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Abstract 
 

Humans are exposed to a multitude of chemicals (e.g. pharmaceuticals and cosmetics) and the safety 

of these needs to be demonstrated. Quantitative structure-activity relationship (QSAR) models 

provide an alternative to undesired animal studies for this purpose. However, in practice their use is 

often limited either due to insufficient model accuracy or due to a lack of model interpretability. 

This thesis addresses current limitations of QSAR models used for toxicity prediction. Firstly, it was 

investigated whether multi-task and imputation modelling yield more accurate models compared to 

standard single task QSAR models. Secondly, attempts were made to improve the interpretability of 

neural networks used for QSAR modelling. In particular, a method was developed to extract 

information about chemical features learned in the hidden layers of neural networks. 

While no significant differences in performance were found between single task models and 

traditional multi-task models (using only chemical descriptors for test compounds), multi-task 

imputation models (using experimental data labels of related assays for test compounds) were found 

to clearly outperform single task models on in vitro toxicity datasets. Imputation is therefore a 

promising tool to improve the performance of QSAR models for toxicity prediction. 

The novel method developed to interpret neural network models, called IG_hidden, makes use of 

integrated gradients to identify neurons relevant for individual predictions. Then, substructures found 

to be relevant for activation of these neurons are used to visualise which atoms of a compound are 

responsible for the model predictions. IG_hidden was compared to an established method for 

interpreting neural networks (i.e. applying integrated gradients to input features) using Lhasa’s Derek 

alerts for mutagenicity as a ground truth. The overall performance of IG_hidden was found to be 

comparable to the published method in terms of the quality of the model explanations that were 

found. However, the approaches were complementary with each method performing better on 

certain subsets of the dataset. 
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Chapter 1  Introduction 
 

 

Humans are exposed to a multitude of chemicals, for instance, through food ingredients, cosmetics 

and pharmaceuticals. The companies that produce and market these kinds of products need to ensure 

that no unacceptable risks arise from the chemicals contained in these products. To that end, the 

companies are required to conduct various toxicity tests. The legal requirements for tests vary 

between different industries and geographical regions. Historically, animal (in vivo) tests have been 

the most important approach to test chemicals for toxicity and these tests are still mandatory in many 

regions. However, animal tests are associated with a number of drawbacks. Importantly, there are 

considerable differences in the biology of humans and test species (e.g. rats, rabbits), so that animal 

studies may fail to detect toxic effects relevant to humans. Moreover, animal studies are undesirable 

from an ethical perspective and their acceptance in society is low. In addition, animal tests are very 

expensive and time-consuming. For all these reasons alternative methods to test toxicity are required. 

Available alternatives include in vitro tests (in simple test systems like cell cultures) and computational 

(in silico) tests. 

The most common computational approaches are QSAR (Quantitative structure-activity relationship) 

models, which predict the toxicity of chemicals based on their structure by using the principle that 

similar chemicals tend to have similar properties (Maggiora et al., 2014). While QSAR models are 

widely used for screening purposes (e.g. selection of molecules for experimental testing as potential 

drug candidates), their application to predict the absence of toxicity in an approval process is limited 

to few examples (e.g. mutagenicity assessment for impurities in pharmaceuticals) (European 

Medicines Agency, 2018). A reason for this is the limited performance of QSAR models to predict 

complex in vivo toxicity endpoints (e.g. liver toxicity), which may be caused by a variety of different 

biological effects (Cherkasov et al., 2014). 

Strategies to improve model accuracy include using sophisticated deep learning algorithms as well as 

multi-task and imputation modelling approaches. A drawback of these approaches is the difficulty of 

interpreting the predictions made. According to OECD (Organisation for Economic Co-Operation and 

Development) rules, which are followed by many regulatory agencies, interpretability of QSAR models 

should be considered (if possible) if the models are to be used in a regulatory context. Deep neural 

networks (DNNs), which have become very popular for QSAR, are especially difficult to interpret due 

to their complex structures, which is why they are often referred to as black box models. The aim of 
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the work in this thesis is to address two current limitations in toxicity prediction: the limited accuracy 

of prediction methods; and the lack of interpretability of prediction models. 

Chapter 2 provides an introduction to toxicity assessment of chemicals. After a general introduction, 

the toxicity endpoint mutagenicity is described because mutagenicity data is used for QSAR modelling 

in various experiments throughout the thesis. 

Chapter 3 introduces general principles of machine learning (ML) techniques, as these form the basis 

of QSAR modelling. This includes a description of a typical ML workflow with a focus on model 

evaluation as well as an overview of relevant ML algorithms. 

Chapter 4 describes the use of QSAR models for toxicity prediction. It begins with a description of the 

key concepts in chemoinformatics and QSAR modelling: chemical representation and molecular 

similarity. The chapter also provides an overview of factors determining the success of QSAR models, 

summarises the current use of QSAR models in regulatory toxicity, and describes how neural networks 

have been used for toxicity prediction. 

Chapters 5 and 6 investigate the use of multi-task and imputation models for toxicity prediction. In 

Chapter 5, traditional multi-task models (no experimental toxicity data for test compounds available) 

and multi-task imputation models are developed for two multi-target in vitro toxicity datasets (Ames 

mutagenicity and Tox21 data) and compared to single task QSAR models. Furthermore, the impact of 

chemical similarity, sparsity and assay relatedness on the performance of the imputation models is 

investigated. Chapter 6 extends the methods from Chapter 5 to an in vitro toxicity dataset of larger 

scale (ToxCast; several hundred assays) to see if the findings are generalisable. 

Chapter 7 provides an overview of approaches used to interpret QSAR models based on neural 

networks. Chapters 8 to 11 describe the work carried out to develop and test a novel strategy to 

interpret neural networks by leveraging chemical features learned in hidden layers of neural networks. 

Due to their reduced complexity, initial experiments (Chapter 8 to 10) were conducted on neural 

networks consisting of a single hidden layer. The rationale behind this was to use relatively simple 

models as a proof of concept before moving on to more complex architectures. 

Chapter 8 investigates which chemical features are learned in hidden layers of neural networks. This 

includes an analysis of the compounds that most strongly activate a neuron as well as the input 

features that are assigned high weights with respect to a given hidden neuron. A neural network 

trained to predict Ames mutagenicity was used for this analysis. 

In Chapter 9, the development of a method to automatically extract chemical substructures 

responsible for the activation of hidden neurons is described. The method uses both information 



Chapter 1: Introduction 

3 
 

about compounds strongly activating a neuron and learned network weights. Formal Concept Analysis 

(FCA) is used to systematically combine the information sources. 

In Chapter 10, the usefulness of automatically extracted substructures to explain predictions made by 

neural networks is evaluated. The substructures are combined with a measure of how important a 

neuron is for a given prediction using integrated gradients (IG). The developed method (called 

IG_hidden) is compared to an established way of interpreting neural networks (IG applied to input 

features which is referred to as IG_input). Lhasa’s Derek alerts are used as a ground truth to measure 

the quality of model explanations. 

In Chapter 11, the suitability of the developed method for interpreting DNNs (i.e. neural networks 

with more than one hidden layer) is investigated. 

Finally, Chapter 12 summarises the findings of the different experimental chapters, points out 

limitations in the conducted studies and provides suggestions for future steps to build on the results 

presented in this thesis.
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Chapter 2   Toxicity assessment of chemicals 
 

 

2.1 Introduction to Toxicology 
 

Toxicology is defined as the scientific discipline that studies adverse effects of chemicals on living 

organisms (Klaassen, 2008). Due the complexity of biological processes occurring in organisms, a vast 

number of adverse effects caused by chemicals may potentially occur. These may include local effects 

at the site of chemical contact (e.g. skin irritation caused by acids) or systemic effects after a chemical 

has entered the body. Systemic toxic effects generally are the result of a chemical interacting with one 

or more target biomolecules. Biomolecules of toxicological relevance include proteins (involved in 

signal transduction, metabolism, biosynthesis), lipids (forming cell membranes) and nucleic acids 

(genetic information). The interaction of a chemical with biological targets and the resulting effects 

are described by a chemical’s toxicodynamics. Another key factor for the occurrence of toxic effects 

are a chemical’s toxicokinetics. This term describes the fate of a chemical within the body including 

absorption, distribution, metabolism and excretion, often summarised as ADME properties of a 

chemical. ADME properties determine (i) if and to what extent a chemical enters the body, (ii) which 

compartments of the body are reached by the chemical, (iii) if the chemical is metabolised (which may 

decrease or increase its toxicity), (iv) how quickly a chemical is excreted to terminate its effect. 

Chemicals of toxicological relevance are any that humans or other organisms may be exposed to. This 

includes both deliberate exposure (e.g. pharmaceuticals, food additives, cosmetics) and unintentional 

exposure (e.g. natural or synthetic food contaminants, industrial chemicals at a work site). To prevent 

adverse effects caused by chemicals, their toxicity needs to be determined. A fundamental rule of 

toxicology states that the toxicity of a chemical is determined by the dose an organism is exposed to. 

This relationship was first described in the 16th century by Paracelsus in his famous quote: “All things 

are poison and nothing is without poison, the dosage alone makes it so a thing is no poison” 

(Paracelsus, 1965). This statement is supported by the finding that even water, a chemical generally 

considered as harmless and essential for life, may cause death in unnaturally high doses (Gardner, 

2002). Hence, it is impossible to universally distinguish toxic from non-toxic chemicals. Instead, it 

needs to be determined whether the exposure to a certain chemical is associated with unacceptable 

risks. The process of chemical risk assessment is described in the following section. 
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2.2 Chemical risk assessment 
 

2.2.1 Traditional risk assessment 
 

To assess the risk of a chemical, one has to consider three distinct aspects namely hazard, the dose-

response relationship and exposure as stated in the so-called risk assessment paradigm (Omenn, 

1995). This widely recognised framework will be described briefly in the following paragraphs 

according to the NRC (United States National Research Council) and is summarised visually in Figure 

2-1 (NRC, 1983, 1994). 

 

 

Figure 2-1 Risk assessment of chemicals. 

 

Hazard qualitatively describes potential adverse outcomes (e.g. skin sensitisation, liver fibrosis, 

bladder cancer) caused by a chemical and is an inherent property of a substance. A dose-response 

relationship describes what dose of a chemical is necessary to cause a certain effect in a human. 

However, it must be stated that the susceptibility of a human toward a chemical (in addition to the 

dose) is determined by many factors including sex, age, genetics, medical conditions or presence of 

other chemicals. Therefore, the relationship between dose and response may vary substantially 

among different individuals and this needs to be taken into account in the risk assessment. Typically, 

hazard and dose-response relationships are studied in animal experiments, resulting in a qualitative 

description of potential hazards and a NOAEL (No Observed Adverse Effect Level), which describes the 

highest tested dose that did not cause any adverse effect. To account for uncertainties arising from 

different susceptibilities among different individuals (see above) and from potential biological 

differences between the experimental animal species and humans, the NOAEL is divided by so-called 
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uncertainty factors to obtain a risk value, which describes the dose considered to be safe for the 

human population. 

Exposure means the amount of a chemical an organism comes in contact with, which can happen via 

different routes (mainly orally, dermally or via inhalation). Exposure to harmful chemicals may result 

in local effects (i.e. at the site of exposure; e.g. skin irritation) or in systemic effects if the chemical 

passes the barriers of the human body (skin, lung, stomach/intestine). Systemic effects may occur in 

any part of the organism according to the distribution of the chemical within the body. In the simplest 

case, the amount an individual is exposed to may be known (e.g. dose of a drug), whereas, in other 

cases, the exposure needs to be estimated using analytical measurements and models. For instance, 

to determine the exposure of a worker to a gas present at a working site, the exposure can be 

estimated with calculations taking into account the concentration of the gas at the site, the time of 

exposure and the volume of air inhaled per time interval by the worker. 

A risk assessment involves first evaluating whether a chemical possesses a concerning hazard profile 

(hazard characterisation). If this is the case, in the next step the known or estimated exposure to the 

chemical is compared to the risk value obtained from hazard characterisation and dose-response 

analysis. If the exposure to the chemical exceeds the risk value, the outcome of the assessment is that 

a risk of toxicological effects exists. However, it must be stated that this is a semi-quantitative 

approach that does not allow the calculation of the probability that a given individual will develop 

symptoms in a particular exposure scenario. On the other hand, if there is no or negligible exposure, 

there will be no risk, even though a chemical may be hazardous. 

The range of toxicity studies that need to be conducted is legally defined and varies between different 

industries and countries. A common principle is that animal studies have to be conducted in a 

standardised manner according to testing guidelines which are issued by various organisations such 

as the OECD (Organisation for Economic Co-operation and Development), the ICH (International 

Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use) and the 

EPA (United States Environmental Protection Agency). Parameters usually defined by testing 

guidelines include selection of animal species, number of animals, housing conditions, substance 

dosing, study duration, parameters to be measured and form of reporting the obtained data. Most of 

the studies are conducted in rodents (rats, mice), but sometimes a study in a non-rodent (e.g. rabbit, 

dog) is also required. A framework aiming to further enhance quality and reproducibility of 

toxicological studies is GLP (Good Laboratory Practice) (Weinberg, 2003). In essence, GLP defines how 

toxicological studies must be run in terms of planning, standardising procedures, monitoring, data 

recording, storing and reporting. The most important types of toxicological studies are briefly 
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introduced below. Different testable types of toxicity are often referred to as toxicological endpoints. 

Generally, the studies aim to identify hazards of the tested chemicals and to determine a dose-

response relationship for identified hazards. 

Acute studies: These evaluate whether a chemical induces mortality after single administration of 

the chemical. Application routes may be oral (OECD, 2008), dermal (OECD, 2017) and inhalation 

(OECD, 2018c), depending on the chemical’s anticipated exposure routes. 

Repeated-dose studies: In contrast to acute studies, the chemical is administered repeatedly, 

usually once a day. Common durations of studies are 28 days (subacute) (OECD, 2018a), 90 days 

(subchronic) (OECD, 2018b) and 12 months (chronic) (OECD, 2018d). Similar to acute studies, 

different application routes (oral, dermal, inhalation) can be studied. Parameters that are 

measured in repeated-dose studies include morbidity and mortality, weight and food 

consumption of the animals, biochemical and haematological measurements, gross necropsy 

(determination of organ weights and examination of the whole organs) and histopathology 

(microscopic tissue examination). The aim of these studies is to detect effects on organ systems 

that only occur after long-term exposure to chemicals. 

Genotoxicity studies: Genotoxicity describes the property of a chemical to damage the genetic 

information of cells, which may lead to mutations and ultimately may cause cancer. There are 

several assays (i.e. test systems) to test genotoxicity in both in vivo (animals) and in vitro 

(cultivated cells) systems. To assess the genotoxic potential of a chemical usually a set of different 

in vitro and in vivo tests, which cover different potential genotoxic mechanisms, needs to be 

conducted (Müller et al., 1999). The Ames Test for mutagenicity is a commonly used in vitro test 

conducted in bacteria. Since Ames Test data was used within this thesis to build predictive models, 

its principle will be described in more detail in a separate Mutagenicity section below (2.3). 

Carcinogenicity studies (OECD, 2011): Carcinogenicity studies test the capability of chemicals to 

cause cancer. The focus of the studies is to detect neoplasms (i.e. abnormal tissue growth), which 

may be benign or malignant (i.e. cancer). Carcinogenic chemicals often are genotoxic, yet there 

are other mechanisms by which a chemical may induce cancer, such as by increasing tissue 

proliferation and thus promoting spontaneous mutations. The design of carcinogenicity studies 

resembles that of chronic toxicity studies. However, the duration of these studies is typically two 

years, which exceeds chronic toxicity studies. 

Reproductive and developmental studies: These studies evaluate adverse effects on sexual 

function, fertility and development of both male and female animals. In order to do so, animals 
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across two generations of offspring are treated with the chemical (OECD, 2001). Parameters of 

the studies include mating behaviour, histopathology of sexual organs, malformation in foeti and 

developmental abnormalities in the offspring. 

 

2.2.2 Alternative methods for risk assessment 
 

Toxicity studies and risk assessment procedures have in essence been the same for many decades, 

despite having clear weaknesses and limitations. On the one hand, the risk assessment relies on very 

large numbers of animals, which is questionable from an ethical perspective. As early as 1959, Russell 

and Burch stated their 3R principles (replacement, reduction and refinement), which aim to improve 

animal welfare in animal studies. The principles state that wherever possible, (i) animal studies should 

be replaced with studies on insentient material, (ii) the number of animals should be reduced as much 

as possible to still obtain sufficient information and (iii) the studies should be refined in such a way 

that the occurrence of inhumane procedures is minimised (Tannenbaum & Bennett, 2015). Moreover, 

due to significant biological differences between humans and experimental species, the procedures 

always bear the risk of eliminating harmless substances (toxic only in experimental species) or worse, 

not detecting hazardous substances (toxic only in humans). 

These shortcomings were identified by the NRC in an influential report leading to the inception of a 

federal inter-agency collaboration named “Toxicology in the 21st century” (Tox21) (NRC, 2007). The 

aim is “to move toxicology from a predominantly observational science at the level of disease-specific 

models to a predominantly predictive science focused upon a broad inclusion of target-specific, 

mechanism-based, biological observations.” (National Toxicology Program, 2004). In other words, 

instead of merely observing toxicity in animals, the concept envisions to obtain a broad mechanistic 

understanding of biological perturbations triggered by chemicals. An integral part of the programme 

was a massive HTS (high-throughput screening) project, in which approximately 10,000 chemical 

substances were tested in approximately 70 in vitro assays covering targets and pathways of 

presumed toxicological relevance. The aim was to identify in vitro test systems that are predictive for 

adverse in vivo outcomes. 

While in the United States federal agencies have been the main driver for innovations in toxicity 

testing, in the European Union recent legislation, namely the new legal framework for regulation of 

industrial chemicals REACH (Registration, Evaluation, Authorisation and Restriction of Chemicals) (EU, 

2006) and the ban on the use of animal studies for evaluating the safety of cosmetics (EU, 2009), has 

pushed companies to use alternative ways to evaluate safety. REACH requires companies to use 
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existing data and knowledge to evaluate safety. This includes existing in vivo data, in vitro data, and 

in silico methods (i.e. computational models). Conducting new in vivo animal studies is considered 

only as last resort when available data is not sufficient to evaluate the safety. 

Computational methods for safety evaluation aim to predict the toxicity of molecules and are based 

on the principle that structurally similar chemicals tend to have similar properties. This paragraph will 

introduce briefly three different approaches, namely read-across, expert systems and QSAR models. 

The assumption behind the read-across method is that unknown toxicological activities can be 

inferred within a category of chemicals without additional testing. To that end, a chemical without 

data for a particular toxicological endpoint (target chemical) is grouped with similar chemicals for 

which data are available (Cronin, 2013). Assessment of similarity in this context is based on common 

structural features that are knowingly associated with the respective toxicity. Read-across is a widely 

used approach within the REACH regulation. Another in silico method is the so-called expert system. 

These systems condense toxicological knowledge into abstract rules which may concern the presence 

of certain structural features that are related to a type of toxicity (structural alerts) or the role of 

certain physicochemical properties for a certain type of toxicity. Derek Nexus is an expert system 

developed by Lhasa Limited which is widely used across different industries to predict various toxicity 

endpoints (including mutagenicity, carcinogenicity and reproductive toxicity) (Marchant et al., 2008). 

Predictions made by the Derek software are a likelihood term (e.g. ‘certain’, ‘probable’, ‘plausible’) 

and are supported by the evidence used to obtain the result (i.e. literature references, exemplary 

compounds for alerts). The third method is QSAR (Quantitative structure-activity relationship) 

modelling, which aims to describe a certain property or activity of a molecule as a function of its 

chemical structure. QSAR modelling is a well-established method with wide applications beyond 

toxicity predictions. Currently, both expert systems and QSAR models are mainly used for screening 

purposes (Greene & Naven, 2009; Roncaglioni et al., 2013). Screening in this context means that, for 

instance, potential drug candidates are assessed computationally for potential toxicological liabilities 

in order to find substances that are less likely to fail in preclinical and clinical studies. 

 

2.3 Mutagenicity 
 

2.3.1 Introduction 
 

Mutagenicity describes the potential of a chemical to modify an organism’s genetic information. 

Different QSAR models to predict mutagenicity of chemicals will be used in different studies 
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throughout this thesis. Therefore, a detailed introduction to this toxicity endpoint will be instrumental 

to understand the studies. This section will firstly explain molecular foundations of mutagenicity as 

well as present chemical groups known to be mutagenic. Then, the Ames test will be introduced as a 

widely applied in vitro test for mutagenicity. 

The DNA encodes genetic information as a sequence of four different base compounds (adenine, 

thymine, guanine, cytosine) stored as a macromolecule. Mutagenicity is often the result of a 

compound chemically modifying the DNA (Dipple, 1995). The DNA bases possess nucleophilic nitrogen 

and oxygen atoms which may react with electrophilic compounds to form adducts. Examples of 

electrophiles are shown below when presenting various chemical classes with mutagenic properties. 

Some chemicals may react at the same time with bases of both DNA strands to form cross-links 

(Dronkert & Kanaar, 2001). Another modification of DNA bases may occur due to a hydroxylation by 

chemicals (Poulsen et al., 1998). Some chemicals (typically polycyclic compounds with planar 

structure) may modify the DNA structure by intercalating between the strands of the DNA double helix 

structure (Ferguson & Denny, 2007). All these primary chemical modifications of the DNA may result 

in different types of DNA damage due to downstream processes such as replication or attempted DNA 

repair. Commonly occurring DNA damages include: 

 Substitutions: change of a DNA base. These may result in a wrong amino acid being built into 

a protein (Freese, 1959). 

 Deletions: removal of bases from the DNA. Since a sequence of three DNA bases encode a 

certain amino acid in a synthesised protein, deletions lead to a frameshift during protein 

synthesis (Ripley, 1990). 

 Double-strand break: If not repaired, these may lead to cell death via apoptosis or create 

mutations on the level of chromosomes. (Jackson, 2002)  

Various mutations may accumulate in cells which ultimately may lead to the development of tumour 

cells. 

2.3.2 Mutagenic chemicals 
 

In this section, several classes of mutagenic chemicals are briefly introduced. In many cases, metabolic 

activation is essential to form electrophilic species which ultimately lead to DNA adducts. Exemplary 

compound structures along with the mutagenic forms are shown in Figure 2-2. 
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Figure 2-2 Exemplary mutagenic compound classes. Shown are parent compound as well as the transformed species 
responsible for DNA adduct formation. 

 

Epoxides: Epoxides, which are widely used industry chemicals (Manson, 1980), are cyclic ethers with 

a three-membered ring. Due to their strained structure, the carbon ring atoms are highly electrophilic 

enabling chemical a chemical reaction (ring opening) with nucleophilic DNA bases (Wade et al., 1978). 

Polycyclic aromatic hydrocarbons (PAHs): PAHs, naturally occurring in coal and formed in combustion 

of organic materials (Achten & Hofmann, 2009), consist of fused aromatic hydrocarbon rings. 

Especially Benzo[a]pyrene has been extensively studied for its mutagenic properties. The mutagenicity 

of PAHs is mediated through metabolites formed via cytochrome P450 enzymes. In case of 

Benzo[a]pyrene, a covalent bond to DNA bases is formed via an electrophilic epoxide metabolite (Baird 

et al., 2005). Intercalation between the DNA double strand (possible due to their planar structure) has 

been described as prerequisite for formation of covalent DNA adducts (Harvey & Geacintov, 1988). 

N-nitrosamines: N-Nitrosamines, relevant for instance due to their occurrence as impurities in 

pharmaceuticals (Tuesuwan & Vongsutilers, 2021), are another example of compounds’ mutagenicity 
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arising from metabolic activation by cytochrome P450 enzymes. Following initial hydroxylation of an 

α-carbon atom, highly reactive alkyl diazonium cations or carbo cations may be formed in a multi-

stage mechanism (Cross & Ponting, 2021). 

Aromatic amine and nitro compounds: Aromatic amines and nitro compounds are important classes 

for the synthesis of many chemicals including pharmaceuticals, pesticides and dyes (Ju & Parales, 

2010). For both classes of compounds mutagenicity is mediated through N-hydroxyarylamine 

metabolites formed via oxidative or reductive reactions, respectively (Benigni et al., 2000). 

 

2.3.3 Ames test for mutagenicity 
 

A popular method to assess chemical mutagenicity is the Ames test, named after its developer Bruce 

Ames (Ames et al., 1975) and adapted by the OECD as a guideline study (OECD, 1997). The assay tests 

for the potential of a chemical to induce point mutations, which may be substitutions, additions or 

deletions of DNA base pairs. The assays are based on bacteria strains that have been artificially 

mutated in such a way that they lack the ability to produce essential amino acids. Mutagenic chemicals 

can cause mutations that reverse the artificially introduced mutation so that the bacteria regain the 

ability to synthesise the amino acid. Only such re-mutated cells will be able to grow in a medium 

lacking the essential amino acid, which enables the detection of mutagenic chemicals. It is often the 

case that chemicals in their original form do not react with DNA but are metabolised by animals or 

humans to reactive molecules. Therefore, it is common to mimic the metabolism of higher organisms 

in in vitro systems by adding appropriate enzymes, typically in form of a liver homogenate (S9 

fraction). The Ames test can be conducted in a range of different bacteria strains which were designed 

to detect different types of DNA mutagenic mechanisms (Hamel et al., 2016). A compound needs to 

be tested in different bacteria strains in order to cover all potential mechanisms (Williams et al., 2019). 

 

2.4 Conclusion 
 

The present chapter introduced how chemicals are assessed for toxicity. Due to the relevance of 

mutagenicity in various studies within this thesis, special emphasis was put on introducing this toxicity 

endpoint. The overarching theme of the PhD project was investigating QSAR models predicting toxicity 

of chemicals, which may be used to replace in vivo and in vitro studies for toxicity. In order to 

understand the principles behind those models, the following chapters will introduce machine 
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learning (ML) in general (Chapter 2) and QSAR models in specific including basic principles on 

computational representation of chemicals (Chapter 3).
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Chapter 3   Introduction to machine learning 
 

 

Machine learning (ML) is defined as a computer solving a task without being explicitly instructed how 

to do it (Samuel, 1967). In contrast to following an algorithmic step-by-step procedure, ML methods 

seek to develop a solution by analysing patterns in the provided data. ML is part of the wider term 

artificial intelligence (AI), which can be defined as a computer behaving in a way that humans consider 

as intelligent (i.e., human-like or rational) (Kok et al., 2002). The relevance of ML in society has 

increased considerably in recent years and current applications of ML include, amongst many others, 

image recognition (Pak & Kim, 2017), machine translation (Y. Wu et al., 2016), recommendation 

systems (Gomez-Uribe & Hunt, 2015) and self-driving cars (Bojarski et al., 2016). Relevant to this work, 

ML methods can be applied to build QSAR models, which were already mentioned in Chapter 2 and 

will be introduced in more detail in Chapter 4. This chapter introduces common ML algorithms and 

describes the construction and evaluation of ML models. 

 

3.1 Tasks in machine learning 
 

Depending on the nature the learning process, ML can be divided in supervised and unsupervised 

learning (Géron, 2019). In either case, learning (or fitting) of a model occurs using a training data set 

containing a number of individual data instances. In supervised learning, a data instance is provided 

to the algorithm with d feature values (x: a d-dimensional vector) and a label (y: a numerical value or 

class label). The label represents the ground truth for a given data instance and the feature values are 

properties of the instance. The aim is to fit a model that predicts the label for a data instance using 

the provided feature data. Formally, a fit model can be described as a function mapping a 

d-dimensional vector in feature space to a prediction value. Supervised learning can be used to either 

predict numerical values (regression models) or categorical values (classification models). A 

classification model may discriminate between two classes (binary classification) or more than two 

classes (multi-class classification). In the simplest case, a ML model is trained to predict one label per 

data instance (single task model). In contrast, multi-task ML models are trained simultaneously predict 

several tasks. Multi-task modelling is based on the rationale that transfer of knowledge between 

related tasks may increase predictive performance (Caruana, 1997). 

In unsupervised learning, no labels are given to the learning algorithm. Instead of predicting labels, 

the aim is to predict patterns in the dataset, merely by considering the features of data instances. For 
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example, clustering algorithms attempt to find groups of similar data points (i.e. clusters), whereas, 

dimensionality reduction techniques aim to find a data representation for the instances of lower 

dimensionality than the number of input features. The following descriptions in this chapter will focus 

on supervised learning, as these are the techniques suitable for QSAR modelling. In the following 

sections of this chapter, the stages of a typical ML workflow will be described, and finally relevant ML 

algorithms will be introduced. 

 

3.2 The machine learning workflow 
 

A ML project normally consists of the steps: data collection, data curation, model training, model 

evaluation and selection, model deployment. 

 

3.2.1 Data collection and curation 
 

The data collection step depends on the problem that is to be solved. In general, data of both sufficient 

quantity and quality need to be retrieved. Specific requirements on the data depend on the domain 

and the respective data types used in the field. To obtain a large enough dataset, data from different 

sources may need to be combined. This may come at the cost of data inconsistency between the 

sources. For instance, experimental toxicity data from different sources may have been obtained using 

slightly different protocols. Typical sources for toxicity data used to train QSAR models will be 

introduced in Chapter 4. 

Before training a ML model, the retrieved data needs to be curated. This may include handling of 

incomplete data, transformations of feature or target values and feature selection. Chemical data as 

used for QSAR modelling requires specific curation steps. These will be described in a Chapter 4. 

Handling of incomplete data: Retrieved datasets are often sparse in the sense that not all features 

are known for every data point. However, most ML algorithms require a complete dataset as input. In 

order to obtain a complete dataset, incomplete data points may be either discarded or the gaps may 

be filled using reasonable estimates. Estimates may be achieved using mean values of the dataset for 

a particular feature or a more sophisticated predictive model (Batista & Monard, 2003). A popular set 

of modelling techniques for filling data gaps are those based on matrix factorisation. A brief 

introduction to these methods will be given in a later section of this chapter, next to other ML 

algorithms. 
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Feature transformations: Input features typically need to be in a numeric form. Categorical data 

represented as string data may be transformed in different ways (Brownlee, 2020). One-hot encoding 

means that a separate feature is generated for each category of the original feature. A one indicates 

that an instance belongs to a particular category and a zero indicates that the instance does not belong 

to the category. For ordinal data (i.e. categories with a defined order), ordinal encoding may be 

selected where the information about the order is preserved, for instance by assigning ordered integer 

values to the different categories. Numerical features may comprise a wide range of different instance 

properties and hence be on different scales. Many ML methods preferentially detect patterns in 

numerical features of larger magnitude. To eliminate this bias, features need to be scaled to the same 

magnitude. Common methods are Z-score normalisation (the mean of the data points is scaled to 0 

and the variance to 1) and min-max normalisation (the minimum and maximum values are scaled to 

a defined range, e.g. [-1,1]) (Shalabi et al., 2006). 

Feature selection: A large number of features may be detrimental for a ML algorithm when there are 

few observations, because the feature space is sparsely populated, which makes it difficult for the 

algorithm to find meaningful patterns in the data (this is often referred to as the curse of 

dimensionality) (Friedman, 1997). Therefore, it may be necessary to reduce the number of features 

used as input to a ML model (Guyon & Elisseeff, 2003). Commonly, features with low variance are 

removed, as they are not useful to discriminate examples. Also, highly correlated features should be 

removed to discard redundant information. A further reduction of features can be obtained 

empirically by evaluating the performance of different combinations of features. For instance, 

recursive feature elimination is an iterative approach, where the least important feature is removed 

after each model training cycle (Gregorutti et al., 2017). 

 

3.2.2 Model training and evaluation 
 

The following paragraph will introduce common strategies for training and evaluation of ML models. 

Metrics used to evaluate classification and regression models will be presented in a separate section. 

Prevention of overfitting and handling of imbalanced datasets in classification tasks are specific issues 

related to training and evaluation of ML models. These will be briefly introduced later in this section. 

For training and evaluating ML models the original data set is usually separated in three non-

overlapping sets of data instances: a training set, a validation set and a test set (Géron, 2019). As the 

name suggests, the training set is used to train a number of ML model instances using different 

algorithms and hyperparameters. Each of the model instances is evaluated on the validation set in 
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order to find the best one. The performance of the selected model is finally evaluated on the test set. 

It is essential that the test set was not used to inform any stages of data curation, model training and 

model selection to ensure the measured performance on it is an unbiased estimation of model 

generalisation to new data instances. A technique enabling more insights on model performance 

during model validation is cross-validation. In k-fold cross-validation (shown in Figure 3-1), the dataset 

(after putting a test set aside) is separated into k folds of equal size. In an iterative manner each of the 

k folds is used once as validation set (orange boxes in Figure 3-1) for a model trained on all remaining 

folds. The performance may be averaged across the different iterations to get a more precise 

estimation of model performance. 

