
The use of machine learning/deep learning in PET/CT
interpretation to aid in outcome prediction in lymphoma

Russell Thomas Frood

Submitted in accordance with the requirements for the degree of Doctor of Philosophy

The University of Leeds
Leeds Institute of Medical Research

December 2022



- ii -

The candidate confirms that the work submitted is his own, except where work which
has formed part of jointly-authored publications has been included. The contribution of
the candidate and the other authors to this work has been explicitly indicated below.
The candidate confirms that appropriate credit has been given within the thesis where
reference has been made to the work of others.

The following joint publications have been written as a result of the work in this thesis:

i) Frood R, Burton C, Tsoumpas C, Frangi AF, Gleeson F, Patel C, Scarsbrook A.
Baseline PET/CT imaging parameters for prediction of treatment outcome in
Hodgkin and diffuse large B cell lymphoma: a systematic review. Eur J Nucl Med
Mol Imaging. 48(10):3198-3220

Contribution: R Frood was responsible for the creation of the review question,
design, literature search, data extraction and analysis and writing of the manuscript

Contribution of other authors: A Scarsbrook was lead supervisor and was the
second author reviewing the literature. A Scarsbrook, C Burton, C Tsoumpas, A
Frangi, F Gleeson and C Patel all reviewed the manuscript and provided comments

ii) Frood R, Clark M, Burton C, Tsoumpas C, Frangi AF, Gleeson F, Patel C,
Scarsbrook A. Discovery of Pre-Treatment FDG PET/CT-Derived Radiomics-Based
Models for Predicting Outcome in Diffuse Large B-Cell Lymphoma. Cancers
(Basel). 14(7):1711.

Contribution: R Frood was responsible for the study design, image segmentation,
prediction model creation, data analysis, literature search, manuscript preparation
and submission.

Contribution of other authors: A Scarsbrook was lead supervisor. M Clark
contributed to image segmentation. A Scarsbrook, M Clark, C Burton, C
Tsoumpas, A Frangi, F Gleeson and C Patel all reviewed the manuscript and
provided comments

iii) Frood R, Clark M, Burton C, Tsoumpas C, Frangi AF, Gleeson F, Patel C,
Scarsbrook A. Utility of pre-treatment FDG PET/CT derived machine learning



- iii -

models for outcome prediction in classical Hodgkin lymphoma. Eur Radiol.
32(10):7237-7247.

Contribution: R Frood was responsible for the study design, image segmentation,
prediction model creation, data analysis, literature search, manuscript preparation
and submission.

Contribution of other authors: A Scarsbrook was lead supervisor. M Clark
contributed to image segmentation. A Scarsbrook, M Clark, C Burton, C
Tsoumpas, A Frangi, F Gleeson and C Patel all reviewed the manuscript and
provided comments

This copy has been supplied on the understanding that it is copyright material and that
no quotation from the thesis may be published without proper acknowledgement.

The right of Russell Thomas Frood to be identified as Author of this work has been
asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

© 2022 The University of Leeds and Russell Thomas Frood



- iv -

Acknowledgements

I would like to express utmost gratitude to my supervisors Professor Andrew Scarsbrook,
Professor Alejandro Frangi, Professor Charalampos Tsoumpas and Professor Fergus
Gleeson for all the support and guidance throughout the fellowship.

I would like to thank Rachel Hyland, Head of School for Radiology Yorkshire, and Hannah
Lambie, Training Programme Director at the West Yorkshire Radiology Academy, for
supporting my out of programme research during my Radiology training.

I would like to thank Atif Rabani, Matthew Clark and Chirag Patel with their help in data
acquisition and reviewing segmentations.

I would also like to thank Cathy Burton and the University of York’s Haematological
Malignancy Research Network for providing follow up data for the patients included in
the study.

I would like to thank my wife Lucy Elliott. I could not have done this without her support
and proof reading skills.

I would like to dedicate this thesis to my late parents, Yvonne and Colin Merrick, who
sadly passed away before I could complete my PhD, and to my daughter Erin Yvonne
Elliott-Frood who was born during my PhD.



- v -

Abstract

Lymphoma is a haematopoietic malignancy consisting of two broad categories: Hodgkin
lymphoma (HL) and non-Hodgkin lymphoma (NHL). These categories can be further split
into subtypes with classical HL (cHL) and diffuse large B cell lymphoma (DLBCL) being
the commonest subtypes. The gold standard imaging modality for staging and response
assessment for cHL and DLBCL is 2-deoxy-2-[fluorine-18]fluoro-D-glucose (FDG) positron
emission tomography/computed tomography (PET/CT), with patients having a worse
prognosis if they do not demonstrate complete metabolic response (CMR). However,
approximately 15% of patients will relapse even after CMR. Therefore, being able to
identify patients who are likely to relapse it may be possible to stratify treatment early to
improve patient outcomes. The aim of this project is to develop and test image derived
predictive models based on the baseline PET/CT to risk stratify patients pre-treatment.
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Chapter 1
Introduction

Lymphoma is a haematopoietic malignancy affecting lymphocytes and their progenitors.
There are two main categories: Hodgkin lymphoma (HL) and non-Hodgkin lymphoma
(NHL), with approximately 90% of cases within the adult population being NHL [1].
HL is further divided into classical (cHL) and nodular lymphocyte predominant groups,
with 95% of HL cases being cHL [1]. cHL comprises four distinct histological subtypes:
nodular sclerosis, mixed cellularity, lymphocyte predominant and lymphocyte depleted.
NHL consists of approximately 50 different subtypes, the most common of which is diffuse
large B-cell lymphoma (DLBCL) representing around 30-40% of adult NHL [2]. DLBCL
is sub-classified into a further 13 different variants based on morphological, clinical and
immunophenotypic findings, the most common, representing 80% of cases being not
otherwise specified (NOS) [3]. Given the large variation in histological subtypes this
thesis will focus on cHL and DLBCL NOS which represent the commonest types of HL
and NHL affecting patients.

1.1 Normal B-cell Lymphopoiesis

Both cHL and DLBCL malignant cells are derived from the B-cell linage. Understanding
normal B-cell lymphopoiesis is key to understanding the genetic phenotyping of the
different subtypes of cHL and DLBCL [4].

During development haematopoiesis first occurs within the yolk sac, where primitive
erythrocytes are produced. It is unclear if lymphopoiesis is possible during this phase [5].
After approximately day 19 of embryogenesis, a second wave of haematopoiesis takes
place in the aorta–gonad–mesonephros (AGM). The AGM is the site of origin of
haematopoietic stem cells (HSC), which are derived from haemopoietic progenitors, and
are the source of all types of mature blood cells [6]. At approximately week 5 of
gestation the HSC and progenitors migrate to the liver which takes over as the main
centre of haematopoiesis [6]. Differentiation and expansion of the stem cells takes place
during this period. The placenta and spleen also contribute to haematopoiesis at this
stage, but to a lesser extent. At approximately 4 months gestation haematopoiesis starts
in the red bone marrow, which by birth becomes the sole site of haematopoiesis. During
normal ageing, the volume and location of red marrow decreases, being replaced by
yellow marrow, which is made up of adipocytes. In adulthood, the remaining centres of
haematopoiesis are located in the axial skeleton and the metaphysis of long bones.



- 2 -

B-cells can be divided into two main sub-linages, B1 and B2 B-cells, with B2 cells forming
most of all B-cells in the human body. B2 cells represent the transitional, follicular,
germinal centre, plasma and memory B-cells which form part of the adaptive immune
response. B1 cells are mainly found in the peritoneal and pleural cavities and produce
natural antibodies as part of the innate immune system. There are mixed reports within
the literature regarding the origin of B cells, with a lineage model, selection model and
combined layer model all being proposed. The linage model posits that B1 and B2 cells
are defined distinct separate linages. This is supported by murine studies demonstrating
that whilst transplanted foetal liver is able to reconstitute both B1 and B2 cells, adult
bone marrow only forms B2 cells [7, 8]. The selection model suggests that B1 cells are
formed, like B2 cells, from the HSC and that these cells can differentiate into either B1
or B2 cells. The selection model is supported by the fact that swapping B1 and B2 B-cell
receptors (BCR) it is possible to change a B2 into a B1 cell which will promptly migrate
to the pleural and peritoneal cavities [9]. The combined layer model suggests that foetal
liver and bone marrow have the capacity to produce both B1 and B2 cells, but foetal liver
has a higher predilection for producing B1 cells and bone marrow has a higher predilection
for producing B2 cells [10].

The concept of the nature of a lymphoid or myeloid cell being predetermined from the
first branch of the HSC has changed [11]. HSC were also once considered to be made up
of long-term (cluster of differentiation (CD)34-) and short-term (CD34+) variants, with
long-term variants more likely to self-renew and short-term more likely to differentiate
further down a cell lineage [12]. However, it is now believed that HSCs are more complex
in nature with an intermediate-term HSC demonstrated [13], and the HSC pool made up
of HSCs and multipotent progenitors (MPP) which are more biased to certain linages [14]
(Figure 1.1).

There are many factors which have an influence on actions of HSCs, with signals arising
from cells in arterioles and sinusoids as well as other HSCs themselves. These are all
transmitted to the HSC whilst it is within a dedicated bone marrow environment known
as the bone marrow niche. As cells differentiate, they present different surface antigen
markers as cluster of differentiation (CD) (Table 1.1). The CD can be used in conjunction
with histology to determine specific subtype of lymphoma. For example, where there is
histological uncertainty between NS HL and anaplastic large cell lymphoma (ALCL) the
presence of CD15 and lack of the T-cell receptor gene would indicate cHL rather than
ALCL [15].

During B-cell differentiation the BCR is formed from two heavy and two light chains. The
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Figure 1.1 Flow diagram of haematopoiesis. HSC = haematopoietic stem cell, LT HSC =
long-term haematopoietic stem cell, IT HSC = intermediate-term haematopoietic stem
cell, ST HSC = short-term haematopoietic stem cell, MPP = multipotent progenitor,
LMPP = lymphoid primed multipotent progenitor, common myeloid progenitor (CMP),
DCs = dendritic cells.

heavy chains are made up of three gene segments: variable (V), diversity (D) and joining
(J), whereas the light chains are formed from only two segments: V and J [16]. During
the early pro B-cell stage there is random rearrangement of the D and J aspects of the
heavy chain to try and join them together, and if this is successful, the cell progresses to
the late pro B-cell stage [17]. In the late pro B-cell stage the V attempts to join to the V-J
complex. At the large B cell stage the heavy chain is paired with a surrogate light chain
creating a pre-BCR within the cytoplasm of the cell. The pre-BCR when signalled causes
the cell to proliferate which in turn will allow different combinations of light chains to the
heavy chain which was created and “tested” during the initial stages. The small pre B-cell
begins the process of light chain rearrangement [16]. There are two types of light chain,
kappa and lambda, and the cell will try to pair a kappa light chain with the heavy chain
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Cell Surface Marker
Haematopoietic stem cell CD117 hi, Sca-1hi, CD135−, CD34lo, CD150+,

CD48−
Common Lymphoid Progenitor CD10+, CD34+, Pax5+
lymphoid primed multipotent progenitor CD117hi, Sca-1hi, CD135hi, CD27+, Vcam-1−
Early progenitor B-cell CD117lo, CD10+, CD34+, CD38+, Pax5+
Late progenitor B -cell CD117lo, CD10+, CD19+, CD20+, CD24+,

CD34+, CD38+, CD93+, IL-3R+, IL-7R�+, Pax5+
Large precursor B-cell CD19+, CD43−, internal IgH+, surface IgM−
Small precursor B-cell CD19+, CD43−, internal IgH+, Surface IgM−
T1 CD19+, CD24hi, CD38hi, CD27IgMhi, IgDlo,

CD10hi, CD21lo, CD32hi
T2 CD19+, CD24hi, CD38hi, CD27IgMin, IgDin,

CD10in, CD21lo, CD32in
T3 CD19+, CD24hi, CD38hi, CD27IgMlo, IgDlo,

CD10lo, CD21lo, CD32lo, CD27+
Activated B-cell CD19+, CD80+, CD86+, CD44+, CD69+,

PD-L1+
Plasma Cell CD20-, CD24-, CD27hi, CD38hi

Table 1.1 Surface and transcription markers associated with different stages of B-cell
development. CD = cluster of differentiation, Sca-1 = stem cells antigen-1, Pax5 =
Paired Box-5, Vcam-1 = vascular cell adhesion molecule-1, IL-3R = interleukin-3 receptor,
IL-7R� = interleukin-3 receptor subunit alpha, IgH = Immunoglobulin heavy, IgM =
Immunoglobulin M, IgD = Immunoglobulin D.

in the first instance, if this fails the cell will try to form a pair with the lambda light chain.
If both fail the cell undergoes cell death by apoptosis. If successful it forms an immature
B-cell expressing an IgM antigen surface receptor. Immature B-cells undergo several
transitional phases before eventually progressing to naïve B-cells within the secondary
lymphoid tissues. The naïve B-cell expresses both IgM and IgD antigen surface receptors
and does not become a mature B-cell until exposed to its antigen. If a transitional B-cell
demonstrates high affinity for self-antigens, the cell undergoes apoptosis. Mature B-cells
become activated when an antigen encounters their surface IgM or IgD surfacer receptor.

1.2 Classical Hodgkin Lymphoma

1.2.1 Epidemiology

There is a general trend of HL to be more prevalent in Western societies. A study by
Singh et al. using GLOBOCAN 2020 data reported the highest incidence for men was in
Italy, with an age-standardised rate (ASR) of 3.5-4 per 100,000, the lowest incidence was
in the Caribbean island of Martinique with an ASR of 0.25 per 100,000 [18]. The highest
incidence for women was in Cyprus (ASR 3.2 per 100,00), and lowest in Niger (ASR <0.1
per 100,000). However, the highest mortality rates were demonstrated in Iraq for both
sexes highlighting a potential disparity between treatment availability in different regions.
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Singh et al. predict a global 30% increase in incidence of HL by 2040 and a 50% increase
in mortality rate based on predicted demographic changes.

As well as global variation in incidence, there are historically four different age-related
incidence patterns which vary depending on a country’s ethnic and socio-economic make
up. These patterns were first reported in studies performed between 1950 and 1970 [19,
20]. The first is demonstrated in developing countries where there is a peak incidence of
HL cases among young boys, and then a low incidence until the 4th decade of life when
there is an increasing incidence with age. The next is demonstrated in affluent western
countries where there is a bimodal distribution with a relatively low incidence in childhood
with a first peak incidence of nodular sclerosing (NS) HL in adolescent/early adults and
another peak in older adults. This pattern of disease is typically demonstrated within the
UK, with NS HL accounting for 70% of cases. A third pattern, which lies between that
of developing and affluent western countries, typically demonstrated within rural Western
areas. Finally, a fourth pattern exists in Asian countries, where there is low incidence
through the first four decades of life, and after this incidence increases with age.

1.2.2 Clinical Presentation

cHL has a highly variable clinical presentation [21], the most common being a painless
lump or swelling representing an enlarged lymph node or confluent mass of lymph nodes.
This often occurs in the neck but can occur anywhere in the body [22]. Patients can
also present with symptoms related to mass effect (e.g. superior vena cava obstruction,
cauda equina, etc.) or with systemic symptoms such as fatigue, pyrexia, weight loss,
night sweats, pruritus or increased frequency of infections. Since the Ann Arbor staging
system was introduced in 1971, night sweats, pyrexia and weight loss are referred to as
B-symptoms [23]. Prior to this, pruritus rather than weight loss was included as a B-
symptom. The cause of the B-symptoms is believed to be due to raised inflammatory
proteins such as cytokines, with serum levels of interleukin-6 (IL-6) correlating with their
presence [24]. The probability of a patient presenting with B-symptoms varies depending
on histological subtype.

1.2.3 Histology

HL, and its subtypes, are characterised by presence of Hodgkin and Reed-Sternberg
(HRS) cells [15]. Reed-Sternberg cells are large binucleated cells, with the nucleoli often
being eosinophilic (Figure 1.2), formed from the incomplete cytokinesis of Hodgkin cells.
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Hodgkin cells are formed from clonal transformation of mature B-cells with evidence of
somatic mutation in the immunoglobulin genes which indicates they are post-germinal
centre B-cells [15].

Figure 1.2 Graphical representation of a histological slide depicting the binucleated Reed-
Sternberg cell surrounded by background eosinophils.

Nodular sclerosis HL is identified histologically by the presence of both HRS cells and
fibrous tissue with sclerosing bands within the lymph node. Mixed cellularity cHL has
HRS cells with a mixed background of inflammatory cells; fibrosis may be present but
there are no sclerotic bands. Histologically lymphocyte rich cHL is characterised by HRS
cells which are distributed at the edge of reactive follicles [25]. The appearances of
lymphocyte rich cHL can often resemble those of nodular lymphocyte predominant
lymphoma, however, the two can be distinguished by immunophenotypic features. It is
believed that approximately 30% of historically diagnosed nodular lymphocyte
predominant lymphoma cases were actually lymphocyte rich cHL.

Lymphocyte depleted cHL has two histological variations: a reticular type and a diffuse
fibrotic type [26]. The diffuse fibrotic type consists of HRS cells with few lymphocyte
infiltrations and increased histocytes and fibroblasts. The reticular type again
demonstrates HRS cells with only a few infiltrating lymphocytes; however, the HRS cells
can demonstrate sheet like proliferation. Histologically this can make the reticular type
difficult to distinguish from DLBCL [26]. Although histologically these subtypes of cHL
are distinct they are all imaged and treated in a similar way.
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1.2.4 Risk factors

A UK based population cohort study by Rafiq et al. demonstrated a link between
socioeconomic deprivation and incidence of HL (both cHL and nodular lymphocyte
predominant), and that there was 60% higher incidence in more affluent areas [27].
However, patients with HL from deprived areas were more likely to have Epstein Barr
virus (EBV)-positive disease. As previously discussed, there is a relationship between age
and development of cHL and in the UK this follows a bimodal distribution with peaks in
early (age 20-24 years) and late adulthood (age 75-79 years) (Cancer Research UK).
This pattern of incidence may also be linked to race; an American study by Shenov et
al. found the bimodal pattern held true for Caucasian and Asian populations with cHL
but was not observed in black populations [28]. They proposed that these variations in
distribution, and the higher incidence in white populations, could be related to
differences in early microbiome exposure. Chang et al. further explored the link between
childhood exposure to pathogens and development of HL in a population-based
case-control study of 565 HL cases and 679 controls [29]. They found that attendance
at nursery or day school was associated with lower incidence of HL in early adulthood.

cHL can be associated with EBV, with 80-100% of patients with human immunodeficiency
virus (HIV) also having EBV, the association between EBV with cHL was first implied
when raised EBV antigens were detected prior to the development of HL [30]. This
was later confirmed when EBV RNA and DNA was detected in HRS cells. EBV-positive
childhood cases are thought to be a direct reaction to exposure to EBV whereas HIV
related cHL and EBV positive cases in the older population are thought to be due to
decreasing immunity [31].

1.2.5 Clinical prognostic markers

Different pathways are influenced by the classification of cHL disease as either early or
advanced. Early-stage disease consists of stage I and II patients, and can be further
divided into favourable or unfavourable categories. The definition of early favourable and
unfavourable varies depending on which of the many scoring systems is used (Table 1.2).
This was highlighted by a study by Advani et al. who compared three different scoring
systems: German Hodgkin Study Group (GHSG), European Organisation of Research and
Treatment of Cancer (EORTC) and Groupe d’Etudes des Lymphomes de l’Adulte (GELA)
when applied to a cohort of patients who had been classified as early favourable using
the National Cancer Institute (NCI) score. Patients are regarded as being favourable
using the NCI score if they do not have bulky disease (>10cm in maximum diameter) or
B-symptoms [32]. They found that there was no significant difference in the prediction
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of OS and that there was only a significant in PFS when using the GHSG scoring system.
Further work needs to be performed to determine a universal approach to the classification
of favourable vs unfavourable.
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NCRI EORTC GHSG NCCN 2010 GELA
Risk Factors Bulky disease Large mediastinal

mass
Large mediastinal
mass

Large mediastinal
mass

Male

B symptoms Age ≥ 50 Extra nodal disease >1 extra nodal area Age ≥ 45
ESR ≥ 50 without
B-symptoms or ≥ 30
with

ESR ≥ 50 without
B-symptoms or ≥ 30
with

ESR ≥ 50 or any B
symptoms

Any increase in ESR

≥ 4 nodal areas ≥ 3 nodal areas ≥3 nodal areas haemoglobin �105 g/L
lymphocyte count
�0·6×109/L

Favourable Stage I-II without risk
factors

Stage I-II
(supradiaphragmatic)
without risk factors

Stage I-II without risk
factors

Stage I-II without risk
factors

Stage I-II without risk
factors

Table 1.2 Different scoring systems for determining early favourable disease. NRCI = National Cancer Research Institute, EORTC=
European Organization for Research and Treatment of Cancer, GHSG= German Hodgkin Study Group, NCCN = National Comprehensive
Cancer Network, GELA = Groupe d’Etude des Lymphomes de l’Adulte, ESR = erythrocyte sedimentation rate.



- 10 -

The International Prognostic Score (IPS) was developed by Diehl and Hasenclever in
1998 as a way to prognosticate advanced HL [33]. The score was based on data from
5151 patients using seven predictors, with a patient scoring a point for each of the
following: age greater than 45 years, male gender, albumin of less than 40g/L,
haemoglobin of over 105 g/L, stage IV disease, white blood count (WBC) more than
15,0000mm3 and lymphopenia. The original study split the cohort into six distinctive
prognostic groups with scores 0 to 4 having distinct groups and a score of 5 or greater
having its own group. However, the OS curves for scores 0 and 1, and 2 and 3 were
similar [33]. The IPS was re-evaluated by Deinfenbach et al. in a more recent patient
cohort, as it was suggested that 20% of the original study cohort were treated with
outdated treatment regimes [34]. They reported that only stage and age were predictive
in multivariate analysis for PFS and age, stage and haemoglobin level were predictive for
OS and proposed a new scoring system based on these factors. On their data the new
clinical prediction model outperformed the original IPS. However, with subsequent
widespread implementation of image-guided treatment adaption it has been suggested in
more recent studies by Gallamini et al. and Bari et al. that only the Deauville score
(DS) from interim 2-deoxy-2-[Fluorine-18]fluoro-D-glucose (FDG) positron emission
tomography/computed tomography (PET/CT) is prognostic of 2-year PFS and that IPS
has lost its predictive value [35, 36]. This suggests that there is value in exploring
further prognostic features and models, for which imaging could play a role.

1.2.6 Imaging of classical Hodgkin lymphoma

FDG PET/CT is now widely accepted as the gold standard imaging technique for
staging and response assessment in cHL. FDG is a glucose analogue actively taken up
intracellularly by glucose transporters (GLUTs). Once inside the cell it is phosphorylated
with hexokinase to glucose-6-phosphate [37]. The expression of GLUT and hexokinase is
upregulated in cancer cells. In normal cells glucose-6-phosphate can be
dephosphorylated by glucose-6-phosphatase which allows FDG to exit the cell, however,
in malignant cells glucose-6-phosphatase is down regulated and therefore FDG
accumulates [37]. Fluorine-18 decays by positron emission, the positron travels a short
distance before annihilation with an electron causing the emission of two photons, which
occur at near 180 degrees from each other [38]. Detection and timing of these pairs of
photons allows localisation of the origin and therefore the location of cells where FDG is
aggregating [38]. CT is used for attenuation correction and to provide accurate
anatomical localisation which can be combined with the physiological aspect from the
PET. An example of a cHL PET/CT study is demonstrated in Figure 1.3.
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Figure 1.3 Select axial PET (A), CT (B) and fused images (C) from a pre-treatment
FDG PET/CT study in a patient with stage 4 cHL demonstrating tracer-avid mediastinal
lymphadenopathy and sternal and vertebral body lymphomatous disease.

cHL is clinically staged using the modified Ann Arbor staging classification. Ann Arbor
classification was originally adopted for use in 1971 as a replacement to a pathological
staging system which consisted of laparotomy and multiple nodal, organ and bone marrow
biopsies (BMB) following a transition to multiagent chemotherapy where it was deemed
unnecessary to have pathological staging [23]. CT staging was adopted as the modality
of choice, however, due to low sensitivity for detecting bone marrow involvement BMB
was continued. In 1989 the Ann Arbor staging classification was modified at the Cotswold
meeting [39]. The new modification added X, S, E, A and B designations which represent
bulky disease, splenic involvement, extra nodal disease and the presence and absence of
B symptoms, respectively. The introduction of metabolic imaging occurred with the use
of gallium-67 scintigraphy, but this was later replaced by FDG PET/CT which was able
to demonstrate better ability to detect disease when compared to gallium-67, CT and
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non-targeted bone biopsy [40]. The Lugano classification is the staging method most
commonly adopted and varies when compared to the Cotswold modification system by
grouping stage I and II as limited disease and stage III and IV disease as advanced, the
grouping of stage III disease and the X descriptor is not applied for bulky disease, but the
longest diameter mass is recorded [41].

In terms of response assessment, a 5-point scale (Deauville Score, DS) is used when
assessing interim (following 2 cycles of chemotherapy) or end of treatment FDG PET/CT
[42]. The DS groups patients into complete response, partial response, stable disease,
and progressive disease depending on the metabolic activity within sites of disease in
comparison to background FDG uptake in the mediastinal blood pool and liver or the
presence of new disease (Table 1.3). Response assessment is based solely on FDG uptake
and not on residual soft tissue masses on the CT component of the study.

Deauville Score PET/CT Finding
1 No uptake
2 Uptake equal or below mediastinal blood pool
3 Uptake equal to below liver uptake but above mediastinal blood pool
4 Uptake above liver uptake
5 Markedly increased uptake or any new lesions

Table 1.3 The Deauville criteria for determining response assessment on PET/CT.

1.2.7 Baseline Imaging Prognostic Markers

Standardised uptake value (SUV) is the most common metric extracted from PET imaging
data. This parameter was designed to try and compensate for tracer tissue distribution
variation, most significantly influenced by injected radiopharmaceutical dose and patient
body weight. SUV is defined as the ratio of measured radioactivity within an image at a
given timepoint when compared to the whole body concentration of injected radioactivity
[43]. There are several limitations to the standard calculation of SUV. One of these is
that body fat contributes to body weight but does not have significant FDG uptake when
in a fasting state as it is less metabolically active than muscle, which means that obese
patients can have a higher measured SUV [44]. To compensate for this, lean body weight
can be estimated, often based on predictive equations according to height, sex and age.
SUV calculated from surface area can also be calculated [44]. High blood glucose levels
can reduce uptake of FDG into metabolically active cells due to competition for the same
cellular uptake mechanism leading to reduced intracellular FDG accumulation [44]. There
are also technical factors which influence SUV, including scanner spatial resolution, image
acquisition and PET reconstruction parameters [44, 45].
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Different iterations of SUV within a defined region can be used in the assessment of
disease [46]. SUVmax and SUVmean are the maximum and mean values within a defined
region of interest (ROI) respectively. SUVpeak is the average SUV of a ROI centred
on the highest uptake region within a contoured area. There a number of definitions
of SUVpeak as the value can be affected by the size and shape of the ROI. SUV forms
the basis of other metabolic parameters such as metabolic tumour volume (MTV) and
total lesion glycolysis (TLG). MTV is the volume of contoured disease at a specified SUV
threshold, whereas TLG is MTV multiplied by SUVmean. Textural parameters can also
be extracted from PET/CT data. A more in-depth exploration of baseline prognostic
markers is provided in Chapter 2.

1.2.8 Treatment of classical Hodgkin lymphoma

Chemotherapy is the mainstay of first-line treatment in HL. The most common regimes
used are doxorubicin (Adriamycin), bleomycin, vinblastine and dacarbazine (ABVD), or
bleomycin, etoposide, doxorubicin (Adriamycin), cyclophosphamide, vincristine
(Oncovin), procarbazine, and prednisone (BEACOPP). However, the number of cycles
varies depending on prognostic score, patient factors, and initial treatment response.
Recent guidelines produced by the British Society of Haematology recommend that
patients with early favourable disease are treated with 2-3 cycles followed by
radiotherapy if they have a negative interim PET/CT scan [15]. A negative interim
PET/CT is regarded as DS of 3 or below.

Treatment for early disease without a negative interim PET CT is two cycles of escalated
BEACOPP (eBEACOPP) followed by radiotherapy. Patients with advanced disease can
be treated with ABVD or BEACOPP depending on patient factors and the balance of
toxicity versus efficacy. eBEACOPP should not be given to patients older than 60 years
of age. Treatment pathways are based on the RATHL and HD18 trials [47, 48]. Patients
treated with ABVD who have a negative interim PET/CT should have their treatment
de-escalated for the remaining four cycles. If the interim PET/CT is positive, and there
is no evidence of progression, four cycles of eBEACOPP can be given and radiotherapy
should be considered. For patients receiving eBEACOPP, if they have a negative interim
PET/CT they should only have two further cycles of chemotherapy or can be de-escalated
to four cycles of ABVD. If the interim PET/CT is positive, the patient should have a
further four cycles of eBEACOPP.
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1.2.9 Genetic markers

Variation associated with the human leukocyte antigen (HLA) region of the human
genome have been identified which are associated with an individual’s susceptibility to
develop cHL [49]. Depending on the specific allele, these may be protective or lead to
vulnerability for the development of a specific subtype or for all cHL variations.

