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Abstract 

In 2017, scientists announced that the world’s largest tropical peatland complex was found in 

the central Congo Basin, covering 145,500 km2 and storing 30 Pg C belowground in peat (30x1015 

g C). However, these results were extrapolations from field data limited to rain-fed interfluvial 

basins in the Republic of the Congo (ROC). How peat formation is affected by different 

hydrological conditions, particularly river inundations, is currently unknown. Here, I present the 

first extensive field surveys of peat in the Democratic Republic of the Congo (DRC), which covers 

two-thirds of the estimated peatland area. I sampled 50 km of transects in geomorphologically-

distinct river systems in DRC, finding deep peat deposits (mean 3.2 m; maximum 7.0 m) and a 

new seasonally inundated, mixed peat swamp forest type. These peatlands receive seasonal 

river water input, in contrast to the rain-fed interfluvial basin peatlands of the ROC, yet remain 

very nutrient-poor. Radiocarbon dating shows that some DRC peatlands began forming ~42,000 

calibrated years Before Present, over 20,000 years earlier than ROC peatlands. I used field-based 

observations and remotely-sensed data to produce a 50-m resolution map of the central Congo 

peatlands, which cover 167,600 km2 (95% confidence interval, 159,400-175,100 km2). Using field 

data, I derived the first basin-wide maps of peat thickness (mean ± standard deviation, 1.7±0.9 

m; maximum 5.6 m) and peat carbon density (mean 1,712±634 Mg C ha-1; maximum 3,970 Mg 

C ha-1). In total, 29.0 Pg C is stored belowground in peat across the region (95% confidence 

interval, 26.3-32.2 Pg C). These field-based constraints give high confidence that the central 

Congo Basin holds the world’s largest tropical peatland complex, ~36% of all tropical peatlands, 

and stores a globally significant ~28% of the world’s tropical peat carbon. However, only 8% of 

this peat carbon lies within protected areas, suggesting vulnerability to land-use change. 
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Chapter 1: Introduction and literature review 

 

1.1 Thesis rationale 

Peatlands are exceptionally carbon-rich ecosystems. Even though they cover only 3% of Earth’s 

land surface (Xu et al., 2018), they store an estimated 600 petagram (Pg, or 109 tonnes) of carbon 

(Leifeld & Menichetti, 2018; Yu et al., 2010). This is equivalent to more than one-third of Earth’s 

soil carbon (Scharlemann et al., 2014). While most peatlands are located in the temperate and 

boreal zones (Xu et al., 2018), recent research is revealing the existence of vast tropical 

peatlands with high carbon densities  (Page et al., 2011; Ribeiro et al., 2021; Xu et al., 2018; Yu 

et al., 2010). Although most of the world’s tropical peatlands are located in Southeast Asia (Page 

et al., 2011), new scientific discoveries over the past decade of large peat deposits in both the 

Peruvian Amazon and Central Africa show that peatland ecosystems of considerable size can be 

found across all major tropical regions (Dargie et al., 2017; Draper et al., 2014; Lähteenoja et al., 

2011). One study recently mapped peatlands in the central depression of the Congo Basin (the 

‘Cuvette Centrale’ region), which appear to be particularly extensive. Based on a combination of 

field and remotely-sensed data, Dargie et al. (2017) estimate the size of this peatland area to be 

145,500 km2, making it the largest tropical peatland complex in the world.  

 

The total carbon (C) stock of this peatland complex is estimated to be 30.6 Pg C, equivalent to 

approximately three years of current global fossil fuel emissions, or 29% of the total tropical 

peat carbon stock (Dargie et al., 2017). Protecting this vast carbon stock is highly important 

within the context of the global climate crisis. Although currently largely undisturbed, the 

peatlands of the Cuvette Centrale are at risk of loss or degradation due to future climate change 

– particularly changes in the hydrological cycle – and land use changes incured by oil exploration, 

logging, mining or agriculture (Dargie et al., 2019).  

 

However, although the work of Dargie et al. (2017) is based on extensive field research, this 

occurred in only one part of a large wetland region, hence considerable uncertainties remain 

around the total peatland area and peat carbon stock of the central Congo Basin. For example, 

data collection was confined to large interfluvial basins, which appear to be largely rain-fed and 

ombrotrophic-like, i.e. low in nutrient status (Dargie et al., 2017). Nothing is known about 

potential peatland areas in other environmental settings. Furthermore, Dargie et al. (2017) 

report a 95% confidence interval (CI) for total belowground carbon stocks of 6.3 - 46.8 Pg C. The 

wide interval range of more than 40 Pg indicates that it is unclear if the central Congo Basin 
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peatlands truly store globally significant quantities of carbon. The large uncertainty is attributed 

to uncertainty in peat thickness, total peatland area, peat bulk density, and peat carbon 

concentrations. Reducing uncertainties in these figures is paramount in reducing the overall 

uncertainty in peat carbon stock estimates of the central Congo Basin (Dargie, 2015; Dargie et 

al., 2017).  

 

The uncertainty in peatland area is particularly concerning, given that others have come up with 

different peatland distribution maps for the same region. Gumbricht et al. (2017), for example, 

published a peatland map for the wider Congo Basin region with a smaller area, at 125,440 km2, 

and a very different geographical distribution. The spatial discrepancy between the two maps, 

together with the uncertainty in total peatland area reported by Dargie et al. (2017), highlights 

the need to better understand peatland distribution in the central Congo Basin. 

 

Furthermore, it is important to note that the results of Dargie et al. (2017) are based on field 

data from the north of the Republic of the Congo (ROC) only. Yet they predict that two-thirds of 

the central Congo Basin peatlands are to be found in the neighbouring Democratic Republic of 

the Congo (DRC), sometimes hundreds of kilometres from existing field data. Only a handful of 

observations of peat cores have been documented in the Cuvette Centrale area of the DRC (S.L. 

Lewis, pers. comm., 2014; Kiahtipes & Schefuß, 2019), and no field-based evidence of extensive 

peat deposits has yet been provided. Thus, it is unclear if the central Congo Basin peatlands are 

truly as extensive or deep as suggested.  

 

Uncertainties are further compounded by a limited understanding of the processes that 

determine peat formation in the central Congo Basin, particularly the peatlands’ hydrology 

(Alsdorf et al., 2016; Dargie et al., 2017). Peat has only been systematically documented in 

interfluvial basins in ROC, where an absence of annual flood waves (Dargie et al., 2017), modest 

domes (Davenport et al., 2020), and remotely-sensed water-table depths (Lee et al., 2011) all 

suggest that these peatlands are largely rain-fed and receive little river water input. However, 

the peat deposits that are predicted in the DRC are located in different hydro-geomorphological 

settings, including what appear to be river-influenced regions close to the Congo River mainstem 

and dendritic-patterned valley-floors along some of its left-bank tributaries (Dargie et al., 2017). 

Remotely-sensed data indicates that these areas of swamp forest are likely partly seasonally 

inundated (Rosenqvist, 2009), with inundation depths of up to 1.5 m during the main wet season 
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(Lee et al., 2015). This suggests seasonal river flooding and/or upland runoff as key sources of 

water. Whether peat accumulates under these river-influenced conditions is currently unknown.  

If seasonally inundated peat swamps exist in these parts of the central Congo Basin, this would 

indicate a greater diversity of peatland types than described so far by Dargie et al. (2017). 

Understanding the diversity of peat swamp forests in terms of vegetation and hydro-

geomorphological setting is important, as river-influenced peatlands might respond differently 

to future hydrologic changes compared to rain-fed interfluvial basin peatlands. Studying peat 

deposits in the DRC’s part of the central Congo Basin is therefore vital for the conservation of 

what is likely the largest tropical peatland complex in the world.  

 

Therefore, the principal aim of this thesis is to understand if peatlands exist in seasonally 

inundated river valley bottoms in DRC, and if so, to understand the diversity of these ecosystems 

in order to better map the region’s peatland extent and the regional carbon stocks in peat. In 

brief, the objectives of this thesis are to (i) investigate whether peat forms in areas adjacent to 

rivers in the DRC, via a series of field campaigns; (ii) analyse how (river-influenced) inundation 

patterns affect swamp forest vegetation and peat characteristics; (iii) map the spatial 

distribution of peat presence and peat thickness across the central Congo Basin; and (iv) 

estimate the amount of carbon that is stored in peat. 
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1.2 Literature review 

Soils often store large quantities of carbon in the form of soil organic matter. Globally, soil 

organic matter contains at least three times as much carbon as can be found in either the 

atmosphere or terrestrial plant biomass (Schmidt et al., 2011). It is generally estimated that this 

enormous carbon pool holds up to 1,500 Pg of carbon, although large uncertainties surround 

this figure (Scharlemann et al., 2014). About 40% of this carbon stock is made up by the global 

peatland carbon pool, which is estimated to be approximately 600 Pg in recent global syntheses 

(Leifeld & Menichetti, 2018; Yu et al., 2010), again with large uncertainties attached. This large 

fraction of the global soil carbon pool is stored in a relatively small area, as peatlands cover only 

approximately 3% of Earth’s land surface (Leifeld & Menichetti, 2018; Xu et al., 2018). This 

means that peatlands are exceptionally carbon-rich ecosystems. Combining these afore-

mentioned estimates of global peatland area and carbon stock, the average carbon density of 

peatlands around the world can be estimated to be 1,300-1,400 Mg C ha-1, considerably more 

than the average of other carbon-dense ecosystems such as mangrove forests (937 Mg C ha-1; 

Alongi, 2012), or aboveground biomass in tropical rainforests (approx. 140-200 Mg C ha-1; 

Sullivan et al., 2017).  

 

Peatlands are able to attain high carbon densities because of a long-term imbalance between 

input and loss of carbon. Peatlands are wetland ecosystems in which the rate of production of 

organic matter from plant and animal detritus generally exceeds the rate of decomposition of 

these same materials. The result is a net accumulation of semi-decomposed organic material in 

the soil (Page et al., 2006; Rydin & Jeglum, 2006). Typically, decomposition of organic matter is 

impeded by waterlogging of the soil and/or low temperatures. Because of the latter condition, 

most of the world’s peatlands are found in either the temperate or boreal zones (Kaat, 2009; 

Page et al., 2011; Rydin & Jeglum, 2006; Xu et al., 2018). In particular, peat accumulation at these 

latitudes is strongly determined by the amount of photosynthetically active radiation over the 

growing season, suggesting longer and warmer growing seasons due to climate change could 

increase carbon accumulation of northern peatlands (Gallego-Sala et al., 2018). However, if 

impeded drainage causes waterlogged conditions throughout a sufficiently long time-period, 

peatlands can also develop in the tropics. Generally, this requires very nutrient-poor conditions 

to slow down the higher microbial decomposition rates that characterize warmer climates (Yule 

& Gomez, 2009). Contrary to northern peatlands, warming has a negative impact on peat 

accumulation in the tropics, likely because it further stimulates microbial decay, which is not 

fully offset by increased plant growth (Gallego-Sala et al., 2018). Thus, sufficiently well-
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inundated and nutrient-poor locations with high organic matter production are the most likely 

sites for peat formation in the tropics. 

 

Most tropical peatlands are located in Southeast Asia (Page et al., 2011), although recent 

discoveries of large peat deposits in the Peruvian Amazon and the Congo Basin show that 

peatland ecosystems can be found across all major tropical regions (Dargie et al., 2017; Draper 

et al., 2014; Lähteenoja et al., 2011). However, both the extent and carbon storage, as well as 

the ecological functioning of most of these tropical peatlands remains poorly understood. As 

they store a large part of the global soil carbon pool, improving our knowledge of tropical 

peatlands is an important research priority (Lawson et al., 2015). 

 

 

1.2.1 Peat definitions 

There is no internationally agreed-upon definition of what constitutes a peatland, or peat soil 

more specifically. Many studies, organizations and government agencies apply their own 

definitions, which makes comparisons of regional or global peatland areas and carbon stocks 

difficult. Comparative analyses are further complicated by the fact that many studies do not 

explicitly mention the peat definition that has been used (e.g., Householder et al., 2012; Draper 

et al., 2014; Uda et al., 2017).  

 

In general, peat soils are defined by two aspects, namely (i) the organic matter content of the 

soil, and (ii) the thickness of this organic matter layer (Osaki et al., 2016). Organic matter (OM) 

content is the percentage of organic matter found in the peat soil, in contrast to the non-organic 

mineral content of the soil (also referred to as ash). The International Mire Conservation Group 

and the International Peat Society use these two aspects to define peat as sedentarily 

accumulated material consisting of at least 30% dry mass of dead organic material, with a 

minimal thickness of 30 cm at the surface (Joosten & Clarke, 2002). However, major 

international organisations such as the United Nations’ Food & Agriculture Organization (FAO) 

do not explicitly define peat. Rather the FAO sees peat soils as part of a larger group of organic 

soils called histosols (FAO, 2006). Histosols are defined by the organization as soils having an H 

horizon of at least 40 cm of organic matter (FAO-Unesco, 1974). In this definition, the H horizon 

is defined as having an organic matter content of at least 30% if the mineral fraction contains 

more than 60% clay, or an organic matter content of at least 20% if the mineral fraction contains 

no clay. Like the FAO, the Intergovernmental Panel on Climate Change (IPCC) does not provide 
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definitions of peat or peatlands. In the IPCC’s Wetlands Supplement, peatlands are considered 

to be included in ‘land with organic soil’ (IPCC, 2014). For determining organic soils, the IPCC 

largely follows the definition of histosols as provided by the FAO, but omits the minimum 

thickness requirement to allow for historically determined, country-specific definitions (Osaki et 

al., 2016). Particularly in Northern Hemisphere countries, large variations exists in the minimum 

thickness of peat layers, with Germany using 20 cm, Ireland applying 30 or 45 cm (for drained or 

undrained soils, respectively), the Scandinavian countries choosing 30 cm, and Canada opting 

for 40 cm in medium or well decomposed deposits, or even 60 cm in weakly decomposed peats 

(Bord na Móna, 1984). Between these countries, there traditionally is less variation in the 

required threshold of organic matter content, which has normally been set as at least 50% (Bord 

na Móna, 1984). 50% is also the OM threshold that Gumbricht et al. (2017) used in a more recent 

study of global tropical peatland distribution. However, this is considerably higher than the 20 

to 30% used by the International Mire Conservation Group, the International Peat Society and 

the FAO. According to Andriesse (1988), older soil classification systems have traditionally taken 

65% organic matter content as the minimum definition of peat soils. This is also the figure that 

Page et al. (2011) have used in a study of global tropical peatland distribution. They define peat 

as the surface layer of soil, consisting mostly of partially decomposed vegetation, with an organic 

content of at least 65% and a minimum thickness of 30 cm. Zulkifley et al. (2013) go even further 

and take 75% as minimum organic matter content of tropical peatlands, with the thickness 

criterium set at minimum 50 cm. Thus, around the world, substantial differences remain with 

regards to both the organic matter aspect of the peat definition (ranging from 20 to 75%), as 

well as the minimum thickness of the peat layer required (20 to 60 cm).  

 

To complicate matters, a third criterion is sometimes proposed as part of the definition of peat, 

namely the soil organic carbon content. The dry weight percentage of organic carbon is 

traditionally used in soil science to distinguish organic from mineral soils, with typical minimum 

values of 12-18% carbon in organic soils, depending on clay content (Barthelmes, 2018; Osaki et 

al., 2016). However, organic matter content and organic carbon content scale linearly in most 

peatland types (Klingenfuß et al., 2014; Wüst et al., 2003), meaning that there is no apparent 

benefit from using both criteria simultaneously. In particular, Wüst et al. (2003) have shown how 

tropical peat soils in Malaysia with OM content greater than 45% all had organic carbon contents 

of at least 18% as well. Therefore, as OM content is generally easier to measure than organic 

carbon content (De Vos et al., 2007; Heiri et al., 2001), using only the former to set a criterion 

for defining peat appears preferable.  
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Using organic matter content as the crucial criterion appears particularly appropriate, given that 

some agreement on a minimum organic matter content seems to have emerged in tropical 

peatland countries over the past few years. While Wüst et al. (2003) initially defined tropical 

peat in Indonesia as soil with at least 45% organic matter content, Wetlands International (2010) 

opted for a definition of 65% organic matter content in studies of Malaysian peat soils, following 

the definition of the USDA Soil Taxonomy. After Page et al. (2011) completed a comparative 

analysis of tropical peatlands globally using this same figure, the 65% OM threshold seems to 

have become commonplace in tropical peatland studies in other regions as well. Both 

Lähteenoja et al. (2011) and Dargie et al. (2017) used this criterion in their studies of the largely 

newly documented Peruvian and Congolese peatlands, respectively, referring back to the choice 

of Page et al. (2011). This means that the 65% OM threshold now appears commonplace in all 

three major tropical peatland areas around the world. 

 

In the case of the second aspect of the definition, minimum peat thickness, some agreement 

seems to be emerging among tropical peatland scholars as well. In 2010, Wetlands International 

chose 50 cm as threshold in their study of Malaysian peatlands. However, since then, 30 cm 

seems to have become more common. Both Page et al. (2011) and Gumbricht et al. (2017) 

decided on 30 cm in their assessments of tropical peatland extent. This threshold value was also 

applied in more regional studies by Lähteenoja et al. (2011) and Dargie et al. (2017) in the 

Peruvian Amazon and Central Africa, respectively. It has yet to be fully accepted though, as Osaki 

et al. (2016) again proposed the 50 cm threshold for tropical peatland ecosystems in Indonesia. 

Overall, it thus becomes clear that in the case of tropical peatlands, 65% is currently the most 

common threshold used for organic matter content, but that disagreement remains on what the 

minimum thickness should be. This is especially relevant, given that with shallower peat 

thickness and lower organic matter thresholds, the estimated areas and carbon stocks of 

peatlands could increase substantially.  

 

Apart from defining peat, it is also important to provide a definition of a peatland. This is relevant 

in a policy context, given that most policy decisions will likely concern landscape or ecosystem 

types, rather than soil types. A clear definition of peatlands is lacking in both academic and policy 

contexts, but according to the Ramsar Convention on Wetlands (2002), the key characteristic of 

a peatland is either the presence of peat or the presence of vegetation that is capable of forming 

peat. This means that peatlands are ecosystems with peat deposits, that may or may not have 

vegetation cover (Osaki et al., 2016). On the other hand, this also means that ecosystems with 
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vegetation capable of forming peat, but currently without a sufficient peat layer, would 

potentially constitute a peatland as well.  

 

For the remainder of this thesis, and in line with Dargie et al. (2017)’s choice for the Congo Basin 

peatlands, I will define peat as having at least 65% organic matter content and a minimum depth 

of 30 cm. A peatland is then defined as any geographical area that harbours peat according to 

this definition, irrespective of land cover.  

 

 

1.2.2 Tropical peatlands 

 

1.2.2.1 Tropical peatlands around the world 

For a long time in the early history of peatland research, it was thought that no peatlands could 

be found in the tropics. Organic matter decomposition was considered to occur too fast in the 

warmer climates of the tropics to allow peat accumulation to happen. Only in 1909 did Henri 

Potonié manage to convince other peatland researchers that tropical peatlands did indeed exist 

in Southeast Asia. However, he mistakenly thought that tropical peatlands could only be fed by 

groundwater. Betje Polak was the first to argue convincingly in 1933 that many tropical 

peatlands in Southeast Asia are in fact fed by rainwater (Joosten, 2016). Since then, Southeast 

Asia has remained the focus of most tropical peatland research (Lawson et al., 2015), as large 

peat swamps can be found across the islands of the archipelago, spanning a total of 250,000 km2 

(Page et al. 2011). Only in recent years has it become clear that extensive peat deposits can also 

be found in other tropical regions outside Southeast Asia, particularly in the western Amazon in 

Peru and the Congo Basin in Central Africa (Dargie et al., 2017; Draper et al., 2014; Lähteenoja 

et al., 2011). 

 

Although the term is much used, there is no agreed-upon definition of what constitutes a 

tropical peatland. Some authors define the prefix ‘tropical’ by referring to high precipitation and 

temperature values, which includes sub-tropical areas such as the Florida Everglades as well (e.g. 

Andriesse, 1988). Most commonly though (e.g. Page et al., 2011; Lawson et al., 2015), tropical 

peatlands are defined as those peatlands found between the Tropic of Cancer and Tropic of 

Capricorn (23.5°N and 23.5°S, respectively). However, a potential problem with this definition is 

that it includes both warm lowland and cool upland (mountainous) peatlands in the tropics, with 

the latter bearing greater resemblance to temperate or boreal peatlands. In this thesis, I will 
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normally use the term tropical peatlands to refer to lowland (warm) tropical peatlands, unless 

specified otherwise. 

 

Inconsistencies in the definitions of peat can result in markedly different outcomes in terms of 

peatland area and volume (Xu et al., 2018). For example, before the recent discovery of new 

peatlands in the Congo basin, Page et al. (2011) reported that African peatlands covered an area 

of 55,860 km2. This figure is considerably lower than the 72,476 or even 178,814 km2 that was 

found in FAO’s Harmonized World Soil Database or WWF’s Global Lakes and Wetland Database, 

respectively (Xu et al., 2018). However, irrespective of their exact extent, it is clear that tropical 

peatlands can be found across the lowland moist forests of Southeast Asia, Amazonia, Central 

America and Central Africa (Lawson et al., 2015). In 1992, the total tropical peatland area was 

estimated to be 382,950 km2, or 10-12% of global peatland area (Immirzi et al., 1992). In a more 

recent global synthesis of tropical peatland distribution, Page et al. (2011) estimated the extent 

of these peatlands to be slightly higher at 441,025 km2, which still accounted for approximately 

11 percent of the estimated global peatland area at that time. Of this area, 56% (247,778 km2) 

was thought to be located in Southeast Asia (Page et al. 2011), while South-America was thought 

to hold the second-largest peatland area (107,486 km2; 24%), followed by Africa (55,860 km2; 

13%) and the Central American and Caribbean region (23,374 km2; 5%).  

 

In terms of peat volume, tropical peatlands are thought to take up a slightly larger share of the 

globally estimated peat volume, namely 1,758 Gm3, or approximately 18–25% (Page et al. 2011). 

This is mainly due to the fact that tropical peatlands, and particularly those in Southeast Asia, 

are generally deeper than boreal or temperate peatlands. Of the tropical peat volume, 77% 

(1,359 Gm3) was estimated by Page et al. (2011) to be found in Southeast Asia, 11% in South-

America (192 Gm3) and only 8% in Africa (138 Gm3).   

 

In terms of carbon stored in tropical peatlands, Page et al. (2011) also showed that the tropical 

peatland carbon pool was larger than previously thought, with a best estimate of 88.6 Pg (81.7–

91.9 Pg range), which they estimated to be equal to 15–19% of the global peat carbon pool (Page 

et al. 2011). Again, this was estimated before the more recent mapping of the central Congo 

Basin peatlands. Of this tropical peat carbon stock, 77% (68.5 Pg) was estimated to be in 

Southeast Asia, equal to 11–14% of global peat carbon, followed by South-America (9.7 Pg, 11%) 

and Africa (6.9 Pg, 8%). Indonesia has the largest share of tropical peat carbon (57.4 Pg, 65%) in 

Page et al.’s (2011) assessment, followed by Malaysia (9.1 Pg, 10%).  
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Recently, though, a study by Gumbricht et al. (2017) reported much larger tropical peatland 

areas and carbon stocks than estimated before. These authors modeled areas and depths of 

tropical wetlands and peatlands using a rules-based, or so-called ‘expert system’ approach. That 

approach incorporates several biophysical indicaters, namely (i) the inter-annual water balance, 

to detect areas in which the water supply exceeds atmospheric water demand; (ii) the intra-

annual phenology of soil wetness, to differentiate between annually or seasonally water-logged 

soils; and (iii) hydro- and geomorphological indices that show landscape locations such as 

depressions where water can be supplied and retained. In this study, peatlands were defined as 

any soil having at least 30 cm of decomposed or semi-decomposed organic material with at least 

50% of organic matter content. However, in practice in their model, peatlands were seperated 

from wetlands by applying a set of expert rules to the biohysical indicators. For example, one 

rule stated that precipitation must exceed reference evapotranspiration in all forested peat 

domes. The result is a prediction of unprecedentedly large peatland areas across the global 

tropics. Gumbricht et al. (2017) found a total pantropical peatland area of 1.7 million km2, more 

than three times the roughly 440,000 km2 found by Page et al. (2011). The new figures are 

particularly striking for the Brazilian Amazon, which according to Page et al. (2011) harbours 

25,000 km2 of peatland, while Gumbricht et al. (2017) report 312,250 km2, more than ten times 

this figure. In terms of peat volume, Gumbricht et al. (2017) find 7,268 km3 across the tropics - 

more than four times the volume reported by Page et al. (2011).  

 

These differences can partly be explained by the fact that Gumbricht et al. (2017) applied a finer 

spatial scale than previous modelling studies. As such, they were potentially able to detect 

smaller peatland areas that together add up to significantly larger areas. In addition, Gumbricht 

et al. (2017) argue that their modelling approach is better at capturing inundated areas under 

dense forest cover. However, their results are not based on any field verifications. Because of 

this, and as the authors themselves already note, estimates of peat thickness in their study are 

likely substantially overestimated. The vast differences in estimation methods – those based on 

geomorphological indicators and those based on past reports of peat – show that uncertainties 

in peatland area and volume remain exceptionally large and that the chosen method has a 

considerable impact on the reported outcomes. 

 

The fact that we are only beginning to understand the full extent of tropical peatlands was 

underscored by the relatively recent mapping of the world’s largest tropical peatland complex 

in the Cuvette Centrale region, a low-lying swamp area in the heart of Central Africa’s Congo 
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basin (Dargie et al., 2017). The mapping of this tropical peatland complex, which accounts for 

approximately 29% of the total tropical peat carbon stock, substantially changed the tropical 

peatland distribution as previously reported by Page et al. (2011). The Congolese peatlands are 

estimated to cover 145,500 km2 (95% CI; 131,900-156,400), roughly equivalent to the size of 

England, and estimated to store approximately 30.6 Pg carbon (95% CI, 6.3-46.8), approximately 

half the area and half the carbon stored in peat in Southeast Asia (Dargie et al., 2017). Thus, the 

peatland complex in central Congo is larger than any other continuous peatland area in the 

tropics, because the Southeast Asian peatlands occur as separate areas across several islands 

including Borneo, Java and Sulawesi. 

 

Combining their data on the Congolese peatlands with the global estimates of Page et al. (2011), 

Dargie et al. (2017) estimated the total contemporary tropical peat carbon stock to be 104.7 Pg 

C (69.6 – 129.8 range). Of this, 34.4 Pg C is located across the African continent, instead of the 8 

Pg reported earlier by Page et al. (2011). In terms of both peatland area and peat carbon stocks, 

the Democratic Republic of the Congo (90,800 km2 of peat, with 19.1 Pg C) and the Republic of 

the Congo (54,700 km2 of peat, with 11.5 Pg C) take up second and third place after Indonesia 

as most important peatland countries in the tropics. Together, these two countries store 

approximately 5% of the estimated global peat carbon stock (Dargie et al., 2017).  

 

Similarly, research by Lähteenoja et al. (2011) and Draper et al. (2014) on a previously 

understudied peatland area in the Pastaza-Marañón Foreland Basin in the lowland Peruvian 

Amazon revealed that this part of South-America harbours extensive peatlands as well. Hastie 

et al. (2022) recently estimated these peatlands to cover an area of ~43,600 km2, storing 

approximately 4.1 Pg C belowground. Together, these new insights from Africa and Amazonia 

have challenged the long-standing notion that tropical peatlands are rare outside Southeast 

Asia. As more peatlands are expected to be found across the tropics, it is likely that current 

estimates of tropical peatland extent are an underestimation (Xu et al. 2018). 

 

1.2.2.2 Tropical peatland characteristics 

Peat accumulation is the net result of a larger organic matter production than decomposition 

(Osaki & Tsuji, 2016; Page et al., 2006; Rydin & Jeglum, 2006). The rate of organic matter 

decomposition thus plays an important role in determining how much peat can accumulate. 

Decomposition rate is influenced by various factors, including temperature and moisture 

conditions, chemical composition of the litter material, and the structure of the decomposer 
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community of bacteria, fungi and soil fauna (Liski et al., 2003; Powers et al., 2009). Of these 

different factors, temperature has long been recognized as the primary driver of decomposition 

rates (Bothwell et al., 2014; Powers et al., 2009). In boreal and temperate areas, peatlands can 

form under high-precipitation and low-temperature conditions where microbial decomposition 

is naturally slow. However, with the right regional environmental and topographic conditions, 

peatlands can also develop in the high-precipitation and high-temperature climates of the 

tropics (Page et al., 2006). This normally requires near-permanent inundation of the soils, 

sufficiently large organic matter input, and low nutrient concentrations (Hooijer, 2006; Rydin & 

Jeglum, 2006; Takada et al., 2016). Permanent inundation of tropical peat soils results in oxygen 

deficiencies, which inhibit oxidation of organic carbon and thus prevent complete 

decomposition of the litter material. At the same time, a low nutrient status has been associated 

with reduced decomposition rates, as high acidity and high levels of polyphenols and fulvic acids 

in the humus and soil water can have unfavourable or directly toxic effects on soils microbes 

(Takada et al., 2016), significantly slowing down microbial decomposition. In addition, it has 

recently been shown how surface peat in the tropics has less labile carbohydrates and more 

recalcitrant aromatic contents than surface peat at high-latitudes, which inhibits anaerobic 

decomposition (Hodgkins et al., 2018). This higher aromatic content is mostly due to the 

presence of lignin, as tropical peat is largely made up of woody material from fallen trees, 

branches, and dead roots. What’s more, it has been suggested that the presence of woody 

vegetation itself induces a shift in microbial communities to slow-growing microbes, thereby 

further reducing decomposition rates (Wang et al., 2021). These forested tropical peatlands 

contrast with many boreal or temperate peatlands, which are normally covered by bryophytes, 

most commonly Sphagnum species, as well as grasses, sedges and shrubs (Page et al., 2006).  

 

1.2.2.3 Tropical peat initiation and formation 

Inundation is a key requirement for peat formation, both in the tropics and at higher latitudes. 

Peat formation under wet conditions can occur in different ways. Terrestrialisation is the process 

by which water-filled depressions, such as lakes, are being gradually filled in with peat deposits 

that result from the accumulation of organic matter near the lake’s margins. Paludification, on 

the other hand, is the process of peat accumulating on top of mineral soils. When poorly-

drained, flat surfaces are consistently water-saturated, partly decomposed organic matter can 

overflow onto mineral soil. Both processes are often related to shifts in precipitation or 

hydrology, although with opposite directions. Terrestrialisation is generally associated with a 

shift to dryer conditions over initially waterlogged depressions, while paludification is normally 
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the result of a shift to wetter conditions over mineral soils (Cameron et al., 1989; Håkan Rydin 

& Jeglum, 2006).  

 

Globally, peat has been forming since at least 130,000 years ago, particularly during warmer 

interglacial periods at higher latitudes. However, this extremely old peat was buried again during 

the Last Glacial Period as icesheets advanced (Treat et al., 2019). In the tropics, peat burial 

appears to be insensitive to these glacial-interglacial temperature variations, but rather driven 

by sea level changes and regional hydrology. Peatlands have been persistently present in the 

tropics throughout various climatic conditions over the last 50,000 years (Treat et al., 2019). For 

example, inland peatlands in Borneo show initiation dates of up to 30,000 years ago, and 

sometimes even 47,000 years ago (Ruwaimana et al., 2020). This tells us that tropical peat 

initiation is not necessarily a feature of the Holocene only, but occurred from the late 

Pleistocene to the Late Holocene (Page et al., 2006). As the global climate moved from the Last 

Glacial Maximum (LGM, ca. 18,000 years ago) to the current interglacial, the Bornean peatlands 

have gone through a series of increases and decreases in peat accumulation, most likely as a 

result of changes in sea level, precipitation and seasonality of climate (Page et al., 2004). This is 

in line with a study by Morris et al. (2018), who found that rising temperatures and declining 

seasonality of both temperature and precipitation were significant predictors of peat initiation 

in Southeast Asia. In Africa and Latin-America, on the other hand, peat formation was not 

significantly predicted by any paleoclimatic variable in their study. Rather, Morris et al. (2018) 

suggest that the creation of waterlogged depressions due to tectonic subsidence could be a 

more plausible driver of peat initiation in these regions. This corresponds with current 

understanding about the drivers of peat initiation in the Peruvian Amazon. According to Baker 

et al. (2019), peat swamps occur in the Pastaza-Marañón Foreland Basin because tectonic 

activity and ongoing subsidence during the Quaternary has created the depressions that allow 

water to accumulate. However, this appears to be in contrast with recent field data from the 

world’s most extensive tropical peatland complex in the central Congo Basin. Radiocarbon 

dating of basal samples from interfluvial basin peatlands in Republic of the Congo suggests that 

peat initiation in this region began approximately 10,500 years ago (Dargie et al, 2017). The 

authors point out that this initiation date coincides with a known increase in humidity across the 

basin known as the African Humid Period (ca. 11,000-8,000 years ago). This indicates that a shift 

in precipitation, rather than tectonic subsidence, was the most likely cause of peat formation in 

this part of the tropics (Dargie, 2015). Nonetheless, this highlights how hydrology, whether 
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because of changes in precipitation or geomorphology, is crucial to peat formation and 

preservation in the tropics. 

 

1.2.2.4 Tropical peat composition and properties 

Peat consists of three main components, namely organic matter, mineral or inorganic matter, 

and water. Water content of undisturbed tropical peatlands is generally high with values of 90% 

at saturation (Wösten et al., 2008). To account for this, organic and mineral matter content is 

usually expressed as a dry weight value. As discussed, dry weight organic matter content needs 

to be at least 65% in order to classify as true peat in most tropical peatland studies. This leaves 

the mineral (or inorganic or ash) content to range between 0 and 35%. Less than 1% ash content 

is common in most true peatlands, although values between 10-15% can often be found in 

shallow peat deposits that are flooded by river water (Page et al. 2006). As carbon constitutes a 

large proportion of the organic matter content, the organic carbon content of tropical peat soils 

is usually greater than 50% (Page et al., 2006; Page et al., 2011; Wüst et al., 2003).  

 

The relative proportions of organic and mineral materials in peat determine its bulk density 

value, which is one of the most important physical characteristics of peat (Andriesse, 1988). Bulk 

density is defined as the dry weight of a given volume of soil, normally expressed as grams per 

cubic centimetre. Globally, values typically range from 0.05 g cm-3 in very fibric, undecomposed 

soil to less than 0.5 g cm-3 in well-decomposed soils (Andriesse, 1988). However, in the tropical 

peatlands of Indonesia and the Peruvian Amazon, values are typically lower and range between 

0.02 and 0.2 g cm-3 (Lawson et al., 2015). This corresponds with a list of pantropical bulk density 

values for tropical peatlands published by Page et al. (2011), which generally fall between 0.05 

and 0.25 g cm-3, although values up to 0.70 g cm-3 are given for sites in Kalimantan in Indonesia. 

In the central Congo Basin peatlands, Dargie et al. (2017) found a mean bulk density of 0.19 g 

cm-3, with values ranging between 0.1 and 0.32 g cm-3. This mean bulk density value is 

considerably higher than the mean values that were reported for the Central Kalimantan or the 

Peruvian Amazon peatlands, which are both 0.11 g cm-3 (Dargie et al., 2017). Whilst bulk density 

is related to mineral content, this does not account for these higher bulk density values alone.  

According to Dargie (2015), these higher values in the Cuvette Centrale are more likely caused 

by a higher degree of compaction, which is a result of a higher degree of decomposition. Higher 

rates of decomposition result in lower rates of peat accumulation, which has been observed for 

the Cuvette Centrale peatlands (Dargie et al., 2017). Furthermore, Dargie (2015) shows that 

these peatlands have a relatively high mean ratio of carbon to nitrogen (C/N), which is also 
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characteristic of high decomposition rates. The cause of these higher rates of decomposition in 

central Congo, relative to other tropical peatland areas, remains unclear. One possibility is that 

greater decomposition is related to the relatively dry climate over central Congo Basin (mean 

annual precipitation ~1700 mm yr-1), compared to other tropical peatland regions (e.g., ~2,500-

3,000 mm yr-1 in Northwest Amazonia and Southeast Asia; Malhi & Wright, 2004), which could 

indicate reduced surface wetness and resulting higher decomposition. 

 

Part of the bulk density variation can be explained by variation in the average peat thickness of 

these locations. Dargie (2015) reports a significant negative relationship in the central Congo 

Basin between both total peat thickness of a core and mean bulk density of that core, as well as 

between bulk density and OM content. This means that thicker peat deposits have lower mean 

bulk density values. This corresponds with general reports of decreasing bulk density with peat 

thickness (Andriesse, 1988; Page et al., 2006). However, as a general pattern, all sites sampled 

by Dargie (2015) individually showed bulk density values increasing towards the base of the core. 

This pattern was also described by Rydin and Jeglum (2006), who state that bulk density 

generally increases with depth below the surface. Lähteenoja et al. (2009b) also found increasing 

bulk density with increased depths for one of their Peruvian Amazon peatland sites, while Page 

et al. (2004) found that bulk density first increases between 50 and 100 cm depth, than 

decreases again after 200 cm, after which it finally increases again near the base of the peat core 

at 800 cm. It thus appears that conflicting trends in bulk density with peat thickness can be 

observed (Lewis et al., 2012), likely depending on site characteristics. 

 

Variations in bulk density are further related to factors such as the botanical composition of the 

peat, drainage history and measurement method. However, distribution and number of samples 

are often not well designed to capture these effects across a peatland area (Lawson et al., 2015). 

Furthermore, many studies on tropical peatlands only report mean or median bulk density 

values per region and no variation within or between sites (e.g. Householder et al., 2012; Draper 

et al., 2014; Dargie et al., 2017). As bulk density has repeatedly been shown to be among the 

most important drivers of uncertainty in tropical peat carbon stocks estimates (Dargie et al., 

2017; Draper et al., 2014), this might cause assessments of tropical peatland carbon pools to 

vary by an order of magnitude (Lawson et al., 2015). Especially in the tropics, more research is 

needed to determine how bulk density varies spatially within sites and between different 

regions (Lawson et al., 2015; Yu, 2012).  
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1.2.2.5 Tropical peatland hydrology 

Nutrient composition of peatlands can vary significantly depending on the origin of the 

peatland’s water input. Traditionally, a distinction is made between ombrotrophic peat systems, 

which are hydrologically detached from their surroundings and receive water input from 

precipitation alone, and minerotrophic peat systems, which receive water input from rivers, 

streams or groundwater (Cameron et al., 1989; Håkan Rydin & Jeglum, 2006; Wheeler & Proctor, 

2000). Because nutrient input in ombrotrophic peatlands is entirely dependent on rainwater, 

these systems generally receive less nutrients and are therefore more acidic in nature. 

Minerotrophic peatlands are generally more alkaline, as they are subject to higher nutrient 

inputs from surrounding surface or groundwater (Rydin and Jeglum, 2006; Lähteenoja et al. 

2009a). In the Peruvian Amazon, it was found that minerotrophic peat has particularly higher Ca 

levels and Ca/Mg ratios compared to ombrotrophic peat (Lähteenoja et al. 2009a). 

 

In poorly-drained depressions such as basins and valleys, terrestrialisation can eventually result 

in peatlands growing above the original waterline. This can cause a shift from what often used 

to be a minerotrophic peatland to an ombrotrophic system with a characteristic dome-shape 

(Takada et al., 2016). Ombrotrophic peatlands are therefore often surrounded by peripheral 

minerotrophic bands, or they overlay minerotrophic peat layers that can be found at greater 

depths. These distinct differences in nutrient status can result in a mosaic of both minerotrophic 

and ombrotrophic peatland systems and increase the regional habitat diversity of a tropical 

peatland complex (Lähteenoja et al. 2009a). 

 

The majority of peat swamps in Southeast Asia are domed, ombrotrophic systems, which feature 

a typical convex shape (Page et al, 2006). These ombrotrophic peat swamps are not subject to 

river flooding, generally have a pH of less than 4 and an organic matter content above 75%. On 

the other hand, minerotrophic peat is generally formed in freshwater swamps that are regularly 

flooded by river water in the wet season. These peatlands have pH values higher than 4 and an 

organic matter content below 75%. Because the higher nutrient content in freshwater swamps 

enhances decomposition, these swamps are generally less deep than ombrotrophic peat 

swamps (Takada et al., 2016). 

 

Ombrotrophic peat domes that have grown out above the initial waterline are entirely 

dependent on water input from precipitation. Yet growth of the peat dome is bound by river 

channels at its margins. As a result, the carbon uptake of a peatland system is proportional to 
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the area of the still-growing interior of the peat dome (Cobb et al., 2017). However, because 

peat accumulates only below the water table, the shape of the peat dome is a reflection of the 

shape of the water table, and thus its hydrology (Winston, 1994). Since the peat dome requires 

a stable peat surface, dome height is limited by the maximum stable water table within the 

external boundaries. This shape parameter, a function of rainfall and groundwater flow, 

specifies the ultimate stable morphology of the peat dome, and therefore, the maximum 

amount of carbon storage possible within a peatland area (Cobb et al., 2017).  

 

The flow of water through peatlands is determined by the peat’s hydraulic conductivity. 

Especially in drained peatlands, hydraulic conductivity of the surface peat layer affects the 

peatland water table, and thus which parts of the peatland are exposed to aerobic 

decomposition (Baird et al., 2017). The relationship between bulk density and hydraulic 

conductivity is not straightforward and depends on the amount of peat degradation and type of 

peat-forming plants (Liu & Lennartz, 2019). However, it has been known for several decades that 

there exists a relationship between the rate of decomposition of peat soils and their saturated 

hydraulic conductivity, with the latter decreasing pronouncedly with increasing decomposition 

(Bloemen, 1983; Wong et al., 2009). As the degree of decomposition generally increases with 

depth below the surface, this means that the peat surface layer is most important peat layer for 

groundwater flow of water through a peatland (Clymo, 2004; Rezanezhad et al., 2016). Baird et 

al. (2017) found that the hydraulic conductivity of near-surface peat in ombrotrophic peat 

domes in Panama was particularly high, resembling the permeability of unconsolidated gravel. 

This contrasts with lower values obtained by Kelly et al. (2014) in floodplain peatlands of the 

Peruvian Amazon, suggesting that hydraulic conductivity might be different depending on the 

type of peatland and their water source. However, both studies concluded that most rainwater 

input must leave the peatland via overland flow, as the hydraulic gradient in the deeper peat 

layer is very low. As such, an effect of groundwater flow on water tables is likely only to be seen 

near the peatland’s margins, while water tables at the centre of a peat dome can be expected 

to be relatively stable (Baird et al., 2017).  

 

If the water table temporarily drops, for example due to drought, various self-regulated 

hydraulic mechanisms can prevent the peat surface layer from drying out (Dommain et al. 2010). 

In intact tropical peat domes, water is stored above the peat surface in depressions between 

hummocks around tree trunks, as well as between spreading buttress roots. This differentiation 

– between hummocks with limited hydraulic conductivity and depressions with high water 
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storage capacity – resembles the typical hummock-hollow patterning of temperate or boreal 

Sphagnum bogs. Dommain et al. (2010) showed that buttressed trees play a key role in providing 

the structural elements for this self-regulation. As part of a concentric zonation of forest types 

around a peat dome, buttressed trees in Southeast Asian peatlands are typically more present 

on steeper margins where they prevent water runoff. Additionally, other irregularities at the 

surface, such as tip-up pools where peat has been removed by uprooting trees, can fill up with 

water and prevent the peat surface layer from drying out (Dommain et al., 2015). Together with 

the fact that most excess water leaves a peat dome via overland flow due to the peat surface’s 

lower hydraulic conductivity, these mechanisms help to stabilise the water tables of tropical 

peatlands, and ultimately contribute to the maintenance of peat that has accumulated. 

 

1.2.2.6 Classifying tropical peatlands 

Tropical peatlands occur in a number of types. According to Page et al. (2006), the majority of 

peatlands in Southeast Asia are domed rain-fed peatlands. These ombrotrophic peatlands can 

largely be divided in three major types according to location: coastal peatlands; basin or valley 

peatlands; and high, interior or watershed peatlands. Coastal peatlands can be found along the 

maritime edge or in deltaic areas where they have developed over marine sediments, slightly 

above sea level. Basin or valley peatlands are found inland along river valleys at slightly higher 

elevations, and often in backswamp situations behind alluvial levees, where they can grow up 

to 20m thick. High, interior, or watershed peatlands are found in Central Kalimantan where they 

cover interfluvial basins between major rivers. These watershed peatlands are dome-shaped (up 

to 13m) and extent over large areas in a gently sloping manner analogous to temperate blanket 

peat (Page et al., 2006). In comparison with Southeast Asia, a potentially larger diversity of 

peatland types exists in the Peruvian Amazon. Peatlands in the Pastaza-Marañón Foreland Basin 

in northern Peru harbour extensive minerotrophic sites in seasonally flooded river floodplains, 

characterized by markedly increased nutrient concentrations. Together with nutrient-poor 

ombrotrophic domes, this points towards a gradient from nutrient-poor to nutrient-rich 

peatlands in the Peruvian Amazon (Lähteenoja & Page, 2011).  

 

Apart from location, morphology or nutrient status, tropical peatlands can be classified by 

vegetation type. It has long been recognized that peatland characteristics such as water table 

height and nutrient-status have a considerable impact on the vegetation structure of the peat 

swamp forest (Page et al., 1999; Phillips & Bustin, 1998). Local gradients in nutrient-status and 

inundation levels can typically be found from the margin towards the centre of a peat dome, 
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which often corresponds with a similar variation in vegetation types. For example, part of the 

peatland complex in the Peruvian Amazon shows concentric zonation, with tall pole forest in the 

centre of a domed peatland area, and swamp forest dominated by the Mauritia flexuosa palm 

tree in marginal peatland areas surrounding this dome (Lähteenoja & Page, 2011). Thus, 

peatlands can often by classified according to distinct vegetation types. 

 

Similarly to the Peruvian Amazon, Anderson (1963) described a sequence of vegetation 

communities in concentric zones on ombrotrophic peat domes in Sarawak and Brunei. In 

Southeast Asia, tall, floristically diverse and structurally complex forest generally covers shallow 

peat at the margins of a peatland, while less diverse, low-canopy pole forest with small 

diameters can be found to cover the thicker, interior parts of a peatland (Page et al., 1999). 

Many of the peat swamp forest trees found in these areas are specialists that are not found in 

other ecosystems (Page et al., 2006). 

 

However, contrary to Amazonia and Southeast Asia, no spatial arrangement in vegetation types 

has so far been identified for the Cuvette Centrale peatland complex in the Congo basin. Here, 

only two vegetation types are associated with peatlands, namely palm-dominated swamp forest 

(typically Raphia laurentii) and diverse hardwood swamp forest (Dargie et al., 2017). A thorough 

understanding of structural differences between these vegetation types and the region’s 

vegetation history is currently lacking. In addition, it is unclear whether minerotrophic peatlands 

or floodplain peatlands with a different morphology than ombrotrophic peat domes can be 

found in the Congo Basin. Improving our understanding of the Congolese peatlands’ ecological 

functioning is an important research priority, as identifying any relationship between 

aboveground vegetation types and belowground peat characteristics could potentially assist in 

mapping peat carbon stocks (Lawson et al., 2015). 

 

1.2.2.7 Tropical peatland carbon dynamics 

Given the importance of waterlogging for peat formation, peatlands are very sensitive to 

changes in the water table.  Particularly in the tropics, water table depth is recognized by many 

experts as the main driver of long-term peat accumulation (Loisel et al., 2021). When 

groundwater levels drop more than 40 cm below the surface, tropical peatlands in Southeast 

Asia show increased subsidence due to oxidation, as well as increased susceptibility to fire 

(Wösten et al., 2008). Because of this, drainage of peat swamp forests for conversion to oil palm 

plantations has led to large-scale emissions of CO2 to the atmosphere (Hooijer et al., 2010). 
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Carbon emissions from widespread burning of peat and vegetation during the 1998 El Niño 

event in Indonesia were estimated to be between 0.8 and 2.6 Pg, equivalent to 13–40% of the 

mean annual global carbon emissions from fossil fuels at the time (Page et al., 2002). Similarly, 

the total carbon emissions from forest and peatland fires in Indonesia during the more recent 

2015 El Niño event are estimated to be 0.28 Pg C (Huijnen et al., 2016). The six largest fire events 

between 2004 and 2015 together are thought to have caused a total economic loss of almost 

100 billion US dollars (Kiely et al., 2021). In addition, exposure to particulate matter pollution 

caused by (peatland) forest fires has been estimated to have caused more than 44,000 excess 

deaths in 2015 alone (Kiely et al., 2020). 

 

The large-scale conversion and degradation of peat swamp forests in Peninsular Malaysia, 

Sumatra and Borneo have now shifted this ecosystem type from being a long-term carbon sink 

to being a large carbon source, emitting around 146 Mt C yr-1 in 2015 (Miettinen et al., 2017). 

However, there is some evidence to suggest that even relatively undisturbed peatlands in 

Southeast Asia are already a net source of carbon to the atmosphere, due to higher 

temperatures and lower water tables. For example, Hirano et al. (2012) measured a mean net 

ecosystem CO2 exchange of 174 g C m-2 yr-1 in a relatively intact peat swamp forest in Central 

Kalimantan with little drainage. Furthermore, they suggested that annual CO2 emissions increase 

with 79–238 g C m-2 with every 10 cm of lowering of the water table. Similarly, Tang et al. (2020) 

recently found that a relatively undisturbed peat swamp forest in Sarawak was a net source of 

CO2 to the atmosphere. However, these measurements exclude methane emissions and other 

carbon pathways out of the system, so total ecosystem carbon exchange was not specified. Peat 

swamps typically switch from a CH4 sink during the dry season to a CH4 source during the wet 

season. But because annual CH4 fluxes of an undrained peat swamp forest studied in Central 

Kalimantan were typically low, Sakabe et al. (2018) concluded that these forests could 

potentially be regarded as CH4-neutral at the ecosystem-scale. However, controls on peat 

carbon sequestration are likely considerably more complex than suggested by these studies, 

given that there is palaeo-evidence that indicates that drought can also lead to increased peat 

accumulation. A study of Peruvian peatlands by Swindles et al. (2018) observed increases in 

long-term (millennial) net peat accumulation rates during historic drought phases. The authors 

suggested this could possibly be driven by a strong increase in plant productivity as water tables 

are lowered, which might have offset the loss of already formed peat carbon due to increased 

aerobic decay. Thus, there could be opposite short- and long-term effects of hydraulic changes 

on carbon sequestration in peat swamp forests, although much remains unknown. Especially in 
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the Congo Basin, no data currently exists on net ecosystem exchanges, or how plant productivity 

would be affected by changes to hydrology. This causes large uncertainties around how these 

ecosystems will respond to future land use and climate change (Dargie et al., 2019).  

 

 

1.2.3. The central Congo Basin peatlands 

The central Congo Basin peatlands are found in the ‘Cuvette Centrale’ (central depression), a 

large wetland area located within the Congo Basin. Here I first describe the regional setting, then 

the central Congo Basin peatlands specifically. 

 

1.2.3.1. The Congo Basin rainforest 

The Congo River Basin is the second largest river basin in the world after that of the Amazon, 

covering about 4 million km2 from 09° 15’ N to 13° 28’ S and 11° 18’ E to 31° 10’ E. It occupies 

almost all of the Democratic Republic of the Congo (DRC) and much of the Republic of the Congo, 

as well as large portions of Cameroon, the Central African Republic, Zambia, and Angola 

(Harrison et al., 2016). Although the terms are often used interchangeably, this area does not 

entirely overlap with the Central African forest region, which typically covers all forests found in 

the eight countries of Central Africa: DRC, ROC, Cameroon, Central African Republic, Gabon, 

Equatorial Guinea, Burundi and Rwanda (Verhegghen et al., 2012). This area is home to the 

second largest rainforest on the planet, which covers about half (46%) of the total land area of 

these eight countries. With an estimated area of about 1.87 million km2, this forest is primarily 

made up of dense moist forest (1.69 million km2), in addition to 0.13 million km2 of edaphic 

(seasonally or permanently flooded) forest, as well as smaller amounts of mangroves, 

mountainous and submontane forests. These forests and other vegetation types are an 

important carbon stock, storing an estimated 49 Pg of C in aboveground biomass (Verhegghen 

et al., 2012). Although this is smaller than that of the Amazon Basin forest, the forests of the 

Congo River Basin are thought to be a six times stronger net carbon sink, owing to lower 

deforestation emissions and stronger carbon uptake in undisturbed forests. Overall, the Congo 

River Basin forests take up a net amount of 0.61 Pg CO2-equivlent per year (consisting of 1.1 Pg 

C02-eqv. gross removals and 0.53 Pg CO2-eqv. gross emission; Harris et al., 2021b). 

 

African tropical forests have relatively more aboveground biomass (AGB) per area than those in 

South America (mean 389 and 297 Mg ha-1, respectively; Sullivan et al., 2017).  Central African 

forests store even more carbon per area than African tropical forests in general, with mean AGB 
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values of 429 Mg ha-1 (Lewis et al., 2013). This is similar to that of Bornean forests (445 Mg ha-1, 

but substantially higher than that of Amazonian forests (341 Mg ha-1; Lewis et al., 2013).  

 

However, Central African forests are characterized by a considerably lower stem density of 425 

stems ≥ 10 cm diameter per hectare (cf. ~600 stems ha-1 in Amazonia and Borneo). This means 

that mean tree size in Central Africa is greater than elsewhere in the tropics. According to Lewis 

et al. (2013), this is because Central African forests experience relatively few disturbances, 

allowing trees to grow tall and stands to self-thin. This also corresponds with the relative 

extensive presence of monodominant forests in Central Africa, compared with other tropical 

regions (Peh et al., 2011). While a rarity in otherwise diverse Amazonian forests (Ter Steege et 

al., 2019), monodominant stands of typically Gilbertiodendron dewevrei can be found to extend 

over kilometres in Central Africa (Peh et al., 2011), likely because there is a low-level disturbance 

regime over the long term (Lewis et al., 2013).  

 

Apart from lower stem density, African rainforests are also characterized by a lower tree species 

diversity compared with the Amazon rainforest (Parmentier et al., 2007; Sullivan et al., 2017). 

Parmentier et al. (2007) speculate that this lower diversity may be caused by the fact that the 

number of species in African forests that is adapted to warm and wet conditions is smaller than 

in Amazonia, due to past extinction events specific to Central Africa. This appears to be 

confirmed by a recent study of Hagen et al. (2021), who show that there is no correlation of 

forest diversity with present-day climate. Rather, geological processes shaped species diversity 

on this continental scale, notably aridity in African forests during the Cenozoic.  

 

Although low in plant species diversity compared to Amazonia and Southeast Asia, the Congo 

rainforest has a remarkably high diversity of animals, because Africa experienced markedly less 

Late Pleistocene extinctions of megafauna than other continents (Barnosky et al., 2004). The 

swamp forest is known to have high population densities of great ape species such as the 

western lowland gorilla (Gorilla gorilla gorilla), chimpanzee (Pan troglodytes) and bonobo (Pan 

paniscus; Miles et al., 2017). Bonobos are known to live in the swamp forest east of the Congo 

River in DRC (Inogwabini et al., 2013), while the critically endangered western lowland gorillas 

occur to the west of the river in ROC (Rainey et al., 2009). Lowland gorillas in particular have 

been documented to occur at high densities in swamp forests, in contrast with chimpanzees that 

typically have lower densities in the swamps (Strindberg et al., 2018). In addition, the African 

dwarf crocodile (Osteolaemus tetraspis) is known to prefer the swamps as habitat, where it has 
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been recorded using the peat soil to construct its nests (Riley & Huchzermeyer, 1999). Another 

species known to be present in the swamps of the Cuvette Centrale is the African forest elephant 

(Loxodonta cyclotis), which is thought to have shaped the rainforest’s structure and composition 

by causing a selective disturbance of relatively small trees. This leads to a reduction in stem 

density and favours fewer and larger trees with higher wood density, thereby increasing overall 

aboveground biomass (Berzaghi et al., 2019). The decline of forest elephant populations by more 

than 60% during the first decade of this century (Maisels et al., 2013) therefore not only 

threatens faunal diversity, but also potentially the forest’s vegetation composition and carbon 

dynamics. The rivers, lakes and swamps of the central Congo Basin are also abundant in fish, 

although fish stocks are threatened by overfishing for the commercial market (Inogwabini, 

2014). However, very little is known about other aspects of biodiversity in the central Congo 

Basin. In particular, there is a great lack of data about diversity of fish, reptiles, birds and insects.  

 

1.2.3.2. Geological history of the Congo Basin 

The Cuvette Centrale region is a low-lying area straddling the equator in the central part of the 

Congo Basin. Geologically, the Cuvette Centrale forms a shallow bowl-shaped depression within 

the larger Congo Basin (Figure 1.1), one of the largest intracratonic sedimentary basins in the 

world (Becker et al., 2014). The Cuvette Centrale has elevations between 200 and 350 m above 

sea level and is bordered on all sides by a range of mountains and plateaus. West and southwest 

of the Cuvette Centrale lie the Chaillu mountains (900 m) and Batéké plateau (600-800 m), while 

the Adamawa plateau (1500 m) lies to the northwest. The Bongo massif (1300 m and more) and 

the Central African rift (600-700 m) are located to the north of the Cuvette Centrale. In the east, 

the volcanic foothills of the East African rift (2000 – 3000 m) form the highest border rim, while 

the Katanga and Lunda plateaus (1000 – 1500 m) close the depression on the southern side 

(Becker et al., 2014). The current depression forms the lowest part of the Congo Basin, which 

evolved over 800 Ma as a result of different geodynamic processes such as extension and 

subsidence related to stretching (Owusu Agyemang et al., 2016).  

 

Little seismic exploration has taken place in the Congo Basin. According to Delvaux et al. (2021) 

most of the current surface geology in the Cuvette Centrale, particularly West of the Congo River 

and along its Eastern tributaries, is of Quaternary origin (< 2.6 million years ago). On the other 

hand, the higher uplands East of the Congo River are thought to be of Tertiary origin (2.6-66 

million years ago). This is because the current river drainage pattern is superimposed on a 

crystalline basement that likely formed in the early Tertiary (Deffontaines & Chorowicz, 1991). 
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More specifically, most of the lowland Quaternary geology of the Cuvette Centrale consists of 

Holocene alluvium, deposited since the end of the Last Glacial Period, i.e. more recently than 

11,700 years ago (Master, 2010).  

 

 
Figure 1.1. Topographic map of the central Congo Basin. The map is based on the Digital 
Elevation Model (DEM) derived from the Shuttle Radar Topography Mission (SRTM) and shows 
elevation in meter above sea level (m.a.s.l.) across parts of the Republic of the Congo (ROC) and 
Democratic Republic of the Congo (DRC). Black lines represent country boundaries; grey lines 
represent sub-national administrative boundaries. The names of the most important rivers and 
lakes are provided. 
 

Given the very shallow gradients in the bowl-shaped depression, the Cuvette Centrale region is 

characterized by very low erosion rates (Laraque et al., 2009). More generally, the wider Congo 

Basin is characterized by very low levels of sediment (Coynel et al., 2005; Mushi et al., 2019), 

likely because the Congo Basin catchment area has experienced intense weathering in the past 

(Garzanti et al., 2019; Guillocheau et al., 2015). It has been suggested that sediment transport 

by the Congo River has been relatively stable during different climatic periods, possibly as a 

result of sediment trapping in the Cuvette Centrale wetlands that buffer suspended sediment 

fluxes (Molliex et al., 2019). However, there is some evidence that suggests an increase in 

sediment concentration in river waters in recent years, possibly due to deforestation (Mushi et 

al., 2019), although this needs to be confirmed by more research. 
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The wetlands in the Cuvette Centrale are interspersed by the presence of a few very shallow 

lakes, such as Lake Télé in ROC, and Lake Tumba and Lake Mai-Ndombe in DRC. Several theories 

have been proposed as to their possible origin. Lake Télé, which has a strikingly round shape, 

was once proposed to be an ancient impact crater (Laraque et al., 1998), but this theory has 

been refuted by Master (2010).  Instead, Master (2010) has proposed that the presence of this 

and other lakes is more likely related to the blockage of local drainage patterns due to 

reactivated old tectonic fault lines. Alternatively, it has been proposed that during the Tertiary, 

the basin was covered by a large water body, of which Lake Tumba and Lake Mai-Ndombe are 

present-day remnants (Goudie, 2005). However, there is little evidence to support this theory 

(Dargie, 2015).  

 

More recently during the Quaternary, the Congo Basin wetlands and forests have experienced 

considerable changes. During the Last Glacial Maximum, when temperatures where about 5 

degrees lower than today and Central Africa was drier than today, the area of evergreen and 

semi-deciduous forest in Africa is estimated to have been reduced by 84% (Anhuf et al., 2006). 

Much of the current Central African rainforest extent would have been savanna.  

 

During the warmer Holocene Period that followed since ~11,600 years ago, the Central African 

rainforests were affected once more by major forest contractions. In particular, the forests were 

affected by the Late Holocene Rainforest Crisis, which developed between 2,500 and 2,000 years 

ago. This crisis caused major perturbations at the forest core, leading to forest disturbance and 

fragmentation with a rapid expansion of pioneer-type vegetation, and increased erosion rates.  

It has been suggested that this crisis was triggered by extensive anthropogenic impacts, possibly 

related to large-scale expansion of Bantu farmers into Central Africa (Garcin et al., 2018). 

However, debate about the exact contributions of climatic or anthropogenic drivers in this 

rainforest crisis continues and remains unresolved (Bayon et al., 2019; Giresse et al., 2020). It 

has been proposed that the present-day low level plant diversity of the Central African 

rainforest, compared with climatically similar rainforests in Amazonia or Asia, is a result of these 

repeated forest contractions during drier periods, leaving only a limited species pool surviving 

in smaller forest ‘refugia’ (Hardy et al., 2013; Maley et al., 2018). 

 

1.2.3.3. Hydrology of the Congo Basin 

The Congo Basin has a wet tropical climate with mean annual temperatures between 25 and 

27°C and a permanent Atlantic monsoon. Annual rainfall is high with more than 1600 mm of 
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precipitation throughout the basin and more than 2000 mm in some of the basin’s central areas 

(Campbell, 2005). Rainfall tends to show a bi-annual seasonal pattern that follows from the 

passage of the Intertropical Convergence Zone. Thus, the Congo Basin is generally characterized 

by two wet seasons from March to May (MAM) and September to November (SON), and two 

dry seasons from June to August (JJA), and December to February (DJF; Dyer et al., 2017). 

However, the local pattern can diverge slightly form this, as the relative strength of the dry 

seasons are opposite, north and south of the equator: DJF is the main dry season in the northern 

hemisphere, while JJA is the main dry season in the southern hemisphere. 

 

Figure 1.2 presents multidecadal weather data from the CREF Mabali research station on the 

shore of Lake Tumba in DRC. This figure shows that the main wet season is SON, but that the 

wet season already starts in August and runs over into December. Both August and December 

receive as much precipitation as the monthly average of the minor wet season in MAM. The 

main dry season is then concentrated in June and July.  

 

 
Figure 1.2. Mean monthly temperature and precipitation at CREF Mabali station in DRC. 
Temperature is given by the red line (°C), precipitation by the blue bars (mm). Data represents 
40-year (temperature; 1979-2018) or 50-year (precipitation; 1970-2019) timespans, excluding 
data gaps. Mean (± s.d.) total annual precipitation is 1436 ± 264 mm (n=44 years). Mean annual 
temperature is 26.5 ± 0.4 °C (n=39 years). 
 

The Congo river, which runs through the centre of the Cuvette Centrale, drains a catchment area 

of 3,747,320 km2, making the Congo basin the second largest river basin on Earth (Runge, 2008). 

Using satellite altimetry, Becker et al. (2014) studied regional variability of surface water level 

anomalies across the basin and described how water levels in the Cuvette Centrale wetlands 
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have a bimodal distribution, similar to the rainfall seasonal pattern. Because the Congo River 

system is fed from both north and south of the Equator, the wetlands experience their main 

low-water period in July and August, corresponding with the prevailing dry season in the 

southern hemisphere. Water levels then begin to rise in August and September due to increased 

rainfall in the south. This reaches a short-lived peak in December, after which a secondary low-

water period occurs in March, corresponding with the occurrence of the northern hemisphere 

dry season (Becker et al., 2014).  

 

Congo River tributaries that originate in the southern hemisphere, such as the Ruki River, show 

a similar bimodal pattern in river discharge, with a peak from November to January, and a lesser 

peak in MAM. However, some of the tributaries that originate north of the equator, such as the 

Ubangi and Ngiri Rivers, show unimodal discharge patterns with a peak in October and 

November. Still others, such as the Sangha or Likouala-aux-Herbes Rivers, show bimodal 

patterns with a lesser peak in May (Campbell, 2005). Because the Congo River itself receives 

water from tributaries on either side of the equator, its seasonal discharge pattern is less 

pronounced. It is characterized by two periods of high flows (October-January and April-May) 

and two periods of low flows (February-March and June-September) (Laraque et al., 2020). 

 

A study by O’Loughlin et al. (2020) found that interactions between the river channel and 

floodplain have only a limited impact on the annual bimodal flood wave pattern of the Congo 

River. River discharge is largely dominated by meteorologically factors (rainfall), rather than 

hydraulically-controlled features such as floodplain interactions and river width constrictions. 

However, the study found that channel-floodplain interactions do occur extensively along the 

Congo’s middle reach, with over 2,100 km out of 13,000 km of the channel network being 

identified as zones where water is actively exchanged between channels and floodplains. This is 

nearly the entire middle reach of the main stem.  This is largely in line with work by Lee et al. 

(2011) who suggests that a considerable contribution of river channel water to wetlands occurs. 

Laraque et al. (2020) also identify the Cuvette Centrale wetlands as behaving like a ‘buffer’ for 

river discharge, meaning they store water in the wet season to be more slowly discharged at 

later stages. More specifically, Datok et al. (2021) conclude based on a model simulation that 

the Congo River supplies about one-third of the water input to Cuvette Centrale, with 

precipitation supplying another one-third. Right- and left-bank tributaries together contribute 

the remaining one-third. Datok et al. (2021) report that only in October and April is there a 

surplus of water entering the Cuvette Centrale, while in other months there is a deficit, meaning 
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the floodplains and wetlands then act as a storage of water supplying the Congo River 

downstream. Because of the interaction between river water and wetlands, the Cuvette 

Centrale supplies vast amounts of carbon to the Congo River, both in the form of dissolved 

organic matter (Laraque et al., 2009) and dissolved greenhouse gases (Borges et al., 2019). By 

dating the age of organic matter that is discharged by the Congo River into the Atlantic Ocean, 

Schefuß et al. (2016) found that the Congo River Basin has been releasing aged organic matter 

for thousands of years. From this, even before peatlands were first mapped in the central Congo 

Basin, they inferred that the Cuvette Centrale wetlands must be an important terrestrial store 

of carbon that would have global climatic effects. Thus, it is clear that there are significant 

interactions between wetlands and rivers in the Cuvette Centrale, with implications for the 

accumulation of globally significant amounts of carbon. However, the exact flow directions and 

quantifies of water fluxes between wetlands and rivers still remain poorly specified.  

 

1.2.3.4. Swamp vegetation in the Congo Basin 

Wetlands in sub-Saharan Africa are widespread and cover an estimated 1.4 million km2 (Rebelo 

et al., 2010), making up between 4.6 and 6% of the total sub-Saharan Africa land mass (Lehner 

& Döll, 2004). Although many wetlands are characterized by seasonal fluctuations in rainfall and 

surface water levels, permanently inundated swamp forests can be found throughout the Congo 

basin wetlands (Hughes & Hughes, 1992; Mayaux et al., 2002). The Cuvette Centrale region in 

particular has long been classified as an important wetland area with extensive swamp forest 

cover, although without there being any explicit indication of the presence of peatlands 

(Campbell, 2005; Hughes & Hughes, 1992a). For example, in 1984, the Irish Peat Development 

Authority analysed the potential of peat as fuel in developing countries around the world and 

concluded that ‘various types of swamps are extremely abundant in Africa, [but] true peatlands 

are comparatively rare’ (Bord na Móna, 1984). It was thought that the extensive swamp forests 

of the Cuvette Centrale region hardly contained any peat due to the high temperature and 

fluctuating water tables, “characteristic of many of these swamp areas”.  

 

Other studies have also commented on the extensive swamp forests in the Cuvette Centrale, 

without describing them as peatlands. Early descriptions of flooded forests are available from 

Belgian and French scholars during the colonial period. Among the most well cited is a study by 

Lebrun and Gilbert (1954), who classified swamp forest in the Congo Basin into five classes based 

primarily on the length of inundation period, e.g. permanently inundated swamp forest, 

seasonally inundated forest, riverine forests with long periods of flooding, continually flooded 
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riparian shrub forest, and well-drained alluvial-valley forests. Evrard (1968) built on these classes 

to create a classification of wetlands forest principally organised around vegetation type, but 

which combines aspects of the inundation period. As a starting point, Evrard (1968) used the 

three most important classes identified by Lebrun and Gilbert (1954): permanent swamp forests 

(forêts marécageuses), seasonally inundated forest (forêts inondables), and riparian shrub forest 

(forêts ripicoles colonisatrices). Across these classes, Evrard (1968) then identified five main 

vegetation alliances or associations: 

 

• Permanent swamp forests: 

1: alliance of Raphia laurentii palms; 

2: alliance of Coelocaryon botryoides and Entandrophragma palustre trees; 

• Seasonally inundated forest: 

3: association of Oubanguia africana and Guibourtia demeusei trees; 

• Riparian shrub forest: 

4: alliance of Alchornea cordifolia shrubs; 

5: alliance of Uapaca heudelotii trees. 

 

Partly based on the seminal work of Evrard (1968), White (1983) included extensive swamp and 

riparian forests in the Congo region as part of his assessment of African vegetation types. Like 

with Evrard (1968), these forests were said to include Coelocaryon botryoides, 

Entandrophragma palustre, Oubanguia africana, Guibourtia demeusei, Raphia spp. and Uapaca 

spp., as well as other species. However, although most of these species are not confined to 

swamps alone, White (1983) identifies Carapa procera and Symphonia globulifera as additional 

species that are typically confined to lowland swamps, and thus highly characterized of these 

vegetation types. Yet like his predecessors, peat deposits or carbon-rich soils are not explicitly 

mentioned as characteristics of these ecosystems.  

