1
E

x
am

p
le

 2
E

x
am

p
le

 3
E

x
am

p
le

 4
E

x
am

p
le

 5
E

x
am

p
le

 6
E

x
am

p
le

 7
E

x
am

p
le

 8
E

x
am

p
le

 9
E

x
am

p
le

 1
0

E
x
am

p
le

 1
1

E
x
am

p
le

 1
2

Figure 4.5: Attention map visualization. The first column shows the query image with a
yellow bounding box outlining the target object. The second column is the target image.
The third column represents the co-attention map while the final column is the L2 norm
attention of the Generalized Mean pooling (GeM).
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4.5.4 Image retrieval results

Image retrieval results for the proposed method and comparisons with other methods are

provided in Table 4.1. As different existing CBIR works have different training settings,

which may lead to unfair comparisons. We re-implement some of the best recent state-

of-the-art (SOTA) methods according to the setting from Section 4.5.1 and marked with

“†”. In the following, we also focus on comparison with these SOTA works in Table 4.1.

Group (A) from Table 4.1 shows the results of local feature methods. The original SOTA

work HOW is trained on rSfM-120k dataset [98] with contrastive loss [24]. We re-train

it on the GLDv2 dataset with ResNet101 backbone and ArcFace loss, and it is indicated

by R101−-HOW (GLDv2)†9. Under our re-implementation, it greatly improved across

all evaluation protocols, especially on ROxf Hard set, which reaches 71.3% mAP from

56.9% before. However, HOW has weak performance on RPar+1M dataset with the Hard

evaluation protocol.

Group (B) from Table 4.1 shows the result of the global feature methods. They give

worse results than the local feature method HOW on ROxf Hard set, but they show

better generalization ability when considering the 1 million distractor set. The original

DELG [14] was trained on GLDv2 with a small batch size of 32. We re-implement its

ResNet101 version (R101-DELG†) under the training setting from Section 4.5.1. We

point out that DELG first uses the global GeM feature for the initial retrieval result, then

uses local features to perform spatial verification (SP) for re-ranking. The local feature

branch of DELG model does not perform backward gradient transfer to its backbone

network. In other words, without the second stage spatial verification (SP) re-ranking,

the DELG model could be basically the same as a GeM model. We can see that the

spatial verification results in a limited improvement, especially when considering the 1

million distractor set.

The bottom group (C) shows the results for the baseline model (GeM† ) as described

in Section 4.2.2 and when it is combined with the clustering-based co-attention method

(GeM†-CA). In other words, for the results of GeM† and GeM†+CA, they share the same

8https://github.com/feymanpriv/DOLG
9R101− represents the ResNet101 without the final convolution block. According to the study from

[123], HOW gives better results when discarding the final block, and we follow this setting for re-
implementation.



84 CHAPTER 4. CLUSTERING BASED CO-ATTENTION

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

(A) Local feature

HesAff-rSIFT-ASMK*+SP [121] 60.6 46.8 61.4 42.3 36.7 26.9 35.0 16.8

HardNet-ASMK*+SP [79] 65.6 - 65.2 - 41.1 - 38.5 -

DELF-ASMK*+SP [120] 67.8 53.8 76.9 57.3 43.1 31.2 55.4 26.4

DELF-D2R-R-ASMK*+SP [120] 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4

R50−-HOW-MDA [137] 82.0 68.7 83.3 64.7 62.2 45.3 66.2 38.9

R50−-HOW [123] 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7

R101−-HOW (GLDv2)† 83.9 77.9 87.9 76.4 71.3 52.8 76.0 56.4

(B) Global feature

R101-R-MAC [39] 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0

AlexNet-GeM [98] 43.3 24.2 58.0 29.9 17.1 9.4 29.7 8.4

VGG16-GeM [98] 61.9 42.6 69.3 45.4 33.7 19.0 44.3 19.1

R101-GeM [98] 64.7 45.2 77.2 52.3 38.5 19.9 56.3 24.7

R101-GeM-AP [101] 67.5 47.5 80.1 52.5 42.8 23.2 60.5 25.1

R101-GeM↑ [110] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8

R101-GeM (GLD) [85] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8

R101-DSM [110] 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0

R101-SOLAR [85] 69.9 53.5 81.6 59.2 47.9 29.9 64.5 33.4

R50-DELG [14] 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4

R50-DELG + SP [14] 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7

R101-DELG [14] 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9

R101-DELG + SP [14] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7

R101-DELG† 82.4 73.0 90.1 78.0 65.2 50.1 80.6 59.2

R101-DELG + SP† 84.1 75.9 91.0 79.2 68.8 53.6 83.0 62.3

R50-DOLG [146]8 81.2 71.4 90.1 79.0 62.6 47.3 79.2 59.8

R101-DOLG [146]8 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

(C) the proposed co-attention method

R50-GeM† 79.8 69.0 87.3 73.1 60.4 44.2 74.0 52.0

R50-GeM†-CA 83.8 75.3 91.5 77.2 67.8 52.4 82.7 56.8

R101-GeM† 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†-CA 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

Table 4.1: Image retrieval results on ROxf/RPar datasets and their extended versions
when adding the 1 million distractor set R1M, for the Medium and Hard evaluation
protocols. Groups (A) and (B) separately show the results of local and global feature
methods, respectively. Group (C) shows the results of the proposed co-attention method.
”†” indicates re-implemented model under the training details from Section 4.5.1. ”SP”
refers to the spatial verification re-ranking [87].

exact GeM backbone network with the training setting from Section 4.2.2, the only differ-

ence is that GeM†+CA implements the co-attention method as described in Section 4.3.2

(as well as PCA dimension reduction and inverted file indexing from Section 4.4) to re-

weight the candidate image feature tensor before the global GeM pooling. It can be

observed that introducing the co-attention to the CBIR pipeline can greatly improve the

retrieval performance. Especially, on the Hard set of ROxf (RPar), GeM†+CA reaches the

best result of 72.6% (85.6%). When considering the 1 million distractor set, the proposed
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co-attention method still gives the best retrieval results.

4.5.5 Qualitative retrieval results

Figure 4.6 provides a qualitative comparison between the co-attention enabled GeM

method “GeM†-CA” and the baseline retrained GeM model “GeM†”, on the challeng-

ing ROxf dataset [96], considering the Hard evaluation protocol. The query image is

shown on the first column from the left side of each row with a yellow bounding box

indicating the query region of interest. The top 5 retrieval results are demonstrated, with

the green outline denoting correct retrieval results while red markings denote incorrect

results. The co-attention maps are shown below each row with the retrieved images. The

proposed model globally outperforms the original GeM model, whose retrieved images

are shown underneath. Especially in the top-left query example, the query region is not

an intact building but only shows a structure from its middle part. GeM gives wrong

results for three retrievals out of the top 5. Meanwhile, the co-attention method correctly

provides all top 5 retrievals indicating the specific target region.

GeM†-CA

GeM†

GeM†-CA

GeM†-CA
GeM†-CA

GeM†

GeM†GeM†

Figure 4.6: Top 5 retrieval results for GeM†-CA (with co-attention) and GeM† on images
from hard set of ROxf dataset [96]. Co-attention maps are also provided underneath the
retrievals provided by “GeM†-CA”.
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4.6 Ablation experiment and discussion

In this section, we present ablation experiment results for some hyper-parameter settings

and discuss the computation cost of the proposed method.

4.6.1 Impact of local feature clustering

Apart from the computation cost reduction brought by clustering, we also test by imple-

menting the co-attention without considering the clustering. It corresponds to the naive

co-attention case described in Section 4.3.1. As shown in Table 4.2, the co-attention al-

ways improves the baseline GeM model’s performance, even with the naive co-attention

implementation. Although the proposed clustering procedure forcibly merges many local

features into a few groups, which makes it lose some local feature information, it actu-

ally contributes positively to the final retrieval performance. This result again proves

that considering clustering for co-attention not only relieves the extra computation cost

caused by the query sensitivity but also further improves the retrieval results.

Model co-attention cluster
Medium (%) Hard (%)

ROxf RPar ROxf RPar

R101-GeM† % % 83.0 90.2 65.5 80.7

R101-GeM†-CA(naive) " % 83.7 90.4 69.9 80.9

R101-GeM†-CA " " 86.4 93.2 72.6 85.6

Table 4.2: CBIR mAP results on ROxf/RPar datasets with naive co-attention.

4.6.2 Impact of clustering parameters

Plots from Figures 4.7 (a), (b) and (c) show the impact of cluster hyper-parameters fea-

tures N , clusters K, and the temperature T from Eq. (4.8), on the model retrieval perfor-

mance. Generally, the proposed method is robust to changes in these hyper-parameters.

The difference is mainly reflected in the ROxf Hard set. A small N = 200 could not cover

enough local representative features, while a too large N = 1000 may pick out too many

backgrounds or irrelevant local features, and also it will slow down the feature extrac-

tion procedure without bringing any obvious result improvement. Varying the number
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of clusters K has implications not only on the performance but also on the computation

cost. On the one hand, a smaller K could further reduce the computation cost but it will

arbitrarily fuse many local features into larger clusters reducing the co-attention benefits.

On the other hand, a larger number of clusters K could further improve the retrieval per-

formance as it leads to smaller clusters. However, it will require additional computation

costs and the improvement is minimal for K > 16.

(a) Ablation study on parameter N (b) Ablation study on parameter K (c) Ablation study on parameter T

m
A

P
(%

)

Figure 4.7: Ablation experiment results when varying the clustering hyper-parameters.

co-attention with 

clustering (T=1)

query 
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candidate 

image

co-attention with 

clustering (T=10)

Figure 4.8: Co-attention map generated with clustering as described in Section 4.3.2,
when T is set to 1 and 10.

To more clearly show the impact of parameter T on co-attention generation, some co-

attention map, which are generated as described in Section 4.3.2, but with different T

values for Eq. (4.8) are shown in Figure 4.8. As we can observe, for a small T = 1, the

co-attention maps based on the clustered candidate image local features tend to cover

more contextual regions of the target object. Nevertheless, there are still some unwanted

regions. After considering a larger T = 10, the co-attention becomes much clearer and

more focused on the target object.
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4.6.3 Clustering method selection

This ablation study provides further discussion about the selection of the clustering

method. In Section 4.2, modified k-means++ clustering is applied for the proposed

co-attention method. Simple k-means clustering naturally has some disadvantages or

limitations, such as it only works for convex shape distributed data and requires manu-

ally setting the number of cluster centres K. In the following, more tests are performed

with two different clustering algorithms: Spectral Clustering [127] and Mean-Shift [22].

