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Abstract 

Dental caries is a result of acid production by plaque bacteria and manifests with 

mineral loss and hard tissue dissolution. Dental erosion is the irreversible loss of dental 

hard tissue caused by acidic agents without bacterial involvement. Numerous techniques 

have been described for the early detection of dental caries and erosion. However, they 

all rely on detecting already lost tissue, suggesting that the disease process has been 

operating for some time. Recent research suggests that uptake of protons from bacterial 

or dietary acids precedes hard tissue dissolution.  

The aim of this research project was to examine whether protonation of sound and 

carious sterile and non-sterile human primary tooth surfaces which have been subjected 

to acids of known pH occurs and can be detected in vitro and in situ with a simple and 

clinically applicable technique. 

A total of 219 human primary tooth surfaces were investigated in vitro. Of these, 110 

sound and carious sterile and non-sterile tooth surfaces were examined at baseline and 

109 after an acidic challenge. Universal pH indicator solution was used to assess the 

protonation state of the tooth surfaces. Significantly more tooth surfaces were found 

protonated after the acidic challenge compared to baseline for all the groups of teeth 

(p<0.01) with the exception of non-sterile tooth surfaces with caries into dentine 

(p=0.467). This was probably because the tooth surfaces were already protonated at 

baseline as a result of the carious process. 

The in situ study involved five participants and thirty sound enamel slabs. The enamel 

slabs were obtained from human primary teeth and were incorporated into mandibular 

removable appliances. The appliances were placed intra-orally for 48 hours to allow 

plaque accumulation. After removal from the mouth, the enamel slabs were subjected to 
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10% w/v sucrose rinse. The protonation state of the tooth surface was assessed with 

universal pH indicator solution. The proportion of protonated tooth surfaces was 

significantly higher compared to the proportion of non-protonated tooth surfaces 

(p<0.001).  

The results of these studies suggest that protonation of human primary tooth surfaces 

after an acidic challenge occurs and can be detected with a clinically applicable 

technique both in vitro and in situ. Measuring the degree of protonation can be a novel 

means to detect tooth surfaces that are at increased risk of caries and erosion at a very 

early stage before any irreversible change of the hard tissue structure. 
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Chapter 1- Literature review 

1.1. Background 

1.1.1. Dental caries 

Dental caries occurs as a result of acid production by plaque bacteria, which causes 

calcium and phosphate ion loss from the tooth surface (FDI-WHO Scientific Workshop, 

1980). The carious process begins long before any sign appears clinically on the tooth 

surface. 

Dental enamel consists of 96% inorganic minerals and up to 4% organic material and 

water by weight. The inorganic component is hydroxyapatite, a calcium phosphate 

crystal. Hydroxyapatite crystals are organised in rods close to each other to form the 

dental enamel. However, small spaces exist between the crystals which are 

microscopically seen as pores. All these microscopic gaps allow penetration of bacterial 

products and, under certain circumstances, make the enamel surface susceptible to 

dental caries (Avery and Chiego, 2006).  

The first stage of the carious process is characterised by increased intercrystalline 

porosity which is not detectable clinically. The mineral loss is minimal, constricted to 

only few micrometres from the external surface. With progression of the lesion, 

porosity increases at the subsurface enamel and the first visual change appears on the 

tooth in the form of a white spot lesion. With the passage of time, porosity increases 

further and, as a result, mineral loss underneath the surface enamel progresses. At this 

stage, the visual changes of the tooth surface become more apparent (Fejerskov and 

Kidd, 2008). 

Four histological zones are distinguished in early enamel lesions (Darling, 1956): 
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i. The surface zone 

The surface zone is characterised by minimal porosity (1%). Its width is 

approximately 20 to 50 μm and the zone appears to remain relatively unaffected 

by the carious process (Fejerskov and Kidd, 2008). Loss of minerals ranges 

between 8.3 and 11.5% by volume (Hallsworth et al., 1972). 

ii. The translucent zone 

The translucent zone is probably the first visible stage of the carious process. In 

this zone, porosity is slightly higher than 1% and is characterised by minimal 

mineral loss of approximately 1.2% (Hallsworth et al., 1972). Its width ranges 

between 5 and 100 μm (Fejerskov and Kidd, 2008). 

iii. The dark zone 

The dark zone is situated between the translucent zone and the body of the 

lesion. Porosity ranges between 2 and 4% and mineral loss is approximately 5-

7% (Hallsworth et al., 1972). The zone is characterised by pores of minimal size 

in comparison to those of the translucent zone as well as those of translucent 

zone size. In vitro studies indicate that demineralisation followed by mineral 

deposition processes take place in the dark zone (Silverstone, 1967; Fejerskov 

and Kidd, 2008). 

iv. The body of the lesion 

The body of the lesion is characterised by increased porosity (more than 5%) 

and extensive mineral loss ranging between 18 and 33% (Hallsworth et al., 

1972). 

The World Health Organisation report in 2003 suggests that dental caries affects a large 

percentage of schoolchildren and the majority of adults (Petersen, 2003). The disease 

raises major concerns, which can have implications on general health and quality of life. 
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Application of the appropriate preventive measures can inhibit the carious process and 

enable remineralisation of the teeth that have been affected (FDI-WHO Scientific 

Workshop, 1980).  

Early detection of the carious process, before significant tissue loss, is therefore crucial 

to halt further progression of the disease and irreversible tooth wear. 

At present, there are several methods for the early detection of dental caries: 

- International Caries Detection and Assessment System- ICDAS summarises the 

clinical criteria used to visually assess carious lesions (International Caries 

Detection & Assessment System Coordinating Committee, 2009). 

- Laser fluorescence- LF is based on fluorescence of molecules from oral bacteria 

which have entered the compromised enamel (Pitts, 2009; Karlsson, 2010).  

- Quantitative Light-induced Fluorescence- QLF is based on the principle that 

lesions on the tooth surfaces produce increased light scattering of both the 

illuminating as well as the tooth autofluorescing light (Pitts, 2009; Karlsson, 

2010). 

- Electric Conductance Measurements- ECM rely on the perception that 

parameters such as porosity of the tooth surface, thickness, fluid and ionic 

content of the dental tissues can affect the conductance measurements (Pitts, 

2009). 

- Fibre-Optic Transillumination- FOTI is based on light scatter due to porosity 

created by the disease process (Pitts, 2009; Karlsson, 2010). 
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1.1.2. Dental erosion 

Dental erosion is defined as the irreversible loss of dental hard tissue caused by acidic 

agents (O’Sullivan and Milosevic, 2008). The process develops without the presence of 

plaque bacteria and can lead to significant tooth loss. It is a multifactorial phenomenon 

which depends on biological, chemical and behavioural factors. These factors interact 

with the tooth surface and the balance among them determines whether the tooth surface 

will be eroded or protected from erosive tooth loss (Lussi, 2006). 

The prevalence of dental erosion in young children and adolescents is high and 

increases between cohorts with the passage of time (Nunn et al., 2003). 

Eroded tissue has, by definition, been lost. Investigation of the tooth surface, therefore, 

looks at pre-erosive changes, that is before tooth loss and/ or changes after erosion/ 

tooth loss has occurred. This is somewhat complicated by the possibility of physical 

removal of enamel by abrasion following softening by “erosive” agents. Assessment of 

erosion should, thus, discriminate between tissue loss and changes induced by erosive 

agents.  The following methodologies for assessing erosion should bear this in mind. 

Dental erosion can be assessed with a number of methods: 

- Scanning Electron Microscopy- SEM qualitatively assesses changes on tooth 

surfaces after subjection to erosive agents (Lussi, 2006). 

- Surface Hardness Measurements- SHM give an assessment of tooth surface 

changes by measuring the hardness of enamel and/ or dentine (Lussi, 2006). 

- Surface Profilometry- SP involves scanning the tooth surfaces with either a laser 

beam or a contact stylus and creating a map which provides information on the 

physical nature of the tooth surface (Lussi, 2006). 
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- Iodide Permeability Test- IPT is a means to assess porosity of the dental hard 

tissues exhibiting dental erosion (Lussi, 2006). 

- Chemical Analysis of minerals dissolved in the erosive agent- is based on 

measurements of the dissolved calcium and phosphate ions that occur as a result 

of dental erosion (Lussi, 2006). 

- Microradiography- quantifies mineral loss by measuring penetration of x-rays 

through the dental hard tissues (Lussi, 2006). 

- Confocal Laser Scanning Microscopy- CLSM qualitatively assesses erosive 

tooth wear with the use of a laser beam (Lussi, 2006). 

- Quantitative Light-induced Fluorescence- QLF can be used for the detection of 

erosive destruction of the tooth surface based on the same principles that apply 

when the technique is used for the assessment of early carious lesions as 

mentioned in section 1.1.1. (Pitts, 2009; Karlsson, 2010). 

- Atomic Force Microscopy- AFM is a very high resolution type of scanning 

probe microscopy producing high resolution physical images of the tooth 

surface (Bowen and Hilal, 2009). 

- Nanoindentation- is used to calculate nanomechanical properties of the sample 

of interest (Lussi, 2006). 

- Ultrasonic Measurements of Enamel Thickness- UMET are measurements of the 

thickness of the hard tissue using an ultrasound pulse (Lussi, 2006). 

All of the available technologies for the diagnosis of dental caries and erosion rely on 

detecting some tissue loss, suggesting that the disease process has been operating for 

some time. It would be of most benefit to have a technology with the ability to detect 

changes of the enamel surface early, before any tissue is actually removed. 
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Since both caries and erosion involve acid attack on the enamel surface it was decided 

to look at the possibility of investigating very early effects of acid on enamel mineral.  

1.1.3. Tooth- pellicle- plaque- saliva 

All the mineralised body tissues consist of a mineral component and an organic matrix. 

The mineral component of human dental enamel is calcium hydroxyapatite, 

stoichiometric formula Ca
++

10(PO4
3-

)6(OH
-
)2, a highly insoluble calcium phosphate 

crystal. The solubility of hydroxyapatite crystals is, however, affected by impurities in 

the crystallite structure such as fluoride, carbonate and magnesium as well as by the pH 

of their immediate environment (Edgar and O’Mullane, 1996).  

Hydroxyapatite can incorporate anions (fluoride, carbonate ions) or cations (sodium, 

potassium, zinc, strontium ions); a process which affects the solubility of the crystals. 

Carbonate makes the crystals more prone to dissolution, whereas fluoride makes them 

less soluble. In addition, the presence of acidic or basic solutions around the crystals is 

crucial with regards to dissolution or mineral precipitation on them (Edgar and 

O’Mullane, 1996).  

With regard to the environment of the crystals, the presence of saliva around the teeth 

plays an important role in preventing the initiation of dental caries and erosion. Saliva is 

not in direct contact with the tooth surfaces. The tooth surfaces are constantly covered 

by a thin acellular layer of proteins and lipids, the pellicle, which is present even after 

mechanical cleaning of the teeth by toothbrushing or prophylaxis (Edgar and 

O’Mullane, 1996). One of the clinical significances of the pellicle is the protection of 

the tooth surface against dissolution by acidic challenges (Zahradnik et al., 1976; 

Featherstone et al., 1993). The pellicle can substantially delay enamel demineralisation 

in vitro by reducing the diffusion of ions from the enamel surface to the bulk of saliva 
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(Zahradnik et al., 1976; Featherstone et al., 1993). This selective permeability of 

charged molecules has been attributed to electrical interactions between the ions and 

charged sites on the pellicle and is time-dependent (Zahradnik et al., 1976; Featherstone 

et al., 1993).   

A second layer between the tooth surface and saliva is dental plaque. Plaque consists of 

bacteria in a polysaccharide matrix. By altering the local pH and affecting transport of 

ions into and out of the plaque, dissolution or mineral deposition procedures on the 

tooth surface can also be affected (Edgar and O’Mullane, 1996). 

At neutral or basic pH, saliva and plaque are supersaturated with respect to 

hydroxyapatite and, therefore, dissolution of the tooth surface does not occur. Acidic 

conditions can occur at the immediate environment of the crystals, either directly due to 

consumption of acidic solutions or indirectly by intake of fermentable carbohydrates 

and acid formation by the plaque bacteria. At acidic pH (pH<7), saliva and plaque 

become undersaturated with respect to tooth mineral and below the critical pH the 

tissues start dissolving (Edgar and O’Mullane, 1996). It is important to underline that it 

is not only the pH of the solution in contact with the tooth surface but, most 

importantly, the degree of its saturation with respect to enamel minerals which will 

determine the rate of enamel demineralisation (Moreno and Zahradnik, 1974; Margolis 

et al., 1985; Zhang et al., 2000). Unstimulated saliva has lower critical pH compared to 

stimulated saliva due to the higher phosphate concentrations (Fejerskov and Kidd, 

2008). The critical pH also differs among individuals due to the differences in the 

concentrations of phosphate and calcium (Fejerskov and Kidd, 2008). Uptake of protons 

by the phosphate and hydroxyl ions (protonation) precedes the dissolution processes in 

an attempt to neutralise the acidic pH (Edgar and O’Mullane, 1996).  
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Soon after any acidic challenge, remineralisation processes can take place. This may 

occur because consumption of acidic foods or fermentable carbohydrates increases 

salivary secretion and saliva can wash out the acidic agents. As soon as the plaque 

becomes supersaturated in relation to the tooth surface, mineral re-deposition and 

remineralisation of the tooth surface can occur (Margolis and Moreno, 1994; Edgar and 

O’Mullane, 1996).  

Therefore, the fate of the tooth surface and the development of dental caries and erosion 

will depend on the frequency of demineralisation and remineralisation processes. 

1.1.4. Protonation of the enamel surface 

Uptake of protons from bacterial or dietary acids by enamel crystals is considered a 

necessary step prior to hard tissue dissolution. Recent work has revealed that 

considerable protonation occurs long before the enamel crystals start dissolving 

(Robinson et al., 2005; Hochrein and Zahn, 2011). 

Robinson et al. (2005) examined maturation stage enamel crystals in relation to the pH 

of their immediate environment. Atomic Force Microscopy was used to measure 

adhesion forces between a modified cantilever tip and the crystal surface when the pH 

varied between 2 and 10. Adhesion forces increased with reduction of the pH with a 

peak at pH 6.6; this was attributed to the increased protonation of enamel crystals and, 

therefore, hydrogen bonding to the crystal surfaces. Adhesion force is a direct probe of 

the interaction of the modified cantilever tip with the crystal surface and, thus, provides 

indirect information on the interactions between the hydroxyapatite crystal ions which 

depend on their protonation state.  

Below pH 6.6 a decrease of adhesion forces was observed. The authors suggested this 

occurred because of protonated phosphate removal by adhesion to the cantilever tips. 
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Therefore, below pH 6.6 the crystals became unstable. Preliminary exposure to fluoride 

ion rendered protonation more difficult (Robinson et al., 2006). 

Hochrein and Zahn (2011) created a theoretical model to investigate the saliva-enamel 

interface. When the pH of the immediate environment of the enamel surface is neutral 

or basic, the free energy of the apatite ions dissociation is high, rendering dissolution of 

the tooth surface extremely unlikely. As the pH becomes acidic, significant protonation 

of the phosphate and hydroxide anions occurs. The ionic charges reduce and so do the 

electrostatic interactions between the ions in the apatite. As a result, the tooth surfaces 

become unstable and prone to dissolution.  

At initial stages of hydroxyapatite dissolution, protonation affects only one oxygen 

atom of the phosphate ions (PO4
3-

). Therefore, formation of HPO4
2- 

is expected. 

Protonation of the second oxygen atom and formation of H2PO4
- 

only occurs as 

protonation progresses. On the other hand, hydroxide (OH
-
) protonation neutralises the 

ion (H2O), which significantly reduces the Coulombic attraction to the hydroxyapatite 

crystal.  

The separation of either the hydroxide ion (OH
-
) or the protonated hydroxide ion (H2O) 

from the tooth surface is a procedure that requires energy. However, the energy is much 

lower for the neutral form of the ion (H2O) and, consequently, dissolution occurs easier 

if the ion is in the protonated form (H2O). Phosphate separation is more difficult. The 

dissociation of calcium ions requires protonation of more than three neighbouring 

phosphate ions and, sometimes, one hydroxide ion.  

In summary, protonation of the hydroxyapatite ions takes place even if they are in 

neutral solutions. However, acidic conditions are required to allow protonation to reach 

the levels required to affect the integrity of the hydroxyapatite structure. Fluoride 
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incorporation into the apatite crystals renders protonation much more difficult and, thus, 

reduces the potential of dissolution. 

The literature suggests that acidic pH results in progressive protonation of the crystal 

surfaces; this can have implications on phosphate and calcium removal from specific 

protonated sites. The above implies that measuring the degree of enamel crystal 

protonation could be a novel means for the early detection of tooth surfaces that are at 

risk of caries and erosion. 

1.1.5. Where does enamel protonation occur? The zeta potential. 

Intra-orally, the enamel is in contact with the salivary pellicle, plaque, saliva and all the 

dietary foods and drinks (solutions) that are consumed daily. Hydroxyapatite, the 

primary mineral of enamel, is surrounded by these aqueous solutions and the system 

behaves like a colloidal suspension. In every colloidal suspension, the dispersed 

particles are electrically charged, due to their ionic characteristics. Each charged particle 

is electrically balanced by oppositely charged ions of the surrounding solution which 

present in the form of a “diffuse cloud”. As a result, the colloidal system’s net charge is 

neutral (Colloidal Dynamics Pty Ltd, 1999). The charges on the particle 

(hydroxyapatite) are thought to be firmly attached to it, whereas the charges of the 

solution are more loosely attached. As the distance between the solution and the particle 

increases, the ionic charge of the solution decreases until it fully neutralises (Colloidal 

Dynamics Pty Ltd, 1999). The electrostatic potential between the solvent attached to the 

dispersed particles (hydroxyapatite) and the bulk of the solvent (saliva, dietary solution) 

is known as the “zeta potential”. The value of the zeta potential depends on the pH of 

the solution (Arends, 1979). 
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Protonation of the hydroxyapatite crystals probably occurs somewhere in the zeta 

potential.   

 

Figure 1. 1. The electrical double layer and the zeta potential (Ceramic Industry, 2002) 
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1.2. Methods for the diagnosis of dental caries 

Up to date, a number of different technologies have been described in the literature for 

the early detection of dental caries. All of them rely on the identification of irreversible 

damage of the dental hard tissues, porosity or already lost dental tissue.  

1.2.1. International Caries Detection and Assessment System 

International Caries Detection and Assessment System (ICDAS) is a description of the 

clinical criteria that can be implemented to visually assess coronal and root tooth 

surfaces and make a diagnosis of the extent and activity of the carious process. The 

system has been developed to allow standardised caries detection and diagnosis by 

different clinicians. Detailed description of the code is provided according to the tooth 

surface of interest (pits and fissures, smooth surfaces, interproximal surfaces, tooth 

surfaces associated with fissure sealants or restorations). 

