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Abstract

The human peripheral tactile system is responsible for the initial processing of tactile stimuli and

is composed of the skin and various embedded mechanoreceptors innervated by afferents. Spiking

models are widely used to characterize this system and infer how populations of afferents shape

tactile perception. Leveraging existing models of tactile afferents and moved by their limitations,

we present three studies designed to advance these essential tools in the investigation of the human

peripheral tactile system.

Firstly, reconciling existing evidence, we quantitatively characterize the population of peripheral

tactile afferents. We estimate that approximately 230,000 afferents cover the human body, provide

innervation densities in different skin areas, and show the relation of these numbers with tactile

acuity, hair follicle density, and somatosensory cortical representation.

Secondly, we ask how tactile afferents work together to encode information in complex ways. We

find that information is spread across classes, and combining information from multiple classes

improves transmission. We test the importance of temporal and spatial resolution in the

population code, probing that destroying temporal information is more destructive than removing

spatial information.

Finally, we use Optical Coherence Tomography to image the skin subsurface in vivo and

dynamically and quantify the deformation of individual fingerprint ridges down to the type-1

mechanoreceptors’ location. When scanning the skin with a flat surface, the ridge deforms as a

single unit. Higher strains emerge from the stick-to-slip transition compared to plate movement

reversal. When scanning the skin with small features, different ridge sub-units experience

different strain patterns. Higher strains occur in the deepest layer imaged.
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Abstract

Overall, this research provides a better understanding of coding strategies of tactile afferents on a

population level and of the link between skin mechanics and transduction mechanisms underlying

tactile perception. Our findings will have implications for developing novel spiking models of the

human peripheral tactile system.
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Introduction

1 Preface

Touch is one of the sensory modalities that provide humans with information about their

surroundings. It is considered "the first sense", given that a 6-week-old fetus can already react to

tactile stimuli, although completely blind and deaf [1]. Touch was first classified in the literature

as one of the five senses by Aristotele in De Anima, who noted the complexity of this sensory

modality which is not always biologically, psychophysically, and behaviourally sharply

delineated. The complexity of the sense of touch lies in the diversity of the feature it provides

awareness of. While for other sensory modalities, a single feature can be identified, as, for

example, the sound for hearing, touch can exclusively perceive texture, hardness, weight, mass

pressure, shape, temperature, vibrations, ticklishness, wetness, and so forth [2]. The primary

sensory organ associated with the touch sensation is the skin which contains heterogeneous

populations of receptors with different physiological and functional properties [3]. In addition,

touch involves many essential receptors that are located in the muscles, joints, tendons, and on

the surface of internal organs [4]. Given these facts, touch cannot be associated solely with the

skin in any simplistic way.

Touch has both a passive and active nature. Gibson [5] famously made the distinction as follows:

"active touch refers to what is ordinarily called touching. This ought to be distinguished from

passive touch or being touched". In the passive form, touch involves solely the activation of

cutaneous receptors across the body’s surface. This form of touch has played an essential role in

the empirical study of touch, especially in characterizing the nature and acuity of the receptors’

populations. Active touch implies voluntary, self-generated actions and often involves specialized

1
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movements and grips, such as prehensile manipulation. It combines action planning and execution,

proprioception, and tactile sensing. Active sensing is perhaps the most common modality of touch

in humans. However, it is much more challenging to measure due to the unconstrained movements

and the concurrent activation of several neural pathways.

Despite (or due to, this remains to be disclosed) the complexity and richness of the sense of touch,

the number of studies conducted in this field is small compared to other sensory modalities, in

particular vision and audition [6], and for this reason, much remains to be explained and discovered

about the mechanisms underlying tactile sensations. However, the last two decades have witnessed

a growing wave of academic interest in the study of the sense of touch [1], which opened up

a variety of exciting new possibilities for further research in several different contexts such as

medicine, telemedicine, neuroscience, psychology, prosthetics, robotics, virtual and augmented

reality and so forth.

In this manuscript, we tackle research on the sense of touch from a neuroscientific perspective,

focusing on a small yet fundamental aspect of the topic. We investigate the peripheral tactile

system in humans, narrowing the attention to the early stages of the encoding mechanisms

transforming passive tactile stimuli into spike trains. Therefore, skin mechanics,

mechanoreceptors and peripheral tactile afferents are the main targets of this research work.

2 Motivation

The skin is the largest human sensory organ [7], and besides protecting our body from the

external world, it informs us about what occurs on its surface. Any tactile interaction, be it a

caress, lifting a glass, or placing a foot on the ground, results in a complex spatiotemporal

mechanical deformation of the outer layer of the skin. The deformation propagates within the

skin’s inner layers and reaches different types of corpuscles responsible for transducing the

mechanical forces into spike trains. The corpuscles responding to innocuous tactile stimulation

are low-threshold mechanoreceptors innervated by Aβ myelinated afferent fibers. These fibers

enter the spinal cord through the dorsal root and project onto the dorsal brainstem nuclei.

Second-order neurons in these nuclei forward light touch information to the thalamus, and

third-order thalamocortical neurons project to the somatosensory cortex [3]. Slow, unmyelinated

2
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C fibers, such as C-tactile fibers, which are considered to be primarily in charge of affective

touch, also carry some tactile information [8]. However, we will exclusively concentrate on

myelinated Aβ fibers and discriminative touch for the remainder of this manuscript.

The collection of all the elements shaping human tactile perception, from the skin to the

somatosensory cortex, is referred to as the human tactile system. Generally speaking, a system is

a group of interrelated objects that, under a specific external stimulus (spatiotemporal

deformation of the skin), produces a response (neural activation of the somatosensory cortex and

tactile perception). Complex systems can be modeled to describe their constituent elements, and

the relationships between them [9]. Specifically looking at the human tactile system, its principal

constituent elements (the skin, the mechanoreceptors, and neurons of different types and order)

have been widely studied and modeled in the literature on very different scales, either

individually or combined. Models of the human tactile system address, for example, the

advanced understanding of all the system components (e.g., the skin [10], mechanoreceptors [11],

and tactile neurons [12]), or the characterization and prediction of the neural responses generated

by specific tactile stimuli both at the peripheral [13] and cortical level [14].

The focus of this manuscript lies, in particular, on models of human peripheral tactile afferents

and has as a starting point the two main hurdles that the investigation of the early stages of tactile

sensory processing usually faces.

The first one regards the encoding strategies of tactile stimuli in the population of afferents.

Recording the activity of tactile nerve fibers in humans is technically tricky, is slow, and

generally yields responses from a single unit at a time [15]. Although such recordings have

offered powerful insights into the neural basis of touch, they provide limited insight into the

information that the hand conveys to the brain, which is distributed over thousands of afferents.

The second regards the relation between the mechanical properties of the skin and the activation

of the receptive organs. The receptors are embedded in the skin and are separated from the

surface by several layers of skin tissue that have different mechanical properties and complex

morphology. Understanding how a tactile stimulus applied to the skin surface is translated into

neural responses presupposes understanding how the stimulus affects the local strain patterns at

the receptor location. However, due to technical difficulties, measuring these aspects in-vivo is

3
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particularly challenging, especially in dynamic conditions. The core of our current understanding

of the topic comes from ex-vivo studies or finite-element modeling, but still, little is known about

the biomechanics of the skin beneath its immediate surface and how it affects stimulus encoding.

Models can fill this gap by simulating the responses of very large populations of

mechanoreceptive afferents that innervate the palmar surface of the hand to arbitrary

spatiotemporal patterns of skin stimulation, taking into account skin biomechanics and receptor

biophysics. Having quantitative functional models that can reproduce the behavior of the skin

and the response of tactile neurons can help to overcome the limitations of classical recording

techniques. In particular, models allow computer simulations that can be a viable way to study

the relation between skin properties and neuron population response and to assess differences in

tactile neural coding. Spiking models of human peripheral tactile afferents are an essential tool in

somatosensory research to characterize the peripheral representation of tactile stimuli.

Additionally, in neuroprosthetic applications, they can help provide somatosensory feedback

through interfaces with the peripheral nerve by converting the output of touch sensors on the

prosthesis into biomimetic afferent responses, which can then be implemented through electrical

stimulation.

In the literature, some computational models that simulate the response of tactile afferents in the

skin to tactile stimulation have been proposed [13, 16, 17]. However, they all come with limitations

typical of the modeling approach, such as, firstly, the required validation with real data.

Here, leveraging on the existing spiking models of human tactile afferents and inspired by their

main limitations, we present three studies designed with the purpose of advancing the state of the

art of such essential tools in the study of the human tactile system.

3 Research goals

With the purpose of advancing the modeling of the human peripheral tactile system, we designed

the three research studies presented in this manuscript. In particular, we consider two general open

questions related to the early stages of tactile processing [18]. The first is what are the significant

features of the signal sent to the central nervous system by the many tactile afferents that work

together to give rise to the tactile sensation. The second is how the skin’s mechanical properties

4
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affect the mechanoreceptors’ activation. Starting from these broad questions, we identified the

following research questions (RQ).

We first looked at the distribution of peripheral human tactile afferents within the skin. The

ensemble responsible for the peripheral encoding of innocuous tactile stimulation comprises Aβ

myelinated tactile afferents and their end organs, low-threshold mechanoreceptors [3]. After a

pioneer study by Johansson and Valbo (1979) [19], the structural and functional properties of

these elements have been extensively studied. However, a large part of the literature in this field

just looks at the characterization of single units. Yet even a skin area as small as a fingertip is

innervated by several hundred afferents [19]. Therefore, to gain a complete understanding of the

encoding process of tactile stimuli, it is necessary to broaden the knowledge of tactile afferents at

the population level.

We sought to quantitatively characterize the tactile afferent population, as understanding the

makeup of sensory inputs is necessary for studying sensory processing. Aβ myelinated tactile

afferents can be classified by their electrophysiological response properties into rapidly adapting

(RA) -or, alternatively, fast-adapting (FA)- and slowly adapting (SA) fibers. Six further

subdivisions exist based on the termination depth, receptive field size, and skin type

(hairy/glabrous) [3]. The presence and prevalence of different afferent classes vary greatly from

one part of the body to another. However, precise estimates of innervation density were available

for some body parts, such as the hands, but estimates of the total number of tactile afferent fibers

were inconsistent and incomplete. Thus, we identified the first research question:

RQ1: What is a plausible range for the innervation density of each class of Aβ myelinated tactile

afferent fibers in every skin region of the human body?

Keeping the focus on the population of tactile afferents, we then investigated the encoding

process of tactile stimuli. One way to explore afferent activity is via neurophysiological

acquisitions, but these are subjected to technical limitations, and notably, only individuals or a

handful of afferents can be recorded at once. Hence, most existing literature describes the

activation of a few afferents at a time, selected for having the receptive field precisely where the

tactile stimulus is applied. In this context, afferent activity on a population level has scarcely

been investigated, and consequently, the understanding of how information is represented in the

5
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population is limited. At the same time, biased notions may have emerged due to the only partial

grasp of the complexity of the encoding process of tactile stimulus into spike trains. In this

regard, most literature describes each afferent class as carrying information about different and

complementary stimulus features. Indeed, shape, texture, motion, and stretch perceptions are

ascribed to be encoded by a single population of afferents. This theory finds ground in a series of

reviews by K. Johnson [20–22] who based his claims on decades of psychophysical and

neurophysiological research. Lately, various works have challenged the notion of sub-modality

segregation in the tactile afferents and approached the study of afferent activity from a population

perspective [23–26]. Still, our understanding of tactile information encoding on a population

level was primitive. In this context, with the second study, we addressed the second research

question:

RQ2: What is the contribution of a large peripheral neural population in tactile stimulus encoding

and the interplay of submodalities in this process?

Finally, we moved the focus to the skin and its biomechanics for the third study. The skin

represents the first component of the human tactile system, and consequently, its biomechanical

properties directly affect tactile system processing. The epidermis, dermis, and hypodermis are

the three main layers that make up the skin [27]. Each layer has a unique tissue composition,

which likely impacts tactile stimulus propagation and mechanoreceptor activation. Skin

morphology has been investigated in ex-vivo studies, such as biopsies. However, this type of

investigation does not enable complete characterization of the mechanical properties of the

tissues because the natural state of pre-tension and elasticity of the skin in vivo conditions is lost.

On the other hand, in vivo and dynamic studies of skin mechanics are mostly limited to the skin’s

outer layer due to the limitations of acquisition techniques. Over the years, computational models

of the skin attempted to address the mechanical characteristic of every skin layer (for reviews, see

Jor et al. (2013) [28] and Joodaki and Panzer (2018) [10]). Still, these models are critically

dependent on the availability of experimental data to identify a large number of unknown

parameters reliably. Leveraging a state-of-the-art technique, we imaged the skin subsurface

layers and built an experimental setup for acquisitions during dynamic tactile stimulation of the

human fingertip. Thus, in the third study, we address the last research question:
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RQ3: How does a tactile stimulus, applied to the skin surface, propagate and reach the location

of the receptors in the subcutaneous skin layers?

4 Contributions

Approach Main contributions

M
ec

ha
no

tra
ns

du
ct

io
n 

an
d 

in
fo

rm
at

io
n 

co
di

ng
in

 th
e 

hu
m

an
 p

er
ip

he
ra

l t
ac

til
e 

sy
st

em

[R
Q

2]
 W

ha
t i

s 
th

e 
co

nt
rib

ut
io

n 
of

 a
 la

rg
e 

pe
rip

he
ra

l n
eu

ra
l 

po
pu

la
tio

n 
in

 ta
ct

ile
 s

tim
ul

us
 

en
co

di
ng

 a
nd

 th
e 

in
te

rp
la

y 
of

 
su

bm
od

al
iti

es
 in

 th
is

 p
ro

ce
ss

?

Po
pu

la
tio

n 
co

di
ng

 s
tra

te
gi

es
in

 h
um

an
 ta

ct
ile

 a
ffe

re
nt

s

Simulation of the activity of large pool 
of peripheral tactile afferents of diffe-
rent classes  in response to naturalistic 
stimuli, similar to those commonly used 
in experimental settings. 
Information theory tools to investigate 
the information encoded by the popula-
tion of tactile afferents.

• Insights on how afferents belonging to the 
same class work together to encode informa-
tion in complex ways that cannot be captured 
by the firing activity of single units.
• The strategies underlying the interplay betwe-
en afferent classes that rely on both redundant 
and complementary information such that 
heterogeneous populations provide the highest 
information content.
• Demonstration of  the population coding 
reliance on fine temporal resolution, as seen 
for single units, and on precise spatial activa-
tion.

A review of the literature to combine 
existing evidence and reconcile 
different estimates of the tactile 
innervation density across different 
regions of the human body.

• An estimation of plausible ranges for innerva-
tion densities of Aβ myelinated tactile afferent 
fibers covering all skin regions of the human 
body.
• An estimation of the breakdown between 
fast-adapting and slowly-adapting afferents in 
different body regions.
• Understanding of the aging effects on the 
tactile innervation density.
• Insights about the correlation between inner-
vation density across different body regions 
and psychophysical spatial acuity, hair follicle 
density, and the size of the cortical somatotopic 
representation.[R
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Empirical study employing Optical 
Coherence Tomography to study the 
propagation of skin deformation in the 
subsurface skin tissues, down to the 
location of type-1 mechanoreceptors. 

• Imaging and analysis method to measure the 
deformation of the skin under the surface in vivo 
during dynamic stimulation. 
• Measure of the deformation profile and strain 
propagation with a single-ridge resolution in the 
stratum corneum and viable epidermis.
• Understanding of which phase of a sliding 
stimulation of the fingertip generates the grea-
test strains in the skin.
• Insight into the amplification effect of the 
strains and deformation in the subsurface 
layers.

Fig. 1: Overview of the research questions, approaches, and contributions of the manuscript. The diagram organizes
the goals of the thesis into three questions (RQ1, RQ2, RQ3), and provides an overview of the experimental approaches
and the resulting contributions.

This manuscript is the collection of three complete and self-standing studies, and the contributions

and implications of each of them are broadly discussed in the related chapters.

The three studies as a whole advance the characterization of the early stages of tactile processing.

In particular, the contributions from the first two studies feed into the exploration of the peripheral
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tactile afferents and the significant feature they send to the central nervous system to give rise

to tactile sensation. We investigated human tactile afferents from a population perspective: the

first study characterizes the population composition quantitatively, while the second analyzes the

interplay strategies among afferents when encoding tactile stimuli. The third study contributes to

addressing the open issue of early stages of tactile processing related to skin mechanics properties

in two ways. On the one hand, we pioneered a methodology that paves the way to investigate the

deformation of the skin at the receptors’ location, in vivo, and during dynamic stimulation. On

the other hand, the study offers a characterization of the strain propagation under the skin surface

during sliding interactions of the fingerpad.

In Figure 1, we offer an overview of the research questions, the studies’ approach, and the main

contributions.

5 Background

In the following, we outline a brief introduction to some key concepts and terms considered

fundamental to grasp the studies proposed in the subsequent chapters thoroughly.

5.1 Low-threshold mechanoreceptors

Mechanoreceptors are specialized nerve endings that detect mechanical forces, such as touch,

pressure, vibrations, and proprioception. They are found in various body parts, including the

skin, muscles, joints, and tendons. They play an essential role in our sense of touch,

proprioception, and movement. The mechanoreceptor responding to innocuous tactile

interactions are low-threshold mechanoreceptors. They are called "low-threshold" because they

have a lower threshold for activation, meaning they are sensitive to weak mechanical forces.

There are several different types of low-threshold mechanoreceptors, each with a unique function

and sensitivity to different mechanical stimuli. For example, Merkel cells and Meissner’s

corpuscles are sensitive to light touch and vibrations, Pacinian corpuscles respond to vibrations,

and Ruffini endings respond to stretch.

The sensitivity of mechanoreceptors to different types of mechanical stimuli is determined by
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the structure and composition of their membrane, which contains ion channels that respond to

mechanical deformation. When a mechanical force is applied, the ion channels open or close,

resulting in a change in the membrane potential and generating an action potential, which travels

to the spinal cord and brain, where it is interpreted as a tactile sensation. The action potentials

travel toward the spinal cord through A-beta myelinated fibers, which innervate low-threshold

mechanoreceptors. [29]

5.2 Peripheral tactile afferents

Peripheral tactile afferents are A-beta myelinated afferent fibers, a type of nerve fiber that transmits

sensory information from the peripheral nervous system to the central nervous system. These

fibers are called "A-beta" because they are classified as "group A" fibers and are more prominent

in diameter than other types of sensory fibers. They are also myelinated, which means they are

surrounded by a fatty insulating layer called myelin. This myelin coating allows them to conduct

action potentials faster than unmyelinated fibers. A-beta myelinated afferent fibers are responsible

for conveying information about touch, pressure, and vibration, as well as pain and temperature

in some cases. They are found throughout the body and are particularly abundant in the skin and

muscles, where they play an important role in the sense of touch and proprioception. One branch

of these nerve fibers travels to the spinal cord or brainstem, while the other branch extends to the

periphery and terminates as a nerve ending or associates with cutaneous mechanosensory organs,

such as the low-threshold mechanoreceptors.

Human peripheral tactile afferents are specialized nerve fibers that transmit information about

touch from the skin to the brain. They are part of the human peripheral tactile system, which is

responsible for the initial processing of any tactile stimulus.

Peripheral tactile afferents can be divided into two main categories: slowly adapting and rapidly

adapting fibers. The slowly adapting fibers are activated by sustained or prolonged stimuli and

are responsible for maintaining the perception of a sustained touch. Rapidly adapting fibers, on

the other hand, are activated by brief or transient stimuli and are responsible for the perception

of a momentary touch. Both types of afferents can be further divided into two categories: type

I afferents, which are more numerous and terminate close to the surface of the skin, and type

9
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II afferents, which end in deeper skin layers. In hairy skin, there are two additional types of

fast-adapting afferents called hair units and field units, which have similar response properties to

classical fast-adapting type-I units but have larger receptive fields and may be more sensitive to

higher frequencies. The types and distribution of different afferents vary between glabrous (non-

hairy) skin, such as on the palms, soles, and lips, and hairy skin, which covers the rest of the

body. [3, 29]

5.3 Skin and its mechanical properties

The skin is the largest organ of the human body, covering an area of about 2 square meters. It serves

as a barrier between the body and the external environment, protecting the body from harmful

elements such as bacteria, UV radiation, and physical impacts. The skin is composed of three main

layers, the epidermis, the dermis, and the subcutaneous tissue, which can be further classified into

several sublayers. For the scope of this manuscript, we will just focus on the epidermis, which is

composed of stratum corneum and viable epidermis.