Spectral clustering is a graph-based clustering method that works well on some non-convex

distributed data. In spectral clustering implementation, k-means is applied over the

eigenvectors of the Laplacian of the graph and the cluster number is set to 10. As shown

in Table 4.3, k-means++ and spectral clustering actually gives similar results. However,

spectral clustering requires more computational requirements and consequently has a

higher time cost. Additionally, another clustering method called Mean-Shift clustering is

tested. Mean-Shift clustering is a kernel-based density estimation clustering that is very

different from k-means clustering. The Mean Shift does not require the manual setting

of the cluster centre count but requires setting a bandwidth parameter for the kernel. In

Table 4.4 various bandwidth values are considered, such as 0.5, 1.0 and 1.5. Although

by carefully setting the bandwidth value, the Mean-Shift could give a similar result to

k-means, the number of features required is much larger than for k-means clustering. The

number of local features is quite important as it directly influences the computation cost

of the proposed co-attention method. According to these results, neither mean-shift nor

spectral clustering are appropriate for implementing the co-attention mechanism.

Cluster
Method

Medium (%) Hard (%)

ROxf RPar ROxf RPar

Spectral 86.4 93.1 72.7 85.6

k-means++ 86.4 93.2 72.6 85.6

Table 4.3: Retrieval results on ROxf and RPar with Spectral Clustering.
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Cluster
method

Band
width

Feature
number

Medium (%) Hard (%)

ROxf RPar ROxf RPar

0.5 325 87.2 92.3 74.1 83.8

Mean-Shift 1.0 76 85.4 91.6 71.7 82.6

1.5 11 84.1 91.5 68.4 82.6

Table 4.4: Retrieval results on ROxf and RPar datasets with Mean-Shift clustering and
different bandwidth setting. “feature number” indicates the average number of local
features after clustering.

4.6.4 The impact of PCA dimension reduction

The experiment results for the feature vector reduction using PCA are shown in Table 4.5.

According to Table 4.5, increasing the feature dimension from the default setting of 512

to 1024 will double the computation cost without bringing any significant improvement.

On the contrary, considering a feature dimension of 256 or even smaller will lead to

significant performance degradation. In conclusion, a feature dimension of 512 is a good

balance between the performance and computation cost.

Feature
Dimension

Medium (%) Hard (%)

ROxf RPar ROxf RPar

128 84.1 91.4 68.3 82.5

256 86.0 93.0 71.3 84.4

512 86.4 93.2 72.6 85.6

1024 86.4 93.2 72.7 85.7

Table 4.5: CBIR mAP results on ROxf and RPar datasets when varying the feature
dimension.

4.6.5 Impact of scales

Retrieval results of the proposed method “GeM†+CA” with different image scales are pro-

vided in Table 4.6. There are different 3 existing scale combinations implemented in the lit-

erature :
{

1√
2
, 1,

√
2
}
from [98],

{
1

2
√
2
, 1
2
, 1√

2
, 1,

√
2
}
from [146], and

{
1
4
, 1
2
√
2
, 1
2
, 1√

2
, 1,

√
2, 2
}

from [14, 123]. According to Table 4.6, when considering the combination of 5 scales gives

the best result for the proposed co-attention method. Using 7 scales does not bring much

improvement while increasing the computational cost for the feature extraction.
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1 1√
2

√
2 1

2
√
2

1
2

1
4

2
Medium (%) Hard (%)

ROxf RPar ROxf RPar

" - - - - - - 83.3 89.4 66.3 79.2

" " " - - - - 85.5 91.8 70.6 83.3

" " " " " - - 86.4 93.2 72.6 85.6

" " " " " " " 86.7 93.2 73.3 85.9

Table 4.6: Retrieval results on ROxf and RPar when considering different scales.

4.6.6 Impact of re-ranking

The impact of re-ranking on the proposed co-attention enabled CBIR pipeline is explored

in this subsection. Two different re-ranking methods: α-weighted query expansion (αQE)

[98] and diffusion [51] are considered.

αQE acts on feature vectors of top-ranked n images from the initial retrieval result by

applying weighting averaging and re-normalization. The weight of the i-th ranked image

descriptor is defined by (Vq
TVi)

α where Vq and Vi are the global feature vectors corre-

sponding to the query image and the i-th ranked image. The aggregated feature vector

serves as a query descriptor for the second-round retrieval and produces the final retrieval

result.

Diffusion [51] is another powerful re-ranking method and has been applied in CBIR works

[110]. Diffusion could be treated as an extension of the query expansion. Instead of only

utilizing top n images as query expansion, based on first round retrieval results, diffusion

explores the nearest neighbors by building a connection graph with the similarity score

between each pair of images from the whole database for re-ranking.

The retrieval results of the baseline GeM (GeM†) and the proposed co-attention method

(GeM†+CA) with these re-ranking methods are presented in Table 4.7. The proposed

method GeM†+CA always gives better retrieval accuracy with or without the re-ranking.

Specifically, on ROxford Hard set, even with re-ranking, the GeM† is still outperformed

by GeM†+CA without any re-ranking. As visualization examples shown in Figure 4.5, the

reason why simple GeM, which implicitly learns a query non-sensitive L2 norm attention at

the training stage, not working is not because the query information is not comprehensive
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enough, but because simple the query non-sensitive feature extraction manner will look

at the wrong place in the image for feature extraction. It happens especially when the

target object is not salient or surrounded by distractors. This problem can only be solved

by a proper query sensitive attention mechanism, which would force the model to look

towards the regions that match the query content, namely the co-attention.

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

R101-GeM† 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†+αQE 84.4 77.8 91.7 82.7 68.8 56.2 82.8 65.9

R101-GeM†+DF 85.6 79.9 91.9 84.3 69.4 60.1 85.3 69.3

R101-DELG† 82.4 73.0 90.1 78.0 65.2 50.1 80.6 59.2

R101-DELG + SP† 84.1 75.9 91.0 79.2 68.8 53.6 83.0 62.3

R101-GeM†+CA 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

R101-GeM†+CA+αQE 86.9 79.6 93.3 84.5 72.8 60.2 85.7 68.7

R101-GeM†+CA+DF 87.2 81.1 94.4 86.1 73.7 63.9 88.4 72.0

Table 4.7: Retrieval results on ROxf and RPar datasets with re-ranking. For comparision,
the DELG[14] with spatial verification (SP) re-ranking is also presented.

4.6.7 Impact of query noise

The standard evaluation protocol of ROxf/RPar dataset provides the bounding box for

each query image. By default, all existing works would utilize the bounding box to crop

the query image and only use the resulting patch as query input. One major concern

for the proposed co-attention method is: whether it is over-fitting to ROxf/RPar dataset

evaluation protocol or is robust enough when the query image is not cropped, containing

noises and clutters. Figure 4.9 visualizes the co-attention map when not cropping the

query image. When comparing the co-attention with and without the query crop, it can

be observed that there is not much difference in the results, even though the query im-

age in the second row contains a lot of background noise. Following the discussion from

Section 4.2.1, spatial pooling implicitly implements an L2 norm attention mechanism.

Within the proposed co-attention method pipeline, the query image features are selected

based on their L2 norms before global pooling. Thus it has strong robustness to back-

ground noises that are irrelevant to training data, such as humans, grass, sky, and street,

from the query image.

We do not consider the situation that one query image contains more than one potential
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query image target image
co-attention

with query crop

co-attention

without query crop

Figure 4.9: Co-attention visualization without query crop.

object of interest. On the one hand, the benchmark datasets ROxf/RPar [96] do not

include this kind of situation. On the other hand, the search purpose is totally subjective

to the CBIR system user. If the input query image contains multiple potential objects

of interest, the user is supposed to specify which exact object (or region) needs to be

searched, as the CBIR system can not know what the user has in mind. Suppose the user

still would like to use a whole image that contains multiple training data relevant objects

(regions) as query input and uniformly retrieve image content that matches with the

query, as the example shown in Figure 4.10. In that case, the proposed co-attention will

work similar to the query-nonsensitive attention, uniformly highlighting all training data

relevant regions. This happens because the co-attention is guided by global feature of the

query. If the query image contains multiple objects of interest, the resulting query global

feature would be a mixture of feature representations of them, leading to an unfocused

co-attention map in the end.

(a) An image contains 

multiple training data 

relevant object as query 

(b) An image contains 

multiple training data 

relevant object as candidate 

(c) Result co-

attention map

Figure 4.10: Co-attention visualization when consider a query image that contains mul-
tiple training data relevant object.



4.6. ABLATION EXPERIMENT AND DISCUSSION 93

Table 4.8 provides the retrieval results of the baseline “GeM†”, the proposed method

“GeM†+CA” and the current state-of-the-art work DOLG with/without the query image

crop. It can be seen that with or without query crop the co-attention method always

improves the baseline GeM model’s performance.

Method
query
crop

Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

GeM† % 82.5 78.4 90.7 81.3 62.9 56.1 81.0 65.1

GeM† " 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

DOLG [146]8 % 83.2 79.0 91.6 82.9 64.8 57.9 82.6 67.3

DOLG [146]8 " 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

GeM†+CA % 85.5 81.8 93.6 83.9 69.2 61.4 85.8 67.7

GeM†+CA " 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

Table 4.8: Retrieval results on ROxf and RPar datasets without query crop.

4.6.8 Robustness to baseline model training

The previous good retrieval results are all based on using the GeM model pre-trained

on the GLDv2 dataset with large batch size and ArcFace margin loss. What if the

baseline model is trained with a much smaller dataset and simple loss? Will, in this

case, the proposed co-attention method still provide positive improvements to retrieval

performance? To test robustness to baseline model training, another GeM baseline model

is trained following training settings from the original GeM pooling paper [98]. In details,

the new GeM baseline model is trained on rSfM-120k dataset [98] which only contains

around 90,000 images. The model is optimized with the simplest contrastive loss [24].