The ICDAS was initially developed in 2002, updated in 2008, revised in 2009 and is 

now available as ICDAS II. Coronal caries criteria are as follows (International Caries 

Detection & Assessment System Coordinating Committee, 2009): 

Code 0: Sound tooth surface 

Code 1: First visual change in enamel obvious after prolonged air-drying or seen within 

the pit or fissure 

Code 2: Distinct visual change in enamel 

Code 3: Localised enamel breakdown without clinical signs of dentinal involvement 

Code 4: Underlying dark shadow from dentine 

Code 5: Distinct cavity with visible dentine 
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Code 6: Extensive distinct cavity with visible dentine 

The reproducibility, sensitivity and specificity of ICDAS II have been assessed in vitro 

and in vivo.  

Martignon et al. (2007) compared in vitro the assessment of proximal sound and carious 

primary and permanent tooth surfaces with ICDAS II to histological examination. The 

correlation between the two methods was excellent both for the primary and the 

permanent dentition. Intra-examiner reproducibility was excellent for deciduous (0.92) 

and permanent teeth (0.86). 

Jablonski-Momeni et al. (2008) assessed in vitro the ICDAS II for the detection of 

occlusal caries on permanent teeth. Two different histological classifications were used 

as gold standard. The sensitivity and specificity of ICDAS II depended on the 

histological threshold selected as well as the histological classification used and ranged 

between 0.59-0.88 and 0.68-0.94 respectively. The correlation of the ICDAS II with 

histological examination was moderate. Intra-examiner reproducibility ranged between 

0.74-0.83 and inter-examiner agreement between 0.62-0.82. The evaluation of the teeth 

was carried out by four different examiners, which could have an effect on the 

variability of the results. Despite the variation of the results, the inter- and intra-

examiner agreements are acceptable. 

The more recent in vitro study carried out by Shoaib et al. (2009) investigated the 

validity and reproducibility of ICDAS II in deciduous teeth. Two different histological 

classifications were the gold standard, the same that had been previously used by 

Jablonski-Momeni et al. (2008). For occlusal caries detection, the highest sensitivity 

was 77.9% and was observed when demineralisation had reached the middle third of 

dentine. The lowest sensitivity was 63.1% and involved lesions that were restricted to 

the outer 50% of dentine. The highest specificity was 92.8% and was found for lesions 
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involving the outer half of dentine. The lowest specificity was 87% for lesions in the 

middle third of dentine. For approximal carious lesions the sensitivity ranged between 

58.3% and 75.3% and specificity between 85.4% and 94.2%. Intra-examiner agreement 

was excellent, between 0.76-0.78 for occlusal and 0.74-0.81 for proximal caries. Inter-

examiner reproducibility was similar to previous reports (Jablonski-Momeni et al., 

2008) between 0.68-0.73 for occlusal and 0.66-0.70 for approximal carious lesions. In 

this case, examination of the teeth was performed by three experienced examiners who 

received training on ICDAS. 

Diniz et al. (2009) examined extracted permanent teeth to assess the reproducibility and 

accuracy of ICDAS II. Histological examination was again the gold standard. Inter- and 

intra-examiner reproducibility was less than previously reported; 0.51 and 0.58-0.59 

respectively. Correlation of histological evaluation and ICDAS II was not strong 

ranging between 0.42-0.53 depending on the histological method used. The specificity 

of the method was highly variable (0.47-1.0) depending on the histological criteria used 

for validation and the threshold selected; however, sensitivity was always very good 

(0.75-0.99).   

On balance, ICDAS is a useful tool for implementation in clinical practice, dental 

education, research and epidemiology with acceptable sensitivity, specificity and 

reproducibility. The main advantage of the technique is the easiness in application 

without the need for expensive or technologically advanced equipment.  

 

  



15 
 

1.2.2. Laser Fluorescence 

Laser Fluorescence (LF) has been described and used as a non-invasive, novel means 

for the early detection of carious lesions. The method is based on the light-scattering 

phenomena which take place after monochromatic red light enters the tooth. Laser light 

consists of electromagnetic waves with equal wavelengths and phases. Fluorescence 

comprises light emitted after illumination with an excitation frequency. Fluorescent 

light exhibits a longer wavelength than the excitation frequency. A filter, which only 

permits the fluorescing light to pass through, allows measurement of its intensity. The 

dental enamel and dentine have characteristic autofluorescence as do carious lesions, 

bacteria and some other plaque components. The difference between the intact tooth's 

autofluorescence and the fluorescence of carious lesions can be detected with LF 

(Fejerskov and Kidd, 2008).  

In case of demineralisation fluorescence represents the presence of oral bacteria in the 

compromised tooth (Konig et al., 1998; Pitts, 2009; Karlsson, 2010). Two portable LF 

devices are available; the DIAGNOdent (KaVo, Biberach, Germany) for detection of 

carious lesions on occlusal and smooth tooth surfaces and the newer LF-pen (KaVo) 

which can also be applied on interproximal tooth surfaces. The device excites red light 

(655nm) and numerically demonstrates the results on a 0-99 scale. 

There have been numerous in vivo and in vitro studies investigating the performance of 

LF for the detection of early carious lesions.  

In vitro studies assessing LF for the diagnosis of occlusal caries on primary teeth have 

shown promising results. The performance of LF was determined by comparison to 

histological examination of the lesion, which was the gold standard. Sensitivity of the 

new method was between 0.75 and 0.87 (Lussi et al., 1999; Attrill and Ashley, 2001; 

Lussi and Francescut, 2003) with only Rodrigues et al. (2009) reporting much lower 
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values varying between 0.20 and 0.24 depending on the selected cut-off limits for the 

disease. Increased ability to detect dentinal caries was achieved with the use of 

DIAGNOdent in comparison to visual examination only (Attrill and Ashley, 2001; 

Lussi and Francescut, 2003; Rodrigues et al., 2009), which, in some cases, reached 

statistically significant levels (Attrill and Ashley, 2001; Lussi and Francescut, 2003). 

The DIAGNOdent did not perform as well as visual examination for the detection of 

enamel caries (Lussi and Francescut, 2003; Rodrigues et al., 2009). The specificity of 

the new method was its main limitation and was similar to or lower than conventional 

methods (Attrill and Ashley, 2001; Lussi and Francescut, 2003). However, Rodrigues et 

al. (2009) report high specificity of DIAGNOdent ranging between 0.92 and 0.94.  

The results of the new technique are highly reproducible with intra-examiner agreement 

being good to excellent (Lussi et al., 1999; Attrill and Ashley, 2001; Lussi and 

Francescut, 2003; Rodrigues et al., 2009) and inter-examiner reproducibility very good 

to excellent (Lussi et al., 1999; Attrill and Ashley, 2001; Rodrigues et al., 2009). 

In vitro studies on the permanent dentition show different results. The sensitivity 

reported varies among the studies. Rodrigues et al. (2009) present values ranging 

between 0.16 and 0.53 whereas de Paula et al. (2011) find better results between 0.42 

and 0.72 depending on the cut-off thresholds opted with better performance for enamel 

caries detection. Angnes et al. (2005) report higher sensitivity values (0.75-0.81) which 

do not differ statistically when compared with visual examination. The better 

performance of DIAGNOdent in this study can be attributed to the investigation of 

lesions extending at least half into dentine whereas previous studies examined both 

dentinal and enamel caries. In some studies visual examination performs better 

compared to LF (Rodrigues et al., 2009; de Paula et al., 2011) whereas in other papers 

higher sensitivity values of the DIAGNOdent have been reported (Angnes et al., 2005). 
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Specificity ranges between 0.61 and 1.00 and is generally lower compared to visual 

examination (Angnes et al., 2005; Rodrigues et al., 2009; de Paula et al., 2011).  

The reproducibility of LF for the assessment of carious lesions of the permanent 

dentition is much lower than that reported for primary teeth. Intra-examiner agreement 

is good ranging between 0.55 and 0.69 with inter-examiner reproducibility being fair 

0.30-0.43 (Rodrigues et al., 2009; de Paula et al., 2011) to good 0.63 (Angnes et al., 

2005).  

The variation of the results among the studies can be attributed to confounding factors 

during the examination, such as the storage medium of the specimens, the time between 

extraction, storage and investigation, the lighting conditions as well as the examiner’s 

familiarity with the device. 

The performance of LF has been assessed in vivo in clinical studies for caries detection 

both on primary and permanent occlusal tooth surfaces. In these studies, confirmation of 

the results with histological examination was not possible due to ethical issues. 

Therefore, the LF measurements were compared with visual examination and the 

clinical depth of the lesions as assessed after caries removal when a restoration was 

deemed necessary. In the latter situation, only teeth with dentinal caries could be 

assessed because of ethical concerns. 

The DIAGNOdent measurements generally increased with increased depth of the 

carious lesion (Anttonen et al., 2003; Alkurt et al., 2008; Chu et al., 2010). The large 

variation of the DIAGNOdent readings within each category of carious lesion is a 

limitation with significant clinical implications (Anttonen et al., 2003; Abalos et al., 

2009). Superimposition of the DIAGNOdent values for different depths of lesions 

implies that the device alone cannot provide an accurate and valid estimation of the 

extent of the disease. When permanent teeth were assessed, there was a discrete 
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difference between inactive and active enamel caries but this was not the case for 

primary teeth, where differentiation of the activity of the lesion with the device only 

was not possible (Anttonen et al., 2003).  

The optimal cut-off point for dentinal caries diagnosis with the DIAGNOdent differs 

among the studies and is between the value 20 (Abalos et al., 2009) and 40 (Chu et al., 

2010). With 20 being the cut-off point for dentinal caries, sensitivity was 89% and 

specificity 75% in a study with total validation of the sample; that is to say, all fissures 

were opened irrespective of caries suspicion (Abalos et al., 2009). With a cut-off value 

of 30, sensitivity increased to 92-93% and specificity ranged between 75-82% with the 

clinical depth of the lesion being the gold standard (Anttonen et al., 2003; Costa et al., 

2008). When a cut-off point of 40 was opted, sensitivity was 70% and specificity 84% 

for dentinal caries detection (Chu et al., 2010). The results were slightly different when 

visual examination was used as the gold standard with sensitivity between 79-92% and 

specificity 69-87% and cut-off points for dentinal caries between 26 and 30 (Anttonen 

et al., 2003; Barberia et al., 2008). 

Sensitivities and specificities of the diagnostic procedures should be interpreted with 

caution as in most studies the teeth that did not undergo operative procedures were 

excluded. 

Specific recommendations about the appropriate threshold for operational procedures 

cannot be reliable and validation of the DIAGNOdent results with other diagnostic 

methods is essential.  

When LF was compared with conventional diagnostic procedures, such as visual 

examination or bitewing radiographs, significant differences were observed (Alkurt et 

al., 2008). The best correlation was between LF measurements and the clinical depth of 

the carious lesion as determined after cavity preparation (Alkurt et al., 2008). 
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Radiographic examination with bitewing views is less accurate, especially for the 

detection of enamel caries (Anttonen et al., 2003; Alkurt et al., 2008; Chu et al., 2010) 

but sometimes for the diagnosis of dentinal carious lesions as well (Anttonen et al., 

2003; Chu et al., 2010). The quality of the radiographic views has significant 

implications on their diagnostic value. 

Inter- and intra-examiner agreement with regard to the DIAGNOdent measurements in 

vivo was good (Barberia et al., 2008; Costa et al., 2008). The presence of stain and 

plaque when teeth are not professionally cleaned can, however, influence the values. 

In conclusion, the DIAGNOdent is a valuable device for the assessment of carious 

lesions. Most accurate results are obtained when the device is used in combination with 

other means, such as visual examination. 

1.2.3. Quantitative Light-induced Fluorescence 

Quantitative Light-induced Fluorescence (QLF) is based on the principle that 

demineralised, that is porous tissues, produce increased light-scattering phenomena of 

both the illuminating as well as the fluorescing light. When the illumination light is 

scattered, less light reaches the tooth surface underneath the lesion and less tooth 

fluorescence occurs. In addition, the fluorescing light is further scattered and less 

fluorescence is detected. Porosity is revealed as a relatively dark area. The technique 

requires illumination of the tooth surface with blue light and quantification of the degree 

of fluorescence with a camera equipped with a yellow high-pass filter. The filter is used 

to exclude the excitation light. Calculating the difference between the lesion 

fluorescence and the fluorescence of a sound area provides three quantities: change of 

the fluorescence (ΔF, %), the lesion area (mm
2
) and the ΔQ (lesion area×ΔF). Sound 

tooth surfaces appear brightly fluorescent. Lesions on the tooth surfaces appear dark on 
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a light green background and bacterial porphyrins fluoresce in the red region (Fejerskov 

and Kidd, 2008; Pitts, 2009; Karlsson, 2010). 

The QLF device for clinical application consists of the light source, a micro-camera 

used to capture the image of interest and specially designed software to analyze the data 

and calculate the appropriate values. The software allows thresholds of fluorescence 

changes (%) to be determined, to avoid taking into consideration small alterations which 

are probably without clinical significance. In most studies the 5% threshold has been 

used.  

Concerns have been raised regarding the potential subjectivity at the image capturing as 

well as the analytical stage of the method. In addition, confounding factors such as red 

fluorescing regions under fissure sealants or restorations as well as poor images and 

technical difficulties can limit the clinical application of QLF.  

With regard to detection of very early lesions, in vitro studies have shown that QLF can 

successfully detect and monitor demineralised primary smooth tooth surfaces that are 

not clinically visible (Pretty et al., 2002). 

Pretty et al. (2002) assessed in vitro the reliability of the analytical stage of QLF for the 

detection of demineralised lesions on smooth tooth surfaces. They concluded in high 

inter- and intra-examiner agreement. Experience with the method of analysis is required 

to obtain more accurate and repeatable measurements.  

Good to excellent intra- and inter-examiner reproducibility of the technique has been 

reported in vivo when applied on smooth tooth surfaces (Tranaeus et al., 2002; 

Heinrich- Weltzien et al., 2005; Yin et al., 2007).  

The performance of the device for the detection of non-cavitated lesions on occlusal 

permanent tooth surfaces has been compared to visual examination. Visual examination 
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identified 7.1% non-cavitated carious lesions whereas 14.1% were detected with QLF. 

The two methods agreed on detection of 78.8% of the lesions; however, QLF was more 

sensitive in detecting significantly smaller lesions (Kuhnisch et al., 2007). 

To sum up, QLF can aid in the diagnosis of porosity in the tooth structure. However, the 

technique cannot differentiate between porosity due to dental caries or any other cause 

that is developmental defect, erosive lesion. Another disadvantage of the technique is 

the various confounding factors that can affect the results as well as the need for 

technologically advanced equipment and experience of the operator. In addition, QLF is 

used for superficial caries detection as the light-scaterring phenomena that occur within 

the carious lesion do not allow fluorescence of the sound dental tissue underneath 

(Fejerskov and Kidd, 2008). 

1.2.4. Electric Conductance Measurements 

Electric conductance measurements (ECM) have been described as a means of early 

detection of caries relying on the perception that electric resistance of the tooth surface 

provides information about its permeability and, thus, the porosity of the hard tissues, 

the degree of demineralisation as well as their thickness. Electric resistance is higher 

(and electric conductance is lower) in highly calcified areas such as enamel, whereas 

demineralised tissues give considerably lower measurements. 

Two techniques have been described to carry out electric conductance measurements. 

The site-specific method requires a probe that comes in contact with the tooth surface of 

interest and an incorporated airflow that dries the surrounding tissues while appropriate 

measurements are taken. If the airflow is not implemented and the tooth surface is 

covered with a conducting medium, surface-specific measurements can be acquired. In 

this case, the probe can be placed anywhere on the conducting medium and the readings 
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will reflect the least mineralised area. Modifications of the above techniques have been 

proposed, such as implementation of the site-specific technique with minimal amount of 

saline on the site of interest while the rest of the tooth surface is being dried to avoid 

taking surface measurements. It has been suggested that clinical application of the 

surface-specific method is easier, since it allows testing the whole occlusal surface with 

one reading. 

Vendonschot et al. (1993) assessed in vitro the performance of site-specific ECM for 

the detection of occlusal dentinal lesions without cavitation in a low caries prevalence 

population and compared it to visual and radiographic examination. Histological 

validation showed that the highest sensitivity was achieved with ECM (0.67) whereas 

visual examination was the most specific method (0.89); though, the reported 

differences were small. No significant differences were found when the accuracies were 

compared. The study shows that visual examination had the best performance for the 

detection of occlusal caries in low caries prevalence populations, with ECM and 

radiographic examination providing no additional aid. It should be noted that ECM were 

taken for occlusal sites that appeared suspicious for caries by visual examination. 

Therefore, “hidden” occlusal caries was not identified. 

Huysmans et al. (1998) compared the diagnostic performance of two site-specific and a 

surface-specific method of ECM with visual and radiographic examination. The results 

generally agree with the previously reported by Vendonschot et al. (1993) even though 

the studies are not directly comparable as the ECM methods used were not the same. 

Generally, high sensitivity but low specificity was achieved with all ECM methods. 

Accuracy was higher with visual examination due to its high specificity. Inter-examiner 

reproducibility was low for visual examination (κ=0.27) but moderate for site-specific 

ECM and almost excellent for surface-specific measurements. However, the results of 
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the site-specific method may have been underestimated since the tested sites were 

decided by the examiner and were not predetermined. 

The influence of conducting media on the diagnostic performance of surface-specific 

ECM was examined in vitro by Mosahebi and Ricketts (2002). Four different media 

were investigated; saline, KY lubricating jelly, toothpaste and dental prophylaxis paste. 

Statistically significant different measurements were taken with different media with the 

exception of toothpaste and prophylaxis paste that performed similarly. This can be 

attributed to similar conductivity and viscosity. The highest correlation between ECM 

and histological examination was found with the use of KY jelly; however even in this 

case the correlation was weak. Saline performed significantly worse than all the other 

media.  

Various ways of carrying out ECM examination were assessed in vitro by Ellwood and 

Cortes (2004). Site-specific measurements of the tooth were taken after 5-10 seconds 

drying-time with an air-syringe as well as surface-specific records following application 

of toothpaste as a conducting medium. Additionally, the ECM instrument was used with 

airflow of 5 litres/min directly applied on the probe and appropriate measurements were 

recorded. ECM significantly correlated with histological examination irrespectively of 

the method used. Weak correlations were observed in the presence of toothpaste as a 

conducting medium. Moreover, the diagnostic performance of ECM was inferior in the 

presence of stain and it was suggested that different cut-off points for detection of 

occlusal lesions should be introduced for stained surfaces. 