The stratum corneum is the outermost layer of the skin and is composed of dead skin cells that have

been filled with keratin. It is relatively stiff and non-elastic, and its primary function is to provide

a barrier to protect the skin from external environmental factors. The viable epidermis is the layer

of the skin beneath the stratum corneum and is composed of living cells. It is relatively elastic and

is responsible for the production of new skin cells. The dermis-epidermis junction is the interface

between the dermis and epidermis, and it plays a crucial role in the mechanical properties of the

skin. The mechanical properties of this junction are influenced by the mechanical properties of the

epidermis and the dermis and by the mechanical properties of the adhesion molecules that connect

the two layers.

Skin mechanical properties refer to the way in which the skin responds to external mechanical

forces, such as touch and pressure. These properties include stiffness, elasticity, and

viscoelasticity, and they play an important role in the perception of touch. The skin’s mechanical

properties are linked to the process of mechanotransduction, which is the conversion of

mechanical forces into electrical signals that can be detected by the nervous system.

The skin’s mechanical properties are determined by the organization and composition of the
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extracellular matrix, which includes collagen, elastin, and other proteins. The stiffness and

elasticity of the skin are determined by the density and alignment of collagen fibers, while

viscoelasticity is determined by the presence of elastin and other proteins. Changes in the

mechanical properties of the skin can affect the way in which it responds to mechanical forces

and can lead to changes in the mechanotransduction process.

For example, skin that is stiffer and less elastic will have a lower threshold for the activation

of mechanoreceptors, leading to more sensitive touch perception. Conversely, skin that is more

elastic and less stiff will have a higher threshold for the activation of mechanoreceptors, leading

to less sensitive touch perception. [10, 30]

6 Research in context

The research presented in this manuscript was carried out in the framework of NeuTouch, a

project supported by the European Union’s Horizon 2020 Marie Skłodowska-Curie Actions

(grant agreement 813713). NeuTouch is an Innovative Training Network (ITN) composed of 15

Ph.D. students and 16 principal investigators scattered in 9 partner institutions (universities,

research centers, and industrial partners) across Europe. The mission of NeuTouch is to study

how tactile perception works in humans and animals to then develop artificial touch perception

systems for robots and hand prostheses.

This multidisciplinary research community is built around three main areas: Technologies for

Touch, Touch for Robotics, and Touch for Prosthetics (see Figure 2). The development of

embedded neuromorphic tactile sensors and their application is at the core of the Technologies

for Touch area of research. The objective is twofold. On the one hand, the study of nanowires and

materials for smart transduction mimicking human and animal tactile afferents properties. On the

other, the design of low-power neuromorphic devices for encoding tactile sensors output and

on-chip spiking neural networks inspired by the neural coding strategies of peripheral afferents.

Understanding the neural encoding of tactile features, their central representation, and their link

to behavior is also fundamental to implementing effective strategies in robots for dexterous

manipulation and operation, which is the main objective of the Touch for Robotics area.

Autonomous grasping and manipulation with robotic hands predominantly build on vision and
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Touch for prosthetics

Touch for robotics

Technology for touch

Characterization of spiking
activity of tactile afferents

Sensory feedback
for prosthetic devices

Active sensing strategies
and perceptual coding

Memory-based tactile 
perception and task-relevant

action  selection in robots

Neural coding 
representation of

behaviorally
relevant tactile 

features

Spiking Neural Networks
for information representation

and decoding

A spiking model of realistic
human tactile interactions

Optimization and integration
of spiking tactile sensors

on prosthetic devices
Soft electrodes

for tactile feedback

Learning to find
and operate switches

Active touch
and behaviour

Grasping
and Manipulation

Multi-transduction
neuromorphic skin

Neural nanowire
based tactile skin

Neuromorphic embedded
processing for touch

Fig. 2: Visual representation of the contributions of each ESR in NeuTouch to the global research project
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feed-forward approaches, with several heavy limitations, such as occlusions. The aim of

NeuTouch is to develop algorithms for active object grasping and manipulation by integrating

information derived from touch sensors. Finally, in the Touch for Prosthetics area, NeuTouch

joins a growing field of research that aims at the functional replacement of missing upper limbs in

humans. Initial very promising demonstrations showed that tactile information could be restored

by surgically implanting neural interfaces into the peripheral nerves of the residuum of

prosthetics device users for restoring the sensory information flow between the hand prosthesis

and the nervous system, opening new and exciting possibilities. In this framework, NeuTouch

aims to address two important open issues, i.e., the development of more biocompatible neural

interfaces and the identification of more natural encoding (stimulation) strategies.

NeuTouch is based on the principle that these three research areas are closely intermingled, and

therefore multidisciplinary approach and constant exchange of knowledge hugely facilitate and

promote field advancement. Indeed, the research presented here is firmly grounded in the three

areas of competence of the network. Over the three years of work and numerous project meetings,

it has served as a source for the work of other fellows and received innumerable inputs.

As a matter of fact, the work presented in the paper "Population coding strategies in human

tactile afferents" is the result of the collaboration with Miguel Casal (NeuTouch fellow) and his

supervisor Stefano Panzeri. In the NeuTouch framework, M. Casal dealt with computational

techniques to extract the information contained in neural signals. These methods were used to

study the coding strategies of tactile afferents on a population level. The result of this work,

together with the human tactile innervation characterization proposed in chapter 2, served as

input for the fellows working on neuromorphic tactile sensors. A careful design of these

technologies, in fact, starts with a deep understanding of how the biological counterpart works.

Finally, the work presented in the paper "Sub-surface deformation of individual fingerprint ridges

during dynamic contact" about human skin subsurface properties, in the context of NeuTouch,

provides valuable insight to the fellows developing neural nanowire-based tactile skin in order to

embed the sensing component mimicking the setting of the mechanoreceptors in the skin

sublayers.

In addition to being a very important networking and collaboration space, NeuTouch offered the
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author of this manuscript numerous training opportunities. In the three years of the project, three

international summer schools were organized with the participation of distinguished researchers

in the three thematic areas on the network, as well as several courses and seminars for scientific

training.

7 Manuscript structure

This manuscript is a thesis in a publication format. Therefore, the following chapters consist of

papers in a form suitable for publication in a peer-reviewed journal. The current chapter connects

the three works and discusses their coherence and significance. Each of the following chapters is

a complete and self-standing piece of work.

Paper 1 addresses the RQ1 and consists of the journal paper “Tactile innervation densities across

the whole body.” which was published in the peer-reviewed Journal of Neurophysiology on the

19th of October 2020 (the first submission in the same journal was on the 28th of May 2020).

The paper was published with GOLD open access policy and had a major impact. It was listed on

the Journal website home page under the category “Trending research” for over four weeks after

publication. At the moment of writing, it counts 72 citations and over 13k downloads.

Paper 2 addresses RQ2 and consists of the journal paper “Population coding strategies in human

tactile afferents” which is under review in the journal PLOS Computational Biology (the first

submission in the same journal was on the 15th of June 2022). The authors received the decision

on the acceptance of the manuscript on the 24th of August 2022, stating that the manuscript was

"likely to be accepted" pending minor revision. The submission of the revision is due shortly. This

work is the result of a close collaboration with Miguel A. Casal (ESR of the NeuTouch ITN) and

Prof. Stefano Panzeri. The study started in November 2020 during a two months secondment of

the author of this manuscript at the Laboratory of Neural Computation of the Istituto Italiano di

Tecnologia (Genova, Italy) led by Prof. Stefano Panzeri. Partial or preliminary results of this work

were presented at several international conferences (IEEE NER2021, 50th annual meeting of the

Society of Neuroscience, Neuromatch 2021 conference).

Paper 3 addresses RQ3 and consists of the paper “Sub-surface deformation of individual

fingerprint ridges during dynamic contact”. The works underwent a round of internal revision
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offered by the co-authors of the work, Dr. Ben Delhaye, Prof. Roger Lewis, and Prof. Matt

Carrè. It is planned to submit this work for publication within 2 months after the submission of

this manuscript aiming at a high-impact peer-reviewed generalist journal. Partial or preliminary

results of this work were presented at international conferences (BioMedEng21 UK Conference,

50th and 51st annual meeting of the Society of Neuroscience, IEEE Eurohaptics 2022 where the

author received the best poster award in the category “Work in Progress”).

8 Covid-19 statement

The Ph.D. journey that led to the present manuscript started on November 2019. Less than six

months after the start of this project, the Covid-19 pandemic outbroke with a dramatic impact that

also affected the project management, schedule, and timing. A contingency plan was put in place

to limit the effect of restrictions on the successful implementation of the research plan. We took

advantage of the NeuTouch ITN to establish strong collaborations with researchers in the network

and overcome the impossibility of traveling to visit laboratories and participate in international

conferences and scientific events, which usually represent the primary venue for interacting with

the scientific community. The NeuTouch ITN organized several online meetings and training

events to ensure Ph.D. students could make the most of their research journey and, at the same

time, had a safety net guaranteeing mentorship and support despite the pandemic situation.

From a more practical point of view, the first two studies leveraged existing or simulated datasets

to overcome the impossibility of planning face-to-face experiments and empirical acquisitions.

The third study was most severely affected by the restrictions imposed to limit the spread of the

virus since it included, as a very first stage, an empirical face-to-face experiment with participants.

Access to the laboratory facilities was strictly limited until spring 2021, when the OCT study’s

first round of pilot acquisition started with more than six months of delay from what was initially

planned. Consequently, the actual acquisition stage took place in May 2022, and, considering the

limited time in the project left, we had to reduce the number of participants by 2/3 from an initially

designed pool of 30.

As soon as most travel restrictions were lifted and in-person events started to be organized again,

we also embraced all the opportunities to engage with the scientific community and disseminate
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the work. This included the participation in the European Researcher night (September 2021,

Genova, Italy), UK BioMedEng Conference (September 2021, Sheffield, UK), IEEE Eurohaptics

2022 conference (May 2022, Hamburg, Germany), International School on Technologies for

Touch (September 2022, Arenzano, Italy), 51st meeting of the Society of Neuroscience (expected

for November 2022, San Diego, USA), and other NeuTouch training and local events.
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Tactile innervation densities across the whole body

Abstract

The skin is our largest sensory organ and innervated by afferent fibers carrying tactile information

to the spinal cord and onto the brain. The density with which different classes of tactile afferents

innervate the skin is not constant but varies considerably across different body regions. However,

precise estimates of innervation density are only available for some body parts, such as the hands,

and estimates of the total number of tactile afferent fibers are inconsistent and incomplete. Here

we reconcile different estimates and provide plausible ranges and best estimates for the number

of different tactile fiber types innervating different regions of the skin, using evidence from dorsal

root fiber counts, microneurography, histology, and psychophysics. We estimate that the skin

across the whole body of young adults is innervated by approximately 230,000 tactile afferent

fibers (plausible range: 200,000-270,000), with a subsequent decrement of 5-8% every decade

due to aging. 15% of fibers innervate the palmar skin of both hands and 19% the region

surrounding the face and lips. Slowly and fast-adapting fibers are split roughly evenly, but this

breakdown varies with skin region. Innervation density correlates well with psychophysical

spatial acuity across different body regions, and additionally, on hairy skin, with hair follicle

density. Innervation density is also weakly correlated with the size of the cortical somatotopic

representation, but cannot fully account for the magnification of the hands and the face.

22



i
i

“output” — 2023/1/25 — 15:18 — page 23 — #36 i
i

i
i

i
i

1. INTRODUCTION

1 Introduction

Sensory processing cannot be studied without understanding the nature of sensory inputs. Careful

study of the visual system has revealed that about 100 million photoreceptors in a single retina

convert light into electrical impulses, which are relayed through roughly 1 million retinal

ganglion cells in the optic nerve [31]. In audition, about 12,000 hair cells in each cochlea

transmit auditory information to the brain [32]. The sense of touch puts to use our largest sensory

organ, the skin, which is innervated throughout by cutaneous fibers signaling light touch,

temperature, and pain. Despite the importance of touch for manipulation [33], movement [34],

our sense of body ownership [35], and affection [36], we know little about the number and

distribution of cutaneous fibers innervating different skin regions across the body. Estimates of

tactile fiber innervation in the current literature are few, often incomplete and inconsistent, and

range from a total innervation of around 45,000 fibers [37] into the millions [38]. Most textbooks

do not even venture a guess [39–42]. Reliable estimates exist only for a few regions of glabrous

skin. The gold standard is a study by [43] that estimated that around 17,000 myelinated tactile

fibers innervate the palmar surface of each hand.

Various techniques can be employed for counting fibers, but individually they all suffer from

problems, which explains the discrepancy in estimates. Histological examination can provide

estimates for the number of fibers in the peripheral nerves, but cannot distinguish between

afferent and efferent fibers. Furthermore, peripheral nerves carry many types of sensory fibers

other than tactile ones, for example, proprioceptive fibers or those innervating internal organs,

such as the bladder. Immunohistochemistry of samples taken by skin biopsies allow receptor and

fiber counts, but the regions covered are necessarily very small, and innervation of the skin is not

uniform. Individual tactile fibers often branch and innervate tens of receptors, and estimates of

branching and convergence factors differ widely. Another approach estimates innervation density

from psychophysically determined two-point discrimination thresholds. Here, the idea is that

higher innervation density enables improved spatial localization, so finer spatial discrimination

should be associated with higher fiber count. However, such estimates are limited because

discrimination thresholds likely rely predominantly on only one of the multiple different afferent

classes that innervate the skin [44]. A general problem is that none of the methods described
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2. TACTILE INNERVATION OF THE SKIN

above can be used to extrapolate between glabrous and hairy skin without taking into account the

different composition in the types of tactile afferent fibers. Much valuable insight into the

prevalence of different fiber types also comes from microneurography, a technique for obtaining

electrophysiological recordings from individual fibers in human nerves. However, this technique

has mostly been applied to fibers terminating in the hand, the foot, or the face. A handful of

studies has investigated the hairy skin of the arms and legs, but data from the body trunk is sorely

lacking, due to the technical challenges of applying the microneurography technique in these

areas. Finally, data from animal models, specifically primates, can also provide valuable input,

however stark differences in innervation density have been observed across different primate

species [45], so such data can only be used with caution.

Here, we combine published evidence from multiple measures—fiber counts in the dorsal root

ganglia, histology of the nerves and the skin, microneurography, and psychophysics—to estimate

plausible ranges for innervation densities of Aβ myelinated tactile afferent fibers covering all skin

regions of the body. We estimate that the skin of young adults in the third decade is innervated

by approximately 230,000 tactile afferent fibers (plausible range: 200,000-270,000) in total, with

a subsequent decrement due to aging of 5-8% every decade. The hands and the face are the most

highly innervated skin regions, as might be expected from the exaggerated cortical representation

of these body parts [46]. While we believe our estimates to be robust, more fundamental work

remains to be done, especially concerning the innervation of hairy skin.

2 Tactile innervation of the skin

The tactile innervation of the skin has been extensively covered in reviews [36, 47–49] and

textbooks [40, 50], so we will only provide a brief overview. Here, as well as in the rest of the

paper, we will focus on data from humans. The main tactile fibers underlying discriminative

touch are myelinated Aβ fibers. Some tactile information is also carried by slow, unmyelinated C

fibers (e.g., C-tactile fibers), which are thought to be mainly responsible for affective touch [51].

However, recent evidence has shown that C-tactile fibers are likely to contribute to tactile

sensibility [52] and that the spinal pathways carrying signals from both types of fibers are more

intertwined than had previously been thought [53]. For the purposes of this review, we will focus
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2. TACTILE INNERVATION OF THE SKIN

on myelinated Aβ fibers and discriminative touch exclusively. However, a similar approach to the

one pursued here should allow estimation of innervation densities for C-tactile fibers in future

work, completing the picture of tactile innervation.

Focusing on Aβ fibers, two major afferent classes exist, which are distinguished by their

electrophysiological response properties: fast-adapting (FA) fibers (also called RA:

rapidly-adapting or QA: quickly adapting in the literature) that respond exclusively to dynamic

stimuli, that is when the skin is in motion; and slowly-adapting (SA) fibers, which, in addition to

dynamic responsiveness, also respond to sustained static skin deformation or stretch. Both

classes can be further subdivided into type I afferents, which are more numerous and terminate

close to the surface of the skin, and type II afferents, which end in deeper skin layers. In the hairy

skin, two further classes of fast-adapting afferents can be found, namely hair units and field units;

both of these exhibit response properties similar to those of classical FAI units, but their receptive

fields are much bigger, and they might be more sensitive to higher frequencies (see sections on

the face and hairy skin below for further detail). The presence and prevalence of different afferent

classes vary in glabrous (non-hairy) skin as found on the palm, sole, and the lips, as compared to

hairy skin, which covers the rest of the body.

Tactile afferents are somatosensory neurons whose cell bodies reside within the dorsal root

ganglia (DRG) and the cranial sensory ganglia, respectively. One branch of these sensory

neurons penetrates the spinal cord (for DRG neurons) or targets the trigeminal nuclei of the

brainstem (for trigeminal neurons). The other branch extends to the periphery and either

terminates as a nerve ending or associates with cutaneous mechanosensory end organs. Some of

these associations are still debated and might not apply to all skin types. In the following, we will

note links between afferent classes and mechanoreceptive end organs that have been made in the

literature, but our estimates will be based on electrophysiologically characterized afferent types,

and we make no claim regarding their associated mechanoreceptors. We will report innervation

densities as units/cm2, where we take a unit as the structure composed of an afferent fiber and all

the mechanoreceptors (if any) innervated by it. The following estimates apply to young adults;

for a discussion of the decrease of innervation with age, please see Tactile innervation over the

lifespan.
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2. TACTILE INNERVATION OF THE SKIN

2.1 Glabrous skin of the hand

ALL

SA I

SA II

FA I

FA II

ALL

SA I

SA II FA II

BA
FA I

Fig. 3: Innervation densities for (A) the palmar surface of the human hand, and (B) the plantar surface of the human
foot. Each area is scaled and colored by its innervation density (units/cm2) to reveal the hand and foot ‘homunculi’. In
the hand, both SAI and FAI fibers are densely packed in the distal ends of the fingertips and much less so in the palm,
while the two other afferent classes are more evenly spread throughout the hand and exhibit much lower innervation
density overall. Compared to the hand, the foot sole is less densely innervated but displays a similar proximal-distal
gradient for type I afferents. Additionally, in the foot, a lateral gradient is evident with denser innervation of the lateral
than the medial arch for all afferent classes. All illustrations were generated from 2D region outlines using a flow-based
algorithm that scales each region according to a target value while preserving border relationships between regions [54]

Unlike other body regions, the glabrous skin of the hand and its tactile afferent innervation have

been extensively studied, owing to its importance in grasping and manipulation. The number of

tactile afferent fibers in the glabrous skin of the hand of young adults is estimated to be around

17,000 [43]. There are slightly more fast-adapting fibers (56%) than slowly-adapting ones (44%),

a common feature of glabrous skin (see section on the foot sole).

Four major afferent types have been identified in the palmar skin of the hand: fast-adapting type I

(FAI) fibers that innervate Meissner corpuscles; slowly-adapting type I (SAI) fibers that innervate

Merkel cells; slowly-adapting type II (SAII) fibers that innervate Ruffini corpuscles; and fast-

adapting type II (FAII) fibers that innervate Pacinian corpuscles.

43% of tactile afferent fibers or around 7,310 fibers are fast adapting type I fibers (FAI). FAI
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2. TACTILE INNERVATION OF THE SKIN

afferents are densely packed in the human fingertip with 141 units/cm2 at its distal end. The

density decreases in the proximal direction and only 25 units/cm2 are present in the palm (see

Figure 3A). The end organs of FAI fibers are Meissner corpuscles (MCs). Each Meissner corpuscle

is innervated by one or two FAI fibers [55], and a single FAI fiber typically branches several times,

with each branch innervating a small number of MCs [56, 57]. In the human fingertip, 3-5,000

MCs/cm2 can be found [45, 58]. Meissner corpuscle density in the palm is considerably lower

with 500 MCs/cm2 at the thenar eminence [59]. These numbers suggest that there are at least

twenty times more MCs than FAI fibers in the glabrous skin of the hand (> 155,000) and that each

FAI fiber innervates around 40 MCs.

25% of tactile afferent fibers or around 4,250 fibers in the palmar region of a single hand are

classed as slowly adapting type I fibers (SAI). SAI fibers are densely concentrated in the fingertips

at around 70 units/cm2 at its distal end, and less so in the more proximal area of the hand with

46 units/cm2 in the middle phalanx and 10 units/cm2 in the palm (see Figure 3A). SAI fibers

repeatedly branch and innervate Merkel cell neurite complexes, which form clusters within the

skin. In the fingerpad of normal adults, up to 10,000 Merkel cells/cm2 can be found, but not all of

them appear to serve mechanoreceptive functions or are connected to nerve fibers [60].

19% of tactile afferent fibers or around 3,230 fibers are classed as slowly adapting type II fibers

(SAII). These are uniformly distributed across the glabrous skin area of the hand at an innervation

density of approximately 12 units/cm2. However, there is some evidence for increased density at

the skin/nail border on the fingertips [43, 61]. SAII fibers innervate Ruffini corpuscles [62], but

it is unclear whether all SAII-like responses originate from Ruffini corpuscles. Where they do, a

one-to-one mapping between fibers and corpuscles is assumed [63].