The batch size is set to 5. Each batch contains 5 image tuples. Each tuple contains 1

query image, 1 positive match image and 5 negative match images. The hard sample

mining is also performed according to the description in [98] and the model is trained for

100 epochs. The proposed co-attention method is applied with the new GeM model and

Table 4.9 shows the experiment results. It can be seen that even with smaller training

data and simpler loss functions, the proposed co-attention still brings positive effects

on retrieval performance. Of course, the improvement is not as impressive as that in

Table 4.1, because when considering smaller training data and a simple loss function for

the training, the feature tensor output by the backbone network is not as well-learned as

when considering the large dataset GLDv2 and the ArcFace loss for training.
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backbone co-attention
Medium (%) Hard (%)

ROxf RPar ROxf RPar

Res50 % 62.6 75.4 39.9 53.1

Res50 " 69.3 79.2 42.9 57.5

Res101 % 66.8 78.9 41.8 55.2

Res101 " 70.1 80.3 45.1 59.5

Table 4.9: Retrieval results on ROxf and RPar datasets when trained on rSfM dataset
with contrastive loss.

4.6.9 Why not directly perform similarity measure in one-to-

many manner

In the proposed co-attention method, the similarity scores between the query image global

feature Vq and candidate image clustered local features Xc,K are used as co-attention

scores to re-weightXc,K then perform GeM pooling to get the final candidate image global

featureVc. One concern about the proposed co-attention method could be the necessity of

co-attention weighted pooling. Why not just perform the similarity measure with Vq and

Xc,K in a one-to-many manner. Three different methods are tested to calculate the final

image pair matching score from K local match similarity scores between Vq and Xc,K .

As shown in Table 4.10, “Max” means using the maximum one among K local match

similarity scores as the final image pair match score, while “Mean” means calculating

the average value of them as the final result. “SoftMax” means applying the SoftMax

function over K local match scores and then performing a weighted sum over them. All

these methods lead to much worse results than the co-attention pipeline explained in

Section 4.3.2.

Method
Medium (%) Hard (%)

ROxf RPar ROxf RPar

Max 81.4 90.3 64.8 81.6

Mean 77.4 88.1 58.7 77.2

SoftMax 79.6 89.0 62.5 79.3

GeM†+CA 86.4 93.2 72.6 85.6

Table 4.10: Retrieval results on ROxf and RPar with different one-to-many match ways.
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4.6.10 More discussion about inverted file indexing

The local features selected by the L2 norm but without clustering are used for inverted

file indexing implementation. One concern about this practice is that: why not apply

inverted file indexing with the clustered local features Xc,K . Intuitively speaking, within

the co-attention enabled CBIR pipeline, the inverted file indexing is a general coarse-level

filter that tries to filter out candidate images that are highly unlikely to match with the

query. When applying the inverted file indexing, we do not want to accidentally filter out

candidate images that are ground-truth matched with the query. Accordingly, we apply

the inverted file indexing with a large codebook of sizeKcdb = 65536 while also considering

a large enough number of local features N = 500 from each image. So that any candidate

image local features shares visual words with any query local features, this candidate image

will be considered later for the co-attention generation and similarity measure evaluation.

Features from the clustered local feature set Xc,K have few counts but relatively high-level

semantic meaning, which is too discriminative between images. According to experimental

results, applying the inverted file indexing with clustered local features Xc,K will filter

out almost all database images and lead to worse retrieval performance.

In addition, the visual word codebook has an important role for both inverted file indexing

and image representation building in the current state-of-the-art work HOW [123], as the

ASMK [121] method is used by HOW to build local feature representations based on

the usage of the visual word codebook. On the contrary, in the proposed co-attention

CBIR pipeline, the inverted file indexing only serves as a general coarse-level filter to

initially pick out candidate images for later comparison. The accuracy of the proposed

co-attention method and image representation building do not rely on this mechanism.

With the setting described in Section 4.5.1, according to experimental results, the inverted

file indexing can speed up the retrieval by filtering out around 70% of easy negative images

from the database. In other words, when considering the evaluation dataset ROxf/RPar

with 1 million distractor images, we only need to perform the similarity measure with

around 300,000 database images for each query image. Meanwhile, it does not perform any

similarity measure or image feature match and almost makes no difference to the retrieval

accuracy (mAP). As shown in Table 4.11, the proposed method “GeM†+CA” gives almost

the same mAP results across ROxf/RPar datasets no matter with or without the Inverted

File Indexing (IVF). The only difference is that using the inverted file indexing would
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speed up the online retrieval procedure by filtering out those easily identifiable negative

database images.

Moreover, all hyper-parameter setting, like the codebook size Kcdb = 65536, for the in-

verted file indexing module is based on HOW [123] and not specifically optimized, as it

already results in a good retrieval speed.

Method IVF
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

GeM†+CA % 86.4 79.3 93.1 81.8 72.7 59.9 85.7 64.1

GeM†+CA " 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

Table 4.11: Retrieval results on ROxf and RPar datasets with/without inverted file in-
dexing.

4.6.11 Computation cost

Considering K = 10 clusters, feature dimension D
′
= 512, the memory cost to cache one

candidate image is 10× 512× 4 Bytes ≈ 0.02 MB and it takes around 21GB to cache the

whole ROxf/RPar database with the 1 million distractor set.

The feature extraction takes in average 240ms to cache one candidate image’s local features

with 5 scales, including the time cost for the local feature clustering. It could be time-

consuming, especially for a large database, but it can be performed offline, and it is

only done once. With pre-cached features and the inverted file indexing, searching on

ROxf/RPar with the 1 million distractor dataset for one query image takes on average

530ms with the help of acceleration by an NVIDIA Tesla GPU.

Considering a pair of the query image and candidate image of size 512 × 512 in original

scale as input, ResNet101(R101) [45] as the backbone network for GeM feature extraction,

Table 4.12 (a) and (b) compare the time cost of the GeM model at the online retrieval

stage with or without the proposed clustering-based co-attention. K = 10 clustered local

features of the candidate image have been pre-cached at the offline stage. All experiments

were performed 100 times, and we report the average time cost of each component in

Table 4.12.

As we can observe, at the online retrieval stage, when considering the proposed clustering-
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For query feature extract For cluster-based co-attention Cosine
similarityBackbone(R101) Feat select Pool and whiten PCA Co-attention generate and re-weighted pool

16 0.63 0.19 0.04 0.28 0.03

(a) Time cost of each component within the proposed clustering-based co-attention pipeline at
the online evaluation stage.

For query feature extract Cosine
similarityBackbone(R101) Pool and whiten

16 0.2 0.05

(b) Time cost of each component within the GeM [98] pipeline at the online evaluation stage.

Table 4.12: Time cost analysis of each component within the co-attention enabled pipeline
(a) and the original GeM pipeline (b) at the online evaluation stage. A pair of one query
image and one candidate image serves as input. The time cost of each component is
reported in milliseconds (ms).

based co-attention, the extra time cost is mainly caused by two steps: the local feature

selection over query image local features and the co-attention generation along with the

re-weighted pooling (corresponds to the dashed rectangle in Fig 4.2). In total, for one

pair of the query image and candidate image, the proposed co-attention method takes

around extra 1ms to get the final image match score.

Detailed computation cost requirements and comparison with other models, when pro-

cessing the ROxf/RPar datasets with 1 million distractor images in a batch-wise manner,

are provided in Table 4.13. The proposed method “GeM†+CA” requires a similar memory

cost as DELG [14]. When it comes to the retrieval time cost, “GeM†+CA” takes longer

than others when considering a Tesla GPU, especially slower than GeM and DOLG, be-

cause they are simple global feature methods in which each image is only represented by

a single global feature vector and the similarity measure is as simple as just calculating

the cosine similarity with the global feature vector. However, the proposed co-attention

method provides the best retrieval performance.

Method Device
Memory (GB)

ROxf/RPar+1M
Retrieval time (ms)

in average

HOW [123] CPU 14 750

GeM [98] Tesla GPU 8 250

DOLG [146] Tesla GPU 2 220

DELG+SP [14] Tesla GPU 22 383

GeM†+CA (ours) Tesla GPU 21 530

Table 4.13: Computation cost comparison.
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Compared with the CANet from Chapter 3, the major advantage of the clustering-based

co-attention method is that it only extracts K = 10 clustered local features from each

candidate image and the co-attention map is generated by simply performing cosine sim-

ilarity measure between the query global feature and clustered candidate local features.

This manner makes it feasible to pre-cache the clustered local features of the candidate

images at the offline stage, with no need to feed candidate images through the deep neural

network at the online stage.

4.7 Conclusion

In this chapter, we enable large-scale content-based image retrieval with co-attention

mechanisms for the first time. The proposed co-attention method can be treated as a

non-trainable-parameter module for a pre-trained spatial pooling model. It is intuitively

based on the similarity score between the global feature vector of the query image and the

clustered local features from the candidate image. The extra computation cost caused by

the query sensitivity is addressed by employing local feature clustering while also consid-

ering the inverted file indexing to speed up the retrieval procedure. While straightforward,

the proposed co-attention method generates good co-attention maps even in some chal-

lenging cases. By simply adding our co-attention method to the pre-trained baseline GeM

model, the retrieval performance is greatly improved and results in a new state-of-the-

art retrieval performance on benchmark datasets with comparable computation costs to

existing models.

According to experimental results obtained by the proposed co-attention method, a con-

clusion can be drawn that performing clustering over local features from the convolution

feature tensor could generate meaningful clustered local features, in which local features

belonging to the same object regions will be automatically grouped together, as demon-

strated in Figure 4.4. This approach not only dramatically reduces the number of local

features extracted from each candidate image but also makes the resulting local features

aware of more neighbour location information, representing an area over the target ob-

ject instead of a simple grid local patch over the original image. These clustered local

features are more expressive than each original entry on the convolution feature tensor

but more localized than the naive global pooling feature. Then, co-attention maps are
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derived from these well-extracted candidate images’ local features by simply performing

the cosine similarity measure with the query global feature.

Despite its success, the proposed clustering-based co-attention method still has room for

improvement. One central problem is that the co-attention calculation must be performed

at the online stage to build the weighted global feature for each candidate image before

performing the similarity measure. This means for each candidate image, its feature

must be cached as a real-value float number and it requires GPU acceleration at the

retrieval stage. Although the usage of feature selection and clustering has made the

extra computation cost comparable to existing works, there are some models that would

further compress database image features with binary encoding, like HOW[123], which

leads to significantly fewer memory requirements and would also eliminate the reliance

of using a GPU device at the retrieval stage. In the research presented in the following

chapter, we aim to maintain excellent performance improvement and good interpretable

query-sensitive spatial attention while trying to further reduce the computation cost.
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Chapter 5

Expressive local feature match

5.1 Introduction

Former chapters have proposed different methods for co-attention generation. Especially,

the clustering-based co-attention could extract few but expressive clustered local features

from each candidate image and generate good co-attention maps even under challenging

situations. However, the co-attention generation procedure needs to be performed at the

online retrieval stage. It means each element of the candidate image local features must

be cached as a real-value float number for calculating the co-attention map. This fact

not only causes extra computation cost at the online retrieval stage but also prevent the

feature from being further compressed by binary encoding, which has been widely applied

in other CBIR methods for cost reduction.