 

Figure 3-1 K-fold cross-validation. The training set is divided k (here k=5) times into 1 validation fold and k-1 training folds. 
In each iteration, a model instance is trained on the training folds and evaluated on the validation fold. This way, each data 
instance of the training set is used once in an evaluation fold. This enables a more robust validation of models with different 
parameters. Once the best set of parameters has been identified, the model is retrained on the full training set for final 
evaluation on the test set. 

Various different ML algorithms with different benefits and limitations exist (see section 3.4). Complex 

models with many tuneable parameters may provide a benefit in performance over conceptually 

simpler modelling techniques, yet complex models may be more difficult to understand, and typically 

require more data for training. It is generally not known a priori which algorithm will give the best 

model on a given dataset and hence different ones are usually tested in a ML project. Moreover, most 

of the ML algorithms require hyperparameters to be set which determine specific aspects of the 

learning process. Different settings for hyperparameters need to be tested to optimise model 

performance. A popular choice for hyperparameter optimisation is grid search, in which all 

combinations of selected values for the different hyperparameters are evaluated on the validation set 

(or in a cross-validation) to find suitable hyperparameters (Bergstra et al., 2011). 
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A common challenge when training a ML model lies in the concept of bias-variance trade-off 

(Fortmann-Roe, 2012). High bias is where the model does not well reflect trends in the training data, 

for example, due to the model being overly simple. This is referred to as underfitting. In contrast, high 

variance means that the model reacts very sensitively to small variations in the training data, as it 

models noise in the data rather than general trends (i.e. overfitting). Prevention of overfitting is a 

common challenge that ML practitioners face. Overfitting is characterised by the poor capability of a 

model to generalise on unseen data, while showing minimal error on training data. Strategies to 

prevent overfitting will be introduced next to the ML algorithms they are applied to. These may be, 

for instance, to restrict the complexity of models (e.g. limited depth in tree-based models) or to limit 

the cycles of iterative model fitting (e.g. early stopping for neural network models). 

A particular challenge for learning classification models may exist if the proportion of classes in the 

data set widely differs (i.e. class imbalance). When not accounting for class imbalance, ML models 

usually tend to make more accurate prediction for the majority class. Notably, caution is required 

when evaluating model performance, as some metrics may be dominated by the performance on the 

majority class hence obscuring poor model performance on the minority class (see section 3.3). 

Approaches to account for class imbalance include (I) resampling of training data to achieve a better 

balance (oversampling of the minority class or undersampling of the majority class) (Estabrooks et al., 

2004), (II) increasing the importance of data instances from the minority class during training with a 

weighting scheme (Elkan, 2001) and (III) changing the classification threshold applied to the raw 

predicted probabilities for data instances (Sheng & Ling, 2006). 

 

3.2.3 Model deployment 
 

Once a final model has been selected, it can be deployed to be used in the real world. A ML project is 

typically not finished once the model has been deployed. The performance of the model must be 

monitored over time. For instance, changes in real world data may require changes to be made to the 

model (Sculley et al., 2015). In situations where new data is collected over time, ML models may be 

retrained to increase performance, for instance when more experimental data becomes available in 

pharmaceutical companies (Göller et al., 2020).  
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3.3 Evaluation metrics 
 

3.3.1 Regression models 
 

In regression tasks, the ML model aims to estimate the true numerical values of the data as accurately 

as possible and various metrics may be used to evaluate model predictions (Botchkarev, 2019). One 

way to measure the performance of a regression model is to compute the Root Mean Square Error 

(RMSE) according to the formula: 

𝑅𝑀𝑆𝐸 =  √
1

𝑛
 ∑ (𝑦𝑖,𝑡𝑟𝑢𝑒 − 𝑦𝑖,𝑝𝑟𝑒𝑑.)

2
𝑛

𝑖=1
 

where 𝑦𝑖,𝑡𝑟𝑢𝑒 is the true value of the 𝑖𝑡ℎ data point in the test set of size 𝑛, 𝑦𝑖,𝑝𝑟𝑒𝑑. is the corresponding 

predicted value. Another popular metric is the coefficient of determination (R2) given by the equation: 

𝑅2 = 1 − 
∑ (𝑦𝑖,𝑡𝑟𝑢𝑒 −  𝑦𝑖,𝑝𝑟𝑒𝑑.)

2𝑛
𝑖=1

∑ (𝑦𝑖,𝑡𝑟𝑢𝑒 − �̅�)2𝑛
𝑖=1

 

where �̅� is the mean of the true values. Generally, 𝑅2 is a measure of the correlation between true 

and predicted values and can be interpreted as the proportion of variance in the data accounted for 

by the model. 

 

3.3.2 Classification models 
 

As opposed to regression tasks, in a classification task the prediction for a given data point is either 

correct or incorrect. The result of a classification task can be represented by a confusion matrix, as 

shown in Table 3-1, which has the following form for binary classification tasks (positive vs. negative): 

Table 3-1 Confusion matrix of a binary classification task. 

 Predicted Positives Predicted Negatives 

Actual Positives True Positives (TP) False Negatives (FN) 

Actual Negatives False Positives (FP) True Negatives (TN) 
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Many classification metrics can be derived directly from the confusion matrix (Hossin & Sulaiman, 

2015) and these are reported in Table 3-2. 

Table 3-2 Classification model metrics. 

Metric Formula Description 

Accuracy 
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

proportion of correctly 

predicted data points 

Sensitivity (recall) 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

proportion of actual 

positives that are 

predicted correctly 

Specificity 
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

proportion of actual 

negatives that are 

predicted correctly 

Precision 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

proportion of 

predicted positives 

that are actual 

positives 

Balanced accuracy (
𝑇𝑃

𝑇𝑃 + 𝐹𝑁  +  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃)

2
 

mean sensitivity across 

both classes 

F1 score 2 × 
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

balanced form of 

sensitivity (recall) and 

precision 

Matthews correlation 

coefficient (MCC) 

(Matthews, 1975) 

𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
 

complex metric 

accounting for all four 

classes of the 

confusion matrix 

 

Another commonly used metric is the area under the Receiver Operating Characteristic curve 

(ROC-AUC). In the curve, sensitivity is plotted against 1-specificity for various decision thresholds 

(Figure 3-2). For example, in random forest (RF) models (see below) the proportion of trees voting for 

a given class can serve as a threshold for the classification decision. In this way, a sorted list of all data 

points can be obtained. Then, for each possible decision boundary in the ordered list, sensitivity and 

1-specificity are calculated and plotted. The area under the obtained curve is used to measure the 
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performance of the classification model. While an AUC of 0.5 corresponds to random predictions, an 

AUC of 1 is achieved by a perfect classifier. 

 

Figure 3-2 ROC curves. Shown are curves for a random classifier (AUC=0.5), a moderately performing classifier (AUC=0.75) 
and a nearly perfect classifier (AUC=0.99). 

Different metrics have different advantages and disadvantages. For instance, accuracy is not well 

suited to evaluate performance on imbalanced datasets. For instance, when 99% of data points belong 

to the majority class, a (useless) classifier always predicting the majority class would achieve an 

accuracy of 0.99. Recall, precision and F1 score in contrast measure performance for a specific class 

and are more meaningful than accuracy when applied to the minority class. Balanced accuracy and 

MCC score are further metrics suitable for imbalanced datasets (Boughorbel et al., 2017). 

 

3.4 Machine learning algorithms 
 

3.4.1 k-Nearest neighbours 
 

From a conceptual perspective, k-nearest neighbours (k-NN) (Dey, 2016) is perhaps the simplest ML 

algorithm for classification and regression tasks. It requires an integer number k (e.g. k=5) to be 

defined and a means to assess distance between instances in the data set. The k-NN algorithm 

considers the k nearest data points in the training set, according to the chosen distance measure, for 

its prediction. In the case of classification, the predicted label is based on a majority vote of the k 
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nearest labels. For regression, the average of the k nearest labels is computed. The principle is 

visualised in Figure 3-3. For both classification and regression tasks, the prediction may be adjusted 

by giving a higher weight to nearer neighbours. 

 

Figure 3-3 k-NN principle. Here k is selected to be five and hence the five instances closest to the test instance are considered 
for the prediction. The measure of distance is Euclidean distance in the 2-dimensional feature space (x1, x2). Using a simple 
majority vote for classification, the test instance is classified as belonging to the positive class. 

 

3.4.2 Linear regression 
 

Linear regression (Gujarati, 2019) models the relationship between a numerical label y and a d-

dimensional feature vector x as a linear equation of the form 

𝑦 = 𝑎 ×  𝑥 + 𝑏 

where a and b are parameters which need to be optimised during training of the model. The training 

of a model is done by minimising the value of a loss function that estimates the performance of the 

model for a given set of parameters. In the case of linear regression, the loss function computes the 

sum of squared errors for all points i in the training set (size=n) as a function of the learnable 

parameters: 
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𝐿(𝑎, 𝑏) =  ∑(𝑦(𝑖) − (𝑎 × 𝑥(𝑖) + 𝑏))2

𝑛

𝑖=1

 

 

An example of linear regression with a single feature (i.e. univariate linear regression) is given in 

Figure 3-4. In practice, a much larger number of features may be used to obtain a linear regression 

model. Having a high number of features increases the risk of overfitting the training data.  

 

Figure 3-4 Example of linear regression. Data instances in this example consist of y as label and x as a single feature. To 
predict y from x, a straight line is fit using the least-square objective. Thereby a=1.97 and b=2.65 are obtained as model 
parameters. 

 

Regularisation techniques can be applied to prevent overfitting of linear regression models. These 

techniques penalise the use of numerically large model parameters explicitly in the loss function, 

which leads to the training of less complex models. Different regularisation techniques can be 

distinguished according to the scheme applied for penalising model parameters: 

- In ridge regression, the L2 norm (i.e. the magnitude of the summed squared model 

parameters) is penalised. (Hoerl & Kennard, 1970) 

- In lasso regression, the L1 norm (i.e. the magnitude of the summed model parameters) is 

penalised. (Tibshirani, 1996). 

- Elastic net regression penalises both the L1 norm and the L2 norm (Zou & Hastie, 2005). 
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In all cases, a hyperparameter λ is used to determine how strongly the different norms should be 

penalised relative to the least squares objective defined above. Ridge regression often yields models 

of better performance than lasso when the number of samples is much larger than the number of 

features. Lasso regression has the advantage of yielding parsimonious models, as its objective leads 

to irrelevant model parameters being zero. Elastic net regression was introduced to combine 

advantages of both approaches. 

 

3.4.3 Logistic regression 
 

Logistic regression (Walker & Duncan, 1967) provides a means to estimate the probability of a data 

point belonging to one of two possible classes. Thus, it can be used to solve binary classification 

problems. Conceptually, logistic regression is closely related to linear regression. In linear regression, 

a linear relationship between the target variable y and the features x is assumed. In contrast, in logistic 

regression, the log of the odds of event y being the positive class is assumed to linearly depend on x. 

log (
𝑝

1 − 𝑝
) = 𝑎 × 𝑥 + 𝑏 

To convert the log of the odds into a probability, the logistic (sigmoid) function is applied. 

Pr(𝑦|𝑥) =  
1

1 +  𝑒−(𝑎×𝑥+𝑏)
 

The parameters a and b can be optimised in such a way that the product of computed probabilities 

for all training points is maximised. This approach is called maximum likelihood estimation. 

∏ 𝑃𝑟𝑎,𝑏(𝑦(𝑖)|𝑥(𝑖))

𝑛

𝑖=1

 

 

3.4.4 Support Vector Machines 
 

The Support Vector Machine (SVM) algorithm solves classification tasks by modelling a linear decision 

boundary that maximises the margin of data points next to the decision boundary, so-called support 

vectors (Boser et al., 1992). The principle is illustrated in Figure 3-5 for a 2-dimensional feature space 

where the decision boundary is a 1-dimensional line. In a d-dimensional feature space the decision 

boundary is a (d-1)-dimensional hyperplane. SVM classifiers can be distinguished as maximal-margin 

classifiers (Figure 3-5A) and soft margin classifiers (Figure 3-5B) according to the method used for 
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determining the decision boundary. Maximal-margin classifiers strictly select a boundary by finding a 

hyperplane that perfectly separates the classes and maximises the margin. If the classes are not 

perfectly separable, soft margins are required. Soft margins allow misclassifications, but penalise them 

in the objective function. Even if two classes are perfectly separable, soft margins may be preferred 

over maximal-margin classifiers as soft margins often lead to better generalising models (i.e. not 

overfitting the training data). 

 

Figure 3-5 Example of SVM. A shows a maximal-margin classifier, whereas B shows a soft margin classifier. The soft margin 
leads to one training instance of the positive class being misclassified. The margin describes the distance of the support 
vectors to the decision boundary. 

 

SVM is not limited to linear separation based on the original feature space. By applying kernel 

functions, the original features are mapped into a higher dimensional space. For instance, the 

polynomial kernel computes polynomials of the original features and then finds a linear solution in 

the projected (non-linear) feature space (Cortes & Vapnik, 1995). 

While SVM was initially developed for classification tasks, its principle can also be adapted to solve 

regression tasks. Instead of fitting a decision boundary, a linear function (in the potentially expanded 

feature space) is fit to predict continuous values. This function is obtained by optimising 

simultaneously for small deviation of training data outside a pre-defined tolerated error range ε and 

for low complexity (similar to regularisation in linear regression) (Drucker et al., 1996). 

 

3.4.5 Decision Trees 
 

Various tree-based methods for classification and regression tasks exist. All these methods rely on the 

basic principles of decision trees (Loh, 2008; Quinlan, 1986). 
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Decision tree algorithms solve a classification or regression task by constructing a tree based on 

training data that separates the data according to the feature values. At each node, the data is 

separated based on a condition of a single feature. Terminal nodes (i.e. these are not further split) are 

called leaves. In Figure 3-6, a simple example of a decision tree is presented. The decision tree is used 

to predict whether passengers survived the sinking of a ship. To make a prediction for an instance 

(here a person), data is sent to a leaf node according to its attribute values. For instance, test data 

point P1 (sex=female, age=24) is predicted as to have survived, whereas P2 (sex=male, age=42) is 

predicted to have died. 

 

Figure 3-6 Decision tree predicting whether passengers survived the sinking of a ship. The top node is called the root. Blue, 
oval shapes indicate nodes that are further split according to the stated condition, whereas orange, rectangle shapes are leaf 
nodes. 

 

During model training, splits are chosen according to the impurity of the original and resulting sets of 

data instances. For classification tasks, entropy derived from information theory (Shannon, 1948) can 

be used as an impurity criterion. In the binary case, the entropy H for a set of positive (t=A) and 

negative instances (t=a) can be computed according to: 

𝐻(𝑡) =  − (𝑝(𝑡 = 𝐴) ×  log2 𝑝 (𝑡 = 𝐴) + 𝑝(𝑡 = 𝑎) × log2 𝑝(𝑡 = 𝑎) ) 

Where p(t=A) is the probability of an instance of the set being positive (i.e. the proportion of positive 

instances in the set) and vice versa for instances being negative. Since base 2 is selected for the 
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formulation, an entropy of 1 corresponds to one bit of information. The information gain of a split can 

be computed as the difference in entropy between an original set and the sum of entropies of the 

resulting sets. Among potential splits, the split with the largest information gain is selected. Instead of 

entropy, impurity can also be measured using the Gini index according to: 

𝐺𝑖𝑛𝑖(𝑡) = 1 − (𝑝(𝑡 = 𝐴)2 + 𝑝(𝑡 = 𝑎)2) 

For a continuous target 𝑡 (i.e. a regression task), the variance of a set (of 𝑛 instances) can be used as 

a measure of impurity, calculated according to: 

𝑣𝑎𝑟(𝑡) =  
∑ (𝑡𝑖 − 𝑡̅)2𝑛

𝑖

𝑛 − 1
 

While the decision tree is grown, nodes are further separated until a stopping criterion is reached, 

which may be a minimum size of the leaf (number of training instances in the leaf) or a given class 

purity. Stopping criteria are necessary to reduce the risk of overfitting, as the algorithm otherwise 

would continue separating nodes until only perfectly pure leaf nodes are obtained. In this case, the 

noise of the data would be fit rather than trends that generalise beyond the training data. Each leaf 

corresponds to a certain prediction that is made, which is, for example, the majority of training labels 

found in this split in the case of classification and the mean of training labels in case of regression. An 

advantage of decision trees is their interpretability, as the predictions are based on sequential and 

explicitly stated decisions with respect to single features. 

Other tree-based algorithms combine single decision trees to obtain an ensemble of models. Bagging 

and boosting techniques can be distinguished depending on how the ensemble is generated. In 

bagging, bootstrapping is used to create different subsets of training instances for which different 

decision trees are trained. Random forest is a technique based on bagging. In contrast, in boosting 

decision trees are trained sequentially which the aim to improve predictions for instances that were 

misclassified in previously learned decision trees. 

 

3.4.6 Random forest 
 

Random forest (RF) was developed as a more effective generalising alternative to decision trees 

(Breiman, 2001). The technique creates a set of decision trees and predictions are made according to 

a majority vote among all individual trees for classification tasks or the mean for regression tasks. The 

key to the success of RF is the diversity of individual trees. Diversity is achieved by two different 

mechanisms: 
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 Bootstrap sampling: each tree is trained on a subset of the training instances sampled with 

replacement. 

 Only a randomly selected subset of features is available to find a split for each node. 

The basic principle of RF is summarised in Figure 3-7. 

 

Figure 3-7 Random forest principle. The predictions of diverse trees, trained on different training data, are aggregated to 
obtain the final prediction. 

 

Implementations of RF such as in scikit-learn (Pedregosa et al., 2011) contain various hyperparameters 

to determine the behaviour of the model. These include the selection of the impurity criterion, 

definition of stopping criteria for tree growing (maximum depth, minimum samples per leaf), the 

amount of randomly selected features used for each split, and assigning different weights to classes 

to counter imbalance in the dataset. 

 

3.4.7 Gradient tree boosting 
 

Boosting techniques combine several weak learners (which on their own perform just slightly better 

than random) into a powerful ensemble (Meir & Rätsch, 2003). The basic idea behind gradient tree 

boosting approaches is to make predictions by combining predictions of sequentially trained decision 
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trees, each trained to predict the residual of predictions obtained by all previously trained trees 

(Friedman, 2001).  

For regression, the initial tree of the ensemble is a single leaf node so that the predicted value for all 

instances is the mean of the training data. Each following tree is then trained to predict the residual 

of instances (i.e. the difference between the true values and the aggregated predictions of all 

preceding trees). Specifically, these residuals are incorporated into differentiable loss functions and 

hence gradients are used to grow trees. The contribution of each newly trained tree is determined by 

the learning rate, a hyperparameter of the model. The principle is illustrated in Figure 3-8. 

 

Figure 3-8 Gradient tree boosting for regression. The figure illustrates how predictions are obtained by aggregating 
predictions made by individual decision trees. The value 0.1 is the learning rate used to scale the contribution of each tree. 
Each tree is trained to predict residuals for instances given the prediction of all previous trees. The initial prediction 
(represented as a tree consisting of a single leaf) is the mean of training instances. 

 

For classification tasks, the aggregated prediction is obtained as the log of the odds (similar to logistic 

regression), which eventually can be converted in predicted probabilities using the sigmoid function. 

XGBoost was introduced as an implementation of gradient tree boosting that scales well to large scale 

datasets (Chen & Guestrin, 2016). In addition, it introduces some modifications to previous gradient 

tree boosting models. Regularisation is an effective technique to prevent overfitting of linear 

regression models (see above). In the XGBoost algorithm, regularisation is used to penalise both the 

magnitude of the output values in the leaves and the number of leaves. In addition, as in RF models, 

subsampling of available features for split finding is employed. Another feature of XGBoost is its ability 

to handle sparse data instances. In particular, for each split optimal default directions for missing data 

are learned to minimise the loss. 

Further implementation details of XGBoost affect its scalability. For large scale datasets, XGBoost can 

obtain an approximate solution for growing trees instead of a slow exact solution. This is achieved by 

finding splits only for bins of data instead of trying all possible splits. Also, a block structure of data is 

used to enable parallelisation of model training.  
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3.4.8 Artificial neural networks and deep neural networks 
 

Artificial Neural Networks (throughout the thesis referred to as ’neural networks’) are ML models 

loosely reminiscent of a biological brain in the sense that they contain neurons that exchange signals. 

Neural networks consist of nodes (neurons) arranged in different layers, which include an input layer, 

one or more hidden layers and an output layer. Neural networks containing more than one hidden 

layer are referred to as Deep Neural Networks (DNNs) (Goodfellow et al., 2016). The input layer takes 

the feature vectors of data points as input. Thus, it consists of as many nodes as features used for the 

task. The output layer represents the given prediction by the neural network for a given data point, 

while the hidden layers are intermediate representations of a data point. Overall, a neural network is 

a complex function mapping an input vector to an output vector. With the exception of the input layer, 

every node receives input from every node in the previous layer. The activation of a single neuron is 

a linear combination of the activations of the neurons in the previous layer with the addition that a 

non-linear activation function is applied. Thus, the activation of neuron j in layer l is computed by 

ℎ𝑗
𝑙  =  𝑓( 𝑊 × 𝐻 + 𝑏) 

Where f() is an activation function, W is the vector of weights incoming from the neurons in layer l-1, 

H is the activations of the neurons in layer l-1 and b is the bias of the neuron. By applying a non-linear 

activation function, such as the sigmoid function or the ReLU (rectified linear unit) function (which 

does not modify positive numbers and turns negative numbers to 0) (Agarap, 2019), the network is 

capable of expressing non-linear relationships between the input vector and the output vector. The 

design of the output layer mirrors the nature of the task the neural network aims to fulfil. The 

following cases shall be considered: 

 Single task regression: The output is a single numeric value and therefore the output layer 

consists of a single neuron. Generally, no activation function is required for the neuron. If the 

outputs must not be negative, the ReLU function can be applied. 

 Multi-task regression: If a neural network is trained for n regression tasks simultaneously, the 

output layer consists of n neurons, each representing the prediction for a distinct task. The 

outputs are treated the same way as for single task regression.  

 Single task binary classification: The output is single binary value and therefore the output 

layer consists of a single neuron. A sigmoid function is applied to scale the output in the range 

from 0 to 1, which is interpreted as the probability of the positive class. To get a prediction 

from this value, numbers above 0.5 are considered positive, whereas numbers below 0.5 are 

considered negative. 
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 Multi-task binary classification: As for multi-task regression n neurons are required to make 

predictions for n distinct tasks. The outputs are treated the same way as for single task binary 

classification.  

 Multi-class classification: The number of neurons is equal to the number of classes in the task. 

To achieve a probability distribution as output (the output of each neuron represents the 

probability for a class) the softmax function is applied. This function takes the whole set of 

neurons in the output layer as input, applies the standard exponential function to each value 

and then divides each exponential by the sum of the exponentials. As a result, each value will 

be in the range (0,1) and the sum of all values will be 1. 

The form of neural networks described above is also called fully-connected feedforward, as 

information flows only in one direction from input to output and no cyclic connections between 

neurons exist. A schematic depiction of the above described architecture is given in Figure 3-9. 

 

Figure 3-9 Architecture of feedforward DNN models. Shown are a network with a single output neuron (left) and a network 
with three output neurons (right). The network with a single neuron may be used for single task regression or binary 
classification tasks. The other network may be used for multi-class classification or multi-task settings. Neurons typically 
contain more neurons in input and hidden layers than shown in this simplified figure. 

 

To train a neural network model, weights and biases are adapted to reduce loss between training 

labels and predictions made by the neural network. Various loss functions can be used, depending on 

the nature of the task (Brownlee, 2019). For regression problems, the mean squared error between 

predicted and true labels can be used (comparable to linear regression). A popular choice for binary 

classification tasks is binary cross entropy (BCE) loss, which for a single instance is given by: 

𝐵𝐶𝐸 𝐿𝑜𝑠𝑠 =  −(𝑦 log(�̂�) +  (1 − 𝑦) log(1 − �̂�)) 
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where y is the true label (0 or 1) and �̂� is the predicted probability of the instance. For multiple 

instances the BCE loss can be summed or averaged depending on method implementation. In essence, 

BCE loss evaluated how close a prediction is to a ‘perfect’ prediction (i.e. the predicted probability is 

identical to label). For multi-class classification tasks, the (general) cross entropy loss can be used 

where for each class the distance between predicted probability and true class is evaluated. For multi-

task settings, the same loss functions can be used by summing or averaging the losses across the 

different tasks. 

Training of neural networks is normally done using gradient descent or related methods. These 

techniques require the determination of the gradient of the loss function with respect to each 

tuneable parameter (i.e. weights and biases) using backpropagation (Rumelhart et al., 1986). 

Gradients are found by applying the chain rule for differentiation starting from parameters in the last 

hidden layer and moving backwards through the network. The gradient can be understood as the 

direction in which the respective parameter needs to be changed to minimise the loss. An optimisation 

step is performed by updating the parameters in the direction of the gradient. The learning rate, a 

hyperparameter set by the user, determines the size of the step. 

Computing the gradients using the entire training set may be computationally expensive. This can be 

circumvented by using stochastic gradient descent (SGD). In SGD, instead of computing the gradients 

for the full data set in each optimisation step, gradients are iteratively computed for batches (i.e. 

subsets) of the training set. One training epoch is completed when each training instance has been 

used once for optimisation within a batch. The training of a neural network may consist of more than 

one epoch. Batch size and number of epochs are further hyperparameters of the training process. 

More sophisticated optimisation techniques like Adam (Kingma & Ba, 2014) have been developed. A 

key characteristic of Adam is that learning rates are individually adapted for different parameters 

using the history of updates. This means that update steps for a parameter can be increased if high 

gradients were found for this parameter in previous steps to accelerate learning. In analogy to the 

physical phenomenon, this principle has been named momentum. 

Further techniques have been developed to prevent neural networks from overfitting training data 

and to improve generalisation capability. Similar to linear regression, L1 or L2 regularisation can be 

applied to penalise the magnitude of learned weights (Le Roux & Bengio, 2007). Another regularisation 

technique is dropout (Srivastava et al., 2014). Dropout means that randomly sampled hidden neurons 

or input neurons including all their connections are removed from the network during training. The 

motivation behind this technique is to prevent complex co-adaptations of different neurons. Put 

differently, hidden neurons should encode features that are meaningful by themselves. A third 
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technique is early stopping of neural network training (Yao et al., 2007). In this technique, the 

generalisation error of a model is monitored during training using a validation set and the training is 

terminated when no further improvement on the validation set is observed. 

Fully-connected feedforward neural networks as described above can be used for supervised ML tasks 

where numerical features in the form of a d-dimensional vector for each instance are given. Different 

architectures are required for different types of data (LeCun et al., 2015). Convolutional architectures 

are employed for image (Convolutional Neural Networks (CNNs)) or graph data (Graph Convolutional 

Networks (GCNs)) where the spatial arrangement of pixels or nodes is meaningful. In Recurrent Neural 

Networks (RNNs), neurons can form cyclic connections and these architectures may be used on 

sequential data like strings of variable length. 

 

3.4.9 Matrix factorisation 
 

Matrix factorisation techniques can be used to fill gaps in a sparse (i.e. incomplete) matrix by making 

predictions (Koren et al., 2009). A sparse matrix may refer to situations when not all features for data 

instances are known or in a multi-task setting when the label for an instance is only known for some 

of the tasks. However, the distinction between features and labels might disappear in such situations 

as target labels may be used as features to predict other target labels. 

The basic principle behind matrix factorisation is to factorise the data matrix into the product of two 

smaller matrices. A matrix 𝑋 of dimension 𝑚𝑥𝑛 (𝑚 rows and 𝑛 columns) can be decomposed into the 

product of 𝑈 and 𝑉: 

𝑋𝑚𝑥𝑛 =  𝑈𝑚𝑥𝑑  ×  𝑉𝑑𝑥𝑛 

The entry of matrix 𝑋 for the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column is given by the dot product of the 𝑖𝑡ℎ row of 

U with the 𝑗𝑡ℎ column of 𝑉: 

𝑋𝑖,𝑗 =  𝑈𝑖,1  × 𝑉1,𝑗 +  𝑈𝑖,2  × 𝑉2,𝑗 + ⋯ + 𝑈𝑖,𝑑  ×  𝑉𝑑,𝑗  

Matrix factorisation methods gained interest during the Netflix Prize competition, which had the aim 

to improve systems that recommend movies to users based on their previous ratings. The task was to 

predict the ratings of movies by users using a matrix of given ratings. In the above equation for matrix 

factorisation, the matrices 𝑈 and 𝑉 can be considered representations of the users and movies, 

respectively, in a joint 𝑑-dimensional latent factor space. 
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To fit a matrix factorisation model, the matrices 𝑈 and 𝑉 have to be found. Objective functions seek 

to minimise the distance between observed entries in 𝑋 and the corresponding prediction resulting 

from the product of 𝑈 and 𝑉. Since the matrix 𝑋 may be very sparse, overfitting to the few observed 

entries is a problem. Overfitting can be countered by including regularisation terms in the objective 

function, which penalise high values in 𝑈 and 𝑉. An objective function of the following form is 

obtained: 

min
𝑢,𝑣

∑ (𝑋𝑖𝑗 −  𝑢𝑖𝑣𝑗
𝑇)2 + 𝜆𝑢‖𝑢‖𝐹

2 + 𝜆𝑣‖𝑣‖𝐹
2

(𝑖,𝑗)𝜖𝐼𝑋

 

where 𝑢𝑖 and 𝑣𝑗 are the latent vectors for the 𝑖𝑡ℎ row of 𝑈 and the 𝑗𝑡ℎ column of 𝑉, 𝐼𝑋 the set of filled 

cells in 𝑋, 𝑋𝑖𝑗  is the observed value in the 𝑖𝑡ℎ row and the 𝑗𝑡ℎ column of 𝑋, 𝜆𝑢 and 𝜆𝑣 are regularisation 

parameters and ‖⋅‖𝐹 is the Frobenius norm. The Frobenius norm of a matrix 𝐴 is defined as: 

‖𝐴‖𝐹 =  √∑(𝐴𝑖,𝑗)2

𝑖,𝑗

 

Another way to construct a matrix factorisation model is by using a probabilistic approach 

(Salakhutdinov & Mnih, 2007). Macau is an example for probabilistic matrix factorisation (Simm et al., 

2015). A notable property of Macau is that, in addition to the sparse matrix, it may use features that 

describe the entities belonging to rows and columns of the matrix (also called side information). A 

formal mathematical description of probabilistic matrix factorisation in general and Macau in 

particular is provided in Appendix A. 

 

3.5 Conclusion 
 

The present chapter introduced ML techniques which are commonly used to construct QSAR models. 

Focus was put on relevant algorithms as well as strategies to evaluate the models. The next chapter 

(Chapter 4) will introduce the concept of QSAR modelling and describe aspects relevant to the use of 

QSAR models for the case of toxicity prediction.
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Chapter 4   QSAR modelling for toxicity prediction 
 

 

In the preceding chapters, an introduction to toxicity assessment of chemicals (Chapter 2) as well as 

ML (Chapter 3) was provided. QSAR modelling can be understood as ML applied to chemicals, namely 

to predict properties of chemicals (including bioactivity and toxicity) based on their chemical structure. 

The present chapter will introduce the theoretical foundations of QSAR models as well as their 

application to predict toxicity. 

In particular, the chapter introduces chemical descriptors as representations suitable for QSAR 

modelling (4.1). Then, the concept of molecular similarity is introduced which implicitly forms the basis 

of QSAR modelling (4.2). In the next section (4.3), QSAR modelling is described as a ML model linking 

chemical structures to properties of chemicals. In section 4.4 curation of chemical structures is 

described as an important pre-processing step to QSAR modelling. An overview of toxicity data 

available for QSAR modelling is provided in section 4.5. Section 4.6 describes known determinants of 

the success of QSAR modelling and introduces the concept of an applicability domain. The current use 

of QSAR models in regulatory toxicology is summarised in section 4.7. Due to the importance of neural 

network models in this thesis, their use for toxicity prediction is briefly reviewed in section 4.8. 

 

4.1 Representation of chemical structures in computers 
 

 

Chemoinformatics has been defined as “the application of informatics methods to the solution of 

chemical problems” (Gasteiger, 2006). The prerequisite for the numerous chemoinformatics 

application are means to represent chemical structures computationally (Warr, 2011). The most 

common way among chemists to represent the structure of a molecule is as a diagram showing its 

atoms and their connections in two-dimensional space (see Table 4-1, first row). 

