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Abstract

Rotating Rayleigh–Bénard convection (RRBC) is ubiquitous in nature. RRBC is

present in the dynamics of planetary cores and atmospheres. Numerical models

of RRBC are limited in their ability to represent geophysical convective flows. In

addition, while thermal boundary conditions which are physically appropriate for

geophysical flows are available, many numerical models chose to simplify the bound-

aries to be fixed temperature and all thermal conditions to be homogeneous. We

are motivated to explore the significance of these simplified conditions by exploring

the effects of physically-appropriate thermal boundary conditions on RRBC.

We study RRBC in a cylindrical domain, which is appropriate both for comparison

to experimental models and for understanding dynamics in the polar regions of

planetary flows.

On the horizontal boundaries, the fixed temperature condition is compared to the

astrophysically appropriate fixed flux, mixed (fixed temperature on the lower bound-

ary and fixed flux on the upper boundary) conditions, and the Robin condition which

straddles the fixed flux and fixed temperature conditions. We show that at rapid

rotation, convection onset is independent of thermal boundary condition, extending

the theory presented in Calkins et al. (2015). We also define a novel parameter

for comparing systems with Robin boundary conditions to those fixed temperature

boundaries. We show that, while the fixed temperature thermal boundary condi-

tion is sufficient for modelling the bulk flow of experimental RRBC systems, natural

systems may require use of the Robin condition.

Subsequently, we investigate the effect of inhomogeneous insulation on lateral walls,

motivated by the irregular heat flux which the Earth’s mantle applies to the outer

core. The inhomogeneity is sinusoidal along the azimuthal axis with azimuthal

mode mθ which is varied relative to the dominant length-scale of convection in three

scenarios: larger length-scale than convection; the same length-scale as convection;

and a secondary convective length-scale. The first instance is appropriate for molten

planetary cores, while the latter two are of interest for experimental studies. The

main results are: large-length scale mθ causes a convection roll rotation about the

domain to slow, and matching mθ to the convective length-scale- or a multiple of

it- causes convection rolls to be pinned.

Finally, an experimental set-up is proposed based on the simplified precipitation

model in Hernadez-Duenas et al. (2012). The specifications for the set-up are deter-

mined using the results of numerically modelled RRBC with the Robin condition.

The experiment would have applications in Numerical Weather Prediction.
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Chapter 1

Introduction

1.1 Motivation

Thermal convection is a heat transportation phenomenon in fluids – liquids, gases,

and plasmas – driven by a temperature gradient. Given a fluid with a density that

decreases with increased temperature, an increase in temperature will cause the

fluid to expand. Consequently, the density decreases. Moreover, when cool fluid

is layered over warm fluid, buoyancy causes the warmer fluid to rise as its density

decreases and the cooler, more dense, fluid to descend.

Rayleigh–Bénard convection (RBC) is the quintessential process by which this

thermally-driven motion continues due to a maintained difference in the tempera-

ture below and above the fluid. This proves an efficient method of heat transport

through fluids. While seemingly quite simple in its basic state, RBC is a basis for

modelling increasingly complex flows.

In the simplest instance, RBC takes the form of a fluid layer heated from below

and cooled from above. Figure 1.1 visualises a classic RBC scenario: a layer of

fluid, represented as the white space, contained by two boundaries: a lower bound-

ary which is heated (red) and upper boundary which is cooled (blue). Cellular

flow patterns, as shown by the arrows, develop when the temperature difference

is gradually increased, due to the fluid rising as it is heated and descending as it

cools. Each set of arrows comprises what is known as a convection roll wherein

fluid is equally rising and falling. By studying this basic process we gain insight

into more complex astrophysical and geophysical flows.
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1. INTRODUCTION

Figure 1.1: A diagram of RBC. A layer of fluid is heated from below (red) and

cooled from above (blue). The fluid moves, as shown by the arrows, upward when

heated and downward when cooled, forming cellular patterns of flow.

RBC is ubiquitous in astrophysical and geophysical systems. For example,

planetary cores undergo convection, wherein molten metal is driven away from the

planet’s centre due to heating and flows back down as it cools. Human life is greatly

affected by the convective process in both the oceans and the atmosphere. The air

and water vapour in the atmosphere wrap around the earth, being heated and

cooled in layers as the atmosphere extends away from the Earth. These essential

instances of convection cause the study of convection to become necessary for both

day-to-day life – in the form of weather forecasting – and for a deeper understanding

of our universe – investigating the motion of fluids on planets.

1.1.1 Planetary cores

One example of an astrophysical system that is explored with RBC is a planetary

core. A typical core structure is illustrated in Figure 1.2 by the Earth’s core.

Below a planet’s surface, known as the crust, is the mantle, a layer of rock or ice.

The mantle insulates the outer core, which is a layer of molten metal heated from

below by the solid inner core due variation in the composition of the inner core.

The scales of these layers are immense. The Earth’s diameter is nearly 6500km,

of which a mere 100km is the crust on which we live. The two thickest layers –

the mantle and the outer core – both undergo convection. The mantle moves very

slowly causing shifts in tectonic plates under the Earth’s crust. While the study of

plate tectonics is of interest to many geophysical processes, this thesis is primarily

2



1.1 Motivation

Figure 1.2: A schematic of the structure of the Earth’s core.

concerned with the flow of molten metals in planetary cores. Further information

on mantle convection is available in G. F. Davies and Richards (1992) and Schubert

et al. (2001).

Planetary cores introduce several layers of complexity to the simple convection

process described previously. One of which is the constraint of the molten metals

not by simple Cartesian parallel boundaries, as shown in Figure 1.1, but within a

spherical-shell – bounded on the interior by the solid core and on the exterior by the

mantle. In the study of RBC, the fluid dynamics within a spherical geometry are

difficult to solve analytically (F. H. Busse, 1975; F. H. Busse & Cuong, 1977) and

experimental studies of fluid dynamics are often conducted in cylindrical domains

due to practicality (Sahoo & Sreenivasan, 2020). However, experimental studies in

spherical and hemispherical-shells are possible (e.g. Cardin & Olson, 1994; Sumita

& Olson, 2002; Aujogue et al., 2018). Due to the analytical and experimental diffi-

culties (i.e. inappropriate direction of gravity), numerical studies are the preferred

method of investigation for planetary cores (e.g., T. Nakagawa & Tackley, 2008;

Gastine et al., 2016; R. Long et al., 2020; Clarté et al., 2021).

Both numerical and experimental models are constrained in their ability to cap-
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1. INTRODUCTION

ture the scale at which planetary cores flow. The ratio of buoyant driving forces

to diffusive forces is described by the Rayleigh number (Ra), and the ratio be-

tween the Coriolis force to viscous force is parameterised by the Ekman number

(Ek), which is inversely related to the speed of rotation. For instance, the Earth’s

outer core is estimated to have Ek = 10−15 (Yadav et al., 2016) and Ra = 1025

(R. S. Long, 2020). Each of these parameters are respectively too small and too

large to currently be numerically modelled. To enable predictions of large-scale

behaviours from models, scaling laws have been developed which relate heat trans-

port in numerically and experimentally achievable systems to parameters Ra and

Ek. However, this topic is subject to great debate (see e.g. Plumley & Julien,

2019).

The rotation of planets greatly affects convective flow. The primary effect of

rotation in fluids is explained by the Taylor–Proudman Theorem. This theorem

was developed from experimental studies in Taylor (1923, 1936) and analytic efforts

in Proudman (1916), both of which reported that the velocity of a rapidly rotating

fluid tends to be approximately uniform in the direction parallel to the axis of

rotation. Consequently, rapid rotation leads to columnar structures, often termed

Taylor-columns. Figure 1.3 illustrates such columnar behaviour in a numerical

model of rapidly rotating convection in a spherical-shell.

Rotation also contributes to the generation of magnetic fields in a process known

as dynamo action. Dynamos are caused by a complex process involving electrically

conducting metals undergoing convection. Though dynamos are of great interest

in astrophysical and geophysical contexts, this thesis is concerned primarily with

thermal convection. More information on dynamo theory is available in Dormy

and Soward (2007) and Tobias (2021).

Additional complications to RBC in the Earth’s core arise from the non-uniform

conditions at the interface between the outer core and the mantle – known as the

core-mantle boundary (CMB). Researchers predict, due to analysis of magnetic

field maps, that there are variations in the heat flux at the CMB (Cox & Doell,

1964; Bloxham & Gubbins, 1987). Such variations are also indicated by seismic

tomography (Masters et al., 1996). In analytical and numerical models, this bound-

ary tends to be idealised. However, idealisations lead to deviations in behaviour
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1.1 Motivation

Figure 1.3: A representative example of columnar flow structure in numerically

modelled rapidly rotating convection. The columns visualise temperature pertur-

bations such that orange indicates warmer fluid and blue indicates cooler fluid.

Taken from Grooms et al. (2010).

between models and physical systems. Such deviations have motivated a num-

ber of numerical studies with inhomogeneous thermal boundary conditions in both

spherical-shells (C. J. Davies et al., 2009; Mound & Davies, 2017) and cylindrical

domains (Reiter et al., 2022) as well as experimental studies in cylindrical domains

(Chung et al., 2000; Sahoo & Sreenivasan, 2020).

The composition of the outer core is also subject to heterogeneity. The Earth’s

core is believed to be composed of molten iron along with oxygen and sulphur (Gub-

bins & Herrero-Bervera, 2007). The interactions of these components of varying

densities and thermal properties is relevant to the understanding of the Earth’s dy-

namo. Another way to study the effects of various materials in a convective flow is

with multi-phase convection. While several numerical models have isolated aspects

of multi-phase convection in planetary cores (Wong et al., 2018; Tremblin et al.,

2019), multi-phase convection is better understood in the geophysical context of

atmospheric convection.

1.1.2 Atmospheric convection

It is widely agreed by scientists that the ongoing rapid climate change will di-

rectly affect existing agriculture practices, wildlife populations, and water resources
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Figure 1.4: The averaged temperature profile of the Earth’s atmosphere as a func-

tion of altitude. Taken from Manning (2013).

(Pachauri & Meyer, 2014). Thus, it is imperative that substantial efforts be made to

describe and predict the changing weather trends and events. Numerical Weather

Prediction (NWP) is an important tool in weather forecasting (Bauer et al., 2015).

NWP combines computational fluid dynamics and data assimilation, using real-

time observations to inform the evolution of numerical models which provide pre-

dictions. One area of NWP which needs considerable improvement is atmospheric

convection because the interaction between convecting air and moisture in the at-

mosphere is directly related to the development of storms and precipitation (Trapp,

2018). Therefore, modified forms of RBC are usefully applied to understanding at-

mospheres and consequently weather and climate patterns.

The Earth’s atmosphere has a mean temperature profile, as visualised in Figure

1.4, which extends upward from the surface in specifically recognised layers. Fur-

thest from the Earth’s surface is the Thermosphere, which absorbs X- and UV-rays

from the Sun, heating the fluid. Below is the Mesosphere, containing the coldest

temperatures in the atmosphere due to decreasing air density. This layer is cooler

above than below, and consequently, undergoes thermal convection (Lehmacher

& Lübken, 1995). The following layer is the Stratosphere, containing the Ozone

layer. The Troposphere is where humans live and most weather occurs. As seen
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in the lowest layer of Figure 1.4, the average temperature decreases upward in the

Troposphere, which drives thermal convection.

While both the Troposphere and Mesosphere have the necessary conditions

for thermal convection, this thesis focuses on the Troposphere in order to better

understand weather patterns. Weather phenomena such as El Niño, and squall

lines are each related to local convective processes as well as global air circulation.

Predicting such weather patterns is difficult due to the complexity in modelling

interactions between the atmosphere and the Earth’s surface and the interactions

between the air, water, and particles which compose the atmosphere.

Hence, the mixed composition of the Earth’s atmosphere complicates the RBC

process. The interaction of air, water, and particulate components, each influenced

by heat and density gradients, causes water to undergo phase changes resulting in

cloud formations and precipitation. Figure 1.5 illustrates the different transition

processes and phases of water in the atmosphere. Water vapour condenses into

cloud water, which undergoes autoconversion and collects into rain water. Rain

water then precipitates or evaporates back into water vapour. Each of these pro-

cesses impacts the convective flow of air in the atmosphere. To study the essential

dynamics of process, RBC can be modified to include a moisture component.

Within moist convection, there are two primary aspects: precipitation and

phase change. During phase change, when water condenses from gas to liquid, a

significant amount of latent heat is released, affecting the local thermal conditions.

Such perturbations to temperature have effects on RBC (Pauluis & Schumacher,

2010). The modelling of moist RBC generally employs a piece-wise constant or

Heaviside function controlled by water saturation levels to determine what dynam-

ics are locally dominant. However, simplified models differ in their treatment of the

fluid after phase change, further affecting RBC dynamics. For instance, in Pauluis

and Schumacher (2010) condensation retention leads to cloud formation, while the

model presented in Vallis et al. (2019) immediately removes water vapour from the

system. Generally, for fixed Ra and Pr values, moist convection is more unstable

than dry convection, becoming more turbulent with the presence of a precipitant

(Oresta et al., 2009; L. E. Schmidt et al., 2011; Vallis et al., 2019).

7
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Figure 1.5: Diagram of the phases of water in the atmosphere. Liquid rain water

either precipitates or is evaporated into water vapour. Cloud water is formed from

the condensation of water vapour. Then, cloud water undergoes autoconversion

and collection to become rain water. A simplification of Figure 2 in Hernadez-

Duenas et al. (2012).

The other facet of moist convection is precipitation, wherein the more dense

phase falls through the system. The addition of a free-fall velocity, as illustrated

by VT in Figure 1.5, requires the consideration of an additional timescale. While

condensation takes only seconds, evaporation and the transition from cloud water

to rain water (autoconversion) take minutes. In order to unify these time scales

in a simple RBC system, the Fast Autoconversion and Rain Evaporation (FARE)

model was derived (Hernadez-Duenas et al., 2012; Hernandez-Duenas et al., 2015).

Similarly to Pauluis and Schumacher (2010), the FARE model considers a simpli-

fied atmosphere of air and water which is dependent on the local saturation level of

the system. The FARE model incorporates precipitation by introducing a falling

velocity for rain water. Fast autoconversion and rain evaporation are two of the

essential assumptions made in the derivation of the FARE model, allowing for the

timescales of autoconversion and evaporation to unify with the timescale of con-

densation. However, this modification eliminates the cloud water phase. Despite

this simplification, the FARE model is still capable of capturing weather events

8
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such as squall lines.

One shortcoming of the FARE model in capturing atmospheric RBC is the

lack of rotation. As we previously discussed in the context of planetary cores, the

Earth’s rotation plays an important role in large-scale fluid flows. However, the in-

teraction between precipitation, phase change, and rotation is not well understood.

By investigating rotating moist convection in parts, it was shown that the faster

rain falls, the more dominant large-scale flow becomes in rotating RBC (RRBC)

(Smith & Stechmann, 2017; T. K. Edwards et al., 2019). With the addition of

phase change, an asymptotically derived model has captured the jets of air in the

atmosphere which move toward the north and south poles (Hu et al., 2021).

The development of different weather events differ over land and water. One

example is the large cellular pattern of clouds observed over the ocean which rarely

occur over land. The reason for this difference is that the thermal properties of

ocean water differ from that of land. Land is highly thermally conductive, which

practically fixes the temperature at the surface, whereas the ocean is less conduc-

tive, resulting in a variable temperature at the surface but a near-constant heat

flux. Early studies such as Sasaki (1970) and Fiedler (1989) investigated these dif-

ferences between land-bound and ocean-bound convection by creating a boundary

condition which has fixed temperature and fixed flux properties in proportion to

the thermal conductivity of the land and ocean with respect to that of the atmo-

sphere. However, many simplified models currently use periodic boundary condi-

tions (Hernandez-Duenas et al., 2015) or simple fixed temperature or fixed flux

conditions (Ishiwatari et al., 1994). It has not yet been fully investigated how the

changes in this thermal conductivity over land and water affects our understanding

of atmospheric convection, especially with rotation and precipitation.

1.2 History and progress

Though simple in its conception, RBC offers many avenues for the investigation

of complexities which arise in astrophysical and geophysical flows. The study of

RBC began when Henri Bénard observed a cellular pattern in a layer of heated oil

(Bénard, 1900, 1901). When the fluid was sufficiently heated, he observed that it

9



1. INTRODUCTION

Figure 1.6: A re-creation of the Bénard (1900) study of a thin layer of oil heated

from below. The hexagonal cell pattern is what originally interested Bénard in the

convection phenomenon. Taken from Chandrasekhar (1961).

developed a hexagonal pattern. Figure 1.6 is a re-creation of the original experiment

which Bénard performed (Chandrasekhar, 1961). The formation of convection rolls

into cellular patterns, as observed by Bénard, motivated Lord Rayleigh to develop

a mathematical model of RBC (Rayleigh, 1916).

Lord Rayleigh’s original theory was a linear model of RBC which predicts the

thermal conditions that cause convection to onset for a chosen horizontal wavenum-

ber a. Such conditions are parameterised by the critical Rayleigh number Rac. The

Rac value observed by Bénard differed from Lord Rayleigh’s calculations due to a

discrepancy between the experimental and analytic boundary conditions which did

not take surface tension into consideration. This discrepancy inspired further linear

models to be developed by Jeffreys (1926, 1928) and Pellow and Southwell (1940)

to allow for robust boundary conditions such as no-slip and stress-free velocity.

Additional experimental studies by R. J. Schmidt and Milverton (1935) were able

to reproduce Bénard’s results and confirm an adapted version of Lord Rayleigh’s

theory. The development of linear theory culminated in the canonical treatise on

10
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RBC in Chandrasekhar (1961), which considered all aspects of convection in a

plane-layer including boundary conditions, rotation, and magnetic fields.

While linear theory provides insight into the conditions and behaviours of flu-

ids near convection onset, consideration of nonlinear terms enables investigation

of time-dependent and turbulent instabilities. Early weakly nonlinear analyses by

W. V. Malkus (1954b) and W. Malkus and Veronis (1958) found that the alignment

of convection rolls depends on the viscosity of the fluid. The ratio between viscosity

and thermal diffusion is parameterised by the Prandtl number (Pr), which is de-

fined such that liquid metals have Pr ≪ 1, oils have Pr ≫ 1, and air has Pr = 0.7.

An important result calculated from nonlinear studies is the ratio between total

and conductive heat flux: the Nusselt number (Nu). This metric of heat transport

allowed results from experimental data to be compared with analytical theories

(W. V. Malkus, 1954a; Veronis, 1959). The relationship between Ra, Pr and heat

transport was first developed in Kraichnan (1962) and continues to drive research

today (see Plumley and Julien (2019)).

However, as the study of nonlinear RBC advanced, researchers sought increas-

ingly complex solutions which became difficult, even impossible, to solve analyt-

ically. This complexity led to the development of numerical models which use

algorithms to closely approximate analytic results for systems which have complex

solutions, or no analytic solution at all. An early numerical model was developed

by Veronis (1966) to solve nonlinear RBC in a 2D plane-layer. Despite being unable

to reach a turbulent state, the Nu calculations from the numerical model agreed

with experimental results. The addition of rotation to numerical models in Vero-

nis (1968) enabled comparison with some of the extensive rotational experiments

conducted in Rossby (1969).

The experiments of Rossby (1969) were among the first to incorporate rotation

with convection. The images he was able to capture provide insight into the differ-

ent patterns that convection cells form. An example is shown in Figure 1.7, wherein

we see convective flow in a spiral form without rotation and a cellular pattern with

weak rotation. Though there was some agreement between these experiments and

the numerical model in Veronis (1968), there were key differences between the sys-

tems, which were attributed to the restrictions of the numerical model’s 2D domain

11
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Figure 1.7: Examples of convection roll patterns in a thin layer of rotating fluid.

On the left, the fluid is not rotating and on the right the fluid is weakly rotating.

Taken from Rossby (1969).

in comparison to the 3D experimental setup. This conclusion illustrates two as-

pects of modern day convection research: the relationship between numerical and

experimental results and the implications of geometry on RBC. Along with aspects

of convection previously mentioned, such as boundary conditions and rotation,

the geometry of convecting systems and the ability to relate numerical models to

physical systems remain of interest to this day.

1.2.1 Geometry

The simplicity of a plane-layer geometry enabled the initial studies of RBC. As

proven in Behringer et al. (1980), thin-layer experiments, such as those conducted

by Bénard, saw some agreement with analytical and numerical solutions because

a fluid layer that has a sufficiently greater width than depth will develop the same

flow structures as fluid in a plane-layer. The ratio between fluid depth and width

is referred to as the aspect ratio Γ, where a large aspect ratio system approaches a

plane-layer and small aspect ratio domains are tall and narrow.

Despite some early agreement between numerical and experimental results, the

3D nature of astrophysical and geophysical flows motivated the consideration of

alternative domain geometries. Figure 1.8 illustrates three common geometries

used to study RBC. From left to right, plane-layer, cylinder, and spherical-shell

geometries are shown. Note that in the spherical-shell domain, gravity acts along

the radial axis, not the vertical axis as in the plane-layer and cylindrical domains.

12
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Figure 1.8: Diagrams of three common configurations used to study convection: (a)

plane-layer, (b) cylindrical, and (c) spherical-shell. The red(blue) boundaries are

hot(cold). The vertical length-scale of each system is d and g is the acceleration due

to gravity. Rotating systems move about the vertical axis with constant angular

velocity, Ω. Modified from R. S. Long (2020).

As previously mentioned in section 1.1.1, astrophysical and geophysical systems

are most appropriately modelled in spherical-shell geometries. However, spherical

geometries are not practical for many experimental studies due to the inherit di-

rection of gravity on the Earth’s surface. Consequently, the majority of laboratory

experiments have been carried out in cylindrical cells.

The choice to model astrophysical and geophysical flows in plane-layer and

cylindrical domains is often rationalised as modelling the polar regions of a plane-

tary fluid layer. Figure 1.9 illustrates this idea, showing how a cylindrical cell may

capture the dynamics of the polar region of a planetary core. Note that this re-

gion may be modelled with a cylinder because it maintains the heating from below

by the inner core. This thermal condition would not necessarily be met at other

regions within the spherical-shell. Furthermore, gravity and rotation act in the

appropriate directions. An alternative domain which straddles experimental feasi-

bility and application to large-scale systems is the cylindrical annulus, wherein a

layer of fluid is contained between a cylinder and a narrower, nested cylinder. This

geometry can be used to relate an experimental model with cylindrical annulus

domain to numerical models with spherical-shell domains (Sahoo & Sreenivasan,

2017, 2020). Indeed, a common approach in the study of RBC, is to develop com-

plementary experimental and numerical studies (Friedrich et al., 1999; Stellmach

13
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Figure 1.9: An illustration of the relationship between the spherical-shell geometry

of a planetary core and the cylindrical geometry of many experimental and numer-

ical models. Taken from J. Cheng et al. (2015).

et al., 2014; J. Cheng et al., 2015; Horn & Aurnou, 2017). For this reason, many

numerical models are constrained by cylindrical domains.

The choice of domain shape and size strongly effects convection onset, transition

to turbulence, and solution forms. In Koshmeider (1966) and Daya and Ecke (2001),

it was shown through experimentation, that domain shape has a significant effect

on the onset of convection and pattern formation. This effect is shown in Figure

1.10, which visualises the difference in flow patterns between box geometries with

argon gas (Croquette, 1989) and cylindrical geometries with silicon oil (Hoard

et al., 1970). Due to interactions between the fluid and domain walls, within

the box geometry, convection rolls arrange themselves in parallel lines, while fluid

in cylindrical geometries flow in axisymmetric convection rolls. Furthermore, the

spherical-shell geometry can generate complex patterns with icosahedral symmetry

(Matthews, 2003).

The aspect ratio Γ of the domain also affects the onset of convection and subse-

quent behaviour. Behringer et al. (1980) established that in non-rotating cylindrical

geometry, behaviour after onset becomes independent of Γ when the system is 10

times wider than it is tall. As a non-rotating domain narrows, the Rac value in-

creases, for any geometry, which suggests that lateral walls have a stabilising effect.

However, cylindrical domains with small Γ drive stronger heat transport, quantified
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Figure 1.10: Two patterns of convection common to (left) plane-layer and (right)

cylindrical geometries. Taken from Croquette (1989) and Hoard et al. (1970),

respectively.

by a larger Nu, than cuboid domains of the same Γ and Ra/Rac (Daya & Ecke,

2001; S.-D. Huang et al., 2013; Chong & Xia, 2016; Hartmann et al., 2021). Addi-

tionally, in sufficiently narrow, cylindrical domains, convection is time-dependent

at onset (Ahlers & Behringer, 1978; Behringer & Ahlers, 1982; Gao & Behringer,

1984). Moreover, the addition of rotation to RBC caused additional effects on fluid

behaviours (e.g. Chandrasekhar, 1961; Buell & Catton, 1983a; Ecke et al., 2022),

rotation has additional effects on RBC.

1.2.2 Rotation

Prior to the rotating convection experiments reported in Rossby (1969), G. I. Tay-

lor paved the way for the experimental study of rotating fluids (Taylor, 1923, 1936).

While Taylor did not consider convection directly, his observations of the consid-

erable effects of rotation on fluids led, in combination with the theoretical efforts

of Proudman (1916), to the development of the Taylor-Proudman Theorem. This

theorem describes a rapidly rotating fluid’s tendency to vary only weakly or not at

all in the direction parallel to the axis of rotation. The Coriolis force is the inertial

force acting on an object in a rotating frame. We often refer to the Coriolis force

in reference to the effect of the Earth’s rotation on geophysical flows. See Figure

1.3 which visualises the Taylor-column structure in rotating convection.
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Figure 1.11: Diagram of the regimes of convection as a function of the Rayleigh

number and Ekman number. As Ek decreases, rotation becomes more rapid. The

transition from stable to wall-localised convection occurs at Ra = Rawc (black), then

at Ra = Rabc (red) convection onsets in the bulk of the domain. At Ra = Ragc , the

geostrophic regime begins. There are conflicting predictions for the precise value of

Rag. Three predictions are: (1) from Ecke and Niemela (2014), (2) from E. King

et al. (2009), and (3) from E. King et al. (2012). Finally, for Ra ≥ Rat (blue), the

flow becomes turbulent. See text for further explanation.

The effects of rotation on RBC were originally explored analytically in Chan-

drasekhar (1953) and experimentally in Fultz et al. (1954), the latter of which

reports an initial experiment using mercury in a cylindrical container. Subsequent

studies verified that for rotating fluids of Pr < 1 convection onset is over-stable

(Y. Nakagawa & Frenzen, 1954; Fultz & Nakagawa, 1955). This inspired the study

in Rossby (1969), which investigated relationships between rotation and Ra. Sev-

eral metrics are used to parameterise rotation including the Ekman number– which

is the ratio between viscous forces and rotational forces– and the Taylor number

– which is the inverse square of the Ekman number. In this thesis, systematic

variations of the Ekman number Ek are considered.

To understand the regimes of rotating convection, consider the diagram in Fig-

ure 1.11. The white space at the bottom illustrates the parameter range wherein

fluids are stable and conducting with Ra < Rac. In rotating convection, where
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Ek < 10−3, convection first onsets in convection rolls localised at the lateral bound-

aries, often referred to as wall modes (H. F. Goldstein et al., 1993; Herrmann &

Busse, 1993; H. Goldstein et al., 1994). As indicated by the black line demarcating

the grey region in Figure 1.11, wall-localised convection can be approximated to

onset at Rawc = π2(6
√
3)1/2Ek−1 (Herrmann & Busse, 1993). Wall-localised con-

vection is the subject of great interest in the study of RRBC and causes effects

such as boundary-zonal flow (Ecke et al., 2022) – where the wall modes convect

independently of the turbulent bulk– and robust wall states (Favier & Knobloch,

2020)– which are wall modes that persist despite irregularities in domain geometry.

Such effects are observed as Ra increases past a critical threshold for bulk

convection Racb at which convective heat transport begins to affect the bulk of

the fluid. It is well documented that as the rotation rate increases (a decrease

in Ek), the Rac value increases. In Figure 1.11, the red region indicates bulk

convection and begins at an estimate of Rabc = 3(π2/2)2/3Ek−4/3 for plane-layer

RRBC (Chandrasekhar, 1961). However, as previously mentioned, this transition

is greatly affected by the domain shape and size (Buell & Catton, 1983a). The form

of convection in this regime is often strongly dominated by the columnar structure

indicted by the Taylor–Proudman Theorem, i.e. tall thin convection rolls.

Geostrophic flow onsets as the flow structure transitions away from vertical

uniformity. The precise Rag value at which geostrophic flow onsets is unclear. In

Figure 1.11, we mark the geostrophic regime (green) from the lowest transition

boundary Rag = 3Rabc, shown as a solid line (Ecke & Niemela, 2014). Alternative

predictions from E. King et al. (2012) (dot-dashed line) and E. King et al. (2009)

(dotted line) suggest Rag = 10Ek−3/2 and Rag = 1.7Ek−7/4, respectively. The dis-

crepancies between predictions for Rag values may be due to differences in Pr and

geometry of the fluid domain. In the simplest terms, the geostrophic regime occurs

when rotational and buoyant forces are balanced. This is qualitatively exhibited as

a deviation from the columnar patterns dictated by the Taylor-Proudman Theo-

rem, favouring 3D flow though maintaining small horizontal scales (Sprague et al.,

2006).

The geostrophic regime is of particular interest in the geophysical and astro-

physical context for which estimates of Ra and Ek values suggest a balance between
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buoyant and rotational forces (Aurnou et al., 2015; J. Cheng et al., 2015). Theo-

ries and models often simplify the full geostrophic theory into the quasi-geostrophic

regime, wherein the force balance that characterises geostrophic flow is also affected

by inertia (Charney, 1948). This regime is highly studied in the field of rotating

convection (Julien et al., 2006; Kunnen et al., 2010; Smith & Stechmann, 2017;

T. K. Edwards et al., 2019).

The final regime of rotating, and non-rotating, convection is turbulence, which

may take different forms. Generally, the transition to turbulence can be estimated

as Rat = Ek−2 (Ecke et al., 2022). In this regime, flow is fully 3D and independent

of rotation and consequently is often referred to as rotation-unaffected turbulence

(Kunnen et al., 2016). The transition away from rotation-affected flow is indicated

by a change in heat flux behaviour such that the scale between heat transport and

buoyancy unifies to that of a non-rotating system (Plumley & Julien, 2019).

The study of heat transport scaling laws allow insight into convection regimes in

large-scale systems. Geophysical and astrophysical systems tend to have very low

Ek and high Ra which are difficult to achieve either experimentally or numerically

(Kunnen et al., 2010; de Wit et al., 2020). In order to attempt to understand the

behaviour of such large-scale flows, scaling laws are developed for smaller parameter

ranges and used to predict behaviour of planetary-scale systems.

A common scaling metric used to measure heat transport, in rotating and non-

rotating systems, is the Nusselt number Nu which is defined as the ratio between

the total heat transfer and the conductive heat transfer such that a non-convecting

system has Nu = 1. The relationship between Ra and Nu is often described by

a power law such that Nu ∝ Raγ, where γ is unique for each value of Ek. There

is debate around the precise values of γ for any given Ek, and how the behaviour

observed at modelled Ek can be used to understand systems with more extreme

parameter ranges (Plumley & Julien, 2019).

For the non-rotating case, a theory of heat transport is defined in Grossmann

and Lohse (2000) and Grossmann and Lohse (2002). This theory accounts for

changes in Nu scaling across regimes of Ra and Pr. Despite many studies which

calculate Nu in RRBC, there is no unified theory of rotating convection heat trans-

fer (E. King et al., 2009). A compilation of notable Nu results for varying Ra and
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Figure 1.12: The Nusselt number results from laboratory and numerical experi-

ments. Results are shown from Rossby (1969) (plus), J. Cheng et al. (2015) (as-

terisk), Plumley et al. (2016) (diamonds), and Stellmach et al. (2014) (circles).

The grey line shows the non-rotating scaling while the black lines show scaling for

Ek = 10−7. Taken from Plumley and Julien (2019).

Ek is shown in Figure 1.12 for fixed Pr = 7 (Plumley & Julien, 2019). As shown by

the grey dashed line, without rotation, it is generally reported that for Ra ≫ Rac,

Nu ∝ Ra0.322 (Funfschilling et al., 2005; Sun et al., 2005; J. Cheng et al., 2015).

Rotating systems are observed to approach this scaling as Ra increases, as demon-

strated by each coloured set of markers approaching the grey dashed line in Figure

1.12 for greater Ra values (Plumley & Julien, 2019). This corresponds with the

transition to the rotating-unaffected tubulent regime.

Note in Figure 1.12, the γ values shown by filled (open) markers and dotted

(dashed) black line correspond to rigid (stress-free) boundary conditions applied

to the velocity. The deviation of these two power laws when only the boundary

condition is varied illustrates an example of the effect that different boundary

conditions have on RRBC.

1.2.3 Boundary conditions

Boundary conditions are the constraints which define the local behaviour of fluids

at domain surfaces. Boundary conditions play an important role in relating RBC

theory to physical fluids. In his original study, Bénard noted the necessity of a large
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aspect ratio domain with an open top to observe the patterns shown in Figure 1.6

(Bénard, 1900; Fauve, 2017). Moreover, it is because Rayleigh’s original mathe-

matical formulation of RBC considered free boundaries without consideration of

surface tension that his results did not agree with Bénard’s experiments (Rayleigh,

1916; Jeffreys, 1928). The search for sufficiently physically-appropriate boundary

conditions for both experimental models and astrophysical and geophysical flows

continues to inspire research (Verzicco & Sreenivasan, 2008; Calkins et al., 2015;

Mound & Davies, 2017).

Boundary conditions are commonly applied on the velocity u and temperature

T . Pressure p may also be constrained at the edge of the domain (Brangeon

et al., 2015). In this section, common velocity boundary conditions are described

followed by a discussion of thermal boundary conditions in two parts: on horizontal

boundaries and on lateral boundaries.

1.2.3.1 Velocity boundary conditions

The most common velocity boundary conditions are impermeable as well as ei-

ther stress-free or no-slip (Pellow & Southwell, 1940; Chandrasekhar, 1961). In a

Cartesian domain, designating velocity in 3D space as u(x, y, z) = (u, v, w), imper-

meability forces normal flow to stop as the surface such that

u · n = 0, (1.1)

where n is a normal vector. On a horizontal boundary, Eq (1.1) requires that

w = 0.

Stress-free conditions, also called free conditions, eliminate tangential stress at

boundaries by enforcing that there is no velocity gradient parallel to the wall. Ap-

plying the impermeability condition, and again considering a horizontal boundary,

the stress-free condition is defined such that

∂u

∂z
= 0,

∂v

∂z
= 0. (1.2)

If the fluid is also incompressible such that ∇ · u = 0, then Eq(1.2) becomes,

∂2w

∂z2
= 0 (1.3)
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at the domain walls.

However, free conditions are difficult to achieve in experimental setups which

generally have walled domains. On wall or wall-like boundaries, the no-slip condi-

tion is often considered to be the more physically appropriate boundary condition

(Clever & Busse, 1979; Kunnen et al., 2010). The no-slip condition, also known as

the rigid condition, disallows fluid movement at the bounding surfaces by requiring

that u = v = 0, which, with the consideration of Eq (1.1), becomes,

u = 0 (1.4)

at the horizontal boundaries.

Lord Rayleigh originally applied stress-free conditions on the upper and lower

boundaries, a setup which is difficult to physically realise, but allows for easily

obtained analytical solutions (Rayleigh, 1916). In an entirely stress-free bounded

plane-layer, convection onsets at Rac = 675.115 with a critical wavenumber of

ac = π/
√
2 (Chandrasekhar, 1961). Alternatively, applying no-slip conditions on

both boundaries necessitates either numerical solutions or asymptotic solutions

(Pellow & Southwell, 1940; Prosperetti, 2012). Estimates of the onset parameters

in no-slip configuration is Rac = 1707.76 and ac = 3.11 (Chandrasekhar, 1961).

From these linear arguments, it is clear that convection onsets at a lower thermal

threshold with stress-free boundaries than with no-slip boundaries. However, with

the introduction of rapid rotation to plane-layer convection, these roles reverse

and stress-free boundaries have a marginally higher Rac than no-slip boundaries

(Chandrasekhar, 1961).

Away from convection onset, velocity boundary conditions are of interest due to

their effect on the development of boundary layers, which are regions of fluid flow

that are strongly influenced by the boundary conditions. In Kunnen et al. (2016),

a comparison of boundary layer thickness in rapidly rotating plane-layer RBC with

either stress-free or no-slip boundaries revealed that stress-free boundary layers be-

come thicker than no-slip boundary layers as Ek decreases. However, the boundary

layer did not affect the transition to geostrophic flow. Because the transition to the

geostrophic regime is thermally driven, the effect of velocity boundary conditions

is overshadowed by thermal conditions in rotating RBC.
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1.2.3.2 Thermal conditions on horizontal boundaries

As RBC is driven by a vertical temperature gradient, the thermal boundary con-

ditions applied at the horizontal surfaces are of great interest. The most common

thermal boundary conditions are known as fixed temperature (also referred to as

Dirichlet or perfectly conducting) and fixed flux (also known as Neumann). The

fixed temperature condition requires that the temperature be constant at each sur-

face. Referring to the upper boundary as z1 and lower boundary as z0, the fixed

temperature condition is defined as such,

T (z = z0) = T0, T (z = z1) = T1 = T0 −∆T, (1.5)

where T0,1 are constants and ∆T > 0 is the temperature difference across the

system. Alternatively, the fixed flux condition requires a constant heat flux at each

boundary such that,

−κ
∂T

∂z
= q at z = z0, z1, (1.6)

where κ is the coefficient of thermal diffusivity and q is a constant imposed heat

flux. For the insulating condition, q = 0, i.e. no heat flux. Figure 1.13a visualises

the fixed temperature condition on the left and the fixed flux condition on the

right.

The fixed temperature condition was favoured in the canonical RBC text: Chan-

drasekhar (1961). This condition is well studied with and without rotation in

cuboidal (Kunnen et al., 2016; Guzmán et al., 2021), cylindrical (Verzicco & Ca-

mussi, 2003; Kunnen, Clercx, & Geurts, 2008), and spherical-shell (Khodadadi &

Zhang, 2001; Hernlund & Tackley, 2008) domains.

However, it is evident that in many instances the Dirichlet condition is not

physically realistic. Particularly for astrophysical and geophysical systems where

the boundaries are poorly conducting and the planet produces a relatively fixed

amount of heat. In such scenarios, the fixed flux condition is more appropriate.

The fixed flux condition is popular in spherical-shell geometries (e.g. Glatzmaier

& Gilman, 1982; R. Long et al., 2020) for astrophysical systems and has been

investigated thoroughly in infinite layers (e.g. Dowling, 1988; Ishiwatari et al.,

1994; Otero et al., 2002).
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(a) Fixed temperature (left) and fixed flux

(right)

(b) Two configurations of the mixed condition

Figure 1.13: Diagrams of thermal boundary conditions(from left to right): fixed

temperature, fixed flux, and mixed thermal boundary conditions. Heat flux q,

the coefficient of thermal diffusivity κ, T0 and T1 are constants and ∆T is the

temperature difference across the system. The mixed condition diagram shows the

two possible configurations of the mixed boundary condition.

An alternative boundary condition used in astrophysical and geophysical fluid

dynamics is the mixed condition where the Dirichlet condition is applied on one

boundary and Neumann condition on the other. This boundary condition has been

studied in plane-layers (e.g. Ishiwatari et al., 1994; Brummell et al., 2002; Currie

et al., 2020), spherical-shell (e.g. Glatzmaier & Gilman, 1982), and in cylindrical

geometries (e.g. S. Huang et al., 2015; Anders et al., 2020). The mixed condition is

visualised in two forms in Figure 1.13b. On the left, the bottom is fixed temperature

an the top is fixed flux and on the right these roles are reversed. In astrophysical

context, the latter case is more commonly used to fix the flux on the inner core

of a spherical-shell and fixed the temperature on the outer boundary (e.g. Anders

et al., 2020; Currie et al., 2020).

Without rotation, thermal boundary conditions affect convection onset be-

haviour. The fixed temperature condition onsets at higher Rac than the fixed

flux condition, and the mixed condition has a Rac value between the fixed temper-

ature and fixed flux values because fixed flux boundaries deviate from the stable

linear temperature profile of conducting systems more readily than fixed temper-

ature boundaries (Sparrow et al., 1964; Hurle et al., 1967). Further, the fixed
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flux boundary condition onsets to a time-dependent flow while the fixed temper-

ature condition onsets to a time-independent state (Chapman & Proctor, 1980).

Introducing rapid rotation causes the onset parameters of the fixed temperature

and fixed flux configurations to converge as Ek approaches 0. However, the mixed

condition has not been investigated in this limit (Calkins et al., 2015).

Away from onset, both theoretical and experimental studies have suggested

that – without rotation – mixed and fixed flux systems behave similarly to fixed

temperature systems when Ra < 109 because fixed flux boundaries do not strongly

emit enough heat in such time-independent flows to differ from a fixed temperature

boundary in a plane-layer (Otero et al., 2002) or a cylinder (Verzicco & Sreenivasan,

2008). Indeed, near onset and without rotation, solution forms of mixed config-

urations closely resemble fixed temperature solutions in a plane-layer (Ishiwatari

et al., 1994). In a box with Ra on the order of 109, the fixed temperature and

mixed cases behave the same in the bulk of non-rotating systems and in a limited

study of rotating systems (Anders et al., 2020). In a rapidly rotating Cartesian

domain– with misaligned gravity and rotation vectors– observed that with mixed

boundary conditions, the aspect ratio of the domain is observed to be important

in the development of zonal flows which impacts the temperature gradient (Currie

et al., 2020). However, results were not compared with a complementary fixed

temperature system.

Few other studies have investigated the differences between thermal boundary

conditions in rapidly rotating systems. Calkins et al. (2015) used an asymptotic

expansion in a plane-layer to show that in the geostrophic regime (Ra on the

order of Ek1/3) there may only be differences between fixed temperature and fixed

flux configurations in the flow dynamics due to the different effects on boundary

layers. In spherical-shells, fixed flux boundaries cause larger-scale convection than

equivalent fixed temperature systems (Gibbons et al., 2007; Sakuraba & Roberts,

2009). While it is not clear whether fixed flux, mixed, and fixed temperature

boundary conditions cause different flow forms in a rotating cylinder, papers such

as Verzicco and Sreenivasan (2008) bring to our attention an additional issue: how

well do these boundary conditions imitate the situation in experimental domains?
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Figure 1.14: Schematic of Robin boundary conditions on horizontal boundaries.

The temperature T is regulated on the boundaries by the Biot number Bi and the

temperature outside of the domain at the top(bottom) TT (TB). The Biot number

is a ratio between the thermal conductivity and height of the boundary dB,T and

those of the fluid.

Indeed, physical systems, both experimental and natural, rarely attain either

perfect conduction or insulation. Therefore it is of interest to investigate a bound-

ary condition that straddles fixed temperature and fixed flux conditions. Early

comparisons of linear RBC with fixed temperature and fixed flux considered the

transition between the two as the thermal conductivity k of the boundary varied

(Sparrow et al., 1964; Hurle et al., 1967; Dowling, 1988). This theory known under

several names: the thin-lid approximation, Newton’s cooling, or the Robin condi-

tion (Buell & Catton, 1983b; Gringé et al., 2007; Clarté et al., 2021). Herein, this

condition is referred to as the Robin condition.

There are three different cases which are modelled with the Robin condition:

(i) weakly conductive boundaries (Riahi, 1982), (ii) radiative-conductive bound-

aries (O’Sullivan, 1990; Clarté et al., 2021), and (iii) boundaries of finite thickness

(Gringé et al., 2007). Case (ii) is most applicable to atmospheric systems whereas

case (iii) is most useful for relating numerical models to experimental set-ups where

the conductivity and thickness of the boundaries and fluids can be measured.

Considering an experimental domain, it is intuitive that a boundary which

is very thin and highly conductive transfers heat from outside to the fluid very
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efficiently, behaving like a fixed temperature boundary. Alternatively, a boundary

which is very thick or poorly conducting loses heat through the boundary, causing

a more fixed flux-like effect. To determine how similarly a boundary acts to fixed

temperature or fixed flux, a we consider the Biot number Bi, which is a ratio

between the thermal conductivity and depth of the fluid and that of the boundary.