A more recent in vitro study by Huysmans et al. (2005) investigated the reproducibility 

and validity of surface-specific ECM for occlusal caries detection after fissure coverage 

with a conducting gel. Inter- and intra-examiner agreements were good even for 

inexperienced operators; 0.89 and 0.86 respectively. The correlation between this 
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technique and histological examination ranged between 0.64 for premolars and 0.73 for 

molars. The observed difference was attributed to electrode area variations due to the 

different sizes of the occlusal surfaces of molars and premolars. The method was more 

accurate for caries into dentine compared to enamel lesions, as dentinal penetration of 

the lesion may be enough to cause reduction of the resistance measurements of the 

whole occlusal surface. 

Significant correlation between visual examination with probing and ECM has been 

reported in vivo (Williams et al., 1978) with lower correlations being observed  in situ 

(White et al., 1978). The methodology followed in both studies was similar. In addition, 

both studies examined the occlusal surfaces of unrestored premolars of adolescents. The 

first study focused on the correlation between conductivity values and the progress of 

carious lesions as assessed with visual examination with probing, whereas the latter 

aimed to compare sensitivities and specificities of the two methods with histological 

examination as the gold standard. Therefore, the results are not directly comparable. 

ECM is more sensitive but as specific as the traditional method for identification of 

occlusal carious lesions (White et al., 1978). Excellent correlation with histological 

examination was shown (White et al., 1978). 

ECM from sites that develop dentinal caries are significantly higher compared to sound 

surfaces or surfaces with enamel lesions (Ie et al., 1995). The sensitivity of ECM was 

high when validated by cavity preparation (0.77-0.96), but the specificity was moderate, 

ranging between 0.62-0.71 (Vendonschot et al., 1992; Ie et al., 1995). Visual 

examination better detected true-negative sites with an almost excellent specificity 

(Vendonschot et al., 1992; Ie et al., 1995). Inter-examiner reproducibility of ECM 

ranged between good (Vendonschot et al., 1992; Ie et al., 1995) and excellent (White et 

al., 1978). The differences between the studies can be attributed to different validation 
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methods used; cavity preparation (Vendonschot et al., 1992; Ie et al., 1995) or 

histological examination (White et al., 1978).  

Concerns about technique limitations have been raised. Contact of the probe with metal 

restorations produces false positive measurements due to the high conductivity of the 

metal. The method is also moisture sensitive; saliva or plaque contamination may affect 

the results (Williams et al., 1978), as well as stain sensitive (Ellwood and Cortes, 2004). 

In conclusion, ECM can provide useful information regarding the carious lesions and 

can be used as an adjunct to visual examination. Its main contribution is the 

identification of lesions that have already extended into dentine. The need for a device 

and the limitations of the method are its main disadvantages. 

1.2.5. Fibre Optic Trans-Illumination 

Fibre Optic Trans-Illumination (FOTI) is based on different light-scattering phenomena 

between sound and carious tooth surfaces. The method involves a high-intensity light 

source and a probe tip of appropriate size. The light is usually applied on the smooth or 

interproximal surface of the tooth and the tooth surface is carefully observed from the 

opposite or the occlusal side. Scattering increases in demineralised tissues and, as a 

result, carious lesions appear dark on a light background. Digital Imaging Fibre Optic 

Trans-Illumination (DIFOTI) additionally involves a camera and the image appears on a 

computer screen. DIFOTI captures the light emitted from the outer surface of the tooth 

that is closer to the camera and, therefore, it cannot show changes in the density of the 

tissues. It should only be used for the detection of lesions and not measurement of their 

size and extent. 

Peers et al. (1993) reported that the validity of FOTI for the detection of approximal 

carious lesions is at least equal to that of bitewing radiographs and higher than that of 
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clinical examination. The results of their in vitro study showed excellent specificities of 

all three methods (0.96-0.99). The highest sensitivity was reported for FOTI (0.67) 

followed by radiographic (0.59) and clinical examination (0.38); the last having 

performed significantly poorer than the first two. Intra-examiner reproducibility for 

FOTI was 0.65; lower compared to both other methods.  

Cortes et al. (2000) assessed in the laboratory the performance of FOTI for occlusal 

caries detection and compared it to visual examination and bitewing radiographs. 

Histological validation was the gold standard. Reproducibility of FOTI was excellent 

(0.87), higher than previous reports on approximal caries detection (Peers et al., 1993). 

The highest correlation was observed between visual examination and histological 

scores (0.73), followed by FOTI (0.71) and radiographic evaluation (0.63); though, 

none of the differences reached statistically significant levels. The best results with all 

three methods tested were obtained for progressed dentinal lesions where restorative 

procedures would be indicated. 

Stephen et al. (1987) compared in vivo the diagnostic sensitivity of FOTI with clinical 

examination and bitewing radiographs. For anterior teeth where radiographs were not 

available, FOTI detected considerably more carious lesions than clinical examination. 

Surprisingly, a significant number of tooth surfaces that appeared carious on a first 

examination were assessed as caries-free in the second visit; indicating poor accuracy of 

the method. Though, it is difficult to conclude whether specificity was low during the 

first examination or sensitivity was inappropriate at the second assessment since no 

validation method existed in the study. For posterior caries detection, FOTI appeared 

twice as sensitive as clinical examination but five times less sensitive than radiographs; 

which contrasts previous in vitro studies (Peers et al., 1993). False-positive results 

obtained with FOTI can be attributed to anatomical features of the teeth. The results 
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obtained may be further biased by the presence of plaque and saliva as the teeth were 

neither cleaned nor dried before the examination.  

Hintze et al. (1998) compared in vivo the diagnostic accuracy and reproducibility of 

visual examination, FOTI and bitewing radiographs for the detection of interproximal 

caries. The gold standard was direct visual examination following tooth separation. 

Specificities of all methods tested exceeded 0.90, in accordance with previous studies in 

the laboratory (Peers et al., 1993). However, the sensitivities reported were not 

acceptable ranging between 0.00 and 0.08 for FOTI, 0.12-0.50 for visual examination 

and 0.56-0.69 for bitewing radiographs. The above result agrees with previously 

published data by Stephen et al. (1987), who reported five times higher sensitivity of 

radiographs compared to FOTI. Inter-examiner reproducibility of the validation method 

was moderate (0.61-0.75), indicating that appropriateness of the selected technique is 

questionable. 

A more recent study by Mialhe et al. (2009) supports previously reported data (Stephen 

et al., 1987; Hintze et al., 1998). FOTI and bitewing radiographs increased the rate of 

diagnosis of unaided visual examination by 50% and 110% respectively. It should be 

noted that radiographic examination performed better than FOTI not only for the 

detection of cavitated but also non-cavitated carious lesions. The accuracy of the 

validation method (direct visual examination following tooth separation) was not 

investigated; however, previous studies have shown moderate reproducibility (Hintze et 

al., 1998) and, therefore, the results should be interpreted with caution.  

Correlation of DIFOTI with clinical and radiographic examination for class II cavities 

was evaluated in an in situ study carried out by Bin-Shuwaish et al. (2008). The 

methods were validated by clinical measurement of the extent of the lesion following 

cavity preparation. For lesions into dentine sensitivity of DIFOTI was 0.84, similar to 
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that of clinical examination. For cavitated proximal lesions visual examination showed 

the highest sensitivity (1.0) followed by DIFOTI (0.83). The specificities reported were 

low, 0.27 and 0.15 respectively. DIFOTI values significantly correlated with the depth 

of the carious lesion; though, less than radiographic examination. This finding supports 

previously reported data on FOTI showing that radiographs perform better in detecting 

carious lesions into dentine (Stephen et al., 1987; Hintze et al., 1998; Mialhe et al., 

2009). Combination of DIFOTI with radiographic images can significantly aid the 

diagnosis of small lesions.  

On balance FOTI and DIFOTI can be an effective aid in caries diagnosis, especially 

when combined with visual and radiographic examination. Concerns have been raised 

regarding the sensitivity of the technique. In the presence of appropriate radiographs, 

the value of the method is questionable. 
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1.3. Methods for the diagnosis of dental erosion 

Numerous technologies have been described in the literature for the diagnosis of dental 

erosion. All of them rely on measuring the amount of tooth wear that has affected the 

dental hard tissues. The approach can, however, be confused and precise description of 

what has been measured should always be made. There are measurements of how much 

tissue has been lost by erosion and/ or physical wear. In addition, there are 

measurements of changes to the physical surface as a result of erosive challenge and 

there are also measurements of subsurface changes following an erosive challenge. 

1.3.1. Scanning Electron Microscopy 

Scanning Electron Microscopy (SEM) is a qualitative means to assess changes of the 

tooth surfaces after subjection to erosive agents. The method can be carried out on 

polished or unpolished tooth surfaces. SEM of eroded enamel reveals an “etching 

pattern” with exposed enamel prisms (Lussi, 2006). The degree of exposition is 

determined by the extent of the tooth wear. Eroded dentine presents with open dentinal 

tubules (Lussi, 2006).   

Dehydration of the tooth surfaces during the samples’ preparation for SEM may give 

rise to artefacts (Lussi, 2006). In addition, when the weak enamel breaks down, the 

dissolved minerals may be deposited on the enamel surface and, consequently, the 

eroded enamel may not be visible with SEM (Lussi, 2006). This will depend on the 

kinetics of demineralisation.  

The most important disadvantage of the technique is the subjective interpretation of the 

results. 
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1.3.2. Surface Hardness Measurements 

Surface Hardness Measurements (SHM) determine alterations of the eroded tooth 

surface hardness with the use of a diamond tip. The tip with a certain load is applied 

perpendicular to the surface of interest. The technique involves measuring the length of 

the indentation of the diamond tip under microscope and calculating the hardness 

number. Most reliable results are obtained when the tooth surfaces are polished prior to 

the measurements.  

SHM on enamel surfaces can be carried out immediately after the desired experiment. 

The enamel’s high mineral content makes it brittle and, therefore, any changes of its 

surface do not alter with time (Herkstroter et al., 1989). On the other hand, dentine 

measurements are time-dependent because of the resilient surface of the tissue. The 

length of the indentation tends to reduce with time for the first 24 hours and, therefore, 

records should be made one day after the initial indentation (Herkstroter et al., 1989). 

The main advantage of the technique is the ability to identify early changes of the 

surface of interest (that is weakening of the dental hard issue) with low cost. 

Additionally, it can be used for assessment of hard tissue abrasion. On the other hand, 

the measurements of erosive lesions can be complicated by the vague appearance of the 

indentations or affected by changes of the tooth surfaces surrounding the surface of 

interest (Lussi, 2006). 

1.3.3. Surface Profilometry 

Surface Profilometry (SP) provides information about erosive loss from the tooth 

surfaces after scanning with either a laser beam or a contact stylus.  
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Comparison of the tooth surfaces before and after the desired intervention can be carried 

out with two different methods. Part of the specimen can be covered with nail varnish or 

adhesive tape to ensure that it is not affected by the intervention and be used as control. 

Alternatively, comparisons can be done with a specially designed computer software 

provided that the specimen is repositioned accurately on the profilometer for the 

baseline and the post-intervention scanning (Lussi, 2006). 

Polished tooth surfaces are required, in order to reduce the natural roughness of the 

specimen and allow detection of shallow erosive changes. However, more extensive 

lesions of more than 50μm can be detected without previous polishing (Ganss et al., 

2000). It should be noted that polished tooth surfaces tend to get deeper erosion 

compared to the unpolished ones (Ganss et al., 2000). 

SP with a laser beam allows higher resolution compared to stylus scanning. However, it 

is more prone to artefacts due to the natural grooves of the tooth surface. 

The technique can also be carried out for the assessment of intra-oral natural tooth 

surfaces (Chadwick et al., 1997). Tooth replicas are constructed and surface maps are 

generated following scanning. Comparisons at regular intervals can provide valuable 

information about tooth and restorations wear over time. 

A significant correlation has been found between the results obtained with SP and 

microradiography for the assessment of erosive destruction (Elton et al., 2009).  

On balance, an important advantage of the technique is the ability to detect erosive 

lesions intra-orally. On the other hand, the stylus could destroy the tooth surface during 

the scanning procedure. 
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1.3.4. Iodine Permeability Test 

Iodine Permeability Test (IPT) is a means to assess porosity of the enamel surface 

caused by dental erosion.  

The enamel surface of interest is subjected to potassium iodide. The amount of iodide 

which is recovered from the enamel surface gives information about the presence of 

porous tissue. 

It has been shown that iodide permeability is strongly associated with calcium 

dissolution (Bakhos and Brudevold, 1982).  

The most important advantage of the technique is the low cost. However, porosity can 

only be detected at progressed stages.  

1.3.5. Chemical Analysis of minerals dissolved in the erosive agent 

This technique relies on measuring the dissolved calcium and phosphate that follows 

dental erosion.  

Calcium measurements have been carried out with use of calcium sensitive electrodes or 

atomic adsorption spectrophotometer (Hannig et al., 2003). Phosphate measurements 

are carried out with colorimetric methods (Lussi, 2006). 

The main advantage of the technique is that it allows determination of early tooth loss 

without previous preparation of the specimen. 
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1.3.6. Microradiography 

Microradiography has been used for the detection of early carious lesions. X-rays pass 

through the surface of interest and are, then, assessed by photo-counting x-ray detectors 

or sensitive photographic plates or films. The mineral density is, subsequently, 

calculated.  

The technique can also be applied for assessment of erosive lesions. Sections of the 

tooth surface of interest are obtained and are subjected to the erosive agent. Some areas 

of the tooth sample should not undergo the erosive challenge and be used as controls. 

The x-ray image is, then, obtained. The in vitro study carried out by Hall et al. (1997) 

showed that microradiography can be a valuable tool to quantitatively assess the amount 

of mineral loss that follows dental erosion. The technique could discriminate erosive 

lesions that occurred in less than one hour. 

Microradiography has been used for the diagnosis of erosive lesions but also mineral 

loss that precedes breakdown (Amaechi and Higham, 2001).  

Longitudinal microradiography allows evaluation of the erosive lesions over time and 

has been used for the assessment of the effectiveness of remineralising agents (Ganss et 

al., 2001). 

Microradiography has been used as the gold standard for the validation of other 

techniques for the assessment of erosion. The main disadvantage of the method is that it 

is destructive and can, therefore, only be used in vitro (Elton et al., 2009). 
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1.3.7. Confocal Laser Scanning Microscopy 

Confocal Laser Scanning Microscopy (CLSM) qualitatively assesses erosive tooth wear 

with the use of a laser beam. The technique takes advantage of tooth translucency and 

examines subsurface lesions. The sample of interest is illuminated with the laser beam 

and a lens is used to focus the laser beam on the surface of interest (focal plane). Light 

reflection and light scattering phenomena give information about early changes of the 

dental hard tissue. Very detailed images and three-dimensional reconstructions can be 

obtained by collecting information from successive focal planes; this is the main 

advantage of the technique (Lussi, 2006). 

This method can be applied on polished, unpolished and wet tooth surfaces. However, 

unpolished surfaces give rise to more extensive scattering phenomena due to their rough 

appearance. 

1.3.8. Quantitative Light-induced Fluorescence 

Quantitative Light-induced Fluorescence (QLF) has been widely used for early 

detection of carious lesions as described in detail in section 1.2.3.  

QLF has been used in studies assessing erosive tooth wear (Pretty et al., 2003; Pretty et 

al., 2005; Ablal et al., 2009). Pretty et al. (2004) validated the technique against the 

gold standard microradiography and showed the effectiveness of QLF on detecting and 

monitoring erosive lesions in vitro.  

A more recent in vitro study by Elton et al. (2009) showed poor correlation between 

QLF and microradiography for evaluation of the erosive lesion crater. However, the 

authors concluded that QLF can be a useful tool to measure subsurface erosive 

demineralisation and is suitable for in vivo use.  
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Nakata et al. (2009) showed a good correlation between QLF and demineralisation 

lesion as measured by Scanning Electron Microscopy and Energy Dispersive x-ray 

Spectroscopy. 

The advantage of the technique is the limited time required for its application. However, 

repositioning of samples is difficult and, therefore, comparisons should be made with 

caution. The method has been more widely used in caries diagnosis rather than in 

detection of erosive tooth wear. 

1.3.9. Atomic Force Microscopy  

Atomic Force Microscopy (AFM) is a very high resolution type of scanning probe 

microscopy. It is used for imaging at the sub-nanometer scale.  

The Atomic Force Microscope consists of a cantilever with a very sharp tip, which is 

used to scan the surface of interest. The tip interacts directly with the surface, probing 

the repulsive and attractive forces between the tip and the surface to produce the three-

dimensional image of the surface. The technique can be applied in solutions or in air 

environment, which is an important advantage especially for investigations of tooth 

samples in their natural environment. 

Various techniques can be used to conduct AFM. In the “contact mode” the probe 

remains in constant contact with the surface of interest, whereas in the “non-contact 

mode” the tip is oscillated. 

The probe at the end of the cantilever is moving in relation to the surface of interest 

while it is scanning it. Interaction forces between this probe and the surface cause 

deflection of the cantilever. A laser beam is directed to the reverse side of the cantilever 

and is affected by the deflections of the cantilever. The deflection of the laser beam is 
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monitored by a sensitive photodetector and is, subsequently, used to measure the forces 

generated between the probe and the surface of interest (Bowen and Hilal, 2009). 

AFM has been used in studies on dental erosion to image the affected tooth surfaces 

(Parkinson et al., 2010; Poggio et al., 2010; Dominquez et al., 2012). 

The technique has very high resolution and is almost non-destructive. On the other 

hand, it is time-consuming with significant cost. 

1.3.10. Nanoindentation 

Nanoindentation is used to calculate nanomechanical properties of the sample of 

interest. An indenter diamond is applied on the surface of interest with increasing load. 

The load is then gradually reduced. The load-displacement curve gives information on 

the properties of the surface (Lussi, 2006). 

Cheng et al. (2009) showed that nanoindentation is a suitable means to qualitatively and 

quantitatively assess very early demineralisation processes of the tooth surface. 

The main advantage of the technique is the high sensitivity. However, it requires 

significant time. 

1.3.11. Ultrasonic Measurements of Enamel Thickness 

Ultrasonic Measurements of Enamel Thickness (UMET) rely on measuring the amount 

of time needed for an ultrasound pulse to pass through the enamel and produce an echo 

at the amelo-dentinal junction. Taking into consideration the mean longitudinal sound in 

enamel, allows measurement of the depth of the hard tissue.  
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The measurements obtained from this technique are not well correlated with histological 

readings in an in vitro study measuring the wear of molar cusps (Arslantunali et al., 

2005). The method’s low resolution is considered its main disadvantage. 