In such diagrams hydrogen atoms typically are not explicitly depicted (unless bound to a heteroatom), 

as their presence next to carbon atoms can be easily inferred by a chemist. This form of representation 

can be abstracted to a two-dimensional graph, a mathematical object consisting of nodes 

(representing atoms) which are connected by edges (representing chemical bonds). 

Connection tables (Gluck, 1965) enumerate all atoms of a molecule and state the connection between 

the atoms. Thus, they can be considered as a tabular form of a molecular graph. Connection tables 
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form the basis of MOL files (Dalby et al., 1992). An example for acetaminophen retrieved from the 

DrugBank database (Wishart et al., 2018) is provided in Table 4-1 (second row). The upper block 

(atoms block) contains the atoms with their element symbols and 2D (or possibly 3D) coordinates. The 

bonds block below states which atoms are connected as well as the bond type (single, double, triple). 

A more concise way to store chemical structures is using line notations (strings). In line 

representations, a molecule is represented as a string. A popular line representation is SMILES 

(Simplified Molecular Input Line Entry System) (Weininger, 1988). It describes the structure as a 

sequence of letters and special characters, capable of expressing different bond types, branching and 

rings (see Table 4-1, third row). The InChI (International Chemical Identifier) notation (see Table 4-1 

fourth row) has been developed by the IUPAC as a standardised line representation of a molecule 

(Heller et al., 2015). Compared to SMILES, InChI is more difficult to read by a human, but in principle 

the chemical structure can be generated from an InChI. An InChI Key (see Table 4-1, fifth row) 

represents a condensed form of an InChI (obtained through hashing) which was designed to facilitate 

searching for a structure in a database. 
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Table 4-1 Various chemical representations of acetaminophen (paracetamol). 

Chemical graph 

 

Connection table 

 

SMILES CC(=O)NC1=CC=C(O)C=C1 

InChI InChI=1S/C8H9NO2/c1-6(10)9-7-2-4-8(11)5-3-7/h2-5,11H,1H3,(H,9,10) 

InChI Key RZVAJINKPMORJF-UHFFFAOYSA-N 

 

All the representations presented in the table capture 2D structures of the molecule. Since molecules 

in reality are 3D objects, there are also representations that capture the location of the atoms in 3D 

space. It must be stated, however, that due to rotation about single bonds many different potential 

conformations can be realised by a molecule. 3D representations generally seek to provide an 

energetically favoured conformation. The Cambridge Structural Database is a repository containing 

3D structure data obtained using X-ray crystallography (Groom et al., 2016). 

None of the representations introduced so far is amenable to the construction of QSAR models (at 

least in a traditional way), because these typically require numerical representations of fixed length. 

This can be achieved using molecular descriptors. Molecular descriptors represent a molecule by 
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describing its properties. One can distinguish between different types of molecular descriptors: 

constitutional, physicochemical, topological and 2D fingerprints, as described below. 

Constitutional: Constitutional descriptors represent simple counts of features such as atoms, 

heteroatoms, functional groups with certain properties (e.g. hydrogen bond acceptors or donors), 

bond types or ring systems (Leach & Gillet, 2007). These can be easily obtained from a connection 

table representation. 

Physicochemical: Physicochemical properties describe properties of molecules as a whole as opposed 

to describing their constituents. Examples are molecular weight, lipophilicity (typically represented by 

log P which is the octanol water partition coefficient) or TPSA (topological polar surface area) (Ertl et 

al., 2000). For properties that, in principle, are the result of a wet-lab experiment (like log P), methods 

to computationally estimate the property have been developed to enable computation for large sets 

of compounds (Mannhold et al., 2009). Physicochemical properties may be key determinants for 

bioactivity. For instance, the relationship between lipophilicity and anaesthetic activity is well 

established (Glave & Hansch, 1972). 

Topological: Topological indices are derived from the 2D molecular graph and capture characteristics 

like size, shape and branching (Leach & Gillet, 2007). A prominent example is the Wiener Index which 

is the sum of all topological (through bond) distances between all atoms in the molecule (Wiener, 

1947). Other descriptors capture the connectivity of atoms by considering the number of valence 

electrons not bonding to hydrogen (Kier & Hall, 1981). 

2D Fingerprints: Structural fingerprints represent molecules in the form of bit vectors where a one 

indicates the presence of a certain structural feature and a zero indicates absence. Alternatively, 

fingerprints can be obtained as count-based where each position in the fingerprint indicates the 

number of occurrences of a certain feature. Fingerprints can be distinguished as dictionary-based 

fingerprints and hashed fingerprints. In a dictionary-based fingerprint each bit corresponds to an 

element of a pre-defined dictionary of fragments (e.g. MACCS keys) (Durant et al., 2002). Hashed 

fingerprints, in contrast, generate fragments from the structure according to defined rules and map 

the fragments to a vector of defined length. Different fragments may be mapped to the same bit. 

A popular hashed fingerprint, specifically designed for QSAR modelling, is the extended connectivity 

fingerprint (ECFP) which determines all unique fragments up to a user-defined radius starting from 

each atom as a centre (Rogers & Hahn, 2010). If a radius of up to one bond is chosen, the obtained 

fingerprint is called ECFP2 (2 referring to the ‘diameter’ of up to two bonds for the obtained 
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fragments). Equivalently, if the chosen radius is 2, ECFP4 is obtained, and so on. The following 

properties of atoms constituting the fragments are considered: 

 The number of direct heavy atom neighbours 

 The valence of the atom (ignoring hydrogen atoms) 

 Atomic number (chemical element type) 

 Atomic mass (to distinguish different isotopes) 

 Atomic charge 

 Number of attached hydrogen atoms 

 Whether the atom is part of at least one ring 

The generation of ECFPs is illustrated in Figure 4-1. The open-source chemoinformatics toolkit RDKit 

(RDKit: Open-Source Cheminformatics, n.d.) implements Morgan fingerprints which are roughly 

equivalent to ECFPs. 

 

Figure 4-1 Representation of molecules using ECFPs. To encode a chemical structure as an ECFP4, the environments of all 
atoms up to a radius of 2 bonds are determined (the green circles encapsulate the environments of radii 0, 1 and 2 bonds 
for the central carbon atom). Then, all unique environments included in the molecule are subjected to a hash function and 
folded to a binary fingerprint of fixed length (here 2048 bits), where 1s indicates the presence of a certain atom environment 
and 0s their absence. This provides a numerical representation of a molecule which is amenable to standard QSAR modelling. 

 

4.2 Molecular similarity 
 

The similarity principle states that structurally similar molecules tend to have similar properties (M. 

Johnson et al., 1988). Consequently, a set of molecules with similar properties can be found by 

searching for molecules with similar structures. In toxicity assessments, this concept is explicitly 



Chapter 4: QSAR modelling for toxicity prediction 

40 
 

exploited in the earlier described read-across method to predict the toxicity of untested substances 

from known activities of similar substances. The application of this concept requires a means to 

evaluate the similarity of molecules. One possibility is to check if two molecules contain a certain 

common 2D substructure or 3D pharmacophore (i.e. a spatial arrangement of molecular features). 

However, this approach merely splits a given library of molecules into those which contain the 

considered substructure or pharmacophore and those which do not. More sophisticated methods are 

required to quantify the similarity between molecules. A popular way to quantify the similarity of two 

molecules is by calculating a similarity coefficient based on binary chemical fingerprints (Willett, 2006). 

Generally, these methods quantify the similarity in the range from 0 to 1, where 0 means the absence 

of any common features and 1 means identical representations (but not necessarily identical 

molecules). The most widely used similarity coefficient is the Tanimoto coefficient which is defined as 

Tc(A, B) =  
c

a + b − c
 

where a is the number of bits set to 1 in the fingerprint of molecule A, b is the number of bits set to 1 

in molecule B and c is the number of bits set to 1 in both fingerprints. Other similarity coefficients are 

the Dice coefficient and the Cosine coefficient defined by the following equations: 

𝐷𝑖𝑐𝑒(𝐴, 𝐵) =  
2𝑐

𝑎 + 𝑏
 

𝐶𝑜𝑠𝑖𝑛𝑒(𝐴, 𝐵) =  
𝑐

√𝑎𝑏
 

where a, b, and c are defined in the same way as in the Tanimoto coefficient. More generally, the 

similarity between two objects can be considered as the counterpart to the distance between two 

objects. The introduced similarity coefficients can be converted to a measure of distance using the 

formula: 

distance = 1 − similarity 

A widely used distance coefficient is Euclidean distance (Jochum et al., 1980) defined by 

Deucl(A, B) =  [∑ (xiA −  xiB)2
N

i=1
]

1/2

 

Where A and B are objects with N featuresxiA and xiB are the values of the 𝑖𝑡ℎ feature of A and B. 

Such a general distance metric can measure the distance between two molecules represented as 

either binary fingerprints or as a set of arbitrary molecular descriptors of continuous nature. The 

Euclidean distance between two objects is 0 if their representations are identical, however, it is 
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unbounded since infinitely high values of distance can occur theoretically. In conclusion, similarity and 

distance between two molecules have no universal character. Instead, they depend on the context in 

terms of the molecular representation and the chosen coefficient. 

 

4.3 Basic principles of QSAR modelling 
 

A QSAR model can be considered to be any function that uses some representation of the chemical 

structure as input and predicts a biological activity relying on mathematical or statistical relationships 

(Cherkasov et al., 2014). Thus, QSAR models generally can be constructed for any property or 

bioactivity of a molecule. Corwin Hansch is considered as the pioneer of QSAR modelling. Using linear 

regression, he expressed biological responses of compounds within a chemical series as a function of 

the molecules’ lipophilicity (log P) as shown in the following equation (Hansch et al., 1963): 

log (
1

𝐶
) =  𝑘1 𝑙𝑜𝑔𝑃 + 𝑘2 𝜎 +  𝑘3  

where 𝐶 is the concentration of the compound responsible for the defined biological activity and 𝜎 is 

the Hammett parameter corresponding to the particular substitution pattern of a benzene derivative 

(Hammett, 1937). This equation is limited to a small series of similar molecules. More sophisticated 

methods are required to model relationships of large heterogeneous datasets and to account for non-

linear relationships. Consequently, the field has expanded extensively since then in terms of chemical 

descriptors, functions/algorithms that are employed and properties that are modelled. Molecular 

descriptors were introduced above. The range of algorithms used for QSAR modelling includes simple 

approaches like linear regression and k-NN, tree-based methods (decision tree, RF, gradient tree 

boosting) and neural networks (shallow or deep). An overview of these algorithms was provided in 

Chapter 3. Generally, the construction of a QSAR model is an example of a ML workflow as introduced 

in Chapter 3. First, the molecules in the dataset are expressed as molecular descriptors. Then, a QSAR 

model is trained on training data. As described for ML in general, the QSAR model needs to be 

evaluated on compounds that were not used during training to demonstrate predictivity on new 

compounds. 

4.4 Preparing chemical structures for QSAR modelling 
 

In order to train a QSAR model, compounds need to be represented using some chemical descriptor. 

However, a crucial step is to curate chemical data beforehand. One problem is that a dataset may 

contain incorrect structures (i.e. the given structure does not correspond to the tested chemical). A 
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study investigated public and private databases and found error rates in the range from 0.1 to 3.4% 

(Young et al., 2008). Another problem is that chemical structures in a dataset may be represented 

inconsistently (e.g. certain functional groups in different tautomeric form) or such that it cannot be 

properly represented by traditional chemical descriptors (e.g. complex bonds or compound mixtures). 

Several chemical data curation steps have been suggested to remedy these problems (Fourches et al., 

2010). 

Where possible, inorganic and organometallic compounds should be removed because commonly 

used molecular descriptors are in many cases not suitable to represent them. Also, mixtures of 

different chemicals should be removed, unless the observed activity can be attributed with confidence 

to a single component of the mixture, which then can be retained. Moreover, the descriptors often 

are not capable of representing salts and thus inorganic counterions need to be removed. Then, the 

molecules should be neutralised (removal of charges) or the charges adjusted to the experimental pH. 

In the next step, certain chemotypes with multiple possible structural representations like nitro groups 

or tautomers need to be converted to a standardised manner to avoid inconsistencies within the data 

set. It is also imperative that a specific structure is only contained once in a dataset. Duplicates may 

be in the dataset due to experimental replicates or introduced by the previously performed 

standardisation steps. Duplicates can be handled by averaging experimental values or, in the case of 

conflicting evidence, by removing all instances to avoid potential errors. As a final step, manual 

checking of the structures in the data set is recommended. 

 

4.5 Toxicity data for QSAR modelling 
 

A prerequisite for a successful QSAR model is the availability of sufficient data of good quality. In the 

area of toxicity prediction, modelled events may be the experimentally measured outcomes of in vitro 

toxicity assays or in vivo toxicity studies. A brief overview of available in vitro and in vivo data is 

provided in this section. 

 

4.5.1 In vitro toxicity data 
 

The two largest databases (>106 compounds) for in vitro data are PubChem (Wang et al., 2017) and 

ChEMBL (Gaulton et al., 2017), which are provided by the National Center for Biotechnology 

Information (NCBI) and the European Bioinformatics Institute (EBI), respectively. These databases are 

depositories for all kinds of in vitro bioactivity data, rather than being specific for toxicity effects. In 
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contrast, Tox21 (Thomas et al., 2018) and ToxCast (Richard et al., 2016) are projects designed to 

generate in vitro data presumed to be highly relevant for toxicological events in vivo. As mentioned 

earlier, Tox21 is a federal inter-agency collaboration in the US. A cornerstone of the project was 

performing HTS experiments on approximately 10,000 chemicals in approximately 70 assays. ToxCast 

on the other hand is a project carried by the EPA. While the ToxCast data overlaps with Tox21 to some 

extent, it focusses on a broader set of assays with a smaller set of compounds. More specific is the 

ISSTOX (Istituto Superiore di Sanità Toxicity) database, which contains data relevant for chemical 

carcinogenicity including mutagenicity data in bacteria (Ames test) (Benigni et al., 2008). 

 

4.5.2 In vivo toxicity data 
 

As described in Chapter 2, in vivo toxicity data are generated in animal studies according to guidelines. 

A public database containing the results of various in vivo animal studies for over 1,000 compounds is 

EPA’s ToxRefDB (Watford et al., 2019). A similar resource, though not publicly available, is the eTox 

database (Sanz et al., 2017). It was generated in a cooperation of pharmaceutical companies, 

academic institutions and small and medium-sized enterprises and contains in-house data of the 

companies for almost 2,000 compounds. The objective of the project is to facilitate data exchange 

among pharmaceutical companies and to exploit the data for predictive modelling of toxicity. The 

CEBS (chemical effects in biological systems) database contains toxicity studies generated by the 

National Toxicology Program (NTP) (Lea et al., 2017), which includes studies on genotoxicity, 

carcinogenicity, reproductive toxicity and immunotoxicity. As a repository dedicated to chemical 

carcinogenicity, the above mentioned ISSTOX database also contains in vivo carcinogenicity studies. A 

comprehensive dataset on acute rodent toxicity has been assembled by the NICEATM (National 

Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods) and 

the EPA (Kleinstreuer et al., 2018).  

 

4.6 Determinants of successful QSAR modelling 
 

The usefulness of a QSAR model depends on its capability to make accurate predictions for novel 

compounds. Therefore, understanding under which circumstances a QSAR model will be most 

successful has been, and still is, an area of active research. This section discusses certain factors whose 

impact on QSAR models has been studied. Subsequently, the concept of an applicability domain is 
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introduced, which aims to determine whether or not the prediction of an individual compound is 

reliable. 

One challenge that may occur for classification models is data imbalance which has been mentioned 

in the previous chapter and is not specific to QSAR models. In particular, data imbalance may result in 

models making accurate predictions for majority class compound, but inaccurate predictions for 

minority class compounds (Zakharov et al., 2014). Approaches to account for data imbalance in QSAR 

models include increasing the cost of misclassifying minority class compounds (Guha & Jurs, 2005), 

resampling techniques (Bae et al., 2021) and adapting the classification threshold (Esposito et al., 

2021). 

Another aspect is the amount of available data to train a QSAR model. For a given modelled endpoint 

and identical test sets, performance tends to increase if more training data becomes available over 

time (Sheridan, 2022). Experiments on very small datasets (~100 compounds) have shown that the 

effect of reducing a dataset’s size depends on the particular dataset (Roy et al., 2008). For instance, a 

large decrease in performance was found for a local dataset on anti-HIV activity of thiocarbamates, 

while no significant impact of dataset size was found for a diverse dataset on bioaccumulation. In 

contrast, for very large datasets (ten thousands of compounds), adding more data to the training set 

tends to have very little impact on overall model quality, as the additional data might not lead to a 

larger coverage of chemical space (Aleksić et al., 2022). When comparing different datasets, training 

set size does not seem to be a good indicator of success. QSAR models with small datasets may be 

successful (at least in a local context), while models with large dataset size may still fail for other 

reasons (see following paragraphs). 

QSAR models are based on the principle that similar compounds tend to have similar properties. 

Therefore, it is not surprising that chemical similarity between training and test compounds is a good 

indicator for the success of QSAR models (Sheridan et al., 2004). Similarity may be evaluated for 

instance as the (average) similarity value to the nearest neighbour(s) in the training set or the number 

of neighbours in the training set above a selected similarity threshold. The relation may still hold true 

if the chemical descriptors used to assess chemical similarity are not identical to those used for model 

training. 

Another challenge for QSAR models is the presence of activity cliffs (Maggiora, 2006). The term is 

derived from the concept of activity landscapes, in which the x- and y-coordinates encode chemical 

space while the z-coordinate represents bioactivity on a certain target. Activity cliffs refer to 

compounds that are chemically similar, yet possess greatly different activities which in activity 

landscapes resemble topographical cliffs. The presence of activity cliffs in a dataset is a strong 
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determinant for QSAR model performance (Golbraikh et al., 2014), as these are very challenging to 

predict. 

Another aspect impacting on the model performance is experimental uncertainty of generated 

bioactivity data. It was shown that when random noise is artificially added to a dataset, the 

performance of otherwise predictive QSAR models drops depending on the amount of added noise 

(Sheridan et al., 2020). A commonly stated assumption is that the model cannot be more accurate 

than the experimental method used to generate its training data. In other words, this would mean 

that the experimental uncertainty represents a hard limit on model performance. A recent study 

challenged this view by analysing model performances when random noise was added to the training 

data but not the test data (Kolmar & Grulke, 2021). Their findings suggest that a QSAR model may 

indeed be more accurate than the training data, yet this may in practice not be measurable due to the 

experimental uncertainty present in the test data. 

Notably, the different factors impacting the performance of QSAR models are not completely 

independent. For instance, decreasing the training set size may remove chemically similar compounds 

or the presence of apparent activity cliffs in the dataset may be due to experimental uncertainty rather 

than being real discontinuities in the activity landscape. 

Users of a QSAR model may not be interested in the global performance of a QSAR model. Instead, 

they might wonder how reliable the prediction for an individual compound of interest is. The concept 

of an applicability domain (AD) was developed to address this need. The AD of a QSAR model defines 

the area of chemical space and response space where predictions can be made with a given reliability.  

Several ways to define an AD have been proposed over the years. Mathea et al. identified two distinct 

strategies that are in use to determine the AD of a QSAR model (Mathea et al., 2016). Approaches 

known as novelty detection define the AD solely in terms of the space of molecular descriptors. This 

is done by either considering the range of the molecular descriptors (or of a projection), the distance 

of a molecule to its nearest neighbours in the training set, or by analysis of the local density in the 

area of the molecule to be predicted. All these approaches assume that reliability of predictions 

decreases as the remoteness to the molecules in the training set increases. In contrast, confidence 

estimation also takes the activity labels of training instances into account. The activity of a molecule 

may be difficult to predict even though it possesses a low distance to the training set in descriptor 

space (see activity cliffs). For a classification model (distinguishing between active and inactive 

molecules), confidence estimation can be achieved by considering the distance of a new molecule to 

the decision boundary, or for ensemble models by considering the agreement of single predictors. 
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Novelty detection and confidence estimation can be considered as complementary strategies covering 

different aspects of the concept of ADs. 

Hanser et al. suggested a three-step framework (applicability, reliability, decidability) to evaluate if a 

model is suitable to predict the bioactivity of a given substance in the context of human safety 

assessment, where a chemical falsely predicted as harmless might have serious consequences (Hanser 

et al., 2016). In the first step, the model is evaluated to determine if it is generally applicable to the 

query substance. This means that the query substance must be of a substance class included in the 

model and its descriptors must lie within the descriptor range of the model. In the next step, model 

reliability is checked by investigating the density of data around the query substance and how well the 

model performs in this area, e.g. in a cross-validation. Put differently, reliability considers the quantity 

and quality of information in the area of descriptor space around the query. Finally, it is determined if 

the evidence is sufficient to make a (potentially high-stake) decision. Methods suggested for this step 

are essentially confidence estimation methods such as those described above. Notably, the 

framework demands these steps are considered in the described order, as each stage assumes that 

the previous one is valid and they cannot compensate for each other. The suggested framework is of 

fairly general nature and thus can be implemented using various algorithms. It represents a reasonable 

strategy to fulfil the specifications implied in the concept of ADs for QSAR models in an appropriate 

manner. 

 

4.7 Use of QSAR models in regulatory toxicology 
 

Among many potential applications of QSAR models, predicting toxicity is associated with some special 

challenges. Generally, one can distinguish between the following stages in which a QSAR model might 

be used for toxicity prediction. Either it is used at an early screening stage aiming at filtering out 

compounds (e.g. drug candidates) with undesired toxic properties, or it is used to demonstrate safety 

in the context of regulatory decision making (e.g. to support market approval of a drug). It is apparent 

that in the latter case mistakes (especially chemicals falsely predicted as safe) may result in serious 

consequences if the population is exposed to hazardous chemicals. Thus, predictions made in these 

cases need to be of high confidence. In contrast, for the screening task, overlooked toxicological 

liabilities can be detected in later testing stages. To address these special requirements, the OECD has 

defined five principles that need to be fulfilled by a QSAR model to be considered for a regulatory 

purpose (OECD, 2004). 
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A defined endpoint: The endpoint being modelled and the experimental protocol should be stated. 

This is important to demonstrate the relevance of the modelled property for the respective 

toxicological endpoint. For instance, a QSAR model trained to predict the outcome of the Direct 

Peptide Reactivity Assay (DPRA) (Lalko et al., 2012) can be considered as relevant for toxicity 

associated with skin sensitisation as it measures a key event in the pathology of skin sensitisation (C. 

Johnson et al., 2020). 

An unambiguous algorithm: The rationale behind this principle is to provide transparency and 

reproducibility. Therefore, it needs to be stated which data were used, in which way were the 

molecules represented (molecular descriptors) and what algorithm was used to construct the model.  

A defined domain of applicability: As introduced above, an AD refers to the part of chemical space in 

which the model is capable of making reliable predictions. For a prediction to be applicable in a 

regulatory context, the test compound needs to be within the AD of the QSAR model. 

Appropriate measures of goodness-of-fit, robustness and predictivity: An estimate of the predictive 

performance of the QSAR model needs to be provided. Goodness-of-fit refers to the capability of a 

model to fit training data. Robustness refers to the sensitivity of model parameters and predictions to 

small changes in the training data. A common way to evaluate robustness is by evaluating model 

performance in a cross-validation scheme (which corresponds to varied training data). Predictivity 

refers to an external validation. That is, evaluating how well the model predicts activities for 

compounds not used for model training or internal model validation. 

A mechanistic interpretation, if possible: It should be attempted to find a mechanistic association of 

the descriptors used in the model and the predicted toxicity. A reasonable mechanistic interpretation 

will increase the credibility of the model. 

While traditionally toxicity has been evaluated using animal studies, the use of in silico approaches 

including QSAR models has started to be recognised in regulatory contexts. A currently accepted 

application of QSAR models for regulatory decision making is the assessment of mutagenic impurities 

in pharmaceuticals. In this case, the combination of an expert system (introduced in Chapter 2) and a 

QSAR model may be used to replace an Ames test (Amberg et al., 2016). In silico approaches are 

considered as relevant to support toxicity assessment (at least as additional evidence to in vivo and in 

vitro studies) in various domains including industrial chemicals (ECHA, 2017), pesticides (for 

metabolites and degradates) (JRC, 2010), cosmetics (Gellatly & Sewell, 2019) and food (Hardy et al., 

2017). Current efforts aim to further increase the acceptability of in silico models (including QSAR 

model) to evaluate toxicity as part of integrated strategies which combine experimental and in silico 
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findings (Bassan et al., 2021; Hasselgren et al., 2019; C. Johnson et al., 2020; Myatt et al., 2018). For 

some toxicity endpoints such as hepatotoxicity, the biological complexity of involved processes poses 

a big challenge on predictivity (Sistare et al., 2016). It can be stated that QSAR models have the 

potential to play a bigger role in regulatory toxicology moving forward, yet more work is needed to 

demonstrate their validity.  

 

4.8 Use of neural networks in QSAR modelling 
 

Neural networks, as introduced in Chapter 3, have long been used in chemistry applications including 

QSAR modelling (Gasteiger & Zupan, 1993). Due to less computational power being available, early 

approaches were restricted to a low number of input features (chemical descriptors) and a single 

hidden layer with a low number of neurons. Such shallow neural networks were, for instance, used to 

predict neurotoxicity of insecticides (Zakarya et al., 1997) or acute aquatic toxicity (Basak et al., 2000). 

With computational power increasing over time, deep learning emerged as a novel tool with 

applications in many domains such as image classification, speech recognition and language 

translation (LeCun et al., 2015). In deep learning, DNNs consisting of multiple hidden layers and 

potentially large numbers of neurons per layer are trained. DNNs have also been used for QSAR 

modelling and gained large attention due to their successful use in QSAR modelling competitions using 

bioactivity and toxicity assay data (Ma et al., 2015; Mayr et al., 2016). The success of DNNs was, at 

least partly, attributed to their capability of being used as multi-task models. Multi-task approaches 

for QSAR modelling are separately reviewed in Chapter 5. Compared to shallow neural networks, 

DNNs possess a much higher number of tuneable parameters. Hence, it can be expected that much 

larger amounts of data will be required to train them without overfitting. 

The DNNs used in the studies described above all have in common that they used traditional chemical 

descriptors (e.g. chemical fingerprints) as input to the model (feedforward neural networks). A key 

characteristic of DNNs is their capability to learn suitable representations from raw input data (e.g. 

image pixels). This means that QSAR models may be learned without the use of traditional chemical 

descriptors. Instead compounds may be represented as SMILES strings (Gini et al., 2019), chemical 

graphs (Yang et al., 2019) or images of their 2D structure (Fernandez et al., 2018) and the obtained 

QSAR models may achieve performances comparable or, in some cases, even superior the models 

trained on traditional chemical descriptors. This is possible as the respective architectures (see below) 

are composed of differentiable operations which enables end-to-end learning (i.e. from raw input to 

toxicity). 
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DNN architectures utilised to learn from chemical images are CNNs (Goh et al., 2017). These contain 

convolutional layers in which meaningful features are extracted by compressing signals of spatially 

close pixels of an image. Then, the feature maps obtained after one or multiple convolutional layers 

are flattened to vectors which are ultimately used to predict the toxicity as done in a feedforward 

neural network. 

DNNs used to learn from chemical graphs use GCNs (Rittig et al., 2022). Atoms are represented as 

vertices and bonds as edges of graphs. Vertices and edges are initially featurised using simple 

information about atoms (such as atom type, part of ring, hybridisation, charge) and bonds (bond 

type, conjugated or not), respectively. In a graph convolutional layer, the initial representations of 

atoms and/or bonds are updated by combining them with information about neighbouring atoms and 

bonds. Atom representations may be influenced by distant atoms and bonds if multiple graph-

convolutional layers are applied. Similar to CNNs, the representations for individual atoms and bonds 

are finally combined into a vector representing the whole compound before predicting the toxicity. 

DNNs based on SMILES strings as input typically use RNNs as the architecture. These architectures 

embed SMILES strings of variable length into a vector representation of fixed length before using that 

vector representation to predict toxicity (Gini et al., 2019). RNNs operate on sequential data by using 

the hidden representation of the previous SMILES character as additional input to the current SMILES 

character. Simple RNNs are not well capable of remembering input across long sequences and more 

sophisticated architectures such as Long Short-Term Memory (LSTM) have been introduced in order 

overcome this limitation. LSTM introduce gates for input (‘how to update the hidden state using the 

input?’), output (‘how to use the hidden state to obtain an output?’) and forget (‘what part of the 

hidden state should be removed?’) in order to control the behaviour of the hidden state at each step 

of a sequence (Olah, 2015). The hidden state obtained after the final character is used as vector to 

represent a compound in order to make a prediction. 

DNNs are now used extensively for QSAR modelling and they generally perform very well compared 

to other ML approaches. However, their complex structure (i.e. composition of numerous non-linear 

functions) makes it difficult to understand how these models make predictions. This is why DNNs have 

been referred to as black box models (Loyola-Gonzalez, 2019). Interpretability of QSAR models is an 

important issue, especially when they are used to make high-stakes decisions. Being able to 

understand why a model made a particular decision increases the confidence in the predictions and 

thus the acceptance of the model tremendously. This point is also reflected in the fifth OECD principle 

for the use of QSAR models in context of regulatory decision making which states that models should 

be interpretable (see above). Furthermore, model interpretability may support a chemist to optimise 
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chemical structure by modifying the parts of the structure responsible for toxicity. Attempts to 

interpret DNN models for QSAR modelling are summarised in Chapter 7. 

 

4.9 Conclusion 
 

In this chapter, QSAR models have been introduced as a method to predict the toxicity of chemicals. 

To train a QSAR model, a suitable toxicity dataset linking measured toxicities to chemical compounds 

needs to be found. Next, chemical structures need to be curated and chemical descriptors need to be 

calculated. QSAR models are then trained and validated as for other ML models (see Chapter 3). For a 

QSAR model to be useful, it should be predictive and predictions should be interpretable. Both aspects 

are addressed in this thesis. In Chapters 5 and 6, multi-task and imputation models are compared to 

single task QSAR models with respect to their performance. Moreover, attempts are made to 

rationalise observed differences in performance. In the Chapters 8 to 11, a novel method to interpret 

neural network models for QSAR modelling is developed and tested.



Chapter 5: Multi-task and imputation modelling for toxicity prediction 

51 
 

Chapter 5   Multi-task and imputation modelling for toxicity 

prediction 
 

 

5.1 Introduction 
 

This chapter investigates the use of single task, multi-task and imputation models to predict in vitro 

toxicity data. The first section of the introduction will describe the differences between these 

modelling approaches. Subsequently, the use of these techniques for toxicity prediction in the 

literature will be summarised and the objectives of this study will be presented. 

 

5.1.1 Multi-task and imputation models 
 

Figure 5-1 provides a visual comparison of single task, multi-task and imputation models. 

Single task modelling conceptually represents the simplest case of QSAR modelling. A separate model 

is trained for each task (i.e. toxicity assay), as indicated by an individual arrow for the predictions for 

each toxicity assay. Each learned model represents a mapping of a set of chemical descriptors for a 

compound to a predicted outcome for a certain toxicity assay. To make predictions for new 

compounds, a vector of chemical descriptors is used as input to the model. 

In multi-task modelling, a single model is trained to predict several tasks at the same time. Hence, the 

model represents a mapping of a set of chemical descriptors for a compound to a predicted outcome 

for each of the modelled toxicity assays. This mapping is learned by using the training compounds’ 

chemical descriptors and toxicity labels for each assay as input. As for single task models, the 

predictions for new compounds are made by inputting the chemical descriptors characterising the 

compounds.  

In general, imputation means techniques that fill gaps in a sparse dataset (Horton & Kleinmann, 2007). 

A sparse dataset in the context of toxicity data is obtained if not every compound was tested in each 

of the toxicity assays in the dataset. Imputation may be done in a very simple manner such as taking 

the mean value for a given assay or single task models as described above may be used. More 

sophisticated approaches may adopt a multi-task approach to imputation and hence make predictions 

for several assays at the same time. In contrast to traditional multi-task models, such imputation 
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models can make use of both chemical descriptors and an (incomplete) set of experimentally 

measured data to predict the outcome of remaining assays for test compounds. 

 

Figure 5-1 Schematic comparison of single task, multi-task and imputation models. Single task: A separate model is trained 
for each toxicity assay, represented by separated columns and arrows. Multi-task: A joint model is trained for all toxicity 
assays, indicated by the grouped columns and a single arrow. (Multi-task) Imputation: The model predicts the gaps in the 
sparse dataset. Unlike for traditional single task and multi-task models, there is no distinction between training and test 
compounds. All of the known labels may be used to train the model. Hence, when the model predicts the label for a certain 
cell of the matrix, it may have been trained on the labels of other toxicity assays for this compound. 