 

Tathy et al. (1992) are likely the first to have measured methane fluxes from the flooded forests 

in the Cuvette Centrale. Although this suggests a focus on soil carbon dynamics, and although 

they rely extensively on scholarship of northern peatlands, their work focuses on surface 

samples only. Again, they do not mention that considerable peat deposits are found below the 

flooded surface of the Cuvette Centrale swamps. 
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Nonetheless, Tathy et al. (1992) make a rudimentary distinction between flooded soils, wet soils 

and dry (terra firme) soils. According to their distinction, flooded soils in the Cuvette Centrale 

have water tables between 10 and 40 cm above the surface, while wet soils have water tables 

of 10-20 cm below the surface. They also map three different vegetation types in the Republic 

of Congo: swamps, flooded forest and dry forest. The flooded forests are defined as forested 

wetlands close to the Congo and Ubangi Rivers, which they estimate to cover 100,000 km2. 

Swamps, on the other hand, are defined as a mix of flooded forests and herbaceous wetlands 

(i.e., likely containing flooded savannas), for which they do not provide an area estimate. 

 

It is unclear how exactly the vegetation map of Tathy et al. (1992) was produced. However, 

spatially explicit maps of swamp forests were typically first produced via manual 

photointerpretation or by analysing cloud-free optical remote sensing data (Vancutsem et al., 

2009). In recent years, however, a focus has shifted to the use of active radar sensors as well. 

This started at the turn of the century when De Grandi et al. (1998) and Mayaux et al. (2002) 

constructed the first spatially explicit maps of Central African wetlands by using active radar 

data. Bwangoy et al. (2010) then combined both approaches by using optical remote sensing 

data from the Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) 

sensors with L-band active Synthetic Aperture Radar data (SAR) from the JERS-1 mission and 

topographical data from the Shuttle Radar Topography Mission (SRTM). Landsat ETM+ and 

SRTM data have long been used effectively to map wetlands across the tropics (Islam et al., 

2008). L-band SAR data has also been used effectively to map wetlands in Africa with high 

accuracy. Its effectiveness stems from the fact that radar data is unaffected by the frequent 

cloud and smoke cover in the equatorial area, and that it has high temporal resolution which 

allows a study of hydrological dynamics (Rebelo, 2010). L-band radar in particularly is very useful 

for inundation mapping in the tropics given that it’s relatively long wavelength (15-30 cm) is able 

to penetrate the forest canopy (Ottinger & Kuenzer, 2020). 

 

Analysing these different remote sensing datasets, Bwangoy et al. (2010) estimated a wetland 

landcover of 360,000 km2, which makes up 32% of the Cuvette Centrale watershed (Figure 1.3). 

The Lake Télé-Lake Tumba landscape in the western part of the central Congo Basin is mapped 

to be the area most dominated by wetlands (56% of the local landscape). Although relative local 

elevational differences proved to be the most important factor in discriminating wetland cover, 

the study showed that a combination of different kinds of data sources (optical, radar, and 

topography) can be used successfully to map wetland vegetation (Bwangoy et al., 2010). 
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Figure 1.3. Bangoy et al.’s (2010) wetland probability map for the Cuvette Centrale. The 
probability map is developed with a combination of optical, radar and topographic data. Figure 
reproduced from Bwangoy et al. (2010). © 2010 Elsevier. 
 

In recent years, L-band SAR data from the Advanced Land Observation Satellite (ALOS) with 

Phased Array L-band Synthetic Aperture Radar (PALSAR) has become a popular choice for active 

remote sensing of wetland areas. Betbeder et al. (2014) were able to construct a first spatial 

distribution of four different forested wetland types, based on combining ALOS PALSAR data on 

flooding with maps of vegetation classes derived using the Enhanced Vegetation Index (EVI) 

from the optical MODIS sensor (Moderate Resolution Imaging Spectroradiometer). They 

distinguished three vegetation classes of flooded forests as identified by Evrard (1968), as well 

as a non-flooded forest class (Figure 1.4). Together the three flooded forests classes are 

estimated to cover 230,000 km2. This is considerably less than the estimate of Bwangoy et al. 

(2010), but mostly because these latter authors included a wider study area. Like Bwangoy et al. 

(2010) found, the spatial extent of the forested wetlands in the Cuvette Centrale turned out to 

be largely controlled by topography, which determines the extent of flooding, but also by the 

time and intensity of flooding events. Phenology of the forested wetlands was both determined 
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by flooding events, as well as changes in light intensity as a result of the bimodal seasonality in 

weather (Betbeder et al., 2014).  

 

However, not all of Evrard’s (1968) wetland classes are suitable for peat formation. As tropical 

peatlands require both sufficient organic matter input as well as anoxic conditions, forests with 

water tables close to the surface throughout most of the year are most likely to harbour peat 

(Lawson et al., 2015). This means that the vegetation class of permanent swamp forest subjected 

to stable water levels (characterized by Entandrophragma palustre-Coelocaryon botryoide or 

Raphia laurentii palms) is the most likely vegetation indicator of peat presence. Assuming this 

corresponds with the ‘forests subjected to stable water level’ as mapped by Betbeder et al. 

(2014), their map would suggest about 85,000 km2 of likely peat swamps in the Cuvette Centrale. 

 

 
Figure 1.4. Betbeder et al.’s (2014) spatial distribution of wetland types. The map is derived 
using an unsupervised classification of the MODIS Enhanced Vegetation Index (EVI), while 
taking into account ALOS PALSAR radar data. Figure reproduced from Betbeder et al. (2014). 
© 2014 IEEE. 
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Although long suspected (e.g., Hughes & Hughes, 1992), actual field observations of peat 

presence underneath this vegetation type in the Congo basin are rare (Joosten et al., 2012; 

Lawson et al., 2015). To fill this data gap, Dargie (2015) and Dargie et al. (2017) undertook 

extensive field studies in the north of the Republic of the Congo, in the western part of the 

Cuvette Centrale wetland area. They discovered peat deposits underneath two types of swamp 

forest with relatively stable water tables, which they classified as hardwood-dominated swamp 

forest and palm-dominated swamp forest. This classification appears to correspond with the 

two permanent swamp forest alliances originally identified by Evrard (1968). However, in 

contrast to Evrard’s (1968) alliance of Coelocaryon botryoides and Entandrophragma palustre, 

documented in DRC, Dargie et al. (2017) report that their hardwood swamp type is commonly 

characterized by Uapaca paludosa, Carapa procera, Symphonia globulifera and Xylopia 

rubescens. Nonetheless, their palm-dominated swamp forest types does corresponds with 

Evrard (1968), being characterized by large Raphia laurentii monodominant stands. They also 

found that a much rarer type of Raphia hookeri palm-dominated swamp forest was sometimes 

associated with the presence of peat in channels or fluvial features. In addition, savanna 

vegetation was found to overlie peat in only one sample point, thus appearing to be extremely 

rare.  

 

Dargie (2015) also report seasonally flooded forests, often dominated by Guibourtia demeusei 

and Dialium pachyphyllum, which does not form peat, as it is normally only flooded during the 

major wet season. According to Bocko et al. (2016), who also reported vegetation characteristics 

in more detail from the same region in the Likouala department in the Republic of the Congo, 

seasonally flooded forests are additionally dominated by Diospyros crassiflora and Lophira alata. 

More specifically, Ifo et al. (2018) make a distinction between seasonally flooded forests 

dominated by Guibourtia demeusei and seasonally flooded forests dominated by Lophira alata. 

According to these authors, Guibourtia-dominated forests are flooded during longer periods of 

time (up to five months), and greater depth (up to two metres), than Lophira-dominated forests.  

Although many species are shared between the different flooded forest types, Bocko et al. 

(2016) identify Symphonia globulifera, Xylopia rubescens, Garcinia smeathmannii, Drypetes 

principum and Entandrophragma palustre as species that are uniquely common to permanent 

swamp forest only, and thus are likely to be characteristic species of peat swamps. On the other 

hand, they report that Parinari excelsa, Gardenia imperatis, Albizia laurentii and Trichilia 

prieuriana are uniquely common to seasonally flooded forests only. 
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Figure 1.5. Dargie et al.’s (2017) probability map of peat swamp vegetation types. Probability 
is derived from 1000 supervised Maximum Likelihood classifications based on optical, radar and 
topographic data. The black rectangle indicates the approximate area of field sampling in 
interfluvial basins in ROC. Figure reproduced from Dargie et al. (2017). 
 

Dargie (2015) and Dargie et al. (2017) were the first to combine field verification of associations 

between vegetation and the presence of peat (primarily hardwood-dominated and Raphia 

laurentii palm-dominated swamp forest) with multiple remote sensing data products. They used 

optical data from the Landsat 7 ETM+ satellite (short-wave infrared [SWIR], near infrared [NIR] 

and Red bands), radar data from ALOS PALSAR (HH and HV polarizations and the ratio), and 

SRTM-derived maps of elevation and slope. They then applied 1,000 supervised Maximum 

Likelihood classifications to map these vegetation classes associated with the presence of peat 

across the central Congo Basin (Figure 1.5). They estimated that the peat swamp forests 

together cover 145,500 km2 (95% CI, 131,900 – 156,400 km2). Hardwood-dominated swamp 

forest is estimated to be the most common, covering 79,042 km2 (95% CI, 68,100 – 90,500), 

while palm-dominated swamp forest covers 66,300 km2 (95% CI, 56,900 – 74,700 km2).  

 

These field-based estimates are not very different from the rules-based model developed by 

Gumbricht et al. (2017), who reported an exceptionally large pantropical peatland area of 1.7 

million km2, but only 125,440 km2 of peatlands in the Congo Basin region (Table 1.1). 
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Study Wetland 
area (km2) 

Peatland 
area (km2) 

Notes 

Bwangoy et al. 
(2010) 

360,000 - Supervised classification of optical, radar, 
and topographic data, using manual 
photo-interpretation 

Betbeder et al. 
(2014) 

230,000 - Unsupervised classification of MODIS-
Enhanced Vegetation Index (EVI), taking 
into account ALOS PALSAR radar data 

Gumbricht et al. 
(2017) 

- 125,440 Rules-based model combining biophysical 
indicators from hydrological modelling 
and optical and topographic data 

Dargie et al. (2017) - 145,500 Supervised classification of optical, radar, 
and topographic data, using field-based 
ground-truth data 

Table 1.1. Recent estimates of the extent of the Cuvette Centrale peatlands or wetlands. 
Wetlands include peatland areas, but not vice versa. Table reproduced from a review by Biddulph 
et al. (2021). 
 

 

 
Figure 1.6. Comparison of peatland predictions by Dargie et al. (2017) and Gumbricht et al. 
(2017). White indicates peat predicted by both studies; red indicates peat predicted by Dargie et 
al. (2017) only; blue indicates peat predicted by Gumbricht et al. (2017) only; grey indicates that 
neither study predicts peat. Black lines represent country boundaries; grey lines represent sub-
national administrative boundaries. 
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In comparison with the areas mapped by Dargie et al. (2017), the peatland map by Gumbricht 

et al. (2017) generally shows that peatlands extend further upriver along the Congo River 

mainstem and its eastern tributaries (Figure 1.6). In particular, the map identifies riverine 

peatland areas along the Lomami River in the east of the basin, south-west of the city of 

Kisangani, as well as further upstream along the different headwaters of the Lulonga and Ruki 

Rivers, which have not been mapped by Dargie et al. (2017). On the other hand, the peatlands 

predicted by Dargie et al. (2017) in the interfluvial basins in the centre of the Cuvette Centrale, 

such as along the Ubangi, Likouala-aux-Herbes and Sangha Rivers, are wider and denser than 

what is predicted by Gumbricht et al. (2017), which explains why the former’s overall peatland 

area is still larger than that of the latter. From this comparison, it is clear that considerable 

uncertainty surrounds the spatial distribution of peatlands in the central Congo Basin. In 

particular, the extend of peatlands upstream along the Congo River and some of its tributaries 

remains unclear. More field verification is thus needed to reconcile these two different maps.  

 

1.2.3.5. Climate change in the Congo Basin 

There are well documented negative trends in precipitation across the Congo Basin region since 

at least the 1970’s (Alsdorf et al., 2016; Malhi & Wright, 2004). In particular, Samba et al. (2008) 

report a shift in rainfall over the Republic of Congo around 1968-1970. The 1950’s to 1960’s 

were characterized by an increase in rainfall, relative to the long-term mean, followed by a 

relative decline between the 1970’s and 1990’s. This corresponds with discharge measurements 

of the Congo River. According to Laraque et al. (2001), the Congo River experienced higher 

discharge in the 1960’s, followed by two successive phases of lower discharge from 1971 

onwards.  

 

These dry phases appears to have continued into the 21st century, as Asefi-Najafabady & Saatchi 

(2013) report an increasing drying trend in Central Africa, characterized by recent strong 

negative water deficit anomalies in 2005-2007. Furthermore, Jiang et al. (2019) provided 

evidence for a widespread increase in the length of the summer dry season (June-August) over 

the Congo Basin since the 1980s. According to their study, the dry season length increased by 

6.4–10.4 days per decade between 1988 and 2013, mostly due to an earlier dry season onset 

and a delayed dry season end. An earlier onset of the summer dry season in the months of April, 

May and June was also detected by Hua et al. (2016), who propose that this is likely related to 

changing sea surface temperatures over the Indo-Pacific region. Temperature changes over the 

Indian Ocean appear particularly relevant for the climate of the Congo Basin, as moisture from 



37 
 

the Indian Ocean is thought to be the dominant source of precipitation in the basin, followed by 

local evaporation and moisture from terrestrial evaporation outside the Congo Basin (Dyer et 

al., 2017).  Cook et al. (2020) also showed a robust drying in the summer months of June-August, 

as well as negative trends in mean annual precipitation between 1979-2017. However, contrary 

to Hua et al (2016), they state that these trends are likely not related to shifts in moisture 

transport from the Atlantic or Indian Ocean, nor local surface warming, but rather linked to a 

warming trend over the Sahara region. 

 

Irrespective of the driving factor, it is clear that a drying trend is manifesting itself locally in the 

Cuvette Centrale wetland region too. Inogwabini et al. (2006) and Imbole et al. (2016) analysed 

multidecadal weather data from the CREF Mabali research centre (Centre de Recherche en 

Écologie et Foresterie), located approximately 15 km south of the town of Bikoro, on the eastern 

shores of Lake Tumba in DRC (18.1221°E, 0.8825°S). The Mabali research centre was founded in 

1954 by IRSAC, the Belgian Institut pour la Recherche Scientifique en Afrique Central (BESTOR, 

2021) and is currently being managed by the DRC’s Ministry of Scientific Research and 

Technology. Although the centre has received little funding for decades, dedicated local 

employees have preserved daily records since at least the 1970’s. Inogwabini et al. (2006) 

analysed data from 1970-2005 and concluded that annual precipitation had dropped 

considerably after 1990. However, this trend was not properly tested for significant long-term 

changes. Imbole et al. (2016), on the other hand, studied a more recent dataset of precipitation 

from the same weather station for 1980-2012. Like Inogwabini et al (2006), they found a 

downward trend in annual precipitation (-3.9 mm yr-1), as well as the number of rainfall events 

per year (-0.97 days yr-1) since 1980. 

 

As of 2019, an unprecedented 50-year dataset is available for rainfall (1970-2019) from CREF 

Mabali, while an equally impressive 40-year dataset is available for temperature (1979-2018), 

providing long-term local weather data from the heart of the Cuvette Centrale peatland 

complex. Gaps in the rainfall record are present only for the years 1991, 1993, 1996, 1997, 1999 

and 2002 (annual precipitation), and 1991, 1993, 1996, 1997, and 2002 (rainfall events), due to 

the civil unrest and war that took place in the DRC at the time. For temperature, only Oct-Dec 

2017 is missing from the 40-year record. 

 

Mean (± s.d.) total annual precipitation is 1436 ± 264 mm (n=44 years). However, a significant 

decline is observed over the 50-year timespan (Sen’s slope = -5.417 mm yr-1; p<0.01; Figure 1.7). 
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Interestingly, both 1970 and 1971 were exceptionally wet years characterized by > 2000 mm yr-

1, after which the decline sets in. When removing these two potential outlier years, a more 

significant, but less steep decline of -3.408 mm yr-1 is found (p<0.001), indicating that 

precipitation has been steadily declining in the centre of the Cuvette Centrale since the start of 

the 1970’s.  

 

Significant declines in total precipitation are also found on a monthly basis in January, April, 

August, October, November, and December, with monthly reductions ranging from -0.449 mm 

yr-1 in December to -1.892 mm yr-1 in October. The month of June, however, shows a slight, but 

significant increase in monthly precipitation of 0.479 mm yr-1 (Table 1.2). Additionally, all 

seasonal trimesters show significant declines. However, the total reduction in rainfall appears 

to be much more severe in the main wet season trimester of September, October and November 

(-2.912 mm yr-1), compared with the other trimesters (-1.219, -1.317, and -1.097 mm yr-1 for DJF, 

MAM and JJA, respectively).  

 

 
Figure 1.7. Trend in annual precipitation at the CREF Mabali station in DRC. Trend direction and 
strength are estimated using Sen’s non-parametric, rank-based approach (Sen, 1968). To 
account for the potential effect of serial autocorrelation in climate data (Wang et al., 2020), a 
modified Mann-Kendall test based on the Variance Correction Approach was implemented (Yue 
& Wang, 2004), using the mmky function in the modifiedmk package in R (version 1.6; 
Patakamuri, 2021). The blue line includes the exceptionally wet years 1970-1971, marked by red 
asterisks (Sen’s slope -5.417 mm yr-1; p<0.01), while these years are excluded in the red line (Sen’s 
slope -3.408 mm yr-1; p<0.001).  
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In addition to the decline in total precipitation, a significant decline in the total number of rainfall 

events per year is found (Sen’s slope = -0.833 events yr-1; p<0.001). The mean (± s.d.) number of 

rainfall events is 100.4 ± 15.3 per year (n=45). However, rainfall events decline from about 100-

125 events per year during most of the 1970’s, 80’ and 90’s, to between 75-100 events per year 

since 2000. This decline is mirrored in the monthly and seasonal means, with a significant 

reduction found in almost all months: January, March, April, May, June, July, August, September, 

October, and November (Table 1.2). Declines range from 0.024 rainfall events less each year in 

April to 0.121 events less each year in October. Likewise, all trimesters show strongly significant 

declines, with the largest reductions occurring during the wet seasons (-0.200 and -0.263 events 

per year in MAM and SON, respectively) while smaller reductions occur in the dry seasons (-

0.107 and -0.178 events per year in DJF and JJA, respectively).  

 

 Trend in total 
precipitation 
(mm yr-1) 

Trend in rainfall 
events  
(events yr-1) 

Trend in  
rainfall intensity  
(mm event-1 yr-1) 

Trend in mean 
temperature  
(°C yr-1) 

Annual -5.417** -0.833*** 0.081**  

 

DJF -1.219** -0.107***   

MAM -1.317*** -0.200*** 0.058***  

JJA -1.097*** -0.178*** 0.089** 0.015*** 

SON -2.912*** -0.263***  0.014*** 

 

January -1.129*** -0.078***   

February     

March  -0.071*** 0.092**  

April -1.000*** -0.024** -0.035*  

May  -0.091*** 0.100*** 0.020*** 

June 0.479* -0.048*** 0.219***  

July  -0.053*** 0.137*** 0.022*** 

August -1.044*** -0.071***  0.021*** 

September  -0.053*** 0.118* 0.018*** 

October -1.892*** -0.121***  0.016*** 

November -0.905** -0.057***  0.011* 

December -0.449*    

Table 1.2. Overview of significant climatic trends at the CREF Mabali station in DRC. Trends 
reflect 40-year (temperature; 1979-2018) or 50-year (rainfall; 1970-2019) timespans, separated 
out on a monthly, seasonal and annual basis. Trend direction and strength are estimated using 
Sen’s non-parametric, rank-based approach (Sen, 1968). To account for the potential effect of 
serial autocorrelation in climate data (Wang et al., 2020), a modified Mann-Kendall test based 
on the Variance Correction Approach was implemented (Yue & Wang, 2004), using the mmky 
function in the modifiedmk package in R (version 1.6; Patakamuri, 2021). Data includes potential 
outliers, with* p<0.05; ** p<0.01; *** p<0.001. 
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As the number of rainfall events is declining, mean annual rainfall intensity (14.6 ± 2.8 mm per 

event, n=44) is found to be going up by 0.081 mm per event per year (p<0.01). When the two 

high-rainfall years of 1970/1971 are excluded as potential outliers, this effect becomes even 

stronger (Sen’s slope = 0.105 mm event-1 yr-1; p<0.001). A significant increase in rainfall intensity 

is also observed in the months of March, May, June, July, and September (Table 1.2). The 

strength of these intensifications ranges from 0.092 mm per event per year in March, to 0.219 

mm per event per year in June. On the other hand, a slight, but significant decline in rainfall 

intensity is seen in April (Sen’s slope = -0.035 mm event-1 yr-1; p<0.05). Again, these monthly 

trends are reflected in the seasonal trends (Table 1.2), with significant increases in rainfall 

intensity found in MAM (0.058 mm event-1 yr-1) and JJA (0.089 mm event-1 yr-1). No significant 

effect was found in the DJF and SON trimesters.  

 

Thus, based on this updated 50-year dataset, there appears to have been a major shift towards 

lower rainfall patterns since the 1970’s, consistent with the discontinuity in rainfall trends 

observed around 1970 (Laraque et al., 2001; Samba et al., 2008). In the Lake Tumba region, the 

discontinuity apparently manifests itself after 1971. While 1971 was the wettest year on record 

(2423 mm), a significant, decline in precipitation is observed in the four decades since this date. 

The negative trend can be observed throughout all four seasons but is particularly strong during 

the main wet season from September to November. Furthermore, the drying appears associated 

with a particularly strong shift towards less rainfall events around 2000. At the same time, an 

increase in rainfall intensity in both the small wet season of March-May, and the summer dry 

season of June-August is observed. This suggests precipitation in the region is becoming more 

erratic, with longer dry periods interspersed by more intense rainfall events. 

 

In addition, trends in mean annual surface air temperatures as measured at CREF Mabali on the 

shore of Lake Tumba are available over an updated 40-year timespan between 1979 and 2018. 

This dataset shows that the late 90’s and early 2000’s were relatively cold years, while 

temperatures were about a degree higher in the decade after 2005 (Figure 1.8). However, over 

the full 40-year timespan between 1979 and 2018 a slightly positive, but non-significant 

warming trend is found (Sen’s slope = 0.012 °C yr-1; p= 0.07). Individually, however, the months 

of May, July, August, September, October, and November can all be identified as having 

significant upwards trends (Table 1.2), ranging from 0.011 °C yr-1 (November) to 0.022 °C yr-1 

(July). This is reflected in trimester trends, with both JJA and SON showing significant warming 

(0.015 and 0.014 °C yr-1, respectively). Thus, there appears to be a slight warming trend in the 
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centre of the Cuvette Centrale, which is most manifested in the summer dry season and long 

wet season. This mirrors an irregular, but generally increasing trend that has been observed 

across the Republic of Congo (Samba et al., 2008), suggesting this is likely a regional trend that 

affects the whole central Congo Basin. 

 

 
Figure 1.8. Trend in mean annual temperature at the CREF Mabali station in DRC. The trend 
line indicates a slightly positive, but non-significant warming (Sen’s slope = 0.012 °C yr-1; p= 0.07). 
Trend direction and strength are estimated using Sen’s non-parametric, rank-based approach 
(Sen, 1968). To account for the potential effect of serial autocorrelation in climate data (Wang 
et al., 2020), a modified Mann-Kendall test based on the Variance Correction Approach was 
implemented (Yue & Wang, 2004), using the mmky function in the modifiedmk package in R 
(version 1.6; Patakamuri, 2021). 
 

1.2.3.6. Threats to the central Congo Basin peatlands 

The vast carbon stocks of up to 30.6 Pg C that have been identified in the Cuvette Centrale make 

these peatlands a central component of the global carbon cycle. At present, these peatlands are 

relatively intact and have not been degraded yet. However, in a recent synthesis of potential 

threats to the Congo basin peat carbon stocks, Dargie et al. (2019) identify climate change as a 

particularly pressing concern.  

 

Although climate models for the Central African region are known to be uncertain due to a lack 

of ground-based data (Washington et al., 2013), it is extremely likely that the region will warm 

as a result of anthropogenic climate change (Dargie et al., 2019). This warming will likely result 

in a decrease of the carbon sink of peatlands in this region (Gallego-Sala et al., 2018). However, 

the extent to which a temperature rise will impact the peat’s carbon is strongly determined by 
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the prevalence of waterlogged conditions. Climate change’s biggest impact on the Congo Basin 

peatlands will therefore likely come from changes to rainfall patterns. It has already been shown 

that the start of peat accumulation and its cessation in the Cuvette Centrale coincided with the 

start and end of the African Humid Period across the region (Dargie et al., 2017). Potential 

reductions in rainfall or changes in the temporal distribution of rainfall are therefore likely to 

have strong negative impacts on the peat carbon stocks. This is particularly likely since the Congo 

Basin peatlands are relatively dry, compared with other tropical peatland regions (Malhi & 

Wright, 2004), and possibly close to their hydrological limits (Garcin et al., 2022). However, a 

true understanding of the potential impact of climate change on these ecosystems is lacking due 

to a major lack of knowledge about how the peatland complex has responded to climate changes 

in the past, what its current hydrology is like, and what the future Congo Basin rainfall regime 

will be (Dargie et al., 2019).  

 

The impacts from climate climate on the Cuvette Centrale peatlands could be accelerated or 

exacerbated by the negative impacts of potential land-use changes (Dargie et al., 2019). Much 

of the Cuvette Centrale peatlands is currently protected on paper by some form of conservation 

designation, most notably the Ramsar Convention on Wetlands and the Brazzaville Declaration 

on peatlands. However, Dargie et al. (2019) and Miles et al. (2017) showed that there are still 

large possibilities of hydrocarbon exploration, logging, agricultural plantations and other forms 

of land disturbances that could significantly damage the peatland ecosystems. In general, 

tropical peat swamp forest that have been disturbed by drainage become a net carbon source 

to the atmosphere, due to oxidation of organic matter and increased loss of fluvial organic 

carbon (Moore et al., 2013), particularly in the first 100 years after construction of drainage 

ditches (Young et al., 2017). Thus, keeping the recently described Congo Basin peatlands wet is 

vital in the face of both land use changes and climate change (Cole et al., 2022). 

 

Additionally, both land use and climate change pose a threat to aboveground forest vegetation 

and the carbon stored there-in. African rainforests are threatened by climate change because, 

generally, they are already close to their hydrological limits (James et al., 2013). However, a 

recent analysis of 100 long-term monitoring plots in African tropical forests of six countries 

showed that these forests remained a carbon sink during the 2015 El Niño event (Bennett et al., 

2021), suggesting that the African rainforests could be more resilient than previously thought.  

Whether these findings hold for peat swamp forest communities as well is currently unknown.  
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Because of these future threats to the Cuvette Centrale peatlands, it is critical to start ensuring 

the conservation of these ecosystems today. Dargie et al. (2019) suggest that protective 

measures could be funded through a combination of climate, biodiversity and development 

funding. In order to ensure that these approaches are most effective, a better understanding of 

the ecological functioning, hydrology and history of these peatlands is critically needed, which 

is the focus of this thesis. 
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1.3 Thesis aims and objectives 

As the literature review has shown, there are considerable uncertainties regarding the true 

extent of peatlands and the size of peat carbon stocks in the central Congo Basin. These 

uncertainties are associated with a limited understanding of the processes that determine peat 

formation and maintenance in the Cuvette Centrale, particularly related to hydrology (Alsdorf 

et al., 2016; Dargie et al., 2017). Peat has so far only been systematically documented in largely 

rain-fed, nutrient-poor swamp forests in interfluvial basins in ROC (Dargie et al., 2017; 

Davenport et al., 2020). However, peat is also predicted in other hydro-geomorphological 

settings (Dargie et al., 2017), including what appear to be river-influenced regions close to the 

Congo River mainstem and dendritic-patterned valley floors along some of its left-bank 

tributaries. These forest areas are likely seasonally inundated to depths of up to 1.5 m during 

the main wet season (Rosenqvist, 2009; Lee et al., 2015), suggesting seasonal river flooding 

and/or upland run-off as key sources of water. Whether peat accumulates under these river-

influenced conditions, and how this would affect overall peatland extent and peat carbon stocks, 

is currently unknown. Therefore, this thesis aims to improve the ecological understanding of 

peat swamp forest ecosystems in the central Congo Basin by studying these river-influenced 

settings in the Democratic Republic of the Congo. In doing so, I intend to answer three main 

research questions:  

- How much carbon is stored in the Cuvette Centrale peatlands?  

- Where exactly is this carbon located?  

- How is peat formation and maintenance affected by inundation patterns?  

 

By investigating the spatial distribution and characteristics of swamp forests in different hydro-

geomorphological settings, such as river-influenced settings in DRC, a better understanding of 

the ecological diversity of the central Congo Basin peatlands can be obtained. This will help us 

to understand why peat is found in some locations and not in others. Together with an expanded 

set of datapoints, this should enable much-improved mapping of the Cuvette Centrale peatlands 

and their carbon stocks. Furthermore, broadening our understanding of the various hydrological 

conditions under which peatlands exist in the central Congo Basin will help us comprehend how 

these ecosystems might have developed in the past, and could possibly change in the future.,  

 

Thus, the objectives of this thesis are to (i) investigate whether peat forms in areas adjacent to 

rivers in the DRC, via a series of field campaigns; (ii) analyse how (river-influenced) inundation 

patterns affect swamp forest vegetation and peat characteristics; (iii) map the spatial 
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distribution of peat presence and peat thickness across the central Congo Basin; and (iv) 

estimate the amount of carbon that is stored in peat.  

 

The bulk of the new data for this thesis is obtained from a series of field campaigns to the swamp 

forests of the Cuvette Centrale area in the DRC between January 2018 and January 2020, visiting 

peatlands adjacent to a series of tributaries of the Congo River. It is hoped that this new data 

and understanding will contribute to improved management of the peatlands, including the 

conservation of the vast carbon stocks and biodiversity that are present in the world’s largest 

tropical peatland complex.  
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1.4 Thesis outline 

The remainder of this thesis is composed of five data chapters, and a conclusions chapter.   

 

Chapter 2: Describing the river-influenced peat swamp forests of the central Congo Basin 

This data chapter describes the field sites that were visited as part of this PhD project. It provides 

the first field-based evidence of extensive peat presence in the Cuvette Centrale region of the 

DRC. This chapter shows that in addition to wide interfluvial basins that are common in the 

Republic of the Congo, peatlands are also found along the bottoms of smaller river valleys, 

predominately in the DRC, broadening our understanding of where peat forms in the central 

Congo Basin. 

 

Chapter 3: Characterising peat swamp forest vegetation types in the central Congo Basin 

This chapter presents an analysis of vegetation types that were identified in the DRC’s peat 

swamp forests. I compare forest structure and compositional diversity across different peat 

swamp forest types, identifying a distinct vegetation type in seasonally inundated peat swamps. 

I combine this with vegetation types previously identified in the Republic of the Congo to derive 

an overview of known peat swamp vegetation types in the central Congo Basin.  

 

Chapter 4: Understanding the hydrology, geochemistry and age of river-influenced peatlands 

in the DRC 

This chapter aims to analyse how peat formation and maintenance is affected by inundation 

patterns. It contrasts the seasonally inundated peatlands in river valleys in DRC with non-river-

influenced peatlands in both DRC and ROC. This analysis shows that like interfluvial basins 

peatlands, river-influenced peatlands in DRC are very nutrient-poor, allowing them to attain 

similar peat thickness despite experiencing greater water table fluctuations. This chapter also 

presents evidence that the river-influenced peatlands are among the oldest tropical peat 

deposits in the world, with peat initiation commencing ~42,000 calibrated years Before Present 

(Present being 1950). 

   

Chapter 5: Mapping the peat swamp forests of the central Congo Basin 

In this chapter, I develop a model of peatland distribution in the central Congo Basin by 

combining field data on peat-vegetation associations and remotely-sensed data, producing a 50-

meter resolution map of the central Congo peatlands. For this model, I compare optical, radar 

and topographic datasets, finding that the addition of relative elevation as input product 
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significantly improves predictions of peatland distribution. With triple the ground-truth data, I 

find the total peatland area, at 167,600 km2, to be 15% larger than previously estimated by 

Dargie et al. (2017). This chapter also presents a map of inundation frequency derived from 

multitemporal radar data, which is overlaid with the peatland map to locate the newly identified 

seasonally inundated mixed peat swamp forest type.  

 

Chapter 6: Modelling peat thickness, carbon density and carbon stocks of the central Congo 

Basin  

The final data chapter uses the collected in situ data on peat thickness to develop a new 

methodology, based on Random Forest regression, for mapping peat thickness and carbon 

stocks. This allows me to make the first ever map of peat thickness for the central Congo Basin 

peatlands. By combining the peat thickness map with laboratory data on peat carbon stocks, I 

then produce a first ever map of peat carbon density for the Cuvette Centrale peatlands. I use 

this map to estimate that the central Congo Basin peatlands store 29.0 Pg C in the peat, with a 

much-narrowed 95% confidence interval of 26.3-32.2 Pg C. Lastly, overlaying the peat carbon 

density map with maps of protected areas and industrial logging, mining, palm oil or 

hydrocarbon concessions, I compare the levels of protection of the peat carbon stocks and their 

threats. 

 

Chapter 7: Conclusion 

This final chapter summarizes all study results and presents the overall conclusions. I also discuss 

the limitations of this work and present priorities for future research directions. 
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Chapter 2: Describing the river-influenced peat swamp forests of 

the central Congo Basin 

 

2.1 Abstract 

The presence of large peatland areas has previously been predicted in the Democratic Republic 

of the Congo, but never assessed in the field. Therefore, peat cores were sampled, and peat 

thickness and vegetation characteristics were measured along seven long transects and four 

shorter transects in Équateur province, DRC. These transects are located across three major river 

systems and in one region away from rivers, totalling almost 50 kilometres in length. Peat was 

found along all seven long transects that were used to assess likely peatland areas predicted by 

Dargie et al. (2017). For the shorter transects, which were used to assess and improve mapping 

capabilities by targeting uncertain areas, no peat was found along two transects, while the other 

two transects only had very shallow peat deposits. These four shorter transects are located in 

seasonally inundated swamps or on the margins of larger peatland areas, showing that Dargie 

et al.’s (2017) predictions are generally accurate for major peat swamp forest areas near DRC’s 

rivers, but less accurate near the peatland’s margins. Field-measured peat thickness in the DRC 

is 3.2 ± 1.7 m (n=159, peat defined as ≥ 30 cm thickness of ≥ 65% organic matter), significantly 

greater than the 2.4 ± 1.6 m reported for ROC. Peat thickness increases more quickly with 

distance from the peatland margin in DRC than in ROC. Thus, thick peat deposits in the central 

Congo Basin are not confined to wide interfluvial basins, but can also be found in narrower 

peatlands in geomorphologically distinct river valleys systems. However, typically shallow peat 

deposits are found in sites experiencing large wet season inundations, closest to the major rivers 

or streams. This shows that peat formation is not confined to permanently waterlogged swamps 

with stable water tables, but also occurs in swamps that are characterized by greater water table 

fluctuations. These seasonally inundated peat swamps are as acidic as other peatlands, and 

appear at least as nutrient-poor. 
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2.2 Introduction 

Tropical peatlands are carbon-rich ecosystems that play an important role in the global carbon 

cycle (Ribeiro et al., 2021). In the central depression of the Congo Basin (also known as the 

‘Cuvette Centrale’), the presence of peatlands has long been suspected, but was only confirmed 

in recent years (Dargie et al., 2017). The only field-verified peatland map available suggests that 

peat underlies 145,500 km2 of swamp forests, making the central Congo peatlands the world’s 

largest tropical peatland complex (Dargie et al., 2017). The field data used in this estimate 

originates from one department in the northern Republic of the Congo, yet two-thirds of the 

central Congo Basin peatlands are predicted to be found in neighbouring Democratic Republic 

of the Congo, sometimes hundreds of kilometres away from the field data used to obtain this 

estimate (Fig. 2.1a). Similarly, peat carbon stocks were estimated to be 30.6 Pg C based on the 

only field data available, but the lower confidence interval was just 6.3 Pg C (Dargie et al., 2017). 

Thus, it is unclear if the central Congo peatlands are truly as extensive or deep as suggested, and 

whether they store globally significant quantities of carbon. 

 

Uncertainties in peat area and peat carbon stock estimates are further compounded by a limited 

understanding of the processes that determine peat formation in this region, particularly its 

hydrological functioning (Alsdorf et al., 2016; Dargie et al., 2017). In the central Congo Basin, 

peat has only been systematically documented in interfluvial basins in the Republic of the Congo 

(Dargie et al., 2017; Kiahtipes & Schefuß, 2019), where an absence of annual flood waves (Dargie 

et al., 2017), the presence of modest peat domes (Davenport et al., 2020), and water tables that 

are higher than that of nearby rivers (Lee et al., 2011) all suggest these peatlands are 

permanently waterlogged, largely rain-fed and independent of river water inputs.  

 

However, peat is predicted by Dargie et al. (2017) in other hydro-geomorphological settings, 

including what appear to be river-influenced regions close to the main Congo River and 

dendritic-patterned river valleys along some of its major left-bank tributaries (Fig. 2.1a). 

Topographic maps show that these river valleys are characterized by larger elevation gradients 

than those found in the shallow interfluvial basins further west (Fig. 2.2c). This is likely to 

strongly influence local hydrological patterns. According to radar data, some riverine swamp 

forests are seasonally inundated for parts of the year (Figure 2.1c; Rosenqvist, 2009). Other 

radar data has shown that these inundations can reach heights of up to 1.5 m above the surface 

during the main wet season (Figure 2.1b; Lee et al., 2015). This points to seasonal river flooding 
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or upland runoff from terra firme forests as key sources of water into these swamp forests. 

Whether peat accumulates under these conditions is currently unknown.  

 

a

b c

 
Figure 2.1. Maps of peat swamps and water tables in the central Congo Basin. a, Map of peat 
swamp forest predictions (shades of green) and field site locations (red dots) by Dargie et al. 
(2017).  Interfluvial basin peatlands are predominantly found on western side of the basin (ROC), 
while likely river-influenced peatlands are predominantly found on the eastern side of the basin 
(DRC). Names of the major rivers and lakes are shown. Black lines represent country boundaries; 
grey lines represent sub-national administrative boundaries. b, Map of inundation height (m) 
above the surface in December 2008, reproduced from Lee et al. (2015). © 2015 Elsevier. c, Map 
of inundation duration (number of days) between July 2007 and March 2008, reproduced from 
Rosenqvist (2009). Map location of b and c is indicated in a by the red and blue dashed rectangle, 
respectively. 
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Little is also known about the types of vegetation that are found in these likely river-influenced 

swamps. The field study of peat swamp forests in the Republic of the Congo by Dargie et al. 

(2017) describes three different types of peatland vegetation, namely hardwood-dominated 

peat swamp forest, in which Uapaca paludosa, Carapa procera and Xylopia rubescens are 

common; peat swamp forest dominated by the Raphia laurentii palms; and a much rarer peat 

swamp forest dominated by Raphia hookeri palms that is found in abandoned river channels. 

Mapping of hardwood-dominated and the common palm-dominated (R. laurentii) peat swamp 

forests predicts that both are present in the hydro-geomorphologically distinct river-influenced 

wetlands of DRC (Dargie et al., 2017). However, no field verification of this prediction has so far 

taken place. Understanding whether similar vegetation types are found in the swamp forests of 

the DRC is crucial for peatland mapping efforts, as peat presence in the tropics is primarily 

mapped indirectly based on vegetation characteristics (Lawson et al., 2015). As forest structure 

and composition are likely to be different between swamps with seasonal inundations and 

swamps with more stable water tables (Targhetta et al., 2015), landcover predictions from 

Dargie et al. (2017) are potentially less accurate in river-influenced settings from which they did 

not include any datapoints as training data in their models. Thus, field observations of peat are 

necessary to assess if peat really exists under swamp forests along river valleys in the Democratic 

Republic of the Congo (DRC). This is particularly important given that the Dargie et al. (2017) 

predict that two-thirds of the peat area of the central Congo basin is in DRC. 

 

 

2.3 Chapter aims 

The aim of this chapter is to use field observations to test the predictions of the presence of peat 

swamp forests in the central Democratic Republic of the Congo, particularly in river-influenced 

settings. The specific objectives of this chapter are (i) to describe the rationale behind the chosen 

field locations (transects) that were used to test peat predictions in DRC; (ii) to describe the 

fieldwork methodologies used in assessing peat swamp forests, including peat thickness 

measurements; and (iii) to describe and compare the field locations in terms of vegetation, 

water table heights, pH/electrical conductivity and peat thickness characteristics as observed in 

the field. 
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2.4 Methods 

 

2.4.1 Transect selection 

The only published map of peatland distribution that is based on field data, developed by Dargie 

et al. (2017), was used as a guide to identify suitable field locations for peat prospecting in the 

Democratic Republic of the Congo. Each field site served multiple purposes, namely: (i) to test 

the predictions of peat presence made by Dargie et al. (2017); (ii) to assess and classify peat 

swamp vegetation types, developed further in Chapter 3; (iii) to test hypotheses of peat 

formation, development and maintenance (long transects) or to assess mapping capabilities 

(short transects), detailed in Table 2.1 and developed further in Chapter 4; (iv) to collect ground-

truth points for further peatland distribution mapping, developed in Chapter 5; and (v) to 

measure peat carbon and peat thickness that will be used to model the spatial variation in peat 

thickness and carbon density across the Cuvette Centrale, developed in Chapter 6. 

 

Fieldwork was conducted in the peat swamp forests of Équateur province, Democratic Republic 

of the Congo, across three field seasons, in January - March 2018, June - August 2019 and 

January 2020. All fieldwork sites were either accessed by car or boat from the provincial capital 

Mbandaka. An overview of the different field campaigns, including locations, field team 

members, and the type of data collected, is included in Appendix I.  

 

A total of 11 transects were installed across the three field seasons, identical to Dargie et al.'s 

(2017) transect approach. These included seven “long” transects (4-11 km), targeted in locations 

highly likely to contain peat according to Dargie et al.’s (2017) map, which were used to test 

hypotheses about the role of vegetation, surface wetness, nutrient status, and topography in 

peat accumulation (detailed in Table 2.1). Additionally, four “short” transects (0.5-3 km) were 

installed to assess the mapping capabilities of peatland distribution models (see Chapter 5), by 

testing suspected false predictions of peat presence from Dargie et al.’s (2017) map, because of 

the geomorphological setting at higher relative elevation above the nearest river, or conflicting 

results from preliminary remote sensing models (detailed in Table 2.1).  

 

All but one of the 11 new transects are located in the geomorphologically distinct river-

influenced landscape of the Cuvette Centrale, east of the Congo River mainstem (Figure 2.2). 

This includes a group of transects (Mpeka, Bondamba, Bolengo, Ikelemba, Pombi and Boleke) 

that is located perpendicular to the major left-bank tributaries of the Congo River, namely the 
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Ruki, Busira and Ikelemba rivers. A smaller group of transects (Boloko and Tumba) is located in 

places not directly adjacent to one of these major tributaries, but rather in the valley bottoms 

of smaller dendritic channels or branches of the drainage system that dominate this eastern part 

of the peatland complex (Figure 2.2). 

  
Figure 2.2. Transect locations in Équateur province, DRC. Transects (not to scale) are indicted 
by red (testing hypotheses) or green (testing mapping capabilities) markers. Upper-right corner 
insets: image location within the wider peatland complex (grey shading) and river network (blue). 
a, Background image of the smoothed (7x7 majority filter) landcover map of Dargie et al. (2017). 
b, Background image of the HV/HH-ratio of multi-date ALOS PALSAR radar data developed by 
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Dargie et al. (2017) to differentiate between inundated (light grey) and non-inundated (dark 
grey) forests. c, Regional SRTM Digital Elevation Model (DEM; meter above sea level, m.a.s.l.).  
One transect (Lokolama) is not located in a river-influenced setting, but on the edge of what 

appears to be a likely (shallow) peat dome, given its markedly round shape (Figure 2.2). 

However, it is unclear if this peatland area can be classified as an ‘interfluvial basin’ like shallow 

peat domes in ROC (Davenport et al., 2020), as it is adjacent to the Congo River mainstem on 

one side and terra firme upland, some 20 km away, on the other side. Therefore, this peatland 

area may be different from the interfluvial basin peatlands found previously in ROC (Dargie et 

al., 2017) and was additionally included in the sampling. 

 

It was hypothesized that a general trend in peat thickness and vegetation types could be 

detected along the transects that run perpendicular to rivers, with shallower peat deposits 

found closer to the river because of more seasonal inundation patterns. The vegetation in 

swamps with seasonally fluctuating water tables was hypothesized to be different from swamps 

with stable water tables further away from the river. Furthermore, greater peat thickness was 

hypothesized towards the centre of suspected peat domes. The specific justifications and 

hypotheses/peat predictions for each of the 11 transects are presented in more detail in Table 

2.1.  

 

I selected the location of each transect by first assessing the predicted vegetation types 

(hardwood-dominated peat swamp forest, palm-dominated peat swamp and non-peat forming 

terra firme forest) from the landcover map previously developed by Dargie et al. (2017; Figure 

2.2a). Transects used for hypothesis testing were selected in such a way that most transects 

have a high predicted probability of peat presence (typically > 90%), but also cross more than 

one vegetation type to ensure that all vegetation types are included in the sampling. Hypotheses 

about peat formation are further based on surface wetness indications from ALOS PALSAR radar 

data (multi-date HV/HH-ratio; Figure 2.2b), or SRTM topographic data (Figure 2.2c). The radar 

data was used to select transects in locations characterised by what appear to be concentric 

pattern formations (Bondamba transect) or in locations that cross smaller branches of the 

drainage network (Tumba and Boloko transect; Figure 2.2b). In addition, topographic data 

obtained from the SRTM Digital Elevation Model (DEM) was used to select transects on relatively 

higher elevation (> 340 m.a.s.l.), where no sampling had taken place before but which is 

characteristic of the south bank of the Ruki/Busira River (Bolengo and Pombi transects; Figure 

2.2c). Finally, for the purpose of assessing mapping capabilities, preliminary supervised 

Maximum Likelihood classification models based on either SRTM DEM, SRTM HAND (Height 
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Above Nearest Drainage point) or SRTM DEM+HAND as elevation data (with a subset of ground-

truth data; see Chapter 5) were used to select the locations of shorter transects that could help 

differentiate the modelling effect of these topographic products. 

 
 

Transect 

name (code) 

Transect 

purpose 

Length 

(km) 

Transect description Hypothesis / 

Peat prediction 

Mpeka 
(PEK) 

Testing 
hypotheses 

10.0 This transect runs perpendicular to the 
Ruki River towards the interior of a likely 
low-lying floodplain, with mostly palm 
swamp predicted. However, it first 
traverses a river levee, before entering a 
likely depression. Potential effects of 
nutrient gradient or inundation levels 
(river-influenced) on peat thickness could 
be found. 

Because of the 
depression behind a 
levee, water tables are 
more stable here than 
along other transects 
close to the river, 
resulting in deeper peat 
deposits. 

Bolengo 
(BNG) 

Testing 
hypotheses 

8.0 This transect crosses through seemingly 
higher elevation on the left-bank of the 
Busira River, providing crucial insight in 
peat formation at higher elevations. It 
traverses mostly hardwood swamp, 
perpendicular to the river, before ending 
in likely upland terra firme forest, which is 
predicted as peat by one of the 
preliminary models (see Ch. 5). The 
potential effect of a nutrient gradient 
could be detected when moving away 
from the river, or inundation effects from 
upland terra firme runoff. 

This transect is less wet 
and has shallower peat 
than other transects, 
because of the higher 
elevation. Additionally, 
towards the upland 
terra firme at the end of 
the transect, no peat is 
found contrary to what 
is predicted by one 
preliminary model (Ch. 
5). 

Bondamba 
(BDM) 

Testing 
hypotheses 

7.0 Concentrating patterns are visible in 
optical and radar data along the right-bank 
of the Busira River, indicating potential 
peat domes (see Fig. 2.2). This transect 
runs from the margin to the centre of one 
of these potential domes, mostly 
traversing palm swamp forest. 

Increasing peat 
thickness is found 
towards the interior of 
the peat dome, where 
water tables are more 
stable. 

Ikelemba 
(IKE) 

Testing 
hypotheses 

5.0 This transect crosses the floodplain along 
the Ikelemba River, traversing both 
predicted hardwood and palm swamp 
forest before ending in upland terra firme 
forest. Potential effects of nutrient 
gradients or inundation levels (river-
influenced or runoff) on peat thickness 
could be detected. The transect provides 
crucial ground verification further away 
along a second Congo tributary, in addition 
to the Ruki River. 

Shallower peat deposits 
are found closer to the 
river, because of more 
fluctuating water tables. 

Lokolama 
(LOK) 

Testing 
hypotheses 

5.0 This transect is on the edge of a peat basin 
next to the Congo River mainstem, which 
could potentially be domed. However, 
seasonal radar data indicates more 
inundation than in interfluvial basins in 
ROC (see Ch. 5), meaning it could be partly 
river-influenced from the west or 
experience more terra firme runoff from 
the east. The transect traverses first likely 

Increasing peat 
thickness is found 
towards the interior of 
the peat dome, where 
water tables are more 
stable. 
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hardwood swamp, before palm swamp 
forests closer towards the interior. 

Boloko 
(BEL) 

Testing 
hypotheses 

4.5 This transect crosses a small, dendritic 
river valley (Boloko River, tributary of the 
Ruki River), of which many are found in 
this part of the peatland complex. Ground 
verification at these locations is therefore 
crucial. Part of the peatland water likely 
originates as upland runoff from 
surrounding terra firme forest. 

Even though the area is 
very small, peat has 
formed here because of 
the high water levels in 
small dendritic river 
valleys. 

Tumba 
(TUM) 

Testing 
hypotheses 

4.0 This transect crosses a likely low-lying 
floodplain site between the Bonsole and 
Boloko Rivers (both tributaries of the Ruki 
River), with little elevation change. It 
traverses predicted palm swamp. This 
provides useful data from low-lying 
floodplains along smaller river channels. 

No peat is found here, 
because the floodplain 
is likely seasonally 
inundated or 
experiences erosion 
from migrating rivers. 

Pombi 
(POM) 

Assessing 
mapping 
capabilities 

3.0 This short transect is located opposite the 
Mpeka transect on the left-bank of the 
Ruki River, on higher elevation in a likely 
small channel of the dendritic drainage 
system. It crosses sites either predicted as 
peat or not by different models (see Ch. 5), 
giving a good chance to distinguish 
between the models. 

This site is likely a false 
positive prediction of 
peat by Dargie et al. 
(2017), because it is at a 
higher relative elevation 
above the river. 

Boleke 
(BLK) 

Assessing 
mapping 
capabilities 

2.0 This short transect is located in a 
floodplain on an island in a bend of the 
Busira River. It crosses expected savanna, 
terra firme forest and palm and hardwood 
swamp. Peat is predicted by some models, 
but not all (see Ch. 5), giving a good 
chance to distinguish between models. 

Shallow peat is expected 
because of frequent 
inundations in this low-
lying floodplain, but 
with potential effects of 
river erosion. 

Bondamba 2 
(BDM2) 

Assessing 
mapping 
capabilities 

0.5 This short transect is close to the main 
Bondamba peat dome, but with potential 
terra firme present. It traverses an area 
predicted as peat by some models, but not 
all (see Ch. 5), giving a good chance to 
distinguish between these models. 

This site is likely a false 
positive prediction of 
peat by Dargie et al. 
(2017), because it is 
located at higher 
relative elevation above 
the river. 

Bondamba 3 
(BDM3) 

Assessing 
mapping 
capabilities 

0.5 This short transect is close to the main 
Bondamba peat dome, but with potential 
terra firme present. It runs in a different 
direction than BDM2. It traverses an area 
predicted as peat by some models, but not 
all (see Ch. 5), giving a good chance to 
distinguish between these models. 

This is likely a false 
positive prediction of 
peat by Dargie et al. 
(2017), because it is 
located at higher 
relative elevation above 
the river. 

Table 2.1. Description and justification of the 11 transect locations in DRC. Each transect tests 
a hypothesis about peat formation (‘Testing hypotheses’), or the ability of preliminary 
classification models to accurately predict peat (‘Assessing mapping capabilities’). The 
hypotheses or peat predictions, respectively, are listed in the last column. Expected landcover 
types are from Dargie et al. (2017; Figure 2.2a). Hypotheses about peat formation are further 
based on surface wetness indications from ALOS PALSAR radar data (Fig. 2.2b), or SRTM 
topographic data (Fig. 2.2c). Preliminary supervised Maximum Likelihood classification models 
based on either SRTM DEM, SRTM HAND (Height Above Nearest Drainage point) or SRTM 
DEM+HAND as elevation data (with a subset of ground-truth data) were used to select the 
locations of short transects that could help differentiate the modelling effect of these 
topographic products (see Chapter 5).  
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2.4.2 Field sampling 

The 11 field sites identified in section 2.4.1 were visited to collect peat samples and assess peat, 

water and vegetation characteristics along straight transect lines. The location, direction, and 

length of each transect were predetermined before entering the field using QGIS software 

(version 3.10). In the field, navigation towards and along transects was done using a GPS (Garmin 

GPSMAP 64s) and compass.  

 

Peat presence/absence was recorded every 250 m along each transects. If peat was present, 

peat thickness was measured using a series of metal poles inserted into the peat soil until the 

underlying mineral substrate was reached, identical to Dargie et al.’s (2017) pole-method. The 

total length of the pole from peat surface to the point on the pole where the first visible signs 

of mineral substrate were seen was then measured. A total of 206 peat thickness measurements 

was taken using the pole-method across all 11 transects. 

 

In addition to this pole-method, for the seven hypothesis-testing transect, a core of the full peat 

profile was extracted every kilometre, using a 50 cm-long Russian-type peat corer (52-mm 

stainless steel Eijkelkamp model). Each peat core was subdivided in the field by cutting up the 

50 cm core segments into 10 cm pieces using a knife and metal spatula, whilst still inside the 

corer, and then placing each subsample inside sealed plastic bags for transportation out of the 

field. These cores served to collect peat samples for laboratory analysis to assess carbon content 

(Chapter 6), and for calibration of the pole-method peat thickness measurements based on 

more accurate laboratory measurements. A total of 40 peat cores was collected every kilometre 

along the seven transects. Additionally, two more peat cores were collected together with a 

pole-method measurement, one located away from the main Lokolama transect (LOK_Extra), 

and one located in a seasonally inundated channel that crossed near the end of the Tumba 

transect at 3.93 km (TUM_3.93). As such, a total of 42 full peat cores was collected at locations 

where peat thickness was also measured via the pole-method, to allow a correction of pole-

measured peat thickness from extracted peat cores (see section 2.4.4).  

 

Every 250 m along each transect, at the same locations where peat presence/absence was 

recorded, landcover was classified as one of six classes: water, savanna, terra firme forest (TF), 

non-peat forming seasonally inundated forest (SIF), palm-dominated peat swamp forests (PS), 

or hardwood-dominated peat swamp forests (HS). Peat swamp forest was classified in the field 
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as palm-dominated, instead of hardwood-dominated, when > 50% of the canopy, estimated by 

eye, were identified as Raphia palms.  

 

In addition to this basic classification, a more detailed description of forest structure, vegetation 

type and species composition was recorded every 250 m along each transect. This included a 

description of the most dominant canopy and understory species present, identified within a 

~10 m radius by local expert botanists (Prof Corneille Ewango and Joseph Kanyama of the 

University of Kisangani, and Pierre Bola of ISP-Mbandaka). The height of the five trees that most 

dominate the canopy at the GPS location of the site was also measured using a laser hypsometer 

(manufacturer: Nikon, Kingston upon Thames, UK; model: Forestry Pro Laser Rangefinder). 

These five height measurements could then be used to estimate the average tree height at each 

location. 

 

The vegetation descriptions were further complemented by vegetation plots of 20 x 40 m (800 

m2) that were installed every kilometre along the seven hypothesis-testing transects, regardless 

of whether peat was present or not, where all trees with a diameter of ≥ 10 cm were measured. 

A relatively small plot size of 800 m2 was used for speed, to increase the overall number of plots, 

and because swamp forests typically have lower biomass values and tree species diversity than 

terra firme forest (Dargie, 2015; Ifo et al., 2019). They are therefore likely more homogeneous 

at smaller scales than a typical terra firme forest. These vegetation plots were used for a more 

detailed characterization of vegetation types, developed in Chapter 3.  

  

Furthermore, alongside descriptions of peat and vegetation, the local hydrology and flood 

regime was characterized every 250 m along each transect. For this, I first measured the local 

water table depth with respect to the peat surface at the time of visit (in cm; positive if above 

the peat surface, negative if below). Care was taken to avoid measuring the water table depth 

directly after rainfall events. Because the field visit corresponded with the dry season 

(particularly the Ruki river transects were sampled at the height of the main dry season in 

July/August 2019), this variable was cautiously regarded as a proxy for the maximum dry season 

water table depth.  

 

I also derived an estimate of the maximum inundation level at the peak of the wet season (in 

metres), from marks left on trees by the water, with assistance from the knowledge of local field 

assistants. This estimated inundation level was cautiously regarded as a proxy for the maximum 
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wet season inundation height. I then used both measures to calculate the estimated water table 

fluctuation, which is the absolute difference between maximum wet season and dry season 

water table levels. I also used the maximum inundation level to calculate a High-Water Fraction 

(HWF) for each transect, which is defined as the proportion of peat sites along each transect 

with estimated maximum inundations > 50 cm, out of all peat sites along that transect. A 

threshold of 50 cm was chosen, because sites that are very unlikely to experience seasonal river 

flooding (such as the Lokolama transect), were found to have relatively stable maximum 

inundation levels that do not exceed 50 cm. 

 

To get an insight into the nutrient availability of the peatland sites, measurements of pH and 

electrical conductivity (EC; in μS/cm) were taken of the peat pore or surface water at all sites at 

which a full peat core was collected, every kilometre along each long transect. Measurements 

of pH give an indication of the presence of organic acids, which are produced during the 

decomposition of organic matter but are neutralised by base cations. EC measurements of peat 

pore or surface water are a proxy of the concentration of total dissolved solids (TDS), the sum 

of dissolved major ions and organic matter (Allen & Castillo, 2007; Theimer et al., 1994). Both 

higher EC (more TDS) and higher pH (more base cations, notably Na+, K+, Ca2+ and Mg2+) are 

related to nutrient presence in peat surface waters, which are an important indication of the 

peatland’s water source (Chesworth et al., 2006; Weiss et al., 2002). In particular, alkali and 

alkaline earth metals such as Na+, K+, Ca2+ and Mg2+ generally originate from the weathering of 

silicate and carbonate minerals, therefore their presence indicates water that has interacted 

with sedimentary rocks (Allen & Castillo, 2007; Berner & Berner, 2012). Acidity is also related to 

impediment of microbial activity (Yule et al., 2018; Yule & Gomez, 2009), thus affecting peat 

decomposition and accumulation rates.  

 

To measure pH and EC, I used a portable combined pH/EC-meter (manufacturer: Hach Company, 

Loveland, Colorado, USA; model: Hach HQd Portable Metre) that was calibrated every day 

before use. However, at the Bolengo and Bondamba transects, a less accurate Hanna Combo 

metre was used (manufacturer: Hanna Instruments, Smithfield, Rhode Island, USA; model: 

Hanna HI 98129), as the Hach metre had broken. All pH/EC-measurements were taken only as 

long as sufficient pore water was present to permit a measurement (generally, up to depths of 

~40 cm below the surface). Statistical testing of pH and EC was based on measurements taken 

in peat swamp forest only, excluding measurements taken in non-peat forming seasonally 

inundated or terra firme forests.  
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Finally, every 250 m along each transect, topography, natural disturbance levels from treefall, 

and human activities (logging, fire, hunting) were also recorded. The data collected from the 

transects is listed in Table 2.2. All field protocols are identical to or adapted from those used 

previously for peatland research in the central Congo Basin in the Republic of the Congo (Dargie, 

2015).  

 

Item What was recorded 

1. General plot and peat  
measurement description 

- Site and plot name/code 
- Date 
- Latitude/longitude 
- Altitude (m.a.s.l.) 
- GPS model and accuracy (± m) 
- Total pole method peat thickness (m) 
- Description of base material (clay, sand, etc) 
- Depth of litter cover (cm) 

2. Forest type  One option is selected for each: 
- Forest /Savanna/Transition 
- Primary/Logged/Secondary 
- Evergreen/Semideciduous/Deciduous 

3. General description of  
vegetation  

One of the following is selected: 
- Savanna 
- Non-peat forming seasonally inundated forest 
- Terra firme forest 
- Hardwood-dominated peat swamp forest 
- Palm-dominated peat swamp forest 
Plus: dense or open forest structure? Lianas present? 
Percentage canopy cover? 

4. Species composition Which species dominate? What are common species in canopy 
and understory? 

5. Tree height measurements Tree height (m) of 5 most dominant trees is recorded. 

6. Vegetation Photo No.  Four photos are taken in all four parallel and perpendicular 
directions along the transect. 

7. Microtopography  Whether the terrain is flat or undulating. If undulating, an 
estimate is made by eye of size and frequency of undulations  
(i.e., hummocks > 1 m, hummocks < 1m) 

8. Inundation regime One of the following is selected: 
- Rarely inundated / Terra firme  
- Seasonally inundated 
- Seasonally inundated, but only in major wet season (Sept. to 
Dec.) 
- Permanently inundated (swamp) 

9. Hydrology Estimated maximum inundation level (m) in the wet season is 
recorded from marks on trees or based on local knowledge of 
field assistants. If there is surface water, descriptions are made 
(some rare pools, or hollows regularly filled with water, etc) 

10. Water table depth Water table level (cm) above (+) or below (-) peat surface is 
recorded. 

11. Pore/surface water 
measurements 
(every km of long transects only) 

The following is recorded: 
- Pore/surface water pH 
- Pore/surface water temperature (°C) 
- Pore/surface water electrical conductivity (μS cm-1) 
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12. Disturbance: Human  A record was made of whether there were signs of: 
-Hunting 
-Non-timber forest product harvesting 
-Trails (footpaths) 
-Trees < 10cm DBH cut 
-Trees > 10 cm DBH cut 

13. Disturbance: Fire  One of the following was selected: 
-None 
-Surface 
-Surface and trees 

14. Disturbance: Tree Fall  One of the following was selected: 
-None 
-Minor (tree < 40 cm DBH), plus location recorded 
-Major (tree > 40 cm DBH), plus location recorded 

Table 2.2. Overview of field data recorded every 250 m along each transect. All field protocols 
are identical to or adapted from those used previously for peatland research in the central Congo 
Basin in the Republic of the Congo (Dargie, 2015). 
 

 

2.4.3 Laboratory analysis 

Throughout this thesis, peat is defined as having an organic matter (OM) content of ≥ 65% and 

a thickness of ≥ 30 cm, in line with previous definitions of tropical peat by Page et al. (2011) and 

Dargie et al. (2017). Except for occasional minor mineral intrusions (< 65% OM) into the main 

peat columns, collected soil samples that did not fit this definition were excluded from further 

analyses. 

 

The definition implies that the OM content of peat needs to be measured in order to accurately 

assess peat thickness. For this, the organic matter content of each 0.1-m thick peat sample of 

each peat core was estimated via Loss-On-Ignition (LOI) analysis at the School of Geography 

laboratory at the University of Leeds. Subsamples of approximately 0.5-1 g of wet peat were 

dried for 24 hours in an oven at 105°C, after first thoroughly mixing the entire sample inside its 

plastic bag to ensure sample homogeneity. The dry mass of each subsample was then weighed 

after cooling off to room temperature in a desiccator. The subsample was then heated for 4 

hours in a furnace at 550°C, whilst placed inside a ceramic crucible. It was then weighed again 

after cooling off to room temperature in a desiccator. Because organic matter is oxidised to 

carbon dioxide and ash at 500–550°C (Heiri et al., 2001), the mass fraction lost after heating was 

used as an estimate of total OM content (% of dry mass), using the following equation: 

𝑂𝑀 = (
(𝑚105 − 𝑚550)

𝑚105
) ∗ 100                                                             [Eq. 2.1] 

Here, m105 is the dry mass remaining after heating to 105°C, and m550 is the dry mass remaining 

after heating to 550°C. This approach is in line with similar measurements by Dargie et al. (2017) 
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and follows the recommendation of Heiri et al. (2001). If OM content dropped below the 65% 

threshold but would later increase again to over 65% at greater depths, this was interpreted as 

indicating a mineral intrusion into the peat layer, rather than the base of the peat layer. Total 

peat thickness was recorded as the depth in the profile at which OM content dropped below 

65% and did not reach this threshold again.  

 

 

2.4.4 Peat thickness measurements 

All peat cores collected every kilometre that had ≥ 30 cm of peat based on the LOI 

measurements were included in the analyses of peat thickness (n=41, one site had < 30 cm with 

OM ≥ 65%). For all sites every 250 m without a peat core, only pole-method thickness 

measurements were available. Dargie (2015) and Dargie et al. (2017) have noted how the pole 

method significantly overestimates peat thickness in the peat swamp forests of ROC. This was 

also found to be the case at the locations sampled in DRC, particularly if the underlying mineral 

substrate consisted of soft, riverine alluvium.  

 

I therefore fitted a linear regression between all paired LOI-verified and pole-method peat 

thickness measurements sampled at the same locations in DRC. Of the 41 sites with LOI-verified 

peat thickness ≥ 30 cm, one site along the Mpeka transect (PEK_10.0) was excluded as influential 

outlier because it was found to have a Cook’s distance > 4 times the mean Cook’s distance. 

Cook’s distance is a measure of how influential an outlier is in affecting a regression equation, 

by measuring the change in the regression coefficients that would occur if that datapoint were 

to be omitted from the regression (Stevens, 1984). The remaining 40 pairs of LOI and pole-

method thickness measurements were used to fit a simple linear regression model (R2 = 0.94, 

p<0.001; Figure 2.3). This model was then used to correct all pole-method thickness 

measurements in DRC for which no LOI-verified measurement was available (n=164), 

comparable to the method used by Dargie (2015) and Dargie et al. (2017) in ROC.  

For this, the following equation was used: 

𝑇𝑐𝑜𝑟𝑟 = 0.8741 ∗ 𝑇𝑝𝑜𝑙𝑒 − 0.554    [Eq. 2.2] 

Here, Tcorr is the corrected peat thickness (m) and Tpole is the pole-measured peat thickness (m). 
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Figure 2.3. Linear regression model to correct pole-method peat thickness measurements in 
river-influenced peat swamps in DRC. The plot shows the relationship between peat thickness 
(m) estimated using the pole-method and laboratory-verified peat thickness (m) using Loss-On-
Ignition (LOI) for all hypothesis-testing transects. Datapoints are coloured by transect. Best-
fitting line: Corrected peat thickness = 0.8741 x (pole-method thickness) – 0.554; n=40, R2 = 0.94; 
p<0.001. Shaded grey shows the 95% confidence interval. One outlier (PEK_10.0, indicated by 
the star) with > 4x the mean Cook’s distance (pole-method: 8.6 m, LOI-verified: 5.4 m) is excluded 
from the regression model. 
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2.5 Results 

 

2.5.1 Transect descriptions 

Peat was found along all seven hypothesis-testing transects that were predicted to be peatland 

by Dargie et al. (2017). All seven transects had a high (81% to 97%, mean 89%) percentage of 

sites correctly predicted as peat swamp or not by Dargie et al. (2017) (Table 2.3). Along these 

seven transects, mean peat thickness was 3.2 ± 1.7 m (n=159, with thickness ≥ 30 cm). A 

maximum thickness of 7.0 m was found at 6.5 km along the Bondamba transect. In general, it 

was observed that peat thickness increases with distance along the transect, and that a thickness 

of 5-7 m can be reached within several kilometres of the start of a transect in terra firme forest. 

 

Transect name  

(code) 

Transect purpose Length 

(km) 

Proportion (%) correctly 

predicted by Dargie et al. (2017) 

Mpeka (PEK) Testing hypotheses 10.0 80.5 

Bolengo (BNG) Testing hypotheses 8.0 97.0 

Bondamba (BDM) Testing hypotheses 7.0 86.2 

Ikelemba (IKE) Testing hypotheses 5.0 95.2 

Lokolama (LOK) Testing hypotheses 5.0 91.3 

Boloko (BEL) Testing hypotheses 4.5 86.7 

Tumba (TUM) Testing hypotheses 4.0 83.3 

Pombi (POM) Assessing mapping capabilities 3.0 46.2 

Boleke (BLK) Assessing mapping capabilities 2.0 22.2 

Bondamba 2 (BDM2) Assessing mapping capabilities 0.5 33.3 

Bondamba 3 (BDM3) Assessing mapping capabilities 0.5 33.3 

Table 2.3. Proportion of correctly predicted peat sites by Dargie et al. (2017). Each proportion 
reflects the correctly predicted number of sites (peat/non-peat) per transect. Peat is defined as 
≥ 30 cm of soil with ≥ 65% organic matter content. Thickness measurements used to identify peat 
include both LOI-verified and corrected pole-method measurements.  
 

Along the four transects used to investigate areas with a low-probability of peat, and to test 

possible false positive predictions by Dargie et al. (2017), peat was found only at the two 

Bondamba transects (BDM2 and BDM3). Both contained at least one location where peat was 

found (BDM2_0.25 and BDM3_0.50), albeit in the form of shallow deposits (~1-1.5 m). No peat 

was found along the Pombi transect, likely due to its well-drained, higher elevation location. No 

peat was found along the Boleke transect either, contrary to what was predicted (Table 2.3). 

This lack of peat formation is probably due to the fact that this site is seasonally inundated by 

river water, but also likely well-drained in the dry season. Furthermore, as it is located on an 
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island in the Busira River, it is unlikely to receive any upland runoff, which could make it less 

likely to form peat than other seasonally inundated sites located on riverbanks. No direct signs 

of erosion were seen along this transect. At all other locations along the shorter map-testing 

transects, non-peat forming seasonally inundated forest was found, in contrast to what was 

sometimes predicted by Dargie et al. (2017).  

 

Regarding the seven hypothesis-testing transects, some are largely dominated by either 

hardwood (Ikelemba, Boloko) or palm peat swamp forest (Bondamba) alone, while other 

transects are characterised by a mixture of the two. Hardwood swamp, of which an example is 

shown in Figure 2.4, was found at least once along each transect. Palm swamp, of which an 

example is shown in Figure 2.5, was generally found at least once along each transect as well, 

except for the Boloko transect, which is fully dominated by hardwood swamp. Each of the seven 

hypothesis-testing transects is discussed in more detail below. A list of all species names that 

are mentioned, including author names, is provided in Appendix II. 