Finally, up to 13% of tactile afferent fibers or around 2,200 fibers are estimated to be fast-adapting

type II (FAII). The innervation density of this fiber type is low and relatively uniform across the

hand surface at around 10 units/cm2, but appears more numerous in distal finger segments with

around 25 units/cm2 These numbers yield an estimated total of around 800 FAII fibers terminating

in the palm and 350 in each finger. FAII fibers target Pacinian corpuscles, and each corpuscle is

innervated by a single fiber. It is possible for a single fiber to innervate multiple corpuscles [64],

which often appear in clusters [65, 66] close to the digital nerves and their branches, and thus a
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2. TACTILE INNERVATION OF THE SKIN

count of corpuscles can serve to establish an upper limit on the number of FAII fibers. Histological

counts of Pacinian corpuscles show a steep decline between the fetal stage and old age. However,

data from other age ranges is lacking, and the numbers presented here might be an over-estimation

(see Calculations and prior results for further details).

Receptive fields of the type I fibers on the glabrous skin of the hand are small, circular, and well-

defined with a mean area of 13 mm2 for the FAI and 11 mm2 for the SAI fibers. Receptive fields

of type II fibers are larger with diffuse borders and a mean area of 101 mm2 for FAII and 59 mm2

for SAII fibers [67].

2.2 Glabrous skin of the foot sole

Somatosensory feedback from the lower limb, and in particular from the foot sole, plays an

important role in controlling balance, posture, and gait [68, 69]. The foot sole is covered with

glabrous skin and innervated by the same four classes of tactile afferents as the hand (SAI, SAII,

FAI, FAII).

We estimate the total number of plantar cutaneous tactile afferent fibers innervating a single foot

sole to be around 4,000, divided as follows: 17% (~680) SAI fibers, 20% (~800) SAII fibers,

51% (~2,040) FAI fibers, and 12% (~480) FAII fibers. These numbers are higher than an earlier

estimate provided by [70] (see Calculations and prior results for details regarding our estimation

methodology). Like the hand, the foot sole contains more fast-adapting (63%) than

slowly-adapting fibers (37%). The distribution of cutaneous afferents is not uniform across the

foot sole for type I afferents (Figure 3B). The overall highest innervation density is found in the

toes (48 units/cm2), followed by the lateral metatarsals (31 units/cm2), the lateral arch (29.7

units/cm2) and the heel (15.7 units/cm2). Innervation density is lowest in the medial metatarsals

(11.3 units/cm2). FAI afferents are considerably more dense in the toes (24.5 units/cm2) than in

the metatarsal/arch ( 9.1 units/cm2) and in the heel (8 units/cm2). A similar distribution is

observed for SAI afferents. Similar to the hand, SAII and FAII fibers are more uniformly

distributed across the different areas of the foot sole (Figure 3B). In electrophysiological

recordings, fewer tactile afferents have been found terminating in the great toe as would be

expected given its size, and its innervation thus appears lower than that of the neighboring toes;
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whether this discrepancy reflects a statistical artefact or a genuine difference remains to be seen.

The size of the receptive fields varies considerably for the different tactile fibers and across

different foot areas with a mean value of 76 mm2 for the SAI fibers, 248 mm2 for SAII fibers, 81

mm2 for FAI fibers, and 873 mm2 for FAII fibers. In general, larger receptive fields are reported

in the middle metatarsal and heel, and smaller receptive fields are located in the toes [70].

Receptive fields on the foot sole are thus several times larger than those measured in the hand,

perhaps owing to the less dense innervation of this skin region and the different mechanical

properties of the skin of the foot sole.

2.3 Face

A B C

front back

palm

fingers

trunk

Fig. 4: (A) Estimated fiber density for FA hair cells on different skin regions versus average hair follicle density for
the same skin regions. Colours denote different body parts, as indicated in the inset. The grey line shows the line of
best fit. (B) Estimated spacing between SAI termination sites versus perceptual tactile acuity as assessed by two-point
discrimination tasks for different body regions [71]. There is a strong relationship between a body region’s tactile
innervation and our ability to spatially discriminate tactile stimuli. (C) Size of cortical somatosensory representation
for different body parts versus estimates for the total number of tactile fibers innervating that region. Innervation alone
cannot explain cortical representation. Numbers refer to a single brain hemisphere.

The face is densely innervated by cutaneous fibers, especially the region around the mouth and lips,

and also the inside of the oral cavity and the tongue, highlighting the essential sensory contribution

to mastication and other eating-related behaviors. We estimate that around 43,000-46,000 tactile

afferents innervate the hairy facial skin and the lips, excluding the oral cavity, which is likely to

be innervated by around 16,000-19,000 fibers (see Calculations and prior results for details). For

the purposes of this manuscript, we focus on the traditional notion of skin as the outer tissue of the

body, which differs considerably in anatomy and physiology from the tissues within the oral cavity.

Consequently we will not discuss the innervation of the oral mucosa further and instead refer the
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interested reader to reviews by Trulsson (2006) [72] and Haggard and de Boer (2014) [73].

Four different classes of tactile afferents have been found in the hairy skin of the face and the

red zone of the lip: slowly-adapting type I and type II, fast adapting type I and fast adapting hair

follicle afferents [74]. Slowly adapting afferents are suggested to have two types of end-organs:

Merkel cell-neurite complexes for SAI afferents and Ruffini endings for SAII afferents [75]. The

hair follicle afferents (FA hair units) encountered in the facial skin are likely similar to hair units

described in other hairy skin, but appear in some cases associated with a single hair only [74].

The nature of the end organs of FAI units in the facial skin is uncertain, as no Meissner corpuscles

have been reported in this area [75]; possibly they are related to field units as in other hairy skin,

though their receptive fields appear smaller. Notably, no FAII afferents have been reported in

the literature, and vibrotactile thresholds on the face show no characteristic Pacinian sensitivity

around 200 Hz [76], so this afferent class might be absent on the face, while present in other body

regions.

Slowly adapting afferents appear more abundant than fast adapting ones in the facial skin [77, 78],

with around 65% SA, resulting in 29,000 fibers, and 35% FA, resulting in 15,500 fibers. However,

this breakdown is extrapolated from relatively small samples, so should be treated with caution.

Innervation density is not uniform across the face: we estimate an innervation density of 48

units/cm2 for the forehead, eyes, and nose (V1), 67 units/cm2 for the central part of the face (V2)

and 84 units/cm2 for the lower lip, the chin, the jaw and an area around the ears (V3). Locally,

some regions such as the area immediately surrounding the mouth and the lips are likely to

exhibit much higher innervation densities.

The size of the receptive fields varies for the different tactile afferent fibers with a mean value of

4 mm2 for the SAI fibers, 6 mm2 for SAII fibers and 6 mm2 for FA fibers [77]. Most receptive

fields have a circular or oval well-demarcated area of high and relatively uniform sensitivity [78].

The highest concentration and smallest size of the receptive fields are measured around the corner

of the mouth and in the upper lip. The psychophysical and receptive field properties observed in

these areas, including the tactile acuity, are similar to those found in the human fingertip [75],

suggesting a similarly high innervation density.
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2.4 Hairy skin

Studies investigating the sensory innervation of human hairy skin (other than facial) have often

focused on C afferents or proprioceptive fibers, with relatively few targeting Aβ tactile afferents.

Data exists for the hand dorsum [79–85], the arm [51, 86, 87], the leg [88–90], and the foot dorsum

[85, 91–93], but not for the body core, back, or chest, where microneurography is technically

challenging, due to the small size of the nerves involved and continuous movement of skin in this

area during breathing.

Hairy skin is innervated by afferent classes with similar response characteristics as found in

glabrous skin, though specific end organs might differ. As in all other types of skin, SAI afferents

are present and innervate Merkel cells, which in hairy skin are organised into touch domes, as

compared to the cell neurite complexes found in glabrous skin. Similarly, SAII afferents have

been identified electrophysiologically, though it is unclear whether they always connect to

Ruffini-like corpuscles, as is thought to be the case in the hand [94]. Afferents with response

properties similar to FAI afferents are frequently observed, but unlike glabrous skin, hairy skin

does not contain Meissner corpuscles. Instead, three different types of FA afferents have been

identified in the hairy skin: hair units, field units, and FAII units [86]. Hair units branch and

terminate in close proximity to hair follicles. Each hair unit is estimated to innervate around 25

individual hair follicles in the forearm [86]. Field units show remarkable similarities with hair

units, having numerous high-sensitivity spots distributed over a fairly large area. The nature of

the end-organs of field units is unclear. The presence of FAII afferents has been demonstrated

both in electrophysiological recordings [86] and psychophysically [95], though Pacinian

corpuscles appear to be extremely rare in hairy skin. Innervation patterns vary for different body

regions, with a prevalence of SA afferents in the arms at 61% of all fibers, while they only make

up 47% in the legs (see Calculations and prior results for further details).

Based on fiber counts and estimates of axon diameter distribution in the dorsal roots of the spinal

cord (see Calculations and prior results), we estimate that around 140,000 Aβ fibers (range:

110,000-180,000) innervate the hairy skin of humans (excluding the face). Innervation is most

dense in the back of the head and neck area with around 17 units/cm2 and in the arms with 12

units/cm2, while is almost uniform in the rest of the body, with 8.9 units/cm2 covering the skin of
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2. TACTILE INNERVATION OF THE SKIN

the chest and abdomen, 9 units/cm2 on the back, and 9.8 units/cm2 for the legs.

Hair units terminate on hair follicles in hairy skin, suggesting a relationship between hair follicle

density and FA afferent innervation. Hair follicle density is not uniform across the adult body but

instead varies by more than an order of magnitude across different body regions [96]. If the number

of hair follicles innervated by a single afferent was relatively constant across different areas, one

would, therefore, expect a strong correlation between our estimates of FA innervation density and

hair follicle density. Indeed, we found a strong correlation (r = 0.94, p < 0.01) between both

quantities (Figure 4A). Our estimates imply that each FA hair fiber innervates, on average, 25

hair follicles (range: 15-52), in strong agreement with earlier estimates for the forearm [86]. Hair

follicles include both vellus and terminal hairs, both of which have been found to be innervated by

nerve fibers [97].

A B

front back

{
fa
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e

Fig. 5: Whole-body tactile innervation densities. The hand and face are the most densely innervated regions. (A) Total
tactile innervation density for fast-adapting (red) and slowly-adapting (blue) afferents (including both type I and type II
afferents), for different skin regions across the whole body. The ratio of fast and slowly adapting fibers is not constant
but varies with skin region. (B) Illustration of the whole-body peripheral innervation homunculus using the same
method as detailed in Figure 3. The color and scaling of each body area denotes its innervation density (units/cm2),
combining both SA and FA fibers.
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3. INNERVATION DENSITY IN CONTEXT

# of afferents Innerv. dens. Skin area SA afferents
u./cm2 cm2 %

Hand 16,500 90 184 43

Fingertips 5,061 241 21 42

Fingers 6,156 81 76 45

Palm 5,046 58 87 41

Foot Sole 3,958 21 200 37

Big Toe 261 16 16 37

Toes 913 48 19 37

Metatarsal 912 18 51 37

Arch 1,362 18 76 37

Heel 597 16 38 37

Face 46,000 69 675 65

Face V1 12,307 48 255 65

Face V2 14,676 67 219 65

Face V3 16,820 84 200 70

Neck+Scalp 8,625 17 516 55

Front trunk 20,886 9 2,272 55

Back trunk 20,775 9 2,272 55

Arms 35,335 13 2,769 61

Legs 56,186 10 5,722 47

Total ~230,000 15 ~15,000 53

Table 1: Estimated number of afferents, innervation density, skin area, and proportion of slowly-adapting afferents (of
both types) for different body regions. Shaded rows indicate sub-regions of larger body parts. Entries for the hand and
foot sole refer to a single body part, while all other estimates are bilateral.

2.5 Whole body

Summarizing all information above, across the whole body the palmar skin of the hands and the

perioral region of the face are the most densely innervated regions. Relatively high innervation

can also be found in some sections of the foot, such as the toes, while the hairy skin of the arms

and legs are the least densely innervated, closely followed by the trunk (see Figures 5, and Table

1).

3 Innervation density in context

3.1 Innervation density and tactile acuity

Innervation density limits the spatial resolution with which tactile features can be resolved on

the skin: lower innervation results in a larger spacing between receptors and implies that two
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tactile stimuli need to be further apart to be discriminated. One might, therefore, expect a strong

correlation between receptor spacing and perceptual tactile acuity as determined in psychophysical

experiments. Previous work suggests that spatial acuity is largely driven by SAI afferents [44],

which possess the smallest receptive fields and, therefore, the highest spatial resolution. Indeed, a

close relationship between SAI receptor spacing and tactile acuity has been established across the

different regions of the hand [98, 99]. Following this line of research, we used psychophysical two-

point discrimination thresholds obtained from different regions across the whole body [71, 100]

and correlated these values with estimated SAI receptor spacing. We found a strong relationship

between these two variables (r = 0.93, p < 0.001, see Fig. 4B). As prior research has shown,

tactile acuity is not fixed but improves with training; while the eventual plateau performance is

likely determined by innervation density, typical performance might not [44]. Additionally, more

reliable measures of spatial acuity than the classical two-point threshold do exist [101], and these

suggest that, for example, the lips in fact exhibit higher acuity than the fingertips [102, 103].

Nevertheless, differences in innervation density across the whole body appear large enough to

yield a reliable correlation with two-point psychophysical thresholds.

The reasoning above ignores the fact that receptive fields of type I afferents are not uniform, but

contain several individual subfields or hot spots, as demonstrated in both glabrous [104, 105] and

hairy skin [86]. The number of such hot spots might ultimately determine perceptual limits on the

spatial resolution of the skin. Indeed, one of the first studies aiming to relate the accuracy of tactile

perception with afferent fiber counts [106] based their analysis on perceptual threshold mapping

of the skin on a spatial scale similar to individual subfields [107]. Based on the average estimated

number of subfields per fiber (FAI: 15, SAI: 6 for glabrous skin; hair units: 25, field: 10, SAI:

3 for hairy skin) one might therefore expect around 1.5 million hot spots across the whole body,

with around 150,000 on the palmar surface of each hand, mostly supported by FA fibers.

3.2 Innervation density and the cortical homunculus

As demonstrated by pioneering work in humans [46, 108] and non-human primates [109, 110],

body regions are mapped somatotopically onto the primary somatosensory cortex (S1), with

nearby regions on the body generally represented by nearby patches in cortex. However, the size

of individual body region representations in cortex is not proportional to that anatomical region’s
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skin surface area. For example, the area devoted to the thumb in S1 is as large as the area devoted

to the entire forearm [40]. These findings have led to the famous homunculus, in which body

parts are scaled by the size of their cortical representation, and which displays enlarged hands,

face, and tongue. In how far cortical magnification is driven purely by innervation density, or

whether usage effects such as increased contact with some body parts over others also play a part,

has been debated. Many studies and textbooks argue for a close correlation between innervation

density and cortical magnification [41, 111], though quantitative evidence is lacking. To test this

idea directly, we took estimates of cortical magnification from the literature [108, 112], and

compared these with the innervation density estimates described above. We found a positive, but

non-significant, correlation between a region’s peripheral tactile fiber count and the size of its

representation in cortex (r = 0.40, p = 0.42, Figure 4C), when assessed as the length of the

coronal section onto which that body part is mapped. Crucially, some regions exhibited much

larger cortical magnification than would be expected from their peripheral innervation alone.

This included the heavily enlarged cortical areas containing the hand and face representations.

Thus, it appears that these body parts are further magnified cortically, perhaps reflecting the fact

that they are more likely to receive tactile stimulation [113, 114] or that they are especially

behaviourally relevant. Interestingly, the apparent cortical magnification of regions with already

high innervation mirrors the visual system, where the fovea is further magnified cortically beyond

its already higher density of cone photoreceptors [115].

3.3 Tactile innervation over the lifespan

Our estimates of innervation density are based on data from a range of ages, but we have tried, as

much as possible, to focus on young adults. It has been widely demonstrated that tactile sensibility

declines with age, as evidenced by increased sensory thresholds [116–119] and decreased spatial

acuity [120–124]. This decline might be partially explained by age-related mechanical changes of

the skin itself, such as in stiffness or moisture levels, but neural degeneration through changes in

myelination, and receptor and fiber loss are likely to play a major part.

Focusing on the loss of tactile afferents specifically, a substantial decrease in the number of

myelinated fibers in the spinal cord dorsal root from early middle age onwards has been well

documented (see [125]). After a considerable increase in the number of myelinated fibers in the
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first life decade, a gradual loss of fibers occurs throughout the lifespan from the third decade

onwards, with an approximate loss rate of 5-8% per decade [126–128]. Therefore, the proposed

estimate of 230,000 tactile afferents in the whole body of a young adult might be reduced to

about 160,000 tactile afferents for people over 80 years old. There is evidence that the decrease

in the number of fibers due to aging is more pronounced in some body regions than others, and

that the skin of the face, arms, legs, hands, and feet are most affected, while the number of fibers

innervating the abdomen remains almost unchanged [129].

The mechanoreceptive end organs themselves are also affected by aging and might change their

morphology or disappear completely over time. This effect has been best documented for type I

afferents. For example, the density of Meissner corpuscles at the fingertip decreases more than

three-fold from young adulthood to old age, and that of Merkel cells declines more than five-

fold [130].

4 Calculations and prior results

In the following, we provide an overview of measurements from the literature and detail the

calculations that led to the estimates of innervation density described in the previous sections.

Our approach relies on fiber counts from the dorsal root ganglia and the trigeminal nerve,

estimates of the proportion of tactile Aβ fibers within each segment, and finally measurements

for the surface area of skin innervated by each. The same basic idea has been pursued

before [131], but advances in histology and immunohistochemistry, along with a much advanced

understanding of the different classes of fibers involved in tactile sensibility prompted us to

provide a modern re-assessment.

4.1 Hand

For the palmar surface of the hand we follow the original estimates by [43], which agree well

with later histological analyses: a count of myelinated fibers at both the metacarpophalangeal

(MCP) joint, covering all fibers innervating a given finger, and at the terminal trifurcation,

covering innervation of the fingertips only, yielded 2,100-4,800 fibers per finger and roughly

1,900-2,600 per fingertip [132]. Assuming that around 45% of these fibers are tactile afferents in
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the Aβ range, similar to the proportion that has been estimated at the wrist [133], yields

1,000-2,200 tactile afferents per finger and roughly 800-1,200 per fingertip. These numbers agree

remarkably well with Johansson and Vallbo’s original estimates of 2,500 for the whole finger and

1,000 for the fingertip of the index finger [43]. Psychophysical measurements also suggest that

innervation density decreases dramatically between the fingertip and the palm, and SAI receptor

spacing as calculated from Johansson and Vallbo (1979)’s estimates correlates highly with spatial

acuity across different regions of the hand [98, 99].

Pacinian corpuscles are relatively large and can, therefore, easily be identified in dissections, at

least in principle. No dissection data has been reported from young adults and the few existing

studies focus on either fetal tissue or cadavers of elderly individuals. These present a mixed

picture. On the one hand, fetal studies are in good agreement with the estimates made by

Johansson and Vallbo (1979). [43]. Cauna and Mannan (1958) [134] counted Pacinian corpuscles

in the radial half of a fetal index finger and found 178 in total, in almost perfect agreement with

Johansson’s estimates of afferent numbers (see also [135] for further analysis). In support of

these findings, recent counts from the distal segment of several fetal fingers also yielded numbers

in close agreement and confirmed that PC innervation is higher in the distal than in other finger

segments [136]. On the other hand, studies in elderly individuals report much lower numbers.

Dissection of the whole hand of several old-age human cadavers has found around 300

corpuscles per hand [66]. A more recent count in several distal finger segments yielded

proportionally higher numbers (around 40 corpuscles per segment), but these counts were still

much lower than those in fetal tissue [137]. Taken together, these results suggest a dramatic

decrease in the number of Pacinian corpuscles with age, but it is unclear whether this decrease

takes place early during development, later in life, or whether it is spread out across the lifetime.

As the original estimates by Johansson and Vallbo (1979) [43] are in good agreement with the

fetal data, we used them in our report. However, it is possible that the true number of FAII fibers

is lower than reported here, perhaps by half or more. More recently, it has been shown that

Pacinian corpuscles can be resolved using high-field MRI [138, 139], opening the possibility to

establish in-vivo counts across a range of age groups in the future.
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4.2 Foot sole

A recent study estimated that around 1,700 tactile afferents innervate the plantar surface of a

single foot [70]. Our estimates suggest that the actual innervation is likely higher, by a factor of

approximately two, based on several observations. First, the original estimate was based on a study

demonstrating a ratio of roughly 10:1 in myelinated fibers between the hand and the foot [132].