1.4. The in situ models 

In situ models have been widely used in dental research. They are intra-oral, fixed or 

removable, upper or lower appliances with incorporated tooth samples and are used to 

make investigations in the mouth. Koulourides et al. (1976) used partial or full dentures 

to examine bovine enamel slabs. The slabs were incorporated into the buccal acrylic 

flanges of the denture. Removable partial dentures have been widely used in in situ 

caries investigations since the oral microflora of patients wearing partial dentures is 

similar to that of patients with natural dentition and, therefore, the results obtained can 

be generalised to the general population (ten Cate and Rempt, 1986). Ogaard and Rolla 

(1992) used the "orthodontic model", consisting of orthodontic bands placed on 

premolars which were, subsequently, extracted for orthodontic reasons. The dental 

plaque which was collected between the band and the natural tooth surface allowed 

caries investigations. Brudevold et al. (1984) used an upper acrylic plate with 

incorporated enamel slabs as their intra-oral appliance. Table 1.1 (Design of in situ 

models, based on Manning and Edgar, 1992, p.897) summarises the various designs of 

in situ models that have been used for demineralisation and remineralisation studies.  

Numerous techniques have been described to encourage plaque accumulation on the 

surface of the enamel slabs used in in situ studies (Table 1.1, Design of in situ models, 

based on Manning and Edgar, 1992, p.897). Gauzes have been used to cover the slabs 

and facilitate plaque formation (Koulourides et al., 1976). However, in these cases the 

obtained plaque microflora differs from that of natural dental plaque (ten Cate et al., 

1992). In other studies, the slabs were incorporated into a recess at a small distance of 
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few millimetres from the acrylic surface, allowing plaque to be collected more easily 

(Dijkman et al., 1986). Creating a box on the flange of the appliance where the enamel 

slab is incorporated or placing two slabs in close distance to mimic interproximal intra-

oral regions are other ways to enable plaque formation (Manning and Edgar, 1992). In 

some models, additional means for plaque retention were not implemented (Manning 

and Edgar, 1992).  

The main advantage of the in situ studies over in vitro investigations is the potential to 

carry out research under normal oral conditions and, therefore, evaluate the clinical 

significance of the study results. Additionally, in situ studies allow application of 

various techniques which would not be applicable in vivo and can be a valuable aid for 

the detection of early changes of the tooth surfaces. Studies that would not be carried 

out in vivo due to ethical concerns are possible with the in situ models, since the 

interventions with potential risks for the study participants can be carried out outside the 

mouth. Finally, in situ studies are much more cost-effective in comparison to clinical 

trials (Zero, 1995). 

The suitability of in situ appliances for anti-caries and abrasion studies has been 

demonstrated in the literature (Stephen et al., 1992; Addy et al., 2002).  

On the other hand, studies using in situ appliances do not lack disadvantages. The 

variation of important intra-oral factors between the different individuals participating 

in the study can affect the results. Plaque thickness, salivary pH and the composition of 

oral microflora are some parameters which are crucial for the development of carious 

lesions and can have a significant effect on the study results (Fejerskov et al., 1994). In 

addition, compliance of the participants with the study protocol is not always optimal 

and cannot be accurately evaluated (Zero, 1995). 
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It has been suggested that participants of in situ studies should be standardised for 

factors that can affect the study results; that is caries, erosion. The following parameters 

should be taken into consideration (Zero, 1995): 

i. Demographical factors such as the age and ethnic background, which may affect 

dietary and oral hygiene habits. 

ii. The general health as well as the use of medications can have an impact on the 

oral flora and the normal salivary secretion. 

iii. The dental health status (past and current caries status, periodontal health, 

number of natural teeth in the mouth, number and condition of restorations) can 

affect the study results. 

iv. Fluoride exposure is an important factor especially in studies on caries and 

erosion and should always be considered and standardised among the study 

participants. 

v. Behavioural factors can affect oral hygiene patterns, dietary habits as well as 

compliance with the study protocol. 

vi. Salivary factors may affect demineralisation and remineralisation procedures.  

The study investigator should carefully consider the factors that may affect the study 

results and decide on the inclusion and exclusion criteria for the participants. 
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Table 1. 1. Design of in situ models (Based on Manning and Edgar 1992, p. 897) 

Model Plaque retention Site 

Birmingham gauze buccal flange 

Boston gauze palatal 

Glasgow recess, artificial contact point lingual flange 

Groningen recess buccal flange/ crown 

Iowa recess buccal and approximal 

crown 

Liverpool gauze buccal crown 

Melbourne artificial contact point buccal flange 

Piscataway gauze buccal flange 

Rochester nil buccal flange 

Salford nil buccal flange 

Toronto gauze buccal flange 

Wellington gauze buccal 
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1.5. The pH indicators 

The pH indicators are halochromic chemical compounds that are used to visually 

determine the pH of solutions. Their colour is altered according to the pH of the 

solution of interest and is characteristic for each pH value.  

The pH indicators are usually weak acids or weak bases and react as follows: 

HInd + H2O ⇌ H3O
+
 + Ind

- 

(Hind: acid form of the indicator, Ind
-
 : conjugate base) 

The ratio between the concentration of the acid form of the indicator and the 

concentration of its conjugate base will determine its colour and, thus, the pH of the 

solution. 

For pH indicators that are weak protolytes, the Henderson- Hasselbalch equation would 

be: 

pH= pKa + log [Ind
-
]/[Hind] 

(pKa: acidity constant, Hind: acid form of the indicator, Ind
-
 : conjugate base) 

When pH=pKa, the concentration of the acid form of the indicator is equal to the 

concentration of its conjugate base. When pH>pKa, the concentration of the conjugate 

base is higher than the concentration of the acid form of the indicator and when 

pH<pKa the concentration of the acid form is higher than that of its conjugate base. 

There are numerous pH indicators with various transition pH ranges. The appropriate 

pH indicator can be selected according to the pH range that needs to be examined each 

time. 
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Chapter 2- Materials and methods 

Part 1- In vitro studies: Pilot in vitro studies of 

changes in the surface chemistry of enamel and 

dentine exposed to acid. 

This was the first part of a research project which involved two in vitro and one in situ 

study. Before insertion of the enamel slabs in the volunteers' mouths for the in situ 

study, the slabs had to be sterilised. Therefore, the in vitro examination of both non-

sterile and sterile tooth surfaces was essential in order to investigate the effect of the 

sterilisation procedures on the tooth surfaces. The first part of this project involved the 

following studies: 

In vitro study 1: Pilot in vitro study of changes in the surface chemistry 

of non-sterile enamel and dentine exposed to acid. 

In vitro study 2: Pilot in vitro study of changes in the surface chemistry 

of sterile enamel and dentine exposed to acid. 

2.1. Aims of the studies 

2.1.1. Primary aim 

The primary aim of these studies was to investigate in vitro protonation of non-sterile 

and sterile sound and carious human primary tooth surfaces that had previously been 

subjected to acids of known pH.  

2.1.2. Secondary aims 

The secondary aims of these studies were: 
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i. In vitro study 1 

To investigate in vitro the proportions of protonated and non-protonated
1
 sound and 

carious, non-sterile tooth surfaces which have been subjected to neutral pH (pH 7) or 

acidic pH (pH 5).  

ii. In vitro study 2 

To investigate in vitro the proportions of protonated and non-protonated sound and 

carious, sterile tooth surfaces which have been subjected to neutral pH (pH 7) or acidic 

pH (pH 5). 

iii. In vitro studies 1 and 2 

 To compare in vitro the proportions of protonated sound and carious, sterile and 

non-sterile tooth surfaces after subjection to neutral pH (pH 7) with the proportions 

of the same tooth surfaces that are protonated after subjection to acidic pH (pH 5). 

 To compare in vitro the proportions of protonated tooth surfaces after subjection to 

neutral pH among the different groups of teeth (sound or carious, sterile or non-

sterile). 

 To compare in vitro the proportions of protonated tooth surfaces after subjection to 

acidic pH among the different groups of teeth (sound or carious, sterile or non-

sterile). 

 To use the results of this study to design the methodology and carry out power 

calculations of future in vitro, in situ or in vivo studies.   

 

  

                                                      
1
 non-protonated refers to hydrogen ion concentration below 1.0 x 10

-7
 M 
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2.2. Null hypotheses 

The proportions of protonated and non-protonated tooth surfaces are equal irrespective 

of the presence and extent of a carious lesion, sterilisation or no sterilisation of the tooth 

surface or the pH of the solution to which the tooth has been subjected. Specifically: 

i. In vitro study 1 

 Following subjection to pH 7 phosphate buffer, the proportion of non-sterile 

protonated tooth surfaces is equal to the proportion of non-sterile non-protonated 

tooth surfaces irrespective of the presence and extent of a carious lesion.  

 Following subjection to pH 5 phosphate buffer, the proportion of non-sterile 

protonated tooth surfaces is equal to the proportion of non-sterile non-protonated 

tooth surfaces irrespective of the presence and extent of a carious lesion.  

 The proportion of non-sterile protonated tooth surfaces which have been subjected 

to pH 7 phosphate buffer is equal to the proportion of non-sterile protonated tooth 

surfaces which have been subjected to pH 5 phosphate buffer irrespective of the 

presence and extent of a carious lesion.  

ii. In vitro study 2 

 Following subjection to pH 7 phosphate buffer, the proportion of sterile protonated 

tooth surfaces is equal to the proportion of sterile non-protonated tooth surfaces 

irrespective of the presence and extent of a carious lesion.  

 Following subjection to pH 5 phosphate buffer, the proportion of sterile protonated 

tooth surfaces is equal to the proportion of sterile non-protonated tooth surfaces 

irrespective of the presence and extent of a carious lesion.  

 The proportion of sterile protonated tooth surfaces which have been subjected to pH 

7 phosphate buffer is equal to the proportion of sterile protonated tooth surfaces 

which have been subjected to pH 5 phosphate buffer irrespective of the presence and 

extent of a carious lesion.  
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2.3. Study design 

This was a prospective qualitative pilot in vitro study of non-sterile and sterile sound 

and carious human primary tooth surfaces. 

2.4. Ethical approval 

Ethical approval was obtained by National Research Ethics Service Committee 

(Yorkshire & The Humber, Leeds West Research Ethics Committee, REC reference 

number: 11/YH/0310; Appendix 7.1.1).  

NHS permission was granted for this project at The Leeds Teaching Hospitals NHS 

Trust by the relevant Research and Development Department (Leeds Teaching Hospital 

NHS Trust, R&D Reference number: DT11/10026; Appendix 7.1.2). 

The study investigators ensured that these studies were conducted in full conformance 

with the law of this country and the Declaration of Helsinki (18th WMA General 

Assembly, Helsinki, Finland, June 1964; Amended in 1975, 1983, 1989, 1996, 2000, 

2002, 2004 and 2008).   

2.5. Source of teeth 

All the teeth were obtained from Leeds Dental Institute Clinics. 

2.6. Recruitment of tooth donors 

Potential tooth donors were identified by the study investigator (A.K.) through their 

dental records and were approached on the day of their dental treatment. 

2.7. Tooth Donation Informed Consent 

Tooth Donation Information Sheets (Tooth Donation Information Sheet for parents/ 

guardians of tooth donors, September 23
rd

 2011, Version 2.0; Appendix 7.2) were given 

to all potential tooth donors’ legal guardians. The aims and objectives of the study as 

well as the plans for the disposal of the teeth after completion of the project were 
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explained in lay terms. All questions were answered by the study investigator (A.K.). In 

case of agreement, written informed consent was obtained (Parent/ Guardian Consent 

Form, September 23
rd

 2011, Version 2.0; Appendix 7.2).  

The tooth donors' legal guardians had the right to withdraw their consent any time 

before the tooth extraction without justification. Consent was not sought from the tooth 

donors themselves, as they were children less than six years old. Therefore, they had not 

reached the appropriate degree of cognitive development to understand the rationale of 

the study and decide on participation. 

2.8. Confidentiality 

All the data was collected on a secured laptop and was transferred to password protected 

university premises. The data was fully anonymised. Only the research team had access 

to the obtained data. 

Personal details of the tooth donors were not available in the laptop. Personal data was 

kept in secure university cabinets, to which only the research team had access. 

2.9. Inclusion criteria for the tooth samples 

The inclusion criteria for the tooth samples were as follows: 

i. Sound primary tooth surfaces. The tooth surfaces were obtained from either 

intact or carious primary teeth. 

ii. Teeth extracted under local analgesia or general anaesthesia from children less 

than six years of age. 

The ethical approval for this study covered collection of tooth samples as mentioned 

above. Most sound primary tooth surfaces were obtained from teeth having at least one 

carious surface, to ensure that human tissues were not wasted.  
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2.10. Exclusion criteria for the tooth samples 

The exclusion criteria for the tooth samples were as follows: 

i. Teeth with any sign of dental traumatic injury, full coverage restorations or 

enamel defects. 

ii. Teeth extracted with crown fractures. 

2.11. Preparation of the phosphate buffers 

Phosphate buffers of pH 7.2 and pH 5.6 were prepared with Sorensen’s formulation 

(Drury and Wallington, 1967; Table 2.1). The pHs of the two buffers were reduced to 

the required levels (pH 7.0 and pH 5.0 respectively) by adding appropriate amounts of 

hydrochloric acid. The phosphate buffers were stored at 4°C.  

The pH of the buffer was measured with pH meter (ORION, Cat. Number 0900A6) 

before every investigation. 

 

Table 2. 1. Composition of the phosphate buffers 

pH M/15 KH2PO4 (mls) M/15 Na2HPO4 (mls) 

7.2 27 73 

5.6 95 5 

 

2.12. Calibration 

The extent of the carious lesion was assessed with visual examination based on 

International Caries Detection and Assessment System II (ICDAS II). The assessment 

was carried out by the study investigator (A.K.) following calibration by the research 

supervisor (K.J.T.). Calibration was carried out until 100% agreement was achieved. 
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2.13. Randomisation  

In these in vitro studies more than one sound tooth surfaces were examined from each 

extracted tooth wherever possible, in order to ensure that donated human tissues were 

not wasted. Therefore, randomisation was not applicable as the whole tooth and, 

consequently, more than one tooth surfaces, had to be subjected to the same phosphate 

buffer. 

2.14. Blindness 

Blindness was not applicable in this study as the tooth surfaces of the control group 

were dipped in one solution only (neutral phosphate buffer) whereas those of the test 

group were dipped in two solutions (neutral phosphate buffer followed by acidic 

phosphate buffer). Therefore, the study investigator could not be blinded.  
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2.15. In vitro study 1: Pilot in vitro study of changes in the surface 

chemistry of non-sterile enamel and dentine exposed to acid. 

2.15.1. Sample size determination 

Since there was no previous published data in the literature, a formal power calculation 

could not be conducted. Following statistical advice by the Statistician at Biostatistics 

Unit (Centre of Epidemiology and Biostatistics, University of Leeds) it was agreed that 

each study group (control group/ test group) should consist of 30 sound tooth surfaces. 

As mentioned previously, the aim of these in vitro studies was to investigate sound and 

carious tooth surfaces. Therefore, 30 tooth surfaces of each category of interest were 

required. In order to ensure that human tissues are not wasted, the Ethical Committee 

requested the reduction of the number of teeth in the study. Therefore, the research team 

decided to investigate sound primary tooth surfaces only. These tooth surfaces were 

obtained from either sound or carious teeth. The investigators found it interesting to 

examine the carious tooth surfaces that were collected incidentally. Even though the 

numbers obtained did not reach the required target (that is 30 tooth surfaces for each 

group), the results of these additional investigations were also analysed and are 

presented. 

2.15.2. Tooth selection and cleaning 

Appropriate tooth surfaces were obtained from extracted human primary teeth. The 

teeth were collected “fresh” immediately after their extraction by the study investigator 

(A.K.). They were collected prospectively until the required number of sound tooth 

surfaces was obtained.  
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The extent of the carious lesions on these teeth was, subsequently, assessed with visual 

examination with the International Caries Detection and Assessment System II (ICDAS 

II).  

 

The following tooth surfaces were selected and investigated: 

 Code 0: Sound tooth surfaces 

 Code 2: Tooth surfaces with distinct visual changes in enamel  

 Code 5: Tooth surfaces with distinct cavities with visible dentine 

 Code 6: Tooth surfaces with extensive distinct cavities with visible dentine 

The teeth were cleaned with a spoon excavator and sterile gauze to remove blood and 

soft tissue remnants. 

2.15.3. Study interventions 

2.15.3.1. Study groups 

This study involved two study groups: 

i. Control group 

Thirty sound tooth surfaces were dipped in phosphate buffer of neutral pH (pH 

7.0) for 60 minutes to obtain the baseline data.  

The sound tooth surfaces required for this part of the study were obtained from 

carious teeth with one or more sound tooth surfaces. The research team also 

investigated the available carious tooth surfaces of these teeth. The following 

carious tooth surfaces were identified and examined: 

 Fifteen primary tooth surfaces with distinct visual changes in enamel 

(code 2, ICDAS II) 

 Eight primary tooth surfaces with distinct or extensive distinct cavities 

with visible dentine (code 5 and 6, ICDAS II). The tooth surfaces coded 
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5 and 6 with ICDAS II were grouped together, as the small number of 

tooth surfaces obtained would, otherwise, not allow valuable 

conclusions. 

ii. Test group 

Thirty sound tooth surfaces were dipped in phosphate buffer of neutral pH (pH 

7.0) for 60 minutes. The tooth surfaces were wiped with dry, sterile gauze to 

remove the phosphate buffer and were, subsequently, dipped in phosphate buffer 

of acidic pH (pH 5.0) for 30 minutes.  

A small pilot in vitro study was conducted in the laboratory to determine the 

most appropriate dipping time. Ten sound enamel tooth surfaces were 

investigated. Dipping time less than 15 minutes gave inconsistent results. 

Dipping time more than 15 minutes gave consistent results with 30 minutes 

showing clear protonation of tooth surfaces. 

The research team investigated the available carious tooth surfaces of the teeth 

obtained for this part of the study. The following carious tooth surfaces were 

identified and examined: 

 Fifteen primary tooth surfaces with distinct visual changes in enamel 

(code 2, ICDAS II) 

 Seven primary tooth surfaces with distinct or extensive distinct cavities 

with visible dentine (code 5 and 6, ICDAS II). As mentioned above, the 

tooth surfaces coded 5 and 6 with ICDAS II were grouped together due 

to the small number that was obtained. 

2.15.3.2. Interventions 

i. Control group 

The sound and carious tooth surfaces of the control group were dipped in 

phosphate buffer of neutral pH (pH 7.0) for 60 minutes. The teeth were wiped 
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with dry, sterile gauze to remove the phosphate buffer. Universal pH indicator 

solution (Scientific Laboratory Suppliers, GPR) was applied on the tooth surface 

of interest with a disposable brush. The colour change of the pH indicator was 

noted and protonation or non-protonation of the tooth surface was determined. 

Table 2.2 summarises the interventions that were carried out during this in vitro 

study 1 for the control group.  