Based on the clustering-based feature extraction pipeline from the last chapter, this chap-

ter explores further using the clustered local features to perform many-to-many local fea-

ture matching for content-based image retrieval. Unlike existing local feature methods,

such as HOW[123] that tend to store huge amounts of low-dimensional local features and

apply complex match kernel, like ASMK [121], for similarity measure, this work proposes

a corresponding many-to-many similarity criterion apply on the few but expressive clus-

tered local features. Moreover, as binary encoding has been widely applied for large-scale

image search, we also propose a trainable binary encoding layer that is initialized with

Principal Component Analysis (PCA) and then fine-tuned based on the idea of the Bi-half

101
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Net [73]. After fine-tuning, the proposed binary encoding layer generates compact binary

codes with slight performance degradation. According to the experimental results, the

proposed local match method could achieve comparable CBIR accuracy to the clustering-

based co-attention method from the last chapter but with much lower computation costs

and does not require GPU acceleration at the online retrieval stage. Besides, extensive

visualization results also demonstrate that the local match method implicitly leads to a

co-attention-like local match map, in which the effectiveness and contribution of the local

features for each candidate image varies with the query feature.

The rest of this chapter is organized as follows. Some preliminaries are introduced in Sec-

tion 5.2. The proposed methodology of performing many-to-many local feature matching

with expressive binary code for CBIR is explained in Section 5.3. The experimental results

are provided in Section 5.4, while additional ablation studies and discussion are provided

in Section 5.5. The conclusions of this chapter are drawn in Section 5.6.

5.2 Preliminary

In this section, we start with introducing the baseline GeM model and the Bi-half Net.

Afterward, we present our proposed expressive local feature extraction pipeline and many-

to-many local feature matching method for content-based image retrieval.

5.2.1 Baseline model structure and training

Similar to the model described in Section 4.2.2, in this chapter, we still use ResNet [45] as

the backbone network followed by a generalized mean pooling layer defined by Eq. (4.1),

with a fixed power co-efficient p = 3, and a trainable fully connected layer for feature

whitening. The model is also trained with the ArcFace loss (Eq.4.4).
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5.2.2 Binarization and Bi-half Net

The Sign function is a straightforward binary encoding module to transform a continuous

real value space feature into a binary code, defined as:

sign(x) =

 −1, if x ≤ 0

1, if x > 0

(5.1)

The Sign function has been the default choice for some CBIR works to binarize contin-

uous real-value features [123, 87, 14]. Nevertheless, its direct application over real-value

features, which are optimized with the real-value loss, could lead to information loss, cor-

rupting the whole model’s performance. This happens because the continuous real-value

feature representation reflects data-defining information by means of the variance across

each dimension (channel). Suppose we simply replace a continuous real-value with a bi-

nary symbol (+1 or -1). In that case, some channels that originally had significant value

differences might be arbitrarily quantized to the same code, losing the information they

used to carry. This could be a severe problem for CBIR, as the most commonly used loss

function, such as triplet loss or contrastive loss, and similarity measure metrics, such as

L2 distance, are all based on real value variance across each channel calculation. For ex-

ample, let us consider two dimensions (channel) toy features: [0.8, 0.1] and [0.2, 0.9]; they

have a significant L2 difference so that the model can distinguish between them. However,

after the binarization with the Sign function, they are both represented by [1, 1]. Thus,

the binary code losses all discriminative information for these two features.

Accordingly, a good binary encoder is supposed to transmit as much information as pos-

sible after binarizing a continuous feature representation. What exact attributes make a

good binary code has been discussed in several works [141, 135]. Especially, the recent

work Bi-half Net [73] explained this from the aspect of information theory. According to

the derivation in [73], the information per channel transmitted from the original contin-

uous features to the corresponding binary code is maximized when the binary value (-1,

1) distribution across all channels is half-half between the codes of 1 and -1 :

p(B = 1) = P (B = −1) =
1

2
. (5.2)
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To achieve this goal, at the training stage, before feeding a batch of feature vectors F into

any loss function L, a Bi-half layer π0 is applied to transform F into the binary code B

while guaranteeing that each channel has equal probability to be −1 or +1:

B = π0(F) =

 1, top half of sorted F

−1, otherwise
(5.3)

A major problem of directly optimizing the binary codes is the vanishing gradient as

the binarization operation is not differentiable. To obtain the gradients for the back-

propagation training, a straight through strategy [10, 116] is applied for the hash layer’s

gradient calculation. Additionally, the continuous feature F distribution is supposed to

align with the ideal half-half distributed binary code B [73]. Thus the final forward and

backward process of the Bi-half layer [73] is defined by:

Forward: B = π0(F),

Backward: ∂L
∂F

= ∂L
∂B

+ φ(F−B),

(5.4)

where φ is a hyper-parameter and it equals the multiplicative inverse of the element count

of feature batch F.

5.3 Extracting expressive binary local features

In the following, we describe how we extract compact but expressive binary local features

from the feature tensor output by the backbone network and perform many-to-many local

feature matching for the CBIR task.

5.3.1 Local feature extraction

The first challenge when performing many-to-many local feature matching is still the com-

putation cost caused by large numbers of non-informative local features extracted from a

given image. As explained in Section 4.6, given an input image I of size h×w, after feeding
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Figure 5.1: Illustration of the local match method at different stages. (a) training the
baseline GeM model follows the description from Section 4.2.2. (b) learn the PCA projec-
tion parameters with pre-trained ArcFace class proxy features. (c) fine-tuning the PCA
projection parameter and dimension reduced class proxies with bi-half layer. (d) expres-
sive local feature representation building at retrieval stage.

through ResNet [45], hundreds of local features could be extracted and the number could

exponentially increase if consider multi-scale feature extraction scheme. Fortunately, the

success of co-attention, described in Chapter 4, has proved that combining L2 norm based

feature selection and simple k-means clustering could result in few but meaningful clus-

tered local features for the input image. Accordingly, with the input image I as input,

after feeding through the backbone network, L2 norm based feature selection followed by

k-means clustering are performed, resulting in selected local features XN ∈ RN×D and

clustered local features XK ∈ RK×D (K << N) separately.



106 CHAPTER 5. EXPRESSIVE LOCAL FEATURE MATCH

5.3.2 Local feature compression and fine-tuning

In the following, we discuss dimension reduction and binarization for further feature

compression and computation cost reduction.

Dimension reduction by PCA. The dimension reduction is still applied with PCA.

Normally, PCA serves as post-processing after the CNN has been trained and the PCA

parameters (the projection matrix for dimension reduction) are learned with features of

random sample images from the training dataset. As mentioned in Section 4.2.2, the

ArcFace weight matrix W ∈ RNc×D from Eq. (4.4) could be treated as proxy features

for each image class. We use W as a set of comprehensive sample features which are

more informative than those extracted from a set of random training images for the PCA

parameter learning. The resulting learned PCA parameters: mean and eigenvectors,

are denoted as mW ∈ R1×D and PW ∈ RDB×D, where D corresponds to the original

backbone network output dimension, DB is a hyper-parameter, indicating the reduced

output feature dimension. For any new incoming features Y ∈ RD, the dimension reduced

output feature Y′ ∈ RDB is calculated as:

Y′ = (Y −mW) PT
W (5.5)

Binarization with Bi-half fine-tuning. Binary encoding is another common practice

to further compress the extracted features. However, as mentioned before, by directly

applying the Sign function for feature binarization would result in information loss. Ex-

perimental results (see the results from Section 5.5) indicate a negative impact on the

results when simply applying the Sign function together with the PCA feature dimen-

sion reduction. To address this problem, as the PCA operation defined by Eq. (5.5) is

differentiable, we adapt the Bi-half layer from the Bi-half Net [73] to fine-tune both the

fully-connected whitening layer and the PCA parameters: mW and PW . As shown in

Figure. 5.1 (c), during the fine-tuning stage, we have a dimension reduction of the class

proxy features from the ArcFace loss module by the learned PCA parameters mW , PW .

The resulting features WP serve as the new class proxy features at the fine-tuning stage.

For each input image I at the fine-tuning stage, after whitening by the fully connected

layer, PCA dimension reduction with parameters mW , PW are also applied on the global
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GeM feature Vg resulting in a compact feature vector VP ∈ R1×DB .

The original Bi-half layer is applied in a batch-wise manner. In other words, it actually

enforces that each channel within each batch has equal probabilities to be −1 or +1.

However, what we actually want is to have a half-half distribution of −1 and +1 bits over

the whole binary feature space. At the training stage, it is impossible to have the batch

size as large as the whole training database; the batch size setting may also vary with

the training procedure implementation and GPU hardware memory capacity, making the

training procedure more unstable. For example, let us consider a set of toy features with

batch sizes of 2: [0.5, 0.3], [0.1, 0.9]. Applying the Bi-half layer on this batch of features

will result in the binary codes: [1,−1], [−1, 1]. However, if the batch features would

change to: [0.5, 0.3], [0.6, 0.1], then the resulting Bi-half code will be [−1, 1], [1,−1]. Only

due to changes to other features within the same batch lot, the binary code for the same

feature [0.5, 0.3] could change from [1,−1] to [−1, 1]. Nevertheless, the ArcFace loss works

with the class proxy features W . For a large enough training dataset (like GLDv2 [136]),

the number of classes is much larger than in the common batch size setting. Each class

proxy feature represents a whole class of images instead of a single image. Enforcing these

proxy features to have a half-half binary symbol distributions could potentially make the

binary code of the same class images be optimized towards a consistent goal across all

batch steps and eliminate the distraction caused by the batch size setting or the random

image sample shuffle at the training stage. Accordingly, as shown in the middle part of

Figure. 5.1 (c), we apply the Bi-half layer on the dimension reduced proxies WP to get

the binarized proxies BW . VP and BW are used to calculate the ArcFace loss and then

Eq. (4.4) is re-written as :

L(V̂P ,y) = − log

(
exp(γ × AF(V̂P b̂

T
i , yi))∑Nc

j=1 exp(γ × AF(V̂P b̂T
j , yj))

)
, (5.6)

where V̂P is the L2 normalized image feature vector VP . b̂i refers to the proxy feature for

class i from the ArcFace weight matrix BW . Gradients of the Bi-half layer are obtained

according to Eq. (5.4).