However, fiber counts were only taken at the metacarpophalangeal and metatarsophalangeal joints,

respectively, and because innervation density gradients are steeper on the hand than on the foot,

this does not imply a ratio of 10:1 in the total fiber count. Instead, a ratio of 4-5:1 appears more

realistic. Second, tactile acuity is higher on the foot sole compared to the foot dorsum or other

regions on the leg [100], suggesting a higher innervation density in this region, in line with our

estimates for hairy skin (see below). Taken together, a total tactile innervation of 4,000 afferents

per foot sole appears likely. To arrive at updated estimates for different regions of the foot sole,

we took the total number of tactile afferents as estimated above and distributed them across the

foot sole according to the relative densities established in [70].

As has been done in the hand, Pacinian corpuscles can be identified and counted in human fetal

samples. Comparing the results of a recent study that focused on the toes [140] with our estimates

yielded 2-3 times more corpuscles in the experimental sample, a reasonably close match given

the low numbers involved. The discrepancy might be explained by the fact that the number of

corpuscles might decrease after the fetal stage, that several corpuscles might be innervated by a

single fiber, or that we have underestimated the overall number of fibers innervating the foot sole.

Finally, in the toes Pacinian corpuscles appear much more numerous at the proximal rather than

the distal end, in contrast to the fingers, and given the difficulty of pinpointing FAII termination

sites in microneurographic experiments, it is possible that some have been attributed to the forefoot

region instead.

4.3 Face

The sensory innervation of the face is supplied by the sensory root of the trigeminal nerve or fifth

cranial nerve. In this root, the total number of fibers is estimated at 170,000, and approximately

62,000 of these are myelinated and fall within the diameter range of Aβ fibers [141]. The
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trigeminal nerve branches into three major divisions which supply different areas of the face; the

ophthalmic branch, or V1, innervates the upper part of the face, covering approximately 38% of

the facial skin; the maxillary branch, or V2, innervates the mid-third of the face, including part of

the nose and down to the upper lip, corresponding to approximately 32% of the total facial area;

finally, the mandibular branch, or V3, innervates the lower part of the face and the area around

the ears, and covers around 30% of facial skin.

The maxillary division V2 gives rise to six sensory branches, of which two are responsible for

the sensory innervation of the hard palate inside the oral cavity (greater palatine and nasopalatine

nerves). The mandibular division V3 includes five sensory branches, of which the lingual nerve

and the buccal nerve innervate the floor of the oral cavity and the inside of the cheeks. Thus,

four out of 11 branches of the V2 and V3 divisions innervate the inside of the mouth. Combining

this fact with recent histological analyses, which found that skin within the V3 innervation area

contains almost twice the number of fibers than skin innervated by V1 [142], suggests by rough

approximation that around 25-30% of the 62,000 myelinated fibers of the trigeminal nerve are

responsible for the sensory innervation of the oral mucosa, leaving around 43,000 to innervate the

facial skin and lips.

The pattern of the sensory innervation changes across the three divisions and the density of

myelinated fibers was estimated by Nolano et al. (2013) [142] as 8.0, 15.9, and 16.4 mm2 in V1,

V2, and V3, respectively. These estimates include multiple branches originating from the same

afferent and also count any fibers merely traversing a given skin area rather than terminating

there, and thus cannot be used directly to estimate the number of individual afferents.

Nevertheless, in relative terms, these histological counts can be expected to scale proportionally

to the actual afferent counts. To arrive at estimated innervation densities for V1, V2, and V3, we

therefore divided the total number of fibers estimated above across V1, V2, and V3 in the

proportions estimated by [142]. A total facial skin area of 675 cm2 was assumed [143]. See

Supplemental Table 2 for precise calculations (or DOI:10.15131/shef.data.12753650).
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4.4 Hairy skin on arms, trunk, and legs

The dorsal roots of the spinal cord contain 1-1.2 million fibers in total, ranging from large,

medium, and small myelinated to unmyelinated nerve fibers [144, 145]. The region of skin

innervated by all tactile afferents passing through a given dorsal root is known as a dermatome.

While the specific territory innervated by each dermatome varies between people, and

dermatomes also generally overlap within individuals, they nevertheless follow a systematic

pattern. Fiber counts in individual dorsal roots can, therefore, be used to estimate the innervation

of their associated dermatomes. The estimates presented here are based on recent fiber counts

published by Liu et al. (2015) [144]. The territory of each dermatome is derived from an

evidence-based map that assessed and combined multiple existing data sets [146]; we traced the

published dermatome outlines and then calculated the area of skin innervated by each dermatome

as the sum of the areas covering the front and back of the body, respectively, assuming a total area

of skin of 1.5 m2 [147]. This analysis also takes into account that dermatomes generally overlap.

We also compared the estimated peripheral fiber innervation densities derived from these maps

with ones based on an older dermatome representation in a popular textbook [148]. We found

only minor differences, suggesting that our results do not hinge on a particular dermatome map.

Only a subset of dorsal root fibers will be myelinated fibers in the Aβ range and underlie tactile

innervation of the skin, rather than internal organs. The fraction of myelinated fibers varies across

the spinal tract, being higher in the cervical and lumbar tract [149, 150] and, on average, around

40% of axons have been classified as unmyelinated [151]. Assuming a 50:50 split between Aδ and

Aβ myelinated fibers, and considering around 10% of Aβ fibers innervating deep structures [133],

an average fraction of 17% (range: 10%-25%) of the fibers in the dorsal roots are estimated to

represent Aβ fibers involved in the transmission of tactile sensations. In the dermatomes C6-C8,

for example, we estimate that about 53,500 of the 210,000 fibers are tactile afferents. Considering

that approximately 36,000 of these are in the ulnar and median nerve and innervate the glabrous

skin of the hand, the remaining tactile afferents in the C6-C8 dermatomes cover the hairy skin of

the hand dorsum and forearm. This calculation leads to an estimated density of 12.7 units/cm2

in these areas, which is consistent with the overall hairy skin estimations here proposed. Our

estimates also agree well with a recent count in the L4 and L5 dorsal roots that found around 30%

40



i
i

“output” — 2023/1/25 — 15:18 — page 41 — #54 i
i

i
i

i
i

4. CALCULATIONS AND PRIOR RESULTS

of axons had a diameter bigger than 5 µm, not all of which contribute to the tactile innervation of

the skin [152]. Similarly, [150] estimated around 6,000 fibers/mm2 in the sural nerve. 40% of these

have a diameter in the range of 6-12 µm, which led to a total of 13,000 Aβ myelinated afferents

in the sural nerve. Considering not all of these fibers are cutaneous afferents, and considering

that the sural nerve contributes with other sacral nerves to the innervation of a skin area of around

4,500 cm2 in the leg and foot, these measures result in good accordance with our estimates. Please

see Supplemental Table 3 (or DOI: 10.15131/shef.data.12753650) for full calculations split by

dermatomes.

The main source of uncertainty in our estimates is the total number of fibers in the dorsal root

and, most importantly, the proportion of myelinated Aβ fibers for each dermatome [149, 152].

This question has only been investigated experimentally in a subset of dorsal roots, and different

studies report conflicting results. For this reason, we repeated our calculations assuming a possible

positive or negative variation of 20% on the number of tactile afferents for each dermatome. When

doing so, we noticed that we fell short of or exceeded the physiologically plausible range in several

instances, lending credibility to our original estimates. For example, in dermatomes C6, C7, and

C8 considering that 18,000 of the total number of afferents can be expected to innervate the palmar

surface of the hand, a reduction of more than 20% of the dorsal root fiber portion considered as

tactile afferents, would result in a number close to zero (or even negative) for tactile afferents

innervating the hairy skin of the back of the hand and part of the forearm. Similarly, an increase of

more than 20% in the portion of dorsal root fibers considered to be tactile afferents would, in some

dermatomes such as L1, result in areas of hairy skin having a density of afferents improbably close

to that of the hairless skin of the foot and some areas of the palm of the hand. Taking these limits

into account, the overall number of tactile afferents innervating the hairy skin is likely to fall in the

range 110,000-180,000, leading to a total number of 200,000-270,00 afferents across the whole

body.

To determine the proportion of SA and FA fibers, we tallied afferent numbers reported in

different microneurography studies. For the hand dorsum and arm, we found a total of 267

reported afferents in the literature, 61% of which were slowly-adapting [51, 82–87]. For the foot

dorsum and leg, our sample included 315 afferents, 47% of which were slowly

adapting [85, 88–90, 92, 93]. Thus, a higher proportion of slowly-adapting afferents innervates
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the arms than the legs. No data exists for the trunk. We assumed that the proportion of SA fibers

for this region would fall in between those for the arms and the legs, as does overall innervation

density, and settled on an estimate of 55% slowly-adapting fibers for the trunk. See Supplemental

Table 4 (or DOI:10.15131/shef.data.12753650) for a detailed breakdown of afferent types

reported in the literature on hairy skin.
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Supporting information

fibers total
density in 

Nolano (2013)
innervation 

pattern

branches 
innervating 

inner 
mouth/mucosa

sensory branches
fiber 

innervating 
skin

% area skin area
Innervation 

density %

u./mm2 % cm2 u./cm2
V1 12307.69231 8 0.198511166 12307.6923 0.38 255.272973 48.21384787 0.28096465
V2 24461.53846 15.9 0.394540943 2 5 14676.9231 0.32 219.399013 66.89603046 0.33505034
V3 25230.76923 16.4 0.406947891 2 6 16820.5128 0.3 200.328013 83.96485618 0.38398502
Face 62000 43805.1282 675 64.91744879 1

Table 2: Calculations for total number and density of A-beta tactile fibers innervating the face.
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Table 3: Calculations for total number and density of A-beta tactile fibers innervating the hairy skin, excluding the face
based on fiber counts in dorsal root ganglia and estimates of the skin territory innervated by dermatomes.
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4. CALCULATIONS AND PRIOR RESULTS

REF body area SA% SAI SAII FAI FAII Hair Units Field Units tot. units considered
Edin, B. B., and J. H. Abbs. 1991. “Finger Movement Responses of Cutaneous 
Mechanoreceptors in the Dorsal Skin of the Human Hand.” Journal of 
Neurophysiology 65 (3): 657–70. hand dorsum 0.64 32% 32% 28% 8% 107

Vallbo, A. B., H. Olausson, J. Wessberg, and N. Kakuda. 1995. “Receptive Field 
Characteristics of Tactile Units with Myelinated Afferents in Hairy Skin of 
Human Subjects.” The Journal of Physiology 483 ( Pt 3) (March): 783–95. forearm 0.65 21 15 2 12 5 55

Edin, B. B., G. K. Essick, M. Trulsson, and K. A. Olsson. 1995. “Receptor Encoding 
of Moving Tactile Stimuli in Humans. I. Temporal Pattern of Discharge of 
Individual Low-Threshold Mechanoreceptors.” The Journal of Neuroscience: The 
Official Journal of the Society for Neuroscience 15 (1 Pt 2): 830–47. hand dorsum 0.46 5 9 12 1 1 28

Löken, Line S., Johan Wessberg, India Morrison, Francis McGlone, and Håkan 
Olausson. 2009. “Coding of Pleasant Touch by Unmyelinated Afferents in 
Humans.” Nature Neuroscience 12 (5): 547–48. arm 0.65 8 3 4 2 17

Ackerley, Rochelle, Helena Backlund Wasling, Jaquette Liljencrantz, Håkan 
Olausson, Richard D. Johnson, and Johan Wessberg. 2014. “Human C-Tactile 
Afferents Are Tuned to the Temperature of a Skin-Stroking Caress.” The Journal 
of Neuroscience: The Official Journal of the Society for Neuroscience 34 (8): 
2879–83. arm 0.38 2 1 4 1 8

Kakuda, N. 1992. “Conduction Velocity of Low-Threshold Mechanoreceptive 
Afferent Fibers in the Glabrous and Hairy Skin of Human Hands Measured with 
Microneurography and Spike-Triggered Averaging.” Neuroscience Research 15 
(3): 179–88. hand dorsum 0.65 21 7 15 43

Nagi, Saad S., Andrew G. Marshall, Adarsh Makdani, Ewa Jarocka, Jaquette 
Liljencrantz, Mikael Ridderström, Sumaiya Shaikh, et al. 2019. “An Ultrafast 
System for Signaling Mechanical Pain in Human Skin.” Science Advances 5 (7): 
eaaw1297. hand dorsum 0.44 1 3 3 2 9

foot dorsum 0.37 10 4 6 18 38

Ribot-Ciscar, E., J. P. Vedel, and J. P. Roll. 1989. “Vibration Sensitivity of Slowly 
and Rapidly Adapting Cutaneous Mechanoreceptors in the Human Foot and 
Leg.” Neuroscience Letters 104 (1-2): 130–35. frontal leg/foot dorsum 0.43 23 30 53

Ribot-Ciscar, E., J. P. Roll, M. F. Tardy-Gervet, and F. Harlay. 1996. “Alteration of 
Human Cutaneous Afferent Discharges as the Result of Long-Lasting Vibration.” 
Journal of Applied Physiology 80 (5): 1708–15. anterior leg/foot dorsum 0.56 15 12 27

Edin, B. 2001. “Cutaneous Afferents Provide Information about Knee Joint 
Movements in Humans.” The Journal of Physiology 531 (Pt 1): 289–97. thigh 0.43 23 6 24 1 54

Aimonetti, Jean-Marc, Valérie Hospod, Jean-Pierre Roll, and Edith Ribot-Ciscar. 
2007. “Cutaneous Afferents Provide a Neuronal Population Vector That Encodes 
the Orientation of Human Ankle Movements.” The Journal of Physiology 580 (Pt. 
2): 649–58.  leg 0.54 21 27 24 17 89

Trulsson, M. 2001. “Mechanoreceptive Afferents in the Human Sural Nerve.” 
Experimental Brain Research. Experimentelle Hirnforschung. Experimentation 
Cerebrale 137 (1): 111–16. foot dorsum 0.44 35% 9% 48% 7% 54

arm/hand dorsum 0.61 267
leg/foot dorsum 0.47 315

Table 4: A tally of slowly and fast-adapting fibers reported in the microneurography literature of the hairy skin. Fiber
proportions are calculated for two skin regions: the hand dorsum and arms, as well as the foot dorsum and legs.
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Abstract

Sensory information is conveyed by populations of neurons, and coding strategies cannot always

be deduced when considering individual neurons. Moreover, information coding depends on the

number of neurons available and on the composition of the population when multiple classes with

different response properties are available. Here, we study population coding in human tactile

afferents by employing a recently developed simulator of mechanoreceptor firing activity. First,

we highlight the interplay of afferents within each class. We demonstrate that the optimal afferent

density to convey maximal information depends on both the tactile feature under consideration

and the afferent class. Second, we find that information is spread across different classes for all

tactile features and that each class encodes both redundant and complementary information with

respect to the other afferent classes. Specifically, combining information from multiple afferent

classes improves information transmission and is often more efficient than increasing the density

of afferents from the same class. Finally, we test the importance of timing precision and afferent

identity in the population code to probe whether temporal and spatial information can be traded

against each other. Destroying temporal information turns out to be more destructive than

removing spatial information, and the contribution of either cannot be completely recovered from

the other. Overall, our results suggest that both optimal afferent innervation densities and the

composition of the population depend in complex ways on the tactile features in question,

potentially accounting for the variety in which tactile peripheral populations are assembled in

different regions across the body.

Author summary

Touching an object elicits neural responses from hundreds or thousands of individual tactile

receptors of different classes embedded within our hand. Information about the extent of contact,

the strength of the touch, and its temporal profile are carried jointly in this population response to

be processed further by the central nervous system. However, studying the nature of the

population code is empirically challenging, as electrophysiological recordings are typically

obtained from single or a small number of neurons at most. Here, we make use of a computer

simulation to recreate the population activity of large numbers of tactile neurons and examine
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how information is spread across different neurons. We find that tactile information increases

with afferent density, but the saturation point depends on both the tactile feature and afferent

class. Importantly, information is generally spread across multiple afferent classes, such that a

combination of afferents from multiple classes yields higher information than the same number

of neurons from a single class. These results will be useful to guide future experiments and

theoretical work on the processing of tactile information by the central nervous system.
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1 Introduction

The brain processes information and makes decisions based on the activity of a large number of

neurons [153]. Studying population activity can reveal aspects of the neural code that are obscured

when only individual neurons are considered [154]. For example, the well-known population

vector technique has shown that the direction of arm movements can be precisely decoded from

a population of cortical motor neurons, even though individual neurons are only broadly tuned

to direction [155]. Moreover, some coding strategies will become evident only if the responses

of multiple neurons are considered. For example, while a neuron that remains silent to a certain

stimulus might not appear to convey any information at all, when it is part of a larger population

where other neurons are responding, this silence can be meaningful [156]. Response correlations

between neurons also affect decoding (see [157] for an example). Furthermore, populations often

consist of heterogeneous classes of neurons, especially in sensory systems, such as the diversity

of retinal ganglion cells in the visual pathway [158] or the different classes of tactile neurons in

the somatosensory periphery [159]. Theoretical studies have shown how response properties and

class membership of individual neurons can be optimized to maximize joint information coding

in the population [160–162]. However, because this optimization relies on the full population,

predicting how or to what extent an individual neuron contributes to population coding becomes

impossible without considering the properties of other neurons that make up the population. Given

these findings, it is thus paramount to study the population activity of sensory neurons in order to

understand what stimulus information is available at subsequent processing stages.

Tactile interactions are mediated by mechanoreceptive afferents and the glabrous skin of the

human hand is innervated by approximately 17,000 fibers [163]. These are divided into different

classes based on their response properties and receptive fields. Three classes are mainly involved

in discriminative touch: slowly adapting type 1 afferents (SAI) exhibit small receptive fields and

respond to static or low-frequency indentations, rapidly adapting afferents (RA) possess slightly

larger receptive fields and respond to dynamic flutter stimuli, and Pacinian afferents (PC) exhibit

extremely large receptive fields and are most responsive to high frequency vibrations. These

classes also differ in the density with which they innervate the skin, both compared to each other

and at different locations on the skin [163]. A stimulus applied to a specific skin area will
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typically activate hundreds if not thousands of afferents of different classes all responding with

distinct spiking responses [164]. However, peripheral neurophysiological measurements are

subject to technical limitations, and typically only one or a small number of afferents are

recorded at once. Moreover, many studies place the stimulus directly above the targeted afferent’s

receptive field hotspot, in an effort to maximize neural responses within the limited recording

window, but such a setup implies that responses from receptors located away from the contact

location will be neglected. Given these constraints, afferent activity on a population level has

scarcely been investigated, and, consequently, our understanding of how tactile information is

represented in the peripheral population is limited (though see [165] for a summary of tactile

population codes).

A particular source of debate in the tactile literature has been the role of different afferent classes.

Traditionally, each afferent class was thought to carry information about different and

complementary stimulus features [166]. However, more recently it has become clear that most

natural stimuli elicit responses from multiple afferent classes simultaneously (see summary

in [167]), for example in texture perception [168]. Furthermore, both experimental

evidence [169] and computational modeling [170] suggest that information from multiple classes

of afferents is integrated in cortex, if not before, and psychophysical studies have revealed that

the quality of a tactile percept does not necessarily depend on receptor class [171]. However, to

what extent peripheral tactile population activity carries complementary information about

relevant stimulus features in different afferent classes has not been quantified and it is therefore

unclear when and how it would be beneficial to integrate such information.

Here, we investigate the contribution of large neural populations in tactile stimulus coding and

examine the interplay of tactile submodalities in this process. Because the lack of population

level data currently precludes empirical study, we used a large-scale computational model,

Touchsim [172], to simulate the activity of hundreds of peripheral tactile afferents of three classes

in response to naturalistic stimuli, similar to those commonly used in experimental settings. First,

we parametrically studied the role of afferent density in single-class afferent populations to

explore if and how the composition, and particularly the number of afferents, affects the stimulus

information encoding. Secondly, we considered the three classes together and asked whether

each class encoded complementary or redundant information regarding stimulus features.
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Finally, we assessed the importance of temporal and spatial encoding precision when considering

afferents on a population level. Overall, our work demonstrates that a population-level view of

tactile coding is crucial for a thorough understanding of tactile information processing.
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Fig. 6: Simulation setup. (A) Example of afferents terminating along a line, radiating outwards from the probe centre
(indicated by the arrow). The probe has circular shape (of varying size) and is centred on the origin of the line. Dots
of different colors corresponds to different afferent classes (separated in the illustration to facilitate visualization). (B)
Example of afferent populations with different densities. (C) Representation of afferent densities measured on the
human hand and corresponding simulated populations distributed over a line that mimic the densities observed in the
palm and finger. (D) Illustration of the different stimulus features considered: probe size, vibration frequency, ramp
length, and ramp amplitude.