Figure 2.1 shows the assessment of the pH of the tooth surface based on the 

colour change of the pH indicator.  

ii. Test group 

The sound and carious tooth surfaces of the test group were dipped in phosphate 

buffer of neutral pH (pH 7.0) for 60 minutes. The teeth were wiped with dry, 

sterile gauze to remove the phosphate buffer. They were, subsequently, dipped 

in phosphate buffer of acidic pH (pH 5.0) for 30 minutes. The teeth were wiped 

with dry, sterile gauze and universal pH indicator solution (Scientific Laboratory 

Suppliers, GPR) was applied on the tooth surface with a disposable brush. The 

colour change of the pH indicator was noted and protonation or non-protonation 

of the tooth surface was determined. 

Table 2.2 summarises the interventions that were carried out during this in vitro 

study 1 for the test group. 
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Table 2. 2. In vitro study 1 interventions 

Control 

group 

Cleaned 

with 

excavator/ 

wiped 

with gauze 

Dipped in pH 

7.0 phosphate 

buffer (60 

mins) 

Wiped with 

gauze 

pH indicator 

solution 

applied 

Protonation/ non-

protonation 

determined 

Study 

group 

Cleaned 

with 

excavator/ 

wiped 

with gauze 

Dipped in 

pH 7.0 

phosphate 

buffer (60 

mins) 

Wiped 

with 

gauze 

Dipped in 

pH 5.0 

phosphate 

buffer (30 

mins) 

Wiped 

with 

gauze 

pH 

indicator 

solution 

applied 

Protonation/ 

non-

protonation 

determined 

 

 

Figure 2. 1. Universal pH indicator colour charting 
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2.16. In vitro study 2: Pilot in vitro study of changes in the surface 

chemistry of sterile enamel and dentine exposed to acid. 

2.16.1. Sample size determination 

Since there was no previous published data in the literature, a formal power calculation 

could not be conducted. Following statistical advice by the Statistician at Biostatistics 

Unit (Centre of Epidemiology and Biostatistics, University of Leeds) it was agreed that 

each study group (control group/ test group) should consist of 30 tooth surfaces. 

2.16.2. Tooth selection and cleaning 

The tooth surfaces were selected and cleaned as described in section 2.15.2. 

2.16.3. Tooth sectioning 

Each tooth was mounted in green impression wax (Kerr, UK) on appropriate discs.  The 

crowns of the teeth were separated from the roots using a Well Precision Diamond Wire 

Saw, water cooled, cutting machine (Well® Walter EBNER, CH-2400 Le Loche). 

Figures 2.2-2.6 show the cutting machine, the cutting discs and the teeth mounted in 

green impression wax and stabilised on the cutting discs ready to be sectioned. 
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Figure 2. 2. Cutting machine (Well® Walter EBNER, CH-2400 Le Loche) 

 

 

Figure 2. 3. Cutting discs    

  

 

Figure 2. 4. Cutting discs with mounted tooth 
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Figure 2. 5. Tooth mounted in green impression wax on the cutting disc ready to be 

sectioned 

  

 

Figure 2. 6. Crown mounted in green impression wax on the cutting disc ready for further 

sectioning 
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2.16.4. Tooth sterilisation 

All the crowns were stored in micro-centrifuge tubes in de-ionised distilled water and 

0.1% thymol (Sigma Aldrich, Thymol 98%) at room temperature. The crowns were 

immersed overnight in sodium hypochlorite (12% w/v), which was pipetted into each 

tube using a disposable squeezy pipette. Subjection to sodium hypochlorite has been 

shown to eliminate prions without affecting the mineral phase or structure of the tooth 

surface (Driscoll et al., 2002). The procedure causes significant deproteination of the 

tooth surface even at much lower concentrations (Hu et al., 2010). The crowns were 

rinsed thoroughly with de-ionised distilled water and immersed and agitated in 

phosphate buffered saline (pH 7.4) in new micro-centrifuge tubes for a second night. 

The enamel slabs were, then, transferred to tubes containing 0.1% thymol (Sigma 

Aldrich, Thymol 98%) and de-ionised, distilled water solution and sealed with parafilm 

to prevent leakage of the thymol solution. The micro-centrifuge tubes were sent to the 

Department of Immunology at the University of Liverpool and were subjected to 

gamma irradiation at 4080Gy, according to the current protocol for tooth sterilisation at 

Leeds Dental Institute. This level of exposure has been shown to provide appropriate 

sterilisation without changing the structural integrity of the tooth surface (Amaechi et 

al., 1998).  

2.16.5. Re-obtaining the removed protein pellicle 

Subjection of the tooth surfaces to sodium hypochlorite causes significant 

deproteination (Hu et al., 2010). The teeth were dipped in natural human saliva for 24 

hours to re-obtain the protein pellicle.  
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2.16.6. Study interventions 

2.16.6.1. Study groups 

This study involved two study groups: 

i. Control group 

Thirty sound tooth surfaces were dipped in phosphate buffer of neutral pH (pH 

7.0) for 60 minutes to obtain the baseline data.  

The sound tooth surfaces required for this part of the study were obtained from 

carious teeth with one or more sound tooth surfaces. The research team 

investigated the available carious tooth surfaces of these teeth. The following 

carious tooth surfaces were identified and examined: 

 Seventeen primary tooth surfaces with distinct visual changes in enamel 

(code 2, ICDAS II) 

 Ten primary tooth surfaces with distinct or extensive distinct cavities 

with visible dentine (code 5 and 6, ICDAS II) 

ii. Test group 

Thirty sound tooth surfaces were dipped in phosphate buffer of neutral pH (pH 

7.0) for 60 minutes. The tooth surfaces were wiped with dry, sterile gauze to 

remove the phosphate buffer and were, subsequently, dipped in phosphate buffer 

of acidic pH (pH 5.0) for 30 minutes.  

The research team investigated the available carious tooth surfaces of the teeth 

obtained for this part of the study. The following carious tooth surfaces were 

identified and examined: 

 Thirteen primary tooth surfaces with distinct visual changes in enamel 

(code 2, ICDAS II) 

 Fourteen primary tooth surfaces with distinct or extensive distinct 

cavities with visible dentine (code 5 and 6, ICDAS II) 
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2.16.6.2. Interventions 

The study interventions were conducted as described in section 2.15.3.2. 

Table 2.3 summarises the interventions that were carried out during this in vitro study 2 

for the control and the test groups.  
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Table 2. 3. In vitro study 2 interventions 

Control 

group 

Cleaned 

with 

excavator/ 

wiped with 

gauze/ 

sterilised 

Dipped in pH 

7.0 phosphate 

buffer (60 

mins) 

Wiped with 

gauze 

pH indicator 

solution 

applied 

Protonation/ non-

protonation 

determined 

Study 

group 

Cleaned 

with 

excavator/ 

wiped with 

gauze/ 

sterilised 

Dipped in 

pH 7.0 

phosphate 

buffer (60 

mins) 

Wiped 

with 

gauze 

Dipped in 

pH 5.0 

phosphate 

buffer (30 

mins) 

Wiped 

with 

gauze 

pH 

indicator 

solution 

applied 

Protonation/ 

non-

protonation 

determined 
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Part 2- In situ study: Pilot in situ study of changes 

in the surface chemistry of enamel and dentine 

exposed to acid. A surface study of caries. 

2.17. Aims of the study 

2.17.1. Primary aim 

The primary aim of this study was to investigate in situ protonation of sound primary 

enamel surfaces that had previously been subjected to 10% w/v sucrose rinse. 

2.17.2. Secondary aims 

i. To compare the results of in situ investigations with the results of the previous in 

vitro studies. 

ii. To use the results of this study to design the methodology and carry out power 

calculations of future in situ or in vivo studies.   

2.18. Null hypotheses 

The proportions of protonated and non-protonated sound primary tooth surfaces are 

equal after subjection to 10% w/v sucrose rinse. 

The proportion of tooth surfaces protonated in vitro is equal to the proportion of tooth 

surfaces protonated in situ. 

2.19. Study design 

This was a prospective qualitative pilot in situ study of sound primary human tooth 

surfaces. 

2.20. Ethical approval 

Ethical approval for this study was obtained as described in section 2.4. 
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2.21. Source of teeth 

All the teeth were obtained from Leeds Dental Institute Clinics. 

2.22. Recruitment of tooth donors 

Potential tooth donors were identified as described in section 2.6.  

2.23. Tooth Donation Informed Consent 

Tooth Donation Informed Consent was obtained as described in section 2.7. 

2.24. Recruitment of participants for the in situ study and informed 

consent 

Volunteers for the in situ study were recruited via posters that were placed on notice 

boards in Leeds Dental Institute and University of Leeds. A face-to-face interview with 

each participant was arranged to ensure that the inclusion criteria were met. Potential 

participants were given the relevant Participant Information Sheet (Participant 

Information Sheet, September 23
rd

 2011, Version 2.0; Appendix 7.3). The aims, 

objectives, methodology and potential hazards of the study were explained to potential 

participants in lay terms. All questions were answered by the study investigator (A.K.). 

In case of agreement, written informed consent was obtained (Consent Form, September 

23
rd

 2011, Version 2.0; Appendix 7.3).  

The volunteers had the right to withdraw their consent any time during the study 

without providing any justification. If major amendments to the study protocol were 

required during the study, the participants would be informed by the study investigator 

and would be asked to re-consent if they still wished to continue taking part in the 

study. 
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2.25. Participant withdrawal from the study 

Participants had the right to withdraw from the study at any time without providing any 

justification.  

The investigators had the right to withdraw subjects from the study if they repeatedly 

failed to attend their scheduled visits at Leeds Dental Institute without justification, in 

case of medical or dental problems that could be affected by the study interventions, in 

case of amendments of the study protocol or any other reason.  

2.26. Subject replacement 

If one or more volunteers decided to withdraw the study, the need for replacement 

would be decided by the study investigators, the sponsor and National Research Ethics 

Service Committee (Yorkshire & The Humber, Leeds West Research Ethics 

Committee).  

2.27. Confidentiality 

All the data was collected on a secured laptop and was transferred to password protected 

university premises. The data was anonymised. Only the research team had access to the 

obtained data. 

Personal details of the tooth donors and the in situ study participants were not available 

in the laptop. Personal data was kept in secure university cabinets, to which only the 

research team had access. 

2.28. Inclusion criteria for the tooth samples 

The inclusion criteria for the tooth samples were as follows: 

i. Sound primary tooth surfaces. The tooth surfaces were obtained from either 

intact or carious primary teeth. 
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ii. Teeth extracted under local analgesia or general anaesthesia from children less 

than six years of age. 

2.29. Exclusion criteria for the tooth samples 

The exclusion criteria for the tooth samples were as follows: 

i. Teeth with any sign of trauma, full coverage restorations or enamel defects. 

ii. Teeth extracted with crown fractures. 

2.30. Inclusion criteria for the in situ study participants 

The inclusion criteria for the study participants were as follows: 

i. Patients with no relevant medical history. 

ii. Patients aged 18 years or above. 

iii. Patients having at least 20 natural teeth, to ensure that the appliance would fit 

comfortably. 

iv. Patients with no visual signs of untreated caries or periodontal disease or any 

other adverse dental/ oral health conditions that could be exacerbated by the 

study intervention. 

v. Patients able to fully understand the interventions and procedures and willing to 

give their informed consent for participation in the study. 

2.31. Exclusion criteria for the in situ study participants 

The exclusion criteria for the study participants were as follows: 

i. Any oral or systemic disease that could affect the oral cavity or interfere with the 

study intervention (that is wearing the appliance). 

ii. Dental disease requiring immediate treatment. 

iii. Severe medical problems requiring treatment. 

iv. Patients unable to give their informed consent for participation in the study. 
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v. Known or suspected intolerance/ hypersensitivity to materials that would be 

used in the study. 

vi. Participation in another clinical study at the same time. 

vii. Individuals unable to participate for the duration of the study. 

2.32. Preparation of the phosphate buffers and the sucrose rinse 

The phosphate buffers were prepared as described in section 2.11. 

A 10% w/v sucrose rinse was prepared by placing 10g of sugar in a laboratory pot and 

adding distilled water up to 100mls. 

2.33. Calibration 

Calibration was performed as described in section 2.12. 

2.34. Randomisation  

Randomisation was not applicable in this part of the study as there was only one 

intervention planned. 

2.35. Blindness 

Blindness was not applicable in this study as there was only one intervention planned. 

2.36. Sample size determination 

Since there was no previous published data in the literature, a formal power calculation 

could not be conducted. Following statistical advice by the Statistician at Biostatistics 

Unit (Centre of Epidemiology and Biostatistics, University of Leeds) it was agreed that 

30 sound tooth surfaces would be investigated. 
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2.37. Tooth selection and cleaning 

Appropriate tooth surfaces were obtained from extracted human primary teeth. The 

teeth were collected “fresh” immediately after their extraction. Thirty sound tooth 

surfaces were selected for investigation. The teeth were cleaned with a spoon excavator 

and sterile gauze to remove blood and soft tissue remnants. They were carefully 

screened by trans-illumination and transmitted light using low-power microscopy 

(Leitz, Wetzlar®, Germany) for the detection of cracks, caries or any malformations.  

2.38. Tooth sectioning 

Each tooth was mounted in green impression wax (Kerr, UK) on appropriate discs.  The 

crowns of the teeth were separated from the roots using a Well Precision Diamond Wire 

Saw, water cooled, cutting machine (Well® Walter EBNER, CH-2400 Le Loche). 

Enamel slabs measuring approximately 3mm width, 4mm length and 2mm depth were 

obtained. 

2.39. Enamel slabs sterilisation 

The enamel slabs were sterilised as described in section 2.16.4. 

2.40. In situ experimental appliance design 

A mandibular removable appliance with C-shaped clasps on the lower first permanent 

molars, a labial wire arch and acrylic buccal flanges was used for this study. Three 

enamel slabs were incorporated into each buccal flange and were secured with sticky 

wax (Figures 2.7-2.8).   
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Figure 2. 7. The in situ appliance 

 

 

Figure 2. 8. The in situ appliance with incorporated enamel slabs 
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2.41. Study interventions 

2.41.1. Study group 

Five participants took part in this study and thirty sound enamel slabs were investigated. 

Each participant had to wear one in situ appliance with six incorporated enamel slabs. 

2.41.2. Study interventions with regards to the participants 

Participants of the in situ study attended three visits at the Postgraduate Clinic of 

Paediatric Dentistry in Leeds Dental Institute. They were involved in the study for 

approximately 18 days. 

i. First visit 

During the first visit at Leeds Dental Institute, the study protocol and the interventions 

were discussed with the participants and written informed consent was obtained as 

described in section 2.24. 

The patient's date of birth and gender were recorded. 

A thorough medical history was obtained to ensure that the participants were not 

affected by any oral or systemic disease that could affect the oral cavity, interfere with 

the study intervention or be exacerbated by the procedures planned. The volunteers 

were asked about previous episodes of allergic reactions to the materials that would be 

used for the project.  

A thorough extra- and intra-oral examination was carried out (hard tissues, periodontal 

tissues, soft tissues, assessment of presence and integrity of restorations) and it was 

ensured that the research participants fulfilled the inclusion criteria for the study as 

described in section 2.30.  

Oral hygiene instructions were given to the volunteers and intra-oral demonstration was 

carried out with a soft manual toothbrush. They were advised to brush at least twice 
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daily with toothpaste containing 1450ppm fluoride. All the participants were provided 

with 0.05% sodium fluoride mouthwash and were advised to use it once daily for the 

duration of the study after removing the in situ appliance from the mouth. 

Upper and lower alginate impressions and wax bite were taken and were sent to the 

laboratory to construct the lower removable in situ appliances. The appropriate size of 

colour coded transparent disposable impression tray (Polytray, Dentply) was chosen for 

each participant and was filled with alginate. The impressions and wax bite were 

disinfected (Perform ®, ID, Schulke) before being sent to the laboratory.   

ii. Second visit 

The second visit was approximately two weeks after the first visit. The appliances were 

given to the participants and comfortable fitting was ensured. The participants were 

given instructions on fitting and removal of the appliance. They were advised to wear it 

continuously for 48 hours and remove it only during mealtimes and toothbrushing. An 

appropriate sized case was provided and volunteers were advised to place the appliance 

in the case when it was not used, to ensure that it would not be lost. 

iii. Third visit 

The third visit occurred two days after the second visit. The appliance was removed 

from the mouth and was immediately taken to the laboratory for the investigation.  

An intra-oral examination was carried out to ensure that there were no adverse effects 

from the use of the appliance. The volunteers were asked to report any feelings of 

discomfort that they experienced during the study intervention.  

2.41.3. Study interventions with regards to the enamel slabs 

The enamel slabs were investigated in the laboratory immediately after removal from 

the mouth. 
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The appliances were dipped in 10% w/v sucrose rinse for 30 minutes. This intervention 

would allow acid production by the plaque bacteria that had been collected on the 

enamel slabs. The slabs were carefully wiped with dry, sterile gauze to remove the 

plaque and the sucrose rinse. Universal pH indicator solution (Scientific Laboratory 

Suppliers, GPR) was applied on the enamel slabs with a disposable brush of appropriate 

size. The colour change of the pH indicator was noted and protonation or non-

protonation of the tooth surface was determined.   

Tables 2.4 and 2.5 summarise the in situ study interventions with regards to the 

participants and the enamel slabs respectively. 

 

Table 2. 4. In situ study interventions with regards to the participants 

Visit 1 Visit 2 Visit 3 

Written informed consent Intra-oral examination Intra-oral examination 

Medical history Appliance fitted Appliance removed from the 

mouth 

Intra- and extra-oral 

examination 

  

Oral hygiene instructions   

Upper and lower alginate 

impressions, wax bite 
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Table 2. 5. In situ interventions with regards to the enamel slabs 

Sterilised Placed in 

the mouth 

(48 hours) 

Dipped in 

10% w/v 

sucrose rinse 

(30 minutes) 

Wiped 

with 

gauze 

pH 

indicator 

solution 

applied 

Protonation/ 

non-protonation 

determined 

 

 

 

  



72 
 

Chapter 3- Results 

3.1. In vitro studies: Pilot in vitro studies of changes in the surface 

chemistry of enamel and dentine exposed to acid. 

This was the first part of this research project and involved the following in vitro 

studies: 

In vitro study 1: Pilot in vitro study of changes in the surface chemistry of non-

sterile enamel and dentine exposed to acid. 

In vitro study 2: Pilot in vitro study of changes in the surface chemistry of sterile 

enamel and dentine exposed to acid. 

3.1.1. Protonation/ Non-protonation of tooth surfaces after subjection to pH 

7 phosphate buffer (baseline) 

Protonation/ Non-protonation of the various tooth surfaces of interest were examined at 

baseline after subjection to pH 7 phosphate buffer for 30 minutes. The results are 

presented in Table 3.1 and Figure 3.6. 