It needs to point out that, at the training stage, the Bi-half layer would only re-assign the

value of each feature element to either −1 or +1 as floats and not as binary bits, because

we have to perform backward transmission based on Eq. (5.4). In other words, the fine-
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tuning procedure is to encourage WP to approach the half-half distributed binary values

{−1, 1} while forcing each training image feature VP to get close to the corresponding

binary class proxy feature from BW and move away from others.

In addition, starting from the ArcFace loss, the gradient is only transmitted backward

to the proxies WP and right before the backbone network, as shown in Figure. 5.1 (c).

In other words, we only fine-tune the fully connected whitening layer, PCA parameters

(mW and PW) and the new class proxies WP . There are two reasons for this: 1) as the

backbone network has been well-trained at the baseline model training stage, we would

like to train a binary coding module to transform existing well-learned continuous fea-

tures into informative binary codes. Freezing the backbone network could help us ensure

a fair comparison during the ablation study experiments and make sure the performance

improvement is only caused by the implementation of binary encoding and local fea-

ture match, instead of some training tricks. 2) freezing the backbone network and only

fine-tuning the other trainable parameters would ensure significant speed up of training

procedure. More detailed discussion is provided in Section 5.5.3.

In a way, the fully connected whitening layer and PCA parametersmW , PW together work

as a trainable encoder to project the original GeM pooled features into a DB dimension

latent space. This enforces that each feature channel has an equal probability to be 1

(larger than 0) or −1 (smaller than 0). As a result, at the retrieval (evaluation) stage,

after each real-value feature element is binarized by the Sign function, we can keep as

much information (variance) of each channel as possible, leading to a good performance.

5.3.3 Local feature match

Let us consider a pair of images, representing the query image Iq and the candidate image

Ic from a given database. After the feature extraction pipeline as shown in Figure. 5.1

(d), two corresponding binary coded local feature sets Bq,K = {bq,i|i = 1, . . . , K} and

Bc,K = {bc,j|j = 1, . . . , K} are extracted. Then, a similarity matrix M = [mi,j] ∈ RK×K

is obtained by calculating the similarity score between each pair of query local feature fq,i

and local feature candidates fc,j:

mi,j = d(bq,i,bc,j), (5.7)
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where d(·, ·) is a similarity function. For real number feature vectors, it could be the

cosine similarity. For binary features, a common way of measuring the distance between

two binary coded sequences is by calculating the Hamming distance. Hamming distance

represents the count of those bits that differ between two vectors. The Hamming distance

ranges between [0, D] given that a vector has a feature dimension D and it can be nor-

malized to the range [0, 1] by dividing with the feature dimension D. We evaluate the

similarity by subtracting the Hamming distance from 1, given that the Hamming distance

indicates the difference, which is the counterpart of similarity. Consequently, the i-th row

of the similarity matrix M stores the similarity score between bq,i and each local feature

from the candidate image feature set Bc,K .

In principle, the matrix M is supposed to be transformed into a single similarity score

between the image pair {Iq, Ic} and the similarity score calculation is supposed to be

computed fast online. Thus, we first define the similarity score between a single query

local feature bq,i and the whole candidate image by:

s(bq,i, Ic) = max
j

mi,j, (5.8)

and eventually, the similarity between images Iq and Ic is given by :

S(Iq, Ic) =

K∑
i=1

s(bq,i, Ic)

K
. (5.9)

As explained in Section 4.4.2, here we also apply the inverted file indexing for online

retrieval speed up. The framework of the proposed method when considering the in-

verted file indexing is shown in Figure 5.2. Most details are the same to descriptions in

Section 4.4.2. The main differences are: at the feature caching stage, with the selected

local features Xc,N , after performing k-means clustering and PCA dimension reduction

with fine-tuned components mW and PW , it is binarized by Sign function, resulting in

the clustered binary local features Bc,K . At the online retrieval stage, the clustered local

features Xq,K is also PCA dimension reduced and binarized by the Sign function. Then,

according to the cached dictionary, only those database images that share at least one

visual word with the query image are picked out for the later local feature matching and

similarity measure as described in Section 5.3.3.
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Figure 5.2: Illustration of the proposed method’s pipeline with inverted file indexing.

5.4 Experiments

In this section, we first discuss the experiment setup. Then, some visualization results

are presented to show the effeteness of the proposed local feature match strategy. After

that, retrieval results comparison between the proposed local match method and other

existing state-of-the-art works are provided.
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5.4.1 Experimental setup

Implementation details. We still consider ResNet101 (and ResNet50) [45] as the back-

bone network (D = 2048). Settings for the baseline GeM model training and inverted file

indexing are the same as description in Section 4.5.1 For the Bi-half fine-tuning, we use

the same training setting as the baseline GeM model, except that the initial learning rate

is set to 0.0001. The GeM baseline model is trained for 50 epochs and then fine-tuned

with Bi-half layer for 10 epochs.

At the retrieval stage, we still set the local feature selection count N = 500 and the cluster

number K = 10 for k-means clustering. After whitening, the clustered local features of

both query image and candidate image, represented by Xq,K and Xc,K , are compressed

using the PCA dimension reduction with fine-tuned parametersmW andPW toDB = 512,

followed by binarization with the Sign function, given by Eq. (5.1).

We also consider the multi-scale scheme feature extraction, as explained in Section 4.4.3,

when not considering local feature match we use 3 scales {1,
√
2, 1√

2
}. When considering

the proposed local feature match method, we still have feature selection from 5 scales:

{ 1
2
√
2
, 1
2
, 1√

2
, 1,

√
2}.

Evaluation dataset. Revisited Oxford and Paris datasets [96] along with the 1 million

disctrator set R1M [96] are still considered as evaluation datasets in this chapter. By

default, each input query image is cropped with the provided bounding boxes for standard

evaluation protocol.

5.4.2 Local match visualization

As mentioned in Section 5.3.3, we only keep the most similar candidate image clustered

local feature as its match for each clustered query local feature. Match scores for the

locations that are not selected are set to zero. Local features grouped into the same cluster

share the corresponding clustered local feature as their representation. Match scores of

all local features from images at different scales are projected back to the corresponding

location (or region) from the original image and accumulated to get the final score map.
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We consider heatmaps to show the effectiveness of the proposed local match method.

Given a pair of query and candidate images as shown in Figure. 5.3 (a), while each row

from Figure. 5.3 (b) shows two pairs of matching clustered local features from the query

image and candidate image. Each pair of matching clustered local features results in a

localized heatmap indicating the relevant regions. We have 10 clusters for each image.

Thus we obtain 10 local matching maps as shown in Figure. 5.3 (b), exampled (1) to

(10). Location-wise adding all these local match heatmaps and normalizing to range [0, 1]

would finally get the global match map as shown in Figure. 5.3 (c).

query image candidate image

Local match 

heatmap 

(1)

query image 

local feature

candidate image

local feature 

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

(10)

Location-wise 

addition

(b) visualization of K=10 clustered local feature match (with 5 scales)

Local match 

heatmap 

query image 

local feature

candidate image

local feature 

(a) query and candidate image sample

(c) Location-wise addition to get the global match map

Figure 5.3: Visualization of the local matching examples.

In Figure. 5.4, we show more examples of local match map visualization results along with

their corresponding L2 norm attention maps for comparison. The L2 norm reflects the

importance of each location, as discussed in Section 4.2.1, or how much it contributes to

the final feature vector obtained by global pooling. Accordingly, the L2 norm attention
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map also reflects each location’s contribution to the similarity in the query-target image

pair. As we can observe, the L2 norm attention maps tend to be evenly distributed over the

relevant content of the training data (in this case represented by all landmarks or buildings

content). For some easy cases, when the target region is salient and of large scale, it may

work well. However, for some hard cases with multiple training data relevant objects,

like the five examples from Figure. 5.3, the L2 norm would not be able to choose the

correct location to focus on and could highlight many unwanted regions or even indicate

the wrong places. On the contrary, with the proposed local match implementation, most

matching local feature pairs between the query and target images would have the highest

similarity score. As a result, these matching local feature locations would also represent

the most important contributions to the final similarity score between the image pair.

When considering the same target image with different query content, as in examples

5 and 6, the result local match maps correctly highlight the corresponding regions of

interest. In a way, the visualization of local match maps looks like co-attention, as the

importance of each local feature from the candidate image is no longer fixed as in the

traditional global spatial pooling. The effectiveness and contribution of the local features

for each candidate image varies with the query feature. In each candidate image from

Figure. 5.4, the local match score comes mostly from the region that matches the query

content, even when the target object is not salient or is surrounded by some other similar

class objects.

5.4.3 Retrieval results

Quantitative result. Image retrieval results of existing works and our local match

method are provided in Table 5.1. As mentioned in Section 4.5.4, for fair comparison,

some recent state-of-the-art works are re-implemented and marked with “†”.

Group (A) from Table 5.1 shows the results of local feature methods. Group (B) from

Table 5.1 shows the result of the global feature methods while the bottom group (C) from

Table 5.1 shows the results of the proposed local match method with PCA dimension

reduction and Bi-half fine-tuning applied (LM-BiHalf). The local match method could be

treated like a post-processing module over the pre-trained baseline GeM model. As we can

observe, it significantly improves the baseline model’s retrieval performance. Especially,
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Figure 5.4: Visualization of the proposed local match and comparison with L2 norm
attention.

when considering the ResNet101 as the backbone network, on the Hard set of ROxf (RPar),

the mAP of local match method reaches 72.0% (83.6%). Moreover, when considering the

1 million distractor set, the local match method still outperforms current state-of-the-art

works DELG and DOLG on ROxf+1M dataset and show comparable results on RPar+1M

dataset.