When it comes to predicting outcomes, Montalbán et al. investigated the predictive
value of forty genetic markers in a cohort of 259 patients [50]. They found that three
molecular markers p53, B-cell lymphoma extra-large (Bcl-XL) and terminal
deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick-labelling
(TUNEL) were independent predictors of complete remission for 12 months or greater.
Plattel et al. looked at use of serum levels of soluble Galectin-1, soluble CD163 and
soluble CD30 when compared to thymus and activation regulated chemokine (TARC).
They measured levels of each of these potential biomarkers pre and post treatment and
found that only TARC varied with treatment response with 6/7 non-responders having a
level which remained high and 95/96 who responded having a significant decrease in
levels [51].

1.3 Diffuse Large B-Cell Lymphoma

1.3.1 Epidemiology

The annual incidence of DLBCL within the UK is 8.2 per 100,000, with a slightly higher
predominance in males [52]. The incidence of DLBCL increases with age with the median
age of diagnosis being 69.7 years [52]. There is a higher proportion of patients with
DLBCL who are Caucasian when compared to other ethnicities [53]. There is a paucity of
data regarding global patterns of incidence of DLBCL, however, there are higher rates of
NHL within western countries with the lowest rates in Middle Africa and Central America
[54].

1.3.2 Clinical presentation

Clinical presentation of DLBCL is similar to that of cHL with around 20% of patients
presenting with B-symptoms. DLBCL is typically more aggressive with approximately
40% presenting with extra-nodal disease and 23% presenting with two or more extra-nodal
sites of involvement [55]. DLBCL can also present following transformation of another
lower-grade B-cell neoplasm. This is termed Richter’s transformation when B-cell chronic



- 15 -

lymphocytic leukaemia (CLL) transforms into DLBCL, and occurs in approximately 2-10%
of CLL patients [56].

1.3.3 Histology

In general, DLBCL NOS is characterised histologically by a diffuse growth pattern with
the presence of large cells which typically are five time larger than normal lymphocytes
and resemble immunoblasts or centroplasts [57]. However, it is ultimately a diagnosis of
exclusion where the characteristics do not fit with a specific primary site such as CNS,
cutaneous or intravascular and there are no features of T-cell/histocyte rich large B-cell
lymphoma (THRLBCL) or mediastinal large B-cell lymphoma (PMBL).

1.3.4 Risk factors

Although the exact aetiology of DLBCL is unknown there are several risk factors which
have been identified which increase an individual’s likelihood of developing DLBCL. As
previously mentioned there is an associated risk of developing DLBCL with increasing age.
There is a higher incidence in males and Caucasian populations. In a pooled analysis of
4667 cases and 22639 controls from 19 studies Cerhan et al. demonstrated that positive
hepatitis B virus serology, family history of NHL and high young adult body mass index
(BMI) increase the risk of a patient developing DLBCL [58]. Certain occupations may
place individuals at a higher risk of developing DLBCL. In the female subcategory these
included farm workers and hairdressers. In the male subcategory factory workers were
deemed to be at higher risk of developing DLBCL. There was a negative association, with
the odds ratios being <1 for increased levels of recreational sun exposure, presence of an
atopic disorder or being in a higher socio-economic group.

1.3.5 Clinical prognostic markers

There are a number of different prognostic scoring systems proposed to stratify DLBCL
patients. The first of which, the international prognostic index (IPI) was developed by
Ship et al. in 1993. The score was based on retrospective analysis of 2031 patients treated
with cyclophosphamide, hydroxydaunorubicin hydrochloride (doxorubicin hydrochloride),
vincristine (Oncovin) and prednisone (CHOP) chemotherapy [59]. Patients received a
point for each of the following if present: age over 60 years, stage II or III disease,
raised serum lactate dehydrogenase LDH, Eastern Cooperative Oncology Group (ECOG)
performance status of greater than one and involvement of two or more extra-nodal sites.
Patients were split into four prognostic groups depending on their accumulated scores.
The IPI was updated in 2007 by Sehn et al. to account for the use of rituximab with
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CHOP chemotherapy (RCHOP) [60]. This retrospective analysis of 365 patients, reported
that the original IPI was no longer able to stratify patients into four distinct outcome
groups, but instead grouped them into two outcome groups. This revised IPI (R-IPI)
used the same features of the original IPI but grouped them into 3 different outcome
groups. A larger study by Ziepart et al., using data from 1062 patients in three different
trials, found that the IPI was still valid but the use of rituximab did improve event free
survival and reduced the discrepancy between survival curves [61]. Zhou et al. developed
a further scoring system based on data from the national comprehensive cancer network
database (NCCN) [62]. The NCCN-IPI is again based on age, LDH levels, stage, extra-
nodal disease and performance status but splits age and LDH levels into different scoring
categories when compared to the previous systems. The NCCN-IPI splits patients into
four prognostic groups. The NCCN-IPI outperformed IPI for stratification of patients into
high and low risk groups when predicting 5-year OS. A more recent study by Rupert et
al. compared IPI, R-IPI and NCCN-IPI in a cohort of 2124 DLBCL patients treated with
RCHOP and reported that NCCN-IPI was superior for predicting OS compared to IPI and
R-IPI [63]. However, the concordance (C)-index for NCCN-IPI was only 0.63 suggesting
that prognostic scoring systems could be improved to more accurately stratify patients.

1.3.6 Imaging of diffuse large B-cell lymphoma

Like cHL, the gold standard imaging technique for staging and response assessment in
DLBCL is FDG PET/CT. However, unlike in cHL, treatment is not stratified around an
interim PET/CT in routine clinical practice. Studies have assessed the utility of interim
PET/CT, with promising results which suggest an interim PET/CT following 2 cycles
being suggested for de-escalation trials and an interim PET/CT following 4 cycles being
suggested for randomised control trials assessing new treatments [64]. Although, unlike
cHL there is a well-recognised pitfall in DLBCL with a high proportion of false positive
results at interim FDG PET/CT which could lead to inappropriate treatment stratification
[65]. The Lugano classification is used for the staging of disease and DS for the disease
monitoring/response assessment.

1.3.7 Imaging markers

Similar to cHL SUV derived metrics and radiomic predictive markers have been explored.
A detailed exploration of the literature is provided in Chapter 2.
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1.3.8 Treatment of diffuse large B-cell lymphoma

The mainstay of treatment in DLBCL is with immunochemotherapy using RCHOP [66].
Radiotherapy can be added if there is residual bulky disease [67]. Prophylactic intrathecal
methotrexate or intravenous treatment with chemotherapy which can cross the blood brain
barrier (methotrexate (high dose), cytarabine or ifosphamide) is given to patients who are
at high risk of central nervous system (CNS) involvement [68]. Patients are deemed
high risk if they have involvement of the kidneys, adrenal glands, breasts of testes, or if
they have two or more risk factors listed in the CNS-International Prognostic Index (IPI).
The risk factors include: Eastern Cooperative Oncology Group (ECOG) performance
score of two or more, stage III/IV disease, two or more extra-nodal sites, raised lactate
dehydrogenase (LDH) and age over 60 years [68].

1.3.9 Genetic Markers

The cell of origin (COO) is gaining traction as a prognostic marker in DLBCL. Three
distinct subtypes have been identified: activated-B-cell (ABC), germinal-centre-cell (GCB)
and type 3, which cannot be classified as either ABC or GCB. Patients with ABC have
worse 5-year PFS outcome compared to patients with tGCB subtype; 31-48% compared to
76%-78% respectively when treated with RCHOP [69, 70]. The Myelocytomatosis-cellular
(MYC) proto-oncogene and B-cell lymphoma 2 (BCL2) gene expression are also prognostic
markers. There are mixed reports of whether these gene expressions are prognostic markers
in their own right or are related to the COO. Liu et al. reported that ABC subtype was
associated with expression of both these genes, double expression lymphoma (DEL) [71].
Conversely, GCB is associated with translocation of the MYC and BCL2 genes, double
hit lymphoma (DHL). However, the prognostic ability of both DEL and COO may not be
appropriate for assessment of early stage (I//II) disease as Barraclough et al. were unable
to demonstrate significance in OS or PFS in this cohort of patients.

1.4 Data acquisition, optimisation and analysis

Radiological imaging data within health institutions is stored using a picture archiving
and communication system (PACS). PACS architecture consists of modality acquisition
equipment e.g. a CT scanner, a PACS gateway which acts as quality assurance ensuring
all necessary data is associated with the image, an archiving storage network and
reporting workstations [72]. Each of these components within the network are known as
an application entity (AE) and have their own AE title, internet protocol (IP) address
and port number which act as the identifier and location for imaging data to be pushed
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or pulled between different AEs [73]. Not all AEs are directly connected e.g. reporting
workstations are not usually directly connected to the modality acquisition equipment.
An AE sending a request, is regarded as the service class user (SCU) and the AE dealing
with the request is termed the service class provider (SCP) [74]. An AE can be both an
SCP and SCU depending on the direction of the traffic requests.

Medical imaging data is stored in a digital imaging and communications in medicine
(DICOM) format with the DICOM dataset being made up of information in the form of a
key-value associative array [75]. The key is also known as a DICOM tag. DICOM tags are
standardised and take the form of a 16-bit hexadecimal number. A hexadecimal number
is a number which is to the base 16 rather than base 10 (decimal) with the 16 digits being
represented as 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F . The decimal number
15 is therefore represented as F in hexadecimal. The number 16 in decimal would be 10
in hexadecimal and the number 105 in decimal would be 69 in hexadecimal. An example
of a DICOM tag would be (0x0008, 0x0020) which is the tag associated with the study
date. Each tag has a common nickname or description e.g. for tag (0x0008, 0x0020)
it is “StudyDate” which can also be used to reference a tag [76]. The value associated
with the data tag can take the form of a string, a date, integer, floating point or bytes,
with tags storing information about patient details, referral information, scan acquisition
details and pixel data all stored under DICOM tags. DICOM tags permit correct display,
storage, and transfer of imaging data.

Pixel data is associated with the (0x7fe0, 0x0010) data tag, and is commonly stored
in an uncompressed format [76]. The transfer syntax can be used to identify if data is
compressed or not, and the nature of compression. Examples of transfer syntaxes for
uncompressed pixel data include implicit VR little-endian, explicit VR little-endian and
explicit VR big-endian [75]. To allow images to be transferred between AEs, transfer
syntaxes need to be supported by both applications. If an AE does not recognise the
transfer syntax, the request is rejected, and the dataset is not transferred.

To allow development of machine learning models there needs to be a streamlined process
to retrieve images from PACS and convert DICOM images into image files which are
suitable for the application of radiomic analysis. The next sections will describe methods
undertaken to address these steps as part of the projects within thesis, the flow diagram
for which is depicted in Figure 1.4.
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Figure 1.4 Data pre-processing and analysis steps undertaken within the project.

1.5 Image extraction

PET/CT studies for DLBCL and cHL patients were identified by the data analyst AR using
a structured query language (SQL) server search of institutional electronic medical records
and radiology information system servers using International Classification of Diseases
Version 10 (ICD-10) classifications and PET/CT imaging codes respectively. All patients
included had provided informed written consent prospectively at the time of imaging
for use of their FDG-PET/CT imaging data in research and service development projects.
Following discussion with the Research and Innovation Department at LTHT it was agreed
that this represented a service improvement project and formal ethics committee approval
was not required. The study was approved by the University of Leeds ethics committee
(Appendix A).

Details of potentially eligible patients were initially used to manually push PET/CT images
from an institutional PACS (Agfa Enterprise Imaging (EI)) workstation to a dedicated
research workstation with a DICOM server (DBx, Mirada Medical). The transfer process
was augmented by an automated batch query/retrieve system written in Python using
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the libraries pynetdicom and pydicom. The AE title, IP address and port number of the
Python script were recorded in the Agfa configuration file and reciprocal details of the
PACS archive were inputted into the Python script to allow negotiation between the two.
It should be noted when implementing a c-move request to pull images, that different
PACS systems allow requests in different formats and a script written for one may not
be universally applicable. C-move is the name of the operation which allows the transfer
of a DICOM image from one PACs system to another and is used in combination with
the operation to store the image (c-store). For example, if a c-move request is initiated
from Python to Orthanc (a free PACS server), the request can be made using “Patient
Root Query Retrieve Information Model Move” Service-Object Pair (SOP) class with the
query level of “STUDY” using only the accession number. However, if the same method
is used to try and pull images from Agfa PACS the code will fail with an error indicating
the SOP class is wrong. Agfa PACS does not allow a “STUDY” level query using the
“Patient Root Query Retrieve Information Model Move” SOP class and does not allow
the accession number as the study identifier in a move query. To overcome this, the SOP
class needs to be changed to “Study Root Query Retrieve Information Model Move” and
“c_find” request needs to be performed to get the instance SOP unique identifier (UID)
from the accession number which can then be used to initiate the move request.

All images were downloaded to a dedicated password-protected workstation within the
LTHT firewall where the images were anonymised. No patient details left the
institutional, and no anonymised imaging data was used without the approval of
Information Governance at LTHT.

1.6 Anonymisation

DICOM files for each patient were initially pseudo-anonymised using the anonymisation
tool within the Mirada Medical software at the point of segmentation. The
anonymisation tool removes all private tags and changes identifiable patient details to
those of an agreed new tag for example “LYM-E-001”. However, to facilitate more
efficient large-scale batch anonymisation a bespoke Python script was created using the
Python library pydicom (https://gitfront.io/r/user-8522243/JQMsK3nk56iq/PhD/), a
graphical user interface version is also available to download. The script iterates through
all DICOM files within a folder, accesses the DICOM tags and deletes or changes tags
which are unknown, private or known to have patient sensitive information. Patient age,
weight, height and sex were retained to allow for the calculation of SUVs.

The anonymisation script uses a hash function with a salt-key to update sensitive tags
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which were retained. Although it is a one-way process, the salt-key is not shared to
eliminate any risk of an individual being able to reverse engineer the process to decrypt
the values. Private tags were removed as they do not usually have a description, and our
dataset was found to contain patient NHS numbers in some cases. Any date related to the
study, including injection times in the case of PET, were pseudo-anonymised by changing
the first study of a patient’s set to the date 08/11/2015 with all subsequent exams for
that patient given a date which preserved the temporal relationship of the original studies.
Some commercial PACS have a cut-off date for which it will allow studies to be uploaded.
Also, some will not load images unless they have a value for the patient’s date of birth
and have a patient ID assigned.

UIDs apart from the transfer syntax UID and the SOP Class UID were also converted
using a hash function as they are, as the name suggests, universally unique [77]. Whereas
study accession numbers and other patient IDs may be unique within an institution they
could be present somewhere else in the world, UIDs are generated in such a way that they
are unique to the scan, series, study, scanner, and hospital and therefore also needed to
be anonymised [77]. The syntax UID and SOP Class UID are required to define how to
encode the dataset for transfer between AEs, and although they are UIDs they are not
universally unique to a single study or patient. The modality tag and SOP class UID are
used to identify and delete patient reports or reformats which often contain patient details
burned into the pixel values. It should be noted that some institutions have a modality
referred to as “PR”, which stands for presentation state, which at our institution have
the radiographer’s details stored as the series description.

The overlay data tag (0x60xx, 0x3000) was removed from the DICOM dataset, if present,
as the information within this tag can contain patient information, ward number and the
date and time of the study [76]. If the ward number is displayed within this data, it
can often be accompanied by a “J” or “L” prefix which when the ward and prefix are
typed into an internet search engine will often allow accurate identification of the hospital
where the study was performed. This is more of a concern when dealing with computed
radiography. Some scanners or modalities save patient details into pixel data, the images
can be discarded, or the software can overwrite the pixel data.

All studies were reviewed manually during segmentation to check that all patient
identifiable information had been removed.
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1.7 Segmentation

The three main semi-automated segmentation techniques reported in the literature are
either based on a fixed SUV threshold, an adaptive thresholding method based on the
lesion(s) being contoured or based on background physiological uptake. There is ongoing
work to establish a consensus on the optimal segmentation method for deriving MTV
[78], and how the segmentation affects the performance of the derived model [79].The
most commonly reported segmentation technique is based on the 41% or 40% SUVmax
of a lesion, this was demonstrated to have the best correlation with a defined source and
then validated on a cohort of 10 lung carcinoma patients [80] and has been validated in
HL and DLBCL studies [81][82]. However, lymphomatous masses can be heterogeneous
and this can potentially lead to volumes being underestimated due to a small area of
high SUV disproportionately influencing the threshold. Also, given the need to identify
the SUVmax of each lesion to calculate the threshold needed, there is a potential for this
method to be more time consuming when compared to other methods. A fixed threshold
technique has the benefit of being easily applied without needed to take into consideration
the lesion or background SUV uptake. A fixed threshold of 4.0SUV was demonstrated
by Burggraaf et al. to have a higher interobserver reliability than the other thresholding
methods studied (41%SUVmax, 50%SUVpeak and SUV�2.5) [83]. A threshold based on
background physiological uptake is not as commonly reported in the literature in terms
of lymphoma segmentation, however, its use has been reported in other cancer types
[84, 85]. The premise being that variations in SUV in study acquisition, dose or body
composition are normalised, and that the SUVmean of the liver has been demonstrated
to be one of the most reproducible metrics for liver uptake [86]. For the studies as part of
this thesis, segmentation was performed using specialised multimodality imaging software
(RTx v1.8.2, Mirada Medical, Oxford, UK). Two different semi-automated segmentation
methods using two different threshold methods were used: 1.5 times mean liver SUV and
a fixed threshold of 4.0SUV (Figure 1.5). The mean liver SUV was calculated by defining
a 110cm3 ROI within the right lobe of the liver and recording the SUVmean. Physiological
or non-lymphomatous disease was manually excluded from contoured volumes.

1.8 Neuroimaging Informatics Technology Initiative conversion

Neuroimaging Informatics Technology Initiative (NIfTI) is a file format often used in
radiomic analysis [87]. The main reason for this is that NIfTI pixel data is stored as a 3D
data set, whereas DICOM images are often stored as 2D slices [88]. This makes it simpler
to input and navigate when extracting radiomic features from imaging data stored in this
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Figure 1.5 Sagittal slice of a PET study of a patient with DLBCL demonstrating the 1.5
times mean liver SUV segmentation (red) and the 4.0SUV fixed threshold segmentation
(blue/purple).

file format. NIfTI files contain metadata which allows the image to load in the correct
spatial plane based on the header details and affine matrix [88]. NiFTI files do not store
identifiable information within the metadata and therefore can be considered a method
for anonymisation. However, if the data was to be loaded into a PACS or radiotherapy
planning system such as the one used in this study, the files would need to be converted
back to DICOM images [89]. Also, if pixel data is burnt on this would be transferred to
the NIfTI pixel data.

The steps used in the conversion of DICOM images to NIfTI files will be discussed in the
next sections.

1.8.1 Pixel conversion

Firstly, pixel data within DICOM files was converted into the desired unit for the modality,
i.e. Hounsfield units (HU) and SUV for CT and PET respectively. This is necessary to
allow extraction of HU and SUV and any metrics based on these to be used as features.
This is arguably more important in PET, where SUV is time corrected and pixels are
adjusted accordingly when displayed [45]. If no correction is applied different bed positions
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may have inherently different background uptake which would affect any model derived
from this data. Therefore, false patterns or associations may be derived. The method for
conversion of SUVs and HUs are slightly different.

1.8.2 Standardised uptake value conversion

Values from DICOM tags relating to patient weight, acquisition time, injection time of
radiopharmaceutical, dose and half-life of radiopharmaceutical, rescale slope and intercept
were used to convert pixel values to body weight derived SUV (SUVbw) [45]. To allow
for conversion of pixel values to body surface area (SUVbsa) patient height needs to be
recorded, and for conversion into lean body mass (SUVlbm) the height and gender of
the patient are needed. The DICOM tags for the information are detailed in Table 1.4.
From a practical point of view, it is important to know which manufacturer the imaging
study is performed on as different manufacturers require the use of different times as
their start point. Also, the radiopharmaceutical tags are subtags to the tag (0054,0016)
“RadiopharmaceuticalInformationSequence” and therefore the information needs to be
extracted by first accessing the parent tag and then looping through the other tags.

DICOM Tag DICOM Description
0x7FE0, 0x0010 Pixel Data
0x0028, 0x1053 Rescale Slope
0x0028, 0x1052 Rescale Intercept
0x0008, 0x0032 Acquisition Time
0x0018, 0x1071 Radiopharmaceutical Volume
0x0018, 0x1074 Radionuclide Total Dose
0x0018, 0x1075 Radionuclide Half Life
0x0018, 0x1072 Patient Weight
0x0010, 0x0040 Patient Sex
0x0010, 0x1020 Patient Size

Table 1.4 List of DICOM values needed for conversion of DICOM pixel values into
different SUV measurements.

Pixel values were first converted into Bq/ml by using the following equation:

ActivityConcentration
(
Bq

ml

)
= PixelV alue ∗ Slope+ Intercept

The equation will only work if the PET/CT Units tag (0054,1001) is Bq/ml (BQML).
Also, it should be noted that when applying this equation, the intercept in PET/CT is
generally set to a value of 0. Lastly, this equation may already be applied to the pixel data
when the DICOM dataset is opened by the library SimpleITK (a simplified toolkit which
supports analysis of 15 different types of images included DICOM) whereas the equation
needs to be applied manually when using the library pydicom.
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Next the dose decay correction factor was calculated. This factor corrects the SUV for
decay which occurs from tracer injection to the time of the study and was calculated
using the following equation:

CorrectionFactor = 2

(
−
(
ScanT ime (s)−MeasuredT ime (s)

HalfLife (s)

))

Again, there are important points to note when performing this calculation. The first
thing to consider is what is documented in the tag (0054, 1101) DecayCorrection as
this determines which time is used to correct the study to. If it reads “START” it will
refer to the acquisition time or series time depending on the manufacturer. If is reads
“ADMIN” it is the time of the pharmaceutical administration. As well as there being
variation in the suggested method of calculation between scanner manufacturers, DICOM
viewers can also have variation in their calculation. In the dataset used as part of this
study Mirada RTx was used to contour cases and the SUV thresholds used as part of the
semi-automated process were derived from this software. Therefore, the SUV calculation
was performed in a similar manner to Mirada RTx where the start time was taken as
the earliest acquisition time. The values given in the time data tags are written in a
5- or 6-digit number e.g. 151619.000000. This number does not represent seconds but
represents the time in the form hh:mm:ss and therefore needs to transformed into seconds
to allow for correct conversion.

The final calculations were applied to the pixel values to determine the SUV. The equations
for SUVbw, is detailed below:

SUV bw =
AcitivityConcentration

(
Bq
ml

)
∗BodyWeight (g)

TotalDose ∗ CorrectionFactor

To calculate SUVbsa and SUVlbm, body weight is replaced with lean body mass or body
surface area which are calculated with the equations below [90]:

BodySurfaceArea = BodyWeight0.425 ∗Height0.725 ∗ 0.007184

Male

LeanBodyMass = 1.10 ∗BodyWeight− 120

(
BodyWeight

Height

)2

Female
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LeanBodyMass = 1.07 ∗BodyWeight− 148

(
BodyWeight

Height

)2

1.8.3 Hounsfield unit conversion

The conversion of CT pixel values into Hounsfield units (HU) is less complex in its
implementation and only requires the pixel value, rescale slope and intercept. The
equation is detailed below:

HounsfieldUnits = PixelV alue ∗ Slope+ Intercept

1.8.4 Space and orientation

1.8.4.1 Alignment of CT and PET images

Voxel size varies between CT and PET imaging due to respective scanner resolution, and
the slice thickness and number of pixels in columns and rows between slices is inherently
different. When extracting the data array from NIfTI images an important consideration
is that the NumPy array (grid of values in Python library) does not take into consideration
pixel size or orientation with a resultant mismatch between CT and PET images when
trying to display them. This leads to a mismatch in the size of the images when displayed
from the NumPy array which is corrected when the affine matrix is applied to the array.
The affine matrix provides the information to convert the NumPy array into one that
represents the relationship of the pixels in physical space as the pixel values do not have
a defined pixel size and they are not necessarily orientated in direction they needed to be
displayed when being reviewed [88].

Affine matrices allow for linear transformations, and for a 3D image any translation,
rotation or scaling can be represented by a 4x4 matrix [88]. The first row is concerned
with the x axis, the second row is concerned with the y axis and the third row represents
the z axis. The final array allows for the combination of different transformations within
the same matrix. The value in first column in the x axis, the second column in the y axis
and the third column in the z axis are used for scaling along the given axis.

1.8.4.2 Mask creation

The creation of a single NIfTI file from a series of DICOM images was performed using
simple insight toolkit (ITK). Metadata was extracted from DICOM images for the PET
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or CT datasets using the “ImageSeriesReader” and this was combined with the
converted pixel data from the previous section. The NIfTI file was written using the
“ImageFileWriter” and setting the “SetImageIO” to NiftiImageIO.

Simple ITK was also used to convert the segmentations from the DICOM radiotherapy
structure (RT Struct) to NIfTI file. Unlike the DICOM files for modalities, all
segmentations are stored in a single DICOM RT Struct file [91]. The data arrays,
however, are not stored as pixel values but stored as co-ordinates which relate to the
associated DICOM image on which the segmentation was drawn. To create a NIfTI
segmentation the co-ordinates were converted into a mask using the NumPy.polygon
function using the pixel spacing from the original DICOM images as the basis for the
mask. The pixel values were then passed into the “ImageFileWriter” module of simple
ITK in the same manner as the conversion of the DICOM images.

In this study only PET data was contoured, and the mask then transferred to the CT data.
Due to the volume of PET uptake being generally larger than the underlying soft tissue.
The masks were automatically adjusted by removing any pixel values not within the -10
to 100 HU range, this cut-off was chosen to allow for some areas of necrosis and higher
density material to be included whilst minimising fat and bone inclusion. The mask was
then reformed and any holes filled in using the binary_closing function in scipy.ndimage.

1.9 Radiomic Feature Extraction

Radiomics is the process of transforming images into mineable data which can be utilised
in the creation of predictive modelling. It offers a numerical value for features perceived
visually, however; it also has the ability to uncover features which are not perceivable to
the human eye. Radiomic features can be studied in isolation or combined with clinical,
genomic and other features as part of the broader field of integrated diagnostics [92].
PyRadiomics was used to extract the radiomic features for this study. The pipeline
involved in feature extraction of radiomic features from the images and masks within the
study is detailed below.

1.9.1 Feature Calculation

There is potential for different definitions of radiomic features, which is why the image
biomarker standardisation initiative (IBSI) has set definitions to try and standardise
practice. PyRadiomics has some variation in its methodology when compared to IBSI
[93]. The kurtosis values extracted are always +3 of those defined by IBSI. When
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binning using fixed bin width with re-segmentation PyRadiomics always uses bin edges
equally spaced from 0 whereas IBSI uses bin edges equally spaced from the minimum
re-segmentation range. PyRadiomics aligns the resampling grid to the corner of the
origin voxel compared to the centre of the image. PyRadiomics does not round grey
values, whereas IBSI does.

First order parameters are histogram statistical features which do not examine spatial
relationship and therefore cannot be termed textural analysis. Second order parameters
allow for the measurement of spatial arrangement. The parameters are derived from
matrices such as grey-level co-occurrence matrix (GLCM), the grey-level run-length
matrix (GLRLM), grey-level size zone matrix (GLSZM), grey-level distance zone matrix
(GLDZM), neighbourhood grey-tone difference matrix (NGTDM) or neighbouring
grey-level-dependence matrix (NGLDM) [94]. The GLCM matrix is created by plotting
the number of different combinations of neighbouring voxel values in a defined direction
(Figure 1.6) [94]. The default distance weighting and distance was used in the analysis.

Figure 1.6 A grey-level co-occurrence matrix in a 90 degree direction is formed by plotting
the number of times neighbouring pixel values occur. For example pixel values of 2 and 3
occur twice. The colours of the the pixel values and the shading of the cells help identify
how these make up the matrix.

The GLRLM is formed by plotting the number of continuous voxels with the same value
in a defined direction. The matrix can extend from a single run length up to a maximum
number of voxels in the within the ROI in the defined direction (Figure 1.7) [94]. The
GLSZM is created by plotting the number of voxels that have a same value lying adjacent
to each other (Figure 1.8) [94]. The GLDZM matrix is formed by plotting the distance to
the closet border of the ROI for a region of voxels of the same values (Figure 1.9). The
NGTDM is the average intensity of the neighbouring voxels from a central voxel (Figure
1.10) [94].
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Figure 1.7 A grey-level run-length matrix created in the 90-degree direction. The matrix
on the left represents the grouped pixel values, the matrix on the right is the GLRLM. The
GLRLM represents the number of time a particular value occurs in a row. For example
there is 1 time that the pixel value 3 occurs three times in a row.

Figure 1.8 The matrix on the left represents the grouped pixel values, the matrix on the
right is the grey-level size zone matrix (GLSZM). The GLSZM represents the number of
time a particular value is neighboured in any direction by a pixel with the same value.
For example there is 1 time that the pixel value 3 occurs in a chain of five pixels with the
same value.
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Figure 1.9 The matrix on the left represents the grouped pixel values, the matrix on the
right grey-level distance zone matrix (GLDZM). The GLDZM plots the distance of groups
of the same pixel value to the closet border. For example the value 2 occurs next to the
border in 4 distinct places and 1 pixel away from the border in 1 instance.