2 Results

We used a large-scale neural simulator [172] to simulate the spiking activity of individual

afferents belonging to three afferent classes (SAI, RA, PC) jointly spanning the range of tactile

sensitivity. In our setup, we simulated the responses of a population of receptors placed along a

line extending outwards from the contact location of the stimulus probe (see Fig 6A). This spatial
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arrangement of receptors allowed for systematic manipulation of the receptor density in the

simulations. Sixteen different afferent populations with a density ranging between 1 and 140

afferents/cm2 were considered for each afferent class. Therefore, we could test the effect of low,

medium, and high densities (Fig 6B) on information encoding and also directly examine natural

innervation densities, such as those encountered on the palm or finger (Fig 6C). The simulated

stimulus was a circular probe indented into the skin and then vibrated. We varied four stimulus

features systematically across trials: the probe size (1-4 mm), the ramp amplitude (0.3-1.2 mm),

the ramp length (10-50 ms), and the vibration frequency (0-200 Hz) (see Fig 6D and Methods).

These parameters were chosen to span the range of tactile stimuli that are typically experienced.

They are also similar to stimuli commonly employed in neurophysiological experiments, such as

those used to fit the initial Touchsim model [172], and simulated responses can therefore be

expected to be a close match to what would be recorded in an actual experiment. Finally, varying

the stimulus across multiple parameters simultaneously ensures that the complexity of everyday

tactile interactions is reproduced in the resulting population responses.

To analyse the simulated responses, we coupled advanced machine learning techniques with

information-theoretic analysis to compute how much information about each stimulus feature

was encoded in the activity of different populations of afferents (see Methods for details). In

short, after simulating the spiking responses (Figure 7A), we first used Non-Negative Matrix

Factorization (NMF) [173] to succinctly capture the spatiotemporal patterns of neural responses

for each afferent class (Fig 7B). This technique linearly decomposes each single-trial

spatiotemporal sequence of spike trains into a sum of non-negative spatiotemporal modules

(describing the recurrent spatiotemporal patterns of firing of the population) and non-negative

activation coefficients (describing how strongly each pattern is recruited in a given trial). NMF

was chosen to reduce the dimensionality of population activity because it is a natural

decomposition for spike trains, which are by definition non-negative, because it can give accurate

single-trial representations of activity even when neural responses are non-orthogonal and

overlapping from trial to trial, and because its coefficients are biologically

interpretable [174, 175]. Following previous work [176], we then approximated the probabilities

of occurrence of the NMF activation coefficients using a Generalized Linear Model (GLM; see

Fig 7C). We then used this probabilistic model to compute the posterior probability of each
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Fig. 7: Analysis pipeline and calculation of information. (A) The spike trains are simulated using Touchsim. (B) The
spike matrices are then decomposed using the Non-Negative Matrix Factorization (NMF) method, obtaining a set of
non-negative activation coefficients and modules. (C) A Generalized Linear Model (GLM) fed with the neural activity
captured in the NMF activation coefficients gives the probability of observing each stimulus feature. (D) Probabilities
are used to compute mutual information (MI), representing the information that the neural activity carries about the
stimulus.

stimulus feature given the observation of the spatiotemporal population spike train in each trial.

Finally, we computed the information using the posterior probabilities between the presented and

the decoded stimulus (Fig 7D). This procedure provides a data-robust but effective lower bound

to the total information carried by population activity [154].
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A Parametric study of densities
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Fig. 8: Effect of afferent density on stimulus feature coding. (A) Information content (normalized by the stimulus
entropy) for different stimulus features provided by single-class afferent populations of varying density. Solid lines
represent the average over 40 trials, shaded regions represent standard deviation. Dotted vertical lines indicate
information saturation points. (B) Saturation densities for each feature and afferent class. (C) Maximum information
content provided by each afferent class at the saturation density for each feature.

2.1 Information carried by individual afferent populations

In a first analysis, we investigated the information carried by each of the three afferent

populations separately. To understand which afferent population best encoded any given feature

and how the information depended on the spatial density of the afferents, we calculated the total

information carried by each population (Fig 8A) by simulating responses with different spatial

receptor densities.

For encoding stimulus size, we found that SAI afferents were most informative, with information

increasing and then saturating at a density of 40 afferents/cm2. RA afferents provided more
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information at very low densities and saturated at a lower level (20 afferents/cm2). In contrast,

PC afferents did not carry any information about stimulus size at any of the densities considered.

This result can be explained by the fact that PC afferents exhibit extremely large receptive

fields [177], certainly larger than the differences in size between the stimuli we applied.

Next, we considered the encoding of the frequency of stimulation. PC afferents provided the

highest frequency information, as predicted by the fact that PC afferents are well known to carry

frequency information in vibrotactile stimulation [166]. Given their large receptive field size,

frequency information of PC cells already saturated with the lowest density of afferents

considered. In agreement with previous studies, RA afferents also carried considerable

information about frequency [166]. SAI populations carried low amounts of frequency

information at small spatial densities, but slightly exceeded the frequency information of RA

afferents at higher spatial densities. This result may appear to contradict earlier empirical studies,

where SAI afferents were shown to respond only to the lower extreme of the range examined in

our study [178]. However, in our simulations the sinusoidal wave is superimposed on a

ramp-and-hold indentation. This sustained indentation causes low spiking activity in the SAI

afferents, with spikes aligned to the vibration (see Fig 12B). Our finding suggests that this

information emerges when taking into account the activity of SAI afferents on a population level

rather than single afferents separately.

PC afferents were also the most informative class about the stimulus ramp length, followed by SAI

and RA afferents, which provided similar levels of information, but required higher densities than

PCs to reach saturation. Finally, SAI afferents carried the highest amounts of information about

ramp amplitude, with PC afferents not encoding any information. RA afferents again provided

higher information than SAI ones at the lowest density, but adding more fibers did not increase

information for this class.

The information saturation density, which we defined as the smallest value of density at which

the population carried the asymptotic value of information reached for the highest simulated

density, was the highest across classes for SAI afferent for all considered stimulus features.

Conversely, the information saturation density was the smallest for PC afferents in all cases

(Fig 8B). Notably, when considering purely spatial features such as the stimulus size, the
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population encoding the highest asymptotic information level corresponds to the one with the

highest saturation density (Fig 8B and C). Consequently, a high density of afferents is required to

extensively innervate a skin area and discriminate between fine differences in the shape of

stimulation. On the other hand, when looking at temporal features such as the frequency or the

ramp length, sparsely distributed PC afferents overcome the information content encoded by the

other more densely packed afferents classes.

Finally, our result shows that the RA class at saturation density always encodes less information

than the SAI and PC populations about any feature considered in this study (Fig 8C). However, at

low densities (<10 afferents/cm2), RA afferents were more informative than SAI for all features

considered, suggesting that the optimal way to encode a tactile feature might depend on the number

of neurons available.

2.2 Information encoded by multiple afferent classes

Next, we investigated how tactile stimulus information was encoded in the joint activity of

multiple afferent classes. In particular, we asked whether the information about stimulus features

carried by an afferent class adds to and complements the information carried by other classes or

whether the information carried by different afferent classes is redundant. To answer this

question, we computed the information carried about each stimulus feature by the joint activity of

populations of two or three afferent classes and compared the resulting values with the

single-class information calculated above. Specifically, we used the concept of complementary

information [179]: we defined the complementary information carried by additional afferent

classes over that of a reference class as the information carried by all considered classes jointly

subtracted by the information carried by the reference class alone. All possible combinations of

classes were considered. In these calculations, unless otherwise stated, we set the density of each

class to the one measured on the glabrous skin of the human finger (see Methods for details).

This allowed us to compare the information contribution of different classes in a realistic and

biologically relevant setting.

We first considered whether afferent classes that were not the principal source of information

about a stimulus feature added information that was complementary to that of the principally
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Fig. 9: (A) Information gain considering the two and the three most informative classes together with respect to the
most informative class alone. The density measured on the human finger was taken for each afferent class. Thin
lines correspond to different instantiations of the NMF decomposition, and the thick dashed lines correspond to their
averages. (B) Decomposition of information into redundant and complementary contributions of each class with respect
to the remaining two classes together. Information for each afferent class has been normalized to 100% and was
calculated at the density measured on the human finger. Note that in both panels (A) and (B) only two afferent classes
were considered for the analyses regarding stimulus size and ramp amplitude since the third class (PC) was carrying
null information (see Fig 8C).

contributing afferent class. To do so, for each feature, we quantified the amount of complementary

information that the less informative classes add to the information carried by the most informative

class (Fig 9A). The amount of this complementary information was normalized to the amount of

stimulus information carried by the most informative class. For all features, we found that the

second and third most informative classes added information that complements the information

carried by the most informative class alone. On average, the second most informative class added

between 12 and 25% complementary information, depending on the feature considered. When

considered jointly, the second and third most informative classes added on average between 15

and 30% of complementary information, compared to the most informative class alone. This result

indicates that for each tactile stimulus feature, each class encodes some amount of complementary
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information about the stimulus that cannot be found in the activity of the other two classes.

Next, we investigated which amount of each afferent class’s information contribution was

complementary or redundant when considered against the information contribution of the other

afferent classes. For each stimulus feature and each individual afferent type, we computed the

fraction of the information carried by the considered afferent that is complementary with respect

to the information already carried by the other two afferent classes. This fraction is an index of

the specific novelty of the information of a given afferent class with respect to all others (Fig 9B).

In general, a significant fraction of information carried by each afferent class was complementary

to that of other classes. In most cases however, this fraction was not close to 1, meaning that there

was also redundancy between the information carried by afferent classes. When examining how

this fraction varied across stimulus features, interesting patterns emerged.

For vibration frequency and ramp length, the two stimulus features for which all three afferent

classes encoded considerable information, we found mostly redundant coding, with relatively

small fractions of complementary information (on average 13% for frequency and 23% for ramp

length, Fig 9B). All three classes encode vibratory stimuli by locking their spiking activity to the

sinusoidal traces, which explains the redundancy across classes. However, the fact that the

frequency ranges encoded by each class do not completely overlap explains the existence of

significant fractions of complementary information across all three afferent classes. Given that all

three classes encoded large amounts of frequency information, the actual amount of

complementary information added by each class was surprisingly large. A similar pattern of

complementarity and redundancy of information was observed for ramp length, which like

frequency is a dynamic feature that depends on timing.

For stimulus size, the SAI afferent population carried most of the information (Fig 8), and this

information had a high value of complementarity (72%), indicating that it could not be found

in other afferent types (Fig 9B). The RA afferent population added less information (Fig 8), but

also exhibited a relatively large fraction of complementarity (48%) (Fig 9B). The encoding of size

for SAI and RA afferents seems to depend on the number of afferents that are activated by the

stimulus (Fig 12A), and the observed complementarity between RA and SAI afferents is partly

due to differences in spatial sensitivity across the two populations. Information carried by PCs
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about probe size was negligible and therefore this class was not considered in the complementarity

analysis for this feature.

Finally, for ramp amplitude we found results that resemble those for stimulus size. The SAI

population carried most information, which was largely complementary (63%) to that of other

classes. RA afferents carried less information than SAI afferents, but part of this information

(43%) was complementary to that of SAI afferents. In this case, the encoding appears again to

depend on the fraction of afferents that are activated by the stimulus, as was the case for stimulus

size. This is a genuine form of population coding that would not be evident from single afferent

analyses. PCs again provided negligible information (see Fig 8C), and thus were not taken into

account.

2.3 Effect of afferent density on complementary information

Having established that information about individual stimulus features is carried by multiple,

rather than single, afferent classes and that different afferent classes often carry complementary

stimulus information, we next asked how the complementarity of information depends on the

spatial density of afferents. We were especially interested in whether, given the functional

properties of afferents in each class, it would be more efficient to allocate all receptors to the

most informative class or spread the receptors across different classes to take advantage of the

complementarity of different classes. To address these questions, we systematically analyzed the

information carried by individual afferent classes and their combination at different densities

(Fig 10A). We tested the same upper and lower density limits as used previously. For a more

realistic comparison with human biology, we also considered two other cases of spatial density

arrangements, in which each population has a density equal to that experimentally found either in

the palm or in the finger of the human hand (see Methods for precise numbers).

A substantial increase in the amount of encoded information was found for all features when

increasing the density from the lower limit to realistic densities. Conversely, increasing the

densities from the finger values further to the upper limit did not lead to additional increases of

encoded information, neither when considering individual classes nor their combination,

suggesting that the information in multi-class population coding saturates similarly to
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Fig. 10: (A) Radar plot of the information content provided by single and combined classes at different densities for
individual tactile features. Each radial axis represents the information content of a single afferent class or combination of
two classes. Dotted circular lines correspond to the information given by the three afferent classes together. Information
is normalized for each stimulus feature with respect to the information provided by the three classes altogether at the
upper-limit density (i). Four different density sets were considered: (i) lower limit, (ii) human palm, (iii) human finger,
and (iv) upper limit as reported in Table 6 (B) Comparison of the information gained when doubling the density of the
most informative class (central bar) or when combining with a different population (right bar). The baseline density
(left bar) was set at 10 afferents/cm2. Error bars represent standard deviation.
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Stimulus size Frequency Ramp length Ramp amplitude
Most
informative
class

SAI PC PC SAI

Optimal
encoding
strategy

Increase density
of SAI population

Add SAI population Add SAI population Add RA population

Underlying
rationale

Highest gain in information
by increasing SAI density,
PC provide no information

SAI adds more information than RA,
PC information is density independent

SAI adds more information than RA,
PC information is density independent

SAI+RA reaches the highest
information content,
PC provide no information

Table 5: Information maximizing encoding strategies for each stimulus feature trading off increases in innervation
density for a single afferent class versus adding fibers from a different class.

single-class coding. The only exception was probe size, for which information content at the

upper limit was higher than at the finger density. As shown in Fig 10B and summarized in Table

5, stimulus size is also the only feature for which increasing the density of the most informative

class, SAI, improves the information content more than combining different classes. As

discussed previously, stimulus size is a purely spatial feature, and a high density of afferents is

necessary to discern small differences in the shape of the stimulus. In contrast, for all other

features considered, combining the content of the two most informative afferent classes yields

more information than doubling the afferent density of the most informative class alone.

Together, these results show the advantages for information encoding at the population level of

spreading information across classes of receptors with complementary information rather than

simply packing more receptors of a given class into the skin, even if receptors of this class are

highly informative about the stimulus.

2.4 Spatial and temporal contributions to information coding

After establishing how much information is encoded in each afferent class and their combination,

we investigated the nature of this population coding in more detail. In particular, we asked two

questions relevant to understanding the spatial and temporal organization of the population code.

First, how important is the precise temporal structure of the population activity for stimulus

decoding? Second, how important are differences in spatial neuron-to-neuron response profiles to

decode stimulus information?

The importance of the spatial structure of the afferent population code for information coding, that

is, the afferent-to-afferent difference in stimulus tuning properties at different spatial locations, is

supported by the finding that natural tactile stimuli elicit specific firing patterns in afferents located
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in different places [168, 180]. A critical role for the temporal structure of individual afferent

activity has been demonstrated in previous studies [180, 181] and is also supported by the fact that

thalamic and cortical somatosensory neurons also encode tactile information with millisecond-

scale spike timing precision [182–185]. However, it is unknown whether these expectations would

hold at the level of afferent population coding. For example, precise spike timing might be less

important when considering a full population of afferents rather than a single one. Furthermore,

information in the spatial and the temporal structure might be redundant, such that information

in the spatial structure could be recovered from the temporal structure or vice versa. Addressing

these questions therefore requires a direct test with a large population.

First, we evaluated whether the distribution of afferents in the space, parameterized in the current

setup as the distance of the afferent location from the stimulation site, impacts the population

coding capabilities. To do so, we repeated the analysis pipeline used to compute the information

content in the spiking activity after corrupting the spatial information in the spike matrices by

randomly permuting the identity of afferents. We called this "space-coding neglected"

information. The difference between the original and the space-coding neglected information

quantifies how much of the original information can only be accessed using the spatial structure

of the code. Note that this quantification is performed at a fixed spatial density, and it is thus

different from the previous analyses of the effect of spatial density. We found that, after

destroying the spatial structure, information content dropped by on average 26% (Fig 11). The

loss of information was higher for SAIs (39%) compared with RAs (18%) or PCs (16%).

Next, to quantify the specific contribution of temporal structure to the total information in the

population code, we computed a "time-coding neglected" information value from the population

responses. To do so, we randomly shifted the spikes with a Gaussian distribution of zero mean

and standard deviation of 10 ms, before proceeding with the rest of the analysis pipeline. The

difference between the original and the time-coding neglected information quantifies how much

of the original information can only be accessed using the millisecond-scale temporal structure

of the code. We found that, after destroying the temporal structure, information content dropped

by on average 54% across all classes (Fig 11). Information loss was highest for PCs (88%) and

relatively lower for RAs (51%) and SAIs (39%). Notably, across our set of stimuli we found higher

information loss when neglecting the temporal resolution of spike trains rather than the spatial
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distribution. This result indicates that even in large afferent populations spike timing with high

temporal precision remains an important part of the neural code. In contrast, the ramp amplitude

for both SAI and RA classes and the stimulus size for SAI rely more on spatial than temporal

activation, which can be explained by the spatial nature of these two features.
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Fig. 11: Information recovered after corrupting spatial or temporal coding. Information recovered for each afferent
class after neglecting either spatial organization or precise spike timing, normalized with respect to the maximum
information content in the original data at the saturation level (see Figure 8C). Note that for both stimulus size and
ramp amplitude, information carried by PC class was null (see Figure 8C) and such class was excluded from this
analysis. Error bars represent standard deviation.
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3 Discussion

This study is based on a simulation paradigm, which provides novel insights on stimulus coding

by tactile afferent populations. Much of our current understanding of encoding mechanisms of

tactile stimuli derives from electrophysiological studies. However, these are severely limited in the

number of afferents that can be recorded at a time. In addition, many previous studies have focused

only on those afferents terminating directly at the stimulus contact location. Thus, a biased picture

of tactile coding might have emerged. In fact, to our knowledge, population coding of tactile

afferents, taken as the spatiotemporal activation of multiple afferents belonging to one or more

classes, has scarcely been investigated before. Here, we used a recently developed computational

model that allows simulation of tactile neural responses at the population level with high accuracy.

Although any putative population-level coding mechanisms derived from modeling would need

to be experimentally verified, this approach allows investigating aspects of the neural code that

are currently experimentally intractable and can therefore generate ideas for potential downstream

decoding mechanisms.

3.1 Single-class coding and receptor density

We first investigated how the density of afferents from a single class plays a role in the encoding

process. We showed that the information content of both SAI and RA populations increases

asymptotically with afferent density until saturation. This effect was consistent for all features

considered, although the specific saturation densities varied between features. This result

highlights that tactile information is generally spread across a population of multiple afferents,

even for features that are not explicitly spatial. Furthermore, the afferent class most informative

about a tactile feature at low innervation densities might be different from the most informative

class at high densities. Consequently, judging or predicting the information content of a

population from recordings of single afferents only might be misleading and provide a biased

picture of how information is represented in full populations.

In contrast to SAI and RA afferents, the information level for PC afferents was essentially constant

for all density values considered across all tactile features. While this result might be taken to

suggest that the PC population does not contribute information above that of a single afferent,
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there is evidence to suggest that PC populations might be important in different tactile contexts

than the ones explored here: making contact with surfaces causes mechanical waves to spread

throughout the hand, activating PC afferents as far away as the palm and their joint population

activity carries information about how contact is made and other aspects of the grasp [186].

It should be noted that for all afferent classes, the minimum density needed to recover the

maximum information for any tactile feature is lower than the empirical afferent densities

estimated for the human hand [163]. We speculate that the minimum density of afferents required

to reach the information saturation might be higher for more complex features. Indeed, as an

initial investigation into the power of large-scale neural simulations on a population level, this

study considered relatively simple stimulus features compared to the complexity of realistic

tactile interaction. Similarly, previous studies showed a strong relationship between SAI density

and tactile spatial acuity [163]: afferents, particularly of SAI type, need to be densely packed in

the skin to resolve and discriminate extremely fine features. While our setup included one clearly

spatial stimulus (probe size), none of the others were purely spatial. Finally, afferent innervation

densities across most of the skin of the human body are much lower than those in the hand and

indeed within the range identified in the current study, suggesting that our stimulus set was

covering a large part of the physiologically relevant range.

Interestingly, we found that the RA class at saturation density tended to encode less information

than the SAI and PC populations, but in contrast, was more informative than SAIs at low densities

(<10 afferents/cm2). This result suggests that the way information is spread across afferent classes

depends in part on receptor density, and in turn, should affect optimal decoding downstream.