The following tooth surfaces were investigated: 

i. Sound non-sterile tooth surfaces (Sound NS) 

ii. Non-sterile tooth surfaces with distinct visual change in enamel, as described in 

detail in chapter 2 (White spot NS) 

iii. Non-sterile tooth surfaces with distinct cavity with visible dentine or extensive 

distinct cavity with visible dentine, as described in detail in chapter 2 (Dentine 

NS) 

iv. Sound sterile tooth surfaces (Sound S) 
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v. Sterile tooth surfaces with distinct visual change in enamel, as described in 

detail in chapter 2 (White spot S) 

vi. Sterile tooth surfaces with distinct cavity with visible dentine or extensive 

distinct cavity with visible dentine, as described in detail in chapter 2 (Dentine 

S) 

The proportions of protonated and non-protonated tooth surfaces for each group of teeth 

after exposure to pH 7 phosphate buffer were calculated with summary statistics and 

tests of proportions. The analysis was carried out with R statistical software (R version 

2.12.0, 2010-10-15, Copyright 2010, The R Foundation for Statistical Computing). The 

sign test was used to compare the proportion of protonated tooth surfaces with the 

proportion of non-protonated tooth surfaces for each group of teeth. Statistical tables 

were used to obtain the p-values (Appendix 7.5). The level of statistical significance 

was 0.05. 

In total, 16 (15%) tooth surfaces were found protonated and 94 (85%) were found non-

protonated. The difference was statistically significant at the 5% level. Interestingly, all 

the sound non-sterile and sound sterile tooth surfaces were non-protonated (100%). 

Non-sterile teeth with carious lesions into dentine showed the highest proportion of 

protonated tooth surfaces (75%), followed by non-sterile tooth surfaces with distinct 

visual changes in enamel (53.33%). However, in both groups the difference between the 

proportion of protonated and the proportion of non-protonated tooth surfaces did not 

reach statistically significant levels, with p-values being 0.290 and 1.000 respectively. 

None of the sterile tooth surfaces with caries into dentine were found protonated (0%). 

Figures 3.1-3.5 show protonation/ non-protonation of the various tooth surfaces at 

baseline (pH 7 phosphate buffer). 
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Table 3. 1. Protonation of the tooth surfaces after subjection to pH 7 phosphate buffer 

(baseline) 

Groups of teeth  Protonated Non-protonated P- value 

N N1 % N2 %  

Sound NS 30 0 0.00 30 100.00 0.000* 

White spot NS 15 8 53.33 7 46.67 1.000 

Dentine NS 8 6 75.00 2 25.00 0.290 

Sound S 30 0 0.00 30 100.00 0.000* 

White spot S 17 2 11.76 15 88.24 0.004* 

Dentine S 10 0 0.00 10 100.00 0.001* 

Total 110 16 15.00 94 85.00 0.000* 

N: number of tooth surfaces investigated, N1: number of protonated tooth surfaces, N2: 

number of non-protonated tooth surfaces, NS: non-sterile, S: sterile, *: statistically 

significant result at the 5% level 
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Figure 3. 1. Sound non-sterile tooth surface (Sound NS) examined at baseline (pH 7 

phosphate buffer). The tooth surface of interest is non-protonated. 

 

 

Figure 3. 2. Non-sterile tooth surface with distinct visual change in enamel (White spot 

NS) examined at baseline (pH 7 phosphate buffer). The tooth surface of interest is non-

protonated. 

 

 

Figure 3. 3. Non-sterile tooth surface with extensive distinct cavity with visible dentine 

(Dentine NS) examined at baseline (pH 7 phosphate buffer). The tooth surface of interest 

is protonated. 
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Figure 3. 4. Sound sterile tooth surface (Sound S) examined at baseline (pH 7 phosphate 

buffer). The tooth surface of interest is non-protonated. 

 

 

Figure 3. 5. Sterile tooth surface with distinct visual change in enamel (White spot S) 

examined at baseline (pH 7 phosphate buffer). The tooth surface of interest is protonated. 
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3.1.2. Comparison of the protonated tooth surfaces at baseline (pH 7 

phosphate buffer) among the groups of teeth 

Comparisons of the proportions of protonated tooth surfaces at baseline (pH 7 

phosphate buffer) among the various groups of teeth were made with Chi-square test or 

Fisher's exact test when the assumptions for Chi-square test were not satisfied. The 

groups were compared in pairs. The statistical analysis was carried out with R statistical 

software (R version 2.12.0, 2010-10-15, Copyright 2010, The R Foundation for 

Statistical Computing). The level of statistical significance was 0.05.  

The results are presented in Table 3.2.  
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Table 3. 2. Comparison of the proportion of protonated tooth surfaces at baseline (pH 7 

phosphate buffer) among the groups of teeth 

Groups of teeth Difference in proportion of 

protonated tooth surfaces (%) 

P-value 

Sound NS vs White spot NS 0.00-53.33 0.030x10
-7

* 

Sound NS vs Dentine NS 0.00-75.00 0.010x10
-7

* 

Sound NS vs Sound S 0.00-0.00 1.000 

Sound NS vs White spot S 0.00-11.76 0.126 

Sound NS vs Dentine S 0.00-0.00 1.000 

White spot NS vs Dentine NS 53.33-75.00 0.400 

White spot NS vs Sound S 53.33-0.00 0.030x10
-7

* 

White spot NS vs White spot S 53.33-11.76 0.021* 

White spot NS vs Dentine S 53.33-0.00 0.008* 

Dentine NS vs Sound S 75.00-0.00 0.010x10
-7

* 

Dentine NS vs White spot S 75.00-11.76 0.004* 

Dentine NS vs Dentine S 75.00-0.00 0.002* 

Sound S vs White spot S 0.00-11.76 0.126 

Sound S vs Dentine S 0.00-0.00 1.000 

White spot S vs Dentine S 11.76-0.00 0.516 

NS: non-sterile, S: sterile, *: statistically significant result at the 5% level 
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3.1.3. Protonation/ Non-protonation of tooth surfaces after subjection to pH 

5 phosphate buffer 

Protonation/ Non-protonation of the various tooth surfaces of interest were examined 

after subjection to pH 5 phosphate buffer. The results are presented in Table 3.3 and 

Figure 3.6.  

The groups of tooth surfaces investigated were as mentioned in section 3.1.1. (Sound 

NS, White spot NS, Dentine NS, Sound S, White spot S, Dentine S). 

The proportions of protonated and non-protonated tooth surfaces for each group of teeth 

after subjection to pH 5 phosphate buffer were calculated with summary statistics and 

tests of proportions. The analysis was carried out with R statistical software (R version 

2.12.0, 2010-10-15, Copyright 2010, The R Foundation for Statistical Computing). The 

sign test was used to compare the proportion of protonated tooth surfaces with the 

proportion of non-protonated tooth surfaces for each group of teeth. Statistical tables 

were used to obtain the p-values (Appendix 7.5). The level of statistical significance 

was 0.05. 

All the tooth surfaces which were examined were found protonated (100%) and there 

were no tooth surfaces which were non-protonated (0%). For every group of teeth, the 

proportion of protonated tooth surfaces was significantly higher than the proportion of 

non-protonated tooth surfaces at the 5% level. 

Figures 3.7-3.10 show protonation/ non-protonation of the various tooth surfaces after 

subjection to pH 5 phosphate buffer. 
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Table 3. 3. Protonation of the tooth surfaces after subjection to pH 5 phosphate buffer 

Groups of teeth  

N 

Protonated Not protonated P-value 

N1 % N2 %  

Sound NS 30 30 100.00 0 0.00 0.000* 

White spot NS 15 15 100.00 0 0.00 0.000* 

Dentine NS 7 7 100.00 0 0.00 0.016* 

Sound S 30 30 100.00 0 0.00 0.000* 

White spot S 13 13 100.00 0 0.00 0.001* 

Dentine S 14 14 100.00 0 0.00 0.000* 

Total 109 109 100.00 0 0.00 0.000* 

N: number of tooth surfaces investigated, N1: number of protonated tooth surfaces, N2: 

number of non-protonated tooth surfaces, NS: non-sterile, S: sterile, *: statistically 

significant result at the 5% level 
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Figure 3. 6. Proportions of protonated tooth surfaces at baseline (pH 7 phosphate buffer) 

and after subjection to pH 5 phosphate buffer 

 

NS: non-sterile, S: sterile 
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Figure 3. 7. Sound non-sterile tooth surface (Sound NS) examined after subjection to pH 5 

phosphate buffer. The tooth surface of interest is protonated. 

 

 

 

Figure 3. 8. Sound sterile tooth surface (Sound S) examined after subjection to pH 5 

phosphate buffer. The tooth surface is protonated. 

 

 

 

Figure 3. 9. Sterile tooth surface with distinct visual change in enamel (White spot S) 

examined after subjection to pH 5 phosphate buffer. The tooth surface is protonated. 
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Figure 3. 10. Sterile tooth surface with extensive distinct cavity with visible dentine 

(Dentine S) examined after subjection to pH 5 phosphate buffer. The tooth surface is 

protonated. 
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3.1.4. Comparison of the protonated tooth surfaces after subjection to pH 5 

phosphate buffer among the groups of teeth 

Comparisons of the proportions of protonated tooth surfaces after subjection to pH 5 

phosphate buffer among the various groups of teeth were made with Chi-square test or 

Fisher's exact test when the assumptions for Chi-square test were not satisfied. The 

groups were compaired in pairs. The statistical analysis was carried out with R 

statistical software (R version 2.12.0, 2010-10-15, Copyright 2010, The R Foundation 

for Statistical Computing). The level of statistical significance was 0.05. 

The results are presented in Table 3.4.  

All the tooth surfaces were protonated after subjection to pH 5 phosphate buffer without 

any differences among the proportions of protonated tooth surfaces of the different 

groups of teeth.  

It should be noted that some tooth surfaces were found more protonated than others and 

this was estimated by the colour change of the pH indicator. For some tooth surfaces the 

pH was very acidic (pH 3-4), while for some others it was found less acidic (pH 5-6). It 

was beyond the rationale of this project to quantify the degree of protonation of the 

tooth surfaces as this would be very subjectively estimated by the colour of the pH 

indicator and, therefore, the results were not analysed on that basis. 
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Table 3. 4. Comparison of the proportion of protonated tooth surfaces after subjection to 

pH 5 phosphate buffer among the groups of teeth 

Groups of teeth Difference in proportion of 

protonated tooth surfaces (%) 

P-value 

Sound NS vs White spot NS 100-100 1.000 

Sound NS vs Dentine NS 100-100 1.000 

Sound NS vs Sound S 100-100 1.000 

Sound NS vs White spot S 100-100 1.000 

Sound NS vs Dentine S 100-100 1.000 

White spot NS vs Dentine NS 100-100 1.000 

White spot NS vs Sound S 100-100 1.000 

White spot NS vs White spot S 100-100 1.000 

White spot NS vs Dentine S 100-100 1.000 

Dentine NS vs Sound S 100-100 1.000 

Dentine NS vs White spot S 100-100 1.000 

Dentine NS vs Dentine S 100-100 1.000 

Sound S vs White spot S 100-100 1.000 

Sound S vs Dentine S 100-100 1.000 

White spot S vs Dentine S 100-100 1.000 

NS: non-sterile, S: sterile 
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3.1.5. Protonation of the tooth surfaces of each group of teeth in relation to 

the pH of the phosphate buffer 

The proportions of protonated tooth surfaces of each group of teeth after subjection to 

pH 7 phosphate buffer (baseline) were compared with the proportions of protonated 

tooth surfaces of the same group of teeth after subjection to pH 5 phosphate buffer. The 

comparisons were made with Chi-square test or Fisher's exact test when the 

assumptions for Chi-square test were not satisfied. The statistical analysis was carried 

out with R statistical software (R version 2.12.0, 2010-10-15, Copyright 2010, The R 

Foundation for Statistical Computing). The level of statistical significance was 0.05. 

The results are presented in Table 3.5.  

The proportions of protonated tooth surfaces after subjection to pH 5 phosphate buffer 

(acidic environment) were found significantly higher compared to the proportions of 

protonated tooth surfaces at baseline (pH 7 phosphate buffer) for all the groups of teeth 

that were investigated apart from the tooth surfaces with cavitated carious lesions into 

dentine (Dentine NS group).  
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Table 3. 5. Comparison of the proportion of protonated tooth surfaces at pH 7 and pH 5 

for each group of teeth 

Groups of teeth pH 7 pH 5 P-value 

N1 protonated surfaces N2 protonated surfaces 

Sound NS 30 0 30 30 0.095x10
-17

* 

White spot NS 15 8 15 15 0.006* 

Dentine NS 8 6 7 7 0.467 

Sound S 30 0 30 30 0.095x10
-17

* 

White spot S 17 2 13 13 0.017x10
-8

* 

Dentine S 10 0 14 14 0.051x10
-9

* 

Total 110 16 109 109 0.023x10
-39

* 

N1: number of tooth surfaces examined at pH 7, N2: number of tooth surfaces examined 

at pH 5, NS: non-sterile, S: sterile, *: statistically significant result at the 5% level 
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3.2. In situ study: Pilot in situ study of changes in the surface chemistry 

of enamel and dentine exposed to acid. A surface study of caries. 

3.2.1. Study participants 

3.2.1.1. Demographics 

The study involved five volunteers. The volunteers' age ranged between 21 and 31 

years. One male and four females participated in the study. 

3.2.1.2. Medical history 

All five participants were medically fit and well. There was no history of allergic 

reactions to any of the materials that would be used during the study interventions. 

3.2.1.3. Clinical examination 

A thorough intra- and extra-oral examination was carried out and all the participants 

fulfilled the inclusion criteria as described in detail in section 2.30. 

3.2.1.4. Participant written informed consent and withdrawals from the study 

All the volunteers gave their written informed consent for participation in the study. 

None of them expressed the wish to withdraw at any stage. 

3.2.1.5. Adverse effects 

None of the participants expressed any discomfort or any other adverse effect for the 

duration of the study. No intra-oral signs of adverse effects caused by the in situ 

appliance were identified by the clinical examination at the end of the intervention. 

3.2.1.6. Compliance 

All the participants reported that they had been wearing the appliance continuously for 

48 hours as advised during their first visit at Leeds Dental Institute and that they were 

only removing it during eating and toothbrushing as advised by the study investigator. 
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3.2.2. Protonation/ Non-protonation of tooth surfaces after subjection to 

10% w/v sucrose rinse 

Protonation/ Non-protonation of the tooth surfaces of interest were examined after 

subjection to 10% w/v sucrose rinse. The results are presented in Table 3.6.  

The proportions of protonated and non-protonated tooth surfaces were calculated with 

test of proportions. The statistical analysis was carried out using R statistical software 

(R version 2.12.0, 2010-10-15, Copyright 2010, The R Foundation for Statistical 

Computing). The sign test was used to compare the proportion of protonated tooth 

surfaces with the proportion of non-protonated tooth surfaces. Statistical tables were 

used to obtain the p-values (Appendix 7.5). The level of statistical significance was 

0.05. 

In total, 26 (86.67%) tooth surfaces were found protonated and four (13.33%) were 

found non-protonated. The difference was significant at the 5% level. The four non-

protonated tooth surfaces were found in three different appliances. 

Figures 3.11-3.14 show in situ protonation of the tooth surfaces investigated. 
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Table 3. 6. In situ protonation of the tooth surfaces after subjection to 10% w/v sucrose 

rinse 

  

N 

Protonated Non-protonated P-value 

N1 % N2 % 

Sucrose rinse 30 26 86.67 4 13.33 0.000* 

N: total number of tooth surfaces that were investigated, N1: number of protonated 

tooth surfaces, N2: number of non-protonated tooth surfaces, *: statistically significant 

result at the 5% level 
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Figure 3. 11. Appliance 1. Five of the six tooth surfaces are protonated. 

 

 

 

 

 

Figure 3. 12. Appliance 2. Four of the six tooth surfaces are protonated. 

 

 

 

 

 

Figure 3. 13. Appliance 3. Five of the six tooth surfaces are protonated. 
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Figure 3. 14. Appliance 4. The tooth surfaces are protonated. 
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3.2.3. Comparison of the proportion of sound tooth surfaces protonated in 

vitro after subjection to pH 5 phosphate buffer (acidic challenge) with the 

proportion of sound tooth surfaces protonated in situ after subjection to 

10% w/v sucrose rinse  

The proportion of sound non-sterile and sterile tooth surfaces that were protonated in 

vitro after subjection to pH 5 phosphate buffer (results obtained from in vitro studies 1 

and 2) were compared with the proportion of sound tooth surfaces that were protonated 

in situ after subjection to 10% w/v sucrose rinse. The comparisons were made with 

Fisher's exact test since the assumptions for Chi-square test were not satisfied. The 

statistical analysis was carried out using R statistical software (R version 2.12.0, 2010-

10-15, Copyright 2010, The R Foundation for Statistical Computing). The level of 

statistical significance was 0.05. 

The results are presented in Table 3.7. The proportions of sound non-sterile and sound 

sterile tooth surfaces that were protonated in vitro after the acidic challenge (pH 5 

phosphate buffer) did not differ significant from the proportion of sound tooth surfaces 

that were protonated in situ (p=0.112).    

 

Table 3. 7. Comparison of the proportion of protonated tooth surfaces in vitro and in situ 

Groups of teeth Difference in proportion of 

protonated tooth surfaces (%) 

P-value 

in vitro Sound S vs in situ 13.33 0.112 

in vitro Sound NS vs in situ 13.33 0.112 

Sound S: sound sterile, Sound NS: sound non-sterile, *: statistically significant result at 

the 5% level 
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Chapter 4- Discussion 

4.1. In vitro studies: Pilot in vitro studies of changes in the surface 

chemistry of enamel and dentine exposed to acid 

In accordance with previously published data (Robinson et al., 2005; Hochrein and 

Zahn, 2011) these in vitro studies showed that protonation of tooth surfaces which have 

been subjected to acidic (pH 5) phosphate buffers occurs and can be detected in the 

laboratory.  

These previous studies showed that protonation of the enamel hydroxyapatite crystals 

occurs when the pH of their immediate environment is acidic (Robinson et al., 2005; 

Hochrein and Zahn, 2011). Robinson et al. (2005) examined rat incisor enamel with 

Atomic Force Microscopy while Hochrein and Zahn (2011) created a theoretical model 

and investigated the saliva-enamel interface. However, none of the above studies have 

investigated whether carious lesions, which must have been subjected to acidic plaque, 

or sterilisation procedures used for in situ studies affect protonation of enamel crystals. 

In addition, the techniques used would not be suitable for oral investigations. 

Unlike previous investigations, the current in vitro studies aimed to use chemical 

indicators to detect protonation of human primary tooth surfaces and compare the 

protonation of sound and carious, sterile and non-sterile tooth surfaces both at baseline, 

after subjection to neutral (pH 7) phosphate buffer, but also after an acidic challenge, by 

pH 5 phosphate buffer. These were the first in vitro studies on protonation of human 

primary teeth with and without carious lesions.  