Figure 1.10 The left matrix represents the pixel intensities of a region of interest.
The matrix on the right represents the NGLDM. The NGLDM measures the number
of neighbouring eight pixels with the same intensity of a central pixel.
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Further higher order features are created by applying different filters to the ROI to extract
repetitive or non-repetitive patterns [94]. These include Minkowski functionals which
assess patterns of voxels above a threshold intensity, three-dimensional discrete wavelet
transform (Figure 1.11) which applies high or low pass features highlighting the details or
approximations respectively. in each dimension, and Laplacian of Gaussian filters (Figure
1.12). The Laplacian filter detects edges in images due to rapid changes of the pixel
values, however, it is sensitive to noise and therefore the image is smoothed using a
Gaussian filter before its application. Further filters include transforming the image via
logarithm, exponentially or via the square root of the values (Figure 1.13). As part of the
thesis the default settings for the filters within PyRadiomics were kept.

Once the features have been extracted from the ROI, a harmonisation step is required if
multiple scanners or scanning protocols are used. Combating batch effects when
combining batches (ComBat) harmonisation was originally designed to account for
variations in batch effects in gene microarray expression [95]. Batch effect is analogous
with imaging protocol effect in radiomics. ComBat harmonisation has since been
successfully applied to radiomics to adjust for scanner variation in PET/CT [96]. It uses
empirical Bayes to estimate a normalised value for a feature for a specific ROI and
scanner protocol. ComBat then determines and applies a transformation for each
feature based on the effect of the scanner protocol on the features [97]. The equation is
detailed below where γij = value of each feature for the ROI j and scanner i, a =
average value for the feature, Xij = design matrix for the covariates of interest, β= the
vector of regression coefficients for each covariate, γi = additive effect of scanner, δi =
the multiplicative scanner effect, εij = error term.

yij = a+Xijβ + γi + δiεij
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Figure 1.11 Wavelet decompositions for an axial slice of a PET image.
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Figure 1.12 Select axial slice of a PET image with different Laplacian of Gaussian sized
filters applied.
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Figure 1.13 Select axial sliced of a PET image with different filters applied.

1.10 Machine learning

There are several machine learning (ML) techniques which can be utilised to create
classification models [98]. Given the need to censor patients if they have come to the
end of the follow up period in predictive models and implanting this into the ML
algorithms, the project will focus on a binary outcome and therefore techniques for
classification can be implemented. These include logistic regression, random forest (RF),
K-nearest neighbour and support vector machines (SVM)[98]. Each technique has its
own hyperparameters which can be tuned to try and improve performance. The
algorithms will need to be adjusted to account for the fact that the dataset will
inherently be unbalanced, as there are far more patients who do not relapse/progress
when compared to those that do. When using unbalanced datasets, the choice of
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scoring method of model performance needs to be considered as some metrics may
overestimate the model performance e.g. accuracy [99]. The use of the receiver
operator characteristics (ROC) curve area under the curve (AUC) can offer a more
effective assessment of performance in unbalanced cases. The ROC curve is created by
plotting the sensitivity (true positive rate) against the 1-specificity (false positive rate)
from confusion matrices created at different probability thresholds [100].

Models are developed using a training and validation dataset, the validation dataset allows
for the performance of the machine learning model to be scored whilst it is being tuned
[99]. The testing data set is an unseen data set which is used to evaluate the final model
and is not involved in the tuning of the data. In cases where there is small dataset cross
validation can be utilised to act as the training and validation data sets. Cross validation
is the process of defining and splitting the data into groups and using the data from
all the groups bar one (the validation set) to train a model and then the model is test
model on the validation dataset [99]. One of the groups from the training data then
becomes the validation dataset and the model is trained is on the remaining groups and
again tested (Figure 1.14). This process is performed until all groups have acted as the
validation dataset. This can then be repeated by splitting the whole data again into
different groups, this is known as repeated cross validation. The groups can be defined
randomly and can be stratified around important features or the outcome to maintain
the ratio of the outcome or feature between the groups. Following the process of cross
validation, a range of predictive score are produced which can be used to determine the
best performing model, feature selection and hyperparameters to be used.

The work performed as part of this thesis utilised stratified cross validation around the
2-year EFS (2-EFS), age, sex, ethnicity, disease stage, having radiotherapy, having ABVD-
based chemotherapy and being treated as advanced disease for the cHL study. For the
DLBCL patients the cross validation was split around 2-EFS, disease stage, age and sex,
as the treatment was standard across all patients. The ratio and split of the subsets
were based around the number of patients and event rates to allow for the stratified cross
validation.

1.10.1 Feature Selection

Having a large proportion of features compared to the number of events in a model can
lead to the model becoming dependent on the data it is trained on causing overfitting, “the
curse of dimensionality”, and therefore poor generalizability to any dataset outside of the
training set. There are a number of methods which can be utilized when reducing features.
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Figure 1.14 Depiction of cross validation. The training dataset is split into 3 groups each
taking turns to be the validation dataset with the other groups being used for training.
The test dataset it not touched during this process.

Firstly, features which are not reproducible can be removed as they are not going to limit
the generalizability of the model to future datasets. The interclass correlation coefficient
can be used as a marker of reproducibility, and a threshold for removing features, on
repeat segmentation and extraction. The Pearson (linear) or Spearman (monotopic)
coefficient can be used to remove correlated features to avoid the issue of multicollinearity.
Multicollinearity within the model can reduce performance due to unreliable estimates of
the derived coefficients.

A forward wrapper method tries every feature in a model to determine the best feature,
then tries that feature combined with each of the different remaining features to see
which provides the best score. It continues the process for the set number of parameters
selected. A backward wrapper performs the process in reverse, starting with all features
and removing each feature in turn to find out which feature when removed provides
the best score. The recursive feature elimination method is broadly based on backward
wrapper feature selection, however, features are ranked by their coefficients or by the
feature importance score. The univariate feature selection method uses the F-test to
determine the best performing features.

1.10.2 Naive Bayes classifier

The naive Bayes classifier is an algorithm based on Bayes Theorem [101]. The points of
the training data are plotted according to their features. The test observation is then
plotted, and the algorithm determines the probability of this observation belonging to
either of the target groups and then compares those probabilities. These probabilities
are calculated from the prior probability multiplied by the likelihood and divided by the
marginal likelihood. The prior probability is the number of previous observations being
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classified as the target classification divided by the total number of observations. The
marginal likelihood is based on the data-points which are within a radius drawn around
the new observation, which are assumed to have similar features. The number of similar
observations is divided by the total number of observations, to give the marginal likelihood.
The likelihood is again based on the similar observations within the input radius and is
the number of similar observations which are the target classification divided by the total
observations with the target classification. The input radius can be adjusted, and it is
one of the hyperparameters which can be tuned to improve the model. The probability of
the second classifier can be calculated by subtracting the first classifier probability from
one. The new observation is classified as the classifier with the greatest probability, and
is calculated by the equation below:

PosteriorProbability =
PriorProbability ∗ Likelihood

MarginalLikelihood

1.10.3 Logistic regression

Logistic regression is a statistical method for binary classification, which uses a logistic
function to bound the regression range between 0 and 1 [101]. The logistic curve used to
for predictions is created by selected the curve with the maximum value for the likelihood
of the observed classification for the features plotted. Penalised regression approaches
can be applied reduce the coefficients in the regression and reduce the chance of over
fitting when using multiple features in a predictive model. Ridge regression aims to
shrink the features which do not contribute to the predictive model to close to zero,
least absolute shrinkage and selection operator (LASSO) forces features which do not
contribute significantly to the predictive model to zero and elastic net is a combination
of both ridge and LASSO penalisation.

1.10.4 Random forest classifier

A random forest classifier consists of multiple decisions trees, where each decision tree
classifies the input and then a consensus is taken from all trees to classify the input
(Figure 1.15) [101, 102]. Nodal points, branches and leaves are defined by the ML
algorithm from a labelled test dataset. The algorithm will randomly pick features and
subsets of the training data (bootstrapped) for each of the trees when creating the forest,
and this is repeated until multiple decision trees are created. The number of trees, number
of maximum splits, maximum number of samples at the terminal branch and minimum
number of samples that can split are all able to be adjusted to improve the predictive
ability of the model.
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Figure 1.15 Random forest classifier made from 3 decision trees. The branches represent
randomly selected features. The prediction of each of the trees on whether the “?” is a
triangle or a square is given by the blue circle.

1.10.5 K-nearest neighbour (KNN) classifier

A K-nearest neighbour classifier involves plotting the features of the training data on a
multi-dimensional axis [101]. The input data is then plotted on the same grid and a
vote from the closest points (closest neighbours) from the training data is carried out
to determine how to classify the input data (Figure 1.16). The number of neighbours
which are consulted can be adjusted (but needs to be an odd value) as well as the type of
distance used to determine which neighbours are the closest. The Euclidean distance is
the straight-line distance between two points; the Manhattan (cityblock) distance is the
summed distance measured at right angles; the Chebyshev distance, also known as the
chessboard distance, is the minimum distance that the King would need to get from one
point to the next by moving in the centre of a square on a Chess board; the cosine distance
is the similarity of the angle of a point; and the Minkowski distance is a generalisation of
both the Euclidean distance and the Manhattan distance.

1.10.6 Support vector machines (SVM)

The SVM classifier creates a model for classification by plotting the features from the
training data and then trying to define a vector which splits the groups, with multiple
features this a multidimensional vector (Figure 1.17) [101]. The points from each of the
groups which are at the boundaries between the different classifications are known as the
support vectors. The boundary may not always be linear and therefore kernel functions can
be used. The most commonly used kernel functions are Gaussian, sigmoid and polynomial
kernels.
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Figure 1.16 K-nearest neighbour classifier using two features (X and Y). The neighbours
selected to help classifier the “?” are shown within the blue circle.

Figure 1.17 Support vector machine using two features (X and Y). The vector is defined
by the blue line with the support vectors being the triangle and square closest to the
vector highlighted by the blue arrows. In this case the new data point (?) would be
classified as a square.
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1.10.7 Artificial neural networks

Neural networks are inspired by the neural architecture of the brain and are composed
of interconnecting nodes (or neurons) making up an input layer, a number of hidden
layers and an output layer (Figure 1.18) [101]. The input layer output layers are defined
by the shape of the input and the output whereas the number of hidden layers and
quantity of nodes within the model can be adjusted as part of hyperparameter tuning.
Connections between nodes of the different layers are assigned a weight and the input data
is multiplied by the weight and added to the bias value of the node of the deeper layer.
The resultant value is passed through an activation function which determines if the value
is above the threshold to allow the node to be activated and permitted to transmit data
to the next layer. This is known as forward-propagation. During training the weights
are assigned initially at random and then adjusted by the network to reduce the error
rate when comparing the predictions to the expected outcomes. This is termed back-
propagation. The hyperparameters which can be tuned include the dropout, activation
function, learning rate, momentum, number of epochs and batch size.

Figure 1.18 Diagrammatic representation of an artificial neural network (ANN) with
three nodes forming an input layer (blue), two hidden layers (yellow) both containing four
nodes and a binary classification output with two nodes within the output layer (green
and orange). The dashed lines represent the connections between the neurons, each of
these connections is assigned a weight which can be adjusted during training.
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1.10.8 Convolutional neural networks

A convolutional neural network (CNN) is a type of deep learning which is commonly
applied to visual classification tasks [103]. A filter/feature detector comprising of a defined
pixel array (e.g. 3x3) which has been highlighted from the networks training, is applied
to an image sequentially along the row of pixels throughout the image. The distance the
feature detector moves is defined as the ‘stride’ which can be manually determined [103].
The values of pixels of the filter map in each position are multiplied by the input image at
that position and summed together. This value is then added to a new array, known as
the feature map/activation map, which reduces the size of the array but keeps the spatial
information. This is then repeated for other feature detectors to create a layer of feature
maps. These are then rectified to reduced linearity [103]. A pooling/down sampling step
is then applied to the feature maps, which often takes the form of max pooling where the
feature map is again sequentially passed through region by region (e.g. 2x2 with a stride
of 1) and the maximum pixel value within that region is recorded in a new array. Other
methods of pooling include sum pooling, where the sum of the pixels within the region
are added together, or mean pooling, which takes the mean of the pixels recorded. The
new array is defined as the pooled feature map which reduces the size of the array but
retains the spatial information. All the pooled feature maps are flattened, which produces
a linear array [103]. This linear array is the input for the hidden/fully connected layers of
an ANN which create the prediction for the image classifier.

The hyperparameters which can be adjusted include the number of hidden layers, dropout,
network weight initialisation, learning rate, momentum, number of epochs and batch size.

1.11 Practical implementation of imaging biomarkers

The next chapters will build on the information presented in the introduction to explore
the current literature surrounding the use of imaging biomarkers in cHL and DLBCL, as
well as train and internally test machine learning based predictive models.
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Chapter 2
Baseline PET/CT imaging parameters for prediction of

treatment outcome in Hodgkin and diffuse large B cell lymphoma:
a systematic review

2.1 Abstract

2.1.1 Purpose

To systematically review the literature evaluating clinical utility of imaging metrics
derived from baseline fluorine-18 fluorodeoxyglucose positron emission
tomography/computed tomography (PET/CT) for prediction of progression-free (PFS)
and overall survival (OS) in patients with classical Hodgkin lymphoma (HL) and diffuse
large B cell lymphoma (DLBCL).

2.1.2 Methods

A search of MEDLINE/PubMed, Web of Science, Cochrane, Scopus and clinicaltrials.gov
databases was undertaken for articles evaluating PET/CT imaging metrics as outcome
predictors in HL and DLBCL. PRISMA guidelines were followed. Risk of bias was assessed
using the Quality in Prognosis Studies (QUIPS) tool.

2.1.3 Results

Forty-one articles were included (31 DLBCL, 10 HL). Significant predictive ability was
reported in 5/20 DLBCL studies assessing SUVmax (PFS: HR 0.13–7.35, OS: HR
0.83–11.23), 17/19 assessing metabolic tumour volume (MTV) (PFS: HR 2.09–11.20,
OS: HR 2.40–10.32) and 10/13 assessing total lesion glycolysis (TLG) (PFS: HR
1.078–11.21, OS: HR 2.40–4.82). Significant predictive ability was reported in 1/4 HL
studies assessing SUVmax (HR not reported), 6/8 assessing MTV (PFS: HR 1.2–10.71,
OS: HR 1.00–13.20) and 2/3 assessing TLG (HR not reported). There are 7/41 studies
assessing the use of radiomics (4 DLBCL, 2 HL); 5/41 studies had internal validation
and 2/41 included external validation. All studies had overall moderate or high risk of
bias.

2.1.4 Conclusion

Most studies are retrospective, underpowered, heterogenous in their methodology and
lack external validation of described models. Further work in protocol harmonisation,
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automated segmentation techniques and optimum performance cut-off is required to
develop robust methodologies amenable for clinical utility.
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2.2 Background

Lymphoma is a haematopoietic malignancy, which can be broadly categorised into
Hodgkin and non-Hodgkin disease. Hodgkin lymphoma (HL) accounts for approximately
10% of all newly diagnosed cases, and its hallmark is the presence of Hodgkin and
Reed–Sternberg (HRS) cells [1]. HL can be further sub-divided based on morphology
and immunohistochemistry into classical Hodgkin lymphoma (cHL), which has four
further sub-categories, or nodular lymphocyte-predominant Hodgkin lymphoma
(NLPHL) [1]. The majority (90%) of disease is due to cHL. HL is associated with a
good prognosis having an overall 5-year survival of 86.6% [2]. Non-Hodgkin lymphoma
(NHL) is the most prevalent form of lymphoma with over 50 sub-types, the most
common being diffuse large B cell lymphoma (DLBCL) [3]. The overall 5-year survival
rate is 72% for NHL but this varies by stage and subtype [2]. DLBCL has a 5-year
survival of approximately 60–80%, which has improved since the use of
anthracycline-containing chemotherapy and rituximab (R-CHOP) [2, 4].

There are several pretreatment clinical prognostic tools developed to stratify both
DLBCL and HL. In 1993, Shipp et al. introduced the international prognostic index
(IPI) for predicting overall survival in DLBCL patients based on a retrospective study of
2031 patients treated with CHOP. The IPI has been further refined with an age-adjusted
version (aa-IPI), a revised version developed following the use of R-CHOP (R-IPI), and a
version based on the National Comprehensive Cancer Network database (NCCN-IPI). HL
disease can be split into early (stage I and II) or advanced (stage III or stage IV) with
early being split into favourable or unfavourable depending on one of the many scoring
systems including, but not limited to, the German Hodgkin Study Group (GHSG),
European Organisation of Research and Treatment of Cancer (EORTC), Groupe
d’Etudes des Lymphomes de l’Adulte (GELA), National Cancer Institute (NCI) or
National Comprehensive Cancer Network 2010 (NCCN 2010) scores. However, given the
variation in the prognostic groups derived from the different scoring systems, further
information obtained from imaging may improve prognostication.

2-deoxy-2-[Fluorine-18]fluoro-D-glucose (FDG) positron emission tomography/computed
tomography (PET/CT) is widely used for staging and response assessment in HL and NHL
[5]. Response assessment PET/CT studies are performed at various time points, including
during and after treatment [5]. The parameter most commonly used in assessment is the
standardised uptake value (SUV) at sites of disease, which is compared to physiological
activity in reference areas such as the mediastinal blood pool and liver and is reported
using an ordinal (qualitative) scale (Deauville Score (DS)).
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A variety of imaging-derived quantitative parameters have been reported in the literature
with potential utility for predicting prognosis or treatment outcome. These metrics range
from those based on tumour volume to metabolic features, including shape and texture.
At present, none have been translated into routine clinical practice. The purpose of this
study was to perform a systematic review of the literature reporting the use of quantitative
imaging parameters derived from pretreatment FDG PET/CT for prediction of treatment
outcome for HL and DLBCL. Due to the varied nature of NHL, DLBCL was chosen as it
is the most common subtype of NHL.

2.3 Methods and Materials

2.3.1 Search strategy and selection criteria

A search of MEDLINE/PubMed, Web of Science, Cochrane, Scopus and
clinicaltrials.gov databases was performed for articles on PET/CT imaging parameters in
lymphoma treatment assessment. The search strategy included three primary operator
criteria linked with the “AND” function. The first criteria consisted of “lymphoma”, the
second of “PET” or “positron emission tomography”, and the third of “outcome”,
“prognosis”, “prediction”, “parameter”, “radiomics”, “machine learning”, “deep
learning” or “artificial intelligence”. Case studies, articles not published in English,
phantom studies, studies not assessing treatment outcomes using baseline imaging in HL
or DLCBL, studies assessing primary anatomical presentations of lymphoma or
HIV-related lymphoma, mixed pathology studies and studies assessing novel treatments
were excluded. After duplications were excluded, studies were screened for eligibility
based on the title, abstract and subsequently on full text. The references of the articles
included in the systematic review were manually reviewed to identify further publications
which met the inclusion criteria. The results were stored in bibliographic management
software. Preferred Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) criteria were adhered to [6].

2.3.2 Quality assessment

The Quality in Prognosis Studies (QUIPS) tool was used to evaluate validity and bias
which considers six areas: inclusion, attrition, prognostic factor measurement,
confounders, outcome measurement, and analysis and reporting [7]. Prompting
questions and modifications applied to the QUIPS tool are detailed in Supplemental
Table 2.1. Two authors (RF and AS) independently reviewed all studies which met
inclusion criteria and scored each of the six domains as high, moderate or low risk of
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bias. Any discrepancies were agreed in consensus. Overall risk of bias for each paper
was further categorised based on the following criteria: if all domains were classified as
low risk, or there was up to one moderate risk, the paper was classified as low risk of
bias. If one or more domains were classified as high risk, the paper was classified as high
risk of bias. All papers in between were classified as having moderate risk of bias [8].

2.4 Results

Results are current to July 2020. The database search strings yielded 2717 results after
duplicates were excluded. Following screening and assessment of eligibility, 41 articles
meeting the study inclusion criteria were included. Figure  2.1 details the study selection.

Figure 2.1 PRISMA flow diagram illustrating the methodology for study selection for
the systematic review of lymphoma imaging parameters. BMI bone marrow involvement,
Relapse indicates studies investigating previously treated cases

2.4.1 Quality assessment

No studies showed low risk of bias in all six domains (Supplemental Table 2.2). Only two
studies demonstrated a low risk for participation; no studies had a low risk in attrition,
prognostic measurement, outcome measurement or confounding factors; 33 studies had
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low risk for analysis and reporting. All studies were assessed as having either moderate
(24/41, 59%) or high (17/41, 41%) overall risk of bias. Of the high risk studies, 6
had high risk scores of bias in participation, 5 in attrition, 8 in prognostic measurement,
8 in outcome measurement, 10 in confounding factors and 7 in analysis and reporting
categories.

All studies were retrospective, with 28/41 single centre. Six reports were based on
retrospective analysis of trial data from prospective studies. Four studies stated that
they were compliant with the European Association of Nuclear Medicine (EANM)
guidelines with their scanning protocol; 10/41 did not take into consideration important
co-founders such as different treatment regimes, stage, prognostic scores or histology.
Only six studies defined the method for calculation of SUV, and 7 studies used a
validation cohort to test the predictive models (Table 2.1). Of the radiomic studies, one
study referenced the image biomarker standardisation initiative (IBSI) within the
discussion but none of the papers explicitly stated that they had complied with IBSI
guidelines.
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Study Prospective Multi-Centre PET Scanners used EANM guidelines stated SUV Defined Definition of prognostic
factor provide

Follow up period Separate
Validation
Cohort

Overall risk of bias

Adams [9] N N Siemens Biograph 40
TruePoint

N N PFS - relapse /
progression / death
attributable to PFS OS -
Death from any cause

Median: 994 days N Moderate

Aide [10] N N Siemens Biograph TrueV N N EFS - relapse /
progression / unplanned
treatment / death
attributable to EFS

2-year EFS Y High

Aide [11] N N Siemens Biograph TrueV Y N PFS - relapse /
progression OS - death
from lymphoma or
treatment

Median: 25.7 months N Moderate

Akhtari [12] N N GE Discovery ST GE
Discovery RX GE
Discovery STE

N Y(bw) FFP - relapse or
refractory disease OS -
death from any cause

Median: 4.96 years N Moderate

Albano [13] N Y GE Discovery ST GE
Discovery 690

Y N PFS -
progression/relapse/death
OS - death from any
cause

Median: 40 months N Moderate

Angelopulou
[14]

N N Multiple not defined N N FFP - relapse or
refractory disease OS -
death from any cause

Median: 56 months N High

Capobianco
[15]

N Y Multiple N N Not defined Median: 5 years Y High

Ceriani [16] N Y Multiple not defined N N Not defined Median: 64 months, 34
months

Y High

Chang [17] N N GE Discovery ST N N PFS - progression /
relapse / death OS -
death from any cause

Median: 28.7 months N Moderate

Chang [18] N N GE Discovery ST N N PFS - progression /
relapse / death OS -
death from any cause

median 36 months N Moderate
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Study Prospective Multi-Centre PET Scanners used EANM guidelines stated SUV Defined Definition of prognostic
factor provide

Follow up period Separate
Validation
Cohort

Overall risk of bias

Chihara [19] N N GE Discovery LS N Y(bw) PFS - progression /
relapse / death from any
cause OS - death from
any cause

Median: 34.4 months N Moderate

Cottereau [20] N Y Multiple not defined N N Not defined Median: 44 months N High

Cottereau [21] N Y Multiple not defined N N PFS - progression /
death from any cause
OS - death from any
cause

Median: 55 months Y Moderate

Cottereau [22] N N Siemens Biograph 16 N N OS and PFS were
defined according to the
revised NCI criteria

Median: 64 months N Moderate

Decazes [23] N N Siemens Biograph
Sensation 16 HiRes

N N Both OS and PFS were
defined according to the
revised NCI criteria

Median: 44 months N Moderate

Esfahani [24] N N Siemens Biograph N N PFS - recurrence Mean: 51 months N High

Gallicchio [25] N N GE Discovery VCT GE
Discovery LS VCT

N N Progression /
disease-related death

Median: 18 months N High

Huang [26] N N GE Discovery LS N Y(bw) PFS - progression /
relapse / death OS -
death from any cause

Median: 30 months N Moderate

Ilyas [27] N N GE Discovery ST GE
Discovery VCT

N N PFS - progression/death
from any cause OS -
death from any cause

Median: 3.8 years N High

Jegadesh [28] N N Not defined N N Not defined Median: 43.9 months N Moderate

Kanoun [29] N N Philips Gemini GXL
Philips Gemini TOF

N N PFS - progression /
relapse / death from any
cause

Median: 50 months N High

Kim [30] N N Siemens Biograph 6 N N EFS - relapse /
progression / stopping of
treatment / death from
any cause OS - death
from any cause

Median: 27.8 months N Moderate
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Study Prospective Multi-Centre PET Scanners used EANM guidelines stated SUV Defined Definition of prognostic
factor provide

Follow up period Separate
Validation
Cohort

Overall risk of bias

Kim [31] N N Philips Gemini Siemens
Biograph 40

N N PFS - progression /
relapse / death OS -
death (? any cause)

Median: 25.8 months N Moderate

Kwon [32] N Y GE Discovery ST N Y(bw) PFS - progression /
relapse / death from any
cause OS - death from
any cause

Median: 30.8 months N High

Lanic [33] N Y Siemens Biograph LSO
Sensation 16

N N PFS - progression /
relapse / death from any
cause OS - death from
any cause

Median: 28 months N High

Lue [34] N N GE Discovery ST N N PFS - progression /
relapse / death from any
cause OS - death from
any cause

Median: 48 months N Moderate

Mettler [35] N Y Multiple not defined N N PFS - progression /
relapse / death from any
cause OS - death from
any cause

Not defined N High

Mikhaeel [36] N N GE Discovery ST GE
Discovery VCT

N N PFS - progression /
death from any cause
OS - death

Median: 3.8 years N Moderate

Milgrom [37] N N GE Discovery ST GE
Discovery RX GE
Discovery STE

N N Relapse or progression or
death

Not defined Y High

Miyazaki [38] N N GE Discovery STE N N PFS - relapse / death
from any cause OS -
death

Median: 32.7 months N Moderate

Park [39] N N GE Discovery LS, GE
Discovery STE

N N PFS - progression /
relapse / death from any
cause OS - death from
any cause

Median: 21 months N High

Sasanelli [40] N Y Philips Gemini GXL
Siemens Biograph 2 GE
Discovery ST

N Y(bw) PFS - relapse OS -
death from any cause

Median: 39 months N Moderate
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Study Prospective Multi-Centre PET Scanners used EANM guidelines stated SUV Defined Definition of prognostic
factor provide

Follow up period Separate
Validation
Cohort

Overall risk of bias

Senjo [41] N Y Philips Gemini GXL GE
Discovery ST

Y Y(bw) PFS - progression /
relapse / death OS -
death

Median: 33.1 months,
32.8 months

Y High

Song [42] N Y Siemens Biograph N N PFS progression OS -
death from any cause

Median: 40.8 months Y Moderate

Song [43] N Y Siemens Biograph N N Not defined Median: 45.8 months N Moderate

Song [44] N Y Siemens Biograph N N PFS progression, death
related to lymphoma OS
- death from any cause

Median: 36 months N Moderate

Toledano [45] N N Siemens Biograph
Sensation 16 HiRes

N N OS and PFS were
defined according to the
revised NCI criteria

Median: 40 months N Moderate

Tseng [46] N N GE Discovery LS N N Not defined Median: 50 months N High

Xie [47] N N Siemens Biograph 64 Y N PFS - progression /
relapse / death from any
cause

Median: 17 months N High

Zhang [48] N N Siemens Biograph 64 N N PFS - progression, death
related to lymphoma

Median: 34 months N Moderate

Zhou [49] N N GE Discovery ST
Siemens Biograph 64

N N N - not defined Median: 30 months N Moderate

Table 2.1 Overview of study design and risk of bias for each of the studies included in the systematic review. PFS progressive free
survival; EFS event free survival; OS overall survival; FFP free from progression; bw body weight; 1 Discovery 690, STE, ST, RX, 600,
710, LS, Biograph HiRez, Truepoint, mCT, LSO, BGO and Gemini TF and GXL; EANM European Association of Nuclear Medicine
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As there were no studies deemed to be of low risk for overall bias, a decision was made to
include the high risk studies in the systematic review, as removal of these would introduce
its own inherent bias.

2.4.2 Metabolic Parameters

SUV is the commonest metric extracted from PET studies. This represents a ratio of
radioactivity at a given image location compared to injected whole-body radioactivity
[50]. There are several iterations of SUV, including the maximum or mean SUV within
a contoured area (SUVmax and SUVmean), or SUVpeak which is the average SUV of
a region of interest centred on the highest uptake region within the contoured area.
SUV supports other metabolic parameters such as metabolic tumour volume (MTV),
which is the volume of disease contoured at a specified SUV threshold, and total lesion
glycolysis (TLG), which is the MTV multiplied by SUVmean. Published evidence regarding
metabolic parameters used in the pretreatment assessment of lymphoma is summarised
below.