Using ·M to denote boundary properties, the Biot number is defined,

Bi =
dkM
dMk

. (1.7)

For context, an experiment described in Kunnen, Clercx, and Geurts (2008) used a

layer of copper with kM = 400W/mK and dM = 0.03m to contain a layer of water

with k = 0.6W/mK and d = 0.23m. This copper boundary has a Bi = 5× 103.

The theoretical limits of the Robin condition are such that as Bi approaches 0,

the condition becomes fixed flux and as Bi approached ∞, the condition becomes

fixed temperature. Considering an experimental system such as shown in Figure

1.14, where the fluid is contained from above by a boundary of depth dT . The

temperature is constant TT outside the domain. The Robin condition is applied at

the interface of the upper boundary and the fluid such that

∂T

∂z
= Bi (T − TT ) . (1.8)

From this formulation, it is clear that when Bi = 0, the thermal flux becomes fixed.

When Bi approaches ∞, the temperature of the boundary becomes the controlling

term, fixing the temperature.

However, it is not necessary for Bi to reach either extreme value for a bound-

ary to behave sufficiently similarly to the fixed flux or fixed temperature condi-

tion. In a spherical-shell, Clarté et al. (2021) reported achieving sufficiently fixed

temperature-like boundary conditions with Bi = 30 and fixed flux-like conditions

with Bi = 0.03, suggesting that the copper boundary we described earlier would

act very closely to a fixed temperature boundary. However, we lack understanding

of RRBC dynamics bounded by moderate materials with moderate Bi values.

1.2.3.3 Thermal conditions on lateral boundaries

In 3D constrained domains, conditions on the sidewalls may differ from those ap-

plied at the top and the bottom. The forms of these thermal conditions are often
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Figure 1.15: A pattern of heat flux developed from tomographic results projected

on the outer boundary of a spherical-shell. Purple(orange) indicates low(high) heat

flux. Taken from Mound and Davies (2017).

the same as applied on the vertical boundaries. However, the fixed temperature

and fixed flux conditions are often referred to as the conducting and insulating

cases, respectively, when applied to lateral boundaries.

In Charlson and Sani (1970), crucial differences between insulating and con-

ducting sidewall boundary conditions are identified in cylindrical domains. With

and without rotation, the systems with conducting sidewalls have higher Rac values

due to the retention of linear temperature profiles to higher Ra when temperatures

are fixed than when heat flux is fixed. The difference between Rac with conduct-

ing and insulating boundaries increases as the domain narrows (Buell & Catton,

1983b).

However, as previously discussed, heterogeneous conduction or insulation is

not generally appropriate to model astrophysical and geophysical systems, such as

the Earth’s core. Figure 1.15 illustrates the tomographic measurements of heat

flux at the Earth’s CMB. Other instances of laterally varying heat flux in astro-

physics include Mars (Zhong, 2009; Šrámek & Zhong, 2010), the moon (Takahashi

& Tsunakawa, 2009; Oliveira & Wieczorek, 2017), and oceans (Terra-Nova et al.,

2022). In the context of these astrophysical systems, numerical models have been

studied with inhomogeneous insulation of spherical-shells with and without mag-

netic fields (Bloxham, 2000; Gibbons et al., 2007; C. J. Davies et al., 2008; Mound

& Davies, 2017).
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In Chung et al. (2000) and Chung and Hyun (2001), a non-rotating cylindrical

domain is considered where the sidewall temperature is fixed but not uniform. The

temperature is varied along both the vertical and azimuthal axes. They concluded

that the heterogeneity is limited to the boundary layer of high Ra systems while

the fluid on the interior of the domain was influenced only by the average of the

azimuthal temperature. In agreement, in Laube et al. (2022) it was determined

that, with relatively low Ra values, Nu measurements were not affected in a pipe

with inhomogeneous and homogeneous insulation.

Sahoo and Sreenivasan (2020) reported an experimental investigation of lateral

variation in heat flux in the azimuthal direction about a cylindrical annulus. Re-

sults for large wavelength variations in heat flux agreed with C. J. Davies et al.

(2009)’s spherical-shell studies of the same variation, that small-scale convection is

trapped by the heat flux variations. Larger variations in the lateral wall heat flux

caused convection to onset at significantly lower Rac values than for homogeneous

boundary conditions. In Reiter et al. (2022), a numerical model compares RBC

dynamics with perfect conducting sidewalls and a varied temperature sidewall con-

dition in a cylindrical domain. They concluded that sidewall variations had limited

effect on high Ra systems and, in agreement with Sahoo and Sreenivasan (2020),

found that the mean temperature was more important than the variations. At

lower Ra, changes in flow structure were identified in non-rotating systems (Reiter

et al., 2022).

There has been some connection suggested between inhomogeneous boundary

conditions and irregular topography. In Parsons and Daly (1983), it was found that

sinusoidal boundary topography with a large wavelength caused fluid behaviour to

be more dependent on boundary conditions. Additionally, a transition in convective

flow from large length-scale to short length-scale flow structures occurred when the

wavelength of the boundary deformation was equivalent to that of the convective

scale. As Ra increases, the topography of the boundary becomes unimportant

(Krettenauer & Schumann, 1989). A numerical study of rapidly rotating convection

by Favier and Knobloch (2020) found that a change in the domain shape did

not disturb the wall-localised convection inherent to RRBC. However, it remains

unclear whether or not irregular boundary shapes may have the same effect as
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inhomogeneous thermal boundary conditions. Overall, the role irregularities in

heat flux at the core-mantle boundary play in convection is unclear and simplified

numerical and experimental models can be useful to understanding these effects.

1.3 Thesis outline

This thesis is concerned with understanding the role of thermal boundary con-

ditions in RRBC in order to improve the interpretation of numerical models in

the context of physical systems. As previously discussed, a cylindrical geometry

is appropriate both for experimental studies and for offering insight into the dy-

namics in the polar regions of astrophysical and geophysical systems (i.e. Figure

1.9). While the no-slip velocity condition is ubiquitously considered physically

appropriate for rigid boundaries, it is unclear what thermal boundary condition

is most appropriate. The uniformly fixed temperature boundary condition is of-

ten assumed in numerical models, but with more physically appropriate boundary

conditions available, is the fixed temperature condition sufficient?

We will consider a numerical model in a cylindrical domain with thermal bound-

ary conditions which are experimentally feasible simplifications of thermal condi-

tions affecting astrophysical and geophysical flows. Cylindrical domains have two

sets of boundaries to consider: horizontal and lateral. Therefore, it is natural to ap-

proach numerical modelling as a two-part investigation, first considering horizontal

boundaries in Chapter 3 and 4 and then lateral boundaries in Chapter 5. Addi-

tionally, the motivation to relate numerical models to physical flows is reflected in

an application of the numerical results to the design of an experimental model of

simplified precipitation in Chapter 6. A more detailed outline is as follows.

First, the governing equations of RRBC are established in Chapter 2. The equa-

tions are made dimensionless and the appropriate parameters are defined. Next,

the numerical methods for solving the system of equations are described. We use

the open- source frameworks Dedalus (Burns et al., 2016) and Nek5000 (Nek5000,

2019) to solve 2D linear systems in a plane layer and a 3D nonlinear systems in

a cylinder, respectively. The method of testing the nonlinear numerical setup is

discussed.
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In Chapter 3, we investigate common thermal boundary conditions for horizon-

tal boundaries: fixed temperature, fixed flux, and the mixed conditions. A linear

stability analysis provides insight regarding convection onset for each condition

and reveals the validity of the theory established in Calkins et al. (2015): that the

thermal boundary condition does not affect convection onset at low Ek. Aspects

of convective flows are quantified and categorised using various metrics such as

a novel approach to quantifying vertical structure which is used to indicate the

transition to geostrophic flow. These metrics are applied to an array of numerical

results, enabling an analysis regarding the impact of the choice of each thermal

boundary condition, focusing on the rapidly rotating regime. The results provide

insight into the importance of boundary condition choice for numerical models of

RRBC at moderate Ra values.

In Chapter 4, we derive the Robin condition and present a numerical linear

stability analysis to determine onset behaviour. A novel definition of the Rayleigh

number is developed to relate Robin configurations to fixed temperature systems.

The comparisons between flow properties when the model has Robin conditions

rather than fixed temperature or fixed flux conditions illuminates the ability of

rapidly rotating numerical models to capture physical results. The results fill an

important gap in the research to better understand the influence that boundary

conditions have in experimental and natural systems.

In Chapter 5, we define inhomogeneous thermal boundary conditions on the

sidewalls of a rotating numerical model in two ways: Positive/Negative and Pos-

itive/Zero. In the former instance, the heat flux oscillates from positive to neg-

ative. The latter is always positive and hence more appropriate for the Earth’s

core and experiments. A solid steady state solution which is derived for the Posi-

tive/Negative configuration and a global heat flux accounting of the Positive/Zero

configuration each provide analytical results to test the accuracy of the numeri-

cal setups. The results illustrate significant changes in wall-localised convection of

rapidly rotating systems with the introduction of inhomogeneous boundary condi-

tions, with implications on our understanding of core convection.

The results from Chapter 3 and Chapter 4 are applied in Chapter 6 to an

experimental design. Recent numerical developments in simplified precipitation–
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1.3 Thesis outline

i.e. Hernadez-Duenas et al. (2012) and T. K. Edwards et al. (2019) – motivate a

rapidly rotating experiment in a cylindrical domain with two-phase precipitation.

Each experimental specification is determined to ensure a practical and observable

experiment. Finally, Chapter 7 provides a summary of the thesis and discusses

future directions for this work.
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Chapter 2

Technical Introduction

In the previous chapter, we discussed the ubiquity of Rayleigh–Bénard convection

(RBC) in nature and the advancements that have been made toward understanding

this thermal phenomenon. After describing the important role thermal boundary

conditions play in the relationship between numerical models and physical systems,

we outlined a set of aims to further explore thermal boundary conditions in rotating

RBC (RRBC).

This thesis is motivated to improve the understanding of astrophysical and

geophysical flows by investigating the role of physically realisable boundary con-

ditions via numerical rotating RBC. Though large-scale systems are appropriately

modelled in a spherical-shell, experimental setups most commonly have cylindrical

geometry. Additionally, previous studies have established the application of cylin-

drical domains in modelling dynamics in the polar regions of spherical-shells (see

Figure 1.9). Hence, we consider a cylindrical layer of air-like fluid with Pr = 0.7 to

be both experimentally feasible and to model an atmospheric system. The domain

is illustrated in Figure 2.1. A Cartesian coordinate system is used with horizontal

axes x̂ and ŷ, though we also employ cylindrical coordinate system with radial axis

r̂, azimuthal axis θ̂. The vertical axis is always ẑ. The aspect ratio of the domain

is Γ = R/d = 0.7 which relates the radius R to the height d = z1− z0 and is chosen

to maximise Rat, the Rayleigh number at which a system transitions to turbulence

unaffected by rotation. Gravity g = −gẑ acts downward and the domain rotates

with angular velocity Ω. The temperature is T0 at the lower domain and decreases

by ∆T across the system to T1 at the upper boundary.
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2. TECHNICAL INTRODUCTION

Figure 2.1: Schematic of the cylindrical domain with Cartesian coordinates (x, y, z)

and aspect ratio Γ = R/d = 0.7 where R is the radius and d = z1− z0 is the height

of the domain. The gravitational acceleration g acts downward and the domain

rotates with angular velocity Ω about ẑ. The lower boundary has temperature

T0 and upper boundary has temperature T1 = T0 − ∆T where ∆T > 0 is the

temperature difference across the system.

In this chapter, the methods of modelling this RRBC system are described.

First, the equations of motion and parameter ranges used in this thesis are pre-

sented. Then, the numerical methods of solving the governing equations are dis-

cussed. Finally, the nonlinear numerical setup is tested for accuracy.

2.1 Governing equations

The equations of motion governing RBC have been thoroughly described in a num-

ber of canonical texts including Chandrasekhar (1961) and Batchelor (2000). RBC

is mathematically defined by a system comprised of momentum, continuity, and

temperature equations.

We first consider the momentum equation which is derived from the Navier-

Stokes equations. As in Chandrasekhar (1961), the equation is written such that

ρ
Du

Dt
= ρF −∇p+ µ∇2u, (2.1)
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2.1 Governing equations

where
D

Dt
=

∂

∂t
+ u · ∇ (2.2)

is the Lagrangian derivative with respect to time t. The fluid has a dynamic

viscosity µ, taken here to be constant, and variables: velocity u, density ρ, and

pressure p. All external accelerations acting on the fluid, which, in RRBC, are the

buoyant and rotation-caused forces, are contained in F . In convection, the buoyant

force Fb is the interaction between density and gravity such that

Fb = g (2.3)

where g is the gravity vector. The rotational term has two parts: the Coriolis

acceleration and centrifugal force which act, respectively, perpendicular to and

away from the axis of rotation. Combining these terms, and considering a rotating

frame, the force due to rotation can be written as

Fr = −2Ω× u− 1

2
∇|Ω×X|2, (2.4)

where Ω is angular velocity and X is the position vector.

An essential element of the common RBC model is the Boussinesq approxima-

tion which affects the treatment of density. The Boussinesq approximation assumes

that the fluid velocity is sufficiently slower than the speed of sound, and that the

fluid depth is sufficiently smaller than the hydrostatic scale heights of pressure,

density, and temperature (Spiegel & Veronis, 1960). Further, in the Boussinesq

approximation, it is assumed that variations in density are not driven by pressure.

Consequently, the equation of state is approximated as

ρ = ρ0(1− α(T − T0)), (2.5)

where ρ0 is the reference density and α is the coefficient of thermal expansion.

The temperature is T with reference temperature T0 which is taken to be the

temperature at the lower boundary. Under these assumptions, the density is taken

as constant for inertial terms, hence excluding buoyancy wherein density variation

allows for the rise and fall of fluids with heating and cooling.
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Applying the Boussinesq approximation and substituting Eqs (2.3) and (2.4)

into Eq (2.1), we write the momentum equation for RRBC as such

Du

Dt
+ 2Ω× u =

ρ

ρ0
g − 1

ρ0
∇P ∗ + ν∇2u, (2.6)

where ν = µ/ρ is the kinematic viscosity and P ∗ is a reduced pressure that includes

the centrifugal force term. Applying Eq (2.5) to Eq (2.6), the momentum equation

becomes
Du

Dt
+ 2Ω× u = α (T − T0) gẑ −

1

ρ0
∇P + ν∇2u. (2.7)

Note that pressure P is a modified pressure which has absorbed both the centrifugal

force and the pressure basic state from the Boussinesq approximation such that

P = p− ρ0
2
|Ω×X|2 + ρ0gz. (2.8)

We next consider the continuity of mass and by applying the Boussinesq ap-

proximation (i.e. assuming a fluid of constant density), obtain the incompressibility

condition

∇ · u = 0. (2.9)

Finally, an equation of temperature is necessary. Assuming a simple energy

conservation law with no internal heating the expression is

DT

Dt
= κ∇2T, (2.10)

where κ is the coefficient of thermal diffusivity (Chandrasekhar, 1961). Note κ =

k/ρ0cp, taken as constant, is a function of thermal conductivity k and specific heat

cp.

Thus, Eqs (2.7), (2.9), and (2.10) comprise the governing equations for RRBC.

Table 2.1 summarises the fluid properties and corresponding SI units introduced

in the governing equations. Dimensional analysis is performed to simplify the

comparison between physical and dimensionless systems.

2.1.1 Dimensional analysis

Non-dimensionalisation allows for comparisons between different fluid systems and

simplifies calculations. In order to make the governing equations dimensionless,
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2.1 Governing equations

Property Symbol SI Units

Position X = (x, y, z) m

Height d m

Radius R m

Time t s

Velocity u = (u, v, w) m
s

Density ρ kg
m3

Pressure p kg
ms2

Temperature T K

Angular velocity Ω Hz

Gravity g m
s2

Coefficient of thermal expansion α 1
K

Dynamic viscosity µ kg
ms

Kinematic viscosity ν m2

s

Coefficient of thermal diffusivity κ m2

s

Thermal conductivity k W
mK

Specific heat cp
J

kgK

Table 2.1: List of fluid properties relevant to rotating RBC and the appropriate

SI units. Note Cartesian coordinates are indicated in this table, though cylindrical

coordinates X = (θ, r, z) are also used where θ is the azimuthal angle and r is the

radius. Hence velocity may also be considered to be u = (uθ, ur, w).
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2. TECHNICAL INTRODUCTION

scaling terms for each variable are applied. Generally, in convective systems, where

vertical motion is of interest, the vertical characteristic length is used that x̃ =

dx, where d is the height of the system. Note that herein we designate variables

with tildes as dimensional and therefore dimensionless variables do not have tildes.

Constants are generally dimensional, but for the sake of readability do not have

tildes. The appropriate temperature scaling is related to the thermal behaviour at

the boundaries of the system. We discuss thermal scaling factors in more depth

in Chapter 3. For simplicity, in this chapter, we apply the temperature difference

timescale such that T̃ = ∆T̃ T +T0. Table 2.2 lists the common temporal scales for

RBC, their dimensional definitions, and the corresponding velocity, and pressure

scaling factors (Kunnen, Clercx, & Geurts, 2008; Calkins et al., 2015; Mound &

Davies, 2017; Clarté et al., 2021).

timescale t̃ x̃ ũ P̃

thermal diffusion d2

κ
t dx κ

d
u ρ0

κ2

d2
P

viscous diffusion d2

ν
t dx ν

d
u ρ0

ν2

d2
P

rotation 1
2Ω
t dx 2dΩu 4ρ0Ω

2d2P

free-fall velocity
√

d
gα∆T̃

t dx

√
gα∆T̃ du ρ0gα∆T̃ dP

Table 2.2: List of characteristic time scales and their related length x, velocity

u, and modified pressure P , scales. The tilded variables are dimensional. d is

the system height, ∆T̃ is the temperature difference between the top and bottom

of the domain, and ρ0 is the reference density. The temperature is here scaled

appropriately for fixed temperature boundaries such that T̃ = ∆T̃ T + T0.

As this thesis considers both rotating and non-rotating systems and a system

of air, which is not highly viscous, the thermal diffusion time scale is considered (J.

Cheng et al., 2015). We define the non-dimensional measurements of our domain

such that at the lower (upper) boundary, z = −0.5 (z = 0.5) and the radius is

0.7 to satisfy Γ = 0.7. We apply the thermal diffusion time scale, vertical height

length scale, and temperature difference thermal scale to Eqs (2.7), (2.9), and

(2.10), obtaining
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2.1 Governing equations

Du

Dt
+

Pr

Ek
ẑ × u = RaPrT ẑ −∇P + Pr∇2u, (2.11a)

∇ · u = 0, (2.11b)

DT

Dt
= ∇2T. (2.11c)

Several non-dimensional parameters are introduced into the governing equations:

the Prandtl number Pr, the Ekman number Ek, and the Rayleigh number Ra.

The Prandtl number is a ratio between the viscous and thermal diffusion time

scales such that,

Pr =
ν

κ
. (2.12)

Liquid metals, such as those in the Earth’s core, tend to have Pr ≪ 1, while

silicon oils have Pr ≫ 1 (Schmalzl et al., 2002). The value of Pr can inform the

choice of temporal scale. When Pr > 1, viscous diffusion is more important in

convection, whereas when Pr < 1 thermal diffusion is dominant. Consequently,

the viscous diffusion timescale is preferred for high-Pr models while the thermal

diffusion time scale is preferred for low-Pr models. This thesis considers air as the

working fluid for which Pr = 0.7 < 1, and therefore the thermal diffusion timescale

is appropriate.

The Ekman number, Ek, is a parameter relevant to rotating systems. Defined

as,

Ek =
ν

2Ωd2
, (2.13)

the Ekman number is the ratio between vicious and Coriolis forces. Without ro-

tation, Ek = ∞ and a rotation increases Ek decreases. The Ek values of planets

tend to be low. For example, the Earth is estimated to have Ek = 10−15 (Schubert

& Soderlund, 2011) due to a kinematic viscosity on the order of 10−7m2/s, thick-

ness on the order of 106m, and angular velocity on the order of 10−5Hz (Jones &

Schubert, 2015). However, Ek = 10−15 is not currently able to be modelled either

numerically or experimentally.

The Rayleigh number, Ra, is the ratio of the destabilising effects of buoyancy

to the stabilising effects of the diffusion of momentum and heat (Jeffreys, 1928;

R. J. Schmidt & Milverton, 1935). We defined the Rayleigh number such that,

Ra =
αg∆T̃ d3

νκ
, (2.14)
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where ∆T̃ is related to the characteristic temperature scaling. The thermal scale is

dependent on thermal boundary conditions, and as such will be modified through-

out this thesis to accommodate the different conditions. Ra is used to parameterise

the strength of convective (buoyant) forcing relative to dissipation.

Rotating convection is often considered in two regimes: weakly rotating and

rapidly rotating. To determine these two categories, it is useful to consider the

convective Rossby number Ro =
√
Ek2Ra/Pr, which is the ratio inertial forces to

Coriolis forces. Rapidly rotating systems have Ro << 1. Here, we define rapidly

rotating as Ro ≤ 0.3. Due to the range of Ra values and fixed Pr value considered

in this thesis, we are able to approximate the weakly and rapidly rotating regimes

with Ek values such that ∞ > Ek > 10−4 is weakly rotating and Ek ≤ 10−4 is

rapidly rotating.

2.1.2 Boundary conditions

In order to solve the governing equations described in Eqs (2.11a)-(2.11c), a set of

boundary conditions must be developed to constrain fluid behaviour at the edges of

the domain. As discussed in section 1.2.3, boundary conditions are most commonly

applied to fluid velocity and temperature. The most physically appropriate velocity

boundary condition for rigid walls, as in an experiment, is the no-slip condition.

Therefore, we choose to apply the no-slip condition on all surfaces. By modifying

Eq (1.4), the no-slip condition requires,

u = 0 at z = −0.5 and 0.5 and at r = 0.7, (2.15)

where r is the radial direction in cylindrical coordinates defined as r =
√
x2 + y2.

As the focus of this thesis is on the role of thermal boundary conditions in RBC,

the relevant conditions in each chapter are defined separately. However, for the

sake of completeness in this chapter, we consider the fixed temperature boundary

condition on the horizontal surfaces and an uniformly insulating sidewall. The

fixed temperature condition is non-dimensionalised from Eq (1.5) and as such is

defined as

T = 1 at z = −0.5 and T = 0 at z = 0.5, (2.16)
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such that the dimensionless temperature difference across the system is ∆T = 1.

On the sidewalls, an insulating condition is defined such that the heat flux is

fixed at zero. Therefore, we require that

∂T

∂r
= 0 at r = 0.7. (2.17)

2.1.3 Linear analysis

To begin our linear analysis, we consider the full, nondimensional governing equa-

tions Eqs (2.11a)-(2.11c) and perturb them about a steady, static basic state such

that each variable is defined as a sum of the basic state ·B and the perturbation ·p
in the form u = up + uB. See Appendix A for the full derivation. The resulting

equations are

Dup

Dt
+

Pr

Ek
ẑ × up = −∇Pp +RaPrTpẑ + Pr∇2up, (2.18a)

∇ · up = 0, (2.18b)

DTp

Dt
− w = ∇2Tp. (2.18c)

We remove the nonlinear terms, obtaining the linear governing equations:

∂up

∂t
+

Pr

Ek
ẑ × up = −∇Pp +RaPrTpẑ + Pr∇2up, (2.19a)

∇ · up = 0, (2.19b)

∂Tp

∂t
− w = ∇2Tp. (2.19c)

To derive a solution, we begin by twice taking the curl of Eq (2.19a). We find

∂∇2up

∂t
+

Pr

Ek
∇× (ẑ · ∇up) = RaPr

(
∇2Tpẑ −

∂∇Tp

∂z

)
+ Pr∇4up. (2.20)

The vertical components of Eq (2.20) and Eq (2.19c) are(
∂

∂t
− Pr∇2

)
∇2wp = RaPr∇2

HTp −
Pr

EK

∂ωz

∂z
, (2.21)

and (
∂

∂t
− Pr∇2

)
ωz =

Pr

Ek

∂w

∂z
, (2.22)

where ω = ∇× up is the vorticity.
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Using these equations and the linear temperature equation Eq (2.19c), the ver-

tical velocity is isolated such that(
∂

∂t
− Pr∇2

)2(
∂

∂t
−∇2

)
∇2wp =

RaPr

(
∂

∂t
− Pr∇2

)
∇2

Hw − Pr2

Ek2

(
∂

∂t
−∇2

)
∂2w

∂z2
. (2.23)

At this stage, boundary conditions are applied to determine an ansatz solution

against which to solve. However, we wish to retain generality such that each of the

proposed vertical boundary conditions – fixed temperature, fixed flux, mixed, and

Robin – may be applied. Thus, we suggest an ansatz solution for normal modes of

the form

w = ŵ(z)f(x, y)eiωt, (2.24)

where ŵ(z) satisfies the conditions on boundaries in the vertical and f(x, y), – or

in cylindrical coordinate f(r, θ)– a function of horizontal position, satisfies lateral

conditions. Hence, we may solve the linear governing equations numerically as an

eigenvalue problem where ω is our eigenvalue.

2.2 Numerical methods

Solving the RRBC equations of motion, Eqs (2.11a-2.11c), often necessitates nu-

merical methods of integration. There are many numerical methods including

finite-volume, finite-difference, finite-element, spectral-element, and spectral. These

methods vary in speed, computational expense and ability to solve RRBC dynamics

within diverse domain shapes. We chose to apply the spectral method for solving

linear systems and the spectral-element method for solving nonlinear systems, re-

spectively employing the open source frameworks Dedalus (Burns et al., 2016) and

Nek5000 (Nek5000, 2019).

2.2.1 Dedalus

Dedalus is a spectral method solver developed for and by researchers studying fluid

dynamics (Burns et al., 2016). The spectral method represents a solution across

the domain as a sum of basis functions. Due to the global nature of the method,
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the boundary conditions and domain shape constrain the choice of basis function.

The spectral method is regarded as having greater accuracy than the finite element

method for the same computational expense.

We chose to employ Dedalus due to its optimised performance and ability to run

in parallel processes. Dedalus is used to perform linear stability analysis by solving

Eqs (2.19a)- (2.19c) as an eigenvalue problem. Note because Dedalus is limited

in the number of dimensions which can be solved with Chebyshev basis functions,

it does not support cylindrical domains. Due to this limitation, along with the

complexity of solving the linear problem in a cylindrical domain (K. Zhang & Liao,

2009), we solve linear RRBC systems in a 1D plane-layer with 64 Chebyshev nodes

in the vertical domain. The maximum growth rate of eigenvalue ω is determined

assuming an ansatz solution as in Eq (2.24). The results presented in Chapter

3 provide validation of the numerical model by comparison of Rac values with

previous asymptotic results for fixed temperature and fixed flux boundary systems

from Calkins et al. (2015). In order to overcome the geometric limitations of

Dedalus, we choose to use a spectral-element solver to study nonlinear RRBC

systems.

2.2.2 Nek5000

For nonlinear 3D numerical models, a spectral-element method solver is more ap-

propriate to accommodate a cylindrical domain. The spectral-element method is

an extension of the finite element method where piece-wise high-order polynomials

serve as basis functions. Such basis functions are often either Chebyshev or La-

grange polynomials. An advantage of the spectral-element method is ease in mesh

generation and ability to solve in irregular geometries. Additionally, by increas-

ing the polynomial order, spatial refinement is possible without generating a new

mesh. Furthermore, it is easy to implement different boundary conditions with the

spectral-element method. However, the spectral-element method is computation-

ally expensive to run and therefore limits the parameter range of RRBC which we

are able to model.

Nek5000 is a spectral-element method solver which uses Legendre polynomials

as basis functions for velocity and pressure solutions (Nek5000, 2019). The so-
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(a) Side view (b) Top view

Figure 2.2: Side and top views of the 588-element mesh. There is a denser arrange-

ment of elements near the walls.

lutions are found using the PnPn-2 method where pressure is solved without the

boundary points. This is capable of solving on has high-order curved domains, suit-

able for cylindrical geometries, as well as optimised parallel processing. We employ

Nek5000 to solve the nonlinear model defined in Eq (2.11a-2.11c) in a cylindrical

domain with a third-order Adams-Bashforth multi-step scheme. We use two reso-

lutions: 588 elements and 4704 elements. The smaller mesh is sufficient for simple

flows at moderate Ra values while the larger mesh is necessary for rapidly rotat-

ing and time-dependent systems. The smaller mesh is shown in Figure 2.2 from

the side and the top. The meshes have refined spatial distribution near the walls

to ensure wall-localised convection can evolve in rotating systems. A minimum

polynomial order of six is used, increasing as systems become more temporally

chaotic. In this thesis, the time-step is ∆t = 2 × 10−4 for non-rotating systems

and decreased to ∆t = 5 × 10−6 to accommodate a minimum Ekman number of

Ek = 10−5. We consider Ra < 109. The initial conditions of the model are a linear,

conductive background temperature gradient with small, random perturbations to

a zero velocity state.
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2.2.2.1 Test of convergence

It is necessary to ensure the convergence of numerical models to confirm that the

spatial and temporal domains are sufficiently refined (Stevens et al., 2010).

Due to the chaotic nature of convection at high Ra, time-averaging is necessary

for the measurement of convergence criteria. Averaged quantities are identified by

an overbar · and defined such that

f =
1

∆t

∫ t0+∆t

t0

fdt, (2.25)

where t0 is some time after a statistically steady state has been established.

The mean kinetic energy balance is used as a criteria of convergence. Following

Hepworth (2014), the kinetic energy balance is derived in Appendix B. Hence, the

conservation of energy requires that∫
V

RaTw + (∇× u)2dV = 0, (2.26)

where V is the volume of the domain. The first term of Eq (2.26) is the buoyant

energy and the second term is the viscous dissipation. A relative error percentage

between the two quantities is calculated as such

err = 100%
< RaTw >V − < (∇× u)2 >V

< RaTw >V

, (2.27)

where < · >V is a volume average. As in E. King et al. (2012), we consider an

err ≤ 1% to indicate sufficient resolution of the model.

Figure 2.3 illustrates an example of the mean kinetic energy balance for the

fixed temperature model with uniformly insulated sidewalls. The err percentage is

plotted against the supercriticality Rasc = Ra/Rac which indicates how far from

convection onset a system is. Simulations with Ek values ∞ (non-rotating), 10−2,

10−3, 10−4, and 10−5 are respectively indicated by marker shapes. Note that the

simulations represented in Figure 2.3 have varying resolutions in both time and

space, spanning the range of resolutions used in this thesis. It is clear that as

Rasc increases, err approaches 1%, but remain below 1% for the parameter range

considered in this thesis. The mean kinetic energy balance is performed for each

boundary condition considered in this thesis to ensure sufficient resolution.
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Figure 2.3: An example of the mean kinetic energy error err vs. the supercriti-

cality Rasc = Ra/Rac. The fixed temperature condition is applied on the vertical

boundaries and there is uniform insulation on the sidewalls. Each marker indicates

results with a different Ek values.

2.3 Summary

In this chapter, the technical aspects of our investigation of RRBC have been

discussed. The proposed cylindrical domain and corresponding properties were

visualised in Figure 2.1. The aspect ratio is Γ = 0.7 and, in order to represent an

air-like fluid, Pr = 0.7 is used– both values are constant throughout this thesis.

The governing equations of RRBC were defined and nondimensionalised in Eq

(2.11a)-(2.11c). Relevant non-dimensional parameters Pr, Ek, andRa were defined

in Eqs (2.12), (2.13) and (2.14), respectively. In this thesis, rotation is varied from

Ek = ∞ to Ek ≥ 10−5 with Ra ≤ 109. With fixed Pr = 0.7, these ranges span

from non-rotating with Ro = ∞ to rapidly rotating with Ro ≤ 0.3. In order to

consider convection onset behaviour where Ra = Rac, the governing equations were

linearised in Eqs (2.19a)- (2.19c).

The linear and nonlinear equations are solved using open-source frameworks

Dedalus (Burns et al., 2016) and Nek5000 (Nek5000, 2019), respectively. The

resolution of the nonlinear model was tested using a mean kinetic energy balance

error err, as defined in Eq (2.27). When err ≤ 1%, we consider the system

sufficiently resolved (E. King et al., 2012). Figure 2.3 illustrates an example of the
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err measurements for a fixed temperature model. For each boundary condition,

the unique numerical setup is confirmed to be adequately resolved with the same

method.

The governing equations are paired with a set of boundary conditions described

specifically in each chapter and solved using the methods we have discussed. The

fixed temperature, fixed flux, and mixed vertical thermal boundary conditions are

applied in Chapter 3 for both the linear and nonlinear systems.
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Chapter 3

Fixed Temperature and Fixed

Flux Thermal Boundary

Conditions

Chapter 2 provided a mathematical and numerical framework for the exploration

of rotating Rayleigh-Bénard convection (RRBC). The Boussinesq approximation

was applied to the Navier–Stokes momentum equation with an incompressibility

condition and all equations were nondimensionalised with thermal diffusion time,

the system height d as the length scale, and the temperature drop across the system

∆T̃ for thermal scaling, resulting in Eqs (2.11a-2.11c). Numerical solvers Dedalus

(Burns et al., 2016) and Nek5000 (Nek5000, 2019) were introduced for solving linear

and non-linear systems, respectively. In this chapter, the consequences of applying

different thermal boundary conditions to the top and bottom of an RRBC system

are investigated.

3.1 Introduction

The boundaries of a domain impose behavioural conditions on the fluid, dependent

on either material characteristics of the physical domain or mathematical conditions

imposed on a numerical domain. Numerical boundary conditions are often chosen

to best imitate physical conditions. It is well-agreed that no-slip velocity conditions

are experimentally and physically appropriate (Chandrasekhar, 1961). However,

physically appropriate thermal boundary conditions are less easily defined. There
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are limited methods for controlling the boundary conditions of experiments (e.g.

choice of wall material, wall thickness, or external heating/cooling) whereas nu-

merical studies allow for the prescription of mathematical boundary conditions.

Therefore, numerical studies are better suited than experiments to exploring the

differences in fluid behaviour between thermal boundary conditions.

In traditional RRBC, the heat difference between the top and the bottom of

the system drives a flow (Chandrasekhar, 1961). Therefore, it is apparent that

the thermal conditions applied at the top and bottom of the domain are of impor-

tance to the overall understanding of RRBC. In geophysically and astrophysically

motivated numerical RRBC models, commonly applied thermal boundary condi-

tions include fixed temperature, fixed flux and a mixed condition, where a fixed

temperature is applied at the bottom and fixed flux at the top of the domain.

The investigation begins by defining the three most common thermal boundary

conditions applied in numerical RBC and RRBC. It is common to fix the temper-

ature at the upper and lower boundaries . While the fixed temperature condition

can be realistic in experimental studies, where temperature is precisely controlled

(Ouertatani et al., 2008; Verzicco & Sreenivasan, 2008; Kunnen et al., 2010), it of-

ten does not approximate large-scale systems well. Therefore, many astrophysical

systems are numerically modelled with either mixed or fixed temperature condi-

tions (e.g. Glatzmaier & Gilman, 1982; Anders et al., 2020). Additionally, some

studies have found that mixed and fixed flux thermal boundary conditions can be

usefully applied to better represent experimental studies (Verzicco & Sreenivasan,

2008).

Beyond the study of fixed temperature, mixed, and fixed flux thermal conditions

individually, it is necessary to compare results across boundary conditions. In order

to compare each condition, the systems must be equivalently parameterised. Due to

the presence of the thermal scaling term in the definition of the Rayleigh number, it

is necessary to consider different Rayleigh number definitions for different thermal

boundary conditions (Calkins et al., 2015).

From the literature reviewed in Chapter 1, it is clear that there is not full un-

derstanding of the differences in solution form as well as a lack of data for Nusselt

number Nu scaling near to onset of convection when comparing fixed temperature,
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mixed and fixed flux boundary conditions. This chapter aims to fill this research

gap by applying each thermal boundary condition to a cylindrical RBC and RRBC

system. First, each boundary condition is defined along with the appropriate non-

dimensional parameters to understand each condition. Then, a linear stability

analysis is performed to provide insight into the fluid behaviour at the onset of

convection. Then, we describe the tools used to analyse the full non-linear re-

sults resulting from the numerical system previously described in Chapter 2. The

temporal behaviour of each configuration is analysed using Nu time series and

plots of attractors. The time averaged Nusselt number Nu is used to determine

the relationship between heat transport and Rayleigh number Ra for each thermal

condition. The spatial behaviour of the fluid for each thermal boundary condi-

tion is analysed along the horizontal, vertical, and azimuthal axes. We develop a

novel factor which quantifies the deviation of vertical velocity in the vertical axis to

identify the transition from 2D to 3D flow. Finally, the results are presented and

described such that the conclusion adds to the discussion of physically appropriate

thermal boundary conditions for numerical models.

3.2 Boundary conditions

Recalling the dimensionless equations of motion from Chapter 2, Eqs (2.11a-2.11c),

we now define appropriate thermal boundary conditions. Note that dimensional

variables are designated with a tilde. The velocity is no-slip on all surfaces and the

sidewalls are thermally insulated as defined in Eq (2.15) and Eq (2.17), respectively.

The thermal boundary conditions at the top and bottom of the cylinder are either

fixed temperature, fixed flux, or mixed.

3.2.1 Fixed temperature

Fixed temperature boundary conditions require constant temperatures at the top

and bottom surfaces, such that ∆T̃ , the temperature drop across the system, is

constant. The dimensionless temperatures at the boundaries are fixed such that

T = 0 at z = 0.5 and T = 1 at z = −0.5. (3.1)
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Consequently, the appropriate thermal scaling is T̃ = T∆T̃ + T0, where T0 is the

reference temperature, and the appropriate Rayleigh number definition is

RaFT =
αg∆T̃ d3

νκ
. (3.2)

3.2.2 Fixed flux

The fixed flux thermal boundary condition requires the vertical temperature gra-

dient, β̃ = ∂T̃ /∂z̃, to be constant at the boundaries. Hence, the nondimensional

fixed flux boundary condition is defined such that

∇T · n = β = −1 at z = 0.5, 0.5, (3.3)

where β is the nondimensional vertical temperature gradient and n is the outward

facing normal vector. Fixing β = −1 ensures that the conductive state will have

the same linear profile as the fixed temperature case.

For a system with fixed flux boundary conditions, the most appropriate thermal

scaling is T̃ = T β̃d+T0 and consequently, we define the fixed flux Rayleigh number

as

RaFF =
αgβ̃d4

νκ
. (3.4)

3.2.3 Mixed

Applying the fixed flux condition to the top boundary and the fixed temperature

condition to the bottom boundary creates the mixed boundary condition. The

nondimensional mixed boundary condition is defined as

∇T ·n = β = −1 at z = 0.5 and T = 1 at z = −0.5. (3.5)

Unlike the fixed temperature condition, ∆T̃ is not fixed, instead, like the fixed

flux condition, β̃ is fixed at the upper boundary. Therefore, it is appropriate

to use the same thermal scaling and Rayleigh number definition as for the fixed

flux condition. Note that for consistency, whenever β is used, it is the vertical

temperature gradient taken at the upper boundary, β = ∂T/∂z|z=0.5.

52



3.3 Linear stability analysis

3.2.4 Rayleigh number relationship

In order to compare results between systems with different boundary conditions, we

must define a relationship between Rayleigh number definitions. Following Calkins

et al. (2015), defining the Nusselt number as,

Nu =
β̃d

∆T̃
, (3.6)

we may define a relationship between RaFF and RaFT such that,

RaFF = NuRaFT . (3.7)

Note, in the fixed temperature systems, Nu is proportional to the heat flux cross-

ing the upper boundary and in the fixed flux systems, Nu is proportional to the

inverse of the temperature difference across the domain. Further, when the system

is conductive and sufficiently close to convection onset, Nu = 1, and therefore

RaFF = RaFT .

3.3 Linear stability analysis

Considering convection onset, it is appropriate to perform a linear stability anal-

ysis to determine the behaviour of RRBC with each thermal boundary condition.

Therefore, in this section, we follow the linear analysis described in Chapter 2.

Using the numerical solver Dedalus (Burns et al., 2016), the linear governing equa-

tions Eq (2.19a)-(2.19c) are solved in a 2D plane-layer geometry. The results re-

veal the critical Rayleigh number, Rac, at which convection onsets, and the critical

wavenumber, ac, which informs the solution form at onset.

Note that at onset Nu is sufficiently close to 1 that we consider RaFF = RaFT .

Therefore, in this section, we ubiquitously refer to the Rayleigh number as Ra.

Additionally, ac is a useful value to predict the pattern formation near the onset of

convection. We define the critical wavenumber as

ac =
mπ

2Γ
, (3.8)

wherem is the mode number, in other words, the number of convection rolls (Gao &

Behringer, 1984). Note that this approximation was defined for cylindrical domains.
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(a) Ek vs. Rac. (b) Ek vs. ac.

Figure 3.1: Graphs of Rac and ac as functions of Ek in a plane layer with stress-free

velocity conditions, Pr = 1, and either fixed temperature (FT) or fixed flux (FF)

thermal boundary conditions. The results derived from a Dedalus-based eigenvalue

problem for fixed temperature (blue) and fixed flux (red) agree with results from

Calkins et al. (2015), which are shown as solid (dashed) lines for fixed temperature

(fixed flux) conditions.

However, the linear stability analysis is conducted in a plane layer. Consequently,

Rac and ac are approximations of the same parameters in the cylindrical domain.

In later sections, these onset values are used to determine the minimum Ra value

to solve for in the cylindrical, non-linear system.

Previously, it has been found that as Ek approaches 0, the Rac and ac values

converged independent of thermal boundary conditions. This result has proven

accurate in both a plane-layer with stress-free velocity conditions and fixed tem-

perature and fixed flux conditions and a spherical shell with stress-free velocity

conditions for fixed temperature and mixed conditions (Calkins et al., 2015; Clarté

et al., 2021). We seek to extend this result for no-slip velocity conditions within a

plane-layer across fixed temperature, fixed flux, and mixed conditions.

3.3.1 Numerical testing

Before beginning our investigation of thermal boundary conditions, we first com-

pare results from the Dedalus solver with previous literature. In Calkins et al.

(2015), an asymptotic solution is presented for linear RRBC equations in a plane

layer with Pr = 1 and stress-free velocity boundary conditions and either fixed
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3.3 Linear stability analysis

temperature or fixed flux thermal boundary conditions. They found that as Ek

approaches 0, Rac and ac converge regardless of thermal boundary conditions.

In order to replicate these results with the numerical methods described in

Chapter 2, stress-free velocity conditions are applied at the horizontal boundaries

such that

∂u

∂z
= 0,

∂v

∂z
= 0, and w = 0 at z = −0.5, 0.5. (3.9)

Further, we set Pr = 1 and model 10−1 ≥ Ek ≥ 10−5 which corresponds to

10−2 ≤ Ro ≤ 10.

Figure 3.1 shows the linear stability analysis results in two graphs: Figure 3.1a

which shows Rac vs. Ek and Figure 3.1b which shows ac vs. Ek. In both plots, the

asymptotically derived results from Calkins et al. (2015) for the fixed temperature

(fixed flux) thermal boundary condition are plotted as a solid (dashed) black line.

The results from the Dedalus solver are indicated by blue squares (red circles) for

fixed temperature (fixed flux) boundary conditions. Note that, as Ek decreases, it

becomes difficult to distinguish the black dashed and solid line and the blue squares

are difficult to see because they are covered by the red circles.

Figures 3.1a and 3.1b show that the Rac and ac values found with our numerical

method are similar to that of Calkins et al. (2015). Additionally, in both plots of

Figure 3.1, the red circles and blue squares collapse to the same values of Rac

and ac as Ek decreases, showing agreement with Calkins et al. (2015)’s prediction

that onset parameters converge in rapidly rotating systems independent of thermal

boundary conditions. Thus, we suggest that the Dedalus-based numerical solver is

appropriate to conduct further linear stability analysis.

3.3.2 Convergence of linear stability parameters with no-

slip boundary conditions

We apply the parameters and conditions appropriate to the non-linear system to

the linear setup. Hence, an air-like fluid with Pr = 0.7 is considered with no-slip

velocity conditions and 100 ≥ Ek ≥ 10−6. The thermal boundary conditions are

applied respectively as fixed temperature, fixed flux, or mixed, following Eqs (3.1),
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(a) Rac vs. Ek. (b) ac vs. Ek.