 

5.1.2 Multi-task models in QSAR modelling 
 

An early study on the application of multi-task models for QSAR modelling was conducted by Varnek 

et al (Varnek et al., 2009). They investigated two different approaches, which are multi-task neural 

networks and Feature Nets composed of neural networks. In Feature Nets, to predict property A, the 

prediction of property B is used explicitly as an additional feature. The tasks considered in this study 

were tissue-air partition coefficients for different tissues. They found that both multi-task neural 

networks and Feature Nets improved the performance over single task neural networks in most of the 

cases. In another study an approach comparable to Feature Nets (i.e. using predicted bioactivity 

profiles as additional inputs to a QSAR model) was tested in conjunction with conformal prediction (a 

method to estimate uncertainty of predictions) on several bioactivity and cytotoxicity datasets and 

they also found improved performance compared to traditional single task models (Norinder et al., 

2020). 

Multi-task modelling gained a lot of attention in the context of Deep Learning for QSAR modelling. In 

both the Tox21 challenge and the Kaggle challenge organised by Merck, the winning approaches were 

based on multi-task DNNs (Ma et al., 2015; Mayr et al., 2016), highlighting the potential of multi-task 

approaches. The Merck Challenge consisted of predicting numerical bioactivities for 15 datasets of 
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various sizes. In the work by Ma et al., a direct comparison of single task and multi-task DNNs was 

made across a range of different hyperparameter settings using R2 as the metric. Multi-task DNNs 

were found to outperform single task DNNs overall, but not for the two largest of the 15 datasets. The 

Tox21 Challenge used 12 in vitro toxicity datasets containing around 10,000 compounds and the task 

was to classify the compounds as active or inactive. Mayr et al. compared single task with multi-task 

DNNs and found a higher ROC-AUC for multi-task DNNs for nine out of 12 datasets. However, neither 

of the two studies provided an explanation for the superiority of multi-task approaches. 

An investigation to further understand the success of multi-task models was conducted on the Merck 

dataset in a publication by a Merck team (Xu et al., 2017). They trained pairwise DNNs and compared 

their performance to single task DNNs and multi-task DNNs including all tasks. In addition, they trained 

each model with 20 different random initialisations to enable a robust comparison between models. 

They reported that a given task (target task) in a multi-task model borrows signal from structurally 

similar molecules in other tasks (assistant task). If the activities of similar molecules are correlated 

(either positively or negatively) with those in the target task, the performance is increased. If the 

activities of similar molecules are uncorrelated, the performance may be decreased. If no data for 

structurally similar tasks is available in assistant tasks, then the performance is not influenced. This 

explanation is only satisfactory for sparse datasets with little overlap of compounds between different 

assays, as found in the Merck dataset. 

In another study, the effect of sparsity on the performance of two different multi-task techniques 

(multi-task DNNs and Macau) was investigated (de la Vega de León et al., 2018). The datasets under 

study were a kinase dataset and a diverse dataset extracted from PubChem and the amount of sparsity 

was controlled by progressively removing data labels from the complete datasets. As expected, the 

performance decreased monotonically with increasing sparsity in the datasets. However, the decrease 

was quite small at first and accelerated as more labels were removed. The observed trends were 

remarkably similar for both multi-task techniques. 

Since the arrival of Deep Learning, multi-task modelling has become a popular method for QSAR 

modelling, that seems to provide a benefit over single task modelling in many, but not all cases. The 

previously mentioned studies generated some insight into how the relations between tasks and the 

sparsity of the dataset affect the performance of multi-task models. However, more work is needed 

for a more complete understanding of the potential and limitations of multi-task QSAR models. 
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5.1.3 Imputation models in QSAR modelling 
 

The profile-QSAR (pQSAR) model developed by Novartis represents an imputation approach suitable 

for bioactivity prediction on a large scale (Martin et al., 2019). The latest version of this approach is 

called All-Assay-Max2 pQSAR, but for simplicity the approach will be referred to as pQSAR. The pQSAR 

model consists of a two-step procedure. In the first step, a RF model is trained for each assay based 

on Morgan fingerprints as features and the available assay labels. These models are used to fill the 

gaps in the sparse dataset. In the second step, a PLS (partial least squares) model is trained for each 

assay on the profile of the remaining assays as obtained in the first step. To reduce the number of 

features, only assays related to the target assay (Pearson correlation >0.2 or >0.05) are included. The 

pQSAR model clearly outperformed RF models (a single model for each assay) both on a proprietary 

Novartis dataset (11805 assays) and a public ChEMBL dataset (4276 assays). For the Novartis dataset, 

pQSAR achieved a median R2 (across all the assays) of 0.53 compared to 0.05 achieved by RF. 

Alchemite is an imputation method based on neural networks developed in a collaboration by 

Optibrium and Intellegens (Irwin, Levell, et al., 2020; Whitehead et al., 2019). The neural network uses 

chemical descriptors as well as the bioactivities of remaining assays as input, followed by a single 

hidden layer to predict each assay. Missing input data is initially replaced by the mean value for the 

respective assay and predictions made by the network are used to update the missing values 

iteratively. This procedure is repeated until no further improvement in the predictions is observed. On 

a kinase dataset, the Alchemite method clearly outperformed RF models, a collective matrix 

factorisation method and a multi-task DNN. It achieved approximately the same performance as 

pQSAR 2.0, a precursor of the above described version of the pQSAR method. A notable feature of 

Alchemite is its capability to express confidence in single predictions. This is achieved by training the 

network with several random initialisations and use the standard deviation across different runs of 

the model as a measure of uncertainty. The confidence in the predictions is correlated with the 

accuracy and the performance can be increased by only keeping the most confident predictions. 

Both of these recent imputation models clearly outperformed single task and standard multi-task 

models. The benefit in performance seems to come from the relations between different assays and 

the models’ capability to leverage these patterns. However, it is unclear what characteristics of a 

dataset cause this behaviour and hence under which circumstances imputation approaches will be 

particularly effective.  
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5.1.4 Objectives 
 

QSAR modelling is a well-established approach to predict the toxicity of chemicals. A range of different 

toxicity endpoints must be considered to evaluate the safety of a chemical. Predictions for the 

different endpoints can be made by training single task QSAR models for each endpoint or by training 

a joint multi-task model for all endpoints. Imputation modelling is possible if predictions are to be 

made for compounds that were already tested for some of the endpoints of relevance. In the present 

study, a rigorous comparison of single task, multi-task and imputation models is conducted based on 

performance measured on two multi target in vitro toxicity datasets and the results are compared to 

findings of previous studies. Furthermore, attempts are made to understand and explain differences 

in performance that occur between the different methods. These insights might be useful to anticipate 

for which types of datasets (relation between assays, size, sparsity) certain approaches might be 

particularly suitable. After careful analysis of the findings, recommendations are given on strategies 

to predict toxicities of multiple toxicity endpoints. 

 

5.2 Methodology 
 

5.2.1 Datasets 
 

Two different in vitro toxicity datasets were used for the studies regarding single task, multi-task and 

imputation modelling: firstly, the ISSSTY (Istituto Superiore di Sanità Salmonella Typhimurium) 

database containing data for the Ames test for mutagenicity, generated by the Italian National 

Institute of Health; and secondly, the Tox21 dataset, generated by the Tox21 consortium. 

The ISSSTY database (ISSTOX Chemical Toxicity Databases, 2021) (Table 5-1) contains data for six 

different bacteria strains, designed to detect different mechanisms of mutagenicity, such as 

substitutions of DNA bases or deletions and insertions leading to a frameshift in the triplet code of the 

DNA. The Ames test is a well-established in vitro test for mutagenicity used in regulatory contexts 

(OECD, 1997). Each of the six strains was tested with or without the addition of S9 mix to mimic 

metabolism of higher organisms, which leads to a dataset of 12 different toxicity assays. The outcome 

for a compound in each of the assays is either ‘active’, ‘inactive’ or ‘equivocal’ (Benigni et al., 2013), 

due to the fact that the database may contain repetitions of the same experiment. A compound was 

considered ‘active’ if it was active in more than 60% of repeated experiments and ‘inactive’ if it was 
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active in less than 40% of the experiments. Otherwise, the results were considered ‘equivocal’. To 

obtain a binary dataset for this study, ‘equivocal’ entries were removed from the data table. 

The Tox21 dataset (Tox21 Challenge Dataset, 2014) (Table 5-2) consists of the three separate datasets 

‘training’, ‘testing’ and ‘final evaluation’, as used in the Tox21 QSAR modelling challenge. For this study 

the three datasets were combined to a single dataset. The dataset contains binary data (active or 

inactive) for 12 toxicity assays. Seven of them measure the activation of various nuclear receptors 

related to toxic effects, while the remaining five measure the activation of cellular stress pathways. 

Assays like these are typically conducted in a preclinical toxicity screening of chemicals (Huang et al., 

2016). 

In both datasets, not every compound was measured in every assay resulting in sparse (i.e. 

incomplete) datasets. The Ames dataset is 40.5% complete and the Tox21 dataset is 83.4% complete. 

The number of compounds measured in each assay can be seen in Table 5-1 and Table 5-2. The 

numbers refer to the datasets after the steps described in the section 5.2.2 (Data Processing) were 

performed. 

Table 5-1 The Ames dataset. Assay function describes which types of DNA mutations are detected in the respective assay. 
The numbers are those after the data processing steps described in ‘Data Processing’. Each row contains the total number 
of unique molecules and the proportion of active labels for the given assay. The ‘overall’ row describes the total number of 
compounds and the proportion of active labels among all the labels. 

Assay name Assay function 

(Hamel et al., 2016) 

Number 

molecules 

Proportion 

actives 

TA100 Substitutions 4627 0.259 

TA100_S9 same as TA100 for metabolites 4350 0.318 

TA102 substitution, small deletions, cross-linking and 

oxidations 

880 0.173 

TA102_S9 same as TA102 for metabolites 763 0.213 

TA1535 Substitutions 2489 0.114 

TA1535_S9 same as TA1535 for metabolites 2347 0.119 

TA1537 frameshifts, intercalation 2081 0.118 

TA1537_S9 same as TA1537 for metabolites 1998 0.120 

TA97 frameshift, intercalation 1049 0.140 

TA97_S9 same as TA97 for metabolites 1010 0.168 

TA98 Frameshifts 4345 0.235 

TA98_S9 same as TA98 for metabolites 4055 0.285 

overall - 6168 0.213 



Chapter 5: Multi-task and imputation modelling for toxicity prediction 

57 
 

Table 5-2 The Tox21 dataset. Assay function describes the major functions of the tested receptor or pathway. The numbers 
are those after the data processing steps described in ‘Data Processing’. Each row contains the total number of unique 
molecules and the proportion of active labels for the given assay. The ‘overall’ row describes the total number of compounds 
and the proportion of active labels among all the labels. NR: nuclear receptor, SR: stress response, AhR: aryl hydrocarbon 
receptor, AR: androgen receptor, AR-LBD: androgen receptor ligand-binding domain, ARE: antioxidant response element, 
ATAD5: ATPase family AAA domain containing 5, ER: estrogen receptor, ER-LBD: estrogen receptor ligand-binding domain, 
PPAR-gamma: peroxisome proliferator-activated receptor gamma, HSE: heat shock element, MMP: mitochondrial 
membrane potential  

Assay name Assay function Number 

molecules 

Proportion 

actives 

NR-AhR Regulation of xenobiotic metabolism, immunity, cell 

differentiation (Kawajiri & Fujii-Kuriyama, 2017) 

6810 0.115 

NR-AR Development of the male reproductive system 

(Matsumoto et al., 2013) 

7460 0.034 

NR-AR-LBD Same as NR-AR, different test system 6991 0.030 

NR-Aromatase Enzyme required for estrogen synthesis (Simpson et 

al., 2002) 

6009 0.049 

NR-ER Development of the female reproductive system 

(Muramatsu & Inoue, 2000) 

6367 0.105 

NR-ER-LBD Same as NR-ER, different test system 7199 0.041 

NR-PPAR-

gamma 

Regulation of glucose and lipid metabolism (Janani & 

Kumari, 2015) 

6752 0.029 

SR-ARE Response to cellular oxidative stress (T. Nguyen et al., 

2009) 

6121 0.156 

SR-ATAD5 Genome replication (Park et al., 2019) 7326 0.040 

SR-HSE Prevention of protein misfolding (Balchin et al., 2016) 6794 0.047 

SR-MMP Parameter for mitochondrial toxicity (Sakamuru et al., 

2012) 

6074 0.151 

SR-p53 Recognition of DNA damage, regulation of DNA repair 

(May & May, 1999) 

7049 0.062 

overall - 8090 0.069 

 

5.2.2 Data processing 
 

Chemical structures were standardised using the Python packages RDKit (RDKit: Open-Source 

Cheminformatics, n.d.) (2019.09.03) and MolVS (Swain, 2016) (0.1.1). Firstly, SMILES strings from 

which no valid molecules could be generated were discarded. Then, bonds to metal atoms were 
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disconnected and the charge was removed where possible. In the next step, inorganic fragments and 

solvents were removed. Next, certain chemotypes (e.g. nitro groups) and tautomers were 

transformed into a canonical form. Subsequently, SMILES were converted to standard InChI (Heller et 

al., 2015) and back to SMILES so that two molecules, which share the same InChI, are guaranteed to 

be represented by the same SMILES. Finally, mixtures of different organic components were 

discarded. 

At this point, the datasets contained molecules represented by identical SMILES strings. The results 

for identical SMILES were aggregated to obtain a single set of data labels for each unique SMILES in 

the dataset. This was done by keeping the majority label (active or inactive) for each assay for identical 

SMILES. No data label (i.e. a data gap) was assigned to a SMILES-assay pair if active and inactive labels 

were of equal number. As molecular descriptors, RDKit’s Morgan fingerprints (radius=2, hashed to 

2048 bits) were calculated, which are comparable to Extended Connectivity Fingerprints (ECFP4) 

(Rogers & Hahn, 2010). 

 

5.2.3 Data splitting 
 

Each dataset was split into a training set and a test set. The training sets were used to optimise 

hyperparameters and train the final models, and the test sets were used to evaluate the performance 

of the final models. Two different splitting methods were employed: compound-based and assay-

based splits. 

The compound-based splits (Figure 5-2: left) were used to compare the performance of traditional 

multi-task models with single task models. 20% of the compounds in each dataset (Ames or Tox21) 

were selected at random for the test set and the remaining 80% formed the training set. This means 

that the training and test sets are the same for all the assays in each dataset. 

Compound-based splits represent the established way to assess the performance of QSAR models and 

is the approach used, for example, in the Tox21 QSAR modelling challenge (Mayr et al., 2016). 

However, the imputation techniques described above, namely Alchemite and pQSAR, have been 

evaluated primarily in a different scenario, appropriate for sparse activity matrices. In this scenario, 

the imputation model is created using training data and applied to fill the missing values in the activity 

matrix. We implemented this testing scenario with what we call the assay-based splits (Figure 5-2: 

right). Each assay was considered independently and 20% of the compounds for which the toxicity 

labels are known were selected at random and placed in the test set with the remaining compounds 

being added to the training set. Some compounds therefore appear in both the training data and the 
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test data, however, the assay labels are split so that none of the same compound/assay label pairs 

appear in both the training and the test data. Thus, a compound may be in the test set for assay A, but 

in the training set for assay B with the toxicity label of the compound from assay B given as input to 

the imputation model. 

 

Figure 5-2 Comparison of splitting strategies. For the compound-based split 20% of the compounds are randomly put in the 
test set. These compounds are used for testing across all the assays. For the assay-based split, 20% of the compounds per 
assay are randomly put in the test set. This leads to a different set of test compounds for each assay. A: assay. C: compound 

 

5.2.4 Modelling 
 

In the following, the different techniques used for single task, multi-task and imputation modelling are 

briefly described, followed by a description of the model training. 
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5.2.4.1 Single task models 
 

A: Random forest 

Random forest (RF) is a well-established algorithm for QSAR modelling that has achieved good 

performance in a variety of tasks (Svetnik et al., 2003). RF is an ensemble method, where different 

decision trees are trained on different bootstrapped subsets of the training data and different random 

subsets of features. For this work, the implementation of RF in the Python scikit-learn (Pedregosa et 

al., 2011) package (0.22.1) was used. The hyperparameters considered for optimisation in the grid 

search are given in Table 5-3.  

Table 5-3 Random forest hyperparameters considered in optimisation. 

Hyperparameter Values Description 

n_estimators 100, 500 number of trees in the Random forest model 

class_weight None, balanced, 

balanced_subsample 

assigns weights to instances of different classes 

Balanced: instances of the minority class receive a 

weight equal to the inverse of the class frequency in 

the whole input data 

Balanced_subsample: the frequencies of classes for 

each respective tree (with its bootstrap sample) are 

considered to assign weights 

max_features log2, 0.25 controls the number of randomly selected features 

that are considered to find the best split 

log2: logarithm of base 2 of all input features 

0.25: fraction of all input  features 

 

B: XGBoost 

Another ensemble technique is so-called boosting, which generally refers to the sequential 

combination of several weak (i.e. perform slightly better than random) learners in order to learn from 

the mistakes of previous learners (Meir & Rätsch, 2003). In gradient tree boosting, decision trees are 

learned sequentially to predict the residuals (i.e. mistakes) of the previous tree, and eventually the 

predictions of all single trees are combined (Friedman, 2001). XGBoost (XGB) is a popular open-source 

implementation of gradient tree boosting which scales well to very large datasets (Chen & Guestrin, 

2016). The Python package XGBoost (1.0.1) provides an implementation of gradient tree boosting 

optimised for scalability. The hyperparameters considered for optimisation in the grid search are given 

in Table 5-4. 
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Table 5-4 XGBoost hyperparameters considered in optimisation. 

Hyperparameter Values Description 

Num_round 300, 700 sets the number of sequential trees that are trained 

eta 0.1, 0.3, 

0.5 

learning rate that shrinks the size of the update of predictions 

after each boosting step 

Colsample_bytree 0.5, 0.7 randomly selected proportion of features used within each 

individual tree 

Alpha 0, 1 strength of L1 regularisation of the weights per leaf 

lambda 1, 10 strength of L2 regularisation of the weights per leaf 

Scale_pos_weight 1, 

weighted 

assigns weights to instances of different classes 

weighted: instances of the minority class receive a weight equal 

to the inverse of the class frequency in the whole input data 

 

C: Deep neural network 

Deep neural networks (DNN) are combinations of artificial neurons organised in layers (LeCun et al., 

2015). Each layer can be considered a simple non-linear machine learning model, but they can become 

increasingly complex by adding additional layers. The DNNs used in this project are feedforward neural 

networks obtained using the Python package Tensorflow (Abadi et al., 2016) (2.1.0) with the Keras API 

(Chollet & others, 2015). 2048 nodes were used in the input layer (one node for each bit of the 

chemical fingerprint) and the output layer consisted of a single node to which the sigmoid function 

was applied to obtain a binary output for classification (using 0.5 as the classification threshold). The 

DNNs for different assays contain between one and three hidden layers (number of hidden layers is a 

hyperparameter considered for optimisation). The ReLU activation function was applied to all nodes 

in the hidden layers. Binary cross-entropy was used as the loss function and the Adam algorithm was 

used for fitting the network’s weights and biases. The hyperparameters considered for optimisation 

are given in Table 5-5. 
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Table 5-5 Deep neural network hyperparameters considered in optimisation. 

Hyperparameter Values Description 

Hidden layers 1, 2, 3  Number of hidden layers in the network 

Nodes per hidden 

layer 

1024, 2048 Number of nodes in each hidden layer 

Learning rate 0.0003, 0.001, 

0.003 

size of the updates to the network parameters per 

training step 

Dropout 0, 0.2 Amount of randomly selected nodes that are ignored in 

each training step 

L2 regularisation 0.0001, 0.001 Strength of L2 regularisation on the weights per node 

Batch size 10, 50 Size of batches used for each update of weights with 

the Adam optimiser 

Number of epochs 3, 5, 10 Number of training runs through every data point. 

Class weight 1, weighted assigns weights to instances of different classes 

weighted: instances of the minority class receive a 

weight equal to the inverse of the class frequency in 

the whole input data 

 

5.2.4.2 Multi-task and imputation models 
 

For both traditional multi-task and multi-task imputation models the same algorithms (Feature Net, 

multi-task DNN and Macau) were used. As described above, the imputation models were used with 

the assay-based splits, while the traditional multi-task models were used with the compound-based 

splits. This leads to the fundamental difference that imputation models may use experimentally 

determined toxicity labels of test compounds to make predictions. 

A: Feature Net 

The Feature Net (FN) (Davis & Stentz, 1995) technique combines multiple single task predictors into a 

net-like structure and can be used with any supervised machine learning algorithm. In the first step, a 

single task model was trained for each assay separately using the chemical features and the models 

were used to predict the unknown toxicity labels for the whole dataset. In the second step, the final 

model for each assay was obtained by retraining the single task model using the labels of the other 

assays explicitly as features, in addition to the chemical features. In this setting, each modelled assay 

is called the target assay and the other assays, used as features, are called auxiliary assays. For a given 

target assay, the second model is trained using compounds with experimental labels for this assay (i.e. 

no predicted labels as ground truth), however, the labels of the auxiliary assays are either 

experimentally determined labels, or the predicted labels from the models in the first step, when no 

experimentally determined label is available. A schematic depiction of the FN models is given in Figure 
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5-3. The FN models were trained using all of the single task methods described above using the same 

hyperparameters as for the single task models, that is, no additional optimisation was performed. 

When a FN model is used for prediction, each assay value is predicted sequentially with the test 

compound input as chemical features and assay labels for all other assays, that is, the auxiliary labels. 

The auxiliary assay labels may be predicted values or experimental values. Two different scenarios 

that mimic how QSAR is used in practice were investigated. One common application is making 

predictions for virtual compounds, that is, compounds which have not yet been synthesized. In this 

case, any experimental values were discarded so that all the input labels for the test compounds were 

predicted values. This application was tested in the compound-based splits. The second application is 

the prediction of assay outcomes for compounds that have already been characterized for some 

toxicity endpoints. To simulate this case, we used experimental values for the auxiliary assays in the 

test set, when these were available, otherwise we used predicted values as determined in the first 

step of the FN method. This application was tested both in the compound-based splits (with 

experimental test labels) and in the assay-based splits. 

 

Figure 5-3 Schematic depiction of Feature Net models. In Step 1, a single task QSAR model is trained to predict the labels of 
test compounds for each toxicity assay in turn (y1, y2, y3). In Step 2, the models are retrained using both chemical descriptors 
(x) and assay labels as features. The labels for the auxiliary assay are either experimentally determined assay labels or the 
predictions from Step 1 where experimental values are not available. 

 

B: Multi-task Deep Neural Network 

As for the single task DNN models, the multi-task DNN models were trained using the Python package 

Tensorflow with the Keras API. A multi-task DNN is trained to predict several assays at the same time 
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with the output layer of the network consisting of one node for each task. The sigmoid function was 

applied to each node in the output layer and the obtained output was binarised (using 0.5 as the 

classification threshold) to obtain a predicted class for each assay. The loss for a single data point (a 

single compound with up to 12 assay labels for Ames and Tox21 dataset) during training is its binary 

cross-entropy averaged across all assays. For partially complete data points (i.e. molecules for which 

the label is known only for some of the assays), the assays without available labels were excluded 

when the loss was computed. This enables training on sparse datasets. The DNN was trained using the 

2048 chemical features as inputs, as for the single task models. When the multi-task model was used 

for prediction, a test compound was input as chemical features and the output was a vector of 

predicted values, one for each assay. 

For the assay-based split, the multi-task DNN was trained on all compounds assigned to the training 

set (all of which had at least one assay label as shown in the assay-split in Figure 5-2) and, for a given 

compound, only the labels that were assigned to the training set (green cells of the matrix in 

Figure 5-2) were used to compute the loss during training.  

The same hyperparameters and values were considered for optimisation as for the single task DNNs. 

The only exception is the parameter class weight. The considered options to weight the minority class 

across all tasks were: 1, 3, 5, 15. The best set of hyperparameters was selected by averaging the MCC 

scores for each set of parameters across all the assays. 

C: Macau 

Macau is a Bayesian probabilistic matrix factorization technique that is able to analyse sparse matrices. 

Probabilistic matrix factorization gained attention for recommender systems, following the 2009 

Netflix competition where it was used to make predictions using the data matrix only, that is, the 

ratings for viewer-movie pairs. The Macau method has recently been used for multi-task modelling in 

QSAR (Simm et al., 2015) and is also able to use descriptors of the entities being analysed, which are 

referred to as side information (de la Vega de León et al., 2018). In the Macau models developed here, 

the sparse data matrix consists of compound-assay label pairs and Morgan fingerprints are used as 

side information for the compounds, with no side information being used for the assays. The 

hyperparameters considered for optimisation are given in Table 5-6. The best set of hyperparameters 

was selected by averaging the MCC scores across all assays for each set of parameters. The Python 

package Macau (version 0.5.2) was used in this study. 
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Table 5-6 Macau hyperparameters considered in optimisation. 

Hyperparameter Values Description 

Num_latent 16, 32, 64  Number of dimensions used for the latent space 

representation of entities 

nsamples 800, 1600, 3200 Number of samples drawn from the Gibbs sampler 

burnin 200, 400, 800 Number of burn-in samples from the Gibbs sampler 

that are discarded 

 

Naturally, matrix factorisation techniques are used for imputation modelling. Since Macau can include 

side information about compounds, it can be used for conventional multi-task modelling. In that case, 

the latent representation of test compounds is fully determined by the fingerprint, as no toxicity labels 

for the test set are available to the model. 

 

5.2.4.3 Model training 
 

For each technique, a 5-fold cross validation grid search was performed on the training set for 

hyperparameter optimisation, except for Macau, where the grid search was performed using a single 

validation set containing 20% of the labels in the training set for each assay. This difference is due to 

the assay-based splits better reflecting the typical use of Macau and the complexity of setting up cross 

validation in this scenario. Furthermore, preliminary experimentation suggested that Macau is 

relatively insensitive to the specific hyperparameter settings. All of the models used Morgan 

fingerprints hashed to 2048 bits as chemical features, generated using the Python package RDKit.  

 

5.2.5 Model evaluation 
 

All the modelling techniques used in this study involve stochastic processes, e.g., the random 

initialization of weights in the neural networks or the generation of bootstrap samples in the RF 

models. The random behaviour of these methods can be made reproducible by setting a random seed, 

however, the result will represent only one from a distribution of potential results. For a rigorous 

comparison of the different techniques, all of the final models for the Ames and Tox21 datasets were 

trained using 20 different random seeds and the range of scores for the test set was examined. This 

follows the approach of Xu et al. in their comparison of multi-task DNNs with single task DNNs (Xu et 

al., 2017).  



Chapter 5: Multi-task and imputation modelling for toxicity prediction 

66 
 

Matthews Correlation Coefficient (MCC) was chosen as the primary metric to evaluate model 

performance, due to its suitability for imbalanced datasets. In addition, the F1 scores and ROC-AUCs 

are reported in the Appendix (Tables A5-3 to A5-14). When reporting the performance of a technique 

across different assays and different random seeds, the mean of all assays for each seed was 

computed first, and the median across all seeds is reported. 

 

5.2.6 Rationalisation of the imputation models’ performances 
 

After evaluating overall performances, the characteristics of the datasets were investigated in order 

to gain insights on when multi-task imputation is likely to lead to the most benefit. The different 

evaluation measures are described below. 

5.2.6.1 Roles of chemical similarity 
 

It is well established that the success of QSAR models depends on the chemical similarity between 

compounds for which predictions are made and those used to train the model (Sheridan et al., 2004). 

In particular, performance of the model tends to be high for very similar compounds and relatively 

poor for chemically dissimilar compounds. In fact, the concept of an applicability domain is used to 

determine regions of chemical space where a model makes reliable predictions (Mathea et al., 2016). 

An investigation of the extent to which the performance of imputation models is affected by chemical 

similarity is carried out to determine if these models may be particularly useful to overcome poor 

performances for single task QSAR models on chemically dissimilar compounds. 

For this experiment the test sets as obtained in the assay-based splits were divided into three bins 

(0-0.4, 0.4-0.6, 0.6-1), depending on the chemical similarity of each test compound to the training 

compounds of the respective assay. Chemical similarity was evaluated as the average Tanimoto 

similarity of a test set compound to the five nearest neighbours in the training set based on Morgan 

fingerprints. Results were only obtained for assays with at least 100 test compounds in each of the 

three bins. The performance of each model was evaluated on each of the bins independently and, in 

each case, the results were averaged over the 20 models obtained using different random seeds.  
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5.2.6.2 Role of data sparsity 
 

A key characteristic of imputation models is that toxicity data of related endpoints may be used for 

the prediction of a given toxicity endpoint. It was investigated how many labels of related toxicity 

endpoints are required for an imputation model to outperform single task QSAR models. 

For this experiment, the test sets as obtained in the assay-based splits were divided into three bins, 

depending on the number of experimentally determined toxicity labels of the remaining assays that 

are in the training set for a given test compound. The bins were 0-1 labels, 2-3 labels and >3 labels. 

Results were only obtained for assays with at least 100 test compounds in each of the three bins. The 

performance of each model was evaluated on each of the bins independently and, in each case, the 

results were averaged over the 20 models obtained using different random seeds. This analysis was 

not possible for the Tox21 dataset, as this dataset contains very few compounds that were tested in 

only a few of the assays. 

 

5.2.6.3 Pairwise and leave-one-assay-out Feature Net models 
 

Two different approaches were taken to examine the importance of single assays for the overall 

success of FN models: pairwise FN models and leave-one-assay-out (LOAO) FN models. 

For pairwise FN models, just one auxiliary assay was used as an additional feature. For each target 

assay, the remaining auxiliary assays were tested in turn in pairwise FN models and the scores of the 

models were compared to the score of a single task QSAR model for the target assay. A large 

improvement in performance would suggest a high importance of the respective auxiliary assay for 

the full FN model. 

LOAO FN models, on the other hand, are FN models missing exactly one of the auxiliary assays, hence 

all but one of the remaining assays were used at a time as additional features and the performances 

were compared to those of the full FN models. In this approach, a high importance of an auxiliary 

assay would be indicated by a large decrease in performance, when this particular assay was left out. 

As for the full FN models and the single task QSAR models, 20 different random seeds were used for 

each pairwise FN model and LOAO FN model and the median MCC score across the 20 models was 

used to represent each particular setting. 

The importance of a single auxiliary assay to the overall success of the full FN model was also examined 

using information theory (Shannon, 1948). The entropy of an assay 𝐴 is computed as: 
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𝐻(𝐴) =  − (𝑃𝐴 ×  log2 𝑃𝐴 + 𝑃𝑎 ×  log2 𝑃𝑎)  

where 𝑃𝐴 is the probability of a randomly selected compound being active in the assay, computed by 

the ratio of compounds with the label ‘toxic’ to all labelled compounds, and 𝑃𝑎 the proportion of non-

toxic compounds, given by 1 − 𝑃𝐴. The mutual information of two assays is computed by taking the 

sum of the entropies of each assay and subtracting the entropy of the joint distribution: 

𝑀𝐼(𝐴, 𝐵) = 𝐻(𝐴) + 𝐻(𝐵) − 𝐻(𝐴, 𝐵) 

 The entropy of the joint distribution is computed as: 

𝐻(𝐴, 𝐵) = −(𝑃𝐴𝐵 × log2 𝑃𝐴𝐵 + 𝑃𝐴𝑏 × log2 𝑃𝐴𝑏 + 𝑃𝑎𝐵 × log2 𝑃𝑎𝐵 + 𝑃𝑎𝑏 × log2 𝑃𝑎𝑏)  

Where 𝑃𝐴𝐵 is the proportion of compounds labelled as toxic in both assay 𝐴 and 𝐵, 𝑃𝑎𝑏  is the 

proportion of compounds that are non-toxic in both assay 𝐴 and assay 𝐵, and 𝑃𝐴𝑏 and 𝑃𝑎𝐵 are the 

proportions of compounds toxic only in assay 𝐴 or only in assay 𝐵, respectively. The proportions were 

only computed for compounds that are labelled for both assay 𝐴 and assay 𝐵.  

The relatedness between a target assay and an auxiliary assay was measured by the ratio of mutual 

information (MI) between two assays to the entropy of the target assay. This measure of relatedness, 

called here MI-entropy ratio, describes how much of the total entropy (or amount of information) of 

the target assay (here assay 𝐴) is contained in the auxiliary assay. 