5.4.4 Qualitative retrieval results

In Figure. 5.5, we provide a qualitative retrieval results comparison between the proposed

local match method “GeM†-LM-BiHalf” and the baseline GeM model on the challenging

ROxf dataset [96], considering the Hard evaluation protocol. The query image is shown

on the first column from the left side of each row with a yellow bounding box indicating
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Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

(A) Local feature

HesAff-rSIFT-ASMK*+SP [121] 60.6 46.8 61.4 42.3 36.7 26.9 35.0 16.8

HardNet-ASMK*+SP [79] 65.6 - 65.2 - 41.1 - 38.5 -

DELF-ASMK*+SP [120] 67.8 53.8 76.9 57.3 43.1 31.2 55.4 26.4

DELF-D2R-R-ASMK*+SP [120] 76.0 64.0 80.2 59.7 52.4 38.1 58.6 29.4

R50−-HOW-MDA [137] 82.0 68.7 83.3 64.7 62.2 45.3 66.2 38.9

R50−-HOW [123] 79.4 65.8 81.6 61.8 56.9 38.9 62.4 33.7

R101−-HOW (GLDv2)† 83.9 77.9 87.9 76.4 71.3 52.8 76.0 56.4

(B) Global feature

R101-R-MAC [39] 60.9 39.3 78.9 54.8 32.4 12.5 59.4 28.0

AlexNet-GeM [98] 43.3 24.2 58.0 29.9 17.1 9.4 29.7 8.4

VGG16-GeM [98] 61.9 42.6 69.3 45.4 33.7 19.0 44.3 19.1

R101-GeM [98] 64.7 45.2 77.2 52.3 38.5 19.9 56.3 24.7

R101-GeM-AP [101] 67.5 47.5 80.1 52.5 42.8 23.2 60.5 25.1

R101-GeM↑ [110] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8

R101-GeM (GLD) [85] 67.3 49.5 80.6 57.3 44.3 25.7 61.5 29.8

R101-DSM [110] 65.3 47.6 77.4 52.8 39.2 23.2 56.2 25.0

R101-SOLAR [85] 69.9 53.5 81.6 59.2 47.9 29.9 64.5 33.4

R50-DELG [14] 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4

R50-DELG + SP [14] 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7

R101-DELG [14] 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9

R101-DELG + SP [14] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7

R101-DELG† 82.4 73.0 90.1 78.0 65.2 50.1 80.6 59.2

R101-DELG + SP† 84.1 75.9 91.0 79.2 68.8 53.6 83.0 62.3

R50-DOLG [146]8 81.2 71.4 90.1 79.0 62.6 47.3 79.2 59.8

R101-DOLG [146]8 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

(C) Our method

R50-GeM† 79.8 69.0 87.3 73.1 60.4 44.2 74.0 52.0

R50-GeM†-LM-BiHalf 84.4 72.4 91.0 74.8 67.9 50.7 81.6 53.9

R101-GeM† 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†-LM-BiHalf 86.7 76.6 92.0 79.3 72.0 54.8 83.6 61.4

Table 5.1: Image retrieval results on ROxf/RPar datasets (and their extended version
+1M distractor set R1M), considering Medium and Hard evaluation protocols. Groups
(A) and (B) separately show the results of local and global feature methods. The bottom
group (C) shows the results of our model. “GeM†” means the re-implemented baseline
GeM model, which is trained with the setting from Section 5.4.1. “GeM†-LM-BiHalf”
means implementing the proposed local match method and the bi-half fine-tuning with
the baseline GeM. “SP” refers to the spatial verification re-ranking [87].

the query region of interest. We compare the top 5 retrieval results with the green outline

denoting correct retrieval results while red markings denote incorrect results. Same query

images are considered as in Figure. 4.6 of Chapter. 4. As we can observe, the proposed

local match method also globally outperforms the baseline GeM model, whose retrieved

images are shown underneath. The local match method correctly provides all top 5

retrievals for all four query images, while the baseline GeM leads to several incorrect
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outcomes.

GeM†-LM

-BiHalf

GeM†

GeM†

GeM†
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GeM†-LM

-BiHalf

GeM†-LM

-BiHalf

Figure 5.5: Top 5 retrieval results for the proposed Local Match method (with PCA
dimension reduction and Bi-half fine-tuning applied) and GeM on images from ROxf
dataset.

5.5 Ablation experiment and discussion

In this section, we provide more detailed ablation studies about the impact of each module

and the hyper-parameters on retrieval performance.

5.5.1 Binarization and Bi-half fine-tuning impact

We first verify the impact of the Bi-hash fine-tuning on the model’s performance. The

first row from Table 5.2 shows the results when applying the proposed local match method

with the baseline GeM but without binarization, PCA dimension reduction and Bi-half

fine-tuning. In this case, all similarity scores are calculated with cosine similarity. The

second row in Table 5.2 provides the results when applying the binarization but without

considering PCA dimension reduction and Bi-half fine-tuning. Clustered local features

Xq,K and Xc,N are both directly binarized by the Sign function Eq. (5.1) then perform the

local match as described in Section 5.3.3. The third row applies PCA dimension reduc-

tion, reducing the feature dimension to DB = 512 without the Bi-half fine-tuning. The

fourth row represents the intact pipeline of the local match method with PCA dimension
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Binary
Bi-half
fine-tune

PCA
Feature

dimension
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

% % % 2048 86.4 77.3 92.3 80.0 71.5 55.4 84.1 62.0

" % % 2048 86.1 76.7 92.2 79.3 71.2 54.6 84.0 61.1

" % " 512 85.4 75.3 90.9 78.0 70.4 52.6 82.3 59.2

" " " 512 86.7 76.6 92.0 79.3 72.0 54.8 83.6 61.4

Table 5.2: Ablation experimental results when considering the Bi-half fine-tuning. The
column “PCA” indicates whether PCA is applied for dimension reduction. The column
“Bi-half fine-tune” indicates whether the whitening layer and PCA parameters are fine-
tuned, as illustrated in Figure. 5.1 (c). “Feature dimension” provides the dimension of
the final output feature.

reduction and Bi-half fine-tuning both applied. When applying both PCA dimension re-

duction and binarization but without Bi-half fine-tuning, we can observe that the model

performance will decrease significantly, especially considering the 1 million distractor set.

After Bi-half fine-tuning, the performance deterioration is greatly relieved. The mAP on

the Hard set of ROxf even increases from 70.4% to 72.0%.

5.5.2 Different way of Bi-half layer implementation

The original Bi-half layer from [73] is applied on each batch feature at the training stage,

while we use the Bi-half layer on class proxy features from the ArcFace loss function

Eq. (4.4) at the fine-tuning stage. Here, we also explore the effect caused by these two

different ways of Bi-half layer implementation. Table 5.3 presents retrieval results with

different Bi-half layer implementation. We can observe that, after 60 epochs of training

(fine-tuning) in total, applying the Bi-half layer on proxy features leads to better retrieval

results. In addition, according to our observation, applying the Bi-half layer on each

batch feature at the training stage makes the model converge slower than when applying

it on the proxy features. As discussed in Section 5.3.2, directly applying the Bi-half layer

to the batch feature could cause an unstable feature value assignment. On the contrary,

applying it to the proxy feature could optimise the model towards a consistent goal across

all batch steps, eliminating the distraction caused by the batch size setting or the random

image sample shuffle during the training stage.
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Bi-half
apply

Medium (%) Hard (%)

ROxf RPar ROxf RPar

Batch 85.6 91.3 71.1 82.8

Proxy 86.7 92.0 72.0 83.6

Table 5.3: Retrieval results on ROxf and RPar datasets when considering different ways
for the Bi-half layer implementation. “Proxy” means that it is applied on proxy features
from ArcFace loss, as described in Section 5.3.2, ”Batch” means it is applied on each
batch of the feature at the training stage, as described in [73]. Both models are trained
(fine-tuned) according to the description from Section 5.4.1 with no more than 60 epochs.

5.5.3 Why implementing the Bi-half layer at the fine-tuning

stage

The dimension reduction is performed by PCA after the baseline model training stage,

as shown in Figure 5.1 (b), is finished. Then, the whitening layer along with the PCA

parameters: mW , PW are separately fine-tuned as shown in Figure 5.1 (c). One concern

could be that why not directly train the whole pipeline in Figure 5.1 (c) in an end-to-end

manner from scratch10. There are two main reasons accounting for this: First, sharing the

same backbone but only fine-tuning the whitening layer while the PCA components could

give a fairer comparison to the baseline GeM model. In addition, it makes the ablation

study of dimension reduction, as discussed in Section 5.5.4 more fair and convenient as

the only changes for each dimension setting are to modify the PCA output dimension and

then do the fine-tuning for only 10 epochs. Second, separately fine-tuning the whitening

layer and PCA could greatly reduce the global training time cost. According to the

testing results, with 4 NVIDIA Tesla GPU, for 60 (50+10) epochs of training, optimizing

the whole pipeline from Figure 5.1 (c) in an end-to-end manner takes more than 14 days.

For comparison, when first optimising the baseline GeM model for 50 epochs and then

fine-tune the whitening layer and PCA components for 10 epochs, it will take around 11

days (10 days for baseline GeM, less than 1 day for the fine-tuning). In other words,

directly training the whole pipeline will cause extra time costs for training but without

any further performance improvement.

10Under this circumstance the ArcFace loss proxies are initialized with random values and the PCA
dimension module could be replaced by a fully connected layer which is also randomly initialized.
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5.5.4 The impact of PCA dimension reduction

Table 5.4 presents the ablation experiment results with respect to varying the feature

dimension. We can change the feature vector dimension by modifying hyper-parameter

DB, as explained in Section 5.3.2. Models with different dimension outputs are separately

Bi-half fine-tuned as illustrated in the pipeline from Figure. 5.1 (c). Generally, a larger

feature dimension space would lead to better retrieval results. However, it would also

require extra computation costs. According to Table 5.4, increasing the feature dimension

from the default setting of 512 to 1024 brings minimal improvements. Meanwhile, reducing

the feature dimension to 256 or even smaller will cause great performance degradation.

Accordingly, DB = 512 represents a good balance between performance and computation

cost.

Feature
Dimension

Medium (%) Hard (%)

ROxf RPar ROxf RPar

128 83.6 89.6 68.5 80.8

256 86.5 91.3 71.6 82.3

512 86.7 92.0 72.0 83.6

1024 86.9 92.1 72.3 83.8

Table 5.4: Retrieval results on ROxf and RPar datasets when considering PCA dimension
reduction.