Figure 3.2: Graphs of Rac and ac as functions of Ek, calculated for a fluid with

Pr = 0.7 in a plane layer with no-slip velocity conditions and fixed temperature

(FT, blue square), mixed (M, magenta triangle), or fixed flux (FF, red circle)

thermal boundary conditions. Results from Julien et al. (1996) for Pr = 1 (solid

black line) are presented for comparison.

(3.3), and (3.5). Results from similar study – reported in Julien et al. (1996) with

Pr = 1 and fixed temperature thermal boundaries – are presented for comparison.

Figure 3.2 is composed of two plots which respectively show the Rac and ac

values as functions of Ek. Results produced using the Dedalus solver are indicated

with the addition of magenta upward pointing triangles for the mixed boundary

condition. The solid black line indicates Rac and ac calculations from Julien et al.

(1996).

Figure 3.2 indicates that the no-slip Dedalus solver solutions for fixed temper-

ature and Pr = 0.7 closely match the results given in Julien et al. (1996) for the

same system with Pr = 1, which is expected because Pr value does not affect the

Rac value of steady modes. Additionally, it is clear that Rac and ac become inde-

pendent of thermal boundary condition for Ek ≤ 10−3, confirming Calkins et al.

(2015)’s assertion that, when rapidly rotating, convection onset is independent of

thermal boundary condition with the no-slip velocity boundary condition. This is a

novel result both with no-slip and the mixed boundary conditions. The implication

of this result is that in the rapidly rotating astrophysical and geophysical systems

(on the order of Ek = 10−15), convection onset behaviour is not likely influenced

by boundary conditions.
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However, the linear stability analysis is conducted in a plane-layer geometry.

While these results provide a foundation of convection-onset behaviour for each

thermal boundary condition, the Rac and ac values will differ in the cylindrical

geometry used in this thesis for non-linear investigations. In K. Zhang and Liao

(2009) it was found that, in cylindrical geometry for Pr ≤ 0.1 and Ek ≪ 1 with

fixed temperature conditions, the Rac value was generally greater than in a system

of same parameters in a plane layer. Hence, we anticipate greater Rac values in

the non-linear model described in Chapter 2.

3.4 Diagnostic tools

Before obtaining non-linear numerical results, we describe the analysis methods

used to categorise and compare results between thermal boundary conditions.

First, we discuss the definition and use of the Nusselt number Nu, followed by

metrics of time-dependence. Finally, the methods of analysing spatial behaviour

are defined along the horizontal, vertical, and zonal directions.

3.4.1 Nusselt number

Nu values measure heat transport by comparing the total heat transfer to the heat

transfer due to convection. Thus, as Nu increases, the movement of heat due to

convection increases and is related to an increase in fluid motion within a system.

Recall from Eq (3.6) that Nu = β̃d/∆T̃ where β̃ is calculated by averaging the

vertical heat flux at the upper boundary while ∆T̃ is measured by the difference

between the average temperature at the bottom and top boundaries. In order

to measure Nu with dimensionless quantities, we apply the appropriate thermal

scaling to Eq (3.6). With either the fixed flux or fixed temperature system arrive

at

Nu =
β

∆T
(3.10)

where β = ∂T/∂z|z=0.5 and ∆T = T |z=−0.5 − T |z=0.5. The Nu value is calculated

at each time-step, establishing Nu(t) as a function of time.

A time average of Nu(t) is taken once the system has reached a statistically

steady state. The Nu value has a standard deviation σNu which measures the
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Figure 3.3: An example Nu(t) for a fixed flux simulation with Ek = 10−4 and

RaFF = 3.6 × 106 (red). The average value Nu calculated from the time average

is indicated by the black line and the 99% confidence interval of ±3σNu is outlined

by the dotted black lines.

variation of Nu(t) from Nu. We also consider 99% confidence intervals (CI) about

the mean which is defined as Nu± 3σNu.

For example, in Figure 3.3, the time series Nu (t) is plotted in red for a system

with fixed flux conditions and Ek = 10−4 and RaFF = 3.6 × 106. The Nu value

(black line) is determined by the average Nu after time t = 0.5, where a statistically

steady state has been achieved. The standard deviation of the Nu (t ≥ 0.5) is used

to show a 99% confidence interval of 3σNu (dashed lines).

From Figure 3.3, it is clear that the confidence interval contains the majority of

the data points once the series has settled into a dominant state. This demonstrates

the ability of the Nu and σNu to summarise the behaviour of the Nu time series.

The Nu and σNu values for a range of Ek and RaFT values are compiled for

each thermal boundary condition. The Nu value of each simulation is used within

the RaFF = NuRaFT relationship to determine a RaFT . Additionally, the Nu

and σNu results are used to fit a weighted-least-squares logarithmic-scaled line of

the form Nu ∝ Raγ. Using a propagation of error, we also measure the standard

deviation σγ that corresponds with each γ value.
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Paper Ek RaFT Pr Γ γ σγ

E. King et al. (2012) ∞ < 1010 7 0.5− 2 0.284 0.002

J. Cheng et al. (2015) ∞ > 108 4− 7 ≤ 0.125 0.322 0.003

E. King et al. (2009) 10−3 5× 105 7, 10 0.5− 3.12 1.2

E. King et al. (2012) 10−4 < 107 7 0.5− 2 0.8 -

Stellmach et al. (2014) 10−5 < 108 1, 7 - 1.5− 3 -

Table 3.1: Previous literature results for Nu ∝ Ra
γ±3σγ

FT along with parameter

regimes used for the measurements.

As discussed in section 1.2.2, the scaling between Nu and Ra is of interest for

extrapolating behaviour of large-scale flows from the heat transport measurements

of numerical and experimental models. Thus, the results here can be compared to

previous literature. Table 3.1 lists several previous results for predicted γ values

and the corresponding parameter values. Note each of these studies used fixed

temperature thermal boundary conditions.

Though the Pr, geometry, and Γ from the previous studies differs from the

system considered here, which has Pr = 0.7 in a cylindrical domain of Γ = 0.7,

Plumley and Julien (2019) showed that without rotation, shows agreement between

γ values in systems with 0.1 ≲ Γ < 3 and Pr on the order of 1. Additionally, a

similar γ value for non-rotating convection was measured in an RBC system with

Pr = 0.7 and Γ = 0.5 in Emran and Schumacher (2008) and in Johnston and

Doering (2009) for a plane-layer of fluid with Pr = 1 and fixed flux boundaries.

Therefore, we consider the γ values listed in Table 3.1 to be appropriate for com-

parison against the RRBC systems modelled in this thesis.

Thus, we have described the implementation of Nu in our analysis of RRBC in a

cylindrical domain with different thermal boundary conditions. For each time-step

of the numerical solution, a Nu value is calculated using Eq (3.10). The time-

averaged value Nu is measured with standard deviation σNu. For a fixed Ek, we

use a regression to find a line of the form Nu ∝ Raγ. The results for γ are usefully

compared against previous studies listed in Table 3.1. The Nu(t) time series is

further useful to determine the temporal behaviour of a system.

59



3. FIXED TEMPERATURE AND FIXED FLUX

3.4.2 Time-dependence

As described in section 1.2.2, there are several regimes of rotating convection in-

cluding wall-localised, bulk, geostrophic, and turbulent flow. Investigating time-

dependence of flows helps to determine which regime a system exhibits after the

mode has saturated. The temporal behaviour of each system is categorised into

one of the following: conducting, time-independent, oscillatory, quasi-oscillatory, or

temporally chaotic. Chaotic flows often indicate geostrophic or turbulent regimes

while oscillatory and quasi-oscillatory behaviour suggests wall-localised or bulk

flow in rotating systems and time-independence is expected for non-rotating sys-

tems near onset. In this section, we describe the methods for categorising temporal

behaviour.

The determination for conducting systems is simply that Nu = 1 ± 10−4 such

that the variations in Nu(t) over time are negligible. Time-independent solutions

are determined by a sufficiently small standard deviation such that σNu < 10−4,

indicating that Nu does not vary significantly from Nu after the behaviour of the

system has converged. However, rotating systems often have oscillatory behaviour

with small amplitudes resulting in σNu < 10−4 for an oscillatory system. To identify

such instances, time-dependent systems are categorised visually using Nu time

series and attractor plots.

3.4.2.1 Nusselt number time series

By observingNu(t), we visually identify the different categories of time-dependence.

Figure 3.4 demonstrates the three time-dependent forms of Nu (t). In each panel

of Figure 3.4, a Nu(t) time series is plotted for some RaFF with mixed thermal

boundary conditions and Ek = 10−5. The upper panel shows the Nu time se-

ries for an oscillatory system with RaFF = 3.6 × 106. The time series appears as

a single mode sine wave which oscillates in time with a fixed frequency. In the

middle panel, the RaFF = 2.88× 107 system demonstrates a quasi-oscillatory Nu

time series, which is a superposition of several sine modes, i.e. a sine wave in an

envelope. Finally, the bottom panel shows the time series for a RaFF = 4.8× 108

system, which is temporally chaotic. In temporally chaotic flows the Nu time se-
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Figure 3.4: Nu(t) for three different cases of mixed configurations with Ek = 10−5:

(top) an oscillatory time series with RaFF = 2.6× 106, (middle) a quasi-oscillatory

time series with RaFF = 2.88× 107, and (bottom) a temporally chaotic time series

for RaFF = 4.8× 108.

ries changes value irregularly. Sometimes these series are not sufficient to make a

determination, so it is necessary to make an attractor plot.

3.4.2.2 Attractor plots

An attractor plot is made by plotting the values of three variables at three suit-

ably distinct locations over time. Here, T , w, and u are considered at points

PT = (−0.08, 0.38,−0.38), Pw = (0.58,−1.9, 0.29), and Pu = (−0.26, 0.17, 0.13),

respectively. The points must be sufficiently distant from one another such that

the flow properties are not directly related and hence each point may represent the

flow in a distinct area of the domain.

Figure 3.5 illustrates attractor diagrams for flows with mixed thermal boundary

conditions and Ek = 10−5. The colour of each data point indicates the time at

which it was taken. Figure 3.5a shows an oscillatory system which is categorised

based on the consistent, circular pattern of motion. A quasi-oscillatory system,

exemplified in Figure 3.5b, also has a consistent pattern, but is not a strictly circular
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(a) Oscillatory, RaFF = 3.6× 106 (b) Quasi-oscillatory, RaFF = 2.88× 107

(c) Temporally chaotic, RaFF = 4.8× 108

Figure 3.5: Examples of attractor plots from simulations with mixed thermal

boundary conditions and Ek = 10−5 for each category of time-dependence. As

indicated by the colour-bar, the points transition from red to yellow as time passes.

The axes are vertical velocity w at point Pw = (0.58,−0.19, 0.29), temperature T at

point PT = (−0.08, 0.38,−0.38), and x velocity u at point Pu = (−0.26, 0.17, 0.13).
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or oblong in shape. Finally, Figure 3.5c shows an attractor which demonstrates a

temporally chaotic system, characterised by random behaviour with no pattern.

3.4.3 Spatial behaviour

The formation of flow structures is also indicative of convection regimes. In RRBC,

wall-localised convection is characterised by convection rolls present at the walls

only while bulk convection has flow throughout the domain. These regimes, as well

as the time-independent regime of non-rotating convection, tend to have columnar

vertical flow structure. The breakdown of vertical uniformity is indicative of the

transition to geostrophic turbulence. Further, boundary zonal flows may occur

where wall-localised convection coincides with bulk flows of different structures.

To identify such regimes, we investigate horizontal, vertical, and zonal flow forms.

3.4.3.1 Horizontal structure

We analyse horizontal structure by identifying the number and location of convec-

tion rolls within the domain at a fixed z. The dominant mode for each system m is

determined as well as whether the convection is stronger along the wall boundary,

in the bulk of the fluid, or equally strong in the bulk and along the wall.

Figure 3.6 demonstrates the process by which a zonal fast Fourier transform

(FFT) is conducted with a fixed temperature system with Ek = 10−4 and RaFF =

3.2 × 105. First, w at z = 0.3 is considered, as Figure 3.6a illustrates, where red

indicates upward motion and blue indicates downward motion, and white indi-

cates no motion. The dashed lines in Figure 3.6a correspond to the two r of data

considered in Figure 3.6b.

The two sets of data at r = 0.665 and 0.21 are chosen to capture the behaviour of

the system near the wall and in the bulk. Each r of data is individually transformed

with a FFT, and in time-dependent systems, the FFT is averaged over time. Figure

3.6c shows the results of the FFT for r = 0.665 and r = 0.21 in red and blue,

respectively. Note that the FFT amplitude axis has a logarithmic scale. The

number of convection rolls is identified by the maximum of the absolute value of the

FFT amplitude from either ring. For example, Figure 3.6c shows a global maximum

at mode m = 3 for r = 0.665. Thus, the system has m = 3 wall-localised rolls.
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(a) w at z = 0.3. (b) w (z = 0.3) at r = 0.665 and r = 0.21.

(c) FFT at inner (blue) and outer (red) r. (d) Maximum amplitude of < w >θ vs. r

Figure 3.6: The processes for determining horizontal solution forms of a fixed

temperature system with Ek = 10−4, and RaFT = 3.2× 105. (a)-(c): The process

of taking FFTs of w at r = 0.665 and r = 0.21 to determine the dominant mode,

m. (d): The maximum w amplitude at each r used to determine the dominant

radial location of convection. The example shown is and m = 3 wall mode.
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However, further investigation is necessary to conclude on the dominant location

of convection.

In order to categorise the location of the mode, at the wall, in the bulk, or

both, w is again considered at z = 0.3. The maximum amplitude of w is found at

each radius, as shown in Figure 3.6d. The derivative in r in taken, dmax(w)/dr,

to identify maximums. If the first maximum is within r ≥ 0.6, and there are no

other maximums of similar amplitude at r < 0.6, then the system has a wall mode.

When there are other maximums similar to that of the mode closest to the wall,

then the system is categorised as having both bulk and wall modes. When the

maximum of highest amplitude is at r < 0.6, then the system is considered to have

bulk convection. For example, in Figure 3.6d, there is a maximum at r ≥ 0.6 and

another r ≈ 0.5 but with a significantly lower amplitude. Therefore, the system is

categorised as a wall mode.

3.4.3.2 Vertical uniformity

Vertical behaviour, especially in RRBC, is often considered to either be quasi-2D

or 3D. Well known quasi-2D structures include convective cells, which exist for

RaFT ≤ 2RaFTc (Chandrasekhar, 1961), Taylor columns, which typically form at

low RaFT in RRBC. As RaFT increases, the flow becomes increasing irregular along

the vertical axis and transitions into 3D dynamics. In rapidly rotating convection,

this transition may mark the onset of geostrophic turbulence.

The deviation in fluid motion along the vertical axis is measured by a uniformity

factor, Λ, which is defined as a ratio between the change in vertical velocity along

the vertical axis and the total vertical velocity such that

Λ =

(
d

π

)2
∫ 0.4

−0.4

(
∂w
∂z

)2
dz∫ 0.4

−0.4
w2dz

(3.11)

Thus, a vertical velocity which has little dependence on z will have a small Λ and as

a system becomes 3D, Λ increases. Convective cells and Taylor columns have small

Λ values while 3D structures are indicated by large Λ. We find that the transition

from 2D to 3D flow occurs at Λ = 2. Note that the integrals only consider the

domain away from the vertical boundaries and for r ≤ 0.69, which we have chosen

as an arbitrary range to generally avoid interference from boundary layers. This
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(a) A ring-slice diagram at r = 0.685 and

z = −0.3.

(b) A vertical plot at θ = 0.44

Figure 3.7: w visualised vertically for a fixed temperature system with Ek = 10−4

and RaFT = 3.2× 105. The system has Λ = 1.

threshold could be altered based on Ra and Ek values for further accuracy (e.g.

R. S. Long, 2020).

The vertical solution form is also visually investigated with ’ring-slice diagrams’,

which visualise vertical behaviour at some radius and horizontal behaviour at some

height, as exemplified by Figure 3.7a. As well, simple vertical plots at some fixed

θ are useful for visual inspection, as in Figure 3.7b.

3.4.3.3 Zonal flow

The mean zonal flow (MZF) is a measurement of the fluid velocity in the azimuthal

direction and indicates the rotational flow. It is expected that for non-chaotic

systems without rotation, that there is not any mean zonal flow but with rotation

or in a chaotic system, the MZF indicates where the azimuthal flow is strongest.

MZF is here considered as a field such that,

uθt(r, z) =< uθ >θ,t, (3.12)

where < · > indicates averaging over the sub-scripted variables.

To average over θ, the Cartesian data output by the Nek5000 numerical solver

must be converted into cylindrical coordinates. However, to better resolve wall

modes, the mesh is refined at the outer radius and is less dense on the interior.

Therefore, there is a lack of data around r = 0. Hence, interpolation into cylindrical
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Figure 3.8: MZF for a fixed temperature system with Ek = ∞ and Rak = 3× 103,

demonstrating the coordinate conversion error which occurs for r ≤ 0.05.

coordinates causes errors to accumulate around r = 0. The error accumulation is

significant when uθ is low. Thus, the MZF is only considered for r >= 0.05.

Figure 3.8 demonstrates the error by plotting the uθt field of a fixed temperature

system with Ek = ∞ and RaFT = 3 × 103. It is evident that the error has

accumulated to become more significant than the value of uθt, which in this low

RaFT , non-rotating case, would be expected to have an insignificant amplitude.

The minimum radius at which uθt will be considered is indicated by the dashed

line. It is clear that the accumulated errors dissipate before the chosen minimum

r = 0.05.

We also compute a volume average MZF value such that

MZF =
1

V

∫
V

uθdV. (3.13)

3.4.4 Overview

Thus, we have described our methods of analysing heat transport, temporal be-

haviour and spatial structure. We employ Nu as defined in Eq (3.10) for both the

quantification of heat transport and categorisation of time-dependence. With time

averaging, Nu is used to compare heat transport scaling γ results with previous
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literature. Further, attractor plots are employed to complete temporal behaviour

categorisation.

The fluid motion is quantified in the horizontal, vertical and zonal directions.

Horizontally, FFTs are applied to calculating the number m and location of con-

vection rolls within the domain. We use a novel factor Λ, defined in Eq (3.11) to

calculate vertical uniformity. Zonal flow is measured with the MZF as defined in

Eq (3.13). Each of these metrics will allow for the comparison between flows with

different thermal boundary conditions and contextualising results within previous

literature.

3.5 Non-linear results

The analysis methods discussed in section 3.4 are used to interpret the results

of numerically modelled RRBC governed by Eqs (2.11a)-(2.11c). The equations

of motion are solved numerically with Nek5000 (Nek5000, 2019) as described in

section 2.2.2. The boundary conditions from section 3.2 are applied to a cylinder

of aspect ratio Γ = 0.7 and Pr = 0.7. The cylinder is rotating about the vertical

axis using ∞ ≥ Ek ≥ 10−5. For each boundary condition configuration and Ek,

the appropriately defined Ra – RaFT for fixed temperature systems and RaFF for

mixed and fixed flux systems – are modelled from Ra < Rac to Ra = 105Rac.

Table C.1 in Appendix C summarises the ranges of Ek and RaFT simulated for

each thermal boundary condition. Fewer RaFT values were considered for Ek =

10−2 and 10−3 because Ek > 10−4 is weakly rotating at the considered RaFT values

and we primarily focus on the non-rotating and rapidly rotating regimes. Using

methods described in Section 3.4, heat transport, time-dependence, and solution

forms are compared across thermal boundary conditions.

3.5.1 Heat transport scaling

In order to compare between fixed temperature, mixed, and fixed flux thermal

boundary conditions, it is necessary to calculate the RaFT for all systems with

mixed and fixed flux conditions using Eq (3.6). Therefore, we first measure Nu

and σNu for each case. Figure 3.9 shows the Nu-Ra relationship for each boundary
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Figure 3.9: Nu vs the appropriate Ra for each simulated case where for the fixed

temperature (FT, blue) Ra = RaFT and for the mixed (M, magenta) and fixed flux

(FF, red) conditions Ra = RaFF . Marker shape indicates Ek such that inverted

triangles represent Ek = ∞, upright triangles represent Ek = 10−2, squares repre-

sent Ek = 10−3, diamonds represent Ek = 10−4, and circles represent Ek = 10−5.

The error bars indicate the 99% confidence interval calculated from 3σNu.

condition. Each Nu has associated error-bars of ±3σNu, illustrating a 99% CI. The

Ek value of each system is indicated by a marker shape, listed in the figure legend.

The fixed temperature configurations are shown in blue, the mixed in magenta,

and fixed flux in red.

It is clear from Figure 3.9 that for each Ek value, the systems have similar Nu

values for low Ra, though as Ra increases, the deviation in Nu value increases

between the fixed temperature configuration and the mixed and fixed flux systems.

Additionally, it is seen in the fixed temperature and mixed cases that for Ek > 10−3,

Nu−Ra scales similarly to Ek = ∞. To quantify these observations γ is calculated

for each boundary condition and Ek such that Nu ∝ Raγ.

Table 3.2 shows the γ and σγ measurements for each thermal boundary condi-

tions using their respective Ra. Note that no scaling was able to be calculated for

Ek = 10−3 due to a paucity of Ra values simulated. Comparing across thermal

boundary conditions for Ek = ∞, 10−4 and 10−5, respectively, it is clear that the

mixed and fixed flux condition scale similarly while fixed temperature has signifi-

cantly different γ values.
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BC Ek γ σγ γ ± 3σγ

FT ∞ 0.296 0.001 0.292− 0.300

10−2 0.311 0.006 0.292− 0.330

10−4 0.564 0.092 0.289− 0.8389

10−5 0.889 0.145 0.454− 1.326

M ∞ 0.235 0.001 0.232− 0.237

10−2 0.227 0.003 0.218− 0.236

10−4 0.435 0.008 0.411− 0.458

10−5 0.499 0.043 0.368− 0.629

FF ∞ 0.234 0.007 0.215− 0.254

10−4 0.426 0.030 0.336− 0.516

10−5 0.512 0.068 0.308− 0.716

Table 3.2: Nu−Ra scaling calculations for each Ek value and boundary condition:

fixed temperature (FT), fixed flux (FF), and mixed (M). The γ value is calculated

such that Nu ∝ Raγ. The 99% CI is presented as γ ± 3σγ. For fixed temperature,

Ra = RaFT is used and for mixed and fixed flux, Ra = RaFF is used.

To compare between boundary conditions, it is necessary to compute RaFT

with Eq (3.7) for the mixed and fixed flux boundary condition cases. The results

are presented in Figure 3.10 where Nu is plotted against RaFT for each thermal

boundary condition. Results are illustrated for fixed temperature (FT, blue), fixed

flux (FF, red), and mixed (M, magenta) boundary conditions. Each Ek value is

depicted by a respective marker shape: Ek = ∞ by inverted triangles, Ek = 10−2

by upright triangles, Ek = 10−3 by square, Ek = 10−4 by diamonds, and Ek = 10−5

by circles. The black dashed line indicates the Nu − RaFT scaling, γ = 0.285 for

non-rotating systems (Johnston & Doering, 2009; E. King et al., 2012). The black

dotted lines indicate 1.5 ≥ γ ≥ 3, the range reported in Stellmach et al. (2014)

for Ek = 10−5 with Pr = 1 in a cuboid domain with fixed temperature boundary

conditions.

The γ value is measured such that, Nu ∝ RaγFT . Table 3.3 reports the γ and

σγ values for each Ek and thermal boundary condition: fixed temperature (FT),

mixed (M), and fixed flux (FF). Note that γ for Ek = 10−2 and 10−3 are not

reported due to a paucity of data, and lack of previous literature regarding the Nu
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Figure 3.10: Nu vs RaFT for fixed temperature (FT, blue), mixed (M, magenta),

and fixed flux (FF, red), thermal boundary conditions. The marker shape indicates

Ek such that inverted triangles represent Ek = ∞, upright triangles represent

Ek = 10−2, squares represent Ek = 10−3, diamonds represent Ek = 10−4, and

circles represent Ek = 10−5. The black lines indicate γ from previous literature.

The dashed line with γ = 0.285 is a result for non-rotating convection and the solid

line is γ = 0.8 for Ek = 10−4 (E. King et al., 2012). The dash-doted line is γ = 1.2

for Ek = 10−3 (E. King et al., 2009). The dotted and lines with γ = 1.5 and 3,

respectively, show the range predicted for Ek = 10−5 (Stellmach et al., 2014).
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scaling for weakly rotating systems for comparison.

BC Ek γ σγ γ ± 3σγ

FT ∞ 0.296 0.001 0.292− 0.300

10−2 0.311 0.006 0.292− 0.3305

10−4 0.564 0.092 0.289− 0.839

10−5 0.889 0.145 0.454− 1.33

M ∞ 0.306 0.001 0.303− 0.310

10−2 0.293 0.005 0.278− 0.309

10−4 0.768 0.024 0.695− 0.841

10−5 0.989 0.172 0.472− 1.51

FF ∞ 0.306 0.011 0.273− 0.340

10−4 0.740 0.091 0.467− 1.01

10−5 1.035 0.284 0.185− 1.89

Table 3.3: γ calculations of the form Nu ∝ RaFT for each Ek value and boundary

condition: fixed temperature (FT), fixed flux (FF), and mixed (M). The 99%

confidence interval of the scaling is presented as γ ± 3σγ.

From previous literature, as listed in Table 3.1, it is expected that without ro-

tation, γ = 0.285± 0.006 in the range of RaFT which we have modelled. A visual

inspection of Figure 3.10 suggest that the fixed temperature case scales quite well

with γ = 0.285. In comparison, Table 3.3 shows that the non-rotating fixed flux

case is the only condition which has an overlapping 99% CI with the literature,

though it’s γ value is steeper than that of the fixed temperature case. Each bound-

ary condition results in γ > 0.285. The differences between the literature and

current study may be due to differences in line-fitting to determine γ. Previous

literature has favoured a linear regression while the present study has employed a

weighted-least-squares regression, which includes the σNu in the determination of

γ and tends to increase σγ. Some differences may also be due to a difference in Pr

values and Γ which restricts a solutions. Further, the Ra range used here is low

in comparison to many of the studies listed in Table 3.1. It is worth noting that

Anders et al. (2020) also reported a deviation of both fixed temperature and mixed

condition non-rotating systems deviating slightly from the predicted γ = 0.285.

From Table 3.3, it is evident that the γ values of the mixed and fixed flux
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configurations are more similar than that of the fixed temperature case. However,

the γ values are generally similar. This result generally agrees with Anders et al.

(2020)’s conclusion that the mixed and fixed temperature boundary conditions have

similar, though not exactly the same, γ and expands upon the conclusion to find

that systems with a fixed flux thermal boundary condition will also have a similar

scaling. Additionally, it is shown that fixed flux and mixed condition systems scale

more closely to each other than to fixed temperature systems.

Considering RRBC, Table 3.3 shows that the fixed flux and mixed boundary

conditions have a steeper γ than the fixed temperature condition. However, due

to rotation, Nu varies more greatly as it oscillates, and thus σNu is larger than in

the non-rotating RBC cases. Considering Ek = 10−4, in E. King et al. (2012) it

was found that γ = 0.8 for RaFT < 107 with Pr = 7 in a cylindrical geometry. A

visual inspection of Figure 3.10 shows that the results presented here are a close

match for the range RaFT < 107. In concurrence, Table 3.3 shows that all thermal

boundary conditions include γ = 0.8 in their 99% CIs, though the γ of fixed flux

and mixed thermal boundary conditions are more similar to the approximation

from E. M. King et al. (2010) than the fixed temperature case. The difference

between boundary conditions is likely due to RaFT > 107 being included in the

γ calculation for fixed temperature, and not for fixed flux or mixed. As observed

in (Plumley & Julien, 2019), there is a threshold of Ra above which Nu scaling

behaviour approaches that of the non-rotating systems. Hence, the inclusion of

a larger Ra value in the calculation of γ for one boundary condition but not the

others may skew the result.

The most rapid rotation we consider is Ek = 10−5. Stellmach et al. (2014),

found that for Ek = 10−5, RaFT ≥ 108, and Pr = 1, 1.5 ≤ γ ≤ 3 with fixed

temperature boundary conditions. Figure 3.10 shows that for RaFT ≥ 107 all of

the boundary conditions appear to scale within the range of 1.5 ≤ γ ≤ 3. However,

Table 3.3 shows that only fixed flux and, marginally, mixed boundary conditions

have γ ranges which overlap with the scaling predictions. This is likely due to the

inclusion of RaFT < 107 in the calculation of γ. Between boundary conditions, the

fixed flux and mixed conditions scale more similarly to one another than to the
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fixed temperature condition, though they are all lie within each other’s 99% CIs.

Further, they each follow the pattern of increasing scaling steepness at RaFT = 107.

Overall, the γ measurements presented in Table 3.3 do not align with results

from the previous literature summarised in Table 3.1. These differences are likely

due to several factors: using weighted-least-squares regression rather than linear re-

gression, a different Γ domain, and considering lower RaFT and different Pr values

than the literature. Between thermal boundary conditions, the Nu − RaFT rela-

tionship generally collapse onto a common γ value for each Ek while RaFT is low

enough that the sytem is rotationally affected. However, fixed flux and mixed con-

ditions scale more closely than fixed temperature; these differences will be due to

different solution forms. The agreement of Nu−RaFT behaviour between thermal

conditions supports the use of universal scaling laws to predict Nu across exper-

imental, numerical, and large-scale systems. Therefore, Nu scaling laws, such as

those presented in Plumley and Julien (2019), which considered only fixed temper-

ature boundary conditions, can be applied more widely to systems with boundaries

more similar to fixed flux or mixed conditions. Indeed, in Currie et al. (2020) and

(Barker et al., 2014), different methods of internal heating and cooling were inves-

tigated in rotating Cartesian domains and yielded similar γ measurements as those

reported in Plumley and Julien (2019).

3.5.2 Time dependence

While there are important similarities in Nu between fixed temperature, mixed,

and fixed flux configurations, Nu does not provide insight into the motion of the

fluid. As described in section 3.4.2, Nu time series and attractors are used to

categorise temporal behaviour into five categories: stable, time-independent, oscil-

latory, quasi-oscillatory, temporally chaotic.

Figure 3.11 summarises the time dependence results for each Ek value. The

panels, from left to right, show results for Ek = ∞, Ek = 10−4, and Ek = 10−5

each as functions of RaFT . Boundary conditions are indicated from left to the right

such that: fixed temperature conditions are blue, mixed conditions are magenta,

and fixed flux conditions are red. The marker shape shows the designated time

dependence category for each system: either conducting (circle), time-independent
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Figure 3.11: Time dependence results for RBC systems with fixed temperature

(FT, blue), mixed (M, magenta), or fixed flux (FF, red) boundary conditions for

all RaFT modelled with Ek = ∞, 10−4, and 10−5. Each system is categorised as ei-

ther: conductive (circle), time-independent (diamond), oscillatory (square), quasi-

oscillatory (upward pointing triangle), or temporally chaotic (downward pointing

triangle).

75



3. FIXED TEMPERATURE AND FIXED FLUX

(diamond), oscillatory (square), quasi-oscillatory (upward triangle), or temporally

chaotic (downward triangle).

Beginning with the non-rotating results presented in Figure 3.11, the onset of

convection occurred more uniformly than predicted in section 3.3. It was expected

from linear stability analysis in a plane layers, convection onsets at lower RaFT for

fixed flux systems than mixed and fixed temperature boundary condition systems.

However, we find that RaFTc is nearly constant for each condition, decreasing only

slightly in fixed flux systems. This is likely due to affects from the small aspect-

ratio geometry. D. K. Edwards (1969) and Buell and Catton (1983b) found that

as Γ decreases, Rac increases. Hence, we believe that without rotation, the effect

of sidewalls is stronger than the effect of the thermal boundary condition at onset.

For RaFT > RaFTc, the non-rotating system retains time-independence after

saturation while RaFT < 50RaFTc, regardless of thermal boundary condition. Fig-

ure 3.11 shows that fixed flux systems are temporally chaotic at lower RaFT than

mixed boundary condition systems. Additionally, mixed boundary condition sys-

tems have oscillatory or quasi-oscillatory behaviour in the absence of rotation while

fixed flux thermal boundary conditions have a smaller range of RaFT between time-

independence and temporal chaos for which an only oscillatory behaviour develops.

This result expands the conclusion presented in Anders et al. (2020) that systems

with mixed thermal boundary conditions remain non-chaotic to higher RaFT values

than fixed temperature system, to show that mixed thermal boundary condition

systems also retain time-independence to higher RaFT values than fixed tempera-

ture boundary conditions.

Considering rotation, the onset behaviour shown in Figure 3.11 concurs with

the conclusion section 3.3, that as Ek decreases, RaFTc converges regardless of

thermal boundary condition. For RaFT ≥ RaFTc, convection ubiquitously becomes

oscillatory, due to the rotation effects. Quasi-oscillatory systems are less common

and only occur in the transition to temporal chaos. Fixed flux systems becomes

chaotic at the lowest RaFT values, closely followed by fixed temperature thermal

boundary conditions, while mixed boundary condition systems are sub-chaotic to

higher RaFT values.
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Overall, the configuration with mixed thermal boundary conditions refrains

from temporal chaos to the highest RaFT values, both with and without rota-

tion, in comparison with configurations with either fixed temperature or fixed flux

boundary conditions. In future studies this work could be expanded by categoris-

ing types of temporal chaos. The transitions between temporal behaviour can be

better understood by investigating the form of convection taken in each system.

3.5.3 Spatial structures

Following the methods described in section 3.4.3, we analyse the horizontal, ver-

tical and zonal spatial structures of fluid motion. From the horizontal behaviour,

convection can be categorised into wall modes or bulk modes. Vertical flow is

categorised as either vertically columnar, and therefore quasi-2D, or with varia-

tion in the vertical, and therefore 3D. The tendency of a flow toward 2D or 3D

behaviour is an important distinction between rotationally-affected, geostrophic,

and rotationally-unaffected flows. Finally, zonal behaviour illuminates the effects

of wall boundaries and rotation on fluid motion.

3.5.3.1 Horizontal structures

Beginning with an investigation of horizontal behaviour, the analysis methods de-

scribed in section 3.4.3.1 are applied to determine the number of convection rolls

m and the location of the strongest convective motion away from the midpoint at

z = 0.3. Each panel in Figure 3.12 contains results for each Ek value: from left

to right, Ek = ∞, Ek = 10−4, and Ek = 10−5. Within each panel, the vertical

axis shows the RaFT of each system and the horizontal axis designates the thermal

boundary conditions: from left to right, fixed temperature (FT), mixed (M), and

fixed flux (FF). The colour of each marker indicates m and the shape indicates if

the flow is wall-localised (square), in the bulk (circle), or both (diamond). The

dotted (dashed) line indicates where wall-localised (bulk) convection is predicted

to onset (Ecke & Niemela, 2014; Favier & Knobloch, 2020).

The left-most frame of Figure 3.12 indicates that non-rotating systems are ubiq-

uitously convecting in the bulk of the fluid with mode m = 1. The bulk convection

behaviour when Ek = ∞ is expected, because wall-localised convection is primarily
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Figure 3.12: The number m of convection rolls and their location in the domain

for (from left to right) Ek = ∞, 10−4, 10−5. The shapes represent the location

of the convection, either at the walls (square), in the bulk (circle) or both (dia-

mond). The colours represent the number of convection rolls m, as described by

the colour bar. The dotted (dashed/ dot-dashed) line indicates where wall-localised

(bulk/geostrophic) convection is predicted to onset (Favier & Knobloch, 2020).
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caused by rotation (Chandrasekhar, 1961; H. Goldstein et al., 1994). Regarding

the dominant mode, the linear stability analysis in section 3.3 predicted that, at

onset, non-rotating convection with fixed temperature and mixed thermal bound-

ary conditions would each have wavenumber a = 3.1 and 2.5, respectively. Both

wavenumbers correspond to an m = 1 mode through Eq (3.8). The fixed flux con-

dition caused systems to onset with a = 0, and therefore m = 0. However, these

modes are only possible in a plane layer with periodic boundary conditions. Hence,

the difference for the fixed flux configuration is due to the effects of geometry and

aspect ratio (Charlson & Sani, 1970; Buell & Catton, 1983b).

To visualise the solution form we plot w at z = 0.4 and t = 3 for two fixed

flux systems in Figure 3.13. The left plot shows a time-independent solution. On

the right, a deformation from a clear m = 1 state is evident as the RaFT value is

increased and the system becomes time-dependent. These solution forms are also

representative of the non-rotating fixed temperature and fixed flux systems in the

transition to time-dependence and chaotic behaviour. Comparing the horizontal

solution form of w between different thermal boundary conditions, it is evident that

at RaFT = 105, fixed temperature, mixed, and fixed flux configurations all have the

same m = 1 form. However, as RaFT increases for each boundary condition, differ-

ences in w behaviour appear. As reflected in Figure 3.11, the mixed configuration

maintains a less chaotic solution form in w as RaFT increases, while the fixed flux

and fixed temperature boundary conditions cause systems to demonstrate chaotic

behaviour for RaFT = 2× 105, and RaFT = 3× 105, respectively.

Considering systems with rotation, the centre and right panels of Figure 3.12

show the dominant mode and location of the mode for Ek = 10−4 and 10−5.

At onset, wall modes are ubiquitous, as anticipated (Favier & Knobloch, 2020).

Visually comparing Figure 3.11 to Figure 3.12, it is evident that the transition to

chaotic behaviour coincides with the transition to bulk convection.

The onset of wall-localised convection, RawFTc and bulk convection, RabFTc is

predicted to be

RawFTc =
π2

(
6
√
3
)1/2

Ek
, (3.14)

and

RabFTc =
3 (π2/2)

2/3

Ek4/3
, (3.15)
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(a) FF, RaFT = 1.6× 105 (b) FF, RaFT = 2× 105

Figure 3.13: w plotted at z = 0.3 and 2.5 ≤ t ≤ 3.5 for Ek = ∞, such that red

indicates upward motion and blue indicates downward motion.

respectively, for any Pr and sufficiently large aspect-ratio, Γ (Chandrasekhar, 1961;

Clune & Knobloch, 1993; Liao et al., 2006; Favier & Knobloch, 2020). Note that

Favier and Knobloch (2020) presented results with Pr = 1 and Γ = 0.75 which met

the predictions of Eqs (3.14) and (3.15). For Ek = 10−4 and 10−5, respectively,

RawFTc ≈ 3× 105 and RawFTc ≈ 3× 106 and RabFTc ≈ 2× 106 and RabFTc ≈ 4× 107.

These approximations for wall-localised and bulk convection onset are shown in

Figure 3.12 by dotted lines and dashed lines, respectively.

Figure 3.12 shows that, for both Ek = 10−4 and Ek = 10−5, the onset to wall-

localised convection meets the predicted RawFTc values. For Ek = 10−4, both fixed

flux and mixed configurations transition to bulk convection for lower RaFT values

than predicted by Eq (3.15). Systems with fixed temperature boundary conditions

were not considered at the same RaFT where fixed flux and mixed condition systems

develop bulk convection, so no conclusion can be made about the fixed temperature

boundary condition. Most likely, the deviation from RabFTc is due to the moderate

Ek value which is not asymptotically small.

For Ek = 10−5, Figure 3.12 shows that the predicted RabFTc value is accurate

for the fixed temperature and mixed configurations. However, the fixed flux con-

figuration causes wall-localised convection for higher RaFT values than mixed and

fixed temperature conditions, which is concurrent with the transition to chaotic

behaviour observed in the previous section. Figure 3.14 demonstrates the differ-
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(a) FT, RaFT = 5.67× 107 (b) M, RaFF = 4.2× 107

(c) FF, RaFF = 3.9× 107

Figure 3.14: Comparison of vertical velocity, w between boundary conditions (fixed

temperature (FT), mixed (M), and fixed flux (FF)) for RaFT ≈ 4× 107 at z = 0.4

for 2.5 ≤ t ≤ 3.5. Blue indicates downward velocity and red indicates upward

velocity.

ent horizontal solution forms around the predicted RabFTc = 4 × 107. Figures

3.14a, 3.14b, 3.14c show the fixed temperature, mixed, and fixed flux systems with

RaFT = 5.7× 107, RaFT = 4.2× 107, and RaFT = 3.9× 107, respectively.

Figure 3.14 shows that there is some flow in the bulk of each system. However,

the fixed flux system has slightly weaker motion in the bulk than near the walls and

is consequently categorised as a wall mode. Despite this categorisation, it is clear

that the predicted onset of bulk convection is generally correct for the Ek = 10−5

cases. We also see that for large RaFT values, that m is no longer representative

of the number of convection rolls, but rather an indication of the horizontal scale

of the flow structures.
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Figure 3.15: Λ calculated from Eq(3.11) vs. RaFTsc for fixed temperature (blue),

mixed (magenta), and fixed flux (red) and Ek = ∞ (downward triangle), 10−4

(diamond), and 10−5 (circle). The dashed black line shows where Λ = 2, which

indicates the transition from 2D to 3D flow.

The dominant mode number is variable across Ek and boundary conditions.

For Ek = 10−5, wall modes onset with m = 4. Onset predictions vary. X. Zhang

et al. (2021) suggested that at onset, for Γ = 0.5 and Γ = 1, m = 4Γ. Which could

be applied at present as Γ = 0.7 is in that range. While K. Zhang and Liao (2009)

claims that at onset, m = πΓ
(
2 +

√
3
)1/2 ≈ 6Γ as Ek → 0. In this case, both of

the predictions are approximately correct for Ek = 10−5 because they would each

necessarily round the result to the nearest integer, thus, m = 4. Hence, we see

that the boundary condition does not affect the solution form at onset in rapidly

rotating convection.

3.5.3.2 Vertical uniformity

After the onset of bulk convection, the flow of rotating systems can enter a geostrophic

regime where quasi-2D flows give way to fully 3D turbulence due to a balancing

of the rotational and buoyant forces (Sprague et al., 2006). In Ecke and Niemela

(2014), the onset to geostrophic turbulence is predicted at a minimum value of

RagFTc = 3RabFTc. However there are several other suggested transition RaFT at

RagFTc =
1.4

Ek7/4
(E. King et al., 2009) or RagFTc =

10
Ek3/2

(E. King et al., 2012). For
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Figure 3.16: Plots of vertical velocity, w at r = 0.685 and z = −0.3 for RaFTsc ≈
4 × 102 with Ek = ∞. The blue indicates downward motion and red upward,

with white indicating no movement. The fixed flux configuration is shown for

RaFT = 6.6× 105 with Λ = 3.

Ek = 10−4, which is a larger Ek than is generally studied for geostrophic behaviour,

8×106 < RagFTc < 2×107. When Ek = 10−5, we consider 3×108 < RagFTc < 8×108,

which corresponds to Ro ≤ 0.33 and the systems are consequently in the rapidly

rotating regime. As seen in Figure 3.11, few of our simulated systems reach this

predicted regime. Hence, we expect that relatively few systems will display 3D flow

with Λ > 2.

In order to identify the transition from 2D to 3D flow, a vertical uniformity

factor Λ, as described in section 3.4.3.2, is calculated. Figure 3.15 shows the Λ

values, calculated using Eq (3.11), for each Ek value and boundary condition as

a function of the supercriticality, RaFTsc = RaFT/RabFTc. As described in Section

3.4.3.2, Λ ≲ 2 indicates relatively little vertical variation. As Λ increases, the

vertical dimension becomes important in the flow.

Without rotation, it is clear from Figure 3.15 that 2D flow is maintained for

significantly larger RaFTsc value than with rotation, as Λ does not surpass 2 until

RaFTsc ≥ 102. Additionally, for Ek = ∞, all thermal boundary conditions appear

to behave similarly. It is useful to visualise an example solution for each boundary

condition, here for RaFTsc ≈ 4× 102, to understand three-dimensional flow.

Figure 3.16 compares the vertical velocity, w, for Ek = ∞ systems at r = 0.685

and z = −0.3. The fixed flux boundary condition system has RaFT = 6.6×105 and

Λ = 3. Though the solution form is not exactly consistent across thermal boundary
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(a) Ek = 10−4, RaFT = 1.44× 107 (b) Ek = 10−5, RaFT = 1.2× 108

Figure 3.17: Vertical velocity, w, at z = −0.3 and r = 0.665 for fixed temperature

cases with RaFTsc > 3× 101.

condition, the fixed flux case is of interest because it exemplifies the boundary

behaviour at the upper boundary. The fixed β = −1 at the upper boundary causes

downward velocity along the walls and near the top as the temperature difference

forces fluid upward.