𝑀𝐼 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑟𝑎𝑡𝑖𝑜 (𝐴, 𝐵) =  
𝑀𝐼(𝐴, 𝐵)

𝐻(𝐴)
 

Observed differences of pairwise and LOAO FN models to the respective single task models were 

analysed with respect to the MI-entropy ratio of the appropriate assay pair. 

 

5.2.7 Exploration of various classification thresholds for Macau models 
 

Different classification thresholds for the XGB-FN and the Macau model on the p53 assay in the Tox21 

dataset were investigated. The assay was selected as an example, as the Macau model performs 

particularly poorly according to MCC score (worse than single task models) on this assay. For simplicity, 

the analysis is based on predictions obtained from a single run (one random seed) for each model. For 

each model, the range of predicted probability scores was plotted and analysed. In particular, the 

number of actual toxic and non-toxic compounds that fell in different ranges of predicted scores were 

analysed as well as how different thresholds on classifications would affect the MCC score on the test 

set. 
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5.3 Results 
 

Initially, traditional single task and multi-task QSAR models were compared using compound-based 

splits, i.e. the same compounds were placed into training and test set for all the assays. 

 

5.3.1 Single task models 
 

Single task QSAR models for the two datasets under study were generated using three different ML 

algorithms: RF, XGB, DNN. The performances of these models on the test set are reported in Figure 5-

4 using the MCC score as a metric. As described in the Methodology, 20 independent runs using 

different random seeds were conducted for each model, which are summarized as box plots. 

The performance between assays varied considerably. For instance, the MCC scores for TA98 were 

substantially higher than the ones for TA97, across all the algorithms (Figure 5-4A). This suggests that, 

for the available data points, some of the assays are inherently more difficult to predict than others. 

When comparing the scores of the models on a per assay basis, there were a few cases where one 

model clearly outperformed the other two, such as XGB for TA1535 (Figure 5-4A), or RF for NR-

Aromatase (Figure 5-4B). However, in most cases the different ML algorithms yielded models of 

comparable performance. XGB provided the best median MCC score across the different random 

seeds across both datasets, albeit the differences were quite small (Table 5-7). 

The range of scores obtained by an algorithm on a single assay was quite large in some cases (e.g. DNN 

for TA102_S9, Figure 5-4A) and quite small for others (e.g. RF for NR-ER-LBD, Figure 5-4B). The results 

demonstrate that the performance of the models is very sensitive to the random seed in some cases. 

This variance tended to be larger for the DNN models compared to the other ML algorithms. 

Additionally, for some assays the variance seemed to be consistently larger than for others. The 

affected assays seemed either to have a comparatively small number of data points (e.g. TA102, 

TA102_S9, TA97) or to be particularly imbalanced (e.g. NR-PPAR-gamma, NR-AR-LBD). By considering 

stochastic effects for an algorithm on a given assay, a more robust comparison between models is 

possible. In particular, it becomes less likely that differences observed between models are the result 

of chance. 

The results of the single task models will be used as a benchmark for the multi-task and imputation 

models.  
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Figure 5-4 Performance of single task QSAR models. A: Ames dataset. B: Tox21 dataset. Each box summarises the MCC 
scores of 20 independent runs of the model on the test set with identical hyperparameters but different random seeds. 

 

Table 5-7 Median MCC scores of single task QSAR models. Median MCC scores and interquartile range for each technique 
and dataset on the test set across the 20 random seeds. Before computing the median, the mean across the different assays 
for a single run was calculated. The best model for each dataset is shown in bold. 

 Ames Tox21 

RF 0.526 (0.523-0.527) 0.402 (0.400-0.405) 

XGB 0.547 (0.545-0.550) 0.427 (0.422-0.430) 

DNN 0.519 (0.508-0.527) 0.417 (0.410-0.426) 

 

5.3.2 Traditional multi-task models 
 

Multi-task models are trained on the labels of several tasks, in this case toxicity assays. Three different 

multi-task techniques were investigated: FN models (based on either RF, XGB or DNN models), multi-
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task DNN and Macau. Figure 5-5 compares the performances of multi-task QSAR models to XGB as the 

best single task model. Among the FN models, only the best performing model on the test set (the one 

based on XGB) was included in Figure 5-5. 

In a few cases, some of the multi-task models outperformed the XGB models (e.g. TA97 in Figure 5-5A 

or NR-ER-LBD in Figure 5-5B), but in others the multi-task models were outperformed by the XGB 

models (e.g. TA1537 in Figure 5-5A or SR-p53 in Figure 5-5B). Therefore, multi-task models were 

beneficial for some assays, but they did not outperform single task models consistently in these 

datasets. The mean MCC scores for the different techniques are reported in Table 5-8. MCC, F1 and 

ROC-AUC scores for all assays are reported in Appendix B (Tables B3 to B8) 

None of the multi-task techniques achieved a higher median MCC score than the single task XGB 

models on the Ames dataset. In contrast, both the XGB-FN and the multi-task DNN yielded higher 

median MCC scores than XGB on the Tox21 dataset, albeit only by small margins. The Macau technique 

was outperformed by the other methods on both datasets. The difference in performance between 

the Macau model and the other techniques was comparatively small on the Ames dataset, but quite 

large on the Tox21 dataset. In fact, for two of the assays of the Tox21 dataset Macau achieved median 

MCC scores of zero, which indicates a performance not better than random guessing. A MCC score of 

zero may be achieved if no instances in the test set are predicted as positive or none of the predicted 

positives are actual positives (technically the MCC score is not defined in these cases due to a division 

by zero, however the scikit-learn implementation returns a score of zero). 

Similar to the single task model results, the variance between different runs (with different random 

seeds) was quite large in some cases. Among the multi-task techniques included in Figure 5-5, multi-

task DNN showed the largest variances. In addition, it appears that the same assays as for the single 

task models were prone to large variances across the different algorithms, such as TA102 (Figure 5-8A) 

and NR-PPAR-gamma (Figure 5-5B). 
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Figure 5-5 Performance of multi-task QSAR models. A: Ames dataset. B: Tox21 dataset. Each box summarises the MCC 
scores of 20 independent runs of the models on the test set with identical hyperparameters but differing random seeds. The 
XGB models (best performing single task QSAR model) are shown as a baseline. Only the best performing Feature Net model 
(XGB FN) is included in this plot. 

 

Table 5-8 Median MCC scores of multi-task QSAR models. Median MCC scores and interquartile range for each technique 
and dataset on the test set across 20 random seeds. Before computing the median, the mean across the different assays for 
a single run was calculated. The best model for each dataset in bold. 

 Ames Tox21 

XGB 0.547 (0.545-0.550) 0.427 (0.422-0.430) 

XGB-FN 0.529 (0.527-0.531) 0.435 (0.432-0.438) 

Multi-task DNN 0.540 (0.527-0.549) 0.430 (0.423-0.437) 

Macau 0.490 (0.484-0.499) 0.321 (0.319-0.323) 

 

The FN models provided only a slight benefit over single task QSAR models and in some cases gave 

worse performances. This was the case for situations where no experimentally determined toxicity 

assay labels for the compounds in the test set were given as input to the model. However, there may 
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be situations where for a set of compounds experiments have been conducted for related assays and 

the aim is to predict labels for the not tested assays. FN models provide an obvious means to 

incorporate this type of information. This is by replacing predicted assay values by experimentally 

determined assay values in the feature vector of compounds in the test set. Figure 5-6 and Figure 5-7 

report the MCC scores of these type of FN models compared to single task models and the FN not 

including the additional test labels for the Ames and the Tox21 dataset, respectively. 

FN models with experimental test labels outperformed both the single task and the FN models without 

the additional test labels consistently across the different assays and algorithms, in many cases by a 

wide margin, for instance for TA97 (Figures 5-6A, 5-6B and 5-6C). The only two exceptions are NR-AR 

(Figures 5-7A and 5-7C) and NR-Aromatase (Figures 5-7A, 5-7B and 5-7C), where these models 

provided no benefit. Generally, the increases in performance were larger for the Ames dataset 

compared to the Tox21 dataset. This observation can be confirmed by considering the mean scores 

across the assays in Table 5-9. For instance, the RF-FN models provided an average MCC score 

exceeding the single task RF by nearly 0.2 (0.723 vs. 0.526), whereas the corresponding difference for 

the Tox21 dataset was smaller than 0.1 (0.490 vs. 0.402). Overall, RF-FN performed best on the Ames 

dataset, while XGB-FN achieved the highest average score on the Tox21 dataset. 

The ranges of MCC scores observed in the different runs of the FN models were of comparable 

magnitude to those in the respective single task models and FN models without the additional assay 

labels. Like in the previous sections, the variances were higher for DNN based models (compared to 

RF and XGB based models) and were particular high for the same assays (e.g. TA102, 

NR-PPAR-gamma). 

In summary, the FN models using test labels as input clearly outperformed both single task and 

conventional multi-task QSAR models. In fact, these models can be considered as multi-task 

imputation models, characterised by the partial input of experimentally determined assay labels for 

compounds in the test set. In the following sections, the improvements that imputation models 

provide over single task models will be investigated in more detail. 
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Figure 5-6 Performance of Feature Net models on the Ames dataset. A: RF models. B: XGB models. C: DNN models. The 
plots compare the MCC scores of Feature Net models to single task models obtained with the respective algorithm. The first 
Feature Net model in each plot (green colour) corresponds to the situation where no labels of the test set are used as input 
to the model, whereas in the second case (pink colour) all available labels of the test set (except for the predicted assay) are 
used as input to the model. Each box summarises the MCC scores of 20 independent runs of the model on the test set with 
identical hyperparameters but differing random seeds. 
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Figure 5-7 Performance of Feature Net models on the Tox21 dataset. A: RF models. B: XGB models. C: DNN models. The 
plots compare the MCC scores of Feature Net models to single task models obtained with the respective algorithm. The first 
Feature Net model in each plot (green colour) corresponds to the situation where no labels of the test set are used as input 
to the model, whereas in the second case (pink colour) all available labels of the test set (except for the predicted assay) are 
used as input to the model. Each box summarises the MCC scores of 20 independent runs of the model on the test set with 
identical hyperparameters but differing random seeds. 
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Table 5-9 Median MCC scores of Feature Net QSAR models. Median MCC scores and interquartile range for each technique 
and dataset on the test set across 20 random seeds. Before computing the median, the mean across the different assays for 
a single run was calculated. The best model of each base algorithm (RF, XGB and DNN) for each dataset in bold. 

  Ames Tox21 

RF 

Single task 0.526 (0.523-0.527) 0.402 (0.400-0.405) 

FN without exp. test labels 0.509 (0.507-0.513) 0.376 (0.374-0.378) 

FN with exp. test labels 0.723 (0.721-0.726) 0.490 (0.487-0.494) 

XGB 

Single task 0.547 (0.545-0.550) 0.427 (0.422-0.430) 

FN without exp. test labels 0.529 (0.527-0.531) 0.435 (0.432-0.438) 

FN with exp. test labels 0.710 (0.704-0.713) 0.541 (0.538-0.543) 

DNN 

Single task 0.519 (0.509-0.527) 0.417 (0.410-0.426) 

FN without exp. test labels 0.526 (0.516-0.529) 0.408 (0.397-0.413) 

FN with exp. test labels 0.677 (0.675-0.682) 0.500 (0.488-0.504) 

 

5.3.3 Imputation models 
 

The results in Figure 5-6 and Figure 5-7 clearly hint at potential benefits of imputation models 

compared to conventional single task and multi-task QSAR models. To investigate imputation models 

further, a different scheme for splitting the available data in training and test set was employed. 

Specifically, compounds of the original dataset were randomly assigned to the training and test set on 

a per assay basis (assay-based splits). This means that a compound may be in training set for one assay, 

but in the test set for others. When the imputation model predicts the label of a particular assay-

compound pair, other assay labels for this compound may be used as input to the model. 

The multi-task imputation models trained for this study were FN models (based on RF, XGB and DNN 

models), multi-task DNN models and Macau models. Figure 5-8 compares the MCC scores of the 

different imputation techniques on both the Ames and the Tox21 dataset. Only the best performing 

FN model (XGB-FN) was included. The single task (imputation) models were re-trained for the assay-

based splits and the best performing one (XGB) was included as a baseline model. 
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Figure 5-8 Performance of imputation models. A: Ames dataset. B: Tox21 dataset. Each box summarises the MCC scores of 
20 independent runs of the model on the test set with identical hyperparameters but different random seeds. The XGB 
models (best performing single task QSAR model) are inserted as a benchmark. Only the best performing Feature Net model 
(XGB FN) is included in this plot. 

 

All of the multi-task imputation models outperformed the XGB models on the Ames dataset 

(Figure 5-8A). In fact, the margin between the XGB models and all of the multi-task imputation models 

was remarkably large (more than 0.1 difference in median MCC score) for many of the assays (e.g. 

TA97, TA1535). Exceptions were TA102 and TA1537 where the benefit of the multi-task imputation 

models was comparatively small. The XGB models were also outperformed by the multi-task 

imputation models for the Tox21 dataset. However, this was not the case for the Macau models, which 

for many of the assays yielded a lower MCC score than the XGB models. Generally, the benefits of 

imputation models were smaller on the Tox21 dataset compared to the Ames dataset. There were 

few cases where the difference in median MCC score between the imputation model and the XGB 
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models was above 0.1 (e.g. XGB-FN for NR-ER). Consistent with the findings in the previous sections, 

multi-task DNN (like single task DNN and DNN-FN) models showed a comparatively large variability in 

performance across different runs of a particular model. 

Table 5-10 reports the median MCC (MCC, F1 and ROC-AUC scores for individual assays in Tables B9 

to B14 in Appendix B) scores across the assays for both datasets. Macau achieved the highest average 

score on the Ames dataset (0.679), yet the differences to XGB-FN (0.677) and multi-task DNN (0.676) 

are marginal. Conversely, Macau performed worse than the single task models on the Tox21 dataset, 

whereas XGB-FN (0.521) and multi-task DNN (0.503) achieved the highest average MCC scores. 

Table 5-10 Median MCC scores of imputation models. Median scores and interquartile ranges for each technique and 
dataset on the test set across 20 different random seeds. Before computing the median, the mean across the different assays 
for a single run was calculated. The best model for each dataset in bold. 

  Ames Tox21 

Single task 

RF 0.520 (0.517-0.523) 0.406 (0.404-0.412) 

XGB 0.540 (0.537-0.543) 0.415 (0.412-0.421) 

ST-DNN 0.500 (0.495-0.507) 0.415 (0.406-0.419) 

 
Multi-task 

XGB-FN 0.677 (0.675-0.682) 0.521 (0.516-0.525) 

MT-DNN 0.676 (0.667-0.688) 0.503 (0.493-0.512)  

Macau 0.679 (0.677-0.681) 0.385 (0.379-0.388) 

 

The results conclusively show that multi-task imputation models can achieve higher predictive 

performance than single task QSAR models on various toxicity assays. In the following, the aim was to 

understand and explain which characteristics of the datasets were responsible for this effect. This 

included investigations regarding the chemical similarity between compounds in the datasets, the 

sparsity of the datasets and the relatedness between particular toxicity assays. Moreover, attempts 

were made to rationalise the stark contrast in performance between the two datasets for the Macau 

algorithm. 

 

5.3.4 Roll of chemical similarity in imputation models 
 

This section investigates the impact of chemical similarity on the effectiveness of imputation models. 

The test set was split into bins based on chemical similarity to compounds in the training set for each 

respective assay and performance of the models was evaluated independently on the individual bins. 

Chemical similarity was evaluated as average Tanimoto similarity to the five nearest neighbours in the 

training set and the ranges of the bins were: 0-0.4, 0.4-0.6, 0.6-1. It is well established that 

conventional QSAR models tend to perform poorly on compounds that are chemically dissimilar to 
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compounds in the training set (Sheridan et al., 2004) and the aim was to see whether a similar trend 

can be found for imputation models. 

Figure 5-9 shows the MCC scores for the different bins for the assays TA100 (5-9A), TA100_S9 (5-9B), 

TA98 (5-9C), TA98_S9 (5-9D) and the average across those four assays (5-9E). The remaining assays 

were excluded from this analysis, as they had fewer than 100 compounds in each bin, which resulted 

in high variance. As expected, single task XGB performance was higher for more similar compounds 

(Figure 5-9A-D). The XGB models performed quite badly on the most dissimilar compounds (0-0.4), 

especially on the assays TA98 and TA98_S9 with median MCC scores between 0.2 and 0.3 (Figure 5-9C 

and 5-9D). All imputation techniques achieved much higher scores for this bin. Most notably, Macau 

achieved MCC scores in the range 0.65 to 0.7 for these two assays, but also multi-task DNNs (0.6 to 

0.65) and XGB-FN (0.5 to 0.55) models outperformed the XGB models by a wide margin. Similar trends 

were observed for the TA100 (5-9A) and the TA100_S9 (5-9B) assays, although the benefit of 

imputation models seemed more moderate for the former assay. 

The multi-task models also consistently outperformed the XGB models on the bins of more similar 

compounds (similarity values between 0.4-0.6 and between 0.6-1) and, similarly to the XGB models, 

the performance of the multi-task models tended to increase for more similar compounds. However, 

the margins between the single task XGB model and the multi-task models were much smaller.  

These observations on the relative performance of the single task and the multi-task methods at low 

similarity values are supported by considering the averages across the assays in Figure 5-9E. Clearly, 

the largest numerical benefit of the multi-task imputation techniques was found for the bin containing 

the most dissimilar compounds, where XGB as a conventional QSAR model performed relatively badly. 

Generally, the different multi-task imputation methods achieved comparable MCC scores on the 

different bins, with the exception that XGB-FN performed somewhat worse on the dissimilar 

compounds than the other techniques. These results show that the multi-task imputation models 

were less beneficial on the test compounds which are highly similar to compounds in the training set, 

but this is likely due to the higher scores overall. 
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Figure 5-9 Performance of imputation models according to test compound chemical similarity: Ames. A-D show the MCC 
scores obtained in 20 independent runs (same hyperparameters, different random seeds) of the models on the different bins 
for TA100, TA100_S9, TA98 and TA98_S9. The number (n=x) written next to each bin indicates the number of compounds 
placed in this bin. E shows the average MCC scores across the assays (by computing the mean MCC score for each random 
seed across the assays and then taking the median across different random seeds). 

 

Figure 5-10 shows the MCC scores of 4 representative assays (A: NR-Aromatase, B: NR-ER, C: SR-ARE, 

D: SR-p53) of the Tox21 dataset for different test set similarity bins, as well as the average across all 

assays (E). 

As for the Ames dataset, the MCC scores of the XGB single task models were consistently higher for 

bins of higher chemical similarity. This effect was particularly strong for the NR-ER and the NR-p53 
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datasets. Likewise, the MCC scores of the multi-task models tended to increase for more similar 

compounds. An exception is the SR-p53 assay, where Macau achieved a MCC score of zero in the bin 

of highest chemical similarity. Generally, the results on this bin seem out of line, as the variability for 

all of the other models was very high (in the most extreme case ranging from -0.01 to 0.864 for multi-

task DNN). However, this is explained by the very low number of actual toxic compounds in this bin (4 

out of 195 (2.1%), whereas the 0.4-0.6 bin contains 34 toxic compounds (4.9%) and the 0-0.4 bin 

contains 48 toxic compounds (9.3%)), such that small changes in predictions made by the model have 

a very large effect on the MCC score. 

Overall, the multi-task methods (except Macau) achieved higher scores than the XGB models on the 

Tox21 dataset. For the assays NR-ER and SR-ARE, the largest benefit was found for the bin representing 

the chemically most dissimilar compounds, as was the case for the Ames dataset. For this bin and 

these assays, the XGB model performed particularly poorly with an MCC of around 0.1, while some 

multi-task models achieved MCC values up to 0.5. In the NR-Aromatase assay, both the XGB-FN (0.863) 

and the multi-task DNN (0.703) model achieved remarkably high median scores compared to the XGB 

models (0.495). However, similarly to SR-p53, the variance for the multi-task DNN was extremely large, 

which complicates the interpretation. When considering the average values across all assays, both 

XGB-FN and multi-task DNN outperformed the XGB models on all of the bins. On average, the highest 

benefit of the multi-task models was found for the most dissimilar compounds, but this trend was less 

clear compared to the Ames dataset. 
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Figure 5-10 Performance of imputation models according to test compound chemical similarity: Tox21. A-D show the MCC 
scores obtained in 20 independent runs (same hyperparameters, different random seeds) of the models on the different bins 
for NR-Aromatase, NR-ER, SR-ARE, SR-p53 (representative assays). The number (n=x) written next to each bin indicates the 
number of compounds placed in this bin. E shows the average MCC scores across the assays (by computing the mean MCC 
score for each random seed across the assays and then taking the median across different random seeds). 

 

5.3.5 Role of data sparsity in imputation models 
 

The role of data availability on the effectiveness of single task and multi-task imputation models was 

investigated. As for the analysis on chemical similarity, the analysis was done on predicted values from 

the previous evaluation of single task and multi-task imputation models. The test set for each assay 

was divided into three bins according to the number of experimentally determined data labels (0-1, 



Chapter 5: Multi-task and imputation modelling for toxicity prediction 

83 
 

2-3, and >3 available labels) each compound has for the 11 remaining assays in the training set. The 

multi-task imputation models incorporate information about the remaining assays whereas the XGB 

models (single task models) do not. This analysis was only performed for the Ames dataset, as the 

lower sparsity of the Tox21 dataset was such that the bins of low data availability were not sufficiently 

populated. The analysis for the Ames dataset was limited to assays for which at least 100 compounds 

could be placed in each of the bins, and these are the same assays as considered for the chemical 

similarity studies. The MCC scores for these assays (TA100, TA100_S9, TA98, TA98_S9) for the different 

bins and the average scores across these assays are reported in Figure 5-11. 

For the first bin (0-1 available labels), the MCC scores of the multi-task models tended to be only 

slightly higher than those for the XGB models. The multi-task DNN models were the only imputation 

models with higher median MCC score than the XGB model across all the assays. The other multi-task 

models achieved lower median scores than the XGB models for this bin in one of the assays (Macau 

for TA100: 0.515 vs. 0.541 and XGB-FN for TA98-S9: 0.380 vs. 0.512). For the remaining two bins, which 

represent a higher number of available toxicity labels for the test compounds (2-3 and >3 available 

labels), the XGB models were outperformed by all multi-task techniques for all of the assays. The 

differences in MCC score between the multi-task models and the XGB models were largest for the 

third bin (>3 available labels), with the highest uplift occurring for the Macau model on the TA98_S9 

assay (0.829 vs. 0.520). Generally, all of the multi-task imputation models achieved similar scores for 

the second and third bin, but Macau performed better than the other imputation techniques for the 

third bin. 

The observations for the single assays are supported when considering the averages across the assays 

as depicted in Figure 5-11E. For the first bin, the XGB model was outperformed by all the multi-task 

models, albeit by a comparatively small margin. The margin between single task and multi-task models 

increased with more available data labels for test compounds. Notably, Macau outperformed the 

other multi-task approaches on the bin with >3 test data labels.  

This analysis shows that the number of available experimentally determined assay labels for test 

compounds strongly affected the performance of the imputation models. For the Ames dataset, the 

multi-task models clearly performed better on compounds with a high number of available assay 

labels.  
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Figure 5-11 Performance of imputation models according to test compound data label availability. A-D show the MCC 
scores obtained in 20 independent runs (same hyperparameters, different random seeds) of the models on the different bins 
for TA100, TA100_S9, TA98 and TA98_S9. The number (n=x) written next to each bin indicates the number of compounds 
placed in this bin. E shows the average MCC scores across the assays (by computing the mean MCC score for each random 
seed across the assays and then taking the median across different random seeds). 

 

5.3.6 Analysis on the impact of assay relatedness on imputation models 
 

The contributions of single assays to the overall success of multi-task imputation models were 

investigated focussing on XGB-FN models. Two different approaches were used: (i) pairwise FN 

models, where for a given target assay a separate FN model is trained with each of the remaining 

assays as auxiliary one in turn (called pairwise FN models) and (ii) leave-one-assay-out (LOAO) FN 
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models, where starting from the full FN model for a given target assay, each of the auxiliary assays is 

left out one at a time. Figure 5-12 reports the performance of the pairwise FN models. The heatmaps 

report the performances of each FN model compared to the respective single task. In Figure 5-13, the 

scores of the LOAO FN models are reported, compared to the scores of the full FN models. 

 

Figure 5-12 Performance of the pairwise FN models. A: Ames, B: Tox21. For each assay pairwise FN models were trained 
with each of the remaining assays and for each pair 20 independent runs of the model were conducted using different 
random seeds. To obtain the heatmap, the median MCC score was computed for each pair and the median MCC of the single 
task model for respective target assay was subtracted. The diagonals represent the differences in MCC score between the 
full FN model and the single task XGB model as a reference. 

 

For the Ames dataset, the pairwise XGB-FN models achieved a higher MCC score than the single task 

XGB models in many cases (as shown by the green cells in the heatmap outside the diagonal, Figure 

5-12A). The diagonal of the heatmap shows the difference between the MCC scores for the full FN 

models compared to single task models. Generally, the pairwise models did not achieve as high scores 

as the full FN models, with the exception of TA1535 with TA1535_S9. However, in a few cases, the 

pairwise FN model approximated the performance of the full FN model quite well (e.g. the MCC of the 

TA97 full model was 0.279 higher than the MCC of the single task model, whereas, the improvement 

of the pairwise model comprising TA97 and TA97_S9 was 0.230). In many cases, the pairwise FN model 

provided a substantial benefit (improvement over 0.05) compared to the single task model, even if 

this was smaller than that achieved for the full FN model. There were also many cases where the 

pairwise FN model showed very small differences compared to the single task models (shown by the 

white and very pale cells in the heatmap). Red cells indicate reduced performance of the pairwise 

models compared to the single task models. These cases were relatively rare overall, but occurred 

frequently in the assays with the fewest data points which also showed a high variance between 

different runs of a model (TA102, TA102_S9, TA97, TA97_S9). Unsurprisingly, the Ames strain results 
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with and without S9 are highly correlated and this is reflected in the consistent increase in 

performance compared to the single task models for the pairs of the same bacteria strain, represented 

by the accumulation of green cells adjacent to the diagonal. Another key finding is that the four assays 

with the most data points (TA100, TA100_S9, TA98, TA98_S9) as auxiliary assays resulted in at least a 

moderate increase in performance in most cases, suggesting that the number of available 

experimentally determined data points impacts on the performance of the pairwise FN models. 

The performances of the pairwise XGB-FN models on the Tox21 dataset are shown in Figure 5-12B. 

Similar to the Ames dataset, the pairwise XGB-FN models achieved a higher MCC score than the single 

task XGB models in many cases. In two of the cases (NR-AR with NR-AR-LBD and with NR-PPAR-

gamma) the pairwise model achieved a higher score than the full FN model. However, for most of the 

target assays the full FN model clearly performed better than any pairwise FN model. The Tox21 

dataset contains two pairs of assays that measure the same target in a different test system 

(NR-AR/NR-AR-LBD and NR-ER/NR-ER-LBD) and it was therefore expected that these pairs would yield 

the best performing pairwise FN models. For NR-ER and NR-ER-LBD this was indeed the case, although 

other auxiliary assays yielded models of comparable performance (SR-ATAD5 for NR-ER and SR-ARE 

for NR-ER-LBD). NR-AR-LBD was the best auxiliary assay for NR-AR, but the same was not true for the 

opposite case (NR-PPAR-gamma was the best auxiliary assay for NR-AR-LBD). Some of the pairwise 

models performed worse than the respective single task models (red cells in Figure 11B). For the target 

assays NR-PPAR-gamma and SR-HSE this occurred for many of the pairs, yet the full FN model 

performed better than the single task models, which can be attributed to the few auxiliary assays that 

resulted in improved models (SR-p53 and NR-AR-LBD for NR-PPAR-gamma, and SR-p53 for SR-HSE). 
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Figure 5-13 Performance of the leave-one-assay-out FN models. A: Ames, B: Tox21. For each assay FN models were trained 
with one of the remaining assays left out, one at a time and like for the pairwise FN models 20 runs with different random 
seeds were performed. To obtain the heatmap, the median MCC score was computed for each leave-one-assay-out FN model 
and the median MCC of the full FN model was subtracted. The diagonals represent the differences in MCC score between 
the single task XGB model and the full XGB FN model as a reference. 

 

The heatmaps in Figure 5-13 indicate by how much the MCC score of the LOAO FN model decreased 

compared to the full FN model, with the diagonal showing the decrease for the single task models as 

a reference. In nearly all of the cases the decrease of performance when using a single task model was 

larger than the decrease of LOAO FN models, indicating that the success of the full FN model cannot 

be fully attributed to the presence of a single auxiliary assay. Exceptions were TA102_S9 for the Ames 

dataset and SR-HSE for the Tox21 dataset, where the LOAO model missing TA102 or SR-p53, 

respectively, performed worse than the single task models. In several cases, the removal of a single 

assay led to a model that performed better than the full FN (green cells in the matrix), yet those 

improvements were quite small (maximal for TA97 with TA1535 removed: +0.039). For the assays 

TA1537 and TA1537_S9, the removal of most of the different assays actually resulted in an increase 

of performance, albeit small. Generally, the majority of removals overall had only small effects on the 

performance (either positive or negative) compared to the full FN models. Similar to the pairwise FN 

models, the removal of assays of the same bacteria strain in the Ames dataset resulted in a 

comparatively high decrease in performance. For the pairs of assays in the Tox21 dataset measuring 

the same targets (NR-AR/NRAR-LBD and NR-ER/NR-ER-LBD) the findings were consistent with the 

findings for the pairwise FN models. NR-ER and NR-ER-LBD were the most useful auxiliary assays for 

each other, but the benefits of the full FN models cannot be fully explained by the presence of these 

closely related assays. In contrast, it seemed that the benefit of the full FN model for NR-AR can be 

mainly attributed to NR-AR-LBD as auxiliary assay. On the other hand, NR-AR-LBD was not found to be 
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a useful auxiliary assay for NR-AR, the respective LOAO FN model performed marginally better than 

the respective full FN model. 

The pairwise FN models and the LOAO FN models are two different approaches to estimate the 

contribution of a single assay to the full FN models. Figure 5-14 compares the findings of the two 

approaches by plotting the benefit of the pairwise FN model on the x-axis against the cost of removing 

the auxiliary assay in a LOAO FN model on the y-axis, for each pair of target assay and auxiliary assay. 

For both datasets, most points are located around (0,0), meaning that this particular auxiliary assay 

had neither a large beneficial effect for the target assay in a pairwise FN model, nor was there a large 

decrease when this auxiliary assay was left out. Overall, there seemed to be a trend that large 

increases for pairwise FN models were associated with large decreases for leave-one-assay-out FN 

models, but the correlation was not very strong with Pearson correlation coefficients of -0.53 

and -0.62 for the Ames and Tox21 dataset, respectively. In a few cases, there is a deviation from this 

trend in the Ames dataset. For the pair TA97-TA97_S9 (target-auxiliary), a large increase for the 

pairwise FN model (+0.23) was found together with a small decrease for the LOAO FN model (-0.026). 

In such cases, the auxiliary assay was obviously useful in the pairwise model and the lack of the assay 

in the LOAO approach could apparently be compensated for by the information provided by the 

remaining assays. In the opposite case, for instance for TA97_S9-TA97, a low benefit for the pairwise 

FN model (+0.007) is associated with a larger drop for the leave-one-assay-out FN model (-0.06), which 

could mean that the information provided by the auxiliary assay was only meaningful in combination 

with other assays. These extreme cases suggest that neither the pairwise FN model approach nor the 

LOAO FN approach alone can fully describe the contribution of an auxiliary assay to the success of the 

full FN model, and they can be considered as complementary approaches. Despite the insights gained 

using these approaches, the improvements of full FN models cannot be fully explained by additive 

effects of single assays. Instead, it seems that combinatorial effects between the auxiliary assays are 

at play, which are difficult to disentangle. 
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Figure 5-14 Concordance between the pairwise and LOAO FN models. A: Ames, B: Tox21. The scatter plots show for each 
target assay-auxiliary assay pair the difference in MCC score between the pairwise FN model and the single task model on 
the x-axis and the difference between the LOAO FN models and the full FN models on the y-axis. In the labels of the dots, 
the first assay is the target assay and the second the auxiliary assay. 

 

The previous results showed that a single assay can have large influence on the success of FN models 

(either as improvement in pairwise FN models or as decrease in LOAO FN models). However, it is 

unclear whether this influence can be explained by the relationships in the data between the assays. 