2.4.2.1 SUV metrics for prediction of outcome

2.4.2.2 a) DLBCL

The majority of studies assessing the use of baseline SUVmax in DLBCL report no
significant ability to predict progression-free survival (PFS) or overall survival (OS)
(Table 2.2). Forest plots illustrating hazard ratios (HR) for PFS and OS are
demonstrated in Figures 2.2 and 2.3. From the results included in the forest, the overall
HR was 1.35 (CI 95% 1.06–1.76) for PFS and 1.52 (CI 95% 1.15–2.02). However, there
is considerable heterogeneity specifically in the PFS analysis (I2 =�77%) and reporting
bias is present because a number of studies which did not report any significance did not
provide the results required to calculate a HR.
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First Author Year Type Study
Type

Patient No. Stage Treatment Events (Follow up
cut off)

SUV Type Cut-off
Value

Predictive
Univariate
Analysis
HR (95% CI)

Predictive
Multivariate
Analysis
HR (95% CI)

I/II III/IV PFS OS PFS OS

Aide [10] 2020 DLBCL R 132 (80:20
Training /
Validation)

NR NR R-CHOP, R-ACVBP Relapse/death: 102
(2-year)

SUVmax 32.21 NS NR NR NR

Albano [13]* 2020 HL (Aged 65-92) R 123 36 87
ABVD, BEACOPP,
R-CHOP, +/-
RT, RT

Relapse: 51
Died: 37
(No defined
cut-off)

L-L SUV R 9.3
0.447
(0.237–
0.748)

0.526
(0.261–
0.992)

0.228
(0.049–
0.765)

0.200
(0.033–
0.353)

L-BP SUV
R

6.4
0.469
(0.229–
0.774)

0.523
(0.241–
0.983)

0.354
(0.069–
0.989)

0.555
(0.201–
1.002)

Ceriani [16] 2020 DLBCL R
141 –
Testing

61 80 R-CHOP +/- RT NR Max 20 NS NS NR NR

113
-Validation

49 64 R-CHOP +/- RT NR Max 31 NS NS NR NR

Zhang [48] 2019 DLBCL R 85 32 53 R-CHOP/R-CHOP like Relapse/Died:23
(3-year)

Max NR – AUC
0.573

NR NR NR NR

Akhtari [12] 2018 HL R 267 205 62 ABVD +/- RT/ other* Relapsed /
refractory: 27
(5-year)

Max NR NS NR NR NR

Cottereau [21] 2018 HL 258 258 0 ABVD +/- RT PFS: 27 events OS:
12 (5-year)

Max NR NS NS NR NR

Toledano [45] 2018 DLBCL R 114 26 88 R-CHOP/R-CHOP like Relapse: 52 Died:
43 (5-year)

Max NR NS NS NR NR

Angelopoulou
[14]

2017 HL R 162 76 86 ABVD +/- BEACOPP,
+/- RT

PFS: 81OS:
93(5-year)

Max <9, 9-18,
>18 93%,
81%, 58%

NR NR NR

Chang [17] 2017 DLBCL R 118 48 70 R-CHOP Relapse: 55 Died:
49 (5-year)

Max 18.8 NS NS NR NR

Chang [18] 2017 DLBCL R 70 35 35 R-CHOP NR
Tumour
Max

19
2.76
(1.05–
7.61)

NS
3.27
(1.11–
9.60)

NS

Sternal Max 1.6 NS
2.34
(1.01–
5.44)

NS
2.62
(1.10–
6.28)
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First Author Year Type Study
Type

Patient No. Stage Treatment Events (Follow up
cut off)

SUV Type Cut-off
Value

Predictive
Univariate
Analysis
HR (95% CI)

Predictive
Multivariate
Analysis
HR (95% CI)

I/II III/IV PFS OS PFS OS

Cottereau [22] 2016 DLBCL R 81 16 65 R-CHOP, R-ACVBP Relapse: 34
(5-year)

Max NR NS NS NR NR

Huang [26] 2016 DLBCL R 140 62 78 R-CHOP/CHOP PFS: 73.8OS:
86.1(30 month)

Max 9
7.2
(2.201–
23.631)

11.4
(1.514–
86.350
0.018)

4.7
(1.429–
16.022
0.011)

NS

Mikhaeel [36] 2016 DLBCL R 147 46 101 R-CHOP PFS: 65.4OS:
73.7(5-year)

Max Split into
tertiles

NS NS NR NR

Xie [47] 2016 DLBCL R 60 12 48 R-CHOP Relapse: 17 Died: 3
(40 month)

Max NR NS NR NS NR

Zhou [49] 2016 DLBCL R 91 34 57 R-CHOP Relapse: 37 Died:
11 (5-years)

Max PFS – 19
OS – 15.8

NS NS NR NR

Adams [9] 2015 DLBCL R 73 11 62 R-CHOP Relapse: 27 Death:
24 (No defined
cut-off)

Max NR NS NS NR NR

Jagadeesh [28] 2015 DLBCL R 89 0 89 R-CHOP/R + other LR: 50(5-year) Max 15 NS for
LR

NR NS for
LR

NR

Kwon [32] 2015 DLBCL R 92 54 38 R-CHOP Relapse: 33 Died: 3
(No defined
cut-off)

Max 10.5 4.31
(1.03-
18.1)

NR NS NR

Gallicchio [25] 2014 DLBCL 52 26 26 R-
CHOP,
R-
COMP

Relapse: 15 Died: 2 (18
month)

Max 13.5
0.13
(0.04–
0.46)

NR NR NR

Esfahani [24] 2013 DLBCL R 20 8 12 R-CHOP
Relapse: 6
(No defined
cut-off)

Max 13.84 NS NR NR NR

Mean 6.44 NS NR NR NR

Kim [31] 2013 DLBCL R 140 77 63 R-CHOP Relapse: 21 Died:
16 (2-year)

Max 16.4 NS NS NR NR

Lanic [33] 2012 DLBCL R 57 NR NR R-CHOP, intensified
R-CHOP

NR (2-year) Max NR NS NS NR NR
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First Author Year Type Study
Type

Patient No. Stage Treatment Events (Follow up
cut off)

SUV Type Cut-off
Value

Predictive
Univariate
Analysis
HR (95% CI)

Predictive
Multivariate
Analysis
HR (95% CI)

I/II III/IV PFS OS PFS OS

Park [39] 2012 DLBCL R 100 55 45 R-CHOP NR
Max NR NS NS NR NR

Sum NR
1.011
(1.002–
1.020)

1.016
(1.006–
1.026)

NR NR

Tseng [46] 2012 HL R 30 11 19
Standford V, ABVD,
VAMP, BEACOPP

Relapse =6
(4-year)

Max NR NS NS NR NR

Mean NR NS NS NR NR

Chihara [19] 2011 DLBCL R 110 65 45 R-CHOP +/- RT PFS: 75% OS: 84%
(3-year)

Max 30 Sig. Sig. HR6.74 NS

Table 2.2 Studies assessing the use of standardised uptake value (SUV) in predicting outcomes in diffuse large B-cell lymphoma (DLBCL)
and Hodgkin lymphoma (HL). R = retrospective, NR = not reported, NS = not significant, Sig. = significant, HR= hazard ratio, CI
= confidence interval, PFS = progressive free survival, OS = overall survival, R-CHOP = rituximab cyclophosphamide, doxorubicin
hydrochloride, vincristine (Oncovin) and prednisolone, R-ACVBP - Rituximab, Doxorubicin, Cyclophosphamide, Vindesine, Bleomycin,
prednisolone, R-COMP = prednisolone, Cyclophosphamide, Vincristine, Myocet and Rituximab, RT = radiotherapy, ABVD = doxorubicin
(Adriamycin), bleomycin, vinblastine and dacarbazine, eBEACOPP = escalated dose bleomycin, etoposide, doxorubicin (Adriamycin),
cyclophosphamide, vincristine (Oncovin), procarbazine, and prednisone, VAMP =.vincristine, doxorubicin hydrochloride, methotrexate,
prednisolone. *The HRs presented as presented in the study but are inverse to the other HRs within the table.
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Figure 2.2 Forest plot demonstrating hazard ratios for progression free/event free survival for patients with DLBCL using a dichotomous
cut-off value derived from SUVmax. Studies which do not provide hazard ratios are included but no estimate is given.
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Figure 2.3 Forest plot demonstrating hazard ratios for overall survival for patients with DLBCL using a dichotomous cut-off value derived
from the SUVmax. Studies which do not provide hazard ratios are included but no estimate is given.
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Of the studies which showed a prognostic ability for SUVmax, Gallicchio et al. reported
this was the only imaging parameter able to predict PFS when compared to TLG and
MTV in a small study of 52 DLBCL patients (26 early and 26 advanced stage) with a
higher SUVmax associated with a longer PFS, the hazard ratio (HR) was 0.13 (0.04–0.46)
[25]. A study by Kwon et al. assessing 92 DLBCL (54 stage I/II, 38 stage II/IV) patients
reported that a SUVmax of 10.5 was significant in predicting PFS, but this was not an
independent prognostic predictor at multivariate analysis with clinical factors such as age,
Lactate Dehydrogenase (LDH) level, stage, IPI score or Eastern Cooperative Oncology
Group (ECOG) status [32]. Conversely, Miyazaki et al. demonstrated that SUVmax was
an independent predictor of 3-year PFS and R-IPI [38]. Chang et al. found that tumour
SUVmax >19 was a significant predictor of 3-year PFS, whereas the SUVmax of sternal
uptake was an independent predictor of 3-year OS in a study of 70 DLBCL patients
[18]. The most extensive study evaluating SUVmax as a predictor of PFS and OS was
performed by Ceriani et al. with a test cohort of 141 patients and a validation cohort of
113 patients, both containing a similar mix of stage and prognostic scores. SUVmax was
not significant in predicting PFS or OS in either cohort [16].

2.4.2.3 b) HL

Five studies have assessed the use of SUVmax as a predictive parameter in HL patients
with only one reporting significance (Table 2.2). The largest by Akharti et al. showed no
significant ability of SUVmax to predict PFS and OS in 267 stage I and II HL patients
(74 early favourable) [12]. These findings were concordant with a study by Cottereau et
al., who also found no significant ability of SUVmax to predict PFS or OS in 258 stage
I and II patients. Angelopoulou et al. reported that SUVmax was a significant predictor
of 5-year PFS in a study of 162 patients with a split of stages (stage I/II�=�76, stage
III/IV�=�86) [14]. The cohort was stratified into three risk groups, SUVmax <9, 9–18
and >�18 with five-year PFS rate being 93%, 81% and 58% respectively, multivariate
analysis was not performed. Albano et al. studied the prognostic ability of liver to lesion
SUV ratio and blood pool to lesion ratio in 123 older (age�>�65 years) HL patients [13].
They found that both parameters were significant (at univariate analysis) for PFS and
OS. They also demonstrated these metrics to be independent prognostic markers when
analysed with tumour stage, German Hodgkin Study Group (GHSG) risk group, MTV
and TLG for PFS, and tumour stage, GHSG risk group and Deauville score for OS.

Factors affecting SUV such as scanner spatial resolution, image acquisition and PET
reconstruction parameters combined with a relatively small number of events, variation in
the number of early and advanced patients, differences in treatment and definition of PFS
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all influence the results [51, 52]. This is reflected by the variation in cut-off/threshold
values used to risk-stratify patients within each of the studies.

2.4.3 Metabolic Tumour Volume and Total Lesion Glycolysis for
prediction of outcome

2.4.3.1 a) DLBCL

The potential utility of baseline MTV and TLG for predicting PFS and OS in patients with
DLCBL, has been reported in multiple studies (Table 2.3, Figures 2.4 and 2.5). However,
similar to SUVmax, there is heterogeneity in the cut-off values used which has led to
variability in the reported survival rates between groups. Overall, the HR for MTV in PFS
was 3.47 (CI 95% 2.80 – 4.30) and 4.20 (CI 95% 2.80 – 4.30) for OS. Again reporting
bias is present because a number of studies which did not report any significance did not
provide the results required to calculate a HR.
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First Author Year Patient
No.

Stage Treatment Events (Follow up
cut off)

Segmentation
Threshold

MTV /
TLG

Suggested
Cut-Off

Predictive Univariate
Analysis HR (95% CI)

Predictive Multivariate
Analysis HR (95% CI)

I/II III/IV PFS OS PFS OS

Aide [10] 2020 132 NR NR R-CHOP, R-ACVBP Relapse/death: 102
(2-year)

SUVmax of liver MTV 111ml 10.2 (1.4-75.5)
(training data
set) NS
(Validation
dataset)

NR NS aa-IPI
LZHGE

NR

Capobianco [15] 2020 280 26 264 R-CHOP
Relapse: 86
Died: 51 (4-year)

41% SUVmax MTV 242ml NR 3.7 (1.9 – 7.2) NR NR

CNN
segmentation

MTV 110ml NR 2.8 (1.6 – 5.1) NR NR

Decazes [23] 2018 215 51 164 R-CHOP, R-CHOP like,
R-ACVBP

Relapse: 92 Died:
74 (5-year)

41% SUVmax MTV 487ml 3.10(1.95-
4.95)

4.09(2.32-
7.21)

2.20 (1.26-
3.83) IPI,
chemo-
therapy,
TVSR

2.78(1.41-
5.48) IPI,
chemo-
therapy,
TVSR

Ilyas [27]

2018 147 46 101 R-CHOP
PFS: 65.4%
OS: 73.7%
(5-year)

PETTRA 2.5 MTV PFS:396.1ml
OS: 457.8ml

5.9 (2.9–12.2) 5.5 (2.4–12.5) NR NR

HERMES 2.5 MTV PFS:401.4ml
OS: 401.4ml

5.9 (2.9–12.2
CI)

5.5 (2.4– 12.5) NR NR

HERMES
PERCIST

MTV PFS:327.4ml
OS: 669.8ml

4.8 (2.4–9.5
CI)

3.7 (1.8–7.8) NR NR

HERMES 41% MTV PFS:165.7ml
OS: 189.3ml

4.2 (2.2–7.9
CI)

3.5 (1.8–7.0) NR NR

Senjo [41] 2019 150
(combined
training
and
validation)

66 84 R-CHOP, R-THP-COP,
R-CVP

Relapse 21 Died 48
(5-year)

>4.0 SUV MTV 150ml NR NR 2.49
(1.57-3.94)

2.75
(1.72-4.38)

Zhang [48] 2019 85 32 53
R‐CHOP/
R‐CHOP‐like

Relapse: 23
Died: 6
(3-years)

MTV 80.74ml 10.32 (2.42 –
44.08)

NR NR Correlated
with TLG

NR

TLG 1036.61g 10.39
(2.43-44.39)

NR 10.42,
(2.35‐46.30)

NR

Toledano [45] 2018 114 26 88
R-CHOP/
R-CHOP like

Relapse: 52
Died: 43
(5-year)

41% SUVmax
MTV 261.4ml 2.91

(1.60-5.29)
4.32
(2.07-8.99)

2.05 (HR
1.02-4.15)
GEP, IPI

2.70
(1.16-6.33)
GEP, IPI
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First Author Year Patient
No.

Stage Treatment Events (Follow up
cut off)

Segmentation
Threshold

MTV /
TLG

Suggested
Cut-Off

Predictive Univariate
Analysis HR (95% CI)

Predictive Multivariate
Analysis HR (95% CI)

I/II III/IV PFS OS PFS OS

TLG 1325.8g NS MC 4.82
(2.67-8.71)

NR NR

Chang [17] 2017 118 48 70 R-CHOP
Relapse: 55
Died: 49
(5-year)

�2.5 SUV
MTV 165.4ml 3.32

(1.78-6.20)
4.05
(2.07-7.95)

2.31 (1.16 –
4.60) IPI

2.38
(1.12-5.04)
Age, IPI

TLG 1204.9ml 2.57
(1.43-4.61)

2.96
(1.61-5.45)

NR NR

Cottereau [22] 2016 81 16 65
R-CHOP,
R-ACVBP

Relapse: 34
(5-year)

41% SUVmax
MTV 300ml 3.06

(1.43–6.54)
3.01
(1.35–6.70)

1.61
(0.70–3.69)

3.0
(1.35–6.70)

TLG 3904g 2.92
(1.45-5.90)

2.39
(1.16–4.92)

NS NS

Song [42] 2016 107* 107 R-CHOP NR �2.5 SUV
MTV 601.2ml Sig. Sig. 5.21

(2.54–10.69)
IPI, bulky
disease, BMI,
IM MTV, CAs

5.33
(2.60–10.90)
IPI, bulky
disease, BMI,
IM MTV, CAs

IM MTV 260.5ml Significant Significant NS NS

Zhou [49] 2016 91 34 57 R-CHOP
Relapse: 37
Died: 11
(5-year)

SUVmean of
liver + 3 SD

MTV PFS: 70ml
OS: 78ml

88% vs 37% 98% vs 60% NS NS

TLG PFS: 826.5g
OS: 726g

83% vs 34% 92% vs 67% 5.21
(2.21-12.28)
MTV,
NCCN-IPI,
Stage, B
symptoms,
LDH level
Ki-67

9.1 (1.83 –
45.64) MTV,
NCCN-IPI,
Stage, B
symptoms,
LDH level
Ki-67

Mikhaeel [36] 2016 147 46 101 R-CHOP
PFS5: 65.4%
OS5: 73.7%
(5-year)

41% SUVmax
MTV Terties Upper: 5.81

(2.38-14.14)
Middle: 3.77
(1.49-9.51)

Sig. Upper: 3.46
(1.10-10.86)
Middle: 2.73
(0.89-8.40)

NR
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First Author Year Patient
No.

Stage Treatment Events (Follow up
cut off)

Segmentation
Threshold

MTV /
TLG

Suggested
Cut-Off

Predictive Univariate
Analysis HR (95% CI)

Predictive Multivariate
Analysis HR (95% CI)

I/II III/IV PFS OS PFS OS

TLG Tertiles Upper: 4.90
(2.11- 11.38)
Middle: (2.96
1.24 7.10)

Sig. NR NR

Xie [47] 2016 60 12 48 R-CHOP
Relapse: 17
Died: 3
(40 months)

SUVmean of
liver + 2SD

MTV Continuous 1.030
(1.017–1.044)

NR 1.028
(1.014–1.043)
NCCN-IPI

NR

TLG Continuous 1.078
(1.042–1.116)

NR 1.071
(1.032–1.112)
NCCN-IPI

NR

Adams [9] 2015 73 11 62 R-CHOP

Relapse: 27
Death: 24
(No defined
cut-off)

40% SUVmax
MTV 445ml NS 2.40

(1.03-5.60)
NR NS NCCN-IPI

TLG 4897.5g NS NS NR NR

Kim [30] 2014 96 49 47 R-CHOP PFS3: 69.5OS3:
72.9(No defined
cut-off)

�2.5 SUV MTV 130.7ml 11.2 (1.4-88.1) NR 10.4 (1.3-83.4)
IPI >/equal to
3

NS with IPI as
individual
parameters NR

Gallicchio [25] 2014 52 41 11 R-CHOP like
Relapse: 15
Death: 2
(18 months)

42% SUVmax
MTV 16.1ml NS NR NR NR

TLG 589.5g NS NR NR NR

Sasanelli [40] 2014 114 20 94
R-CHOP/
R-ACVBP

Relapse: 31
Died: 25
(3-year)

41% SUVmax
MTV 550ml 77% vs 60%

87% vs 60%/
59% vs 78% vs
84% vs 93%

NS 4.70
(1.82-12.18)
Stage, LDH,
Bulky disease

4.11
(1.67-10.16)
aa-IPI, bulky
disease

TLG 4576g NS 64% vs 85% NR NR

Esfahani [24] 2013 20 8 12 R-CHOP

Relapse: 6
Died: 0
(No defined
cut-off)

50% SUVmax
MTV 379.2ml NS N/A NR N/A

TLG 704.8g 11.21
(1.29-97)

N/A NR N/A

Kim [31] 2013 140 77 63 R-CHOP
Relapse: 21
Died: 16
(2-year)

25%, 50%
and 75% SUVmax

TLG25 817.8g 2.8 (1.1-7.1) NS NR NR

TLG50 415.5g 3.6 (1.3-10.0) 3.3 (1.0-10.0) 3.6 (1.3-10.0)
IPI (2 splits)

3.1 (1.0-9.6)
IPI(2 splits)

TLG75 102.0g 3.5 (1.3-9.5) NS NR NR
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First Author Year Patient
No.

Stage Treatment Events (Follow up
cut off)

Segmentation
Threshold

MTV /
TLG

Suggested
Cut-Off

Predictive Univariate
Analysis HR (95% CI)

Predictive Multivariate
Analysis HR (95% CI)

I/II III/IV PFS OS PFS OS

Park [39] 2012 100 55 45 R-CHOP NR Blood Pool
threshold

TLG NR NS NR NR NR

Song [44] 2012 169 100 69 R-CHOP PFS: 73.4OS: 76.3
(3-year)

�2.5 SUV MTV 220ml 5.80
(2.79–12.06)

8.10
(3.40–19.31)

5.30
(2.51–11.16)
Stage 3

7.01
(2.90–16.93)
Stage 3

Table 2.3 Studies assessing the use of metabolic tumour volume (MTV) and total lesion glycolysis (TLG) in predicting outcomes in diffuse
large B-cell lymphoma (DLBCL). NR = not reported, NS = not significant, Sig. = significant, HR= hazard ratio, CI = confidence interval,
PFS = progressive free survival, OS = overall survival, R-CHOP = rituximab cyclophosphamide, doxorubicin hydrochloride, vincristine
(Oncovin) and prednisolone, R-ACVBP - Rituximab, Doxorubicin, Cyclophosphamide, Vindesine, Bleomycin, prednisolone, R-THP-COP =
rituximab, pirarubicin, cyclophosphamide, vincristine, and prednisolone, R- CVP = rituximab, cyclophosphamide, vincristine, prednisolone,
BMI = bone marrow involvement, aa-IPI= age-adjusted International Prognostic Index, NCCN-IPI = National Comprehensive Cancer
Network – International Prognostic Index, IM = intramedullary, CAs = cytogenetic abnormalities, LZHGE = Long-Zone High Grey-level
Emphasis.
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Figure 2.4 Forest plot demonstrating hazard ratios for progression free survival for patients with DLBCL using a dichotomous cut-off
value derived from the metabolic tumour volume. Studies which do not provide hazard ratios are included but no estimate is given.
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Figure 2.5 Forest plot demonstrating hazard ratios for overall survival for patients with DLBCL using a dichotomous cut-off value derived
from the metabolic tumour volume. Studies which do not provide hazard ratios are included but no estimate is given.
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One of the largest studies by Song et al. evaluated 169 patients with DLBCL (stage II
and III without extranodal disease) treated with R-CHOP [44]. Patients with an MTV
of <220cm3 had significantly better PFS and OS; 89.8 versus 55.6%, and 93.2% versus
58.0%, respectively [44]. MTV was predictive of PFS and OS regardless of stage. MTV
remained significant when assessed using multivariate Cox regression with stage III disease,
HR�=�5.30 (95% 2.51–11.16) and HR�=�7.01 (2.90–16.93) for 3-year PFS and 3-year OS,
respectively. In another study, Song et al. reported that MTV was a prognostic predictor in
107 patients with bone marrow involvement (BMI); patients with an MTV of >601.2cm3

and BMI had worse PFS and OS survival compared to those with a smaller MTV and BMI
[42]. Again, this was demonstrated to be an independent predictor when analysed with
IPI, bulky disease, BMI, involved marrow MTV and�>�2 cytogenetic abnormalities with an
HR�=�5.21 (95% CI 2.54–10.69) and HR�=�5.33 (95% CI 2.60–10.90) for PFS and OS,
respectively. However, there was no significant difference in survival between the smaller
MTV with BMI group and a comparison cohort of patients without BMI. MTV summarises
disease burden; however, it does not account for spread. Cottereau et al. studied four
different spatial metrics besides TLG and MTV in 95 DLBCL patients on baseline scans
to determine if a predictive model could be created [20]. The spatial parameters consisted
of Dmax (distance between two of the furthest lesions), Dmax bulk (distance between
the largest lesion and furthest lesion away from this), SPREADbulk (sum of all distances
between bulky lesions) and SPREAD (sum of all distances between lesions). They found
that a model combining MTV and Dmax could significantly distinguish between three
prognostic groups. The low-risk group with an MTV <394cm3 and a Dmax <58 cm
had a 4-year PFS of 94% and OS of 97%, the intermediate group with either an MTV
>394cm3 or a Dmax >58 cm had a 4-year PFS of 73% and OS of 88% and the high-risk
group with a MTV >394cm3 and a Dmax >58 cm had a 4-year PFS of 50% and OS of
53%.

Zhou et al. reported that although high baseline MTV and TLG were associated with
poorer prognosis, only TLG was an independent predictor of PFS and OS in a study of
91 patients [49]. In this study, patients who demonstrated complete or partial remission
were more likely to relapse if they had a high baseline TLG (40 versus 9%, p =�0.012). A
possible explanation for the discrepancy between the prognostic ability of MTV and TLG
in this study may be related to the correlation between MTV and TLG, confounded by
relatively small sample sizes. Kim et al. evaluated TLG calculated using different MTVs
derived using 25, 50 and 75% SUVmax thresholds in a mixed cohort (n =�140) of early and
advanced stage DLBCL patients being treated with R-CHOP [31]. They found that all
methods for calculating TLG were predictive of 2-year PFS, but only TLG50 was predictive
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of 2-year OS. Ilyas et al. also studied variation in segmentation technique and its potential
to impact on predicting outcome in 147 DLBCL patients (46 stage I/II, 101 stage III/IV)
all treated with R-CHOP [27]. The four segmentation techniques consisted of a threshold
of SUV 2.5 on two software packages (PETTRA and Hermes), 41% SUVmax on Hermes
software and an uptake higher than SUVmean of a 3-cm3 region of interest (ROI) within
the right lobe of the liver (PERCIST) using the Hermes software. They found a strong
agreement between all four methods, with the lowest intraclass coefficient being between
PERCIST and 41% SUVmax thresholds being 0.86. They also reported similar receiver
operator curves (ROC) between the four methods with the area under the curve (AUC)
ranging from 0.74 to 0.76 for PFS, and 0.71 to 0.75 for OS. All four methods were
significant predictors of PFS and OS. However, as stated in the paper, no method is likely
to apply to all patients generally. Large heterogeneous masses are likely to be undersized
with percentage thresholds, low uptake lesions may be missed using a standard threshold
method and disease involving the liver may impede its use as the background value. This
may have a more significant impact when further metrics are introduced, such as those
based on texture when the size of the contour can also influence the reported values. The
segmentation technique of choice also needs to be easily replicated. Recently, Capobianco
et al. assessed the use of artificial intelligence (AI) using a convolutional neural network
(CNN) to segment the MTV [15]. They found that AI-derived MTV correlated with
reference MTV derived by two independent readers with a classification accuracy of 85%.
Automatic segmentation is a key step required to enable implementation of MTV or TLG
into clinical practice.

2.4.3.2 b) HL

Fewer studies have investigated the predictive ability of MTV and TLG in HL patients
than in DLBCL (Table 2.4, Figures 2.6 and 2.7). This is likely due to the higher survival
rate of HL limiting the number of events demonstrated in a single centre and the variation
in treatments and scoring systems for a favourable and unfavourable disease, which affect
multi-centre studies. The majority of studies involved patients on an adaptive ABVD
treatment regime, and results may not be transferrable to patients being treated with an
adaptive BEACOPP regime. This confounding issue was highlighted in a study by Mettler
et al. who assessed the prognostic ability of MTV in 310 patients with advanced HL being
treated with eBEACOPP using four different contouring methods involving summation
of the volume of each disease site using different defined thresholds: 41% SUVmax of
each disease site, a threshold of liver SUVmax, a threshold of liver SUVmean and a fixed
threshold of 2.5 SUV [35]. They found that MTV was predictive of interim PET response
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regardless of segmentation methodology; however, none was able to predict OS and PFS
reliably. The divergent findings compared to previous studies are likely related to low
event numbers and using a different treatment regime. Albano et al. demonstrated the
significant ability of both MTV and TLG derived from 41% SUVmax in predicting PFS
in both univariate and multivariate analysis in a cohort of 123 elderly patients with a mix
of different treatment regimens. However, neither TLG nor MTV were predictive of OS.
Cottereau et al. and Akhtari et al. both assessed the ability of MTV in cohorts of patients
consisting of stage I and II disease [12,21]. Cottereau et al. found that MTV derived
from >2.5 SUV was significant in predicting five-year PFS and OS and was significant in
multivariate analysis when assessed with different early disease scoring systems. Akhtari et
al. found that MTV and TLG derived from >2.5 SUV thresholding and manual soft tissue
contouring were significant predictors of five-year PFS. Reporting bias is present because
a number of studies which did not report any significance did not provide the results
required to calculate a HR. The overall HR for MTV in PFS was 2.13 (CI 95% 1.53-2.96)
and 2.13 (1.43-3.16) in OS. Both were associated with high levels of heterogeneity, I2 =
74% for PFS and I2 = 70% for OS.
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First Author Year Patient
No.