5.5.5 Impact of scales

Retrieval results of the proposed method ”GeM-LM-BiHalf” with different image scales in

Table 5.5. We still consider the three existing scale combinations implemented in the liter-

ature :
{

1√
2
, 1,

√
2
}
from [98],

{
1

2
√
2
, 1
2
, 1√

2
, 1,

√
2
}
from [146], and

{
1
4
, 1
2
√
2
, 1
2
, 1√

2
, 1,

√
2, 2
}

from [14, 123]. As we can observe from Table 5.5, considering the combination of 5 scales

gives the best result for our local match method. Using 7 scales brings little improvement

on ROxf dataset but comes with more computation cost for the feature extraction.
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1 1√
2

√
2 1

2
√
2

1
2

1
4

2
Medium (%) Hard (%)

ROxf RPar ROxf RPar

" - - - - - - 82.7 88.6 66.0 78.1

" " " - - - - 84.4 90.4 69.0 81.0

" " " " " - - 86.7 92.0 72.0 83.6

" " " " " " " 87.2 92.1 73.0 83.6

Table 5.5: Retrieval results on ROxf and RPar when considering different scales.

5.5.6 Impact of clustering parameters

Two diagrams in Figure. 5.6 (a), (b) show the impact of the number of the initially

selected features N as well as the number of clusters K on the retrieval performance.

A small N = 200 could not cover enough local features, while N = 1000 is too large

and may pick out too many backgrounds or irrelevant local features, making the feature

selection meaningless. A smaller K could further reduce the computation cost, but it

would arbitrarily fuse many local features into larger clusters reducing the local matching

benefits. A relatively larger K could further improve the retrieval performance as it leads

to more detailed clustering, but it would also result in additional computation costs with

a marginal improvement.

m
A

P
(%

)

(a) Ablation study on parameter N (b) Ablation study on parameter K

Figure 5.6: Ablation study on clustering parameters.

5.5.7 Clustering selection

In this ablation study, we present the impact of clustering method selection for the pro-

posed local match pipeline. We still consider two other clustering algorithms: Spectral

Clustering [127] and Mean-Shift [22] as described in Section 4.6.3. As we can see from

Table 5.6, for the proposed local feature match pipeline, spectral clustering still bring no
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Cluster
Method

Medium (%) Hard (%)

ROxf RPar ROxf RPar

Spectral 86.6 92.0 71.9 83.4

k-means++ 86.7 92.0 72.0 83.6

Table 5.6: Retrieval results on ROxf and
RPar with Spectral Clustering.

Cluster
method

Bandwidth
Feature
number

Medium (%) Hard (%)

ROxf RPar ROxf RPar

0.5 325 87.0 91.8 72.7 82.7

Mean-Shift 1 76 85.2 90.5 70.9 81.8

1.5 11 83.4 90.0 67.6 81.6

Table 5.7: Retrieval results on ROxf and
RPar datasets with Mean-Shift clustering
and different bandwidth setting. “feature
number” indicates the average number of lo-
cal features after clustering

advantages but just causes more time cost when compared to the k-means clustering.

According to Table 5.7 Mean-Shift is still outperformed by k-means with the local feature

match pipeline. Accordingly, despite its straightforwardness, k-means is still the most

effective clustering method.

5.5.8 Impact of query crop

As mentioned before, the standard evaluation protocol of ROxf/RPar dataset requires

cropping each query image with the provided bounding box. In this ablation study, we

also evaluate the impact caused by the query crop.

Table 5.8 provides the retrieval results of the baseline “GeM†”, the proposed method

“GeM†-LM-BiHalf” and the current state-of-the-art work DOLG with/without the query

image crop. Without the query crop means utilizing more context content for image

retrieval, and it significantly improves retrieval accuracy when considering the 1 million

distractor set. According to Table 5.8, with or without the query crop, the proposed

method “LM-BiHalf” always improves the baseline model’s performance, outperforming

the current state-of-the-art DOLG on ROxf dataset and giving comparable results on

RPar+1M dataset.

5.5.9 Impact of the local match strategy

As described in Section. 5.3.3, for each clustered query local feature bq,i, we define its

similarity score s(bq,i, Ic) to the candidate image Ic with the maximum value from the
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Method
query
crop

Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

GeM† % 82.5 78.4 90.7 81.3 62.9 56.1 81.0 65.1

GeM† " 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

DOLG [146]8 % 83.2 79.0 91.6 82.9 64.8 57.9 82.6 67.3

DOLG [146]8 " 82.3 73.6 90.9 80.4 64.9 51.6 81.7 62.9

GeM†-LM-BiHalf % 86.4 80.8 92.8 81.1 72.1 61.9 84.3 64.2

GeM†-LM-BiHalf " 86.7 76.6 92.0 79.3 72.0 54.8 83.6 61.4

Table 5.8: Retrieval results on ROxf and RPar datasets without query crop.

similarity matrixM (Eq. (5.8)), while the final similarity score S(Iq, Ic) between the query

image pair Iq and Ic is the mean of all query local features’ match scores (Eq. (5.9)).

Further ablations are performed first for defining the query local feature’s similarity score

s(bq,i, Ic) from Eq. (5.8) and second, for how to fuse all s(bq,i, Ic) into the final image

pair similarity score S(Iq, Ic). Specifically, we consider 3 different definitions: ”Max”

means using the maximum value, ”Mean” means calculating average value, and ”SoftMax”

means applying SoftMax function overall values and then performing a weighted sum. The

default local match strategy that described in Section. 5.3.3 corresponds to the first row of

Table 5.9, in which the definition of s(bq,i, Ic) is ”Max” while that of S(Iq, Ic) is ”Mean”.

As we can observe, the chosen setting gives the best retrieval performance in all these

databases.

s(bq,i, Ic)
define

S(Iq, Ic)
define

Medium (%) Hard (%)

ROxf RPar ROxf RPar

Max Mean 86.7 92.0 72.0 83.6

Max Max 77.9 88.8 59.7 76.2

Max SoftMax 86.6 91.9 72.1 83.3

Mean Max 55.4 77.9 41.0 64.3

Mean Mean 77.0 87.6 59.6 76.1

Mean SoftMax 76.8 87.5 59.3 75.8

SoftMax Max 62.7 81.7 46.5 67.8

SoftMax Mean 79.8 88.9 62.8 78.1

SoftMax SoftMax 79.6 88.8 62.7 77.9

baseline GeM 83.0 90.2 65.5 80.7

Table 5.9: Retrieval results on ROxf and RPar when considering different ways to calculate
the feature similarity.
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5.5.10 Impact of inverted file indexing

As shown in Table 5.10, the local match method ”GeM†-LM-BiHalf” gives almost the

same mAP results across ROxf/RPar datasets no matter with or without the Inverted

File Indexing (IVF). As discussed in Section 4.6.10, the inverted file indexing module is

only a coarse-level filter that aims to speed up the online retrieval process by filtering out

easy negative images. Therefore, it makes almost no difference to the model’s accuracy.

Method IVF
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

GeM†-LM-BiHalf % 86.6 76.6 92.1 79.1 72.0 54.6 83.8 61.0

GeM†-LM-BiHalf " 86.7 76.6 92.0 79.3 72.0 54.8 83.6 61.4

Table 5.10: Retrieval results on ROxf and RPar datasets with/without inverted file in-
dexing.

5.5.11 Computation cost

In the following, we discuss the computation and memory costs of the proposed local

match method considering the hyper-parameter setting described in Section 5.4.1. After

the PCA dimension reduction and binary encoding, each element of the clustered local

feature vector is represented as a 1-bit binary number. In this case, for each candidate

image, the memory cost to cache its local features is K ×DB × 1 bits. With PCA output

feature dimension DB = 512, K = 10, the memory cost for one candidate image cache is

10× 512× 1 bit ≈ 0.00064 MB. It takes around 0.64GB to cache the ROxf/RPar dataset

along with the +1M distractor set.

The feature extraction, including feeding through the backbone network, feature selection

and clustering takes in average 210ms to cache a single candidate image’s local features

when considering 5 input image scales. This kind of processing becomes time consuming

when considering large-scale databases, but it is done offline and only once.

Considering a pair of the query image and candidate image of size 512 × 512 in original

scale as input, ResNet101(R101) [45] as the backbone network for GeM feature extraction,

Table 5.11 (a) and (b) compare the time cost of the GeM model at the online retrieval

stage with or without the proposed local match method. K = 10 clustered binary local
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For query image Local feature
match (CPU)Backbone(R101) Feat select and clustering PCA

16 15 0.04 0.11

(a) Time cost of each component within the proposed local feature match pipeline at the online
evaluation stage.

For query image Cosine
SimilarityBackbone(R101) Pool and whiten

16 0.2 0.05

(b) Time cost of each component within the GeM [98] pipeline at the online evaluation stage.

Table 5.11: Time cost analysis of each component within the local feature match pipeline
(a) and the GeM pipeline (b) at the online evaluation stage. A pair of one query image
and one candidate image serves as input. Features of the candidate image have been
pre-extracted as the “offline stage” shown in Fig. 1.2. The time cost of each component
is reported in milliseconds (ms).

features of the candidate image have been pre-cached at the offline stage. All experiments

were performed 100 times, and we report the average time cost of each component in

Table 5.11.

As we can observe, the extra time cost of the proposed local match method is caused by

two facts: first, for the query feature extraction, local features of the query image need

to be selected and clustered along with binarization by the Sign function. Second, the

local feature match (with CPU) takes more time than simply performing cosine similarity

measures on GPU.

For the online retrieval searching on ROxf/RPar with +1M distractor dataset, with the

help of inverted file indexing, for one query image it takes on average 0.59s (without the

inverted file indexing it would be around 1.8s) with the python implementation on a CPU.

Detailed computation cost requirements and comparison with other models are provided

in Table 5.12. Our method “GeM†-LM-BiHalf” requires much less memory requirement

with a comparable time cost compared to existing works.

5.5.12 Comparison with co-attentions

As mentioned in Section 5.4, the local match could work like co-attention. This sec-

tion compares the local match method with the two co-attention works from the former

chapters. In Table. 5.13, we quantitatively compare the retrieval performance with the
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Method Device
Memory (GB)

ROxf/RPar+1M
Retrieval time (ms)

in average

HOW [123] CPU 14 750

GeM [98] Tesla GPU 8 250

DOLG [146] Tesla GPU 2 220

DELG+SP [14] Tesla GPU 22 383

GeM†-LM-BiHalf (ours) CPU 0.64 590

Table 5.12: Computation cost comparison.