The relationship between a target assay and an auxiliary assay was measured by computing their 

mutual information and dividing by the entropy of the target assay. This metric (MI-entropy ratio) 

estimates the proportion of the total information in the target assay that is included in the auxiliary 

assay. Figure 5-15 and Figure 5-16 show how this metric relates to the performances found in the 

pairwise FN models and the LOAO FN models for the Ames and Tox21 dataset, respectively. 
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Figure 5-15 Effect of assay relatedness on FN models: Ames. For each target assay-auxiliary assay pair, the difference 
between MCC of pairwise FN model and single task model (A) or the difference between LOAO FN model and full FN model 
(B) are plotted vs. the ratio of mutual information (MI) between the two assays and the entropy of the target assay. 

 

For the Ames dataset, neither the improvements of pairwise FN models over single task models, nor 

the decrease in performance for LOAO FN models compared to full FN models are very strongly 

correlated to the metric for assay relatedness (Pearson correlation coefficients: 0.48 and -0.43). 

Nonetheless, strong increases for pairwise models (>+0.1) or strong decreases for LOAO FN models 

(<-0.05) only occurred for pairs where the MI-entropy ratio is above 0.3. Hence, it seems that a close 

relatedness between the target assay and the auxiliary assay was necessary but not sufficient for a 

strong effect of that auxiliary assay on the FN model. The pair TA1537 with TA1537_S9 represents a 

case where a strong relatedness of the assays resulted in an apparently small effect. However, the 

performance of single task XGB on TA1537 was very high (median MCC: 0.691, Figure 5-8) and a much 

larger MCC score on this dataset may not be possible due the uncertainty in the toxicity labels. 

As for the Ames dataset, an increase in the MI-entropy ratio tends to lead to the improvements of 

pairwise FN models over single task models and the decrease in performance compared to the full FN 

models, albeit the correlation is not very strong (0.50 and -0.52). A striking exception from these 

trends represents the pair NR-AR-LBD with NR-AR. However, the other pairs with a high MI-entropy 

ratio (e.g. NR-ER with NR-ER-LBD) are amongst the pairs where the auxiliary assay has the strongest 

effects on the FN model. Overall, the values for the MI-entropy ratio are lower on the Tox21 dataset, 

which might explain why the imputation models provide a larger numerical benefit on performance 

for the Ames dataset. The findings on both datasets suggest that the MI-entropy ratio might be a 
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useful metric to estimate which auxiliary assays could provide the strongest benefit in a FN model. 

However, clearly a high value does not guarantee a strong benefit. 

 

Figure 5-16 Effect of assay relatedness on FN models: Tox21. For each target assay-auxiliary assay pair, the difference 
between MCC of pairwise FN model and single task model (A) or the difference between LOAO FN model and full FN model 
(B) are plotted vs. the ratio of mutual information (MI) between the two assays and the entropy of the target assay. 

 

5.3.7 Analysis of the classification threshold used in Macau models 
 

Macau models were found to perform poorly on most assays in the Tox21 dataset. This section aims 

to understand this behaviour by focussing on the p53 assay. The MCC scores for Macau were clearly 

worse (median: 0.267) than those for the XGB-FN (median: 0.372) and multi-task DNN (median: 0.438) 

models. However, the ROC-AUC score on this assay for Macau (median: 0.899) was higher than for 

both multi-task DNN (median: 0.873) and XGB-FN (median: 0.862). To understand the stark contrast 

between those two metrics, the predictions for XGB-FN and Macau were carefully inspected. Figure 

5-17 plots the predicted probability scores (for the active class) for each compound in the test set for 

both XGB-FN (Figure 5-17A) and Macau (Figure 5-17B), where the dots representing experimentally 

toxic compounds are coloured red and those for non-toxic compounds are coloured blue. It can be 

observed that for both XGB-FN and Macau a large proportion of test compounds received a very low 

prediction score (>80% smaller than 0.1) and most of these compounds are in fact non-toxic. As 

expected, most of the compounds with high predicted scores were found to be toxic (increasingly red 

dots towards the right). While the XGB-FN model provided scores in the full range from 0 to 1, the 

Macau model did not produce scores higher than 0.74. Table 5-11 lists the proportion of 
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experimentally toxic compounds for 10 bins of predicted probability scores. For both XGB-FN and 

Macau, the proportion of actual toxic compounds tends to increase with higher scores. 

The MCC scores for all the models were computed by using the default value of 0.5 as threshold for 

the binary classification of toxic and non-toxic compounds. For the Macau model this threshold means 

that only 9 of the 1409 compounds in the test set were predicted as toxic, resulting in a poor MCC 

score. Choosing a lower classification threshold would lead to more compounds being predicted as 

active. The second column for XGB-FN and Macau in Table 5-11 lists the MCC scores obtained for 

various classification thresholds. For Macau, the MCC score can be increased from 0.247 to 0.487 if 

0.2 is used as threshold instead of 0.5. In that case, 107 compounds would be predicted as toxic instead 

of nine test compounds. A higher MCC score is also obtained for XGB-FN when choosing a decision 

threshold different from 0.5, but the difference is comparatively small. 

These results demonstrate that the apparently poor performance of Macau for the p53 assay can be 

attributed to an inappropriate classification threshold. This analysis was only conducted for the p53 

assay, but similar observations are expected for other assays in the Tox21 dataset. Overall, the 

performance of Macau on the Tox21 dataset may be competitive to the other imputation techniques, 

if the classification threshold is carefully selected. Of course, this selection must be made based on 

findings in the training set, otherwise information from the test set would influence the model design, 

which must not happen. 



Chapter 5: Multi-task and imputation modelling for toxicity prediction 

93 
 

 

Figure 5-17 Predicted probability scores for the p53 assay. Shown are the predicted probability scores from XGB-FN (A) and 
Macau (B) of a single run of each model for each compound in the test set, sorted by ascending scores. Experimentally actives 
are coloured red, while inactives are coloured blue. 
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Table 5-11 Analysis of the classification threshold. The full range of possible predicted probability scores (0-1) was divided 
into 10 bins of equal width and compounds were placed in the bin according to their predicted probability score by a single 
run of either the XGB-FN or the Macau model. The first column for XGB-FN and Macau breaks down which proportion of 
compounds in the respective bin of predicted probability scores are experimentally determined actives. The second column 
lists the MCC scores obtained if the upper bound of the respective bin is chosen as classification threshold. 

 XGB-FN Macau 

bin Experimentally actives 
(total data instances) 

MCC (at upper 
threshold) 

Experimentally actives 
(total data instances) 

MCC (at upper 
threshold) 

0-0.1 0.031 (1251) 0.349 0.015 (1171) 0.43 

0.1-0.2 0.054 (37) 0.396 0.144 (132) 0.487 

0.2-0.3 0.231 (26) 0.39 0.333 (51) 0.449 

0.3-0.4 0.294 (17) 0.376 0.483 (29) 0.375 

0.4-0.5 0.5 (10) 0.341 0.688 (16) 0.247 

0.5-0.6 0.333 (6) 0.332 0.333 (3) 0.257 

0.6-0.7 0.214 (14) 0.340 0.833 (6) 0.148 

0.7-0.8 0.286 (7) 0.339 1 (2) 0 

0.8-0.9 0.231 (13) 0.360 0 (0) 0 

0.9-1 0.655 (29) - 0 (0) - 

 

5.4 Discussion 
 

5.4.1 Comparison of traditional single task and multi-task models 
 

In this study, a thorough comparison between traditional single task and multi-task methods was 

conducted on two different in vitro toxicity datasets using compound-based splits. The study included 

RF, XGB and DNN as single task models and multi-task DNNs, FN and Macau as multi-task models. 

Across both datasets, no discernible difference in performance was found between single task and 

multi-task methods in terms of MCC. On the Tox21 dataset, both multi-task DNN and XGB-FN slightly 

outperformed XGB as best single task approach. However, the opposite was found on the Ames 

dataset. The small differences in performance between the methods suggest that neither single task 

nor multi-task models seem to be generally superior. 

An insightful feature of this study was the analysis of model performance across different runs of a 

model with different random initialisations and otherwise identical parameters. It was revealed that 

stochastic effects may have a large influence on the performance of a single model. For some of the 

assays and methods the variance of performance was larger than for others. Assays with relatively 

few data points or strongly imbalanced assays were found to have comparatively high variances. This 

can be explained by the fact that seemingly small variations in predictions made by a model can have 

quite large impacts on the numeric values obtained for MCC which is sensitive to correct 

classifications. Notably, variances were smaller when models were evaluated using the ranking-

sensitive ROC-AUC as metric as can be seen in Tables B1+B2 (Appendix B). Concerning different ML 
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algorithms, DNNs (both single task and multi-task) were found to have relatively large variance across 

different assays. This may be due to the number of stochastic processes involved in their training. 

These include the random initialisation of network parameters, the composition of batches of data 

points for updating the network parameters as well as the random selection of neurons for dropout. 

By considering the range of scores a model achieves, a more robust comparison between different 

models was possible. Limiting the analysis to a single score would lead to the occurrence of seemingly 

large difference in performance between models that are the result of pure chance, which could be 

misinterpreted as meaningful differences. Furthermore, this strategy helps to put the observed 

differences between models into context. In this case, the observed differences between single task 

and multi-task models are not significant when considering the variances of the models’ performances 

on the single assays. 

Multi-task DNNs performed better than single task DNNs on both datasets, but worse than XGB as 

best single task model on the Ames dataset. There may be potential to further improve the 

performance of multi-task DNN models. For instance, unrelated tasks may impede the learning of 

other tasks, as reported by Xu et al. (Xu et al., 2017). The prediction of completely unrelated tasks may 

require the network to learn fundamentally different representations in the hidden layers. As the 

training of the multi-task DNN is done by adjusting the weights and biases averaged across all tasks, 

conflicts between different tasks may hinder the overall success of learning. Hence, a careful 

examination of which assays should be included in the multi-task DNN might improve the 

performance. 

FNs based on XGB models achieved the highest scores on the Tox21 dataset. However, as shown in 

Table 5-9, the FN models performed slightly worse than their single task counterpart in most other 

cases. Varnek et al. reported a superior performance of FN models over single task models (Varnek et 

al., 2009), however, the datasets investigated in that study were very small in size (tens of compounds) 

and therefore it is difficult to compare the results across the studies. An explanation for the lower 

performance in this study may be the inclusion of auxiliary assays that are not well predicted in the 

first step by the single task models. The presence of wrong predictions in the auxiliary task may 

propagate into wrong predictions for the target assay. This could be addressed by careful examination 

which assays should be included in the FN model, similar to the multi-task DNNs. A clear improvement 

in performance was observed, when experimentally determined toxicity labels for test compounds 

were used as input to the Feature Net models. Experimentally determined labels indicate the true 

label of a compound with higher confidence than predictions do, which may explain the surge in 

performance. These types of models are considered as imputation models and are discussed further 

below. 
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As other matrix factorisation techniques, Macau is primarily suited to perform imputation tasks. Based 

on a sparse toxicity matrix, Macau learns latent space representations of assays and compounds. 

However, as the learning in Macau can include side information about compounds, such as chemical 

fingerprints, the method can embed compounds without any measured toxicity labels in the same 

latent space and hence make predictions for compounds that have not been tested in any of the 

assays. This corresponds to conventional multi-task QSAR modelling. The obtained MCC scores for 

Macau were worse than those of single task and other multi-task techniques for both datasets. This is 

in contrast to the ROC-AUC scores measured (Table A5-1), where Macau actually achieved the highest 

average score on both datasets. An attempt to increase the MCC scores of Macau imputation models 

was made by adjusting the threshold for classification and this is discussed below. A similar approach 

might be useful for Macau as a conventional multi-task model when there are no observed toxicity 

labels for test compounds. 

To some extent, our findings seem to contradict reports on the superiority of multi-task models over 

single task models in the literature. The Merck Kaggle Challenge was won by an approach largely based 

on multi-task DNNs (Ma et al., 2015) with the results being further investigated by Xu et al. (Xu et al., 

2017). However, a direct comparison with our results is not possible due to differences in the datasets 

and the nature of the learning tasks which are classification here and were regression in the study by 

Xu et al. Nevertheless, even though on average multi-task DNNs outperformed single task DNNs in 

that study, the differences between the two approaches were also small. Mayr et al. found multi-task 

DNNs to outperform several single task algorithms, based on average performance, on the Tox21 

dataset (Mayr et al., 2016), yet the differences were small and comparable to our findings (Table 5-2). 

Moreover, the selection of the metric for model evaluation may influence the conclusions. When using 

ROC-AUC instead of MCC as metric, both multi-task DNN and Macau outperformed the single task 

approaches on both the Ames and Tox21 dataset. For FN models using solely predicted activities as 

features in the test set, no consistent improvements over single task models (for MCC and ROC-AUC 

as metric) were found, which is in contrast to previous reports on FNs (Sosnin et al., 2019; Varnek et 

al., 2009) and on the related approach using predicted bioactivity profiles (Norinder et al., 2020). 

 

5.4.2 Comparison of single task and multitask imputation models 
 

For both the Ames and the Tox21 dataset, the best single task imputation model was outperformed 

by multi-task imputation models across all the assays. Numerically, the increases in MCC scores over 

single task models were larger for the Ames dataset than for the Tox21 dataset. The best three 

imputation methods (Macau, XGB-FN, multi-task DNN) achieved virtually the same average MCC score 
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on the Ames dataset. RF-FN and DNN-FN performed somewhat worse, but were still clearly better 

than the single task models. On the Tox21 dataset, XGB-FN was the best method followed by multi-

task DNN. The other FN methods also performed better than the single task models. Macau achieved 

lower MCC scores than the single task models, which is discussed below.  

Among the different FN methods, those composed of XGB classifiers outperformed RF and DNN on 

both datasets by a considerable margin, suggesting that XGB as a base classifier might be particularly 

suited to form successful FN models. An advantage of FN models is the simplicity of implementation 

since they are based on existing single task QSAR architectures applied to multi target datasets. A 

limitation for very large datasets (i.e. many assays) might be the computational cost of FN models, as 

two models (two steps) have to be trained for each assay in the dataset. This would be especially time 

consuming if a hyperparameter optimisation step is carried out for each assay separately. However, 

this can be avoided if a set of hyperparameters suitable for a wide range of assays is selected. The FN 

approach as used in this study is somewhat reminiscent of the pQSAR approach (Martin et al., 2019). 

Both approaches consist of two steps with the first step filling gaps in the dataset using single task 

models. The second step of the pQSAR model uses only the assay labels (known or predicted) as 

features rather than combining them with chemical descriptors. 

The multi-task DNN, used as an imputation method, yielded competitive MCC scores on both datasets 

under study here. In contrast to a multi-task DNN in its conventional use, the network is trained on all 

the compounds in the dataset (provided there is at least one label for the compound in the training 

set). Therefore, the whole range of compound structures can be accounted for, and all available labels 

are used to learn meaningful internal representations of the compounds. An advantage of this 

technique compared to FNs is that only a single model needs to be trained for the whole dataset, 

which is computationally cheap. As discussed in the previous section, a careful examination of which 

assays should be included in the network might lead to even better performances, but would require 

additional effort. While the multi-task DNNs achieved high scores, the variance in performance 

between different runs of a model was relatively large. This behaviour is undesirable as a single run 

may lead to a poorly performing model. This could be addressed by using ensembles of multiple runs, 

which in turn would increase the computational cost of the method. 

The Macau method achieved the highest average MCC score on the Ames dataset, but a poor average 

MCC score on the Tox21 dataset. This contrast may be attributed to an inappropriate classification 

threshold, as shown for the assay p53 (Figure 5-17, Table 5-11). Most of the assays in the Tox21 

dataset are strongly imbalanced leading to a low number of compounds being predicted as toxic. 

Unlike for the other methods, the imbalance was not countered by assigning different weights to the 
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classes during leaning in the Macau method. As could be shown for p53, adjusting the classification 

threshold can lead to higher MCC scores, which are comparable to the other imputation techniques. 

The classification threshold then needs to be treated as an additional hyperparameter and optimised 

prior to predicting the test set. 

Previous studies on imputation for bioactivity prediction in the literature (Alchemite and pQSAR) were 

based on regression. This study represents the first one to investigate classification tasks. It was shown 

that for classification tasks imputation models provide a substantial benefit in performance over single 

task and multi-task models. This is in agreement with the findings of previous studies on regression 

tasks (Irwin, Mahmoud, et al., 2020; Martin et al., 2019; Whitehead et al., 2019). All imputation 

techniques used in this study could be adapted to perform regression tasks. However, their suitability 

for datasets of larger dimensions (thousands of assays) would need to be tested. Intriguingly, 

Alchemite and pQSAR, two conceptually different imputation techniques, achieved approximately the 

same average score on the Novartis benchmark set (Irwin, Mahmoud, et al., 2020). This is in 

concordance with findings from this study that fundamentally different imputation techniques may 

result in models of comparable performance. 

Having demonstrated the superior performance of imputation, a series of investigations was carried 

out that aimed to characterise the factors that contributed to the improvements. Similar detailed 

investigations have not been reported in the literature. The investigations explored the effects of 

chemical similarity, amount of data labels and relatedness between toxicity assays. 

For standard QSAR models, a key determinant for a model’s performance is chemical similarity 

between the compounds used for training and those on which predictions are made (Sheridan et al., 

2004). For chemicals very dissimilar to the compounds in the training set, a QSAR model typically 

struggles to make reliable predictions. The concept of an AD for a model accounts for this limitation 

(Mathea et al., 2016). This general trend was also observed for the datasets under study in this project 

for the single task methods. While the multi-task imputation models achieved higher scores than 

single task imputation models on all bins of chemical similarity in the datasets, the numerical increase 

in MCC score was higher for less similar compounds. This effect was stronger on the Ames dataset, 

but was also observed on the Tox21 dataset for assays for which a single task QSAR model performed 

particularly poorly on chemically dissimilar compounds. It can be concluded that imputation models 

not only perform better than single task models, but they may also increase the chemical space for 

which a model makes reliable predictions and hence possess a wider applicability domain. 

In a wide sense, imputation means the process of filling gaps in a sparse dataset by leveraging patterns 

present in the dataset. Intuitively, this process should be easier the more complete a dataset is, as 
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more information is available to be exploited. In this study, the role of sparsity in imputation models 

was investigated by dividing the test sets into bins depending on the number of toxicity labels that 

were in the training set for each compound. Unsurprisingly, it was found that the imputation models 

outperformed the single task models by a wider margin for compounds with many toxicity labels in 

the training set. Nevertheless, both multi-task DNN and Macau outperformed XGB models on the 

Ames dataset for compounds with no or just one toxicity label present in the training set, indicating 

that very little information may be sufficient to observe improvement over single task QSAR models. 

The experiments on pairwise FN models confirmed that knowing the label of just a second toxicity 

assay can improve the predictions substantially, although this depends on which assay is used as 

auxiliary assay. In conclusion, imputation models perform better the more information is available, 

but a small amount of information can be enough for an imputation model to be useful. 

A consideration of high practical relevance is which specific toxicity assays should be included in an 

imputation model to obtain the best results. The extent to which a single additional assay could 

contribute to the success of FN models was investigated by training pairwise FN models and LOAO FN 

models. The Ames dataset contains pairs of assays measured in the same bacteria strain (with or 

without metabolic activation) and the respective paired assay seemed to have the largest contribution 

on the FN model of a given assay. Intuitively, this makes sense as these pairs are expected to be closely 

related and hence knowing the outcome of one should be useful to predict the other. The Tox21 

dataset contains two pairs of assays that measure the same target in slightly different test systems 

(NR-AR/NR-AR-LBD and NR-ER/NR-ER-LBD) and hence these assays are also closely related. With the 

exception of the pair NR-AR-LBD/NR-AR (the first being the target assay), those paired assays as 

expected provided the strongest benefit. Nonetheless, some assays that are not obviously related still 

contributed to the success of the imputation model. 

Moreover, the relation between each pair of assays was measured by computing the MI-entropy ratio. 

This metric expresses how much of the total information contained in the target assay is also 

contained in the auxiliary assay. This metric was found to be moderately correlated to the contribution 

of single assays to the success of the full FN models measured as the benefit of pairwise FN models 

over single task models or the loss of LOAO FN models compared to full FN models. While the overall 

correlation was not very high, the largest contributions of single assays were found for closely related 

assays, consistent with the initial findings described above. There are several reasons why a higher 

correlation was not observed. Firstly, the number of training labels is different for each assay, which 

biases the correlation as a higher number of training labels for an assay is generally associated with a 

better performing model. Secondly, the obtained improvement over a single task model is inherently 

linked to the performance of the single task model. The maximal achievable performance of a model 
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for an assay is limited by the experimental uncertainty (Sheridan et al., 2020) and in cases where a 

single task model performs very well (e.g. TA1537) only small numerical increases may be achievable, 

even if an imputation model with a closely related assay (TA1537_S9) is used. More generally, it seems 

that a large increase in MCC score is easier to achieve for an assay where the single task model 

performs poorly. Despite the moderate correlation values, measuring the relatedness between assays 

as done is this project can provide useful insight on which assays are expected to be strong 

contributors to the overall success of an imputation model. In a practical setting, this knowledge can 

guide which in vitro toxicity assays are particularly useful to measure, as these measurements may be 

valuable to predict the outcomes for related toxicity assays using an imputation model. 

In summary, the comparison between multi-task imputation models and single task imputation 

models demonstrated a clear benefit in performance for multi-task models. Additional studies 

provided understanding of which predictions in the dataset benefitted most from the imputation 

approaches and estimated the contribution of single assays to the success of the imputation models. 

This knowledge is useful to develop a suitable strategy for other imputation tasks and is expected to 

be applicable in other chemical datasets for bioactivity rather than toxicity. 

 

5.5 Conclusion 
 

This study found little differences in performance between traditional single task and multi-task QSAR 

models, whereas multi-task imputation models clearly outperformed single task imputation models. 

It must be stated that multi-task imputation uses experimental information about toxicity endpoints 

for test compounds, whereas single task imputation models do not. This is likely the reason why these 

models can achieve much better performance scores.  

Thus far, the imputation models have only been tested on two multi-target in vitro toxicity datasets 

of relatively small size (12 assays). To further investigate the usefulness of multi-task imputation 

techniques, a follow-up study on a larger and more diverse dataset is presented in the next chapter.
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Chapter 6   Imputation on a large-scale toxicity dataset 
 

 

6.1 Introduction 
 

In the previous chapter, multi-task and imputation models were studied on two different toxicity 

datasets, each consisting of 12 assays. It was found that multi-task approaches for imputation clearly 

outperformed single task approaches. However, datasets of in vitro bioactivity and toxicity data are 

often of large scale (hundreds or thousands of assays) and the suitability of imputation approaches 

for these datasets needs to be tested. For that purpose, the ToxCast dataset (Richard et al., 2016) was 

selected as an example for a large-scale toxicity dataset. After the different imputation techniques 

introduced in the previous chapter had been tested on the ToxCast dataset, additional experiments 

to better understand the behaviour of the models were conducted. The GHOST technique (Esposito 

et al., 2021) was used in an attempt to obtain better performing models by shifting the classification 

threshold. Then, the sparsity of the training set was artificially increased to investigate the impact of 

sparsity on the models’ performance. Finally, the usefulness of information theory metrics for the 

selection of auxiliary assays was studied. Those experiments aimed to enhance the understanding of 

imputation models by examining their performance under various circumstances. 

 

6.2 Methodology 
 

6.2.1 Dataset 
 

The ToxCast dataset (Richard et al., 2016) was downloaded from the MoleculeNet platform where it 

is provided with binary labels (Z. Wu et al., 2018). The ToxCast dataset represents a large-scale in vitro 

toxicity dataset, containing 8615 compounds and 617 assays (reduced to 7787 compounds and 416 

assays for this study after standardisation and filtering steps were applied, see below). The dataset 

comprises a wide range of in vitro toxicity endpoints including receptor interaction, enzyme inhibition, 

developmental defects and cell viability. Notably, it includes the assays from the Tox21 dataset. 

The ToxCast dataset is sparser than the datasets studied in the previous chapter with a completeness 

of 35.5%. Large differences exist in data completeness between the assays in the dataset with values 

ranging from 1.4% to 92.1% complete. Overall, 6.9% of the labels are positive (i.e. active), with the 

percentages for individual assays ranging between 0.9% and 82.4%. 
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Compounds were provided as SMILES strings in the dataset. Those were standardised and aggregated 

using the same steps as described in section 5.2.2. To enable a robust model evaluation, only assays 

with at least 50 toxic and 50 non-toxic labels were kept resulting in a dataset of 7787 compounds and 

416 assays. 

Since the goal of this study was to better understand the benefits of multi-task imputation models, 

only assay-based splits (80/20) were applied to the ToxCast dataset. Due to the low number of overall 

labels for some of the assays, the splitting was done in stratified manner (according to toxicity labels).  

 

6.2.2 Model training and evaluation 
 

As in Chapter 5, Morgan fingerprints of radius 2, hashed to 2048 bits were used as chemical 

descriptors. The algorithms used in this study were XGB for single task imputation and XGB-FN, multi-

task DNN and Macau for multi-task imputation. Due to the large number of assays, no specific 

hyperparameter optimisation was performed. Instead, hyperparameter values frequently selected in 

the optimisation procedure in the previous chapter were manually selected. The selected 

hyperparameters are reported in Appendix C (Tables C1, C2 and C3). 

Due to the dataset’s larger scale, evaluation of each model was limited to one model instance resulting 

from a single random seed. Models were evaluated on the test set using MCC and ROC-AUC as metrics. 

 

6.2.3 GHOST methodology 
 

GHOST (generalized threshold shifting procedure) was proposed as a method to automatically find an 

ideal decision threshold for classification models using merely training instances (Esposito et al., 2021). 

In GHOST, a classifier is trained using all training examples and probability scores are determined for 

each training instance. N bootstrap samples are then drawn from all training instances and the optimal 

threshold is found for each sample by trying a range of different thresholds. The chosen decision 

threshold is taken as the median of the individual optimal thresholds. Two different approaches were 

used to find the optimal threshold for a bootstrap sample. In this project, the method originally 

described elsewhere was used (Song et al., 2014), which determines the point of the ROC curve closest 

to the upper left corner (0,1). The GHOST method was applied on the models trained on the ToxCast 

dataset and, as in the original paper, the thresholds considered were: 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 

0.35, 0.4, 0.45, 0.5, 0.55. In the multi-task settings, thresholds were optimized for each task separately. 
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6.2.4 Experiments on sparsity 
 

The effect of overall dataset sparsity on single task and multi-task imputation model performance was 

investigated. In particular, sparsity in the training set was artificially increased by randomly sampling 

1000 labels per assay for model training with all other labels removed. For assays with fewer labels in 

the training set, all labels were kept. The overall completeness of the training set was reduced from 

29.4% to 10.9% in this scheme. Models were evaluated on the same test set as for the models trained 

using all available labels to enable comparison of model performances. 

 

6.2.5 Impact of assay relatedness on model performance 
 

It was investigated to what extent the relatedness between target assay and auxiliary assays can 

explain increased performance of multi-task performance compared to XGB as a single task model. 

Using the MI-entropy ratio (see section 5.2.6.3) to evaluate assay relatedness, for each assay the 

average relatedness to all other assays as well as the average relatedness to the 10 most similar assays 

was computed. Finally, the correlation to the increase in performance over XGB was computed for 

each multi-task technique. 

The usefulness of the MI-entropy ratio to select auxiliary assays from a large dataset was tested using 

one exemplary target assay from the ToxCast dataset. This was the assay ‘TOX21-AromataseInhibition’ 

as it showed a large increase in performance when using multi-task imputation models compared to 

single task models. In addition, the assay possesses a relatively large number of experimental labels 

in the test set (1431 in total with 221 of these toxic), which enables a robust evaluation of model 

performance. Increasing numbers of auxiliary assays (1, 3, 5, 10, 20) were selected either randomly in 

an additive approach (i.e., the 3 sampled auxiliary assays include the assay that was sampled for 1 

auxiliary assay, and so on) or according to the MI-entropy ratio in descending order. For this 

experiment, 20 different random seeds were used during model training for a more robust evaluation. 
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6.3 Results 
 

6.3.1 Comparison of single task and multi-task imputation models 
 

Initially, overall performance of the different techniques was compared using MCC and ROC-AUC as 

metrics. Due to the large number of assays, a comparison of all techniques on a per-assay basis is not 

straightforward to visualise. Instead, scores for individual assays across the dataset were sorted in 

descending order for each technique and are visualised as line plots in Figure 6-1 (A: MCC, 

B: ROC-AUC). A similar visualisation was previously done when evaluating the pQSAR technique 

(Martin et al., 2019). Table 6-1 reports maximal, median and minimal score for each technique. 

 

Figure 6-1 Performance of imputation models on the ToxCast dataset. A: MCC, B: ROC-AUC. Scores for individual assays 
were sorted in decreasing order for each technique. 
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Table 6-1 Overview of performances for different techniques on the ToxCast dataset. Shown are max, median and min 
MCC and ROC-AUC scores across the assays in the ToxCast dataset. 

 XGB XGB-FN MT-DNN Macau 

MCC-max 0.667 0.901 0.762 0.881 

MCC-median 0.207 0.604 0.155 0.544 

MCC-min -0.091 -0.182 -0.241 -0.058 

ROC-AUC-max 0.915 0.998 0.985 0.996 

ROC-AUC-median 0.712 0.934 0.829 0.933 

ROC-AUC-min 0.402 0.481 0.434 0.412 

 

A wide range of MCC scores was obtained for the different models and the different assays. XGB as a 

single task approach was clearly outperformed by XGB-FN and Macau models, confirming the 

superiority of multi-task imputation approaches observed in the previous chapter. For multi-task DNN, 

quite high MCC scores were found for some of the assays (larger max performance than XGB in 

Table 1), yet also very low MCC scores around zero were found for many of the assays. Also, when 

considering ROC-AUC scores, XGB was clearly outperformed by XGB-FN and Macau which achieved 

very similar scores. The ROC-AUC scores for multi-task DNN were between those for XGB and those 

for the other two multi-task imputation approaches. 

It is notable that MCC scores of 0 or even below were observed for some of the assays for all of the 

modelling methods, with these occurring most frequently for multi-task DNN models where more than 

150 assays had such very low scores. Very low MCC scores may be the result of an inappropriate 

classification threshold, as was demonstrated for the SR-p53 assay in the previous chapter (section 

5.3.7). In this study, the GHOST approach was used to investigate the impact of adjusting the 

classification threshold on MCC scores (see following section). Nonetheless, the higher ROC-AUC 

scores clearly support the finding that XGB-FN and Macau were the most performant multi-task 

techniques on the ToxCast dataset. 

 

6.3.2 Using GHOST to adjust classification thresholds 
 

The GHOST methodology was applied to all techniques and assays of the ToxCast dataset in order to 

check whether optimising the classification threshold may lead to higher MCC scores. Shown in Figure 

6-2 are line plots for all techniques, a scatter plot comparing individual assays for Macau with and 

without GHOST and boxplots comparing MCC score distributions for Macau with or without GHOST. 
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Overall, the trends are similar to when GHOST was not used with XGB-FN and Macau outperforming 

MT-DNN and XGB. What can be clearly seen in both the line plot and the scatter plot for Macau is that 

the number of assays with very low scores of around zero was considerably reduced. This means that 

multi-task DNN undoubtedly outperformed XGB, yet it performed still worse than Macau or XGB-FN. 

When focussing on Macau (Figure 6-2B), it can be observed that GHOST was very effective in 

increasing MCC scores for assays with very low scores before (<0.2). In contrast, for assays with high 

scores before (>0.6), performance for the majority of assays was slightly decreased. Overall, this 

resulted in a 75th percentile score lower and a 25th percentile score higher compared to not using 

GHOST for Macau, while the median score was very similar (Figure 6-2C). In conclusion, GHOST may 

be useful to improve models performing poorly due to an inappropriate classification threshold, but 

for already good models a drop in performance may be observed. Due to the mixed results, GHOST 

was not used in the following experiments. 
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Figure 6-2 Performance of the imputation models using the GHOST approach. A: line plots showing performance on the 
test set for all algorithms as in Figure 6-1. B: scatter plot contrasting MCC scores of Macau model for all individual assays. C: 
box plots contrasting distribution of MCC scores for all assays. 

 

6.3.3 Effect of sparsity on model performance 
 

Sparsity is a key determinant for the success of imputation models. In the previous chapter, its effect 

has been studied by binning the test set according to the number of available auxiliary toxicity labels. 

It was found that multi-task imputation models are most effective for compounds where a large 

number of auxiliary toxicity labels is available, corresponding to low sparsity. The larger size of the 

ToxCast dataset enabled a more detailed study of the effect of sparsity on imputation. Labels in the 

ToxCast training set were removed to artificially increase sparsity in the dataset. As described above, 
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the number of training labels was reduced to 1000 for all assays, with no changes made for assays 

with fewer labels in the original dataset. Figure 6-3A shows the performance of Macau, XGB-FN and 

XGB models on the dataset with increased sparsity in comparison to the original models on the same 

test set. In Figure 6-3B and 6-3C, assay-wise performances are contrasted for XGB-FN and Macau, 

respectively, whereby assays with unchanged number of training labels (see above) are coloured in 

red. 