Indeed, tactile innervation density changes dramatically across different body areas, both in terms

of the absolute number of afferents and relative innervation densities of different classes [163], and

it is possible that changes in the class composition at different skin sites partially reflect density-

dependent optimal allocation of afferent classes. Our findings also suggest that tactile information

need not be linked firmly to a given receptor type, but that information is spread in a dynamic way

across different afferent classes (see [171] for a concrete example in frequency coding).
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3.2 Complementarity and redundancy across afferent classes

The second step of our analysis was to consider combinations of afferent classes and to evaluate

their information content with respect to different stimulus features. Here, we found both

redundant and complementary contributions to the information across afferent classes. All

afferent classes generally provided at least some complementary information about stimulus

features, suggesting that downstream areas should integrate information from different classes to

maximize information (see also [167]). Quantifying such complementary information is a

necessary first step towards further study of submodality convergence in the stimulus encoding

process, especially considering that directly accessing the integration mechanisms in humans is

complicated. Convergence has previously been inferred from cortical recordings in primates for

multiple individual stimulus attributes [170, 187, 188], but here we quantitatively demonstrate

that information is spread across afferent types in most cases, and therefore, submodality

integration can be expected to be a general feature of downstream processing.

Not all information was complementary however, and we also found considerable degrees of

redundancy between afferent classes. Redundancy in neural coding has been extensively debated

(see [189] for a review) and can be a strategy for robust stimulus encoding. Indeed,

over-representing stimulus information using large populations of neurons increases the

probability of having a relevant impact in downstream neurons, guaranteeing —or, at least,

making more plausible— that critical information is processed while negligible information is

discarded —or less likely used—. Redundancy can rank information according to relevance,

overcoming the associated coding inefficiency in favor of a significant performance

increase [190]. Furthermore, redundancy could be interpreted as a strategy to make the neural

code resilient in the event of temporary or permanent lack, shortage, or failure of input from an

afferent class. This theory is supported by recent findings in an experimental study in mice that

showed that the use of genetic ablation strategies to suppress the response of either rapidly or

slowly adapting afferents leaves responses in the somatosensory cortex mostly unchanged [169],

which implies that the required information can be recovered from the remaining afferent input.

This would not have been possible if the two classes had encoded complementary information

only. Such a process might be beneficial when several features are processed simultaneously, and
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redundancy between classes might help to disambiguate the stimulus.

3.3 Information maximizing receptor selection

We investigated whether increasing the density of afferents of a given class or combining them

with afferents of a different class yields higher information gain. We found that adding afferents

belonging to a different class was generally more efficient than increasing the density of the most

informative class by the same amount, confirming that the information about stimulus features is

not segregated in single afferent classes, but is spread across them. Indeed, while absolute tactile

innervation densities vary widely across the body, the fraction of slowly adapting afferents at any

given site varies only between 40 and 70% and is relatively evenly split for most body regions

[163], especially for those with lower innervation. Our results suggest that such a composition

increases information transmission, while minimizing fiber count. The number of tactile fibers

that can fit into the nerves and spinal cord is naturally constrained, and consequently, extensive

skin areas are innervated at low density. Neurons are also energetically expensive, and therefore

it is plausible that evolutionary optimization might have maximized the ratio between information

and energy consumption by spatially distributing the mechanoreceptors and diversifying response

properties across different receptor classes.

In several sensory systems other than touch neural populations are also composed of multiple

cell classes with distinct response properties. Indeed, early sensory pathways frequently split into

different classes with disparate response properties (e.g. the large number of retinal ganglion

cell classes [158]). According to the efficient coding hypothesis, sensory systems have evolved to

optimally transmit information about the surrounding world, given constraints on their biophysical

components and energy use [191]. This theory also explains splitting a population into two or more

cell classes as a strategy to maximize information transmission, as shown in previous studies for

different sensory systems [160–162]. Our findings support this hypothesis, showing that, in most

cases, a combination of classes was more informative than a single class higher-density population.

3.4 Limitations and future work

Our study focused on the three main classes of tactile afferents that mediate discriminative touch,

but other classes, such as SAII afferents that primarily signal skin stretch or unmyelinated
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afferents, also contribute to tactile coding. Furthermore, tactile innervation and neural response

properties differ somewhat in the hairy skin [163], which covers most of the human body. Thus,

our results will most directly reflect tactile coding on the human hand, but future studies should

consider how these results might extend to other regions of the body.

As the findings are based on computer simulations, the veracity of the results will depend on the

accuracy with which the spiking responses can be replicated in the computational model. The

stimuli we used, namely indentations by a single probe orthogonal to the skin surface with a

superimposed vibration, are similar to those on which the original model was fit and fall into the

range where it has been validated most extensively [172]. Still, by combining multiple tactile

features, we believe that our simulated stimuli are sufficiently complex, varied, and natural that

the resulting findings can be considered of behavioral importance. One avenue for future research

would be to investigate information transfer on tactile inputs arising from natural behaviors such

as grasping and manipulating objects, which include multiple contacts, shear forces, and

movement between the object and the skin. However, this would require further work on the

precise spatiotemporal force patterns on the hand during such behaviors and spiking models that

take into account more complex afferent response properties (see [192] for an example).

To study the effects of different innervation densities, we considered a simplified setup,

distributing the afferents over a single dimension while neglecting some properties affecting the

spatial distribution of afferents, for example the complex shape of the human hand. Future

studies should take this aspect into account to reveal how the shape of the hand, the different

afferent densities, and the composition of the population in different areas of the hand play a role

in stimulus encoding. In the same direction, population coding strategies and afferent distribution

might be coupled with natural stimulus statistics in different body areas to deepen the

understanding of how the human somatosensory system is optimised to receive and process

natural tactile stimuli.

4 Methods
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Class Palm Finger Fingertip
SAI 10 30 70
RA 25 40 140
PC 10 10 25

Table 6: Estimated innervation densities of afferent classes (afferents/cm2) for different regions of the human hand
[177].

4.1 Simulation of spiking activity

To generate the spiking activity of tactile afferents, we used a previously published and validated

model called Touchsim [172]. We employed the model to simulate populations of SAI, RA, and PC

afferents terminating along a line of 1 cm for SAIs and RAs, and 5 cm for PCs radiating outwards

from the stimulus location. The density of afferents varied between 1 and 140 afferents/cm2

for a total of 16 different populations per afferent type. This range includes the physiological

innervation densities estimated for the human hand [177]. In some analyses we also directly set

individual class densities to those of the human palm or finger (see Table 6 for precise values).

We designed stimuli with circular shapes, which are indented in the skin following a ramp-and-

hold function (see Fig 6 B). When the maximum amplitude of the ramp is reached, a sinusoidal

wave is superimposed. This setup simulates well-established psychophysical setups in which a

probe is brought into contact with the skin and then vibrated at a set frequency. It also includes

many aspects of natural tactile stimulation: indentation, retraction, and constant stimulation at

different depths and spatial scales, as well as vibrations at different frequencies. Individual stimuli

are created by varying 4 different features: 1) the stimulus size (4 conditions: [1:1:4] mm), 2) the

maximum ramp amplitude (4 conditions: [0.3:0.3:1.2] mm), 3) the ramp-up time (5 conditions:

[0.01:0.01:0.05] s), and 4) the frequency of the superimposed sinusoidal wave (10 conditions:

[0, 10, 20, 40, 60, 80, 100, 130, 160, 200] Hz). This setup yielded 800 unique stimuli, and the

afferent response to each was simulated for 40 trials. The model included simulated neural noise.

Additionally, in order to simulate environmental noise such as motor noise during active touch,

we jittered the stimulus location (by ± 0.3 mm), the amplitude of the sinusoidal wave (by ± 0.05

mm), and the ramp amplitude (by ± 0.1 mm) on every trial.
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4.2 Dimensionality reduction

Information calculations from high dimensional data require prohibitively large datasets. A

common strategy to address this issue is by performing dimensionality reduction on the data.

Here, we used Non-Negative Matrix Factorization (NMF) to decompose the spatio-temporal

matrix of spiking responses across the population.

Responses were discretized by binning the spike trains into 2 ms long intervals and counting the

number of spikes falling into each bin. This resulted in a matrix R ∈ RM × TN , where M is the

total number of trials, T the number of time bins, and N the number of afferents in the

population. NMF decompositions are naturally suited to describe spatio-temporal matrices of

spiking responses, because spike trains are non-negative, and because often recurrent spike

patterns may be non-orthogonal (as NMF) and partly overlapping (explainable by the same

underlying activity pattern). NMF describes a single trial spike train as a sum of trial-independent

non-negative spatiotemporal modules (describing the most often recurring spatio-temporal firing

patterns) and trial-dependent non-negative activation coefficients representing the strength of

recruitment of each module in the considered trial [174, 175]:

R = HW + residuals, (1)

where H ∈ RM ×K contains the non-negative activation coefficients for the K modules in each

trial and W ∈ RK × TN contains the non-negative modules. We used the function NMF included

in the scikit-learn Python library [193] to calculate the NMF decomposition.

We performed the NMF decomposition separately for each of the three afferent classes at each

density value considered. Beforehand, we randomly separated the whole set of trials into balanced

sets with a 25/75 split. We used the 25-set to determine the number of modules K as the minimum

number of modules capable of explaining a selected level of variance of the original data in R,

as follows. First, to consistently select the level of variance explained between populations of

the same class but with different densities, we calculated the saturation level of the accounted

variance for each population considered (tolerance <1%). We averaged the saturation levels across

populations of the same class with different densities and used this value as the new threshold for
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the explained variance. Finally, we calculated k modules W and activation coefficients H on the

same 25-set. Given the W modules from the 25-set, we computed the activation coefficients H on

the remaining 75-set.

4.3 Stimulus decoder

After dimensionality reduction, we fed the activation coefficients H computed with the NMF

to a stimulus decoder. We used multinomial logistic regression to decode each stimulus feature

separately on a trial-by-trial basis based on the neural activity (similarly to [176]). The scikit-learn

Python library [193] was used for the implementation. This type of classifier uses a linear function

f(s, i) to predict the probability of outcome s for trial i such that:

f(s, i) = βs ·Hi (2)

where Hi is a vector containing the NMF activation coefficients for trial i and βk stores the

coefficients associated with outcome s. When generalizing to Sn features, the multinomial

logistic regression model consists of Sn − 1 independent logistic regression models regressed

against the remaining Sn outcomes. Note that outcomes correspond to the possible values that

the stimulus features could take and vary for each feature.

The 75-set was divided equally and stratified into training and test sets. We trained the classifier

on the activation coefficients of the training set and evaluated performance using the activation

coefficients of the test set. The training procedure was performed using a stratified 5-fold

cross-validation. This process was repeated for each population of afferents (both for single and

combined classes) and all afferent densities. The solver used for the fitting procedure was lbfgs in

combination with L2 regularization. We selected the parameter C for the regularization by

performing grid search. The scoring of the classifier was the negative log-likelihood, also known

as the cross-entropy loss.

The final fitted model outputs the posterior probability of observing each stimulus feature given the

neural activity captured in the NMF activation coefficients [176]. From this posterior probability,

we decoded the stimulus ŝ that was most likely given the observed afferent activity.
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4.4 Mutual Information

Next, we computed the mutual information [194] from the confusion matrix of the decoder as

follows [154]:

I(S; Ŝ) =
∑
s∈S

∑
ŝ∈Ŝ

p(s, ŝ) log2

(
p(s, ŝ)

p(s)p(ŝ)

)
(3)

where S, Ŝ stand for the set of all possible presented and decoded stimuli, respectively. p(s, ŝ)

denotes joint probability distribution, which is derived from the confusion matrix obtained

empirically across all trials, of presenting stimulus s and decoding stimulus ŝ in a given trial.

p(s) and p(ŝ) correspond to the marginal probabilities of s and ŝ, respectively. The information

in the confusion matrix is a data-robust lower bound to the total information carried by

population activity. This approximation is tight when neural activity can be categorically binned

into as many values as the number of distinct stimuli without losing considerable information.

The information in the confusion matrix captures aspects of information processing, such as the

distribution of decoding errors, which are not captured by simple measures such as the fraction of

correctly decoded stimuli [154]. Since the information upper bound is the entropy of the stimulus

set (indicating perfect single-trial stimulus discrimination), we normalised information values by

dividing them by the entropy of the stimulus set:

H(S) = log2(Sn) (4)

where Sn is the number of values that the stimulus can take.

4.5 Computation of complementary information

To assess the complementarity of stimulus information carried by different classes, we computed

the information carried about each stimulus feature by the joint activity of populations of two or

three afferent classes and compared it to the information carried by a single-class population. We

defined the amount of information carried by the pair of afferent classes that is complementary

to that of a reference class as the difference between the information carried by all the classes

(including the reference class and the additional ones) and the information carried by the reference

class. We repeated this process, taking each class as the reference class in turn. As an example,
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for SAI afferents as the reference class, the complementary information is computed as:

Icom(S, SAI) =I(S, {SAI,RA,PC})

−I(S, {RA,PC})
(5)

We defined the redundant information between the additional classes and the reference class as the

sum of the information carried individually by the reference class and the additional ones minus

the information carried by all the classes together, such that (again, taking SAIs as the reference

class):

Ired(S, SAI) =I(S, SAI)

+I(S, {RA,PC})

−I(S, {SAI,RA,PC})

(6)

The sum of redundant (eq. 6) and complementary (eq. 5) information for a class equals the total

information carried by that class.
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Supporting information

Fig. 12: Illustrative examples of simulated spiking activity. Responses are shown for the three afferent classes as a
function of (A) stimulus size, (B) frequency, (C) ramp length, and (D) ramp amplitude. Note that we conditioned on
the remaining features for each panel and that the afferent densities in this example are the ones in the finger.
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Sub-surface deformation of individual fingerprint ridges during dynamic contact

Abstract

Human skin is composed of multiple layers with different mechanical properties and complex

morphology. How a tactile stimulus propagates through this complex tissue to activate tactile

mechanoreceptors is challenging to study in vivo but crucial for understanding

mechanotransduction. Here, we imaged the epidermis of the fingertip during contact events with

sliding surfaces. We tracked sub-surface deformations of the fingertip on a scale smaller than a

single papillary ridge and estimated strain in both the stratum corneum and viable epidermis.

When scanning the skin with a flat surface, the whole ridge deformed uniformly as a single unit

under the stimulation. In every transit of the plate, the skin adhered to the plate before slipping

under it; we measured higher strain in the transition from the adherence to the full slipping phase

compared to the reversal of the plate movement. When scanning the skin with small features on

the scale of a single ridge, different ridge sub-units experienced different strain patterns, and we

measured higher strains in the deepest layer of the skin. Our study paves the way for a better

characterization of the skin mechanics beneath the immediate surface and provides valuable

information for improving models of tactile afferent responses.
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1. INTRODUCTION

1 Introduction

The human fingertip is a highly effective tactile sensing organ populated by thousands of

mechanoreceptors [195] that translate different aspects of skin deformations into neural

responses [196], which underlie our capacity for fine tactile discrimination and object

manipulation [197, 198].

Before activating the tactile mechanoreceptors, any force applied to the skin surface will

propagate through the epidermis, which is itself composed of several different types of cells and

layers. The stratum corneum is the relatively stiff outer layer with a thickness of several hundred

micrometers on the fingertip [199] and exhibits a ridged structure that gives rise to the

fingerprints. This structure is mirrored on the inner border of the epidermis but with a doubled

frequency, as each outer fingerprint ridge is associated with an inner primary ridge directly

underneath and an inner secondary ridge that phase locks with a fingerprint valley. In between

those secondary ridges are the dermal papillae (see illustration in Figure 13E).

Type-1 mechanoreceptors, namely Merkel cells and the Meissner corpuscles, are embedded at the

border between the epidermis and the dermis, within the ridged structure of the skin. Merkel cells,

innervated by slowly-adapting type 1 tactile afferents (SA1), respond to static or low-frequency

indentations and are found at the base of primary ridges. Meissner corpuscles, innervated by

rapidly-adapting afferents (RA), respond to dynamic flutter stimuli and are nestled into the dermal

papillae projecting upwards on either side of them (see illustration in Figure 13E) [196, 200, 201].

It is widely believed that the morphology and tissue composition of the epidermis of glabrous

skin affects transmission of touch stimuli to the level of mechanoreceptors. Several studies

investigated the role of the constant ridge structure [201–203] and the mechanical properties of

the epidermis tissues [204–206] in stimulus propagation. However, characterizing the

biomechanics of the skin beneath its immediate surface, especially in dynamic conditions, is

extremely challenging due to the technical difficulties of measuring these aspects. Prior empirical

work has focused chiefly on ex-vivo measurements, but it is likely that the mechanical parameters

of the skin change outside its natural environment. Simulation work has also made invaluable

contributions, though the quality of these results depends on the precision with which mechanical

93



i
i

“output” — 2023/1/25 — 15:18 — page 94 — #107 i
i

i
i

i
i

2. RESULTS

parameters can be measured (see Jor et al. (2013) [207] and Joodaki and Panzer (2018) [208] for

reviews). Because of these difficulties, recent studies on skin deformation under dynamic

conditions have focused on surface measurements, mainly by tracking the movements of

fingerprint ridges via cameras at high resolution, demonstrating how surface strains arise when

making contact [209] or during the onset of slip [210]. Yet the mechanical properties of the skin

below its immediate surface during dynamic conditions remain largely unexplored, and it is an

open question whether and how a surface stimulus would affect skin deformation at the level of

mechanoreceptors.

Here, we employed Optical Coherence Tomography (OCT) to capture the fingertip skin’s internal

morphology while it dynamically deforms due to contact with external objects. OCT is a non-

invasive optical imaging technique that, through an infrared broadband light source, offers a view

into the subsurface layers of the skin in vivo in real-time [211]. This technique is commonly

used in the field of dermatology for skin analysis and diagnostics. Additionally, in recent years,

OCT has been widely used for the in-vivo static characterization of skin sub-surface properties

[212–219]. Building on a pilot study that, for the first time, showed the feasibility of employing

this technique during dynamic stimulation of the skin [220], we acquired OCT images of a cross-

section of the fingertip during sliding interactions with flat plates embossed with tactile features to

investigate dynamic strain rates associated with different skin layers.

2 Results

We built a linear stage that slides custom-made transparent thin plates in the distal and proximal

directions across a participant’s fingertip at a set speed (Fig. 13A). In all trials, the plate made 8

transits traveling 4 mm each at a constant speed of 0.8 mm/s. The fingertip was initially loaded

with a 0.2 N normal force. One of the plates was flat, while the two others had an oriented

edge embossed or engraved and orientated perpendicular to the scanning direction (Fig. 13B). The

OCT scanner acquired images of the skin’s surface and sub-surface morphology through the plate,

which were 4 mm wide slices along the proximal-distal axis at a 4.5 µm lateral and 5 µm axial

resolution with a sampling frequency of 20 Hz. The stratum corneum and viable epidermis were

both clearly visible and distinguishable (Fig. 13C and D). After image pre-processing, we semi-
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Fig. 13: Experimental set-up and identification of individual fingerprint ridges. A. The experimental apparatus
consisted of a finger holder to which the left middle finger of the participant was secured and a linear stage that moved
a transparent plate in the distal/proximal direction across the fingertip. An OCT scanner recorded images of the top
skin layers through the transparent plate. B. Transparent plates were used: a flat one, a plate embossed with an edge,
and a grooved one. C. Individual images recorded by the OCT scanner display the complex morphology of the skin.
D. Identification and tracking of landmarks associated with different skin layers on a pre-processed portion of an OCT
image. The tracking enables a fine-grained view of the deformation of individual ridges. E. Mechanoreceptors are
located at the border between the viable epidermis and the dermis, close to or partially overlapping with the extent
of tracking. F. Left panel: Thickness of stratum corneum (blue) and viable epidermis (yellow) as calculated from the
tracked ridges. Each dot corresponds to an individual tracked ridge with the mean indicated by the horizontal line.
Right panel: Width of all individual ridges across all participants.

automatically tracked (sub-)surface landmarks associated with individual ridges across different

video frames (see Methods for details). The resulting triangular mesh included 8 facets per ridge,

which were split between the stratum corneum and viable epidermis, and between the two flanks

of the ridge, respectively, therefore allowing fine-grained measurements of individual sub-surface

ridge deformation in response to different tactile events (Fig. 13D). Importantly, the depth of the

meshes extended to and partly covered the dermis-epidermis border, where type-1 low-threshold

mechanoreceptors are located (Fig. 13E). Averaged across participants, we calculated a thickness

of 0.3 mm for the stratum corneum and 0.12 mm for the viable epidermis, along with an average

ridge width of 0.46 mm, all agreeing with previous measurements [214, 221].
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2.1 Tracking ridge deformation during mechanical events

Fig. 14: Determining skin strains linked to different mechanical events. A. Velocity of the plate (dash-dotted blue
line) and average velocity of each tracked fingerprint ridge (thin black lines) during all eight transitions of the flat plate
for a single participant. Two phases are evident: when the ridge is moving along with the plate (stick, indicated by
green shading) and when the ridge is stationary, but the plate is moving (slip: indicated by pink shading). B. Average
ridge meshes (black lines) during each of the four phases calculated over all tracked ridges and all time points assigned
to every phase for a single participant. Colored lines indicate individual sample meshes (blue: stratum corneum,
yellow: viable epidermis). C. Strains magnitude during each phase transition in the 8 transits of the flat plate. Each
dot corresponds to one of the 8 triangles composing the ridge mesh. The full line represents the average strain in the
stratum corneum (blue) and viable epidermis (yellow). D Strains in each phase transition average across trials with the
same movement direction. Red shades represent tensile strains, blue shades represent compressive strains.