In rapidly rotating convection, Λ measurements agree between thermal bound-

ary conditions. Figure 3.15 shows that, with rotation, for fixed temperature bound-

ary conditions, the Λ factor increases rapidly as RaFTsc approaches 10
2. However,

there are no data points for the fixed flux or mixed configurations at RaFTsc > 30.

Thus, Figure 3.17 compares the vertical velocity, w, at r = 0.665 and z = −0.3 for

the two highest Λ systems with fixed temperature boundary conditions. In Figure

3.17a, which shows a system with Ek = 10−4 and RaFTsc = 6 × 101, it is clearly

very three-dimensional with many changes in velocity direction along the vertical

plane, validating it’s notably high Λ factor. However, Figure 3.17b, which shows

vertical velocity for a system with Ek = 10−5 and RaFTsc = 5 × 101, appears at

first glance to have columnar-like behaviour, not unlike that shown in systems with

much lower Λ factors (such as seen in Figure 3.17a). Upon further inspection, it

is clear that though the system has more columnar structure than that of Figure

3.17a, the columns are significantly broken up in the vertical and tend to lean in

the horizontal, breaking vertical uniformity expected of columnar behaviour and

warranting a large Λ factor.
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In Figure 3.15, it is of interest to note the RaFTsc value at which the Λ factor

indicates the transition from 2D to 3D flows, especially in the rotating cases, for

comparison with geostrophic turbulence onset predictions. Without rotation, 3D

flow begins around RaFTsc > 102, which corresponds to RaFT = 3× 105. For both

Ek = 10−4 and 10−5, the transition occurs around RaFTsc = 101 which corresponds

to RaFT ≈ 2.5×106 and RaFT ≈ 2.8×107, for the respective rotation rates. In both

instances, the transition from 2D to 3D occurs at lower RaFT than the transitions

predicted by E. King et al. (2009) and E. King et al. (2012), Ecke and Niemela

(2014). This suggests that the aspect ratio of the system rather than the thermal

boundary condition has a greater effect on the transition to geostrophic turbulence.

3.5.3.3 Zonal flow

Our final mode of investigation is the zonal solution form in the context of boundary

zonal flows (BZF) which are wall-localised states coinciding with a rotation-affected

bulk flow (Ecke et al., 2022). BZF is characterised by an azimuthally-periodic veloc-

ity along the walls of a given mode rotating anti-cyclonically, but time-independent

in the precessing frame. Observation of the MZF as described in Section 3.4.3.3

aids in identifying wall-local modes which are independent of coinciding bulk flows.

For low RaFTsc without rotation, the mean-zonal-flow was negligible, as shown

in Figure 3.18. Figure 3.18 shows the MZF value as a function of RaFTsc. The

marker shape indicate the Ekman number such that circles represent systems with

Ek = ∞, diamonds represent systems with Ek = 10−4, and square represent

systems with Ek = 10−5. The colour of each marker shows if the simulation has

fixed temperature (FT, blue), mixed (M, magenta), or fixed flux (FF, red) boundary

conditions. Figure 3.18 shows a rapid decrease in MZF , which indicates the fluid

is moving increasingly quickly in the clockwise direction. As expected, Ek = 10−5

flows faster at lower RaFTsc.

It is evident that with and without rotation, the thermal boundary condition

does not affect the MZF value. Hence, we suggest that boundary flows are not

qualitatively affected by the thermal boundary condition. This is reasonable as

the uθt field is strongest at the wall due to the wall-localised nature of rotating
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3. FIXED TEMPERATURE AND FIXED FLUX

Figure 3.18: The MZF value for each boundary condition – fixed temperature

(FT,blue), mixed (M,magenta), or fixed flux (FF, red) – and Ek – ∞ (circle), 10−4

(diamond), 10−5 (square)– as a function of RaFTsc.

convection and therefore the thermal condition of the sidewall is more important

to the zonal flow dynamics than the boundary conditions in the vertical.

3.6 Summary

In summary, we have thoroughly investigated RRBC dynamics bounded with either

fixed temperature, mixed, or fixed flux thermal conditions. Previous linear stability

analyses in Calkins et al. (2015) and Clarté et al. (2021) found that with stress-free

velocity conditions, the Rac and ac values become independent of thermal boundary

condition as Ek approaches 0. We provide evidence that this result also holds true

for with no-slip velocity conditions and that, in a plane-layer, Rac and ac converge

for Ek < 10−3. Hence, at the onset of rapidly rotating RBC in a plane-layer, the

thermal boundary condition is not important.

We then consider non-linear RRBC in a cylindrical domain with Γ = 0.7 and a

fluid with Pr = 0.7. To compare between thermal boundary conditions, we measure

Nu and find RaFT value for each system using Eq (3.7). The conversion causes all
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boundary conditions to follow a similar Nu ∝ RaγFT scaling for each respective Ek.

However, none of our results met the predicted γ values from previous literature

listed in Table 3.1. We attribute the deviation in values due to differences in

calculating γ – in our case a weighted-least-square fitting while previous studies

tend to use linear-regressions– and the range of RaFT values modelled along with

the domain geometry and Γ, off of which vary in comparison to previous studies.

Regardless, the consistency of our results suggests that universal scaling laws, such

as those discussed in Plumley and Julien (2019), are applicable independent of

thermal boundary condition and perhaps are independent of internal heat and

cooling methods as well (Currie et al., 2020, e.g.[).

Without rotation, we see that convection onset and bulk flow structure is not

generally dependent on thermal boundary condition. The main effect we have

observed is that the mixed condition causes a system to transition to temporal

chaos at higher RaFT values than fixed flux or fixed temperature conditions. This

is concurrent with results found in Anders et al. (2020) for non-rotating fixed

temperature and mixed boundary condition systems. We extend this result to

rapidly rotating RBC, where it is shown that the mixed condition causes chaotic

behaviour to onset at higher RaFT than fixed temperature and fixed flux cases.

Investigation into the solution forms did not find significant differences between

boundary conditions at onset. This suggests that the results from our linear stabil-

ity analysis – that convection onset behaviour is independent of thermal boundary

condition for low Ek– is also appropriate in a small Γ cylindrical domain without

rotation. Indeed our results are in agreement with the suggestion of Vieweg et al.

(2021), which observed that the scale of non-rotating convection grows to fit the

domain. With rotation, predictions from literature (Chandrasekhar, 1961; Favier

& Knobloch, 2020) for the onset of wall-localised convection and bulk convection

match well with the the results shown across boundary conditions. The only ex-

ception being the fixed flux boundary condition in the case of Ek = 10−5 which

appears to resist bulk convection to higher RaFT values. However, Figure 3.14

shows that bulk convection has begun in the fixed flux case, but is weaker than

in the fixed temperature and mixed configurations. The mode of convection near

onset met expectations for the Ek = 10−5 cases (K. Zhang & Liao, 2009; X. Zhang
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et al., 2021). However, Ek = 10−4 did not onset to a unanimous mode and defied

predictions, likely because it has a slower rotation than the predictions are intended

for.

Geostrophic turbulence, which is a regime in rotating convection which is dom-

inated by 3D flow, is considered. Using the Λ factor defined in Section 3.4.3.2, the

vertical uniformity is used to determine when the solution form transitions from

rotation-affected to geostrophic turbulent flow as indicated by a vertically non-

uniform solution in rotating cases (Sprague et al., 2006). However, Figure 3.15,

indicates that for all boundary conditions and rotation rates the onset of 3D flow

occurs before the predicted onset of geostrophic convection (E. King et al., 2009;

E. King et al., 2012; Ecke & Niemela, 2014). This is not unusual, as 3D plume

structures have been observed to precede geostrophic turbulence for systems with

Pr < 3 in rotating cylindrical domains (J. S. Cheng et al., 2018).

The mean-zonal flow (MZF ) is also measured in order to investigate boundary

flows. As expected, any azimuthal velocity, uθ, is negligible for systems without

rotation, regardless of boundary condition and the more rapid rotation results in

stronger MZF . We also find that it is evident that the development of boundary

zonal flows is independent of thermal boundary condition.

In conclusion, the choice of fixed temperature, fixed flux, or mixed thermal

boundary condition on the top and the bottom of an RBC or RRBC system, does

not significantly affect the form of the solution to moderately high RaFT . It is very

important to use the Nu−Ra relationship defined in Calkins et al. (2015) in order

to compare between boundary conditions and this in fact will cause the Nu scaling

of all boundary conditions to collapse onto a single scaling for each Ek, as seen in

Figure 3.10. The most significant difference, shown in Figure 3.11, in behaviour

is the mixed thermal boundary condition’s resistance to temporal chaos as fixed

temperature and fixed flux systems become unstable at lower RaFT , which is in

alignment with initial results found in Anders et al. (2020). Overall, the numerical

thermal boundary conditions fixed temperature, mixed, and fixed flux behave very

similarly, especially as RaFT increases and Ek decreases and thus may reasonably

be used interchangeably in numerical studies high RaFT values.
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Chapter 4

Robin Condition

In Chapter 3, we provided evidence in support of the equivalence of fixed temper-

ature, fixed flux, and mixed (where the top boundary is fixed flux and the bottom

boundary is fixed temperature) boundary conditions in rapidly rotating Rayleigh–

Bénard convection (RRBC) for sufficiently large Rayleigh numbers and small Ek-

man numbers in a small aspect ratio cylindrical geometry. While previous studies

have chosen fixed flux or mixed boundary conditions for modelling astrophysical

systems and fixed temperature conditions for modelling experimental systems, the

similarities between numerical thermal boundary conditions observed in Chapter 3

indicate that the fixed temperature boundary condition is sufficient for modelling

dynamics in systems with the fixed flux and mixed conditions in rapidly rotating

RBC models. Thus, the choice of thermal boundary condition between the three

configurations considered in Chapter 3 is not the dominant factor in the interpreta-

tion of the relationship between numerical models and physical systems. However,

in experimental set-ups and natural systems, the thermal behaviour at a boundary

is rarely purely fixed temperature or fixed flux. Therefore, in this chapter, a novel

investigation is undertaken using the Robin boundary conditions which straddles

the fixed temperature and fixed flux thermal boundary conditions.

4.1 Introduction

The Robin boundary condition acts as an intermediary between fixed temperature

and fixed flux conditions by relating the thermal conductivity k and depth d of the
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fluid to that of the bounding material through the Biot number Bi – a ratio between

the height and thermal conductivity of the fluid and that of the boundary materials

(Sparrow et al., 1964). The Robin condition may be formulated for several different

types of boundaries (Clarté et al., 2021). In this chapter, the Robin condition such

that the vertical thermal boundary condition is determined by the Bi value.

Recall from section 3.2.4, that it is useful to relate systems with different ther-

mal boundary conditions by defining a relationship between the effective Rayleigh

number Ra for each boundary condition and RaFT . There is not a ubiquitously

agreed upon formulation of a Robin condition Ra. Some previous studies of the

Robin boundary condition have sometimes chosen to use RaFT (O’Sullivan, 1990).

Alternatively, in Gringé et al. (2007) they considered an effective Rayleigh number

Ra(Bi) related to RaFT such that

RaFT =
Ra(Bi)

1− T1

, (4.1)

where T1 is the temperature at the top of the fluid domain. Additionally, in Clarté

et al. (2021) they defined

RaFT =
Ra(Bi)

Nu
+

(
Ra(Bi)− Ra(Bi)

Nu

)
Bi

Bi+Bit
, (4.2)

where Bit is a threshold found to be approximately 3. The former definition of

Ra(Bi) is only appropriate in a system where the lower boundary has a fixed

temperature and the upper boundary is Robin. The latter appears suitable but

does not follow the same logic that we have previously used to relate systems with

different boundary conditions (i.e. Eq(3.7)).

Therefore, in this chapter, we seek to define a relationship for the Robin bound-

ary condition between the effective Ra(Bi) and RaFT by expanding on Eq (3.6).

By defining an RaFT for each system with the Robin condition, it is possible to

directly compare the heat transport scaling and temporal and spatial behaviours

between the Robin condition configuration and the fixed temperature and fixed

flux configurations studied in Chapter 3.

The Robin condition does not appear to have previously been studied in a

rapidly rotating cylindrical geometry. Due to the applicability of the Robin condi-

tion to modelling experimental and atmospheric flows, it is of interest to study the
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Figure 4.1: Illustration of the top boundary of a fluid domain with dimensionless

parameters. See text for details.

changes in convection dynamics as the Robin condition is adjusted from the fixed

temperature extreme to the fixed flux extreme with a focus on rotating systems. A

concise linear stability analysis is conducted to determine the critical Rayleigh num-

ber Rac as a function of Bi. We calculate Bi for common experimental boundary

materials to provide physical context for the Robin condition. Then, mean Nusselt

number, Nu and standard deviation, σNu from each system will be used to define

a Ra−RaFT −Nu relationship. Once a RaFT value is found for each system, the

heat transport scaling, and temporal and spatial behaviours are compared between

the various Bi values and the fixed temperature, mixed, and fixed flux boundary

conditions.

4.2 Derivation of the Robin boundary conditions

In this section, we derive a thermal boundary condition on the vertical boundaries

which straddles fixed temperature and fixed flux conditions. The condition is de-

termined based on the height and thermal conductivity of the bounding materials.

As described previously, the Robin condition has a formulation appropriate for

boundaries with finite length and conductivity, as in an experiment (Gringé et al.,

2007).

To begin, we consider the upper boundary of our fluid layer which has physical

properties as indicated by subscript ·+. The boundary has thickness d+ which we

make dimensionless following the scaling in Chapter 2 such that the nondimensional

thickness is ϵ = d+
d
. As visualised in Figure 4.1, the upper boundary (blue) has an
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internal temperature T+ with a fixed temperature at the outer boundary TT , both

values are dimensionless.

We assume that heat moves through the boundary material via conduction and

that the system is sufficiently wider than tall (i.e. horizontal heat transport is

negligible as Γ+ → ∞) such that,

∂T+

∂t
=

κ+

κ

∂2T+

∂z2
at 0.5 < z < 0.5 + ϵ, (4.3)

where κ = k/ρcp (the coefficient of thermal diffusivity) is related to thermal con-

ductivity k, density ρ, and specific heat cp. κ+ measures the rate of heat transfer

from the warmer boundary to the cooler boundary of the domain lid.

The fluid layer is governed by Eqs (2.11a)-(2.11c) as described in Chapter 2.

The coupled system has boundary conditions

T+ = TT at z = 0.5 + ϵ, (4.4a)

T+ = T and
κ

κ+

∂T

∂z
=

∂T+

∂z
at z = 0.5. (4.4b)

We further scale the system with z = ϵẑ. Eq (4.3) becomes

ϵ2
κ

κ+

∂T+

∂t
=

∂2T+

∂ẑ2
at

0.5

ϵ
< ẑ <

0.5

ϵ
+ 1 (4.5a)

and the fixed temperature boundary conditions become

TT = T+ at ẑ =
0.5

ϵ
+ 1, (4.5b)

T+ = T at ẑ =
0.5

ϵ
. (4.5c)

Hence, at leading order ϵ, the equation of heat transport through the upper bound-

ary is of the form T+ = Aẑ +B. We apply the scaled boundary conditions to find

that

T+ = (TT − T (ẑ =
0.5

ϵ
))ẑ +

(
T (ẑ =

0.5

ϵ
)

(
1 +

0.5

ϵ

)
− 0.5

ϵ
TT

)
. (4.6)

Then, the heat flux condition across the boundary may be approximated such

that
k

k+

∂T

∂z
=

∂T+

∂z
=

∂T+

∂ẑ

∂ẑ

∂z
=

TT − T

ϵ
(4.7)

92



4.2 Derivation of the Robin boundary conditions

at the fluid-boundary interface.

Finally, we unwrap the asymptotic scaling and find the Robin condition on an

upper boundary
∂T

∂z
= Bi+ (TT − T ) (4.8)

where Bi+ = k+
k

d
d+
.

Generalising the Robin condition for both the top and bottom vertical bound-

aries,
∂T

∂z
· nz = Bi (T − T∞) , (4.9)

where nz is the vertical component of the normal vector and T∞ is the exterior

fixed temperature of the boundary (e.g. for the upper boundary T∞ = TT and

nz = −1). The Biot number is generally defined as

Bi =
km
k

d

dm
, (4.10)

where the subscript ·m indicates a property of the boundary material.

For our purposes, it is useful to prescribe T∞ values at each boundary such that

in the conducting state, the fluid maintains a linear vertical temperature profile of

the form T = −z + 0.5 as in the fixed temperature case presented in Chapter 3.

Hence,

T∞ =
−1

Bi
at z = 0.5, (4.11)

T∞ = 1 +
1

Bi
at z = −0.5. (4.12)

It is clear from Eq (4.9) that as Bi → ∞, the Robin boundary condition ap-

proaches fixed temperature conditions and as Bi → 0, the Robin boundary condi-

tion approaches fixed flux conditions. This makes intuitive sense, considering that

large Bi indicate thin, highly conductive boundaries which would easily transfer

the full T∞ temperature to the fluid boundary and vice versa.

In order to contextualise Bi, as defined in Eq (4.10), we consider three exper-

imental set-ups based on experiments described in Kunnen, Clercx, Geurts, et al.

(2008). Table 4.1 lists the thermal conductivity km and thickness, dm, of Copper,

Aluminium and Plexiglas. We consider these materials to enclose a fluid layer with

depth d = 0.23m, and thermal conductivity k = 0.02W/mK, which is consistent
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with air. In Table 4.1, the Bi values of each bounding material are found in relation

to these air properties.

material km (W/mK) dm (m) Bi

Copper 402 (at 300K) 0.03 4.3× 104

Aluminium 237 (at 273K) 0.03 1.1× 103

Plexiglas 0.17 0.001 5.1× 102

Table 4.1: The thermal conductivities for Copper (Lide, 2003), Aluminium

(Touloukian et al., 1970), and Plexiglas (Morimune-Moriya & Nishino, 2021) are

listed along with chosen material thicknesses are based on the experiments in Kun-

nen, Clercx, Geurts, et al. (2008). The Bi values are calculated for each material

using Eq (4.10) assuming an interface with a layer of air 0.23m deep with thermal

conductivity 0.02W/mK (Lide, 2003).

Copper has the highest Bi value, followed by Aluminium, then Plexiglas. Note

that Plexiglas is generally used in a much thinner layer in experiments to compen-

sate for low km. For example, if Plexiglas was considered with the same dm = 0.03m

as Aluminium and Copper, it would then have Bi = 6.5 × 101, which is an order

of magnitude lower than the value shown in Table 4.1.

Recall from Chapter 3, that the thermal boundary condition at the top and

bottom informs the choice in thermal scaling, and thus influences the definition of

the Rayleigh number. For the Robin condition, the thermal scaling is chosen to be

∆T . However, as seen in Chapter 3, as the condition becomes more similar to fixed

flux, the RaFT definition is not appropriate. Therefore it is necessary to define an

appropriate Rayleigh number for the Robin boundary condition dependent on the

Bi value to investigate non-linear RRBC. However, linear RRBC may be considered

with any Ra definition because below onset Nu = 1.

4.3 Linear stability analysis

We first explore the linear aspect of RRBC with Robin boundary conditions. Us-

ing the Bi values defined for common experimental materials in Table 4.1, we

investigate the importance of the Bi value in determining convection onset.
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Based on the linear results presented in Clarté et al. (2021) for RRBC in a

spherical shell with stress-free velocity conditions, boundaries with Bi ≥ 3 × 101

exhibit the effects of fixed temperature thermal boundary conditions. Thus, we

expect that when applying each of the Bi values of the experimental setups listed

in Table 4.1 to a linear RRBC system in a plane-layer, the critical Rayleigh num-

ber, Rac, and critial wavenumber, ac, should be closely aligned with the fixed

temperature results shown in section 3.3. Further, in Calkins et al. (2015) it is

concluded that rapidly rotating systems with Ek ≤ 10−5 and stress-free velocity

boundary conditions, have the same Rac regardless of thermal boundary condition.

In Chapter 3, we determined this result to be true for systems with no-slip velocity

boundary conditions and in Clarté et al. (2021) it is demonstrated that Rac also

converges at Ek = 10−5 for Robin condition systems with 100 ≤ Bi ≤ 102 in a

spherical shell.

In order to determine if the same theory is true for the range 10−3 ≤ Bi ≤
103, we utilise the Dedalus solver (Burns et al., 2016), to solve the linear RRBC

equations Eqs (2.19a)-(2.19c) as described in Chapter 2. Robin thermal boundary

conditions and no-slip velocity conditions are applied to the horizontal surfaces

of a plane-layer geometry. Rotation rates are considered from non-rotating to

rapidly rotating such that, ∞ ≥ Ek ≥ 10−6. The Prandtl number is Pr = 0.7

for consistency with the non-linear numerical set-up as well as the previous linear

stability analysis in section 3.3. The Bi values are as described in Table 4.1.

Figure 4.2 visualises the results of the linear stability analysis. Results for Cop-

per, Aluminium and Plexiglas are shown in blue, magenta, and red, respectively.

Rac and ac for fixed temperature and fixed flux configurations, conducted in section

3.3, are presented as dashed and dotted lines, respectively, for comparison.

The Rac and ac results show that systems with Bi ≥ 5.1 × 102 behave the

same at onset, regardless of rotation. Thus, we have shown, in agreement with

Clarté et al. (2021), that a Bi ≥ 5× 102 is sufficiently large Biot number to reach

fixed temperature behaviour at convection onset. Fixed flux and fixed temperature

systems have different Rac and ac without rotation (Calkins et al., 2015), thus we

anticipate that sufficiently low Bi would have different Rac and ac from fixed

temperature results. This result has been shown in previous non-rotating studies
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(a) Rac vs. Ek (b) ac vs. Ek

Figure 4.2: Graphs of critical Rayleigh number Rac and wavenumber ac as functions

of Ek respectively. Results are plotted for linear stability analysis in a plane-layer

with Robin thermal conditions and Bi relating to Copper (blue circle), Aluminium

(magenta x) and Plexiglas (red triangle), respectively. Results for fixed tempera-

ture (dashed line) and fixed flux (dotted line) configurations are also shown.

(Dowling, 1988) and in a rotating spherical-shell with stress-free conditions (Clarté

et al., 2021).

4.4 Effective Rayleigh number definition

As we increase the Rayleigh number of an RRBC system, the dynamics experi-

ence non-linear effects and Nu increases. Hence, the effective Ra(Bi) deviates

from RaFT . As demonstrated in Chapter 3, it is useful to define the Ra of a

system in reference to the fixed temperature Rayleigh number RaFT in order to

compare RRBC systems with different thermal boundary conditions. In Calkins

et al. (2015), a relationship between RaFT , Nu, and the effective Rayleigh num-

ber for the fixed flux thermal boundary condition, RaFF , is defined such that

RaFF = NuRaFT . Recall from Eq (3.10) that we define Nu = βd/∆T . In this

section, we expand the relationship between Nu, RaFT , and the effective Ra to

determine Ra as a function of the Bi value.
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4.4.1 Theory

The expression Eq (3.7) suggests that for the Robin condition, where boundary

conditions range from fixed temperature to fixed flux dependent on the Biot num-

ber, Bi, there may be a relationship between the effective Ra, which depends on

Bi, and the resulting Nu, and the fixed temperature Rayleigh number, RaFT .

When the temperature is fixed, Ra(Bi = ∞) = RaFT and when the flux is fixed

Ra(Bi = 0) = RaFF = RaFTNu. Thus, a definition is proposed such that,

Ra(Bi) = RaFTNuλBi , (4.13)

where the Ra conversion power λBi is a function of Bi. For fixed temperature

systems, λ∞ = 0 and for fixed flux system, λ0 = 1. Consequently, 0 ≤ λ ≤ 1.

Next, we consider how Nu scales with RaFT such that,

Nu ∝ RaγFT

FT , (4.14)

where γFT = γBi=∞ is a constant for fixed temperature boundary conditions. Now

consider that for each respective Bi and Ek, there is a unique heat transport scaling

γBi where

Nu ∝ Ra(Bi)γBi. (4.15)

By substituting the definition of Ra(Bi) from Eq (4.13) into Eq (4.15), we find λBi

such that,

Nu ∝
(
RaFTNuλBi

)γBi ,

and thus,

Nu ∝ Ra
γBi

1−λBiγBi
FT . (4.16)

The scaling of RaFT to Nu for any Bi is γBi/(1−λBiγBi), wherein γBi is calculated

by fitting data from simulations to a power-law in the form of Eq (4.15). We propose

that, from Eqs (4.14) and (4.16),

γBi

1− λBiγBi

= γFT . (4.17)

Note that fixed temperature conditions are equivalent to Bi = ∞, and therefore

γFT = γ∞ in that limit. Solving Eq (4.17) for λBi yields,

λBi =
1

γBi

− 1

γ∞
. (4.18)

We are only able to measure the Ra conversion power λBi a posteriori.
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4.4.1.1 Non-linear simulations

Hence, it is necessary to conduct a full set of non-linear simulations spanning Bi,

Ra, and Ek space. The numerical RRBC set-up described in Chapter 2 with

governing equations Eq(2.11a)-(2.11c) is solved with Nek5000 (Nek5000, 2019).

The cylindrical domain has aspect-ratio Γ = 0.7, the Prandtl number is Pr = 0.7,

and Ekman numbers, Ek = ∞, 10−4, and 10−5, are considered for comparison with

the fixed temperature and fixed flux thermal boundary results reported in Chapter

3. The same values of Ra are modelled as for the fixed temperature configuration

as listed in Appendix C. No-slip velocity conditions are applied on all surfaces and

the sidewalls are thermally insulating. On the horizontal boundaries, we apply

the Robin condition as defined in Eq (4.9) with 10−3 ≤ Bi ≤ 103 to span the

parameter range from sufficiently close to fixed flux conditions to sufficiently close

to fixed temperature conditions (Clarté et al., 2021).

4.4.2 Rayleigh number conversion power as a function of

Biot number

The results of the numerical model for a fixed Bi value are used to calculate λBi

using (4.18). The value of γ∞ is measured from the fixed temperature results

presented in Chapter 3 for each Ekman number. The results for γ∞ and γ0 (fixed

flux) are reiterated in Table 4.2.

In order to find γBi, lines of the form Nu ∝ Ra(Bi)γBi are fitted to each set of

modelled Ra values with fixed Bi and Ek values, using a weighted-least-squares

method. Each γBi measurement has an associated standard deviation σγ. The

calculated γBi, σγ, and resulting 99% confidence interval (CI) of the form γBi±3σγ

are summarised for 10−3 ≤ Bi ≤ 103 in the first five columns of Table 4.2.

Figure 4.3 visualises the measurements for γBi as a function of log(Bi). The

fixed temperature (FT) and fixed flux (FF) results are indicated by blue lines and

red lines respectively. The solid lines show γ∞, 0 while the dotted lines show the

99% confidence interval of the form γ ± 3σγ. Despite relating to Bi = ∞ and

Bi = 0, respectively, the fixed temperature and fixed flux γ values are shown at all

Bi to observe the limits at which moderate Bi tend toward each extreme. For each

98



4.4 Effective Rayleigh number definition

Bi Ek γBi σγ γBi 99% CI λBi σλ λBi 99%CI

0 ∞ 0.234 0.007 0.215− 0.254 0.887 0.178 0.352− 1.42

0 10−4 0.426 0.030 0.336− 0.516 0.575 0.496 −0.912− 2.06

0 10−5 0.512 0.068 0.308− 0.716 0.830 0.473 −0.590− 2.25

10−3 ∞ 0.229 0.008 0.205 - 0.253 0.983 0.161 0.5 - 1.466

10−3 10−4 0.421 0.021 0.358 - 0.484 0.601 0.445 -0.734 - 1.936

10−3 10−5 0.512 0.079 0.275 - 0.749 0.831 0.406 -0.387 - 2.049

10−2 ∞ 0.23 0.006 0.212 - 0.248 0.969 0.111 0.636 - 1.302

10−2 10−4 0.43 0.019 0.373 - 0.487 0.554 0.442 -0.772 - 1.88

10−2 10−5 0.524 0.057 0.353 - 0.695 0.784 0.343 -0.245 - 1.813

10−1 ∞ 0.24 0.012 0.204 - 0.276 0.794 0.211 0.161 - 1.427

10−1 10−4 0.425 0.016 0.377 - 0.473 0.578 0.439 -0.739 - 1.895

10−1 10−5 0.523 0.064 0.331 - 0.715 0.788 0.359 -0.289 - 1.865

100 ∞ 0.234 0.006 0.216 - 0.252 0.892 0.104 0.58 - 1.204

100 10−4 0.525 0.022 0.459 - 0.591 0.13 0.438 -1.184 - 1.444

100 10−5 0.586 0.02 0.526 - 0.646 0.581 0.28 -0.259 - 1.421

101 ∞ 0.252 0.006 0.234 - 0.27 0.586 0.091 0.313 - 0.859

101 10−4 0.526 0.043 0.397 - 0.655 0.128 0.458 -1.246 - 1.502

101 10−5 0.357 0.305 -0.558 - 1.272 1.679 2.414 -5.563 - 8.921

102 ∞ 0.287 0.007 0.266 - 0.308 0.109 0.089 -0.158 - 0.376

102 10−4 0.55 0.098 0.256 - 0.844 0.045 0.538 -1.569 - 1.659

102 10−5 0.797 0.181 0.254 - 1.34 0.131 0.395 -1.054 - 1.316

103 ∞ 0.293 0.003 0.284 - 0.302 0.032 0.038 -0.082 - 0.146

103 -10−4 0.556 0.092 0.28 - 0.832 0.023 0.524 -1.549 - 1.595

103 10−5 0.88 0.15 0.43 - 1.33 0.013 0.335 -0.992 -1.018

∞ ∞ 0.296 0.001 0.292− 0.300 0 0.033 −0.099− 0.099

∞ 10−4 0.564 0.092 0.289− 0.839 0 0.608 −1.82− 1.82

∞ 10−5 0.889 0.145 0.454− 1.33 0 0.387 −1.16− 1.16

Table 4.2: A list of Nu−Ra(Bi) scaling, γBi and corresponding standard deviation,

σγ, and 99% confidence interval of the form γBi±3σγ. λBi, standard deviation, σλ,

and 99% confidence interval are calculated with Eq (4.18). Results for Bi = 0 and

Bi = ∞ are from fixed flux and fixed temperature results, respectively, presented

in Chapter 3.
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4. ROBIN CONDITION

Figure 4.3: Heat transport scaling factor γBi for Ek = ∞ with 10−3 ≤ Bi ≤ 103,

indicated by black square markers with error bars indicating a 99% confidence

interval of 3σγ. The blue solid line is γFT from fixed temperature simulations with

confidence intervals indicated by blue dashed lines. The red solid line is γFF from

fixed flux simulations with confidence intervals indicated by red dashed lines.

Bi, a square marker with error bars represent the γBi value and the corresponding

99% confidence interval.

The γBi results presented in Figure 4.3 show that, without rotation, as Bi

increases from 100, γBi, tends toward γ∞, indicated by the black squares moving

toward the blue line for larger Bi. However, by Bi = 100, γBi is very close to γ0, and

as Bi decreases, γBi varies slightly about γ0. We anticipated that systems would

imitate the fixed flux configuration for Bi ≤ 10−2 (Clarté et al., 2021). However,

that prediction was derived in a spherical-shell geometry with a fixed temperature

inner core. Hence, the deviations between our results and those presented in Clarté

et al. (2021) are likely due to the differences in geometry and boundary condition

arrangements between the two studies. Additionally, the ranges of uncertainty for

γ0 and Bi ≤ 100 are relatively large, and the predicted behaviour is within the

confidence interval.

The γBi and σγ values are measured for Ek = ∞, 10−4 and 10−5 are presented

in Table 4.2. Using Eq (4.18), λBi is found for each Bi and Ek and uses error
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4.4 Effective Rayleigh number definition

(a) ‘Full’ fit (b) ‘Constrained’ fit

Figure 4.4: Plot of the λBi as a function of Bi calculated from Eq(4.18) for non-

rotating systems. Values of λ∞ and λ0 are indicated in blue (red) for fixed tem-

perature (fixed flux) configurations. The dashed line indicates the bounds of the

99% CI. For each Bi, λBi is given by a black square with error bars of 3σλ which

represents a 99% CI. The data points are fitted to a line of the form in Eq (4.20)

with two methods. The coefficients for the ‘full’ and ‘constrained’ equations are

provided in Tables 4.3 and 4.4, respectively.

propagation to find a standard deviation σλ for each such that,

σλ =

√(
σγ

γ2
Bi

)2

+

(
σγ∞

λ2
∞

)2

(4.19)

(Ku et al., 1966).

The λBi values with corresponding confidence intervals for the non-rotating case

are visualised in Figure 4.4. These values, as well as those for Ek = 10−4 and 10−5

(not pictured), appear to have a tanh(log(Bi)) form. Alternatively, λBi could be

of the form Bi/(Bi+ j) where j is a constant unique for each Ek. However, it was

not found to successfully collapse data onto γFT in the current study. Therefore,

it is assumed that λ has the form,

λBi = −A tanh (B (log (Bi) +D)) + E, (4.20)

where A, B, D, and E are constants to be determined through line-fitting. Using

a weighted - least - squares fitting method, all constants were determined for each

Ek in two methods: ‘full’ and ‘constrained’. The ‘full’ approach allows all variables

to be fitted to the data, while the ‘constrained’ method sets A = 0.5 and E = 0.5
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4. ROBIN CONDITION

Ek A B D E

∞ 0.46± 0.06 1.3± 0.78 −1.2± 0.21 0.48± 0.05

10−4 0.25± 0.06 4.5± 160 0.22± 8.0 0.32± 0.06

10−5 0.46± 0.56 0.54± 1.2 −1.0± 2.8 0.37± 0.41

Table 4.3: Results for λBi coefficients for an equation of the form in Eq (4.20) by

Ek with 99% confidence interval.

Ek A B D E

∞ −0.5 1.0± 0.35 −1.1± 0.20 0.5

10−4 −0.5 0.32± 0.24 1.7± 1.0 0.5

10−5 −0.5 0.42± 0.31 −0.23± 0.89 0.5

Table 4.4: Results for λBi coefficients for an equation of the form Eq (4.20) by Ek

with 99% confidence interval, in the ‘constrained’ method fixing A and E.

such that the line matches the bounds of the under pinning theory. The coefficients

determined by the ‘full’ method are recorded in Table 4.3 and by the ‘constrained’

method results are in Table 4.4. Each coefficient is presented in the form A± σA,

where σA is the standard deviation. It is evident from both tables that there is

significant uncertainty in the fitting for Ek = 10−4, though more so from the ‘full’

method. This is likely due to fewer Ra(Bi) considered for Ek = 10−4 than for

other rotation rates.

Figure 4.4 exemplifies the two fitting methods for Ek = ∞, where the dashed

line is the ‘full’ method and the solid line is the ‘constrained’ approach. In this

case, both lines appear to fit the data well and generally approach 0 and 1 as Bi

approaches∞ and 0, respectively. However, it is favourable to use the ‘constrained’

method as it enforces the limits of the theory which underpinned the development

of this scaling.

4.4.3 Method comparison

Recall that the motivation for calculating λBi is to find the RaFT for each Ra(Bi)

using Eq (4.13). Also, recall our assumption that by using Eq (4.13), for a set of

systems with varying Ra(Bi) and Bi and fixed Ek, the γ values should be the same.

The same assumption is applicable to the Ra(Bi) definitions, Eqs (4.1) and (4.2),

102



4.4 Effective Rayleigh number definition

used in Gringé et al. (2007) and Clarté et al. (2021), respectively. It is of interest

to compare the resultant Ra(Bi) values from the ‘full’ and ‘constrained’ methods

of defining λBi for Eq (4.13) to the Ra(Bi) values calculating using methods from

the previous literature.

(a) ‘Full’ method

(b) ‘Constrained’ method

Figure 4.5: Plots of Nu − RaFT vs RaFT calculated using Eq (4.13) and the two

different methods of defining λBi as in Eq (4.20): ‘full’ and ‘constrained’. See

Figure 4.5d for further details.
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4. ROBIN CONDITION

(c) Eq (4.1) from Gringé et al. (2007)

(d) Eq (4.2) from Clarté et al. (2021)

Figure 4.5: Plots of Nu vs. RaFT calculated three ways. The first two methods

use Eq (4.13) and the two different methods of defining λBi as in Eq (4.20): ‘full’

and ‘constrained’. The third method follows Eq (4.1) as suggested in Gringé et al.

(2007). Finally, we use the definition in Eq (4.2) from Clarté et al. (2021). Each

Ek is represented by a marker shape: inverted triangles for Ek = ∞, diamonds

for Ek = 10−4, and circles for Ek = 10−5. As log(Bi) approaches −3, it becomes

more red, and as log(Bi) approaches 3 it becomes more blue. Bi = 100 is a very

light blue shade, rather than white, for visibility. The black lines indicate the fixed

temperature, or Bi = ∞ Nu−RaFT scaling, γ∞ for each Ek such that the scaling

for: Ek = ∞ is a solid line, Ek = 10−4 is a dashed line, and Ek = 10−5 a dotted

line.
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4.4 Effective Rayleigh number definition

Figure 4.5 visualises the result of transforming Ra(Bi) to RaFT using four

different methods. The first two methods use Eq (4.13) where λBi is defined by Eq

(4.20). The coefficients for Eq (4.20) are determined in two ways: the ‘full’ method,

shown in Figure 4.5a, and the ‘constrained’ method, shown in Figure 4.5b. The

third method, shown in Figure 4.5c, follows Eq (4.1) from Gringé et al. (2007).

The final definition considered is Eq (4.2) from Clarté et al. (2021), with results

shown in Figure 4.5d.

In each plot, Ek values are indicated by the marker shape. Inverted triangles

represent systems with Ek = ∞, diamonds represent systems with Ek = 10−4,

and circles represent systems with Ek = 10−5. The distinct Biot numbers, Bi, are

indicated by marker colour. As Bi approaches 10−3, the colour becomes darker

red, and as Bi approaches 103, the colour becomes darker blue. Note Bi = 100 is

faint blue rather than white to be visible on the plot. An assumption made in Eq

(4.13) is that after converting RaBi to RaFT , all systems of the same Ek will have

the same Nu−RaFT scaling as fixed temperature systems, γ∞. Therefore, γ∞ for

each Ek, as listed in Table 4.2, is shown on each plot as such: Ek = ∞ is shown

as a solid line, Ek = 10−4 is shown as a dashed line, and Ek = 10−5 is shown as a

dotted line.

All methods visualised in Figure 4.5 demonstrate reasonable ability to collapse

data with the Robin condition and different Bi onto a Nu − RaFT scaling like

that of the fixed temperature configuration. This is evident by the data in each

figure, for each Ek grouping around the black lines indicating γ∞. However, in

each case, the Bi which scale most similarly to the fixed temperature case are the

Bi ≥ 102 systems. This makes sense because their RaBi are naturally closest to

RaFT because of the nature of their thermal boundary condition. For the ‘full’ and

‘constrained’ methods, it appears from Figures 4.5a and 4.5b, respectively, that

systems with 10−2 > Bi > 102 scale less similarly to γ∞ than the more extreme

values of Bi. This could be due to differences in solution form, or because the

uncertainty in the λBi definition is strongest for moderate Bi, causing their RaFT

values to be less accurate. This could be remedied in future studies by simulating

more moderate Bi. Alternatively, Eq (4.1), does not collapse low Bi systems to

γ∞ very well for any Ek, as seen in Figure 4.5 by the red shaded markers being
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4. ROBIN CONDITION

Figure 4.6: γ as a function of Bi compared with γ∞ (blue line) as measured from

each method of RaFT calculation. The Nu ∝ RaγFT scaling for each Bi for systems

without rotation are shown for the RaFT measure from Gringé et al. (2007) by

magenta squares (G) and Clarté et al. (2021) by cyan squares (C). The ‘constrained’

(‘full’) method results are green (dark red). The error bars are σγ.

furthest from the black lines. Notably, using the method defined in Clarté et al.

(2021) resulted in the best agreement of scaling for the full range of Bi. Though,

as in the other methods, the moderate Bi values deviate most from the γ∞ scaling

while the high and low Bi scale very closely with γ∞.

Figure 4.6 exemplifies the differences in Nu − RaFT scaling corresponding to

the respective RaFT calculation methods for Ek = ∞. The results from the ‘con-

strained’ and ‘full’ configurations of Eq(4.13), Eq (4.1) from Gringé et al. (2007),

and Eq (4.2) from Clarté et al. (2021) are indicated by square of green, dark red,

magenta, and cyan colours, respectively. The error bars indicate σγ, which is a

65% confidence interval. The blue line shows γFT from the fixed temperature sim-

ulations to which all Bi should collapse if the RaFT calculation is accurate enough.

The magenta squares in Figure 4.6, which represent the calculation suggested

in Gringé et al. (2007), are evidently the least appropriate method, closely followed

by the Ra(Bi) definition suggested in Clarté et al. (2021), to enable all Bi results

to follow the fixed temperature heat transport scaling. The ‘constrained’ case and

the ‘full’ configurations result in γ values closer to γ∞ for majority of Bi values.

There is no obvious superior fitting between the two configurations of Eq(4.13).
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4.5 Analysis of non-linear results

Thus, as there is not much disparity in their ability to convert RaBi to RaFT , it is

preferable to choose the ‘constrained’ method as this ensures the theoretical limits

of Eq (4.13) are met.

Hence, we have defined an effective Rayleigh numberRa(Bi), which is a function

of the Biot number, in relation to the fixed temperature Rayleigh number RaFT

such that Ra(Bi) = RaFTNuλ
Bi. The equation for λBi has been derived in Eq

(4.18) with ‘constrained’ coefficients listed in Table 4.4.

4.5 Analysis of non-linear results

By applying Eq (4.13) with Eq(4.20) and coefficients in Table (4.4), the effective

Rayleigh number for each Bi, RaBi, is transformed into the fixed temperature

Rayleigh number, RaFT . Hence, we are able to compare the heat transport, tem-

poral and spatial behaviours between systems with varying Bi values as well as

between systems with Robin, fixed temperature, and fixed flux boundaries. Thus,

the numerical results of the model discussed in section 4.4.1.1 are analysed using

the same tools as described in section 3.4.

4.5.1 Heat transport scaling

In section 4.4, we transformed Ra(Bi) into RaFT using Eqs (4.13) and (4.20) with

the coefficients listed in Table 4.4. Recalling the relationship been the Nusselt num-

ber and RaFT , Nu ∝ RaγFT , we compared the γ values of the systems with Robin

boundaries to those with fixed temperature boundaries as reported in Chapter 3.

Observing Figures 4.5b and 4.5b, it was shown that the γ values measured for the

Robin configurations were sufficiently close to γFT without rotation. However, in

Chapter 3, we found that γFT did not align with γ values from previous literature.

Hence, it is of interest to compare γ values of RRBC systems with Robin bound-

aries to γ values from previous studies, which are listed in Table 3.1. Note that

we are unaware of any prior measurements of γ for RRBC in a cylindrical domain

with Robin boundary conditions.

Figure 4.7 shows the Nu − RaFT relationship for Robin condition systems in

comparison with γ from previous literature. The Bi and Ek parameter values of
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4. ROBIN CONDITION

Figure 4.7: Plot of Nu vs. RaFT for RRBC systems with Robin boundary condi-

tions. Each system has unique Bi and Ek values, shown by the colour and shape

of each marker, respectively. The black lines show the γ values from previous lit-

erature where the solid, dashed, and dotted lines indicate γ = 0.284, 0.8 (E. King

et al., 2012), and 1.5 ≤ γ ≤ 3 (Stellmach et al., 2014), respectively.

each simulation are shown by colour and marker shape, respectively. The colour

becomes more blue (red) as Bi approaches 103 (10−3). For each Ek value repre-

sented in figure 4.7 there is a corresponding γ from previous literature indicated by

a black line. In E. King et al. (2012), it is reported that γ = 0.284 (solid line) and

0.8 (dashed line) for Ek = ∞ and 10−4, respectively, from physical experiments in

a cylinder with aspect-ratio 0.5 ≤ Γ ≤ 2 and Pr = 7. In Stellmach et al. (2014),

they find that 1.5 ≤ γ ≤ 3 (dotted lines) from numerical and asymptotic results in

a plane-layer with Pr = 1 and 7. The γ measurements for each configuration with

fixed Bi and Ek values are recorded in Table 4.5.