Stage Treatment Events (Follow up
cut off)

Segmentation
Threshold

MTV /
TLG

Suggested
Cut-Off

Predictive Univariate
Analysis HR (95% CI)

Predictive Multivariate
Analysis HR (95% CI)

I/II III/IV PFS OS PFS OS

Albano [13]* 2020
123
Elderly

36 87
ABVD, BEACOPP,
R-CHOP, +/- RT,
RT

Relapse: 51
Died: 37
(No defined
cut-off)

41% SUVmax
MTV 89ml 0.531

(0.294–0.908)
NS 0.555

(0.249–0.965)
NR

TLG 2199g 0.544
(0.240–0.963)

NS 0.602
(0.111–0.989)

NR

Lue [34] 2019 42 20 22 anthracycline-based
chemotherapy +/-RT

Relapse: 12 Died: 9
(5-years)

41% SUVmax MTV 183ml 4.495
(1.434–14.09)

4.500
(1.205–16.81)

NS NS

Mettler [35] 2019 310 310
eBEACOPP
(4 or 6 cycles)

PFS: 16 events
OS: 7 events
(No defined
cut-off)

41% SUVmax,
>2.5 SUV,
Liver SUVmax,
Liver SUVmean

MTV41% NR NS NS NS

MTV2.5 NR NS NS NS NS

MTVlmax NR NS NS NS NS

MTVlmean NR NS NS NS MTVlmax

Akhtari. [12] 2018 267 267 0 ABVD +/- RT
Relapse/
refractor = 27
(5-year)

�2.5 SUV or
manually
contour

MTV2.5 Continuous 1.00 (1.0007-
1.0025)

NR NR NR

TLG2.5 1703g 1.00 (1.0001-
1.0004)

NR NR NR

MTVman NR 1.00 (1.0006-
1.0019)

NR NR NR

TLGman NR 1.00 (1.0001-
1.0004)

NR NR NR

Cottereau [21] 2018 258 258 ABVD +/- RT PFS: 27 events OS:
12 (5-year)

�2.5 SUV MTV 147ml 5.2 (1.8-14.7) 7.2 (1.6-33.4) Sig with
individual
factors,
EORTC,
GHCS and
NCCN

Sig with
individual
factors,
EORTC,
GHCS and
NCCN

Angelopoulou
[14]

2017 162 76 86 ABVD +/- BEACOPP,
+/- RT

PFS: 81% OS: 93%
(5-year)

TLG from
maximal largest
diameter x
SUVmax

TLG <35, 35 -100,
<100

70% vs 81%
vs 94%

NR NR NR
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First Author Year Patient
No.

Stage Treatment Events (Follow up
cut off)

Segmentation
Threshold

MTV /
TLG

Suggested
Cut-Off

Predictive Univariate
Analysis HR (95% CI)

Predictive Multivariate
Analysis HR (95% CI)

I/II III/IV PFS OS PFS OS

Kanoun [29] 2015 59 Anthracycline-based
4-6-8 cycles

Relapse: 5 Died: 5
(No defined
cut-off)

41% SUVmax MTV 225ml 42% vs 85% NR Sig when
analysed with
tumour change
in SUVmax

NR

Song. [43] 2013 127 127 ABVD +/- RT PFS: 85.8OS: 88.2
(No defined
cut-off)

�2.5 SUV MTV 198ml 10.707
(3.098–37.002)

13.201
(2.975–58.579)

13.008
(3.441–49.174)
Age, B
symptoms,
mediastinal
bulky disease

15.831
(3.301–75.926
Age, B
symptoms,
mediastinal
bulky disease

Tseng [46] 2012 30 11 19 Standford V, ABVD,
VAMP, BEACOPP

Relapse =6 Died: 4
(4-year)

NR MTV NS NS NR NR

Table 2.4 Studies assessing the use of metabolic tumour volume (MTV) and total lesion glycolysis (TLG) and Hodgkin lymphoma (HL).
NR = not reported, NS = not significant, Sig. = significant, HR= hazard ratio, CI = confidence interval, PFS = progressive free survival,
OS = overall survival, R-CHOP = rituximab cyclophosphamide, doxorubicin hydrochloride, vincristine (Oncovin) and prednisolone, R-
ACVBP - Rituximab, Doxorubicin, Cyclophosphamide, Vindesine, Bleomycin, prednisolone, RT = radiotherapy, ABVD = doxorubicin
(Adriamycin), bleomycin, vinblastine and dacarbazine, eBEACOPP = escalated dose bleomycin, etoposide, doxorubicin (Adriamycin),
cyclophosphamide, vincristine (Oncovin), procarbazine, and prednisone, VAMP = vincristine, doxorubicin hydrochloride, methotrexate,
prednisolone, EORTC = European Organisation for Research and Treatment of Cancer, GHSC = German Hodgkin lymphoma study
group, NCCN = National Comprehensive Cancer Network. *The HRs presented as presented in the study but are inverse to the other
HRs within the table.
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Figure 2.6 Forest plot demonstrating hazard ratios for progression free survival for patients with HL using a dichotomous cut-off value
derived from the metabolic tumour volume. Studies which do not provide hazard ratios are included but no estimate is given
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Figure 2.7 Forest plot demonstrating hazard ratios for overall survival for patients with HL using a dichotomous cut-off value derived
from the metabolic tumour volume. Studies which do not provide hazard ratios are included but no estimate is given.
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Similar to DLBCL, clinical implementation of MTV and TLG in HL depends on reaching
a consensus regarding segmentation methodology, each giving different variations in the
volumes measured and will be facilitated by an automated process. However, variation
in treatment is likely also to play an impact, and this aspect needs assessing in larger
multi-centre studies.

2.4.4 Textural and Shape Analysis for outcome prediction

Textural analysis or radiomics relates to transformation of images into mineable high-
dimensional data permitting invisible feature extraction, analysis and modelling for non-
invasive phenotyping and outcome prediction [53]. Radiomic features can be studied in
isolation or increasingly are being combined with clinical and genomic features as part of
the rapidly expanding field of integrated diagnostics [54].

Aide et al. studied the use of PET/CT-derived textural features, clinical and imaging
parameters to predict two-year PFS in DLBCL patients [10]. They split patients into
training (n=105) and validation sets (n=27) and found that Long-Zone High-Grey Level
Emphasis (LZHGE) was the only independent predictor when analysed with IPI and MTV.
On the validation set, it was found that a high LZHGE >�1,264,925.92 was associated
with a two-year PFS of 60% whereas patients with a low LZGHE had a PFS of 94.1%. The
study has some limitations as only the largest area of disease was analysed, a breakdown
of disease stage was not presented, and 14 patients did not have standard (R-CHOP)
therapy. Another study by Aide et al. investigated the diagnostic and prognostic value
of axial skeletal textural features derived from PET/CT in patients with DLBCL in a
retrospective cohort of 82 patients [11]. The CT dataset was initially contoured using a
segmentation threshold of >150 Hounsfield units (HU) with the spinal column and half of
the pelvis included. They reported that the first-order parameter skewness had the highest
AUC for predicting BMI and that a cut-off value of 1.26 produced a sensitivity, specificity,
PPV and NPV of 82%, 82%, 62% and 93%, respectively. In addition, a skewness value
of <1.26 was associated with a greater two-year PFS and OS. This was true even for
60 patients without BMI. The study had a low event rate (22 patients had BMI), which
limits the ability to create a robust prognostic model.

Lue et al. investigated the use of 11 first-order, 39 higher-order features and 400 wavelet
features for predicting PFS and OS in 42 HL patients (20 stage I/II, 22 stage III/IV)
with 21 events within the cohort (12 relapses, 9 deaths) [34]. They found 173 radiomic
features, which were significant predictors of progression after correction for multiple
testing. To avoid multicollinearity, they only selected the top two features according to
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the AUC from each group to be included in the univariate and multivariate analysis. MTV
was selected based on previous studies. They demonstrated that SUV kurtosis, stage and
intensity non-uniformity (INU) derived from Grey-Level Run Length Matrix (GLRLM) were
independent predictors of PFS and only disease stage and INU derived from GLRLM were
independent predictors of OS.

Decazes et al. retrospectively studied PET/CT scans of 215 DLBCL patients to assess
the utility of total tumour surface (TTS) and tumour volume surface ratio (TVSR) as
predictive biomarkers [23]. TVSR being the ratio between MTV and TTS. MTV had the
highest AUC for both OS and PFS (0.71 and 0.67) when compared to TTS (0.69 and
0.66) and TVSR (0.65 and 0.61) [23]. It was reported that TVSR, MTV, IPI and type
of chemotherapy were all independent prognostic parameters. Milogrom et al.
investigated the use of a support vector machine model based on first and second-order
radiomic features derived from baseline PET/CT to predict relapse or refractory disease
in 167 stage I-II HL patients with mediastinal involvement [37]. Ten of the groups
formed the training set, and two were designated the validation set with each group
containing a single event (n=12). Five features were selected as the most predictive
(SUVmax, MTV, InformationMeasureCorr1, InformationMeasureCorr2, and
InverseVariance derived from GLCM 2.5). InformationMeasureCorr1 and
InformationMeasureCorr2 are the first and second measures of theoretic correlation and
Inverse-Variance is weighting of random variables to minimise variance. By combining
these features, the AUC for predicting relapse for patients with mediastinal disease was
0.95. This outperformed TLG and MTV. This work highlights the potential for using
AI-methods in lymphoma assessment. However, the study is limited to HL with
mediastinal involvement with again small numbers of events.

Senjo et al. demonstrated that a high metabolic heterogeneity (MH) was a predictor
of five-year PFS and OS in DLBCL across both training (n=86) and validation cohorts
(n=64) treated at two centres [41]. They found that MH remained a significant predictor
for five-year OS for both cohorts when analysed in multivariate analysis with an ECOG
score of >2, and an LDH with a relative risk of 4.75 (95% CI 1.25-18.1) and relative
risk of 4.92 (95% CI 1.09-17.03) in the training and validation groups respectively. A
model was created which combined MH and MTV, which successfully risk stratified the
combined training and validation cohorts into three risk groups: low MH and low MTV,
low MH and high MTV or high MH and low MTV, and high MH and high MTV, with
the five-year OS being 90.4% vs 69.5% vs 34.8%, respectively; P <0.001 and five-year
PFS, 84.1% vs 43.6% vs 27.0%, P <0.001 respectively.
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2.5 Current limitations and future challenges

One issue needing to be addressed when using imaging parameters derived from PET for
predictive modelling is the relatively low spatial resolution, which influences how much
of the avidity is included within a volume when different thresholding techniques are
utilised (Figure 2.8) [55]. Meignan et al. used a phantom model to validate their MTV
thresholding method for a patient cohort [56]. They found that a 41% SUVmax
threshold gave the best concordance between contoured and actual volumes. 41%
SUVmax thresholding also gave the best agreement between reviewers using the Lin
concordance correlation coefficient (pc) (�c=0.986, CI 0.97 – 0.99). However, for
successful clinical implementation, the time it takes to implement as well as the
accuracy of the thresholding method needs be considered. The use of a semi-automated
method such as the one reported by Burggraaff et al. [57] or a deep learning derived
volume as reported by Capobianco et al. is required [15]. Predictive models also need to
be tested and adapted for new treatments or histological markers [58]. The ability to be
able to predict worse outcomes could allow for future treatment stratification. There is
an area of unmet need with few active studies at present. There are currently only two
open/recruiting studies listed on clinicaltrials.gov assessing PET/CT parameters for
outcome prediction in DLBCL, and no registered studies assessing outcomes in HL
patients.

Other important limitations of the published work highlighted in this systematic review
are variability in methodology and lack of external validation (Table 2 .5). This presents
a number of opportunities for the future (Table 2 .5). Further study into the use of AI
for imaging-based outcome prediction in lymphoma which may permit more accurate
prediction of prognosis/treatment outcome is needed. This might also facilitate more
efficient image analysis and actionable clinical decision support potentially guiding
tailored treatment for individual patients. However, there is the requirement for large
volumes of data necessary to train algorithms which can then be vigorously validated for
reproducibility and generalizability which will require cross-institutional collaboration via
imaging networks to support the establishment of multi-centre trials. Implementation
studies and health economic research will also be critical for clinical adoption by
demonstrating that any AI application is reliable and value-based.

All the described limitations have led to a medium and high risk of bias within the literature
as evaluated with our QUIPS tool. The decision to retain papers with a high risk of bias
was taken as it was felt that this itself would introduce bias into the review. However, this
does mean the results need to be interpretated with caution. Further work in this area is
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Figure 2.8 Select axial (A-C) and coronal slices (D) from an FDG PET/CT study from
a patient with DLBCL demonstrating three different contouring methods (green = 41%
SUVmax; red = 1.5 x SUVmean of the liver; purple = 4.0 SUV). For smaller lesions the
41% SUVmax contour is larger than the other 2 methods, black arrow and arrowhead.
For larger more heterogenous lesions the 41% SUVmax is the smallest of the 3 contours
(blue arrow).

clearly warranted and efforts should be made when designing future studies to carefully
consider the methodology employed so as to minimise the risk of bias which is prevalent
in this field of work to date.

2.6 Conclusion

Multiple reports suggest the potential utility of various PET/CT derived imaging
parameters in lymphoma outcome modelling. Most studies are retrospective and lack
external validation of described models. Robustness across different scanning protocols
and institutions has also not been verified, and clinical implementation remains a future
aspiration. AI techniques may offer a potential solution to some limitations of predictive
modelling in this clinical scenario and warrant further evaluation.
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Limitation Opportunity

1. Relatively small retrospective cohorts with
limited events

Establishing multi-centre networks for future
larger-scale studies

2. Multiple segmentation techniques used Consensus on segmentation technique for MTV and
TLG and development of automated AI-methods
which are implemented within reporting software by
manufacturers

3. Single site models using a single dataset Internal and external validation should be routinely
performed and facilitated by networks

4. Varying predictive end points Consensus on clinically relevant predictors

5. Small numbers of papers using non-linear
analysis

Using different machine learning and deep learning
models to aid in imaging analysis and outcome
prediction

Table 2.5 Limitations of the current literature and opportunities for future work
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2.8 Supplementary Material

2.8.1 Supplemental Table 2.1

Category Components

Study Details

Author

Year

Title (shortened path name)

DLBCL/HL

Study Participation

The source population or population of interest is adequately described (y = describes cohort and method for assessment)

Methods to identify the sample sufficient to limit potential bias (y = consecutive patients without inappropriate exclusions)

Description of the baseline study sample (y = describes a breakdown of the study population including age, gender, treatment and confounding factors)

Period of recruitment is adequately described (y = gives a precise study period)

Place of recruitment adequately described (y = describes if single centre, database or multicentre. If database or multicentre describes how many centres are used)

Inclusion and exclusion criteria are adequately described (y = gives a definitive exclusion and inclusion criteria)

Study Attrition
Adequate follow up rate (y = median follow up of over 2 year or a cut-off of over 2 years)

Adequate description of participants loss to follow up if any (y = discusses patients lost follow up)

Prognostic Factor Measurement

A clear definition or description of prognostic factor is provided (y = There is a definition of the factor used)

Valid and reliable measurement of prognostic factors

The method and setting of measurement of PF is the same for all study participants (y = the same criteria was applied to all)

Outcome Measurement
Definition of outcome (y = outcome measure clearly defined e.g. PFS, OS)

Valid and reliable measurement of outcome (y = there is a description of how outcome was measured e.g. for relapse was this clinical, histology, imaging or all)

Study Confounding

All important confounders, including treatments are measured (y = consideration of clinical and treatment confounders)

Appropriate methods are used if imputation is used for missing confounder data (y = Patients with missing data included but results adjusted for this, ? = patients removed, n = not mentioned)
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Category Components

Important potential confounders are accounted for in the study design (y = multi-variate analysis or matching training/validation and testing groups, treatment taken into consideration))

Statistical Analysis and Reporting

There is sufficient presentation of data to assess the adequacy of the analysis (y = HR univariate/multivariate analysis with p-values or AUC in machine learning models)

The strategy for model building (i.e. inclusion of variables in the statistical model) is appropriate (y = appropriate selection of features from univariate analysis or using a feature selection method)

There is no selective reporting of results (y = all results are reported)

Table S2.1 The questions used as part of the 6 domains of the Quality in Prognosis Studies (QUIPS)
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2.8.2 Supplemental Table 2.2

Study Participation Attrition Prognostic
Measurement

Outcome Measurement Confounding Analysis and Reporting

Adams [9] Moderate Moderate Moderate Moderate Moderate Low

Aide [10] Low Moderate High High Moderate Moderate

Aide [11] Moderate Moderate Moderate Moderate Moderate Low

Akhtari [12] Moderate Moderate Moderate Moderate Moderate Low

Albano [13] Moderate Moderate Moderate Moderate Moderate Low

Angelopulou [14] High Moderate Moderate Moderate High High

Capobianco [15] Moderate Moderate High High High High

Ceriani [16] Moderate Moderate High High Moderate Low

Chang [17] Moderate Moderate Moderate Moderate Moderate Low

Chang [18] Moderate Moderate Moderate Moderate Moderate Low

Chihara [19] Moderate Moderate Moderate Moderate Moderate Low

Cottereau [20] Moderate Moderate High High Moderate Low

Cottereau [21] Moderate Moderate Moderate Moderate Moderate Low

Cottereau [22] Moderate Moderate Moderate Moderate Moderate Low

Decazes [23] Low Moderate Moderate Moderate Moderate Low

Esfahani [24] Moderate Moderate High High High High

Gallicchio [25] High High High High High High

Huang [26] Moderate Moderate Moderate Moderate Moderate Low

Ilyas [27] High Moderate Moderate Moderate High High

Jegadesh [28] Moderate Moderate Moderate Moderate Moderate Low

Kanoun [29] Moderate Moderate High High Moderate Low
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Study Participation Attrition Prognostic
Measurement

Outcome Measurement Confounding Analysis and Reporting

Kim [30] Moderate Moderate Moderate Moderate Moderate Low

Kim [31] Moderate Moderate Moderate Moderate Moderate Low

Kwon [32] High Moderate Moderate Moderate Moderate Low

Lanic [33] High Moderate Moderate Moderate High High

Lue [34] Moderate Moderate Moderate Moderate Moderate Low

Mettler [35] Moderate High Moderate Moderate Moderate Low

Mikhaeel [36] Moderate Moderate Moderate Moderate Moderate Low

Milgrom [37] Moderate High Moderate Moderate High Low

Miyazaki [38] Moderate Moderate Moderate Moderate Moderate Low

Park [39] Moderate High Moderate Moderate High High

Sasanelli [40] Moderate Moderate Moderate Moderate Moderate Low

Senjo [41] Moderate Moderate Moderate Moderate High Low

Song [42] Moderate Moderate Moderate Moderate Moderate Low

Song [43] Moderate Moderate Moderate Moderate Moderate Low

Song [44] Moderate Moderate Moderate Moderate Moderate Low

Toledano [45] Moderate Moderate Moderate Moderate Moderate Low

Tseng [46] Moderate Moderate High High High Low

Xie [47] High High Moderate Moderate Moderate Low

Zhang [48] Moderate Moderate Moderate Moderate Moderate Low

Zhou [49] Moderate Moderate Moderate Moderate Moderate Low

Table S2.2 Break down of consensus risk of bias gradings across 6 domains using the Quality in Prognosis Studies (QUIPS) tool for all
studies included within the systematic review
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Chapter 3
Discovery of pre-treatment FDG PET/CT-derived

radiomics-based models for predicting outcome in diffuse large
B-cell lymphoma

3.1 Simple Summary

Diffuse large B-cell lymphoma (DLBCL) is the most common type of lymphoma. Even
with the improvements in the treatment of DLBCL around a quarter of patients will
experience recurrence. The aim of this single centre retrospective study was to predict
which patients would have recurrence within 2 years of their treatment using machine
learning techniques based on radiomics extracted from the staging PET/CT images. Our
study demonstrated that in our dataset of 229 patient (training data = 183, test data
= 46) that a combined radiomic and clinical based model had a good predictive ability
which was maintained when tested on an unseen test set.

3.2 Abstract

3.2.1 Background

Approximately 30% of patients with diffuse large B-cell lymphoma (DLBCL) will have
recurrence. The aim of this study was to develop a radiomic based model derived from
baseline PET/CT to predict 2-year event free survival (2-EFS).

3.2.2 Methods

Patients with DLBCL treated with R-CHOP chemotherapy undergoing pre-treatment
PET/CT between January 2008 and January 2018 were included. The dataset was split
into training and internal unseen test sets (ratio 80:20). A logistic regression model
using metabolic tumour volume (MTV) and six different machine learning classifiers
created from clinical and radiomic features derived from the baseline PET/CT were
trained and tuned using four-fold cross validation. The model with the highest mean
validation receiver operator characteristic curve area under the curve (AUC) was tested
on the unseen test set.

3.2.3 Results

229 DLBCL patients met inclusion criteria with 62 (27%) having 2-EFS events. The
training cohort had 183 patients with 46 patients in the unseen test cohort. The model
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with the highest mean validation AUC combined clinical and radiomic features derived
using ridge regression mean validation AUC of 0.75 ±0.06, with a test AUC of 0.73.

3.2.4 Conclusion

The ability of radiomics based predictive models demonstrate promise in predicting
outcomes in DLBCL patients.
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3.3 Introduction

Diffuse large B-cell lymphoma (DLBCL) is the commonest subtype of non-Hodgkin
lymphoma (NHL), accounting for approximately 30-40% of adult cases [1]. Gold
standard treatment is with immunochemotherapy: rituximab, cyclophosphamide,
doxorubicin hydrochloride, vincristine (Oncovin) and prednisolone (RCHOP) [2].
Radiotherapy can be added if there is bulky or residual disease. Prophylactic intrathecal
methotrexate or intravenous treatment with chemotherapy that crosses the blood-brain
barrier may be included if there is high risk for central nervous system (CNS)
involvement [3]. Even with current therapy regimes approximately 20-30% of patients
will recur following treatment [4][5]. Staging and response assessment is performed
using 2-deoxy-2-[fluorine18]-fluoro-D-glucose (FDG) positron emission tomography /
computed tomography (PET/CT). Treatment stratification based on mid-treatment
(interim) PET/CT is commonly used in the management of patients with Hodgkin
lymphoma but is less established in DLBCL due to the reduced ability to accurately
predict treatment outcome in this lymphoma subtype mid-treatment [6][7]. There is
increasing interest in the use of PET/CT derived metrics for treatment stratification at
baseline in lymphoma to improve patient outcome. A number of groups have explored
the potential utility of baseline metabolic tumour volume (MTV) for predicting event
free survival (EFS) with promising results, but this has yet to be adopted clinically
[8–16] [17]. Others have explored the potential utility of radiomic features extracted
from PET/CT for modelling purposes [8][18]. Initial results are promising, however,
published studies are heterogenous with relatively small numbers of patients.

This aim of this study was to develop and test models combining baseline clinical
information and radiomic features extracted from PET/CT imaging in DLBCL patients
to predict 2-year EFS (2-EFS) using data from our tertiary centre. The secondary aim
was to compare model performance to the predictive ability of baseline MTV.

3.4 Materials and Methods

The transparent reporting of a multivariable prediction model for individual prognosis
or diagnosis (TRIPOD) guidelines were adhered to as part of this study (Supplemental
Material 3.1).
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3.4.1 Patient selection

Radiological and clinical databases were retrospectively reviewed to determine patients
who underwent baseline PET/CT for DLBCL at our institution between January 2008
and January 2018. A cut-off of January 2018 was chosen to allow a minimum of 2
years follow up without interference or confounding factors introduced by the Covid-19
pandemic. Patients were excluded if they did not have DLBCL, were under 16 years of
age, had no measurable disease on PET/CT, had hepatic involvement, had a concurrent
malignancy, were not treated with R-CHOP or if the images were degraded/incomplete.
A 2-EFS event was defined as recurrence or death from any cause within the 2- year follow
up period.

3.4.2 PET/CT acquisition

All imaging was performed as part of routine clinical practice. Patients fasted for 6 hours
prior to administration of intravenous Fluorine-18 FDG (4 MBq/kg). PET acquisition
and reconstruction parameters for the four scanners used at our institution are detailed in
Table 3.1. Attenuation correction was performed using a low-dose unenhanced diagnostic
CT component acquired using the following settings: 3.75mm slice thickness; pitch 6;
140 kV; 80mAs; pitch 6.

Scanner Voxel Size in
mm

Matrix Reconstruction Scatter
Correction

Randoms
Correction

Philips Gemini
TF64

4 x 4 x 4 144 or 169 BLOB-OS-TF SS-Simul DLYD

GE Healthcare
Discovery 690

3.65 x 3.65 x
3.27

192 VPFX Model based Singles

GE Healthcare
Discovery 710

3.65 x 3.65 x
3.27

192 VPFX Model based Singles

GE Healthcare
STE

4.6875 x
4.6875 x 3.27

128 OSEM Convolution
subtraction

Singles

Table 3.1 Reconstruction parameters for the different scanners used. BLOB-OS-TF =
an ordered subset iterative TOF reconstruction algorithm using blobs instead of voxels;
DLYD = delayed event subtraction; OSEM = ordered subsets expectation maximization;
SS-Simul = single-scatter simulation; VPFX = Vue Point FX (OSEM including point
spread function and time of flight).
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3.4.3 Image segmentation

All PET/CT images were reviewed and contoured using a specialised multimodality
imaging software package (RTx v1.8.2, Mirada Medical, Oxford, UK). FDG-positive
disease segmentation was performed by either a clinical radiologist with six years’
experience or a research radiographer with two years’ experience. Contours were then
reviewed by dual-certified Radiology and Nuclear Medicine Physicians with >15 years’
experience of oncological PET/CT interpretation. Any discrepancies were agreed in
consensus.

Two different semi-automated segmentation techniques were used. The first applied a
fixed standardised uptake value (SUV) threshold of 4.0, and the second used a threshold
derived from 1.5 times mean liver SUV. The 4.0 SUV threshold was selected based on
previous work assessing different segmentation techniques in a cohort of DLBCL patients
by Burggraaff et al. which found it had a higher interobserver reliability [19]. The 1.5
times mean liver SUV threshold was chosen as an adaptive threshold technique which has
been used in different cancer types [20, 21]. Mean liver SUV was calculated by placing a
110 cm3 spherical region of interest (ROI) in the right lobe of the liver. The PET image
contour was translated to the CT component of the study with the contours matched to
soft tissue with a value of -10 to 100 Hounsfield units (HU). Contours were saved and
exported as digital imaging and communications in medicine (DICOM) radiotherapy (RT)
structures. Both the images and contours were converted to Neuroimaging Informatics
Technology Initiative (NIfTI) files using the python library Simple ITK (v2.0.2).

3.4.4 Feature extraction

Feature extraction was performed using PyRadiomics (v2.2.0). Both the CT and PET
images were resampled to a uniform voxel size of 2mm3 . Radiomic features were extracted
from the entire segmented disease for each patient. A fixed bin width of 2.5 HU was used
for the CT component. Two different bin-widths were used when extracting the radiomic
features from the PET component. The first being derived by finding the contour with the
maximum range of SUVs and dividing this by 130, the second being derived by dividing
the maximum range by 64. This methodology was based on previous work by Orlhac
et al. and from PyRadiomics documentation [22]. First and second order features were
extracted from both the PET and CT components. Further higher order features were
explored by extracting the first and second order features following applying wavelet,
log-sigma, square, square root, logarithm, exponential, gradient and local binary pattern
(lbp)-3D filters to the images. All features extracted and the filters applied are detailed in
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Supplemental Material 3.2. The mathematical definition of each of the radiomic features
can be found within the PyRadiomics documentation [23]. PyRadiomics deviates from the
image biomarker standardisation initiative (IBSI) by applying a fixed bin width from 0 and
not the minimum segmentation value, and the calculation of first order kurtosis being +3
[24, 25]. Otherwise, PyRadiomics adheres to IBSI guidelines. Patient age, disease stage
and sex were also included as clinical features in the models. Disease stage and sex were
dummy encoded using (Pandas v1.2.4). This resulted in a total of 3935 features extracted
per patient. ComBat harmonisation was applied to account for the different scanners used
within the study (https://github.com/Jfortin1/ComBatHarmonization) [26].

3.4.5 Machine learning

The dataset was split into a training and test set stratified around 2-EFS, disease stage,
age and sex with an 80:20 split using the scikit-learn (v0.24.2). Concordance between the
demographics of the training and test groups was assessed using a t-test for continuous
data and a � 2 test for categorical data. A p-value of <0.05 was regarded as significant.
Continuous data was normalised using a standard scaler (scikit-learn v0.24.2) which was
trained and fit on the training set and subsequently applied to the test set. Highly
correlated features were removed from the training and test sets if they had a Pearson
coefficient over 0.8. This reduced the number of features from 3935 down to 130 for
each patient.

Six different machine learning (ML) classifiers were used: logistic regression with lasso,
ridge and elasticnet penalties, support vector machine (SVM), random forest and
k-nearest neighbour. A maximum number of 5 features were included within each
model, apart from in the lasso and elasticnet models where these classifiers determined
the optimum number of features. A maximum number of 5 features was chosen using
the rule of thumb of 1 feature per 10 events within the training set to avoid false
discovery (Type 1 error). Feature selection for the remaining models was performed
using three different methods: a forward wrapper method (mlxtend 0.18.0), a univariate
analysis method (scikit-learn v0.24.2), and a recursive feature extraction method (where
applicable) (scikitlearn v0.24.2). Each method was used to create a list of features from
two to the maximum five features which were to be explored in the training phase. The
features selected were based on the highest mean receiver operating characteristic
(ROC) curve area under the curve (AUC) in four-fold stratified cross validation with 25
repeats.

Training of ML models and tuning of hyperparameters was performed using a grid
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search with a stratified four-fold cross validation stratified around 2-EFS with 25
repeats. The list of hyperparameters explored within the grid search are detailed in
Supplemental Material 3.2. Features and hyperparameters with highest mean validation
AUC which was within 0.05 of the mean training AUC were selected. A 0.05 cut-off was
chosen to try and minimise selection of an overfitted model. The model which had the
highest mean validation AUC overall was tested once on the unseen test set. The
Youden index was used to discover the optimum cut-off value from the ROC curve and
the accuracy, sensitivity, specificity, negative predictive value (NPV) and positive
predictive value (PPV) were calculated from this for the unseen test set. The pipeline
for patient inclusion, feature selection and predictive model creation and testing is
depicted in (Figure 1). Given the growing evidence surrounding MTV as a predictor of
outcome two further logistic regression models were derived from the different
segmentation techniques’ MTV. A comparison between results from the different cross
validation splits between the radiomic model with the mean highest AUC and the MTV
model with the mean higher AUC was performed using a Wilcoxon signed ranked test.