Conditional Attention Network “CANet” method from Chapter 3, clustering based co-

attention “CA(cluster)” from Chapter 4 on ROxf/RPar datasets. As each of the three

methods mentioned above could be treated as a post-processing module for pre-trained

CNN feature re-weighting or local matching, for fair comparison, the GeMmodel described

in Section 4.2.2 is used as the baseline model. As we can observe, all three methods greatly

boost the baseline model’s performance. Although the “CA(cluster)” gives the best result,

the “LM-BiHalf” has comparable accuracy with much less computation cost.

Method
Medium (%) Hard (%)

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

R101-GeM†(baseline) 83.0 72.8 90.2 77.6 65.5 49.8 80.7 59.1

R101-GeM†-CANet 84.3 74.5 91.0 78.7 68.9 51.4 82.0 60.8

R101-GeM†-CA(cluster) 86.4 79.3 93.2 81.8 72.6 59.9 85.6 64.1

R101-GeM†-LM-BiHalf 86.7 76.6 92.0 79.3 72.0 54.8 83.6 61.4

Table 5.13: Retrieval results on ROxf and RPar datasets. “R101-GeM†(baseline)” indi-
cate the baseline model as described in Section 4.2.2. “R101-GeM†-CANet” represents
the baseline model combined with CANet from Chapter 3. “R101-GeM†-CA(cluster)”
represents the baseline model combined with the clustering-based co-attention method
from Chapter 4. And the “R101-GeM†-LM-BiHalf” represents the local match method
proposed in this chapter.

In Figure 5.7, we compare the generated attention map between the three works. All

three methods could generate good query sensitive attention maps. Due to the usage of

convolution layer based fusion module, the CANet tends to highlight a regular square area.

The clustering-based co-attention and the local match are both based on local feature

clustering. As a result, highlighted regions could be irregularly shaped. Especially, limited

by the computation cost, the cluster count is manually set to a small value (K = 10),

and some neighbour locations that belong to different objects may inevitably be grouped

together, making the final attention map not accurate enough. As the example 3 in

Figure 5.7, the region of the target building along with some spire structures at the
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bottom-left side, which is quite similar to the top parts of the target building, are equally

highlighted. On the contrary, the CANet gives a better attention map even though

it is quantitatively outperformed with respect to global retrieval accuracy, as shown in

Table. 5.13.

query image target image CANet
Clustering Co-

attention

E
x
am

p
le

 1
E

x
am

p
le

 2
E

x
am

p
le

 3

Local Match

Figure 5.7: Attention map visualization. The first column shows the query image with a
yellow bounding box outlining the target object. The second column is the target image.
The third column represents the co-attention map generated by CANet, the forth column
shows the co-attention map generated by the co-attention method from 4 and the final
column shows the local match that was generated as description from Section 5.3.3.

5.6 Conclusion

In this chapter, we explore performing the many-to-many local matching with extracted

few but expressive clustered local features from images. Unlike other local matching

methods, which extract large numbers of low-dimensional local features and may require

complex match kernel implementation, the proposed local matching method is simple

but effective when applied with clustered local features. The usage of PCA dimension

reduction and Sign function based binarization significantly decreases the computation

costs. While the adapted Bi-half layer fine-tuning procedure enriches the information

capacity of each feature channel, relieving the information loss problem caused by feature

compression. With the proposed CBIR pipeline, the method achieves new state-of-the-

art performances on benchmark datasets with much lower memory costs than existing

methods.



5.6. CONCLUSION 127

Some interesting conclusions could be drawn from the experimental results of the local

matching method in this chapter. First, as demonstrated in Figure 5.4, the local match

using those few but expressive clustered local features could lead to a co-attention-like

match map. The resulting match map is also query sensitive, varying the effectiveness

and contribution of each candidate image local feature with the actual input query image

local features. Compared to co-attention based global feature re-weighting, the local

feature match method could cooperate with binary encoding, which leads to much lower

computation costs.

Second, at the fine-tuning stage, enforcing the proxy feature from the ArcFace loss function

has half-half binary value distribution, instead of enforcing each batch feature has that,

could lead to a more stable training procedure and still enrich the information capacity of

each feature channel, relieving the performance degradation problem caused by dimension

reduction and binarization.
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Chapter 6

Conclusion

In this thesis, we explored introducing query sensitive attention mechanisms for content-

based image retrieval. Different ways of co-attention generation or local feature matching

are proposed to boost retrieval performance. The first work: Conditional Attention Net-

work (CANet), serves as a separate trainable co-attention generation branch for each

candidate image. It is trained under the supervision of the SuperPoint model, a self-

supervised match point detector for image pairs. The CANet generates co-attention based

on stacks of convolution layers with different kernel sizes. Although it positively impacts

the final retrieval accuracy, it comes with unbearable extra computation costs, making it

impractical for large-scale retrieval tasks. Then, a more straightforward non-trainable co-

attention generation method is proposed. It is based on local feature clustering and serves

as a post-processing module for the pre-trained CNN feature output. The clustering-based

co-attention method dramatically improves the baseline GeM model’s retrieval accuracy,

reaching new state-of-the-art results on benchmark datasets with comparable computa-

tion costs to existing works. Instead of trying to extract a co-attention weighted global

feature vector as the former two works, the third work: expressive local feature matching,

employs clustering in the feature space for efficiently extracting characteristic features

for image retrieval. The proposed local match method works with binary encoding for

further feature compression. Meanwhile, the Bi-half layer based fine-tuning procedure

greatly relieves the information loss caused by dimension reduction and binarization. The

expressive local feature matching method shows comparable retrieval results to the former

clustering-based co-attention but with much less computation cost and gets rid of reliance

129
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on GPU at the online retrieval stage. In addition, although the local feature matching

method does not explicitly generate a co-attention map for feature re-weighting as the for-

mer two works, according to the visualization results, it implicitly leads to query-sensitive

local match maps, which work like co-attention.

According to the experimental results of the proposed works, as mentioned above, we can

draw the following conclusions for query-sensitive attention enabled CBIR framework.

First, embedding the co-attention mechanism into the feature extraction pipeline can

significantly improve retrieval accuracy, leading to new state-of-the-art retrieval results

on current benchmark datasets ROxf/RPar datasets. Considering the interaction between

the query global feature to candidate local features output by CNN is an intuitive and

effective way for co-attention generation. After well-training, clustering over local features

from convolution feature tensor could automatically group local features that belong to the

same object together, resulting in few but expressive clustered local feature representations

for the input image. Finally, the local feature matching could be treated as an imitation

of co-attention, implicitly resulting in query-sensitive co-attention-like local match maps.

After combining with dimension reduction and binarization methodology, the local feature

match method could give comparable retrieval accuracy to the co-attention method but

comes with much less computation cost at the retrieval stage.

6.1 Future work

In this section, we discuss possible future development in the field of content-based image

retrieval.

6.1.1 Better backbone network structure

All proposed works from the former chapters utilize a fully convolutional network as the

backbone structure. Although it already gives good retrieval performance, the recently

proposed Vision Transformer (ViT) [32, 28, 76] has demonstrated superior feature ex-

traction capability in computer vision tasks. The ViT is based on Self-Attention [126],

which enables the feature extraction pipeline with a global receptive field and dynamic
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weighting to improve the model’s feature extraction ability. These properties lead to sev-

eral advantages such as higher model capacity [28], better ability to capture long-range

dependencies, complex interactions between positions and ability to process high-level

concepts during image recognition [84]. Replacing the CNN with ViT could be a promis-

ing direction for further retrieval performance improvement. With the advantages of ViT

mentioned above, it should be able to extract more comprehensive local features, leading

to better attention maps and global retrieval performance.

6.1.2 Jointly trainable cluster

The clustering-based local feature extraction strategy, used in both Chapter 4 and Chap-

ter 5, serves as a non-trainable post-processing feature extraction module for feature

tensor output by pre-trained CNN. In other words, the local feature from each entry

on the convolution feature tensor is only implicitly optimized with a global loss at the

pre-training stage, while the actual utilization of these local features is in a local match

(global-to-local or local-to-local) manner without any fine-tuning or optimization. This

discrepancy could lead to sub-optimal feature extraction and global model performance.

Considering an end-to-end trainable feature clustering module and optimizing local fea-

tures in a more specific way could be another good research direction for better retrieval

performance.
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[14] Bingyi Cao, André Araujo, and Jack Sim. Unifying deep local and global features for

image search. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 726–743, 2020.

[15] Yang Cao, Changhu Wang, Liqing Zhang, and Lei Zhang. Edgel index for large-scale

sketch-based image search. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 761–768, 2011.

[16] Yang Cao, Hai Wang, Changhu Wang, Zhiwei Li, Liqing Zhang, and Lei Zhang.

Mindfinder: interactive sketch-based image search on millions of images. In Proceedings

of ACM International Conference on Multimedia (MM), pages 1605–1608, 2010.

[17] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Hashnet: Deep learning

to hash by continuation. In Proceedings of the IEEE International Conference on Computer

Vision (ICCV), pages 5608–5617, 2017.

[18] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand

Joulin. Unsupervised learning of visual features by contrasting cluster assignments. Ad-

vances in Neural Information Processing Systems, 33:9912–9924, 2020.

[19] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple frame-

work for contrastive learning of visual representations. In Proceedings of the International

Conference on Machine Learning (ICML), pages 1597–1607, 2020.

[20] Wei Chen, Yu Liu, Weiping Wang, Erwin Bakker, Theodoros Georgiou, Paul Fieguth, Li

Liu, and Michael S Lew. Deep learning for instance retrieval: A survey. arXiv preprint

arXiv:2101.11282, 2021.



BIBLIOGRAPHY 135

[21] Yudong Chen, Zhihui Lai, Yujuan Ding, Kaiyi Lin, and Wai Keung Wong. Deep supervised

hashing with anchor graph. In Proceedings of the IEEE International Conference on

Computer Vision (ICCV), pages 9796–9804, 2019.

[22] Yizong Cheng. Mean shift, mode seeking, and clustering. IEEE Transactions on Pattern

Analysis and Machine Intelligence (TPAMI), 17(8):790–799, 1995.

[23] François Chollet. Xception: Deep learning with depthwise separable convolutions. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pages 1251–1258, 2017.

[24] Sumit Chopra, Raia Hadsell, and Yann LeCun. Learning a similarity metric discrimina-

tively, with application to face verification. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages 539–546, 2005.

[25] Ondřej Chum, Andrej Mikulik, Michal Perdoch, and Jǐŕı Matas. Total recall ii: Query
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