 

 
Figure 2.4. Example of hardwood-dominated peat swamp forest. Hardwood swamp generally 
has a dense understory with numerous juveniles, while many trees are supported by buttress or 
stilt roots (such as Uapaca corbisieri in this photo taken near the end of the Ikelemba transect). 
Photo taken by the author. 
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Figure 2.5. Example of palm-dominated peat swamp forest. Palm swamp is typically dominated 
by large Raphia laurentii palms, which can attain heights of up to 15 m (such as in this photo 
taken along the Mpeka transect). The understory is generally sparse, characterized by smaller 
Raphia sese, Sclerosperma mannii or Pandanus candelabrum, with few to no hardwood trees 
present. Photo taken by the author. 
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Mpeka transect (PEK) 

 
Figure 2.6. Mpeka transect overview, showing from top to bottom: mean in situ tree height (m), 
field-estimated maximum inundation (m), dry season water table depth (cm), peat pore/surface 
water pH and electrical conductivity (μS cm-1), SRTM digital elevation (m.a.s.l.) and estimated 
peat thickness (m; incl. LOI-verified and corrected pole-method measurements). Colours indicate 
field-identified vegetation types (on top in bold), with the tree most abundant species listed every 
full kilometre. All y-axes are similar across transect figures (Figs. 2.6-2.12), except for the 
pore/surface water EC and SRTM elevation scales. Note that the x-axis (distance along transect) 
differs per transect (Figs. 2.6-2.12). 
 

The Mpeka transect (Figure 2.6), located on the north bank of the Ruki River, was chosen to run 

perpendicular to the river towards the interior of what appeared to be a large floodplain. The 

transect starts in seasonally inundated forest that does not form peat, and then traverses a levee 

covered in terra firme forest (characterized by Guibourtia demeusei and a dense understory of 

rattan species). This is followed by a small depression covered by hardwood- and palm-

dominated forest with shallow peat deposits. The transect then traverses a non-peat forming 

seasonally inundated forest that is located on a second elevated ridge (characterized by 
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Guibourtia demeusei, Oubanguia africana and an understory of rattan species) at 1.0 km along 

the transect. The actual peat swamp then starts from 1.25 km along the transect, with shallow 

peat deposits of generally between 1 and 3 m. This section is mostly characterised by Raphia 

laurentii-dominated palm swamp vegetation, although between 2.25 and 2.75 km, a short and 

mixed hardwood swamp forest is found, characterized by an understory of Raphia sese, 

Sclerosperma mannii and many rattan species. Between 3.0 and 8.0 km, the palm swamp forest 

dominated by Raphia laurentii returns, with peat thickness gradually increasing further along 

the transect. After 9.0 km, this changes permanently into a hardwood-dominated swamp forest, 

characterized by Carapa palustris, Uapaca corbisieri and Entandrophragma palustre. This shift 

largely coincides with higher elevations, greater tree height and greater peat thickness (up to 

6.6 m at 9.75 km). This segment of the transect is also where the largest tree height of all 

transects is observed (31.3 m at 9.50 km). 

 

The mineral layer below the peat deposits is initially characterized by light grey clay with a slight 

grit. Between 4.0 and 8.25 km, occasionally more silt or sandy deposits are detected. From 8.5 

km onward, very soft, dark grey clay is found, likely riverine alluvium, coinciding with greater 

peat thickness.  

 

The estimated maximum inundation was found to reach ~1 m above the peat surface between 

2 and 4 km away from the river, but gradually diminishes after 4.5 km until the water table 

reaches no more than just above the peat surface from 7.0 km onwards. Thus, the deepest peat 

is found furthest away from the river, overlain with hardwood swamp forest, where the soil is 

permanently waterlogged but experiences no (seasonal) inundation.  

 

Peat pore water pH shows consistent acidic conditions (ranging between 2.8 and 3.5), but no 

clear trend with distance along the transect. However, electrical conductivity almost doubles 

between 2.0 and 5.0 km (from 96 to 177 μS cm-1), after which it stays above 120 μS cm-1 

throughout the transect.  

 

Apart from a few trails and signs of fishing activities, no major human disturbances were 

observed along the Mpeka transect. 
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Bondamba transect (BDM) 

 
Figure 2.7. Bondamba transect overview, showing from top to bottom: mean in situ tree height 
(m), field-estimated maximum inundation (m), dry season water table depth (cm), peat 
pore/surface water pH and electrical conductivity (μS cm-1), SRTM digital elevation (m.a.s.l.) and 
estimated peat thickness (m; incl. LOI-verified and corrected pole-method measurements). 
Colours indicate field-identified vegetation types (on top in bold), with the tree most abundant 
species listed every full kilometre. All y-axes are similar across transect figures (Figs. 2.6-2.12), 
except for the pore/surface water EC and SRTM elevation scales. Note that the x-axis (distance 
along transect) differs per transect (Figs. 2.6-2.12). 
 

The Bondamba transect (Figure 2.7) is located further upriver from Mpeka, on the north bank of 

the Busira River. It was chosen to run from the margin to the centre of a potential peat dome 

that displays concentric patterning formation in radar images (Figure 2.2b). The transect does 

not start directly at the river’s edge, but close to a small side channel that is located about 1.5 

km from the actual river, at the margin of the suspected dome. The transect firstly traverses a 

short patch of very tall, but open seasonally inundated forest (characterized by Oubanguia 

africana and little understory). Here, the estimated maximum inundation reaches close to 2 m 

above the peat surface.  
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After a brief (transitioning) hardwood swamp forest (with Guibourtia demeusei and Oubanguia 

africana), the transect enters a monodominant Raphia laurentii swamp forest of very low 

stature and limited inundation levels, which extends for six kilometres. This palm forest is often 

characterized by small chandelier-like screw palms (Pandanus candelabrum) that dominate in 

the understory. It is truly monodominant, with sometimes not a single hardwood tree species 

present inside the 20x40 m vegetation plots, at 2 and 4 km. From 3.0 km onwards, maximum 

inundation levels remain at (or close to) the peat surface. However, during the field visit at the 

height of the dry season in August 2019, water tables were consistently 20-40 cm below the 

peat surface. 

 

Peat thickness is considerable along the Bondamba transect, increasing with distance from the 

margin up to 7.0 m at 6.5 km along the transect. This is the deepest field-measured peat deposit 

found in the entire Cuvette Centrale peatland complex. After 7.0 km, the Raphia-dominated 

vegetation slowly changes to a mixed, hardwood swamp forest at slightly higher elevation, 

which appears to be the centre of what is potentially a modest peat dome.  

 

The mineral layer below the peat is initially characterized by soft grey clay. Between 1.5 and 2.0 

km, however, find sand is found, after which it becomes clay again. Between 3.0 and 7.0 km, 

alternations of sand and clay are observed more often, which coincides with greater peat 

deposits.  

 

Peat pore water pH is relatively high (4.0) in the seasonally inundated forest at the start of the 

transect, while EC is relatively low (90 μS cm-1). However, throughout the Raphia-dominated 

forest, pH values are more acidic (ranging between 2.7 and 3.3), while EC values are higher 

(ranging between 125 and 150 μS cm-1). No further trend with distance along the transect is 

observed. 

 

The Bondamba transect crosses several hunting trails and fishing nets, but no major human 

disturbances are observed. 
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Bolengo transect (BNG) 

 
Figure 2.8. Bolengo transect overview, showing from top to bottom: mean in situ tree height 
(m), field-estimated maximum inundation (m), dry season water table depth (cm), peat 
pore/surface water pH and electrical conductivity (μS cm-1), SRTM digital elevation (m.a.s.l.) and 
estimated peat thickness (m; incl. LOI-verified and corrected pole-method measurements). 
Colours indicate field-identified vegetation types (on top in bold), with the tree most abundant 
species listed every full kilometre. All y-axes are similar across transect figures (Figs. 2.6-2.12), 
except for the pore/surface water EC and SRTM elevation scales. Note that the x-axis (distance 
along transect) differs per transect (Figs. 2.6-2.12). 
 

The Bolengo transect (Figure 2.8) is located close to Bondamba, but on considerably higher 

elevation on the southern bank of the Busira River, which was mostly predicted to be hardwood 

swamp. It was additionally chosen because different machine learning models (see Chapter 5) 

provided divergent predictions of peat presence towards the end of the transect.  

 

At the start, the transect was found to briefly traverse a modest levee covered in seasonally 

inundated forest (Albizia glaberrima, Oubanguia africana, Cynometra simplicifolia), where no 

peat was formed. It then enters a peat swamp forest that is largely dominated by hardwood 

vegetation, with some Raphia laurentii-dominated vegetation between 1 and 2 km along the 
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transect. The hardwood swamp extends until 6.5 km along the transect. Common tree species 

here are Cryptosepalum congolanum, Entrandrophragma palustre, Carapa palustris, 

Coelocaryon botryoides, Uapaca corbisieri, Daniellia pynaertii and Cleistanthus spp. However, 

between 1 and 2 km along the transect, some Raphia laurentii-dominated vegetation can be 

found. Peat thickness increases with distance along the transect, reaching 4 m or more from 

2.75 km onwards (maximum 5.2 m at 4.75 km).  

 

The estimated maximum inundation is almost 2 m in the seasonally inundated forest at the start 

of the transect, close to the river, but rapidly decreases to below 1 m in the 1st km of the transect. 

After this, maximum inundation levels remain consistently close to or just above the peat 

surface. Contrary to the dry Bondamba transect, water table depths were also close to the peat 

surface at the height of the dry season in August 2019.  

 

These changing inundation patterns correspond with a gradual shift towards higher elevation as 

the transect approaches terra firme upland, which is reached after 6.5 km. From here, the 

transect traverses 1.5 km of terra firme forest without peat formation and year-round dry soils. 

This upland area is characterized by terra firme forest (Uapaca guineensis, Staudtia 

kamerunensis, Donella pruniformis, with thick understories of Hypselodelphys scandens). At 7.0 

km, a recent manioc field is also found, as well as patches of secondary forest dominated by 

Musanga cecropioides. The transect then again descends into a small depression at 8.0 km from 

the start, where shallow peat deposits of 1.0 m are found, overlain by hardwood swamp forest 

(Daniellia pynaertii, Symphonia globulifera). 

 

The mineral layer underneath the peat is initially characterised by very soft brown clay. After 2.0 

km, this becomes light-grey clay with more grit, which turns completely to sand at 4.0 km. 

However, between 4.5 and 6.5 km, very soft grey clay is found again, coinciding with the thickest 

peat deposits. After the terra firme forest, the peat swamp at 8 km is again overlying a sandy 

mineral layer.  

 

Peat pore water pH and EC both show gradual increases along the transect. pH increases from 

2.6 to 3.7 between 1.0 and 6.0 km, while EC increases from 118 to 165 μS cm-1 between 1.0 and 

5.0 km, before dropping again to 129 μS cm-1 at 6.0 km. The less acidic conditions further along 

the transect, together with more dissolved solids, could indicate increased presence of nutrients 

and minerals when moving away from the river towards terra firme upland.  
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The Bolengo transect is characterized by large human influences, with many signs of hunting, 

fishing and trapping present in the peat swamp forest, as well as signs of larvae and honey 

collection. Several trails are present that connect the riverbank with upland agricultural fields. 

The terra firme forest between 6.5 and 8.0 km is furthermore characterized by many recent and 

older forest clearings, burned areas, shifting manioc fields, and regrowth of secondary Musanga 

cecropioides. 

  



74 
 

Ikelemba transect (IKE) 

 
Figure 2.9. Ikelemba transect overview, showing from top to bottom: mean in situ tree height 
(m), field-estimated maximum inundation (m), dry season water table depth (cm), peat 
pore/surface water pH and electrical conductivity (μS cm-1), SRTM digital elevation (m.a.s.l.) and 
estimated peat thickness (m; incl. LOI-verified and corrected pole-method measurements). 
Colours indicate field-identified vegetation types (on top in bold), with the tree most abundant 
species listed every full kilometre. All y-axes are similar across transect figures (Figs. 2.6-2.12), 
except for the pore/surface water EC and SRTM elevation scales. Note that the x-axis (distance 
along transect) differs per transect (Figs. 2.6-2.12). 
 

The Ikelemba transect (Figure 2.9) is located in what appeared to be a floodplain area south of 

the Ikelemba River, a second major tributary of the Congo River. Like the Bolengo transect, it 

runs perpendicular to the river towards terra firme upland. Just before the start of the transect, 

at the riverbank, a small river levee was found that houses a fisherman’s camp.  The transect 

was started just after this levee, in a relatively open, seasonally inundation forest characterized 

by a canopy of tall Oubanguia africana and Guibourtia demeusei, with juvenile Raphia sese and 

Palisota mannii dominating the understory. Even though this start of the transect is in seasonally 

inundated forest, a shallow peat deposit of 0.3 m could be found here. However, the transect 
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was not inundated during a first field visit in March 2018, with water tables ~20-30 cm below 

the peat surface. The estimated maximum inundation during the wet season is ~1.5 m, which 

was confirmed during a second visit at the end of the wet season in January 2020, when the 

forest was entirely flooded. This seasonally inundated forest extents for two km along the 

transect, after which the maximum inundation level remains close to or at the peat surface. This 

shift coincides with a small increase in elevation towards higher terra firme uplands. Peat 

thickness gradually increases with distance along the transect, reaching a first maximum of 4.0 

m at the end of the inundated area after 2.25 km. It then becomes shallower again, before 

reaching a second maximum of 4.6 m just before the end of the transect after 4.75 km. The 

mineral layer underneath the peat starts off as largely white or grey sand and silt, indicating 

riverine deposits. However, towards the end of the transect, from 3.75 km onward, this becomes 

softer grey clay, coinciding with mostly thicker peat deposits. 

 

Vegetation along the Ikelemba transect is almost entirely characterized by hardwood swamp or 

open, seasonally inundated forest. The shift from peat-forming, seasonally inundated forest to 

hardwood-dominated peat swamp forest is marked by a brief dominance of Raphia laurentii 

palms at 2.0 km. After this, the hardwood peat swamp forest extents until 5.0 km, characterized 

by Coelocaryon botryoides, Uapaca guineensis, Symphonia globulifera, and Entrandrophragma 

palustre.  

 

Peat pore water pH values are slightly higher along the first two kilometres of the transect (3.4 

and 3.3), after which they drop to between 3.1 and 3.2. Pore water EC, however, shows an 

opposite trend, with increasing EC further along the transect. During the first two kilometres, EC 

is relatively low at 123 and 136 μS cm-1. This changes considerably after two km, with values 

ranging between 188 and 205 μS cm-1 for the remainder of the transect. Like at Bolengo, greater 

EC could indicate the presence of more nutrients and minerals when moving away from the river 

towards terra firme upland. However, this is not reflected by the slightly opposite trend in pH. 

 

Considerable human impact on the forest was observed along the Ikelemba transect. In 

particular, the hardwood tree species Daniella pynaertii is selectively logged for timber during 

the dry season. As this tree species is relatively lightweight, it is then floated out towards the 

river during the wet season, for transport towards Mbandaka. In addition, many fishing nets 

were observed. Hunting is also practiced along this transect, as indicated by hunting trails and 

the occasional sounds of gunshots. 
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Boloko transect (BEL) 

 
Figure 2.10. Boloko transect overview, showing from top to bottom: mean in situ tree height 
(m), field-estimated maximum inundation (m), dry season water table depth (cm), peat 
pore/surface water pH and electrical conductivity (μS cm-1), SRTM digital elevation (m.a.s.l.) and 
estimated peat thickness (m; incl. LOI-verified and corrected pole-method measurements). 
Colours indicate field-identified vegetation types (on top in bold), with the tree most abundant 
species listed every full kilometre. All y-axes are similar across transect figures (Figs. 2.6-2.12), 
except for the pore/surface water EC and SRTM elevation scales. Note that the x-axis (distance 
along transect) differs per transect (Figs. 2.6-2.12). 
 

The Boloko transect (Figure 2.10) crosses the Boloko River, a side-channel of the Ruki River. It 

was chosen to assess peat formation in the smaller, dendritic valley bottoms of the drainage 

system. The transect starts on terra firme, in what is part primary and part secondary forest 

(characterized by Macaranga spp. and Cryptosepalum congolanum). It then enters a hardwood 

peat swamp forest with shallow peat deposits < 1 m thick. Here, vegetation is characterized by 

Oubanguia africana, Guibourtia demeusei and Diospyros mespiliformis. This part of the forest is 

likely inundated year-round, because of its proximity to the river, although maximum inundation 

levels reach only 0.6 m. After 0.75 km, the swamp gives way to the Boloko River itself, which 
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extends for a kilometre m along the transect. Inundated swamp vegetation can be found along 

some parts of this river segment, but no measurements were possible due to the high water 

levels.  

 

At 2.0 km from the start of the transect, traversable hardwood peat swamp forest is 

encountered again, which extends for a further 2.5 km. This swamp forest is first characterized 

by species commonly found in seasonally inundated locations, such as Raphia sese, Oubanguia 

africana and Guibourtia demeusei. Further away from the river, the swamp forest is 

characterized by Garcinia smeathmannii, Cryptosepalum congolanum, Symphonia globulifera, 

Carapa palustris, Manilkara obovata, Dichostemma glaucescens and Coelocaryon botryoides. 

Again, inundation is likely year-round but of limited height, reaching a maximum of ~0.5 m. This 

gradually diminishes when moving away from the river. Peat thickness remains relatively low 

throughout the transect, with a maximum of 2.7 m after 3.75 km. The mineral layer underneath 

the peat is characterised by grey silt on either side of the Boloko River. However, towards the 

end of the transect, further away from the river, this becomes very soft clay. 

 

Surface water pH is slightly higher directly on either side of the Boloko River (both 3.8) than 

further away along the transect (3.6 at both 3.0 and 4.0 km). This is opposite to the trend in 

surface water EC, which is lower on either side of the river (53 and 48 μS cm-1), compared with 

further away (70 and 73 μS cm-1 at 3.0 and 4.0 km, respectively). 

 

Many signs of fishing activities were observed in the first 750 m of the transect, before crossing 

the Boloko River. In particular, many fishing nets were observed, as well as the presence of the 

common oil palm (Elaeis guineensis) whose seeds are often used as fishing bait. This contrasts 

with the transect segment on the other side of the river, where little human disturbance was 

observed.   



78 
 

Tumba transect (TUM) 

 
Figure 2.11. Tumba transect overview, showing from top to bottom: mean in situ tree height 
(m), field-estimated maximum inundation (m), dry season water table depth (cm), peat 
pore/surface water pH and electrical conductivity (μS cm-1), SRTM digital elevation (m.a.s.l.) and 
estimated peat thickness (m; incl. LOI-verified and corrected pole-method measurements). 
Colours indicate field-identified vegetation types (on top in bold), with the tree most abundant 
species listed every full kilometre. All y-axes are similar across transect figures (Figs. 2.6-2.12), 
except for the pore/surface water EC and SRTM elevation scales. Note that the x-axis (distance 
along transect) differs per transect (Figs. 2.6-2.12). 
 

The Tumba transect (Figure 2.11) is located in a low-lying floodplain between the Bonsole and 

Boloko Rivers (both tributaries of the Ruki River). It was chosen to investigate if peat forms in 

these seasonally inundated floodplains, or is potentially eroded away by shifting rivers. The 

transect starts on a small levee in non-peat forming seasonally inundated forest. Here, 

secondary forest vegetation can be found that is dominated by Elaeis guineensis, Prioria 

buchholzii and Cryptosepalum congolanum. After 0.5 km, the forest transitions to a seasonally 

inundated hardwood peat swamp, initially characterized by Oubanguia africana, Guibourtia 

demeusei and Englerophytum laurentii, which dominate the canopy, with an open understory 

dominated by Raphia sese. This seasonally inundated swamp was not inundated during the field 
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visit at the height of the dry season in March 2018 (water tables ~ 10 cm below the surface) but 

experiences an estimated maximum inundation of close to 2.5 m at the height of the wet season. 

These maximum inundation levels remain consistently high until 3.25 km along the transect. 

Throughout, the vegetation remains a mix of open hardwood swamp and palm-dominated 

swamp, with Oubanguia africana, Guibourtia demeusei, Prioria buchholzii, Diospyros 

mespiliformis and Cleistanthus polystachyus dominating the canopy, while Raphia sese 

dominates in the understory. Peat deposits are shallow, with a maximum of only 2.9 m after 

0.75 km and gradually decreasing towards the end of the transect. The mineral layer underneath 

this peat is characterized by grey clay throughout the transect, with alternations of brown, 

organic-rich sand.  

 

After 3.5 km, the transect enters an area of seasonally inundated forest that does not form peat, 

with maximum inundation levels slightly lower at ~1-1.5 m. The vegetation is characterized by 

Albizia glaberrima, Oubanguia africana and Diospyros mespiliformis in the canopy, with an 

understory dominated by rattans like Laccosperma secundiflorum and juvenile Raphia sese 

palms.  

 

The transect ends again on a river levee next to the Boloko River, which is the site of a local 

fishermen’s camp. As such, significant human disturbance can be observed, with many paths 

and hunting trails, signs of tree cutting, logging and fishing, as well as the presence of a charcoal 

pit. Because of this charcoal pit, the last vegetation plot and pH/EC measurements were taken 

in a seasonally inundated channel just before the levee, at 3.93 km, instead of 4.0 km. 

 

Peat pore water pH in the peat-forming swamp ranges between 3.4 (at 2.0 km) and 3.8 (at 3.0 

km). This goes up to 4.1 in the non-peat forming seasonally inundated channel at 3.93 km. Pore 

water EC, on the other hand is relatively higher at the start of the transect (94 μS cm-1 at both 

1.0 and 2.0 km), which drops to 51 and 39 μS cm-1 at 3.0 and 3.93 km, respectively.  
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Lokolama transect (LOK) 

 
Figure 2.12. Lokolama transect overview, showing from top to bottom: mean in situ tree height 
(m), field-estimated maximum inundation (m), dry season water table depth (cm), peat 
pore/surface water pH and electrical conductivity (μS cm-1), SRTM digital elevation (m.a.s.l.) and 
estimated peat thickness (m; incl. LOI-verified and corrected pole-method measurements). 
Colours indicate field-identified vegetation types (on top in bold), with the tree most abundant 
species listed every full kilometre. All y-axes are similar across transect figures (Figs. 2.6-2.12), 
except for the pore/surface water EC and SRTM elevation scales. Note that the x-axis (distance 
along transect) differs per transect (Figs. 2.6-2.12). 
 

Contrary to the other transects, the Lokolama transect (Figure 2.12) is not located adjacent to a 

river or in a floodplain. Rather, this transect is located on the margin of a suspected (ovoid) 

interfluvial basin next to the Congo River mainstem, which could potentially be domed. The 

transect starts on the edge of an agricultural field and enters a hardwood-dominated peat 

swamp forest after 0.5 km. Here, vegetation is characterized by Pseudagrostistachys 

ugandensis, Coelocaryon botryoides and Uapaca guineensis. This changes after 1.5 km, when 

palm swamp forest dominated by Raphia laurentii can intermittently be found. Additional 
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hardwood tree species present here are Carapa palustris, Symphonia globulifera, 

Entandrophragma palustre, Daniellia pynaertii and Diospyros crassiflora, while Scelorosperma 

mannii and Palisota mannii dominate the understory. From 3.5 km onward, a hardwood-

dominated peat swamp forest returns, with the occasionally Raphia laurentii found in the 

understory.  

 

A slight variation in tree height can be observed which corresponds with shifts between 

hardwood- and palm- dominated peat swamp vegetation. Irrespective of vegetation type, 

however, deep peat deposits can be found. Already after 750 m, a peat thickness of 4.9 m is 

measured. After this, peat deposits of 4-6 m thick extend throughout the transect, except 

between 3.0 and 3.25 km, where peat thickness is < 3.0 m. The mineral layer underneath the 

peat is characterized by soft brown/grey clay throughout the transect. 

 

The estimated maximum inundation is very stable, generally being just above the peat surface 

(0-50 cm) throughout the length of the transect. During the field visit in the dry season of 

February/March 2018, water tables were just below (> -10 cm) the peat surface. This stable 

inundation pattern could be explained by the relatively flat topography, as no major change in 

elevation are observed.  

 

Peat pore water pH is stable throughout the transect. During the first three kilometres of the 

transect a consistent pH of 3.5 is observed, which drops slightly to 3.4 in the last two kilometres. 

Pore water EC show a little more variation, but without a clear trend. EC is generally between 

155 and 160 μS cm-1, except at 3.0 and 5.0 km, when it drops to 128 and 110 μS cm-1, 

respectively.  

 

The Lokolama transect is not characterized by major human disturbances. However, several 

hunting trails can be found that lead from the agricultural fields at the swamps edge towards 

fishing camps next to the Congo River on the other side of the peatland area. 
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2.5.2 Transect comparisons 

Mean peat thickness, tree height, estimated maximum inundation height, and dry season water 

table depth varied significantly between the seven hypothesis-testing transects (p<0.001, 

Kruskal-Wallis rank sum test for all four variables), as detailed in each section below. To easily 

distinguish among transects that experience different levels of inundations, transects shown in 

these figures are ordered by increasing High Water Fraction, which reflects the proportion of 

peat sites along each transect with estimated maximum inundations of > 50 cm.  

 

Peat thickness 

It can be observed that peat deposits are significantly thicker in Lokolama, Bolengo and 

Bondamba than along the other four transects (Fig. 2.13). This difference corresponds with an 

increasing gradient in High Water Fraction, with these three transects all having proportionally 

less high-water-sites than the Boloko, Ikelemba, Mpeka or Tumba transects. A significant 

difference in peat thickness is also found between low- and high-water sites (Mann–Whitney U 

test, p<0.001), with low-water sites (≤ 50 cm maximum inundation) having a mean thickness of 

3.9 m (max = 7 m; s.d. = 1.6 m; n=109), compared with a mean thickness of 1.6 m in high-water 

sites (max. 5.3 m; s.d. = 0.9; n=50). A linear regression model of peat thickness and estimated 

maximum inundation, corrected for interaction effects of transect groups, also provides a clear 

negative correlation (R2 = 0.35; p<0.001), showing that shallower peat is found at sites with 

greater inundation levels.  

 

Similarly, peat thickness has a significant positive correlation with SRTM elevation (R2=0.19, 

p<0.001, including transect interaction effects). This is likely because maximum inundation itself 

is negatively correlated with elevation (R2=0.32, p<0.001, including transect interaction effects). 

 

Mean peat thickness of hardwood-dominated peat swamp is 3.3 m (max = 6.6 m; s.d. = 1.7 m), 

while the mean peat thickness of palm-dominated peat swamp is slightly lower, at 3.0 m (max = 

7.0 m; s.d. = 1.7 m). Thus, no overall statistical difference in peat thickness is found between 

hardwood- and palm-dominated peat swamp vegetation, as classified in the field (n=90 and 69, 

respectively; Mann–Whitney U test, p=0.26). When testing this difference within individual 

transects, significantly greater peat thickness is only found for hardwood-dominated sites than 

palm-dominated sites in Mpeka and Bolengo (both p<0.05).  
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Figure 2.13. Boxplot of peat thickness across the seven hypothesis-testing transects. The black 
line shows the median value (m). The box shape shows the upper and lower quartiles. The vertical 
lines show the minimum and maximum values. Circles represent outlying values. Transects that 
do not share a common letter are significantly different (p<0.05, Dunn’s Kruskal-Wallis multiple 
comparison test, p-values adjusted with the Benjamini-Hochberg method). Transects are ordered 
by increasing High-Water Fraction (HWF), i.e. from no river impact to high seasonal river 
flooding. 
 

Tree height 

Mean tree height across all peat swamp vegetation is 18.1 ± 5.6 m (n=159), the mean of the five 

trees samples every 250 m across all 11 transect. Maximum tree height was 31.3 m, recorded 

towards the end of the Mpeka transect (PEK_9.50). However, considerable differences in mean 

tree height are observed across the seven transects (Figure 2.14). Trees of 25 m or more are 

found in Bolengo, Boloko and Ikelemba, transects that are all characterized by large areas of 

hardwood swamp forest. On the other hand, particularly low tree height of generally less than 

15 m is found in Bondamba, which is almost entirely characterized by palm-dominated swamp 

forest. Mean tree height for hardwood-dominated swamp along the seven transects is 21.5 m 

(max = 31.3m ; s.d. = 4.5 m; n=90), significantly higher than the 13.6 m found for palm-

dominated swamp (max = 20.6 m; s.d. = 3.2 m; n=69; Mann–Whitney U test, p<0.001). This 

significant difference also holds within individual transects, such as Lokolama, Bolengo, Tumba 

(p<0.05) and Mpeka (p<0.01).  

 

A weak, but significant negative correlation is found between mean tree height and estimated 

maximum inundation (R2=0.05, p<0.05, including transect interaction effects). On the other 

hand, tree height is positively correlated with higher water tables as measured in the dry season 
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(R2 = 0.13, p<0.001, including transect interaction effects). This suggest that tree height of peat 

swamp forest is negatively affected by large inundations, and deep dry season water tables. 

However, no significant correlation is found between mean tree height and peat thickness 

(p=0.25, including transect interaction effects).  

 

 
Figure 2.14. Boxplot of tree height across the seven hypothesis-testing transects. 
Measurements include the mean of the five trees (m) recorded every 250 m along each transect 
if peat was present. The black line shows the median value. The box shape shows the upper and 
lower quartiles. The vertical lines show the minimum and maximum values. Circles represent 
outlying values. Transects that do not share a common letter are significantly different (p<0.05, 
Dunn’s Kruskal-Wallis multiple comparison test, p-values adjusted with the Benjamini-Hochberg 
method). Transects are ordered by increasing High-Water Fraction (HWF), i.e. from no river 
impact to high seasonal river flooding. 
 

Maximum inundation height 

Mean estimated maximum inundation does not vary significantly between the majority of 

transects (Figure 2.15). The only exception is Tumba, which has significantly higher maximum 

inundation levels than all the other transects. However, it must be noted that some transects, 

in particular Mpeka and Ikelemba, show large variability, which is the result of considerable 

gradients in inundation along these transects.  

 

No significant difference in maximum inundation was found between hardwood- or palm-

dominated swamp forest across all seven transects (n=90 and 69, respectively; Mann–Whitney 

U test, p=0.18). None of the individual transects showed a significant difference in inundation 

between these two vegetation types either.  
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Figure 2.15. Boxplot of estimated maximum inundation height (m) across the seven 
hypothesis-testing transects. The black line shows the median value. The box shape shows the 
upper and lower quartiles. The vertical lines show the minimum and maximum values. Circles 
represent outlying values. Transects that do not share a common letter are significantly different 
(p<0.05, Dunn’s Kruskal-Wallis multiple comparison test, p-values adjusted with the Benjamini-
Hochberg method). Transects are ordered by increasing High-Water Fraction (HWF), i.e. from no 
river impact to high seasonal river flooding. 
 

Water table depths 

Mean water table depths at the time of sampling in the dry season show larger differences than 

estimated maximum inundation (Figure 2.16; positive if above the peat surface, negative if 

below). Water tables were consistently close or above the peat surface in the three transects 

not adjacent to one of the two main rivers (Lokolama, Boloko and Tumba; mean +2 cm; n=46). 

This contrasts significantly with the other four transects that are perpendicularly located to 

either the Ruki or Ikelemba River (Mpeka, Bolengo, Bondamba and Ikelemba), which had water 

tables largely below the peat surface (mean -26 cm; n=113; Mann–Whitney U test, p<0.001). In 

particular, deep water tables (> 25 cm below the peat surface) were regularly found along the 

Mpeka, Bondamba and Ikelemba transects at the time of sampling. This includes river-

influenced sites with maximum inundations of > 1 m above the peat surface, suggesting 

considerable differences in water table heights between the wet and dry season in these 

locations.  

 

Water table depths were also significantly lower in palm-dominated swamps at the time of 

sampling (mean -25 cm; n=69), compared with hardwood-dominated swamps (mean -12 cm; 

n=90; Mann–Whitney U test, p<0.001). However, this may be an effect of the transect sampling 
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design, as within-transect statistical differences were only found in the Bolengo transect (Mann–

Whitney U test, p<0.01) and no other transect. 

 

 
Figure 2.16. Boxplot of dry season water table depth (cm) across the seven hypothesis-testing 
transects. Positive (negative) values indicate water tables above (below) the peat surface. The 
black line shows the median value. The box shape shows the upper and lower quartiles. The 
vertical lines show the minimum and maximum values. Circles represent outlying values. 
Transects that do not share a common letter are significantly different (p<0.05, Dunn’s Kruskal-
Wallis multiple comparison test, p-values adjusted with the Benjamini-Hochberg method). 
Transects are ordered by increasing High-Water Fraction (HWF), i.e. from no river impact to high 
seasonal river flooding.  
 

pH and electrical conductivity 

All 40 peat swamp locations where pH/EC-measurements were taken are strongly acidic, with 

pore/surface water pH values ranging between 2.6 and 3.8 and a mean value of 3.3 ± 0.3 (n=40). 

Pore/surface water electrical conductivity ranges between 48 and 205 μS cm-1, with a mean 

value of 134 ± 39 μS cm-1. 

 

However, like with water table depths, differences between the four transects connected 

directly to the Ruki or Ikelemba Rivers and those unconnected to them can also be observed for 

pH and electrical conductivity. Peat pore water pH is found to be lower, on average, along the 

Mpeka, Bolengo, Bondamba and Ikelemba transects connected directly to the main rivers (mean 

3.20 ± 0.32) than the Lokolama, Boloko and Tumba transect unconnected from them (mean 3.58 

± 0.17; Mann–Whitney U test, p<0.001). No significant difference, however, is observed 
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between high-water and low-water sites (maximum inundations either > 50 or ≤ 50 cm, 

respectively), either across all transects groups or within individual transects.  

 

Palm-dominated peat swamps are characterized by lower pH (mean 3.15 ± 0.36, n=20) than 

hardwood-dominated peat swamps (mean 3.47 ± 0.21, n=20; Mann–Whitney U test, p<0.01). 

However, this may be an effect of the transect sampling design, as no significant within-transect 

differences are observed. 

 

Five transects showed no clear gradient in pH when moving along the transect: the three 

transects unconnected to either the Ruki or Ikelemba River (Lokolama, Boloko and Tumba), and 

Bondamba and Mpeka. The other two river-influenced transects showed opposing trends. Along 

the Bolengo transect, higher pH is found when moving away from the river towards the interior, 

which corresponds with higher elevations, lower water table fluctuations and a shift towards 

hardwood vegetation before reaching terra firme uplands. Along the Ikelemba transect, on the 

other hand, pH decreases slightly when moving away from the river towards terra firme uplands.  

 

In terms of peat pore/surface water electrical conductivity, it is observed that the three 

transects not connected to either the Ruki or Ikelemba River have, on average, lower EC values 

(mean 100 ± 43 μS cm-1) than the group of four transects that is directly located along one of 

these two rivers (mean 148 ± 27 μS cm-1; Mann–Whitney U test, p<0.005). EC is also significantly 

lower in sites with high maximum inundations (mean 107 ± 39 μS cm-1) than in sites with low 

maximum inundations (mean 147 ± 33 μS cm-1; Mann–Whitney U test, p<0.01). However, again, 

this is likely an effect of transect grouping, as no significant within-transect differences are 

observed. No significant differences in electrical conductivity, either across all transects groups 

or within individual transects, are observed between hardwood- and palm-dominated peat 

swamps.   

 

As with pH, five transects showed no clear gradient in electrical conductivity, including the three 

transects unconnected to either the Ruki or Ikelemba River. The Ikelemba and Bolengo transects 

both have increasing EC with distance from the river, when moving towards terra firme upland.  

 

A general summary of the variation between transects is provided in Table 2.4 below. The same 

variables were also compared between hardwood- and palm-dominated peat swamp forests 

sites, an overview of which is presented in Table 2.5.  
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Variable Mean ± s.d. 

across transects 

Basic pattern 

description 

Interpretation 

Peat thickness (m) 3.2 ± 1.7  
(max = 7.0) 

Thicker in Lokolama, 
Bolengo and 
Bondamba 

Sites with heavy wet season 
inundation have shallower 
peat 

Tree height (m)  18.1 ± 5.6 
(max = 31.3) 

Highest in Bolengo, 
Boloko and 
Ikelemba; lowest in 
Bondamba. 

Sites with heavy wet season 
inundations, or deep dry 
season water tables, have 
lower tree height 

Wet season  
maximum inundation 
height (cm) 

57 ± 58 
 

Higher in Tumba 
than all other 
transects 

Gradient within transects, 
with highest inundation 
closest to rivers 

Dry season water  
table depth (cm)  

-18 ± 18 
 

Near the surface in 
Lokolama, Boloko 
and Tumba; deep in 
Mpeka, Bondamba 
and Ikelemba 

Transects perpendicular to 
major rivers show a gradient, 
with deep water tables in 
sites experiencing heavy 
inundation 

pH  3.31 ± 0.33 
 

Lower in Mpeka, 
Bolengo, Bondamba  
and Ikelemba 

Sites along the main rivers 
are possibly more acidic than 
smaller tributaries 

Electrical conductivity  
(μS cm-1) 

134 ± 39 
 

Higher in Mpeka, 
Bolengo, Bondamba  
and Ikelemba 

Sites along the main rivers 
possibly have more 
nutrients, or dissolved 
organic matter 

Table 2.4. Summary of significant differences in field characteristics between transects. All 
variables show significant differences between transects (p<0.001, Kruskal-Wallis rank sum test). 
n=159 for peat thickness, tree height, wet season maximum inundation height and dry season 
water table depth; n=40 for pH and electrical conductivity. 
 

 

Variable Hardwood-dominated 

peat swamp forest 

(mean ± s.d.) 

Palm-dominated peat 

swamp forest 

(mean ± s.d.) 

Peat thickness (m) 3.3 ± 1.7 (max. 6.6) 3.0 ± 1.7 (max. 7.0) 

Tree height (m) *** 21.5 ± 4.5 (max. 31.3) 13.6 ± 3.2 (max. 20.6) 

Wet season maximum  
inundation height (cm) 

59 ± 56 70 ± 61 

Dry season water table depth (cm) *** -12 ± 16 -25 ± 18 

pH ** 3.47 ± 0.21 3.15 ± 0.36 

Electrical conductivity (μS cm-1) 132 ± 43 135 ± 33 

Table 2.5. Comparison of field characteristics between peat swamp vegetation types. 
Hardwood-dominated and palm-dominated peat swamp forest vegetation types were identified 
in the field. n=90 and n=69, respectively, for peat thickness, tree height, wet season maximum 
inundation height and dry season water table depth. n=20 and n=20, respectively, for pH and 
electrical conductivity. Asterisks indicate statistically significant differences (* is p<0.05, ** is 
p<0.01, *** is p<0.001; Mann–Whitney U test).   



89 
 

2.6 Discussion 

The field data presented in this chapter show for the first time that extensive peat swamp forests 

are found in the lowland forested wetlands of DRC’s Cuvette Centrale. These swamp forests 

have a mean peat thickness of 3.2 ± 1.7 m (n=159, with ≥ 30 cm of ≥ 65% OM), which is 

significantly greater (p<0.001) than the mean thickness of 2.4 ± 1.6 m that was reported for ROC 

(Dargie et al., 2017). 

 

Peat thickness generally increases with distance along the transect. Maximum peat thickness 

was found to be 7.0 m, measured close to the end of the 7.0 km-long Bondamba transect. This 

is slightly thicker than the maximum of 5.9 m recorded in ROC (Dargie et al., 2017). However, 

this maximum ROC peat thickness was found 20 km from the start of a transect in the centre of 

a wide interfluvial basin. In the DRC, on the other hand, thick peat deposits are recorded along 

transects that have approximately one quarter the length of this. In contrast with interfluvial 

basin peatlands in ROC, peat thickness of 5-7 m can already be reached in the DRC’s river-

influenced peatlands within several kilometres of encountering peat on the transects, for 

example along the Bondamba transect (Figure 2.7). These deeper peats are found in the 

floodplain areas of the major river valleys of the Ruki or Ikelemba Rivers, between the rivers and 

upland terra firme forest or croplands. Narrower, river valleys along upstream rivers and 

streams, such as the Boloko transect (Figure 2.10), appear to have shallower peat deposits.   

 

It must be noted though, that the maximum measurement of peat thickness (7.0 m at 

Bondamba) is based on the corrected pole-method, rather than laboratory-method using Loss-

On-Ignition. The linear regression used for the pole-method correction is dependant on the 

dataset of matched pole method and LOI-verified thickness measurements. The correction used 

here (Figure 2.3) applies to the river-influenced DRC transects, and is therefore different from 

the correction used by Dargie et al. (2017). If applying the ROC-based regression model from 

Dargie et al. (2017), or a basin-wide regression model including data from both DRC and ROC 

(Chapter 5), slightly different peat thickness estimates will be obtained. Maximum peat 

thickness measurements reported for the Congo Basin peatlands will therefore be uncertain 

unless LOI measurements are taken. Nonetheless, the maximum LOI-derived thickness 

measurement in the DRC (6.0 m at LOK_5.0) is still greater than the maximum LOI-derived value 

in the ROC (5.5 m at 16 km along the Centre transect; Dargie et al., 2017), confirming that thicker 

peat deposits are found in DRC.   
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Average peat thickness in the central Congo Basin, and particularly in its river-influenced 

peatlands, appears to be slightly deeper than in the Pastaza-Maranon Foreland Basin in the 

Peruvian Amazon, where Hastie et al. (2022) report a mean thickness of 2.19 m (95% CI, 1.94-

2.40 m). However, maximum peat thickness appears larger in Peru, where Draper et al. (2014) 

report a maximum value of 6.6 m, while Lähteenoja et al. (2011) mention 7.5 m in one of their 

study sites. Compared with Southeast Asia, however, both peatland areas are relatively shallow. 

Average peat thickness in Southeast Asia is estimated to be 5-8 m (Page et al., 2022), with 

maximum observed values of up to 18 m (Ruwaimana et al., 2020).  

 

The gradient in peat thickness with increasing distance along the transect tends to correspond 

with increasing distance from the river, as most of the transects are located perpendicular to 

major rivers. This suggests that peat swamp forests that are seasonally inundated by river water 

have shallower peat deposits than those characterized by more stable water tables. This is 

confirmed by the negative correlation that was observed between peat thickness and estimated 

maximum inundation (R2 = 0.35; p<0.001). This highlights how mapping water table fluctuations 

or seasonal patterns in inundation could be critical to understanding spatial patterns of peat 

thickness.  

 

Neither peat thickness, nor maximum inundation, was found to vary significantly between 

hardwood- and palm-dominated peat swamp vegetation (Table 2.5). This shows that the 

gradients in peat thickness and inundation levels do not neatly overlap with shifts from one of 

these vegetation types to the other. This confirms what is visually observed from the transect 

descriptions in Figures 2.6-2.12, namely that seasonally inundated peat swamps close to the 

river and peat swamps further away from the river with stable water tables can be found in 

combination with both hardwood vegetation (e.g., Ikelemba and Bolengo), as well as Raphia-

dominated palm vegetation (e.g., Bondamba and Mpeka). While no difference in peat thickness 

was found between the hardwood and palm-dominated peat swamp forests in ROC, a visual 

inspection of the maps by Dargie et al. (2017) shows that palm swamp vegetation is typically 

predicted further from the margin of the peatlands, indicating the possibility of deeper peat 

under palm-dominated swamp forest. However, much larger sample sizes will be required to 

test this hypothesis. Furthermore, it is likely that different processes and patterns may be seen 

in the interfluvial basin and river-influenced peatlands. Indeed, possibly four peat swamp types 

could be detected in the DRC peatlands, depending on both vegetation and environment: 

hardwood swamp either seasonally influenced by the river or not, and palm swamp either 
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seasonally influenced by the river or not. This intersection of vegetation type and hydrology will 

be further explored in Chapter 3.  

 

The peat swamps forests in the DRC are found to be strongly acidic, with peat pore/surface 

water pH values ranging between 2.6 and 3.8 and a mean value of 3.31 ± 0.3 (n=40). This is 

similar to what was observed in the ROC, where Dargie (2015) recorded a pH of 3.24 ± 0.2 (n=33) 

in peat pore/surface water. However, electrical conductivity in the DRC ranges between 48 and 

205 μS cm-1, with a mean value of 134 ± 39 μS cm-1 (n=40), considerably lower than the 171 ± 36 

μS cm-1 measured in ROC (n=28). This lower EC value could indicate either lower nutrient 

concentrations (less dissolved major ions), or less organic acids (Allen & Castillo, 2007; Theimer 

et al., 1994). In this case, since pH values are comparable between the DRC and ROC peat 

swamps, this finding implies less dissolved ions in the river-influenced peatlands. As EC 

concentrations were also found to be lower in sites with higher maximum inundations (i.e., 

closest to the river), this could indicate that seasonally inundated peat swamps along rivers are 

even more nutrient-poor than peatlands further away from rivers. This appears in line with the 

observation of greater EC values closer to the terra firme uplands, such as observed along the 

Ikelemba and Bolengo transects, suggest a supply of dissolved solids (cations) from upland 

runoff. This points towards a possible trend of greater nutrient concentrations on the edges of 

floodplain peat swamps towards more nutrient-poor conditions closer to the river.  

 

However, it must be noted that pH values are heavily influenced by local rain events, which 

typically have a pH close to neutral (Allen & Castillo, 2007). This may make these values less 

representative than they might be. Also, some equipment failures meant that I had to rely on 

less accurate pH/EC-probes, which likely has made the results less precise. Furthermore, it must 

be noted that some of the pH/EC-measurements along the Ikelemba, Tumba and Bondamba 

transect were taken at depths of > 30 cm below the peat surface, given that water tables were 

low at the height of the dry season. This could have increased the acidity or concentrations of 

dissolved solids in the peat water, since evaporation will have likely concentrated the presence 

of peat tannins, organic acids, and base cations. Alternatively, it could be that peat at greater 

depths is already more decomposed, and therefore results in less organic acids. To investigate 

whether lower nutrient concentrations are really characteristic of the river-influenced peat 

swamps in DRC, concentrations of base cations will be further explored in Chapter 4. 
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2.7 Conclusion 

This chapter sought to present an overview of the field site locations used in this study. 

Specifically, it aimed to show if there is peat in the swamp forests of the geomorphologically-

distinct riverine setting in the central Democratic Republic of the Congo, and to make a first test 

of the peatland map of Dargie et al. (2017). Peat was found in the geomorphologically-distinct 

riverine setting along all hypothesis-testing transects, as predicted by Dargie et al. (2017). These 

transects had between 80.5 and 97.0% accuracy in predicting the presence of peat. However, 

peat was not always found along the shorter transects used for assessing mapping capabilities. 

Often, these transects were located in seasonally inundated swamps toward the margins of 

larger peatland areas. Together, this shows that the peatland map by Dargie et al. (2017) is 

generally accurate for predicting peat in major swamp forest areas near DRC’s rivers, but less 

accurate near the peatland’s margins. 

 

The fieldwork presented in this chapter shows that peat deposits in the river valleys of the DRC 

are, on average, thicker than those found in the interfluvial basins in the Republic of the Congo. 

The largest peat thickness measurement in the central Congo Basin originates from the 

Bondamba transect in the DRC, where 7.0 m thick peat was recorded, a record for the central 

Congo Basin peatland complex. However, in contrast to what has previously been observed in 

ROC, peat thickness in DRC increases faster with distance from the peatland margin. Thus, thick 

peat deposits in the central Congo Basin are not confined to wide interfluvial basins, but can also 

be found in narrower peatlands in geomorphologically different river valleys systems. 

 

The shallowest peat deposits are found in sites experiencing large wet season inundations, 

typically close to major rivers or streams. These sites can sometimes be characterized by deep 

water tables in the dry season as well, indicating major seasonal water table fluctuations. This 

combination of high wet season inundations and relatively deep dry season drawdown appears 

largely to take place in floodplain sites along the major rivers (e.g., as opposed to the Tumba 

transect, which has the largest inundations, but dry season water tables closer to the surface). 

These sites show how peat formation is not confined to permanently waterlogged swamps with 

stable water tables close to the peat surface, but also occurs in swamps that experience larger 

water table fluctuations on a seasonal basis. These seasonally inundated peat swamps appear 

as acidic as other peatlands, but may possibly be characterized as more nutrient-poor, due to 

their lower electrical conductivity.  
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Two distinct vegetation types have been described in the DRC peatlands, namely hardwood-

dominated and palm-dominated peat swamp forests, which are comparable in peat thickness. 

However, it was observed that both types can be found in seasonally inundated riverine settings, 

as well as more permanently waterlogged sites further from rivers. This highlights how peat 

swamp forest vegetation types are likely more diverse than this dichotomy between hardwood 

and palm swamps suggests.  

  



94 
 

Chapter 3: Characterising peat swamp forest vegetation types in 

the central Congo Basin 

 

3.1 Abstract 

The vegetation of the central Congo Basin peatlands has so far been classified as either 

hardwood-dominated or palm-dominated peat swamp forest, based on fieldwork in northern 

ROC (Dargie et al., 2017). However, the data presented in Chapter 2 shows how peat swamps 

occupy very distinct river-influenced settings in DRC which have not been described in ROC. As 

forest structure and species composition are strongly related to inundation patterns (Targhetta 

et al., 2015), the peat swamp forest types of the DRC may be expected to differ from those 

described in ROC. In this chapter, I present the results of a first analysis of vegetation patterns 

in the largely river-influenced peat swamp forests of the DRC. Detailed vegetation characteristics 

were obtained from 48 vegetation plots (20x40 m) across seven transects, of which 40 were 

located in peat swamp forests and 8 in terra firme forest. Mean aboveground carbon stock 

across all 40 peat swamp forest plots in DRC is 97.8 Mg C ha-1. Using a combination of 

unsupervised clustering and non-metric multidimensional scaling (NMDS) ordinations, I identify 

two key gradients that drive peat swamp forest vegetation types in DRC: one related to 

hydrology (ranging from stable water tables to large seasonal inundation patterns), and one 

related to the proportion of palm-dominance. This results in the identification of four distinct 

vegetation types in DRC’s peat swamp forests: a diverse hardwood-dominated peat swamp 

forest; a Raphia laurentii palm-dominated peat swamp forest; a mixed (hardwood and palm 

tree) peat swamp forest characterized by Cryptosepalum congolanum; and a mixed peat swamp 

forest characterized by Ouganbuia africana and Guibourtia demeusei. The distinction between 

the Oubangia-Guibourtia-associated mixed peat swamp forest and the other types is driven by 

the gradient in river-influenced inundation patterns. However, the distinction between the 

other three peat swamp forest vegetation types is driven by a second gradient related to palm-

dominance. It remains unclear what is driving this gradient. The diverse hardwood-dominated 

peat swamp and R. laurentii palm-dominated peat swamp appear similar to those forest types 

found by Dargie et al. (2017) in ROC. Given that they also identified a R. hookeri palm-dominated 

vegeation in abandoned river channels in ROC, this suggests that at least five peat swamp forest 

vegetation types can be distinguished in the central Congo Basin peatlands when adding the 

Cryptosepalum congolanum- and Oubangia-Guibourtia-associated mixed peat swamp forests.  
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3.2 Introduction 

The first attempt at classifying peat swamp forest vegetation in the central Congo Basin defined 

two common types: a hardwood- and palm-dominated swamp forest (Dargie et al., 2017). In 

Chapter 2, I showed how both hardwood- and palm-dominated peat swamp forest can be found 

in seasonally inundated riverine settings in DRC, as well as at more permanently waterlogged 

sites further from rivers in DRC. However, although swamp forest was classified in the field as 

belonging to either one of these two landcover classes, forests in riverine settings in DRC may 

be very distinct from the vegetation types described in the ROC. This may be because different 

species have different tolerances for the duration and depth of flooding. For example, in the 

non-peat forming wetlands of the Igapó blackwater forest of the Amazon basin, longer 

inundation periods are typically associated with lower species richness, forest height and 

aboveground biomass (Targhetta et al., 2015). This suggests that flood tolerance might restrict 

species diversity in such wetland habitats. Alternatively, it may be the species’ tolerance to the 

drier dry season conditions which determines species composition: when Lopez and Kursar 

(2003) compared species-poor seasonally flooded forests with more species-rich terra firme 

forests in Panama, they found no evidence that these two forest types differed in their response 

to flooding specifically. Rather, a species’ ability to tolerate dry conditions following severe flood 

events was found to be equally important for surviving in seasonally inundated sites (Lopez & 

Kursar, 2003).  

 

In the Congo Basin specifically, there is evidence to suggest that seasonally inundated swamps 

are structurally different from swamps with more stable water tables. In a remote-sensing study 

of Central African vegetation structure, Gond et al. (2013) identified two separate swamp forest 

types, which do not appear to overlap with the distinction between hardwood- and palm-

dominated swamps made by Dargie et al. (2017). Using seasonal profiles of the MODIS-derived 

enhanced vegetation index (EVI), which quantifies photosynthetic activity throughout the year, 

Gond et al. (2013) distinguished between ‘swamp forests located in the Congo Basin’ and 

‘swamp located at the valley bottom in the Congo Basin and long rivers in Cameroon and Gabon’, 

with the latter type having significantly lower basal area than the former. The identification of a 

separate swamp type in ‘valley bottoms in the Congo Basin’, distinct from Congo Basin ‘swamp 

forests’ suggest that river-influenced peat swamp vegetation in DRC could be different from the 

peat swamp vegetation types found in interfluvial basins in ROC.  
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Early literature from the Cuvette Centrale, such as Evrard (1968), typically only considered the 

swamps as wetlands and not as peatlands. Nonetheless, Evrard (1968) reports several different 

wetland swamp forest vegetation types, some of which may overlie peat. In addition to 

permanently inundated swamp forests, Evrard (1968) identified a seasonally inundated forest 

type that is associated with Oubanguia africana and Guibourtia demeusei species. Furthermore, 

in addition to a class of permanently inundated forêts marécageuses, Lebrun and Gilbert (1954) 

also identified a seasonally inundated forest type (forêts périodiquement inondées) that they 

describe as being characterized by Oubanguia africana and Guibourtia demeusei. Similarly, 

Betbeder et al. (2014) report a forest type subjected to seasonal short lasting flood pulses of low 

amplitude that is characterised by Guibourtia deumeusei and Oubanguia africana. These reports 

seems to correspond with the initial vegetation descriptions of the field transects (Chapter 2), 

in which Oubanguia africana and Guibourtia demeusei were often encountered in some 

peatlands, suggesting this could be a separate peat-forming swamp vegetation class.   

 

There is thus a need to describe the diversity of peat swamp forest vegetation types of the 

Cuvette Centrale in more detail than is capture by the binary classification of hardwood- and 

palm-dominated swamp. Given that valley bottom swamp forests (Gond et al., 2013) and 

seasonally flooded forests (Betbeder et al., 2014) are reported to have different spectral 

signatures, a better understanding of the vegetation characteristics of river-influenced 

peatlands will likely also facilitate efforts to better map peat swamp forests. Furthermore, 

improved understanding of vegetation types in the Cuvette Centrale peat swamps will likely help 

to reduce uncertainties in estimates of the amount of carbon stored aboveground in trees.  

 

 

3.3 Chapter aims 

The aim of this chapter is to compare the characteristics of the different peat swamp forest 

vegetation types in the central Congo Basin. The specific objectives of this chapter are: (i) to 

classify the vegetation of DRC’s peat swamp forests based on forest structure and diversity; (ii) 

to classify the vegetation of DRC’s peat swamp forests based on species composition; and (iii) to 

estimate aboveground carbon stocks of peat swamp forests in river-influenced settings in the 

DRC. I then compare this DRC classification with descriptions of peat swamp forest vegetation 

in ROC to derive a characterization of vegetation types across the total central Congo Basin 

peatland complex.  
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3.4 Methods 
 

3.4.1 Vegetation plot measurements 

Vegetation plots of 20x40 m were installed every kilometre along the seven hypothesis-testing 

transects (Chapter 2) to collect detailed data on aboveground biomass, forest structure and 

diversity, and species composition. This was done identically to the approach by Dargie et al. 

(2017), to provide a consistent dataset across the region.  

 

Vegetation plots were installed regardless of whether peat was present or not, except for the 

final plot on the Lokolama and Bolengo transects, which are missing due to time constraints 

imposed by the significant field challenges in reaching these locations. In addition, two non-peat 

sites lack vegetation plots because they were highly disturbed: the penultimate kilometre of the 

Bolengo transect (BNG_7.0) lacks a vegetation plot due the presence of a manioc field, while the 

end point of the Tumba transect (TUM_4.0) lacks a vegetation plot because it was located in 

secondary forest surrounding a charcoal pit. On the other hand, two additional vegetation plots 

were installed at two locations where extra peat cores were collected (see Chapter 2, section 

2.4.2), ensuring that every peat core had a corresponding vegetation plot. One of these plots 

was located away from the main Lokolama transect (LOK_Extra), and one in an old fluvial 

channel that crossed near the end of the Tumba transect (TUM_3.93). As such, a total of 48 

vegetation plots was installed, of which eight were in non-peat forming seasonally inundated or 

terra firme forest and 40 in peat swamp forest (20 hardwood-dominated and 20 palm-

dominated swamp plots). 

 

In each plot, the diameter of all tree stems with a diameter at breast height (DBH) ≥ 10 cm was 

measured at a height of 1.3 m from the ground. If stilt roots, buttresses or deformities were 

present, the diameter was measured 30 cm above these deformations. Branched stems from 

the same tree with individual stems DBH ≥ 10 cm were measured separately.  

 

Because Raphia laurentii palms do not typically form trunks at breast height, the diameter of 

the single basal stem near the ground (Dbase) was measured instead. This was done for all R. 

laurentii specimens with a distinctly identifiable Dbase ≥ 10 cm, after the stem base was being 

cleared with a machete of any dead fronds or curly black fibres that typically cover the trunk. 

Care was taken to measure each Raphia stem base individually, despite them often occurring in 

dense multi-individual clusters. If grouped together in such a way that individual stems were not 
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immediately apparent, Raphia laurentii stems were assigned to the same cluster, similar to how 

branched stems of a hardwood tree were assigned to the same individual.  

 

The cross-sectional ground area occupied by each tree stem (basal area) was calculated as: 

𝐵𝐴 =  𝜋 ∗ (
𝐷

200
)

2
           [Eq. 3.1] 

where BA stands for stem basal area (m2) and D is the basal diameter near the ground (cm) in 

the case of R. laurentii, or the trunk diameter at breast height (cm) in the cases of hardwood 

species and all other palms. 

 

Individual trees were identified to species level, where possible, or failing that, to genus or family 

level. For this, vouchers of all unique tree species were collected for botanical identification and 

verification at the herbarium of the Faculty of Sciences of the University of Kisangani in DRC. 

Botanical identification and verification were performed by local expert botanists Joseph 

Kanyama and Prof Corneille Ewango from the University of Kisangani, with help from Pierre Bola 

from ISP-Mbandaka. A list of all species names that are mentioned, including author names, is 

provided in Appendix II. 

 

Height measurements of each tree stem with DBH ≥ 10 cm were taken with a laser hypsometer 

(manufacturer: Nikon, Kingston upon Thames, UK; model: Forestry Pro Laser Rangefinder). 

These measurements were used in canopy height estimations (both hardwood and palm trees) 

and AGB allometric equations (hardwood trees only). If no laser measurement was available for 

hardwood trees (n=66 out of 1,423), I estimated tree height from DBH (see 3.4.2). If no laser 

measurement was available for palm trees, I estimated the height of the largest palm frond by 

eye (n=151 out of 759 Raphia laurentii palms), or I estimated the trunk height by eye (n=8 out 

94 Raphia sese palms).  

 

 

3.4.2 Estimating aboveground carbon stocks 

I used allometric models developed from destructively harvested and measured trees and palms 

to estimate total aboveground live biomass in each vegetation plot. For this, I used three 

equations, one for hardwood trees (Chave et al., 2014), one for the R. laurentii palm (Y.E. Bocko, 

pers. comm. of unpublished data, 2021), and one for other palms with trunks (largely R. Sese; 

Goodman et al., 2013). The allometric model for hardwood trees uses an estimate of stem 

diameter, tissue density, and height, while both palm models rely only on stem diameter. 
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Many different allometric equations exist for hardwood trees in local, regional or global 

ecosystems, including for the Congo Basin specifically (Fayolle et al., 2018). However, these are 

not based on trees of the central Congo Basin peat swamp forests, or tropical peat swamp 

forests elsewhere. Therefore, I used the pantropical allometric equation developed by Chave et 

al. (2014), as this model has been found to perform well across different vegetation types: 

𝐴𝐺𝐵 = 0.0673 ∗ (𝜌 ∗ 𝐷𝐵𝐻2 ∗ 𝐻)0.976         [Eq. 3.2] 

where AGB stands for estimated aboveground biomass (kg), ρ is wood specific gravity (g cm-3), 

DBH is trunk diameter at breast height (cm), and H is total tree height (m). This pantropical 

model was also used by Dargie (2015) and Dargie et al. (2017), making this model preferable for 

comparisons across the peatland complex.  

 

I applied a species-specific allometric equation to all Raphia laurentii measurements (n=759), 

which was recently developed by Dr. Yannick Bocko of the University of Marien Ngouabi through 

destructive harvesting of 90 Raphia laurentii palms in the peat swamps of the Republic of the 

Congo (adj-R2 = 0.86; pers. comm. of unpublished data, 2021): 

𝐴𝐺𝐵 =  𝑒−6.308 + 3.211 ∗ ln( 𝐷𝑏𝑎𝑠𝑒) ∗ 1.02    [Eq. 3.3] 

Here, AGB stands for estimated aboveground biomass (kg) and Dbase is the diameter of the palm 

stem measured at ground base (cm). Diameter at ground base was used as a reliable metric, 

rather than diameter at breast height or the combined diameter of all palm fronds, as most 

Raphia laurentii stems do not reach breast height.  

 

The single-stemmed Raphia sese species does form a clearly identifiable ‘woody’ trunk of 

considerable height (typically up to 10 m). This trunk contains most of the aboveground biomass 

of this species, as its crown often has only a few small palm fronds. Because of this different 

shape, the Raphia laurentii-specific equation in Eq. 3.3 is thought to be unsuited for Raphia sese 

trees. Instead, I used the general family-level (Arecaceae-specific) allometric model developed 

by Goodman et al. (2013) for all Raphia sese trees (n=94), which is only dependent on DBH: 

𝐴𝐺𝐵 =  𝑒−3.3488 + 2.7483 ∗ ln( 𝐷𝐵𝐻 )    [Eq. 3.4] 

Here, AGB stands for estimated aboveground biomass (kg) and DBH is trunk diameter at breast 

height (cm). This equation was also used for any other palm-species identified, such as the 

common oil palm (Elaeis guineensis), a relatively rare species in the peat swamp forests of the 

central Congo Basin (n=13). 
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Tree height for input into the hardwood allometric equation (Eq. 3.2) was measured for all, 

except 66 out of 1,423 trees. For this relatively small sample of hardwood trees, total tree height 

was estimated from measured DBH values by developing a local diameter-height model from all 

available paired measurements of DBH and height across the plots (n=1,357 non-palm trees; R2 

= 0.54, p<0.001; Figure 3.1a): 

𝐻 = 7.395 ∗ ln(𝐷𝐵𝐻) − 7.62    [Eq. 3.5] 

where H is total tree height (m) and DBH is trunk diameter at breast height (cm). 

 

 
Figure 3.1. Diameter-height models for hardwood and Raphia palm trees. The plots show the 
relationship between hardwood tree height (m) measured using the laser hypsometer and the 
natural logarithm of hardwood DBH (a), or between the natural logarithm of Raphia laurentii 
tree height (m) measured using the laser hypsometer and the stem base diameter of Raphia 
laurentii palms (b). Black lines show the best-fitting linear regressions (n=1,357, R2 = 0.54, 
p<0.001; and n=588, R2 = 0.09, p<0.001, respectively). Shaded grey shows the 95% confidence 
intervals. 
 

The only predictor variable required in the Raphia laurentii-specific model (Eq. 3.3) is the 

diameter of the palm stem at ground base. However, for a small selection of Raphia laurentii 

palms (n=23), no measurement of stem diameter at ground base was available. For these palms, 

I developed a reversed, local diameter-height model based on the diameter-height relationship 

of all Raphia laurentii palms for which both stem base diameter and accurate height 

measurements from the laser hypsometer were available (n=588, R2 = 0.09, p<0.001; Figure 

3.1b):  

𝐷𝑏𝑎𝑠𝑒 =  𝑒2.063 +0.5279∗ ln(𝐻)     [Eq. 3.6] 
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Here, Dbase is the diameter of the Raphia palm stem at ground base (cm) and H is the total 

estimated palm height (m). The explanatory power (R2) of this model is very low. However, this 

was judged not to be too problematic, as this is only used to estimate Dbase for 3% of Raphia 

laurentii specimens. Furthermore, both biomass and total palm height of R. laurentii are low and 

exhibit much less variation than hardwood trees. Therefore, the uncertainty and potential bias 

introduced in the aboveground biomass of a plot by applying this reversed diameter-height 

model to a limited number of palm trees is thought to be small. 

 

Wood specific density of hardwood species was obtained from a specific swamp dataset from 

northern Republic of the Congo (Bibi-Loumoni, 2019), the Global Wood Density Database (Chave 

et al., 2009; Zanne et al., 2009), or the Central African wood density database (Momo et al., 

2020; Ploton et al., 2020b). 

 

No tissue density was required in the allometric models of palm species. Nonetheless, density 

values were assigned to estimate mean tissue specific density per vegetation plot. For this, I 

used a mean genus-specific value of 0.23 g cm-3 for both the common Raphia laurentii and 

Raphia sese palm species, obtained by Dr. Yannick Bocko of the University of Marien Ngouabi 

from direct measurements of 90 Raphia laurentii palms (pers. comm. of unpublished data, 

2021). For the occasional presence of the common oil palm tree (Elaeis guineensis), I used the 

species-specific value of 0.395 g cm-3 reported by Porankiewicz et al. (2006). 

 

As wood density is highly species-specific (Phillips et al., 2019), mean wood density values at 

species-level were used as much as possible. If trees were not identified at species-level, or no 

species-specific wood density values were available, the mean value at genus-level was used. If 

trees were not identified at genus-level, or no genus-specific wood density values were 

available, the mean value at family-level was used. If trees were not identified at family-level, or 

no family-specific wood density values were available, the mean plot value was used to estimate 

wood density.   

 

Total aboveground live biomass of each plot (AGB, in Mg dry mass ha-1) was calculated by 

summing the estimated AGB of all individual trees. Finally, estimates of AGB were converted to 

aboveground live carbon stocks (AGC, in Mg C ha-1) by multiplying by a factor 0.47, the mean 

observed carbon fraction in tropical angiosperms (Thomas & Martin, 2012).  
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3.4.3 Estimating species diversity 

Species diversity of each vegetation plot was first assessed by calculating species richness (SR), 

the absolute number of unique species found in each plot (S), including distinct morphospecies 

in a plot that did not have a formal identification to species level: 

𝑆𝑅 = 𝑆      [Eq. 3.7] 

However, species richness only represents one important component of species diversity. 

Besides richness, another component of diversity is evenness: the distribution of species’ 

relative abundances in a community, which is expressed as the number of individual trees 

counted for each species as a fraction of the total number of trees per site (Daly et al., 2018). 

Therefore, I calculated two other common metrics of species diversity: the Gini-Simpson 

diversity index (GS) and the Shannon-Wiener index (SW). The Gini-Simpson diversity index 

represents the probability that two individual specimens randomly selected from the population 

represent different species. It was calculated by summing the squared relative abundances of 

each species, using the following equation: 

𝐺𝑆 = 1 − ∑ (
𝑛𝑖

𝑁
)2𝑁

𝑖=1      [Eq. 3.8] 

Here, n is the total number of individuals of the ith species at the site, and N is the total number 

of individuals of all species at that site. By subtracting the summation over all species from 1, 

the index has a positive relationship with diversity, meaning the greater the value, the greater 

the species diversity. The Shannon-Wiener index was calculated from the same relative 

abundance data, using the following equation: 

𝑆𝑊 =  − ∑ (
𝑛𝑖

𝑁
∗ ln(

𝑛𝑖

𝑁
))𝑁

𝑖=1     [Eq. 3.9] 

Here, n is again the total number of individuals of the ith species at the site, and N is the total 

number of individuals of all species at that site. Like with the GS diversity index, the greater the 

SW index value, the greater the species diversity. Theoretically, the Shannon-Wiener index 

measures the uncertainty (entropy) in predicting the species identity of a randomly sampled 

tree within a plot. Generally, it is seen as giving more weight to richness, while the Gini-Simpson 

index gives relatively more weight to evenness (Daly et al., 2018). Both the Gini-Simpson index 

and the Shannon-Wiener index were calculated from relative abundance data whereby multi-

stemmed (hardwood) or clustered (R. laurentii palm) stems were counted as the same 

individual.  
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3.4.4 Classifying vegetation by forest structure and diversity 

Forest structure was characterized for each peat swamp plot (n=40) along the seven hypothesis-

testing transects based on the following eight variables: stem density; stem density excluding 

Raphia laurentii; the proportion of palms; total basal area; mean tree height; mean DBH; mean 

wood specific gravity; and total aboveground biomass.  

 

Because of the clustered nature of Raphia laurentii palm trees, individuals of this species were 

treated differently than hardwood trees or other palm species in the calculation of these 

variables. For stem density (the total number of stems per hectare) multi-stems of the same 

hardwood tree with DBH ≥ 10 cm were counted as separate stems, while Raphia laurentii 

individuals with Dbase ≥ 10 cm were counted as separate stems, irrespective of how clustered 

these palm stems were. Since this can heavily skew stem density towards Raphia laurentii-

dominated plots, which sometimes contain a large number of stems in a small number of 

clusters, I also calculated a stem density that excludes Raphia laurentii (but includes Raphia sese 

or Elaeis guineensis). 

 

The proportion of palms (% Raphia or Elaeis individuals out of total number of individuals) was 

calculated based on relative abundances. Like multi-stemmed hardwood trees, clustered Raphia 

laurentii palms were counted as if originating from the same individual, to prevent skewing of 

the data by the presence of a small number of clusters with many individuals. 

 

Total basal area (m2 ha-1) was obtained by applying Eq 3.1 to each individual stem, including 

multi-stemmed hardwood trees or clustered R. laurentii palms. Similarly, mean tree height (m), 

mean DBH (cm), and mean wood specific gravity (g cm-3) were calculated by treating every multi-

stemmed or clustered stem as a separate datapoint.  