3.5 Results

229 DLBCL patients met the inclusion criteria (136 male, 93 female) with 62 2-EFS
events. There were 183 patients within the training cohort and 46 patients in the unseen
test cohort, there was no statistically significant difference identified between the training
and test sets (Table 3.2).

None of the machine learning models created using elasticnet regression, lasso regression
or k-nearest neighbour algorithms had a mean validation AUC within 0.05 of the mean
training AUC. The remaining model results are presented in Table 3.3 and Table 3.4.
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Figure 3.1 Pathway for patient inclusion, feature selection and model creation. * =
initially applied to the training data and then to the test data.
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Demographic Training Cohort Test Cohort p-value

Age 67 (IQR =17) 65 (IQR = 22.5) 0.35

Sex

Male 107 29 0.69

Female 76 17

Radiotherapy

Yes 78 20 0.95

No 105 26

Stage

One 42 17 0.26

Two 46 6

Three 31 6

Four 64 17

2-EFS Event

Yes 50 12 0.98

No 133 34

Table 3.2 Demographics of the training and testing groups. 2-EFS = 2-year event free
survival. The p-values were calculated using a t-test for age and a �2 test for the remaining
demographic features.
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Machine
Learning Model

Hyperparameters Features Mean
Training

Mean
Validation

SUVmax/130

Ridge Regression C: 1e-5, penalty: l2,
solver: liblinear

Stage One, PET
wavelet-LLH GLSZM
Large Area Emphasis,
PET wavelet-HHH
GLSZM Grey Level
Non-Uniformity
Normalized, PET
square 10th
Percentile, PET
square GLDM Grey
Level Non Uniformity

0.75
(0.02)

0.74
(0.07)

Support Vector
Machine

C: 1, gamma:
0.00891543, kernel:
sigmoid

PET wavelet-HHH
GLSZM Grey Level
Non-Uniformity
Normalized, PET
square 10th
Percentile, PET
lbp-3D-m1
Interquartile Range,
PET lbp-3D-m1
GLDM Large
Dependence Low
Grey Level Emphasis,
PET lbp-3D-k 90th
Percentile

0.74
(0.02)

0.73
(0.07)
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Machine
Learning Model

Hyperparameters Features Mean
Training

Mean
Validation

Random Forest bootstrap: False, max
depth: 1, max
features: log2, min
samples leaf: 50, min
samples split: 50, n
estimators: 10

PET original shape
Maximum 2D
Diameter Column,
MTV, PET original
first order Kurtosis,
PET original GLSZM
Large Area Emphasis,
PET wavelet-LHL
GLCM Correlation,
PET wavelet-LHL
GLCM Imc2

0.76
(0.02)

0.71
(0.08)

SUVmax/64

Ridge Regression C: 0.001, penalty: l2,
solver: newton-cg

Stage Four, PET
original GLSZM Large
Area Emphasis, PET
wavelet-HHL GLSZM
Small Area Emphasis,
PET wavelet-HHH
GLSZM Grey Level
Non-Uniformity
Normalized, PET
square 10th Percentile

0.77
(0.02)

0.75
(0.06)
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Machine
Learning Model

Hyperparameters Features Mean
Training

Mean
Validation

Support Vector
Machine

C: 0.1, gamma:
0.07938667031015,
kernel: rbf

PET original GLDM
Large Dependence
Low Grey Level
Emphasis, PET
wavelet-HHH GLSZM
Grey Level
Non-Uniformity
Normalized, PET
square 10th
Percentile, PET
lbp-3D-k 90
Percentile, PET
lbp-3D-k GLSZM Size
Zone Non Uniformity
Normalized

0.75
(0.02)

0.72
(0.06)

Random Forest bootstrap: True, max
depth: 1, max
features: log2, min
samples leaf: 44, min
samples split: 6, n
estimators: 243

PET original shape
Maximum 2D
Diameter Column,
PET original shape
Surface Volume
Ratio, PET original
10th Percentile

0.71
(0.02)

0.69
(0.08)

Table 3.3 Mean training and validation scores for the best performing machine learning
models using the 4.0 SUV threshold segmentation technique. l2 = Ridge regression
penalty, liblinear = A library for large linear classification, GLSZM = grey level size zone
matrix, GLDM = grey level dependence matrix, lbp-3D-m1 = local binary pattern filtered
image at level 1, lbp-3D-k = local binary pattern kurtosis image, GLCM = grey level
co-occurrence matrix, rbf = radial basis function.
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Machine
Learning Model

Hyperparameters Features Mean
Training

Mean
Validation

SUVmax/130

Ridge Regression C: 1e-05, penalty: l2,
solver: saga

Stage Four, Age,
PET original GLDM
Large Dependence
Low Grey Level
Emphasis, PET
original GLSZM Large
Area High Grey Level
Emphasis

0.74
(0.03)

0.71
(0.09)

Support Vector
Machine

C: 1, gamma:
0.437273674187265,
kernel: rbf

PET square 10th
Percentile, square
first order Energy

0.78
(0.02)

0.73
(0.07)

Random Forest bootstrap: True, max
depth: 10, max
features: sqrt, min
samples leaf: 33, min
samples split: 5, n
estimators: 90

Age, PET original
shape Elongation,
PET original shape
Least Axis Length,
PET original shape
Major Axis Length,
PET original shape
Maximum 2D
Diameter Column,
PET original shape
Mesh Volume

SUVmax/64
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Machine
Learning Model

Hyperparameters Features Mean
Training

Mean
Validation

Ridge Regression C: 1.0, penalty: l2,
solver: liblinear

Stage Three, Age,
PET wavelet-LHL
GLCM Imc1, PET
square GLDM
Dependence Variance,
PET square GLSZM
Small Area Low Grey
Level Emphasis

0.76
(0.02)

0.73
(0.07)

Support Vector
Machine

C: 1, gamma:
0.437273674187265,
kernel: rbf

PET square first
order 10 Percentile,
PET square first
order Energy

0.78
(0.02)

0.73
(0.07)

Random Forest bootstrap: True, max
depth: 10, max
features: log2, min
samples leaf: 42, min
samples split: 6, n
estimators: 237

PET original shape
Sphericity, PET
original GLSZM Large
Area Emphasis

0.70
(0.02)

0.69
(0.07)

Table 3.4 Mean training and validation scores for the best performing machine learning
models using the 1.5 times mean liver SUV thresholding segmentation technique. l2 =
Ridge regression penalty, liblinear = A library for large linear classification, GLSZM =
grey level size zone matrix, GLDM = grey level dependence matrix, rbf = radial basis
function.

The model within the highest mean validation ROC AUC was the ridge regression model
created using radiomic features extracted from a fixed threshold of 4.0 SUV segmentation
using a bin width of the maximum range of SUVs divided by 64. The mean training AUC
was 0.77 ±0.02, the mean validation AUC was 0.75 ±0.06 and the AUC when tested
on the unseen dataset was 0.73 Figure 3.2. The features selected with their coefficients
and intercept are presented in Table 3.5. A threshold of 0.5 was chosen and led to an
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accuracy of 0.70, sensitivity of 0.44, specificity of 0.86, positive predictive value of 0.67,
and a negative predictive value of 0.71. The confusion matrix is presented in Table 3.6.

Feature Coefficient

Stage Four 0.01153414

PET original GLSZM Large Area Emphasis 0.0161316

PET wavelet-HHL GLSZM Small Area Emphasis 0.01482446

PET wavelet-HHH GLSZM Grey Level Non-Uniformity Normalized -0.01923886

PET square 10 Percentile -0.01923886

Intercept -0.01166859

Table 3.5 Features selected and their associated coefficients and intercept in the ridge
regression model tested on the unseen test dataset.

Figure 3.2 ROC Curve of the training and unseen test data AUCs for the model derived
using a 4.0 SUV thresholding segmentation technique with a bin width derived from
SUVmax/64.

The logistic regression model created solely from MTV using the 4.0 SUV fixed threshold
segmentation technique had a mean training AUC of 0.66±0.03 and a mean validation
AUC of 0.66 ±0.08. The logistic regression model derived from MTV using the 1.5 times
mean liver SUV segmentation technique had a mean training AUC of 0.67±0.03 and a
mean validation AUC of 0.67 ± 0.08. There was a statistically significant difference when
comparing the cross validation AUCs for the 100 splits between the highest performing
MTV based model and the radiomic based ridge regression model p<0.001(Figure 3.3).
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Negative Postive

Predicted Negative 24 10

Predicted Positive 4 8

Table 3.6 Confusion matrix for the threshold of 0.5. Positive = recorded 2-EFS event,
Negative = no recorded 2-EFS event, Predicted Positive = predicted to have had a 2-EFS
event, Predicted Negative = predicted to not have had a 2-EFS event.

Figure 3.3 ROC curves of the mean validation AUCs for the best performing combined
clinical and radiomic model and MTV model.

3.6 Discussion

Our study found that a prediction model combining clinical and radiomic features
derived from pretreatment PET/CT using a ridge regression model had the highest
mean validation AUC when predicting 2-EFS in DLBCL patients. This model had
significantly higher validation AUCs than those achieved by a model solely derived from
MTV and achieved an AUC of 0.73 on the unseen test set. The radiomic features used
within the model were extracted from a segmentation derived from a fixed threshold of
4.0 SUV using a bin-width calculated from the maximum range of SUVs divided by 64
led to the highest mean validation AUC. The model was formed using five features
(Stage Four, PET original GLSZM large area emphasis, PET wavelet-HHL GLSZM
small area emphasis, PET wavelet-HHH GLSZM grey level non-uniformity normalized,
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PET square 10th percentile).

The biological correlate of radiomic features and how these relate to the lesion or disease
process can often be overlooked, and can become more complex when image filtering is
involved [27]. Three of the radiomic features included in the best model were derived
from GLSZM which is a matrix formed by the number of connected voxels with the
same grey level intensity. The first being PET GLSZM Large Area Emphasis which is a
measure of distribution of large area size zones, extracted from the PET data without
any a filter applied. This feature is higher in lesions which have a coarser texture based
on the original image. The other two GLZMs are calculated after applying a wavelet
filter. Wavelet filters highlight or suppress certain spatial frequencies within an image.
In PyRadiomics a combination of high and low filters are passed in each of the different
dimensions, which result in 8 different decompositions. PET wavelet-HHL GLSZM small
area emphasis is a measure of the distribution of small size zones, which are higher in
lesions with fine textures following the application of the wavelet filter. PET wavelet-HHH
GLSZM grey level non-uniformity is a measure of the variability of the grey level intensity
within the image. A lower value indicates a higher number of similar SUVs on the wavelet
filtered image. The last radiomic feature included was PET square 10th percentile which
is the 10th percentile value of the SUV after a square of the image SUVs has been taken
and normalised to the original SUV range.

Other studies which have explored the use of radiomic features in outcome prediction in
DLBCL are heterogenous [12, 28–32]. This is mainly due to differences in segmentation
methodology, modelling techniques and outcome measures between groups. Aide et al.
studied the use of radiomic features in predicting 2-EFS in 132 patients (training =
105, validation = 27) and found that MTV as well as four second order metrics and
five third order metrics were selected from ROC analyses. However, longzone high-grey
level emphasis was the only independent predictor when analysed with the international
prognostic index (IPI) and MTV [29]. In our study long-zone high-grey level emphasis was
dropped when checking for multicollinearity. This highlights a potential issue of radiomic
model development when applying a methodology on different datasets. It may be that the
same features would be chosen between the different datasets, but each method removes
the alternate correlated feature and therefore looks to create an entirely new model. Both
Zhang et al. and Ceriani et al. used lasso in their cox regression models to select the most
appropriate features [31, 32]. Zhang et al. in a study of 152 patients (training = 100,
validation = 52) treated with R-CHOP or R-EPOCH (rituximab, etoposide, prednisone,
vincristine, cyclophosphamide, and doxorubicin) found that a survival model created with
radiomic features and MTV had a validation time dependent ROC AUC of 0.748 (95% CI
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0.596–0.886). A model created with radiomic features and metabolic bulk volume had a
validation time dependent ROC AUC 0.759 (95% CI 0.595–0.888). Ceriani et al. reported
that a radiomic score derived from a training set of 133 patients and tested on an external
dataset of 107 patients had an AUC of 0.71 in both the test and validation datasets. The
features selected within their cox regression model were GLCM sum squares, maximum
3D diameter and GLDM grey level variance, GLSZM grey level non-uniformity normalized.

In our study both lasso and elasticnet methods failed to produce a model that achieved
mean training and validation scores within 0.05 of each other. Even when allowing for
a more generous difference between the training and validation scores, mean validation
scores remained below 0.65. This 0.05 cut-off is arbitrary and was applied to try and
reduce the impact of overfitting on the dataset and allow selection of a potentially more
generalisable model. Despite this, there is still a risk that both training and validation
datasets are overfitted and the model would need external validation on an external
dataset.

One of the largest published studies by Decazes et al. in 215 DLBCL patients, explored
use of tumour volume surface ratio and total tumour surface as outcome predictors for
5-year progression free survival (PFS), but found that MTV outperformed both features
with MTV having an AUC of 0.67 [12]. This AUC for MTV is like the findings in our
study, with the mean validation AUC for MTV prediction of 2-EFS being 0.66 for the
4.0 SUV threshold and 0.67 for the 1.5 times liver threshold segmentation techniques
respectively. Although, there is growing interest in the use of MTV as an imaging
biomarker, Adams et al. reported, in a study of 73 DLBCL patients, that the prognostic
ability of MTV does not add anything to the prognostic ability of the clinical scoring
system National Comprehensive Cancer Network-International Prognostic Index
(NCCN-IPI) [33]. Unfortunately, due to missing clinical data it was not possible to
compare IPI performance in our patient cohort. However, this does highlight the
potential impact of confounders on the generalisability of predictive models. Although,
causality is not generally considered in predictive modelling its use in future models
could allow for greater transparency of a model. The issues of generalisability may be
compounded by learnt biases towards groups of patients in the training process.

The TRIPOD checklist was completed to increase transparency of model development
[34, 35]. However, there are limitations to our study including the retrospective nature
and uncertainty surrounding the exact timing and recording of recurrence. Use of 2-EFS
partially mitigates against this by allowing a wider window for the relapse to be recorded,
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however, it does mean that data is lost which could have been included in a time to
survival type model. 2-EFS was chosen as the majority of patients relapse within the
first 2 years. Time to event ML models could be used in future studies to reduce the
need to exclude data. Lack of clinical data surrounding the IPI and cell of origin (COO)
information, meant that these could not be used as direct comparators to radiomic models
created.

3.7 Conclusions

A combined clinical and PET/CT derived radiomics model using ridge regression
demonstrated the highest mean validation AUC validation (AUC = 0.75) when
predicting 2-EFS in DLBCL patients treated with R-CHOP, which outperformed a model
derived solely from MTV (AUC = 0.67).
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3.9 Supplementary Material

3.9.1 Supplemental Material 3.1

1. This study looks at the utility of pre-treatment FDG PET/CT derived machine learning
models for outcome prediction in diffuse large B-cell lymphoma (DLBCL). (Title)
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2. A summary of all the requested information is presented in the Abstract.

3. a) The introduction presents the background, aim of the model and the previous studies
which have explored models containing radiomic features from the baseline PET/CT.
(Introduction)b) The aim of this study was to create a predictive model using both clinical

and radiomic features derived from pre-treatment FDG PET/CT to predict 2-year EFS in
DLBCL patients using a cohort from a tertiary treatment centre (Introduction)

4. a) Retrospective single centre cohort study. The study cohort was randomised on a
ratio of 4:1 into training and testing cohorts stratified around 2-EFS, age, sex and disease
stage. (Patient selection)
b) Consecutive patients with histologically proven DLBCL NOS who underwent baseline
FDG-PET/CT at a single large tertiary referral centre between June 2008 and January
2018 were included. The follow up information recorded is set out in the patient selection
section. (Patient selection)

5. a) This is a single tertiary centre study. (Patient selection) b) Patients were excluded if
they did not have DLBCL NOS, were under 16 years of age, had no measurable disease on
PET/CT when using a 4.0SUV or had hepatic involvement, had a concurrent malignancy,
were not treated with R-CHOP or if the images were degraded on incomplete. The follow
up information recorded is set out (Patient selection) c) The treatment regimen was with
RCHOP for all patients. No change to departmental standard treatment was performed.
(Patient selection)

6. a) A 2-EFS event was defined as recurrence or death from any cause within the 2-year
follow up period. (Patient selection) b) As this was a retrospective study the primary
outcomes were defined from clinical records. The investigator reviewing the records was
blinded to the imaging parameters.

7. a) The description of the contouring method, resampling, harmonisation, radiomic
feature extraction, feature selection and model training and testing is documented within
the materials and methods section. The features selected as part of the chosen model
are described the results section. (Materials and methods, Results) b) The images were
contoured blinded to the outcome data.

8. All patients which met the inclusion criteria were included. The cut-off of January
2018 was chosen to allow for 2 years follow up whilst minimising confounding factors
introduced by the Covid-19 pandemic. For feature selection 5 features were chosen as
the maximum number of features to be include in each model. This was derived from
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10 events per parameter, with 50 events within the training cohort. This was not the
case for the lasso and elastinet models whose feature selection was derived by the penalty
applied to the models (Materials and methods, Results)

9. Only complete data sets were used in the analysis. (Results)

10. a) Clinical factors were included in the variable selection process alongside radiomic
features. The categorical data was dummy encoded and the continuous features were
normalised using a standard scaler. (Machine learning analysis) b) Random forest, support
vector machine, ridge regression, lasso regression, elasticnet regression and k-nearest
neighbour models were trained and tuned on the training cohort using four fold cross
validation with 25 repeats. The models were created using different feature selection
methods, using two different segmentation techniques and two different PET bin widths.
The model with the highest mean receiver operating characteristic (ROC) area under the
curve (AUC) was tested once on the unseen test cohort. (Machine learning analysis)
d) When comparing models, the mean validation AUC was used to determine the best
performing model, the model with the highest being tested on the unseen test set (Machine
learning analysis)

11. Risk groups were not created within the model.

13. a) 229 patients were included, with demographics detailed in Table 2. (Results) b)
The characteristics of the participants are presented in Table 2.

14. a) The number of events per cohort are presented in Table 2. b) This has not been
performed. The training and testing cohorts were stratified around key clinical features
but the results are not adjusted for these.

15. a/b) The features and hyperparameters used to create the model are presented in
the results section.

16. The mean validation and test ROC curves are presented, standard deviations are
presented for the mean training and mean validation scores. The confusion matrix with
the accuracy, sensitivity, specificity, negative predictive value and negative predictive value
for the best performing model with the a threshold derived using the Youden index from
the ROC curve (Results)

18. The limitations of the study are presented in the discussion. These include the
retrospective nature of the study, the relative low number of events, reliance on clinical
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records, the exclusion of patients with hepatic disease or not having measurable disease
above 4.0 SUV, and that there was no external validation. (Discussion)

19. b)/20. The discussion section gives an overall interpretation of the results, it
highlights the potential use of a pre-treatment model, but discusses the next steps
needed to make this clinically viable (Discussion)

21. The python libraries used are references within the text and the radiomic features
extracted using PyRadiomics are detailed in Supplementary Material Table 1.

22. Individual author’s funding is declared within the Declaration. The study was not
externally funded.
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3.9.2 Supplemental Material 3.2

First Order Shape GLCM GLRLM GLDM GLSZM NGTDM

10th Percentile Elongation Autocorrelation Grey Level
Non-Uniformity

Dependence Entropy Grey Level
Non-Uniformity

Busyness

90th Percentile Flatness Cluster Prominence Grey Level
Non-Uniformity
Normalized

Dependence
Non-Uniformity

Grey Level
Non-Uniformity
Normalized

Coarseness

Energy Least Axis Length Cluster Shade Grey Level Variance Dependence
Non-Uniformity
Normalized

Grey Level Variance Complexity

Entropy Major Axis Length Cluster Tendency High Grey Level Run
Emphasis

Dependence Variance High Grey Level Zone
Emphasis

Contrast

Inter quartile Range Maximum 2D Diameter
Column

Contrast Long Run Emphasis Grey Level
Non-Uniformity

Large Area Emphasis Strength

Kurtosis Maximum 2D Diameter
Row

Correlation Long Run High Grey
Level Emphasis

Grey Level Variance Large Area High Grey
Level Emphasis

Maximum Maximum 2D Diameter
Slice

Difference Average Long Run Low Grey
Level Emphasis

High Grey Level
Emphasis

Large Area Low Grey
Level Emphasis

Mean Absolute
Deviation

Maximum 3D Diameter Difference Entropy Low Grey Level Run
Emphasis

Large Dependence
Emphasis

Low Grey Level Zone
Emphasis

Mean Mesh Volume Difference Variance Run Entropy Large Dependence High
Grey Level Emphasis

Size Zone
Non-Uniformity

Median Minor Axis Length Id Run Length
Non-Uniformity

Large Dependence Low
Grey Level Emphasis

Size Zone
Non-Uniformity
Normalized

Minimum Sphericity Idm Run Percentage Low Grey Level
Emphasis

Small Area Emphasis

Range Surface Area Idmn Run Variance Small Dependence
Emphasis

Small Area High Grey
Level Emphasis

Robust Mean Absolute
Deviation

Surface Volume Ratio Idn Short Run Emphasis Small Dependence High
Grey Level Emphasis

Small Area Low Grey
Level Emphasis
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First Order Shape GLCM GLRLM GLDM GLSZM NGTDM

Root Mean Squared Voxel Volume Imc1 Short Run High Grey
Level Emphasis

Small Dependence Low
Grey Level Emphasis

Zone Entropy

Skewness Imc2 Short Run Low Grey
Level Emphasis

Zone Percentage

Total Energy Inverse Variance Zone Variance

Uniformity Joint Average

Variance Joint Energy

Joint Entropy

MCC

Maximum Probability

Sum Average

Sum Entropy

Sum Squares

Table S3.1 The radiomic features extracted for both the PET and CT components. The equations for the features can be found at
https://pyradiomics.readthedocs.io/en/latest/features.html. GLCM = grey level co-occurrence matrix, GLDM = grey level dependence
matrix, GLRLM = grey level run length matrix, GLSZM = grey level size zone matrix, NGTDM = neighbouring grey tone difference
matrix, Id = inverse difference, Idn = inverse difference normalised, Imc = informational measure of correlation, Idm = inverse difference
moment, Idmn = inverse difference moment normalised, MCC = maximal correlation coefficient. Each of the first and second order
features were extracted from the original imaging and then from the images following filters applied. The filters used were: wavelet;
log-signa; square; square root; logarithm; exponential; gradient; lbp-3D.

Model List of hyperparameters explored Static hyperparameters

Lasso Logistic Regression C = [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100] solver = [’liblinear’, ’saga’] penalty = ’l1’ random_state=0 class_weight=”balanced” max_iter =10000

Elasticnet Logistic Regression C = [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100] l1_ratio = [0.1, 0.2, 0.3,
0.4, 0.5, 0.6, 0.7, 0.8, 0.9]

penalty = ’elasticnet’ solver = ”saga” random_state=0, class_weight=”balanced” max_iter
=10000
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Ridge Logistic Regression C = [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10, 100] solver = [’liblinear’,
’saga’, ”sag”, ’lbfgs’, ’newton-cg’]

penalty = ’l2’ random_state=0 class_weight=”balanced” max_iter =10000

Support Vector Machine C = [0.0000001, 0.000001, 0.00001, 0.0001, 0.001, 0.01, 0.1, 1, 10] gamma = expon(scale=.1)
kernel = [’linear’, ’rbf’, ”sigmoid”, ”poly”]

random_state=0 class_weight=”balanced” probability = True

Random Forest n_estimators = [int(x) for x in np.linspace(start = 10, stop = 250, num = 40)] max_features =
[’log2’, ’sqrt’] max_depth = [int(x) for x in np.linspace(start = 1, stop = 10, num = 5)]
min_samples_split = [int(x) for x in np.linspace(start = 2, stop = 50, num = 49)]
min_samples_leaf = [int(x) for x in np.linspace(start = 2, stop = 50, num = 49)] bootstrap =
[True, False]

random_state = 0 class_weight = ”balanced” probability = True

K-Nearest Neighbour n_neighbors = range(1, 21, 2) weights = [’uniform’, ’distance’] metric = [’euclidean’, ’manhattan’,
’minkowski’]

Table S3.2 The hyperparameters explored within the grid search and the hyperparameters kept static when training the different machine
learning models. If a hyperparameter is not documented, it was left as the default within the library.
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Chapter 4
Utility of pre-treatment FDG PET/CT derived machine learning
models for outcome prediction in classical Hodgkin lymphoma

4.1 Abstract

4.1.1 Objectives

Relapse occurs in 20% of patients with classical Hodgkin lymphoma (cHL) despite
treatment-adaption based on 2-deoxy-2-[18F]fluoro-D-glucose positron emission
tomography/computed tomography response. The objective was to evaluate
pre-treatment FDG PET/CT-derived machine learning (ML) models for predicting
outcome in patients with cHL.

4.1.2 Methods

All cHL patients undergoing pre-treatment PET/CT at our institution between 2008-
2018 were retrospectively identified. A 1.5 x mean liver standardised uptake value (SUV)
and a fixed 4.0 SUV threshold were used to segment PET/CT data. Feature extraction
was performed using PyRadiomics with ComBat harmonisation. Training (80%) and test
(20%) cohorts stratified around 2-year event free survival (EFS), age, sex, ethnicity and
disease stage were defined. Seven ML models were trained and hyperparameters tuned
using stratified 5-fold cross validation. Area under the curve (AUC) from receiver operator
characteristic analysis was used to assess performance.

4.1.3 Results

289 patients (153 males), median age 36 (range 16-88 years) were included. There was no
significant difference between training (n=231) and test cohorts (n=58) (p-value >0.05).
A ridge regression model using a 1.5 x mean liver SUV segmentation had the highest
performance, with mean training, validation and test AUCs of 0.82 ± 0.002, 0.79 ± 0.01
and 0.81±0.12. However, there was no significant difference between a logistic model
derived from metabolic tumour volume and clinical features or the highest performing
radiomic model.
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4.1.4 Conclusions

Outcome prediction using pre-treatment FDG PET-CT-derived ML-models is feasible in
cHL patients. Further work is needed to determine optimum predictive thresholds for
clinical use.
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4.2 Introduction

Hodgkin’s lymphoma (HL) is a haematopoietic malignancy characterised by the presence
of Reed-Sternberg cells [1]. There are five different sub-classes of HL: nodular lymphocyte-
predominant HL (NLPHL), and four under the umbrella category of classical HL (cHL):
nodular sclerosing, mixed cellularity, lymphocyte-rich and lymphocyte-depleted. Ninety
percent of HL cases are cHL [2]. NLPHL is often treated differently to cHL and is
associated with more indolent progression [2]. Given the higher proportion of cHL cases,
difference in treatment regimens and higher relapse rate in cHL compared to NLPHL, this
paper will focus on cHL only [3].

Chemotherapy is the mainstay of frontline treatment of cHL; the most common regimes
being doxorubicin (adriamycin), bleomycin, vinblastine and dacarbazine (ABVD), or
bleomycin, etoposide, doxorubicin (adriamycin), cyclophosphamide, vincristine
(Oncovin), procarbazine, and prednisone (BEACOPP) [4]. The treatment regime and
number of cycles can vary depending on patient risk factors, disease stage and initial
treatment response. Radiotherapy is used in patients with stage 1 or localised stage 2
disease or in residual bulky disease [4]. The gold standard imaging modality for staging
and response assessment in HL is 2-deoxy-2-[18F]fluoro-D-glucose (FDG) positron
emission tomography/computed tomography (PET/CT) [5]. Patients typically undergo
PET/CT pre-treatment, following two cycles of chemotherapy (interim) and
post-treatment. Interim PET/CT is used to guide treatment adaption, balancing the
risk of chemotherapy associated toxicity with maximising chances of event free survival
(EFS) [6]. 5-year survival in HL is approximately 86% [7]. However, even following
complete metabolic response (CMR), approximately 20% of cHL patients will relapse
with 72% of relapses occurring within the first 2 years of diagnosis [8]. The ability to
identify patients at greater risk of relapse pre-treatment would allow upfront treatment
stratification and could improve outcomes.

Previous studies assessing imaging parameters derived from baseline PET/CT for outcome
prediction have mainly focused on metabolic tumour volume (MTV), total lesion glycolysis
(TLG) and maximum or mean standardised uptake value (SUVmax and SUVmean) [9].
SUV is defined as the ratio of injected radioactivity within an image at a given timepoint
when compared to the whole-body [10]. MTV is the volume of metabolically active
segmented disease ; with different segmentation techniques described [11]. The TLG
is MTV multiplied by the SUVmean. Radiomics transforms images into mineable high-
dimensional data permitting invisible feature extraction, analysis and modelling [12]. A
limited number of studies using small sample sizes have demonstrated the potential of
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radiomic features in predicting progression free survival (PFS) or overall survival (OS) in
HL patients [13–16]. The aim of this work was to evaluate the performance of models
using radiomic features derived from pre-treatment FDG PET/CT to predict 2-year EFS
in cHL patients using a larger tertiary centre cohort of patients.

4.3 Methods

This study adhered to the transparent reporting of a multivariable prediction model for
individual prognosis or diagnosis (TRIPOD) guidelines (Supplemental Material 4.1).