The results indicated that surfaces of sound and carious, sterile and non-sterile teeth 

were clearly protonated after an acidic challenge. Different protonation patterns were 
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identified among the various groups of teeth that were investigated. Differences in 

protonation could be attributed to the composition of the tooth surface (enamel, dentine, 

sound or carious tooth surface), the sterilisation or non-sterilisation of the tooth surface 

and the pH of the immediate environment (pH 7 or pH 5 phosphate buffer).  

4.1.1. The rationale of the study design 

These were prospective qualitative pilot in vitro studies of human primary tooth 

surfaces. Since there was no previous data on protonation of human teeth in the 

literature, it was necessary to first conduct a laboratory study to investigate the extent to 

which protonation of human tooth surfaces occurs and could be detected in vitro. 

Statistical advice was obtained from Biostatistics Unit (Centre of Biostatistics and 

Epidemiology, University of Leeds) and the appropriate sample size which would allow 

statistical calculations was 30 human primary tooth surfaces for each group of teeth. 

These in vitro studies were part of a research project which also involved in situ 

investigations of the surface chemistry of enamel which had been exposed to acids. 

Before insertion of the enamel slabs in the volunteers' mouths to conduct the in situ 

investigations, the tooth slabs had to be sterilised. Since the sterilisation procedure 

could affect the chemistry of enamel surfaces, the second part of these in vitro studies 

examined the effect of the sterilisation procedures on the protonation of the tooth 

surfaces.  
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4.1.2. Selecting the tooth surfaces of interest 

Since remnants of the pH indicator solution on the tooth surface could bias the results if 

the same tooth surfaces were investigated, different tooth surfaces were examined at 

baseline (pH 7 phosphate buffer) and after the acidic challenge (pH 5 phosphate buffer).  

One of the aims of this research project was to examine primary and permanent sound 

human teeth as well as teeth with various extents of carious lesions. Useful conclusions 

would, thus, be drawn on the effect of caries on the protonation state of a range of tooth 

surfaces. This would include possible differences in the way primary and permanent 

human teeth are affected by acidic solutions. It was not possible, owing to ethical 

considerations, to obtain sufficient teeth for all aspects of the study. In addition, the 

teeth that are extracted from children older than six years of age are sent to Leeds 

Dental Institute Tissue Bank and are, subsequently, distributed to the investigators. In 

order to collect freshly extracted teeth, the investigator had to collect them from 

children under the age of six since these teeth are not stored at the Tissue Bank.  

The Ethical approval included the collection of sound primary tooth surfaces. Therefore, 

only carious tooth surfaces that were incidentally obtained as part of the sound tooth 

surfaces collection were investigated. Despite the fact that the numbers obtained did not 

meet the required target from a statistical point of view, useful conclusions could still be 

drawn. 

4.1.3. Baseline data 

Protonation of the tooth surfaces was examined at baseline following subjection to 

neutral (pH 7) phosphate buffer. This "pre-treatment" phase prior to the baseline data 

collection was of extreme importance in order to eliminate any confounding factors that 

would, otherwise, affect the baseline protonation state of the tooth surfaces.  
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4.1.3.1. Factors that affect the baseline data 

Numerous factors can affect the baseline protonation state of the tooth surfaces:  

i. The patient's oral hygiene and the presence of plaque on the tooth surfaces 

The patient's oral hygiene affects the amount of plaque which has been 

deposited on the tooth surfaces of interest. Plaque can, subsequently, affect the 

protonation state of the tooth surface in two different ways. Firstly, the pH of 

plaque can determine the protonation state of the tooth surface; that is acidic 

plaque would probably cause protonation. Additionally, the plaque bacteria can 

create an acidic environment in the close proximity of the tooth surface via 

metabolism of fermentable carbohydrates, should the patient have consumed 

these prior to the planned extraction. 

ii. The amount of plaque on the tooth surfaces. 

It is sensible to presume that the immediate environment of the tooth surface 

would be more acidic and, therefore, the tooth surface would be more protonated 

with increasing amount of dental plaque in the presence of fermentable 

carbohydrates. More plaque bacteria would, then, be available to metabolise the 

carbohydrates and create a more acidic environment in the immediate vicinity of 

the tooth surface. 

iii. The time that has elapsed between the last meal (food or drink) and the 

extraction of the tooth. 

"Resting plaque" is defined as plaque which has not been exposed to 

fermentable carbohydrates for at least two hours. "Starved plaque" refers to the 

dental plaque 8-12 hours after the last episode of consumption of fermentable 

carbohydrates. The pH of dental plaque varies from individual to individual as 

well as intra-orally for the same person. Significant differences of the plaque pH 
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exist between "resting plaque" and "starved plaque", with the former ranging 

between 6-7 and the latter between 7-8 (Edgar and O'Mullane, 1996). Therefore, 

the time that has elapsed between the last meal and the examination of the tooth 

surface is crucial as far as the protonation state of the tooth surface is concerned. 

iv. The food or drink that had been consumed before the extraction of the tooth. 

Consumption of fermentable carbohydrates induces acid production by plaque 

bacteria and, therefore, creation of acidic environment near the tooth surface. 

Therefore, the exact food or drink that was consumed before the extraction could 

affect plaque pH and, consequently, the baseline protonation.  

v. The patient's salivary pH 

In the absence of fermentable carbohydrates, the salivary pH of the patient can 

also affect the protonation state of the tooth surfaces. 

vi. History of topical fluoride treatment 

Previous work has revealed that fluoride incorporation into the tooth surface 

renders protonation more difficult (Robinson et al., 2006). Therefore, 

differences were expected between protonation of the various tooth surfaces that 

underwent the same interventions depending on previous fluoride treatment. 

All the factors mentioned above differ among the tooth donors and could produce 

significant bias to the results obtained both at baseline but also after the acidic challenge 

(pH 5 phosphate buffer). In order to reduce and, if possible, eliminate bias it was 

deemed appropriate to wipe the tooth surfaces with gauze to remove blood, soft tissue 

remnants and plaque deposits. Subsequently, the teeth were dipped into pH 7 phosphate 

buffer to neutralise the pH of their immediate environment before obtaining the baseline 

data.  
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4.1.4. Selecting the pH of the acidic phosphate buffer 

The intention of the research team was to examine protonation of human primary and 

permanent tooth surfaces with and without carious lesions after subjection to solutions 

of various acidic pHs (pH 3, 5, 7 and 9). Unfortunately, the numbers of tooth surfaces 

required for the above investigations were not approved by the Ethical Committee and, 

therefore, only one acidic solution had to be selected.  

Robinson et al. (2005) showed that below pH 6.6 the enamel apatite crystals started to 

become unstable, presumably due to full phosphate protonation and adhesion to the 

negatively charged modified cantilever tip. Therefore, subjection of the tooth surfaces 

of interest to pH around 6 was sensible. In addition, many commonly consumed dietary 

foods and drinks have pH values ranging between 4 and 6. Investigating the tooth 

surfaces of interest after subjection to pH 5 phosphate buffer was, thus, considered 

appropriate. 

4.1.5. Technique to assess protonation of the tooth surface 

Robinson et al. (2005) identified protonation of the enamel apatite surface with Atomic 

Force Microscopy. The technique requires the use of expensive equipment and an 

experienced operator capable of carrying out the measurements and interpreting the 

results. 

The aim of our in vitro study was to examine whether an easy, cheap and clinically 

applicable technique could, alternatively, be implemented to detect protonation and 

semi-quantify it. A universal pH indicator solution (Scientific Laboratory Suppliers, 

GPR) was, therefore, used to identify whether the tooth surface of interest was 

protonated or non-protonated. The assessment was based on the colour change of the 

pH indicator. The pH indicator solution is a useful method to assess protonation of the 
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tooth surface of interest. The subjectivity of the outcome interpretation (exact colour of 

the indicator) does not allow accurate conclusions on the exact pH of interest. The 

technique may not be fully reproducible as far as determining the exact pH, but in this 

study the outcome of interest is whether protonation occurs or does not occur on the 

surface of interest. Therefore, in all the studies conducted we assessed the difference 

between the protonated surfaces (green colour of the pH indicator) versus non-

protonated surfaces (yellow-orange-red colour of the pH indicator). This change in 

colour was reliably assessed visually by the investigator (Figures 4.1, 4.2). 

  

Figure 4. 1. Non-protonated tooth surface as assessed by the colour of the pH indicator 

(green) 

 

Figure 4. 2. Protonated tooth surface as assessed by the colour of the pH indicator 

(orange) 
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Unlike the Atomic Force Microscope, the pH indicator does not allow to draw 

conclusions on the exact time that the tooth surface starts dissolving. With Atomic 

Force Microscopy, measurements of adhesion forces between the cantilever tip and the 

tooth surface can provide extremely useful information on the tooth surface dissolution.  

4.1.6. Assessment of the tooth surfaces with International Caries Detection 

and Assessment System II (ICDAS II) 

The tooth surfaces of interest were assessed with ICDAS II, a technique based on visual 

changes of the tooth surface. ICDAS II is an easy and quick method to visually assess 

the extent of carious lesions on the tooth surfaces. The technique has been reported to 

have excellent reproducibility in vitro with intra-examiner agreement ranging between 

0.74 and 0.92 for proximal caries detection (Martignon et al., 2007; Shoaib et al., 2009) 

and between 0.76 and 0.78 for occlusal caries detection (Shoaib et al., 2009).  

On the other hand, the sensitivity and specificity of the technique are highly variable 

apparently depending on the extent of the carious lesion. Shoaib et al. (2009) examined 

in vitro primary carious tooth surfaces with ICDAS II and reported that the highest 

sensitivity was 77.9% when the lesion was in the middle third of dentine and the lowest 

was 63.1% when caries was restricted in the outer half of dentine. The specificities were 

high and ranged between 87% and 92.8% depending on the extent of the lesion. For 

proximal carious lesions the sensitivities and specificities ranged between 58.3%-75.3% 

and 85.4-94.2% respectively. The above findings imply that the assessment of the tooth 

surfaces with ICDAS II may not always be accurate. Therefore, tooth surfaces that were 

assessed as non-carious may have already had early changes with or without increased 

porosity and irreversible hard tissue loss; a fact that could have implications on their 

protonation state before and after the acidic challenge and the interpretation of the 

results. 
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Assessment of the tooth surfaces with a combination of ICDAS II and other means of 

caries detection (that is Transillumination, Quantitative Light-induced Fluorescence) 

can increase the accuracy of the assessment of the carious lesion. 

4.1.7. Protonation of the various tooth surfaces at baseline (pH 7 phosphate 

buffer) 

Different protonation patterns of the various tooth surfaces were exhibited at baseline 

following subjection to pH 7 phosphate buffer.  

4.1.7.1. Protonation of non-sterile sound and carious tooth surfaces at baseline (pH 

7 phosphate buffer) 

All the sound non-sterile and sterile tooth surfaces were found non-protonated at 

baseline, that is the pH indicator revealed a colour corresponding to pH 7. 

Approximately half of the non-sterile tooth surfaces with distinct visual changes in 

enamel (White spot NS) and 75% of the non-sterile tooth surfaces with cavitated caries 

into dentine (Dentine NS) were found protonated, that is with indicator colours relating 

to pH values lower than 7. The differences between protonation of sound non-sterile 

tooth surfaces and carious non-sterile tooth surfaces were significant.  

Protonation of the carious non-sterile tooth surfaces at baseline was most likely due to 

the carious process. However, the different composition of enamel and dentine surfaces 

as well as the small sample size of the carious tooth surfaces that were available for 

investigations may have contributed to the significant differences that were observed.  

It has been shown that protonation of the tooth surface is an important prerequisite for 

dissolution (Robinson et al., 2005; Hochrein and Zahn, 2011). The carious tooth 

surfaces were probably protonated as part of the carious process; that is exposure to 



103 
 

acidic plaque. The plaque bacteria created the acidic environment and protonation 

occurred before any irreversible visual change presented on the tooth surfaces and prior 

to any hard tissue loss. Therefore, carious tooth surfaces which had undergone 

irreversible hard tissue loss, were expected to be significantly protonated provided that 

they were still in a cariogenic environment. 

On the other hand, the different composition of the dental hard tissues may explain the 

increased protonation of carious tooth surfaces with exposed dentine. Dental enamel 

consists of 96% mineral component in the form of calcium hydroxyapatite, 3% water 

and 1% organic matrix (Avery and Chiego, 2006; Bath-Balogh and Fehrenbach, 2006). 

Hydroxyapatite crystals are organised in enamel rods which, subsequently, group 

together to form the dental enamel. On the other hand, dentine consists of 70% 

inorganic component in the form of hydroxyapatite, 20% collagen fibres and 10% water 

(Avery and Chiego, 2006; Bath-Balogh and Fehrenbach, 2006). The critical pH for 

dentine is higher than that of enamel (Mellberg, 1992) and the carious lesions initiate 

very fast in dentine (Ogaard and Rolla, 1992). This may have implications on the 

protonation of dentine. 

The results should be interpreted with caution due to the small sample size of the 

carious tooth surfaces. A larger sample size would allow more accurate conclusions. 

4.1.7.2. Protonation of sterile sound and carious tooth surfaces at baseline (pH 7 

phosphate buffer) 

The proportion of non-protonated sterile tooth surfaces at baseline was significantly 

higher compared to the proportion of protonated sterile tooth surfaces irrespectively of 

the presence and extent of the carious lesion. Protonation of tooth surfaces did not differ 

significantly among the three groups of teeth (sound teeth, teeth with distinct visual 

change in enamel, teeth with cavitated lesions into dentine). This was in contrast to the 
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results that were obtained when non-sterile tooth surfaces were examined and can be 

attributed either to the sterilisation procedure or the small sample sizes of the groups of 

carious teeth that were available for investigation. 

4.1.7.3. The effect of the sterilisation procedure on protonation of the various tooth 

surfaces at baseline 

The sterilisation procedure involved immersing the teeth in 12% w/v sodium 

hypochlorite overnight. Subjection to sodium hypochlorite has been shown to eliminate 

prions without affecting the mineral phase or structure of the tooth surface (Driscoll et 

al., 2002). However, the procedure causes significant de-proteination of the tooth 

surface even at much lower concentrations (Hu et al., 2010). One of the clinical 

implications of the protein pellicle is the protection of the tooth surface against chemical 

insults and, thus, the initiation of dental caries and erosion (Edgar and O'Mullane, 

1996). Therefore, it was extremely important to re-obtain the protein pellicle before the 

tooth surfaces underwent any acidic challenge. The tooth surfaces were placed in 

natural human saliva for 24 hours to allow formation of the pellicle. The pellicle forms 

immediately when the tooth comes in contact with saliva (Edgar and O’Mullane, 1996) 

and reaches a thickness of 0.01-1 μm within 24 hours (Fejerskov and Kidd, 2008). 

Twenty-four hours was, therefore, considered enough time to ensure formation of this 

thin layer on the tooth surfaces. 

The proportion of protonated non-sterile sound tooth surfaces did not differ significantly 

from that of protonated sterile sound tooth surfaces at baseline (p=1). On the other hand, 

significantly more protonated non-sterile tooth surfaces were found for both the group 

of teeth with distinct visual change in enamel (White spot) and the group of teeth with 

cavitated lesions into dentine (Dentine) when compared with protonated sterile surfaces 

with the same extent of carious lesions. The significant differences that were observed 
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can be attributed either to the sterilisation procedure or the small numbers of tooth 

surfaces that were available for investigations. The sterilisation procedure involved 

immersion of the teeth in 12% w/v sodium hypochlorite overnight. The highly alkaline 

pH of sodium hypochlorite might have contributed to the removal of protons from the 

previously protonated carious tooth surfaces. 

4.1.8. Protonation of the various tooth surfaces after the acidic challenge 

(pH 5 phosphate buffer) 

Following subjection to pH 5 phosphate buffer, all the tooth surfaces were found 

protonated irrespective of the extent of the carious lesions or previous sterilisation of the 

tooth surfaces. There were no differences among the various tooth surfaces. 

It is important to note that some tooth surfaces were probably more protonated than 

others; a fact that was determined by a lower pH based on the colour change of the pH 

indicator. However, the colour differences among the different pH values cannot be 

estimated accurately (Figure 2.1) and, therefore, quantification of the degree of 

protonation was not attempted. In general, the pH decreased and, therefore, protonation 

of the tooth surface increased with increasing extent of the carious lesion. This was 

expected as tooth surface dissolution requires significant protonation (Robinson et al., 

2005; Hochrein and Zahn, 2011).  

4.1.8.1. The effect of the sterilisation procedure on protonation of the various tooth 

surfaces after the acidic challenge (pH 5 phosphate buffer) 

All the tooth surfaces were found protonated after the acidic challenge and no 

differences were observed between sterile and non-sterile tooth surfaces. In this case, 

the prolonged exposure of the tooth surfaces to the alkaline pH of sodium hypochlorite 
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during the sterilisation procedure did not prevent protonation during the subsequent 

acidic challenge. 

4.1.9. Comparison of the proportion of protonated tooth surfaces at baseline 

(pH 7 phosphate buffer) with the proportion of protonated tooth surfaces 

after the acidic challenge (pH 5 phosphate buffer) 

The proportions of protonated tooth surfaces after subjection to pH 5 phosphate buffer 

(acidic environment) were found to be significantly higher compared to the proportions 

of protonated tooth surfaces at baseline (pH 7 phosphate buffer) for all the groups of 

teeth that were investigated apart from the non-sterile tooth surfaces with cavitated 

carious lesions into dentine (Dentine NS group). Even though all the tooth surfaces 

were found protonated after the acidic challenge, for this specific group a large 

percentage of tooth surfaces were also protonated at baseline (75%). The non-significant 

difference is probably a result of significant protonation at baseline as a result of the 

carious process. However, the sample size of this group of teeth was small with only 8 

tooth surfaces being available for investigations at baseline and 7 tooth surfaces after 

the acidic challenge. A larger sample size would reduce type II statistical errors.  
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4.2. In situ study: Pilot in situ study of changes in the surface chemistry 

of enamel and dentine exposed to acid. A surface study of caries. 

This was the first in situ study on protonation of sound human primary teeth.  

Sound enamel tooth surfaces were clearly protonated after subjection to 10% w/v 

sucrose rinse. The results are in accordance with the previous in vitro studies, which 

showed protonation of sound sterile and non-sterile tooth surfaces after an acidic 

challenge. 

4.2.1. The rationale of the study design 

This was a prospective qualitative and semi-quantitative pilot in situ study on the 

protonation of human sound primary tooth surfaces. Since there was no previous data in 

the literature, it was necessary to conduct a pilot in situ study to investigate whether 

protonation of human tooth surfaces which have undergone an acidic challenge occurs 

and can be detected in situ. 