We were interested in quantifying the (sub-)surface deformation of individual fingerprint ridges

during mechanical events. These events could be related to the movement of the transparent plate

itself, such as a reversal in the direction of movement of the plate or the transit of an edge or

groove over an individual ridge, or they could be caused by the interaction between the plate and

the mechanical properties of the skin itself, such as the transition between the skin sticking to the

plate and full slip [222]. Indeed, in every transit of the flat plate, distally to proximally and vice

versa, we identified two phases of the relative movement of the skin with respect to the movement

of the plate: the ridges initially adhere to the plate and move together with it (stick phase); then the
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ridges stop moving, and the plate slips over them (slip phase). The stick-to-slip transition happens

near-simultaneously for all ridges observed in the frame (cross-correlation across the horizontal

speed of every ridge >0.8 across all participants). This clear distinction between stick and slip

phases allowed us to classify each phase from the average horizontal velocity over all tracked

ridges (see example for a single participant in Fig. 14A).

For each phase, we then calculated a stereotypical mesh covering a single papillary ridge by

averaging the meshes of all tracked ridges across all the central time points within the same phase

(Fig. 14B, see Methods for detail). Within a single subject, the variability in the shape of different

ridges was much smaller within a given phase (average standard deviation of 9µm in the stratum

corneum and 11µm in the viable epidermis per tracked landmark) than across different phases

(standard deviation of 22µm in the stratum corneum and 22µm in the viable epidermis), thus

suggesting that the averaging process accurately captured systematic deformations between

phases. Subsequent analyses were therefore carried out on the stereotypical ridge.

We quantified the deformation of the stereotypical ridge across the different phases by calculating

the horizontal, vertical, and shear strain experienced by each facet of the mesh during the transition

from each phase to the next (see Methods for details). The resulting strain profile was consistent

across different transits of the plate (see example for one participant in Fig. 14C), highlighting that

ridges underwent repeatable and systematic deformations. For the participant considered here,

the strain profiles were generally uniform within the stereotypical ridge in all three components,

indicating that all components of the ridge were either compressed or stretched simultaneously

during each transition from one phase to the next (Fig. 14D). Different plate directions (distal or

proximal) were associated with different strain profiles (tensile or compressive) of comparable

magnitude.

2.2 Large deformations during stick-to-slip transitions

Having established a method for robustly tracking canonical ridge deformations, we next examined

the resulting sub-surface skin deformations across different participants, focusing first on trials

using the flat plate as stimulus. Every participant exhibited a clear transition between stick and slip

phases. However, the time spent in either phase varied markedly across participants (range:11.4-
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Fig. 15: Stick-slip transitions dominate strain patterns during contact with a flat surface. A. Average percentage
of time spent in stick or slip phases during repeated transitions of the flat plate for all participants. Individual marks
denote different participants, while the colored bars show the average. There is large variability across participants, but
all display the transition between stick and slip. B. Deformation of average fingerprint ridges during the transition from
stick to slip (left column) and during reversals in movement direction of the plate (right column) for all participants.
Red meshes show the initial shape, while black ones denote the final shape, with the darkness of the shading of each
facet referring to the corresponding maximum shear strain value es. Deformations appear larger during stick-to-slip
transitions than during movement reversals. For every participant P, r is the total number of ridges tracked, and f is
the number of frames considered in each phase in each one of the eight plate transits. C. Average maximum shear
strain es (top row), and triangle area variation (bottom) in both the stratum corneum (SC, light blue shading) and viable
epidermis (VE, yellow shading) averaged over all facets in that layer for all participants. Thick, full lines show the
averages across all participants, while faded ones denote individual participants. Both metrics are larger during stick-
to-slip transitions than during plate reversals.

82.7%, mean: 44.7%, see Fig. 15A). These differences are partly attributable to differences in

skin mechanics across participants (e.g., moisture level) but also depend on the precise location

of the imaging site on the fingertip, as previous research has shown that stable contact is lost

progressively over time across the whole fingertip during the transition from stick to slip [222].

Next, we compared the deformation of the stereotypical ridge for transitions from stick to slip,

and for reversals in the movement direction of the plate. Stick-to-slip events have previously been

shown to elicit strain waves on the surface of the fingertip skin, but it is unclear how they affect

sub-surface structure. Similarly, a reversal of the movement direction of the plate changes the

direction of the tangential force applied to the skin, which might be expected to induce shear

deformation in the stratum corneum or the viable epidermis.
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Fig. 16: Ridge deformations and skin strains during transit of small tactile features. A. Top row: Illustration of
identified phases and associated skin deformations for an edge stimulus. Bottom rows: Average ridge deformation and
associated horizontal (top), vertical (middle), and shear strains (bottom) for a single participant. Note that all strains are
calculated with respect to the mesh shown in the left-most column, which represents the ridge during full slip before
the interaction with the tactile feature. B. Maximum shear strain (top row) and area variation (bottom) in the stratum
corneum (light blue) and viable epidermis (yellow) during the interaction with the tactile feature. Faded lines denote
results from individual participants. C, D. Same as A and B, but for transit of tactile groove.

To summarise the effect and compare across different phase transitions and different participants,

we computed the maximum shear strain es and the area variation ea from the principal component

of the strain, as detailed in Methods. We found that stick-to-slip transitions consistently led to

larger deformations and, therefore, higher maximum shear strain than did plate reversals (see

ridge deformations for different participants in Fig. 15B, their associated maximum shear strain

in Fig. 15C top, and area variation in Fig. 15C bottom): maximum shear strains for stick-to-slip

transitions were about twice as large as those for reversals, and this effect was of roughly similar

magnitude in the stratum corneum and in the viable epidermis (on average 12.9% versus 7.4% in

the stratum corneum, and 10.4% versus 6.5% in the viable epidermis). The variation in the area of

every triangular element was overall small but still larger during the stick-to-slip transitions than

reversals (on average, 3.3% in the stratum corneum and 3.5% in the viable epidermis for stick-to-

slip transitions; 0.6% in the stratum corneum and 0.6% in the viable epidermis for reversals). This

behavior was consistent across participants, though the magnitude of the effect varied considerably

between them.

2.3 Large deformations in the viable epidermis during contact with tactile features

Next, we tracked ridge deformation and sub-surface strains during the transit of small tactile

features that were close in size to that of a single fingerprint ridge itself. For this experiment, we
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used the plates with the edge and groove, respectively, keeping all other parameters the same.

After discarding time windows where the ridges adhere to the plate (sticking), five distinct phases

were identified and automatically classified (see Methods for details) for every ridge tracked,

which depended on its position with respect to the edge or groove (see top rows in Fig. 16A and

C for illustrations): before and after approaching the tactile feature, the flat part of the plate slides

over the fingertip (analogous to the slip phase identified using the flat plate above); additionally,

each ridge might be approaching the feature and affected by its geometry, be located directly

under the feature, or moving away from the feature while still being affected by it. Each of these

phases occurs consecutively for all the ridges visible in the frame as the feature moves across

them. When aligned according to their movement phase, individually tracked ridges showed

similar deformation patterns (across phases, on average, the standard deviation of the distance of

every tracked point from the overall averaged ones was 14µm in the stratum corneum and 15µm

in the viable epidermis for the edge plate, and 12µm in the stratum corneum and 12µm in the

viable epidermis for the groove plate. Without distinction of movement phase, the standard

deviation was 61µm in the stratum corneum and 62µm in the viable epidermis for the edge plate,

and 39µm in the stratum corneum and 42µm in the viable epidermis for the groove plate,

analogous to the results for the flat plat), and, therefore, we again calculated a stereotypical ridge

mesh for each participant by averaging across all the individual meshes in that phase. We

quantified the deformation of the stereotypical ridge during the plate transit by computing the

horizontal, vertical, and shear strains between the ridge in the initial slipping phase and its

deformed mesh in each other phase.

Both the horizontal and shear deformation profiles were mirrored between the plate with the edge

and that with the groove, as the ridges conformed to the shape of the feature. Thus, ridges bent

down, stretched horizontally, and then bent up during the transit of the edge, while ridges bent up,

compressed horizontally, and then bent down during the transit of the groove (see ridge

deformations and strains for a single participant in Fig. 16 A and C). The vertical strain, on the

other hand, was comparable for both plates and larger in the viable epidermis than the stratum

corneum. For both plates, we measured different horizontal strain profiles on the left and right

sides of the meshed ridge. When approaching or moving away from the feature (phases 2 and 4),

one side of the ridge gets horizontally compressed while the other gets stretched. In the same
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phases, the shear deformation was uniform across the whole ridge area and had an opposite

profile in the approach and moving-out phases. In all cases, the ridge, after interacting with the

plate features, reverts to a shape closely resembling the initial one, and this is reflected in the

small magnitude of the strain changes between the initial and final sliding phases. For this

reason, phase 5 was not included in the subsequent analysis.

To compare the overall magnitude of deformation across phase and plates, we computed the

maximum shear strain es averaged across all the mesh facets (see Figure 16 B and D, top row)

and the average variation of the area of each triangular element ea (see Figure 16 B and D,

bottom), both in the stratum corneum and the viable epidermis in the three central phases of the

feature transition against the initial sliding. For the edge plate, the maximum shear strain es was

nearly constant in the three phases analyzed (20.3%, 16.6%, 19.4%) in the stratum corneum, and

in the viable epidermis (18.4%, 19.5%, 17.6%). The area variation ea followed the same pattern,

with almost constant variation in the stratum corneum (2.6%, 2.3%, 1.8%), and a positive peak in

the viable epidermis when the ridge was completely under the feature (3.1%, 11.8%, 2.1%). This

result indicates that the viable epidermis gets expanded more than the stratum corneum during

the transit of the small engraved feature over the skin surface.

For the groove plate, the maximum shear strain es was mostly constant in the three phases

analyzed, both in the stratum corneum (12.1%, 9.4%, 14.2%), and in the viable epidermis

(10.0%, 7.5%, 10.5%). The area variation ea had a negative peak when the ridge was in full

contact with the groove (phase 3) both in the stratum corneum (1.8%, -2.8%, 3.5%), and in the

viable epidermis (-1.3%, -10.2%, –0.2%). Thus, the ridge was contracted during the interaction

with the engraved tactile feature. Again, the area deformation in the viable epidermis was greater

than in the stratum corneum.

Overall, the maximum shear strain was higher for the edge plate. On the contrary, the area variation

had comparable values for the two different features but with opposite signs: skin expanded for the

edge and contracted for the groove. Interestingly, in both cases, the area variation was considerably

higher in the viable epidermis than in the stratum corneum.
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Fig. 17: Uniformity of ridge deformation across ridge flanks and skin layers. Triangular markers denote results
from individual participants. The full line represents the average uniformity across participants in the stratum corneum
(blue), in the viable epidermis (yellow), and across the whole tracked ridge (black). The dotted gray line represents
the chance level above which the area deformation is considered uniform across the ridge portions considered. stratum
corneum (blue) and viable epidermis (yellow).

2.4 Deformations of ridge sub-units

After quantifying the deformation profiles for the flat and feature plates, we asked whether the

ridge geometry plays a role in the propagation of the deformation, both horizontally within a ridge

and vertically across different layers. In particular, we were interested in assessing whether the

ridge deforms as a single unit. If this was the case, a force acting at any point on the surface of the

ridge would lead to consistent strain patterns (whether tensile or compressive) across the ridge as

a whole. Conversely, the distal flank of a ridge might deform differently than the proximal flank.

This question is important because it determines the spatial resolution at which small features

are discriminable. To answer this question, we used a simple metric assessing the uniformity of

the deformation profile across different ridge sub-units, defined as the ratio between the phases

where all ridge sub-units had the same area variation profile (expansive or contractile) over the

total number of phases (see Methods for details). We computed this measure over the 4 sub-units

composing the stratum corneum, over the 4 sub-units composing the viable epidermis, and over

the 8 sub-units composing the whole stereotypical ridge (see Figure 17).
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For the flat plate, the uniformity metric was above chance level in the three cases examined:

within the stratum corneum, within the viable epidermis, and to a lesser extent across the whole

ridge. These results suggest that the deformation induced by sliding the flat surface typically

generated uniform profiles of area variation across the stratum corneum, the viable epidermis,

and even, though to a weaker extent, across the 8 meshed triangles composing the stereotypical

ridge. In contrast, for both of the feature plates, the area variation profile was clearly not uniform

across different sub-units of the stratum corneum, though slightly above chance level in the

viable epidermis. At the same time, there was no uniformity across the eight meshed triangles in

the two layers. This result indicates that, within the stratum corneum, the ridge can experience

simultaneously expansive or contractile area variation, and thus subunits of a single ridge

deformed differently. However, the area variations measured in the deeper layer, the viable

epidermis, have a higher uniformity coefficient, suggesting that the deformation experienced in

the outer layer of the epidermis is not identically mirrored in the layer immediately beneath.

3 Discussion

This study examined subsurface deformation of the fingertip skin in vivo during dynamic tactile

stimulation. We employed OCT, a technique that is commonly used in research and clinical

studies to investigate the skin. However, in most cases, its application has been limited to static

characterization of the skin morphology, such as measuring tissues’ thickness and

roughness [214–218]. Here we built an experimental set-up to acquire images of the skin

subsurface, to the level of the dermis-epidermis junction, during dynamic stimulation of the

fingertip with different surfaces. We used the resulting data to measure the skin deformation in

the stratum corneum and viable epidermis during dynamic stimulation at high spatial resolution,

allowing us to characterize deformations smaller than the scale of a single fingertip ridge. When

scanning the skin with a flat surface, we found that the whole ridge deformed uniformly and was

subject to higher deformation in the transition from partial to full slip than when the movement

direction of the plate was changed. When scanning the skin with small features on the scale of a

single ridge, different ridge sub-units experienced different deformations, and those were higher

in the deeper viable epidermis than in the stratum corneum surface layer of the skin.
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3.1 Large deformation during stick-to-slip transitions matches strong neural

activity discharge

In trials with the flat surface, we measured larger deformations during stick-to-slip transitions

than during reversals of the plate’s movement direction. If mechanoreceptors are directly

responsive to strains, these findings would suggest that they should be more active during

stick-to-slip transitions. Indeed, a previous study recorded neural responses from different

afferent classes during similar sliding stimulation of the fingertip and reported that these are

sensitive to slip events and generally more active during the partial slip phase [223]. Rapidly

adapting type I afferents (RA-I), which innervate Meissner corpuscles located at the

dermis-epidermis border on either side of ridge flanks, in particular showed little to no response

during the onset and offset of the tangential load but faithfully encoded the stick-to-slip

transition. That study also measured the skin surface strain and observed that the discharge of

RA-I units was strongly coupled to compressive strain changes taking place within their receptive

fields on the skin surface during the partial slip phase. Our findings extend these results by

demonstrating that the large surface strains measured during the transition from adherence to

slipping are mirrored in the subcutaneous tissues and specifically at the depth at which type-1

mechanoreceptors are located. Altogether these results provide a physiological explanation for

the widely observed human capacity of fine-tuned grasping with quick adjustments of the grip

force to friction changes [224, 225].

3.2 Surface skin deformations are amplified in the viable epidermis

We measured larger deformation in the viable epidermis compared to the stratum corneum when

small tactile features interacted with a ridge. Interestingly, this effect was not found in the

stimulation with the flat surface, where the strain values and the variation of area were

comparable for both layers. This difference is likely explained by the stimulus geometry, which is

the only factor that differs in the two experiments. For the flat surface, the stimulation can be

defined as global, as all the ridges tracked were simultaneously stimulated in the same way. The

stimulation applied to the skin during the image acquisition was purely tangential since the

normal load was applied before the tangential movement started and kept constant across the

whole trial. As a result, the entire portion of skin in contact with the plate was subject to a
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pre-compression state whose effect we did not measure. When the plate presented an embossed

or engraved feature, likewise, there was a state of pre-compression due to the initial normal

loading on the finger. In addition, small portions of the skin were subject to high compressive or

stretching deformation due to the interaction with the feature. The plate transit generated a

localized normal load over the skin region in the proximity of the feature. Consequently, we

measured the effect of purely tangential load for the flat plate, while for the feature plates, the

measured strains and deformations were due to tangential and localized normal load. Due to

different structural characteristics, tissue composition, and orientation of the Langer lines and of

the tissue fibers, the stratum corneum and viable epidermis have distinct anisotropic properties as

shown by several studies [219, 226]. Consequently, different types of stimulation (purely

tangential, purely normal, or mixed) spread differently in the different skin layers. Our results

give a hint of this anisotropy as the magnification effect in the viable epidermis is measured only

when a punctual normal load is applied to the skin, while it is not present when the skin is

stimulated only with a tangential load.

The reason for the strain magnification in the deep layers of the skin is to be found in the skin’s

particular topography and microstructure (i.e., geometry and mechanical properties of its layers),

as demonstrated through computational models in [205]. In particular, they showed that

morphological characteristics of the skin tissues, such as ridges, can efficiently deflect, convert,

and redistribute strain within the stratum corneum, viable epidermis, and dermis. Thus, the

geometrical structure of ridged skin combined with varying mechanical properties of different

layers -the stratum corneum is stiffer compared to the lower layers- results in an amplification of

the strain values in the viable epidermis. Under a compressive deformation, they predicted strain

in viable epidermis up to one order of magnitude higher than in the stratum corneum, with the

level of amplification depending on the specific combination of some elasticity parameters,

namely the Poisson’s ratio and Young’s module. We measured an area variation up to three times

larger and a maximum shear strain in the viable epidermis twice the ones measured in the stratum

corneum. In our study, we don’t provide any measure of the Poisson’s ratio and Young’s module,

the stimulation was not purely compressive, and we use different metrics to quantify the effect.

Consequently, a direct comparison of the magnitude of the magnification effect is impossible. At

the same time, the arguments proposed by Leyva-Mendivil et al. (2015) [205] for magnification
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in the viable epidermis can serve as a starting point for investigating, in future analyses, the

phenomenon that they observed through computational simulation, and we experimentally

measured.

Further analysis would be needed for a complete understanding of the measured effect. However,

this result is particularly valuable because it shows that the deformations occurring at the surface

of the skin are not equivalent to those measured at deeper levels.

3.3 Sub-ridge resolution of skin deformation

We studied the uniformity of the deformation profile within a single ridge unit. During the transit

of the flat surface, we found that the area variation for the four sub-ridge facets we used to

characterize the ridge deformation was mostly uniform, as if the ridge acted as a single unit. On

the contrary, when small features interacted with the ridge, the area of different ridge sub-units

got expanded and contracted differently.

A previous study from Johansson and laMotte (1983) [227] observed that the human ability to

resolve small features over a smooth surface is higher when the feature is scanned across than

when the feature is just indented into the skin. They speculate that the vertical component of

the skin displacement alone may not account for the detection thresholds, but a quite localized

displacement resulting from the ridge catching with the features might produce a local deformation

large enough to the detection of small asperities on a smooth surface. Thus, the ability to resolve

small features emerges from the large lateral displacement of single ridges in the skin.

The perception of small features depends mainly on the stimulation of Merkel cells and the signals

arising in the SA1 afferents [228]. However, the detection of very fine spatial structures, too small

to appreciably deform the skin, must be perceived in some nonspatial way. Indeed, the finest

features scanned across the skin produce vibratory waves that propagate through the skin rather

than produce significant deformations. Their perception is thus mediated by the activation of the

Pacinian corpuscles, which sit in deeper layers of the skin and are tuned to detect vibrations.

Accordingly, a series of experiments [229, 230] predicted that the transition between the PC-

mediated and SA1-mediated perception of small asperity occurs around a spatial resolution of 200

µm in dynamic conditions, thus approximately half the width of a single ridge of the fingerprint.
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A more recent study investigated the spatial acuity of the receptive subfields of RA1 and SA1

afferents, which was reported to be in the submillimeter range, roughly matching the width of a

single ridge [231]. The study argued that a combination of the ridge structural

compartmentalization of the skin and the ridge-governed contact mechanics of the fingertip might

account for such spatial selectivity.