4.3.1 Patient selection

Retrospective review of radiology and clinical databases was performed to identify patients
who had undergone FDG PET/CT for baseline staging of cHL at our institution between
January 2008 and January 2018. This was chosen as the cut-off to allow a minimum
of 2-year follow up without confounding factors introduced by the Covid-19 pandemic.
Patients were excluded if they were under 16 years of age, did not have cHL, had treatment
prior to their staging PET/CT study, did not have measurable disease on PET/CT, had
a concurrent malignancy or if the images were degraded or incomplete. Patients who had
hepatic disease or had no measurable disease above 4.0 SUV were removed as this would
influence the segmentation techniques used.

Patient age, ethnicity, disease stage, date of PET/CT, scanner model and protocol used,
type and length of treatment, date of recurrence (confirmed by imaging or clinical
examination), last clinical contact and length of follow up or date of death were all
recorded from electronic notes, radiological records and from a regional haematological
malignancy database. An event was defined as relapse, recurrence or death within the
2-year follow up period. Due to missing clinical data, it was not possible to evaluate
scoring systems such as the international prognostic score.

Informed written consent was obtained prospectively from all patients at the time of
imaging for use of anonymised images in research and service development projects. As
this is a retrospective study, which does not involve patient contact or the alteration of
treatment, following discussion with the Research and Innovation Department at LTHT
it was agreed that this represented a service improvement project and was approved by
the University of Leeds School of Medicine Research Ethics Committee (SoMREC).
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4.3.2 PET/CT acquisition

PET/CT studies were performed as part of routine clinical care using a standardised
protocol. All patients fasted for 6h prior to administration of intravenous FDG
(4MBq/kg). If serum blood glucose was >�10 mmol/L, the study was rescheduled
following a clinical review of the patient’s diabetic control. Patients were scanned 1
hour following FDG administration. Scans were acquired using a 16-slice Discovery STE
PET/CT scanner (GE Healthcare) prior to June 2010; a 64-slice Philips Gemini TF64
scanner (Philips Healthcare) between June 2010 and October 2015; and 64-slice
Discovery 690 or 710 scanners (GE Healthcare) after October 2015 (Table 4.1).
Attenuation correction was performed using a CT component acquired with the settings:
140 kV; 80mAs; pitch 6; 3.75mm slice thickness.

Scanner Voxel Size in
mm

Matrix Reconstruction Scatter
Correction

Randoms
Correction

GE Healthcare
STE

4.6875 x
4.6875 x 3.27

128 OSEM Convolution
subtraction

Singles

GE Healthcare
Discovery 690

3.65 x 3.65 x
3.27

192 VPFX Model based Singles

GE Healthcare
Discovery 710

3.65 x 3.65 x
3.27

192 VPFX Model based Singles

Philips Gemini
TF64

4 x 4 x 4 144 or 169 BLOB-OS-TF SS-Simul DLYD

Table 4.1 Reconstruction parameters for the scanners used: DLYD – delayed event
subtraction; OSEM – ordered subsets expectation maximization; SS-Simul – single-
scatter simulation; VPFX – Vue Point FX (3D Time of Flight); BLOB-OS-TF – a
3D ordered subset iterative TOF reconstruction algorithm (spherically symmetric basis
function ordered subset)

4.3.3 Image segmentation, feature extraction and machine learning
analysis

Image segmentation, feature extraction and machine learning analysis A detailed
methodology including detail of who performed the segmentation and interpretation of
images is available in Supplemental Material 4.2. Two semi-automated segmentation
techniques were used to contour the total lymphomatous disease within each study; the
first using a fixed threshold of 4.0 SUV, and the second using a threshold of 1.5 x liver
SUVmean. This method has been used in different cancer types [17, 18] (RTx v1.8.2,
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Mirada Medical). Ten percent of cases were re-segmented using the same methodology
following a 3-month washout period using Slicer (v4.11). These re-segmentations were
used to investigate the robustness of the extracted radiomic features using different bin
widths/bin numbers. Both the CT and PET images were resampled to a uniform voxel
of 2mm3. Features were extracted using PyRadiomics (v2.2.0) with 3935 features
(PET/CT component x (shape features + first and second order features x number of
filters) extracted per segmentation technique for each patient (Supplemental Material
4.2: Table S4.1). Harmonisation to account for the different scanners was applied using
the ComBat method (https://github.com/Jfortin1/ComBatHarmonization) [19].

The data was split into training and test cohorts stratified around 2-year EFS (2-EFS),
age, sex, ethnicity, disease stage, having radiotherapy, having ABVD-based chemotherapy
and being treated as advanced disease using scikit-learn (v0.24.2). The cohorts were
split using an 80:20 ratio. Mann-Whitney U and �2 tests (SciPy v1.6.3) were used to
assess for significance in continuous and categorical clinical characteristics between the
training and test cohorts respectively. A p-value less than 0.05 was regarded as significant.
Correlated features were removed if the Pearson coefficient was over 0.8. Seven different
machine learning methods were used to create prediction models (scikit-learn v0.24.2):
random forest, logistic regression (elastic net, lasso and ridge penalties explored), k-nearest
neighbour (KNN), single-layer perceptron (SLP), multi-layer perceptron (MLP), Gaussian
process classifier (GCP) and support vector machine (SVM). A maximum number of five
features were selected for each of these models. The features selected in each method are
based on the highest mean receiver operating characteristic (ROC) area under the curve
(AUC) in five-fold stratified cross validation with 20 repeats.

Each model was trained and tuned on the training cohort, using a five-fold cross validation
stratified around 2-EFS, again with 20 repeats. The model, hyperparameter and feature
selection combination with the highest mean validation score from both the 4.0 SUV and
1.5 x mean liver segmentation were tested once on the unseen test cohort data. Given
the growing literature surrounding the use of MTV as an outcome predictor, a separate
logistic regression model using total MTV was trained in addition to a model using only
clinical features and a combined clinical and MTV model. AUCs were compared using the
DeLong method [20]. An appropriate threshold from the ROC curve for each of the best
performing models was derived using the Youden index with the Matthews correlation
coefficient (MCC), sensitivity, specificity, positive predictive value (PPV) and negative
predictive value (PPV) presented.
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4.4 Results

4.4.1 Patient demographics

289 patients were included in the study, with the patient demographics detailed in Table
4.2. There were no significant differences in the clinical characteristics between training
and test cohorts.

Training (n=231) Test (n=58) p-value

Age (median) 36 41.5 0.10
Sex 0.72
Male 124 29
Female 107 29
Ethnicity 0.35
Caucasian 155 37
Non-Caucasian 26 4
Not disclosed 50 17
Stage 0.13
1 14 5
2 120 20
3 46 17
4 51 16
Chemotherapy 0.11
ABVD/AVD 199 55
Other 32 13
Radiotherapy 0.87
No 179 45
Yes 52 13
Treated as
advanced disease

0.55

No 59 12
Yes 172 46
2-year EFS Event 0.99
No 177 45
Yes 54 13
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Training (n=231) Test (n=58) p-value

Table 4.2 Demographics of the training and testing groups. 2-EFS = 2-year event free
survival. The p-values were calculated using a t-test for age and a �2 test for the remaining
demographic features.

4.4.2 Bin widths

For both the 4.0 SUV and 1.5 x mean liver SUV segmentation techniques bin widths
for PET and CT data were most robust when derived from the maximum range of SUV
or HU respectively divided by 128 (Supplementary Material 4.2: Figure S4.1 and S4.2).
Overall, the 4.0 SUV segmentation technique resulted in more radiomic features being
robust than the 1.5 x mean liver SUV segmentation method.

4.4.3 Clinical and MTV derived models of 2-EFS

Patients who had a 2-EFS event had a significantly larger MTV compared to those who
did not have a 2-EFS event. This was true for both segmentation techniques. With
the 4.0 SUV method, the median MTVs were 167.4cm3 versus 87.9cm3 (p=0.03); for
the 1.5 x mean liver SUV method, 324.3cm3 versus 148.6cm3 (p=0.009). The median
volumes were significantly greater in patients treated as advanced disease. For the 4.0
SUV method, the median MTVs were 250.6cm3 (2-EFS event) versus 110.4cm3 (no event)
(p=0.03); for the 1.5 x mean liver SUV method, 457.8cm3 (2-EFS event) versus 227.9cm3

(no event) (p=0.02).

A logistic regression model using MTV derived from a 4.0 SUV method resulted in a mean
training AUC of 0.61 ± 0.02 (mean ± 95% CI) and a mean validation AUC of 0.61 ±
0.10 with the odds ratio being 1.00038 (Table 4.3). The logistic regression model derived
from MTV using the 1.5 x mean liver SUV method had a mean training AUC of 0.63 ±
0.02 and a mean validation AUC of 0.63 ± 0.10, with the odds ratio being 1.00038.
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Model Features Hyperparameters Mean
Training

Mean
Validation

Logistic
Regression –
Clinical

Cancer stage 1,
Cancer stage 4, Age

C: 10, Penalty: l2,
Solver: newton-cg

0.74 ±
0.004

0.74 ±
0.02

Logistic
Regression –
MTV (1.5 x
mean liver SUV)

MTV C: 1e-07, Penalty: l2,
Solver: liblinear

0.63 ±
0.02

0.63 ±
0.10

Logistic
Regression –
MTV (4.0 SUV)

MTV C: 1e-07, Penalty: l2,
Solver: liblinear

0.62 ±
0.02

0.61 ±
0.10

Logistic
Regression –
Clinical and MTV
(1.5 x mean liver
SUV)

Cancer stage 1,
Cancer stage 4, Age,
MTV

C: 1, Penalty: l2,
Solver: saga

0.75 ±
0.004

0.74 ±
0.02

Table 4.3 Mean training and validation scores for the best performing clinical and
metabolic tumour volume (MTV) based logistic regression models. l2 = Ridge regression
penalty, liblinear = A library for large linear classification.

Cancer stage 1, cancer stage 4 and age were selected as features for the clinical based
logistic regression model. This had a mean training AUC of 74 ± 0.004 and a mean
validation AUC of 0.74 ± 0.02. When combing the features from this model with 1.5 x
times mean liver SUV MTV the model had a mean training AUC of 0.74 ± 0.004 and a
mean validation AUC of 0.72 ± 0.01. This model was tested on the unseen test set and
achieved an AUC of 0.68 ± 0.11 (Figure 4.1), MCC of 0.27, sensitivity of 0.31, specificity
of 0.91, NPV of 0.47 and PPV of 0.85 at a threshold of 0.45.
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Figure 4.1 Receiver operator characteristic curve for the best performing predictive
model derived from a logistic regression using MTV extracted from a 1.5 x mean liver
SUV threshold segmentation technique and clinical features. The p-value represents the
comparison of the ROC to that of the 0.5 curve.

4.4.4 Clinical and radiomic model for the prediction of 2-EFS

The predictive model with the highest AUC was a ridge regression model derived from
clinical and radiomic features extracted from 1.5 x mean SUV threshold segmentation
technique (Table 4.4). The model was constructed using features selected using a
forward wrapper with five features chosen. The hyperparameters of the model were:
C=1, penalty=l2 and solver=sag, class weight=balanced. The features chosen were
age, PET flatness, PET major axis length, PET logarithm GLSZM size zone
non-uniformity normalized, PET lbp-3D-m1 GLCM correlation and PET lbp-3D-m2 first
order skewness. The mean training AUC was 0.82 ± 0.002, the mean validation AUC
was 0.79 ± 0.01 and the test AUC was 0.81 ± 0.12 (Figure 4.2), with MCC=0.43,
sensitivity=0.42, specificity=0.94, NPV=0.67, PPV=0.85. The demographics of the
mislabelled patients are presented in Supplementary Material 2: Table S4.2.
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Model Features Hyperparameters Mean
Training

Mean
Validation

4.0 SUV

Support Vector
Machine

Age, PET GLCM
Imc1, PET
wavelet-LLH GLCM
Imc2, PET
wavelet-HLL GLSZM
small area emphasis,
PET
log-sigma-2-0-mm-3D
GLSZM small area
emphasis

C: 15.78, Gamma:
0.000794, Kernel:
sigmoid

0.68 ±
0.004

0.66 ±
0.02

Logistic
Regression

Age, PET least axis
length, PET
wavelet-HLL GLCM
correlation, PET
wavelet-HLH GLCM
Idmn, CT
wavelet-HLL GLSZM
large area low gray
level emphasis

C: 1, Penalty: l2,
Solver: lbfgs

0.80 ±
0.002

0.78 ±
0.01

Random Forest Age Bootstrap: True, Max
depth: 1, Min
samples per leaf: 11,
Min samples per split:
32, Number of
estimators: 213

0.67 ±
0.004

0.64 ±
0.02
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Model Features Hyperparameters Mean
Training

Mean
Validation

Multi-layer
perceptron

Age, PET major axis
length, PET
wavelet-HHL GLCM
Imc1, PET lbp-3D-k
first order 10th
percentile

Learning rate:
invscaling, Solver:
sgd

0.68 ±
0.004

0.68 ±
0.02

1.5 x mean
liver SUV

Support Vector
Machine

PET first order 90th
percentile, PET
wavelet-LHH GLDM
dependence
non-uniformity
normalized

C: 3.398, Gamma:
0.1005, Kernel:
sigmoid

0.54 ±
0.008

0.55 ±
0.02

Logistic
Regression

Age, PET flatness,
PET major axis
length, PET
logarithm GLSZM
size zone
non-uniformity
normalized, PET
lbp-3D-m1 GLCM
correlation, PET
lbp-3D-m2 first order
skewness

C: 1, Penalty: l2,
Solver: sag

0.82 ±
0.002

0.79 ±
0.01
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Model Features Hyperparameters Mean
Training

Mean
Validation

Random Forest Age Bootstrap: True, Max
depth: 1, Min
samples per leaf: 11,
Min samples per split:
48, Number of
estimators: 213

0.67 ±
0.004

0.64 ±
0.02

Multi-layer
perceptron

Age, PET flatness,
PET major axis
length

Learning rate:
invscaling, Solver:
adam

0.77 ±
0.004

0.75 ±
0.01

Table 4.4 Mean training and validation scores for the best performing machine learning
models using a fixed threshold of 4.0SUV and 1.5 x mean liver SUV thresholding
segmentation techniques. The K-nearest neighbours, single layer perceptron and Gaussian
process classifier models were over-fitted with the mean training and validation AUCs with
>0.10 difference between the two. l2 = Ridge regression penalty, liblinear = A library
for large linear classification, GLSZM = grey level size zone matrix, GLCM = grey level
co-occurrence matrix, GLDM = grey level dependence matrix, rbf = radial basis function,
L = low, H = high, Imc1 = informational measure of correlation 1, Imc2 = informational
measure of correlation 2, idmn = inverse difference moment normalized, lbp = local binary
pattern.

The highest performing predictive model using the 4.0 SUV threshold was a regression
model using a ridge regression penalty with a mean training AUC of 0.79 ± 0.002, the
mean validation AUC was 0.77 ± 0.01 and the test AUC was 0.74 ± 0.13 (Figure 4.3).
The MCC=0.30, sensitivity=032, specificity=0.95, NPV=0.42, PPV=0.92 at a threshold
of 0.27. The model was constructed using features selected from a forward wrapper
method of feature selection with five features chosen. The hyperparameters of the model
were: C=100, penalty=l2 and solver=saga, class weight=balanced.

There was no significant difference between the test set AUCs of the best performing
clinical and radiomic based models with each other and with the best performing clinical
and MTV based model (Figure 4.4 and Table 4.5). The intercept and coefficients for
each model are presented in Supplementary Material 2: Table S4.3.
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Figure 4.2 Receiver operator characteristic curve for the best performing predictive model
derived from ridge regression using age and radiomic features extracted from a 1.5 x mean
liver SUV threshold segmentation technique. The p-value represents the comparison of
the ROC to that of the 0.5 curve.

Figure 4.3 Receiver operator characteristic curve for the best performing predictive model
derived from ridge regression using age and radiomic features extracted using a 4.0 SUV
fixed threshold segmentation technique. The p-value represents the comparison of the
ROC to that of the 0.5 curve.

4.5 Discussion

This study confirms that pre-treatment outcome prediction using FDG PET/CT derived
radiomic features is feasible in patients with cHL. The best performing model was created
using ridge regression combining age and four radiomic features (PET flatness, PET major
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Figure 4.4 Receiver operator curves, with associated confidence intervals, for the best
performing MTV and radiomic models derived from 4.0 SUV fixed threshold and 1.5 x
mean liver SUV threshold segmentation techniques.

Clinical and MTV 1.5 x mean liver SUV 4.0 SUV

Clinical and MTV n/a 0.11 0.53

1.5 x mean liver SUV 0.11 n/a 0.22

4.0 SUV 0.53 0.22 n/a

Table 4.5 Comparison of the different test AUCs using the DeLong method, p-values
presented.

axis length, PET logarithm GLSZM size zone non-uniformity normalized, PET lbp-3D-m1
GLCM correlation and PET lbp-3D-m2 first order skewness) extracted from PET images
using a 1.5 x mean liver SUV method with a bin width of 0.24. It must be noted that there
was no significant difference between the test AUC of this model and those of a combined
clinical and MTV model and a model created using 4.0 SUV fixed threshold segmentation.
This is likely due to small numbers involved given the relatively large confidence intervals.
Due to missing clinical data, it was not possible to adjust for features used to stratify
patients into early and advanced disease. A surrogate, treatment intent, was used instead
which demonstrated that the models created remained reasonable predictors of outcome
for patients treated as having advanced disease.

Further work should be performed to assess the relationship of ethnicity and
socio-economic status on a model’s predictive ability to avoid creation of a model which
discriminates against under-represented subsets of patients due to lack of data to train
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and test the model on [21, 22]. Unadjusted confounders are likely one of the reasons for
a minority of studies reporting the poor ability of MTV as an outcome predictor in
lymphoma [23][24][25]. Most notably Adams et al. found that MTV was not an
independent predictor of overall survival or PFS in diffuse large B-cell lymphoma once
adjusting for the National Comprehensive Cancer Network International Prognostic Index
[26]. To allow for transparency our study has provided the demographic information for
the patients who were mislabelled using the predictive model with the highest test AUC.

Two different segmentation techniques were explored. The first was a fixed threshold of 4.0
SUV which has been demonstrated to be a reproducible, efficient method for contouring
disease [27]. The second was 1.5 x mean liver SUV which has been explored in other
malignancies and provides an adaptive threshold which adjusts for background SUV uptake
[17, 18]. Our study echoed previous work demonstrating a fixed threshold led to more
features being robust following re-segmentation. The fixed thresholding segmentation
technique required less steps, and less manual adaption [28]. However, a fixed SUV
thresholding technique does not scale with the physiological uptake and therefore the
contours may vary on repeat studies due to external effects on the SUV rather than
tumour pathophysiology [27]. The study also demonstrated the variability which can
occur when repeating a segmentation methodology on different software (Figure 4.5),
with radiomic features not being deemed robust following repeated segmentation even
when using the same SUV thresholds. ComBat harmonisation was employed to mitigate
against the effects of scanner variation. This is based on Bayes theorem and attempts
to predict scanner influence whilst maintaining biological variation [29]. For this to be
effective however, there must be enough samples from different scanners to apply the
harmonisation method [30] and it cannot be applied prospectively to scanner acquisitions
outside those used for training of the predictive model.

Previous studies have explored the use of radiomic features in the prediction of
outcomes in HL [13, 14][15]. Lue et al. found SUV kurtosis, stage and intensity
non-uniformity (INU) derived from Grey-Level Run Length Matrix (GLRLM) were
independent predictors of PFS in a small cohort of 42 patients. Milogrom et al.
demonstrated that the combination of SUVmax, MTV, InformationMeasureCorr1,
InformationMeasureCorr2, and InverseVariance derived from GLCM 2.5 had an AUC of
0.95 when predicting relapse in 167 patients with stage I-II HL. However, there were
very few events, with the validation cohort only having two patients who relapsed.
Sollini et al. assessed a radiomic fingerprint using principal component analysis to
classify patients who would relapse within 4 years of treatment in a cohort of 85
patients. They explored fingerprints created from a single largest nodal or extra-nodal
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Figure 4.5 Select axial slice through PET (A) and CT (B) images of a patient with
Hodgkin lymphoma demonstrating a pathological left level II lymph node. The purple
segmentation represents the original 4.0 SUV fixed threshold segmentation performed
using Mirada Medical RTx (v1.8.2) software and the green areas represent the additional
area included when segmented with a fixed 4.0 SUV threshold using 3D Slicer (v4.11)
software.

lesion versus using all lesions and found that the intra-patient similarity was low, and
that the highest accuracy was achieved when using all lesions within the model [15].
This highlights the inherent heterogeneity of radiomic features within different lesions
and that by restricting analysis to a single lesion, the predictive model may also be
limited. The current study of 289 patients is one of the largest to assess potential utility
of radiomic features derived from pre-treatment FDG PET/CT for predicting outcome
in cHL patients. It demonstrates that radiomics could feasibly improve prediction of
2-EFS. However, this requires validation on an independent external dataset and
although the AUC for the test set was 0.81, no clear predictive threshold could be
derived. This must be a key target when creating any machine learning or AI based
model. In terms of HL, it would be the ability to balance side effects of escalated
treatment, with the rates of EFS and toxicity vary between treatment regimens [31].
The advent of newer therapeutic strategies limits the use of predictive models made on
retrospective data; future efforts should focus on validating imaging, genetic and clinical
predictive features in carefully designed prospective, multi-centre clinical trials.

A TRIPOD checklist was used to ensure transparency of the study’s methodology; a
concern in previous radiomic studies [32, 33]. However, no external validation was
performed, and although contouring was undertaken without knowledge of clinical
outcome, no measures to blind assessors was specifically undertaken. Although patients
with other concurrent malignancies were excluded from analysis, other pathologies were
not taken into consideration when looking at mortality. Other study limitations include
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its retrospective nature, the relatively small event rate, reliance on clinical records to
determine date of relapse/recurrence, exclusion of patients with hepatic disease/or
without disease >4.0 SUV and variation in different patient’s treatment regimen.

4.6 Conclusion

There is potential for models derived from radiomic features extracted from pre-treatment
FDG PET/CT to predict 2-EFS in cHL patients. Further work is needed to determine
optimum thresholds for clinical use.
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4.8 Supplementary Material

4.8.1 Supplemental Material 4.1

1. This study looks at the utility of pre-treatment FDG PET/CT derived machine learning
models for outcome prediction in classical Hodgkin lymphoma. (Title)



- 152 -

2. The abstract covers a summary of all the requested information. (Abstract)

3. a) The introduction presents the background of HL sets out the aim of creating a
predictive model using machine learning techniques using radiomic features derived from
the baseline PET/CT. Two previous papers are discussed which aim to create a similar
model. (Introduction) b) The aim of this study was to create a predictive model using
radiomic features derived from pre-treatment FDG PET/CT to predict 2-year EFS in HL
patients using a larger tertiary centre cohort of patients (Introduction)

4. a) This is a retrospective single centre cohort study. The study cohort was randomised
on a ratio of 4:1 into training and testing cohorts stratified around 2-EFS, age, gender,
ethnicity and disease stage. (Patient selection)

b) Consecutive patients with histologically proven cHL who underwent baseline FDG-
PET/CT at a single large tertiary referral centre between June 2008 and January 2018
were included. The follow up information recorded is set out in the patient selection
section. (Patient selection)

5. a) This is a single tertiary centre study. (Patient selection) b) Patients were excluded
if they were under 16 years of age, did not have cHL, had treatment prior to their
staging PET/CT study, did not have measurable disease on PET/CT, had a concurrent
malignancy, they did not have disease over 4.0SUV, had hepatic involvement or if the
images were degraded or incomplete. The follow up information recorded is set out
(Patient selection) c) The treatment regimen for the cohort is set out in Table 4.2. No
change to departmental standard treatment was performed. (Table 4.2)

6. a) An event was defined as relapse, recurrence or death within the 2 year follow up
period. (Patient selection) b) As this was a retrospective study the primary outcomes
were defined from clinical records. The investigator reviewing the records was blinded to
the imaging parameters.

7. a) The description of the contouring method, resampling, harmonisation, radiomic
feature extraction and the methods used for feature selection are documented within the
method section and Supplementary Material 4.2. The features selected as part of the
models are described in Table 4.3. (Materials and methods, Supplementary Material 4.2,
Results) b) The images were contoured and analysed without reference to the outcome
data.

8. All patients which met the inclusion criteria were included. The cut-off of January
2018 was chosen to allow for 2 year follow up without confounding factors introduced due
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to the covid-19 pandemic. For feature selection 5 features were chosen as the maximum
number of features to be include in each model. This was derived from 10 events per
parameter, with 54 events within the training cohort. (Materials and methods, Results)

9. Only complete data sets were used in the analysis. (Results)

10. a) Clinical factors were included in the variable selection process alongside radiomic
features. The categorical data was dummy encoded. Continuous features were
normalised using a standard scaler. (Machine learning analysis, Supplementary Material
4.2) b) Random forest, support vector machine, logistic regression, k-nearest neighbour,
single layer perceptron, multi-layer perceptron and Gaussian process classifier models
were trained and tuned on the training cohort using cross validation. The models were
created using different feature selection methods, the bin width or bin number was
selected based on the method which had the greatest robust features (intraclass
correlation coefficient >0.8) following regimentation. A model was generated using
radiomic features from a fixed 4.0 SUV threshold segmentation technique and a 1.5 x
mean liver SUV threshold segmentation technique. A model was also created using
metabolic tumour volume. The models with the highest mean receiver operating
characteristic (ROC) area under the curve (AUC) were tested and compared on the
unseen test cohort. (Machine learning analysis, Supplementary Material 4.2) d) When
comparing models, the mean validation AUC was used to determine the best performing
model. A Delong test was used to compare the AUCs of the test set. (Machine learning
analysis, Supplementary Material 4.2)

11. Risk groups were not created within the model.

13. a) 289 patients were included, with demographics detailed in Table 4.2. (Results) b)
The characteristics of the participants are presented in Table 4.2.

14. a) The number of events per cohort are presented in Table 4.2. b) This has not been
performed. The training and testing cohorts were stratified around key clinical features,
but the results are not adjusted for these. Further analysis was performed looking at how
the model performed on patients treated as having advanced disease.

15. a/b) The features and hyperparameters used to create the model are presented in
the Clinical and radiomic model for the prediction of 2-EFS section.

16. The mean validation and test ROC curves are presented. The 95% confidence
intervals are presented. (Results)
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18. The limitations of the study are presented. These include the retrospective nature of
the study, the relative low number of events, reliance on clinical records, the exclusion of
patients with hepatic disease or disease not meeting the 4.0 SUV threshold, variation in
patient treatment and that there was no external validation. (Discussion)

19. b)/20. The discussion section gives an overall interpretation of the results and
highlights the potential use of a pre-treatment model to aid in early personalised treatment
for patients. (Discussion)

21. The python libraries used are references within the text. The radiomic features
extracted using PyRadiomics are detailed in Supplementary Material 2: Table S4.1.

22. The study was not externally funded. Individual author’s funding is declared within
the Declaration.
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4.8.2 Supplemental Material 4.2

4.8.2.1 Image segmentation

Image data were viewed and contoured using specialised multimodality imaging software
(RTx v1.8.2, Mirada Medical). Lymphomatous disease segmentation was performed by
a clinical radiologist with six years’ experience and a research radiographer with 2 years’
experience of segmenting cross-sectional imaging and reviewed by two dual-certified
Radiology and Nuclear Medicine Physicians with >15 years’ experience of oncological
PET/CT interpretation. Any discrepancies were agreed in consensus. Two segmentation
techniques were utilised, the first using a fixed threshold of 4.0 SUV and the second
using a threshold of 1.5 x liver SUVmean was used to contour disease sites on PET, this
method has been used in different cancer types [16, 17]. The mean liver SUV was
determined by placing a 110 cm3 region of interest in the right lobe of the liver. The
contour from the PET was translated to the co-registered unenhanced low-dose CT
component of the study with the contours matched to soft tissue with a value of -10 to
100 Hounsfield units (HU). Contours were exported as digital imaging and
communications in medicine (DICOM) radiotherapy (RT) structures. Ten percent of the
cases were re-segmented using the same methodology described by the radiologist who
performed the initial segmentation after a 3-month washout period using Slicer (v4.11).
These segmentations were used to test the repeatability of the segmentation techniques
and to test the robustness of the extracted features.

4.8.2.2 Feature extraction

DICOM images and DICOM-RT structures were converted to Neuroimaging Informatics
Technology Initiative (NIfTI) files using the python library Simple ITK (v2.0.2). Absolute
PET voxel values were converted to body weight SUV and voxel values for CT were
converted to HU using the equations detailed below

ActivityConcentration
(
Bq

ml

)
= PixelV alue ∗ Slope+ Intercept

CorrectionFactor = 2

(
−
(
ScanT ime (s)−MeasuredT ime (s)

HalfLife (s)

))

SUV bw =
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(
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)
∗BodyWeight (g)

TotalDose ∗ CorrectionFactor
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HounsfieldUnits = PixelV alue ∗ Slope+ Intercept

Both CT and PET data were resampled to a uniform voxel size of 2 mm3. The
robustness of radiomic features to re-segmentation using different software was used to
identify the optimum bin width for the dataset. Radiomic features were extracted using
a fixed bin number of 32, 64 and 128, and bin widths derived from either dividing the
maximum or median voxel range by 32, 64 and 128. Features were deemed to be robust
if the intraclass correlation coefficient (ICC) calculated using the python library pingouin
(v0.3.12) was >0.8. First and second order parameters were extracted using
PyRadiomics (v2.2.0). There are some deviations between PyRadiomics and the image
biomarker standardisation initiative (IBSI), with Pyradiomics starting the fixed bin width
from 0 and not the minimum segmentation value, and the calculation of first order
kurtosis being +3 larger in PyRadiomics [18, 19]. Patient age, histology and sex were
also included as clinical features in the models. Disease stage and sex were dummy
encoded using (Pandas v1.2.4). This resulted in a total of 3935 features extracted per
segmentation technique for each patient (Table S4.1). Harmonisation to account for the
different scanners was applied to the radiomic features using the ComBat method
(https://github.com/Jfortin1/ComBatHarmonization) [20].