 

The eight forest structure variables were then combined with the three measurements of 

species diversity (species richness, Gini-Simpson diversity index and Shannon-Wiener index) into 

one dataset to group plots according to similar vegetation types. For this, I used k-means 

clustering, which is an unsupervised machine learning approach to divide datasets into a pre-

specified number of distinct clusters. It has the advantage over other clustering approaches, 

such as hierarchical clustering, that it can produce a useful two-dimensional visualization of the 

proximity between datapoints (Tan et al., 2019).  
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I tested multiple pre-specified numbers of clusters, each corresponding with a distinct 

hypothesis:  (i) two clusters to test the hypothesis that a difference between hardwood- and 

palm-dominated peat swamps can be found; (ii) three clusters to test the hypothesis that an 

additional subdivision between riverine and non-riverine vegetation can be detected within 

either one of the palm- or hardwood-dominated peat swamp type; and (iii) four clusters to test 

the hypothesis that both hardwood- and palm-dominated peat swamps can each be subdivided 

in a riverine and non-riverine type. 

 

I used the factoextra package in R (version 1.0.7; Kassambara & Mundt, 2020) to implement k-

means clustering and visualization, using the default Euclidian distance to measure the 

(dis)similarity of observations, and with nstart set to 25. This provides the best clustering result 

out of 25 initial start configurations. All data was standardized (scaled), such that each variable 

has a mean of zero and a standard deviation of one to make them comparable.   

 

 

3.4.5 Classifying vegetation by species composition 

Both the Gini-Simpson and Shannon-Wiener indices used here represent alpha-diversity, the 

species richness at the local plot scale. Beta-diversity, on the other hand, is the rate of change 

in the species composition of communities between plots (typically over distance within a larger 

landscape or along an environmental gradient). Together, alpha- and beta-diversity determine 

gamma-diversity, which is the total species diversity at regional scale (Tuomisto, 2010). To 

analyse beta-diversity among the different peat swamp forests sites in the Cuvette Centrale, the 

(dis)similarity in floristic composition between pairs of vegetation plots was calculated using the 

Bray-Curtis dissimilarity statistic, which measures the proportion of the total species 

abundances in which two plots differ (Ricotta & Podani, 2017). The Bray-Curtis dissimilarity 

statistic is defined as: 

𝐵𝐶𝑈𝑉 =
∑ |𝐴𝑈𝑖−𝐴𝑉𝑖|𝑁

𝑖=1

∑ (𝐴𝑈𝑖+𝐴𝑉𝑖)𝑁
𝑖=1

         [Eq. 3.10] 

Here, BCUV is the Bray-Curtis dissimilarity statistic for the two plot sites U and V that are being 

compared, with AUi and AVi being the abundance values of the ith species at each site, and N is 

the total number of species across both sites combined.  

 

The Bray-Curtis statistic was chosen as it has been used to analyse similar swamp forest 

vegetation types in Peruvian peatlands (Honorio Coronado et al., 2021), as well as in seasonally 

flooded and terra firme forests in northern Republic of Congo (Ifo et al., 2018). To calculate the 
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Bray-Curtis statistic for each plot combination, a species matrix was first constructed, where 

each column represents a unique species found across the entire dataset, and each row 

represents one vegetation plot. Species composition was recorded in the matrix as abundance 

counts of individual specimens, whereby branched (hardwood) or clustered (palm) stems were 

counted as the same individual. 

 

Following similar analyses of compositional diversity in the peat swamp forests of the Amazon 

basin (Draper et al., 2018; Honorio Coronado et al., 2021), the dissimilarity matrix for all plot 

combinations was then used to create non-metric multidimensional scaling (NMDS) ordinations 

optimized for two axes, in order to visualize the compositional diversity between plots and 

within transect groups and identified clusters. NMDS is a rank-based approach to ordination, 

meaning the absolute Bray-Curtis dissimilarities are replaced by ranks, which makes it a flexible 

technique that is suitable for often incomplete ecological datasets (Clarke, 1993).  

 

A non-parametric permutational multivariate analysis of variance (PERMANOVA; Anderson, 

2001) was conducted to test the significance of the variation in species composition among 

different groups. These groups are: (i) the seven transects; (ii) the field-identified hardwood- 

and palm-dominated swamp classes; and (iii) the clusters in forest structure and diversity 

identified through k-means clustering. The Bray–Curtis dissimilarity matrix was used as the 

response variable. However, since the data has been collected in a semi-nested design, with 

vegetation plots grouped in correlated transects that will exhibit spatial autocorrelation, a 

correction is applied when testing the significance of variation among the identified clusters. 

This is done by adding transect group as additional predictor variable to the permutational 

multivariate analysis. Post-hoc comparisons between the identified groups were subsequently 

analysed using a pairwise comparison (Dunn’s Kruskal-Wallis multiple comparison test with 

Benjamini-Hochberg-adjusted p-values), again with transect group as additional predictor 

variable. 

 

All dissimilarity and ordination analyses were conducted in the R statistical environment (R Core 

Team, 2019), using the adonis function in the vegan package (version 2.5-7; Oksanen et al., 

2013), with 999 permutations. For pairwise comparison, I used the pairwise.adonis2 function in 

the pairwiseAdonis package (version 0.4; Martinez Arbizu, 2020), again with 999 permutations. 
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Indicator species that are driving dissimilarities between groups and characterise identified 

clusters were subsequently analysed with the multipatt function from the indicspecies package 

(version 1.7.9; De Cáceres et al., 2020), again with 999 permutations. This function implements 

a multi-level pattern analysis using a method developed by De Cáceres et al. (2010). In this 

analysis, I compared indicator species for each cluster separately, following Dufrêne and 

Legendre (1997), as well as for possible combinations of clusters.  

 

To study what environmental predictors are driving species composition, environmental factors 

were overlaid onto the NMDS ordination plots produced. For this, I used the envfit function in 

the vegan package (version 2.5-7; Oksanen et al., 2013), with 999 permutations. As 

environmental factors, I used six variables measured in the field (peat thickness, pH, EC, 

estimated maximum inundation height during the wet season, maximum water table depth as 

measured during the dry season, and the absolute water table fluctuation), as well as six 

remotely-sensed climatological and topographic variables (annual precipitation, precipitation 

seasonality, temperature, potential evapotranspiration, SRTM elevation and slope). The three 

climatic variables (annual precipitation [mm yr-1], precipitation seasonality [coefficient of 

variation], and temperature [°C]) were obtained from the WorldClim database (Fick & Hijmans, 

2017). Potential evapotranspiration (mm yr-1) was obtained from the Global Aridity Index and 

Potential Evapotranspiration Database (Trabucco & Zomer, 2019). Pre-processed SRTM-derived 

elevation and slope products (USGS, 2006), void-filled with ASTER GDEM data (NASA/METI, 

2011), were obtained for the central Congo Basin from Dargie et al. (2017). All datasets were 

resampled to 50 m resolution, using a nearest neighbour resampling method in IDL-ENVI 

geospatial software (version 8.7-5.5). 
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3.5 Results 

 

3.5.1 Aboveground carbon stock of peat swamp forests 

Mean aboveground live carbon stock across all measured peat swamp forest plots in DRC is 97.8 

Mg C ha-1 (median 91.0 Mg C ha-1; s.d. 41.1 Mg C ha-1; n=40). However, the aboveground live 

carbon stock of hardwood-dominated peat swamps (mean 114.1 Mg C ha-1; median 117.1 Mg C 

ha-1; s.d. 32.2 Mg C ha-1; n=20) is significantly higher than that of palm-dominated peat swamps 

(mean 81.5 Mg C ha-1; median 70.1 Mg C ha-1; s.d. 45.2 Mg C ha-1; n=20; Mann–Whitney U test, 

p<0.005), as shown in Figure 3.2.  

 

 
Figure 3.2. Boxplot of aboveground live carbon stocks (AGC) per vegetation class. The black 
line shows the median value. The box shape shows the upper and lower quartiles. The vertical 
lines show the minimum and maximum values. Circles represent outlying values. Classes that do 
not share a common letter are significantly different (p<0.05, Dunn’s Kruskal-Wallis multiple 
comparison test, p-values adjusted with the Benjamini-Hochberg method). Non-peat forming 
forest includes both terra firme and non-peat forming seasonally inundated forest.  
 

When testing the AGC difference between hardwood- and palm-dominated swamp plots within 

individual transects, to correct for the influence of the nested transect design, none of the 

transects shows a statistical difference. Similarly, a linear regression model that includes 

transect interaction effects provides a significant correlation (adj-R2 = 0.56, p<0.001), but only 
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because some of the interaction effects are significant. This indicates that differences in AGC 

between transects are due to a predominance of certain peat swamp types in specific transects. 

For example, it can be observed that AGC is significantly lower along the Bondamba transect on 

the one hand, than along the Bolengo, Ikelemba, Boloko and Tumba transects on the other 

(Figure 3.3). This effect is largely driven by the dominance of palm trees with lower biomass in 

Bondamba. However, the variation within individual transect groups can be large, such as in the 

case of Tumba (n=3), especially given the relatively low sample size per transect.  

 

 
Figure 3.3. Boxplot of aboveground carbon stocks (AGC) per transect. The black line shows the 
median value. The box shape shows the upper and lower quartiles. The vertical lines show the 
minimum and maximum values. Circles represent outlying values. Classes that do not share a 
common letter are significantly different (p<0.05, Dunn’s Kruskal-Wallis multiple comparison 
test, p-values adjusted with the Benjamini-Hochberg method). Transects are ordered by 
increasing High-Water Fraction (HWF). 
 

A marginally significant difference is found between the AGC of peat swamp vegetation in 

transects adjacent to the Ruki and Ikelemba rivers (mean 89.6 Mg C ha-1; n=28) and transects 

not adjacent to one of the two major rivers (mean 116.9 Mg C ha-1; n=12; Mann–Whitney U test, 

p=0.06). However, again, this effect is likely driven by the low aboveground carbon values found 

in the palm swamps of the Bondamba transects, which runs perpendicular to the Ruki transect.  

 

Similarly, mean AGC is slightly higher in high-water sites with maximum inundations > 50 cm 

(mean 115.1 Mg C ha-1; n=13) than in low-water sites (mean 88.3 Mg C ha-1; n=27). This suggests 

a predominance of hardwood trees in seasonally inundated forests, although the difference is 

only marginally significant (Mann–Whitney U test, p=0.09). 
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Finally, no significant differences are found between the two peat swamp forest classes and the 

non-peat forming forest class. However, this latter class has a low sample size (n=8) so this not 

unexpected. Therefore, the rest of this chapter will focus on the 40 plots that are located in peat 

swamp vegetation only. 

 

 

3.5.2 Peat swamp forest vegetation types 

A total of 152 species was encountered across the 40 peat swamp forest vegetation plots. Within 

this group, Raphia laurentii and Oubanguia africana clearly dominate, as these two species alone 

account for a quarter of all individuals counted (Figure 3.4a). Furthermore, just six other species 

make up another quarter, together accounting for half of all peat swamp trees encountered. 

These eight species are, from high to low relative abundance: Raphia laurentii (16.8% of all 

individuals), Oubanguia africana (8.5%), Raphia sese (5.3%), Guibourtia demeusei (4.9%), 

Cryptosepalum congolanum (4.0%), Pseudagrostistachys ugandensis (3.9%), Coelocaryon 

botryoides (3.6%) and Carapa palustris (2.9%). A further total of ten species makes up another 

18%, together covering two-thirds of all individuals counted. On the other hand, 49 trees are 

represented by a single individual (2.75% of all individuals), while 18 species are represented by 

just two individuals (2.0% of all individuals). 

 

For genera (Figure 3.4b), there are 101 genera counted across the 40 plots. Raphia (22.1%) and 

Oubanguia (8.5%) again dominate. Together with Diospyros (6.1%), Guibourtia (4.9%), 

Cryptosepalum (4.0%) and Coelocaryon (3.9%), these genera make up half of all individuals. This 

contrasts with 26 genera that are represented by a single individual (totalling 1.5%). 

 

For families (Figure 3.4c), there are 40 families counted across the 40 plots. The Arecaceae 

(palm) family clearly dominates with 22.8% of all individuals. However, the Fabaceae family is 

the most dominant among the hardwood species (20.7%), followed by Lecythidaceae (8.6%), 

Phyllanthaceae (6.9%), Euphorbiaceae (6.2%) and Ebenaceae (6.1%). These five families 

together account for almost half of all individuals encountered, while 12 families are 

represented by a single individual (totalling 0.7%). 
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a

b

c

 
Figure 3.4. Distribution of species, genera and families in peat swamp forest plots. Each pie 
charts showing the distribution of most abundant species (a), genera (b) and families (c) in 40 
peat swamp forest vegetation plots. Remaining species/genera/families includes singletons and 
doubletons.  
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3.5.2.1 Clustering of forest structure and diversity 

Figure 3.5 shows the results of k-means clustering of the 40 peat swamp plots based on 11 

variables of forest structure and diversity. Each panel (Fig. 3.4a-c, respectively) shows the 

resulting clusters based on 2, 3 or 4 pre-specified number of clusters. The closer two points are 

in each of the diagrams, the more similar these vegetation plots are. The two dimensions plotted 

in each of the four panels together explain 83.0% of variability in the dataset. It can be observed 

that dimension 1 along the x-axis (explaining 72.1% of variability) consistently separates cluster 

1 (dark green) from the other plots. This dimension can be thought of as separating hardwood- 

from palm-dominated vegetation types (from left to right), as cluster 1 contains nine vegetation 

plots that were identified as palm-dominated in the field. This cluster includes all palm-

dominated swamp sites along the Bondamba transect, as well as some palm-dominated sites 

along the Mpeka transect. On average, the nine plots in cluster 1 consist of 86% palm trees, and 

are characterised by lower mean tree height, wood specific gravity, species diversity (SR, GS and 

SW) and AGB, as well as higher mean DBH, basal area and stem density (Table 3.1).  

 

 
Figure 3.5. k-Means clustering of 40 peat swamp vegetation plots along two principal axes, 
based on forest structure and diversity. The number of clusters was pre-specified as 2 (a), 3 (b), 
or 4 (c). The two principal components (Dim1 and Dim2) together explain 83% of variability. 
Ellipses represent the 1-sigma (68%) confidence interval for a multivariate t-distribution per 
cluster, with a cross showing the central points. 
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However, not all field-identified palm swamp sites are part of cluster 1, as 11 palm-dominated 

plots are included in cluster 2. This second group (cluster 2 in orange in Fig. 3.4a) represents 

sites with hardwood-dominated and mixed vegetation, consisting on average of only 15% palm 

trees, and having higher mean tree height, wood specific gravity, species diversity and AGB, in 

combination with lower mean DBH, basal area and stem density (Table 3.1).  

 

Figure Cluster  n = Height DBH 
 

WSG BA Stem 
density 

Stem 
density 
excl. R. 
laurentii 
 

Palms AGB SR GS 
index 

SW 
index 

3.4a 1* 9 11.0 29.2 0.259 60.4 856 75 86 114 3.8 0.27 0.58 

2 31 14.1 24.3 0.561 34.4 577 491 15 233 15.5 0.86 2.34 

3.4b 1* 9 11.0 29.2 0.259 60.4 856 75 86 114 3.8 0.27 0.58 

2 20 14.8 23.5 0.598 32.9 562 537 7 258 17.3 0.87 2.46 

3 11 12.8 25.7 0.494 37.0 605 407 30 187 12.3 0.84 2.12 

3.4c 1* 9 11.0 29.2 0.259 60.4 856 75 86 114 3.8 0.27 0.58 

2 16 15.2 23.4 0.594 31.0 548 516 5 233 18.1 0.90 2.58 

3 9 12.8 26.1 0.489 36.7 583 342 29 167 12.4 0.85 2.17 

4 6 13.0 24.1 0.581 39.9 646 646 22 331 13.2 0.78 1.98 

Table 3.1. Overview of 11 forest structure and diversity metrics for different k-means clusters of 40 
peat swamp vegetation plots. The number of pre-specified clusters is 2, 3 or 4 (Fig. 3.4a-c, 
respectively). All values are cluster averages of vegetation plot means. n indicates the number of 
vegetation plots per cluster. Height is mean plot tree height (m). DBH is mean plot diameter at breast 
height (cm). WSG is mean plot wood specific gravity (g cm-3). Basal area is total plot basal area (m2 
ha-1). Stem density is total number of stems per plot (ha-1), either with or without Raphia laurentii. 
Palms is the proportion (%) of palm species (Raphia or Elaeis) per plot. AGB is total plot aboveground 
biomass (Mg ha-1). SR is species richness. GS index is the Gini-Simpson diversity index. SW is the 
Shannon-Wiener index. Rows identified by * are identical clusters. 
 

The second cluster can be further separated into two subgroups when applying 3-means 

clustering. A first subgroup (cluster 2 in orange in Fig. 3.4b) has few palms present (the average 

plot has 7% palms). It can be contrasted with a second subgroup (cluster 3 in blue in Fig. 3.4b) 

that has medium palm dominance (30%). Thus, with three pre-specified clusters, a palm-

dominated swamp type, a hardwood-dominated swamp type and a mixed palm/hardwood 

swamp type can be identified. This grouping largely corresponds with how these plots were 

described in the field. All plots from cluster 1 were correctly identified in the field as palm-

dominated based on visual observation only, while 19 out of 20 plots from cluster 2 where 

correctly identified as hardwood-dominated. However, the third mixed swamp cluster tends to 
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be described as palm-dominated in the field, with ten out of 11 plots being identified as palm-

dominated based on visual inspection only. 

 

The hardwood-dominated swamp in cluster 2 is characterized by the greatest species diversity 

of all clusters and consists of relatively tall and slim trees with high aboveground biomass stocks 

(Table 3.1). This group is mostly made up of the hardwood swamp sites along the second half of 

the Boloko transect and the second half of the Ikelemba transect. The mixed swamp type, cluster 

3, on the other hand, is characterized by lower species diversity, shorter tree height, and lower 

aboveground biomass, because of a larger presence of palm species. It is mostly found along the 

start of the Mpeka and Bolengo transects, and the endpoint of the Bondamba transect.  

 

When using 4-means clustering, the picture becomes even more nuanced, with the hardwood-

dominated swamp and mixed swamp clusters fragmenting even further. Another mixed swamp 

type of six plots is identified (cluster 4 in pink in Fig. 3.4c). This vegetation type is characterised 

by medium palm presence (22%), but with the greatest aboveground biomass (331 Mg ha-1). 

However, mean stem density of this cluster is the same when including or excluding Raphia 

laurentii palms, indicating that the palms present here are mostly Raphia sese. This vegetation 

type is made up of plots along the Tumba transect and the first half of the Ikelemba transect 

that are strongly inundated during the wet season. In the field, based on visual observation only, 

half of the plots in this cluster were identified as palm-dominated, and half as hardwood-

dominated. 

 

3.5.2.2 Comparing species composition 

To understand how these clusters relate to floristic diversity, it is useful to study the results of 

the NMDS ordination of species composition, shown in Figure 3.6. The closer two points are in 

these diagrams, the more similar they are in terms of species composition. Figure 3.6a shows 

the NMDS ordination diagram with all plot IDs grouped by transect. It can be observed that most 

transect are clustered, meaning that vegetation plots resemble other vegetation plots along the 

same transect in terms of floristic diversity. The only exception is the Ikelemba transect (light 

green), which is notably spread out across the second NMDS dimension (y-axis). In addition, a 

similar pattern as with forest structure (Figure 3.5) can be seen, with most field-identified palm-

dominated sites (triangles) clustered together on the left, while mostly hardwood-dominated 

sites (diamonds) are clustered on the right (note the reversal of orientation along the x-axis, 

compared with Figure 3.5).  
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Figure 3.6b-d show the same ordination diagram, but then with all vegetation plots grouped by 

the four clusters identified through k-means clustering in Figure 3.5c. The ordination diagram in 

the upper right panel (Figure 3.6b) shows plot IDs, while the diagrams on the bottom row are 

overlaid with either the 11 forest structure variables in ordination space (Figure 3.6c), or ten 

environmental variables (Figure 3.6d). It can be observed from the 1-sigma (68%) confidence 

intervals around each cluster that cluster 1 (Raphia laurentii palm-dominated) and 4 (mixed 

swamp forest) are clearly distinct of the other clusters in terms of floristic diversity. However, 

cluster 2 (hardwood-dominated) and 3 (mixed swamp forest) share a slight overlap, indicating 

more floristic similarity between these clusters. 

 

 
Figure 3.6. NMDS ordination of floristic dissimilarity among 40 peat swamp forest plots. Panels 
show plots coloured by transect group (a), or coloured by the four clusters identified through k-
means clustering (b-d). Ellipses represent the 1-sigma (68%) confidence interval for a 
multivariate t-distribution per transect or cluster. a/b show plot IDs, while c is overlaid with 11 
forest structure variables and d is overlaid with 11 significantly correlated environmental 
variables (p<0.01). The length of the arrows in panel c/d indicates the strength of the association. 
In all panels, point shapes (triangles and diamonds) differentiate between field-identified 
vegetation classes (HS: hardwood-dominated peat swamp, PS: palm-dominated peat swamp). 
All ordination diagrams are optimized for two dimensions. 
 

A separation of palm-dominated plots (left) from hardwood-dominated plots (right) can 

generally be seen along the x-axis (NMDS1) in Figure 3.6c. Palm-dominated swamps tend to have 

lower species diversity, wood specific gravity and tree height, but greater basal area, stem 
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density when including R. laurentii, and average DBH. Hardwood-dominated swamps, on the 

other hand, tend to have greater species diversity, wood specific gravity, tree height, AGB and 

stem density, when excluding R. laurentii. However, there are some palm-dominated plots on 

the right of this axis, in cluster 4 (pink), which appear to differ from this pattern. This could partly 

be because cluster 4 is a mixed swamp type with medium palm presence (22%). Even so, part of 

this is likely explained by the fact that some of these plots could have been misclassified in the 

field due to a dominance of juvenile palms in the understory. The canopy of these sites is in fact 

largely dominated by hardwood trees, meaning these sites should probably have been classified 

as hardwood-dominated in the field. 

 

A second pattern can be seen on the right side of the ordination diagrams, where hardwood 

swamp plots appear to be stretched out along the y-axis (NMDS2), with denser and more 

biomass-rich sites towards the bottom of the ordination space, and less dense, but taller and 

more diverse sites towards the top of the ordination space. The former group, associated with 

cluster 4, includes typically seasonally inundated plots from Tumba and the first half of the 

Ikelemba transect, while the latter group, associated with cluster 2, includes plots with lower 

inundation levels from Bolengo, Lokolama and the second half of the Ikelemba transect. 

 

PERMANOVA analysis, to detect significant differences in species composition between groups 

of plots, indicates how the sampling design, in the form of seven transect groups, explains about 

half of the variability in species composition (R2 = 0.52; p<0.001). However, after correcting for 

this grouping factor, a significant difference between the field-identified hardwood- and palm-

dominated swamp types is still observed (R2 = 0.16; p<0.001).  

 

Eight significant indicator species (De Cáceres et al., 2010) are found that drive the difference 

between hardwood- and palm-dominated swamp forests types as identified in the field. Raphia 

laurentii is a significant indicator of palm-dominated swamp forest (p<0.001), while Coelocaryon 

botryoides, Cleistanthus mildbraedii, Dichostemma glaucescens (all p<0.01), Carapa palustris, 

Symphonia globulifera, Uapaca corbisieri and Manilkara obovata (all p<0.05) are significant 

indicators of hardwood-dominated swamp forest.  

 

PERMANOVA analysis, again correcting for the transect design, shows that the four identified 

clusters are also significantly different from each other in terms of species composition (R2 = 

0.15; p<0.001). Post-hoc analysis shows that the pairwise differences between each of the 
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possible cluster combinations are significantly different when correcting for the transect design 

(all p<0.001). This shows that species composition is not only significantly different between 

clusters 1 and 4, clusters 1 and 2/3, and clusters 4 and 2/3, of which the ellipses do not overlap 

in Figure 3.6, but also between cluster 2 and 3, which have partially overlapping ellipses. 

 

Twenty-one significant indicator species are identified when analysing the four k-means clusters. 

In the case of cluster 1, the palm-dominated peat swamp type, this is Raphia laurentii (p<0.001), 

often in association with Cleistopholis patens (n.s.). In the case of cluster 2, the hardwood-

dominated peat swamp type, the indicator species are Coelocaryon botryoides (p<0.001), 

Cleistanthus mildbraedii, Dichostemma glaucescens (both p<0.01), Uapaca corbisieri and 

Pseudagrostistachys ugandensis (both p<0.05). In the case of cluster 3, the mixed peat swamp 

type, the indicator species is Cryptosepalum congolanum (p<0.001). However, cluster 2 and 3 

share Carapa palustris and Entandrophragma palustre (both p<0.05) as common indicator 

species too. Finally, in the case of cluster 4, the mixed peat swamp type that is typically found in 

seasonally inundated sites, the indicator species are Oubanguia africana, Cleistanthus 

polystachyus, Raphia sese, Baphia laurentii (all p<0.001), Homalium africanum, Prioria 

buchholzii, Garcinia ovalifolia, Isoberlinia doka, Guibourtia demeusei (all p<0.01), Chionanthus 

sp., Crotonogynopsis sp. and Albizia altissima (all p<0.05). 

   

When overlaying the ordination diagram with the 12 selected environmental variables (Figure 

3.6d), 11 of these were found to be significantly correlated (all p<0.01). Only slope was not 

significantly correlated and therefore left out of the diagram. It can be observed that the y-axis 

corresponds with a gradient from stable water tables (top) to fluctuating water tables (bottom). 

The fourth cluster of mixed swamp vegetation is strongly related to larger water table 

fluctuations, greater maximum inundation height, as well as greater precipitation seasonality. 

In opposite direction along the y-axis, it can be seen that cluster 2, the hardwood-dominated 

swamp, is related to higher elevations, greater electrical conductivity, greater peat thickness, 

less acidic conditions (greater pH), and potentially greater annual precipitation.  

 

The environmental differentiation along the x-axis is less clear-cut. However, it appears that 

palm-dominated sites in cluster 1 (to the left of the diagram) are related to lower water table 

depths, as measured during the dry season, as well as possibly greater potential 

evapotranspiration and more acidic conditions (lower pH). 
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3.6 Discussion 

Peat swamp forests in the DRC are characterized by relatively low levels of aboveground carbon, 

storing 97.8 Mg C ha-1 on average. This is about half of the mean AGC found in Central African 

tropical forests (~202 Mg C ha-1; Lewis et al., 2013). Like Dargie et al. (2017), it was found that 

mean AGC is significantly higher in hardwood-dominated peat swamps (114.1 Mg C ha-1) than in 

palm-dominated peat swamps (81.5 Mg C ha-1). However, this difference is smaller than the 

difference reported by Dargie et al. (2017) for ROC swamps, who measured 123.6 and 67.0 Mg 

C ha-1 for the two vegetation types, respectively. This might suggest that the AGC estimates of 

palm-dominated swamps by Dargie et al. (2017) are an underestimation, potentially caused by 

the use of a generic rather than species-specific palm allometric equation. However, mean AGC 

of vegetation cluster 1 in the DRC swamps, which was found to represent largely monodominant 

palm swamps and thus likely provides the best estimate of truly palm-dominated vegetation, is 

only 54 Mg C ha-1 , in line with the findings of Dargie et al. (2017). One cause of the higher AGC 

observed across DRC plots classified in the field as palm-dominated appears to be that some 

DRC sites have been incorrectly classified in the field. This seems to be specifically the case for 

seasonally inundated swamp forests, such as cluster 4 of the k-means clustering, which often 

have an understory composition largely made up of small palms, causing them to be classified 

as palm-dominated in the field, while the canopy is in fact dominated by tall hardwood tree. The 

AGC of palm-dominated plots in DRC, excluding those in cluster 4 (n=3) is only 68 Mg C ha-1, 

suggesting that the incorrect labelling of this mixed swamp type as palm-dominated in the field 

has considerably increased the average AGC of the field-identified palm-dominated class. This 

highlights the difficulty of applying a binary classification system onto an ecosystem that exhibits 

more complexity in the field.  

 

To better understand the complexity of peat swamp forest vegetation, unsupervised k-means 

clustering of forest structure variables was performed, followed by an NMDS ordination analysis 

of compositional diversity. Based on this, four distinct vegetation types were identified in DRC’s 

mostly river-influenced peatlands. Firstly, it is clear from both the k-means clustering and 

species ordination that Raphia laurentii-dominated palm swamp forms a distinct vegetation 

type (cluster 1; Table 3.1). This vegetation type, with 88% of individuals being palms, is mostly 

found further away from the Ruki River along the Bondamba and Mpeka transects. It appears 

partly associated with lower pH and less water availability during the dry season, potentially 

driven by efficient drainage of floodplain areas further from the river.  
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This palm-dominated swamp type corresponds well with Evrard’s (1968) seral forest association 

of Raphia laurentii, and Dargie et al.’s (2017) main palm-dominated peat swamp forest type 

dominated by Raphia laurentii. To a certain degree, it also corresponds with Lebrun and Gilbert’s 

(1954) class of permanently inundated forêts marécageuses and Betbeder et al.’s (2014) EVI-2 

class of forests subject to stable water levels. However, this overlap is less distinct, as both 

authors use hydrology to group Raphia palms and hardwood trees together in a permanently 

inundated swamp forest class, rather than identifying a specific Raphia-dominated swamp type 

based on vegetation alone. No direct comparison can be made with Gond et al.’s (2013) swamp 

forest classes, as this study does not mention the presence of Raphia species or palms at all.   

 

Secondly, a hardwood-dominated peat swamp type (cluster 2), most prominently characterized 

by Coelocaryon botryoides and very few palms, but with the highest species diversity of the four 

groups, can also be identified as a distinct vegetation type (Table 3.1). This swamp type appears 

related to more stable water table depths closer to the peat surface, which are either potentially 

driven by greater precipitation, or possibly upland runoff (as indicated by greater EC and higher 

elevations). It is largely found on higher elevations along the Bolengo and Ikelemba transect, 

along part of the Boloko transect, as well as most of the Lokolama transect which is not adjacent 

to any of the rivers.  

 

This hardwood-dominated vegetation type corresponds well with the Entandrophragma 

palustre-Coelocaryon botryoides alliance of mature swamp forest identified by Evrard (1968). 

Like with palm-dominated peat swamps, this vegetation type also partly corresponds with 

Lebrun and Gilbert’s (1954) class of permanently inundated forêts marécageuses, and Betbeder 

et al’s (2014) EVI-2 class of forests subject to stable water levels. Both authors mention the 

presence of Entandrophragma palustre and Coelocaryon botryoides, among other species, in 

their respective classes. However, since their distinction is primarily based on hydrology, Raphia 

palms with stable water tables are also included in these classes. Thus, contrary to this study 

and Dargie et al. (2017), these authors do not make the explicit distinction between palm- 

(cluster 1) and hardwood-dominated (cluster 2) swamps.  Furthermore, it is possible that both 

cluster 1 and cluster 2 correspond with the swamp forest class identified by Gond et al. (2013). 

However, they do not provide any species data to properly make a comparison. 

 

Dargie (2015) and Dargie et al. (2017) describe a hardwood-dominated swamp forest in ROC, 

although this forest type differs in species composition to cluster 2, because neither 
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Entandrophragma palustre or Coelocaryon botryoides were recorded. Instead, they report 

Uapaca paludosa, Carapa procera and Xylopia rubescens as commonly present. However, Bocko 

et al. (2016) mentions this hardwood-dominated peat swamp forest from the same region in 

ROC, in association with the presence of Entandrophragma palustre. Some of the differences 

between my results and those of Dargie (2015) and Dargie et al. (2017) may be a result of 

different botanical traditions: for example, records of Carapa procera in ROC are likely to be the 

same species as identified by Carapa palustris in this study in the DRC. The taxonomy of the 

genus Carapa, and especially the place of C. procera in it, is controversial and has been the 

subject of extensive discussions and revisions. After a revision by Kenfack (2011), C. procera is 

now seen as a West-African terra firme species, while C. palustris is thought to be found in 

Central African swamps and riparian environments. Thus, it is very likely that the species that 

Dargie (2015), Dargie et al. (2017) and Bocko et al. (2016) identified as C. procera should be 

recorded as C. palustris.  

 

In addition to Carapa, the hardwood peat swamp forest of cluster 2 identified in DRC also shares 

species of the genera Xylopia and Uapaca with Dargie et al.’s (2017) hardwood-dominated 

swamp type in ROC. Thus, it is possible that the Congo River may be a barrier to some species, 

with different species of the same genera occupying the hardwood peat swamp forest on either 

side of this barrier.  Overall, it is therefore likely that the hardwood peat swamp forest, cluster 

2 identified in this study, largely corresponds with the hardwood-dominated swamp forest 

identified by Dargie et al. (2017), even though the presence of Coelocaryon botryoides has not 

been reported in ROC swamps. Given that this swamp forest type tends to be the most diverse 

of all peat swamps encountered, and that the ROC and DRC sampling sites are far apart and 

separated by the ecological boundary of the Congo River, it is not surprising to find a diverse set 

of species characteristic for this forest type. 

 

Thirdly, a mixed hardwood and palm swamp type (cluster 3) can be identified, with 29% of stems 

being palm, which is characterized by the presence of Cryptosepalum congolanum. However, 

this cluster is less distinct than the other clusters, as it also shares Carapa palustris and 

Entandrophragma palustre as indicator species with cluster 2. There are also no clear 

environmental variables associated with this cluster. Like cluster 1, most of the sites in this 

cluster were identified in the field as palm-dominated. However, unlike the monodominant palm 

swamp forest that are typical of cluster 1, this mixed hardwood/palm vegetation type is 

characterized by the presence of a diverser group of hardwood trees. This vegetation type is 
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often found at the transition zone from hardwood- to palm-dominated sites, such as along the 

Mpeka transect, at the start of the Bolengo transect, or at the endpoint of the Bondamba 

transect. It is unclear, from published sources, whether this vegetation type is found in ROC, but 

it is clear that there are long, shallow environmental gradients in the interfluvial basins (Dargie 

2015), and that there is a gradient from palm-dominated to hardwood-dominated peat swamp 

forest (S. Lewis and G. Dargie, pers. comm.). This mixed peat swamp forest does not simply map 

onto any of the vegetation classes of either Evrard (1968), Lebrun and Gilbert (1954), Betbeder 

et al. (2014), or Gond et al. (2013). Furthermore, none of these, including Dargie et al. (2017), 

explicitly mention the presence of Cryptosepalum congolanum in relation to a swamp forest 

vegetation type. It may be the case that there is a gradient from hardwood-dominated to palm-

dominated peat swamp forest, with authors identifying ideal end-member types, and my new 

classification attempting to show this gradient by making an intermediate cluster.   

 

Finally, a second mixed hardwood/palm swamp forest type (cluster 4) can be identified as a 

distinct vegetation type, most prominently characterized by the presence of Ouganbuia africana 

and Guibourtia demeusei in the canopy, in association with Raphia sese and juvenile Raphia 

laurentii species in the understory. This swamp type appears to be found mostly in river-

influenced sites with seasonal inundations during the wet season, which are located at lower 

elevations close to rivers or streams. For example, this vegetation type is largely found at the 

start of the Ikelemba transect, close to the Ikelemba River, and along the Tumba transect, 

located in a floodplain between two tributaries. Based on overlaying the NMDS ordinations with 

environmental variables, it appears further characterized by shallow peat deposits with low 

electrical conductivity and less acidic conditions. However, the fact that this cluster is also 

related to greater precipitation seasonality suggests that some of these inundations could be 

partially related to rainfall patterns, rather than geomorphology alone.  

 

The seasonally inundated, mixed swamp forest type corresponds well with Evrard’s (1968) 

description of the seasonally flooded Oubanguia africana-Guibourtia demeusei association. It is 

also  very likely related to Lebrun and Gilbert’s (1954) classes of forêts périodiquement inondées, 

which was described as being dominated by Oubanguia and Guibourtia and having little to 

moderate peat soil accumulation. In addition, it corresponds well with Betbeder et al.’s (2014) 

EVI-1 class of forests subjected to seasonal flood pulse, which is also located alongside rivers, 

and described as being characterised by Oubanguia africana and Guibourtia deumeusei. 
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Furthermore, cluster 4 possibly corresponds with the Gond et al.’s (2013) swamp type located 

in valley bottoms of the Congo Basin, although no further description is provided. 

 

Seasonally flooded forests dominated by Guibourtia demeusei are described for the ROC by Ifo 

et al. (2018), although these are also not peat-forming and not in association with Oubanguia 

africana. Rather, the seasonally flooded forests in ROC are typically associated with Dialium 

pachyphyllum (Bocko et al., 2016; Dargie, 2015; Ifo et al., 2018), a species which was only 

occasionally observed in DRC. Ifo et al. (2018) also report a Lophia alata-dominated seasonally 

flooded forest, which was not encountered in the river-influenced swamps of DRC at all. Thus, 

it appears that the seasonally flooded forest types in ROC are different from the seasonally 

inundated mixed swamp in DRC, which is typically characterized by both Oubanguia and 

Guibourtia and does form peat. Overall, the particular inundation patterns in a location, 

including both depth and duration of wet season inundation and dry season water table 

drawdown, alongside the chemical characteristics of the flood water, may alter which species 

can dominate. This could lead to a variety of vegetation types in seasonally inundated 

environments within the Cuvette Centrale, of which only some accumulate peat.   

 

Evrard (1968) and Dargie et al. (2017) have additionally identified a Raphia sese/Raphia hookeri-

associated riparian forest type, which was not identified along the transects studied in the DRC 

either. According to Dargie et al. (2017), the R. hookeri palm-dominated swamp type was found 

to occupy abandoned river channels in ROC, while Evrard (1968) reports stands of R. sese along 

streams in DRC. No clearly abandoned river channels with peat accumulation were identified in 

the DRC, which explains why a Raphia sese-dominated vegetation type was not found as part of 

this study. Nonetheless, R. sese was frequently encountered in association with the seasonally 

inundated swamp forest of cluster 4, although without dominating there. This is likely explained 

by the tendency of this species to grow in riparian or periodically inundated locations, which are 

ecologically similar to abandoned river channels.   

 

Both Raphia hookeri and Raphia sese are characterized by curled fibres on a tall trunk, but 

primarily distinguished from one another by the type of ‘beak’ found at the apex of the yellowish 

fruit, which is tapering (long cylindrical point, +15mm) in specimens of R. hookeri, while more 

squat (6-9mm) and noticeably inflated in the middle in specimens of R. sese (Tuley, 1995). 

According to Tuley (1995), R. hookeri is a West African species occurring from Senegal to the 

Congo Basin, while R. sese is reported to be native to central and north-eastern DRC. This 
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suggests that these are different species that fill similar ecological niches on either side of the 

Congo River, with the river acting as an ecological barrier.  

 

Assuming cluster 1 identified here is similar to the palm-dominated swamp type described by 

Dargie et al. (2017) in ROC, and cluster 2 is largely similar to the hardwood-dominated swamp 

type described by these same authors in ROC, at least five different vegetation types can be 

identified across the central Congo Basin: 

- hardwood-dominated peat swamp forest, with a diverse set of species, mostly 

characterised by Entandrophragma palustre, Coelocaryon botryoides and Carapa 

palustris in DRC, or Uapaca paludosa, Carapa procera (likely C. palustris) and Xylopia 

rubescens in ROC; 

- Raphia laurentii palm-dominated peat swamp forest, often characterized by 

monodominant stands, or in association with Cleistopholis patens; 

- mixed peat swamp forest, likely intermediate between the hardwood-dominated and 

palm-dominated peat swamp forest types, with medium palm presence and 

characterised by Cryptosepalum congolanum, so far only documented in DRC but likely 

existing in ROC as well; 

- seasonally inundated mixed peat swamp forest, characterised by Oubanguia africana 

and Guibourtia demeusei in association with Raphia sese, often found in riparian settings 

and so far only documented in the DRC; 

- Raphia hookeri palm-dominated peat swamp forest, found in abandoned river channels 

and along streams, so far only documented in ROC. 

 

These vegetation classifications were derived without including data on the presence of rattans, 

small woody shrubs, or small monocots. For example, some seasonally inundated swamp 

vegetation was heavily characterized by extensive understory coverage of rattan palms (typically 

Eremospatha wendlandiana, Eremospatha haullevilleana or Laccosperma secundiflorum), or 

woody shrubs (typically Alchornea cordifolia). Furthermore, Raphia laurentii-dominated palm 

swamps were typically characterized by an understory of trunkless palms (Sclerosperma mannii) 

or chandelier-like screw palms (Pandanus candelabrum). As these understory species normally 

did not reach the threshold of DBH ≥ 10 cm, they were excluded from aboveground biomass 

estimates and other indicators of vegetation structure and diversity. Including these may further 

help delimit vegetation types in the peat swamps of the Cuvette Centrale. Moreover, the 

exclusion of these species could lead to a small underestimation of AGB if the understory of 
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some vegetation plots was found to be dominated by rattan palms. Further work on classifying 

peat swamp forest vegetation, including the smaller (< 10 cm DBH) plant species, is therefore 

needed in the future. 

 

Difficulties in assessing vegetation characteristics are further compounded by the fact that both 

Dargie et al. (2017) and this study used a relatively small vegetation plot of 20x40 m. While the 

orientation and location of the plot was pre-determined before the fieldwork commenced, to 

avoid bias, small plots necessarily have greater uncertainty attached, as treefall gaps and other 

small-scale environmental heterogeneities may affect the results. This tends to produce less 

stable ordination patterns (Otypková & Chytrý, 2006) and could cause the analysis to miss out 

on potentially rare but important large trees (Harris et al., 2021a). Specifically, given the low 

prevalence of hardwood trees in Raphia laurentii-dominated swamp forests, 20x40 m is likely 

too small to capture the relatively rare occurrences of hardwood species in this vegetation type. 

Ideally, species-area relationships would be calculated in the future to assess what plot size and 

how many plots are required to accurately assess large-scale vegetation patterns (Plotkin et al., 

2000). 

 

Furthermore, the applicability of the Bray-Curtis statistic used for NMDS ordination analysis has 

recently been called into question. The Bray-Curtis statistic is related to the Sørensen-Dice index, 

which has recently been criticized for being oversensitive to species prevalence, potentially 

causing misleading conclusions (Mainali et al., 2022). Mainali et al. (2022) state that this index 

is especially problematic if sample sizes are small and species distributions are skewed, such as 

in the palm-dominated plots that were assessed in DRC. Since the Bray-Curtis metric is one of 

the most popular abundance-based dissimilarity metrics among ecologists (Anderson et al., 

2011), and has been used to analyse similar swamp forest vegetation types in Peruvian 

peatlands (Honorio Coronado et al., 2021) and seasonally flooded forests in northern Republic 

of Congo (Ifo et al., 2018), it was decided to still apply it here. To reduce the potential issue of a 

strongly skewed distribution of Raphia laurentii in palm-dominated plots, multi-stemmed 

clusters of this palm species were treated as the same individual, like multiple stems ≥ 10 cm 

DBH originating from the same hardwood tree. Similarly, the negative effect of overprevalence 

by multi-stemmed Raphia laurentii palms was countered in the k-means clustering by including 

stem density without Raphia laurentii as separate variable, and by calculating the proportion of 

palm trees based on individuals, rather than stems. The fact that the NMDS ordination results 

correspond well with the clustering results obtained from k-means-clustering gives confidence 
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in the identified vegetation types. Nonetheless, given the status of debate about the use of Bray-

Curtis similarity metric, the results reported here should be interpreted as broad vegetation 

descriptions only.  

 

Environmental drivers of swamp forest vegetation types 

From the transect descriptions in Chapter 2 it can be observed that there are clear gradients in 

vegetation types along some transects, especially when moving away from the rivers. Overlaying 

the NMDS ordination with environmental variables in Figure 3.6d confirms that these gradients 

are often related to inundation levels. The seasonally inundated mixed swamp type (cluster 4) 

is strongly correlated with both large fluctuations in water table depth throughout the year and 

greater inundation heights during the wet season. Increased exposure to oxidation therefore 

likely explains why this peat swamp type has relatively shallow peat deposits. On the other hand, 

the hardwood-dominated swamp type (cluster 2) is strongly correlated with stable water tables 

and low levels of wet season inundation. Here, permanent anoxic conditions likely explain the 

greater peat deposits observed.  

 

Although the NMDS ordination partly points towards a climatic effect of annual precipitation 

and precipitation seasonality, differences in inundation patterns are likely to also be determined 

by landscape geomorphology and distance from the major rivers and drainage points. This 

makes these factors highly relevant for mapping of peat thickness across the basin.  

 

However, contrary to what was hypothesized for palm swamps, there isn’t a clear distinction 

between inundated and non-inundated palm swamp forests. Rather, palm-dominance in my 

sampling in DRC appears partly related to greater dry season water table depths, with 

monodominant Raphia laurentii swamps experiencing lower water tables than mixed swamp 

forests which have a medium palm presence. Additionally, palm-dominance appears partly 

associated with two climatic factors, namely greater annual precipitation and potential 

evapotranspiration (Figure 3.6d). Larger potential evapotranspiration could partly explain the 

association with lower water tables in the dry season. Palm-dominance in peatlands with low 

water tables appears counter-intuitive, given that some of the deepest peat deposits throughout 

the central Congo Basin have been recorded in monodominant palm swamp forest (Dargie, 

2015; Dargie et al., 2017). However, the controls on peat carbon accumulation are complex, and 

drought does not necessarily need to lead to less carbon accumulation, as has been suggested 

for seasonally inundated tropical peatlands in Amazonia (Swindles et al., 2018). It is also possible 
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that (i) my sampling is limited and the low water tables are not a true reflection of the 

environmental conditions of the Raphia laurentii peat swamp forest vegetation type; (ii) Raphia 

laurentii palms provide considerably more biomass input into the peat and peat surface 

compared with hardwood trees, which could cause greater gross peat accumulation if the inputs 

more than offset an increased decomposition from oxidation due to lower dry season water 

tables; or (iii) Raphia laurentii stands represent a late successional stage in peatland 

development, forming on top of previously formed deep deposits. The first suggestion is 

plausible, given that palm-dominated swamp vegetation has been mapped across a wide 

geographical range in both interfluvial basins and river-influenced settings by Dargie et al. 

(2017). The second suggestion could also be plausible, given the large amount of litter and dead 

palm fronds that typically characterize a palm-dominated swamp. The third suggestion would 

contrast with the classification by Evrard (1968), who regarded Raphia laurentii swamps as seral 

forest, in contrast with hardwood and seasonally inundated swamps that were described as 

mature forests. Additionally, Evrard (1968) has suggested that monodominant Raphia laurentii 

stands could partly be the result of human interference, as Raphia palms are used for building 

materials and to make palm wine. More research is thus required to understand the factors that 

drive palm-dominance in Central African peat swamp forests.  
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3.7 Conclusion 

The aim of this chapter was to compare the characteristics of the different peat swamp forest 

vegetation types in the central Congo Basin. A diverse set of vegetation types was observed 

across 40 vegetation plots (0.08 ha each) in the largely river-influenced peatlands in DRC. Mean 

aboveground carbon stock across all measured peat swamps in DRC was found to be 97.8 Mg C 

ha-1. However, a lot of variation was observed between and within transects. Field-identified 

hardwood-dominated peat swamp forests have a mean value of 114.1 Mg C ha-1, which is 

significantly greater than that of palm-dominated peat swamps forests, who have a mean value 

of 81.5 Mg C ha-1. Species diversity in the peat swamp forests is high, with 152 species and 101 

genera encountered across a total plot area of 3.2 ha. Nonetheless, some species clearly 

dominate, with Raphia laurentii, Oubanguia africana, Raphia sese, Guibourtia demeusei, 

Cryptosepalum congolanum, Pseudagrostistachys ugandensis, Coelocaryon botryoides and 

Carapa palustris accounting for over half of all individual trees recorded.  

 

Based on an unsupervised clustering analysis of 11 forest structure and diversity metrics, four 

distinct vegetation types were identified in the swamp forests of the DRC. NMDS ordination 

subsequently showed that these vegetation clusters are characterized by significantly different 

species composition. These four types are: a hardwood-dominated peat swamp forest, a Raphia 

laurentii palm-dominated peat swamp forest, a mixed peat swamp forest characterized by 

Cryptosepalum congolanum, and a mixed peat swamp forest characterized by Oubanguia 

africana and Guibourtia demeusei. Contrary to what was hypothesized, these did four types did 

not correspond with a subdivision of both hardwood- and palm-dominated swamps into a river-

influenced and non-river-influenced class. Overlaying the ordination plot with environmental 

factors showed that the distinction between the hardwood-dominated peat swamp and the 

Oubanguia-Guibourtia-associated mixed peat swamp is indeed driven by a gradient in river-

influenced inundation patterns, with the latter type associated with greater water table 

fluctuations and strong wet season inundation. However, the distinction between the 

hardwood-dominated, Raphia laurentii palm-dominated and the Cryptosepalum congolanum-

associated mixed swamp type is not. Rather, these three vegetation types occupy a second 

gradient from strongly hardwood- to palm-dominated vegetation. Although palm-dominance 

appears partly associated with lower water tables in the dry season, it remains unclear what is 

driving this gradient in palm-dominance.  
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Combining the results of this analysis in DRC with earlier vegetation descriptions of peat swamps 

in ROC, I identify at least five distinct forest types in the central Congo Basin peatlands. These 

are: a hardwood-dominated peat swamp, a Raphia laurentii palm-dominated peat swamp, a 

mixed peat swamp with Cryptosepalum congolanum, a seasonally inundated mixed peat swamp 

with Oubanguia africana and Guibourtia demeusei, and a Raphia hookeri palm-dominated peat 

swamp in abandoned fluvial channels.  
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Chapter 4: Understanding the hydrology, geochemistry and age of 

river-influenced peatlands in the DRC 

 

4.1 Abstract 

In this chapter, I describe the hydrological, geochemical and radiocarbon characteristics of 

peatlands in the DRC. In particular, I compare the seasonal inundation patterns, nutrient status 

and basal ages of river-influenced peatlands along the Ikelemba transect with the non-river-

influenced peatlands of the Lokolama transect, as well as interfluvial basin peatlands previously 

analysed in ROC. This is done to understand what has been driving peat initiation in the central 

Congo Basin, and which factors are sustaining contemporary peat formation and maintenance. 

The river-influenced peatlands in DRC are found to be extremely nutrient-poor, with a mean (± 

s.d.) Ca/Mg-ratio of surface peat samples of 1.76 (± 0.74), which is typically lower than that of 

either peat pore/surface water, river water or rainwater. However, these nutrient-poor 

peatlands receive seasonal river water input through overbank flow from blackwater rivers, as 

indicated by large seasonal fluctuations in water table height of close to a meter along the 

Ikelemba transect. This contrasts with lower water table fluctuations in the non-river-influenced 

peatland of Lokolama. In addition, there is evidence to suggest that the river-influenced 

peatlands might episodically receive some water input through (sub)surface runoff from terra 

firma uplands. The river valley peatlands were likely formed during the Late Pleistocene, with 

radiocarbon dating of the base of the thickest Ikelemba peat core revealing an age of between 

41,200 and 43,800 calibrated years Before Present. This is over 20,000 years before the 

formation of ombrotrophic peat domes started in interfluvial basins in the ROC. Radiocarbon 

dating of the base of the thickest Lokolama peat core, which is not river-influenced, gives an age 

of between 10,300 and 10,600 calibrated years Before Present, similar to reported basal dates 

from interfluvial basins in the ROC. The presence of extensive nutrient-poor, but seasonally 

inundated peatlands in DRC, in addition to the previously known ombrotrophic-like interfluvial 

basin peatlands, reveals that there is an additional geomorphological setting in the central 

Congo region where peat is formed. The pre-Holocene age of the river valley peatlands also 

indicates that peat formation was not limited to the warmer and wetter conditions following 

the Last Glacial Maximum. 
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4.2 Introduction 

Peatlands in the Republic of the Congo are found mostly in interfluvial basins, bounded from the 

rivers by patches of terra firme forest and savanna. Although supra-annual river flooding cannot 

be excluded, Dargie et al. (2017) have shown that these peatlands are mostly ombrotrophic-like 

(nutrient-poor), being largely fed by rainwater. However, as has been described in Chapter 2, 

some peatlands in the Democratic Republic of the Congo are located immediately adjacent to 

rivers and characterised by high inundation levels. Vegetation analysis (Chapter 3) has 

additionally shown that a specific peat forest type can be observed in these seasonally inundated 

peatlands. These findings suggest that a different peatland type can occur in river-influenced 

settings that is different from the rain-fed peatlands identified by Dargie et al. (2017).  

 

Typically, peatlands fed by river water are minerotrophic in nature, owing to the nutrient-rich 

conditions of most rivers (Clymo, 1987; Rydin & Jeglum, 2006). However, it is unclear if this is 

the case in the river-influenced peatlands of the DRC. Although a wide range of biogeochemical 

signatures can be detected within the watershed (Bouillon et al., 2014), the Congo Basin rivers 

typically have very low concentrations of dissolved metal cations, a high proportion of dissolved 

organic carbon, and some of the most acidic river conditions in the world (Dupré et al., 1996). 

In particular, the eastern tributaries of the Congo River, such as the Ruki and Ikelemba River, are 

known as typical blackwater rivers with low quantities of suspended matter and pH values close 

to or even below 4 (Berg, 1961; Borges et al., 2019). This makes them potentially even more 

acidic than the Negro River in the Amazon Basin, the classic example of a blackwater river with 

pH values in the range of 4-5 (Junk et al., 2011). This suggests that even if river water from these 

tributaries is feeding into the peatlands of the central Congo Basin, this would not necessarily 

alter the chemical composition or nutrient status of the peatlands.  

 

Apart from nutrient status, the inundation pattern itself can be expected to influenced peat 

swamps as well, in particular through its effect on species diversity and forest structure 

(Targhetta et al., 2015), as was observed in Chapter 3. Seasonal and interannual variation in 

inundation is also crucial in determining the amount of peat accumulation that takes place (Ise 

et al., 2008; Kurnianto et al., 2015; Mezbahuddin et al., 2015) and carbon emissions to the 

atmosphere (Hirano et al., 2007; Mitsch et al., 2010), by determining the balance between 

accumulation and decay through aerobic decomposition.  
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However, the height of a water table not only depends on the amount of precipitation, river 

water input, and soil water retention characteristics, but also on the presence of microrelief 

(Dettmann & Bechtold, 2016). Water storage in hummocks and hollows has wide implications 

for the hydrological functioning of the peatland, playing a key role in the hydrological self-

regulation of domed peatlands in Southeast Asia (Dommain et al., 2010). Studying 

microtopography can also help understand slope directions in shallow, domed peatlands, where 

elevation gradients are not immediately apparent in the field (Lampela et al., 2014, 2016), such 

as in the Congo Basin. Thus, it is important to study in more detail both the seasonal inundation 

dynamics, as well as the microtopography of DRC transects that have been identified to be 

impacted by river flooding.  

 

If DRC peatlands are strongly influenced by river dynamics, their developmental histories might 

have been very different from those found in interfluvial basin peatlands in ROC. The interfluvial 

basin peatlands in the Republic of the Congo are likely of early-Holocene age, with published 

initiation dates obtained through radiocarbon (14C) dating typically ranging between 7,100 and 

10,500 cal yrs BP (calibrated years Before Present, where ‘present’ is defined as AD 1950; Dargie 

et al., 2017), but occasionally up to 17,500-20,400 cal yrs BP (Garcin et al., 2022). This generally 

coincides with the onset of the African Humid Period, a period of higher rainfall across Central 

Africa (Shanahan et al., 2015), which underscores the important role of precipitation in peat 

formation in the central Congo Basin. Further down-core radiocarbon dating of these ROC peat 

deposits showed 0.57-0.80 m of peat accumulation over the past 1,500-2,600 cal yrs BP, 

indicating that peat has continued to accumulate since after the end of the African Humid Period 

(~3,000-5,000 years BP; Dargie et al., 2017).  

 

However, the vast extent of the Cuvette Centrale, and the varying hydrologies described in 

Chapter 2 indicate that our current understanding of the region’s formation history, based on a 

small number of sites in interfluvial basins alone, is unlikely to be representative of the entire 

peatland complex. Comparative studies with multiple transects across a wider basin have 

previously proven useful in the study of Southeast Asian and Amazonian peatlands (Brady, 1997; 

Kelly et al., 2020; Lähteenoja & Page, 2011; Morley, 1981). Particularly in the Peruvian Amazon, 

it has been shown that initiation and development of fluvial peatlands has been very different 

from peatlands without riverine influence (Kelly et al., 2020; Lähteenoja & Page, 2011). For 

example, river-influenced tropical peatlands in the Peruvian Amazon are characterised by the 

burial and erosion of peat due to migrating river channels (Lähteenoja et al., 2011). In some of 
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these peatlands, the flood regime appears to be the dominant control on ecosystem functioning 

and development (Roucoux et al., 2013). Furthermore, tropical peatlands in Southeast Asia are 

known to be of varying ages, with coastal peatlands that formed as a result of Late-Holocene 

sea level stabilization and regression typically being less than eight thousand years old, while 

some inland peat domes formed during the Late Pleistocene (Dommain et al., 2011) and can be 

up to 48,000 years old (Ruwaimana et al., 2020). Therefore, divergent basal ages in 

hydrologically and geomorphologically different peatland systems of the central Congo Basin 

are to be expected. Obtaining radiocarbon dates from riverine peatlands in the DRC is thus 

critical for a more complete understanding of the region’s history. 

 

In this chapter, I specifically decided to compare the Lokolama (non-river-influenced) and 

Ikelemba (river-influenced) transects in DRC, because of their contrasting geomorphologies and 

hydrologies. It is hypothesized that the non-river-influenced peatland at Lokolama is of similar 

age as the interfluvial basin peatlands in ROC. If confirmed, this would suggest a common 

initiation time across the Cuvette Centrale region. As LOK_5.0 is the deepest peat core sampled 

so far across the region, with a LOI-measured thickness of 6.0 m, it is also hypothesized that the 

base of this core could potentially hold the oldest peat sampled so far in the Cuvette Centrale 

peatland complex. 

 

An additional hypothesis is that since the river-influenced peat deposits at Ikelemba are 

shallower than those at Lokolama, riverine peat deposits are likely younger than non-riverine 

peat deposits. This could indicate that peat initiation in Ikelemba may have started at a different 

time as a result of river-induced hydrological changes, rather than basin-wide climatic conditions 

such as the African Humid Period. Thus, by comparing both Ikelemba and Lokolama from DRC 

with interfluvial basin peatlands in ROC it is hoped that the effects of river-induced and climate-

induced hydrological changes can be determined.  

 

Radiocarbon dating of the Lokolama and Ikelemba cores further makes it possible to study how 

carbon accumulation rates have differed over time in riverine and interfluvial peat swamps. In 

particular, one core from Ekolongouma in ROC (EKG_9.0) shows that very little peat has survived 

between ~2,000 and ~7,500 BP, in contrast with thicker deposits of younger and older peats 

(Dargie et al. 2017). This could indicate a potential slowdown of litter accumulation or an 

increase in decomposition rates during these 5,000 years, a later severe decomposition or 

erosion event that removed peat carbon from the peat profile, or a combination of all these 
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factors (Dargie et al., 2017; Garcin et al., 2022). If this pattern is seen in both DRC sites, it would 

suggest a basin-wide event. The alternative hypothesis is that this was a local event in one 

interfluvial peatland only. In addition, it is hypothesized that the slope of the age-depth 

relationship will vary more strongly in Ikelemba, as a result of advancing and retreating riverine 

influences. 

 

Contrary to interfluvial basin transects such as Ekolongouma in ROC, Lokolama experiences a 

sharp increase in peat thickness close to the peatland margin, which remains large throughout 

the transect. This does likely not correspond with a scenario of peat formation through 

paludification, which is expected to result in increasingly younger basal dates (and thus 

shallower deposits) towards the peatland edge. Rather, it is hypothesized that the Lokolama 

basin could be the result of the terrestrialisation of a previous lake or waterlogged depression. 

This idea corresponds well with the markedly round shape of the eastern basin border, but 

would set it apart from the interfluvial basins that have been studied so far in the ROC. Along 

the Ikelemba transect, on the other hand, a gradient in basal dates is likely to be found, as peat 

thickness increases with distance from the river. It is hypothesized that this is the result of a 

paludification process, whereby peat forms on a poorly drained, continuously wet mineral 

surface (Cameron et al., 1989). 

 

 

4.3 Chapter aims 

The aims of this chapter are to characterise and classify the hydrology, geochemistry and age of 

river-bound peatlands in the DRC. The specific objectives are to measure in situ water tables, 

microtopography, peat pore and river water inorganic chemistry, peat surface and downcore 

inorganic chemistry, and radiocarbon dates across a number of transect, based on hypotheses 

described in Chapter 2, section 2.4.1, and summarised in Table 2.1. The focus is a comparison of 

the river-influenced Ikelemba transect and the non-river-influenced Lokolama transect. In 

addition to the Ikelemba and Lokolama transects, pore water, river water and peat chemistry 

will also be compared with the three Ruki River transects Mpeka, Bondamba and Bolengo. All 

these sites will further be compared with published data from the interfluvial basin sites in the 

Republic of the Congo (Dargie, 2015; Dargie et al., 2017). 
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4.4 Methods 

 

4.4.1 Water table measurements 

Two transects were chosen for the collection of year-round in situ water table measurements: 

Lokolama and Ikelemba. These transects were chosen because ALOS PALSAR radar data (HV/HH 

ratio) showed contrasting hydrological differences between the transects (Figure 4.1). The 

Ikelemba transect can be seen to have a high backscatter coefficient close to the Ikelemba River, 

indicating significant inundations. The Lokolama transect, on the other hand, has relatively low 

backscatter coefficients near the edge of a potential round peat dome, indicating limited 

standing water above the peat surface. These remotely-sensed insights were confirmed upon 

visit in the field, as described in Chapter 2, with some Ikelemba sites having maximum estimated 

inundation heights well beyond 1 m, while at Lokolama maximum inundation was generally 

estimated to be 20-30 cm above the peat surface. 

 

 
Figure 4.1. Location of the Ikelemba and Lokolama transects for in situ water table 
measurements. Background image of the HV/HH-ratio of ALOS PALSAR radar data developed by 
Dargie et al. (2017) to differentiate between inundated (light grey) and non-inundated (dark 
grey) forests. Lighter colours indicate relatively larger HH backscatter due to the double-bounce 
mechanism in flooded forests. Upper-right corner insets: image location within the wider Cuvette 
Centrale peatland complex (grey shading) and river network (blue). 
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Based on the field observations (Chapter 2), it is hypothesized that at IKE_1.0, close to the river, 

large fluctuations in water table heights can be observed, ranging from ˃ 1 m above the surface 

to > 30 cm below the peat surface. At IKE_3.0, the fluctuations will likely be much more limited, 

given this is the site where riverine influence appears to end. Given the relatively large elevation 

gradient at Ikelemba, it is hypothesized that water table depths at IKE_5.0 would not increase 

much above the peat surface, as any excess water above the peat surface would drain away as 

overland flow. It is further hypothesised that water table depths at IKE_5.0 should show stronger 

increases during rainfall events than at Lokolama, as the water table likely rises both from local 

precipitation, as well as runoff from higher terra firme ground. 

 

At Lokolama, on the other hand, no runoff from higher ground is expected, given the peat dome 

is likely elevated higher than the surrounding terra firme forest. It is hypothesized that the 

observed differences between LOK_1.0 and LOK_3.0/LOK_4.0 are limited, as elevation gradients 

are small and there is no runoff. Furthermore, because of this lack of elevation gradients, it is 

hypothesized that belowground drops in water table fluctuations are likely smaller than at 

Ikelemba, as drainage capacity will be limited.   

 

To obtain continuous water table measurements across these two transects, six belowground 

pressure sensors (manufacturer: Solinst, Georgetown, Canada; model: Levellogger Edge 3001 

M5 and M10) were installed every other kilometre along each transect. This way, changes in 

water table fluctuations along the transect (i.e., when moving away from the river at Ikelemba, 

or moving away from the terra firme forest edge at Lokolama) could be observed. At Ikelemba, 

the sensors were installed in March 2018 at 1, 3, and 5 km along the transect. However, at 

Lokolama, the sensors were installed in February 2018 at 1, 3, and 4 km along the transect, as 

this transect hadn’t yet been extended towards 5 km at the time.  

 

Each pressure sensor was suspended below the peat surface using a metal wire inside a ~5 cm-

wide perforated plastic tube, similar to Dargie et al.’s (2017) approach. Each tube was closed at 

the top using a small tin can and duct tape to prevent it from clogging up with leaf litter (Figure 

4.2). The pressure sensors were installed at a fixed depth below the peat surface that was 

thought to be well below the lowest water table depth at the height of the dry season. The 

distance between the sensor and the water table depth at the time of installation, as well as 

between the sensor and the peat surface was measured to allow calibration of the recorded 

data.  
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Figure 4.2. Example of a water pressure logger installed in the peat surface along the 
Lokolama transect. The plastic tube was capped with a tin can and duct tape. Sticks were placed 
around the tube to try to keep animals out. Photo by the author. 
 

Because the belowground pressure sensors measure absolute pressure, which is a combination 

of water pressure and atmospheric pressure, two barologgers (manufacturer: Solinst, 

Georgetown, Canada; model: Barologger Edge 3001 M1.5) were installed in the air along each 

transect as well, to correct for atmospheric pressure fluctuations. At Ikelemba, the two 

barologgers were installed in between the three water pressure sensors, at 2 and 4 km along 

the transect. At Lokolama, the two barologgers were installed at 2 and 4 km along the transect. 

Each barologger was attached to a tree trunk at 2.5 m above the peat surface, using a nail and 

metal wires, whilst inside a 25 cm-long perforated plastic tube for protection (Figure 4.3).  

 

Both the absolute belowground pressure sensors and the barologgers were set to record 

pressure every 20 minutes. The data was then retrieved again from the field in January 2020. 

The recorded data was extracted using an optical reader (manufacturer: Solinst, Georgetown, 

Canada; model: Levelogger Optical Reader) and Solinst Levelogger software (version 4.4.0). 

However, upon visiting the field sites in January 2020, the belowground pressure sensor installed 

at IKE_3.0 was missing. Furthermore, the belowground pressure sensor installed at IKE_1.0 was 

broken upon retrieval and no data could be extracted from it. Hence, at Ikelemba, only data 

from at 5 km along the transect is available. 
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Upon retrieval of the barologgers, it also turned out that the two barologgers installed at 

Ikelemba were corrupted due to likely exposure to extremely high temperatures (potentially 

during transport out of the field). Because of this, no useful atmospheric pressure data is 

available from this transect from August 2018 onward, only five months after the start of the 

measurements. Similarly, the two barologgers at Lokolama also showed some corrupted data 

from November 2018 onwards, although to a lesser extent than at Ikelemba and for small 

periods of time only.  

 

 
Figure 4.3. Example of a barologger attached to a tree trunk along the Lokolama transect. The 
plastic tube was capped with a tin can and duct tape. Photo by the author. 
 

As no other records of surface atmospheric pressure exists with sufficient local accuracy on 

hourly or daily timescales, it was decided to combine atmospheric pressure records from 

different transects to fill in these data gaps. All belowground pressure data collected between 

the start of measurements in February 2018 and the end of August 2018 was corrected with 

atmospheric pressure data from LOK_4.0. From September 2018 onward, I used atmospheric 

pressure data from LOK_2.0, with some small data gaps in Nov/Dec 2018 and Jan/Feb 2019. 

From 15 March 2019 until 21 April 2019, barometric data from the Ekolongouma site EGK_3.0 

in the Republic of the Congo was used. From 21 April 2019 until the end of all measurements on 

21 December 2019, data from the adjacent Ekolongouma site EKG_2.0 was used (both pers. 

comm., Greta Dargie). This approach assumes that the atmospheric pressure measured at 

Lokolama is representative of the Ikelemba transect (~90 km distance) during the first year of 
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measurements. Furthermore, from 15 March 2019 onward, it assumes that the atmospheric 

pressure measured at Ekolongouma in ROC is also representative of both Lokolama (~180 km) 

and Ikelemba (~150 km) in DRC. Even though the barologgers are only accurate within a 30 km 

radius, according to the manufacturer, these assumptions are thought to be sufficiently valid for 

the purpose of this analysis, given the generally small variation in atmospheric pressure in the 

region. Mean barometric pressure over the entire data period from the four barologgers 

combined is 992.3 cm (97.3126 kPa), with a standard deviation of only 2.4 cm. The minimum 

and maximum recorded pressure values throughout this period are 982.8 and 1007.0 cm, 

respectively. This suggest that any error introduced in the water table records is no larger than 

the maximum seasonal difference of 24 cm. On a daily and hourly basis, this range is likely much 

less. The mean pressure range at EKG_3.0 over five random 24-hr timespans in March and April 

2019 is only 7.0 cm. The mean absolute pressure difference between EKG_3.0 and overlapping 

LOK_2.0 data during these same 24-hr periods is 4.7 cm on average. Seasonal changes in water 

table depth at each site should therefore still be observable, assuming a roughly 5 cm error 

introduced by the atmospheric pressure correction.  

 

To calculate water table heights, all atmospheric pressure data was first converted from kPa to 

water height (in cm) by multiplying each value with a barometric constant of 10.1972 kPa. This 

barometric pressure was then subtracted from the belowground absolute pressure data (in cm) 

to obtain the height of the water table above the pressure sensor. The water table depth with 

respect to the peat surface was then calculated by subtracting the distance between the 

pressure sensor and the peat surface (as measured at the time of installation) from the recorded 

water table height above the pressure sensor.  

 

In total, corrected water table measurements were available for more than 1.5 years across four 

sites: from 5 February 2018 (LOK_1.0), 11 February 2018 (LOK_3.0) and 13 February 2018 

(LOK_4.0) until 21 December 2019 (all Lokolama sites); and from 25 March 2018 until 4 

November 2019 (IKE_5.0).  

 

To compare changes in water table fluctuations, I subsequently calculated the rate of change in 

water table height (RC; cm hr-1) across the timeseries of each pressure sensor using the following 

equation: 

𝑅𝐶 = (𝑏 − 𝑎 ) ∗ 3    [Eq. 4.1] 
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Here, a is the water table at the start of each 20-minute interval, and b is the water table at the 

end of each 20-minute interval.  

 

Owing to the effect of specific yield of the peat, whereby the water table rise within a peat 

profile is dependent on the peat’s pore space and hydraulic conductivity (Lv et al., 2021), water 

table changes will be much higher below than above the peat surface, if receiving the same 

amount of rainfall. Because the water table at IKE_5.0 was below the peat surface most of the 

time, which was not the case at Lokolama, I only calculated RC values for each pressure sensor 

if both a and b were below the peat surface. This approach assumes that the peat specific yield 

at Lokolama and Ikelemba is comparable, yet avoids comparing belowground fluctuations from 

Ikelemba with aboveground fluctuations from Lokolama.  