 

Figure 6-3 Performance of models trained on the training set with increased sparsity. A: line plot comparing performances 
of different techniques on the test set. Dotted lines indicate performances of models on original datasets (sparsity not 
increased). B: scatter plot contrasting MCC scores of XGB-FN model for all individual assays. C: scatter plot contrasting MCC 
scores of Macau model for all individual assays. Assays whose number of training points was unchanged (≤1000 data points 
originally) are coloured red, those with reduced number of training points (> 1000 data points originally) are coloured blue 
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The performance across the assays was decreased for both single task and multi-task imputation 

approaches on the data with increased sparsity, however, the multi-task approaches remain clearly 

superior to XGB. Macau seems more robust towards increased sparsity compared to XGB-FN, as the 

decrease in MCC scores is less pronounced for this technique. Decreases in performance were more 

pronounced for assays where training labels were removed (the blue dots in Figure 6-3B and Figure 

6-3C), whereas there was less impact on the scores for assays with fewer labels in the original dataset. 

This may be due to the overall structure of the ToxCast dataset whereby some compounds were tested 

in the majority of assays (Richard et al., 2016). This means that assays with only a few labels are likely 

to contain mostly compounds that were tested in a large number of assays and therefore test 

compounds for those assays will have many experimental labels to use. Even if the overall sparsity is 

increased, the test compounds of these assays will still have a high number of experimental labels, so 

that little or no decrease in performance was observed. In particular, it may be that those auxiliary 

assays most closely related to the target assays (with fewer than 1000 labels) also had fewer than 

1000 labels and hence the most important source of information would not have been removed. For 

a single assay, overall sparsity of the dataset may not be the main determinant for the success of 

multi-task imputation approaches, and it seems that having information from at least some related 

assays may be crucial instead. The effect of assay relatedness on model performance was further 

investigated in the following section. 

 

6.3.4 Impact of assay relatedness on model performance 
 

In the previous chapter, the effect of relatedness between assays was measured using pairwise and 

LOAO FN models. Those experiments investigated the impact of single auxiliary assays. Due to the 

larger number of assays, those experiments would be prohibitively expensive for the ToxCast dataset. 

Instead, mean MI-entropy ratios to either all auxiliary assays or to the 10 with the highest values were 

computed. In Figure 6-4 the correlation between the average MI-entropy ratio and increase in MCC 

score compared to XGB is shown for XGB-FN (all compounds: 6-4A, 10 closest assays: 6-4B) and Macau 

(all compounds: 6-4C, 10 closest assays: 6-4D). 

Naturally, the average MI-entropy ratio for the 10 highest values will be much higher with values of 

up to around 0.35 compared to around 0.07 as highest average value to all auxiliary assays. 

Nonetheless, in all cases similar trends can be observed: a higher average MI-entropy ratio is 

correlated with larger increases in MCC compared to XGB. The correlation for Macau models was 

found to be somewhat stronger than for XGB-FN models (0.727 vs 0.649 for all assays and 0.799 vs 

0.719 for the 10 highest values; Pearson correlation coefficients). Moreover, taking the average for 
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just the 10 highest values was more strongly correlated and hence a better indicator of how well the 

multi-task imputation model (which uses all auxiliary assays) will perform compared to XGB as single 

task model. This suggests that the auxiliary assays most closely related to the target assay play a 

significant role in the observed increases in model score. This hypothesis was followed up in the next 

experiment focussing on a single target assay. 

 

Figure 6-4 Correlation between MCC changes and mean MI-entropy ratio. The mean MI-entropy ratio was either calculated 
for all auxiliary assays or only the 10 highest for the respective target assay. Also shown are Pearson correlation coefficients. 
A: XGB_FN all assays, B: XGB_FN Top-10 assays, C: Macau all assays, D: Macau Top-10 assays. 

 

It was investigated how well multi-task models perform when auxiliary assays to be used in the model 

were selected according to MI-entropy ratio. The performance was compared to the situation when 

an equal number of randomly selected assays was used as auxiliary assays. In Table 6-2 the selected 
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assays (according to MI-entropy ratio and randomly) are shown for TOX21-Aromatase-Inhibition as 

target assay. For the 20 assays selected in total according to this metric, the MI-entropy ranges 

between 0.369 and 0.256. For randomly selected assays, the values are much lower and in the range 

between 0.003 and 0.261 (one of the Top-20 assays was randomly selected). 

The two assays most closely related to the target assays identify antagonists to the thyroid hormone 

receptor (TOX21_TR_LUC_GH3_Antagonist) and the androgen receptor 

(TOX21_AR_BLA_Antagonist_ratio), respectively. The protein of the target assay, aromatase, 

catalyses the conversion from androgens to estrogens. It is plausible that inhibitors of the androgen 

receptor might also inhibit aromatase, for which androgens are the substrate. It is somewhat 

surprising that the assay measuring inhibition of the thyroid receptor is more closely related to the 

target assay. Nonetheless, the thyroid hormone receptor is like the androgen receptor an intracellular 

one with typically hydrophobic ligands, which might explain their relatedness in the assay labels 

(Flamant et al., 2006; Matsumoto et al., 2013). Among the Top-20 assays are further ones related the 

intracellular receptors such as one measuring antagonism to the farnesoid X receptor 

(TOX21_FXR_BLA_antagonist_ratio) (Forman et al., 1995). 
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Table 6-2 Selected auxiliary assays for TOX21-Aromatase-Inhibition. Assays were either selected according to their MI-
entropy ratio or randomly. 

Assays selected according to MI-
entropy ratio 

MI-
entropy 

ratio 

Randomly selected assays MI-
entropy 

ratio 

TOX21_TR_LUC_GH3_Antagonist 0.369 ATG_RARb_TRANS_dn 0.018 

TOX21_AR_BLA_Antagonist_ratio 0.308 TOX21_MMP_ratio_up 0.019 

BSK_SAg_CD40_down 0.295 ATG_Oct_MLP_CIS_up 0.124 

BSK_SAg_CD69_down 0.289 ATG_DR4_LXR_CIS_dn 0.136 

TOX21_AR_LUC_MDAKB2_Antag
onist2 

0.287 ATG_HSE_CIS_dn 0.003 

TOX21_AR_LUC_MDAKB2_Antag
onist 

0.284 OT_ER_ERaERa_1440 0.007 

BSK_LPS_SRB_down 0.279 ATG_Ets_CIS_dn 0.048 

BSK_4H_Pselectin_down 0.276 BSK_3C_HLADR_down 0.253 

BSK_3C_Proliferation_down 0.270 BSK_KF3CT_IP10_down 0.209 

BSK_3C_Vis_down 0.270 BSK_hDFCGF_TIMP1_down 0.206 

NCCT_HEK293T_CellTiterGLO 0.269 TOX21_HSE_BLA_agonist_ch2 0.043 

BSK_SAg_SRB_down 0.267 TOX21_VDR_BLA_agonist_ch2 0.004 

BSK_3C_SRB_down 0.267 NVS_ADME_hCYP19A1 0.073 

TOX21_FXR_BLA_antagonist_rati
o 

0.267 APR_HepG2_MicrotubuleCSK_24h_dn 0.047 

BSK_CASM3C_Proliferation_dow
n 

0.265 BSK_SAg_MIG_down 0.246 

BSK_SAg_CD38_down 0.261 BSK_LPS_MCP1_down 0.261 

BSK_LPS_MCP1_down 0.261 ATG_NRF2_ARE_CIS_up 0.121 

BSK_3C_IL8_down 0.261 BSK_3C_uPAR_down 0.214 

BSK_SAg_IL8_down 0.257 NHEERL_ZF_144hpf_TERATOSCORE_u
p 

0.131 

BSK_SAg_MCP1_down 0.256 TOX21_PPARd_BLA_Antagonist_ch1 0.012 

 

For model training, 1, 3, 5, 10 or 20 auxiliary assays were selected. MCC score ranges of models are 

shown for XGB-FN models and Macau models in Figure 6-5A and 6-5B, respectively. As a comparison, 

scores of XGB and the respective full multi-task imputation model (using all auxiliary assays) were 

added. 
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Figure 6-5 Auxiliary assay selection for the assay ‘TOX21-Aromatase-Inhibition’. Auxiliary assays were selected according 
to the MI-entropy ratio (‘similarity_added’) or randomly (‘random_added’). As a comparison, performance of XGB as a single 
task model and the respective multi-task model using all remaining auxiliary assays were included. Plotted are the MCC 
scores for the test set across 20 runs with different random seeds. A: XGB-FN models. B: Macau models. 

 

For both XGB-FN and Macau, those models trained with auxiliary assays selected with the MI-entropy 

ratio criterion clearly outperformed those trained with randomly selected auxiliary assays. Macau 

models trained with the 20 most similar assays even performed slightly better than the models with 

all assays. For both XGB-FN and Macau, adding just one auxiliary assay provides a clear improvement 

over XGB models with a further strong increase after two more assays (three in total) were added. For 

the random assay selection, clear improvements were only observed after at least 10 assays were 

added. As can be seen in Table 6-2, some of the randomly selected auxiliary assays have relatively high 

MI-entropy ratios (>0.2). This may explain why clear improvements in model scores were also 

observed when assays were selected randomly. 
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6.4 Discussion 
 

The findings in this chapter confirm the conclusion from the previous chapter that multi-task 

imputation models are superior to single task models. XGB was clearly outperformed by XGB-FN and 

Macau on the ToxCast dataset. Multi-task DNN outperformed XGB when using ROC-AUC as metric, 

although for many assays a MCC score of 0 was obtained which hinted at the decision threshold being 

inappropriate as the result of imbalanced training data. The GHOST methodology was therefore 

applied to the models in order to optimise the thresholds individually for each assay and method. The 

optimised multi-task DNN model outperformed the single task XGB, however, it did not perform as 

well as XGB-FN and Macau. Across the different techniques, the GHOST approach was successful in 

improving MCC scores for assays with poor scores (MCC in many cases 0) when the default threshold 

was inappropriate. However, for assays with high scores using the default threshold, a slight decrease 

in MCC score was found for some assays. It can be concluded that the GHOST approach may be helpful 

when applied to imputation models, yet it should not necessarily be applied to all the assays. 

Situations where the GHOST approach seems useful are when assays have a poor MCC score, and the 

ROC-AUC score indicates reasonably good performance in ranking toxic compounds higher than non-

toxic ones. In particular, it may be that the GHOST approach would be successful in improving the 

performance of Macau on assays from the Tox21 dataset, for which Macau achieved relatively good 

ROC-AUC scores but poor MCC scores. For the p53 assay it was already shown in the previous chapter 

that a classification threshold different to 0.5 would have led to a higher MCC score. However, in that 

case a range of different thresholds was evaluated on the test set. In practice, only training data may 

be used to optimize, as it is done in GHOST (Esposito et al., 2021). 

Even when GHOST was used, multi-task DNN performed worse than XGB-FN and Macau on the 

ToxCast dataset. This is different to the smaller datasets used in the previous chapter where multi-

task DNN achieved very competitive scores. It could be that a more careful selection of 

hyperparameters including architecture may be required for better scores. In general, it may be 

challenging for a multi-task DNN to achieve competitive scores on a large number of assays with widely 

different numbers of training instances. A number of different weighting schemes (including weighting 

on task size, i.e. numbers of labels per assay) for different tasks in a traditional multi-task DNN were 

tested in a recent study (Humbeck et al., 2021). However, the study found at best very little 

improvements in comparison to unweighted training which would indicate that it may be very 

challenging to further improve the performance of the multi-task DNN models in the present study. 

In the previous chapter, it was shown that multi-task imputation models perform better for 

compounds with a large number of experimental labels for auxiliary assays available, but also that 
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very little information may be sufficient to outperform single task models. In this chapter, the impact 

of artificially increasing sparsity was investigated. The completeness of the training set was 

considerably reduced from 29.4% to 10.9% (by only keeping 1000 labels per assay) in a conducted 

experiment. It was found that increased sparsity reduces performance for both single task and multi-

task imputation models. Nonetheless, multi-task imputation models remained clearly superior to XGB 

which further supports the notion that relatively little information may be sufficient for multi-task 

imputation models to be successful. 

Other experiments investigated the relevance of additional information by analysing the relatedness 

between target assay and auxiliary assays. In the previous chapter, it was shown using pairwise and 

LOAO FN models that some auxiliary assays may be more useful than others for a particular target 

assay. To some extent the relatedness evaluated using the MI-entropy ratio could explain those 

effects. In this chapter, it was confirmed that the relatedness between assays is a key determinant for 

the success of multi-task imputation models. It was shown that the benefit of a multi-task over single 

task models is correlated with the average MI-entropy ratio to auxiliary assays (both all and the Top-

10 most related). Moreover, it was shown for an exemplary target assay how the MI-entropy ratio can 

be used to identify the most useful auxiliary assays. 

Clearly, both the type and amount of information in the form of experimental labels for auxiliary 

assays determine the success of imputation models. Having many auxiliary labels and, in particular, 

labels of closely related assays lead to the largest improvements in model performance. The 

MI-entropy ratio introduced in this work provides a useful means to formalise and quantify the 

concept of relatedness between different toxicity assays.  

 

6.5 Conclusion 
 

Naturally, multi-task imputation approaches are restricted to predict toxicity for compounds where 

the toxicity has already been measured for other endpoints. A very common application of QSAR 

models is to predict toxicity of virtual compounds, i.e. compounds that were not yet synthesised and 

therefore no information about any toxicity endpoints is available. This situation corresponds to 

traditional multi-task modelling and no substantial benefit over the best single task approaches should 

be expected in most situations. 

For toxicity predictions across different endpoints for compounds with no available toxicity data, 

multi-task DNNs may be the best choice. Depending on the dataset, these models might provide a 

slight benefit in performance over single task models. Furthermore, the use of a multi-task DNN can 



Chapter 6: Imputation on a large-scale toxicity dataset 

116 
 

save computation time compared to the training of single task QSAR models for each individual 

endpoint. Generally, a prerequisite of deep learning methods is the availability of sufficient data 

(usually several thousand compounds for QSAR models). For the datasets under study, XGB was found 

to be the best performing single task QSAR model and it is also a time efficient algorithm, which makes 

it a good default choice for single task QSAR models. XGB may have many hyperparameters that need 

to be selected, but a previous study provides a good starting point for QSAR models (Sheridan et al., 

2016). 

Multi-task imputation models should be considered if toxicity predictions are to be made for 

compounds which have already been characterised in some toxicity tests. This may be the case when, 

for instance, a drug candidate was already tested in some in vitro toxicity assays or if additional toxicity 

endpoints need to be evaluated for industrial chemicals, as governed under the REACH regulation. As 

clearly shown in the present study, the inclusion of data for other toxicity endpoints may yield superior 

QSAR models. Endpoints closely related to the target endpoint are most valuable. Related endpoints 

can be identified using a toxicologist’s intuition or objective criteria such as correlation based on 

numerical data or metrics like the MI-entropy ratio for categorical data. However, even endpoints that 

are not obviously related to each other may still prove useful in imputation models. 

A well-defined applicability domain is essential to use a QSAR model to support a regulatory decision. 

The present study suggests that imputation models can make reliable predictions for a wider chemical 

space. Hence, imputation models may be particularly useful in situations where the applicability 

domain limits the use of QSAR models in practice. In conclusion, imputation models have the potential 

to improve the performance of QSAR model for toxicity prediction used in practice and to extend the 

range of situation where their use would be justified to replace other testing methods.



Chapter 7: Interpretation of neural networks for QSAR modelling 

117 
 

Chapter 7   Interpretation of neural networks for QSAR 

modelling 
 

 

Interpretability of QSAR models is an important issue, especially when they are used to make high-

stakes decisions in the context of evaluating the safety of chemicals. Being able to understand why a 

model made a particular decision increases the confidence in the predictions and thus the acceptance 

of the model tremendously. This point is also reflected in the fifth OECD principle for the use of QSAR 

models in the context of regulatory decision making which states that models should be interpretable 

(OECD, 2004). Neural networks (especially DNNs) have been found to be a very well-performing 

algorithm for QSAR modelling. However, their complex structure (i.e. composition of numerous non-

linear functions) precludes a straightforward and intuitive way of interpreting their models, which is 

why they are often referred to as black boxes (Loyola-Gonzalez, 2019).  

Several approaches to achieve interpretability for DNNs and other ML algorithms in the context of 

QSAR modelling have been described. One possibility is to assign importance to input features. This 

can be done either globally (i.e. the importance of features for the model’s overall performance) or 

locally (i.e. the importance of features for the model’s individual predictions) (Jiménez-Luna et al., 

2020). Methods that determine local feature importance are also called attribution methods. Some 

attribution methods have been specifically developed for neural networks (gradient-based), while 

others can be applied to any ML technique (e.g. LIME, SHAP, perturbation methods). Other 

approaches attempt to interpret neural networks by exploring the chemical meaning of neurons in 

hidden layer of the networks. 

 

7.1 Feature attribution methods 
 

Local importance can be determined by approximating the complex model 𝑓 with a simple, 

interpretable one 𝑔, as done in the LIME (Local Interpretable Model-agnostic Explanations) approach 

(Ribeiro et al., 2016). The explanation model in LIME has the form: 

𝑔(𝑥) =  𝜙0 +  ∑ 𝜙𝑖𝑥𝑖

𝑀

𝑖=0
 

Where 𝑥 is a binary vector representation of the data instance to be explained of dimensionality 𝑀 

and 𝜙𝑖 is the coefficient indicating the importance of the 𝑖𝑡ℎ element of 𝑥. To train the explanation 
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model, artificial instances are generated which represent sampled subsets of the bits set on the vector 

of the instance 𝑥. These artificial instances are labelled using the original model 𝑓. The explanation 

model is of linear form and during training higher weight is given to artificial instances more similar to 

𝑥 according to some similarity measure. The LIME approach has not been widely used with QSAR 

modelling thus far, however, it was used recently with the aim to identify relevant features in a k-NN 

model trained to predict activity of compounds against Psudomonas aeruginosa (Bugeac et al., 2021). 

However, the authors did not demonstrate the validity of the LIME approach in combination with 

QSAR models (i.e. showing that the method identifies features known to be relevant for a certain task). 

The SHAP (Shapley Additive Explanations) method (Lundberg & Lee, 2017) was first applied to QSAR 

models by Rodriguez-Perez and Bajorath (Rodríguez-Pérez & Bajorath, 2020a) and can be considered 

an extension to LIME. This method combines a linear feature attribution model with the concept of 

Shapley values, which, originating in game theory (Shapley, 1953), allocate contributions to 

participants of a collaborative game. Applied to model interpretability, this concept can be used to 

measure the contribution of individual features to a model’s prediction of an instance. Shapley values 

measure the importance 𝜙 of a feature 𝑖 to a prediction as the change in the model’s prediction when 

the feature is added, averaged over all permutations of feature subsets according to the formula 

𝜙𝑖 =  
1

𝑁!
 ∑ |𝑆|! (|𝑁| − |𝑆| − 1)! [𝑓(𝑆 ∪ {𝑖}) − 𝑓(𝑆)]

𝑆⊆𝑁\{𝑖}

 

Where 𝑁 is the number of features and 𝑆 are the feature subsets not containing 𝑖. This approach is 

prohibitively expensive, as it requires retraining the model with all possible feature subsets. However, 

by sampling artificial instances, a local explanation model similar to LIME can be trained where the 

feature attribution values represent approximated Shapley values. SHAP is a model-agnostic approach 

and hence can be used to explain any supervised machine learning model based on a binary input 

vector. 

Rodriguez-Perez and Bajorath used SHAP in combination with a variety of QSAR models. They tested 

the approach with different ML algorithms (RF, SVM, DNN), and two different chemical fingerprints 

(ECFP4 and MACCS) on 10 bioactivity classification datasets retrieved from ChEMBL. The method 

outputs a SHAP value for each feature of an instance expressed as a positive or negative contribution 

towards the prediction. The validity of the concept was confirmed in an experiment where descriptors 

with high SHAP values were removed prior to model training. This led to a strong decrease of global 

model performance, while the removal of randomly selected features resulted merely in a slight 

decrease of model performance. By mapping the top-ranked features back to the instance’s molecular 
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structure, atoms contributing strongly to a prediction can be highlighted leading to a visualisation of 

the model interpretation. 

A different method specific for interpreting predictions made by neural networks is called integrated 

gradients (IG) (Sundararajan et al., 2017). IG belongs to the gradient-based methods (Ancona et al., 

2018) which assign importance to an input feature by determining its gradient with respect to the 

model output (i.e., the partial derivative for the feature value of a given instance). Gradient-based 

methods can only be applied to differentiable models (DNNs are differentiable). In the IG method, the 

gradient of each feature is integrated along a straight line between an input vector 𝑥 and a baseline 

vector 𝑥′ (in the case of chemical fingerprints the baseline vector is when all bits are set to zero). The 

straight path between 𝑥′ and 𝑥 can be described with the term 

𝑥′ +  𝛽 × (𝑥 − 𝑥′) 

Where 𝛽 takes values in the range [0,1]. The attribution 𝛼 for a feature 𝑖 of an instance 𝑥 is computed 

by 

𝑎𝑖(𝑥) = (𝑥𝑖 − 𝑥𝑖
′) ∫

𝜕𝐹(𝑥′ + 𝛽 × (𝑥 − 𝑥′))

𝜕𝑥𝑖
𝑑𝛽

1

𝛽=0

 

Where 𝐹() is the neural network model. In practice, the integral can be approximated by replacing it 

with a sum of partial derivatives evaluated at 𝑚 equally spaced steps on the path from 𝑥′ to 𝑥 as 

follows: 

𝑎𝑖(𝑥) ≈ (𝑥𝑖 − 𝑥𝑖
′) ∑

𝜕𝐹(𝑥′ +
𝑘
𝑚 𝑥(𝑥 − 𝑥′))

𝜕𝑥𝑖
 ×

1

𝑚

𝑚

𝑘=1
 

A useful property of IG is that the sum of all attributions for a given instance 𝑥 is equal to the difference 

in the model’s output for 𝑥 and the baseline 𝑥′. IG has been applied to QSAR models together with 

Morgan fingerprints (Preuer et al., 2019). Similar as for the SHAP approach, positive and negative 

contributions of fingerprint bits can be mapped back to atoms of a test compound. To visualise the 

interpretation of a prediction, atoms with high positive or negative attribution can be highlighted with 

colours. IG has also been applied to GCNs (Jiménez-Luna et al., 2021). 

Other commonly used approaches are based on manipulating input instances (also known as 

perturbation-based) and these are model-agnostic (i.e. applicable to any model). For instance, the 

method ‘similarity maps’ (Riniker & Landrum, 2013) determines the importance of atoms to a model 

prediction by removing fingerprint bits associated with the respective atom and comparing the 

prediction for the modified fingerprint to the reference fingerprint belonging to the unmodified 
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compound. A similar approach extends the idea to determine contributions of arbitrary fragments (P. 

G. Polishchuk et al., 2013). To determine the contribution of the selected fragment to a prediction, 

the prediction for the original compound is compared to the prediction for the modified compound 

after removal of the fragment. The difference in prediction then is attributed to the removed 

fragment. This can also be applied to combinations of distant fragments to test for synergistic effects. 

The validity of both methods was evaluated by focussing on compounds where the importance of 

substructures to the observed activity is known. In another study functional groups were added to 

existing compounds and the difference in predicted activity was used to estimate the effect of 

modifications to the compound (Wenzel et al., 2019). This approach is intended to aid medicinal 

chemist in modifying lead compounds to obtain desired molecular properties. 

In most of the above mentioned studies, the proposed method was validated by reporting examples 

where the provided explanation matches the true cause of activity. However, no thorough evaluation 

across a complete dataset was conducted. Sheridan used a perturbation-based approach to 

investigate the robustness of attribution methods with regard to different ML algorithms (including 

DNNs, RFs and XGBoost) and chemical descriptors (including ECFP4, APDP, DRUGBITS as a fingerprint 

describing common groups found in drugs) on a range of datasets (Sheridan, 2019). It was observed 

that the determined atom attributions are very sensitive to the selected method-descriptor pair, and 

more sensitive than the corresponding predictions of molecules’ activities. Moreover, by using data 

sets where the theoretical contribution is fully known (e.g. the ‘activity’ of a compound was defined 

as the to the number of negative charges in the compound), it was shown that not all models yield the 

expected atom contributions. These findings demonstrate that the atom colouring is not as robust as 

was expected and Sheridan concluded that more studies are required to validate the suitability of a 

particular attribution method on a range of datasets and chemical descriptors. Recently, the use of 

benchmark datasets for interpretability of QSAR models was proposed (Matveieva & Polishchuk, 

2021). The publication contains a range of synthetic datasets for regression and classification tasks 

where the ‘activity’ of compounds is fully determined by the presence of certain atoms, functional 

groups or pharmacophores. One main conclusion from that study was that high prediction accuracy is 

a prerequisite to achieve good model explanations, yet a good prediction does not guarantee good 

explanations. Making use of benchmark datasets seems like a sensible approach to advance the field 

by identifying the most useful techniques. 
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7.2 Interpretation of hidden layers 
 

While feature attribution methods can be useful to understand the predictions made by a DNN, they 

do not shed light on the precise mechanisms by which learning in the network happens. Hidden layers 

of a DNN perform non-linear transformations on the representation input into the network. For a 

network to make accurate predictions of toxicity, the hidden layers need to encode chemical features 

linked to the task the DNN was trained on. Several studies have investigated the chemical information 

encoded in hidden layers. 

In analogy to classical chemical fingerprints, the activations of neurons in a hidden layer can be 

considered as a neural fingerprint that has learned a chemical representation tailored to solve the 

prediction task (Menke & Koch, 2021). In the cited study the neural fingerprint was used in a similarity-

based virtual screening experiment. In order to find actives for a given target, compounds with a 

similar neural fingerprints (taken from a DNN trained to predict activity on the target) to a query 

compound were retrieved. In a different study, the similarity of activations across all hidden layers 

was proposed as a measure of task-specific chemical similarity (Allen et al., 2020). By retrieving 

training compounds most similar to a test compound, this metric was used to support and rationalise 

the model’s predictions. Sosnin et al. used DNNs to predict acute toxicity and analysed the hidden 

representations of chemicals with the t-SNE method, which embeds them in a 2D space (Sosnin et al., 

2019). Distinct clusters of compounds having high acute toxicity emerged, which presumably 

correspond to different mechanisms of toxicity. All those studies demonstrated that hidden 

representations of chemicals in DNNs are meaningful in the context of the investigated bioactivity or 

toxicity tasks. However, no attempts were made to explicitly extract the chemical meaning learned in 

the hidden layers. 

Information learned by DNNs has been most extensively studied for visual tasks performed by CNNs. 

It has been shown that a DNN constructs features of increasing complexity throughout the different 

layers of the network (Lee et al., 2011). When detecting faces, for instance, lower layers detect simple 

structures like blobs and edges from the raw pixels, while deeper layers combine those simple 

structures to more complex objects such eyes and noses. Analogously, when learning representations 

for chemicals, a DNN may detect the presence of simple substructures in the lower layers and combine 

those to more complex substructures that are meaningful for the task at hand.  

Some attempts have been made to understand the chemical features learned in hidden neurons of a 

DNN. It was shown on the Tox21 dataset that the activation of hidden neurons can be correlated to 

the presence of toxicophores (known toxicophores for various toxicity endpoints were considered) in 
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the compound (Mayr et al., 2016). Furthermore, it was shown that the size of detected toxicophores 

(in atoms) increases in deeper layers (Preuer et al., 2019). However, those studies did not investigate 

whether those detected toxicophores are related to the modelled toxicity endpoints of the Tox21 

dataset. A hidden neuron may in principle be responsive to a chemical pattern without the network 

using this information for the eventual prediction. The two cited studies shed some light on the 

mechanisms by which DNNs may learn features, but no attempts were made to leverage this 

information to interpret predictions made by a specific model. 

 

7.3 Objectives 
 

The aim of this project is to interpret QSAR models for toxicity prediction based on neural networks 

by understanding what chemical patterns are learned by single neurons of a network. Similar efforts 

have been made for image recognition tasks and are referred to as feature visualisation or activation 

maximisation (A. Nguyen et al., 2019; Olah et al., 2017). Approaches to achieve this include (i) 

inspecting exemplary images that strongly activate a neuron (Szegedy et al., 2014), (ii) optimising 

images in the input space to strongly activate a neuron (Erhan et al., 2009) and (iii) using generative 

models with the objective to create images that strongly activate a neuron (A. Nguyen et al., 2016). 

For the task of predicting toxicity of chemicals, it is of interest to find chemical (sub-)structures that 

strongly activate a neuron. Approaches for feature visualisation are distinct from approaches 

attributing importance to input features. The former approaches return features learned in hidden 

layers of the network, while attribution methods determine what features in the input space drive a 

prediction. In the domain of image recognition, feature visualisation and attribution have been used 

complementarily to enhance the understanding of a DNN (Olah et al., 2018). 

In this project, neural networks based on substructure fingerprints, specifically Morgan Fingerprints 

from the RDKit package, are used. Initially neural networks consisting of a single hidden layer are 

considered before attempting to extend the developed approaches to DNNs. Based on trained neural 

networks, the following objectives were pursued and are described in different chapters of this thesis: 

 To explore the space of neuron activations of training compounds including correlations 

between different neurons and the link between activation of single neurons and the 

prediction made by the network. (Chapter 8) 

 To explore chemical patterns detected by single neurons using both training compounds and 

learned weight parameters of the network. (Chapter 8) 
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 To develop a method to automatically annotate hidden neurons of a neural network with 

substructures that activate the neuron and compare the detected substructures to known 

toxicophores. (Chapter 9 and 10) 

 To develop a method that combines substructures known to activate hidden method with an 

attribution method measuring the importance of a neuron to a prediction and compare this 

method to a feature attribution method. (Chapter 10) 

 To apply the developed methods to DNNs (2 hidden layers). (Chapter 11)
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Chapter 8   Exploration of chemical features learned in 

hidden neurons of neural networks 
 

 

8.1 Introduction 
 

Neural networks and deep neural networks (DNNs) represent popular techniques for toxicity 

prediction, which are considered as difficult to interpret black-box models. To gain a better 

understanding of their inner workings, this chapter explores characteristics of a neural network model 

containing a single hidden layer trained for predicting toxicity. The fundamentals about neural 

networks have been described in section 3.4.8.  

The overarching aim of the work in this chapter is to understand how the network has learned to 

predict toxicity by identifying the role of individual neurons of the network. Specifically, it is 

investigated whether chemical (sub-)structures can be identified as causes for the activation of 

individual neurons. This can be considered as an application of feature visualisation, which is a 

technique used in image recognition tasks to understand what visual stimuli a hidden neuron responds 

to (Olah et al., 2017). In a binary classification task, features learned in hidden neurons may be linked 

to positive or negative predictions. Here, features learned by neurons linked to toxic predictions are 

inspected with the aim of identifying chemical features linked to toxicity. 

The chapter begins by introducing the data to be explored and the basic model building process. The 

methodology is then presented including a brief introduction to the structure of a neural network. In 

particular, a description is provided of how activation of hidden neurons results from the compound’s 

chemical features and learned model weights. Confidence is introduced as a means to evaluate links 

between activation of individual neurons and predictions made by a model. The feasibility of the 

intended concept is explored on a relatively simple neural network with just one hidden layer. In a 

first step, general analyses on neuron activations were conducted, namely inspecting the range of 

activations for various hidden neurons. In a further analysis, correlations between the activations for 

different hidden neurons were evaluated to determine whether different neurons may learn similar 

features. In the following steps, attempts were made to determine which chemical features are 

detected by a specific hidden neuron. This was done by inspecting both compounds that strongly 

activate the neuron and fingerprint bits that have high learned weights in the hidden neuron. Finally, 

it was investigated how certain known toxicophores cause activations of various neurons across the 
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network to gain insights in the workings of the network as a whole. All of the analyses served the 

purpose of determining whether chemical features causing activation of hidden neurons can be found. 

 

8.2 Methodology 
 

8.2.1 Dataset 
 

Ames mutagenicity was selected as the toxicity endpoint for this study, as it represents a well 

understood mechanism of toxicity and many different toxicophores have been identified (Kazius et 

al., 2005; Sushko et al., 2012). This means there are clear expectations on the chemical features a 

neural network needs to discover to accurately predict Ames mutagenicity and therefore features 

identified by the neural network can be compared to known causes for mutagenicity as a means of 

validation. To obtain the Ames dataset for this study, data from the following sources were combined: 

 A curated version of the Hansen dataset (Hansen et al., 2009) created by Sherhod et al. 