4.8.2.3 Machine learning analysis

The study cohort was split into training and test cohorts stratified around 2-year EFS
(2-EFS), age, sex, ethnicity, stage of disease, having radiotherapy, having ABVD-based
chemotherapy and being treated as advanced disease using scikit-learn (v0.24.2).
Ethnicity was defined by the volunteered information from patients. Given the low
numbers of some ethnic groups, it was not possible to stratify the training and tests
around ethnicity without splitting the data into Caucasian and non-Caucasian ethnic
groups. The cohorts were split using an 80:20 ratio. Mann-Whitney U and �2 tests
(SciPy v1.6.3) were used to assess for significance in continuous and categorical clinical
characteristics between the training and test cohorts respectively. A p-value less than
0.05 was regarded as significant. Categorical data was dummy encoded (Pandas v1.2.4),
and continuous data was normalised using a standard scaler (scikit-learn v0.24.2).
Correlated features were removed if the Pearson coefficient was over 0.8. Seven different
machine learning methods were used to create prediction models (scikit-learn v0.24.2):
random forest, logistic regression (elastic net, lasso and ridge penalties explored),
k-nearest neighbour (KNN), single layer perceptron (SLP), multi-layer perceptron
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(MLP), Gaussian process classifier (GCP) and support vector machine (SVM). A
maximum number of five features was selected for the model and this was based on one
feature per 10 events. Three feature selection methods were used: a forward wrapper
method (mlxtend 0.18.0), a univariate analysis method (scikit-learn v0.24.2), and a
recursive feature extraction method (for the models where this was applicable i.e.
random forest and logistic regression) (scikit-learn v0.24.2). For each of these methods,
two to five selected features were evaluated in the machine learning models. The
features selected in each method are based on the highest mean receiver operating
characteristic (ROC) area under the curve (AUC) in five-fold stratified cross validation
with 20 repeats.

Each model was then trained and tuned on the training cohort, using a stratified five-fold
cross validation stratified around 2-EFS, again with 20 repeats. Hyperparameters were
initially tuned using a random search cross validation with 1000 different combinations
explored (scikit-learn v0.24.2). For all models the random state hyperparameter was
set to a value of 0, and, where applicable, the class weight hyperparameter was set to
“balanced” to help mitigate the unbalanced nature of the data. The hyperparameters of
the 10 top highest validation scores from the random search cross validation were further
explored using grid search cross validation (scikit-learn v0.24.2). For the combination of
hyperparameters explored in the tuning process, if the mean training and mean validation
AUC were not within 0.03 the model was discarded. The remaining models were ranked
by the highest mean validation score. The model, hyperparameter and feature selection
combination with the highest mean validation score from both the 4.0 SUV threshold
segmentation and the 1.5 x mean liver SUV threshold were tested once on the unseen
test cohort data. Given the growing literature surrounding the use of MTV as an outcome
predictor a separate logistic regression model using MTV was trained on the training set
and tested on the unseen test cohort as was used as a comparison to the best performing
model. AUCs were compared using the DeLong method. An appropriate threshold from
the ROC curve for each of the best performing models was derived using the Youden
index with the Matthews correlation coefficient (MCC), sensitivity, specificity, positive
predictive value (PPV) and negative predictive value (PPV) presented.

Missing clinical data meant that a comparison with commonly utilised clinical scoring
methods was not possible and the treatment regime used was used a surrogate indicator
of whether the patient was deemed to have early or advanced disease.
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First Order Shape GLCM GLRLM GLDM GLSZM NGTDM

10th Percentile Elongation Autocorrelation Grey Level
Non-Uniformity

Dependence Entropy Grey Level
Non-Uniformity

Busyness

90th Percentile Flatness Cluster Prominence Grey Level
Non-Uniformity
Normalized

Dependence
Non-Uniformity

Grey Level
Non-Uniformity
Normalized

Coarseness

Energy Least Axis Length Cluster Shade Grey Level Variance Dependence
Non-Uniformity
Normalized

Grey Level Variance Complexity

Entropy Major Axis Length Cluster Tendency High Grey Level Run
Emphasis

Dependence Variance High Grey Level Zone
Emphasis

Contrast

Inter quartile Range Maximum 2D Diameter
Column

Contrast Long Run Emphasis Grey Level
Non-Uniformity

Large Area Emphasis Strength

Kurtosis Maximum 2D Diameter
Row

Correlation Long Run High Grey
Level Emphasis

Grey Level Variance Large Area High Grey
Level Emphasis

Maximum Maximum 2D Diameter
Slice

Difference Average Long Run Low Grey
Level Emphasis

High Grey Level
Emphasis

Large Area Low Grey
Level Emphasis

Mean Absolute
Deviation

Maximum 3D Diameter Difference Entropy Low Grey Level Run
Emphasis

Large Dependence
Emphasis

Low Grey Level Zone
Emphasis

Mean Mesh Volume Difference Variance Run Entropy Large Dependence High
Grey Level Emphasis

Size Zone
Non-Uniformity

Median Minor Axis Length Id Run Length
Non-Uniformity

Large Dependence Low
Grey Level Emphasis

Size Zone
Non-Uniformity
Normalized

Minimum Sphericity Idm Run Percentage Low Grey Level
Emphasis

Small Area Emphasis

Range Surface Area Idmn Run Variance Small Dependence
Emphasis

Small Area High Grey
Level Emphasis

Robust Mean Absolute
Deviation

Surface Volume Ratio Idn Short Run Emphasis Small Dependence High
Grey Level Emphasis

Small Area Low Grey
Level Emphasis

Root Mean Squared Voxel Volume Imc1 Short Run High Grey
Level Emphasis

Small Dependence Low
Grey Level Emphasis

Zone Entropy
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First Order Shape GLCM GLRLM GLDM GLSZM NGTDM

Skewness Imc2 Short Run Low Grey
Level Emphasis

Zone Percentage

Total Energy Inverse Variance Zone Variance

Uniformity Joint Average

Variance Joint Energy

Joint Entropy

MCC

Maximum Probability

Sum Average

Sum Entropy

Sum Squares

Table S4.1 The radiomic features extracted for both the PET and CT components. The equations for the features can be found at
https://pyradiomics.readthedocs.io/en/latest/features.html. GLCM = grey level co-occurrence matrix, GLDM = grey level dependence
matrix, GLRLM = grey level run length matrix, GLSZM = grey level size zone matrix, NGTDM = neighbouring grey tone difference
matrix, Id = inverse difference, Idn = inverse difference normalised, Imc = informational measure of correlation, Idm = inverse difference
moment, Idmn = inverse difference moment normalised, MCC = Matthews correlation coefficient. Each of the first and second order
features were extracted from the original imaging and then from the images following filters applied. The filters used were: wavelet (LLL,
LLH, LHL, LHH, HHH, HLH, HHL, HLL); log-signa (1.0, 2.0, 3.0, 4.0); square; square root; logarithm; exponential; gradient; lbp-3D
(m1, m2, k).

2-year EFS: Prediction 2-year EFS: True Age Group Sex Ethnicity Cancer Stage Treated as advanced
disease

Radiotherapy

0 1 60-69 Female Caucasian 3 1 0

1 0 70-79 Male Caucasian 3 1 1

1 0 60-69 Female Caucasian 4 1 0
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1 0 40-49 Female Caucasian 3 1 1

1 0 40-49 Female Caucasian 2 0 1

1 0 80-89 Male Caucasian 2 0 1

1 0 70-79 Male Caucasian 2 1 0

1 0 30-39 Female Caucasian 2 1 0

1 0 60-69 Male Caucasian 3 1 0

1 0 70-79 Female Caucasian 2 0 1

1 0 40-49 Male Caucasian 2 1 1

1 0 50-59 Male Caucasian 3 1 0

1 0 20-29 Male Non-Caucasian 3 1 0

0 1 40-49 Male Caucasian 4 1 0

1 0 40-49 Male Caucasian 4 1 0

1 0 70-79 Male Not disclosed 4 1 0

1 0 70-79 Female Not disclosed 3 1 1

Table S4.2 Patient information for mislabelled test cases when using the 1.5 x mean liver SUV combined clinical and radiomic ridge
regression model.

Model Intercept Coefficients

Clinical and MTV -0.35815567 Cancer stage 1: 5.02009465 , Cancer stage 4: -1.27629249, Age: 0.4807701, MTV: 0.15398729

1.5 x mean liver SUV -0.42846688 Age: 0.86012792, PET flatness: 0.75497062, PET major axis length: 1.05538773, PET logarithm GLSZM size zone non-uniformity normalized: -0.57813534, PET lbp-3D-m1
GLCM correlation: 0.61007467, PET lbp-3D-m2 first order skewness: -0.84823908

4.0 SUV -0.41354898 Age: 0.73897899, PET least axis length: 1.10580035, PET wavelet-HLL GLCM correlation: -0.75524818, PET wavelet-HLH GLCM Idmn: -0.488136, CT wavelet-HLL
GLSZM large area low gray level emphasis: -0.85812909
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Table S4.3 Intercept and coefficients for the best performing clinical and MTV, and radiomic logistic regression models. GLSZM = grey
level size zone matrix, GLCM = grey level co-occurrence matrix, GLDM = grey level dependence matrix, rbf = radial basis function, L =
low, H = high, Imc1 = informational measure of correlation 1, Imc2 = informational measure of correlation 2, idmn = inverse difference
moment normalized, lbp = local binary pattern.
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Figure S4.1 Number of robust radiomic features when using a bin width derived from the maximum SUV or HU. A and B represent PET
and CT studies, respectively, using 1.5 times mean liver SUV segmentation and C and D represent PET and CT studies, respectively,
using a fixed threshold of 4.0SUV segmentation.
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Figure S4.2 Number of robust radiomic features when using a bin width derived from the maximum SUV or HU. A and B represent PET
and CT studies, respectively, using 1.5 times mean liver SUV segmentation and C and D represent PET and CT studies, respectively,
using a fixed threshold of 4.0SUV segmentation.



- 164 -

Chapter 5
Discussion

5.1 Summary of aims

In this thesis I have reviewed the published literature surrounding use of PET derived
imaging biomarkers for outcome prediction in DLBCL and cHL (Chapter 2) and explored,
trained and internally validated machine learning derived radiomic models to predict 2-year
EFS in DLBCL (Chapter 3) and cHL (Chapter 4).

The following sections will summarise each study and provide a discussion around the
limitations and potential future work.

5.2 Baseline PET/CT imaging parameters for prediction of
treatment outcome in Hodgkin and diffuse large B cell
lymphoma: a systematic review (Chapter 2)

5.2.1 Summary

A systematic review of the literature evaluating the clinical utility of imaging biomarkers
derived from baseline FDG PET/CT for outcome prediction in DLBCL and cHL was
undertaken. Forty-one articles were included (31 DLBCL, 10 HL) with all of them
demonstrating a moderate to high risk of bias. Significant predictive ability was reported
in 5/20 DLBCL studies assessing SUVmax (PFS: HR 0.13-7.35, OS: HR 0.83-11.23),
17/19 assessing metabolic tumour volume (MTV) (PFS: HR 2.09-11.20, OS: HR
2.40-10.32) and 10/13 assessing total lesion glycolysis (TLG) (PFS: HR 1.08-11.21, OS:
HR 2.40-4.82). Significant predictive ability was reported in 1/4 HL studies assessing
SUVmax (HR not reported), 6/8 assessing MTV (PFS: HR 1.2-10.71, OS: HR
1.00-13.20). Six papers explored the use of radiomics for outcome prediction (4 DLBCL,
2 cHL).

The review identified opportunities for future research including establishing multi-centre
networks which would help facilitate larger training data and external validation of models;
a consensus on an appropriate segmentation technique which could be utilised universally;
a consensus on clinically relevant predictors; and, in the exploration of different machine
learning models which did not rely on monotonic relationships.



- 165 -

5.2.2 Limitations

One of the main limitations to the study was inclusion of studies which were deemed to
have a high risk of bias. However, as detailed in the paper, there were no publications
which had a low risk of bias and therefore it may be that the reviewers were “hawkish” and
that excluding high-risk studies may have introduced bias into the systematic review. One
further limitation is the differences in segmentation technique and scanners used meaning
that there is likely to be variation in the results which would influence the forest plots
and is the likely cause of wide confidence intervals. The literature tended to focus on a
dichotomous split for continuous variables such as MTV and TLG. The rationale for this
is likely due to the non-linear relationship of MTV to outcome, however, by stratifying
the data in such a manner valuable information is potentially lost.

Since this systematic review was conducted there have been further articles published
describing the use of imaging biomarkers for predicting outcomes in DLBCL and cHL.
One of the main emerging themes is an increased number of papers exploring the use of
tumour based radiomic features in combination with machine learning techniques. A brief
overview of the published literature since the systematic review is provided below.

One of the most notable and largest studies recently published is a proposed international
metabolic prognostic index by Mikhaeel et al. which developed a predictive model using
1242 baseline PET/CTs in patients with DLBCL from five separate previously published
research studies [1]. A model based on MTV, age and stage was able to provide an effective
predictive model for 3-year PFS. The methodology used in this work is transparent and
a simple to use calculator is provided as part of the supplemental material which lends
itself well to be easily utilised in future studies. There are a couple of points to consider
regarding the adaptation of this model clinically. The first is the need for a standardised
automated segmentation process as this aspect can be time consuming in cases with large
volume disease or where disease is adjacent to physiological uptake which may be a barrier
to clinical translation. The second is the reliability of SUV measurements, with variation
in SUVmax reported as being up 10% between repeated studies. This has the potential
to lead to changes in recorded volume when a fixed threshold is used [2]. However, the
likelihood is that this is would only be a small change, not significantly influencing a
patient’s probability given the coefficients involved.

There has been an increase in papers including external validation for their trained models
more recently. Jiang et al. trained and externally validated a 3D U-Net to segment
DLBCL and demonstrated that a high predicted MTV (>201.2cm3) was associated with
PFS (HR = 3.097, P<0.001) and OS (HR=6.601, p<0.001) [3]. The U-NET was trained
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using segmentations which were manually adjusted from a semi-automated 41% SUVmax
contour. Although the U-NET was trained and externally validated, it is unclear if survival
analysis was performed on the dataset as a whole and therefore has not been validated
within the paper.

Another study by Jiang et al. developed a radiomic based prediction model in a group of
383 DLBCL patients (273 training and 110 external validation) using a cross
combination approach for feature selection and classification model creation [4]. A
signature created from 12 radiomic features was a significant predictor of PFS (HR
8.037 (95% CI 3.304-19.551)) and a signature created from 31 radiomic features
resulted in a significant predictor of OS (HR 4.054 (95% CI 2.337-7.031)). A combined
Cox regression model created using radiomic features, age, Ann Arbor score, presence of
bulky disease, SUVmax and TMTV resulted in a c-index of 0.76 (95% CI 0.618-0.795)
when predicting PFS in the validation cohort and 0.79 (95% CI 0.668-0.881) when
predicting OS in the validation cohort. A number of aspects of the methodology were
not described, which make this work difficult to replicate in its current form: the
discretisation method is not provided, hyperparameters used are not detailed and the
classifier models used to generate radiomic signatures for PFS and OS, had no cut off
value provided. It is therefore unclear how the time aspect was handled. Ceriani et al.
explored the use of baseline PET radiomic in DLBCL for patients treated with either
14-day (training) or 21-day (validation) cycle chemotherapy (training = 156, external
validation = 107) [5]. A fixed threshold of 4.0 SUV was used for segmentation. The
study used LASSO regression for feature selection and the four radiomic features
selected resulted in good AUCs in the validation dataset for PFS (0.71) and OS (0.70).
Zhang et al. explored a radiomic signature created from LASSO repression in 152
DLBCL patients (training = 100, internal validation = 52), with features being
extracted from both the metabolic bulk volume, which is the metabolic volume of the
largest lesion, and total MTV [6]. Both radiomic signatures were significant predictors
of PFS and OS, segmentation was performed 41% SUV.

Eertink et al. explored six different predictive models, a combination of clinical, basic
imaging biomarkers and radiomics in assessing 2-year time to progression in 317 DLBCL
patients. Segmentation was performed by using a fixed threshold of 4.0 SUV [7]. There
was no separate validation group, but five-fold stratified cross validation with 2000 repeats
was utilised. They found that a combination of radiomic and clinical features had the
best performance. A more recent paper by Eertink et al. explored standard conventional
PET features, features assessing dissemination of disease and radiomic features extracted
from specific lesions (defined by size or SUV uptake) or from the full disease burden to
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assess the predictive ability in assessing 2-year PFS in DLBCL patients [8]. They found
that models consisting of conventional PET and dissemination features had the highest
predictive values, and that no lesion selection approach had a significantly higher predictive
value than any other. Cottereau et al. further explored the use of disease dissemination
using the largest distance between lesions standardised to body surface area and found
that it was a significant predictor of PFS and OS in a cohort of 290 patients who were
part of the REMARC trial [9]. When combining this with MTV it provided three distinct
risk groups for 4-year OS (95%, 79% and 66%,) and 4-year PFS (90%, 63% and 41%).

There have also been further smaller studies published , which have a higher risk of
bias. A small retrospective study of 35 patients by Ortiz et al. demonstrated that both
MTV and TLG derived from a fixed threshold segmentation of 2.5 SUV were significantly
associated with PFS and OS and that combining immunohistochemical and chromosomal
translocations with these imaging features improved the c-index of models [10]. The
best performing PFS model having a c-index of 0.923 and OS model having a c-index
0.863 utilising MTV with histological and genetic factors. The main limitation to this
model is that it is a small dataset with no internal or external validation and there was no
comparison with established clinically based prediction models. Mazzara et al. assessed
the relationship between genetic metabolic signatures and radiomic defined signatures
in outcome prediction in DLBCL patients [11]. They found that first order kurtosis,
first order energy, sphericity, NGLDM contrast was associated with the genetic metabolic
signature and with PFS and highlights the principle of radiomics to provide a non-invasive
assessment of cancer metabolism. Zhou et al. performed a small study on 65 HL patients
(training = 49 and testing = 16) using LASSO regression for feature selection and then
undertaking Cox analysis [12]. They found that GLZLM LZHGE and Dmax were predictive
of PFS, (HR�=�9.007; p=0.044) and (HR�=�3.641; p=0.048) respectively. However, the
study included 14 patients with non-classical HL which often have a different treatment
and outcome course when compared to cHL and may not be generalisable to populations
entirely made up of cHL patients as a whole.

5.2.3 Future work

The frequency of publications in this area demonstrates that this is a very topical area of
research which has yet to translate clinically. The issues previously discussed surrounding
generalisability of models still remain [13]. More recent studies are becoming more robust
and transparent with their model training and testing and are using multi-centre data.
Studies such as the one by Mikhaeel et al. detailing the international metabolic prognostic
index provide the means to easily validate their model on datasets from other institutions
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in retrospective and prospective trial situations. My intention would be to externally
validate this model on the LTHT dataset. There still needs to be consensus agreement on
segmentation technique as this not only influences the measured tumour volume but also
potentially radiomic features extracted from the segmented volume. A 4.0 SUV threshold
technique has been reported as being easily applicable and robust to user variability when
compared to other segmentation techniques, but variation between protocol repeatability
should also be considered [14].

There has been less research into imaging biomarkers in cHL when compared to DLBCL.
cHL lends itself more easily to early risk stratification and prognostic trials based on
imaging derived prediction models due to the already clinically adopted treatment
stratification strategy [15]. By developing a predictive model using a multi-centre
network/trial imaging data, there is the opportunity to perform prospective imaging
trials looking at early treatment stratification using imaging and clinical biomarkers.

5.3 Discovery of pre-treatment FDG PET/CT-derived
radiomics-based models for predicting outcome in diffuse large
B-cell lymphoma (Chapter 3)

5.3.1 Summary

The study explored the use of radiomics and clinical features for prediction of 2-year EFS
in 229 DLBCL patients (training = 183, test = 46) treated with R-CHOP. Six different
machine learning models (LASSO, ridge and elasticnet regression, random forest, support
vector machines and k-nearest neighbour) as well as a simple MTV regression model were
trained and tuned using stratified four-fold cross validation with 25 repeats. The best
performing model based on the mean AUC derived from the ROC curve was tested on
the unseen test set. Ridge regression using the features: stage four, PET original GLSZM
large area emphasis, PET wavelet-HHL GLSZM small area emphasis, PET wavelet-HHH
GLSZM grey level non-uniformity normalized, PET square 10th percentile was the best
performing model. This model outperformed one derived from MTV in the training
dataset and had an AUC of 0.73 on the unseen test set.

5.3.2 Limitations

As described within Chapter 3 there are several limitations associated with the study.
One of the main limitations is the use of relatively small numbers of patients from a
single tertiary centre, and although four different scanners were utilised during the study
period, there is still a potential issue with the generalisability of the models to different
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study populations. ComBat harmonisation was used to try and account for inter-scanner
variations. The method uses empirical Bayes to estimate scanner variability which is then
adjusted for. However, because of the method of application if a scanner was not part of
the training data, then it is not possible to apply the same correction used in the training
dataset which would limit its use in prospective trials.

The methodology applied requires semi-automated segmentation with manual adjustment
around physiological uptake. This process, although not investigated here, has been shown
previously to have some operator dependency which could affect reproducibility. Also, the
ease of use of a tool is likely to influence how likely it is to be adopted in clinical practice.
Therefore, automated segmentation needs to be prioritised to allow for the adoption of the
metabolic prognostic score as well as future radiomic type models, or a CNN for outcome
prediction needs to be developed . A study by Yousefirizi et al. and Liu et al. have
both demonstrated the application of CNNs to segment lymphomatous disease [16][17].
The benefit of having a segmentation step is that it can be reviewed visually for any
discrepancy, and if needed, the radiomic features can be explained mathematically unlike
with a CNN where most of the time these operate as “black boxes” without explanation
of how results have been derived.

Overfitting was present within some of the models created, and a penalty was included
to mitigate against this. However, the penalty may have been too stringent which might
have meant that the performance of the models created were underestimated. The cross-
validation split was chosen as it gave the most consistent scores, however, different training
splits may have benefited model development. Although the best model had a good
performance, no useful threshold for outcome prediction could be derived. The models
presented were based on treatment with R-CHOP and are not necessarily applicable to
other therapy regimens. Therefore, further models would have to be derived if treatment
strategies were to change. Missing clinical data meant that it was not possible to compare
the presented models with clinically used prognostic models without severely limiting the
number of samples used within the study. Similarly, only 70 patients had cell of origin
information, and therefore this was not included in the analysis.

5.3.3 Future work

The study demonstrated the potential for a machine learning radiomics model derived from
pre-treatment FDG PET-CT to predict 2-EFS in DLBCL patients. The model was saved
in a trained state (“pickled”) at the time of development and can be tested on external
datasets from other institutions, and this is something to pursue in future work. Access
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has since been granted to trial data from approximately 150 DLBCL patients from the
National Cancer Institute Data Archive (NCT00118209) to externally validate our model
[18]. Further work to explore optimal scanner harmonisation allowing generalisability of
the models is also required. There is a potential opportunity to use autoencoders to
replicate the acquisition parameters of different scanners in image harmonisation. Recent
work by our group in Leeds has explored the potential of this approach focusing on brain
MRI image harmonisation [19]. Time to event machine learning models could be explored
within the dataset to minimise the loss of data which does not meet the follow up time for
a binary classifier; the literature is dominated by Cox regression models utilising LASSO
regression, however, other machine learning models should be explored [20].

There is growing evidence surrounding the use of combined genetic, radiological and
clinical prediction models, and this is something which should be further studied within
DLBCL [11,21,22]. The lack of genetic/COO information inhibited the ability to create
this model during the thesis. One option which could be explored is the use of multichannel
variational autoencoders [23]. Each parameter would take the form of an input and would
be convoluted down or reduced in size via dense layers into a concatenated latent space
and then decoded back into the different outputs. The variational aspect resamples the
latent space to generate realistic outputs, therefore this method could be used to create
realistic missing data (genetic, clinical, or imaging) from the data already present.

5.4 Utility of pre-treatment FDG PET/CT derived machine
learning models for outcome prediction in classical Hodgkin
lymphoma (Chapter 4)

5.4.1 Summary

The study explored the use of radiomic features derived from pre-treatment FDG
PET-CT and clinical features for prediction of 2-EFS in 289 cHL patients (training =
231, test = 58). Seven machine learning models were explored (random forest, logistic
regression (elastic net, LASSO and ridge penalties explored), k-nearest neighbour,
single-layer perceptron, multi-layer perceptron, Gaussian process classifier and support
vector machine) and trained and tuned using stratified five-fold cross validation on the
training set. The best performing radiomics models from two different segmentation
techniques (fixed threshold of 4.0 SUV and a threshold based on 1.5 x liver mean SUV),
judged by the mean AUC derived from ROC curve analysis, were tested on an unseen
test dataset. The different machine learning models were compared with each other,
and a logistic regression model created using MTV and clinical features. The best
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performing model, trained and internally tested, was a logistic regression predictive
model with ridge penalisation based on the 1.5 x mean liver SUV using the features
PET flatness, PET major axis length, PET logarithm GLSZM size zone non-uniformity
normalized, PET lbp-3D-m1 GLCM correlation and PET lbp-3D-m2 first order
skewness. Although there was no significant difference between the top performing
radiomics model and a model derived from clinical features and MTV when tested on
the unseen test set.

5.4.2 Limitations

There are similar limitations demonstrated in Chapter 4 to those in Chapter 3. Again,
the numbers of patients studied is relatively small and from a single tertiary centre which
affects the generalisability. The study aimed to be more transparent about the patient
population by presenting the mislabelled cases. The patient population the model is based
on will affect how generalisable it is to other populations, and with a model trained on
sparse data there is a higher chance that there are groups of patients for which there was
not training data. The relatively small numbers of patients likely impacts the ability to
demonstrate significant differences between the models’ performance, as DeLong’s test
has been reported to be a conservative measure of significance [24].

The discretisation method chosen was based on the method which produced the highest
number of radiomic features with an ICC score of over 0.8. However, this method does
not take into consideration that there is a potential for radiomic features with little
variation between lesions depending on the filters applied and therefore they may be
extremely robust but do not provide information to a model. Consideration surrounding
the variation present in radiomic features as well as the robustness of features needs to
be considered.

5.4.3 Future work

There needs to be further study focused on model generalisability and the likely impact
these models would have on patients and clinicians. As mentioned previously cHL lends
itself to the setup of prognostic treatment stratification-based imaging trials as there
are treatment escalation regimes available [15]. The causality of features used in model
creation should be explored further, as although this is not something which is considered
in pure predictive modelling the ability to understand and explain possible confounders of
a model allows for a greater understanding of its limitations [25]. As discussed in Chapter
4 determining how a model reacts to patients from under represented populations may
help improve model performance [26].
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5.5 Future perspectives and considerations

As with advances in lymphoma treatment, recent developments in imaging acquisition
and improvements in PET/CT technology have the potential to make the current
reported predictive models redundant in the future. However, this should not dissuade
research in this field, but should be welcomed and explored as these techniques may
offer a higher signal to noise ratio for features extracted, and therefore more information
for any predictive models. Two acquisition techniques facilitating improved signal to
noise ratio which would be of interest are total body PET/CT and 4D PET/CT. As the
name implies total body PET/CT has an extended axial field of view which permits
simultaneous imaging of the entire body without having to change bed positions, which
is the current standard imaging practice [27]. This allows for an increased efficiency in
signal collection and higher spatial resolution, and in turn shorter acquisition times,
reduction in administrated dose, higher imaging quality and the ability for total-body
dynamic imaging [27–29]. Dynamic imaging with kinetic modelling also allows further
features to be interrogated when exploring the behaviour of different lesions, disease
process and tissues [30]. PET imaging is derived from the detected radionuclide activity
over multiple breathing cycles, and consequently the signal to noise ratio of thoracic and
upper abdominal lesions can be negatively affected by respiratory motion. This is often
confounded in smaller lesions by the low spatial resolution of PET. The use of 4D
(respiratory gated) PET/CT aims to negate this motion artefact and improve the signal
to allow for more accurate depiction and quantification of lesions [31]. The use of this
technique is more widely reported in lung carcinoma, but given the potential of
lymphoma to present at diagnosis in these tissues prone to motion artefact its use in this
cohort would be provide an area of further research [32].

Lastly, it is easy for a researcher’s or research team’s subspecialty or research interests to
be isolated from other subspecialties without the larger picture considered. The likelihood
is that a model derived from genomic, biochemical, socioeconomic, ethnicity, imaging and
clinical data will provide more generalisable outcome prediction. The consideration of data
other than imaging biomarkers in model creation should potentially be included on any
radiomic or AI predictive modelling scoring system to encourage the practice of a more
holistic approach.

5.6 Conclusions

This thesis has explored the use of imaging biomarkers derived from pre-treatment FDG
PET-CT for outcome prediction in common types of high-grade lymphoma (DLBCL and
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cHL), demonstrating the potential use of radiomics in combination with clinical features
to aid in treatment stratification. The work has added to field by providing a road map for
areas of further research and the considerations and limitations which are often overlooked.
This work should help inform design of future prospective multicentre studies with the
ultimate aim to improve patient outcomes.
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