Observing the relationship between Nu and RaFT in cases without rotation,

Figure 4.7 shows that for RaFT > 105, configurations with all Bi values behaviour

similarly. In the same range of RaFT values, systems with each Bi appear to scale

similarly to the γ = 0.284± 0.006 prediction from E. King et al. (2012). According

to the γ measurements recorded in Table 4.5, the 99% confidence intervals for

each Bi value overlaps with the CI of the predicted γ value. However, the mean

predicted γ > 0.285 for all Bi values, which is similar to our findings for fixed

temperature and fixed flux configurations in Chapter 3.
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4.5 Analysis of non-linear results

For RaFT < 105, the γ value increases as Bi increases. This suggests that either

the relationship Raeff = RaFTNuλ is not appropriate at low RaFT or that the form

of the fluid behaviour is significantly different between boundary conditions for low

RaFT without rotation. We expect the latter to be the case because the coefficients

of λ have been calculated for RaFT > 105 to align with the ranges of RaFT values

used in previous literature. Hence, we have shown that without rotation, systems

with Robin boundary conditions and 10−3 ≤ Bi ≤ 103 have similar global heat

transport.

Considering RRBC, we compare the 99% CIs reported in Table 4.5 for systems

with Ek = 10−4 to the fixed temperature γ = 0.564 ± 0.276, as reported for

Bi = ∞ in Table 4.2. All Bi values considered have CIs which overlap with the

fixed temperature value. As for the fixed temperature and fixed flux boundary

conditions in Chapter 3, the γ measurements for Robin condition systems with

Ek = 10−4 are much lower than the γ = 0.8 predicted in E. King et al. (2012).

We observe from Figure 4.7 that systems with Ek = 10−4 and moderate Bi values

deviate from the fixed temperature γ measurement. However, the deviation of

systems with moderate Bi values is indicative of different spatial and temporal

behaviours to those in the extreme Bi value systems.

Though RRBC with Ek = 10−4 was considered in Clarté et al. (2021), their re-

sults demonstrate significantly different behaviour to the Ek = 10−4 results found

here. Clarté et al. (2021) did not contain quantitative measurements of γ for

systems with Robin boundary conditions. However, we do not believe their qual-

itative results are comparable to the systems studied in this thesis because they

found that convection onset at RaFT = 2× 106 with Ek = 10−4, which is an order

of magnitude larger than our findings. This difference is not due to the cylindri-

cal geometry used in this thesis compared to the spherical-shell domain used in

Clarté et al. (2021) because previous studies of fixed temperature convection in a

spherical shell, such as Gastine et al. (2016), have shown convection onset around

RaFT = 2 × 105. Hence, we will not compare quantitative heat transport results

for the RRBC systems shown in Figure 4.7 to the results in Clarté et al. (2021).

Increasing rotation, we observe that systems with Robin boundary conditions

and Ek = 10−5 exhibit the same heat transport relationship as systems with fixed
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4. ROBIN CONDITION

log(Bi) log(Ek) γ σ 99%CI

-3 ∞ 0.297 0.014 0.276 - 0.318

-3 -4 0.595 0.041 0.534 - 0.656

-3 -5 0.971 0.290 0.540 - 1.403

-2 ∞ 0.298 0.010 0.284 - 0.313

-2 -4 0.561 0.032 0.514 - 0.608

-2 -5 0.957 0.192 0.672 - 1.243

-1 ∞ 0.314 0.021 0.283 - 0.345

-1 -4 0.509 0.023 0.475 - 0.543

-1 -5 0.849 0.170 0.596 - 1.102

0 ∞ 0.297 0.009 0.284 - 0.311

0 -4 0.604 0.030 0.560 - 0.649

0 -5 0.865 0.045 0.799 - 0.931

1 ∞ 0.294 0.008 0.283 - 0.306

1 -4 0.570 0.051 0.494 - 0.647

1 -5 0.391 0.394 -0.197 - 0.978

2 ∞ 0.299 0.008 0.288 - 0.311

2 -4 0.576 0.107 0.417 - 0.736

2 -5 0.930 0.248 0.561 - 1.299

3 ∞ 0.295 0.003 0.291 - 0.299

3 -4 0.571 0.097 0.426 - 0.716

3 -5 0.952 0.176 0.691- 1.213

Table 4.5: The scaling, γ, between Nu and RaFT for systems with the Robin

thermal boundary condition with 10−3 ≤ Bi ≤ 103 and Ek = ∞, 10−4, or 10−5.

The standard deviation for each γ measurement, σ, is derived from the uncertainty

due to time-averaging and line-fitting. The 99% confidence interval is reported as

γ ± 3σ.

temperature boundary conditions, as shown in Chapter 3. That is, configurations

with both fixed temperature and Robin boundary conditions have a change in

Nu = RaFT slope around RaFT = 3 × 107. Quantitatively comparing γ results

for the Robin condition in Table 4.5 to the fixed temperature results, noted as

Bi = ∞ in Table 4.2, RRBC with the Robin condition generally has γ > γFT ,

though the γ values are within the fixed temperature CI. Note that as in the fixed

temperature and fixed flux cases, the scaling is much lower than the predicted range
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4.5 Analysis of non-linear results

of 1.5 ≤ γ ≤ 3 from Stellmach et al. (2014). These differences are likely due to the

shift in scaling around RaFT = 3× 107.

The deviation of γ measurements for systems with moderate Bi values from the

behaviour of extreme Bi is less evident for Ek = 10−5 than Ek = 10−4. However,

as RaFT increases, the configuration with Bi = 100 appears to scale less steeply

than systems with other Bi values.

In this section, we have shown that the global heat transport behaviour rotating

and non-rotating RBC with Robin boundary conditions are similar to those mea-

sured in systems with fixed temperature conditions in Chapter 3. In non-rotating

RBC systems with Robin boundary conditions Nu scaling is not dependent on the

Bi value. Alternatively, moderately and rapidly rotating systems where Ek ≤ 10−4

demonstrate Bi-dependent heat transport scaling. This is in contrast to qualitative

results presented in Clarté et al. (2021) which showed that the Nu − RaFT rela-

tionship is independent of Bi value. This difference in heat transport behaviours

may be due to the different Ra(Bi) definition, geometry, or Pr value used in Clarté

et al. (2021). In order to determine if the Bi-dependence observed in this section is

an artefact of our Ra(Bi) definition or if the flow is affected by the Robin condition,

we will investigate temporal and spatial behaviours with varying Bi values.

4.5.2 Time-dependence

Having observed that the heat transport behaviour is dependent on Bi value in

RRBC configurations with Robin thermal boundary conditions, we aim to identify

differences in temporal behaviour related to changes in Bi value. Results are also

compared to those found for the fixed temperature and fixed flux configurations

in Chapter 3. The analysis is conducted using the same process as reported in

section 3.4.2. Thus, in this section, each RRBC system is categorised as either:

conducting, time-independent, oscillating, quasi-oscillating, or temporally chaotic.

The temporal behaviour category of each system with unique Ek, RaFT , and

Bi values is summarised in Figure 4.8. Plots of log(Bi) vs. RaFT are shown for

fixed Ek values. Temporal behaviour is indicated by the marker shape. Circles

are used to represent conducting systems which are not convecting. Diamonds
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4. ROBIN CONDITION

(a) Ek = ∞

(b) Ek = 10−4 (c) Ek = 10−5

Figure 4.8: Plots of log(Bi) vs. RaFT for fixed Ek values of RRBC systems with

Robin boundary conditions. The shapes indicate time-dependence category as

such: circles represent conduction, diamonds represent time-independence, squares

represent oscillation, upright triangles represent quasi-oscillation, and inverted tri-

angles represent temporal chaos. The black lines show the RaFT values of the

transition to temporal chaos in systems with fixed temperature (FT, dotted) and

fixed flux (FF, dashed) conditions.
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4.5 Analysis of non-linear results

represent time-independent systems. Squares represent oscillating systems and up-

right triangles show quasi-oscillating systems. Finally, inverted triangles represent

temporally chaotic systems. Dotted and dashed black lines respectively show the

RaFT values at which fixed temperature and fixed flux systems transition to tem-

poral chaos. Note where only one line is shown the RaFT values are the same for

the transition to chaos in both fixed temperature and fixed flux configurations.

Consider Figure 4.8a which shows the temporal variation of non-rotating sys-

tems. Convection onset occurs at similar RaFTc values across Bi value, which we

anticipated due to the similarity of RaFTc values for fixed temperature and fixed

flux systems found in Chapter 3. Time-independent behaviour is ubiquitous across

Bi from onset to RaFT = 8× 104.

The transition to time-dependent behaviour is observed to be affected by Bi

value. Systems with Bi ≤ 101 transition into oscillatory and quasi-oscillatory

behaviour for 8× 104 ≤ RaFT ≤ 1.6× 105. However, cases with Bi > 101 were not

simulated for that range of RaFT values. In Chapter 3, it was shown that fixed

flux and fixed temperature boundary conditions led to the onset of temporally

chaotic behaviour at RaFT = 1.2× 105. Ubiquitously, the Robin condition systems

transition to chaotic behaviour for RaFT > 2 × 105, which is in good agreement

with the fixed temperature and fixed flux transition. Overall, it is evident that

without rotation, the temporal behaviour of RBC is not affected by Bi value.

Considering Ek = 10−4, convection onset is shown in Figure 4.8b by the tran-

sition from circular to square markers. For all Bi values, onset consistently occurs

around RaFT = 2.5 × 105, which is in agreement with previous studies, and our

previous results that found that as Ek decreases RaFTc converges for all thermal

boundary conditions (Calkins et al., 2015; Clarté et al., 2021). Further, at onset,

RRBC is oscillatory for all Bi values, driven by the rotation. Configurations with

the highest and lowest Bi values transition to temporal chaos by RaFT = 1.5×106,

which is appropriate for the fixed flux and fixed temperature predictions. However,

as the Bi approaches 100, the transition to chaos occurs at higher RaFT . This is

an interesting result which suggests that systems with moderate Bi values resist

chaotic behaviour to higher RaFT .
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4. ROBIN CONDITION

Let us investigate the cases with Ek = 10−5 to see if moderate Bi values cause

changes in temporal behaviour in rapidly rotating RBC. As anticipated, Figure

4.8c shows that the onset of convection occurs around RaFTc = 2.5× 106 across all

Bi values. Configurations with moderate Bi values transition to temporal chaos

at RaFT = 3 × 107 while cases with Bi = 103 transition at RaFT = 2 × 107

and Bi = 10−3 transition at the lowest RaFT = 107. The early onset of chaotic

behaviour in fixed flux-like system with Robin condition and Bi = 10−3 is in

agreement with the results in Chapter 3. Additionally, the resistance of Robin

condition systems with moderate Bi to chaotic behaviour gives further merit to

the hypothesis that moderate Bi behave differently from extreme Bi systems.

Overall, it is found that the time dependence of non-rotating convection is not

affected by the Bi value in systems with Robin thermal boundary conditions. At

onset, the rotating systems show the results which agree with the linear prediction

that thermal boundary conditions do not affect convection onset in rapidly rotat-

ing systems (Calkins et al., 2015). However, the transition to temporal chaos is

dependent on Bi value in RRBC. Moderate Bi values – that is 10−1 ≤ Bi ≤ 101

– are non-chaotic to higher RaFT values than extreme Bi values. An investigation

of spatial behaviour of the fluid motion will further illuminate the causes of these

differences in temporal variation.

4.5.3 Spatial structures

In the previous sections, it was shown that applying the Robin condition to RRBC

systems causes changes in both heat transport and temporal behaviour when the

Biot number approaches Bi = 100. However, rotating systems with extreme Bi

values and non-rotating systems behave similarly to configurations with fixed flux

or fixed temperature boundary conditions, respectively. In order to understand

the flow dynamics, we use the tools described in section 3.4.3 to analyse spatial

structures in the horizontal, vertical, and zonal directions. Each direction provides

insight to why Nu − RaFT scaling and time-dependence does or does not vary

between systems with different Bi values. Additionally, vertical uniformity and

zonal flow measurements are used to determine transition from the rotation-affected
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flow to the geostrophic regime, which is predicted to onset for RaFT ≥ 3RaFTc

(Ecke et al., 2022).

4.5.3.1 Horizontal flow structure

The flow in the horizontal plane is first considered. As described in section 3.4.3.1,

we identify the number m and location of convection rolls. Figure 4.9 shows plots

of log(Bi) vs. RaFT for each Ek value. The m value is shown by the colour of

each marker. The dominant convection can take place either along the wall, in the

bulk, or distinct modes in both the bulk and along the wall, as indicated by square,

circle, or diamond markers, respectively. The predicted onset of wall-localised (Eq

(3.14)), bulk (Eq (3.15)), and geostrophic convection (RagFTc = 3RaFTc) are shown

by the dotted, dashed, and dash-dotted lines, respectively (Chandrasekhar, 1961;

Ecke & Niemela, 2014; Favier & Knobloch, 2020).

Without rotation, the Robin condition has uniform behaviour for all Bi values.

Figure 4.9a shows that convection is ubiquitously in the bulk withm = 1 convection

rolls. This result agrees with the findings for both fixed temperature and fixed

flux systems discussed in section 3.5. The bulk convection is expected because

wall-localised convection is driven by rotation (Chandrasekhar, 1953). The critical

wavenumbers ac for 0 < Bi < ∞ are predicted to span the range 0 < a < 3.2 in

a plane-layer (Hurle et al., 1967; Dowling, 1988). Using Eq (3.8) from Gao and

Behringer (1984), ac is related to m and predicts m = 0 as Bi → 0 and m = 1

for Bi → ∞. However, as mentioned in Chapter 3, the effect of lateral boundaries

causes m = 0 to be nonphysical and hence we also anticipate m = 1 for systems

with fixed flux-like boundaries. Therefore, we have shown that the horizontal flow

structure is not affected by Bi value in non-rotating convection.

On the other hand, we have previously observed Bi- dependent temporal and

heat transport behaviours in rotating convection. Considering Figure 4.9b, which

shows the horizontal behaviour for RRBC with Robin conditions and Ek = 10−4,

it is clear that at onset, all systems have wall-localised m = 3 rolls. Section 3.3

found that in a plane layer systems with fixed temperature and fixed flux thermal

boundary conditions should have a = 25, which, using Eq (3.8), would relate to

m = 11. Thus, it is clear that the onset wavenumber is significantly different in
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4. ROBIN CONDITION

(a) Ek = ∞

(b) Ek = 10−4 (c) Ek = 10−5

Figure 4.9: Plots of log(Bi) vs RaFT for each respective Ek with markers indicat-

ing the number of convection rolls m and the location of the dominant convection

structure. The colours show m, as defined in the colour-bar. The marker shape

represents the location of dominant convection: along the wall (square), in the bulk

(circle), or both (diamond). In rotating systems, the onset of wall-localised con-

vection (dotted lines), bulk convection (dashed lines), and geostrophic convection

(dot dashed lines) are predicted from Eq (3.14), Eq (3.15), and RaFTg = 3RabFTc

(Ecke & Niemela, 2014) respectively.
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the narrow aspect-ratio considered here than in the plane layer used in the linear

stability analysis which does not develop wall modes. However, the uniformity

across Bi suggests that the different thermal condition does not strongly affect

horizontal behaviour at onset.

As RaFT increases away from onset, the horizontal form of the flow becomes

dependent on Bi value. The critical Rayleigh number for wall-localised convection

RawFTc and bulk convection RabFTc are predicted for fixed temperature conditions

by Eqs (3.14) and (3.15), respectively (Chandrasekhar, 1961; Favier & Knobloch,

2020). Though derived for infinite plane layers, these equations have been shown

to be appropriate for similar Γ in Favier and Knobloch (2020) where Γ = 0.75

and Pr = 1 with fixed temperature boundaries. For Ek = 10−4, it is predicted

that RawFTc = 3 × 105 and RabFTc = 2 × 106, as shown by the dotted and dashed

lines in Figure 4.9b. While the onset of bulk convection meets the prediction for

some Bi values, when Bi → 100 the RabFTc value increases. The transition to bulk

convection coincides with the transition to temporal chaos as seen by comparing

Figure 4.8b to Figure 4.9b.

Figure 4.10 shows vertical velocity w at z = 0.3 and t = 3 behaviour around

transitions to bulk convection and temporal chaos for RRBC with Robin conditions

and Ek = 10−4. Cases with Bi = 10−3, 100 and 10−3 are compared in side-by-side

plots of vertical velocity, w, at z = 0.3. For each Bi value, an 1.4× 106 ≤ RaFT ≤
1.6×106 and 2.5×106 ≤ RaFT ≤ 3.2×106 are each considered to visualise behaviour

on either side of the predicted transition to bulk convection RabFTc = 2× 106.

For each Bi value, it is clear that flow velocity increases in the bulk and becomes

more spatially complex as the RaFT value increases. However, as seen in Figure

4.9b, the convection in the bulk of Bi = 10−3 and 103 has less relative strength

than the case with Bi = 100 for the same RaFT . Additionally, Bi = 103 has the

most spatially chaotic behaviour, where convection is equally dominant in the bulk

as along the walls, while Bi = 10−3 has strong bulk convection, but retains clear

wall-localised behaviour. At a similar RaFT value, Bi = 100 has relatively weak

bulk convection, in comparison with its wall-localised flow. These observations

support the hypothesis that RRBC with moderate Bi values resist both temporal

and spatial chaos to larger RaFT values than extreme Bi.
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4. ROBIN CONDITION

(a) Bi = 10−3, RaFT = 1.5× 106 (b) Bi = 10−3, RaFT = 2.5× 106

(c) Bi = 100, RaFT = 1.4× 106 (d) Bi = 100, RaFT = 2.6× 106

(e) Bi = 103, RaFT = 1.6× 106 (f) Bi− 103, RaFT = 3.2× 106

Figure 4.10: Plots of vertical velocity w at z = 0.3 and t = 3 for systems with Ek =

10−4 and Bi = 10−3, 100, or 103. On the left (right) are systems with Ra values

just below (above) the predicted transition to bulk convection, RabFTc = 2 × 106

and the observed transition to time dependence (see Figure 4.8).
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Observing the horizontal flow behaviour for RRBC with Ek = 10−5, sum-

marised in Figure 4.9c we note that at onset, all systems exhibit a m = 4 wall-

localised mode. This behaviour is consistent with the fixed temperature and fixed

flux results. After convection onset, it is evident that the number of convection

rolls is dependent on Bi number. Though for Bi > 10−2, as RaFT increases, m

transitions from 4 to 3 then 2 until bulk convection onset.

The critical Rayleigh numbers for wall-localised convection and bulk convection

are predicted from Eqs (3.14) and (3.15) to be RawFTc = 2×106 and RabFTc = 4×107.

Figure 4.9c shows that the wall onset results match the prediction well. However,

the transition to bulk convection is dependent on Bi value, where Bi = 101 and

10−3 appear to meet the prediction best. This is inconsistent with results for fixed

temperature and fixed flux systems, where it was shown that fixed temperature

systems meet the transition to bulk convection predictions better than the fixed

flux systems with Ek = 10−5. In section 3.5, we determined that fixed temperature

systems transitioned to bulk convection at the predicted RabFTc while fixed flux

systems retained wall-localised convection for higher RaFT . Therefore, we expected

that high Bi better fit the predicted critical Rayleigh number than low Bi, which

is the opposite of the behaviour indicated in Figure 4.9c. Recall that the transition

to temporal chaos followed a similar pattern in Figure 4.8c.

Figure 4.11 shows horizontal plots of w for Bi = 10−3, 100, and 103 at RaFT

values slightly above and below the predicted Rabc = 4 × 107. The results for

Bi = 103 support the observations in Figure 4.9c, showing that wall modes are

dominant for RaFT > 4 × 107, the predicted RabFTc. For Bi = 10−3, both RaFT

values visualised show bulk convection but at low magnitudes relative to the wall

modes. Meanwhile, for Bi = 100, the lower Ra has no bulk movement, but when

RaFT is increased some small bulk convective motion is shown. While the wall-

localised convection is clearly dominant in all cases shown in Figure 4.11, as Bi

increases, it is seen that bulk convection is slower to develop. However, note that

the RaFT visualised for the high Bi cases is somewhat lower than that of the

moderate cases, which could account for the difference in solution form.

Overall, it is evident that, as with heat transport and time-dependence, the

horizontal structure of flow in non-rotating convection is not affected by the Robin
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4. ROBIN CONDITION

(a) Bi = 10−3, RaFT = 2.9× 107 (b) Bi = 10−3, RaFT = 4.3× 107

(c) Bi = 100, RaFT = 2.5× 107 (d) Bi = 100, RaFT = 4.9× 107

(e) Bi = 103, RaFT = 2.5× 107 (f) Bi = 103, RaFT = 4.7× 107

Figure 4.11: Plots of vertical velocity w at z = 0.3 and t = 3 for Bi = 10−3, 100, and

103 around the predicted transition to bulk convection, RabFTc = 4 × 107 and the

observed transition to time dependence (see Figure 4.8) in systems with Ek = 10−5.

The red colour indicates upward motion and the blue indicates downward motion.
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4.5 Analysis of non-linear results

Figure 4.12: Plot of vertical uniformity factor, Λ, defined in Eq (3.11) as a function

of the supercriticality RaFTsc = RaFT/RabFTc. The marker shape indicates the Ek

value of each system. The marker colour relates to the Biot number, Bi. The

dashed line shows Λ = 2 where vertical behaviour becomes 3D. Note all rotating

systems with RaFTsc > 2 have Ro < 1 and are weakly or rapidly rotating.

condition. With rotation, there is evidence that systems with moderate Bi values

retain wall-localised convection to higher RaFT values than systems with extreme

Bi numbers.

4.5.3.2 Vertical structure

The vertical solution form can provide further insight into the dynamics of RRBC

with Robin boundary conditions. The vertical uniformity of w within the domain

is measured by factor Λ, as defined in Eq (3.11). As Λ becomes large, the fluid

motion has significant 3D behaviour. We consider here that when Λ ≤ 2, the flow

is predominantly 2D. In rapidly rotating systems, 3D flow can be indicative of

geostrophic turbulence (Ecke et al., 2022).

Figure 4.12 shows the Λ measurements as a function of supercriticality RaFTsc.

The Ek and Bi value of each system is shown by the marker shape and colour,

respectively. The predicted transition from 2D to 3D flow at Λ = 2 is shown by
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4. ROBIN CONDITION

Figure 4.13: Plot of vertical uniformity factor Λ defined in Eq (3.11) as a function

of the super-critical Rayleigh number, RaFTsc = RaFT/RabFTc. The marker shape

indicates Ek as such: inverted triangles are Ek = ∞, diamonds are Ek = 10−4,

and circles are Ek = 10−5. The marker colour relates to the Biot number, Bi, as

indicated by the colour-bar. The dashed line shows Λ = 2 where vertical behaviour

becomes non-uniform.

122



4.5 Analysis of non-linear results

the dotted line. The range of RaFTsc < 102 and Λ < 5 is clustered so Figure 4.13

provides a closer look for each Ek individually. As before, Bi is indicated by colour

shown in the colour-bar. The top panel shows Ek = ∞ for 100 ≤ Ra ≤ 102 and

Λ ≤ 5. The centre panel shows Ek = 10−4 and the bottom panel shows Ek = 10−5

both for the ranges 100 ≤ RaFTsc ≤ 102 and Λ ≤ 6.

As in the fixed temperature case, the non-rotating systems transition to 3D

flow at larger RaFTsc than rotating systems with Robin conditions, regardless of

Bi value. Without rotation, flow becomes vertically non-uniform around RaFTsc =

102, while rotating system have 3D flow by RaFTsc ≤ 5 × 101. Both with and

without rotation, Bi ≤ 10−1 systems have Λ < 2 to higher RaFTsc than higher Bi

systems.

Considering only non-rotating systems, Figure 4.12 and the top panel of Figure

4.13, show that the configuration with Bi = 10−1 exhibits 3D flow at the highest

RaFTsc compared to other Bi values. Systems with Bi = 10−1 achieves Λ ≥ 2 at

RaFTsc = 3×102 while all other Bi configurations have Λ ≥ 2 around RaFT = 102.

We visualise the vertical velocity, w, for three examples of different Bi systems

for 3.7× 102RaFTsc ≤ 4.1× 102 in Figure 4.14.

Figure 4.14a shows vertical behaviour for RBC with Bi = 10−3 and RaFTsc =

4.1 × 102, which has Λ = 3.8. The vertical plane shows that there are significant

changes in w in the z-plane, changing from downward to upward motion in the

upper part of the domain. When Bi = 10−1, the vertical behaviour is visibly

different from the previous case. The velocity is downward consistently until the

very upper reaches of the domain, which, as described in section 3.4.3.2, are not

considered for Λ calculation to avoid boundary layers. The deviation in vertical

motion in the system with Bi = 103 is significantly different from the Bi = 10−1

case, but to the eye is not necessarily different from the Bi = 10−3 case. Thus, it

is clear that the Bi = 10−1 configuration has different vertical behaviour than the

other cases. It is also evident that once Λ > 2 the behaviour causing increases in

Λ is not necessarily visible from a fixed frame of r and time, due to increasingly

time- dependent flow. Also recall that the thermal boundary layer is assumed to

be of fixed length for the Λ calculation which may be insufficient for all cases and

cause errors for low Ra values.
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4. ROBIN CONDITION

(a) Bi = 10−3, RaFTsc = 4.1× 102,

RaFT = 6.5× 105, Λ = 3.8

(b) Bi = 10−1, RaFTsc = 4× 102,

RaFT = 1.2× 105, Λ = 2.2

(c) Bi = 102, RaFTsc = 3.7× 102,

RaFT = 7.5× 105, Λ = 4.5

Figure 4.14: Plots of vertical velocity w at r = 0.685, z = 0.3, and t = 3 for

non-rotating systems. The blue colour indicates downward motion and the red

indicates upward motion.
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We next look into the systems rotating with Ek = 10−4. Figure 4.12, indicates

that above Λ = 2, the moderate and low Bi systems have less vertical deviation at

the same Rasc than high Bi configurations. Looking only at Λ ≤ 5 in the middle

panel of Figure 4.13, it is evident that for Bi ≥ 102, the transition above Λ = 2

occurs at RaFTsc = 10 while all other Bi configurations transition at RaFTsc ≥
2 × 10. Additionally, there are two anomalies for Bi = 103 and 102 which show

Λ ≥ 2 at RaFTsc < 2. These occur because of low velocity magnitudes throughout

the system which are in the divisor of Eq (3.11) causing the Λ value to be larger

than expected.

In order to examine the differences in vertical behaviour between different Bi,

the range of 4.5 × 101 ≤ RaFTsc ≤ 5.5 × 101 is considered. Note from Figure

4.12 and the centre panel of Figure 4.13 that all Bi are considered in this range of

RaFTsc but have significant variation in Λ value. Let us look at Bi = 103, which

has the highest Λ, Bi = 10−3 which has a similar Λ to Bi = 101, and Bi = 100

which has the lowest Λ, which is also similar to the Bi = 10−1 value.

Figure 4.15 contains three plots of w at time t = 3, z = −0.3 and r = 0.685.

Figure 4.15a shows a configuration with Bi = 103 and RaFTsc = 5.2 × 101 which

has Λ = 13. Figure 4.15b shows a system with Bi = 100 and RaFTsc = 5.5 × 101

which has Λ = 1.9, just below transition to 3-dimensional flow. Finally, Figure

4.15c visualises a configuration with Bi = 10−3 and RaFTsc = 4.5× 101 which has

Λ = 4.7.

Comparing the plots in Figure 4.15, it is obvious that columnar vertical struc-

ture is only present for Bi = 100 and not Bi = 10−3 or Bi = 103. This demonstrates

that systems with moderate Bi, which are similar to neither fixed temperature

nor fixed flux configurations, maintain 2D behaviour to higher Rasc values. Also

note that while the Bi = 103 case, shown in Figure 4.15a, appears to have some

columnar-like behaviour, this is a single snapshot in time and temporal variation

analysis determined that this RaFT considered is chaotic. Therefore a single frame

of w cannot fully visualise the changes in vertical behaviour. In comparison, the

configuration with Bi = 10−3 shows no columnar-like behaviour.

The investigation of RRBC dynamics when Ek = 10−4 demonstrates different

spatial behaviours between Robin condition configurations with different Bi values.
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4. ROBIN CONDITION

(a) Bi = 103, RaFTsc = 5.2× 101,

RaFT = 1.3× 107, Λ = 13

(b) Bi = 100, RaFTsc = 5.5× 101,

RaFT = 8.7× 106, Λ = 1.9

(c) Bi = 10−3, RaFTsc = 4.5× 101,

RaFT = 1.0× 107, Λ = 4.7

Figure 4.15: Plots of vertical velocity, w, at r = 0.685, t = 3, and z = 0.3 for

RRBC with Ek = 10−4. The blue colour indicates downward motion and the red

indicates upward motion. Each plot is for a specific Biot number, Bi, and super-

critical Rayleigh number, RaFTsc.
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(a) Bi = 103, RaFTsc = 3.5× 101,

RaFT = 9.3× 107, Λ = 12

(b) Bi = 100, RaFTsc = 3.0× 101,

RaFT = 7.9× 107, Λ = 1.7

(c) Bi = 10−2, RaFTsc = 2.7× 101,

RaFT = 6.9× 107, Λ = 2.7

Figure 4.16: Plots of vertical velocity, w, at r = 0.685, t = 3, and z = 0.3 for

RRBC systems with Ek = 10−5. The blue colour indicates downward motion and

the red indicates upward motion. Each plot is for a specific Biot number, Bi, and

super-critical Rayleigh number, RaFTsc.

Let us consider systems with Ek = 10−5 to determine if these observations are

present in more rapidly rotating systems. From Figure 4.12, it is evident that Λ

grows much faster for configurations with Bi > 101 than for lower Bi values. In

the lowest panel of Figure 4.13, we observe the Λ values for low Bi, which shows

that Bi = 100 exhibits below Λ = 2 to the highest RaFTsc.

Comparing the vertical behaviour for different Bi values applied to systems

with 2.5 × 101 ≤ RaFTsc ≤ 3.5 × 101, we visualise different Λ values in Figure

4.16. In each plot, w is shown at z = −0.3, t = 3, and r = 0.685. A system with

Bi = 103 at RaFTsc = 3.5 × 101 which has Λ = 12 is shown in Figure 4.16a. A
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configuration with Bi = 100 and RaFTsc = 3.0 × 101 which has Λ = 1.7 is shown

in Figure 4.16b. Finally, a system with Bi = 10−2 and RaFTsc = 2.7 × 101 which

has Λ = 2.6 is visualised in Figure 4.16c.

At first glance, all three plots in Figure 4.16 show more columnar-like behaviour

than the Ek = 10−4 systems, shown in Figure 4.15, did. This is due to the increased

effects of rotation from decreasing the Ekman number which encourages vertical

columns (Chandrasekhar, 1961). A closer examination of the Bi = 103 case in

Figure 4.16a shows that there are breaks and curves in the vertical columns, which

would cause Λ to be large especially taken over time (recall this plot is a snapshot

in time). In comparison, the Bi = 100 and 10−2 plots show much more vertical

uniformity with much wider and more consistent vertical columns. This verifies

that low and moderate Bi maintain vertical uniformity to higher RaFTsc than

large Bi.

The results of vertical and horizontal spatial behaviour are consistent with the

temporal variation results all of which show that systems with Robin conditions

with moderate Bi values resist chaotic behaviour to higher RaFT values than ex-

treme Bi configurations. While horizontal behaviour and temporal variation sug-

gest similar transitions to chaos for extreme Bi values, both low and high, the

vertical behaviour of RRBC shows low Bi numbers retains vertical uniformity to

larger RaFT than high Bi systems.

4.5.3.3 Zonal structure

Finally, let us consider zonal flow behaviour, which, along with horizontal and

vertical spatial behaviour can determine if a system geostrophically turbulent (Ecke

et al., 2022). Figure 4.17 shows the time-and-volume-averaged mean-zonal-flow

MZF , see Eq(3.13), as a function of super-critical Rayleigh number, RaFTsc. The

Bi and Ek values of each system are indicated by the colour and shape of each

marker.

From Figure 4.17, it is evident that non-rotating systems do not have significant

zonal flows, even at high RaFTsc. That is expected because convection is a primarily

vertical phenomena and rotation excites zonal flows. The same behaviour was

exhibited in the fixed temperature and fixed flux configurations.
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Figure 4.17: The volume and time averaged mean-zonal-flow (MZF ) as a function

of supercriticality RaFTsc for systems with Robin thermal boundary conditions

with varying Biot numbers. The Bi value is indicated by colour as shown by the

colour-bar. The Ekman number, Ek is indicated by the marker shape.

With moderate rotation, it is clear that low and moderate Bi value systems

have lower MZF than Bi ≥ 102 for the same RaFTsc. Moderate Bi are again seen

to have lower MZF when Ek = 10−5, in comparison to both high and low Bi.

This is congruent with the temporal variation which showed that for Ek = 10−5,

the moderate Bi became chaotic at higher RaFT than extreme Bi. Hence, unlike

in the fixed flux and fixed temperature cases, we do note some deviation in zonal

flow behaviour between different thermal boundary conditions.

To investigate the differences in zonal flow structure, we plot Figure 4.18 which

visualised uθt for two systems with RaFTsc = 3.5 × 101 and 10−5. The volume

averaged zonal flow for the Bi = 103 case hasMZF = −100 while the configuration

with Bi = 10−1 is MZF = −40. The difference in zonal structure and cause of the

great variation inMZF values between the two systems is evident from Figure 4.18.

The higher Bi configuration has a chaotic zonal flow with much larger magnitude

of velocity than the moderate Bi configuration which exhibits both columnar bulk

flow and a strong wall-localised flow. This further shows that RRBC with moderate

Bi values resists chaotic flow to higher RaFT values than systems with extreme Bi
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(a) Bi = 103 (b) Bi = 10−1

Figure 4.18: uθt for two Robin RRBC systems with RaFTsc = 3.5× 101 and Ek =

10−5 plotted at t = 3.

values.

4.6 Summary

In overview, we have introduced and defined the Robin condition– a thermal bound-

ary condition which straddles fixed temperature and fixed flux conditions. The

Robin condition, as defined in Eq (4.9), is controlled by the Biot number Bi, a

ratio involving the height and thermal conductivity between the boundary and the

fluid layer, defined in Eq (4.10). The Bi value indicates how similar a boundary is

to fixed temperature (Bi → ∞) or fixed flux (Bi → 0). In order to compare results

between RRBC systems with different Bi values, it is necessary to define the ef-

fective Rayleigh number, Ra(Bi), as a function of the fixed temperature Rayleigh

number, RaFT . We choose to extend the relationship between RaFT and RaFF

presented in Eq (3.7) to a novel relationship between RaFT and Ra(Bi), described

by Eq (4.13). We find that our definition of Ra(Bi) causes the Nu−RaFT scaling

γ to converge to the fixed temperature γ value for a range of Bi values better than

the Ra(Bi) − RaFT relationships defined in Gringé et al. (2007) and Clarté et al.

(2021).

Employing our Ra(Bi)−RaFT transformation, Figure 4.7 showed the γ values

for RBC systems with varying Ek and Bi values are generally within the 99%
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confidence interval of the fixed temperature configuration γ value. Without ro-

tation, it was ubiquitously observed that heat transport, spatial behaviour and

time-dependence were not affected by Bi value. We further observe that systems

with moderate Bi – that is 10−1 ≤ Bi ≤ 101– have differences in flow, when

rotating. An investigation into temporal variation showed that moderate Bi are

non-chaotic to higher RaFT than extreme Bi when rotating.

Spatial behaviour was considered in three directions: horizontal, vertical, and

zonal. The horizontal structures showed that with rotation, behaviour at the onset

of wall-localised convection is uniform across Bi. However, for RaFT > RawFTc,

the number of convection rolls m and location of dominant convection within the

domain vary with Bi value. The transition to bulk convection occurs at higher

RaFT than fixed temperature theory predicts for moderate Bi systems.

When considering vertical behaviour, Λ, defined in Eq(3.11), was used to de-

termine the vertical uniformity. When Λ > 2, a system is considered to have 3D

flow. With and without rotation, both moderate and low Bi are shown to become

3-dimensional at higher super-critical Rayleigh number, RaFTsc = RaFT/RaFTc,

than large Bi. Finally, the mean-zonal-flow (MZF ) was time and volume averaged

to show that without rotation, even chaotic behaviour does not cause significant

zonal flow. However, with rotation, it was seen that moderate Bi had lower MZF

than high Bi for the same RaFTsc.

Overall, we have made a unique observation that moderate Bi values cause

rapidly rotating RBC systems to remain non-chaotic to higher RaFT values than

systems similar to fixed temperature or fixed flux conditions. Though, we have

considered only a single geometry and Pr value, this has implications for the way

we relate physical systems to numerical models. In the experimental context, it

is useful to ensure the boundary materials and fluid relate such that Bi > 102 if

a corresponding numerical model applied fixed temperature boundary conditions.

Further, if we consider the Earth’s core-mantle boundary (cautiously due to the

convective nature of the mantle)– where the molten core has d = 2.2 × 103km

depth and approximately k = 30W/mK (Ohta & Hirose, 2020) and the mantle has

dm = 2.9× 102W/mK and approximately km = 3.5W/mK (Tang et al., 2014)– the

Biot number is on the order of 10−1 which is considered to be moderate. Hence,
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the differences between RRBC dynamics in systems with moderate Bi values and

either fixed temperature or fixed flux conditions are relevant to the interpretation

of numerical models of the Earth’s core.
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Chapter 5

Inhomogeneous Sidewall

Insulation

In Chapter 4, we studied the dynamics of a fluid undergoing rotating Rayleigh–

Bénard convection (RRBC) in a cylindrical domain with Robin boundary condi-

tions on the horizontal boundaries. The investigation of RRBC with by Robin

conditions, revealed that flow dynamics are moderately affected by the properties

of the bounding material. While many experimental studies use materials which

create conditions similar to fixed temperature conditions, the thermal conditions

at the core-mantle boundary (CMB) are not clearly similar to either fixed flux or

fixed temperature conditions.

In our endeavour to investigate physically realisable thermal boundary condi-

tions, we must consider the lateral boundaries. As discussed in Chapter 1, the

Earth’s core is affected by a large-length scale variation in heat flux at the CMB.

Hence, in this chapter, we explore the effects of inhomogeneous insulation by apply-

ing nonuniform heat flux to the sidewalls of the cylindrical domain. The cylindrical

geometry enables the numerical model to be compared to potential future exper-

iments. Hence, the boundary conditions are chosen to be both experimentally

feasible and representative of the heat flux at the CMB.

5.1 Introduction

Previous studies of inhomogeneous heat flux boundary conditions have considered

either variations in temperature (C. J. Davies et al., 2009; Reiter et al., 2022) or
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heat flux (Mound & Davies, 2017; Sahoo & Sreenivasan, 2017, 2020). In a rotating

spherical-shell with azimuthal variation in fixed temperature boundary conditions,

it was found that the large length-scale variations caused steady state solutions

in RRBC while convective length-scale variations had different effects dependent

on the amplitude of the variations (C. J. Davies et al., 2009). An experimental

model in a rotating cylindrical annulus described in Sahoo and Sreenivasan (2020)

supported the large-length scale result when the heat flux was varied. In a non-

rotating cylindrical domain where the temperature is varied vertically and not

azimuthally, bulk convection for high Ra systems was not observed to be affected

by the thermal boundary condition (Reiter et al., 2022). However, we are unaware

of a numerical study which considers the effects of azimuthally varying heat flux

thermal condition on a rotating cylindrical domain.

Therefore, this chapter will investigate RRBC dynamics in a rotating cylinder

with heat flux varying in sinusoidal patterns azimuthally and vertically. In Sahoo

and Sreenivasan (2020) it is noted that, in a physical experiment, without verti-

cal variation in heat flux, the RRBC system reaches the quasi-geostrophic regime,

where convection loses its columnar structure. However, vertical variation is nec-

essary to conform with homogeneous fixed temperature boundary conditions at

the top and bottom of the domain. We consider two patterns of sinusoidal heat

flux: Positive/Negative which oscillates from positive to negative values and Pos-

itive/Zero which oscillates from positive values to zero. In the latter case, the

boundary heat flux is never negative, which is more appropriate for modelling the

Earth’s core (Mound & Davies, 2017) and is more experimentally realisable (Sahoo

& Sreenivasan, 2020).

In both cases, we fix the azimuthal mode mθ of the boundary condition in

reference to be the preferred mode mUI of the uniformly insulated case. Note

that we use a fluid with Pr = 0.7 such that mUI is determined from the fixed

temperature vertical thermal boundary condition systems reported in Chapter 3.

There are three configurations for the azimuthal mode:

1. large length-scale mθ = 1, which is most geophysically appropriate (Mound

& Davies, 2017);
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2. convective length-scale mθ = mUI ; and

3. secondary convective length-scale mθ = bmUI where b = 0.5 or 2.

The latter two cases are of interest because of their ability to ‘pin’ convection rolls

such that rolls which may rotate about the domain in a homogeneously insulated

system become stationary.

In Section 5.2, we define the Positive/Negative and Positive/Zero configura-

tions. Then, in section 5.3, we derive a solid steady state solution for the Posi-

tive/Negative case and a heat flux analysis provides analytic results against which

the Positive/Zero numerical setup is tested for accuracy. In section 5.4, the results

are presented for each case of mθ with and without rotation. We aim to identify

global effects of inhomogeneous insulation on rotating RBC by observing changes

in heat transport, temporal behaviour, and flow structure.

5.2 Boundary conditions

In order to solve the fluid system described in Chapter 2 – an air-like fluid with

Pr = 0.7 undergoing rotating RBC in a cylindrical domain, governed by Eqs

(2.11a)-(2.11c)– it is necessary to define boundary conditions on the horizontal and

lateral boundaries. On all surfaces, velocity is no-slip, as in Eq (2.15). The top

and bottom thermal boundary conditions are fixed temperature, as described in Eq

(3.1). Due to the fixed temperature conditions, we consider the fixed temperature

Rayleigh number, which we refer to as Ra in this chapter.

On the sidewalls, the heat flux is a sinusoidal function in both the vertical and

azimuthal directions. We require a vertical variation in heat flux to accommodate

the fixed temperature condition at the top and bottom of the system. We con-

sider two forms of inhomogeneous thermal boundary condition on the sidewalls:

Positive/Negative and Positive/Zero.

5.2.1 Positive/Negative inhomogeneity

The Positive/Negative lateral thermal boundary condition has oscillations both

vertically and azimuthally. For simplicity, we fix the vertical variation as mode
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(a) An = 1, mθ = 1 (b) An = 2, mθ = 3

Figure 5.1: Plots of the Positive/Negative heat flux applied on the sidewalls, as

defined in Eq (5.1), for varied values of An and mθ. The magenta indicates positive

heat flux and blue is negative heat flux.

n = 1 for all models. Hence, the Positive/Negative condition is defined as,

∇T · n =
∂T

∂r
= An sin (fnz) sin (mθθ) at r = 0.7, (5.1)

where fn = 2nπ is the modified vertical mode. The azimuthal mode mθ, and the

amplitude An are prescribed for each system.

Figure 5.1 visualises two forms that the Positive/Negative condition can take by

varyingmθ and An. Increasing the amplitude increases the maximum and decreases

the minimum heat flux, as seen in the colour-bar magnitude differences between

Figure 5.1a and 5.1b, where An increases from 1 to 2. Increasing mθ causes more

fluctuations in the azimuthal direction. Note that between the peaks and troughs

and at the top and bottom of the system, the figures show white, which indicates

∂T/∂r = 0.

5.2.2 Positive/Zero inhomogeneity

Due to experimental considerations, it is reasonable to have a system which has

some positive heat flux and is otherwise zero, rather than negative (Sahoo & Sreeni-

vasan, 2020). By adjusting Eq (5.1) such that it cannot be negative, we define the

Positive/Zero boundary condition such that

∂T

∂r
= An sin(π (z + 0.5))(1 + sin(mθθ)). (5.2)
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(a) An = 1, mθ = 1 (b) An = 2, mθ = 3

Figure 5.2: The Positive/Zero condition, as in Eq (5.2), applied to the sidewalls

with (left) An = 1 and mθ = 1 and (right) An = 2 and mθ = 3. The magenta

indicates positive heat flux and the white indicates zero heat flux.