Even though in our study the scale of the feature was larger than those tested in these previous

studies, our result provides mechanical evidence for the hypotheses proposed. The skin

deformation we measured clearly propagated to the Merkel cells’ location, thus resulting in

SA1-mediated spatial perception. We experimentally demonstrated that when scanning the skin

with small features, high and localized strains emerged when the asperity affected the ridge. We

additionally showed that different deformation could involve each sub-unit of the ridge, possibly

revealing a spatial resolution higher than the dimension of the single ridge, as already suggested

by previous findings. Further experiments and analysis coupling psychophysical tests and skin

imaging acquisition would be required to test this hypothesis.

3.4 Limitations and future work

This study pioneered the possibility of measuring skin deformation in vivo and dynamically.

Although we explored a rather limited class of stimulations, we demonstrated the feasibility of

this technique and paved the way for a huge variety of case studies that might eventually ensure

an accurate and complete characterization of the skin properties.

A major step forward for future studies of this kind would require improving the imaging

resolution and clarity to visualize more morphological and functional structures below the skin

surface. For example, the primary ridges, to the tip of which Merkel cells are anchored, can be

detected in some images of our dataset but with an insufficient resolution to ensure stable

tracking over frames. Indeed, we employed a state-of-the-art, standard clinical OCT scanner,

routinely used in the dermatology department of the local hospital for diagnostic purposes. This

kind of machine is susceptible to coherent noise (speckle noise) [232], imposing significant

limitations on the resolution and clarity of images acquired. A previous study revealed the

possibility of resolving even small structures in the tissues, such as sweat ducts and Meissner’s
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corpuscle in the human fingertip skin, by applying a light manipulation method that eliminates

speckle noise originating from a sample, namely speckle-modulating OCT [233]. Coupling this

advanced imaging technique with our unique experimental set-up and analysis pipeline might

further advance the understanding of subsurface skin properties and deformation mechanisms.

In our study, we included a rather small group of participants, balanced in terms of sex but

uniform in the age range. However, the skin is a biological structure with multiple layers, each of

which has a unique set of characteristics such as geometry, elasticity, thickness, friction, etc.

Several studies proved how morphological and mechanical skin properties could greatly vary in

relation to physiological and physical factors as, for example, age [234, 235], sex [236, 237],

level of moisturization [238], room temperature and humidity [239]. In order to consolidate and

generalize the results obtained in this study, we will, at the minimum, include a wider range of

participants in terms of age in future acquisitions. Still, we are providing a set of in-vivo data

representing a novel and valuable contribution to the field. Our dataset and results can inform and

validate complex computational models that simulate skin behavior with different physiological

and physical parameters.

4 Material and Methods

4.1 Participants

Five healthy participants (3 females, age mean: 19.6, std: 1.0) participated in the experiment after

providing informed consent in accordance with the Declaration of Helsinki. The experiment was

performed on the subjects’ left middle finger. Before any trial, the finger was thoroughly cleaned

with water and dried carefully, and a thin layer of petroleum jelly was applied. Environmental

conditions during the test were controlled with 20 °C room temperature and 50% relative humidity.

The study’s protocol was approved by The University of Sheffield (Ethics Number 039144).

4.2 Experimental set-up

The experimental set-up for the present study was adapted from the design of an earlier study

[220]. Transparent plates were held in place by a support rig fixed on a linear stage that could

move distally and proximally with respect to the fingertip, sliding the plate against the fingertip,

108



i
i

“output” — 2023/1/25 — 15:18 — page 109 — #122 i
i

i
i

i
i

4. MATERIAL AND METHODS

which was glued on a finger holder to maintain its position during acquisitions. The support rig

was mounted on a force plate (HE6X6-10, Advanced Mechanical Technology, Inc.) to measure

the load along the axes parallel and perpendicular to the direction of the movement and along the

axis normal to the plate surface. The plates were made from polymethyl methacrylate (PMMA)

and were 30x40x0.5 mm in size (produced by Shape Technology S.r.l., Casale Monferrato, Italy).

One plate was flat, while the two others had an embossed oriented half-circular edge (1 mm base

diameter and 0.4 mm height) or an engraved oriented groove (1 mm based diameter and 0.3 mm

depth) traversing the middle of the surface (see Figure 13B).

Prior to each trial, the plate specimens were cleaned with deionized water and dried thoroughly

with paper towels. Before starting the imaging acquisitions in every trial, the plate was manually

lowered onto the participant’s fingertip until reaching a 0.2N normal load. For every trial, the

plate was displaced by 4 mm for 4 times in each direction (distal to proximal and vice versa) at a

constant speed of 0.8 mm/s.

4.3 Image acquisition and pre-processing

For image acquisition, we used the clinically approved Vivosight® OCT system (Michelson

Diagnostics, Kent). It has a Fourier domain with a 20 kHz swept-source laser at 1300 nm centre

wavelength, < 7.5µm lateral, and < 5µm axial resolution. The image capturing rate was 20

frames per second, and the dimension of each image was 895 × 483 pixels with 256 gray levels.

After the acquisition, images were preprocessed using the cv2 library in Python. The first step

of the processing was the histogram equalization to normalize the brightness and increase the

images’ contrast. A gamma transformation (γ = 5) was then used to enhance the contrast further

and adjust the saturation of the images. Finally, to remove noise while keeping the edges sharp,

a bilateral filter was applied (parameters: diameter of each pixel neighborhood = 5, sigmaColor =

110, sigmaSpace = 190).

4.4 Tracking of individual ridge deformation

The top and the valley of each ridge in the field of view were semi-automatically tracked at the

surface, at the border between the stratum corneum and the viable epidermis, and at the dermis-
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epidermis junction, in each frame. For every set of 700 frames acquired (i.e., frames acquired

during a single trial), a subset of frames uniformly distributed over the whole acquisition period

was manually labeled using the Python polygonal annotation library Labelme [240]. Depending

on the trial, the size of the manually labeled set of frames varied between 1/4 and 1/3 of the total

number of frames. The set of manually annotated frames was then employed as a training set

to build a DeepLabCut model [241] to automatically estimate the position of each tracked point

in the remaining frames. A model was trained for every set of frames with an average accuracy

of 2.96 pixels on the training set and 14.64 pixels on the test set. The automatic annotations

were manually checked and corrected to ensure high precision and avoid artifacts coming from

inaccurate tracking in the strain computation. To allow fine-grained measurements of individual

sub-surface ridge deformation, the tracked features were used to draw a triangular mesh for every

ridge in the field of view. Each mesh included 8 facets per ridge, split between the stratum corneum

and viable epidermis and between the central ridge and adjacent groove, respectively.

4.5 Movement phase classification

The movement of the skin during the transits of the plate was studied by looking at the

displacement of the tracked points from frame to frame. In particular, we considered the

displacement along the x-axis for computing the horizontal component of the skin velocity vx,

while the displacement along the y-axis for the vertical component vy. We computed the two

components of the velocity of every ridge, vridgex and vridgey , by averaging across the velocity

components of the nine tracked points belonging to the ridge.

For the flat plate trials, four phases were identified by analyzing the horizontal component of the

velocity vridgex :

1. Sticking proximally (vplatex < 0, vridgex < 0): the plate is moving in distal to proximal

direction, and the skin is sticking to the plate.

2. Slipping proximally (vplatex < 0, vridgex = 0): the plate is moving in distal to proximal

direction, slipping over the stationary skin.

3. Sticking distally (vplatex > 0, vridgex > 0): the plate is moving in proximal to distal direction,

and the skin is sticking to the plate.
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4. Slipping distally (vplatex > 0, vridgex = 0): the plate is moving in proximal to distal direction,

slipping over the stationary skin.

The positive and negative extrema of the first derivative of vridgex were taken as markers for the

transition from the stick to the slip phase and vice versa. In each trial, which consisted of 4

plate transits in each direction, there were a total of 16 successive phases, as each of the 4 phases

identified occurred 4 times. To consider for the subsequent mesh averaging an equal number of

frames in each occurrence of a single phase, the central nphase frames were selected for each

phase. nphase was chosen as the minimum duration of each phase among its 4 repetitions.

For trials with the feature plates, all frames where vridgex ̸= 0 were discarded to retain only data

where the plate was fully slipping. Then, by examining the vertical component of the skin velocity

vridgey , four phases were classified for every ridge mesh separately:

1. full slipping (vridgey = 0): before and after approaching the feature

2. approaching the feature (vridgey > 0 for the groove plate and vridgey < 0 for the edge plate)

3. moving away from the feature (vridgey < 0 for the groove plate and vridgey > 0 for the edge

plate)

4. under the plate feature (frames in between the two previous phases, vridgey = 0)

In each trial, there were a total of 40 successive phases, as each of the 5 phases identified occurred

in each of the 8 transits of the plate. Again, the central nphase frames were selected for each phase

in order to consider the subsequent mesh averaging an equal number of frames in each occurrence

of a single phase.

4.6 Strain computation

The mesh coordinates of each ridge in each frame were centered around the origin by subtracting

from the coordinates of any tracked point in a ridge, the average of the coordinates across all the

points in that ridge. Then, to obtain a single stereotypical ridge shape for every phase, the mesh

coordinates of each ridge were averaged across all the ridges in a frame and all the frames in the

same phase. Displacement field gradients were calculated for each triangle in the mesh,

111



i
i

“output” — 2023/1/25 — 15:18 — page 112 — #125 i
i

i
i

i
i

4. MATERIAL AND METHODS

• between two consecutive phases for the flat plate trials

• between the initial slipping phase and every other phase for the feature plates.

Green-Lagrange strains were estimated from the displacement gradient by the equations:

εxx =
∂u

∂x
+ 0.5

[(
∂u

∂x

)2

+

(
∂v

∂x

)2
]

(7)

εyy =
∂v

∂y
+ 0.5

[(
∂u

∂y

)2

+

(
∂v

∂y

)2
]

(8)

εxy = 0.5

(
∂u

∂y
+

∂v

∂x

)
+ 0.5

(
∂u

∂x

∂u

∂y
+

∂v

∂x

∂v

∂y

)
(9)

where εxx and εyy are the horizontal and vertical strain, εxy is the shear strain, and u and v are the

displacements along x and y axes, respectively.

The principal component of the strain, e1 and e2, were obtained by eigenvalue decomposition of

the strain matrix ε, as reported in [210]. The principal strain decomposition consists of a rotation

of the reference coordinates so that the shear strain is canceled and the axial strains take their

maximal and minimal value. Thus, the principal components e1 and e2 represent the maximum

tensile and compressive deformation along perpendicular axes.

From the principal strain components, we computed the variation in area of every triangle

composing the mesh as:

ea =
e1 + e2

2
(10)

To compare the deformation across different phases, the maximum shear strain was calculated as:

es =
e1 − e2

2
(11)

4.7 Measure of the uniformity of the deformation profile

The uniformity metric was defined as follows:

uniformity =
Puniform

Ptotal
(12)
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Puniform is the number of phases where all considered triangular subunits of the stereotypical

ridge have uniform deformation profiles, i.e. the area variation ea is uniformly positive or negative

across subunits.

Ptotal is the total number of phase transitions considered. For the flat plate experiments, Ptotal =

16 (8 transits, 2 phases in each), while for the features plates experiments, Ptotal = 24 as we

neglected the sliding phases of every transit and we considered only the deformation between the

initial sliding and the 3 central phases of every transit when the features interact with the ridge.

Uniformity can range between 0 (the ridge subunits have uniform deformation profiles in none of

the phases) and 1 (the ridge subunits have uniform deformation profiles in all the phases).

The uniformity in the stratum corneum and in the viable epidermis was computed across the 4

triangular subunits composing the mesh of each of these layers. Consequently, the chance level

above which to consider the strain profile uniforms was set at 0.25. The uniformity across the

whole ridge area was computed across the 8 triangular subunits composing the mesh of the whole

stereotypical ridge. In this case, the chance level above which to consider the strain profile

uniforms was set at 0.125.
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Conclusion

This chapter recaps the main results of the thesis, reflects on the impact of our findings, and points

out research directions to be addressed in the future.

1 Outline of the results

The research presented in this manuscript overall aimed to improve existing models of peripheral

tactile responses. The implementation of such models is grounded on the characterization of the

skin and afferents, as well as the understanding of mechanotransduction and stimuli encoding

processes. Consequently, we identified two key unresolved issues in the literature related to the

early stages of sensory tactile processing and designed three studies to contribute to addressing

these open questions.

The first question involves identifying the critical features of the signal sent to the central nervous

system by peripheral tactile afferents contributing to the tactile sensation. In this context, we

developed two research studies to improve the characterization of the human peripheral tactile

afferents on a population level. In particular, the first study offers a quantitative and qualitative

description of the composition of the population of tactile afferents innervating the whole human

body. We estimated the number of tactile afferents innervating the whole human body and their

breakdown into different afferent types, and we studied the relationship between these numbers

and other metrics representative of the human somatosensory system. The second study analyses

the interplay strategies among afferents when encoding tactile stimuli showing how the

information encoded into the population activity is affected by the population composition. We

highlighted the interplay of afferents within each class and across classes. We found that
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information is generally spread across different afferent classes, and combining information from

multiple classes improves information transmission and is often more efficient than increasing

the density of afferents from the same class.

The second open question in the literature on the early stages of sensory tactile processing

regards the skin’s mechanical properties and how they affect the mechanoreceptors’ activation.

To fill literature gaps and contribute to addressing this open issue, we designed an experimental

study exploiting an imaging technique, Optical Coherence Tomography, suitable for capturing the

skin tissue below the surface. On the one hand, the study offers a characterization of the strain

propagation under the skin surface during sliding interactions of the fingerpad. In particular, we

observed a stick-to-slip transition when scanning the skin with a flat surface, and we measured

higher strain in the transition from the adherence to the full slipping phase compared to the

reversal of the plate movement. When scanning the skin with small features on the scale of a

single ridge, we measured higher strains in the deepest layer of the skin, closer to the

mechanoreceptor location. On the other hand, we pioneered a methodology that paves the way to

further investigate the skin’s deformation at the receptors’ location, in vivo, and during dynamic

stimulation.

2 Impact

In this manuscript, we presented three studies that, as a whole, might advance the state of the art

of spiking models of human tactile afferents. There is a great deal of interest in improving models

of the human peripheral tactile system, as better models can lead to a number of different impacts.

First, they can improve our understanding of how touch works by providing more accurate and

detailed representations of how the peripheral tactile system responds to different stimuli. Second,

they can guide the design of more effective haptic interfaces and technologies by providing a better

understanding of how the human body interacts with these systems. Finally, they may enable the

development of more effective neuroprosthetic devices. Accurate models of how afferents encode

tactile information can indeed lead to more realistic simulations of touch, which can, in turn, lead

to more naturalistic sensory feedback from neuroprosthetic devices.

In addition to the impact of the presented research as a whole, it should also be mentioned that the
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three studies taken individually can have further important scientific implications.

The first study might have a significant impact because it offers quantification of the sense of

touch in humans. This metric was missing, but it is crucial. Indeed, this characterization might be

useful to anyone who deals with the sense of touch in any way because it provides a simple way

to quantify this phenomenon in humans and compare it to other systems. A quick indicator of this

is the fact that the citations received after the publication of this work come from a very broad

range of research fields, including neuroscience, biology, robotics, electronic and neuromorphic

engineering, virtual reality, haptics, etc.

The second study has a three-fold potential impact. First of all, it uses a methodology that has

been proposed as promising for the study of neural coding over the last twenty years but which is

still scarcely used and widespread. More importantly, we used this methodology to quantify

crucial effects in neural coding, such as redundancy and complementarity, and to the best of our

knowledge, no one had ever quantified these quantities in terms of information content. Overall,

this study provides a valuable example of how to use information theoretic tools to study the

activity of populations of neurons. As a second contribution, our study provides interesting

insights into the functioning of the population of tactile afferents that can inspire experimental

studies to confirm what we found based on simulated data. We also believe that our findings

could provoke thoughts on how the information contained by afferents at the peripheral level

converges toward the central nervous system. Finally, from a more practical point of view, this

study provides a very important lesson for designers of artificial skin, neuromorphic tactile

circuits, and, more generally, artificial tactile systems. Indeed, it shows that between density and

heterogeneity of afferents, which in technology translates to sensors, heterogeneity is preferable

in terms of efficiency in encoding tactile stimuli.

We foresee that the third study will pave the way for a wave of studies using the same technology.

OCT is an imaging technique that has seen great growth in use in various clinical and research

fields in recent years. Our study can be considered a pioneer in the use of OCT to characterize

skin features in vivo and under dynamic conditions. This characterization of the skin, which we

partially offer with our study, is critical in a wide range of research fields, including the

development of haptic devices, artificial skin, medical and cosmetic products, the description and
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modelization of the touch system, the definition of pathological conditions, and so on.

3 Future work

In this manuscript, we presented three complete and self-standing research studies, and each of

them highlighted some further open questions in their specific research topic. At the same time,

taking the research in this manuscript as a whole, it paves the way for some future work bringing

together the results presented for improved modeling of the human peripheral tactile system.

In the first study, "Tactile innervation densities across the whole body", we provided an estimate

of the number of human peripheral tactile afferents and the breakdown into different types. We

were able to establish a plausible range for these afferents and their subtypes based on previous

literature and evidence. However, there are still several important aspects of human tactile

afferents that remain unclear. One key area of investigation that requires further attention is the

nature of the corpuscles that act as mechanoreceptors, particularly in hairy skin. Another topic

that needs more study is the relationship between the number of nerve endings and corpuscles.

This relationship is likely complex and may depend on various factors, such as the type of

afferent and the location of the corpuscles within the skin. A complete qualitative and

quantitative characterization of peripheral tactile afferents is the basis for the advancement of the

modeling of the human tactile system. For this reason, further studies in this context are

necessary. These studies could include detailed histological and neuroanatomical analyses,

electrophysiological measurements, and image acquisitions.

In the second study, "Population coding strategies in human tactile afferents" we examined the

coding strategies of peripheral tactile afferents on a population level. This study was based on

simulated data and investigated the activity of tactile afferents in response to a limited and

simplistic set of stimuli, in contrast to the high variability and complexity of natural tactile

interactions. As a result, there are two main areas where further research is needed to expand on

the findings of this study. First, a follow-up to this study would include a broader and more

complex simulation setup. To achieve this, a careful characterization of natural tactile

interactions in terms of the statistical occurrence of different types of tactile stimuli is required.

This would enable the simulation to reflect real-world tactile interactions’ complexity better.
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Second, this study highlights that the activity of tactile afferents cannot be limited to the study of

a few units but must be extended to the entire population. With this in mind, future studies should

develop new experimental protocols that can more accurately represent the whole population of

afferents. This would provide a more comprehensive understanding of the coding strategies used

by peripheral tactile afferents.

In the third study, "Sub-surface deformation of individual fingerprint ridges during dynamic

contact", we developed an experimental setup using Optical Coherence Tomography and an

analysis pipeline to measure the deformation of the skin in vivo and in dynamic conditions.

Being the first of its kind, this work demonstrates the feasibility of such measurements using the

methodology developed and opens up the possibility of answering numerous open questions in

the literature. However, we limited ourselves to investigating the deformation caused by a very

limited set of stimuli (sliding interaction of the fingertip with three surfaces at a fixed speed and

normal load). To gain a more comprehensive understanding of the mechanical properties of the

skin, additional studies using similar acquisition and analysis setups could be performed. These

studies could vary the stimulus, for example, by investigating the role of speed, load, friction, and

the geometrical properties of the surface. At the same time, the physiological condition of the

skin (e.g., temperature, hydration, humidity, etc.) during the experiment could be measured and

manipulated to infer how the skin deformation is affected by these factors. This would provide a

more detailed understanding of the mechanical properties of the skin and how it responds to

different stimuli. Overall, this study has provided critical new insights into the mechanics of skin

deformation and has laid the foundation for future research in this area. By expanding on the

findings of this study and investigating a more comprehensive range of stimuli and physiological

conditions, we can gain a complete understanding of the mechanical properties of the skin and

how it contributes to human tactile perception.

The global motivation behind this work was advancing the state-of-the-art spiking models of

human peripheral tactile afferents, and, through the three studies presented in this thesis, we

aimed to deepen our understanding of key aspects of human tactile afferents, such as the

relationship between afferent firing patterns and sensory coding at a population level or the

impact of skin deformation on afferent activity. Given the current limitations of existing spiking

models of human tactile afferents, the natural next step is to bring together the knowledge
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generated in this thesis and the numerous latest developments in the field to develop a new model.

This new model should be capable of overcoming some of the limitations of existing models by

incorporating the latest findings on the neural mechanisms underlying human tactile perception.

This could include incorporating realistic models of the mechanical properties of the skin, as well

as incorporating the interactions between different types of afferents. Furthermore, this new

model should be tested on various stimuli and conditions that mimic real-life scenarios. This

would be a meaningful step towards developing more accurate and realistic models of human

tactile afferents, which would have far-reaching implications for the fields of neuroscience,

robotics, and prosthetics.
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