 

Finally, mean values from the three Lokolama sites were compared with the single Ikelemba site. 

 

 

4.4.2 Measuring surface microtopography 

Microtopography was measured along the Ikelemba and Lokolama transects, at the same sites 

where water table pressure loggers were installed (section 4.4.1). At every other kilometre along 

each transect, a quadrat of 4x4 m (16m2) was installed to measure microtopography, ensuring 

that there were three quadrats per transect. Along the Ikelemba transects, quadrats were 

located at 1, 3 and 5 km along the transect. Along the Lokolama transect, however, quadrats 

were located at 1, 3, and 4 km, as the transect hadn’t been extended yet to 5 km at the time. 

 

In each quadrat, I measured the ground surface height of the peat soil along two axes that 

crossed in the centre of the quadrat. One axis of 4 m was located parallel to the transection 

direction, and one axis of 4 m was located perpendicular to the transect direction. Along each 

axis, peat surface height with respect to the quadrat’s centre point was measured every 20 cm. 

As such, there were 20 measurements along each axis, and 40 measurements in total. 

 

To accurately measure small changes in peat surface height, I used a battery-powered, self-

levelling laser line (Hanmer LV2 Portable Red Light Laser Cube) that was positioned in the centre 

of the quadrat using a lightweight tripod. The laser line was directed in turn in each of the 

primary four directions, i.e. parallel and perpendicular to the transect direction. I then measured 

the distance from the horizontal laser line to the ground surface to the nearest cm using a 
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measuring tape. From these measurements, all relative differences with respect to the ground 

surface at the quadrat’s centre could be calculated. Care was taken to not disturb the peat 

surface along the measured lines while installing the laser.  

 

This quadrat approach is a simplified version of the plot methodology described by Lampela et 

al. (2016). To save time in the field, measurements were taken along the two principal laser axes 

only, compared with the more detailed sampling approach described by Lampela et al. (2016), 

which uses 30x30 cm grids within each quadrat. Because of the bright forest light, the red laser 

line was only visible up to 2 m distance, hence a relatively small quadrat design of 4x4 m had to 

be used. An alternative would be to measure relative ground surface along a single 50 m long 

line that runs parallel to the transect direction. The tripod and laser can then be moved and 

recalibrated every 2 m to collect relative height differences. This approach is favoured by 

Lampela et al. (2016), because the plot approach is likely more biased, given that plots are not 

randomly located. Additionally, the longer transect approach could shed light on the relative 

orientation of microtopography with respect to the centre of peat domes. However, to 

accurately measure ground surface heights along a 50 m long laser line at all six sites would have 

been very time-consuming and was not possible during this fieldwork, given the time-constraints 

in the field.  

 

One of the six sites (IKE_1.0km) was inundated with ~ 70 cm of water at the time of 

measurement in January 2020. Hence, the laser line could not be used at this site. Instead, I used 

the water surface itself as a horizontal reference line. I measured the distance from the ground 

surface with respect to the water surface from a fixed dugout canoe, by sticking a stick vertically 

into the water until it reached the ground surface and measuring its length. Care was taken not 

to disturb the water surface by accidentally moving the canoe. 

 

As it should not matter for a relative comparison if the quadrat’s centre point is located in a 

hollow or at a hummock, all height differences were converted to absolute differences with 

respect to the quadrat’s centre point. Hence, a mean (± s.d.) of the absolute height differences 

could be calculated for each quadrat, in which differences of -5 or +5 cm are given equal weight. 

 

All 40 microtopography measurements per quadrat were further used to calculate fractional 

inundation patterns at the microtopographic scale, based on the water table depths measured 

at the same sites (4.4.1). First, for each water table depth ranging between -30 and +50 cm, the 
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percentage of ground surface measurements below that depth was calculated. This indicates 

the fraction of each quadrat that would have been under water if the water table was at that 

specific depth. From this, the minimum depths required to cover 10, 25, 50 and 75% of each 

quadrat could be found. Using the in situ water table depths measured during 1.5 years at 

LOK_1.0, LOK_3.0, LOK_4.0 and IKE_5.0, the amount of time per year at which the water table 

rises above these minimum depths could be calculated. 

 

 

4.4.3 Measuring peat and river water inorganic chemistry 

Samples of peat pore water and river water were collected at a selected number of sites to 

measure metal cation concentrations of the elements Al, Ca, Fe, K, Mg, Mn and Na. Peat pore 

water samples were taken every full kilometre along the Mpeka (n=9), Bondamba (n=7), Bolengo 

(n=6), Ikelemba (n=6) and Lokolama (n=5) transects, if peat was present (Figure 4.4). Per site, 

three pseudo-replicates were collected in 12 ml glass vials from a single hole in the ground. If 

the water table was above the peat surface, surface water samples were taken instead of pore 

water samples. Since the fieldwork was conducted in the dry season, peat pore water samples 

were generally taken after extensive periods without any rain. To ensure that the collected 

samples are most comparable, care was taken not to take any peat pore water samples directly 

after a rain event. 

 

River water samples were collected on three occasions (yellow triangles in Figure 4.4) using the 

same 12 ml glass vials: once from the Ruki River, near the start of the Bolengo transect (-0.28549, 

19.81397); once from a small side channel that drains from the swamp forest into the Ruki River, 

near the start of the Bondamba transect (-0.23583, 19.68660); and once form the Ikelemba 

River, near the start of the Ikelemba transect (0.31722, 18.79605). Each sample was taken in the 

middle of the respective river or stream, at 20 cm depth. Three pseudo-replicates were taken at 

the same site from the Ikelemba River, while only single samples were taken from the Ruki River 

and its side stream. After sampling, all water samples (both pore and river water) were wrapped 

in aluminium foil and stored in a cool and dark place until transportation to the UK.  
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Figure 4.4. Locations of river and pore water sampling for inorganic chemistry. All transects 
encircled in black had pore water samples collected every kilometre. Yellow triangles indicate 
locations were both river/stream water was collected for chemical analysis, as well as in situ 
pH/EC was measured. Red triangles indicate locations were only in situ pH/EC-measurements 
were taken.  
 

At the School of Geography laboratory of the University of Leeds, 10 ml of each pore/surface or 

river water sample was filtered with a 0.45 µm nylon syringe filter and acidified with 167 μl of 

concentrated nitric acid (HNO3). Ideally, all samples would have been filtered and acidified with 

nitric acid at the time of sampling in the field, in order to enhance preservation conditions. 

However, this was not possible, as no analytical grade quantitative filter paper (Whatman 542) 

was available in the field because of a loss of luggage. As a result of these poor preservation 

conditions and the high concentrations of dissolved organic carbon in pore water samples, 

brown precipitate had formed at the bottom of some of these samples. Pore water samples with 

brown precipitate were therefore additionally treated with 100 μl of concentrated HCl just 

before analysis, in order to dissolve the precipitate. This was not necessary for river water 

samples. 

 

Total metal cation concentrations in each of the water samples were then measured using an 

Inductively Coupled Plasma - Optical Emission Spectrophotometer (ICP-OES; manufacturer: 

Thermo Fisher Scientific, Bremen, Germany; model: iCAP 7600 Duo). Elemental concentrations 

of Al, Fe and Mn were measured using Axial configuration, while Ca, K, Mg and Na were 
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measured using Radial configuration. Mean blank concentrations obtained from three blanks 

per ICP batch were subtracted from the measured sample concentration. Detection limits were 

calculated per element as the mean of all blanks, plus 3x the standard deviation of all blanks. 

However, to prevent a loss of information, measured values below the detection limit were 

retained in the dataset if not negative or zero.  

 

Raw concentration values (in mg L-1) were corrected for the dilution factor from acidification (in 

ml), by multiplying with either 1.0167 if only HNO3 was added, or 1.0267 if both HNO3 and HCl 

were added. Peat pore water concentrations were averaged across the three pseudo-replicates 

to derive a mean value per site. For each sample, a Ca/Mg ratio was then calculated, which can 

act as a useful indicator of the water source (Lähteenoja et al., 2009a; Muller et al., 2006; Weiss 

et al., 2002).  

 

Additionally, pH and electrical conductivity (EC, in μS cm-1) of river and stream water was 

measured at six sites across the Ikelemba and Ruki Rivers (yellow and red triangles in Figure 4.4). 

These measurements were similar to the pH/EC-measurements of peat surface/pore water (see 

Chapter 2, section 2.4.2). At the middle of the Ikelemba River, near the start of the Ikelemba 

transect, pH/EC was measured in March 2018 using the portable combined pH/EC-meter 

(manufacturer: Hach Company, Loveland, Colorado, USA; model: Hach HQd Portable Metre). At 

the Ruki River, pH/EC was measured at four sites increasingly upstream along the Ruki River 

(July-August 2019), taken with the less accurate Hanna Combo metre (manufacturer: Hanna 

Instruments, Smithfield, Rhode Island, USA; model: Hanna HI 98129). Additionally, pH/EC was 

measured with the Hanna Combo metre at the side stream of the Ruki River near the start of 

the Bondamba transect. All measurements were taken in the middle of the following 

river/stream as much as possible, at ~ 20 cm depth. 

 

 

4.4.4 Measuring peat surface inorganic chemistry 

Surface peat samples across the same transects that were targeted for pore water collection 

were analysed for concentrations of the same metal cations: Al, Ca, Fe, K, Mg, Mn and Na. 

Surface samples of 50-100 g were collected every kilometre along the Mpeka, Bondamba and 

Bolengo transects (n=9, 7 and 6, respectively), and every other kilometre along the Ikelemba 

and Lokolama transects (n=3 for both; Figure 4.5).  At each site, four or five replicates were 
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collected from the upper 10 cm of peat (excluding leaf litter), whilst taking care to ensure a 

representative selection across the local microtopography (hummocks and hollows).  

 

 
Figure 4.5. Locations of peat surface and downcore sampling for inorganic chemistry. All 
transects encircled in black had peat surface samples collected every kilometre (Mpeka, 
Bondamba and Bolengo) or every other kilometre (Ikelemba, Lokolama). Red triangles indicate 
the locations of the Lokolama (LOK_4.0) and Ikelemba (IKE_5.0) cores used for downcore 
sampling. 
 

Each surface sample was analysed using a nitric acid digestion followed by ICP measurement. 

This was done by Dr Nick Girkin and Haley Curran at the School of Biosciences laboratory of the 

University of Nottingham. Samples were first oven-dried at 105°C for 24 hours. Approximately 

0.2 g of oven-dried sample was then placed inside a 50 ml polypropylene digestion tube. On a 

heating block, 8 ml of concentrated nitric acid (HNO3) and 2 ml of concentrated hydrogen 

peroxide (H2O2) were added, after which the tubes were covered with a watch glass. This was 

left to stand overnight in a fume cupboard. The next day, the samples were digested by heating 

at 95°C for 2 hours. After having cooled down, the samples were diluted to 50 ml solution.  

 

The digestion solutions were then analysed for the required elemental concentrations using 

Inductively Coupled Plasma - Mass Spectrometry (ICP-MS; manufacturer: Thermo Fisher 

Scientific, Bremen, Germany; model: iCAP-Q and iCAP-TQ). Mean blank concentrations obtained 

from five blanks per ICP batch were subtracted from the measured sample concentration. Like 
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with ICP-OES (see section 4.4.3), detection limits were calculated per element as the mean of all 

blanks, plus 3x the standard deviation of all blanks. However, ICP-MS has greater sensitivity (up 

to parts per trillion) compared with ICP-OES (up to parts per billion), and no samples were found 

to be below detection limits. 

 

Raw concentration values (in mg L-1) were corrected for the dilution factor from the acid 

digestion by multiplying with 50 ml. Concentrations were then converted to soil concentrations 

(in mg kg-1) by dividing this by the oven-dried sample weight (in g).  

 

A mean value per site was calculated from the four or five surface replicates. Like with pore and 

river water samples, Ca/Mg ratios were then calculated for each sample to infer information 

about the water’s origins (Lähteenoja et al., 2009a; Weiss et al., 2002). 

 

Additionally, the pH and electrical conductivity (EC, in μS cm-1) of all surface peat samples was 

measured by Dr Nick Girkin at the University of Nottingham. For this, a suspension of peat was 

created by mixing the peat with deionised water in a 1:2.5 ratio, an end-over-end shaker for 1 

hour. After this, pH and EC were measured using a standard laboratory pH/EC-meter. 

 

 

4.4.5 Measuring downcore peat inorganic chemistry 

In addition to surface peat samples, two peat profiles from Ikelemba and Lokolama (red triangles 

in Figure 4.5) were measured downcore using ICP-OES, to compare the developmental histories 

of these two peatlands. In addition to the elements Al, Ca, Fe, K, Mg, Mn and Na analysed for 

surface samples, measurement of Ti concentrations was added to the analysis as well.  

 

Peat cores can provide reliable records of the changing rates of atmospheric metal deposition 

from dust or aerosols (Martínez Cortizas et al., 2002; Shotyk, 1996). Ti is typically derived from 

weathering of the Earth’s crust and thus of terrestrial origin (Weiss et al., 2002). As it is 

essentially immobile in the peat profile, it can be related to historic deposition rates (Novak et 

al., 2011; Weiss et al., 2002). 

 

The deepest cores of both the Lokolama and Ikelemba transects were selected for this analysis. 

This includes the IKE_5.0 core (3.9 m) from Ikelemba. However, as the Lokolama transect had 

not been extended yet to 5 km at the time of the laboratory analysis, the LOK_4.0 core (5.1 m) 
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was used for this transect, instead of the slightly deeper core from LOK_5.0 (6.0 m). Downcore 

sampling of additional peat profiles from the other transects used for surface sampling (Mpeka, 

Bondamba and Bolengo) was not possible due to lab closures and subsequent time constraints 

as a result of disruption due to the Covid-19 pandemic. 

 

In contrast to the analysis of surface chemistry, downcore samples were prepared using a 

hydrofluoric-perchloric-nitric acid digestion. This is because the complete breakdown of the high 

concentrations of organic matter in peat samples requires the presence of perchloric acid. 

However, hydrofluoric acid (HF) is also essential for the acid dissolution of silicates (Allen, 1989). 

HF acid digestions have been shown to be more effective in extracting total metal 

concentrations from soils than nitric acid digestion (Gaudino et al., 2007; Rajashekhar Rao et al., 

2011). As downcore samples are likely more enriched with sand or clay, especially samples that 

are close to the underlying mineral substrate, hydrofluoric-perchloric-nitric acid digestion was 

applied.  

 

Subsamples of wet peat were dried inside an oven at 40°C for 48 hours. From this, approximately 

0.1 gram of dried sample was taken and ground to < 100 μm using a mixer mill (manufacturer: 

Retsch, model: MM301). Each ground sample was then placed in a PTFE beaker and weighed. It 

was moistened with a little deionised water, after which 3mL of concentrated nitric acid (69% 

HNO3) was added. This was left to stand overnight in a fume cupboard. The next day, 1 mL 60% 

perchloric acid (HClO4) was added using a dispenser pump, whilst swirling the beakers gently. 

Next, 7 mL of 40% hydrofluoric acid (HF) was added using a dispenser pump. Each beaker was 

covered with an acid-washed PTFE watch glass and placed on a hotplate (sand bath) which was 

slowly increased in temperature. When vapour started to rise and condense on the watch glass 

(reflux conditions), the temperature was maintained for two hours. After two hours, the beakers 

were moved to a heat-proof mat and allowed to cool. The underside of the watch glasses was 

rinsed using deionised water and the beaker left to evaporate.  1mL of concentrated sulphuric 

acid (98% H2SO4) was then added, after which the beaker placed on the hotplate again to drive 

off the perchloric acid. The remaining sulphuric acid solution was diluted to 30 ml and the 

sediment-free supernatant was decant onto a filter paper (Whatman 542) and into a 50 mL 

centrifuge tube. Finally, the solution was further diluted to 50 ml.  
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Each hotplate batch of 14 samples contained two reagent blanks, two duplicate samples and a 

digestion of NJV942 peat, a certified reference sample of peat with known metal cation 

concentrations. 

 

Total metal cation concentrations (Al, Ca, Fe, K, Mg, Mn, Na and Ti) present in the sulphuric acid 

solutions were measured using Inductively Coupled Plasma - Optical Emission 

Spectrophotometer (ICP-OES; manufacturer: Thermo Fisher Scientific, Bremen, Germany; 

model: iCAP 7600 Duo). Radial configuration was chosen to measure Al, while all other elements 

were measured using Axial configuration, as the latter is preferably for smaller concentrations 

(< 1 ppm; pers. comm., R. Gasior). However, most Ca, K and Na concentrations were found to be 

below detection limits, and therefore left out of any further analysis. For the other elements, a 

small number of measurements below the detection limit was retained in the final dataset if the 

concentration values were not negative or zero. Values of exactly zero were left out those likely 

represent oversaturated measurements.  

 

Mean blank concentrations were calculated for each element from 16 blank measurements. 

Because of the sensitivity for detection limits, I tested for outliers among the blanks using 

Grubb’s test, after which a maximum of one or two outliers were excluded per element. Grubb’s 

test calculates Z, the absolute deviation from the sample mean in units of the sample standard 

deviation (Grubbs, 1969): 

𝑍 =  
|  sample mean−sample value |

𝑠𝑎𝑚𝑝𝑙𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
     [Eq. 4.2] 

Samples with Z > 2.59 (the critical value for n=16 samples) were identified as outliers. Detection 

limits were calculated per element as the mean of all blanks, plus 3x the standard deviation of 

all blanks, after excluding outliers. For duplicate peat samples, a mean concentration value is 

reported per element. If one of the duplicates was found to have a value below the detection 

limit, only the duplicate with a value above the detection limit was used.  

 

Raw ICP values (in mg L-1) were corrected for blank concentrations by subtracting the mean of 

the blanks (in mg L-1). This was further corrected for dilatation by multiplying with the dilution 

factor (50 ml). It was then converted to soil concentrations (in mg kg-1) by dividing this by the 

oven-dry weight of each sample (in g). Since the samples were only dried at 40 °C, and not oven-

dried at 105 °C, each sample weight was additionally corrected for total moisture content, to 

derive the correct oven-dry weight:  

𝑂𝐷𝑊 = 𝑊 ∗
(1 − 𝑀)

1
     [Eq. 4.3] 
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Here, ODW is the oven dry weight (g), W is the weight of the sample as dried at 40°C (g), and M 

is the moisture content expressed as fraction (see Chapter 6 for details).  

 

Elemental concentrations of Al, Fe, Mg and Mn were normalized with respect to Ti by calculating 

the Al/Ti, Fe/Ti, Mg/Ti and Mn/Ti ratios. This compensates for natural variations in the amount 

of dust supplied to the peatland and for bulk density differences within the peat profile (Weiss 

et al., 2002). Ratios were then compared with typical values from the Upper Continental Crust 

(UCC; McLennan, 2001). 

 

 

4.4.6 Radiocarbon dating 

Peat samples from the Lokolama and Ikelemba transects were radiocarbon dated to understand 

if river-influenced peatlands have similar basal ages and accumulation rates as non-river-

influenced peatlands in DRC, or as interfluvial basin peatlands in ROC. Basal samples from the 

lowest 10 cm of a peat core were dated every other kilometre along each transect, totalling 

three basal dates from Ikelemba and three basal dates from Lokolama. At Ikelemba, these were 

collected from 1.0, 3.0 and 5.0 km along the transect, at depths of 1.2, 2.0 and 3.9 m, 

respectively. At Lokolama, basal samples were collected from 1.0, 3.0 and 5.0 km along the 

transect, at depths of 4.1, 2.9 and 6.0 m, respectively.  

 

In addition, three extra peat samples were dated downcore from the deepest core of each 

transect (IKE_5.0 and LOK_5.0), to assess changes in accumulation rates over time. These so-

called rangefinder dates were selected to coincide as much as possible with observed changes 

in the downcore inorganic chemistry (see section 4.5.5) or organic matter concentrations (see 

Chapter 2, section 2.4.3 for details). Samples were located at 100-110, 260-270 and 440-450 cm 

depth (LOK_5.0) and 140-150, 200-210 and 300-310 cm depth (IKE_5.0). Organic matter 

concentrations of LOK_5.0 showed very little variations downcore, so inorganic chemistry was 

used to guide the choice of rangefinder depths. Since downcore inorganic chemistry was only 

analysed at 4.0 km along the Lokolama transect (as the LOK_5.0 core had not been collected at 

the time), it was assumed that the cation concentrations of this core are representative of 

LOK_5.0 as well. Observed changes at LOK_4.0 included a relative peak in Fe and Ti at 100-110 

cm depth; an increase in Al and relative peak in Ti at 260-270 cm; and a very strong increase in 

Al at 440-450 cm. At IKE_5.0, there was more variation in organic matter concentrations 

downcore. Sampling depths were chosen because of a sudden increase in Al, Fe, Mg and TI at 
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140-150 cm; a strong drop in organic matter concentration to below 80% at 200-210 cm, 

indicating a layer with higher sediment concentrations; and a peak in Al and sudden increase in 

Fe at 300-310 cm, before a mineral intrusion (< 65% OM) between 320 and 370 cm depth.   

 

As such, a total of 12 peat samples (6 basal dates, and 6 additional rangefinders) were 

radiocarbon (14C) dated using accelerator mass spectrometry (AMS), following the same 

protocols as Dargie et al. (2017). Samples were processed and analysed at the Natural 

Environmental Isotope Facility (NEIF) environmental radiocarbon laboratory and the Scottish 

Universities Environmental Research Centre (SUERC) AMS laboratory in East Kilbride, Scotland.  

 

Because the sampled peat is generally very humified and mostly lacks wood fragments, seeds or 

macrofossils that can be easily dated at a fixed depth, bulk samples of peat were used. Each 

sample was mixed thoroughly inside the plastic bag in which it was sampled to ensure 

homogeneity, after which a subsample of approximately ~2 cm3 was taken. Each sample was 

sieved at 180 μm to remove fine roots that would give younger ages than the peat itself. Small 

peat fragments were washed through the sieve using deionised water. Between each sample, 

the sieve was flamed with a Bunsen burner to burn off any remaining organic matter, and then 

washed clean with deionised water. Samples were then centrifuged to remove any excess water.   

 

At the NEIF facility, the samples were further pre-treated with HCl-KOH-HCL to extract carbon. 

Samples were first digested in 0.5M HCl (at 80°C for 2 hours), washed free from mineral acid 

with deionised water, and then digested in 0.5M KOH (again at 80°C for 2 hours). This digestion 

was repeated using deionised water until no further humic substances were extracted. The 

residue was rinsed free of alkali, digested in 0.5M HCl (at 80°C for 1 hour), then rinsed free of 

acid, dried and homogenised. The total carbon in a known weight of the pre-treated sample was 

then recovered as CO2 by heating with CuO in a sealed quartz tube. This gas was converted to 

graphite by Fe/Zn reduction, after which the graphite was analysed for the percentage modern 

carbon (14C/12C) at the SUERC AMS laboratory. 

 

The AMS results obtained represent conventional radiocarbon years Before Present (BP, relative 

to AD 1950), expressed at the ± 1 σ level of analytical confidence. However, because the 

atmospheric 14C concentration has not been stable over time, these dates need to be calibrated.  
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Previously, radiocarbon dates from Ekolongouma in ROC (1.20° north) were calibrated by Dargie 

et al. (2017) using the IntCal13 Northern Hemisphere atmospheric calibration curve (Reimer et 

al., 2013). However, Lokolama and Ikelemba are located closer to and on either side of the 

Equator (Ikelemba at 0.28° north, Lokolama at -0.33° south). Therefore, radiocarbon dates for 

these transects were calibrated using a mixed calibration curve consisting of 50% IntCal20 (the 

updated Northern Hemisphere curve; Reimer et al., 2020) and 50% SHCal20 (the updated 

Southern Hemisphere curve; Hogg et al., 2020). Both the IntCal20 and SHCal20 curves use an 

updated statistical methodology (Monte Carlo Markov Chains), compared with the IntCal13 

approach (Heaton et al., 2020). To facilitate proper comparison between the DRC dates sampled 

here and the dates for the interfluvial basin site in ROC (Ekolongouma), I recalibrated all ROC 

dates obtained by Dargie et al. (2017) using the same mixed IntCal20/SHCal20 curve. The results 

from Lokolama and Ikelemba were then compared with each other, as well as with the 

recalibrated ROC results. 

 

All calibrations were implemented in the online programme OxCal (version 4.4; Bronk Ramsey, 

2009), using the default settings for a Poisson mediated deposition model (Bronk Ramsey, 2008; 

Bronk Ramsey & Lee, 2013). All calibrated ages are median values obtained from the modelled 

calibration, reported as calibrated years Before Present, relative to AD 1950 (cal yr BP), alongside 

a 2σ (95%) confidence interval. 

 

Peat and carbon accumulation rates were estimated following the methods of Clymo et al. 

(1998) and Korhola et al. (1995). First, a peat accumulation rate (r, mm yr-1) was calculated using: 

𝑟 =
ℎ

𝑡
               [Eq. 4.4] 

where h is the total peat thickness (mm) and t is the number of years between the top and 

bottom of the peat layer. From this, the dry mass accumulation rate (A, g m-2 yr-1) was calculated 

using the following equation: 

𝐴 = 𝑟 ∗  𝜌 ∗ 1000       [Eq. 4.5] 

Here, r is the peat accumulation rate (mm yr-1) and ρ is the mean bulk density (g cm-3) as sampled 

evenly across the peat layer. From this, a long-term rate of carbon accumulation over the whole 

peat core (LORCA, g C m-2 yr-1) can be calculated using the following equation: 

𝐿𝑂𝑅𝐶𝐴 = 𝐴 ∗ 𝐶       [Eq. 4.6] 

Here, A is the dry mass accumulation rate (g m-2 yr-1) over the whole peat core and C is the mean 

carbon fraction sampled evenly across all layers. Further details about the laboratory analysis of 

dry bulk density and carbon concentration can be found in Chapter 6, sections 6.4.1 and 6.4.2.  
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To study how carbon accumulation rates have changed throughout the peatland’s development, 

it is possible to calculate apparent carbon accumulation rates (aCAR, g C m-2 yr-1) over shorter 

segments of the peat profile. However, it is argued by Young et al. (2021) that aCAR should not 

be used to compare accumulation rates across different time periods in the peatland’s 

development, as it is dependant on the age of the respective layers. Older layers will have lost 

more mass due to continuing decay, thereby reducing their apparent accumulation rates relative 

to younger layers. Furthermore, aCAR can only ever provide positive values of carbon 

accumulation over time, thereby obscuring potential losses of peat. Thus, aCAR values are not 

representative of true accumulation rates, and should not be used to compare past 

accumulation rates according to Young et al. (2021). This is especially true when analysing 

apparent accumulation rates in the acrotelm layer near the peat surface, as this top part of the 

peat profile is not yet as decomposed as lower peat layers. This can result in deceptively high 

accumulation rates for near-surface peats (Young et al., 2019).  

 

Despite these limitations, aCAR can be a potentially useful tool in comparing accumulation rates 

at greater depths across different sites, as long as these peat layers span the same timeperiods 

to ensure that they have experienced the same amount of ‘decay time’. Thus, I calculated aCAR 

values for each peat layer between the available rangefinder samples, for both Lokolama and 

Ikelemba as well as Ekolongouma, using only the mean bulk density and C concentration values 

of the respective layers. Additionally, I plot age-depth curves (i.e., peat age against thickness) to 

help understand past changes in peat development. Because aCAR is mathematically the first 

derivate of the age-depth curve, this is the preferential approach to show this information, as it 

avoids associating a dimension of carbon accumulation rates (in g C m-2 yr-1) with past 

developments, which can easily be misinterpreted.  
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4.5 Results 

The following section presents the results of the analyses of peatland hydrology, geochemistry 

and age. In discussing these results, the focus is on comparing the river-influenced Ikelemba 

transect and the non-river-influenced Lokolama transect. However, pore water, river water and 

peat chemistry will also be compared with the three Ruki River transects Mpeka, Bondamba and 

Bolengo. For ease of reference, a summary of all transect descriptions is presented in Figure 4.6. 

This figure represents a condensed version of the individual transect descriptions as presented 

in Figure 2.6-2.12.  

 

a

b

c

d

e

f

g

 
Figure 4.6. Condensed transect overview. Each panel shows landcover types (top bar), 
estimated water table fluctuation (middle row; absolute difference between estimated 
maximum inundation height and dry season water table depth, cm), and peat thickness (bottom 
row, m). Purple is palm swamp forest, pink is hardwood swamp forest, dark green is terra firme 
forest, light green is non-peat forming seasonally inundated forest, blue is open water, and 
brown is savanna. Panels are ordered by increasing High-Water Fraction, i.e. from relatively little 
river impact to high seasonal river flooding: Lokolama (a), Bolengo (b), Bondamba (c), Boloko 
(d), Ikelemba (e), Mpeka (f) and Tumba (g). Note the differences in x-axis length. 
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4.5.1 Peatland water tables 

The Ikelemba transect, which runs perpendicular from the Ikelemba River towards terra firme 

upland, was expected to show considerable water table fluctuations between the dry and wet 

seasons, particularly at 1 and 3 km from the river. It was observed at the time of the first visit in 

March 2018, during the small dry season, that the water table at IKE_1.0 was 22 cm below the 

peat surface. That same site was inundated by 70 cm of water above the peat surface at the end 

of the major wet season during the second visit in January 2020 (Figure 4.7). This confirms that 

this site at 1 km from the Ikelemba River at least occasionally experiences water table 

fluctuations of close to a metre difference between the dry and wet season. Unfortunately, the 

loss of sensors from the field meant no year-round water table data could be collected at both 

the IKE_1.0 and IKE_3.0 sites.  

 

This major wet season inundation of IKE_1.0 contrasts with the inundation levels recorded 

further along the transect at 5 km from the Ikelemba River. Inundation levels at IKE_5.0, 5 km 

from the river and documented using the pressure sensors every 20 minutes, are much lower 

with a maximum recorded water table height of only 10 cm above the peat surface during the 

major wet season in December 2019 (green line in Figure 4.8). On the other hand, this site 

experiences very low water tables that can occasionally exceed more than 60 cm below the peat 

surface during dry periods. Thus, both IKE_1.0 and IKE_5.0 are characterised by relatively large 

water table fluctuations, but resulting from different patterns.  

 

Throughout the 1.5 years of measurement, water table depths at IKE_5.0 are below the peat 

surface 98.2% of the time. This compares markedly with the 45.4% measured on average across 

the three Lokolama sites (blue, pink and yellow lines in Figure 4.8). The three sites at Lokolama 

all follow the same pattern, characterised by relatively shallow fluctuations around the peat 

surface. The minimum recorded values across the three Lokolama sites is -37 cm and the 

maximum 20 cm, which differs markedly from the minimum and maximum recorded values of -

65 and 10 cm at IKE_5.0, respectively. Mean (± s.d.) water table depth across the three Lokolama 

sites is also considerably higher with -0.2 (± 8.6) cm, compared with -18.6 (± 12.2) cm at IKE_5.0. 

However, both Lokolama and Ikelemba show a strong drawdown of water between March and 

May 2019, indicating potentially severe drought conditions across the wider region (Figure 4.8).  
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Figure 4.7. Example of seasonal inundation at 1 km from the Ikelemba River. The photo above 
shows the IKE_1.0 site during the dry season in March 2018. The photo below shows 
approximately the same site at the end of the wet season in January 2020. Photos taken by the 
author. 
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Figure 4.8. Water table heights along the Lokolama and Ikelemba transects. Water tables were 
measured at four sites at Lokolama (LOK_1.0, LOK_3.0, LOK_5.0) and Ikelemba (IKE_5.0). Positive 
(negative) water table depths are above (below) the peat surface. Measurements were taken 
every 20 minutes between February/March 2018 and November 2019. Small artefacts from 
missing data (in the form of unnatural straight lines) are visible in February 2019, due to 
corrupted atmospheric pressure data. 
 

Apart from having deeper water tables, belowground rates of change (RC) in water table height 

are also more variable at Ikelemba. Mean (± s.d.) RC across the three sites in Lokolama is 0.00089 

(± 0.86579) cm hr-1, compared with 0.00046 (± 1.06071) cm hr-1 at IKE_5.0.  Thus, on average, 

refill of the belowground water table is about twice as fast at Lokolama as at 5 km along the 

Ikelemba transect, and the higher standard deviation indicates more extreme fluctuations at 

Ikelemba. In particular, the maximum recorded drop in belowground water table at Ikelemba is 

53.0 cm hr-1, almost twice the maximum drop of 28.5 cm hr-1 recorded on average across the 

three Lokolama sites. The maximum rate of belowground water refill is slightly larger at 

Lokolama (41.4 cm hr-1 on average) than at Ikelemba (33.4 cm hr-1). 
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4.5.2 Peat surface microtopography 

Inundation fractions of each quadrat, as caused by microtopography variation, are plotted in 

Figure 4.9 for different levels of water table depth. All six sites that were analysed across the 

Lokolama and Ikelemba transects show a rapid increase in inundation fraction as water table 

depths rise from approximately 5 cm below the peat surface to 20 cm above. This is because the 

mean height differences measured in the 16 m2-quadrats are generally low (mean 8.6 ± 9.0 cm 

across all sites, n=240; Table 4.1).  

 

 
Figure 4.9. Inundation fractions per water table depth at Lokolama and Ikelemba. Inundation 
fractions are based on the fraction of 40 surface height measurements in a quadrat that is 
inundated at each water table depth. Six quadrats installed ever other kilometre across the 
Lokolama and Ikelemba transects.  The black horizontal lines indicate the water table levels at 
which 10, 25, 50 or 75% of each quadrat (40 measurements) is covered by water. 
 

However, the average microtopographic height difference at Lokolama (9.6 cm, n=120) is found 

to be about 30% higher than at Ikelemba (7.3 cm, n=120; Mann-Whitney U test, p<0.01). As 

such, higher minimum water table depths are required at Lokolama than at Ikelemba to 

inundate 10, 25, 50 or 75% of each quadrat’s surface area.  

 

Strikingly, the Lokolama and Ikelemba transects show an opposite gradient in microtopography, 

with both mean and standard deviation of the absolute height differences increasing along the 

Lokolama transect but decreasing along the Ikelemba transect. This means that LOK_1.0 and 

IKE_5.0, both located about 1 km from a peatland edge with transition to terra firme forest, have 

relatively little microtopographic height differences. However, further away from the terra firme 
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edge (either 4 km away at LOK_4.0 or 5 km away at IKE_1.0), microtopography variation appears 

to increase, as measured by the mean and standard deviation of the absolute height differences. 

 

 Site Mean absolute  
surface height 
differences  
(cm) 

SD of absolute 
surface height 
differences  
(± cm) 

Maximum  
absolute surface 
height difference 
(cm) 

Minimum required water 
table depth (cm) per 
inundation fraction  

10% 25% 50% 75% 

LOK_1.0 5.6 6.9 27 -6 -2 0 7 

LOK_3.0 9.1 4.9 22 4 5 8 10 

LOK_4.0 15.0 10.9 39 -2 2 14 24 

Mean LOK 9.6 8.9 39 -2 1 7 14 

 

IKE_1.0 10 11.5 47 -3 0 8 12 

IKE_3.0 8.1 8.6 32 -4 -1 2 14 

IKE_5.0 3.7 3.4 14 -4 -1 1 4 

Mean IKE 7.3 9.0 47 -4 -1 2 10 

 

Mean 
LOK+IKE 

8.6 9.0 47 -4 -2 0 2 

Table 4.1. Statistics of microtopographic variation. Microtopographic variation is measured as 
the absolute difference peat surface height (cm). Each site includes 40 measurements per 
quadrat. Mean values across transects are based on 120 measurements (LOK or IKE), or 240 
(both). Minimum required water table depths (cm) reflect the horizontal lines in Figure 4.9.  

 

 

4.5.3 Peat and river water inorganic chemistry 

The Ruki River has a mean (± s.d.) pH of 3.04 (± 0.59) and electrical conductivity of 32 (± 6.6) μS 

cm-1 (n=4, excluding the Bondamba side stream). This is slighter lower than the Ikelemba River, 

which has a pH of 3.66 and EC of 69 μS cm-1, as measured near the Ikelemba transect (n=1). 

Mean pH across all six river water samples is 3.20 (± 0.54), while mean electrical conductivity is 

39.5 (± 14.7) μS cm-1.  

 

However, the four Ruki River measurements are very site specific, with more than a unit 

difference in pH between the Bolengo and Bondamba sampling sites, which are only 20 km 

apart. In general, though, a downstream trend towards more acidic conditions is detected along 

the Ruki River (Table 4.2), likely because the acidic content of the river scales with the peatland 

area being drained. However, no downstream trend is detected for electrical conductivity (Table 

4.2).  
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The main difference in water inorganic chemistry between the different sampling sites is the 

much higher K concentration in the Ruki River, and similarly in the Ruki side stream near 

Bondamba, compared to the order of magnitude lower K concentration in the Ikelemba River 

(Table 4.2). Sodium concentration is also higher in the Ruki River and its side stream, compared 

to the Ikelemba River. The other elements AL, Ca, Fe, Mg, and Mn all have similar concentrations 

across the two rivers and the side stream.  

 

The Ca/Mg ratio of the Ikelemba River is 2.19, while the Ruki River has a ratio of 2.51 as 

measured at Bolengo. Only the Bondamba side stream has a higher Ca/Mg ratio of 3.39, owing 

to a lower Mg value.  

 

Site Distance 
(km) 

pH EC 
(μS  
cm-1) 

Al 
(mg  
L-1) 

Ca 
(mg  
L-1) 

Fe 
(mg 
 L-1) 

K 
(mg 
 L-1) 

Mg 
(mg 
 L-1) 

Mn 
(mg 
 L-1) 

Na 
(mg 
 L-1) 

Ca/Mg 
ratio 

Ikelemba River 

Ikelemba 
(n=3) 

100 3.66 69.2 0.330 0.230 0.293 0.345 0.105 0.0096 0.160 2.19 

Ruki River 

Bolengo 
(n=1) 

220 4.03 34 0.278 0.285 0.236 5.712 0.114 0.0109 0.248 2.51 

Bondamba 200 2.89 23 - - - - - - - - 

Mpeka 80 2.64 41 - - - - - - - - 

Bokuma 60 2.58 29 - - - - - - - - 

Bondamba side stream 

Bondamba 
(n=1) 

200 3.42 41 0.236 0.276 0.157 2.837 0.082 0.0079 0.667 3.39 

Table 4.2. River water pH/EC-measurements and metal cation concentrations. Distance is the 
estimated river distance between the site and the river’s confluence with the Congo mainstem. 
Samples sizes indicate the number of pseudo-replicates for cation concentrations only. All pH/EC-
measurements have a sample size of 1.  
 

Elemental concentrations in peat pore/surface water across the five transects that were 

analysed are very consistent, with very few significant differences found between transects 

(Figure 4.10). Only Na concentrations are different across transects, with Bondamba having 

significantly higher values than all other transects, and Ikelemba and Lokolama having 

significantly lower values than all Ruki River transects (P<0.05, one-way ANOVA with post-hoc 

Tukey HSD test). 

 

It is notable how the Lokolama transect, which has the smallest sample size, has consistently 

low variations in elemental concentrations (indicated by the small boxplot heights in Figure 
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4.10), compared with the other transects. This is line with the expected shallow environmental 

gradients along this transect.  

 

 
Figure 4.10. Boxplots of geochemistry of peat pore/surface water across five transects. Panels 
show selected metal cation concentrations (in mg L-1) and ratios (for Ca/Mg). Transects that 
share the same letter are not significantly different from each other (p<0.05, using one-way 
ANOVA with post-hoc Tukey HSD test for Al, Mg, Na and Ca/Mg; or Dunn’s Kruskal-Wallis 
multiple comparison test, p-values adjusted with the Benjamini-Hochberg method, for Ca, Fe, K 
and Mn). Reported values for K at Mpeka include two samples below the detection limit (< 0.1.05 
mg/L). 
 

On average, Na is the most abundant element of the measured cations in DRC peat water (mean 

1.029 ± 0.587 mg L-1), followed by K > Fe > Al > Ca > Mg > Mn (Table 4.3). Although no significant 

differences between transects are observed for K, there is considerable variation in the 

concentrations of this element, with some relatively large outliers of more than 4 mg L-1 

measured at Mpeka (Figure 4.10f).  

 

 Al  
(mg L-1) 

Ca 
(mg L-1) 

Fe 
(mg L-1) 

K 
(mg L-1) 

Mg 
(mg L-1) 

Mn 
(mg L-1) 

Na 
(mg L-1) 

Ca/Mg 
ratio 

Mean 0.305 0.262 0.334 0.656 0.127 0.008 1.029 2.045 

St. Dev 0.113 0.161 0.167 0.987 0.066 0.006 0.587 0.710 

Min. 0.094 0.028 0.118 0.041 0.023 0.001 0.133 0.830 

Max. 0.603 0.790 0.915 4.555 0.303 0.027 1.689 3.984 

Table 4.3. Geochemistry of peat pore/surface water in the DRC. Concentrations are in in mg L-

1 for all elements, plus the Ca/Mg ratio. N=33 for all elements (9 Mpeka, 7 Bondamba, 6 Bolengo, 
6 Ikelemba, and  5 Lokolama). Reported values for K includes two samples from Mpeka below 
the detection limit (< 0.105 mg/L). 
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The mean (± s.d.) of the measured Ca/Mg-ratios in peat pore water is 2.045 (± 0.710). The 

maximum observed Ca/Mg-ratio is close to 4, similar to the mean regional rainwater estimate 

obtained in ROC by Dargie (2015). However, this maximum value of 4 was only observed in peat 

pore water near the end of the Bolengo transect (Figure 4.11). All other transects are found to 

have values well below the regional rainwater estimate, and often even below 2, which is the 

minimum global average of continental rainwater (Berner & Berner, 2012). Rather than 

corresponding with rainwater, Ca/Mg-ratios in peat water samples are closer to the lower 

Ca/Mg-ratios for the Ruki (2.51) or Ikelemba (2.19) Rivers. Because the Ca/Mg-ratio is not larger 

than that of rainwater, it can be assumed that there is no additional non-atmospheric 

(minerotrophic) source of Ca into the peat water from nutrient-rich surface or groundwater 

(Lähteenoja et al., 2009a; Weiss et al., 2002).  

 

 
Figure 4.11. Ca/Mg-ratios of peat pore/surface water along five transects. Grey shading 

indicates the global average of continental rainwater, from Berner and Berner (2012). The upper 

dashed line indicates the regional rainwater estimate in ROC, from Dargie (2015). The three 

lower dashed lines reflect local river water samples from Table 4.2. 

 

Nevertheless, seasonal hydrological changes that affect upland runoff or riverbank overflow 

likely result in small variations in Ca inputs. A clear upward trend is seen along the Bolengo 

transect, moving away from the river towards the terra firme forest edge, which could indicate 

potential Ca supply from upland runoff. However, an opposite trend is observed along the 

Ikelemba transect, which also runs from the river towards the terra firme forest edge, suggesting 
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upland runoff is not important there. The difference could reflect local hydrological conditions 

at the time of sampling, as the Bolengo transect was sampled just after rainfall at the end of the 

2019 summer dry period. As the Ca/Mg-ratio does not reach above 4, this peak is thus most 

likely the result of a sudden increase in rainwater and upland runoff into the peatland. On the 

other hand, the Ikelemba transect was sampled during a dry period in January 2020 at the end 

of the major wet season. A temporal lack of rainwater could explain the lower Ca/Mg-ratios 

observed that are observed near the end of this transect, when moving away from the river. 

Finally, river flooding from the wet season had not entirely receded along the first few 

kilometres of this transect, explaining the relatively higher Ca/Mg ratios there, which mirror 

those of the river itself.  

 

 

4.5.4 Peat surface inorganic chemistry 

The most abundant metal cation element in peat surface samples is Al (mean 1,365 ± 591 mg 

kg-1), followed by Fe > K > Ca > Mg > Mn > Na (Table 4.4). This order is generally similar to 

elemental abundance in peat pore and surface water samples, except that Na was the most 

abundant element in peat water, while it is the least abundant in surface peat. This suggests 

that Na concentrations are potentially sensitive to changes in the hydrologic cycle.  

 

Mean pH of peat surface samples (3.77 ± 0.14) is higher than that of all river samples (mean 

3.20). Similarly, mean EC of peat surface samples (77.9 ± 28.3 μS cm-1) is higher than that of all 

river samples (mean 39.5 μS cm-1). This pattern also holds when excluding the non-river-

influenced Lokolama transect. This indicates that riverbank overflow does not have a buffering 

effect on the adjacent peat swamps. Rather it shows that acidic peat water, as it drains from the 

peat swamps, causes the rivers to become more acidic.   

 

 pH EC 
(μS  
cm-1) 

Al  
(mg  
kg-1) 

Ca 
(mg  
kg -1) 

Fe 
(mg  
kg -1) 

K 
(mg  
kg -1) 

Mg 
(mg  
kg -1) 

Mn 
(mg  
kg -1) 

Na 
(mg  
kg -1) 

Ca/Mg 
ratio 

Mean 3.77 77.90 1,365 403.3 784.5 442.3 220.7 22.02 15.55 1.76 

St. Dev 0.14 28.26 591 238.5 269.7 152.0 84.0 21.85 5.96 0.74 

Min. 3.53 33.20 744 101.1 350.0 257.5 121.5 4.92 2.50 0.83 

Max. 4.07 142.79 3,247 1,014.3 1,477.9 859.9 418.1 88.82 29.28 4.18 

Table 4.4. Geochemistry of peat surface samples in the DRC. Electrical conductivity (EC) in μS  
cm-1; concentrations of all elements in mg kg-1, plus pH and Ca/Mg-ratios. N=28 for all elements 
(9 Mpeka, 7 Bondamba, 6 Bolengo, 3 Ikelemba, 3 Lokolama, with each sample the mean of 4 or 
5 pseudo-replicates per site). 
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In contrast to the peat pore/surface water, which showed very little variation among transects, 

more variation is detected in metal cation concentrations of peat surface samples (Figure 4.12). 

For example, Al concentrations are significantly lower at Bondamba than at all other transects 

(p<0.05, Kruskal-Wallis rank sum test). Fe concentrations at both Bondamba and Bolengo are 

also significantly lower than at Lokolama (p<0.05, one-way ANOVA). Furthermore, Lokolama has 

significantly higher concentrations of K than all other transects, while Ikelemba has significantly 

lower concentrations of Na than the Mpeka and Bondamba transects (both p<0.05, one-way 

ANOVA). These differences have likely also affected the pH and EC measurements, with 

significantly higher pH observed at Lokolama than at the three Ruki river transects of Mpeka, 

Bondamba and Bolengo. EC values are significantly lower at Bondamba, compared with Mpeka 

(both p<0.05, one-way ANOVA). However, no significant differences are observed in Ca, Mg, Mn 

concentrations or Ca/Mg-ratios (p>0.05, Kruskal-Wallis rank sum test).  

 

 
Figure 4.12. Boxplots of geochemistry of peat surface samples across five transects. Panels 
show pH, electrical conductivity (EC, μS cm-1), selected metal cation concentrations (mg kg-1) and 
ratios (for Ca/Mg). Transects that share the same letter are not significantly different from each 
other (p<0.05, using one-way ANOVA with post-hoc Tukey HSD test for pH, EC, Fe, K, and Na; or 
Dunn’s Kruskal-Wallis multiple comparison test, p-values adjusted with the Benjamini-Hochberg 
method, for Al, Ca, Mg, Mn and Ca/Mg). Each sample is the mean of 4 or 5 replicates per site.  
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Although often not statistically significant, it can be further observed from Figure 4.12 that 

Lokolama generally has more abundant metal cation concentrations (Ca, Fe, K, Mg, Mn, Na, and 

Ca/Mg-ratio) than Ikelemba, as well as many of the other river-influenced sites. This suggest that 

the river-influenced peatlands could be more nutrient-poor than non-river-influenced 

peatlands.  

 

Mean Ca/Mg-ratio across the transects is 1.76 (± 0.74), which is lower than the values observed 

in peat pore/surface water (mean 2.045 ± 0.710), suggesting the latter values are likely higher 

due to additional Ca-input from rainwater with a Ca/Mg-ratio close to 4. No clear trends in 

Ca/Mg-ratios can be seen along the five transects (Figure 4.13), which indicates that additional 

non-atmospheric (minerotrophic) sources of Ca into the peatlands are unlikely (Lähteenoja et 

al., 2009a; Weiss et al., 2002).  

 

 
Figure 4.13. Ca/Mg-ratios of peat surface samples along five transects. Grey shading indicates 
the global average of continental rainwater, from Berner and Berner (2012). The upper dashed 
line indicates the regional rainwater estimate in ROC, from Dargie (2015). The three lower 
dashed lines reflect local river water samples from Table 4.2. 
 

 

4.5.5 Downcore peat inorganic chemistry 

Downcore metal cation concentrations for Al, Fe, Mg, Mn and Ti from one Lokolama and one 

Ikelemba core are shown in Figure 4.14. Downcore measurements of Ca, K and Na were typically 
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below the ICP-OES detection limits so cannot be reliably presented. This suggests that nutrient 

poor conditions as identified for surface peat samples are also characteristic of downcore peat 

samples, indicating nutrient-poor conditions throughout the peatlands’ developmental 

histories.  

 

Of the elements that showed reliable measurements (Al, Fe, Mg, Mn, Ti), Al is the most 

abundant, followed by Ti, Fe, Mg and Mn. Both Al and Ti reveal large increases towards the base 

of the peat core, with relatively low concentrations in the upper peat layers. Large peaks in Fe 

concentration can also be observed down the peat core, although this element shows increased 

concentrations again near the peat surface.  In contrast, both Mg and Mn are mostly only 

present near the peat surface.  

 

These patterns are observable both at Ikelemba and Lokolama. However, absolute elemental 

concentrations are generally much greater in Ikelemba than in Lokolama, particularly for Al and 

Ti. This potentially indicates either greater interactions with bedrock or (sub)surface sediments, 

or greater atmospheric depositions of metal cations. 

 

 
Figure 4.14. Downcore concentrations of Al, Fe, Mg, Mn and Ti at Ikelemba and Lokolama. 
Downcore samples are from the IKE_5.0 (green) and LOK_4.0 (pink) cores. Data on Ca, K and Na 
is left out because the concentrations of most of these elements was below the detection limits. 
Missing line segments for Al (panel a; 3-4 m depth) are due to ICP-OES oversaturation. 
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To investigate the origins of these elements, I plotted the same elemental concentrations 

normalized with respect to Ti-concentrations (Figure 4.15). This shows significant downcore 

enrichment of Al and Fe with respect to Ti. In particular, considerable Fe-enrichment is detected 

at Lokolama, which is not the case at Ikelemba. Both peat cores also show considerable Al-

enrichment towards the base of the core, and this peak again appears greater at Lokolama than 

at Ikelemba. Thus, although absolute concentrations are larger at Ikelemba, enrichment with Al 

and Fe is greater at Lokolama.  

 

However, neither of these Ti-normalized profiles crosses the typical ratios observed in the Upper 

Continental Crust (UCC; McLennan, 2001), which would have suggested enhanced atmospheric 

deposition of dust from highly-weathered tropical soils (Weiss et al., 2002).  The Fe/Ti-ratio of 

LOK_4.0 does not correlate with absolute Al, Fe or Ti trends either, which further suggests its 

patterns are not due to changes in atmospheric deposition of the original material. Rather, local 

processes such as instability in the water table are more likely the cause of these patterns. 

Because Fe is sensitive to the peat’s redox-state (Bhattacharyya et al., 2018; Steinmann & 

Shotyk, 1997), it has been suggested that alternating aerobic and anaerobic conditions in the 

peat profile could affect the solubility and speciation of Fe in peat soils (Weiss et al., 2002).  

 

In contrast to Al and Fe, downcore peat samples are strongly depleted of Mg and Mn with 

respect to Ti, as shown in Fig. 4.15. This suggests that these elements do not accumulate in the 

peat profile but are instead quickly taken up by the surface vegetation (Weiss et al., 2002). 

However, both the absolute and the Ti-normalized values of Mg and Mn in near-surface peat 

are considerably larger at Ikelemba than at Lokolama, indicating more contemporary 

enrichment of these elements at Ikelemba. Mn in particular is known to be strongly enriched in 

near-surface peat layers due to bioaccumulation. Like Fe, it is relatively sensitive to changes in 

redox-state, with enhanced solubility in acidic, anaerobic water at lower depths (Damman, 1978; 

Shotyk et al., 1990). Thus, the greater presence of Mn in surface peat samples is likely related to 

the lower water tables that generally prevail at IKE_5.0, compared with LOK_4.0. It is suspected 

that a similar process affects Mg, although to a lesser extent. 
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Figure 4.15. Downcore Ti-normalized concentrations of Al, Fe, Mg and Mn at Ikelemba and 
Lokolama. Data is from the IKE_5.0 (green) and LOK_4.0 (pink) cores. Data on Ca, K and Na is 
left out because the concentrations of most of these elements was below the detection limits. 
Missing line segments for Al (panel a; 3-4 m depth) are due to ICP-OES oversaturation. Dashed 
lines indicates typical Ti-ratios in the Upper Continental Crust (UCC; McLennan, 2001). 

 

 

4.5.6 Basal radiocarbon dates and age-depth models 

The AMS radiocarbon dates of six basal peat samples are presented in Table 4.5. Median 

calibrated age of the basal peat samples along the Lokolama transect ranges between 9,500 and 

10,800 BP. By contrast, at Ikelemba, median peat basal ages range from 9,100 to 42,300 BP. This 

latter radiocarbon date of 42,3k cal yr BP (95% CI; 43,8k – 41,2k) was recorded at IKE_5.0 and 

represents by far the oldest peat found across the central Congo Basin so far. This date is more 

than 20,000 years older than the published peat samples dated in ROC (Dargie et al., 2017; 

Garcin et al., 2022), indicating that some areas of the central Congo Basin peatlands are much 

older than previously thought and harbour some of the oldest tropical peat deposits in the world 

(Ruwaimana et al., 2020). 

 

A clear trend in basal age with distance from the river can be observed along the Ikelemba 

transect, with the peat basal age doubling every two kilometres. This contrasts strongly with the 

Lokolama transect, where all peat cores have the same age of approximately 10k cal yr BP. 
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Transect Distance 
along 
transect 
(km) 

Basal 
depth 
(m) 

Sample 
code 
(SUERC-) 

Conventional 
14C basal age 
(yr. BP) 

Error 
(1 σ) 

Median 
modelled 
calibrated 
basal age  
(cal yr BP) 

2σ modelled  
calibrated age 
range  
(cal yr BP)  

Lokolama 1.0 4.0-4.1 99679 9,497 39 10,783 11,073 – 10,590 

Lokolama 3.0 2.8-2.9 99680 8,429 40 9,475 9,535 – 9,323 

Lokolama 5.0 5.9-6.0 99687 9,285 42 10,480 10,644 – 10,296 

 

Ikelemba 1.0 1.1-1.2 99688 8,124 39 9,079 9,268 – 8,992 

Ikelemba 3.0 1.9-2.0 99689 1,8597 85 22,524 22,874 – 22,349 
Ikelemba 5.0 3.8-3.9 99693 38,050 917 42,316 43,792 – 41,206 

Table 4.5. Lateral basal ages of peat cores along the Lokolama and Ikelemba transects. 
Modelled calibrated ages are obtained using a mixed calibration curve (50% IntCal20 and 50% 
SHCal20). Modelled calibrated age ranges represent a 2σ (95%) confidence interval. 
 

Table 4.6 shows the down-core AMS radiocarbon dates from the deepest core of each transect: 

LOK_5.0 at Lokolama, and IKE_5.0 at Ikelemba. Figure 4.16 shows the corresponding age-depth 

models of both cores. It can be observed that long-term apparent peat accumulation rates have 

been considerably larger at LOK_5.0, which has developed a ~50% deeper peat layer during 

roughly a quarter of the time that the peat profile at IKE_5.0 took to develop. However, both 

age-depth models show notable changes in slope between individual segments of each core. In 

particular, the slope is shallower during the third segment of LOK_5.0, between 7,500 and 2,200 

cal yrs BP than before and after those dates. IKE_5.0 also has a shallower age-depth profile in 

the core’s second segment, between 35,900 and 16,500 cal yrs BP. 

 

Core Peat 
depth 
(cm) 

Sample 
code 
(SUERC-) 

Conventional 
14C age 
(yr. BP) 

Error 
(1 σ) 

Median 
modelled 
calibrated age  
(cal yr BP) 

2σ modelled  
calibrated age 
range  
(cal yr BP)  

Lokolama 5km 1.0-1.1 99681 2,274 37 2,249 2,350 – 2,156  

Lokolama 5km 2.6-2.7 99682 6,674 39 7,535 7,612 – 7,433 

Lokolama 5km 4.4-4.5 99683 8,646 40 9,600 9,691 – 9,536  

Lokolama 5km 5.9-6.0 99687 9,285 42 10,480 10,644 – 10,296 

 

Ikelemba 5km 1.4-1.5 99690 9,884 43 11,285 11,401 – 11,203 

Ikelemba 5km 2.0-2.1 99691 13,656 52 16,500 16,704 – 16,313 

Ikelemba 5km 3.0-3.1 99692 31,630 412 35,927 36,886 – 35,199 

Ikelemba 5km 3.8-3.9 99693 38,050 917 42,316 43,792 – 41,206 

Table 4.6. Down-core peat ages at Lokolama and Ikelemba. Samples are from the deepest core 

of each transect. Modelled calibrated ages are obtained using a mixed calibration curve (50% 

IntCal20 and 50% SHCal20). Modelled calibrated age ranges represent a 2σ (95%) confidence 

interval. 
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Figure 4.16. Age-depth models for the deepest peat cores from at Lokolama and Ikelemba.  
Both cores are taken at 5 km along the transect: LOK_5.0 (a) and IKE_5.0 (b). The x-axis shows 
peat depth (m) below the surface, the y-axis shows calibrated ages in years before present (cal 
yr BP, relative to 1950). Note the differences in x-axis range. The black triangles represent the 
median of the calibrated age ranges presented in Table 4.6. The grey shading represents the 
modelled 2σ (95%) confidence intervals. Modelled calibrated ages are obtained using a mixed 
calibration curve (50% IntCal20 and 50% SHCal20). 
 

Figure 4.17 shows a comparison of the age-depth models of both LOK_5.0 and IKE_5.0 with the 

deepest peat core sampled by Dargie et al. (2017) at the interfluvial basin site of Ekolongouma 

in ROC (EKG_9.0). It is clear from this figure that peat deposits of both Lokolama and 

Ekolongouma are of early-Holocene age, with peat initiation occurring in the early African Humid 

Period (shaded green). However, the slope of the age-depth curve is much steeper at Lokolama 

than at Ekolongouma, in particular during the peatland’s initiation phase, resulting in the 

development of a total peat layer that is more than twice as thick. This could imply greater 

biomass inputs into the peat layer, lower decomposition rates, or a combination of the two at 

Lokolama compared to Ekolongouma. Alternatively, it is also possible that peat in Ekolongouma 

experienced secondary decomposition of formed peat at a later stage, for example, due to a 

temporary drying event or erosion, resulting in a less thick peat layer for the same age range. 

This hypothesis implies a regional event at Ekolongouma, rather than basin-wide climatic 

changes that would have impacted Lokolama as well.  

 

Peat initiation at the river-influenced site of IKE_5.0, however, started much earlier during the 

Late Pleistocene. Here, peat was formed and retained over 40,000 years, including spanning the 

Last Glacial Maximum (shaded blue). With the start of the Holocene and the African Humid 

Period a similar, albeit shallower, age-depth slope is seen to the LOK and EKG cores. 
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Figure 4.17. Comparison of age-depth models of Ikelemba, Lokolama and Ekolongouma. 

Models included are from IKE_5.0 (dark red), LOK_5.0 (dark blue) and EKG_9.0 (orange). The x-

axis shows peat depth (m) below the surface, the y-axis shows calibrated ages in 1,000 years 

before present (cal yr BP, relative to 1950). Data for the 9 km core from Ekolongouma is obtained 

from Dargie et al. (2017). In all cases, modelled calibrated ages are obtained using a mixed 

calibration curve (50% IntCal20 and 50% SHCal20). Triangles represent the median of the 

calibrated age ranges per core. Grey shading represents the modelled 2σ (95%) confidence 

intervals. The Last Glacial Maximum is indicated by shaded blue between 23,000 and 19,000 BP, 

and the African Humid Period by shaded blue between 11,500 and 5,500 BP (Collins et al., 2017). 

The vertical dashed line indicates the start of the Holocene (~11,650 BP; Walker et al., 2009).  

 

 

Overall, Table 4.7 shows that the long-term rate of carbon accumulation (LORCA) at Lokolama 

(36.79 g C m-2 yr-1) is much greater than that of Ikelemba and Ekolongouma (11.80 and 18.84 g 

C m-2 yr-1, respectively). The latter two sites have long-term rates of carbon accumulation that 

are much more similar, even though these sites differ strongly in terms of hydrology (river-

influenced or interfluvial basin, respectively) and peat initiation age.  

 

When looking only at the Holocene period in Figure 4.17, this pattern of greater net 

accumulation at Lokolama holds as well. Because of the age differences between Ikelemba and 

the other two cores, the timeframe of the upper surface segment of the Ikelemba core 

corresponds roughly with the timeframe of the full peat cores from Lokolama and Ekolongouma. 

The slopes of the age-depth curves during this Holocene period show that the apparent net peat 

accumulation rate (aCAR) of the surface peat at Ikelemba (segment 1; 13.41 g C m-2 yr-1) is 

roughly comparable with the long-term rate of carbon accumulation (LORCA) at Ekolongouma 

(18.84 g C m-2 yr-1), but not with that of Lokolama (36.79 g C m-2 yr-1), which is much higher.   
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Compared with the Holocene period, the slope of the middle segment of the Ikelemba core 

(segment 3; 16,500 – 35,900 cal yrs BP), which incorporates the time of the Last Glacial 

Maximum, is much lower, corresponding with a lower apparent net peat accumulation rate (7.04 

g C m-2 yr-1). This could be the result of slow accumulation of peat due to lower biomass inputs 

and/or greater decomposition at this time. But since apparent accumulation rates only record 

what has remained from this period, it could also imply the loss of formed peat due to erosion 

or decay at a later stage. 

 

More recently, the two non-riverine peat cores (Lokolama and Ekolongouma) show a relative 

decline in aCAR during the same mid-Holocene period after approximately 7,000 cal. yr. BP 

(segment 2 of both cores). However, this cannot be compared with Ikelemba, as the youngest 

date from this core originates from 11,300 cal. yr. BP. 

Peat core Segment Depth  
(m) 

Age ranges 
(cal. yr. BP) 

Apparent peat 
accumulation 
rate (mm yr-1) 

LORCA  
(g C m-2 yr-1) 

aCAR  
(g C m-2 yr-1) 

LOK_5.0 Full core 0 – 5.95 0 – 10,5k 0.5640 36.79 
(36.23-37.45) 

- 

IKE_5.0 Full core 0 – 3.85 0 – 42,3k 0.0908 11.80 
(11.40-12.12) 

- 

EKG_9.0 Full core 0 – 2.715 0 – 10,5k 0.2568 18.84 
(18.53-19.30) 

- 

 

LOK_5.0 1 0.0 – 1.05 0 – 2,2k 0.4528 - 30.02 

LOK_5.0 2 1.05 – 2.65 2,2k – 7,5k 0.3027 - 22.48 

LOK_5.0 3 2.65 – 4.45 7,5k – 9,6k 0.8717 - 53.85 

LOK_5.0 4 4.45 – 5.95 9,6k – 10,5k 1.7045 - 98.18 

 

IKE_5.0 1 0.0 – 1.45 0 – 11,3k 0.1277 - 13.41 

IKE_5.0 2 1.45 – 2.05 11,3k – 16,5k  0.1151 - 11.89 

IKE_5.0 3 2.05 – 3.05 16,5k – 35,9k 0.0515 - 7.04 

IKE_5.0 4 3.05 – 3.85 35,9k – 42,3k 0.1252 - 18.63 

 

EKG_9.0 1 0.0 – 1.285 0 – 4,7k 0.2675 - 22.68 

EKG_9.0 2 1.285 – 1.685 4,7k – 7,2k 0.1599 - 10.17 

EKG_9.0 3 1.685 – 1.985 7,2k – 8,4k 0.2551 - 15.41 

EKG_9.0 4 1.985 – 2.385 8,4k – 8,8k 0.9685 - 54.30 

EKG_9.0 5 2.385 – 2.715 8,8k – 10,5k 0.1965 - 13.59 

Table 4.7. Apparent and long-term rates of peat and carbon accumulation for the LOK_5.0, 

IKE_5.0 and EKG_9.0 cores. LORCA is the long-term rate of carbon accumulation over the full 

peat core, while aCAR is the apparent carbon accumulation rate of layer segments. Apparent 

peat accumulation rates are reported as either long-term rates for the full peat core, or per layer 

segment. Data for the EKG_9.0 core is obtained from Dargie et al. (2017) using a mixed 

calibration curve (50% IntCal20 and 50% SHCal20). Additional dates from EKG_9.0 between 0 

and 1.285 m depth (segment 1) have been left out because of reversals in the age-depth profile. 
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4.6 Discussion 

The aim of this chapter was to characterise and classify the hydrology, geochemistry and age of 

river-influenced peatlands in the DRC, and contrast this with non-river-influenced peatlands in 

DRC and ROC. Specifically, I aimed to compare the hydrology and age of the Ikelemba and 

Lokolama transects (see Table 4.8). In addition, I looked at the peatland’s inorganic chemistry at 

Ikelemba and Lokolama (Table 4.8), as well as the Mpeka, Bondamba and Bolengo transects on 

the Ruki River. 

 

 Ikelemba Lokolama 

Peatland type River-influenced Non-river-influenced 

Location description Running perpendicular 
from river to terra 
firme upland  

Running from edge to 
centre of a suspected 
round peat dome 

Vegetation description Mostly hardwood 
swamp forest, but with 
seasonally inundated 
forest near the river 

Mostly hardwood 
swamp forest, but with 
sections of Raphia 
laurentii dominance 

Peat thickness Mean (± s.d.) thickness 2.2 (± 1.1) m 4.5 (± 1.8) m 

Maximum thickness 4.0 m 6.0 m 

Inundation 
description 

General pattern Seasonally inundated 
close to the river; near 
the surface further 
away 

Stable water tables near 
the peat surface 
throughout 

Estimated max. inundation ~ 1.5 m ~ 0.5 m  

Water table 
height (pressure 
sensors) 

Mean (± s.d.) water table -18.6 (± 12.2) cm -0.2 (± 8.6) cm 

Mean (± s.d.) belowground 
water table rate of change 

0.00046 (± 1.06071) cm 
hr-1 

0.00089 (± 0.86579) 
cm hr-1 

Microtopography Mean (± s.d.) absolute 
height difference 

7.3 (± 9.0) cm 9.6 (± 8.9) cm 

Peat pore / 
surface water 

Pore water metal cations More variable Less variable 

Mean pore water Ca/Mg 1.8 (± 0.7) 1.7 (± 0.3) 

Mean pore water pH 3.23 (± 0.10) 3.47 (± 0.05) 

Mean pore water EC 176 (± 34) μS cm-1 151 (± 14) μS cm-1 

Surface peat Surface peat metal cations Lower Higher 

Mean surface peat Ca/Mg 1.4 (± 0.4) 2.2 (± 0.4) 

Mean surface peat pH 3.78 (± 0.09) 4.02 (± 0.03) 

Mean surface peat EC 97 (± 15) μS cm-1 74 (± 12) μS cm-1 

Downcore peat Absolute Al, Fe, Ti conc. Higher Lower 

Ti-normalized Al, Fe conc. Lower Higher 

Radiocarbon 
dating 

Basal material Sand-to-clay Clay 

Oldest peat basal date ~ 42,300 cal yr BP ~ 10,800 cal yr BP 

Trend in lateral basal dates Increasing with 
distance from river 

All approximately 10k 
years ago 

LORCA 11.80 g C m-2 yr-1 36.79 g C m-2 yr-1 

Table 4.8. Comparison of hydrology, geochemistry and peat radiocarbon dates along the 
Ikelemba and Lokolama transects. Vegetation descriptions, peat thickness, inundation 
descriptions and peat pore/surface water pH/EC are from Chapter 2. All other data are reported 
in this chapter. 
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Water table heights 

Although no in situ water table measurements could be obtained from a clearly river-influenced 

site (IKE_1.0), personal observations from this and other sites along the Ikelemba and Ruki Rivers 

nonetheless make it clear that some of these river-bound peatlands experience large seasonal 

inundation patterns, with extensive flooding during the (end of the) wet season and deep water 

tables during the dry season. However, this does not necessarily mean that all this inundation is 

due to overbank flow from rivers. The one Ikelemba site that I was able to obtain year-round 

water table measurements from (IKE_5.0), which is located on higher ground towards the terra 

firme upland, shows little surface water inundation, even during the wet season. Rather, water 

table measurements show a relatively rapid drawdown of water, as revealed by the large 

negative rates of change of the water table at this site. This likely indicates effective drainage of 

water into lower-ground peatlands that are closer to the river. Thus, part of the inundating water 

that is observed closer to the river could actually be the result of (sub)surface runoff from higher-

ground peatlands and terra firme upland. 

 

These results from Ikelemba contrast with those from the Lokolama transect in DRC, as well as 

similar measurements made by Dargie et al. (2017) at Ekolongouma and Itanga in ROC. All those 

sites have higher water table levels closer to the peat surface and experience less fluctuations. 

This is expected, as both the Lokolama sites, as well as those in ROC, are located towards the 

edge of likely peat domes (Davenport et al., 2020). Thus, the dataloggers are located along very 

shallow environmental gradients away from the centre of a modest peat dome towards the 

peatland’s edge, and so experience lower fluctuations, as the centre of the peat dome sheds 

excess water as overland flow which maintains relatively wet conditions near the margins. 

 

Microtopography 

However, surface wetness is not only determined by water flows, but also by the local 

microtopography (Dettmann & Bechtold, 2016). This chapter presented the first measurements 

of microtopography in the peatlands of the central Congo Basin and found that microtopography 

is lower at the peatland’s edges next to seasonally inundated or terra firme forest. This was the 

case both at the edge of a likely peat dome at Lokolama (LOK_1.0), as well as in the river-bound 

peatland of Ikelemba (IKE_5.0). However, on average, Ikelemba exhibited less microtopography 

than Lokolama, with IKE_5.0 having the lowest local height differences of all sites that were 

measured. This supports the idea of more effective runoff at Ikelemba, as less pooling of water 

in hollows can be expected to allow for greater lateral discharge, either as overland flow or as 
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subsurface runoff through the top layer of peat (Dommain et al., 2010). At Lokolama, on the 

other hand, greater microtopography might be related to reduced runoff rates and the pooling 

of water, potentially explaining the wetter surface conditions that are found there. Given the 

relatively small water table fluctuations found at Lokolama, the influence of microtopography 

on surface wetness is also comparatively greater along this transect.  