Note that in order to maintain a fully positive heat flux, the vertical variation

is now only half of a sine wave.

Figure 5.2 illustrates the Positive/Zero heat flux applied on the sidewalls. Figure

5.2a shows a case where An = 1 and mθ = 1 and Figure 5.2b shows the case where

An = 2 and mθ = 3. As prescribed by Eq (5.2), dT/dr ≥ 0. Note also that at

the top and bottom, the heat flux is zero, which is necessary to satisfy the fixed

temperature condition on the top and bottom of the system.

5.2.3 Boundary condition parameters

In both the Positive/Zero and Positive/Negative cases, the value of mθ, for a given

fixed set of Ek and Ra parameters, is chosen in three ways. First, mθ = 1 is

considered for every case. This is to simulate heat flux variation at the sidewalls

with a larger length-scale than the convection, as in Mound and Davies (2017).

The second case will be mθ = mUI where mUI is the dominant horizontal mode de-

termined for homogeneous sidewall insulation in Chapter 3. In non-rotating cases,

the first two cases are the same because mUI = 1. The third option is mθ = bmUI

where b = 0.5 or 2. The latter two cases are of interest to investigate the ability of

sidewall boundary conditions to pin convection rolls which are time-dependent with

homogeneous sidewall conditions. In C. J. Davies et al. (2009), convection-length
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temperature variations pinned convection in a spherical-shell domain. However,

we are unaware of any previous studies into convective length-scale oscillations in

heat flux conditions.

The amplitude, An, is increased to determine what amplitude of heat flux is

necessary to cause changes in behaviour from the homogeneous case and to see if

different amplitudes cause different behaviours in the inhomogeneous case.

5.3 Numerical testing

In the previous section, two inhomogeneous thermal boundary conditions were de-

fined to be applied on the lateral boundaries of the fluid system defined in Chapter

2. We apply the Positive/Negative Eq (5.1) and Positive/Zero Eq (5.2) conditions

individually with governing equations Eqs (2.11a)-(2.11c). The system is solved

using Nek5000 (Nek5000, 2019) as described in Chapter 2. The parameter list of

simulated Positive/Negative and Positive/Zero configurations are in Appendix D.1.

Though, a kinetic energy balance, as described in section 2.2.2.1, is conducted

and err < 1% is confirmed, we hope to gain further confidence in our numerical

implementations. Thus, in this section, an analytic result is determined for each

boundary condition against which nonlinear numerical results are compared.

5.3.1 Solid steady state solution for the Positive/Negative

condition

Considering the RRBC system with the Positive/Negative condition, we posit that

an analytical solution exists for a solid steady state solution where the fluid is

both time-independent and has no velocity. This solution can be compared with

the results of numerical simulations conducted in parameter ranges when time-

independence and no flow is expected.

The solid steady state is characterised by time-independence and no fluid motion

such that dT
dt

= 0 and u = 0. By applying these conditions to the dimensionless

energy equation, Eq (2.11c), we recover the Laplace equation:

∇2T = 0. (5.3)

138



5.3 Numerical testing

Hence, the temperature must satisfy the fixed temperature boundary condition

and the inhomogeneous sidewall condition, Eq (5.1), as well as Eq (5.3).

By converting into cylindrical coordinates, a solution may be derived of the

form

T = τ(z) + τ ′(z, θ, r), (5.4)

where τ is a linear vertical temperature profile and τ ′ is the perturbation from τ .

For the sake of brevity, the details of the derivation are located in Appendix

D.2. We find that the solution is the sum of τ and a product of sines in z and θ

with an r dependence such that

T (z, θ, r) = −z + 0.5 +
An

dIm(0.7fn)
dr

sin (fnz) sin (mθθ) Im (fnr) , (5.5)

where Im is the modified Bessel’s function.

5.3.1.1 Conductive solutions

The relationship between the solid steady state solution and the numerical conduc-

tive solution, where Ra < Rac (Rac is estimated from the homogeneous case) is

quantified using a ||∆∞|| norm of the temperatures and the time averaged Nusselt

number, Nu =< ∆T/βd >t, of the numerical solution. Designating the solid steady

state solution, the result of Eq (5.5), T̂ and the numeric temperature solution is as

T , the ||∆∞|| norm is defined as

||∆∞|| = |max(T̂ − T )|. (5.6)

We expect that for Ra = 0, where u = 0 is intuitively a solution, ||∆∞|| = 0.

However, it is not obvious if the inhomogeneous sidewall condition will cause a

thermally driven flow in the conductive state, resulting in ||∆∞|| > 0.

Additionally, Rac is predicted to decrease from the homogeneous case (Sahoo

& Sreenivasan, 2017, 2020). Therefore, we observe the Nu as a function of Ra to

identify Rac, the lowest Ra value where Nu > 1.

The ||∆∞|| and Nu values are plotted as functions of Ra, in Figures 5.3a and

5.3b, respectively. In both plots, the Ek value of each system is indicated by a

marker shape while the amplitude An and azimuthal mode mθ are represented by
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(a) ||∆∞|| × 103 vs. Ra (b) Nu vs. Ra

Figure 5.3: Plots of ||∆∞|| × 103, calculated from Eq (5.6), and average Nusselt

number, Nu vs. Ra. Each Ekman number, Ek, is represented by a marker shape.

The amplitude An and azimuthal mode, mθ, are indicated by the colour of the

marker face and edge, respectively. Note the horizontal axes do not have consistent

logarithmic scales in order to visualise Ra = 0 distinctly from Ra = 1.

the marker face and edge colours, respectively. The horizontal axes are a manipu-

lated logarithmic scale such that Ra = 0 and Ra = 1 are visible.

Comparing the spread of ||∆∞|| and Nu in Figure 5.3, it is clear that the metrics

are strongly related. The corresponding ||∆∞|| and Nu values are located in the

same position, though different magnitude, for the two metrics. This is as expected

due to the no velocity assumption of the solid steady state solution, as velocity

increases due to convective motion, the system deviates from Eq (5.5), increasing

the ||∆∞|| value. As in the uniformly insulated case, convection is suppressed

to higher Ra with decreasing Ek (Chandrasekhar, 1961; Buell & Catton, 1983a).

Each Ra − Ek set in Figure 5.3b is Ra < Rac, calculated for the homogeneous

case, however Nu > 1 is present within this range, indicated that Rac ≤ 100 for

Ek = ∞ and Rac ≤ 104 for Ek = 10−4. Thus, we agree with previous results in

experimental cylindrical domains and numerical spherical shells that Rac decreases

with inhomogeneous insulation (Sahoo & Sreenivasan, 2017, 2020).

Additionally, the low ||∆∞|| values in Figure 5.3a correspond to the systems

with Nu < 1.0002. Thus, it is clear there is no thermally driven flows in the

conductive state and consequently, the solid steady state solution Eq (5.5) is an

appropriate solution for the conductive flow. Further, the low ||∆∞|| values are
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indicative of a suitably accurate numerical implementation of the Positive/Negative

boundary condition.

5.3.2 Heat flux accounting for the Positive/Zero condition

With respect to the Positive/Zero condition, the heat flux throughout the system is

considered with two aims: to gain confidence in the numerical methods and define

an appropriate heat transport metric. Previously, we have quantified global heat

transport with the Nusselt number, Nu. We have previously defined Nu = βd/∆T .

Consequently, in systems with uniformly insulated sidewalls and fixed temperature

vertical boundaries, Nu is dependent on the heat flux, β, at the top of the system.

However, in the Positive/Zero case, the introduction of heterogeneity to the sidewall

insulation causes heat to enter or leave the system. Therefore, it is useful to further

investigate definitions of Nu and the impact of varied heat flux on global heat

transport. By measuring the global heat transport, we are also able to test our

numerical methods.

The Nusselt number is the ratio between the total heat flux (conductive and

convective) to the conductive heat flux without convection. Hence to investigate

the heat flux, following the derivation of Nu in Hepworth (2014), we consider the

non-dimensional heat equation, DT
Dt

= ∇2T . Integrating over the volume of the

domain, ∫
V

(
∂T

∂t
+ (u · ∇)T

)
dV =

∫
V

(
∇2T

)
dV. (5.7)

To define heat flux for a statistically steady state, we assume either a time-

independent solution or a time-averaged solution. Hence,∫
V

((u · ∇)T ) dV =

∫
V

(
∇2T

)
dV. (5.8)

Applying the 3D divergence theorem, no-slip conditions, and fixed temperature

horizontal conditions as described in section 5.2, Eq (5.8) becomes∫ 0.7

0

∫ 2π

0

∂T

∂z
rdθdr|z=−0.5 =

∫ 0.7

0

∫ 2π

0

∂T

∂z
rdθdr|z=0.5 + r

∫ 0.5

−0.5

∫ 2π

0

∂T

∂r
dθdz|r=0.7.

(5.9)

See Appendix D.3 for a detailed derivation.
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From Eq (5.9), it is clear that the heat flux at top and bottom of the domain

are dependent on the heat flux removed or added through the sidewalls. Hence,

values of mθ and An may affect total heat transfer.

For the Positive/Zero case, Eq (5.2) is applied to the radial term of Eq (5.9)

and solved as such:

r

∫ 0.5

−0.5

∫ 2π

0

∂T

∂r
dθdz|r=0.7 = R

∫ 0.5

−0.5

∫ 2π

0

An sin(π (z + 0.5))(1 + sin(mθ))dθdz,

= 0.7An

∫ 0.5

−0.5

sin(π (z + 0.5))

∫ 2π

0

1 + sin(mθ))dθdz,

= 0.7An2π

∫ Z

−Z

sin(π (z + 0.5))dz,

= 0.7An2π(
2

π
),

= 2.8An. (5.10)

Therefore, the difference between heat flux at the bottom and top of the domain is∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=−0.5 −

∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=0.5 = 2.8An. (5.11)

From this relationship, we may determine the accuracy of the numerical model for

the Positive/Zero configuration.

5.3.2.1 Numerical testing for Positive/Zero configuration

To gain confidence in our numerical model, we first compare the analytic global

heat flux prediction Eq (5.11) to numeric results. From Eq (5.11), the difference in

heat flux between the top of the domain and the bottom should be related to the

amplitude of the applied insulation by a factor of 2.8. The parameter ranges listed

in Appendix D.1 are modelled and the vertical temperature gradient at the upper

and lower boundaries are calculated.

In Figure 5.4 the difference between the heat flux at the top and bottom of

the domain is divided by the amplitude An of each simulation. The Ek, An,

and mθ values are represented by the marker shape, edge colour, and fill colour,

respectively. The An and mθ values are shown by the colours in the colour-bar

and legend, respectively. The error bars show the heat flux standard deviation
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Figure 5.4: The difference in heat flux between the top and bottom of the domain

∆ < ∂zTr >t,A /An as a function of Ra. The result expected from Eq (5.11) is

2.8 (black line). Each simulation has an Ek, An, and mθ value represented by the

marker shape, edge colour, and fill colour, respectively. The error bars show the

standard deviation in heat flux measurement.

due to time averaging. As determined in Eq (5.11), each simulation should have a

difference in heat flux of 2.8An.

From Figure 5.4, it is clear that for RaFT < 106, all systems considered display

the expected heat flux behaviour. Though as Ra increases, larger error ranges

and deviations from 2.8 occur. This is because, as seen in Chapter 3, as RaFT

increases, the fluid behaviour becomes increasingly time-dependent. This variation

in behaviour causes uncertainty in the calculation of an average heat flux. The

standard deviation from the calculated differences contain 2.8 in each case. The

only exception is the case where Ek = 10−5 and Ra = 1.44×107 which likely needs

additional time-stepping to saturate such that the heat flux difference is 2.8. Thus,

we conclude that the simulations are sufficiently accurate.

5.3.2.2 New Nusselt number definition

In the previous section, it was shown that measuring the heat flux at the top

and bottom of the domain is not sufficient to describe heat transport in a system

with Positive/Zero insulation. Therefore, a widely accepted Nu definition for fixed

temperature and uniformly insulated systems (Verzicco & Camussi, 2003; Kunnen,
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Clercx, & Geurts, 2008) is adapted such that,

Nuk = 1+ < wT >V . (5.12)

In Kunnen, Clercx, and Geurts (2008) and Verzicco and Camussi (2003), Eq (5.12)

is compared with Nu =< ∂T/∂z >t measured at the top and bottom of the

domain to determine sufficient numerical mesh resolution. According to Verzicco

and Camussi (2003), disparity between values indicates insufficient resolution.

To further confirm this theory for the fixed temperature, uniformly insulated

model, the Nuk value is measured for each system and compared to the previous

Nu value. In Figure 5.5 both Nusselt numbers are plotted as functions of Ra. The

results for the range of Ek numbers are plotted, each as a unique marker shape,

as indicated in the legend. The Nu values using Eq (3.10) is plotted in magenta

while the Nuk values are plotted in red.

Figure 5.5: Comparison of two Nusselt number definitions for uniformly insulated

RRBC systems. The definition from Calkins et al. (2015) (Eq (3.10)) is in magenta

and the definition from Kunnen, Clercx, and Geurts (2008) (Eq (5.12)) is in red.

Each Ek is indicated by shapes as shown in the legend.

For all Ek, the proximity of red and magenta markers in Figure 5.5 indicates

sufficient mesh resolution in the bulk and along the walls. Note there are some

deviations in Nusselt number value for a give Ra value. We attribute this to a

difference in the methods for calculating Nuk and Nu (i.e. Nuk is calculated using
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data closer to the boundaries than Nu). Additionally, the agreement between

values improves our confidence in theNuk measurement defined in Eq (5.12). Thus,

we have determined an appropriate metric of global heat transport measurement

for inhomogeneously insulated systems, Nuk. We also have a understanding of the

heat flux through the vertical boundaries as effected by the inhomogeneity at the

sidewalls and have confirmed the accuracy of the numerical methods.

5.4 Analysis of results

In this section, we analyse the numerical results of applying inhomogeneous sidewall

insulation with both Positive/Negative and Positive/Zero heat flux to a rotating

cylindrical domain. The systems considered include those listed in Appendix D.1

where Ra > Rac.

Recall that the azimuthal mode of the sidewall heat flux mθ is chosen in relation

to the dominant mode of the uniformly insulated system (i.e. An = 0 ) mUI which

is determined from results presented in Chapter 3. Each mθ value is then chosen

to fit one of the following categories:

1. mθ = 1 such that the length-scale of heat flux applied at the sidewall is larger

than the length-scale of the dominant azimuthal mode in the homogeneously

insulated configuration;

2. mθ = mUI to pin convection rolls; and

3. mθ = bmUI where b = 0.5 or 2 to observe if secondary modes can be excited

by sidewall heat flux.

Note that without rotation, the first two instances are the same because mUI =

1.

Each case of mθ is investigated individually. We begin by testing the large

length-scale case. The heat transport behaviour is quantified by Nuk and compared

against homogeneous results. Next, spatial and temporal behaviours are explored.

The same aspects are considered for the convective length-scale configuration and

the secondary convective length-scale case.
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(a) Positive/Negative (b) Positive/Zero

Figure 5.6: Plots of horizontally averaged temperature T vs. height z for configura-

tions with Positive/Negative and Positive/Zero configurations for supercriticality

Rasc on the order of 10. The blue dashed line indicates the uniformly insulated

case of the same Rasc value. The black dotted line shows the conducting case with

An = 0.5. The colour of each solid line indicates the Ekman number of the systems

which each have mθ = 1 and An = 1.

5.4.1 Large length-scale heat flux

We first consider the case where the applied inhomogeneous heat flux has a larger

length-scale than that of the convective motion. In the Earth’s core, tomographic

measurements indicate that the heat flux at the CMB has a large length-scale and is

generally positive (Mound & Davies, 2017). Hence, the Positive/Zero configuration

explored in this section is the most geophysically appropriate boundary condition

that we will consider.

Our exploration of RRBC dynamics begins with observing the vertical temper-

ature profile.

The vertical temperature profiles of systems which have approximately Rasc on

the order of 10 are plotted for each Ek value in Figure 5.6. Note the Rasc values

are calculated from the uniformly insulated case, which is shown by the dashed

line. In the left (right) panel, the Positive/Negative (Positive/Zero) condition is

applied. Each Ek is indicated by colour. The case where Ra < Rac has mθ = 1

and An = 0.5 and all other instances have mθ = 1 and An = 1.

Comparing the conductive profiles, from Figure 5.6a, it is clear that the Posi-

tive/Negative condition allows for the linear profile expected from a homogeneously
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(a) Nuk vs. Ra (b) σNuk vs. Ra

Figure 5.7: Plots of Nuk as defined in Eq (5.12) and the standard deviation of the

Nuk time series from Nuk as functions of Ra. The sidewalls are inhomogeneously

insulated with the Positive/Zero case as in Eq (5.2) with azimuthal mode mθ = 1.

The amplitude of the boundary condition An is indicated by the marker outline

colour. The Ek of each system is shown by the marker shape. In the left panel,

the black lines show the Nu ∝ Raγ relationship for Ek = ∞, 10−4, and 10−5 using

results from Chapter 3.

insulated system (Chandrasekhar, 1961). However, Figure 5.6b shows that the Pos-

itive/Zero case does not have a linear temperature profile. In both cases, the non-

rotating system develops an adverse temperature gradient. The Positive/Zero case

appears not to centre on an averaged temperature of 0.5 as the Positive/Negative

and homogeneous case does.

5.4.1.1 Heat transport

To investigate global heat transportation, the time-averaged Nusselt number, as

defined in Eq (5.12), is measured for each system. Figure 5.7 shows the Nuk value

and corresponding standard deviation σNu for the Positive/Zero case in side-by-side

panels, each as a function of Ra. The sidewall heat flux in all cases has mθ = 1.

Marker shape indicates the Ek value and marker colour represents the An value

for each system. In the left panel, Nuk − Ra scalings calculated in Chapter 3 for

the uniformly insulated configuration are shown by the black lines.

Overall, it is evident from the left panel in Figure 5.7, that for Positive/Zero

configurations near onset with mθ = 1, increasing An, increases Nuk. It is evident
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that changes in An have a smaller effect on global heat transport as Ra increases.

Furthermore, near onset, non-rotating systems exhibit larger increases in Nuk as

An increases than rotating systems.

In contrast, we observe in the right panel of Figure 5.7, that variations in σNuk

with changes in An are not generally dependent on Ra. Rather, for the rotat-

ing Positive/Zero systems, the effect of increasing An decreases as Ra increases.

Without rotation, there is no consistent relationship between An and σNuk. There

are two cases where σNuk is exceptionally low and has little variation between An

values. One is rotating with Ek = 10−5 and Ra = 1.8 × 106, which is very near

to onset. The other instance is not rotating with Ra = 105. These results are also

representative of the global heat transport in Positive/Negative configurations.

We next compare the spread of Nuk for the Ek = ∞, 10−4, and 10−5 systems

with inhomogeneous insulation to the Nusselt number scaling results for uniformly

insulated cases. Table 5.1 lists the γ values and the 99% confidence intervals (CI)

from the for fixed Ek and An values, following the process explain in section 3.4.1.

The magenta (black) values are from the Positive/Negative (Positive/Zero) case.

Where An = 0, the results are from the uniformly insulated case found in Chapter

3. Note that there is no An = 0 scaling for Ek = 10−3. Note in some instances

there are insufficient Ra values modelled to calculate a γ.

Though visually similar in Figure 5.7, Table 5.1 shows that no system with

inhomogeneous insulation and mθ = 1 has the same γ as the uniformly insulated

case. Generally, the γ value is lower in the inhomogeneous case than the uniformly

insulated case, suggesting that the varied insulation weakens vertical heat trans-

port. Without rotation, the confidence intervals between the inhomogeneous cases

and the uniform case do not overlap. When Ek = 10−4, the An = 0 confidence

interval is large and therefore overlaps with the intervals of the inhomogeneous

configuration. When Ek = 10−5, the An = 0.5 and An = 1 amplitudes for the

Positive/Negative and Positive/Zero configurations, respectively, have confidence

intervals on the scaling which aligns with the uniformly insulated case. Hence, it is

evident that inhomogeneous insulation significantly affects the global heat trans-

port behaviour of convection in comparison to a uniformly insulated configuration.
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Ek An γ γ 99% CI γ γ 99% CI

∞ 0 0.296 0.293− 0.298 - -

0.1 0.352 0.351− 0.352 - -

0.5 0.306 0.304− 0.308 - -

1.0 0.269 0.269− 0.270 0.285 0.284− 0.285

10−3 0 0.763 0.763− 0.764 - -

0.1 0.747 0.744− 0.749 - -

0.25 0.513 0.267− 0.660 - -

0.5 0.499 0.350− 0.647 0.504 0.396− 0.612

1.0 0.525 0.290− 0.760 0.486 0.394− 0.579

10−4 0 0.567 0.427− 0.700 - -

0.25 0.712 0.621− 0.802 - -

0.5 0.707 0.619− 0.796 0.716 0.623− 0.811

1.0 0.712 0.606− 0.797 0.593 0.455− 0.731

10−5 0 0.889 0.673− 1.11 - -

0.25 0.620 0.617− 0.623 - -

0.5 0.606 0.596− 0.615 0.774 0.771− 0.777

1.0 0.707 0.682− 0.7316 0.651 0.651− 0.651

Table 5.1: Nusselt number scalings such that Nu ∝ Raγ with the 99% confidence

interval of γ in black (magenta) for the Positive/Zero (Positive/Negative). Note

that the An = 0 cases are the uniformly insulated configuration reported in Chapter

3 and calculated with Nu from Eq (3.10). Where An > 0, the inhomogeneous

insulated systems use Nuk from Eq (5.12). The ‘-’ symbol indicates that insufficient

Ra values were modelled to measure γ.
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In (Mound & Davies, 2017), inhomogeneous sidewall insulation in a form similar

to the Positive/Zero mθ = 1 configuration was found to enhance γ measurements

in spherical-shell geometry with 10−4 ≥ Ek ≥ 10−6. The results presented in Table

5.1 show that γ is enhanced for Positive/Zero configurations with Ek = 10−4 when

An > 0. However, all other Ek values result in diminished γ values. This is likely

because higher Ra are considered in (Mound & Davies, 2017). Indeed, Figure 7 in

(Mound & Davies, 2017), shows that for Ra < 108, the inhomogeneously insulated

cases have lower γ than that of the homogeneous case.

Furthermore, in Mound and Davies (2017), the γ enhancement increased with

increased applied heat flux amplitude. We do not see the same relationship be-

tween An and γ in Table 5.1. This difference may be due to inconsistency be-

tween the definition of amplitude used in (Mound & Davies, 2017), such that

A∗
n = max(∂rT )−min(∂rT )

<∂rT>V
at r = 0.7, and the amplitude definition of An used here.

Additionally, the Positive/Negative configuration appears to decrease γ as An in-

creases.

Hence, we have shown that in RRBC away from onset, global heat flux relative

to the conductive heat flux is generally diminished by large length-scale sidewall

insulation. Next, the fluctuation of Nuk over time is used to investigate temporal

behaviour for a representative selection of Ek −Ra configurations.

Measuring global heat transport with the Nusselt number Nuk provides insight

into both temporal and thermal behaviour. Figure 5.8 contains plots of Nu vs.

t for four unique systems with mθ = 1 with varying Ra, Ek, and An values. In

each panel, from top to bottom, results for RBC configurations with Ek = 10−5-

Ra = 1.44 × 107; Ek = 10−4-Ra = 6.4 × 105; Ek = 10−3-Ra = 9.6 × 105; and

Ek = ∞-Ra = 1×105, are respectively shown. The An value of each Positive/Zero

case is indicated by the line colour specified in the legend. The An = 1 case of the

Positive/Negative condition is plotted in magenta.

Figure 5.8 shows that, of theRa-Ek configurations considered, the homogeneous

case has time-independent Nuk time series. Note that this may differ from the

temporal behaviour noted in Chapter 3 based on a Nu time series due to the

different calculation methods for Nu and Nuk.
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Figure 5.8: Nusselt number, Nuk, time series for configurations of inhomogeneous

sidewall insulation with mθ = 1. The panels contain, from top to bottom, Ek =

10−5- Ra1.44 × 107; Ek = 10−4-Ra = 6.4 × 105; Ek = 10−3-Ra = 9.6 × 105; and

Ek = ∞-Ra = 1 × 105. Within each plot, the uniformly insulated (An = 0) time

series is plotted in black along with the Positive/Zero condition for varying An is

varied according to colour. The An = 1 case for the Positive/Negative condition is

plotted in magenta. Note that the vertical axis is not consistent for all panels.
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In the upper two panels of Figure 5.8,as An increases, the temporal behaviour

becomes oscillatory for Positive/Zero configurations. Further, in the Ek = 10−5

and Ra = 1.44 × 107 system, the Nuk time series becomes quasi-oscillatory with

decreasing envelope wavelength as An increases. The superposition of temporal

modes in quasi-oscillatory behaviour may be representative of a superposition of

spatial modes within the system. For the same systems, the Positive/Negative

configuration is ubiquitously time-independent.

The weakly rotating systems in the third panel has chaotic behaviour for all

configurations shown in Figure 5.8. The Positive/Zero case increases in Nuk when

An = 2. The non-rotating system shown in the bottom panel did not have a

Positive/Negative equivalent simulation, but all Positive/Zero configurations have

time-independent flow and Nuk increases with An.

Hence, we have observed that while Nuk − Ra scaling decreases with inhomo-

geneous insulation, it does not necessarily correspond to more temporally steady

systems. Non-rotating systems are not temporally affected by the applied heat flux.

With rotation, the Positive/Negative configurations remain time-independent, though

the Positive/Zero configurations tend toward oscillatory behaviour. It is now of in-

terest to explore the spatial implications of these noted variations in heat transport

and temporal behaviour.

5.4.1.2 Spatial structure

To investigate the flow structure, we examine the patterns of vertical velocity w

over time and about a fixed radius.

Beginning with a rapidly rotating system with parameters Ek = 10−5 and

Ra = 1.44× 107, Figure 5.9 shows on the left Hövmoller diagrams of w at r = 0.68

over time and on the right plots of w at t = 3 and r = 0.685. The homogeneously

insulated case is shown in the upper set of plots. The lower two plots have inho-

mogeneous insulation on the sidewalls in the Positive/Negative or Positive/Zero

configuration as indicated by the sub-captions. For each inhomogeneous system,

mθ = 1 and An = 1.

It is evident from the right-side plots of Figure 5.9 that each system has 3

convection rolls. However, the placement and motion of the rolls about the az-
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(a) Homogeneous, An = 0

(b) Positive/Negative, An = 1

(c) Positive/Zero, An = 1

Figure 5.9: Plots of vertical velocity w in two forms: (left) Hövmoller diagrams

at z = 0.3 and r = 0.68 over time and (right) slices at time t = 3 and r =

0.685. The RRBC system has Ek = 10−5 and Ra = 1.44 × 107. The upper plots

are homogeneously insulated. The middle and lower plots are inhomogeneously

insulated with mθ = 1 and An = 1 as in Eq (5.1) and Eq (5.2), respectively.

153



5. INHOMOGENEOUS SIDEWALL INSULATION

imuthal axis varies dependent on the boundary condition. By observing the slope

of the lines in the left-side Hövmoller diagrams, the rate of rotation of the convec-

tion rolls about the vertical axis is estimated. The homogeneous case completes

approximately 8.7 rotations per unit of time while the Positive/Negative and Posi-

tive/Zero configurations complete 2.3 and 3 rotations per unit of time, respectively.

Additionally, we find that as An increases, the overall rotation rate is decreases.

Thus, it is clear that the application of inhomogeneous insulation of large-length

scale at the sidewall causes convection cells to rotate slower in rapidly rotating

RBC systems.

Further, in the Positive/Negative case, the rotation rate is slowed in the region

θ < π where the boundary condition applies ∂T/∂r > 0. This shows that the

positive heat flux causes the rotation to slow more than the negative heat flux.

However, with the Positive/Zero condition where ∂T/∂r ≥ 0 ubiquitously, the

overall rotation is faster than the Positive/Negative case. This difference suggests

the maximum applied heat flux is not the only factor determining convection roll

rotation.

The structure of the rolls may also influence the rotation rate of the convection

rolls. As seen in the right-hand plots of Figure 5.9, the homogeneous case has three

rolls each of relatively similar wavelength. The Positive/Negative configuration

causes the wavelength of the convection rolls to narrow as the heat flux applied at

the sidewalls increases. In contrast, the Positive/Zero case shows a narrowing of

convection rolls in the region near θ = π where the applied heat flux transitions from

the maximum to minimum amplitude. The location of the narrower convection rolls

changes with time and is likely a physical manifestation of the quasi-oscillatory

temporal behaviour seen in Figure 5.8.

It it worth noting that the convection illustrated in Figure 5.9 is wall-localised.

The application of inhomogeneous sidewall insulation does not affect the flow of

the bulk fluid in rapidly rotating RBC for these parameters. This is also true for

moderately rotating RBC, including the case Ek = 10−4 and Ra = 6.4× 105.

However, as rotation decreases, the effects of inhomogeneous sidewall insulation

on flow structure change. For the case with Ek = 10−4 shown in Figure 5.8, the

homogeneous case has mUI = 4 and the convection rolls do no rotate. Figure 5.10
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Figure 5.10: Vertical velocity w for the rotating RBC system with Ek = 10−4 and

Ra = 6.4 × 105. The sidewalls have the Positive/Zero with mθ = 1 and An = 1.

The left-hand plot is a Hövmoller diagram at z = 0.3 and r = 0.68. The right-hand

plot is taken at time t = 3 and r = 0.685.

shows the w structure with Positive/Zero sidewall insulation with azimuthal mode

mθ = 1 and amplitude An = 1. The homogeneous and Positive/Negative results

are shown in Appendix D.4.

From Figure 5.10, it is clear that the system has become time-dependent and

now has 3 convection rolls. This is also true for the Positive/Negative case. This

choice of spatial structure is a secondary convection form, excited by the inho-

mogeneity. In Figure 5.7, the panel showing the Ek = 10−4 case shows that the

inhomogeneously insulated systems briefly choose a state of convection where Nuk

is the same as the uniformly insulated case before jumping to a higher Nuk value.

However, it is unclear why the chosen number of convection rolls does not match

the applied heat flux in this case.

The weakly rotating case which has temporally chaotic behaviour in Figure 5.8

Ek = 10−3 and Ra = 9.6 × 104, transitions from non-rotating convection rolls to

rotating rolls with the application of inhomogeneous sidewall insulation. However,

the dominant mode remains mUI = 2. See Appendix D.4 for figures of the weakly

rotating system.

Without rotation, no notable difference in flow structure is observed. Hence,

the change in σNuk observed in Figure 5.7 for Ek = ∞ and Ra = 1× 105 is likely

not due to the inhomogeneous insulation.

In summary, we have identified several effects on rotating convection due to
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the application of large length-scale heat flux variations as the lateral boundary

condition. We first saw that the Positive/Negative condition has a similar vertical

temperature profile as the homogeneous configuration while the Positive/Zero case

deviates from this behaviour. However, the scaling of the Nusselt number Nuk with

the Rayleigh number Ra such that Nuk ∝ Raγ, changes dependent on the lateral

boundary condition. In Mound and Davies (2017), it was found that in spherical

shells, large length-scale heat flux boundary conditions caused an enhancement

of heat transport in rapidly rotating systems. Our results oppose the literature,

finding that heat transport is diminished with and without rotation. Though, the

limited range of Ra considered here may contribute to the discrepancy.

Next, it was shown that temporal behaviour is affected by inhomogeneous insu-

lation. Though the Positive/Negative condition did not cause changes in temporal

dependence, the Positive/Zero condition causes oscillatory behaviour in rapidly

and moderately rotating systems. The spatial structure did not necessarily reflect

the temporal behaviour.

All rotating systems exhibited a change in fluid rotation in wall modes due to

the inhomogeneity. However, the rapidly rotating system rotated slower while the

weakly rotating systems only rotating with inhomogeneous insulation, not in the

uniformly insulated case. Within the rotating systems, when Positive/Negative

heat flux is applied, the rotation slows within the region where ∂T/∂r > 0 at the

sidewall. This contrast to results from Sahoo and Sreenivasan (2020) in which it

was shown that increased heat flux slowed flow rotation. Generally, the dominant

number of convection rolls was not affected by the large length-scale applied heat

flux, with exception for the moderately rotating case which changed from mUI = 4

to a dominant m = 3 with either Positive/Negative or Positive/Zero heat flux.

The non-rotating system also retains the dominant mode when mθ = 1 is applied.

However, without rotation, mUI = 1 and hence is better investigated in the context

of convective length-scale sidewall inhomogeneities.

5.4.2 Convective length-scale heat flux

We next explore the application of convection length heat flux variations at the

sidewalls of RRBC. In terms of the Positive/Negative– Eq (5.1) – and Positive/Zero

156



5.4 Analysis of results

– Eq (5.2)– the azimuthal mode is set to be mθ = mUI , where mUI is the dominant

mode of the uniformly insulated configuration as determined in Chapter 3. Hence,

the lateral boundary condition should align with the dominant convection rolls.

The vertical temperature profiles are unchanged from the mθ = 1 case such that

the Positive/Negative condition follows similar behaviour as uniformly insulated

systems. As in section 5.4.1, the Positive/Zero configuration becomes increasingly

vertically uniform in the bulk of the domain but is not centred on T = 0.5 (see

Appendix D.4).

Thus, we focus on heat transport in the context of the Nusselt number. In

this section, Nuk is considered as both the time averaged value and time series.

We additionally, consider the spatial behaviours with a particular interest in the

arrangement and movement of convection rolls.

5.4.2.1 Heat transport

In section 5.4.1, it was found that applying large length-scale heat flux to the

sidewalls of a cylindrical rotating RBC system caused Nuk to deviate from the

homogeneous value. However, we are unaware of any study which compares Nu−
Ra scaling for an inhomogeneously insulated system with convective length-scale

heat flux applied at the sidewalls.

Figure 5.11 shows plots of the time averaged Nusselt number Nuk and cor-

responding standard deviation σNuk against Rayleigh number. The results are

calculated from rotating RBC systems with Positive/Zero conditions where the

azimuthal mode mθ = mUI where mUI is the dominant mode of the uniformly

insulated system. The amplitude of the boundary condition and Ek of the system

are indicated by the colour and shape of the marker, respectively. Scalings of the

form Nu ∝ Raγ measured for the uniform case are indicated by the black solid,

dot-dashed, and dotted lines for Ek = 10−5, 10−4, and ∞, respectively.

From Figure 5.11, it is evident that at Ra value increases, changes in An stop

affecting Nuk. However, the right panel in Figure 5.11 shows that σNuk does

not follow the same pattern, varying with An independently of Ra. With few

exceptions, σNuk increases as An increases which indicates that the amplitude of

oscillations or chaotic fluctuations increase with An.
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(a) Nuk vs. Ra (b) σNuk vs. Ra

Figure 5.11: Plots of time averaged Nusselt number Nuk and corresponding stan-

dard deviations σNuk as functions of Rayleigh number Ra. The RBC systems

have Ek as noted by the marker shape and Positive/Zero thermal insulation with

azimuthal mode mθ = mUI where mUI is the dominant mode of the uniformly

insulated system. The applied heat flux amplitude An is indicated by the marker

colour. Heat transport scalings of the form Nuk ∝ Raγ are shown for the uniformly

insulated cases with Ek = ∞, 10−4, and 10−5.

Visually, comparison between the Nuk spread and the uniformly insulated scal-

ings in Figure 5.11 suggests that the Positive/Zero condition results in similar γ

measurements as the uniform case. These results are quantified in Table 5.2 for

both the Positive/Negative and Positive/Zero configurations. See the An = 0 list-

ings in Table 5.1 for the homogeneous γ measurements.

The γ values presented in Table 5.2 do not align with the uniformly insulated

results being lower in the non-rotating and rapidly rotating systems but higher

in the moderately rotating system. This is true for both the Positive/Zero and

Positive/Negative configurations. In comparison to the mθ = 1 case, as listed in

Table 5.1, the scalings for moderate rotation are higher when mθ = mUI , while

rapidly rotating systems have lower γ values. Hence, we anticipate differences in

flow structure due to changes in global heat transport indicated by variation in γ

value.

To investigate the heat transport further, the Nusselt number time series are

illustrated in Figure 5.12. In each panel, the Nuk values over time are plotted for

systems with fixed Ek (as indicated by the right side label) and Ra = 1.44× 107,
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Ek An γ γ 99% CI γ γ 99% CI

∞ 0.1 0.351 0.351− 0.352 - -

1 0.269 0.269− 0.270 0.285 0.284− 0.285

10−4 0.5 0.738 0.624− 0.851 0.778 0.435− 1.07

10−5 0.5 0.680 0.541− 0.820 0.654 0.652− 0.656

1 0.677 0.550− 0.804 0.722 0.695− 0.748

Table 5.2: List of scaling γ where Nuk ∝ Raγ for inhomogeneously insulating

RBC systems. The Positive/Negative condition results are shown in magenta and

Positive/Zero condition results are in black. For each the 99% confidence interval

(CI) is also listed.

Figure 5.12: Nuk time series for configurations of inhomogeneous sidewall with

mθ = mUI . The panels contain, from top to bottom, Ek = 10−5- Ra1.44 × 107;

Ek = 10−4-Ra = 6.4×106; Ek = 10−3-Ra = 9.6×104; and Ek = ∞-Ra = 3×103.

Within each plot, An of the Positive/Zero boundary condition is varied according

to colour, as indicated in the legend. The magenta line shows Positive/Negative

case with An = 1. Note that the vertical axis is not consistent for all panels.
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6.4× 105, 9.6× 104, and 1× 105, individually. The black line shows the uniformly

insulated result and the magenta line shows the Positive/Negative case with An =

1. The other colours represent the Positive/Zero configuration with An as indicated

by the legend. Both inhomogeneous conditions have mθ = mUI for each case.

An overview of Figure 5.12 shows that the temporal dependence is strongly

affected by the type of inhomogeneity. The Positive/Negative condition causes os-

cillatory behaviour in all rotating systems. In contrast, the Positive/Zero condition

causes time-independence in moderately rotating and weakly rotating systems and

oscillatory behaviour in the rapidly rotating case. Further, the Nuk value tends

to be increased by increasing An with the Positive/Zero condition but not the

Positive/Negative condition.

In order to thoroughly investigate these systems individually, it is useful to

visualise the flow structure.

5.4.2.2 Convection roll pinning

We first visualise the vertical arrangement of w in several rotating systems. Then,

the horizontal arrangement of w is considered particularly in weakly and non-

rotating systems.

In the top panel of Figure 5.12, the Nuk time series for a system with Ek = 10−5

and Ra = 1.44×107 is shown. There is a significant variation between the temporal

behaviours of the Positive/Zero and Positive/Negative configurations. To explore

how the temporal differences relate to flow structure, we observe Figure 5.13 which

shows the vertical velocity both for fixed r and z (left); and for fixed r and t (right).

The upper panel has Positive/Negative inhomogeneity with An = 1 and the lower

two panels have Positive/Zero variation with An = 1 and 2, respectively. All plots

have an azimuthal mode of mθ = 3 = mUI .

The upper panel of Figure 5.13 shows that the Positive/Negative configura-

tion has a similar pattern to the Positive/Zero condition when large length-scale

variations were applied (see Figure 5.9c) such that the convection rolls continue

rotating about the domain. This differs from previous Positive/Negative results

where slowing of rotation was noted in regions where positive heat flux is applied.

This is also evident in the snapshot of the vertical axis in the right-hand panel
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(a) Positive/Negative, An = 1

(b) Positive/Zero, An = 1

(c) Positive/Zero, An = 2

Figure 5.13: Visualisations of w in RRBC system with Ek = 10−5 and 1.44× 107

with inhomogeneous sidewall insulation. On the left (right) are Hövmoller diagrams

with fixed r = 0.68 and z = 0.3 (w at fixed t = 3 and r = 0.685). For each

mθ = 3 = mUI . The homogeneous results are shown in the upper panel of Figure

5.9c.
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which shows that some convection rolls are narrower but with no clear dependence

on the heat flux variations.

In contrast, the lower panels of Figure 5.9 show that the Positive/Zero case

begins to form a regular pattern and decreases in rotation rate in comparison to

the Positive/Negative configuration for An = 1. When the amplitude is doubled,

the bottom panel shows evidence of convection roll pinning. Though the rolls are

not in a constant location, the average θ range for a fixed w value does not rotate

strongly about the system, not completing even a single rotation during the 3 time

unit simulation. The variation of upward and downward flow is limited to azimuthal

regions of width θ = 3/2π. Further, right plot of the lowest panel shows that the

upward modes split toward the top of the domain. This split alternates between

the downward and upward columns over time and causes the zigzag pattern in the

Hövmoller diagram. We see the same kind of behaviour in the Ek = 10−4 and

Ra = 6.4× 105 case (see Appendix D.4).

In weakly and non-rotating systems, the pinning is more efficient, minimising

the regional oscillations. For example, Figure 5.14 illustrates w for the system

Ek = 10−3 and Ra = 9.6×104 with Positive/Zero configuration and mθ = 4 = mUI

and An = 2. In the left panel, the Hövmoller diagram shows two clear convection

rolls, oscillating with weak velocities within azimuthal regions of width θ = 2/2π.

While the homogeneous case had negligible rotation of the convection rolls, the

applied heat flux alters the flow structure.

From the right-hand panels of Figure 5.14, it is evident that the bulk spatial

behaviour is altered by the inhomogeneous insulation. Rapidly and moderately

rotating systems did not exhibit such alterations, having wall-localised convection

with and without inhomogeneity in the sidewall thermal condition. Further investi-

gation of the bulk flow shows that while the wall-localised flow is time-independent,

the bulk flow has become time-dependent.

Figure 5.15 shows two snap-shots of vertical velocity at z = 0.3 in the weakly

rotating system. Comparing the plots at time t = 2.7 (left) and t = 2.9 (right), it is

clear that the fluid in the interior of the domain is fluctuating while the convection

rolls at walls remain fixed. Hence, the Positive/Zero condition has caused both
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(a) Homogeneous

(b) Positive/Zero

Figure 5.14: Plots of vertical velocity in a weakly rotating system with Ek = 10−3

and Ra = 9.6× 104. On the left are Hövmoller plots at r = 0.68 and z = 0.3. On

the right, z = 0.3 and t = 3 are fixed. The inhomogeneous Positive/Zero insulation

has mθ = 2 = mUI and An = 2.
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(a) t = 2.7 (b) t = 2.9

Figure 5.15: Vertical velocity in a weakly rotating RBC with parameter Ek = 10−3

and Ra = 9.6 × 105. Inhomogeneous insulation is applied in the Positive/Zero

configuration with mθ = 2 = mUI and An = 2.

pinning and time-dependence. This behaviour is also exhibited in non-rotating

flows.

Thus, we have seen that applying convective length-scale inhomogeneity to

sidewall insulation can cause pinning of convection rolls to varying degrees for

different rotation regimes. Rapidly and moderately rotating systems have wall-

localised modes pinned within azimuthal regions of width θ = mθ/2π for sufficiently

large amplitudes of heat flux. Weakly and non-rotating systems also have wall-

localised convection pinning however they also exhibit time-dependent flow in the

fluid bulk. Having established that matching the length-scale of the lateral heat

flux condition to the convective length-scale results in pinning, we consider mθ

which match secondary convective length-scales.

5.4.3 Secondary convective length-scale heat flux

The ability of convective length-scale insulation variations to pin convection rolls

motivates us to explore the application of secondary convective length-scale inho-

mogeneity, i.e. for a system with mUI = 4 we apply mθ = 2, or 8. These secondary

structures tend to have a significant but not dominant presence in convection. For

example, a fast Fourier Transform of the vertical velocity at a fixed z = 0.3 and

r = 0.65 of the uniformly insulated case with Ek = 10−4 and Ra = 1.44×107 has a
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(a) Positive/Negative, An = 2 (b) Positive/Zero, An = 1

Figure 5.16: Vertical velocity for RRBC system with Ek = 10−4 and Ra =

6.4 × 105. Inhomogeneous insulation is applied in two different configurations:

Positive/Negative and Positive/Zero. Both cases have azimuthal mode of mθ =

8 = 2mUI and amplitude of An = 2.

peak amplitude at mode mUI = 4 with secondary peaks of 20% and 16% strength

at m = 8 and 12, respectively. In this section, we apply mθ = bmUI where b is a

positive integer or 1/2.