4.2.2. The sample size 

Since there was no previous data in the literature regarding protonation of teeth, this 

was a pilot in situ study. Statistical advice was obtained from Biostatistics Unit (Centre 

of Biostatistics and Epidemiology, University of Leeds) and it was agreed that an 

appropriate sample size which would allow statistical calculations were 30 sound 

enamel human primary tooth surfaces. 

4.2.3. The participants of the in situ study 

For practical reasons in situ studies usually involve small numbers of participants (Zero, 

1995). This in situ study investigated 30 enamel slabs. Five volunteers were recruited 
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and participated, which was an appropriate number to allow investigations of the 

required number of enamel slabs in a variety of oral environments.  

It has been suggested that volunteers taking part in in situ studies of caries should be 

standardised on parameters that could affect the development of a carious lesion (Zero, 

1995). This study attempted to standardise the study participants for the following 

parameters: 

i. Demographics 

All the participants were between 21 and 31 years of age. The volunteers were 

not standardised in terms of gender and ethnic background, as these factors are 

not expected to affect the study results (Zero, 1995).  

In situ caries investigations with adult volunteers have been considered more 

appropriate in comparison to similar studies on children. The results of these 

studies can, then, be generalised to children's populations due to the similar 

caries rates that have been reported in adults and schoolchildren (Stookey, 

1992). In addition, the difficulty of involving children in in situ investigations 

makes in situ studies with adult participants the most appropriate realistic 

option. Limited time availability, lack of compliance and ethical concerns are 

the most important factors that have not made in situ studies on children 

common practice (Stookey, 1992). 

ii. Medical history 

It has been suggested that participants in in situ studies should not be affected by 

any medical condition with potential effects on their oral health (ten Cate et al., 

1992; Zero, 1995). Good general health also reduces the risk of cross-infection 

of the investigators and any individual with whom they come in contact for the 
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duration of the study. Volunteers should not take any medication which could 

affect their oral microflora or oral health in any way. 

All the participants in this in situ study were medically fit and well and had not 

been taking any medication regularly for at least three months before the 

beginning of the study. 

iii. Dental health 

It has been suggested that the participants of in situ studies should be susceptible 

to the disease under investigation (Stookey, 1992; Zero, 1995). Theoretically, 

every individual is susceptible to caries under certain circumstances. Participants 

with active carious lesions should not be included in in situ studies of caries to 

avoid exacerbation of the disease due to the use of the intra-oral appliance (ten 

Cate et al., 1992; Zero, 1995).  

All the participants who were included in this in situ study had a thorough 

clinical examination prior to any intervention. The volunteers differed in terms 

of previous dental health status, with some of them having multiple restorations 

(fillings, crowns) and some others having a healthy dentition with no signs of 

current or past caries experience. None of the participants had unrestored active 

or inactive carious lesions. Differences in previous dental health are desirable in 

in situ studies. This variability provides a way to ensure that the study 

participants represent the general population and make the results generally 

applicable (ten Cate, 1992). However, recruitment of participants with extreme 

DMFT was avoided in order to reduce the introduction of confounding factors 

which could, potentially, affect the study results. 

The clinical examination also involved a thorough screening of the periodontal 

tissues. All the participants had a healthy periodontium. This was in accordance 

with previous recommendations (ten Cate et al., 1992) as the use of in situ 
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appliances may affect the gingival and periodontal health by predisposing the 

natural dentition to plaque accumulation. 

The number of natural teeth that are present affects the oral microflora. 

Edentulous patients' oral environment has less demineralisation potential after 

cariogenic challenges (ten Cate et al., 1992). In an attempt to standardise the 

quality of oral microflora, participants with at least 20 natural teeth were 

selected and participated in this study. 

iv. Previous fluoride experience 

The study participants have always been living in places without fluoridated 

water. They had been brushing their teeth with fluoridated dentifrice and had not 

had topical fluoride application for at least one year. Castillo et al. (2001) 

reported that fluoride release following fluoride varnish application lasts for 

approximately five to six months. Therefore, one year was more than enough to 

ensure that the effect of topical fluoride application was not evident. 

v. Oral hygiene habits and fluoride exposure 

The participants were advised to brush their natural dentition at least twice daily 

with fluoridated toothpaste containing 1450ppm fluoride. A 0.05% NaF 

mouthwash was prescribed and the volunteers were instructed to rinse the mouth 

with 10mls of the mouthwash once daily after removing the in situ appliance 

from the mouth. These preventive measures were necessary to reduce the risk of 

caries development on the natural dentition and standardise the fluoride 

exposure of the study participants. 

vi. Dietary habits 

The diet plays a major role in the development of dental caries both in terms of 

type of foods and drinks which are consumed but also as far as the frequency of 

consumption is concerned (Duggal et al., 2001; Watt, 2003). Most in situ studies 
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have not attempted to standardise the dietary habits of the participants, 

presumably due to the long duration of the studies as well as compliance issues. 

This in situ study did not give any dietary recommendations to the volunteers 

but advised them to remove the appliance during mealtimes.   

4.2.4. The in situ appliance design 

Several in situ appliance designs have been reported in the literature for intra-oral 

investigations of dental caries (Table 1.1). Upper or lower, full or partial dentures have 

been described. Lower removable appliances are the most commonly used intra-oral in 

situ models for caries investigations (Corpron et al., 1992; Koulourides and Chien, 

1992; Stephen et al., 1992) probably due to the high cariogenic potential of the 

mandibular posterior region (Zuniga and Koulourides, 1969).  

In accordance with previous investigations, this in situ study used a lower intra-oral 

removable appliance with incorporated sound sterile enamel slabs. Three enamel slabs 

were placed into small recessions on each buccal flange. In previous studies the enamel 

slabs were covered with a piece of gauze in order to facilitate plaque accumulation 

(Koulourides et al., 1976). However, it has been shown that in the presence of gauze, 

the obtained plaque microflora differs from that of naturally formed dental plaque (ten 

Cate et al., 1992) and, therefore, this technique was not followed in our study. The 

enamel slabs were placed in small recesses on the buccal flanges of the intra-oral 

appliances. The participants were advised to wear the appliance for 48 hours without 

brushing the enamel slabs to ensure that enough plaque was collected on the slabs by 

the end of the second day. 
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4.2.5. The age of plaque 

The age and the position of dental plaque intra-orally affect its pH and, therefore, the 

cariogenic potential. The age of plaque is determined by the time that has passed since 

the last episode of prophylaxis or toothbrushing. The time that plaque has been 

accumulating affects its thickness and, consequently, its microflora (Edgar and 

O'Mullane, 1996). Most studies have used plaque from tooth surfaces which were not 

brushed for one to two days. In our study, we left the enamel slabs intra-orally for 48 

hours and advised the volunteers to refrain from all oral hygiene procedures when the 

appliances were in the mouth. 

4.2.6. The cariogenic challenge 

4.2.6.1. The cariogenic solution 

The cariogenic challenges in in situ studies are usually achieved through dietary foods 

and drinks with known cariogenic potential such as sucrose solutions or other 

demineralising agents. The solution can be delivered to the appliance either intra-orally 

with the in situ appliance in the mouth or extra-orally after removing the appliance from 

the oral environment (Manning and Edgar, 1992). Ideally, intra-oral investigations are 

desired. They can provide more valid study results due to the presence of saliva, which 

plays a crucial role in the development of the carious lesions. Unfortunately, this cannot 

always be achieved, mainly due to ethical concerns regarding the participants' natural 

dentition. Consumption of cariogenic products with known demineralisation potential 

increases the caries risk for the natural dentition and raises ethical concerns, particularly 

in a study of prolonged duration.  
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In this in situ study, a 10% w/v sucrose rinse was used to enable plaque bacteria to 

create the desired acidic environment. The sucrose rinse was delivered to the enamel 

slabs extra-orally immediately after removing the appliance from the volunteers' mouth.  

4.2.6.2. The duration of the cariogenic challenge 

Various studies have used 10% w/v sucrose rinses to enable demineralisation 

procedures to occur on the enamel surfaces. Dental plaque was, first, collected on the 

tooth surface and the sucrose rinse was, subsequently, delivered to enable plaque 

bacteria to create the acidic environment required for the beginning of the 

demineralisation process (Kashket and Lopez, 1992; Simone et al., 1992).  

The duration of the cariogenic challenge varies among the different studies. In our in 

situ study the enamel slabs were subjected to the sucrose rinse for 30 minutes. This was 

much longer compared to previous studies on enamel demineralisation. However, this 

duration would allow comparisons with our previous in vitro investigations, in which 

the enamel slabs underwent the acidic challenge for 30 minutes. Additionally, numerous 

cariogenic attacks in the mouth last for a considerable amount of time with oral 

clearance reaching or even exceeding 30 minutes, particularly if sticky dietary products 

have been consumed. 

4.2.7. Protonation of the enamel slabs after the cariogenic challenge 

(subjection to 10% w/v sucrose rinse) 

In our in situ study 26 of the 30 enamel slabs (87%) were found protonated after the 

cariogenic challenge. The proportion of protonated enamel slabs was significantly 

higher than the proportion of non-protonated slabs. It should be noted that some tooth 

surfaces were found more protonated compared to others, which was determined by the 

colour change of the pH indicator solution which was used to determine the protonation 
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(Figure 2.1). However, quantification of the tooth surfaces protonation was not 

attempted as the pH indicator solution does not allow objective and reproducible 

measurements. Interestingly, in certain volunteers' mouths some tooth surfaces were 

found more protonated than others. This can be attributed to increased plaque 

accumulation on certain participants enamel slabs, lower plaque pH, better compliance 

with the use of the intra-oral appliance compared to other participants or different 

microbial composition of the dental plaque. The four tooth surfaces that were found 

non-protonated were placed in three different in situ appliances. 

Volunteers who complied better with the study protocol may have kept the appliance 

intra-orally for significantly longer compared to others who probably were not as 

compliant. The formed dental plaque could, thus, be thicker. Thicker dental plaque 

contains more anaerobic bacterial species (Edgar and O'Mullane, 1996). All these 

factors may have differed between the participants and can have had an impact on the 

protonation of the enamel slabs. 

The diet history of the volunteers also plays a major role in the composition of dental 

plaque. Frequent consumption of sucrose allows production of extracellular and 

intracellular polysaccharides (Edgar and O'Mullane). The former increase plaque 

thickness and adhesion on the tooth surface while the latter increase acid production in 

resting plaque. It is, therefore, evident that different dietary habits among the 

participants may have played a role in the degree of protonation of the tooth surface that 

has been observed. 
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4.2.8. Comparison of the proportions of protonated tooth surfaces in situ 

and in vitro  

The proportion of enamel slabs that were protonated in situ after the cariogenic 

challenge was compared to the proportion of sound sterile and sound non-sterile tooth 

surfaces that were protonated in vitro after the acidic challenge. The differences were 

not statistically significant at the 5% level.  

The results of the in situ and the in vitro studies are not directly comparable due to the 

different nature of investigations. The in vitro studies were carried out in the absence of 

dental plaque and focused on investigations of protonation/ non-protonation following 

an acidic attack. On the other hand, the in situ study used dental plaque and a cariogenic 

agent (10% w/v sucrose rinse) to create the acidic environment. The oral bacteria of the 

dental plaque were provided with the appropriate sugary source that would enable acid 

production on the tooth surface. Even though the two procedures differ, they both 

involve an acidic challenge on the tooth surface.  

These studies showed that protonation of tooth surfaces occurs and can be detected in 

vitro and in situ. 

4.2.9. Limitations of the in situ study 

The results of this in situ study indicate that protonation of sound primary human 

enamel slabs which have been subjected to a cariogenic challenge occurs and can be 

detected with a simple technique (pH indicator solution). However, several parameters 

should be taken into consideration before the generalisation of the study results to 

normal oral conditions.  
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The sucrose rinse was delivered outside the mouth and not in the oral environment. The 

enamel slabs were, thus, subjected to the cariogenic challenge for 30 minutes without 

the beneficial effects of saliva acting simultaneously. The salivary flow rate plays a 

major role in carbohydrate clearance from the oral environment and protects, in this 

way, the dental hard tissues against caries initiation and development. The buffering 

capacity of saliva mainly depends on the concentration of bicarbonate in stimulated 

saliva. Salivary pH, therefore, increases with increased flow rate and increased 

concentration of bicarbonate and rises up to 7.8 at high flow rates (Edgar and 

O'Mullane, 1996). Additionally, with increasing salivary flow rates the concentration of 

calcium (Ca
2+

), phosphate (PO4
3-

) and hydroxide (OH
-
) ions in saliva elevate, which 

further protects the dental hard tissues against demineralisation processes.  

Stimulated salivary flow rate increases for approximately 60 seconds after a sucrose 

rinse (Edgar and O'Mullane, 1996). Even within this small period of time, saliva is 

capable of diluting the sucrose rinse and reducing the amount of carbohydrate which is 

available to plaque bacteria.  

Outside the mouth, the situation is completely different. The beneficial effect of saliva 

is not present and, therefore, the sucrose rinse is constantly available to plaque bacteria 

for 30 minutes. The plaque pH remains low and much more acid production is expected 

in the lack of the salivary clearance mechanism. Studies have shown that in the absence 

of saliva, the pH of dental plaque was reduced. The clinical significance of saliva 

absence in in situ investigations may be an overestimation of the protonation patterns of 

the enamel slabs. If the same investigations were carried out intra-orally, the salivary 

clearance may have reduced the amount of carbohydrates available. Consequently, less 

acid would be produced from plaque bacteria and probably protonation would not be as 

evident. 
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Even though protonation does occur in situ after the cariogenic challenge, it is not clear 

exactly how long is needed for protonation to be evident as well as how long it takes for 

porosity and irreversible hard tissue dissolution to occur. In this in situ study, a pH 

indicator solution was used to assess protonation of the tooth surface. This method is 

easy, quick and clinically applicable but does not provide any information on hard 

tissue dissolution. Previous Atomic Force Microscopy studies showed that significant 

protonation occurs in acidic pH and dental hard tissue dissolution begins when the pH 

drops below 6.6 (Robinson et al., 2005). The ability to assess whether hard tissue 

dissolution has occurred or finding out the relation between protonation and beginning 

of dissolution is an important piece of information with major clinical implications. This 

would suggest that intensive prevention should be applied in order to stop the 

progression of dissolution and, if possible, reverse the procedure. Unfortunately, this 

was not possible in this in situ study.  

Despite the limitations of these in situ investigations, this study revealed that 

protonation of sound human primary tooth surfaces occurs in situ and can be detected 

with an easy, quick and clinically applicable technique. 

4.2.10. The clinical implications of the results of this in situ study 

The results of this in situ study imply that very early changes of the surface chemistry of 

dental enamel (protonation) occur and can be detected with an easy and clinically 

applicable technique. Even though it is not clear whether any hard tissue dissolution has 

taken place at a microscopic level on the protonated enamel surfaces, it is important to 

underline that none of these surfaces exhibited any clinically detectable visual change. 

This suggests that any changes of the dental enamel are at a very early stage at which 

invasive dental treatment is not required.  
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The ability to identify protonated tooth surfaces provides the clinician with the 

opportunity to apply the wide range of the available preventive techniques and target all 

these "susceptible" tooth surfaces at a very early stage. Progression of the carious 

process can, thus, be halted or even reversed. This is a completely novel technique and 

is the only way to detect tooth surfaces at risk before any visual change and before 

porosity and mineral loss occur. 

Clinical application of this method will benefit both low caries as well as high caries 

risk populations. The former will get the chance to maintain a healthy, caries free 

dentition and the latter will benefit from very early identification of tooth surfaces that 

are at high risk of dental caries before any irreversible changes of the dental hard tissues 

take place. 
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4.3. Future research 

These in vitro and in situ studies were the first investigations on protonation of human 

primary tooth surfaces. Further research is required before the technique can be 

clinically applicable. 

Larger in vitro and in situ studies on primary and permanent tooth surfaces will allow 

comparisons between the protonation patterns of primary and permanent teeth. The 

results of our investigations can be used to make power calculations and identify 

appropriate sample sizes.  

Atomic Force Microscopy investigations of the protonated tooth surfaces may clarify 

exactly when protonation occurs and correlate protonation of the tooth surface with the 

initiation of enamel dissolution. Furthermore, the effect of fluoride treatment on early 

changes of the surface chemistry of enamel requires further research. 

In vivo studies with appropriate sample sizes should be carried out to identify whether 

the technique is applicable intra-orally under normal oral conditions. 
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Chapter 5- Conclusions 

These in vitro and in situ studies on sterile and non-sterile, intact and carious human 

primary tooth surfaces concluded in the following: 

i. In vitro studies 

 The use of chemical pH indicators may offer a simple and convenient approach 

to assess the degree of protonation of tooth surfaces. 

 Sound sterile and non-sterile human primary tooth surfaces were non-

protonated (pH~7) when the pH of the immediate environment of the tooth 

surface was neutral (pH 7). 

 The proportions of protonated and non-protonated carious non-sterile human 

primary tooth surfaces did not differ when the pH of the immediate 

environment of the tooth surface was neutral (pH 7). 

 Carious sterile human primary tooth surfaces were non-protonated when the pH 

of the immediate environment of the tooth surface was neutral (pH 7). 

 Human primary tooth surfaces became protonated after an acidic challenge. 

ii. In situ study 

 Sound human primary tooth surfaces became protonated after a cariogenic 

challenge. 
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7.2. Tooth donation information sheet and consent form 
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7.3. Participant information sheet and consent form 
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7.5. Statistical tables 

 7.5.1. Standard Normal distribution (Petrie and Sabin 2009, p. 143) 

 

z 2-tailed P-value 

0.0 1.000 

0.1 0.920 

0.2 0.841 

0.3 0.764 

0.4 0.689 

0.5 0.617 

0.6 0.549 

0.7 0.484 

0.8 0.424 

0.9 0.368 

1.0 0.317 

1.1 0.271 

1.2 0.230 

1.3 0.194 

1.4 0.162 

1.5 0.134 

1.6 0.110 

1.7 0.089 

1.8 0.072 

1.9 0.057 

2.0 0.046 

2.1 0.036 

2.2 0.028 

2.3 0.021 

2.4 0.016 

2.5 0.012 

2.6 0.009 

2.7 0.007 

2.8 0.005 

2.9 0.004 

3.0 0.003 

3.1 0.002 

3.2 0.001 

3.3 0.001 

3.4 0.001 

3.5 0.000 
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 7.5.2. Sign test (Petrie and Sabin 2009, p. 143) 

 

r= number of "positive differences" 

n' 0 1 2 3 4 5 

4 0.125 0.624 1.000    

5 0.062 0.376 1.000    

6 0.032 0.218 0.688 1.000   

7 0.016 0.124 0.454 1.000   

8 0.008 0.070 0.290 0.726 1.000  

9 0.004 0.040 0.180 0.508 1.000  

10 0.001 0.022 0.110 0.344 0.754 1.000 

 

 

 

 