 

However, it is important to emphasize that these hydrological analyses include only a limited 

number of sites across two transects and that a causal relationship between microtopography 

and wetness is hard to establish. In particular, the lower microtopography near the peatland’s 

edges contrasts with more extensive measurements by Lampela et al. (2016) in Central 

Kalimantan, Indonesia, who found no differences in microtopography patterns between areas 

near a peatland’s margins and areas closer to the centre of a peat dome. The overall mean 

microtopographic surface elevation (8.6 ± 9.0 cm) is also lower than the 14.1 ± 2.2 cm reported 

by Lampela et al. (2016). More analyses over a wider range of sites in the central Congo Basin 

are needed to fully understand whether these differences are real.  

 

Peat and river water inorganic chemistry 

One way to separate out the different sources of flood water at the start of the Ikelemba 

transect is to analyse chemical signals in the water sources. In this chapter, I measured metal 

cation concentrations in both peat pore/surface water, river water, and peat surface samples. 

Unfortunately, only a limited number of river water samples is available, and no rainwater 

samples were taken in DRC, due to technical problems with the filtration of samples. 

Nonetheless, it can be concluded that both the Ikelemba and Ruki Rivers are extremely acidic 

and nutrient-poor. The pH-values measured at the Ikelemba (3.66) and Ruki Rivers (mean 3.04, 

n=4) are both lower than pH-values measured in the comparable blackwater Likoula-aux-Herbes 

River in ROC, which has a pH ranging between 3.80 and 4.65 (Dargie, 2015; Dupré et al., 1996; 

Laraque et al., 1998). This could be a reflection of greater connectivity between the river and 

the peatlands, indicating that tannin-rich, acidic water from the peatlands is draining into these 

left-bank tributaries of the Congo River. As expected, acidity of the Ruki River was also found to 

increase with closer distance towards the confluence with the Congo River, which suggests that 

the acidic content is related to the size of the peatland area that is being drained.  

 

The most extreme acidic conditions observed on the Ruki River as part of this study were near 

the village of Bokuma, approximately 60 km from the confluence with the Congo River, where 
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pH was 2.6 and electrical conductivity was 29 μS cm-1. However, river water chemistry is strongly 

affected by seasonality, as large amounts of precipitation (with a pH closer to neutrality) will 

dilute the acid content originating from dissolved organic matter (Clymo, 1987). Thus, less acidic 

conditions are expected during or near the end of the wet season. Still, strong acidic conditions 

have been observed at the same site near Bukoma on the Ruki River in October 2020, with a pH 

of 4.0 and EC of 61 μS cm-1 (measured with Hanna Combo metre; Ovide Emba, pers. comm.). 

This contrasts with pH-values of the Congo River mainstem, which is almost neutral during the 

wet season with a pH of around 6. It is also much lower than reported wet-season pH values of 

4.7, 5.5 or 6.8 in the Likouala-Mossaka, Sangha and Ubangi Rivers that drain into the Congo River 

from the west (Dupré et al., 1996). Thus, this confirms the Ruki and Ikelemba Rivers as likely the 

most acidic of the central Congo Basin rivers. 

 

The low pH and EC values in the Ikelemba and Ruki Rivers correlate with low levels of metal 

cation concentrations. In particular, Al, Ca, Fe and Na concentrations in the Ruki and Ikelemba 

Rivers are all lower than those observed in the Likoula-aux-Herbes River (Dargie, 2015). Ca and 

Na values are also lower than typical reference values reported for the blackwater Negro River 

in the Amazon Basin (ca. 400 and 700 mg L-1, respectively; Wood et al., 2003). This confirms the 

Congo Basin rivers as having very low dissolved cation concentrations compared with other 

rivers (Dupré et al., 1996), likely making these as among the lowest concentrations in the world.  

 

However, some extremely large K concentrations, more than ten times the values observed on 

the Ikelemba or the Likouala-aux-Herbes Rivers, have been measured in the Ruki River. This is 

likely an artefact from rainfall at the end of the dry season, as K is the least abundant and least 

variable of the major cations in river water. In this case, high K concentrations are likely due to 

forest burning or soil dust resulting in high K in rainwater inputs (Berner & Berner, 2012). The 

river water sample near Bolengo was taken just after heavy rain at the end of the dry season, 

which has likely caused a considerable deposition of soil dust, ultimately the result of more 

complete weathering of underlying rocks resulting in high K concentrations in the soil dust. This 

also explains the relatively higher pH value of river water at Bolengo, as well as the large outliers 

of K concentrations in peat surface samples at Mpeka. 

 

Differences in the timing of sampling are likely also the cause of differences in Na concentrations 

measured in peat pore water. Metal cation concentrations measured in peat water samples 

along the five transects showed remarkably little variation, except for Na, which was found to 
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be significantly higher along the three Ruki transects. The higher concentrations of Na measured 

along the Ruki River are likely due to drought conditions towards the end of the summer dry 

season (Clymo, 1987), with evaporation having increased the relative concentrations of Na, 

compared with more diluted samples from Lokolama or Ikelemba that were measured at the 

end of the wet season. This is more likely than the alternative explanation of a sudden or regional 

difference in the deposition of sea salts, as Na is partly derived from marine aerosols containing 

sea salts in coastal areas (Berner and Berner, 2012). This is unlikely in the central Congo Basin, 

as it is located so far from the nearest coast. 

 

More significant differences between the five transects were observed in peat surface samples, 

with significantly higher concentrations of Fe and K at the non-river-influenced site of Lokolama, 

corresponding with significantly higher pH values.  However, this pattern is not consistent across 

all elements. In particular, no significant differences in Ca, Mg or Ca/Mg-ratio were observed 

across the transects. Both Ca and Mg originate almost entirely from the weathering of 

sedimentary rocks (J. D. Allen & Castillo, 2007). In the Congo Basin, rivers receive these elements 

mainly from wet deposition of aerosols during rainfall, or from carbonate dissolution in soils 

(Négrel et al., 1993). Elevated levels above those of rainfall are therefore a primary indicator for 

water sources that have come into contact with the ground or subsurface. In particular, the 

Ca/Mg-ratio of the surface peat can be compared with the local rainwater, the assumption being 

that peat with a Ca/Mg-ratio lower than or comparable to rainwater is ombrotrophic; otherwise, 

the peat must have had an additional, non-atmospheric source of Ca and is therefore 

minerotrophic (Muller et al., 2006; Weiss et al., 2002).  

 

It was observed that Ca/Mg-ratios of both the Ruki (2.51) and Ikelemba (2.19) Rivers is higher 

than that of other central Congo Basin rivers, such as the Sangha, Ubangi, Kasai or Congo 

mainstem (2.0, 1.6, 1.2 or 0.7, respectively; Négrel et al., 1993). However, Dargie (2015) reports 

higher values of 2.3 in the Ubangi River and even 3.2 in the Likouala-aux-Herbes River. 

Nonetheless, overall Ca/Mg-ratios in Congo Basin rivers are lower than those of typical 

whitewater Amazon tributaries such as the Purus, Japurá, Juruá, Jutaí or Solimões Rivers that 

cross seasonally flooded forests (2.9, 3.4, 4.3, 5 and 5.8, respectively; Probst et al., 1994). This is 

because sedimentary carbonate rocks dominate in the Andes region where the Amazon 

tributaries originate, while forming a relatively smaller portion of the well-weathered Congo 

basin (Probst et al., 1994).  Overall, this results in relatively low Ca/Mg-ratios in the region, 
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making the Ca/Mg-ratio potentially less indicative of minerotrophic input than in other peat 

swamp forests regions such as the Peruvian Amazion.  

 

Even so, the Ca/Mg-ratios in both peat pore water and peat surface samples are generally even 

lower than those of the Ruki and Ikelemba Rivers themselves, indicating that there is likely no 

additional source of Ca from groundwater, river water or runoff into the peatlands. The only 

exception is the Ca/Mg-ratio of pore water along the Bolengo transect, which increases to 4.0 

close to the terra firme upland (BNG_6.0). This is similar to the Ca/Mg-ratio observed in regional 

rainwater by Dargie (2015). Together with the fact that this increase in peat water samples is 

not mirrored in peat surface samples, this indicates that this increase in Ca/Mg could be due to 

a local rainfall event (or runoff from rainfall on terra firme uplands) that has temporarily altered 

the composition of the peat water. This is further confirmed by the fact that no increase in 

Ca/Mg is seen when moving towards terra firme upland along the Ikelemba transect. In fact, 

Ca/Mg-ratios in peat water decrease along the Ikelemba transect, because the first few 

kilometres were still inundated by receding riverbank overflow with higher Ca/Mg-ratios. This 

shows that local variation in Ca/Mg can be caused by seasonal rainfall or inundation events. 

Nevertheless, even in those cases, the Ca/Mg-ratio never reaches above the rainwater average 

of 4, confirming that these peatlands remain nutrient-poor. This contrasts strongly with 

peatlands in the Peruvian Amazon, which have been shown to be much more diverse in terms 

of nutrient status. According to Lähteenoja et al. (2009a), Amazonian peatlands in the Pastaza- 

Marañón Foreland Basin harbour both minerotrophic peatlands with Ca/Mg-ratios of 10-13, 

while ombrotrophic peatlands are encountered with Ca/Mg-ratios of < 6. Similarly, Southeast 

Asian peatlands, while being largely ombrotrophic, have also been shown to harbour some 

minerotrophic peatlands (Wüst & Bustin, 2004). Thus, given the data collected so far, the central 

Congo Basin peatlands appear unique among tropical peatlands in potentially being almost 

exclusively nutrient-poor.  

 

Downcore peat inorganic chemistry 

Ca/Mg-measurements are generally less reliable in the upper peat layer than further downcore, 

as vegetation may lead to a remobilisation of these elements via nutrient recycling in the root 

zone (Muller et al., 2006). However, Ca concentrations in downcore peat samples (and by 

extension Ca/Mg-ratios) were even lower than those in surface peats, with most values below 

the detection limits of ICP-OES. This suggest that contemporary nutrient-poor conditions have 
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been a long-term feature throughout the peatlands’ development history in the central Congo 

Basin.  

 

For this reason, no Ca/Mg ratio could be analysed downcore. Instead, I compared Ti-normalized 

ratios of Al, Fe, Mg and Mn for two deep cores of the Ikelemba and Lokolama transects. This 

showed considerable Fe-enrichment at Lokolama, compared with Ikelemba. Highly weathered 

tropical soils are typically enriched with Al and Fe, because these elements are most resistant to 

leaching. Thus, if the Ti-normalized ratios are above typical values for the upper continental crust 

(UCC), this would suggest significant wet deposition of atmospheric dust, or another form of 

mineral soil input into the peat layer (Weiss et al., 2002). Neither Al/Ti or Fe/Ti-ratios reach 

values that are higher than UCC values. Nonetheless Fe/Ti-ratio is markedly higher at Lokolama 

than at Ikelemba, particularly from halfway downcore to the peat surface. This would point 

towards a local process causing Fe-enrichment, rather than a regionwide event, given that this 

pattern is not visible in Ikelemba. Possible local effects could include increased pollution from 

metallurgy due to human settlements, or dust deposition associated with drought and/or 

climate impacts driving a shift in vegetation from forest to savanna around ~2,000 BP, known as 

the late-Holocene rainforest crisis (Giresse et al., 2020). However, since the Fe/Ti-ratio at 

Lokolama does not correlate with absolute Al, Fe or Ti trends, changes in atmospheric deposition 

are not the most likely explanation. Because Fe is sensitive to the peat’s redox-state 

(Bhattacharyya et al., 2018; Steinmann & Shotyk, 1997), shifts in the aerobic and anaerobic 

conditions in the peat profile could affect the presence of Fe in peat soils as well (Weiss et al., 

2002). Thus, it is perhaps more likely that Fe/Ti-trend at Lokolama reflects local hydrological 

changes, such as a potential shift from minerotrophic to ombrotrophic conditions as the peat 

profile got raised above the initial water table and water supply become rainfall-dependent. 

However, an alternative explanation would be that Fe is simply more mobile due to its solubility 

(Novak et al., 2011), making it a less reliable indicator of past conditions.  

 

Absolute values of Al, Fe and Ti are generally higher in Ikelemba than in Lokolama. This is possibly 

explained by the fact that the peat profile represents a longer time period and thus could have 

accumulated a large concentration of these elements over time. Additionally, a larger peatland 

area such as Lokolama is likely to have a greater buffering capacity to store mineral input 

(Sjöström et al., 2020). Unfortunately, no downcore samples are available from Mpeka, Bolengo 

and Bondamba, which would provide useful to see if these patterns are replicated along other 

river-influenced sites.  
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In contrast to Al and Fe, both cores from Lokolama and Ikelemba show a consistent pattern for 

Mg and Mn, with elemental concentrations peaking near the peat surface. This could indicate 

rapid biological recycling of these elements by the root zone of active vegetation, rather than 

accumulation in the peat profile (Weiss et al., 2002). Interestingly, both the absolute and the Ti-

normalized values of Mg and Mn in near-surface peat are considerably larger at Ikelemba than 

at Lokolama, indicating more contemporary enrichment of these elements at Ikelemba. As Mn 

is relatively sensitive to changes in redox-state (Damman, 1978; Shotyk et al., 1990), this greater 

presence of Mn in surface peat samples is likely related to the lower water tables that 

characterize the Ikelemba core. This corresponds with findings by Lawson et al. (2014) in 

Amazonian peatlands, who suggest that the Mn record is related to the depth of the aerobic 

surface layer. I hypothesize that a similar process could affect Mg, although to a lesser extent. 

However, the Mg and Mn peaks at Ikelemba were not replicated in the ICP-MS measurements 

of surface peat samples, suggesting this pattern could also be an artefact of the ICP-OES 

measurements.  

 

Peat age and accumulation rates 

This chapter presents the first radiocarbon basal dates from river-influenced peatlands in the 

DRC. Remarkably, results show that some peatlands in the central Congo Basin are of Late 

Pleistocene-age, and much older than those previously identified in ROC by Dargie et al. (2017). 

The oldest peat sample found in the basin has an age of approximately 42,300 cal yr BP, more 

than 20,000 years older than the oldest peat sample found so far in ROC (Dargie et al., 2017; 

Garcin et al., 2022). This date is close to the oldest tropical peat deposit found in the world of 

47,800 cal yr BP (Ruwaimana et al., 2020), suggesting tropical peat formation in the Late 

Pleistocene was not restricted to Southeast Asia.  

 

This basal peat sample at 380-390 cm depth is overlain by a mineral intrusion of 50 cm which 

has OM concentrations < 65%. Thus, by definition, the base of the peat core consists of 10 cm 

of peat, followed by 50 cm of mineral soil. As the next analysed peat sample at 300-310 cm 

depth was radiocarbon dated at ~ 35,900 cal yr BP, this shows that the early peat that had started 

forming was quickly submerged by a likely riverine deposit of sediment between 42.3k and 35.9k 

years ago. However, if taking 35,900 cal yr BP as the true start of peat formation at this site, that 

would still imply that peat formation started more than 20,000 years earlier than at either 

Lokolama in DRC or Ekolongouma in ROC.  
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Organic matter concentrations in the peat layer between 310 and 200 cm depth (35,9k - 16,5k 

cal yrs BP) were found to be relatively low, ranging between 70 and 80%. This indicates that 

there was still a relatively large mineral sediment input throughout this early phase of peat 

formation, most likely because of less dense vegetation and higher sediment concentrations 

during the LGM (Molliex et al., 2019). Only after ~ 16,500 cal yr BP (above 200 cm depth) does 

the OM concentration exceed above 90%, indicating little mineral deposition after this point.  

 

Lateral basal dating along the Ikelemba transects furthermore reveals a gradient in peat 

initiation ages from 42.3k years ago near the terra firme uplands to 22.5k to 9k years ago closer 

to the river. This could suggest that peat formation at Ikelemba occurred through a process of 

paludification, with peat initiation likely happening in waterlogged soils in floodplain 

depressions caused by the overflowing river, after which a lateral spread towards the centre of 

the river valley took place. This idea corresponds with the presence of soft clay in the base layer 

below the peat, as detected at 5 km from the river, which gradually becomes silt and sand closer 

to the river. The presence of clay below the oldest peat deposits suggests a slow-flowing riverine 

environment, potentially from standing water left after riverbank overflow. The sand layer 

underneath the more recent deposits closer to the river suggest that this peat formed in a faster-

flowing environment that is more impacted by the river itself (Swindles et al., 2018). However, 

the clay-to-sand-gradient along the transect is not uniform, and there are some short reversals 

back to clay in the basal layer closer to the river, implying shifting river positions and a potentially 

non-continuous process of peat initiation. 

 

Nonetheless, given that very old peat deposits have survived in such a riverine environment, this 

suggests that the current position of the Ikelemba River has been relatively stable throughout 

the peatland’s development, even though the Ikelemba is characterized by a relatively large 

number of small meanders, compared with other rivers in the central Congo Basin. This suggest 

this floodplain system is less dynamic than the floodplains in the Peruvian Amazon peatlands, 

which are much younger (Kelly et al., 2020). Furthermore, the fact that this old peat has survived 

the glacial-interglacial climate transition points towards a certain resilience to climatic 

perturbations at this site. The shallower age-depth profile observed between 35,9k and 16,5k 

cal yrs BP includes the Last Glacial Maximum, which points towards at least some preservation 

of peat during the LGM, as seen in some locations in Southeast Asian tropical peatlands as well 

(Ruwaimana et al., 2020).  
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However, the fact that large areas of swamp forest is found along dendritically-patterned river 

valleys of higher-order rivers and streams in the DRC (Dargie et al., 2017) suggests that the 

specific geomorphology of this drainage system east of the Congo mainstem plays a role in peat 

formation as well. These higher-order streams, such as the one crossed by the Boloko transect 

(see Chapter 2), are typically not characterized by meanders and floodplain depressions behind 

levees, as seen along the Ikelemba. Here, peat formation appears to have occurred directly in 

the waterlogged soils along streams, likely because they are characterized by very shallow slopes 

which facilitates the retention of water from seepage and upland runoff. 

 

Contrary to the riverine environment of Ikelemba, similar peat initiation ages along the length 

of the Lokolama transect suggest that a process of terrestrialisation of a former lake or 

waterlogged depression took place there, rather than paludification on top of mineral soil. This 

conclusion is supported by the markedly round shape of the Lokolama peatland area, suggesting 

a round lake, which is only cut off by the Congo River on its western side. The base layer 

underneath the peat was also found to be consistently made up of clay, supporting the idea of 

a stable lacustrine environment.  

 

Given that peat initiation at Lokolama started around 10,000 cal yr BP, this suggests that the 

Congo River mainstem obtained its contemporary position cutting through this peatland basin 

sometime after 10,000 BP. It has been proposed that the modern, ‘sickle’ shape of the Congo 

River was already established in the Early Pleistocene (~2 million years ago; Flugel et al., 2015), 

implying that this section of the river was previously located further to the west, before eroding 

away part of the Lokolama peat dome.  

 

The long-term rate of carbon accumulation (LORCA) at Lokolama (37 g C m-2 yr-1) is more than 

triple/double that at Ikelemba and Ekolongouma (12 and 19 g C m-2 yr-1, respectively). Even 

though these latter two sites differ strongly in terms of hydrology and initiation age, their long-

term rates of carbon accumulation are in line with the pantropical Holocene average of 12.8 g C 

m−2 yr−1 (Yu et al., 2010). The slope of the age-depth models also appears relatively similar during 

the Holocene for both Ikelemba and Ekolongouma. Given that peat formation at Lokolama and 

Ekolongouma started around the same time and these locations are just ~100 km apart, a 

climatic difference is not the likely explanation for the higher accumulation rates at Lokolama. 

The largest slopes in Lokolama’s age-depth model are observed near the base of the core, 

suggesting either very wet conditions and low rates of decomposition, high rates of biomass 
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productivity, or a combination of both during peat initiation at this site. This corresponds with 

the hypothesized process of terrestrialisation of a former lake or waterlogged depression, which 

would imply very wet conditions in the early phase of formation. Biomass productivity is not 

expected to vary considerably between established peat swamp forests in Lokolama and 

Ikelemba, but it could be that the lacustrine vegetation during early peat formation at Lokolama 

was also more productive than the riparian vegetation that likely dominated at Ikelemba. 

Furthermore, if climate is not thought to be a sufficient explanation, site-specific 

geomorphological factors must play a role in sustaining the wetter conditions. In the case of 

Lokolama, it is likely that the ancient lake could have been connected to the Congo River before 

becoming terrestrialised, thereby guaranteeing sufficiently wet conditions throughout the early 

stages of the peatland’s development. For example, it has been documented how the 

contemporary Congo River sometimes discharges into Lake Tumba during the high-water 

season. There are also reports of Congo River fish species being found several kilometres away 

from the river inside the Lokolama peatland area (R. Monsembula, pers. comm.), suggesting 

river water is sometimes feeding the western side of this peat dome during the wet season. Such 

a connection could imply more sustained waterlogging and therefore higher net apparent 

accumulation rates in the early Holocene, compared to Ekolongouma and Ikelemba. After ~ 

7,500 cal yr BP (2.65 m depth), the slope of the age-dept model decrease at Lokolama, which 

coincides with a shift towards larger Fe/Ti-ratios. This could potentially be interpreted as a likely 

shift towards ombrotrophic conditions as the peat surface grows above the former lake’s water 

table and becomes more susceptible to drought conditions related to rainfall. However, more 

detail dating of these three cores, as well as other cores from different sites, is needed to 

disentangle the local patterns from region-wide processes. 
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4.7 Conclusion 

The aims of this chapter were to characterise and classify the hydrology, geochemistry and age 

of river-bound peatlands in the DRC. I have done so by comparing the seasonal inundation 

patterns, nutrient status, and basal ages of river-influenced peatlands along the Ikelemba 

transect with the non-river-influenced peatlands of the Lokolama transect, as well as with 

interfluvial basin peatlands from the Ekolongouma transect previously analysed in ROC (Dargie 

et al., 2017). I conclude that the river-influenced peatlands in DRC are extremely nutrient-poor, 

with a mean (± s.d.) Ca/Mg-ratio of surface peat samples of 1.76 (± 0.74), which is typically lower 

than that of either peat pore/surface water, river water or rainwater. However, these nutrient-

poor peatlands receive seasonal river water input through overbank flow from blackwater rivers, 

as indicated by large seasonal fluctuations in water table height of close to a meter along the 

Ikelemba transect. This contrast with significantly lower water table fluctuations in the non-

river-influenced peatland of Lokolama. This blackwater status of river water is indicated by the 

low river water pH of 3.20 (± 0.54), while mean electrical conductivity of river water is only 39.5 

(± 14.7) μS cm-1. The low-nutrient status of this river water explains why – contrary to what 

would be expected – peat can be found in river-influenced swamps. I therefore conclude that 

these peatlands are partially river-fed, yet do not classify as minerotrophic, given their poor 

nutrient-status.  

 

In addition, there is evidence to suggest that the river-influenced peatlands might episodically 

receive water input through (sub)surface runoff from terra firma uplands. I analysed the first 

microtopography data from peat swamp forests in the central Congo Basin, finding that 

Ikelemba, on average, exhibited less microtopography than Lokolama, with IKE_5.0 having the 

lowest local height differences of all sites that were measured. This could suggest greater 

drainage efficiency along the Ikelemba transect. Together with the observed larger fluctuations 

in water table drawdown and recharge, as well as increase Ca/Mg-ratios along the Bolengo 

transect after rainfall, this points towards upland runoff as an additionally water supply to the 

river-influenced peatlands. However, more research is needed to quantify the relative 

importance of these different water fluxes.  

 

The river valley peatlands started forming during the Late Pleistocene, with radiocarbon dating 

of the base of the thickest Ikelemba peat core revealing an age of between 41,200 and 43,800 

calibrated years Before Present. This is over 20,000 years before the formation of ombrotrophic 

peat domes started in interfluvial basins in the ROC (Dargie et al., 2017; G. Dargie, unpublished 
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data). Radiocarbon dating of the base of the thickest Lokolama peat core, which is not river-

influenced, gives an age of between 10,300 and 10,600 calibrated years Before Present, similar 

to reported basal dates from interfluvial basins in the ROC. This suggests that the Late 

Pleistocene peatland initiation was possibly restricted to river-influenced settings only. The 

discovery of extensive nutrient-poor seasonally inundated peat swamps in DRC, in addition to 

the previously known ombrotrophic-like interfluvial basin peatlands, reveals that there is an 

additional geomorphological setting in the central Congo Basin region where peat is formed. 

Based on the pre-Holocene age of the river valley peatlands, I also conclude that peat initiation 

was not limited to the warmer and wetter conditions following the Last Glacial Maximum, but 

to some extent also occurred under the different climatic conditions of the Late Pleistocene. 

 

  



183 
 

Chapter 5: Mapping the peat swamp forests of the central Congo 

Basin 

 

5.1 Abstract 

The Cuvette Centrale peatlands are estimated to cover an area of 145,500 km2 (95% CI, 131,900 

– 156,400 km2) (Dargie et al., 2017). However, the field data used to calibrate and validate this 

prediction was limited to only one region in the north of the Republic of the Congo and to only 

one peatland type, rain-fed interfluvial basins. In this chapter, I develop a second-generation 

map of peatland distribution based on extensive new field data from the Democratic Republic 

of Congo, including from river-influenced peatlands. I use associations between peat and 

vegetation, and remotely-sensed data to produce maps of peatland distribution. I assessed 

optical, radar and topographic input variables and a series of possible algorithms to generate an 

improved map. The most accurate model included three optical bands (Landsat 7 ETM+ SWIR 1, 

NIR and Red), three radar bands (ALOS PALSAR HV and HH, and the ratio), absolute elevation 

(SRTM Digital Elevation Model), relative elevation (SRTM-derived Height Above the Nearest 

Drainage point) and slope (SRTM-derived). I also tested three supervised landcover classification 

algorithms: Maximum Likelihood (ML), Support Vector Machine (SVM) and Random Forest (RF). 

The more complex SVM and RF classifiers were not found to improve model performances 

compared with ML, based on their lesser ability to accurately predict peat in regions from which 

no training data was included, assessed via spatial cross-validation. The ML model, based on the 

new field data from both DRC and the original ROC data combined, predicts a median total 

peatland area of 167,600 km2 (95% confidence interval, 159,400 - 175,100 km2), based on 1,000 

runs using two-thirds of the ground truth data as training data, giving a peatland probability map 

at 50 m resolution. This area estimate represents an increase of 15% compared with Dargie et 

al. (2017). The additional peatland areas are found at the fringes of the peatland complex in the 

DRC. Both maps consistently predict large areas of peatland in the central depression of the 

Cuvette Centrale. Overall model performance of my new model, as assessed using the Matthews 

correlation coefficient, is 78.0% (95% CI, 74.2-81.6%). In addition, the development of a map of 

inundation frequency highlights the regions where seasonally inundated river-influenced 

peatlands are expected to be found, mostly in DRC. Furthermore, a large and understudied area 

of permanently inundated palm swamp forest is detected east of Lake Mai-Ndombe in DRC. 

From this map of inundation frequency, it is estimated that about a quarter of the total peatland 

area is seasonally inundated, particularly along the Congo River and its eastern tributaries in 
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DRC, while about a fifth of the peatlands is estimated to be permanently inundated by standing 

water. Slightly over half of the peatland complex is estimated to be permanently waterlogged 

yet rarely experiencing inundations of standing water above the surface. 

 

 

  



185 
 

5.2 Introduction 

Only two estimates of peatland area extent are available for the central Congo Basin. According 

to Dargie et al. (2017), the Congolese peatlands cover an estimated 145,500 km2, which is the 

only published estimate so far that is based on field data. However, Dargie et al. (2017) report a 

95% confidence interval of 131,900 – 156,400 km2, highlighting the uncertainty that remains 

around this estimate. Independently, Gumbricht et al. (2017) have estimated the size of the 

Cuvette Centrale peatlands to be 125,440 km2, using a rules-based approach based on 

hydrological modelling and remotely-sensed data alone. This figure falls outside the 95% 

confidence interval reported by Dargie et al. (2017), indicating that real uncertainty could be 

higher than reported and that robust mapping of peatland extent requires more field data on 

peat-vegetation associations, as to date no satellite can directly detect peat. Whilst the use of 

in situ data by Dargie et al. (2017) warrants more confidence in their estimate, uncertainty is 

reinforced by the fact that this estimate is based on field data from interfluvial basins in a single 

region of northern Republic of the Congo, whereas two-thirds of the Cuvette Centrale peatlands 

are estimated to be located in neighbouring Democratic Republic of Congo, including large areas 

with a different hydro-geomorphology. 

 

Two types of uncertainty can be distinguished when assessing model predictions such as those 

of peatland extent: statistical (aleatoric) and systemic (epistemic) uncertainty. Statistical 

uncertainty derives from inherently random effects in the data. Systemic uncertainty derives 

from a lack of knowledge about either model structure and parameters, or forcing and response 

data (Beven, 2016; Hüllermeier & Waegeman, 2021). Systemic uncertainty is difficult to 

quantify, but can in theory be reduced by adding more data or by making the model structure 

more representative of reality. Statistical uncertainty, on the other hand, can be formally 

analysed with statistical probability distributions if normality assumptions are met (Hüllermeier 

& Waegeman, 2021). This means that statistical uncertainty around peatland area predictions 

can be quantified if sampling data is spatially representative, for example, using a well-designed 

random sampling approach (Olofsson et al., 2014).  

 

Such a formal statistical approach to assess uncertainty is not possible in the case of the 

Congolese peatlands, however, where field data is highly clustered around transects that are 

not spatially representative, due to the logistical challenges of doing fieldwork in the region. 

Instead, Dargie et al. (2017) used 1,000 random Monte Carlo cross-validations (CV) to derive a 

95% confidence interval around their area estimate. In this resampling approach, a stratified 
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random two-thirds of all ground-truth data is used to train the model, while the remaining one-

third is used as validation data. This random separation of training and validation data is slightly 

different for each of the 1,000 model runs, producing a consensus classification with a spatial 

assessment of uncertainty (Lyons et al., 2018).  

 

However, as the number of transects is limited, compared to the number of datapoints per 

transect, it is very likely that multiple datapoints from each transect are selected as part of the 

training dataset in each run. This means that the 1,000 runs do not differ significantly in the 

large-scale spatial distribution of their samples throughout the Cuvette Centrale (~100 km). 

Instead, the random Monte Carlo cross-validation more strongly tests how well the model 

performs on the transect scale (~10 km), at which spatial autocorrelation is likely to play an 

important role (Legendre, 1993; Ploton et al., 2020a). This means that spatial autocorrelation 

could dominate real environmental effects (Bahn & Mcgill, 2007; Parmentier et al., 2011). The 

95% confidence interval that is reported by Dargie et al. (2017) therefore reflects statistical 

uncertainty from randomness, with more weight on the local scale, at the expense of capturing 

systemic uncertainty from a lack of data across large parts of the map area.  

 

As random Monte Carlo cross-validation is not able to fully assess systemic uncertainties (Beven, 

2016), true uncertainty in peatland area estimates will likely be larger than reported. To better 

assess these systemic uncertainties, different classification algorithms and model configurations 

need to be compared in order to assess uncertainty that stems from model choice. In addition, 

one has to test how well the models perform in areas far-away from any training data, in order 

to assess uncertainty from a lack of spatially representative input data. One way to do this is by 

applying a spatial cross-validation strategy (Ploton et al., 2020a; Roberts et al., 2017). In such an 

approach, rather than randomly selecting test data with the same spatial distribution as the 

training data, the test data is confined to a specific map region from which no training data was 

used. This can provide a better assessment of how well the model extrapolates into unknown 

map areas. Dargie et al. (2017) report that they tested Maximum Likelihood, minimum distance, 

Mahalanobis distance, neural networks and support vector machine algorithms, finding the best 

results for Maximum Likelihood. However, this was not tested using a spatial cross-validation 

approach, meaning it is unclear how well this model predicts in areas without any data. 

 

However, there is considerable debate in geospatial ecology about the use of spatial cross-

validation strategies for large-scale mapping purposes. For example, Wadoux et al. (2021) 
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recently argued explicitly against using spatial CV because it is inherently subjective, given the 

way that the partitioning is implemented. They further point to an inherent paradox in the 

spatial CV approach, as on the one hand it aims to exclude testing data that is geographically 

close to the training data, while it on the other hand also aims to avoid extrapolation in unknown 

geographic and covariate space. However, extrapolating in unknown space appears sometimes 

unavoidable, such as in the case of the Congo Basin, where design-based probability sampling is 

not possible.  

 

One way to overcome this paradox is to first use spatial CV strategies to assess systemic 

modelling uncertainties from extrapolating into unknown space, while later using a random CV 

approach to include data from as many different regions as possible and get the best predictions 

across the entire map area. Furthermore, Meyer & Pebesma (2021, 2022) recommend that 

large-scale mapping studies that apply spatial CV need to provide reliable indication of 

prediction errors, or define ‘areas of applicability’ that prevent extrapolation outside predictor 

space. Moreover, Meyer et al. (2019) caution against the use of highly autocorrelated spatial 

predictor variables (such as geographic latitude/longitude) which can lead to considerable 

overfitting of the model.  

 

In this chapter, I produce a new map of the central Congo Basin peatlands. I also test both 

statistical and systemic uncertainty in peatland distribution models for the central Congo Basin. 

I do so by adding new ground-truth data collected in the river-influenced swamps of the DRC to 

previous data collected in ROC by Dargie et al. (2017). I will then use this larger and spatially 

more representative dataset to assess systemic uncertainty stemming from (i) model 

configurations, by comparing multiple combinations of remote sensing input products and 

supervised classification algorithms; and (ii) from limited spatial representativeness of the data 

across the region, by using spatial CV to test how well different classification algorithms perform 

in areas from which they haven’t been given any training data. I will use these comparisons to 

select the best model of peatland distribution in the central Congo Basin and derive a best new 

estimate of total peatland area using random CV.  

 

Furthermore, since previous chapters have described the importance of seasonally inundated 

peat swamp forests in the DRC, I will use multi-temporal synthetic-aperture radar (SAR) data to 

develop a map of inundation frequency that can be used to assess the spatial distribution of this 

specific peat swamp vegetation type. Because multi-temporal SAR data is not available across 
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the whole of the central Congo Basin, and mindful of the uncertainties surrounding large-scale 

mapping studies as just discussed, this map will not feature as input in the peatland distribution 

models, and only serves as a first attempt to understand the distribution of this vegetation type 

across a portion of the central Congo peatlands.  

 

 

5.3 Chapter aims 

The overall aim of this chapter is to use ground-truth data from the Democratic Republic of the 

Congo to develop a more accurate map of peatland distribution across the central Congo Basin.  

In addition, it is aimed to develop a better understanding of the spatial distribution of the 

seasonally inundated mixed peat swamp forest type identified in DRC. The specific objectives of 

this chapter are: (i) to test various remote-sensing products and machine learning algorithms to 

construct a robust 50 m resolution landcover classification model of the central Congo Basin 

peatlands and surrounding region; (ii) to estimate the total extent of the peat swamp forests 

across the central Congo Basin; and (iii) to develop a first map of inundation frequency across a 

major part of the peatlands to delineate seasonally inundated mixed peat swamps.  
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5.4 Methods 

 

5.4.1 Collection of ground-truth data 

Satellites cannot detect peat directly. Therefore, field-based associations between peat and 

swamp forest vegetation have to be used to infer the presence of peat, in combination with 

geomorphological features (Lawson et al., 2015). Five landcover classes were used for the 

purpose of peatland mapping: water, savanna, palm-dominated peat swamp forest, hardwood-

dominated peat swamp forest, and non-peat forming forest. In this classification, field 

recordings of non-peat-forming seasonally inundated forest (< 30 cm thickness of ≥ 65% OM) 

are grouped together with field recordings of terra firme forest, which also does not form peat, 

to form the non-peat-forming forest class. Field recordings of hardwood- or palm-dominated 

peat swamp forest, by definition, consist of all forest sites that were found to form peat, 

including any seasonally inundated forest that forms peat (≥ 30 cm of ≥ 65% OM).  

 

 
Figure 5.1. Spatial distribution of ground-truth datapoints used for mapping peatland 
distribution. Only the palm-dominated and hardwood-dominated peat swamp forest classes (e, 
f) are associated with the presence of peat. Terra firme forest (c) and non-peat forming 
seasonally inundated forest (d) are combined into a single non-peat forming forest class for 
mapping purposes. The baselayer consists of three Landsat 7 ETM+ bands (SWIR 1, NIR and Red 
bands as red, green and blue, respectively), reflecting different forest types (shades of green), 
open savanna (pink), agricultural land (yellow) and open water (blue). 
 

A total of 1,736 ground-truth datapoints was used, more than triple the number used by Dargie 

et al. (2017). Of these, 172 are in water, 476 in savanna, 632 in non-peat forming forest (97 in 

non-peat forming seasonally inundated forest, and 535 in terra firme forest), 188 in palm-
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dominated peat swamp forest, and 268 in hardwood-dominated peat swamp forest. The spatial 

distribution of each class is shown in Figure 5.1. 

 

Data source  Water   Savanna   Non-peat  
 forming forest   
 (incl. seasonally   
inundated forest) 

Palm- 
dominated 
peat swamp 
forest  

 Hardwood-  
 dominated  
 peat swamp   
 forest  

 Total  
 peat 
 swamp  
 forest  

 Total  

DRC fieldwork  
(Chapter 2, this thesis) 

19 26 59 (9) 65 90 155 259 

DRC Congo River 
(CongoPeat project) 

0 6 46 (46) 25 46 71 123 

ROC fieldwork  
(Dargie et al., 2017) 

0  13  66 (34)  90  123  213  292  

Archaeological 
database  
(Seidensticker, 2020; 
Seidensticker et al.,  
2021) 

0  128  171  0  0  0  299  

AfriTRON / 
ForestPlots.net  
(Lopez-Gonzalez et al., 
2009, 2011; Hubau et 
al., 2020) 

0  0  186 (1)  0  5  5  191  

Forest and  
savanna sites around 
Lomami NP  
(pers.comm.,  
R. Batumike, G. 
Imani and A. Cuní-
Sanchez, 2020). 

0  134  95  0  0  0  229  

Savanna around 
Lomami NP  
(Batumike et al., 
2020).  

0  24  0  0  0  0  24  

Palaeo-archaeological 
research  
(Kiahtipes & Schefuß, 
2019 

0  2  9 (7)  8  4  12  23  

Google Earth 
 

153  143  0  0  0  0  296  

Total  
 

172  476  632 (97)  188  268  456  1,736  

Table 5.1. Ground-truth sample sizes and data sources for mapping peatland distribution. Only 
hardwood- and palm-dominated swamp forest is associated with the presence of peat. Total 
peat swamp forest includes both hardwood- and palm-dominated peat swamp forest types. Non-
peat-forming forests consist of terra firme, as well as seasonally inundated forest that does not 
form peat (number of datapoints given in parentheses, if present).  
 

The 1,736 datapoints originate from nine sources, as detailed in Table 5.1. Firstly, ground-truth 

locations were collected using a GPS (Garmin GPSMAP 64s) at all sites for which a landcover 

class was recorded along the 11 transects in DRC, as presented in Chapter 2. This dataset totals 
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259 ground-truth datapoints. Secondly, I added 123 ground-truth datapoints from seven similar 

transects (0.5-11 km in length) along the Congo River mainstem, also in DRC (S. Lewis, G. Dargie 

and the CongoPeat consortium, unpublished data). These transects were sampled by a team of 

the CongoPeat project in Jan-Mar 2020, consisting of Dr. Greta Dargie, Joseph Kanyama, Pierre 

Bola and Ovide Emba, using the same field methodology as described in Chapter 2. The Congo 

River sites were included to increase the sample size of ground-truth data and provide another 

likely river-influenced region of sampling within the Cuvette Centrale. The locations of these 

seven additional transects are shown in Figure 5.4. Third, I added published ground-truth data 

from the nine transects sampled by Dargie et al. (2017), which are located in largely interfluvial 

basins in ROC (292 points). Fourth, I added 299 GPS locations of known savanna and terra firme 

forest landcover classes from archaeological research databases across the basin (Seidensticker, 

2020; Seidensticker et al., 2021). Fifth, I added 191 GPS locations from permanent long-term 

forest inventory plots of the African Tropical Rainforest Observation Network (AfriTRON), 

retrieved in July 2018 from the ForestPlots.net database (Lopez-Gonzalez et al., 2009, 2011). 

These included mostly terra firme forest sites (Hubau et al., 2020). Sixth, 229 GPS datapoints 

from known terra firme forest and savanna locations in and around Lomami National Park were 

added (pers. comm., R. Batumike, G. Imani and A. Cuní-Sanchez, 2020). Seventh, I also added 24 

published savanna datapoints in and around Lomami NP (Batumike et al., 2020). Eighth, I added 

23 published locations of savanna, terra firme forest, palm- or hardwood-dominated peat 

swamp forest in DRC wetlands (Kiahtipes & Schefuß, 2019). Nineth, I added 296 datapoints 

selected in Google Earth for unambiguous savanna and water sites (middle of lakes or rivers), 

distributed across the region. Together, as far as I aware, the data on peat swamp vegetation 

locations that I used represents all the known field data that is available from peat swamp 

forests across the region. 

 

Because the landcover classification of swamp forest sites depends on the thickness of the 

measured organic matter layer (classified as peat swamp if ≥ 30 cm of ≥ 65% OM, otherwise 

classified as non-peat-forming forest), a representative calibration of the pole-method estimate 

is required. The calibration used here was a linear regression model between all LOI-verified and 

pole-method peat thickness measurements sampled at the same location across a wider dataset 

than the 40 sites analysed in Chapter 2. I used 96 sites from across ROC and DRC, including 18 

from the Congo River transects in DRC and 37 from ROC, obtained from Dargie et al. (2017). 

Three measurements from DRC, with a Cook’s distance > 4x the mean Cook’s distance, were 

excluded as influential outliers that under-  (BDM_7.0) or overestimate the correction (LOK_1.0 
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and PEK_10.0). The mean pole-method offset was found to be significantly higher in DRC (0.94 

m) than along those in ROC (0.48 m; p<0.001), due to the presence of softer alluvium substrate 

in river-influenced sites in DRC. I therefore added this binary grouping as a categorical variable 

to the regression. The resulting model (adj-R2 = 0.95, n=93, p<0.001; Figure 5.2) was used to 

correct all pole-method estimates of peat thickness across the central Congo Basin dataset of 

ground-truth points for which no LOI-verified peat thickness was available:  

𝑇𝑐𝑜𝑟𝑟 = 0.8626 ∗ 𝑇𝑝𝑜𝑙𝑒 − 0.3248 ∗ 𝐶𝑜𝑢𝑛𝑡𝑟𝑦 −  0.176  [Eq. 5.1] 

Here, Tcorr is the corrected peat thickness (m) and Tpole is the pole-measured peat thickness (m), 

while Country is dummy coded as either ROC (0) or DRC (1). 

 

 
Figure 5.2. Linear regression model to correct pole-method peat thickness measurements 
across the central Congo Basin. The plot shows the relationship between peat thickness (m) 
estimated using the pole-method and laboratory-verified peat thickness (m) using Loss-On-
Ignition (LOI). Datapoints are coloured by region. Best-fitting line: corrected peat thickness = -
0.1760 + 0.8626 x (pole-method thickness) -0.3284 x (country); n=93, adj-R2=0.95; p<0.001. 
Country is dummy coded as: ROC (0) and DRC (1). Shaded grey shows 95% confidence intervals. 
Outliers (n=3) with > 4x the mean Cook’s distance are excluded from the analysis: LOK_1.0 (LOI: 
4.1 m; pole-method: 6.1 m), BDM_7.0 (LOI: 5.7 m; pole-method: 6.2 m), and PEK_10.0 (LOI: 5.4 
m; pole-method: 8.6 m). 
 

 

5.4.2 Remote-sensing products 

Various remote-sensing products were tested as input data for mapping peat distribution across 

the central Congo Basin. This was done by in turn changing either the optical (Landsat 7 ETM+), 

radar (ALOS PALSAR) or topographic (SRTM elevation and slope) data products used by Dargie 
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et al. (2017), while keeping all other remote sensing products the same, and comparing model 

performances against the unchanged combination of bands.  

 

Specifically, I first made a comparison between models using either absolute or relative 

elevation products, or a combination of both. Secondly, I made a separate comparison of 

different sources of optical, radar and topographic dataproducts: 

- Landsat 7 ETM+ vs. Sentinel-2 (optical bands); 

- ALOS PALSAR vs. ALOS-2 PALSAR-2 (radar bands); 

- SRTM vs. NASADEM vs. MERIT (topographic bands). 

Each of these comparisons will be discussed in more detail below.  

 

In all cases prior to running the models, remote-sensing products were processed in IDL-ENVI-

software (version 8.7-5.5) and resampled to 50 m resolution using the ‘cubic convolution’ 

method. To limit computation time, principal component analysis (PCA) was then applied to 

reduce the different combinations of remote-sensing products to six uncorrelated principal 

components. I then tested 1,000 supervised Maximum Likelihood (ML) landcover classifications 

for each combination of remote sensing bands, based on an initial subset of 1,722 datapoints 

from DRC and ROC (174 water, 474 savanna, 610 non-peat-forming forest, 196 palm-dominated 

peat swamp forest, and 268 hardwood-dominated peat swamp forest). For each combination of 

input products, I used random Monte Carlo cross-validation to produce a consensus accuracy 

with assessment of uncertainty (Lyons et al., 2018), similarly to how Dargie et al. (2017) assessed 

model uncertainty. This was done by training each of 1,000 runs on a stratified random selection 

of two-thirds of all ground-truth datapoints (training data) and predicting landcover class for 

each of the remaining one-third datapoints (testing data). Model performance was then 

assessed by comparing the median Matthews correlation coefficients (MCC) of the binary 

peat/non-peat classifications from the 1,000 runs, alongside a 95% confidence interval. In the 

binary classification, predictions of hardwood- and palm-dominated peat swamp forest classes 

were combined into one peat class, while predictions of non-peat-forming forest, savanna and 

water were combined into a non-peat class, as this distinction is the most relevant for 

belowground carbon stock estimations.  

 

Matthews correlation coefficient (MCC) was calculated with the following equation: 

𝑀𝐶𝐶 =  
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)∗(𝑇𝑃+𝐹𝑁)∗(𝑇𝑁+𝐹𝑃)∗(𝑇𝑁+𝑇𝑁)
    [Eq. 5.2] 
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Here, TP is the number of correctly classified peat datapoints (true positive), TN is the number 

of correctly classified non-peat datapoints (true negative), FP is the number of falsely classified 

peat datapoints (false positive), and FN is the number of falsely classified non-peat datapoints 

(false negative). I compared MCC, rather than popular metrics such as Cohen’s kappa, F1-score 

or accuracy, because MCC takes into account both true and false positives and negatives, and is 

thought to be the most reliable evaluation metric for binary classifications (Chicco & Jurman, 

2020; Powers, 2011).  

 

The comparison between absolute and relative elevations was performed in IDL-ENVI software 

by generating peat predictions for the entire map area, to allow a comparison of peatland area 

estimates between the different models and with the results of Dargie et al. (2017). For this, 

predicted landcover classes were obtained as the most likely class per pixel (> 50%) out of 1,000 

runs. All other comparisons for optical, radar and topographic products were performed in R 

software (using the superClass function from RStoolbox package, version 0.2.6) with the ground-

truth datapoints only. To reduce computation times, these runs were used only to assess model 

performances by predicting landcover classes for the one-third validation dataset, and not to 

predict peatland distributions across the wider map area. 

 

Absolute and relative elevation 

Firstly, I tested whether prediction accuracy could be improved by changing the elevation data 

used in the model. Dargie et al. (2017) rely on absolute elevation above sea level, while 

Gumbricht et al. (2017) also include hydrological terrain relief, a potentially more useful 

topographic predictor variable of peat. Hydrological terrain relief is measured as height above 

the nearest drainage point (HAND), which normalises topography according to local relative 

heights along the drainage network (Nobre et al., 2011). This could be more useful than 

normalization with respect to sea level, given the Cuvette Centrale’s location far away from the 

sea in an intracratonic basin. Previous studies have shown how the HAND-index is an important 

predictor of inundation potential (Aristizabal et al., 2020; Nobre et al., 2016) and peat attributes 

such as depth (Gumbricht et al., 2017). To optimize the peat prediction model, I therefore tested 

the addition of a HAND-index to the eight remote sensing products previously used by Dargie et 

al. (2017). This was done by comparing models that included just the SRTM DEM (absolute 

elevation only; similar to Dargie et al., 2017), just the HAND-index (relative elevation only), or 

both SRTM DEM and HAND (absolute and relative elevation combined). The HAND-index was 

derived from the SRTM DEM with  Clubb et al.'s algorithm (2017), using the HydroSHEDS global 
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river network at 15s resolution as reference product of nearest drainage point (Lehner et al., 

2008), which is one of the most frequently applied global hydrographic mapping products 

(Lindersson et al., 2020).  

 

Optical products 

Dargie et al.’s (2017) peatland distribution model was trained on pre-processed optical data 

from Landsat 7 ETM+ (SWIR 1, NIR and Red bands), which is freely available across the Congo 

basin (OSFAC, 2014). These dataproducts are seamless cloud-free mosaics at 60 m spatial 

resolution developed for either ROC (image composite of the medians of 2000, 2005 and 2010; 

OSFAC, 2014) or DRC (image composite of 2005-2010; Potapov et al., 2012; OSFAC, 2014). To 

test if model accuracy could be improved with more recent data at higher spatial resolution, I 

created new optical mosaics for the central Congo Basin with imagery from the European Spaca 

Agency’s (ESA) Sentinel-2 MultiSpectral Instrument (MSI). Sentinel-2 MSI data is available since 

mid-2015 at 10 and 20 m resolution (ESA, 2021). 

 

Three image composites of Sentinel-2 Level-1C products (bands 5, 8A and 11) were constructed 

from cloud-masked images over the same map area, which were acquisitioned between January 

1, 2016 and January 1, 2021 (Copernicus Sentinel data, processed by ESA). Bands 5 (vegetation 

red edge), band 8A (narrow Near Infra-Red) and band 11 (Short Wave Infra-Red) were chosen 

to mirror the three Landsat 7 ETM+ bands used by Dargie et al. (2017). The images were 

obtained from Google Earth Engine (GEE), a free cloud-based platform for large-scale geospatial 

analysis (Gorelick et al., 2017), representing top-of-atmosphere (TOA) reflectance at 20 m spatial 

resolution. TOA reflectance was chosen, rather than atmospherically-corrected bottom-of-

atmosphere (BOA) reflectance (Level-2A), because the Landsat 7 ETM+ imagery also includes 

TOA reflectance (Potapov et al., 2012; OSFAC, 2014). It has recently been shown that TOA 

imagery could be more accurate than BOA imagery in machine learning applications because 

the atmospheric correction causes a loss of information that affects the multispectral-in situ 

relationships (Medina-Lopez, 2020). Specifically, atmospheric correction seems to be smoothing 

out reflectance patterns that could be useful for training the machine learning model. 

Nonetheless, bidirectional reflectance effects resulting from differing surface reflectances 

between neighbouring images can cause stripy artefacts in optical remote sensing images, 

distorting the image classification. To reduce these artefacts in the new Sentinel-2 mosaics, I 

developed three normalised indices for each of three possible band combinations. Combining 
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bands 5 and 8A, bands 8A and 11, and bands 5 and 11, these indices were produced with the 

following band math calculation in IDL-ENVI software: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑖𝑛𝑑𝑒𝑥 𝑏𝑎𝑛𝑑𝑠 𝑋/𝑌 =
𝑏𝑎𝑛𝑑 𝑋−𝑏𝑎𝑛𝑑 𝑌

𝑏𝑎𝑛𝑑 𝑋+𝑏𝑎𝑛𝑑 𝑌
   [Eq. 5.3] 

Here, bands X and Y represent one of the three possible band combinations.  

 

Radar products 

Similar to the optical products, a more recent version of the ALOS PALSAR radar data was 

developed at higher spatial resolution. The ALOS PALSAR radar bands (HV, HH and HV/HH-ratio) 

used by Dargie et al. (2017) were mosaics of mean annual composites for the years 2007-2009 

at 50 m resolution. To update this, I obtained freely-available yearly orthorectified HV and HH 

mosaics of ALOS-2 PALSAR-2 radar data at 25 m resolution from the Japan Aerospace Exploration 

Agency (JAXA) for the years 2015, 2016 and 2017 (JAXA, 1997). I mosaiced these into region-

wide composites, after which they were converted from raw digital numbers to backscatter 

values in decibels (σ0, sigma naught) using the following equation in IDL-ENVI software (Shimada 

et al., 2009): 

𝜎0 = 10 ∗ 𝑙𝑜𝑔10(𝐷𝑁2) − 83     [Eq. 5.4] 

Here, DN is the value of the HV or HH mosaic for each of the three years in digital numbers. Each 

yearly mosaic converted to decibels was then smoothed using an Enhanced Lee-adaptive filter 

with 3x3 kernel size (Lopes et al., 1990) to remove speckle. Similar to Dargie et al. (2017), the 

average of the three years was then calculated for both HV and HH composites in order to 

remove any annual temporal variation.  

 

 
Figure 5.3. Illustration of L-band radar backscattering mechanisms. a, In non-flooded forests, 
radar signals scatter in tree crowns and on the ground, resulting in limited backscatter (red 
arrows) and a darker image. b, In flooded forests, a strong ‘double bounce’ mechanism of 
reflection on tree trunks and the water surface results in increased backscatter and a brighter 
image. The double bounce mechanism is stronger with single-polarized HH than with cross-
polarized HV radar signals. Image reproduced from Rosenqvist (2009).   
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A third band with HV/HH-ratios was then created using the following equation in IDL-ENVI: 

𝐻𝑉

𝐻𝐻
= (10

(
𝑏1

10
)
)/(10

(
𝑏2

10
)
)     [Eq. 5.5] 

Here, b1 is the mean HV σ-mosaic over three years and b2 is the mean HH σ-mosaic over three 

years. This equation highlights the difference between HV and HH. Areas of flooded forest often 

have higher proportions of HH backscatter than non-flooded forests, due to the double-bounce 

mechanism whereby the radar signal first bounces off the tree trunks and is then reflected back 

from the surface by standing water, as shown in Figure 5.3 (Manavalan, 2018; Richards et al., 

1987). However, this is not the case for cross-polarized HV signals, which result predominantly 

from volume scattering in tree tops (Martinis & Rieke, 2015; Wang et al., 1995). Hence, areas 

with lower ratios of HV over HH are likely indicative of flooded forests. Together with the primary 

HV and HH bands, this provides three ALOS-2 PALSAR-2 bands (HV, HH and HV/HH), to compare 

with the three ALOS PALSAR bands used by Dargie et al. (2017).  

 

Topographic products 

The DEM (absolute elevation) and slope maps used by Dargie et al. (2017) are derived from 

SRTM-data (USGS, 2006), which is void-filled with ASTER GDEM version 2 elevation data 

(NASA/METI, 2011) at 1-arc second resolution (equivalent to 30 m). SRTM elevation data has 

been shown to be prone to significant vertical errors, especially in heavily vegetated areas, due 

to the relatively weak penetration of C-band radar in canopy vegetation. This is likely to 

considerably affect inundation mapping in forested wetlands (Baugh et al., 2013; O’Loughlin et 

al., 2016). In order to overcome this limitation, I tested an error-adjusted version of the SRTM 

DEM that accounts for the known tree height bias, called the ‘Multi-Error-Removed Improved-

Terrain DEM’ (MERIT DEM; Yamazaki et al., 2017). Multiple comparative studies have shown the 

improved accuracy of the MERIT DEM over SRTM DEM (e.g., Hirt, 2018; Tavares da Costa et al., 

2019), particularly in (vegetated) floodplain sites (Hawker et al., 2018, 2019). A HAND-index has 

already been derived from MERIT DEM by these same authors (Yamazaki et al., 2019), which I 

used for comparison with the SRTM-derived HAND-index described above. Like Dargie et al. 

(2017) did with the SRTM DEM, I also derived a slope map (in degrees) based on the MERIT DEM. 

This was done using the Topographic Modelling tool in IDL-ENVI software, with default kernel 

size of 3. Similar to Dargie et al. (2017), the resulting file was converted to a byte file to reduce 

size, whereby all slope values ≤ 25 were multiplied by 10 and all values > 25 were given a value 

of 250.  

 



198 
 

In addition to the SRTM-derived and MERIT-derived sets of three topographic dataproducts 

(DEM, HAND and slope), I also tested a set of topographic products derived from NASADEM. 

NASADEM is a 30-m resolution, updated digital elevation model (NASA/JPL, 2020). It is derived 

from the same SRTM-data as the original SRTM DEM, but has improved data processing, 

elevation control, and void-filling. A slope and HAND-index were derived from NASADEM, similar 

to how the slope and HAND-index were derived from the original SRTM DEM. 

 

 

5.4.3 Machine learning algorithms 

In addition to remote sensing input products, I tested which classification algorithm to use, as 

more sophisticated algorithms might improve overall accuracy against the training dataset, yet 

might also reduce regional accuracy of the map in areas that are far away from test data, critical 

in this case given large areas of the central Congo Basin peatlands remain unsampled. Three 

supervised classification algorithms were tested in order of increasing complexity: Maximum 

Likelihood (ML), Support Vector Machine (SVM) and Random Forest (RF). Maximum Likelihood 

is one of the most common classification algorithms in remote sensing. It assumes that the 

statistics for each class in each band are normally distributed when calculating the probability 

that a given pixel belongs to a specific class (Richards & Jia, 2006). Support Vector Machine 

(SVM) is a more complex approach that aims to find a hyperplane that maximises the margin 

between data-points in N-dimensional space, where N equals the number of predictor variables 

(Burges, 1998). Finally, Random Forest (RF) is an ensemble machine learning method that 

combines multiple decisions trees that are trained using bootstrap aggregating and random 

feature selection (Breiman, 2001).  

 

I assessed each classifier using both a random and spatial cross-validation approach (Meyer et 

al., 2019; Ploton et al., 2020a; Roberts et al., 2017). Random CV was implemented using a 

stratified two-thirds Monte Carlo selection (Lyons et al., 2018), similar to the way remote-

sensing products were assessed in 5.4.2. Hereby, 1,000 times I randomly selected two-thirds of 

all datapoints per class as training data (n=1,157), to be evaluated against the remaining one-

third per class as testing data (n=579).  

 

Spatial CV was implemented using all transects datapoints (Table 5.1) obtained in both DRC 

(Chapter 2, this thesis; plus the Congo River transects, sampled by the CongoPeat project) and 

ROC (Dargie et al., 2017). These 673 datapoints were subdivided into four distinct hydro-
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geomorphological regions: (i) five transects perpendicular to the blackwater Likouala-aux-

Herbes River (n=179 datapoints); (ii) four transects perpendicular to the white-water Ubangi 

River (n=113; both from Dargie et al., 2017); (iii) seven transects perpendicular to the Congo 

River, intermediate between a black and white-water river (n=123; sampled by the CongoPeat 

project); and (iv) 11 transects perpendicular to the blackwater Ruki, Busira and Ikelemba Rivers, 

plus other nearby transects (collectively named the Ruki group; n=258; sampled for this PhD and 

presented in Chapter 2). The first two groups comprise the largely interfluvial basin transects in 

ROC that experience limited inundations. The last two groups compromise the largely river-

influenced transects in DRC that experience larger seasonal inundations (Figure 5.4).  

 

 
Figure 5.4. Location of transect groups for spatial cross-validation. Points indicate transects, 
coloured by region. The Congo (orange) and Ruki River (blue) regional groups are in largely river-
influenced peatlands, predominating in DRC, sampled for this study (Chapter 2) and by the 
CongoPeat project. The Likouala-aux-Herbes (red) and Ubangi River (pink) regional groups are in 
largely rain-fed interfluvial basins, predominating in ROC, obtained from Dargie et al. (2017). The 
base map, in green, shows the prediction of peat swamp forest (hardwood- or palm-dominated) 
by Dargie et al. (2017). Inset: Location of the central Congo Basin peatlands (shaded green) on 
the African continent. National boundaries are black lines; sub-national boundaries are grey 
lines. 
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To each group I then added non-transect ground-truth datapoints from other data sources in 

Table 5.1 that belonged to the same map regions (n=82, 27, 20, 113, respectively), bringing the 

total datapoints used for spatial CV to 915. I then tested 1,000 times how well each classifier 

performs in each of the four map regions, in a ‘leave one region out’ type design, i.e. when 

trained only on a stratified two-thirds Monte Carlo selection of datapoints from the three other 

regional transect groups, plus all remaining ground-truth datapoints not associated with or near 

any transect group (n=821; for example, the savanna and terra firme forest datapoints in 

Lomami National Park in DRC which are far [> 300 km] from any transect group). Additionally, I 

applied spatial CV by training the model 1,000 times on a stratified two-thirds Monte Carlo 

selection of the two interfluvial basin regions combined (Likouala-aux-Herbes and Ubangi), plus 

all remaining ground-truth datapoints, and testing this against the left-out data from the river-

influenced regions (Congo and Ruki), and vice versa. 

 

Like with the assessment of remote-sensing products, model performance was based on 

Matthews correlation coefficient for binary peat/non-peat predictions (hardwood- and palm-

dominated peat swamp forest classes combined into one peat class; water, savanna and non-

peat forming forest combined into one non-peat class). I also computed balanced accuracy (BA) 

from random cross-validation to compare the new map results with the initial peatland map 

developed by Dargie et al. (2017). While less robust than MCC, BA is independent of imbalances 

in the prevalence of positives/negatives in the data, thus allowing better comparison between 

classifiers trained on different datasets (Chicco et al., 2021). The best estimate of each accuracy 

metric or area estimate per model or region was then reported as the median value of 1,000 

runs, alongside a 95% confidence interval. 

 

In the case of SVM and RF, random CV models were implemented in Google Earth Engine 

(Gorelick et al., 2017). However, because ML is currently not supported by GEE, random CV with 

this algorithm was implemented in IDL-ENVI software, using a principal component analysis 

(PCA) to reduce the remote sensing products to six uncorrelated principal components to reduce 

computation time. All spatial CV models were implemented in R software (superClass function 

from the RStoolbox package, version 0.2.6), with PCA also applied in the case of ML only. All RF 

models were trained using 500 trees, with three input products used at each split in the forest 

(the default, the square root of the number of variables). All SVM model were implemented with 

a radial basis function kernel, with all other parameters set to default values.  
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5.4.4 Mapping seasonal inundation 

To better understand the distribution of seasonally inundated peat swamp forests, I additionally 

mapped the frequency of inundation across a central part of the Congo Basin. This requires 

multi-temporal SAR data to identify standing water in forests at different times of the year 

(Bourgeau-Chavez et al., 2021). Various recent studies have shown the potential of using 

monthly variations in SAR backscatter coefficients to map inundation dynamics over the central 

Congo basin (e.g., Kim et al., 2017; Lee et al., 2015; Rosenqvist, 2009). However, none of these 

studies have specifically mapped inundation patterns over peatlands. Furthermore, all of these 

studies only focus on a limited sub-region of the Cuvette Centrale area. To map inundation over 

a wider peatland area, I made use of freely available georeferenced ALOS PALSAR (Level 1.5) HH 

images in ScanSAR wide-beam mode, downloaded from the Alaska Satellite Facility (ASF) 

(JAXA/METI, 2009). These images have a lower spatial resolution (100 m) than the fine-beam 

ALOS PALSAR imagery used for peatland distribution mapping, but cover a wider image swath 

of approximately 350 km per image.  

 

Month ALOS PALSAR  

ScanSAR  

path 271 

ALOS PALSAR  

ScanSAR  

path 274 

Approximate season 

July 2007 18/07/2007 23/07/2007 Height of main dry season 

September 2007 02/09/2007 07/09/2007 Start of main wet season 

December 2007 03/12/2007 08/12/2007 End of main wet season 

January 2008 18/01/2008 23/01/2008 Start of small dry season 

March 2008 04/03/2008 09/03/2008 Start of small wet season 

October 2008 20/10/2008 25/10/2008 Height of main wet season 

January 2009 20/01/2009 25/01/2009 Height of small dry season 

March 2009 07/03/2009 12/03/2009 Start of small wet season 

April 2009 22/04/2009 27/04/2009 Height of small wet season 

Table 5.2. Overview of ALOS PALSAR ScanSAR images for mapping inundation frequency. The 
list includes nine matching image pairs between 2007 and 2009. Note that there is a five-day 
delay between images taken along path 271 and path 274. The last column provides an 
indication of the prevailing season at each date. 
 

Four swath blocks (paths 271-274 and frames 3600-3650) that cover the central Congo Basin 

region have multiple images available across different seasons between 2007 and 2009. These 

swath blocks overlap with approximately 127,400 km2 (or 88%) of the total peatland area as 

predicted by Dargie et al. (2017). This area includes most of the likely seasonally inundated forest 

along the Congo’s eastern tributaries in DRC, as well as a large peatland area predicted to be 

extensively palm-dominated around Lake Mai-Ndombe (Figure 5.5). This is particularly useful 

because these southern parts of the peatland complex have not been included in previous 
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inundation maps (c.f. Lee et al., 2015; Rosenqvist, 2009; see Chapter 2, Figure 2.1). Thus, using 

a multi-temporal combination of these four ScanSAR swaths makes it possible for the first time 

to map inundation patterns across the large majority of the central Congo Basin peatlands, 

including what is predicted to be an extensive palm-dominated peat swamp area in the 

southeast of the basin. 

 

Although the ALOS satellite has a return cycle of 46 days, only nine dates between 2007 and 

2009 have matching images available across all four swath blocks (Table 5.2). This includes 

images with a time difference of 5 days between the two satellite paths, meaning that the two 

eastern images (path 271) are taken five days earlier than the two western images (path 274).  

 

 

 
Figure 5.5. Map of the footprint of ALOS PALSAR ScanSAR images used for mapping seasonal 
inundation. Because the exact image locations differ slightly between the nine selected dates, 
footprint extents indicate the minimal overlapping extent of each ScanSAR image across all nine 
dates. The top two swath blocks (pink and orange; frame 3600) largely correspond with the 
extent of previously developed inundation maps (e.g. Lee et al., 2015; Rosenqvist, 2009). The 
base map shows the predicted landcover classes by Dargie et al. (2017). National boundaries are 
black lines; sub-national boundaries are grey lines. 
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All images were acquired in single-polarized HH polarization, as the backscatter difference 

between flooded and non-flood forest is generally higher with this polarization than with cross-

polarized HV images or single-polarized VV images (Martinis & Rieke, 2015; Y. Wang et al., 1995). 

The images were radiometric terrain corrected and geocoded to Lat/Lon (WGS-84) projection 

using ASF MapReady software (version 3.2). As topographic reference source for terrain 

correction, I used the MERIT DEM topographic map, as this was thought to provide a more 

reliable elevation estimate in the forested areas than the SRTM DEM (Hawker et al., 2019). Like 

with the radar data used for mapping peatland distribution, all raw image data was then 

converted to backscatter values in dB by applying Eq. 5.4 in IDL-ENVI software (Shimada et al., 

2009). Speckle and noise inherent in the radar signal were removed by applying a 3x3 median 

pixel filter, similar to the approach of Lee et al. (2015). I then mosaiced the four images from 

different paths/frames, but corresponding to the same month, into a single mosaic using the 

Seamless Mosaic tool in IDL-ENVI. Colour adjustment was applied to the entire image, and 

seamline feathering was applied to make the image boundaries less sharp, with a feathering 

distance of 6 pixels. 

 

Each mosaiced image was then classified into three different classes based on each pixel’s 

backscatter value: (i) open water, aquatic or herbaceous vegetation if σ0 ≤ -11 dB, (ii) non-

inundated forest if σ0 > -11 and ≤ -6 dB, and (iii) inundated forest is σ0 > -6 dB. The first threshold 

value of -11 dB is based on the low backscatter coefficients observed in the central Congo Basin 

for permanently open water, aquatic and herbaceous vegetation by Kim et al. (2017). The 

second threshold value of -6 dB is based on a statistical analysis by Lee et al. (2015) of the most 

optimal threshold to distinguish flooded and non-flooded forest across the region. I then stacked 

all nine classified images together in QGIS software and counted the number of times that each 

pixel belonged to the inundated forest class. This provides a proxy (ranging from 0-9 months) 

for inundation frequency between July 2007 and April 2009. This map was then clipped to the 

derived second-generation peatland distribution map (section 5.4.3) to create a map of 

inundation frequency in the peat swamp forests of the central Congo Basin.  

 

I compared inundation frequencies for each of the 40 peat swamp forest plots that were 

clustered in four vegetation types in Chapter 3. Specifically, I looked at the range of inundation 

counts that are observed in the seasonally inundated, mixed peat swamp forest type associated 

with Oubanguia africana and Guibourtia demeusei, as this vegetation type was identified to be 
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primarily driven by water table fluctuations, and compared this with the other three clusters, 

whose differences appeared not to be directly driven by inundation patterns.  
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5.5 Results 

 

5.5.1 Verification of DRC peat predictions 

Of the 259 field locations sampled across all 11 transects in DRC (Chapter 2), 84.6% were 

correctly classified as either being peat swamp or not (overall accuracy) by the map developed 

by Dargie et al. (2017). Matthews correlation coefficient for this comparison is only 64.0%, 

largely because of an imbalance in the dataset between positives (peat presence) and negatives 

(no peat presence). These figures change to 77.7% and 54.4%, respectively, when including the 

other DRC data from along the Congo River mainstem, totalling 382 locations. This indicates that 

peat predictions by Dargie et al. (2017) are less accurate along the river-influenced Congo River 

mainstem, than along the river-influenced (blackwater) sites that straddle the Ruki and Ikelemba 

Rivers. 

 

The reliability of this first-generation map’s predictions (user’s accuracy) was slightly lower for 

peat swamp forest classes (83.2%) than for non-peat swamp forest classes (88.0%). The lower 

user’s accuracy for the peat swamp forest class is mostly caused by the false positive predictions 

of peat in the non-peat-forming seasonally inundated forest along the Congo River mainstem, 

or the Pombi and Boleke transects, which are either located on higher elevation or an island in 

the Ruki River. Inaccuracies for the non-peat swamp forest class were mostly caused by some 

false negatives (peat swamp forest being incorrectly classified as terra firme forest or non-peat-

forming seasonally inundated forest) at the peatland’s margins along Bondama, Mpeka and 

Lokolama transects. 