Considering our example case with Ek = 10−4 and Ra = 6.4 × 105, we apply

azimuthal mode mθ = 8. Figure 5.16 shows two Hövmoller diagrams with Posi-

tive/Negative (left) and Positive/Zero (right) boundary conditions. In both panels,

there is evidence of a dominant mθ = 8 mode. However, the Positive/Negative

panel has a less oscillatory structure than the Positive/Zero case. This is likely due

to the larger heat flux amplitude applied in the Positive/Negative configuration

rather than a more efficient pinning mechanism.

For a fixed amplitude, weakly rotating systems exhibit differences in flow struc-

ture between the Positive/Negative and Positive/Zero configurations. Considering

the weakly rotating system with parameters Ek = 10−3 and Ra = 9.6 × 104, we

apply mθ = 4 = 2mUI . Figure 5.17 shows Hövmoller diagrams and horizontal slices

at z = 0.3 and t = 3 for both Positive/Negative and Positive/Zero configurations.

The lower panels of Figure 5.17 show four efficiently pinned convection rolls near

the walls with relatively distinct interior flow when bounded with Positive/Zero

heat flux. In contrast, the Positive/Negative configurations results exhibit weakly

pinned rolls, with significant oscillations. Further, the bulk structure appears to
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(a) Positive/Negative

(b) Positive/Zero

Figure 5.17: Plots of vertical velocity in a rotating RBC system with Ek = 10−3

and Ra = 9.6 × 10−4. Positive/Negative and Positive/Zero inhomogeneous heat

flux is applied at the sidewall with mθ = 4 = 2mUI and An = 2.
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dominate the flow the domain, with only weak wall-localised modes appearing to

match the applied heat flux. However, in both the cases, the flow structure in the

bulk differs from the homogeneous case as shown in the top panel of Figure 5.14.

Thus, even weakly generated convection rolls at the wall due to inhomogeneous

insulation affect the bulk flow in the weakly rotating RBC.

In summary, we have found that both Positive/Zero and Positive/Negative heat

flux boundary conditions, when applied with azimuthal mode of mθ = bmUI , can

cause a change in the dominant mode of convection in moderately and weakly

rotating systems. However, we note that in weakly rotating flows, where bulk

convection dominates rather than wall-localised convection, the applied number of

convection rolls does not necessarily dominate the interior flow. The bulk flow does

change structure due to the presence of wall-localised modes but is not subject to

the same form. Note we disregard the non-rotating case in this instance because

the dominant mode mUI = 1 is significantly more powerful than any secondary

modes.

5.5 Summary

In this chapter we investigated a rotating cylinder with sidewall heat flux varying

in sinusoidal patterns azimuthally and vertically. We were motivated by the vari-

ation in heat flux surrounding planetary cores due to non uniform heating from

the mantle and sought to investigate experimentally viable numerical models. We

considered sinusoidal variations about the azimuthal axis such that the mode could

be applied wither either a larger length-scale, the same length-scale, or a multi-

ple of the convective length-scale. The first case is applicable in a geophysical

context because in the planetary core, the heat flux at the mantle is at a larger

wavelength than the convection in the core (Mound & Davies, 2017). Hence, we

ubiquitously modelled the large length-scale with azimuthal mode mθ = 1. In the

latter two cases, we hypothesised that by matching the uniform length scale mUI ,

the convection rolls could become zonally stable, overcoming the force of rotation

in RRBC.
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In section 5.2, we defined two inhomogeneous boundary conditions: Positive/Negative

and Positive/Zero. The first configuration oscillates heat flux between positive and

negative and the second oscillates with ∂T/∂r ≥ 0. The latter is more geophys-

ically and experimentally appropriate (Mound & Davies, 2017; Sahoo & Sreeni-

vasan, 2020). Both conditions are dependent on the prescribed amplitude An and

azimuthal mode mθ.

Next, in section 5.3, an analytical result is derived for each boundary condition

to compare with numerical results in order to test the accuracy of the numerical

methods. For the Positive/Negative condition, the solid steady state solution is

derived resulting in Eq (5.5). Using the solid steady state solution, we determined

that there is no thermally driven though non-convective flow and that convection

onsets at a lower Rac than in the uniform case, agreeing with previous literature

(Sahoo & Sreenivasan, 2017, 2020). For the Positive/Zero configuration, we calcu-

late the heat flux through the domain, finding that the difference between the heat

flux at the top and bottom of the domain is proportional to the amplitude of the

sidewall boundary heat flux. This relationship enabled us to compare the analytic

prediction to numeric results.

Further, given the dependence of heat transport on the lateral boundary condi-

tion, we sought to redefine the Nusselt number. In Eq (5.12), we define Nuk as in

Kunnen, Clercx, and Geurts (2008) and compare Nuk and Nu values for the fixed

temperature, uniformly insulated configuration. Finding sufficient similarity, we

established the use of Nuk as the metric of heat transport throughout this chapter.

We next applied a large length-scale heat flux to the sidewalls of RRBC systems.

In section 5.4.1, we fixed mθ = 1 and investigated vertical temperature profiles,

Nuk ∝ Raγ scaling, temporal behaviour, and spatial behaviour. The temperature

profiles show that the Positive/Negative condition causes the same average tem-

perature structure as the homogeneous case while the Positive/Zero configuration

has a higher average temperature in the domain bulk.

Considering theNuk measurements, Mound and Davies (2017) previously found

that large length-scale inhomogeneities caused enhancement of γ in a rapidly rotat-

ing spherical shell. The results recorded in Table 5.1 show the opposite for this case

such that as the heat flux amplitude An increases, the γ value decreases for both
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the Positive/Negative and Positive/Zero configurations. The discrepancy between

our results and those in Mound and Davies (2017) is likely due to differences in

definition of heat flux amplitude and in the range of Ra values modelled, as well

as the domain geometry.

We chose a representative set of systems to explore more closely, one Ra for

each Ek = ∞, 10−3, 10−4, and 10−5. In each case, it was shown that temporal

behaviour is affected by Positive/Zero, but not Positive/Negative inhomogeneous

insulation. However, the spatial structure was affected for both configurations. Ro-

tating systems exhibited a change in rotation of convection rolls about the vertical

axis. In rapidly rotating systems, rolls rotated slower while the weakly rotating sys-

tems only rotated with inhomogeneous insulation, not in the uniformly insulated

case. In contrast to results from Sahoo and Sreenivasan (2020), in which it was

shown that increased heat flux slowed flow rotation, when Positive/Negative heat

flux was applied, the rotation slows within the region where ∂T/∂r > 0 at the side-

wall. Generally, the dominant number of convection rolls was not affected by the

large length-scale applied heat flux, with exception for the moderately rotating case

which changed frommUI = 4 to a dominantm = 3 with either Positive/Negative or

Positive/Zero heat flux. The non-rotating system also retained the dominant mode

when mθ = 1 is applied. However, without rotation, mUI = 1 and hence is better

investigated in the context of convective length-scale sidewall inhomogeneities.

Next, in section 5.4.2, the convective-length scale was applied such that mθ =

mUI where mUI is the dominant mode of the uniformly insulated system. The γ

calculations were decreased from those in the mθ = 1 cases. Investigation of the

spatial behaviour showed that that applying convective length-scale inhomogeneity

can cause pinning of convection rolls. Rapidly and moderately rotating systems

have dominant wall-localised convection pinned within azimuthal regions of width

θ = 2π/mθ for sufficiently large amplitudes of heat flux. While weakly and non-

rotating systems also have wall-localised convection pinning, the convection rolls

on the interior do not conform to time-independent behaviour.

In section 5.4.3, we applied mθ = bmUI where b = 0.5 or 2, such that the

inhomogeneity has the length scale of a secondary convective mode. We found that

both Positive/Zero and Positive/Negative heat flux boundary conditions caused the
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mθ value to become the dominant mode of convection. However, we again note

that the applied mode is only dominant in wall-localised flow. In weakly rotating

systems, the bulk flow changes structure and becomes time-dependent while the

wall-local flow is time-independent due to the boundary conditions.

Overall, we suggest that inhomogeneous insulation, as present in planetary

cores, does effect convection, though the effect decreases as rotation becomes more

rapid. We show that positive heat flux has a stronger effect than negative heat

flux on the sidewall boundaries of the system. Notably, we observe that larger

wavelengths applied to the sidewall than are dominant in the domain, as is the

case in planetary cores, demonstrated changes in flow behaviour dependent on the

amplitude of the sidewall boundary condition. This result suggests that studies

motivated by planetary cores and interested in moderate Ra number must neces-

sarily consider variation in heat flux at the mantle, particularly for the investigation

of boundary layers, due to our observation that wall-localised convection is most

strongly affected by inhomogeneous insulation. Further, it is of interest to experi-

mentalists that by matching the applied azimuthal mode to the dominant mode of

the insulated system, a rotating system can have pinned convection rolls in rapidly

rotating systems. Additionally, the location of convection rolls within non-rotating

systems can be adjusted within the domain using inhomogeneous sidewall insu-

lation. These results provide a basis for further investigation into more realistic

astrophysical systems with heterogeneous sidewall insulation and a background for

an experimental design to study the same effects.
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Chapter 6

Experimental Design

6.1 Introduction

Previously, we have focused on relating numerical simulations to physical systems,

both experimental and natural, by determining the effect of choosing an idealised

thermal boundary condition in comparison to a physically appropriate condition.

In Chapter 3, we determine that, for sufficiently rapidly rotating and strongly con-

vecting systems, systems with fixed flux and fixed temperature thermal boundary

conditions behave similarly. In Chapter 4, we expand this knowledge, applying

the Robin boundary condition, which uses the Biot number Bi –a ratio of thermal

conductivity and thickness of the boundary to that of the fluid– to determine if the

boundary is closer to fixed temperature or fixed flux conditions. In that chapter,

we determine a range of Biot numbers which constitute sufficiently fixed temper-

ature or fixed flux conditions. Thus, having thoroughly described the traditional

numerical thermal boundary conditions to model physical systems, we turn our

attention to designing an experiment.

As discussed in Chapter 1, there have been interesting developments in the field

of simplified moist convection. Of particular interest is the Fast Autoconversion and

Rain Evaporation (FARE) model proposed in Hernadez-Duenas et al. (2012), which

is a two-fluid system, is capable of modelling cloud dynamics such as squall lines

with only two-phases of fluid. However, such models have not been experimentally

studied in a rotating system, which would provide both validation of the numerical

model and the opportunity to improve forecasting by testing data assimilation

171
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between the numerical model and the observational data from the experiment.

Therefore, an experimental set-up is proposed to model a system akin to that of

the FARE model, such that the system contains two fluids: air in the gaseous form,

and a second fluid which co-exists in two phases. This experiment provides the

opportunity to better understand convection dynamics with both precipitants and

phase change. Such weather-related processes are becoming increasingly important

to understand due to severe and rapid fluctuations in weather patterns due to

climate change (Trapp, 2018).

We propose an experiment which would be able to validate the FARE model

and an equivalent rotating model. In order to design the proposed experiment, each

specification of the model must be explained and rationalised. In this chapter, we

will describe the choice and reasoning for each part of the experiment to thoroughly

provide the design for a future study. We discuss the aspects of the experiment:

the general design, determination of independent variables, and identification of

suitable specific materials.

In regard to the general design, the experiment uses a cylindrical cell with

clear sidewalls, on a rotation table. The experiment aims to control the convection

within the cell to a few (1 ≤ m ≤ 3) non-chaotic convection rolls to enable easy

observation and measurement of behaviours and pattern formation. In order to

design the experiment, a number of independent variables must be chosen including:

what precipitant is used and in which phases, what aspect ratio Γ of the cylindrical

domain, what materials the cylinder should be made of and their dimensions, as

well as temperature difference ∆T̃ , pressure p̃, rotation rate Ω, and domain height

d. Recall that the tildes indicate dimensional variables.

6.2 Precipitant

The experiment requires the presence of a precipitant– preferably one which is

visible in both gaseous and precipitating phases– to coexist in a system of gaseous

air. The FARE model considered uses water as a liquid and vapour, neither of

which are visible. Additionally, the low energy state, either liquid or solid, will

settle at the bottom of the cylindrical cell. If the low energy phase is liquid, the
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thermal boundaries at the bottom of the system are difficult to control due to

fluctuations in the volume of liquid at the lower boundary, causing changes in

thermal conductivity. Therefore, it is desirable to use a solid phase material which

will sublimate into a gas.

Hence, our choice is a sublimating material which is visible in both the gaseous

and solid form. These constraints significantly limit the number of fluids available.

Further limitations on the system require that the pressure remain in an achievable

range with a low vacuum, and a temperature above room temperature such that

the entire system does not need to be cooled. These restrictions will be further

discussed in section 6.4. To understand the conditions which enable sublimation, we

identify the triple point of each potential fluid. The triple point is the temperature

and pressure at which gaseous, liquid, and solid phases can coexist. Generally, for

temperatures and pressures above the triple point, the gaseous phase is preferred

(Pavia et al., 2015).

Table E.1 in Appendix E details fluids which meet our requirements, their

triple points, visibility, and hazards. Due to health risks, Hexachloroethane and

Camphor will not be considered, leaving Iodine as the most likely choice, followed

by Ferrocene which is not confirmed to have a visible gas phase. For the sake of

brevity, this Chapter considers only Iodine, but provides a protocol which can be

used to adjust the design for Ferrocene.

We next consider the conditions for the sublimation of Iodine. To guarantee

sublimation there must be some portion of the domain where pressure p̃ is at or

below the triple point and temperature T̃ is at or above the triple point. Because

convection is thermally driven, T̃ varies within the system, allowing for both solid

and gaseous states as the fluid moves through the triple point T̃ . Practicality also

requires p̃ be approximately constant throughout the system, therefore it is ideal to

have a p̃ value similar to the triple point p̃ value, unless the T̃ -gradient is sufficiently

steep such that the fluid does not have enough time to change into the liquid phase

as T̃ transitions within the domain. Hence, we constrain pressure and temperature

such that p̃ ≤ 1.12× 104Pa, and average temperature, T̃ = 114oC.
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6.3 Aspect ratio

Our experiment is required to be a sealed cylinder with clear sidewalls which con-

tains air and Iodine and is able to spin on a rotating table. In order to make

confident measurements and observations of the gaseous form of Iodine, a non-

chaotic pattern of convection is preferred. Therefore, it is essential to choose a

cylindrical aspect ratio, Γ = R/d, which maintains regularly patterned convec-

tion cells to the highest Rayleigh number, Ra. Recalling that Ra = αg∆T̃ d3/νκ

(assuming boundaries are chosen to be sufficiently similar to fixed temperature

conditions) it is clear that increasing ∆T̃ and d increases the Ra value.

Regarding the determination of the Γ value, there is plenty of analytical, numer-

ical, and experimental research on the stability of non-rotating Rayleigh–Bénard

convection (RBC). Results on the stability of RBC with physically relevant no-slip

velocity boundary conditions and conductive thermal boundary conditions at the

vertical boundaries are compiled in Clever and Busse (1974), which considers a

plane-layer with Pr = 0.71, which is appropriate for air. In Clever and Busse

(1974), it is shown cellular convection occurs when the wavenumber is within the

range 3 < a < 5 and 3×103 < Ra < 2×104. Note that the geometry used in Clever

and Busse (1974) is not relevant to the proposed experiment. However, the ranges

of a and Ra provided are useful as approximations for our experimental design.

We relate a to Γ via an approximation applied in Gao and Behringer (1984)

such that,

Γ =
mπ

2a
, (6.1)

recalling that m is the number of convection rolls. We choose m = 2 for ease of

observation in the experiment and 3 < a < 5 from the stability diagram in Clever

and Busse (1974). From these specifications, we determine a range of appropriate

aspect ratios: 0.89 < Γ < 0.52. To further limit this range, we observe from Clever

and Busse (1974) that for a < 4, an oscillatory instability onsets at Ra < 104 and

for a > 5, the cross-roll and Ekhaus instabilities are dominant for low Ra < 104.

We conclude that a = 4.5 is optimal, which, from Eq (6.1), concludes that Γ = 0.7

is an appropriate value.
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When considering RRBC the prominent instability is the Küppers-Lortz insta-

bility which is characterised by rolls which bend toward the boundary and oscillate

and occurs near onset (Küppers & Lortz, 1969). The onset of the Küppers-Lortz

instability is dependent on the rotation rate, Ω, and Pr. The rotating stability

relationship between Pr and Ek is described in Clune and Knobloch (1993) for a

plane-layer geometry, from which it is clear that Ek < 8×10−3 the onset of convec-

tion exhibits Küppers-Lortz instability with Pr ≈ 0.7. Note that the geometry of

the experiment is cylindrical and therefore, the Ra−Ek parameter range at which

the Küppers-Lortz instability is likely to deviate from that of the plane-layer. We

choose to accept the Küppers-Lortz form of instability at onset as acceptable as it

is non-chaotic.

While there is no definitive literature on the stability of rotating convection in

cylinders with Γ = 0.7 for Pr = 0.7, the results presented in Buell and Catton

(1983b) demonstrate that the critical Ra increases as Γ decreases. Additionally,

the stability analysis in Clune and Knobloch (1993) suggests that there are ranges

of Ra for which rapidly rotating convection will be non-chaotic in the domain

suggested above. Therefore, Γ = 0.7 is deemed to be a suitable aspect ratio for the

experiment considered, with and without rotation.

6.4 Independent variables

Next, we consider the independent variables of the system: pressure p̃ (Pa), the

height d (m), the temperatures at the top T̃1(
oC) and bottom T̃0(

oC) of the system,

and the rotation rate Ω (Hz). These variables are constrained by both the existing

design parameters and practical measures.

We begin by considering the p̃ in the absence of convection. p̃ is limited by the

triple point of Iodine and our practical ability to adjust the pressure away from

atmospheric pressure (1.01 × 105Pa). From Table E.1 we know that Iodine sub-

limates at p̃ = 1.12 × 104Pa and T̃ = 114oC. Therefore, we require p̃ ≤ 105Pa.

Note that when p̃ > 1.12 × 104Pa, we additionally require a steep temperature

gradient in order to limit the presence of a parameter range which would allow

175



6. EXPERIMENTAL DESIGN

for the liquid phase of Iodine. Practically, the pressure can be lowered from at-

mospheric pressure using a low vacuum which is capable of decreasing p̃ to a min-

imum of 1 × 103Pa. Therefore, we suggest the range of feasible pressures to be

1× 103Pa < p̃ < 1× 105Pa.

Next, the temperature at the top and bottom of the system, T̃0,1 is informed

by the triple point of Iodine. From Table E.1, the mean temperature, T̃ = 114oC,

is ideal for the sublimation of Iodine, which we want to occur near the centre of

the domain. We also require a negative vertical temperature gradient which is

sufficiently robust to withstand a lack of precision in heating at the boundaries.

Therefore we limit ∆T̃ = T̃0 − T̃1 ≥ 5oC. Ideally, the temperature at the upper

boundary would be T̃1 = 0oC such that the temperature can be controlled by ice,

for simplicity of the design. This corresponds to ∆T̃ = 228OC. However, this is

not a requirement.

The rotation rate, Ω, is simply limited by the capabilities of the rotation ta-

ble. We measured the rotation speeds of the table currently available to us. The

maximum rotation rate is Ω = 3.4Hz. This value will limit our Ekman number.

The height of the rotation table d is limited by Γ = 0.7 which requires that

d = R/0.7 where R is the radius. We require our experimental domain to sit

on the available rotation table, which has a radius of 0.2m. Therefore, we have

a maximum radius of our system just below this because our interior radius will

be enclosed by a material of some thickness dsw. Let us assume dsw ≥ 0.005m.

Consequently, R ≤ 0.19m which corresponds to d ≤ 0.278m. Additionally, to

enable visual observations, we enforce that the system must be sufficiently large,

such that 0.05m ≤ d ≤ 0.278m.

Given that we have determined the ranges of necessary and feasible p̃, T̃0,1, Ω,

and d, we consider how these independent variables contribute to the determination

of the non-dimensional parameters which are used to understand the regime of

convection and to relate physical systems to numerical models. As in previous

chapters, we use the Prandtl number,

Pr =
ν

κ
, (6.2)
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the Rayleigh number,

Ra =
αg∆T̃ d3

νκ
, (6.3)

and the Ekman number,

Ek =
ν

2Ωd2
. (6.4)

Hence, we have introduced several dependent variables: the kinematic viscosity,

ν
(
p̃, T̃

)
, the coefficient of thermal diffusivity, κ

(
p̃, T̃

)
, and the coefficient of

thermal expansion, α
(
T̃
)
. Additionally we have the acceleration due to gravity,

g = 9.8m/s2, which is constant.

We begin the investigation of the relationships between our dependent variables

and independent variables with the coefficient of thermal expansion. By definition,

α is considered at constant pressure so is only dependent on T̃ such that,

α =
1

T̃
(6.5)

(Dixon, 2007). We consider T̃ to be the average temperature of the system and

therefore should be the triple point of Iodine, 114.1◦C (Yolcu, 2016).

We next consider the kinematic viscosity, which is defined as,

ν =
µ

ρ
, (6.6)

where µ is the dynamic viscosity and ρ is density. Assuming an ideal gas, ρ =

p̃/(RgT̃ ), where Rg = 287.05J/kgK is the specific gas constant of air (Dixon, 2007).

µ is also a function of pressure and temperature. In Kadoya et al. (1985), experi-

mental data is used to develop a set of equations to define the relationship between

µ, ρ, and T̃ . This relationship is described in Appendix E.

Figure 6.1a visualises the relationships between µ, ρ̃, and ν each as a function of

p̃. The density ρ̃(kg/m3), shown in blue, increases as, p̃, increases while µ(Ns/m2),

plotted in red, remains constant. Dynamic viscosity ν increases as p̃ increases.

To quantify the values of ρ̃, µ, and ν, shown in Figure 6.1a, we apply the

range of achievable pressures, 1 × 103 ≤ p̃ ≤ 1 × 105Pa, to the ideal gas law

to find density and to the µ − p̃ relationship described in Appendix E to find

dynamic viscosity for air with T̃ = 144oC. We recover a range of density such that,

9× 10−4 ≤ ρ̃ ≤ 9× 10−1kg/m3. Within the range of p̃ considered, there is minimal
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(a) ν, µ, and ρ vs. p̃ (b) κ, k, and ρ vs. p̃

Figure 6.1: Plots showing how, for air, dependent variables vary as pressure varies

within the range 1× 103 ≤ p̃ ≤ 1× 105. (lef) Density ρ̃ (blue), dynamic viscosity µ

(red), and kinematic viscosity ν = µ/ρ̃ (black) as a function of p̃. (right) Density

ρ̃ (blue), thermal conductivity k (red), and the coefficient of thermal diffusivity

κ = k/ρ̃cp (black), on the left vertical axis and– on the right vertical axis– the

specific heat cp is plotted in magenta as a function of p̃. For all values, the average

temperature is 114.1oC.

variation in the dynamic viscosity such that, µ = 2.2549×10−5±8.2748×10−9Ns/m2

and the kinematic viscosity is within the range 2.5× 10−5 ≤ ν ≤ 2.5× 10−3m2/s.

We use relationships defined in Kadoya et al. (1985) to estimate the coefficient

of thermal diffusivity, which is defined as,

κ =
k

ρ̃cp
, (6.7)

where k is the thermal conductivity, and cp is the specific heat capacity. Appendix

E describes the relationship between k and p̃. The definition of density such that

ρ̃ = p̃/(RgT̃ ) is used to relate k to p̃. Additionally, cp varies with p̃ and T̃ . Using

data provided in Hilsenrath et al. (1955), an approximate relationship is fitted for

air with T̃ = 387.5K = 114oC,

cp = p
(
8.35× 10−6 J/kgKPa

)
+ 1011.9144 J/kgK. (6.8)

Figure 6.1b visualises the relationships between p̃, and κ, k, ρ̃, and cp, with

average temperature T̃ = 114.1oC. On the left vertical axis, the values of κ, k,

and ρ̃ are shown. The right vertical axis shows the values of cp. In black it is clear

178



6.4 Independent variables

Figure 6.2: Plots of ν, κ, and Pr, for air as a function of p̃. On the right vertical

axis, ν(Ns/m2) and κ(m2/J) are calculated from Eq (6.6) and Eq (6.7) and plotted

in red and blue, respectively. Pr is plotted in black on the left vertical axis and

calculated with Eq(6.2).

that, κ(m2/J), decreases as p̃ increases, while the red line shows that k(W/mK)

remains steady. The magenta line shows that cp(J/kgK) increases as p̃ increases,

though the increment of increase is on the order of 10−5% of the average value.

Quantifying the results from Figure 6.1b, we find that the thermal conductivity

of the domain has small variations with the range of considered p̃ such that, k =

3.2 × 10−2 ± 2.8 × 10−5W/mK. Applying the range of available pressures, 1 ×

103 ≤ p̃ ≤ 1 × 105Pa to Eq (6.8), we find the specific heat capacity is with the

values cp = 1.0 × 103 ± 8.4 × 10−1J/kgK. From these values of cp, k, and ρ̃, we

determine the range of values for the coefficient of thermal diffusivity as such,

3.5× 10−5 ≤ κ ≤ 3.6× 10−3m2/J.

Thus, we can relate Pr, Ek, and Ra to the independent variables p̃, T̃ , and

d. This enables us to determine the regimes of convection we are able to model

within the limits of our experimental design. Recall that we aim to model non-

chaotic convection in both rotating and non-rotating domains. In Chapters 3 and

4 we the determine the Ra values at which non-chaotic convection occurs for fixed

temperature, fixed flux, and Robin thermal boundary condition configurations,

with and without rotation, for Pr = 0.7.
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(a) 3D plot (b) Contours

Figure 6.3: Plots of Ra as a function of pressure, domain height, and temperature

difference. The latter are limited to: 103Pa ≤ p̃ ≤ 105Pa, 0.05m ≤ d ≤ 0.287m, and

∆T̃ ≥ 5oC. In the left-hand plot, for Ra < 5× 107, it is blue and for Ra > 5× 107,

it is red. In the right-hand plot, values of Ra are contoured.

We first confirm that Pr = 0.7 is achievable within our experimental restric-

tions. To do so, we calculate Pr with Eq (6.2) as p̃ varies within our predetermined

range of 103Pa ≤ p̃ ≤ 105Pa, applying our relationships between both ν and κ and

p̃. Figure 6.2 shows the resultant calculations of Pr for air as pressure increases

from atmospheric pressure. It is evident that as pressure increases, the Pr also

increases. However, the changes in Pr are on the order of 10−4. Therefore, we

conclude that any pressure within our previously determined ranges sufficiently

enables a convecting system where Pr = 0.7.

Next, we explore the range of Ra which satisfy the experimental constraints.

Figure 6.3 shows the Ra values calculated with Eq (6.3), indicated by colour, for

values of ∆T̃ , d, and p̃. As Ra is increased toward 2 × 107, the colour transitions

from shades of blue to white, and as Ra increases from 2×107 the colour transitions

from white to shades of red. The range of possible Ra is 7× 102 < Ra < 2× 108.

The range Ek values is calculated with Eq (6.4) as a function of p̃, d, and Ω,

as shown in Figure 6.4. The colours in Figure 6.4 illustrate the Ek values such

that the red spectrum indicates weakly rotating systems, Ek > 10−3, and the blue

spectrum indicates rapidly rotating systems, Ek < 10−3. From Figure 6.4, we see

that only Ek ≥ 4 × 10−5 is possible for the ranges used. Note that we have not

included the case for non-rotating convection and Ω = 0 because that corresponds
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(a) 3D plot (b) Contours

Figure 6.4: Plot of Ek as a function of pressure, domain height, and rotation

rate. The latter are limited to: 103Pa ≤ p̃ ≤ 105Pa, 0.05m ≤ d ≤ 0.287m, and

Ω < 3.4Hz. In the left-hand plot, for Ek > 10−3 the colour is red and for Ek < 10−3

it is blue. In the right-hand plot the contours of Ek are shown.

Ek Rac Rachaos

∞ 2× 103 2× 105

10−4 2× 105 1× 106

10−5 2× 106 2× 107

Table 6.1: The values of Ra at which convecting systems with either fixed tem-

perature, fixed flux, or Robin thermal boundary conditions transition to chaotic

temporal behaviour. Rachaos for non-rotating, and rapidly rotating convection with

the indicated Ek. These results are taken from Chapter 3, Figure 3.11 for fixed

temperature and flux conditions and from Chapter 4, Figure 4.8 for the Robin

condition.

to Ek = ∞.

Referring to Chapter 3 and Chapter 4, we identify the range of Ra values in

which sub-chaotic convection is exhibited with and without rotation. From com-

parison of temporal behaviour between fixed temperature and fixed flux thermal

boundary conditions in Chapter 3, we concluded both with and without rotation,

the transition to chaos occurred at similar values of Ra for both thermal bound-

ary conditions. This trend continues for Robin thermal boundary conditions, for

which, as shown in Figure 4.8 in Chapter 4, when Bi ≤ 10−2 and Bi ≥ 102, systems

transition to chaos at similar values of Ra as the fixed flux and fixed temperature
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(a) Ek (p̃, d,Ω) (b) Ra
(
p̃, d,∆T̃

)
Figure 6.5: Values of Ek and Ra possible and their corresponding p̃, d, Ω, and

∆T̃ . Each range is limited such that 3 × 103 ≤ Ra ≤ 2 × 107, Ek ≤ 10−3, and

5 × 103 ≤ p̃ ≤ 5 × 104Pa. In both plots, the colour changes from red to blue

as the respective value decreases. Note that each plot is shown from a different

perspective.

systems. Table 6.1 lists the values of Ra at which convection onsets Rac, and

transitions to temporally chaotic behaviour Rachaos for Ek = ∞, 10−4, and 10−5.

Therefore, we know that the range of Ra values in our system for a given Ek

must be within the corresponding Ra noted in Table 6.1. Without rotation, only

limitations on temperature, pressure, and domain height are relevant. However,

in the rotating system, the pressure and domain height also influence the Ekman

number. Therefore, we first consider the rotating systems.

In order to reach the rapidly rotating regime which is most appropriate to model

atmospheric systems, we set a maximum Ekman number such that Ek ≤ 10−3 and

ideally, Ek ≤ 10−4. Our experimental constraints limit Ek ≥ 4× 10−5. The range

of Ek requires that for a non-chaotic flow, we require Ra < 2× 107, at which flow

becomes chaotic for Ek = 10−5.

Additionally, the triple point of Iodine occurs at p̃ = 1.2 × 104Pa, and thus

having a significantly higher pressure within the domain risks Iodine occurring in

liquid phase. Therefore, we further limit pressure such that 5×103 ≤ p̃ ≤ 5×104Pa.

Figure 6.5 shows the values of Ek and Ra attainable when we limit Ra ≤ 2×107,

Ek ≤ 10−3, and 5× 103 ≤ p̃ ≤ 5× 104Pa. The left-hand panel, Figure 6.5a, shows

best how changes in d and Ω affect Ek. The right-hand panel, Figure 6.5b, shows
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(a) Ra (b) Ek

Figure 6.6: Plots of Ra and Ek as functions of pressure and temperature and

pressure and rotation rate, respectively. The height is fixed as d = 0.25m.

Ra as d, p̃, and ∆T̃ vary, indicating that for fixed d and p̃, varying ∆T̃ strongly

affects Ra.

For the experiment, we must fix d and p̃ while Ω and ∆T̃ can be altered.

However, both p̃ and ∆T̃ may not be practically constant, rather within a range

of precision dependent on the experimental methods. Therefore, we choose a fixed

height, and supply ranges of p̃ and ∆T̃ which would exhibit sub-chaotic convective

flows. We choose to maximise d for visibility and to minimise Ek, thus d = 0.25m.

We may generally note that for higher p̃, the Ek is lower and Ra is higher.

The values of Ra and Ek possible when d = 0.25m and p̃, ∆T̃ , and Ω are varied

are plotted in Figure 6.6. The Rayleigh number is below 107, our experimentally

preferred range, when p̃ ≤ 7× 104Pa. However, the Ekman number is larger than

10−4 in a similar pressure range such that p ≥ 3.5× 104Pa.

We require a system for which ∆T̃ can be modified to establish Ra values within

the range 103 ≤ Ra ≤ 107 such that both rotating and non-rotating systems may

exhibit sub-chaotic flows. From Figure 6.6a, we observe that for p̃ ≥ 3.5× 104Pa,

where Ek is minimised, Ra > 105. However, sub-chaotic non-rotating convection

does not occur within this range of Ra values. Therefore, we recommend two

different set-ups for non-rotating and rotating convection.

Without rotation we can ignore the rotation rate as Ek = ∞, and we prefer

103 < Ra < 2 × 105. The red region and nearby green points in Figure 6.6a
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illustrate the p̃− T̃ parameter space which cause appropriate Ra values. Recalling

that we prefer ∆T̃ = 288oC, we see that p̃ < 5× 103Pa causes Ra ≤ 2× 107. This

is true for a range of temperature differences such that, ∆T̃ ≤ 250oC.

With rotation, we seek to maximise p̃ to minimise Ek while retaining Ra ≤
2× 107. To moderate the Ra value and achieve Ek ≤ 10−4, we require 3.2× 104 <

p̃ ≤ 7× 104Pa. The minimised Ek also requires maximising Ω such that 2Hz < Ω.

Figure 6.6a shows that the determined region of pressure allows for appropriate

Ra values for any ∆T̃ . Recalling our preference for ∆T̃ = 228oC, let us limit the

temperature range such that 150 < ∆T̃ < 250oC.

6.5 Materials

Having determined appropriate values of d, R, p̃, and ∆T̃ , our focus turns to

the materials of the domain itself. We must choose the type of material and its

thickness for both the vertical and horizontal boundaries.

A brief literature review shows that commonly used materials in cylindrical

RRBC experiments are Plexiglas, Copper, Aluminium, and Sapphire (Vorobieff

& Ecke, 2002; Kunnen et al., 2010). Plexiglas is consistently used as a sidewall

material, with dsw ≥ 5mm, and numerically modelled using insulating boundary

conditions (Vorobieff & Ecke, 1998; Kunnen et al., 2010). Following suit, we suggest

Plexiglas sidewalls with dsw = 5mm as a sufficiently insulating sidewall. Addition-

ally, Plexiglas is transparent and allows for visual observation of the contained

system.

Recall that systems with fixed temperature, fixed flux, and Robin thermal

boundary conditions on the top and bottom boundaries each exhibit chaotic time-

dependence which onsets at similar values of Ra. Note that this is true for the

Robin condition when the Biot number sufficiently extreme such that | log(Bi)| ≥
2. Therefore, the upper and lower boundaries should meet the requirements of

Bi ≥ 102, recalling that Bi is defined as such

Bi =
dkM
dMk

, (6.9)

where the M sub-script indicates that the value is related to the boundary.
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Table 6.2 lists the thermal conductivity of each material in W/mK. Given

the choice of d = 0.25 and p̃ = 1.2× 104Pa for the fluid, the thermal conductivity

becomes k = 0.032W/mK. Thus, Table 6.2 shows the required maximum thickness

of each type of bounding material to have Bi ≥ 102.

material k (W/mK) max(dM)(m)

Copper 402 (at 300K) 31

Aluminium 237 (at 273K) 18

Plexiglas 0.17 0.013

air 0.02 0.25

Table 6.2: The thermal conductivities for Copper (Lide, 2003), Aluminium

(Touloukian et al., 1970), Plexiglas (Morimune-Moriya & Nishino, 2021), and air

(Lide, 2003) are listed along with the maximum thickness, dM necessary to make

the system have Biot number, Bi ≥ 102. The d value is as previously determined.

It is clear from Table 6.2 that both Copper and Aluminium are sufficiently

conductive at any reasonable thickness to be used. However, for visibility, Plexiglas

is preferable. we therefore advise that the lower boundary be Aluminium with

thickness of 0.05m with sidewalls and top boundary of Plexiglas with thickness

0.005m.

6.6 Design summary

Motivated by the simplified precipitation FARE model presented in Hernadez-

Duenas et al. (2012), we propose an experiment to physically model two-phase

precipitation in a rotating system. The experiment provides a basis for validation

of a corresponding numerical model and an opportunity to apply data assimilation

by supplying observations from the experiment to the numerical model to predict

the physical behaviour.

We have chosen a fluid which sublimates to avoid changes in thermal conduc-

tivity at the lower boundary caused by a liquid layer. Iodine is chosen to be

sufficiently safe and visible. It sublimates at a triple point where T̃ = 1141oC and
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p = 1.2× 104Pa. These parameter values are used to determine the temperatures

at the upper and lower boundaries as well as the pressure inside the domain.

The shape of the domain is chosen to be cylindrical in order to avoid trapping

flows in the corners of a cubical domain. An ideal aspect ratio, Γ = R/d, is chosen

through a literature review which suggests that to maintain non-chaotic behaviour

with two convection rolls in non-rotating systems, Γ = 0.7 is optimal (Clever

& Busse, 1974; Gao & Behringer, 1984). This aspect ratio cause an additional

instability to occur at convection onset with rotation, however the onset instability

is not chaotic. Therefore, we choose Γ = 0.7 for our experiment.

The remaining independent variables are temperature T̃ , pressure p̃, height d,

and rotation rate Ω. We first apply limitations to these values based on the triple

point of Iodine and physical feasibility. Additionally, d is limited by Γ and radius

of the rotation table which enforces a maximum radius of R = 0.18m. We are

able to further constrain the variables by requiring certain Ra and Ek values to

be possible within the domain. We require Rac < Ra < Rachaos. Table 6.1 lists

these Ra values for different Ek, which are true for fixed temperature, fixed flux

and Robin boundary conditions when Bi ≥ 102. By choosing to minimise Ek

to achieve the most rapid rotation, we arrive at optimal values of d = 0.25m,

3.2 × 104 < p̃ < 7 × 104Pa, Ω > 2Hz, and 150 < ∆T̃ < 250oC for the rotating

configuration. Without rotation, lower Ra values are preferred and therefore lower

pressures. Thus, we recommend a set-up where d = 0.25m, p̃ < 5 × 103Pa, and

∆T̃ ≤ 250oC.

We finally chose the materials bounding the domain such that they are con-

ductive and thick enough to have fixed temperature-like conditions, indicated by

Biot number, Bi ≥ 102. Due to its transparent nature, we choose Plexiglas on the

sidewalls and the upper boundary to allow for improved visual observation. The

thickness must be ≤ 0.013m to remain fixed temperature, so we choose a thickness,

dM = 0.005m for the Plexiglas. The lower boundary is chosen to be Aluminium of

thickness dM = 0.05m.

The design parameters discussed above are summarised in Figure 6.7. The left

panel, Figure 6.7a, shows the specifications for the boundary materials, indicating

the material and thickness of the upper boundary, sidewalls, and lower boundary.
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(a) Boundaries (b) Independent Variables

Figure 6.7: Experimental diagrams of the boundaries and interior domain of the

proposed experiment. The materials and thicknesses of each boundary is displayed.

The pressure, height and radius of the domain are indicated. The pressure, tem-

perature, and rotation rate values are for non-rotating case unless indicated by the

subscript (rotating). The height and radius are fixed with and without rotation.

The right panel, Figure 6.7b, shows the interior specifications including the p̃ =

1.2 × 10Pa, d = 0.25m, and R = 0.175m. The temperature at the upper and

lower boundaries is noted for the rotating case and the non-rotating case, from

top to bottom, to achieve ∆T̃ = 300oC when Ω = 3.4Hz and ∆T̃ = 25oC without

rotation. In both cases, the temperatures are set to ensure the average temperature,

T̃ = 144.1oC, the temperature at which Iodine sublimes from solid to gas.

The next steps for this experiment are to identify a manufacturer for this design

and discuss how technical aspects such as applying the vacuum and heating/cooling

as well as measurement methods. The heating on the lower boundary and upper

boundary, for the non-rotating case, could be achieved using a heating coil, such as

those used in electric stove tops. To cool the upper boundary, ice or liquid nitrogen

could be used for the rotating case. However, these issues are better determined

with aid from a technical expert. As for measurement, temperature probes can be

placed at the upper and lower boundaries to monitor how closely they resemble fixed

temperature boundaries. Image tracking could be used to observe the movement
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6. EXPERIMENTAL DESIGN

of the solid Iodine particles. However, the most interesting route of observation is

Lagrangian Particle Tracking (LPT). In Godbersen et al. (2021), LPT is used to

track air flow in a non-rotating experiment. It is an interesting avenue of research

to apply LPT to a rotating experiment with precipitation.
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Chapter 7

Conclusion

The ubiquity of rotating Rayleigh–Bénard convection (RRBC) in astrophysical

and geophysical fluids has inspired numerical and experimental studies since 1900

(Bénard, 1900). However, neither experimental nor numerical models are currently

able to fully emulate the conditions which affect large-scale systems. The ide-

alisations made in fluid models include domain geometry and thermal boundary

conditions. Though geophysical and astrophysical systems often occur in roughly

spherical geometries, cylindrical geometries are preferred for experimental models.

Therefore, applying the boundary conditions of large-scale systems to numerical

models in cylindrical domains allows us to link fluid behaviours between astro-

physical and geophysical systems with experimental observations. Of the conditions

applied to numerical models, the thermal boundary conditions are particularly im-

portant due to the essential role temperature gradients play in RRBC. This thesis

is concerned with improving our understanding of the role of thermal boundary

conditions at the intersection of large-scale, experimental, and numerical systems

of RRBC. Section 7.1 provides a summary of the work presented in this thesis

followed by section 7.2 which describes directions for future work.

7.1 Summary

The role of thermal boundary conditions in RRBC has previously been studied in a

variety of ways. The analytic work presented in Jeffreys (1926) first suggested the

more physical fixed flux boundary condition in contrast to the fixed temperature
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condition used in Rayleigh (1916). These early studies of thermal boundary condi-

tions motivated the derivation of the Robin condition which fills the gap between

fixed flux and fixed temperature conditions dependent upon the properties of the

fluid and the boundary (Sparrow et al., 1964). Further consideration is neccessary

regarding the non-uniformity of heating and cooling in astrophysical and geophysi-

cal systems such as the Earth’s outer core (Cox & Doell, 1964). Recent studies have

sought to integrate these ideas into numerical and experimental models of rotating

and non-rotating Rayleigh–Bénard convection to better understand the underlying

dynamics of astrophysical and geophysical flows (i.e. Mound and Davies, 2017;

Anders et al., 2020; Sahoo and Sreenivasan, 2020; Clarté et al., 2021). However,

there remains a gap – which, in this thesis, we have endeavoured to resolve – in

understanding the role thermal boundary conditions play in our interpretation of

numerical RRBC with respect to experimental models and large-scale flows.

In Chapter 2, we introduced the governing equations for an incompressible fluid

which describe the dynamics of RRBC. Rewriting these equations in dimensionless

form yielded three non-dimensional parameters: the Prandtl number Pr, Ekman

number Ek, and Rayleigh number Ra. A linear system of equations and the no-slip

velocity condition (which we used ubiquitously) were also introduced. The linear

system was solved using the Dedalus solver (Burns et al., 2016) and the non-linear

system was solved with the Nek5000 framework (Nek5000, 2019). The mean kinetic

energy balance was described to validate the non-linear numerical setup.

The investigation of thermal boundary conditions began in Chapter 3, by in-

troducing common thermal boundary conditions: fixed temperature, fixed flux,

and a mixed condition defined in section 3.2. A linear stability analysis of the 2D

system notably confirmed that as rotation becomes more rapid, convection onset

behaviour becomes independent of thermal boundary condition, which agrees with

results from Calkins et al. (2015) and Clarté et al. (2021) which considered only a

stress-free plane layer and spherical shell, respectively.