 

 

5.5.2 Comparison of remote-sensing input products 

Comparing Maximum Likelihood results based on either absolute elevation (DEM), relative 

elevation (height above the nearest drainage point; HAND), or their combination (DEM + HAND), 

shows that the combination of DEM+HAND outperforms models that are based on either DEM 

or HAND alone (Figure 5.6). The model combining both absolute and relative elevation has a 

median Matthews correlation coefficient of 79.7%, significantly higher than the median MCC of 

77.8% or 75.6% that was measured for just DEM or HAND alone, respectively (One-way ANOVA, 

p<0.001). Pair-wise comparison showed significant differences between all model combinations 

(Tukey multiple comparisons test, p<0.001), with the DEM-based model also outperforming the 

model based on HAND alone. 
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Figure 5.6. Comparison of model performances based on absolute and relative elevation. 
Models include either absolute elevation (DEM only), relative elevation only (HAND only), or both 
(DEM+HAND). Model performance is expressed as Matthews correlation coefficient (MCC) for 
the binary classification (peat/non-peat). Each model estimate is based on 1,000 Maximum 
Likelihood runs using an initial subset of 1,722 datapoints from DRC and ROC (2/3 training data 
and 1/3 testing data). Horizontal black lines show the median of each class, boxes show the upper 
and lower quartiles, and the vertical lines show maximum and minimum values. Circles represent 
potential outlying values. All model combinations are significantly different from each other 
(p<0.001).  
 

A comparison was made between the three models with either DEM, HAND or DEM+HAND, and 

the model outcomes of Dargie et al. (2017), using the balanced accuracy metric (Table 5.3). This 

shows that all three test models perform better than the first-generation model, which had a 

median BA of 89.8% (95% CI, 86.0-93.4%), taking into account the fact that they were trained 

and tested on different datasets. Thus, the addition of new datapoints from the DRC has 

increased model accuracy, at least in map areas that are well-represented in the datasets. Like 

with MCC, the model trained on both DEM and HAND elevation products also has the highest 

balanced accuracy (92.5%). Interestingly, it’s 95% confidence interval is considerably smaller 

than that of the model by Dargie et al. (2017), reflecting a decrease in variation between 

individual model runs.  

 

Estimates of total peatland area are similar for the models based on DEM alone or DEM+HAND, 

while the model based on HAND alone gives a much larger total peatland area (Table 5.3). 

However, the three different models show strong spatial agreement in peat prediction in the 

central part of the Cuvette Centrale, providing confidence in peat predictions in this area (white 

in Figure 5.7). In terms of differences, the model based on relative elevation (HAND) alone 
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predicts large peatland areas in the eastern part of the central Congo Basin (blue in Figure 5.7), 

along the upper Congo and Lomami Rivers, which are not predicted as peat by those models 

based on DEM or DEM+HAND. I therefore use both DEM and HAND in the final model to predict 

the spatial distribution of peatland across the Cuvette Centrale.  

 

Study Elevation 
product  
used 

Ground- 
truth data 
used 

MCC  
(%) 

BA  
(%) 

Peatland area  
estimate (km2) 

This study DEM DRC + ROC 77.8 
(74.2 – 81.9) 

92.0 
(90.3 – 93.8) 

167,100  
(158,700 – 173,600) 

This study DEM + HAND DRC + ROC 79.7 
(76.0 – 83.4) 

92.5 
(90.8 – 94.1) 

166,700 
(158,500 – 173,800) 

This study HAND DRC + ROC 75.6 
(71.7 – 79.0) 

90.8 
(88.9 – 92.5) 

281,400 
(266,100 – 293,800) 

Dargie et 
al. (2017) 

DEM ROC 79.3 
(71.9 – 86.4) 

89.8 
(86.0 – 93.4) 

145,500 
(131,900 – 156,400) 

Table 5.3. Comparison of model performances and peatland area estimates between elevation 
products. Median Matthews correlation coefficients (MCC, %), median balanced accuracy (BA, 
%) and median peatland area estimates (km2) are obtained from 1,000 Maximum Likelihood 
model runs in IDL-ENVI (95% confidence interval in parentheses), using an initial subset of 1,722 
datapoints from DRC and ROC. Peatland areas are rounded to the nearest 100 km2. MCC values 
of Dargie et al. (2017) were obtained by replicating that study with the exact same data. Balance 
accuracy is included for comparison between models with different datasets (Chicco et al., 2021).  
 

When subsequently testing different combinations of remote sensing data sources (optical, 

radar, and topographic) in Maximum Likelihood models that included both DEM and HAND 

products, no improvement in model accuracy is found with respect to the datasources used by 

Dargie et al. (2017) (Figure 5.8). The models are significantly different from one another (One-

way ANOVA, p<0.001), with pair-wise comparison showing significantly lower median MCC 

values in all new combinations, compared with the original band combinations of Landsat 7 

ETM+, ALOS PALSAR and SRTM-derived dataproducts (Tukey multiple comparisons test, p<0.05 

for ALOS PALSAR compared with ALOS-2 PALSAR-2; or p<0.001 for all other combinations).  
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Figure 5.7. Comparison of peat predictions based on absolute and relative elevation. Models 
include either absolute elevation (DEM alone), relative elevation only (HAND alone), or both 
(DEM+HAND). All models are based on Maximum Likelihood classification using the same 
ground-truth datapoints and optical, radar and slope products. White indicates agreement on 
peat prediction between all three model, yellow between DEM alone and DEM+HAND, cyan 
between DEM+HAND and HAND alone, and magenta between DEM and HAND alone. Red 
indicates peat predictions by DEM alone, green by DEM+HAND, and blue by HAND alone. Grey 
indicates that none of the models predicted peat. National boundaries are black lines; sub-
national boundaries are grey lines. 
 

The model with older Landsat 7 ETM+ mosaics (2000-2010) performed better than a model with 

the more recent basin-wide automated cloud-free Sentinel-2 mosaics that I developed (bands 

5, 8A, 11; composite of five years, 2016-2020). The median MCC of 80.9% for the Landsat 7 ETM+ 

mosaics is significantly higher than the 78.1% for the Sentinel-2 mosaics (p<0.005), likely 

because they contain less directional reflectance artefacts. 

 

Similarly, the model with older ALOS PALSAR bands (2007-2009) performed better than a model 

with more recent radar ALOS-2 PALSAR-2 data (2015-2017), although the difference is less big 

than for the optical data (80.9% and 80.6% median MCC, respectively; p<0.01).  
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The NASADEM topographic dataset also leads to a reduction in overall median Matthews 

correlation coefficient, when keeping all other variables the same, compared with using the 

older SRTM-derived data (79.0% and 80.9% median MCC, respectively; p<0.001). More 

surprisingly, however, using topographic data derived from the error-adjusted MERIT DEM 

dataset results in particularly bad model performance when compared with a similar model 

based on SRTM-derived data (75.1% and 80.9% median MCC, respectively; p<0.001). This effect 

is larger than the reduction in accuracy caused by either changing the optical or radar data 

sources. Thus, I use the SRTM-derived elevation and slope dataproducts in the final model. 

 

 
Figure 5.8. Comparison of model performances of five different combinations of remote 
sensing data sources. Model performance is expressed as Matthews correlation coefficient 
(MCC) for the binary classification (peat/non-peat). Each model estimate is based on 1,000 
Maximum Likelihood runs using an initial subset of 1,722 datapoints from DRC and ROC (2/3 
training data and 1/3 testing data). Horizontal black lines show the median of each class, boxes 
show the upper and lower quartiles, and the vertical lines show maximum and minimum values. 
Circles represent potential outlying values. All model combinations are significantly different 
from each other (p<0.05). 
 

Spectral signatures of landcover classes 

Figure 5.9 shows the spectral signatures of each of the five landcover classes in the best-

performing model (combination of Landsat 7 ETM+, ALOS PALSAR and SRTM-derived products), 

by plotting boxplots of each class for each of the nine remote sensing bands. From this, it can be 

observed that all three Landsat 7 ETM+ bands have significantly different values in the two peat 

swamp forest classes than in the non-peat-forming forest class. Furthermore, the three SRTM-

derived topographic bands are also significantly different in the two peat swamp forest classes 

than in the non-peat-forming forest. Absolute elevation (DEM), relative elevation (HAND) and 
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slope are all significantly lower in peat swamps than in non-peat forming forests (Kruskall-Wallis 

test, p<0.05). Additionally, ALOS PALSAR HH values are significantly higher in both peat swamp 

forest types than in non-peat-forming forest (p<0.05), as would be expected for inundated forest 

(Manavalan, 2018; Richards et al., 1987). However, HV/HH-ratios are not significantly different 

between hardwood-dominated peat swamp forest and non-peat-forming forest, likely because 

of the presence of peat-forming seasonally inundated forests (cluster 4 identified in Chapter 3), 

which are likely more similar to non-peat-forming seasonally inundated forests in terms of forest 

structure and inundation pattern. Nonetheless, the spectral signatures show that there are 

sufficient differences between the landcover classes, and in particular between peat swamp and 

non-peat swamp classes, to use these nine remote sensing products in a classification model of 

peatland distribution. 
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Figure 5.9. Boxplots of the spectral signatures of ground-truth landcover classes. a. Landsat ETM+ SWIR 1 band (Digital Number [DN]). b. Landsat ETM+ NIR 
band (DN). c. Landsat ETM+ Red band (DN). d. ALOS PALSAR HV backscatter coefficient (dB). e. ALOS PALSAR HH backscatter coefficient (dB). f. ALOS PALSAR 
HV/HH ratio. g. SRTM Digital Elevation Model (DEM; m.a.s.l.). h. SRTM Height Above Nearest Drainage point (HAND; m). i. SRTM Slope (degrees x 10). Black lines 
show the median of each class, boxes show the upper and lower quartiles, and the vertical lines show maximum and minimum values. Circles represent potential 
outlying values. Land cover classes which do not share a common letter have significantly different means for the respective remote sensing product (p<0.05, 
Kruskall-Wallis multiple comparison [Dunn’s] test with Benjamini–Hochberg adjustment). Non-peat forming forest includes both terra firme forest (n=535) and 
non-peat forming seasonally inundated forest (n=97). 
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5.5.3 Comparison of machine learning algorithms 

I used the best-performing dataset of remote sensing products that was identified in 5.5.2 to 

compare three different machine learning algorithms: Maximum Likelihood, Support Vector 

Machine and Random Forest. This model used three Landsat 7 ETM+ optical bands (SWIR 1, NIR 

and Red), three ALOS PALSAR radar bands (HV, HH and HV/HH) and three SRTM-derived 

topographic bands (DEM, HAND and slope) as input data.  

 

 
Figure 5.10. Comparison of peat predictions using Maximum Likelihood (ML), Support Vector 
Machine (SVM) and Random Forest (RF) classifiers. White indicates agreement on peat 
prediction between all three classifiers, yellow between ML and SVM only, cyan between SVM 
and RF only, and magenta between ML and RF only. Red indicates peat predictions by ML only, 
green by SVM only, and blue by RF only. Grey indicates that none of the classifiers predicted peat. 
ML was implemented in IDL-ENVI. SVM and RF in Google Earth Engine. National boundaries are 
black lines; sub-national boundaries are grey lines. 
 

Figure 5.10 shows the spatial peat predictions as produced by each algorithm in either IDL-ENVI 

software (ML) or the GEE application (SVM and RF). Substantial agreement is found between all 

three algorithms in the central part of the Cuvette Centrale (white in Figure 5.10), but substantial 

disagreement can be seen on the peripheries of the basin. In particular, ML and SVM algorithms 

predict considerable peat deposits in the north and east of the Cuvette Centrale (red and 
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yellow), which is not predicted by the RF algorithm. On the other hand, RF predicts more peat 

deposits in the south of the basin (blue), which are not predicted by ML and SVM. It must also 

be noted that the ML classifier alone predicts considerably more peat on the periphery (red) 

than SVM does in those same regions (yellow). As a result, large differences in total peatland 

area are predicted by the three algorithms (Table 5.4), ranging from 102,000 km2 (RF) to 167,600 

km2 (ML). Comparable differences between ML, SVM and RF were found for model runs in either 

R software (validation data only) or in GEE/IDL-ENVI (full map predictions), indicating that this 

variation is likely not caused by differences in implementation software. 

 

Comparison of the ML, SVM and RF models with Dargie et al.’s (2017) model performance, using 

balanced accuracy estimates obtained from random cross-validation, shows improved results 

only in the case of the ML classifier (Table 5.4). Balanced accuracy of the Maximum Likelihood 

model is 91.9% (95% CI, 90.2-93.6), compared with 89.8% (95% CI, 86.0-93.4) for the first-

generation model by Dargie et al. (2017). This shows that the combination of adding the HAND-

index as input product and having an extended ground-truth dataset that covers a wider map 

region, has improved the model’s performance. The substantially smaller BA interval of the 

improved ML model further indicates increased confidence in the new peatland predictions, 

despite only a small increase in median BA.  

 

Comparing MCC using the spatial cross-validation approach across the three different machine 

learning algorithms, I found that the ML classifier is also most transferable to regions for which 

there is a lack of training data (Table 5.4). While the RF classifier results in slightly better MCC 

with random CV, when no regions are omitted, spatial CV shows particularly poor predictive 

performance of this classifier for the Congo and Ruki regions, when trained on data from the 

other regions. The SVM classifier results in the lowest MCC of all three models when assessed 

using random CV, and also performs worst of all three in the Congo region with spatial CV.   

 

Additionally, assessing spatial CV for the largely interfluvial basin region in ROC (combining the 

Likouala-aux-Herbes and Ubangi regions; n=401), and the largely river-influenced region in DRC 

(combining the Congo and Ruki regions; n=540), also shows that the RF classifier performs 

particularly poorly (Table 5.4). This finding further supports selecting the Maximum Likelihood 

classifier as best algorithm to produce a second-generation map of peatland distribution in the 

central Congo Basin.  
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Model Peatland area estimate 
(hardwood- and 
palm-dominated  
peat swamp forest,  
km2)  

Random 
cross-
validation 
(BA, %)  

Random  
cross- 
validation  
(MCC, %)  

Spatial cross-validation per region (MCC, %)  
 

Likouala- 
aux-Herbes, 
ROC (n=261) 

Ubangi,  
ROC 
(n=140) 

Congo,  
DRC 
(n=371)  

Ruki,  
DRC 
(n=143)  

Interfluvial  
basin 
peatlands,  
ROC (n=401)  

River-
influenced 
peatlands,  
DRC (n=540) 

ML  167,648  
(159,378 - 175,079) 
 

91.9  
(90.2 - 93.6)  

78.0  
(74.2 - 81.6)  

78.1  
(76.5 - 79.7)  

66.6  
(63.6 - 71.4)  

41.9  
(37.3 - 45.1)  

73.2  
(70.1 - 76.0)  

73.9  
(71.4 - 76.0)  

65.0 
(61.1 - 67.5) 

SVM  135,359  
(124,847 - 145,991)  
 

87.0  
(84.1 - 89.7)  

77.5  
(72.4 - 81.9)  

76.6  
(73.0 - 78.2)  

75.1  
(71.9 - 79.0)  

34.9  
(26.4 - 44.7)  

74.0  
(68.1 - 78.3)  

73.2  
(67.1 - 75.8)  

68.2 
(63.2 - 71.8) 

RF  101,988  
(92,596 - 111,358)  
 

89.6  
(86.7 - 93.3)  

79.0  
(73.5 - 84.1)  

70.4  
(60.1 - 76.6)  

71.3  
(64.7 - 78.4)  

37.1  
(25.9 - 46.8)  

49.2  
(39.5 - 58.5)  

66.8  
(58.0 - 74.1)  

46.2 
(39.2 - 52.5) 

Table 5.4. Area estimates and random/spatial cross-validated accuracy results for ML, SVM and RF algorithms. Binary classification performances (random 
and spatial Matthews correlation coefficient [MCC], %) are reported for supervised Maximum Likelihood (ML), Support Vector Machine (SVM) and Random Forest 
(RF) classification algorithms. Binary classification performance using balanced accuracy results (BA, %) from random cross-validation (CV) are additionally 
reported to facilitate correct comparison with the first-generation peatland map by Dargie et al. (2017) (median BA, 89.8%; 95% CI, 86.0-93.4). Random CV and 
area results are obtained from 1,000 randomly stratified two-thirds data splits of 1,736 datapoints. Spatial CV results are obtained for each region by selecting 
1,000 randomly stratified two-thirds data splits as training data from all remaining datapoints, validated against all datapoints of the selected (omitted) region. 
The ‘interfluvial basin peatlands’ group comprises the Likouala-aux-Herbes and Ubangi regional groups in ROC; the ‘river-influenced peatlands’ group comprises 
the Congo and Ruki regional groups in DRC (see Figure 5.4). Models were implemented in IDL-ENVI (ML) or GEE (SVM/RF) for random CV and area calculations. 
All spatial CV analyses were implemented in R. All figures are median values with 95% confidence intervals in parentheses. 
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5.5.4 Distribution of peat swamp forest area 

The median total peatland area estimated by the best-performing algorithm (Maximum 

Likelihood classifier, based on its ability to most accurately predict in regions with no training 

data) is 167,600 km2, an increase of 15% compared with Dargie et al. (2017). This figure is 

obtained from all the 50 m pixels in the peat probability map that indicates either palm- or 

hardwood-dominated peat swamp forests in at least 500 out of 1,000 runs (Figure 5.11). The 

map in Figure 5.11 uses the same colour scheme and classification as Dargie et al. (2017) to aid 

direct comparison. As a measure of statistical model uncertainty, the 95% confidence interval 

around this estimate, as tested by random Monte Carlo cross-validation, ranges from 159,400 

to 175,100 km2. 

 

 
Figure 5.11. Probability map of peat swamp vegetation across the central Congo Basin. Model 
predictions are based on the second-generation model using a supervised Maximum Likelihood 
classification, including the HAND-index, with 1,736 ground-truth datapoints. Prediction 
probabilities are indicated as the most likely class per pixel (>50%) out of 1,000 model runs, using 
a legend identical to Dargie et al. (2017) to facilitate comparison. National boundaries are black 
lines; sub-national boundaries are grey lines; non-peat forming forest includes both terra firme 
and non-peat forming seasonally inundated forests. 
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It was found that 90% of all pixels that are predicted as peat in the median ML map result are 

predicted as peat in at least 950 out of 1,000 runs (i.e., with ≥ 95% probability, either as 

hardwood- or palm-dominated peat swamp forest; Figure 5.11). This shows that peat 

predictions are consistent across model runs and thus robust. Overall model performance of this 

model, as assessed using the Matthews correlation coefficient, is 78.0% (95% CI, 74.2-81.6%).  

 

 
Figure 5.12. Comparison of peat swamp forest predictions between this study and Dargie et 
al. (2017). Comparison is based on the most likely class (> 50% probability) per pixel. White 
indicates peat in both studies; red indicates peat in this study only; blue indicates peat only in 
Dargie et al. (2017); light grey indicates peat in neither study. Open water is dark grey. National 
boundaries are black lines; sub-national boundaries are grey lines; non-peat forming forest 
includes both terra firme and non-peat forming seasonally inundated forests. 
 

Comparing the second-generation peatland distribution map with the first-generation map by 

Dargie et al. (2017) shows large areas of agreement (white in Figure 5.12). However, the new 

map predicts areas of peat which were previously not mapped, particularly around Lake Mai-

Ndombe in the south and the Ngiri and upper Congo/Lulonga Rivers further north in the DRC 

(red in Figure 5.12). In addition, small areas of previously predicted peat deposits are no longer 

predicted by the new model, particularly along the Sangha and Likouala-Mossaka Rivers in ROC 
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(blue in Figure 5.12). These areas of difference are likely areas of high uncertainty and should 

therefore be priorities for future fieldwork. 

 

Of the total peatland area estimate of 167,600 km2, approximately two-thirds is found in the 

DRC (113,200 km2), while ROC is home to one-third of the Cuvette Centrale peatlands (55,100 

km2). DRC’s Équateur province alone harbours an estimated 58,300 km2 of peatlands, an area 

that is larger than is found in all of the Republic of the Congo. Secondly, the DRC’s province of 

Mai-Ndombe has a peatland area of 29,800 km2, approximately similar to what is found in the 

most-peatland-rich department in ROC, Likouala, which harbours about 28,600 km2 of 

peatlands. More detailed sub-national peatland area estimates are provided in Table 6.3 in 

Chapter 6.  

 

 

5.5.5 Distribution of seasonally inundated peat swamps 

The landcover map in Figure 5.11 distinguishes only between hardwood- and palm-dominated 

peat swamp forest types. However, in Chapter 3, it was concluded that there are also a mixed 

peat swamp forest type and a seasonally inundated mixed peat swamp forest type in DRC. To 

map this last swamp type, which is primarily driven by inundation patterns, I developed a map 

of inundation frequency across most of the central Congo Basin peatland areas identified in 

section 5.5.4.  

 

Figure 5.13 shows the number of times out of the total of nine selected months that peat swamp 

forests were identified from ALOS PALSAR data as having standing water beneath the canopy. 

Here, nine months indicates likely year-round inundation, while zero months indicate no 

inundation at all. From this map, it can be seen that there are large spatial differences in 

inundation frequency between regions of the peatland complex. Principally, an east-west 

gradient can be observed, with frequently inundated sites located in the eastern (mostly DRC) 

part of the Cuvette Centrale, and less frequently inundated sites located in the western (mostly 

ROC) part of the Cuvette Centrale. More specifically, four major peatland area can be identified, 

as indicated (numbers 1-4) in Figure 5.13. First, there appears to be an area of peat swamp 

forests in ROC, principally west and north of the Likouala-aux-Herbes River, that seems rarely 

inundated, even in wet season radar images. Second, there appears to be an area of seasonally 

inundated peat swamps straddling the Congo River mainstem with a medium inundation 

frequency of 4-6 inundations out of the 9 recorded months, and occasionally higher. These 
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inundations appear to extend across the peatland areas east and west of the Congo River 

towards the Ngiri and Lulonga Rivers. Third, there appears to be an area of seasonally inundated 

peat swamps along the Ikelemba, Ruki and Busira Rivers and their headwaters. This area has a 

similar medium inundation frequency of 4-6 inundations out of the 9 recorded months, although 

areas with greater numbers are also found. Fourth, there appears to be an area of peat swamp 

forest east of Lake Mai-Ndombe that appears heavily inundated year-round, with an inundation 

frequency of nine out of nine months. 

 

 
Figure 5.13. Map of inundation frequency in peat swamp forests of the central Congo Basin. 
Inundation frequency is measured as the number of inundations recorded by the ALOS PALSAR 
ScanSAR (> -6 dB backscatter) out of nine selected months between 2007 and 2009. The 
baselayer shows the predicted peat swamp forest extent (in grey) from the second-generation 
Maximum Likelihood model (section 5.5.4). The dashed line indicates the footprint of the 
available multi-temporal radar data. National boundaries are black lines; sub-national 
boundaries are grey lines.  
 

In Figure 5.14, I compare the distribution of inundation frequencies as mapped for each of the 

40 peat swamp vegetation plots that were analysed in Chapter 3. Although vegetation cluster 1 

has a mean of inundation frequency of 6 out of 9 months, the shape of the violin plot highlights 

how these vegetation plots are either strongly inundated (≥ 7 out of 9), or hardly inundated (≤ 
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2 out of 9). This could indicate that palm-dominated peat swamps are found in locations with 

little seasonality, which experience either almost permanently inundated conditions year-

round, or very little inundation year-round. This contrasts with the distribution of vegetation 

cluster 4, the seasonally inundated mixed peat swamp forest, which has a mean inundation 

frequency of 4 months and 25 days out of 9, with a range from 2 to 6 months. This suggests 

inundation on a seasonal basis, rather than year-round. Finally, both cluster 2 and 3, the 

hardwood-dominated and mixed peat swamp forests, are characterized by low inundation 

frequencies of ≤ 3 out of 9 months, with means of 1 month and 9 days and 2 months and 7 days, 

respectively. This implies that it is difficult to separate cluster 2 and 3 based on inundation 

frequencies. In addition, it appears challenging to use inundation frequencies to differentiate 

these classes from at least part of the palm-dominated swamp, given some palm swamp has 

very low inundation frequencies. However, since seasonally inundated swamps alone are 

characterised by inundation frequencies of 4-6 out of 9 months, this range can be used to 

specifically map this peat swamp forest type.    

 

 
Figure 5.14. Violin plots of inundation frequency (# of months out of 9) across four peat swamp 
vegetation types. The distribution includes 40 vegetation plots in peat swamp forests 
(represented by black dots), clustered into 4 distinct vegetation types (obtained from Chapter 3). 
Transparent diamonds indicate the mean per group. Transects that do not share a common letter 
are significantly different (p<0.05, Dunn’s Kruskal-Wallis multiple comparison test, p-values 
adjusted with the Benjamini-Hochberg method). 
 

Figure 5.15 shows the distribution of peat swamp forests that experience this inundation 

frequency (in mint). This seasonally inundated vegetation is mostly located on either side of the 

Congo River mainstem, and in smaller river valleys along its eastern tributaries. Interestingly, 
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the western part of the Lokolama peatland area, is also highlighted as seasonally inundated, 

perhaps suggesting pooling of wet season rainfall in a shallow basin or potential river water input 

from the Congo River. 

 

 
Figure 5.15. Map of seasonally inundated mixed peat swamp forest. Seasonally inundated 

mixed peat swamp forest (mint) is assumed to be associated with an inundation frequency of 4-

6 out of 9. The baselayer shows the predicted landcover classes from the second-generation 

Maximum Likelihood model (section 5.5.4). The dashed line indicates the footprint of the 

available multi-temporal radar data. National boundaries are black lines; sub-national 

boundaries are grey lines; non-peat forming forest includes both terra firme and non-peat 

forming seasonally inundated forests. 

 

Peat swamp forests with an inundation frequency of 4-6 out of 9 months cover approximately a 

quarter (23.7%) of the peatland area that is within the ALOS PALSAR ScanSAR footprint (Table 

5.5). Scaling this proportion to the entire peatland area across the central Congo Basin, including 

outside the radar footprint, I estimate this vegetation type to cover approximately 39,800 km2. 

Just over half (56.4%) of the peatland area experiences limited inundation (≤ 3 out of 9 months), 

which equals approximately 94,400 km2, most of which is found in ROC. Finally, I estimate that 

about a fifth (19.9%) of the peatland area is almost permanently inundated (≥ 7 out of 9 months), 

which equals approximately 33,300 km2 (Table 5.5).  
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Inundation 
frequency  
(# of 
inundations 
out of 9) 

Peatland area 
within ScanSAR 
footprint 
(km2) 

Proportion of 
total ScanSAR 
peatland area  
(%) 

Estimated total 
peatland area 
across the basin 
(km2)  

Combined 
proportion of 
total ScanSAR 
peatland area 
(%) 

Combined 
estimated total 
peatland area 
across the basin 
(km2) 

0 25,367 19.9 33,371 56.4 94,447 

1 20,072 15.8 26,405 

2 14,364 11.3 18,897 

3 11,990 9.4 15,774 

4 10,489 8.2 13,799 23.7 39,839 

5 9,821 7.7 12,919 

6 9,974 7.8 13,121 

7 9,021 7.1 11,867 19.9 33,314 

8 8,764 6.9 11,530 

9 7,538 5.9 9,916 

Table 5.5. Overview of area estimates per inundation frequency. Area estimates within the 
ScanSAR footprint are obtained by overlaying the map of inundation frequency with the second-
generation peatland distribution map (section 5.5.4). Area estimates across the wider central 
Congo Basin area are then obtained by multiplying the relative proportions per inundation 
frequency with the median estimated peatland area of 167,600 km2.  
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5.6 Discussion 

In this chapter, I developed a new map of peatland distribution across the central Congo Basin 

and assessed its statistical and systemic uncertainties. A best peatland area estimate of 167,700 

km2 was derived using a Maximum Likelihood model, with a 95% confidence interval ranging 

from 159,400 to 175,100 km2. This confirms the central Congo Basin peatland complex as the 

world’s largest tropical peatland area, accounting for approximately 36% of all tropical 

peatlands, given a total pantropical area of ~460,000 km2 (440,000 km2 from Page et al. (2022), 

plus the ~20,000 km2 additionally predicted by my new Congo Basin map). Furthermore, the 

new model confirms the Democratic Republic of the Congo and the Republic of the Congo as the 

second and third most important countries in the tropics for peatland area after Indonesia, 

respectively (Page et al., 2011). Globally, they rank sixth and nineth for peatland area, 

respectively (Xu et al., 2018).  

 

Maximum Likelihood was chosen out of three classification algorithms (the others being Support 

Vector Machine and Random Forest) because it produces the most accurate peat predictions in 

areas from which the model lacks any ground-truth data. Like Dargie et al. (2017), my Maximum 

Likelihood model makes use of the three Landsat 7 ETM+ optical bands, three ALOS PALSAR 

radar bands and SRTM-derived DEM and slope bands. Additionally, my model included the 

SRTM-derived HAND-index (relative elevation) as input layer, which was found to significantly 

improve model performances compared with only DEM- or HAND-based models. This is in line 

with other studies that indicate how the HAND-index is an important predictor of inundation 

potential, and hence peat formation (Aristizabal et al., 2020; Nobre et al., 2016; Gumbricht et 

al., 2017). Overall, median balanced accuracy increased for the new map, compared to the map 

produced by Dargie et al. (2017), highlighting increased confidence in the new peatland 

predictions. The considerable overlap in areas predicted to be peat by the old and new models 

shows that peat can be mapped with confidence in central Congo Basin region by combining 

ground-truth data on peat-vegetation associations and remotely-sensed data.   

 

Regarding model configurations, it is worth pointing out that the spatial pattern of peat 

prediction from the HAND-only model shows considerable similarity with the peatland 

distribution as suggested by Gumbricht et al. (2017), including peatland areas further upstream 

and at higher elevations in the east of the basin. This indicates how the HAND-index reflects 

some of the hydro-geomorphological processes that were modelled by Gumbricht et al. (2017).  

However, predictions from this HAND-only model differed considerably from the predictions of 
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the two models containing the DEM, which are both more accurate (higher MCC) and restrict 

peat presence to the lower elevations of the Cuvette Centrale depression. Unfortunately, no 

ground-truth datapoints are available in the east of the Congo Basin from locations that are 

suggested as peat by the HAND-only model and Gumbricht et al. (2017), to verify whether these 

locations truly contain peat or not. Therefore, the presence of peat in this east of the central 

Congo Basin, particularly upstream on the Congo River and along the Lomami River south of 

Kisangani, cannot fully be excluded without further field verification. This adds considerable 

systemic uncertainty to the best peatland area prediction that is derived in this chapter. 

Following Meyer & Pebesma (2021, 2022), these areas likely need to be classified as outside the 

‘area of applicability’ of the current dataset and should be high priorities for future field 

campaigns.  

 

Apart from comparing absolute and relative elevation, I also compared different data sources of 

optical, radar and topographic products. These new data sources showed no improvements 

compared with those previously used by Dargie et al. (2017). Substitution of Landsat 7 ETM+ 

optical bands by Sentinel-2 bands did not improve model performance, even though the 

Sentinel-2 imagery is more recent and has higher spatial resolution. The Landsat 7 ETM+ bands 

likely performed better, because stripy artefacts as a result of bidirectional reflectance were 

corrected using normalised indices in the case of Sentinel-2, while they were corrected using 

relative normalizations from MODIS atmospherically corrected data inputs in the case of Landsat 

7 ETM+ (Potapov et al., 2012; OSFAC, 2014). This likely produced smoother mosaics with less 

colour differences. Furthermore, as all remote-sensing products were resampled to 50 m 

resolution, any potential accuracy improvement that could have been derived from higher 

spatial resolution in Sentinel-2 (20 m) compared with the Landsat 7 ETM+ mosaics (60 m), was 

likely lost in the process. 

 

Classification accuracy also decreased when substituting ALOS PALSAR radar data with more 

recent ALOS-2 PALSAR-2 imagery, although less so than when substituting optical bands. As the 

ALOS-2 PALSAR-2 bands were derived from the same type of synthetic-aperture radar data, and 

following the same post-acquisition processing as Dargie et al. (2017), there is no 

methodological reason to judge these new bands as less accurate than their predecessors. 

However, differences in classification accuracy between the two radar types could potentially 

be caused by the fact that the ALOS-2 PALSAR-2 bands used here only cover 3 years, instead of 

the 4 years that are covered by the initial ALOS PALSAR dataset. Thus, the ALOS-2 PALSAR-2 
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bands might be more sensitive to annual anomalies in surface wetness (such as the strong 2015-

16 El Niño event). Larger temporal datasets could theoretically be used in the future, although 

the expected accuracy improvement from this is likely to be modest, compared with other 

sources of uncertainty that I highlight here.  

 

In addition to substituting optical and radar data, I compared various topographic data sources 

(SRTM DEM, NASADEM and MERIT DEM). Even though NASADEM is thought to be a more 

accurate version of the older SRTM DEM, inclusion of this data source in the model caused a 

lower prediction accuracy. NASADEM has been judged to be only slightly more accurate in terms 

of vertical elevation than SRTM DEM (Uuemaa et al., 2020). By resampling from 30 m to 50 m 

resolution, much of this vertical improvement is likely lost, making the differences between 

either data product potentially very marginal. More surprisingly, the use of the error-adjusted 

MERIT DEM caused a large drop in classification accuracy, whereas this data product was 

expected to correct for potentially significant biases in ground surface elevation due to canopy 

height. The fact that MERIT DEM performs worse than SRTM DEM, is likely due to the fact that 

MERIT DEM has a lower spatial resolution of 3 arc-second (~90 m at the equator), which was 

resampled to 50 m. Like with the other data products, any potential accuracy improvement that 

resulted from less tree height bias in the Congo Basin floodplains was likely lost in the process. 

Once a new vegetation-corrected DEM at higher spatial resolution becomes available, that could 

be the topographic data source of choice. Recently released new topographic datasets such as 

the Copernicus DEM GLO-30 or the forest-removed FABDEM model (Hawker et al., 2022) should 

also be prime candidates for future model input.  

 

From this analysis, it becomes clear that potential accuracy improvements that could be 

obtained with new remote sensing data products have to be balanced against the need to 

resample to a common resolution. Higher spatial resolutions are available in the case of Sentinel-

2, ALOS-2 PALSAR-2, SRTM DEM and NASADEM. However, using a more fine-scale resolution as 

model input would increase computation times significantly given the size of the study area.  

 

Furthermore, it is clear from the random and spatial cross-validations that most of the 

uncertainty in peatland area estimates derives from a lack of spatially representative ground-

truth data, rather than from a lack of high-resolution remote sensing data. This can be seen from 

the fact that the confidence intervals in accuracy estimates of the models with different datasets 

in Figure 5.8 strongly overlap, while the regional area predictions from different classification 
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models in Tables 5.3 and 5.4 (DEM, HAND or DEM+HAND; and ML, SVM or RF, respectively) are 

very different. 

 

Based on the above comparisons, I conclude that the original data sources used by Dargie et al. 

(2017) (Landsat 7 ETM+ optical, ALOS PALSAR radar and SRTM topographic data) are still the 

most useful for peat prediction in the central Congo Basin. Given the acquisition dates of these 

remote sensing products, the new peatland distribution map presented here forms a useful 

baseline description of the Congolese peatlands for approximately the years 2000-2010, as 

large-scale peatland deforestation has not occurred to date (Miles et al., 2017; Vancutsem et 

al., 2021). 

 

Based on spatial cross-validation of three different classification algorithms (ML, SVM and RF), 

it was concluded that Maximum Likelihood is the most accurate classification algorithm, because 

it produces the most useful peat predictions in areas from which the model lacks any ground-

truth data. The statistical uncertainty around the peatland area estimate of the Maximum 

Likelihood model, assessed via random Monte Carlo cross-validation, is limited, ranging from 

157,579 to 172,586 km2. However, the fact that this confidence interval does not overlap with 

the initial confidence interval of Dargie et al. (2017), and that large differences in estimated 

peatland area are found with the two other classification algorithms, suggest that systemic 

uncertainty is larger.  

 

Furthermore, the balanced accuracy (BA) for the new model shows a substantially smaller 

confidence interval compared with Dargie et al. (2017), indicating improved confidence in the 

new peatland map. Nonetheless, median BA only showed a small increase, despite a three times 

larger ground-truth dataset. This is likely because the improvement caused by the larger dataset 

is partly offset by an increase in the spatial extent and ecological diversity of the datapoints. In 

particular, the new dataset now contains ground-truth datapoints from transects along the 

Congo River, where all algorithms that I tested are relatively underperforming (Table 5.4). 

Although appearing to produce the best results based on random CV alone, Random Forest 

specifically does not perform well in the Congo River region when using spatial CV. This is not 

surprising, given this classifier is known to be sensitive to sampling design and spatial 

autocorrelation (Belgiu & Drăgu, 2016; Sinha et al., 2019). The relative lack of prediction 

accuracy in the Congo River region by all three tested classification algorithms is suspected to 

be related to the different nutrient status of the mixed/white-water Congo River. This will likely 
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inhibit peat accumulation in seasonally inundated floodplains along the Congo mainstem. Thus, 

although the vegetation appears similar to typical peat swamp forest, these river-influenced 

sites along the Congo River likely do not always form peat (≥ 30 cm thickness of ≥ 65% organic 

matter) due to the higher nutrient status. Adding ground-truth data from these locations might 

have caused a blurring of the spectral signal of the different classes, resulting in poorer model 

performance for this region despite a greater overall quantity of input data. The Congo River 

region thus highlights limitations to the assumption that the specific hardwood- and palm-

dominated swamp forest vegetations types mapped here always have peat underneath. It also 

shows the importance of verifying peat predictions in unsampled regions, particularly since 

nutrient status cannot be mapped as easily as a potential predictor variable using remote 

sensing. Critically, new field campaigns to the predicted peatlands surrounding Lake Mai 

Ndombe, which have yet to be sampled, are a high priority. 

 

One way to further improve peatland mapping could be by adding a map of inundation period 

or inundation frequency. Unfortunately, the multi-temporal radar data that is freely available 

covers only a portion of the total peatland area. Therefore, this data was not included in the 

peatland area mapping of this study and only used separately to develop a distribution map of 

seasonally inundated peat swamps. The general distribution of inundated forests that was 

obtained corresponds with previous results over a smaller portion of the basin (Kim et al., 2017; 

Lee et al., 2015; Rosenqvist, 2009), attesting to the reliability of this wider map. Crucially, as far 

as I know, this is the first time that an inundation map has been extended towards the southern 

edge of the peatland complex, where heavily inundated swamp forests are observed.  

 

It must be noted that inundation here refers only to standing water above the peat surface, 

which could result from precipitation and does not necessarily suggest river flooding from 

outside areas. For example, Dargie et al. (2017) showed how interfluvial basins in ROC likely 

receive only rainwater, yet some of these areas are seasonally inundated by standing water (4-

6 months out of 9). 

 

Nonetheless, potentially four distinct major peatland regions can be distinguished based on 

inundation frequency: (i) an area of limited inundation dominating in interfluvial basins in ROC; 

(ii) an area of seasonal inundation along the Congo River mainstem; (iii) an area of seasonal 

inundation along the Congo River’s eastern tributaries; and (iv) a large area of almost permanent 

inundation east of Lake Mai-Ndombe. 



227 
 

First, the inundation map suggests that large parts of the swamp forests in ROC are rarely 

inundated. However, this does not mean that these areas are not waterlogged. 

Microtopographic data presented in Chapter 4 showed how the water table typically needs to 

be 10-20 cm above the peat surface to cover half of the 16 m2 microtopography quadrats with 

water. Assuming that at least half of a pixel area similarly needs to be inundated to produce 

enough backscatter signal in the radar image, this suggest that the water level normally needs 

to be 10-20 cm above the peat surface to show up as inundated. Thus, if no inundation is 

recorded by the radar data, this does not necessarily mean that the soil is not waterlogged or 

that the water table is not close to the peat surface. The detection of large peatland areas in 

ROC that must be permanently waterlogged but are rarely inundated corresponds with the 

suggestion that these are shallow domed interfluvial basins (Davenport et al., 2020), with 

relatively low amplitude water table fluctuations (Dargie et al., 2017). In particular, Dargie et al. 

(2017) provide in situ datalogger data which shows that water tables of > 20 cm above the 

surface occur only a few days a year in interfluvial basins in ROC, typically after the largest rainfall 

events in the wet season. Therefore, half of the peatlands are likely permanently waterlogged 

swamps with relatively stable water tables close to the peat surface.  

 

On the other hand, large areas of seasonal inundation are detected along the Congo mainstem 

and its eastern tributaries in DRC. These two areas likely differ by the fact that the Congo region 

is flooded with more nutrient-rich river water, which also appears to extend over a wider 

floodplain area. In contrast, the seasonally inundated peatlands along the Ruki and Ikelemba 

Rivers have been shown to receive nutrient-poor water (Chapter 4) and are constricted by the 

narrower width of the river valleys.  

 

Finally, the fourth area east of Lake Mai-Ndombe highlights how some peatlands are likely 

permanently inundated by standing water above the peat surface. By comparing Figure 5.11 and 

Figure 5.13, this part of the peatland complex appears to correspond largely with a major area 

of palm-dominated peat swamp forest, suggesting a tolerance of Raphia laurentii for almost 

year-round anoxic conditions. However, it is unclear if this inundation results from local ponding 

of precipitation or if this water originates elsewhere. Furthermore, the relative 

overrepresentation of palm-dominated vegetation in permanently inundated locations could 

also be the result of a different double-bounce mechanism in the low-stature palm swamp, in 

contrast with typically taller hardwood swamps. More research is thus required to establish 

whether the -6 dB backscatter threshold that was applied is equally valid in palm-dominated and 
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hardwood-dominated forest. Field verification of the apparently permanently inundated palm-

dominated peatlands east of Lake Mai-Ndombe is also urgently required, as this area has so far 

been excluded from most wetland and peatland research in the Cuvette Centrale.  
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5.7 Conclusion 

In this chapter, I developed a more accurate map of peatland distribution across the central 

Congo Basin, using ground-truth data collected in the largely river-influenced swamp forests of 

the DRC. This model predicts a total peatland area of 167,600 km2 (95% confidence interval, 

159,400 - 175,100 km2), which is an increase of 15% compared with Dargie et al. (2017). This 

model uses Landsat 7 ETM+ optical bands, ALOS PALSAR radar bands, and SRTM-derived 

topographic bands, which were found to provide more accurate results than alternative data 

sources. This is the same as Dargie et al.’s (2017) remote sensing products, except that I added 

the SRTM-derived HAND-index (relative elevation), which was found to improve the model’s 

accuracy. The Maximum Likelihood classifier was further found to be the best-performing 

classifier out of three options (the others being Support Vector Machine and Random Forest). 

This is based on its ability to most accurately predict in regions with no training data, which I 

assessed via spatial cross-validation. Map areas where these classifiers disagree on the 

periphery of the peatland complex should be priorities for future fieldwork. Furthermore, more 

fieldwork is needed in the eastern parts of the central Congo Basin, particularly upstream on the 

Congo River and along the Lomami River near Kisangani, which appear to be areas that are 

outside the ‘area of applicability’ of the current dataset. In addition, the development of a map 

of inundation frequency highlights an understudied area of permanently inundated palm swamp 

forest east of Lake Mai-Ndombe in DRC, which requires more research. From this map of 

inundation frequency, it is estimated that about a quarter of the total peatland area is seasonally 

inundated, particularly along the Congo River and its eastern tributaries in DRC, while about a 

fifth of the peatlands is estimated to be permanently inundated by standing water. Just over half 

of the total peatland complex is rarely inundated, suggesting permanently waterlogged 

conditions that derive from stable water tables near the peat surface. Overall, new map based 

on field data from the DRC, including from river-influenced settings that have been studied for 

the first time, confirms the central Congo Basin peatland complex as the world’s largest tropical 

peatland area, accounting for approximately 36% of all tropical peatlands. Furthermore, the DRC 

and ROC are confirmed to be the second and third most important countries in the tropics for 

peatland area after Indonesia, respectively.   
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Chapter 6: Modelling peat thickness, carbon density and carbon 

stocks of the central Congo Basin 
 

6.1 Abstract 

Peat thickness and carbon density in the central Congo Basin has so far only been estimated 

using a limited dataset from interfluvial basins in the Republic of the Congo. In this chapter, I 

used 463 field measurements of peat thickness across both river-influenced peatlands in DRC 

and interfluvial basin peatlands in ROC to train a Random Forest regression model of peat 

thickness, providing the first map of peat thickness across the central Congo Basin. This RF model 

was found to provide optimal results when trained using four predictor variables: distance from 

the peatland margin, precipitation seasonality, climatic water balance and distance to the 

nearest drainage point. The model performs well in areas that were included in the sampling 

(median R2 = 82.2%, RMSE = 0.68 m), but spatial cross-validation shows that considerably 

systemic uncertainty remains in areas from which no data is available. This highlights the need 

for more field data on peat thickness, particularly from Mai Ndombe in DRC. Mean modelled 

peat thickness across the basin is 1.7 ± 0.9 m, slightly lower than the mean field estimate of 2.4 

± 1.5 m, as expected given that the transect sampling design is biased towards the deeper 

centres of peatland areas. I further used bulk density and carbon concentration values of 80 peat 

cores from across the peatland complex to develop a linear regression between peat thickness 

and carbon density per unit area. Based on the modelled values of peat thickness, I then 

generated the first map of peat carbon density across the central Congo Basin. Mean modelled 

carbon density is 1,712 ± 634 Mg C ha-1, in line with the field-measured mean of 1,741 ± 1,186 

Mg C ha-1. Based on this map of carbon density, I estimate that the total peat carbon stock in 

the central Congo Basin is 29.0 Pg (95% CI, 26.3-32.2). This is similar to the median 30.6 Pg C 

reported by Dargie et al. (2017), but their lower 95% confidence interval was 6.3 Pg, which has 

increased to 26.3 Pg in this study. Thus, mapping peat thickness helps to significantly reduce 

uncertainty in peat carbon stocks. The new carbon stock estimates confirm the central Congo 

Basin peatland complex as a globally important store of carbon, storing ~28% of all tropical peat 

carbon. I estimate that only 8% of the carbon stored in the peat lies within formal national-level 

protected areas, while industrial logging, mining, or palm oil concessions together overlie 26% 

of total carbon stocks, suggesting a vulnerability of the peat carbon to future land-use changes.  

 



231 
 

6.2 Introduction 

Although machine learning tools have long proven very useful for mapping peatlands (Minasny 

et al., 2019), only recently a handful of studies have used the same kind of tools to map peat 

thickness, most of which are situated in the temperate or boreal zone. For example, Parry et al. 

(2012) presented a method for mapping peat thickness of blanket bogs in the Dartmoor area of 

England. They developed regression analyses between elevation and slope, and peat thickness. 

Similarly, Young et al. (2018) developed regressions for British blanket bogs using elevation, 

slope, aspect, vegetation type and soil type. However, they additionally tested the use of spatial 

covariates (latitude/longitude), to make use of the spatial autocorrelation of measurements, 

which was found to improve the predictive accuracy. For tropical peatlands in Indonesia, 

Rudiyanto et al. (2016) also mapped peat thickness as a function of elevation, slope, aspect and 

spatial position, as well as a wetness index and distance to the nearest river. They again found 

that elevation was the best predictor. Vernimmen et al. (2020) build on this to map peat 

thickness in Sumatra, finding that it correlates well with accurate surface elevation derived from 

airborne LiDAR data. It thus appears that topographic variables, and in particular elevation, are 

the most useful predictors for peat thickness. However, all of these studies have in common that 

they were trained and applied on relatively small peatland areas, with relatively more ground-

truth data than is available in the central Congo Basin. This high resolution makes the use of 

spatial covariates particularly useful, as spatial autocorrelation works at local scale. Given the 

lack of a similar high-resolution dataset for the Cuvette Centrale, it is questionable whether this 

method would be applicable here as well.  

 

As peat accumulation is dependent on the balance between aerobic and anaerobic conditions, 

it could be hypothesized that radar data of soil wetness or hydroperiod would potentially 

correlate with peat thickness. However, as we saw in the previous chapter, large parts of the 

peatland complex do not appear as inundated in multi-temporal SAR data, even though they are 

very likely permanently waterlogged. Thus, it is unlikely that radar data alone would be a good 

predictor of peat thickness. This appears to be confirmed by Rudiyanto et al. (2016), who found 

that their surface wetness index did not contribute much to the model.  

 

In addition to inundation patterns, nutrient gradients are likely to affect decomposition rates as 

well. However, in contrast to surface wetness, spatially-explicit data on nutrient availability is 

not easily available and can thus not be included in a model of peat thickness. Instead, likely 
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predictor variables of peat thickness will have to come from remotely-sensed data on 

vegetation, topography, hydrology and climatic variables.   

 

In this chapter, I hypothesize that ALOS PALSAR radar data is correlated with peat thickness, as 

we have seen that shallow, seasonally inundated peat swamps have a distinctly different 

backscatter signal than deeper peat swamps with more stable water tables (see Chapter 5). 

Thus, the use of this data type can be expected to help differentiate between shallow seasonally 

inundated peat, and deeper permanently waterlogged peat. Similarly, optical Landsat 7 ETM+ 

data can likely help to differentiate between these peat swamp forests, as the vegetation 

structure of seasonally inundated forests has been found to differ (see Chapter 3).  

 

Additionally, I hypothesize that distance from the peatland margin is an important predictor of 

peat thickness, as peat thickness was generally found to increase along transects when moving 

away from the terra firme edge (see Chapter 2). Since this also corresponds with distance to the 

river along some river-influenced peatlands, I additionally hypothesize that distance from the 

nearest drainage point is also an important driver of peat thickness.  

 

Furthermore, I hypothesize that climatic variables such as total precipitation or precipitation 

seasonality play a role in predicting peat thickness. This is because peatlands in the central 

Congo Basin are likely closer to the their hydrological limit, given the relatively drier climate 

compared with other tropical peatland areas (Malhi & Wright, 2004). Thus, small differences in 

rainfall patterns could have a potentially important impact on peat thickness by shifting the 

balance between accumulation and decay. 

 

Finally, I hypothesize that topographic variables are useful for predicting peat thickness in the 

central Congo Basin, given they have proven useful in other peatland studies and will likely help 

to identify depressions where water is expected to pond. In particular, I hypothesize the HAND-

index to be an important driver of peat thickness, as it is hydrologically more relevant at the 

local scale than absolute elevation above sea level (Nobre et al., 2011).  

 

Unlike the Maximum Likelihood classifier used for mapping landcover distribution in Chapter 5, 

the Random Forests algorithm has the advantage that it can be used for regression models as 

well. Additionally, this algorithm is capable of providing an estimate of variable importance, 

which can be useful in assessing the individual contributions of the hypothesized predictor 
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variables (Maxwell et al., 2018). However, how well an RF regression would work for predicting 

peat thickness over a large mapping area is unclear. As was also observed in Chapter 5, Random 

Forest is sensitive to overfitting due to spatial autocorrelation in the dataset (Nussbaum et al., 

2018; Sinha et al., 2019). Thus, any such model requires a large enough dataset to prevent 

overfitting errors. Fortunately, peat thickness measurements are now available from across 

interfluvial basin peatlands and river-influenced peatlands. In this chapter, I therefore aim to 

develop a Random Forest regression model for predicting peat thickness, by using the combined 

dataset of peat thickness measurements in the DRC (this study) and ROC (Dargie et al. 2017). I 

will then use this model of peat thickness to scale the estimates of the amount of carbon stored 

belowground in peat across the central Congo Basin. In this way, developing a peat thickness 

model will contribute to reducing the current uncertainty in peat carbon stock estimates in the 

Cuvette Centrale. 

 

 

6.3 Chapter aims 

The overall aim of this chapter is to estimate the total carbon stocks of the central Congo Basin 

peatlands by combining field data on peat thickness and carbon density with remotely-sensed 

data. In addition, I develop the first model of peat thickness for the central Congo peatlands that 

is based on in situ measurements. The specific objectives of this chapter are: (i) to develop a 

map of peat thickness across the basin; (ii) to use this map of peat thickness to develop a first 

map of peat carbon density across the basin; and (iii) to estimate basin-wide peat carbon stocks.   
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6.4 Methods 

 

6.4.1 Peat bulk density measurements 

I estimated carbon density for 80 peat cores (OM ≥ 65%, thickness ≥ 0.3 m), located every other 

kilometre along 18 transects across both DRC and ROC. These included 25 peat cores from the 

seven transects used for hypothesis-testing in the Ruki River region in DRC (presented in Chapter 

2), plus 14 cores from three transects in the Congo River region in DRC, collected by the 

CongoPeat project (S. Lewis, G. Dargie and the CongoPeat consortium, unpublished data). In 

addition, there were 43 cores from eight transects in the Likouala-aux-Herbes River region (26 

cores from 5 transects) and Ubangi River regions (17 cores across 3 transects) in ROC, collected 

by Dargie et al. (2017). 

 

Knowing the bulk density of peat, i.e. the mass per unit volume, is an important first step for 

quantifying peat carbon stocks (Chambers et al., 2011). Peat bulk density was measured for all 

80 peat cores. Every other 0.1-m down-core, samples of a known peat volume were weighed 

after being dried for 24h in an oven at 105°C and cooled down in a desiccator (n=906). Bulk 

density (ρ, g cm−3) was then calculated by dividing the oven-dry sample mass by the volume of 

the sample (Rowell, 1994), similar to Dargie et al. (2017): 

𝜌 =  
𝑚𝑑𝑟𝑦

𝑉
     [Eq. 6.1] 

Here, mdry is the calculated dry mass (g) of the entire sample and V is the volume (cm3) of the 

0.1-m thick peat sample. For samples that were subsampled, dry mass of the of the entire 

sample was calculated from the wet mass of the entire sample, minus the water content: 

𝑚𝑑𝑟𝑦 = 𝑚𝑤𝑒𝑡 − (𝑚𝑤𝑒𝑡 ∗ 𝑊)      [Eq. 6.2] 

Here, mwet is the wet mass (g) of the entire sample and W is the water content fraction. W was 

calculated from the oven-dried subsample using: 

𝑊 =
𝑚𝑤𝑒𝑡,𝑠𝑢𝑏−𝑚𝑑𝑟𝑦,𝑠𝑢𝑏

𝑚𝑤𝑒𝑡,𝑠𝑢𝑏
     [Eq. 6.3] 

Here, mwet,sub is the wet mass of the subsample and mdry,sub is the dry mass of the subsample. The 

sample volume (V) was taken from the peat corer dimensions (530 cm3 per core; 106 cm3 per 

sample). Within each core, linear interpolation was used to estimate bulk density for the 

alternate 0.1m-thick samples of the core that were not measured. 
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6.4.2 Peat carbon concentrations measurements 

In addition to bulk density, knowing the carbon content of the peat is required to estimate 

carbon storage in each peat sample (Chambers et al., 2011). Total carbon concentrations (%) 

were measured only for the deepest core of each transect, plus one additional core from the 

Lokolama transect in DRC and three additionally cores from the Ekolongouma transect in ROC, 

because the carbon content of the peat is known to be relatively consistent, unlike bulk density 

which is more variable (Dargie, 2015). This totals 22 cores, including 11 from DRC (eight from 

the Ruki River region; three from the Congo River region) and 11 from ROC (five from the 

Likouala-aux-Herbes River region; six from the Ubangi River region) (Dargie et al. 2017).  

 

Carbon concentrations of every other 0.1-m thick peat sample down-core were measured using 

an elemental analyser at the University of Leeds (manufacturer: Elementar UK Ltd, Handford, 

UK; model: Vario MICRO Cube with thermal conductivity detection). However, due to Covid-19 

disruption, the cores from the three Congo River transects were analysed by Dr Arnoud Boom, 

Hollie Bean and Genna Tyrrell at the University of Leicester using isotope-ratio mass 

spectrometry (manufacturer: Sercon Instruments Ltd, Crewe, UK; model: ANCA GSL). All samples 

(n=422) were pre-dried for 48h at 40°C and ground to <100 μm using a MM301 mixer mill. Again, 

linear interpolation was used within each core for the alternate samples that were not 

measured.  

 

The remaining 58 cores had less-intensive carbon concentration sampling, whereby typically 

only the surface sample was measured. I interpolated the carbon concentration for each 0.1-m 

thick down-core sample of these cores, following Dargie et al. (2017), because well-sampled 

cores showed a consistent pattern with depth: an increase to a depth of about 0.65 m, followed 

by a long, very weak decline, and finally a strong decline over the deepest approximately 0.5 m 

of the core. I used segmented regression on the 22 well-sampled cores (segmented package in 

R, version 1.3-1) to parameterize the three sections of each peat core. This generated mean 

values for the change in carbon content across each section (20.7, -3.3 and -33.6 % m-1, 

respectively) which were used to interpolate the carbon concentrations for the less-intensively 

sampled 58 cores. If no surface sample had been measured (n=25), I used the mean intercept 

(50.54% carbon) as starting value to interpolate carbon concentrations.  

 

To calculate peat carbon density (mass per unit area), estimates of carbon storage in each 0.1-

m thick peat sample down-core (thickness × bulk density × carbon concentration) were summed 
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to provide an estimate of total carbon density per core (in Mg C ha−1), identical to Dargie et al. 

(2017). 

 

 

6.4.3 Modelling peat thickness 

Generally, an increase in peat thickness was observed along most transects (Chapter 2), 

suggesting peat thickness increases with greater distance from the peatland margin. This trend 

can potentially be used to model peat thickness across the peatland complex. To test this, I 

analysed 447 measurements of peat thickness that were collected across 18 transects in the 

central Congo Basin. These included 236 measurements from the DRC, of which 163 were 

collected across the seven hypothesis-testing transects in the Ruki River region (this thesis, 

Chapter 2) and 73 across three transects in the Congo River region (sampled by the CongoPeat 

project, using the same protocol). In addition, 211 measurements collected by Dargie et al. 

(2017) in the ROC were added (141 across five transects in the Likoula-aux-Herbes River region; 

70 across three transects in the Ubangi River region). All pole-method measurements were 

calibrated using Eq. 5.1 (Figure 5.2), which takes into account the greater offset between pole-

method measurements and LOI-measurements that is found in the river-influenced peatlands 

of the DRC, compared with the interfluvial basin peatlands of the ROC. I then plotted the 

increase in peat thickness with distance from the peatland margin along each transect (Figure 

6.1). For this, a map of distance from the peatland margin was developed in Google Earth Engine 

using the median second-generation peat probability map developed in Chapter 5 (i.e., the 

Maximum Likelihood map with > 500 hardwood- or palm-dominated peat swamp predictions 

out of 1,000 runs [>50%]). For each peat pixel in this binary map, a cost function was used in GEE 

to calculate the Euclidean distance to the nearest non-peat pixel, after speckle and noise were 

removed using a 5x5 squared-kernel majority filter. Using this distance map, transects were 

found to have markedly different relationships between peat thickness and distance from the 

peatland margin, i.e., significantly different regression slopes ranging between -0.79 m km-1 and 

0.88 m km-1 (n=18, p<0.001). Additionally, a linear regression using all 447 datapoints provides 

only a modest fit (R2 = 41.0%; RMSE = 1.21 m), which cautions against using a uniform regression 

between peat thickness and distance from the margin across the central Congo Basin. 

 

Therefore, I instead developed a spatially-explicit Random Forest regression model to predict 

the uneven trends in peat thickness across the basin. The RF regression was implemented in GEE 

with 500 trees and all other parameters set to default values. As training data, I included all LOI-
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verified and corrected pole-method thickness measurements that fell within the smoothed 

version of the second-generation peatland distribution model with >50% peat probability 

(n=463), including 13 records from archaeological measurements (Kiahtipes & Schefuß, 2019), 

as well as thickness measurements > 0 and < 0.3 m from non-peat sites that were likely to 

improve predictions of shallow peat deposits near the margins (n=12).  

 

 
Figure 6.1. Plots showing the regression slope in peat thickness with distance from the margin 
for each transect. In situ peat thickness measurements included both LOI and corrected pole-
method measurements (n=463). Distance from the peatland margin is calculated as the shortest 
Euclidean distance to a non-peat pixel in any direction, based on a smoothed median Maximum 
Likelihood map of peatland extent (> 50% peat probability threshold). Transects are ordered by 
increasing regression slope (in m km-1; upper left corner of each panel), with colours indicating 
the four transect regions used for spatial cross-validation. Note that the horizontal axes are 
different for each panel. Shaded grey shows 95% confidence intervals around each regression. 
 

As predictor variables, I collected a dataset of 14 remotely-sensed covariates that were 

hypothesized to potentially explain or be related to variations in peat thickness. These 14 

variables included the nine optical (Landsat 7 EMT+), radar (ALOS PALSAR) and topographic 

(SRTM) products that were identified as most useful for predicting peatland distribution in 
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Chapter 5. In addition, I included distance from the peatland margin (derived from the binary 

smoothed peatland area map), distance from the nearest drainage point (using the same 

hydrological reference network as was used to develop the HAND-index; Lehner et al., 2008), 

precipitation seasonality (from the WorldClim2 database; Fick & Hijmans, 2017), live woody 

aboveground biomass (Baccini et al., 2012), and climatic water balance. Climatic water balance 

(CWB) was calculated by subtracting mean annual potential evapotranspiration (from the Global 

Aridity Index & Potential Evapotranspiration Database; Trabucco & Zomer, 2019) from mean 

annual precipitation across the basin (from the WorldClim2 database; Fick & Hijmans, 2017). All 

predictor variables were resampled to 50 m resolution. The map of inundation frequency 

developed in Chapter 5 from multi-temporal SAR data was not included because it did not cover 

the whole of the peatland complex.  

 

I then applied a stepwise backward selection on all predictor variables out of these 14 that were 

found to be significantly correlated with peat thickness. In Google Earth Engine, I tested 

combinations of these significant variables by first running a model that included all significant 

variables, and then dropping one of them out of the model each time in order from low to high 

variable importance. The importance of each variable was assessed by calculating Mean 

Decrease Impurity (MDI), the total decrease in the residual sum of squares of the Random Forest 

regression after splitting on that variable, averaged over all decision trees in the random forest. 

Median MDI was calculated for each variable in GEE based on 100 random (two-thirds) cross-

validations of the overall model containing all significant variables. As the optimal regression 

model, I selected the model with highest median R2 and lowest median root mean square error 

(RMSE) obtained from 100 random (two-thirds) cross-validations for each model option. 

 

To assess the accuracy of the optimal RF model, I tested if peat thickness is affected by spatial 

autocorrelation at scales similar to that of the transect length (~10 km). I estimated spatial 

variation in the peat thickness dataset by fitting a variogram model using the gstat package in R 

(version 2.0-7) and testing multiple fits using either exponential, spherical or Gaussian models. 

The best fist was found to be an exponential model with a range of 9.0 km, confirming that 

spatial autocorrelation is strong at the transect scale. Therefore, I also applied a spatial cross-

validation approach to the Random Forest regression model. Like with the spatial cross-

validation that was applied to peatland distribution models in Chapter 5, this is done to assess 

how well the model performs in faraway areas from which no training data is included.  
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For this spatial cross-validation, I used the same four transect regions as in Chapter 5 (see Figure 

5.4), with datapoints from the Likoula-aux-Herbes River region and Ubangi River region 

combining into a larger interfluvial basin region, and datapoints from the Congo River region 

and the Ruki River region combining into a larger river-influenced region. For each region, I 

tested peat thickness predictions from the optimal RF model using 100 random selections of 

two-thirds of the remaining datapoints from the other regions as training data.  

 

Furthermore, I assessed how uncertainty from the peatland area predictions affects the 

uncertainty around the peat thickness predictions, as distance from the peatland margin was 

found to be the most important predictor included in the optimal peat thickness model. For this, 

I ran 100 peat thickness models, each with a slightly different input layer of distance from the 

peatland margin. I first created 100 different maps of distance from the peatland margin, by 

randomly selecting (with replacement) a minimum peat probability threshold > 0% and ˂ 100%, 

removing speckle and noise with a 5x5 squared-kernel majority filter, and re-calculating the 

closest distance to the nearest non-peat pixel. I then combined the 100 resulting maps of 

distance from the margin each time with the other significant predictors that were selected as 

input in the optimal RF model. This way, 100 different peat thickness maps could be developed 

based on varying peatland area predictions. For these model runs, I included all available 

thickness measurements (> 0 m) that fell within each derived distance map. Each output map 

was then masked to an area ≥ 0.3 m thickness, consistent with the peat definition.  A map of 

median peat thickness and relative uncertainty (± half the width of the 95% CI as percentage of 

the median) was then calculated for each pixel based on the 100 available thickness estimates. 

 

Finally, I compared the optimal RF model with a multiple linear regression model using the same 

predictor variables, including interaction effects. For this, all 463 datapoints were included 

(instead of a random two-thirds selection). 

 

 

6.4.4 Modelling peat carbon density 

To estimate carbon density from modelled peat thickness across the basin, I developed a 

regression model between peat thickness measurements and per-unit-area carbon density using 

the 80 sampled peat cores. I compared linear regressions for normal, logarithmic-, and square 

root-transformed peat thickness, selecting the model with lowest AICc and highest R2. A linear 

model with square root-transformed peat thickness was found to provide the best fit (R2 = 0.86; 
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p<0.001). Bootstrapping was applied (boot package in R, version 1.3-25) to assess uncertainty 

around the regression (Figure 6.2).  

 

 
Figure 6.2. Linear regression between peat thickness and carbon density per unit area. Dots 
are coloured by transect region. Best-fitting line: carbon density (in Mg ha-1) = - 942.4 + 2088.4 x 
SqRt(peat thickness, in m); n=80, R2 = 0.86; p<0.001. Shaded grey shows the 95% confidence 
interval. 20 bootstrapped regressions, normally distributed around the best-fitting line, were 
used to include this uncertainty when scaling peat thickness to carbon density estimates. 
 

Carbon density (mass per unit area) was then mapped across the central Congo Basin peatlands 

in GEE, by applying this thickness-carbon density regression to the median map of peat thickness 

developed in section 6.4.3. To include the uncertainty associated with the thickness-carbon 

density regression in this prediction, I used the bootstrapping of the regression to select 20 

combinations of regression parameters that were normally distributed around the best fit 

(within shaded grey in Figure 6.2). I applied each of these 20 slightly different regression 

equations to the 100 peat thickness maps that were derived in section 6.4.3 by varying the peat 

probability threshold that served to generate the map of distance from the peatland margin. 

This generated a collection of 2,000 maps of carbon density estimates across the peatland area. 
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A map of median carbon density out of 2,000 estimates was subsequently derived as best-

estimate, together with a map of relative (statistical) uncertainty (± half the width of the 95% CI 

as percentage of the median).  

 

 

6.4.5 Estimating peat carbon stocks 

Total peat carbon stocks were computed in GEE by summing the carbon density (in Mg ha-1) over 

all 50 m grid squares defined as peat. To assess uncertainty around this estimate, I again 

combined the 100 peat thickness maps (i.e., uncertainty from area and thickness), with 20 

bootstrapped thickness-carbon regressions (i.e., uncertainty from carbon density, including bulk 

density and carbon concentration). This way, I obtained 2,000 peat carbon stock estimates for 

the total central Congo Basin peatland complex, which I used to estimate the mean, median and 

95% confidence interval.  

 

A sensitivity analysis was performed by bootstrapping either the area, thickness, or carbon 

density component, whilst keeping the others constant. For area, I bootstrapped by using 100 

randomly selected peatland area estimates; for thickness, I bootstrapped by using 100 randomly 

selected two-thirds subsets of all thickness measurements; for carbon density, I bootstrapped 

by using the 20 normally distributed regression equations obtained from bootstrapping the 

thickness-carbon density regression in Figure 6.2. 

 

Regional carbon stock estimates were then obtained by overlaying the median carbon density 

map with maps of each sub-national administrative region (departments in ROC and provinces 

in DRC). Additionally, I assessed the amount of carbon that is currently covered by national-level 

protected areas (national parks and nature/biosphere/community reserves), or threatened by 

industrial logging, mining and palm oil concessions. National-level protected area maps were 

obtained from UNEP-WCMC/IUCN (2021). Maps of industrial logging, mining and palm oil 

concessions were obtained from Global Forest Watch (GFW, 2019a; GFW, 2019b; GFW 2019c; 

GFW, 2019d; GFW, 2019e), Map for Environment (2014) and Earthsight (2018). Since potential 

hydrocarbon concessions cover almost the whole peatland area (Dargie et al., 2019; Miles et al., 

2017), they overlap with almost 100% of the central Congo peat carbon stocks and were not 

mapped separately. 
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6.5 Results 

 

6.5.1 Peat thickness, bulk density and carbon content 

Peat thickness was measured at 238 locations in DRC (≥ 0.3 m thickness with ≥ 65% organic 

matter). Based on the basin-wide calibration of pole-method measurements (see Chapter 5, 

Figure 5.2), I find a mean (± s.d.) thickness of 2.4 (± 1.6) m and a maximum of 6.4 m (Table 6.2). 

This is not significantly different from the mean value measured in ROC (2.4 ± 1.5 m; n=213), 

confirming that rivers-influenced peatlands attain similar peat thickness as rain-fed interfluvial 

basins reported in ROC by Dargie et al. (2017). The mean peat thickness of 451 measurements 

across the whole central Congo Basin is 2.4 (± 1.5) m.  

 

Mean (± s.d) bulk density per core as measured across all central Congo Basin peat cores is 0.174 

(± 0.063) g cm-3 (n=80), and mean carbon concentration per core is 55.7% (± 3.2) (n=80). Carbon 

concentration is very similar at 56.6% (± 4.5) if only the 22 well-sampled cores are included. 

Using the measurements of bulk density and carbon concentration to calculate carbon density 

for each peat sample, I find that the mean (± s.d) carbon density averaged per core is 0.096 (± 

0.035) g C cm-3 (Table 6.2).  

 

Summing carbon density values of all down-core samples per core, the mean (± s.d) total carbon 

density across the central Congo Basin peatlands, in terms of mass per unit area, is 1,741 (± 

1,186) Mg C ha-1 (n=80). The maximum recorded carbon density is 5,162 Mg C ha-1 at 10 km along 

the Mpeka transect (5.40 m thick), a river-influenced peatland area next to the Ruki River 

tributary. The maximum recorded value in the interfluvial basin peatlands that dominate in ROC 

is only 3,183 Mg C ha-1, recorded at 20 km along the Centre transect (5.2 m thick), in a wide but 

shallow domed peatland area that is bounded by the Likouala-aux-Herbes and Ubangi Rivers on 

either side (Davenport et al., 2020) . Minimum total carbon density in DRC is 56 Mg C ha-1 at 3 

km along the Boboka transect along the Congo River (0.3 m thick), while the minimum in ROC is 

higher with 246 Mg C ha-1 at 2 km along the Bondzale transect along the Ubangi River (0.3 m 

thick). 

 

Average peat bulk density per core is found to be significantly lower in the largely river-

influenced sites in DRC (mean 0.150 ± 0.065 g cm-3, n=37) than in the largely rain-fed interfluvial 

basins in ROC (mean 0.194 ± 0.055 g cm-3, n=43; Welch’s Two Sample T-test, p<0.01). Similarly, 

average carbon density per core is significantly lower in the river-influenced sites (mean 0.082 
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± 0.034 g C cm-3) than in the interfluvial basin peatlands (mean 0.109 ± 0.030 g C cm-3; Mann–

Whitney U test, p<0.001). However, no significant difference between these two peatland types 

is found for either averaged carbon concentration per core (55.0 ± 3.6% and 56.2 ± 2.7%, 

respectively; Mann–Whitney U test, p=0.19) or total carbon density down-core (Mann–Whitney 

U test, p=0.80). Nonetheless, the range and variation in total carbon density is considerably 

larger in the river-influenced peatlands (1,883 ± 1,511 Mg C ha-1) of the DRC, compared with 

interfluvial basin peatlands (1,619 ± 810 Mg C ha-1) of the ROC (Table 6.2). 

 

Furthermore, no significant differences are found for any of these variables between hardwood-

dominated peat swamp forest (n=41) and palm-dominated peat swamp forest types (n=39). 

Mean peat bulk density in hardwood swamp forests is 0.175 (± 0.071) g cm-3, compared with 

0.171 (± 0.055) g cm-3 in palm swamp forests (Welch’s Two Sample T-test, p=0.75). Mean 

averaged carbon concentration per peat core is 55.9% (± 2.5) in hardwood swamp forests and 

55.5% (± 3.8) in palm swamp forests (Mann–Whitney U test, p=0.89), while mean carbon density 

averaged per core is 0.097 (± 0.039) g C cm-3 in hardwood swamp forests and 0.094 (± 0.030) g 

C cm-3 in palm swamp forests (Welch’s Two Sample T-test, p=0.70). Finally, mean total carbon 

density down core is 1,710 (± 1,266) Mg C ha-1 in hardwood swamp forests and 1,696 (± 1,020) 

Mg C ha-1 in palm swamp forests (Mann–Whitney U test, p=0.86).  

 

 

6.5.2 Map of peat thickness 

To model peat thickness, I developed a Random Forest regression, using 463 thickness 

measurements (˃ 0 m) across both DRC and ROC. Ten of the 14 chosen variables were found to 

be significantly correlated with peat thickness (Kendall's τ, p<0.01). These included all three 

Landsat optical bands, all three ALOS PALSAR radar bands, distance from the peatland margin, 

distance from the nearest drainage point, precipitation seasonality, and climatic water balance 

(precipitation minus potential evapotranspiration). Live woody AGB and the three SRTM-derived 

topographic predictors (DEM, HAND and slope) were not significantly correlated with peat 

thickness (p=0.12, 0.87, 0.07 and 0.07, respectively) and therefore left out of further variable 

selection. 

 

Analysis of variable importance in the overall model containing all ten significant variables shows 

that distance from the peatland margin, precipitation seasonality, climatic water balance and 

distance from the nearest drainage point are more important predictors than the Landsat 7 

ETM+ or ALOS PALSAR radar bands (Figure 6.3).  
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Figure 6.3. Barplot of variable importance for ten significant predictors of peat thickness in a 
Random Forest model. Variable importance is assessed as the Mean Decrease Impurity (MDI), 
the total decrease in the residual sum of squares of the regression after splitting on that variable, 
averaged over all decision trees in the random forest. MDI was calculated for each variable using 
100 random (two-thirds) cross-validations of the overall RF model containing all ten significant 
predictors. Note that the order of variables does not necessarily reflect the strength of the 
individual correlations of each predictor (Kendall’s τ) with peat thickness. 
 

Using stepwise backward selection on these ten predictor variables, I derived an optimal model 

that contained the same four most important predictors only: distance from the peatland 

margin, distance to the nearest drainage point, climatic water balance (all positively correlated 

with peat thickness; Kendall's τ = 0.49, 0.15 and 0.13, respectively; p<0.001 for all), and 

precipitation seasonality (negatively correlated with thickness; Kendall's τ = -0.11, p<0.01). This 

model had the highest median R2 (82.2%) and lowest median root mean square error (RMSE; 

0.68 m) of all tested variable combinations, obtained from 100 random (two-thirds) cross-

validations for each model option. 

 

The spatial distribution of these four predictor variables across the peatland complex is shown 

in Figure 6.4. These maps indicate clear east-west gradients, either in the two precipitation 

variables (greater seasonality and greater climatic water balance in the eastern portion of the 

basin), or in the distance from the peatland margin (large distances associated with interfluvial 

basins in the west, shorter distances associated with river valleys in the east). On the other hand, 

distance from the nearest drainage point shows no large-scale gradient but varies instead on 

more local scale. 
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Figure 6.4. Spatial variability of four predictor variables retained in the optimal Random Forest 
regression model of peat thickness. a, Distance from the peatland margin (km). b, Precipitation 
seasonality (coefficient of variation). c, Climatic water balance (precipitation minus potential 
evapotranspiration; mm). d, Distance from the nearest drainage point (km). All maps have been 
masked to the smoothed median Maximum Likelihood peatland extent (> 50% peat probability). 
Black lines represent national boundaries; grey lines represent sub-national administrative 
boundaries. 
 

Using these four predictors in a RF regression model that is trained on all 463 datapoints results 

in a R2 of 93.4% and RMSE of 0.42 m. This model had consistently smaller residuals compared to 

a multiple linear regression model that contains the same four predictor variables, including 

interaction effects (adj-R2 = 73.6%, RMSE = 0.80 m; Figure 6.5). 

 

The RF model also outperformed the multiple linear regression model with interaction effects 

when testing out-of-sample performance, using 100 random two-thirds cross-validations of 

training data (median R2 = 82.2%, RMSE = 0.68 m; and median adj-R2 = 73.6%, RMSE = 0.85 m; 

for RF model and multiple linear regression, respectively). 
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Figure 6.5. Comparison of observed and predicted values in Random Forest and linear peat 
thickness models. a, Multiple linear regression model with interaction effects (adj-R2 = 73.6%, 
RMSE = 0.80 m). b, Random Forest regression model (R2 = 93.4%, RMSE = 0.42 m). Both models 
are trained and validated against all 463 field measurements and include the same four predictor 
variables: distance from the peatland margin, precipitation seasonality, climatic water balance, 
and distance from the nearest drainage point. Both panels show 277 aggregated means only to 
account for duplicates in observed values. The black lines indicate the 1:1 relationship. 
 

A spatial cross-validation of the RF model shows that spatial autocorrelation at the transect scale 

(~10 km) contributes to the success of this model, as performance is much reduced in left-out 

regions at greater distances from which no training data was included (Table 6.1). The average 

R2 across the four left-out regions tested separately is only 29.6%, while the average RMSE is 

1.42 m. R2 is lowest in the Congo River region (17.0%), if trained only on datapoints from the 

other three regions, suggesting greater uncertainty in the model when extrapolating into this 

area. On the other hand, R2 is highest in the Likouala-aux-Herbes River region (63.2%), 

suggesting there is less uncertainty when extrapolating into this region from the other three 

regions. Comparing the interfluvial basin with river-influenced peatlands, we see that the 

proportion of variation in peat thickness explained by training data from the other region is 

particularly low in the river-influenced peatlands (6.5%), compared to the interfluvial peatlands 

(38.5%). This is likely because there is greater variation in peat thickness over shorter distances 

in the river-influenced peatlands, meaning that the primary predictor variable in the RF model 

(distance from the peatland margin) is not as effective there if no river-influenced training data 

is included at all.  
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 Random 
cross-
validation 
(overall) 

Spatial cross-validation (regional) 
 

Likouala- 
aux-Herbes,  
ROC  
(n=141) 

Ubangi, 
ROC 
(n=71) 

Congo,  
DRC 
(n=80) 

Ruki,  
DRC 
(n=163) 

Interfluvial 
basin 
peatlands, 
ROC 
(n=212) 

River-
influenced 
peatlands,  
DRC 
(n=243)  

RMSE 

(m) 

0.68 

(0.59-0.79) 

 

1.68 

(1.54-1.84) 

1.21 

(1.08-1.36) 

0.88 

(78.8-102.5) 

1.91 

(1.79-2.03) 

1.54 

(1.30-1.69) 

1.65 

(1.59-1.74) 

R2  

(%) 

82.2 

(74.6-86.4) 

 

63.2 

(37.7-78.1) 

19.6 

(16.9-22.9) 

17.0 

(12.1-20.8) 

18.7 

(2.8-41.0) 

38.5 

(14.0-53.0) 

6.5 

(0.5-13.6) 

Table 6.1. Random and spatial cross-validation of the Random Forest regression model of peat 
thickness. Random CV results are obtained from 100 random Monte Carlo two-thirds data splits 
of all depth measurements (n=463), showing median values and 95% confidence interval (in 
parentheses). Spatial CV results are obtained for each region, by training on a random two-thrids 
of the remaining datapoints and validating against the selected left-out region only. The 
interfluvial basin peatlands (n=212) comprise the Likouala (n=141) and Ubangi (n=71) regions. 
The river-influenced peatlands (n=243) comprise the Congo (n=80) and Ruki (n=163) regions.  
 

 

Nonetheless, by including datapoints from all four regions in the final model, the model results 

are consistent with the field data in areas from which peat thickness measurements are 

available. The model predicts thick peat deposits in the centres of the largest interfluvial basins 

(areas far from peatland margins), and in smaller, river-influenced valley-floor peatlands along 

the Ruki/Busira Rivers (areas with greater climatic water balance and lower precipitation 

seasonality) (Figure 6.6a). This is in line with field-measurements, as the two deepest peat 

thickness measurements are from the interfluvial Centre transect in ROC (5.9 m at 15.75 km), 

and the river-influenced Bondamba transect on the Busira River in DRC (6.4 m at 6.5 km; using 

the basin-wide pole-method calibration). Overall, mean (± s.d.) modelled peat thickness (1.7 ± 

0.9 m) is lower than the field measurements (2.4 ± 1.5 m; Table 6.2), as expected given the linear 

transects that were used, which oversample deeper peat at the centre relative to the periphery 

in approximately ovoid peatlands. The mean modelled peat thickness in ROC (1.7 ± 0.9) is very 

similar to the mean modelled peat thickness in DRC (1.8 ± 0.8), suggesting no overall difference 

between the geomorphologically-distinct peatland areas in both countries. Areas of high 

uncertainty in peat thickness occur where distance from the margin is uncertain, such as in the 

south of the peatland complex near Lake Mai-Ndombe, as well as local hotspots in the north of 

the basin (Figure 6.6b).  
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Figure 6.6. Maps of peat thickness and uncertainty across the central Congo Basin. a, Median prediction of peat thickness (m) from 100 Random Forest regression 
models with four predictors: distance from the peatland margin, precipitation seasonality, climatic water balance, and distance from the nearest drainage point. 
b, Relative uncertainty (%) of the peat thickness estimate, expressed as ± half the width of the 95% confidence interval as percentage of the median. Black lines 
represent national boundaries; grey lines represent sub-national administrative boundaries. 
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6.5.3 Map of peat carbon density 

I developed a map of peat carbon density by applying a linear peat thickness-carbon density 

regression (Figure 6.4) to the map of peat thickness (Figure 6.6a). Modelled belowground peat 

carbon density for the central Congo Basin is 1,712 ± 634 Mg C ha-1, similar to the field-measured 

mean of 1,741 ± 1,186 Mg C ha-1 (mean ± s.d., n=80; Table 6.2). Spatial patterns of peat carbon 

density (Figure 6.7a) and uncertainty (Figure 6.7b) follow similar patterns as peat thickness 

(Figure 6.6a and 6.6b). This results in slightly more carbon-dense peatlands in the DRC (1,740 ± 

604 Mg C ha-1) than in ROC (1,653 ± 687 Mg C ha-1). 

 

The maximum modelled carbon density across the central Congo Basin is 3,970 Mg C ha-1, in the 

river-influenced peatlands of the DRC, compared with a slightly lower maximum of 3,852 Mg C 

ha-1 in the interfluvial basin peatlands of the ROC.  This DRC value is considerably lower than the 

maximum field-measured carbon density in the DRC of 5,162 Mg C ha-1, as expected given the 

lower maximum modelled peat thickness values. On the other hand, the maximum modelled 

ROC value is slightly larger than the maximum field-measured carbon density of 3,138 Mg C ha-

1 in the ROC (Table 6.2), possibly because higher carbon densities from DRC dominate the upper 

range of peat thickness values in the thickness-carbon density regression (Figure 6.2). 
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Figure 6.7. Maps of peat carbon density and uncertainty across the central Congo Basin. a, Median prediction of belowground peat carbon density (Mg C ha-1), 
obtained from applying 20 normally distributed thickness-carbon density regressions (Figure 6.4) to 100 peat thickness estimates (Figure 6.6a), generating 2,000 
carbon density estimates. b, Relative uncertainty (%) of the carbon density estimate, expressed as ± half the width of the 95% confidence interval as percentage 
of the median. Black lines represent national boundaries; grey lines represent sub-national administrative boundaries. 
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 Field measurements ⃰   Spatial model † 

Peat thickness  

(m) # 

Peat bulk density  

(g cm-3) § 

Peat carbon concentration  

(%) ‡ 

Total peat carbon density  

(Mg C ha-1) ‡  

Peat thickness  

(m) ¶ 

Total peat carbon density  

(Mg C ha-1) $ 

Mean  

± s.d. 

Median 

 

Max Mean  

± s.d. 

Median 

 

Min Max Mean  

± s.d. 

Median 

 

Min Max Mean  

± s.d. 

Median Max Mean  

± s.d. 

Median Max Mean  

± s.d. 

Median 

 

Max 

Interfluvial basin 

peatlands (ROC) 

2.4  

(1.5) 

2.1 5.9 

 

0.19 

(0.06) 

0.19 0.10 0.31 56.2 

(2.7) 

56.5 49.6 61.8 1,619 

(810) 

1,640 3,183 1.7  

(0.9) 

1.3 5.4 1,653 

(687) 

1,402 3,852 

River- influenced 

peatlands (DRC) 

2.4 

(1.6) 

2.0 6.4 

 

0.15 

(0.07) 

0.15 0.02 0.33 55.0 

(3.6) 

55.8 42.0 59.2 1,883  

(1,511) 

1,762 5,162 1.8  

(0.8) 

1.6  5.6 1,740 

(604) 

1,697 3,970 

Central Congo  

Basin peatlands 

(ROC + DRC) 

2.4 

(1.5) 

2.0 6.4 0.17 

(0.06) 

0.17 0.02 0.33 55.7 

(3.2) 

56.3 42.0 61.8 1,741 

(1,186) 

1,700 5,162 1.7 

(0.9) 

1.6  5.6 1,712  

(634) 

1,661  3,970 

Table 6.2. Field-measured and spatially modelled estimates of peat thickness, bulk density, carbon concentration, and carbon density. 
* Field measurement statistics include either the Likouala-aux-Herbes and Ubangi River groups of transects only (‘Interfluvial basin peatlands’), or the Congo and 
Ruki River groups of transects only (‘River-influenced peatlands’), or all groups (‘Central Congo Basin peatlands’).  
† Spatial model statistics include all 50 m resolution pixels mapped in either Republic of the Congo only (ROC), Democratic Republic of the Congo only (DRC), or 
both countries (ROC + DRC).  
# In situ measurements (LOI and corrected pole-methods) from 213, 238 and 451 locations in ROC (Dargie et al., 2017), DRC (this study) and combined, 
respectively. Peat is ≥ 0.3 m thickness and ≥ 65% organic matter. 
§ n=43, 37, and 80 well-sampled cores in ROC (Dargie et al., 2017), DRC (this study) and combined, respectively, based on 0.1-m thick samples. 
‡ n=43, 37, and 80 well-sampled and interpolated cores in ROC (Dargie et al., 2017), DRC (this study) and combined, respectively, based on 0.1-m thick samples.  
¶ Median estimate from 100 thickness estimates per 50 m resolution pixel across the median extent map, with thickness estimated from 100 RF regression 
models trained with four predictor variables, each with a randomly selected Maximum Likelihood peat probability threshold to derive distance from the peatland 
margin. 
$ Median estimate from 2,000 carbon density estimates per 50 m resolution pixel across the median peat area map, with carbon density estimates derived from 
20 normally distributed thickness-carbon regressions (Figure 6.4) applied to 100 peat thickness estimates.  
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6.5.4 Basin-wide peat carbon stock estimates 

Median estimated total peat carbon stock in the central Congo Basin is 29.0 Pg (95% CI, 26.3-

32.2; Figure 6.8a), based on bootstrapping the area estimate and peat thickness-carbon density 

regression. About two-thirds of this peat carbon is in DRC (19.6 Pg C; 95% CI, 17.9-21.9), and 

one-third in ROC (9.3 Pg C; 95% CI, 8.4-10.2). The high peat carbon stocks are found across 

several administrative regions in both countries (Table 6.3), with the largest stocks in DRC’s 

Équateur province, storing 10.7 Pg C (95% CI, 9.9 - 11.7), more than is found in the entire ROC. 

This is followed by the Likouala department in ROC (5.4 Pg C; 95% CI, 4.8 - 5.8) and the Mai-

Ndombe province in DRC (5.2 Pg C; 95% CI, 4.8 - 5.7).  

 

Sensitivity analysis shows that statistical (aleatoric) uncertainty in total peat carbon stock is now 

mostly driven by uncertainty in peatland area, rather than peat thickness or carbon density 

(Figure 6.8b). Bootstrapping peatland area by randomly selecting a peatland probability 

threshold causes a range in peat carbon stocks of approximately 6 Pg C, in comparison with 

approximately 3 Pg C when bootstrapping the peat thickness-carbon density model, or 

approximately 2.5 Pg C when bootstrapping the peat thickness model. Thus, the uncertainty 

surrounding peatland area is the cause of the greatest uncertainty in my estimate of the total 

peat carbon stocks in the central Congo Basin. 

 

 
Figure 6.8. Distribution and sensitivity of peat carbon stock estimates in the central Congo 
Basin peatland complex. a, Distribution of 2,000 peat carbon stock estimates, obtained by 
combining 100 random peat probability thresholds in the peatland extent model and computing 
the associated RF peat thickness map, with 20 normally-distributed equations from the 
bootstrapped peat thickness-carbon density regression. Median, 29.0 Pg C; mean, 29.1 Pg C; 95% 
CI, 26.3–32.2 Pg C. b, Sensitivity analysis by in turn bootstrapping peat area estimates (n=100), 
peat thickness measurements (n=100), or carbon density regressions (n=20), whilst keeping the 
other components constant. Central horizontal lines show the medians, box limits show the upper 
and lower quartiles, and the vertical lines show maximum and minimum values. Dots represent 
potential outlying values. 
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Country Region Peatland area  

(km2) 

Peat 
thickness 
(m) 

Peat carbon 
density 

(Mg C ha-1) 

Peat carbon 
stock  

(Pg C) 

Republic of  
the Congo 
(ROC) 

Likouala 28,636 1.9 ± 1.0 1,815 ± 740 5.4 (4.8 - 5.8) 
 

Cuvette 17,757 1.6 ± 0.8 1,626 ± 624 2.9 (2.7 - 3.2) 
 

Sangha 7,465 1.1 ± 0.4 1,218 ± 325 0.9 (0.8 - 1.0) 
 

Plateaux 1,183 0.9 ± 0.1 1,059 ± 162 0.1 (0.1 - 0.1) 
 

Total ROC 55,072 1.7 ± 0.9 1,653 ± 687 9.3 (8.4 - 10.2) 
 

Democratic 
Republic of  
the Congo 
(DRC) 

Équateur 58,276 1.9 ± 0.9 1,822 ± 658 10.7 (9.9 - 11.7) 
 

Mai-Ndombe 29,825 1.8 ± 0.7 1,752 ± 548 5.2 (4.8 - 5.7) 
 

Tshuapa 11,628 1.9 ± 0.5 1,917 ± 343 2.1 (1.8 - 2.6) 
 

Sud-Ubangi 7,557 1.1 ± 0.4 1,243 ± 370 1.0 (0.8 - 1.2) 
 

Mongala 5,329 1.2 ± 0.4 1,259 ± 360 0.6 (0.5 - 0.8) 
 

Total DRC 113,201 1.8 ± 0.8 1,740 ± 604 19.6 (17.9 - 21.9) 
 

ROC and DRC 
combined 

Total central 
Congo Basin 
peatlands 

167,648  

(159,378 –  

175,079)  

1.7 ± 0.9  1,712 ± 634 29.0 (26.3 - 32.2) 

Table 6.3. Estimated peatland area, peat thickness, carbon density and carbon stocks per 
administrative region. All values are regional means (± s.d.) of the median peat thickness and 
carbon density maps; or median estimates (with 95% confidence interval in parentheses) for total 
peatland area and peat carbon stock. For regional area estimates without confidence interval, 
the median peatland map (> 50% probability) was used. Sub-national administrative regions are 
provinces (DRC) or departments (ROC). Marginal peat predictions in other administrative regions 
(Kasaï, Tshopo, Kwilu, Nord-Ubangi in DRC; Cuvette-Ouest in ROC) are included in total country 
estimates, but not listed separately. 
 

By overlaying the peat carbon density map with maps of protected areas, I estimate that only 

2.4 Pg C stored in the peat, or just 8% of the total peat carbon stocks, currently lies within formal 

national-level protected areas (Figure 6.9 and Table 6.4). These are primarily the Tumba-Lediima 

and the Ngiri Nature Reserves in DRC and the Lake Télé Community Reserve in ROC. Meanwhile, 

logging, mining, or palm oil concessions together overlie 7.4 Pg C in peat, or 26% of total stocks. 

This high figure is mainly due to large logging concessions, most of which have not begun logging 

operations, particularly in DRC. 
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Figure 6.9. Map of national protected areas and industrial concessions across the central 
Congo Basin peatland complex. The base map shows belowground peat carbon density (shaded 
grey; Figure 6.7), overlaid with protected areas at national-level (national parks and 
nature/biosphere/community reserves; UNEP-WCMC/IUCN, 2021)), or industrial logging, 
mining, and palm oil concessions (GFW 2019a, 2019b, 2019c, 2019d, 2019e; Map for 
Environment, 2014; Earthsight, 2018). Black lines represent national boundaries; grey lines 
represent sub-national administrative boundaries. 
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Country Concessions / 

Protected areas 

Peatland  

area  

(km2) 

Peat 
thickness 
(m) 

Peat carbon 
density 

(Mg C ha-1) 

Peat carbon 
stock  

(Pg C) 

Republic of 
the Congo 
(ROC) 

Industrial logging / 
mining / palm oil 
concessions  

13,539 (25%) 1.2 ± 0.6 1,299 ± 451 2.0 (22%) 

National-level 
protected areas  

6,402 (12%) 1.4 ± 0.6 1,463 ± 478 1.0 (11%) 

Democratic 
Republic of 
the Congo 
(DRC) 

Industrial logging / 
mining / palm oil 
concessions  

29,712 (26%) 1.6 ± 0.7 1,671 ± 567 5.4 (28%) 

National-level 
protected areas  

8,105 (7%) 1.5 ± 0.8 1,552 ± 592 1.4 (7%) 

ROC and DRC 
combined 

Industrial logging / 
mining / palm oil 
concessions  

43,250 (26%) 1.5 ± 0.7 1,551 ± 560 7.4 (26%) 

National-level 
protected areas  

14,511 (9%) 1.5 ± 0.7 1,513 ± 547 2.4 (8%) 

Table 6.4. Estimated peatland area, peat thickness, carbon density and carbon stocks in industrial 
concessions and protected areas. Estimates are calculated for all protected areas at national-level 
(national parks and nature/biosphere/community reserves; UNEP-WCMC/IUCN, 2021), or for 
industrial logging, mining, and palm oil concessions combined (GFW 2019a, 2019b, 2019c, 2019d, 
2019e; Map for Environment, 2014; Earthsight, 2018). All values are means (± s.d.) of the median peat 
thickness and carbon density maps, or median estimates for total peatland area and peat carbon stock. 
Percentages show the proportion of total peatland area or peat carbon stock in ROC, DRC and 
combined that is found in either protected areas or industrial logging/mining/palm oil concessions 
(Figure 6.9). 
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6.6 Discussion 

In this chapter I used newly collected ground-truth data from the Democratic Republic of the 

Congo to estimate the peat carbon stocks of the central Congo Basin peatlands. Firstly, I 

measured bulk density and carbon concentrations of 80 peat cores from both DRC and ROC. 

These measurements were used to develop a peat thickness-carbon density regression that is 

representative across the region. Based on 463 peat thickness measurements across the basin, 

I further developed a Random Forest regression to derive a first map of peat thickness across 

the peatland complex. By applying the thickness-carbon density regression to this map of peat 

thickness, I then generated a first map of peat carbon density for the central Congo Basin, 

allowing me to estimate total peat carbon stocks across the peatland complex. 

 

I found that mean bulk density across the central Congo Basin is 0.174 (± 0.063) g cm-3, and mean 

carbon concentration is 55.7% (± 3.2). Based on this, mean carbon density averaged per core is 

0.096 (± 0.035) g C cm-3. These values are slightly lower than what was initially reported by 

Dargie et al. (2017) for the central Congo Basin based on data from interfluvial basins in just ROC 

alone. This is because average peat bulk density and carbon concentration per core are 

significantly lower in river-influenced peatlands in DRC, thereby reducing the overall mean 

across the whole region. 

 

Nonetheless, my more representative values of peat carbon density in the central Congo Basin 

are still considerably higher than what has been reported for other tropical peatlands in either 

Indonesia or in the Peruvian Amazon. For example, the average peat bulk density in Indonesia is 

regarded as 0.1 g cm-3, together with an average carbon content of 58% (Jaenicke et al., 2008), 

suggesting an average carbon density of 0.058 g C cm-3. For Central Kalimantan on Borneo 

specifically, carbon density has been reported to be 0.061 g C cm-3, while this is 0.044 g C cm-3 

in coastal peatlands (Dommain et al., 2011). In the Peruvian Amazon, forested peatlands have 

been reported to have a bulk density of either 0.084 g cm-3 in pole (hardwood) forest or 0.099 g 

cm-3 in palm swamp, while carbon concentrations are either 50.5 or 44.0%, respectively (Draper 

et al., 2014). According to Dargie et al. (2017), this means a mean carbon density of 0.033 g C 

cm-3 in the Peruvian Amazon. Although the mean C content that I report here for the central 

Congo Basin is lower than that of Indonesia, bulk density and carbon density are typically higher 

than in other tropical peatland regions, sometimes by more than twice as much. This could 

reflect greater decomposition in the central Congo Basin, potentially as a result of the relatively 
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drier climate in Central Africa (Malhi & Wright, 2004), which would result in increased carbon 

storage per unit volume of peat.  

 

The bulk density and C concentration values reported in this study are also higher than the 

values typically found in northern peatlands, which have an average bulk density of 0.118 ± 

0.069 g cm-3 and C content of 46.8 ± 6.1% (Loisel et al., 2014). This results in almost twice as high 

carbon density values in the Congolese peatlands, compared with northern peatlands (on 

average 0.05-0.06 g C cm-3; Loisel et al., 2014). This suggests that the central Congo Basin 

peatland complex is likely one of the most carbon dense peatlands on Earth, per unit volume of 

peat. 

 

However, it must be noted that peat carbon concentrations as measured via isotope-ratio mass 

spectrometry at the University of Leicester were found to be consistently lower, by on average 

7%, than peat C concentrations that were measured via an elemental analyser at the University 

of Leeds. This could mean that the carbon concentration of peatlands in the Congo River 

floodplain region, analysed via isotope-ratio mass spectrometry, is generally lower than that of 

the peatlands along either the Congo River’s tributaries or in interfluvial basins. However, an 

alternative hypothesis is that this difference reflects a measurement bias from using two 

different analytical techniques that produce slightly different values. More comparative analysis 

is required across regions, and using both techniques, to establish whether this difference really 

reflects a natural pattern.  

 

Furthermore, in this chapter, I developed a Random Forest regression model, which I used to 

map peat thickness. I predict thick peat deposits in both the interfluvial basin peatlands in ROC 

and river-influenced peatlands in DRC, in line with field measurements. Distance from the 

peatland margin was found to be the most important predictor of peat thickness. This is 

particularly the case in the interfluvial basins in ROC, where a clear increase in thickness is 

observed along the 20 km-long Centre transect. On the other hand, the river valley’s thick 

deposits in DRC are most likely driven by greater climatic water balance and lower precipitation 

seasonality in the eastern part of the Cuvette Centrale region, as could be observed in Figure 

6.4. These rainfall variables likely offset the shorter distances from peatland margins, which 

would have been expected to result in shallower peat deposits under similar rainfall conditions. 

However, potentially greater water input from upland runoff could also play a role in creating 

enough waterlogged conditions to allow significant peat formation to occur. The fact that 
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climatic water balance and precipitation seasonality were found to be the second and third most 

important variables in the RF model, out of ten significant predictors, reflects the relative 

importance of rainfall inputs in peat accumulation in central Congo. This appears to differ from 

smaller-scale assessments in temperate (Young et al., 2018) or other tropical peatlands, such as 

in Southeast Asia (Rudiyanto et al., 2016, 2018). In those regions, surface topography (elevation 

and slope) are primary predictors of peat thickness. However, this is potentially merely an 

artefact of differences in the spatial scales of the studies, as climate only varies over large scales. 

Alternatively, the relatively low rainfall in the central Congo Basin (~1700 mm yr-1), compared to 

other tropical peatland regions (e.g., ~2,500-3,000 mm yr-1 in Northwest Amazonia and 

Southeast Asia; Malhi & Wright, 2004), may mean that peat thickness is more strongly related 

to climate in central Congo. On average, a drier climate implies greater exposure to (seasonal) 

drought conditions that may cross thresholds that negatively impact peat accumulation rates. 

This hypothesis appears to be in line with the relatively higher carbon density values that were 

observed in the central Congo Basin, suggesting greater decomposition from aerobic decay. 

 

The peat thickness results from this chapter contrast strongly with an “expert system approach” 

that assigned peat thickness values based on hydrological terrain relief alone, essentially 

assuming that the height above the nearest drainage point (SRTM-derived HAND-index) 

represents the peat thickness of an interfluvial basin peat dome with respect to the elevation of 

the rivers that it is bounded by. Based on this, Gumbricht et al. (2017) estimated a mean 

thickness of 6.5 ± 3.5 m for the central Congo Basin peatlands, considerably larger than the field-

trained modelled estimate of 1.7 ± 0.9 m that was found in this chapter. This shows the 

importance of collecting field data and verifying model predictions using field data. 

 

However, even when using a unique dataset of peat thickness measurements across the Cuvette 

Centrale, spatial cross-validation of the RF model reveals considerable uncertainty in predicting 

peat thickness outside the sampled regions. This is especially the case when extrapolating into 

areas with a different hydro-geomorphology, such as the river-influenced peatlands based on 

data from interfluvial basin peatlands. This shows both the need for field data from a variety of 

hydro-geomorphological settings, and the underlying importance of better understanding the 

diversity of peatland types in the basin.  

 

Because of this, even though the final RF model has low internal statistical uncertainty (median 

R2 = 82.2%, RMSE = 0.68 m), true epistemic uncertainty is larger in areas that fall outside the 
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applicability of the dataset. However, given the lack of field data in these regions, this systemic 

uncertainty is hard to quantify. Here, I have aimed to incorporate some of this uncertainty from 

the peatland distribution model into the peat thickness model, as mapped in Figure 6.6b. 

However, this does not truly capture the uncertainty associated with extrapolating into 

unsampled areas with possibly distinct hydro-geomorphologies that affect peat thickness. The 

major limitation in the currently available field dataset, identified in this study, is the lack of 

sampling from the Mai Ndombe region in DRC, which potentially has a hydro-geomorphology 

that is very different from either the interfluvial basin or river-influenced peatlands identified so 

far. Thus, more fieldwork remains required in order to address this. 

 

Nonetheless, because Random Forest by nature produces a consensus estimate based on an 

ensemble of bootstrapped models, peat thickness estimates in these unsampled areas tend to 

be in the range of 1-3 m, rather than the more extreme values mapped in areas from which 

training data is included. These medium modelled values are broadly consistent with the mean 

field estimates of 2.4 ± 1.5 m. Furthermore, given that mean modelled peat thickness is lower 

than the field-measured mean thickness, the model does not appear to overestimate peat 

thickness compared to the field-measured dataset. Thus, although unusually shallow or thick 

peat deposits are still possible in unsampled areas due to local conditions that are not captured 

by the model, such as in the Mai Ndombe region, it is unlikely that the overall modelled mean 

of 1.7 ± 0.9 m will alter considerably as more data is added. 

 

Based on these values of peat thickness, I predict a mean carbon density per unit area of 1,712 

± 634 Mg C ha-1 in the central Congo Basin, in line with the field-measured mean of 1,741 ± 1,186 

Mg C ha-1. This spatially modelled carbon density value is approximately nine times the mean 

carbon stored in aboveground live tree biomass of African tropical moist forests (~198 Mg C ha-

1; Lewis et al., 2013). Compared with recently mapped peatlands in the lowland Peruvian 

Amazon (mean 867 Mg C ha-1; Hastie et al., 2022), the central Congo peatlands store almost 

twice as much carbon per hectare. However, Southeast Asian peatlands are still the most carbon 

dense tropical peatlands per unit area, storing on average 2,775 Mg C ha–1, mostly because of 

the presence of much thicker peat domes (Page et al., 2011).  

 

Based on my new map of peat carbon density, I estimate the total peat carbon stock in the 

central Congo Basin to be 29.0 Pg (95% CI, 26.3-32.2). This is similar to the median 30.6 Pg C 

reported by Dargie et al. (2017), even though total peatland area increased by 15%, because the 
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mean modelled peat thickness in this study is lower than the mean in situ peat thickness that 

was measured by Dargie et al. (2017). However, the lower 95% confidence interval of Dargie et 

al.’s (2017) prediction was 6.3 Pg, which has increased to 26.3 Pg in this study. This considerable 

constraint on the carbon stock estimate is possible because the larger field-based dataset 

allowed a spatial modelling approach, so that I could sum carbon density evenly across all 

predicted peat pixels, rather than relying on the less representative sampling distribution of field 

samples only. Therefore, the possibility of low values of carbon storage in the central Congo 

peatlands can now confidently be discarded. This shows that the central Congo Basin peatlands 

are a globally important carbon stock, harbouring approximately a quarter to one-third (27.6%) 

of all the carbon stored in the world’s tropical peatlands (best pan-tropical estimate: 105 Pg C, 

range 87–136 Pg; Page et al., 2022). 

 

About two-thirds of this peat carbon is stored in DRC (19.6 Pg C; 95% CI, 17.9-21.9), and one-

third in ROC (9.3 Pg C; 95% CI, 8.4-10.2), which is equivalent to approximately 82% and 238% of 

each country’s aboveground forest carbon stock, respectively (Verhegghen et al., 2012). The 9.3 

Pg C estimated for the ROC is larger than the peat carbon stock of 9.1 Pg C that is reported for 

Malaysia (Page et al., 2011). As such, in addition to peatland area (see Chapter 5), these new C 

stock estimates confirm the Democratic Republic of the Congo and the Republic of the Congo as 

the second and third most important countries in the tropics for peat carbon stocks after 

Indonesia (57 Pg C), respectively (Page et al., 2011). 

 

Because the central Congo peatlands are relatively undisturbed (Miles et al., 2017; Vancutsem 

et al., 2021), the new maps of peatland extent, thickness and carbon density presented here 

form a baseline description for the decade 2000-2010, given the acquisition dates of the 

remotely-sensed data used. Today, the peatlands of the central Congo Basin are threatened by 

hydrocarbon exploration, logging, palm oil plantations, hydroelectric dams and climate change 

(Dargie et al., 2019; Miles et al., 2017). While the peatlands are largely within a UN Ramsar 

Convention transboundary wetland designation, hydrocarbon concessions cover almost the 

entire peatland complex (Dargie et al., 2019; Miles et al., 2017), thereby potentially threatening 

the whole ecosystem. In addition, I estimate that approximately a quarter of the total carbon 

stock (7.4 Pg C, or 26%) is threatened by industrial logging, mining or palm oil concessions. This 

contrasts with only 8% of the peat carbon (2.4 Pg C) that is found within national-level protected 

areas (Figure 6.9), suggesting the peat is vulnerable to future land use changes. 
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6.7 Conclusion 

In this chapter, I produced spatial models of peat thickness and peat carbon density across the 

central Congo Basin. Using 463 field measurements of peat thickness from across DRC and ROC, 

I trained a Random Forest regression model of peat thickness, which I used to develop the first 

map of peat thickness for the Cuvette Centrale peatlands. This model was found to provide the 

best results when trained using only four predictors out of 14 selected variables: distance from 

the peatland margin, precipitation seasonality, climatic water balance and distance to the 

nearest drainage point. Although the model performed well in areas that were included in the 

sampling (median R2 = 82.2%, RMSE = 0.68 m), spatial cross-validation showed that considerably 

systemic uncertainty remains in areas from which no data is available. Thus, more field 

measurements of peat thickness are required, particularly from the Mai Ndombe region in DRC. 

The mean modelled peat thickness of 1.7 ± 0.9 m across the basin is slightly lower than the mean 

field estimate of 2.4 ± 1.5 m, as expected given the transect sampling design is biased towards 

the deeper centres of peatland areas. Deep peat deposits are predicted in interfluvial basins in 

ROC, as well as in river-influenced peatlands in DRC. It is suggested that the deep deposits in 

ROC are related to the relatively large distances from the peatland margins that predominate 

there, while deep deposits in narrower river valleys in DRC are related to the relatively wetter 

climate (greater annual precipitation and less seasonality). Thus, it is concluded that rainfall 

input is a relatively important driver of peat accumulation in the central Congo Basin, at least on 

basin-wide scales. Furthermore, I measured bulk density and carbon concentration of 80 peat 

cores from across the peatland complex. This revealed the central Congo Basin peatlands to be 

relatively carbon dense, in terms of carbon per unit volume of peat, compared with other 

tropical peatlands. It is suggested that this might be an effect of the relatively drier climate, 

resulting in greater decomposition. I further used these measurements of carbon density to 

develop a linear regression model between peat thickness and carbon density per unit area. 

Based on the modelled values of peat thickness, I created the first map of peat carbon density 

across the Cuvette Centrale region. Mean modelled carbon density across the peatland complex 

is 1,712 ± 634 Mg C ha-1, in line with the field-measured mean of 1,741 ± 1,186 Mg C ha-1. Based 

on this model of carbon density, I estimated the total peat carbon stock in the central Congo 

Basin to be 29.0 Pg (95% CI, 26.3-32.2). This is similar to the median 30.6 Pg C reported by Dargie 

et al. (2017), but their lower 95% confidence interval was 6.3 Pg, which has increased to 26.3 Pg 

in this study. Thus, it is concluded that the mapping of peat thickness has helped to significantly 

reduce the uncertainty in peat carbon stocks. The new carbon stock estimates confirm the 

central Congo Basin peatland complex as a globally significant store of carbon, harbouring ~28% 
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of all tropical peat carbon. The DRC and ROC are also confirmed as the second and third most 

important countries in the tropics for peat carbon stocks, respectively, after Indonesia. By 

overlaying the map of carbon density with maps of protected areas and industrial concessions, 

I estimate that only 8% of the peat carbon stored in the central Congo Basin lies within formal 

national-level protected areas, while industrial logging, mining, or palm oil concessions together 

overlie 26% of total carbon stocks. This suggests a vulnerability of the peat carbon to future land-

use changes.  
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Chapter 7: Conclusion 

This thesis improves our understanding of tropical peat swamp forests in the central Congo 

Basin. Principally, it addresses major gaps in our knowledge of parts of this ecosystem in the 

Democratic Republic of the Congo, which hosts approximately two-thirds of the estimated 

peatland area. The objectives of this thesis were fulfilled, by confirming that peat forms in river-

influenced swamp forests in the DRC; revealing that different peat swamp forest types can be 

distinguished based on inundation patterns; mapping the spatial distribution of peat and peat 

thickness across the central Congo Basin; and estimating the amount of carbon that is stored in 

peat. In this final chapter, I provide a summary of these key findings, explain the limitations of 

the work, explore important directions for future research, and finally address the wider 

implications of my research. 

 

 

7.1 Key findings 

Fieldwork conducted along 11 transects in the swamp forests that straddle the eastern 

tributaries of the Congo River provides the first direct field evidence that extensive peatlands 

exist in this part of the Democratic Republic of the Congo. My field campaigns validate the peat 

predictions made by Dargie et al. (2017), with large peatland areas found on either side of the 

river valleys, as well as further upstream along the dendritically-shaped stream network. Small 

discrepancies between the field verifications and Dargie et al.’s (2017) predictions were typically 

found in seasonally inundated swamps on the margins of larger peatland areas, showing that 

the predicted shape and distribution of the major peatland areas is generally correct, but is less 

accurate near the peatland’s margins. Modest discrepancies were also found in higher-elevated 

areas, and on an island in the middle of the Ruki River.  

 

A key output of this thesis is a new model of peatland distribution in the central Congo Basin, 

based on ground-truth data from both interfluvial basins in ROC and river valleys in DRC. This 

model predicts a peatland area of 167,600 km2 across the basin (95% CI, 159,400-175,100 km2), 

15% more than was initially estimated by Dargie et al. (2017). Overall, the new peatland 

distribution map is in line with Dargie et al. (2017), except that I predict more peat in the DRC, 

particularly further upstream along the eastern tributaries and the Congo/Lulonga Rivers, as well 

as around Lake Mai-Ndombe and the Ngiri River. My mapping work confirms the central Congo 

Basin peatland complex as the most extensive peatland area in the tropics, accounting for 

approximately 36% of all the world’s tropical peatland area, given a total pantropical area of 
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~460,000 km2 (440,000 km2 from Page et al. (2022), plus the ~20,000 km2 additionally predicted 

by my new Congo Basin map).  

 

Maximum Likelihood was found to be the most accurate machine learning classifier for mapping 

peatland distribution, compared with Support Vector Machine or Random Forest, based on its 

ability to most accurately predict peat in areas from which no training data is included in the 

model. Changing data sources for the optical, radar or topographic input bands did not improve 

model performance, as compared with the initial model by Dargie et al. (2017), although adding 

relative elevation, as measured by the HAND-index (heigh above the nearest drainage point), 

significantly improved model performance.  

 

Confidence in the new peatland area estimate has increased, given I used three times (n=1,736) 

as many ground-truth datapoints as Dargie et al. (2017), including more than 400 new 

datapoints in swamps forest areas in different hydro-geomorphological settings in DRC. More 

formally, map accuracy as measured by median balanced accuracy has increased, while the 

range of the confidence interval around this metric decreased. BA is now 91.9% (95% CI, 90.2-

93.6), compared with 89.8% (95% CI, 86.0-93.4) for the first-generation model by Dargie et al. 

(2017). Map accuracy as assessed via Matthews corelation coefficient is 78.0% (95% CI, 74.2 - 

81.6).  

 

Mean field-measured peat thickness along eleven transects in the Ruki region of the DRC is 3.2 

± 1.7 m (n=159, with ≥ 30 cm of ≥ 65% OM), significantly greater than the mean thickness of 2.4 

± 1.6 m reported for ROC (Dargie et al. 2017). The maximum peat thickness measured so far in 

the Cuvette Centrale (either 6.4 or 7.0 m at 6.5 km along the Bondamba transect, depending on 

the pole-method calibration used), is also larger than the maximum thickness reported for the 

ROC (5.9 m along the Centre transect). This reveals that peat deposits in river valley settings in 

DRC, contrary to what was expected, are even thicker than those of interfluvial basins in ROC. 

Because these river valley peatlands are also considerably narrower in width, it follows that peat 

thickness increases more sharply with distance from the peatland margin in the river valley 

peatlands of the DRC than in the interfluvial basin peatlands of the ROC. This is a crucial 

distinction for mapping peat thickness, which was one of the key aims of this thesis. No 

difference in peat thickness is observed between hardwood- and palm-dominated peat swamp 

vegetation, as both vegetation types are found in both hydro-geomorphological settings.  
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Furthermore, a major finding of this thesis is that peat deposits can also be found in swamp 

forests experiencing large wet season inundations, close to the major rivers or streams in DRC. 

This shows that peat formation in the central Congo Basin is not confined to permanently 

waterlogged swamps with relatively stable water tables, typical of shallow peat domes in 

interfluvial basins, but also occurs in swamps that experience larger water table fluctuations. 

These inundations are due to riverbank overflow during the wet season, and potentially upland 

runoff from higher terra firme grounds. However, this peat swamp vegetation type is typically 

characterized by shallower peat deposits than peat swamps further away from rivers. 

 

Analysis of vegetation forest structure and species composition revealed that the seasonally 

inundated peat swamps have a distinct vegetation type: a mixed hardwood/palm swamp forest 

characterised by the presence of Oubanguia africana and Guibourtia demeusei. This vegetation 

type was previously described by Evrard (1968), but was not known to overlie peat soils. It was 

found that these seasonally inundated peat swamps are as acidic as other peatlands and can 

similarly be characterized as nutrient-poor. This is because the Ruki, Busira and Ikelemba Rivers 

are themselves blackwater rivers, characterized by low nutrient concentrations, high organic 

matter content and high acidity. This blackwater status is partly related to the large upland peat 

swamp area that these rivers drain, as shown by the lower pH values closer to the confluence 

with the Congo River. This highlights a strong interaction effect between rivers and peatlands 

that is still poorly understood.  

 

Other distinct vegetation types that were observed in the DRC peat swamp forests are a 

hardwood-dominated peat swamp, a Raphia laurentii palm-dominated peat swamp, and a 

mixed hardwood/palm peat swamp characterized by the presence of Cryptosepalum 

congolanum. The first two of these classes, hardwood- and palm-dominated peat swamps, have 

also been observed extensively in the ROC (Dargie, 2015; Bocko et al., 2016; Dargie et al., 2017). 

However, the identification of a third – mixed – type suggests that these peat swamp forests 

possibly form a continuous gradient driven by differences in palm dominance. Together with the 

distinct Raphia hookeri palm-dominated peat swamp that was observed by Dargie et al. (2017) 

in abandoned fluvial channels, I conclude that there are at least five vegetation types that can 

be distinguished in the central Congo Basin peatland complex.  

 

Moreover, based on radiocarbon dating of peat basal samples, I conclude that the earliest peat 

initiation in river-influenced settings of the DRC commenced ~42,000 years ago. This is over 
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20,000 years earlier than in interfluvial basin peatlands in ROC (Dargie et al., 2017; and G. Dargie, 

unpublished data). This reveals that parts of the central Congo Basin peatlands are of Late 

Pleistocene-age, rather than early Holocene age, and have survived throughout the Last Glacial 

Maximum.  

 

Using multi-temporal radar data that covers most of the newly mapped peatland complex, I 

additionally developed a map of inundation frequency. From this, I estimate that approximately 

one-quarter (~40,000 km2) of the peatlands experience seasonal inundation by standing surface 

water. This includes the typical river-influenced peatlands that I encountered in DRC, but 

possibly also areas that are seasonally inundated by water from non-riverine sources. Based on 

the first microtopography data collected in the central Congo Basin peatlands, it is assumed here 

that inundation derived from radar backscatter is indicative of on average at least 10-20 cm of 

standing water above the peat surface. Approximately one-fifth (~33,000 km2) of the peatlands 

appear to be almost permanently inundated with standing water, particularly in what is likely a 

large area of palm-dominated peat swamps east of Lake Mai Ndombe in DRC, an understudied 

region. On the other hand, more than half of the peatlands (~95,000 km2) are rarely inundated 

by standing water, suggesting water is near the surface to limit decomposition and allow peat 

formation, but must usually be lower than 20 cm above the surface. This is particularly the case 

in large interfluvial basins in ROC, as shown by Dargie et al. (2017) whose in situ datalogger data 

shows water tables of > 20 cm above the surface for only a few days a year, typically after the 

largest rainfall events in the wet season. Thus, these areas are thought to be permanently 

waterlogged peat swamps, with relatively stable water tables around the peat surface.  

 

I developed the first map of peat thickness across the central Congo Basin, based on 463 peat 

thickness measurements from both interfluvial basins and river-influenced peatlands. After a 

stepwise backward selection of predictor variables, I conclude that distance from the peatland 

margin, climatic water balance, precipitation seasonality and distance to the nearest drainage 

point are the most useful predictors of peat thickness in the Cuvette Centrale. Distance from the 

peatland margin is a strong predictor of peat thickness in interfluvial basins in ROC, but less 

reliable in the narrower peatlands of the river valleys in DRC. On the other hand, the importance 

of climatic water balance and precipitation seasonality in the model suggests that rainfall is an 

important driver of peat thickness on a basin-wide scale. In particular, thick peat deposits in river 

valleys in DRC correspond with the wetter and less seasonal rainfall conditions over this part of 

the central Congo basin. 
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The mean modelled peat thickness in the central Congo Basin is 1.7 (± 0.9) m, with a maximum 

modelled value of 5.6 m. This is slightly lower than the mean field-measured peat thickness of 

2.4 (± 1.5) m, and the maximum field-measured value of 6.4 m. This difference is not surprising, 

given that that the field sampling design oversamples deeper peat at the centre relative to the 

periphery of approximately ovoid peatlands. Thus, these figures give confidence in the peat 

thickness model, which correctly predicts deep peat deposits in interfluvial basins and river 

valleys, yet does not appear to overestimate peat thickness relative to the field-measured 

dataset.  More formally, the peat thickness model performs well in areas that were included in 

the sampling (median R2 = 82.2%, RMSE = 0.68 m), compared with a linear regression model 

including the same four predictors (median adj-R2 = 73.6%, RMSE = 0.85 m). 

 

I used this map of peat thickness to develop a first map of peat carbon density per unit area for 

the central Congo Basin. This map follows the same spatial pattern as peat thickness, as it is 

based on a linear regression between thickness and carbon density. The carbon density map 

reveals for the first time where the peat carbon that was predicted by Dargie et al. (2017) can 

be found exactly, a first and critical step towards the long-term protection of these peat carbon 

stocks.  

 

Mean modelled peat carbon density in the central Congo Basin is 1,712 ± 634 Mg C ha-1, in line 

with the field-measured mean of 1,741 Mg C ha-1. Maximum modelled carbon density is 3,970 

Mg C ha-1, while the maximum field-measured value is 5,162 Mg C ha-1. These results show that 

the central Congo Basin peatlands are one of the most carbon-dense ecosystems on Earth, 

storing approximately nine times the mean amount of carbon stored in aboveground live tree 

biomass of African tropical moist forests (~198 Mg C ha-1; Lewis et al., 2013). 

 

By summing carbon density across the predicted peat pixels, I estimate that 29.0 Pg C is stored 

belowground in peat across the region (95% confidence interval, 26.3-32.2 Pg C). This is very 

similar to the 30.6 Pg C that was predicted by Dargie et al. (2017), but critically, my estimate 

increases the lower confidence interval bound from, from 6.3 to 26.4 Pg C. These field-based 

constraints give high confidence of globally significant peat carbon stocks in the central Congo 

Basin, totalling approximately 28% of the world’s tropical peat carbon (total tropical peat carbon 

105 Pg C; Page et al., 2022). Furthermore, these results confirm the DRC and ROC as the second 

and third most important countries in the tropics, respectively, for both peatland area and peat 

carbon stocks, after Indonesia. 
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7.2 Limitations and future research directions 

As with all studies, there are important limitations to this research. Most importantly, this thesis 

project is limited by a lack of field data across the central Congo Basin. One of the main aims of 

this thesis was to gather more in situ data and increase the representativeness of this sampling 

across the region, particularly in the DRC. Although this thesis involved a lot of fieldwork and has 

made major improvements in this direction, large areas of the peatland complex remain 

unsampled. Only 464 thickness measurements were used to model peat thickness across an area 

equivalent to more than the size of England and Wales combined. Compared with studies of 

typically well-sampled northern peatlands in the UK, this sample size is very small, relative to 

such a large area. More field verification of both peat presence and peat thickness is therefore 

urgently required across the Cuvette Centrale region. Specifically, focus should be given to areas 

further east of the basin, such as upstream along the Congo River and along the Lomami River, 

south of Kisangani in the province of Tshopo. This way, the ‘area of applicability’ of the peatland 

distribution model can be extended further east. Additionally, since the new peatland model 

presented in this thesis predicts more peatland areas further upstream along tributaries such as 

the Busira and Ikelemba Rivers, field verification of these upstream predictions is required in the 

province of Thsuapa. This applies to the Ngiri region as well, which is now predicted to contain 

more peat than was estimated by Dargie et al. (2017). Moreover, a large block of likely inundated 

palm-dominated peat swamp is consistently identified east of Lake Mai-Ndombe. This area has 

so far remained unsampled. As this region is possibly characterised by a different hydro-

geomorphology than either the interfluvial basin peatlands in ROC or the river-influenced 

peatlands sampled so far in DRC, it should be an important research priority. In the ROC, on the 

other hand, limited field sampling has been undertaken in the south-western part of the 

peatland complex, located in the Cuvette department, again lacking confirmation of peat 

presence. Although this area is hypothesized to similarly be characterized by interfluvial basin 

peat domes as were recorded in the Likouala department (Dargie et al., 2017; Davenport et al., 

2020), this remains to be verified. Flying of unmanned aerial vehicles equipped with LiDAR to 

measure topography and forest structure could help determine if there are peat domes in these 

regions, as well as in the river-influenced peatlands I visited in DRC (Davenport et al., 2020). 

 

This thesis has shown how river valley peatlands in the DRC are characterized by seasonal 

inundations from riverbank overflow. Nonetheless, no in situ water table date could be 

presented from close (< 2 km) to the Ikelemba River, due to unforeseen technical problems with 

the water table dataloggers. Future research should ideally aim to quantify these water table 
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fluctuations by installing new water table dataloggers and monitoring them over a multi-year 

period. This applies to the Ruki or Ikelemba Rivers, as well as the floodplains along the Congo 

River itself, which have also been observed to experience large seasonal inundations. Again, field 

campaigns to the area east of Lake Mai Ndombe, where almost year-round inundation is seen 

by radar data, should be confirmed by in situ measurements as well. Having in situ water table 

measurements from different parts of the peatland complex will facilitate the corroboration and 

scaling of remotely-sensed inundation patterns. 

 

Furthermore, in this thesis I had a particular focus on surface inundations, while sub-surface 

water table dynamics are likely equally important in driving species composition and peat 

accumulation. Although dry season water table depths below the surface were measured at 

each peat site, such measurements are often lacking from seasonally inundated non-peat 

forming forests. More measurements of maximum belowground water tables in non-peat 

forming forests would facilitate a comparison between peat-forming and non-peat-forming 

seasonally inundated forest types. This could ultimately shed more light on why some seasonally 

inundated forests form peat, while others do not.  

 

Additionally, the analysis of forest structure and species composition presented here was 

restricted to peat swamp forests in the Ruki region of the DRC, where I collected the vegetation 

data. It would be very useful to extend this analysis across all vegetation data collected in the 

peat swamp forests of the Cuvette Centrale, including the data that has been sampled by Dargie 

et al. (2017) and Bocko et al. (2016) in ROC and the unpublished data collected by the CongoPeat 

consortium along the Congo River transects. This way, it would be possible to test more formally 

whether the distinction of five peat swamp forest vegetation types that has been identified in 

this thesis holds across the entire basin. Analyses of vegetation types could be helped further by 

the development of specific peat swamp forest allometric equations, more wood density data 

from swamp forest tree species, as well as the establishment of more and larger vegetation 

plots. Longer-term monitoring, using permanent vegetation plots in the standard method using 

common pan-tropical methods of 1 ha plots (e.g., Lewis et al., 2013) will be very useful to 

measure forest carbon fluxes in the live vegetation carbon pool and important for supporting 

the conservation and management of these forests (Baker et al., 2020). Furthermore, 

identification work on smaller plants, especially shrubs and herbs, is necessary, as those species 

typically have shorter generation times, which may make them the most likely to be endemic to 

the peatlands. 
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Once a formal classification of all vegetation plots has been established, peat swamp forest sites 

can be reclassified according to this new classification. With these classes, rather than the binary 

distinction between hardwood- and palm-dominated peat swamp forests, it might be possible 

to use landcover classifiers such as Maximum Likelihood to more accurately map these 

vegetation types across the peatland complex, and so refine my estimates of peatland area.  

 

Such a more detailed approach to mapping peat swamp forest vegetation types might also be 

improved by the inclusion of an inundation map based on multi-temporal radar data. I have 

shown in this thesis how the seasonally inundated mixed peat swamp type characterized by 

Oubanguia africana and Guibourtia demeusei is associated with a medium number of 

inundations throughout the year. This contrasts with the other peat swamp forest types, which 

were found to be either rarely inundated more than 20 cm above the peat surface by standing 

water, or have almost permanent inundations at this level. Therefore, the development of an 

inundation map that covers the full peatland complex and captures this seasonal pattern is a key 

research priority.  

 

Besides water table dynamics, understanding nutrient inputs into the peatlands are crucial for 

predicting peat thickness as well. Unfortunately, in this thesis I was only able to analyse a limited 

number of river water samples, while no rainwater samples were taken in DRC, due to technical 

problems with the filtration of samples. More data from across the basin is required, as nutrient 

status cannot be measured remotely by satellites. This is particularly necessary in the floodplains 

along the Congo River mainstem, where peat-associated swamp vegetation was encountered 

close to the river, but with only limited peat accumulation. It is very likely that a gradient in 

nutrient status exists when moving away from the Congo River into these swamps, unlike the 

peatlands along the Congo’s tributaries such as the Ruki or Ikelemba, which showed no or very 

limited gradients in nutrient status.  

 

Similarly, the geomorphology and shape of the bedrock underneath the peatlands is often 

unknown and cannot be easily mapped remotely. However, understanding the shape of the 

underlying bedrock, particularly in areas east of the Congo River that vary more in elevation than 

interfluvial basins, will help to model peat thickness. One critical step towards this, is the 

development of a digital terrain model for the Congo Basin, which essentially would represent 

the DEM but without the tree height. This way, the true ground surface elevation of the 
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peatlands can be mapped. Subsequently subtracting the measured peat thickness values could 

give an idea of the shape of the bedrock layer onto which peat has formed. 

 

In addition, process-based models of peatland development are required to understand the 

drivers of peat formation and maintenance in the Cuvette Centrale. One model appears very 

promising for this: an adaptation and parameterisation of the DigiBog model (Baird et al., 2012; 

Morris et al., 2012; Young et al., 2017) for the Congo Basin peatlands, called DigiBogCongo. This 

model is currently being adapted by the CongoPeat consortium for application in the central 

Congo Basin, with the model tracking the production and decomposition of ‘cohorts’ of peat 

over time (via litter inputs and limitations on decomposition from waterlogging), hence making 

it possible to follow the build-up and decomposition of peat layers over long periods of time.  

 

Finally, more radiocarbon dating of peat basal samples is required, especially in the river-

influenced peat swamps of DRC. This thesis has revealed these peatlands to be over 20,000 years 

older than initially reported. However, this finding is based on only one peat core with an age of 

approximately 42,300 cal yr BP, which originates from only one sample on one transect. More 

replicates from other transects and other river systems are needed to confirm this is truly 

representative of the river valley peatlands that dominate in the DRC. Some of this work is 

currently being undertaken as part of the CongoPeat project.  

 

 

7.3 Implications 

This thesis has shown that extensive peatlands are found in river valley systems of the DRC, 

making the Cuvette Centrale peatland complex a globally significant store of carbon. This has 

major implications for forest conservation and climate change policy in the Congo Basin. The 

Cuvette Centrale peatlands have been shown to be sensitive to future climate change and land 

use changes. Thus, keeping the central Congo Basin peatlands wet is vital to prevent vast 

amounts of peat carbon being released to the atmosphere (Dargie et al., 2019; Miles et al., 2017; 

Cole et al., 2022). 

 

In this work, I have shown where the peat carbon is located in detail. Based on this, I estimate 

that only 8% of the peat carbon lies within national-level protected areas. On the other hand, 

about a quarter (26%) of all peat carbon is covered by industrial logging, mining or palm oil 

concessions. Furthermore, virtually all the peat carbon is covered by hydrocarbon concessions, 
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the vast majority of which have so far not been issued yet. This suggests that the central Congo 

Basin peatlands are vulnerable to future land-use change. Given that the current areas of formal 

protection of peatlands are largely centred around interfluvial basins, I suggest that additional 

protective measures will be needed to safeguard the newly identified river-influenced peatlands 

of the central Congo Basin. 

 

Furthermore, the identification of extensive nutrient-poor seasonally inundated peatlands in 

floodplains of the Congo River network reveals that there is more than one hydro-

geomorphological setting where peat is formed and maintained. The discovery that these 

peatlands are of pre-Holocene age also indicate that there is more than one climatic setting in 

which peat formation has initiated in the central Congo Basin. This has many implications for 

our hydrological understanding of the peatlands, and how future climate change will impact the 

peatlands. If seasonally inundated peat swamps are not only dependent on rainfall but also 

riverbank overflow, upstream rainfall patterns, as well as infrastructural projects that affect river 

dynamics will have larger impacts on peatland functioning than previously thought.  

 

For peatland research and conservation to be effective, it is important that consistent definitions 

are applied. In this thesis, I have chosen to define peat as at least 30 cm of soil with a minimum 

of 65% organic matter content, in line with previous studies (Page et al., 2011; Dargie et al., 

2017). However, there is currently no formal government-approved definition of peat or 

peatlands in either the DRC or the ROC. Neither are there formal protocols for measuring or 

evaluating peat thickness and carbon stocks. As I have shown in this thesis, peat thickness 

measurements are variable due to the definitions and calibration equations used. Thus, there is 

an urgent need for the establishment of formal definitions that can support peatland research 

and conservation.  

 

Lastly, keeping the central Congo Basin peatlands undisturbed would also help protect the rich 

biodiversity that characterises this ecosystem, including forest elephants, lowland gorillas, 

chimpanzees and bonobos (Maisels et al., 2013; Miles et al., 2017; Strindberg et al., 2018). 

Critically, efforts to map biodiversity and to overlie this with my map of peatland carbon density 

are needed to assess if there is a correlation between biodiversity and peat carbon stocks. If 

there is, then biodiversity protection and carbon protection can go hand-in-hand. There is a 

possibility of this positive relationship, because typically, the larger wildlife is more concentrated 

away from the peatland edges, in areas with less hunting pressure where the biodiversity is more 
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intact. The core peatland areas are also more likely to have deeper peat and therefore higher 

carbon storage. Investigations into this synergy of both more biodiversity and more carbon 

storage in the interior of the peatlands should be a future research priority. This could 

potentially fit with conservation efforts, for example through the assignment of buffer zones for 

sustainable forest use by local communities around the margins of the peatland, as is currently 

already being practiced, and core interior areas with stricter protections for the biodiversity of 

the peatlands.  
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Appendix I: Overview of field campaigns 

Field 
campaign 

Transect name  
(code; purpose) 

Community 
name 

Field team 
members 

Measurement / 
sample collection for 

January -
March 
2018 

Lokolama  
(LOK; testing 
hypotheses) 

Lokolama  - Bart Crezee 
- Simon Lewis 
- Corneille Ewango 
- Jean-Bosco Ndjango 
- Ovide Emba 
- Bolivard Bongwemisa  
- Papy Bosange 

- basic field sampling 
(see 2.4.2) 
- in situ water table 
measurements 
- peat pore water 
inorganic chemistry 
- surface peat inorganic 
chemistry 
- downcore inorganic 
chemistry 
- radiocarbon dating 

Ikelemba  
(IKE; testing 
hypotheses) 

Bosukela  
(Mweko 
camp) 

- Bart Crezee 
- Corneille Ewango 
- Ovide Emba 
- Bolivard Bongwemisa 
- Yannick Mbangana 
- Juress Sando 
- Felly Mongonga 

- basic field sampling 
(see 2.4.2) 
- in situ water table 
measurements 
- peat pore water 
inorganic chemistry 
- surface peat inorganic 
chemistry 
- downcore inorganic 
chemistry 
- radiocarbon dating 

Boloko  
(BEL; testing 
hypotheses) 

Mpama and 
Befale 

- Bart Crezee 
- Corneille Ewango 
- Jean-Bosco Ndjango 
- Ovide Emba 
- Bolivard Bongwemisa 
- Papy Bosange 

- basic field sampling 
(see 2.4.2) 
 

Tumba  
(TUM; testing 
hypotheses) 

Bonsole - Bart Crezee 
- Corneille Ewango 
- Jean-Bosco Ndjango 
- Bolivard Bongwemisa 
- Papy Bosange 

- basic field sampling 
(see 2.4.2) 
 

June - 
August 
2019 

Mpeka  
(PEK; testing 
hypotheses) 

Mpeka - Bart Crezee 
- Greta Dargie 
- Corneille Ewango 
- Joseph Kanyama 
- Ovide Emba 
- Pierre Bola 
- Nicholas Girkin 
- Juress Sando 
- Felly Mongonga 
- Roger Kendewa 

- basic field sampling 
(see 2.4.2) 
- peat pore water 
inorganic chemistry 
- surface peat inorganic 
chemistry 

Bondamba  
(BDM; testing 
hypotheses) 

Bondamba - basic field sampling 
(see 2.4.2) 
- peat pore water 
inorganic chemistry 
- surface peat inorganic 
chemistry 

Bolengo  
(BNG; testing 
hypotheses) 

Bolengo - basic field sampling 
(see 2.4.2) 
- peat pore water 
inorganic chemistry 
- surface peat inorganic 
chemistry 
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Boleke  
(BLK; assessing 
mapping capabilities) 

Boleke - basic field sampling 
(see 2.4.2) 
 

Pombi  
(POM; assessing 
mapping capabilities) 

Pombi - basic field sampling 
(see 2.4.2) 
 

Bondamba 2  
(BDM2; assessing 
mapping capabilities) 

Bondamba - basic field sampling 
(see 2.4.2) 
 

Bondamba 3  
(BDM3; assessing 
mapping capabilities) 

Bondamba - basic field sampling 
(see 2.4.2) 
 

January 
2020 

Lokolama  
(LOK; testing 
hypotheses) 

Lokolama - Bart Crezee 
- Corneille Ewango 
- Ovide Emba 
- Joseph Kanyama 
- Papy Bosange, 

- in situ water table 
measurements 
- surface 
microtopography 
- radiocarbon dating 
(LOK_5.0 only) 

Ikelemba  
(IKE; testing 
hypotheses) 

Bosukela  
(Mweko 
camp) 

- Bart Crezee 
- Simon Lewis 
- Joseph Kanyama 
- Ovide Emba 
- Juress Sando 
- Felly Mongonga 

- in situ water table 
measurements 
- surface 
microtopography 

Centre de Recherche en Écologie et 
Foresterie (CREF), Mabali 

- Bart Crezee 
- Papy Bosange 

- long-term 
temperature data 
- long-term 
precipitation data 

NB: See section 2.4.2 for the difference in basic field sampling along transects used for testing 
hypotheses and transects used for assessing mapping capabilities. 
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Appendix II: Alphabetical list of plant species 

Name Family Botanical authority 

Albizia altissima Fabaceae Hook.f. 

Albizia glaberrima Fabaceae (Schumach. & Thonn.) Benth. 

Alchornea cordifolia Euphorbiaceae (Schumach. & Thonn.) Müll.Arg. 

Baphia laurentii Fabaceae De Wild. 

Carapa palustris Meliaceae (G.C.C.Gilbert) Kenfack 

Carapa procera Meliaceae DC. 

Chionanthus sp. Oleaceae L. (for genus) 

Cleistanthus mildbraedii Phyllanthaceae Jabl. 

Cleistanthus polystachyus Phyllanthaceae Hook.f. ex Planch. 

Cleistopholis patens Annonaceae (Benth.) Engl. & Diels 

Coelocaryon botryoides Myristicaceae Vermoesen 

Crotonogynopsis sp. Euphorbiaceae Pax (for genus) 

Cryptosepalum congolanum Fabaceae (De Wild.) J.Léonard 

Cynometra simplicifolia Fabaceae Harms 

Daniellia pynaertii Fabaceae De Wild. 

Dichostemma glaucescens Euphorbiaceae Pierre 

Diospyros crassiflora Ebenaceae Hiern 

Diospyros mespiliformis Ebenaceae Hochst. ex A.DC. 

Donella pruniformis Sapotaceae (Engl.) Pierre ex Engl. 

Elaeis guineensis Arecaceae Jacq. 

Englerophytum laurentii Sapotaceae (De Wild.) L.Gaut. 

Entandrophragma palustre Meliaceae Staner 

Eremospatha haullevilleana Arecaceae De Wild. 

Eremospatha wendlandiana Arecaceae Dammer ex Becc. 

Garcinia ovalifolia Clusiaceae Oliv. 

Garcinia smeathmannii Clusiaceae (Planch. & Triana) Oliv. 

Guibourtia demeusei Leguminosae (Harms) J.Leonard 

Homalium africanum Salicaceae (Hook.f.) Benth. 

Hypselodelphys scandens Marantaceae Louis & Mullend. 

Isoberlinia doka Fabaceae Craib & Stapf 

Laccosperma secundiflorum Arecaceae (P.Beauv.) Kuntze 

Macaranga sp. Euphorbiaceae Thouars (for genus) 

Manilkara obovata Sapotaceae (Sabine & G.Don) J.H.Hemsl. 

Musanga cecropioides Urticaceae R.Br. ex Tedlie 

Oubanguia africana Lecythidaceae Baill. 

Palisota mannii Commelinaceae C.B.Clarke 

Pandanus candelabrum Pandanaceae P.Beauv. 

Prioria buchholzii Fabaceae (Harms) Breteler 

Pseudagrostistachys ugandensis Euphorbiaceae (Hutch.) Pax & K.Hoffm. 

Raphia hookeri Arecaceae G.Mann & H.Wendl. 

Raphia laurentii Arecaceae De Wild. 

Raphia sese Arecaceae De Wild. 

Sclerosperma mannii Arecaceae H.Wendl. 

Staudtia kamerunensis Myristicaceae Warb. 

Symphonia globulifera Clusiaceae L.f. 

Uapaca corbisieri Phyllanthaceae De Wild. 
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Uapaca guineensis Phyllanthaceae Müll.Arg. 

Uapaca paludosa Phyllanthaceae Aubrév. & Leandri 

Xylopia rubescens Annonaceae Oliv. 

NB: Voucher curation of field collections is still ongoing at the time of submission of this thesis. 

Therefore, no voucher numbers are provided in this table. All collected vouchers are located at 

the herbarium of the Faculty of Sciences of the University of Kisangani in DRC. 