Next, we described the tools used to quantify and categorise the nonlinear

results including a novel method of quantifying the transition from 2D to 3D

flow. We related results across boundary conditions by applying the relationship,

RaFF = NuRaFT , where ·FF relates to the fixed flux and mixed boundary condi-
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tions and ·FT relates to the fixed temperature boundary condition. We ubiquitously

found that the transition to 3D flow and behaviour of zonal flows are not depen-

dent on the thermal boundary condition. Without rotation, our results are similar

to results presented in Anders et al. (2020) which considered RBC in a cuboidal

domain, finding that fixed temperature and mixed configurations behave similarly

near onset. We additionally, found that the fixed flux condition has similar onset

behaviour. With rotation, onset behaviour and chaotic, bulk flows are not depen-

dent on thermal boundary condition. However, the boundary condition plays a role

in the transition to chaos such that the mixed condition is non-chaotic to higher

RaFT than the fixed flux and fixed temperature systems. Thus, we suggested that

the choice of thermal boundary condition between fixed temperature, fixed flux, or

mixed condition is not the dominant influence on global flow behaviours of RRBC

near onset and at high RaFT regimes.

However, the true thermal conditions of large-scale and experimental flows are

not likely to be purely fixed temperature or fixed flux. Therefore, in Chapter 4,

the Robin condition was investigated as an experimentally appropriate thermal

boundary condition which interpolates between fixed temperature and fixed flux

conditions via the Biot number Bi – a ratio between the properties of the fluid and

that of the boundary. At the limits of Robin condition it becomes fixed temperature

(as Bi approaches ∞) and fixed flux (as Bi approaches 0). Applying this theory

and the Nu measurements from numerical results, an original relationship was

defined between RaFT and an effective Rayleigh number Ra(Bi), such that results

can be compared across boundary conditions. A linear stability analysis extended

our previous results, showing that, as expected from Clarté et al. (2021), as Ek

decreases, onset behaviour becomes independent of thermal boundary condition.

The non-linear solutions demonstrated that for Bi ≥ 102 and Bi ≤ 10−2, the

Robin condition was sufficiently close to fixed temperature and fixed flux condi-

tions, respectively. This range agrees closely with the results reported in Clarté

et al. (2021). Near fixed temperature and fixed flux limits, the Robin condition

behaves very similarly away from onset, as expected from results in Chapter 3.

However, in the moderate Bi range – 10−1 ≤ Bi ≤ 101 – wall-localised convection,

time-independence, and 2D flows persists to higher RaFT values than extreme Bi
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configurations. For numerically modelling experimental systems, such as those de-

scribed in Kunnen, Clercx, and Geurts (2008), the difference between using the

fixed temperature and Robin condition would be negligible. However, for astro-

physical systems, such as the CMB of the Earth, where Bi is on the order of 101,

the Robin condition may be more appropriate for moderate Ra value studies.

Motivated by variations in heat flux at the Earth’s core-mantle boundary (CMB),

Chapter 5 described two lateral boundary conditions with inhomogeneous insula-

tion: Positive/Negative and Positive/Zero. Both conditions apply a sinusoidal pat-

tern of heat flux boundary condition along the vertical and azimuthal directions of

the cylinder sidewall. The Positive/Negative has both positive and negative heat

flux while the Positive/Zero case has a minimum heat flux of zero and is more

appropriate for modelling the Earth’s core (Mound & Davies, 2017) and experi-

mental setups (Sahoo & Sreenivasan, 2020). The number of peaks in the azimuthal

direction mθ were varied along with the amplitude An of the heat flux. We chose

mθ in reference to the dominant number of convection rolls in the uniformly insu-

lated case, mUI , in three ways: mθ = 1 < mUI , such that the applied length-scale

is larger than the scale of convection; mθ = mUI , such that the variation is of

convective length-scale; and mθ = bmUI , where b = 0.5 or 2 and the variation has

the length-scale of a secondary convective length-scale. Numerical methods for the

Positive/Negative condition were tested for accuracy against the solid steady state,

where there is no velocity or time dependence. The Positive/Zero numerical setup

was tested using global heat flux calculation. We defined another Nusselt number

Nuk which was appropriate for the inhomogeneous conditions.

Contrary to previous results, we found that both large length-scale and convec-

tive length-scale variations caused the γ value (of the form Nu ∝ Raγ) to decrease

from the uniform case (Mound & Davies, 2017). The discrepancy between our

result and previous studies is likely due to higher Ek values and lower RaFT val-

ues considered in our study. Investigating the large length-scale Positive/Negative

configuration revealed that regions of positive heat flux cause stronger pinning

than regions of negative heat flux. The convective-length scale oscillations caused

wall-localised pinning of convection rolls within regions of θ = 2π/mθ. However,

in weakly and non-rotating flows, the imposition of wall-localised convection led
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to time-dependent flow in the bulk. However, the number of convection rolls was

not altered by either large nor convective length-scale heat flux in either the Pos-

itive/Negative or Positive/Zero case. The exception to this result is a moderately

rotating case where the applied heat flux caused the number of convection rolls to

decrease as the Nu(t) time series indicated that a secondary solution was excited

by the heat flux variation. The number of convection rolls did change when the

boundary condition had secondary convective length-scale oscillations. Sufficiently

large An values led to the applied mθ becoming dominant along the wall. With

rotation, this transition took significant An values and without rotation, this led

to time-dependent bulk behaviours.

Hence, it is evident that inhomogeneous thermal conditions have a significant

effect on RRBC. The effects ought to be taken into consideration when investigating

geophysical and astrophysical flows because the variations cause significant changes

in wall-localised flow which can lead to irregularities in bulk flow.

Finally, in Chapter 6 we applied numerical results regarding time-dependence

and solution forms generated with fixed temperature and Robin conditions pre-

sented in Chapter 3 and Chapter 4 to the design of a RRBC experiment with

phase change. The experiment was motivated by the study of atmospheric moist

convection, and was intended to emulate the FARE model (Hernadez-Duenas et al.,

2012), a simplified model of two-phase, precipitating convection. The fluids were

chosen to be air with Iodine (which is purple in gaseous and solid form), such that

the precipitation may be observed visually. The domain was a cylinder with aspect

ratio, Γ = 0.7 was determined based on a literature review of stability in cylindri-

cally bounded RRBC for Pr = 0.7, which is appropriate for air. Numerical results

from Chapters 3 and 4 were applied to determine the ranges of the temperature

applied at the top and bottom, the pressure, the domain height, and rotation rate

for which the flow is non-chaotic. Additionally, the Robin condition results from

Chapter 4 informed the specifications of the Plexiglas and aluminium boundaries.

The design leaves room for expert advice regarding observation and measurement

techniques along with the technicalities of achieving the suggested temperature and

pressure ranges.
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Thus, we have demonstrated how novel numerical results regarding physically

appropriate thermal boundary conditions may be used to strengthen the link be-

tween experimental and numerical models.

7.2 Future work

It is natural to consider extensions to and improvements on the ideas presented in

this thesis. There are two subsets of future avenues of exploration: numerical and

experimental.

7.2.1 Numerical advancements

As can be said of many numerical studies of RRBC, the expansion of the parameter

ranges of Ra and Ek that can be calculated would improve our ability to relate

results to large-scale systems (Plumley et al., 2016). We used a maximum Ra

on the order of 108 and a minimum Ek of 10−5 which are each insufficient to

model astrophysical and geophysical systems such as the Earth’s core which is

parameterised with Ra = 1020, Ek = 10−15 (Plumley et al., 2016). While there is

evidence of Nek5000 modelling rotating RBC systems with Ek ≥ 10−6 and Ra ≤
1010 for stress-free velocity conditions (i.e. Barker et al. (2014)), the computational

expense was decided to be too great for this thesis. In combination with the

consideration of lower Pr which are more appropriate for the molten metals of

the Earth’s outer core, exploration of Ek and Ra ranges which are increasingly

appropriate for geophysical and astrophysical flows would improve the relationship

between the role of thermal boundary conditions in numerical rotating convection

and large-scale flows.

Within the parameter ranges considered in this thesis, the transition to tur-

bulence could be more thoroughly investigated. In our classification of temporal

behaviour, variations in flow behaviour when approaching temporal chaos were

identified by different attractor forms. These differences suggest that the preferred

form of the solution is not uniform across all thermal boundary conditions and

that different states of convection are chosen. This could be complemented by an

investigation into the energy behaviour at transitions to time dependence. Further
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investigation into the causes of different transitions and forms of turbulence can

illuminate more effects of thermal boundary conditions.

Considering the Robin condition, we observed differences in flow behaviour for

10−1 ≤ Bi ≤ 101 compared to more extreme Bi. Future studies may be interested

in studying the Robin condition in this moderate regime. There are a plethora of

studies with fixed flux or fixed temperature thermal boundary conditions. The be-

haviours associated to each respective condition may be able to be unified through

further investigation into the Robin condition with Bi ranges which are only mod-

erately fixed temperature or fixed flux. Additionally, it would be useful to compare

the flows for moderate Bi configurations to experimental observations as a possible

reason for deviations in physical and numerical results.

The theory of the Robin conditions could also be extended to the sidewall.

This would improve the ability of numerical models to inform experimental design

by determining the range of Bi which cause sufficiently conducting or insulating

conditions. An extension of this idea would be to apply an inhomogeneous Robin

condition to the sidewalls, building on the work presented in Chapter 5. The

ability of the Robin condition to provide experiment context to thermal boundary

conditions could be applied to inform an experimental study of inhomogeneous

thermal boundary conditions on lateral boundaries.

7.2.2 Experimental advancements

An obvious extension of the heterogeneously insulated system numerically modelled

in Chapter 5 is to develop an experimental model of the same system. In Sahoo and

Sreenivasan (2020), an experimental study of a cylindrical annulus with azimuthally

varying heat flux is reported. However, the heating mechanism causes piece-wise

insulation rather than smoothly transitioned heat flux. By applying a smoother

transition in heat flux to the thermal condition and removing the inner boundary,

an experiment of inhomogeneous thermal boundary conditions might better relate

to the numerical model presented in this thesis.

Considering the experimental design presented in Chapter 6, the next course of

action for the experimental design is to present it to a professional who could offer

advice on technical issues such as: how to safely seal the system and keep pressure
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at the ideal range, and non-stick materials to keep Iodine from crystallising on the

cool upper boundary. Further, it would be useful to use the numerical results from

Chapter 3 to identify isotherms near to the triple point of Iodine. The isotherms

would indicate where in the system phase-change could be expected to occur. By

predicting the location of phase change, we may better develop a plan of observation

and measurement.

Once conducted, the experimental data could be applied to advancing the un-

derstanding of moist convection and more broadly to the improvement of Numerical

Weather Prediction. Comparison between experimental measurements and similar

numerical models, such as Hernadez-Duenas et al. (2012) for non-rotating systems

or T. K. Edwards et al. (2019) for rotating systems, could help improve numerical

methods by identifying areas of digital twinning. It may be additionally of interest

to develop a rotationally-constrained numerical model of simplified precipitation

to improve the connection between the polar region of the atmosphere to the nu-

merical model (Julien et al., 2006). The observations from the experiment may be

paired with the numerical model to improve data assimilation, which is the process

by which measurements of weather are applied to numerical models to improve

forecasts.

Understanding the connection between thermal boundary conditions and nu-

merical models is key to understanding the underlying dynamics of many astro-

physical and geophysical flows. It is clear that there is more work to be done

in strengthening the links between physical conditions and numerical boundary

conditions.
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Appendix A

Perturbed Governing Equations

In this appendix, we provide a derivation of the perturbed governing equations

of RRBC. In order to derive a linear system of equations, as required for section

2.1, we find a basic state which is determined both static and steady. Therefore,

uB = 0 and ∂/∂t = 0 where uB is the basic state of velocity. We apply these

conditions to the dimensionless momentum equation Eq (2.11a), incompressibility

equation Eq (2.11b), and the temperature equation Eq (2.11c), and considering

only the vertical direction. Denoting the basic state with a ·B subscript, we find

∂PB

∂z
= RaPrTB (A.1a)

and
∂2TB

∂z2
= 0. (A.1b)

Note that the incompressibility condition has become trivial.

From Eq(A.1b), temperature may take the form,

TB = A0z + A1 (A.2)

and A0 and A1 may be determined by the application of boundary conditions.

Considering a fixed temperature boundary such that T (z = −0.5) = 0 and

T (z = 0.5) = 1, the basic state of temperature is

TB = −z + 0.5. (A.3)

Note that if a fixed flux condition is applied where ∂T
∂z

= −1 at each boundary,

then A0 = −1 and we may choose A1 = 0.5 arbitrarily to achieve the same thermal

basic state.
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The pressure basic state is derived by applying the Boussinesq equation of state

Eq (2.5) and the temperature basic state Eq (A.3) to Eq (A.1a) such that,

∂PB

∂z
= RaPr(−z + 0.5). (A.4)

Thus, the basic state of pressure is

PB = P1 −
RaPr

2

(
z2 − z

)
(A.5)

where P1 is the value at z = z1.

We now apply a perturbation to the basic states of velocity, pressure and tem-

perature such that

u = uB + up, P = PB + Pp, T = TB + Tp. (A.6)

Note that because uB = 0, uP necessarily must satisfy any velocity boundary con-

dition. Alternatively, TB already satisfies the vertical thermal boundary conditions

so the perturbation must vanish on the boundaries such that

Tp = 0 at z = −0.5 and z = 0.5. (A.7)

We re-write the governing equations Eq (2.6), (2.9), and Eq (2.10) for the perturbed

variables such that

Dup

Dt
+

Pr

Ek
ẑ × up = −∇Pp +RaPrTpẑ + Pr∇2up, (A.8a)

∇ · up = 0, (A.8b)

DTp

Dt
− w = ∇2Tp. (A.8c)
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Appendix B

Mean Kinetic Energy Balance

Derivation

In this appendix, we follow Hepworth (2014) to derive the mean kinetic energy

balance in order to test the accuracy of our non-linear numerical set-up as discussed

in section 2.2.2.1.

We begin with the dimensionless momentum equation Eq (2.11a),

∂u

∂t
+ (u · ∇)u+

Pr

Ek
ẑ × u = RaPrT ẑ −∇P + Pr∇2u. (B.1)

The following vector identity

1

2
∇(b · b) = ∇(

1

2
|b|2) = b× (∇× b) + (b · ∇)b (B.2)

is applied to the second term on the left-hand side (LHS) of Eq (B.1) and the scalar

term is absorbed into the modified pressure. Thus,

∂u

∂t
+ (u×∇× u) +

Pr

Ek
ẑ × u = RaPrT ẑ −∇P + Pr∇2u. (B.3)

Taking the scalar product of Eq (B.3) with u and integrating over the domain

V (r, θ, z) = [0, 0.7]× [0, 2π]× [−0.5, 0.5],

1

π0.72

∫
V

1

2

∂|u|2

∂t
dV =

1

π0.72

∫
V

RaPrTu · ẑ − u · ∇P + Pru · ∇2udV. (B.4)

Note that u is perpendicular to the cross product terms in Eq (B.3). Consequently

those terms do not contribute to the integral.
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The first term of Eq(B.4) is the time derivative of the global kinetic energy KE,

which is defined as

KE =
1

V

∫
V

1

2
|u|2dV. (B.5)

Applying vector identity

∇ · (af) = f (∇ · u) + (a · ∇)f (B.6)

and assuming a statistically steady state, Eq(B.4) becomes,

0 =
1

π0.72

∫
V

RaPrTw + Pru · ∇2u−∇ · (uP )dV. (B.7)

To make the pressure term vanish, we apply the 3D divergence theorem to the last

term of Eq (B.7) such that,

1

π0.72

∫
V

∇ · (uP )dV =
1

π0.72

∫
S

(uP ) · n̂ds. (B.8)

Due to the no-slip velocity condition, the surface integral is zero and consequently,

the pressure term is also zero.

Thus, Eq (B.7) becomes,

RaPr

π0.72

∫
V

TwdV = − Pr

π0.72

∫
V

u · ∇2udV. (B.9)

To simplify the right-hand side (RHS), we adopt index notation such that,∫
V

u · ∇2udV =

∫
V

ui
∂2ui

∂x2
j

dV =

∫
V

∂

∂xj

(ui
∂ui

∂xj

)− ∂ui

∂xj

∂ui

∂xj

dV. (B.10)

Applying the 3D divergence theorem to the first term,∫
V

∂

∂xj

(ui
∂ui

∂xj

)dV =

∫
S

ui
∂ui

∂xj

n̂jds, (B.11)

the term vanishes due to no-slip velocity conditions on all surfaces.

Returning to vector notation, the mean kinetic energy balance is written as

0 =

∫
V

RaTw + (∇× u)2dV. (B.12)
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Appendix C

Fixed Temperature Parameter

List

Summary of parameters numerically simulated in Chapter 3.

Ek Ra ∆t Np Ne

∞ 103 2× 10−4 6 588

3× 103 2× 10−4 6 588

6× 103 2× 10−4 6 588

1.2× 104 2× 10−4 6 588

2.4× 104 2× 10−4 6 588

4.8× 104 2× 10−4 6 588

105 2× 10−4 6 588

3× 105 2× 10−4 6 588

5× 105 2× 10−4 8 588

8× 105 2× 10−4 8 588

106 2× 10−4 6 4704

5× 106 2× 10−4 6 4704

107 2× 10−4 6 4704

Table C.1: A summary of the parameters for the fixed temperature simulations

conducted. A subset of these values are also modelled with fixed flux and mixed

boundary conditions. The Ekman number Ek, Rayleigh number Ra, time step ∆T ,

polynomial order Np, and number of elements Ne are listed for each simulation.
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Ek Ra Ro ∆t Np Ne

10−2 3× 103 0.65 2× 10−4 6 588

8× 103 1.1 2× 10−4 6 588

1.6× 104 1.5 2× 10−4 6 588

3.2× 104 2.1 2× 10−4 6 588

105 3.8 2× 10−4 8 588

106 12 2× 10−4 8 588

5× 106 27 2× 10−4 8 588

10−3 6× 103 0.09 2× 10−4 6 588

1.2× 104 0.13 2× 10−4 6 588

2.4× 104 0.18 2× 10−4 6 588

4.8× 104 0.26 2× 10−4 6 588

9.6× 104 0.37 2× 10−4 8 588

10−4 4× 103 7× 10−3 5× 10−6 8 588

1.6× 105 0.05 5× 10−6 8 588

3.2× 105 0.08 5× 10−6 10 588

6.4× 105 0.09 5× 10−6 10 588

1.8× 106 0.16 5× 10−6 10 588

3.6× 106 0.23 5× 10−6 6 4704

7.2× 106 0.32 5× 10−6 6 4704

1.44× 107 0.45 5× 10−6 6 4704

10−5 6.4× 105 9× 10−3 5× 10−6 6 4704

1.8× 106 0.01 5× 10−6 6 4704

3.6× 106 0.02 5× 10−6 6 4704

7.2× 106 0.03 5× 10−6 6 4704

1.44× 107 0.04 5× 10−6 6 4704

2.88× 107 0.06 5× 10−6 6 4704

5.67× 107 0.09 5× 10−6 8 4704

1.2× 108 0.13 5× 10−6 8 4704

Table C.1: A summary of the parameters for the fixed temperature simulations

conducted. A subset of these values are also modelled with fixed flux and mixed

boundary conditions. The Ekman number Ek, Rayleigh number Ra, Rossby num-

ber Ro, time step ∆T , polynomial order Np, and number of elements Ne are listed

for each simulation. The system is dealiased with the 3/2 rule and the time step

is adaptive.
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Appendix D

Inhomogeneous Sidewall

Insulation Additional Lists,

Derivations, and Figures

Additional details are provided regarding the investigation of inhomogeneous insu-

lation discussed in Chapter 5.

D.1 Parameter Lists

Table D.1 and Table D.2 list the parameter ranges numerically modelled with

the Positive/Negative and Positive/Zero boundary conditions, respectively, as dis-

cussed in Chapter 5. The number of convection rolls in the uniformly insulated

system mUI is also reported.
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Ek Ra mUI mθ An

∞ 103 1 1 0.2, 0.5, 1

∞ 1× 103 1 2 0.2, 0.5,1

∞ 6× 103 1 1 1

∞ 6× 103 1 3 4

∞ 3× 105 1 1 1

∞ 3× 105 1 3 1

∞ 5× 105 1 1 1

∞ 5× 105 1 3 1

∞ 8× 105 1 1 1

∞ 8× 105 1 3 1

∞ 1× 106 1 1 1

∞ 1× 106 1 3 1

∞ 5× 106 1 1 1

∞ 1× 107 1 1 1

10−3 2.4× 104 1 0.5, 1, 2

10−3 2.4× 104 3 0.5, 1, 2

10−3 4.8× 104 3 1 0.5, 1, 2

10−3 4.8× 104 3 3 0.5, 1, 2

10−3 9.6× 104 4 1 0.5, 1, 2

10−3 9.6× 104 4 4 0.5, 1, 2

10−3 2× 105 1 0.5, 1, 2

10−3 2× 105 3 0.5, 1, 2

10−3 1× 106 1 0.5, 1, 2

10−3 1× 106 2 0.5, 1, 2

(a) Ek = ∞ and Ek = 10−3

Ek Ra mUI mθ An

10−4 1.6× 105 1 0.5, 1, 2

10−4 1.6× 105 4 0.5, 1, 2

10−4 3.2× 105 3 1 0.5, 1, 2

10−4 3.2× 105 3 3 0.5, 1, 2

10−4 3.2× 105 3 4 0.5, 1, 2

10−4 6.4× 105 8 1 0.5, 1, 2

10−4 6.4× 105 8 4 0.5, 1, 2

10−4 6.4× 105 8 8 0.5, 1, 2

10−4 1.8× 106 2 2 0.5, 1, 2

10−4 3.6× 106 3 1 0.5, 1, 2

10−4 3.6× 106 3 3 0.5, 1, 2

10−4 7.2× 106 3 1 1

10−4 1.44× 107 2 1 0.5, 1, 2

10−4 1.44× 107 2 2 0.5, 1, 2

10−5 1.8× 106 1 0.5, 1, 2

10−5 1.8× 106 4 0.5, 1, 2

10−5 3.6× 106 4 1 0.5, 1, 2

10−5 3.6× 106 4 4 0.5, 1, 2

10−5 7.2× 106 4 1 0.5, 1, 2

10−5 7.2× 106 4 4 0.5, 1, 2

10−5 1.44× 107 3 1 0.5, 1, 2

10−5 1.44× 107 3 3 0.5, 1, 2

10−5 5.67× 107 5 1 0.5, 1, 2

10−5 5.67× 107 5 5 0.5, 1, 2

(b) Ek = 10−4 and Ek = 10−5

Table D.1: Parameter list of simulations conducted with heterogeneous sidewall

insulation prescribed in Eq (5.1), where UI indicates the dominant mode of the

uniformly insulated case mUI , and θ indicates the azimuthal mode applied, mθ.
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Ek Ra mUI mθ An

∞ 1× 103 1, 2 0.2, 0.5, 1

∞ 3× 103 1 1, 2 0.25, 0.5, 1

∞ 1× 105 1 1, 2 0.1, 0.25, 0.5, 1

∞ 1× 106 1 1, 2 0.1, 0.25, 0.5, 1

10−3 2.4× 104 1, 3 0.1, 0.25, 0.5, 2

10−3 4.8× 104 3 1, 3 0.1, 0.25, 0.5, 1

10−3 9.6× 104 4 1, 2, 4 0.1, 0.25, 0.5, 1

10−3 2× 105 1, 3 0.1, 0.25, 0.5, 1

10−3 1× 106 1, 2 0.25, 0.5, 1

10−4 1.6× 105 1, 4 0.2, 0.5, 2

10−4 3.2× 105 3 1, 4 0.1, 0.25, 0.5, 1

10−4 6.4× 105 4 1, 8 0.1, 0.25, 0.5, 1

10−4 3.6× 106 3 1, 3 0.25, 0.5, 1

10−4 1.44× 107 2 1, 2 0.25, 0.5, 1

10−5 1.8× 106 1, 4 0.2, 0.5, 1

10−5 3.6× 106 4 1, 4 0.1 , 0.25, 0.5, 1

10−5 7.2× 106 4 1, 3 0.1, 0.25, 0.5, 1

10−5 1.44× 107 3 1, 3 0.25, 0.5, 1

10−5 5.67× 107 5 1, 5 0.25, 0.5, 1

Table D.2: Parameter list of simulations conducted with heterogeneous sidewall

insulation prescribed in Eq (5.2).

D.2 Positive/Negative Solid Steady State

In section 5.3.1, we chose to find a solid steady state solution for RRBC with

Positive/Negative boundary conditions. Here, we provide a thorough derivation

and of discussion of the results.

A solid steady state solution is a flow which is both time-independent and has

no velocity. These conditions simplify the governing equations and allow us to

derive an analytical solution. This solution can be compared with the results of

numerical simulations conducted in parameter ranges when time-independence and

no flow is expected. The comparison is used to validate our numerical system.

In section 5.3.1, we consider a solid steady state which is characterised by

205



D. INHOMOGENEOUS SIDEWALL INSULATION ADDITIONAL
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time-independence and no fluid motion such that, dT
dt

= 0 and u = 0, in the

absence of a thermal wind. By applying these conditions to the non-dimensionalised

energy equation, DT
Dt

= ∇2T , we recover the Laplace equation Eq (5.3). Thus,

the temperature must satisfy the fixed temperature boundary condition and the

inhomogeneous sidewall condition, Eq (5.1), as well as the Laplace equation.

Thus, the system of equations governing the thermal behaviour is written in

cylindrical coordinates, such that,

T (z = z0)− T (z = z1) = 1, (D.1a)

∂T (r = R)

∂r
=

∞∑
n=1

An sin (fnz) sin (mθθ) , and (D.1b)

∂2T

∂r2
+

1

r

∂T

∂r
+

1

r2
∂2T

∂θ2
+

∂2T

∂z2
= 0. (D.1c)

Note that R = 0.7 is the radius of the domain wall.

The fixed temperature boundary condition necessitates that at the top and

bottom of the cylinder there is no θ or r dependence, while Eq (D.1b) requires θ,

r, and z dependencies throughout the rest of the domain. In general, this suggests

an ansatz solution of the form,

T = τ (z) + τ ′ (z, θ, r) , (D.2)

where,

τ (z) =
z

z0 − z1
− z1

z0 − z1
, (D.3)

which satisfies Eq (D.1a), and

τ ′(z, θ, r) = Z(z)H(θ)C(r), (D.4)

where,

Z(z = z0, z1) = 0, (D.5)

and H(θ) and C(r) are functions which will satisfy the θ and r components of Eq

(D.1b). Thus, τ ′ also satisfies Eq (D.1b).

Applying this solution to Eq (D.1c), it is clear that τ satisfies the Laplace

equation and only the τ ′ component remains to be solved. Therefore, substituting
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D.2 Positive/Negative Solid Steady State

Eq (D.2) into Eq (D.1c), with some simplification and shifting all z terms to the

right-hand side (RHS), yields:

1

C

d2C

dr2
+

1

rC

dC

dr
+

1

r2H

d2H

dθ2
= − 1

Z

d2Z

dz2
. (D.6)

It is clear in Eq (D.6) that the left-hand side (LHS) depends only on r and θ while

the RHS depends only on z. Consequently, both sides are equal to a constant, here

called, f 2. Applying this condition to the RHS obtains:

d2Z

dz2
+ f 2Z = 0. (D.7)

Thus, the general solution for the z component of T ′ is

Z(z) = jz1 sin(fz) + jz2 cos(fz). (D.8)

Here, jz1 and jz2 are coefficients. By applying Eq (D.5), it follows that jz2 = 0,

and

sin(z0f) = 0,

which requires that z0f = nπ, where n is an integer greater than zero. Therefore

the z dependency becomes,

Z (z) = sin (fnz) , (D.9)

where f is now defined as fn = nπ
z0

with z1 = −z0.

Now considering the LHS of Eq (D.6), we seek the solutions for the r and θ

dependencies. With some simplification, the LHS of Equation (D.6) becomes,

r2

C

d2C

dr2
+

r

C

dC

dr
− f 2

nr
2 = − 1

H

d2H

dθ2
. (D.10)

The LHS and RHS of Eq (D.10) are independent of one another, and thus are equal

to a constant, chosen to be m2
θ. Thus, the θ dependence becomes,

d2H

dθ2
+m2

θH = 0, (D.11)

with general solution,

H(θ) = jm1sin(mθθ) + jm2cos(mθθ), (D.12)

recalling that mθ is a chosen integer. The constants jm1 and jm2 are found by

applying the boundary conditions, Eq (D.1a) and Eq (D.1b) for each mode mθ.
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Finally, we consider the r dependency. Examining the LHS of Eq (D.10), only

the following remains,

r2
d2C

dr2
+ r

dC

dr
− C

(
f 2
nr

2 +m2
θ

)
= 0. (D.13)

Eq (D.13) is the parametric Bessel’s equation, which can be re-written as a Bessel’s

equation by defining Πn = fnr, such that,

Π2
nC

′′ +ΠnC
′ − C

(
Π2

n +m2
θ

)
= 0, (D.14)

where the prime denotes derivatives with respect to Πn.

It is sufficient here to say that, following the work of Lamb (1945), the standard

solution to a modified Bessel’s equation takes the form,

Im(Πn) =

∫ π

0

eΠn cos(θ) cos (mθθ) dθ. (D.15)

Thus, the solution for the radial dependency becomes,

C(r) = j5Im(Πn), (D.16)

where j5 is a constant coefficient. It is useful to note that, at small Πn, the modified

Bessel function has power law behaviour while, at large Πn, it behaves exponentially

(Fitzpatrick, 2014).

Thus the general solution of the Laplace equation for τ ′ in cylindrical coordi-

nates is,

τ ′ (z, θ, r) =
∞∑
n=1

sin (fnz)
(
c̃sin (mθθ) + d̃cos (mθθ)

)
Im (fnr) , (D.17)

where the coefficient j5 has been absorbed into coefficients c̃ and d̃.

In order to find the exact solution, the boundary condition described in Eq

(D.1b) must be applied, recalling that the conditions in Eq (D.5) have already

been applied, and therefore the solution satisfies the fixed temperature boundary

condition at the top and bottom. It is first useful to rewrite the boundary condition

in terms of the separate dependencies, such that Eq (D.1b) becomes,

∂τ ′ (z, θ, R)

∂r
=

∞∑
n=1

An sin (fnz) sin (mθθ) . (D.18)

208



D.2 Positive/Negative Solid Steady State

Then, substituting in the full general solution, Eq (D.18) becomes,

∞∑
n=1

sin (fnz)
(
c̃sin (mθθ) + d̃cos (mθθ)

) dIm (Rfn)

dr
=

∞∑
n=1

An sin (fnz) sin (mθθ) .

(D.19)

It is clear that d̃ = 0, because there is no cos (mθθ) component on the RHS.

The remaining z and θ components cancel out, so Eq (D.19) becomes,

c̃
dIm (Rfn)

dr
= An, (D.20)

which leads to the solution for c̃n,

c̃ =
An

dIm(Rfn)
dr

. (D.21)

Now the final solution for τ ′ can be written as,

τ ′ (z, θ, r) =
∞∑
n=1

An

dIm(Rfn)
dr

sin (fnz) sin (mθθ) Im (fnr) , (D.22)

recalling that fn = nπ
z0
, and that n and mθ are integers of choice. Note mθ could

be treated the same as n and summed across multiple modes. Thus, the solution

form is a superposition of a linear background profile, τ and a product of sines in

z and θ, as such,

T (z, θ, r) =
z

z0 − z1
− z1

z0 − z1
+

∞∑
n=1

An

dIm(Rfn)
dr

sin (fnz) sin (mθθ) Im (fnr) . (D.23)

The linear component of the temperature profile is familiar for conductive sys-

tems. However, the τ ′ component of T , as in Eq (D.22), is not intuitively un-

derstood. Figure D.1 visualises the τ ′ component of the temperature in a solid

steady state where An = 1, n = 1, and mθ = 1. The cyan indicates negative τ ′

and red indicates positive τ ′, as shown in the colour-bars. It is clear that mθ = 1

and n = 1 correspond to a single sine wave in the θ and z directions, respectively,

as anticipated. Additionally, the lower plots in Figure D.1 shows how the applied

heat flux, illustrated by magenta (positive) to blue (negative) colouring at the do-

main boundaries, affects the temperature perturbation. It is evident that toward

the centre of the domain the temperature perturbation reaches zero as the colour

becomes more purple.
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(a) T for full domain

(b) z = 0.3 (c) θ = π/8

Figure D.1: Temperature plots of the steady state solution Eq (D.22) with az-

imuthal mode, mθ = 1, vertical mode, n = 1, and amplitude, An = 1. In the two

lower plots, the applied heat flux is indicated on a scale from magenta (positive)

to blue (negative) at the domain boundaries.

Figure D.2 illuminates the relationships between the prescribed constants, An,

n, and mθ, and the maximum amplitude of τ ′. mθ and n are also varied as shown

by the marker shapes and colours, respectively. Markers are circles, squares, di-

amonds,and triangles as mθ increases incrementally from 1 to 4. The colours are

red, yellow, green, and cyan as n increases incrementally from 1 to 4. Note that n

is only varied when mθ = 1 in order to keep from crowding the plot.

From Figure, D.2, it is clear that as An increases, the amplitude of τ ′ increase.

Indeed, if Figure D.2 had been plotted with logarithmic scales on both axes, it

would indicate that the maximum amplitude of τ ′ is proportional to Aj
n, where

j is a constant. Increasing n, decreases the maximum τ ′, though as n increases,

the difference between τ ′s decreases. When mθ increases, maximum τ ′ decreases,
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though less significantly than when n increases. Further, changes in mθ have a

linear relationship with changes in maximum τ ′. This suggests that the effects of

inhomogeneity in the thermal boundary condition may vary with mθ.

Figure D.2: The maximum deviation from the linear temperature profile, max(τ ′)

as amplitude of the applied heat flux, An, varies. The azimuthal mode, mθ, and

vertical mode, n, are also varied as shown by the marker shapes and colours,

respectively. Markers are circles, squares, diamonds,and triangles as mθ increases

incrementally from 1 to 4. The colours are red, yellow, green, and cyan as n

increases incrementally from 1 to 4.

In summary, we have derived a solid steady state solution for a cylindrical sys-

tem with boundary conditions, defined in Eq (D.1b) on the side wall and fixed

temperatures on the top and bottom. The solution, Eq (D.23) is composed of

a linear background profile, τ , and a superposition of sine modes in θ and z, τ ′.

τ ′, defined in Eq (D.22), depends on the amplitude, An, vertical mode, n, and

azimuthal mode, mθ. τ ′ is visualised for An, n,mθ = 1 in Figure D.1. The rela-

tionship between these variables and τ ′ is visualised in Figure D.2. We conclude

that as An increases, so does the maximum amplitude of τ ′. However, as n and mθ

increase, τ ′ decreases, exponentially in n, and linearly in mθ. The solid steady state

solution enables validation of the numerical set-up and the relationships between

the solution and An, n, and mθ will inform how we prescribe these constants for

each case of Ek and Ra.
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D.3 Positive/Zero Heat Flux Accounting

In section 5.3.2, we sought to measure the heat flux through the domain of a

system with Positive/Zero boundary conditions. Here, we provide the derivation

of the total heat flux.

Following the derivation of Nu in Hepworth (2014), we consider the non-

dimensional heat equation, DT
Dt

= ∇2T . A cylindrical partial domain is defined

such that, V ′(r, θ, z) = [0, R]× [0, 2π]× [−Z,Z ′] where R is the maximum radius,

and Z ′ < Z. Now integrating Eq (2.11c) over the volume of the partial domain,∫
V ′

(
∂T

∂t
+ (u · ∇)T

)
dV ′ =

∫
V ′

(
∇2T

)
dV ′. (D.24)

To define heat flux for a statistically steady state, we assume either a time-

independent solution or a time-averaged solution. Hence,∫
V ′

((u · ∇)T ) dV ′ =

∫
V ′

(
∇2T

)
dV ′. (D.25)

Using vector identities,

∇ · (af) = f (∇ · a) + (as · ∇) , and (D.26)

∇2f = ∇ · (∇f) , (D.27)

where a is a vector function and f is a field, and incompressibility (Eq ( 2.11b)),

Eq (D.25) is simplified. Thus,∫
V ′

(∇ · (uT )) dV ′ =

∫
V ′

(∇ · (∇T )) dV ′. (D.28)

Eq (D.28) is now in a form such that the 3D divergence theorem,∫
V

∇ · FdV =

∫
S

F · n̂ds, (D.29)

where S is the surface enclosing V with outward normal vector n̂, can be usefully

applied as such, ∫
S′
(uT · n̂) ds =

∫
S′
(∇T · n̂) ds. (D.30)

Defining n̂ in cylindrical coordinates as (r, 0, 0), Eq (D.30) is expanded to a

series of surface integrals on the sidewall, denoted |r=R, on the lower boundary,
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denoted, |z=−Z , or at the upper bound of partial volume V ′, denoted, |z=Z′ . Thus,

Eq (D.30) becomes,∫ Z′

−Z′

∫ 2π

0

urTrdθdz|r=R +

∫ R

0

∫ 2π

0

uzTrdθdr|z=Z′ +

∫ R

0

∫ 2π

0

−uzTrdθdr|z=−Z =∫ Z′

−Z′

∫ 2π

0

∂T

∂r
rdθdz|r=R +

∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=Z′ +

∫ R

0

∫ 2π

0

−∂T

∂z
rdθdr|z=−Z .

(D.31)

No-slip velocity conditions require u = 0 on r = R, and z = −Z, causing the

first and third term on the left-hand side (LHS) to vanish. Recall, that we are not

yet considering the full domain, rather partial domain, V ′, which has upper bound

−Z < Z ′ ≤ Z, and therefore we do not apply the no-slip condition on z = Z ′.

Thus, ∫ R

0

∫ 2π

0

uzTrdθdr|z=Z′ =∫ Z′

−Z′

∫ 2π

0

∂T

∂r
rdθdz|r=R +

∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=Z′ +

∫ R

0

∫ 2π

0

−∂T

∂z
rdθdr|z=−Z .

(D.32)

The first term on the right-hand side (RHS) is controlled by the sidewall boundary

condition. An insulating condition (∂T
∂r

= 0) or specific instances of inhomogeneous

insulation such as Eq (5.1) would cause the term to vanish. In such instances,∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=−Z =

∫ R

0

∫ 2π

0

∂T

∂z
r − uzTrdθdr|z=Z′ . (D.33)

It is therefore clear that as long as the heat flux condition along the sidewall

has a 0 surface integral, the heat flux at any horizontal plane, should be equal,

which is a traditional understanding of Nu (Siggia, 1994; Grossmann & Lohse,

2000). Considering the Positive/Zero case, where the sidewalls have heterogeneous

heat flux applied. The heat flux variation defined in Eq (5.2) would not cause

the RHS term of Eq (D.33) to vanish. Therefore, it is of interest to consider

a more general relationship which accommodates any sidewall thermal boundary

conditions. Hence, Eq (D.32) becomes,∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=−Z =∫ R

0

∫ 2π

0

∂T

∂z
r − uzTrdθdr|z=Z′ +

∫ Z′

−Z

∫ 2π

0

∂T

∂r
rdθdz|r=R. (D.34)
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This relationship implies that the heat flux at the bottom is the same heat flux at

any horizontal plane summed with the heat flux gained or lost from the sidewall

between the bottom and the plane.

Now let Z ′ = Z, to cover the full domain,∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=−Z =

∫ R

0

∫ 2π

0

∂T

∂z
rdθdr|z=Z + r

∫ Z

−Z

∫ 2π

0

∂T

∂r
dθdz|r=R,

(D.35)

note that the velocity term on the LHS has vanished due to no-slip velocity con-

ditions on the top of the domain. It is now clear that the heat flux at top and

bottom vary dependant on the heat flux removed or added at the sidewalls.

D.4 Additional Figures

We provide several supporting figures for the analysis of results in Chapter 5.

Generally, these results are restatements of an effect already seen in a different

system.
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(a) Homogeneous, An = 0

(b) Positive/Negative, An = 1

(c) Positive/Zero, An = 1

Figure D.3: Vertical velocity w for the rotating RBC system with Ek = 10−4 and

Ra = 6.4 × 105. Positive/Negative boundary condition defined in Eq (5.1) and

Positive/Zero condition defined in Eq (5.2). Inhomogeneous systems have mθ = 1

and An = 1. Left-hand plots are Hövmoller diagrams at z = 0.3 and r = 0.68.

Right-hand plots are taken at time t = 3 and r = 0.685.
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(a) Positive/Negative (b) Positive/Zero

Figure D.4: Plots of horizontally averaged temperature T vs. height z for RBC

with either Positive/Negative or Positive/Zero inhomogeneous sidewall condition.

The blue dashed line indicates the uniformly insulated case of the same Ra/Rac.

The black dotted line shows the conducting case where Ra = 1 < Rac with mθ = 1

and An = 0.5. The colour of each solid line indicates an Ekman number Ek system

with inhomogeneous sidewall boundary conditions with mθ = mUI and An = 1.
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(a) Homogeneous, An = 0

(b) Positive/Negative, An = 1

(c) Positive/Zero, An = 1

Figure D.5: Plots of vertical velocity in a weakly rotating RBC system with Ek =

10−3 and Ra = 9.6× 104. On the left (right) are Hövmoller diagrams at r = 0.685

and z = 0.3 (plots at t = 3 and r = 0.685. The top plot has homogeneously

insulated sidewalls. The lower plots have inhomogeneous insulation as in Eq (5.1)

and Eq (5.2), respectively. Both inhomogeneous cases have azimuthal mode mθ =

1.
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(a) Positive/Negative, An = 2

(b) Positive/Zero, An = 2

Figure D.6: Plots of vertical velocity in an RRBC system with Ek = 10−4 and

Ra = 6.4 × 105. On the left (right) are Hövmoller diagrams at r = 0.685 and

z = 0.3 (plots at t = 3 and r = 0.685. The top plot has homogeneously insulated

sidewalls. For both plots, mθ = 4 = mUI
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Appendix E

Experimental Design Additional

Lists and Relationship

This Appendix contain additional information with importance to our experimental

design which is described in Chapter 6.
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E.1 Kinematic viscosity

E.1 Kinematic viscosity

In order to observe how changes in temperature and pressure affect the Prandtl

number in section 6.4, we use the relationship defined in Kadoya et al. (1985)

between the kinematic viscosity, µ, average temperature, T̃ , and density, ρ̃.

µ (TR, ρR) = H · [µ0 (TR) + ∆µ (ρR)] , (E.1)

where

µ0 (TR) = A1TR + A0.5T
0.5
R + Σ−4

i=0AiT
i
R, (E.2a)

∆µ (ρ̃R) = Σ4
i=1Biρ

i
R, (E.2b)

TR =
T̃

T ∗ , (E.2c)

ρR =
ρ̃

ρ∗
. (E.2d)

See Table E.2 for the values of the constants.

E.2 Thermal conductivity

In order to observe how changes in temperature and pressure affect the Prandtl

number in section 6.4, we use the the relationship developed in Kadoya et al. (1985)

between the thermal conductivity, k, average temperature, T̃ , and density, ρ̃.

k (TR, ρR) = V [k0 (TR)) + ∆k (ρR)] , (E.3)

where

k0 (TK) = C1TR + C0.5T
0.5
R + Σ−4

i=0CiT
i
R, (E.4a)

∆k (ρR) = Σ5
i=1Diρ

i
R, (E.4b)

upon recalling equations E.2c and E.2d. See Table E.3 for the values of the con-

stants.
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Constant Value

T∗ 132.5K

ρ∗ 314.3kg/m3

H [6.1609, 0]× 10−6Paṡ

A1 [0.1285, 17]

A0.5 [2.60066, 1]

A0 [−1.0000, 0]

A−1 [−0.7096, 61]

A−2 [0.6625, 34]

A−3 [−0.1978, 46]

A−4 [−0.0077, 0147]

B1 [0.4656, 01]

B2 [1.2646, 9]

B3 [−0.5114, 25]

B4 [0.2746, 00]

Table E.2: Constants and ranges of constants for Eq E.1 from Kadoya et al. (1985).
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E.2 Thermal conductivity

Constant Value

T ∗ 132.5K

ρ∗ 314.3kg/m3

V 25.9778× 103W/mK

C1 [0.2395, 03]

C0.5 [0.0064, 9768]

C0 [1.0000, 0]

C−1 [−1.9262, 5]

C−2 [2.0038, 3]

C−3 [−1.0755, 3]

C−4 [0.2294, 14]

D1 [0.4022, 87]

D2 [0.3566, 03]

D3 [−0.1631, 59]

D4 [0.1380, 59]

D5 [−0.0201, 725]

Table E.3: Constants or ranges of constants for Eq E.3 from Kadoya et al. (1985).
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