(Sherhod et al., 2014) 

 The ISSSTY dataset (Benigni et al., 2013) 

 The EURL-ECVAM (European Union Reference Laboratory for Alternatives to Animal Testing) 

Ames positives DB (Corvi & Madia, 2017) 

 CGX (Carcinogenicity Genotoxicity experience) database (Kirkland et al., 2005) 

 Genotoxicity and Carcinogenicity database for marketed pharmaceuticals (Snyder, 2009) 

The ISSSTY dataset contains data for a number of different bacteria strains as well as a label for the 

‘overall call’ (positive if at least one strain is positive). In this study, the overall call was used. Only 

compounds labelled as negative or positive were kept, compounds labelled as equivocal or 

inconclusive were removed. The other sources contain data for an overall call only (that is, a single 

label). The curated Hansen dataset contains binary labels and no further changes were made. For the 

EURL-ECVAM dataset, compounds labelled as equivocal were removed. This dataset originally 

contained no SMILES strings. Where possible, SMILES strings were retrieved from CAS numbers using 

the CIRpy package in Python (Swain, 2015). For the remaining data sources, compounds with missing 

or equivocal labels were removed. After these processing steps, each compound was labelled with a 

binary outcome for the Ames Test. 

Subsequently, the SMILES of all compounds were standardised using the same procedure as described 

in Chapter 5. In the following, data instances with identical SMILES were aggregated using a majority 
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vote of the labels. If equal numbers of positive and negative labels were found for a given SMILES, the 

compound was dropped from the final dataset. The final dataset consists of 7662 compounds. 

The dataset was split into a training set, a validation set and a test set using a random split with 

proportions 80:10:10. The neural network model instance used in this chapter was obtained by 

training on the training dataset and evaluating on the validation set as described in the following 

section. The explorative analyses in this chapter were done using the training set. The validation set 

was used for hyperparameter optimisation of the model and is used in the following chapter to 

develop and validate a method to extract chemical features causing hidden neuron activation. The 

test set was held back for final evaluation. 

 

8.2.2 Model training 
 

The investigations in this chapter are applied to a neural network model containing a single hidden 

layer to test the intended approach initially on a fairly simple model. In Chapter 11, the investigations 

will be extended to DNNs. The model instance was obtained using a grid search for hyperparameter 

optimisation. The evaluated and selected parameter values are given in Table 8-1. The models were 

implemented in Pytorch (Paszke et al., 2019) with binary Morgan fingerprints of radius 1 mapped to 

2048 bits used as chemical descriptors. Using radius 1 gave the best model performances in 

preliminary studies (results not shown). The ReLU activation function was used for neurons in hidden 

layers. In all cases, binary cross entropy was used as the loss function and optimised using the Adam 

optimiser.  

Table 8-1 Parameters used for hyperparameter optimisation. Selected parameters in bold. 

Hyperparameter Tested values 

Neurons per layer 512, 1024, 2048 

Batch size for optimisation 16, 32, 64 

L2 regularisation of neuron weights 0, 0.00001, 0.001 

Dropout 0, 0.2, 0.5 

Learning rate 0.0001, 0.00033, 0.001 

 

Each model was trained for a maximum of 10 epochs using early stopping to prevent overfitting. 

Specifically, the performance on the validation set was recorded after each epoch and the best 

performing model instance (after a particular epoch) was retained. The models were evaluated using 
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ROC-AUC score. The best performing model instance was used throughout this chapter. As can be 

seen in Table 8-1, the obtained model instance’s hidden layer contains 512 neurons. The performance 

of the obtained model is reported in the results section. 

 

8.2.3 Neural network structure 
 

Figure 8-1 shows the architecture of a DNN with two hidden layers. Each data instance (for training or 

prediction) is represented as a feature vector provided in the input layer to the network. For this 

project, substructure fingerprints were used as chemical descriptors. Each bit set on in a substructure 

fingerprint can be attributed to a defined substructure. In the case of RDKit’s Morgan Fingerprint, 

substructures are circular chemical environments centred at a particular atom of the compound. 

 

Figure 8-1 Architecture of a DNN. Shown is the architecture of a simple (feedforward) DNN with 2 hidden layers. On the 
right side, equations for all neurons highlighted in red are provided. 

 

When a test compound is entered into a trained network, a numerical activation value is computed 

for each neuron, which depends on activations of neurons in the preceding layer as well as learned 

weights and biases. Specifically, each neuron is connected to all of the neurons of the preceding layer 
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by particular learned weights. This means that a neuron in the first hidden layer receives input directly 

from all bits of the chemical fingerprint used as input. In general, the activation of each hidden neuron 

represents a linear combination of neuron activations in the preceding layer followed by the 

application of a non-linear activation function. Thus, neurons in the second hidden layer receive inputs 

from the first hidden layer and so on. Activation of a hidden neuron for a particular data instance (train 

or test compound) refers to the numeric value the neuron holds after application of a non-linear 

activation function as shown in the equations in Figure 8-1. In general, activations are dimensionless 

have no explicit meaning in the network beyond that. 

While activation values have no apparent meaning, a model capable of accurately predicting toxicity 

must contain some information related to the modelled toxicity endpoint in its hidden representation. 

In each hidden layer, the representation of an instance is transformed into a different form encoding 

information linked to the compound’s toxicity. This is achieved during training by tuning weights and 

biases to minimise the loss on training instances. Properties such as toxicity of a chemical are linked 

to its structure and hence it is expected that activation of hidden neurons corresponds to some 

meaningful representation of a chemical’s structure. Specifically, individual neurons may when 

activated detect the presence of chemical groups linked to toxicity (i.e. toxicophores). 

Neurons in the last (here second) hidden layer are directly linked to the output neuron of a network. 

For binary classification tasks, a sigmoid function is normally applied to the output neuron in order to 

obtain an estimated probability for the toxic class. Zero as input to the sigmoid function yields an 

estimated (default) probability of 0.5. Hence, activation of neurons in the last hidden layer possessing 

a positive output weight contribute towards an instance being predicted as toxic, whereas the 

opposite is the case for neurons with a negative weight. Inspecting the output weights of neurons in 

the last hidden neuron can be used to determine whether features learned in them are relevant for 

toxic or non-toxic predictions. 

A different method to determine the association of a hidden neuron to an output class is computing 

its confidence (of a positive prediction) for training compounds. This requires the activations of hidden 

neurons to be binarised using an activation threshold. 

The confidence of a neuron is calculated according to the following formula: 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒𝑛𝑒𝑢𝑟𝑜𝑛 =  
𝑛𝑛𝑒𝑢𝑟𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑 𝐴𝑁𝐷 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛

𝑛𝑛𝑒𝑢𝑟𝑜𝑛 𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑒𝑑
 

where 𝑛 is the count of training compounds fulfilling the stated conditions. For instance, if 100 

compounds possess an activation higher than a selected threshold (e.g., 0.25) and 90 of these 

compounds are predicted as toxic, then a confidence of 0.9 is obtained which indicates a strong link 
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between activation of the neuron and toxic predictions. This method is not restricted to neurons in 

the last hidden layer, it can be applied to all hidden neurons. 

 

8.2.4 Exploration of neuron activations 
 

In a first attempt to understand the characteristics of the network’s hidden layer, neuron activations 

for training compounds were explored. Specifically, for each hidden neuron, the maximum and the 

average activation values were determined. Then, the distribution of those values obtained for all 

hidden neurons was analysed. 

Next, in order to gain some understanding of the relations between different neurons, the pairwise 

correlations of neuron activations for all training compounds were computed. Each hidden neuron has 

an activation value for each training compound and hence can be represented as an n-dimensional 

vector (here n=5889, i.e., the number of training compounds). The pairwise correlation between two 

neurons was computed as the Pearson correlation coefficient between the neurons’ vectors.  

To further explore the role of hidden neurons within the network, their link to positive and negative 

predictions was investigated. For the activation of each hidden neuron, the confidence of a positive 

prediction was computed, as defined above. This analysis requires a threshold to be set for the 

activation value to determine when a neuron is activated. Since this selection is arbitrary, different 

threshold values were examined.  It is worth noting that these thresholds are merely artificial 

constructs to support this analysis. In practice, activation of a neuron is not a binary process, and 

instead defined by the equations shown in Figure 8-1. 

 

8.2.5 Exploration of chemical features learned in hidden neurons 
 

Two different sources of information were considered to attempt to identify chemical features 

responsible for neuron activation: first, the compounds most strongly activating a neuron; and second, 

the bits of the chemical fingerprint having high weights for the neuron. Neurons linked to toxic 

predictions according to confidence values were analysed, as these are expected to detect chemical 

features responsible for a compound being mutagenic. In addition, some neurons linked to non-toxic 

predictions and neurons with neutral confidence values were also analysed. The analysed neuron was 

characterised as being associated with toxic or non-toxic predictions, and confidence values (for 

different thresholds) and its output weight (to the single neuron in the output layer, see above) are 

reported. 
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For the compound analysis, the 12 training compounds most strongly activating the neuron (referred 

to as Top-12 compounds) are displayed and common chemical substructures among them were 

searched for manually as potential chemical features learned by the neuron.  

For the analysis of fingerprint bits, the 18 bits having the highest positive weights (referred to as Top-

18 bits) are displayed. Also displayed are bits that encode atom environments linked to the potential 

chemical features identified from the Top-12 compounds analysis. This was done to examine whether 

those bits have significant positive weights, even though they are not part of the Top-18 bits. Due to 

the nature of Morgan fingerprints, a chemical group such as a multi-atom toxicophore is encoded by 

multiple fingerprint bits and all those bits need to be considered to determine the neuron activation 

caused by the group. 

 

8.2.6 Network-wide activation analysis for prototypical toxicophore compounds 
 

To understand what activations single compounds cause across the network, activations for simple 

compounds containing known toxicophores for mutagenicity were obtained. In particular, the number 

of activated neurons was determined for various thresholds. Since all the compounds possess well-

characterised chemical groups linked to mutagenicity, this analysis allows an estimation of how many 

hidden neurons may potentially be responsive to compounds having the specific toxicophore. Finally, 

neurons strongly activated by the aromatic azide compounds were analysed in more detail. In 

particular, activations for azide compounds in those neurons were compared to mean activations for 

all training compounds. In addition, learned weights for fingerprint bits corresponding to various atom 

environments linked to azide groups were compared between those neurons. 

 

8.3 Results and Discussion 
 

8.3.1 Model evaluation 
 

Figure 8-2 reports various classification metrics of the selected model on both the training and the 

validation set. Unsurprisingly, the model performs better on the training set. Nonetheless, it performs 

reasonably well on the validation set with a ROC-AUC of around 0.9, accuracy of 0.82 and an MCC of 

0.65. The balanced accuracy is similar to the (regular) accuracy indicating that the model possesses 

comparable predictivity for both mutagenic and non-mutagenic compounds. 
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Figure 8-2 Performance of the neural network model. Compared are performances on the training and the validation set 
using a range of classification metrics. 

 

8.3.2 Exploration of neuron activations 
 

The first analysis of the trained network was conducted on hidden neuron activations obtained when 

training compounds are given as inputs to the model. Figure 8-3 shows the maximal (A) and mean (B) 

activation for all hidden neurons computed across all the training compounds and Table 8-2 lists the 

percentiles of these distributions.  
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Figure 8-3 Maximum and mean activation of hidden neurons. The maximum and mean activation values for the hidden 
neurons were computed across all training compounds. 

 

Table 8-2 Percentiles of distributions for maximum and mean activation of neurons. The percentiles describe the 
distributions depicted in Figure 8-3. 

 Max activation Mean activation 

20th percentile 0.274 0.011 

40th percentile 0.537 0.037 

50th percentile 0.610 0.050 

60th percentile 0.681 0.063 

80th percentile 0.847 0.089 

100th percentile (max) 1.77 0.35 

 

For most neurons, the highest activation values found are below 1 and the mean activation values 

across training compounds are below 0.1. For some of the neurons, none of the training compounds 

cause strong activation. For instance, for 46 of the neurons there were no activation values above 

0.01. These neurons seem to be irrelevant to the model, as their activation does not vary between 

different compounds. 

To further understand the activation space of hidden neurons, the distributions of activation values 

for single neurons over training compounds were inspected. For this analysis, four exemplary hidden 

neurons were selected, based on the different characteristics of the distributions. Figure 8-4 shows 

the distribution of training compound activations for the neurons 1-173 (A), 1-392 (B), 1-478 (C) and 

1-511 (D). 
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Figure 8-4 Activations for individual neurons. A: 1-173, B: 1-392, C: 1-478, D: 1-511. Note that the activation axes for the 
neurons are on different scales. 

 

Some differences can be observed between the different distributions. For neuron 1-478, around 5000 

of the training compounds cause an activation noticeably larger than zero, whereas for the other 

neurons fewer than 2000 compounds cause an activation. In addition, the maximal activations 

observed vary from around 0.2 for neuron 1-173 to 1.2 for neuron 1-511. These findings demonstrate 

that some neurons seem to be activated by a wide range of compounds and hence different input 

descriptors, whereas for others a narrower set of compounds leads to significant neuron activations.  

In the following, pairwise correlations between hidden neurons were analysed in order to investigate 

potential relations between different hidden neurons. In particular, activations for all training 

compounds were used as a vector to represent activation space for each neuron. A high positive 

correlation between two neurons suggests that those neurons detect similar chemical patterns, 

whereas negative correlations indicate compounds that possess high activations for neuron A, and 
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low activations for neuron B, or vice versa. Neuron correlations for the training set are visualised as a 

heat map in Figure 8-5A and as a histogram in Figure 8-5B.  

 

Figure 8-5 Pairwise correlations of neuron activations. For the training set, all pairwise neuron correlations were computed 
and visualised as a heatmap (A) and a histogram (B). Only neurons with a maximum activation larger than 0.01 in the training 
set were included. This filtering led to the exclusion of 46 of the 512 hidden neurons. 

 

In the heatmap, blue cells indicate a positive correlation between neurons, red cells a negative 

correlation, and white cells a correlation coefficient of around 0. The highest pairwise correlations 

(not considering correlations of neurons with themselves) were found to be around 0.8. It can be 

hypothesised that these pairs of neurons learned to detect similar or even the same chemical patterns. 

Negative correlations in the dataset were found to be weaker than the positive ones (strongest around 

-0.5). Negatively correlated pairs of neurons cannot be expected to detect the same or similar 

chemical features. A hidden layer neuron may possess learned negative weights for certain bits of the 
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chemical fingerprint, which may lead to low activations for compounds with such bits set on. However, 

since negative activations are prevented by the ReLU function, the occurrence of very strong negative 

correlations between neurons may be hindered. This may explain why negative correlations overall 

were found to be less strong than positive ones. 

Confidence values were computed to investigate the link between neuron activation and predictions 

made by the model. Confidence values of the different neurons are displayed in Figure 8-6 as scatter 

plots together with the support values indicating the proportion of compounds that activate the 

neuron (given the respective threshold). 

 

Figure 8-6 Confidence analysis of hidden neurons. The confidence for a positive prediction (given the activation threshold) 
and the corresponding support are shown for all hidden neurons. Thresholds are 0.05 (A), 0.1 (B), 0.25 (C), 0.5 (D). 

 

Neurons possessing a high confidence are strongly linked to positive (i.e. mutagenic) predictions of 

compounds and hence are hypothesised to detect chemical patterns linked to mutagenicity (in the 

Ames test). Conversely, neurons with very low confidence values are linked to negative (i.e. non-

mutagenic) predictions. These neurons may detect chemical structures typically not found in 
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mutagenic compounds. Neurons with a confidence value close to 0.5 do not seem to be generally 

linked to positive or negative predictions. Substructures detected by these neurons are not likely to 

be directly linked to positive or negative predictions.  

The plots in Figure 8-6 clearly show that the activation threshold strongly affects the support and the 

confidence observed for the neurons. For the lower two thresholds (0.05 and 0.1), the full range of 

values from zero to one occurs for both support and confidence. However, neurons with a high 

support value (>0.6) possess confidence values close to 0.5. The activation of these neurons (for the 

low thresholds) does not discriminate between positive and negative predictions. Neurons with lower 

support values are associated with confidence values on the full range from zero to one. The activation 

of neurons with low confidence values is linked to negative predictions, whereas activation of neurons 

with high confidence values is linked to positive predictions. The low support values for both types of 

neurons indicates that only a low proportion of compounds activates these neurons. 

Fewer compounds activate the neurons at higher thresholds for neuron activation as in C (0.25) and 

D (0.5). For the highest threshold, no neuron has a support above 0.2. It can also be observed that at 

these higher thresholds fewer neurons possess confidence values close to 0.5. Hence, when setting a 

more restrictive threshold for activation, the activation becomes more strongly linked to negative or 

positive predictions. Neurons strongly linked to positive predictions upon strong activation can be 

hypothesised to detect chemical patterns linked to toxicity. Unravelling such chemical patterns is 

expected to give insights into the workings of a network. 

 

8.3.3 Exploration of weights for fingerprint bits 
 

As described above, neurons in the first hidden layer receive input from the bits of the fingerprint via 

learned weights. Weights of different magnitude for different bits of the fingerprint are the reason 

why neuron activation varies between different compounds. Analysis of which bits possess high 

weights can help to identify chemical features responsible for neuron activation. Typical distributions 

of weights are given in Figure 8-7 for the same neurons as in Figure 8-4. 
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Figure 8-7 Weight distributions for individual neurons. A: 1-173, B: 1-392, C: 1-478, D: 1-511. The weights axes for the 
neurons are on different scale. 

 

Bits with positive weights, negative weights and weights of (close to) zero exist for all neurons. Among 

the four shown neurons, the most non-zero weights were found for neuron 1-478 and the least for 

neuron 1-173. Notably, the number of positive and negative weights is comparable for a given neuron. 

Differences between the neurons exist in the magnitudes of positive and negative weights. The 

maximum positive and negative weights for neuron 1-511 are around 0.15, whereas they are in the 

range 0.02-0.03 for neuron 1-173. A common feature of the distributions is a gradual decrease in 

weights for different bits. This makes it difficult to distinguish between relevant and clearly non-

relevant bits. For instance, for neuron 1-511 the bit with the 100th-highest weight has a weight one 

fourth of the maximum weight for this neuron. Therefore, a large number of bits may have significant 

impact on neuron activation. Even for neurons with smaller numbers of non-zero weights, an analysis 

of all those individual weights would be very cumbersome. 
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8.3.4 Exploration of compounds strongly activating neurons 
 

The following analysis attempts to identify chemical features detected in individual hidden neurons. 

In a first step, the compounds most strongly activating some exemplary neurons were inspected. 

Analysed were four neurons linked to positive predictions (1-43, 1-69, 1-153, 1-180) and two neurons 

linked to negative predictions (1-18, 1-128). 

The Top-12 compounds, that is, the 12 compounds with the highest activation values for neuron 1-43 

are shown in Figure 8-8. The positive weight of the neuron of 0.103 to the output neuron indicates 

that activation of the neuron contributes to positive predictions. This is supported by the high 

confidence values found for this neuron at thresholds 0.05, 0.1 and 0.25. A confidence value for the 

threshold 0.5 could not be computed as the maximum activation value for this neuron was 0.42. By 

inspecting the compounds, an epoxide moiety can be identified as a common substructure of all 

compounds. The epoxide functional group is known to cause mutagenicity (see section 2.3.2). 

Moreover, all compounds possess an aromatic ring, and six of them possess a phenolic ether group. 
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Figure 8-8 Analysis of compounds strongly activating neuron 1-43. Confidence values at different thresholds and the weight 
contributed to the output neuron are included to characterise the neuron’s link to positive/negative predictions. Shown are 
the 12 compounds from the training set with strongest activation values (the compound identifiers and activation values are 
shown). Substructures shared by the compounds were manually identified and are listed under ‘Identified substructures’. 

 

The Top 12 compounds for the neuron 1-69 are shown in Figure 8-9. This neuron is also strongly linked 

to positive predictions with a high positive weight value and high confidence values. By carefully 

inspecting the Top-12 compounds several common substructures were identified. Most prominently, 

seven of the compounds contain the azide group, which is a known toxicophore (Kazius et al., 2005), 
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attached to an aromatic ring. 10 of the compounds contain an acridine ring system (or a derivative), 

which is also a toxicophores for mutagenicity (Brown et al., 1980). Furthermore, an aromatic 

sulphonamide group and aliphatic 2-chlorine amine substructure can be found. The former is not 

known as a toxicophore, but possesses some similarity to alkyl esters of sulfonic groups (alert TA411 

in ToxAlerts). Aliphatic halides (and hence chloride) in general represent an alert for mutagenicity 

(Fishbein, 1976) and together with the amine, the group is similar to the nitrogen mustard group 

(Benedict et al., 1977). These findings suggest that a single neuron may detect more than one relevant 

toxicophore. 
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Figure 8-9 Analysis of compounds strongly activating neuron 1-69. Details are given in the caption of Figure 8-8. 

 

The Top-12 compounds (Figure 8-10) for neuron 1-153 all possess an aromatic nitro group, a known 

toxicophore for mutagenicity (see section 2.3.2). In this set of compounds, the nitro group is attached 

to different types of aromatic ring including phenyl, furane and bi- or tricyclic systems. Compounds 

4765 and 3449 contain a nitrogen mustard group (N-halide structure), also known to be mutagenic. It 

may be that the neuron also recognises this group as a relevant feature, yet by inspecting the 

compounds, the aromatic nitro group appears to be the primary feature detected by neuron 1-153. 
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Confidence values and the weight to the output neuron indicate that activation of this neuron is linked 

to positive predictions. Compared to other neurons, the weight to the output neuron is relatively low. 

However, this does not necessarily indicate a relatively weak link between the chemical features 

learned in this neuron and the toxicity end point (here mutagenicity). It may be that a particular 

toxicophore is detected by a large number of different neurons, which all may contribute to positive 

predictions. The range of neurons activated by compounds containing a single toxicophore is 

investigated below (see section 8.3.6). 
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Figure 8-10 Analysis of compounds strongly activating neuron 1-153. Details are given in the caption of Figure 8-8. 

 

Polycyclic aromatic hydrocarbon (PAH) systems can be identified as a common structural feature 

among the most strongly activating compounds for neuron 1-180 (Figure 8-11). PAHs are a well 

characterised toxicophore for mutagenicity (Benigni & Bossa, 2011). The PAH ring systems found in 

the compound set are of varied constitution (e.g. pyrene or anthracene systems). In addition, all of 

the compounds possess either an epoxide group or are (mono- or di-) hydroxylated, suggesting that 
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this also represents a chemical pattern contributing to activation of the neuron. It is known that the 

mutagenicity of PAHs is mediated through diol and epoxide metabolites formed by CYP450 enzymes. 

It seems that the neuron detects both the basic PAH structure and attached groups associated with 

mutagenicity. 

 

Figure 8-11 Analysis of compounds strongly activating neuron 1-180. Details are given in the caption of Figure 8-8. 
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So far, only neurons linked to positive predictions were presented. In the following, two neurons 

associated with negative predictions are presented. 

Neuron 1-18 possesses a strong negative weight (-0.180) to the output neuron. Additionally, the 

confidence values suggest that activation of this neuron is linked to negative predictions. An 

interesting substructure among the Top-12 compounds (Figure 8-12) is the pyranose ring found in 

saccharides. However, this substructure occurs only in three out of the 12 compounds. Seven of the 

compounds contain a pyridine ring. Neither of these structural motifs is listed as an alert for 

mutagenicity in the ToxAlert database. 



Chapter 8: Exploration of chemical features learned in hidden neurons of neural networks 

146 
 

 

Figure 8-12 Analysis of compounds strongly activating neuron 1-18. Details are given in the caption of Figure 8-8. 

 

Neuron 1-128 represents a second example of a neuron strongly linked to negative predictions. Eight 

of the Top-12 compounds (Figure 8-13) are esters of phosphoric acid (both with aliphatic and aromatic 

alcohol components). Interestingly, alkyl esters of phosphonic esters have been described as a 

structural alert for mutagenicity (Ashby & Tennant, 1988), but not esters of the phosphoric acid. All 

the phosphoric ester compounds in this set have been labelled as non-mutagenic. A further structural 
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motif identified among the compounds are long aliphatic chains (displayed as octyl). Alkyl chains have 

not been linked to mutagenicity.  

 

Figure 8-13 Analysis of compounds strongly activating neuron 1-128. Details are given in the caption of Figure 8-8. 

 

Neurons linked to positive and negative predictions have been presented. Neurons linked to positive 

predictions can be expected to detect chemical substructures linked to Ames mutagenicity. Indeed, 
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the presented neurons were found to be activated by compounds containing known toxicophores for 

mutagenicity. These findings seem to support reports from the literature that hidden neurons in DNN 

models for toxicity prediction function as toxicophores detectors (Mayr et al., 2016; Preuer et al., 

2019). For neurons linked to negative predictions, the interpretation of the findings is more difficult. 

These neurons may detect substructures rarely occurring in mutagenic compounds. This situation is 

distinct from positive cases where mutagenic effect can be clearly attributed to, for instance, the 

chemical reactivity of a certain chemical group. 

By inspecting compounds that strongly activate a neuron a chemist may be tempted to identify causal 

explanations for the activation. However, it cannot be concluded whether a substructure causes the 

activation of a neuron or whether it merely co-occurs with the actual cause (correlation does not imply 

causation). In the following analysis, the learned weights from the input layer to the first hidden layer 

were explored as an additional source of information on what chemical patterns are detected by 

hidden neurons. 

 

8.3.5 Exploration of fingerprint bits with high weight 
 

To explore what information can be gained by analysing fingerprint bits having high weights for a given 

neuron, the same neurons as in the previous section were analysed. 

Figure 8-14 shows the Top-18 bits (highest positive weights) for neuron 1-43 which, according to 

compounds most strongly activating it, seems to detect epoxides. Indeed, three of the four bits with 

the highest weights (1923, 802, 1019) encode an atom environment occurring in epoxide structures. 

This confirms the assumption that epoxide structures cause activation of the neuron. A further bit 

associated with epoxides (206) does not appear in the Top-18 bits and has a small positive weight. 
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Figure 8-14 Analysis of bits with high weight for neuron 1-43. As in Figures 8-8 to 8-13, confidence values at different 
activation threshold and the weight contributed to the output neuron are shown to characterise the neuron. Listed are the 
atom environments of the 18 fingerprint bits with the highest weights for the neuron. For visualisation purposes, atom 
environments for the smallest compound (lowest molecular weight) in the training set were automatically generated. In case 
of bit collisions, a particular bit may encode more than one distinct atom environment. Under ‘Other fingerprint bits’ selected 
bits related to chemical features assumed to be detected by the neuron are shown (epoxides cause strong activation and 
bits linked to epoxides outside the Top-18 might have high weights). Explanation of the depicted atom environments: the 
blue circle indicates the central atom of the circular environment (radius 0 or 1 bonds); grey circles indicate an atom being 
part of an aliphatic ring, whereas yellow circles stand for aromatic rings. For peripheral atoms, the type of attached bonds 
(shown as grey bonds) is part of the defined atom environment 

 

The Top-18 bits for neuron 1-69 are shown in Figure 8-15. Bit 487, which has the third highest weight, 

encodes for a part of the azide group. While at first sight it appears that no other bits encoding for 

parts of the azide group are represented in the Top-18, the bits 13, 1838, 1854, 740 all possess 

significant weights. An azide compound will turn on all those bits and the azide group will hence 

contribute the sum of all these weights to the activation of the neuron. The size of the bit weights 

indicates that bits beyond the Top-18 may possess weights only moderately lower than those in the 

Top-18 which means that for a thorough analysis a larger set of bits should be considered. The figure 
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reveals that bit 13 (15th-highest weight) is subject to bit collision in the dataset. In the Top-18 the bit 

is shown to encode for a carbon attached to an oxygen and another carbon, whereas below it is shown 

to encode for two double bonded nitrogen atoms attached to an aromatic ring (indicative of aromatic 

azide compounds). As described in the caption of Figure 8-14, the environments displayed in the Top-

18 were automatically generated from the compounds with the lowest molecular weight in the full 

training set. 

 

Figure 8-15 Analysis of bits with high weight for neuron 1-69. Details are given in the caption of Figure 8-14. 

 

Neuron 1-153 (Top-18 bits shown in Figure 8-16) was linked to aromatic nitro compounds in the 

preceding analysis. The bit with the highest weight (1195) indeed captures all atoms that form an 

aromatic nitro group (including one aromatic carbon). This can therefore be considered the most 

specific bit for aromatic nitro compounds, which in principle should be sufficient to identify all 

aromatic nitro compounds. Nonetheless, the network assigned high weights to less specific bits such 
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as bit 753 (oxygen with double bond to positively charged nitrogen) and bit 1963 (positively charged 

nitrogen). The bits 1274 and 1035 (not in the Top-18, yet with significant weights) encode atom 

environments centred around the aromatic carbon that the nitrogen is bound to. Bits linked to the 

nitrogen mustard structure were not found in the Top-18. 

 

 

Figure 8-16 Analysis of bits with high weight for neuron 1-153. Details are given in the caption of Figure 8-14. 

 

Activation of neuron 1-180 has been primarily linked to PAHs in the previous section. Atom 

environments indicative of PAHs consist of aromatic atoms belonging to two or more aromatic rings. 

The Top-18 bits are shown in Figure 8-17. The bit with the highest weight (1984) for this neuron 

encodes such an environment. Further examples in the Top-18 are the bits 1357 and 1696 (nitrogen 

heterocycles). Additionally, the bits 1750 and 875 possess appreciable weights while being outside of 

the Top-18. Inspection of the compounds causing the strongest activations also suggested that 
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epoxide and diol structures may contribute to a strong activation. The bits 1923 and 802, indicative of 

epoxide structures, were indeed found in the Top-18 bits supporting this assumption. The evidence 

for the diol structure seems somewhat controversial. Bit 1257, which is set on by any hydroxyl group 

in an aliphatic ring, has a negative weight. The related bit 849, which implies only single bonds in the 

vicinity of the hydroxyl group, has an even stronger negative weight. However, this bit is not set on by 

compounds found in the Top-12. In contrast, bit 1557, which implies a double bond at the carbon 

atom at two bonds distance from the hydroxyl group, has a positive weight. Careful examination of 

atom environments is required to identify which structure motifs do activate the neuron and which 

ones do not. It seems that hydroxyl groups in general do not activate (and in fact deactivate) the 

neuron, but ones next to a double bond positively contribute to neuron activation. For a more 

thorough analysis, all atom environments linked to hydroxyl groups would need to be investigated. 

 

Figure 8-17 Analysis of bits with high weight for neuron 1-180. Details are given in the caption of Figure 8-14. 
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As described above, neuron 1-18 is linked to negative predictions. In Figure 8-18, the Top-18 

fingerprint bits are presented. Three of the compounds in the Top-12 are sugar (i.e. pyranose) 

structures (1174, 2253, 11). The bit 1126 (8th highest weight for this neuron) is contained in the 

structures of 1174 and 2253 where a pyranose is attached to the rest of the structure via an ester 

bond. The bits 576, 1487 and 1381, which encode atom environments found in sugar structures, are 

not in the Top-18, yet all possess a positive weight, suggesting that sugar moieties do activate neuron 

1-18. Another chemical feature identified as related to this neuron are pyridine rings. However, the 

bits 1603 and 1731 possess a very small positive weight and a negative weight, respectively. Hence, 

pyridine structures probably do not cause the activation. 

 

Figure 8-18 Analysis of bits with high weight for neuron 1-18. Details are given in the caption of Figure 8-14. 

 

Esters of the phosphoric acid and alkyl chains were proposed as chemical features detected by neuron-

128, which is also linked to negative predictions. The Top-18 bits are shown in Figure 8-19. Among 
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these, the bit with the second highest weight (1911) is contained in unbranched alkyl chains. Also, the 

bits 832, 294 and 794 possess positive weights and encode for alkyl chain atom environments. This 

seems to confirm alkyl chains as chemical features activating neuron 1-128. Similarly, the bits 192, 

1214, 486 and 1716 encoding atom environments found in phosphoric acid esters have positive 

weights. Both esters of phosphoric acid and alkyl chains are hence confirmed as causes for activation 

of neuron 1-128. 

 

Figure 8-19 Analysis of bits with high weight for neuron 1-18. Details are given in the caption of Figure 8-14. 

 

The learned weights of fingerprint bits provide information of the mathematical link between chemical 

input features and the activation of hidden neurons. However, as described above, many input bits 

(beyond the Top-18 bits) possess weights of comparable magnitude making it difficult to identify 

which chemical features are the most relevant causes for neuron activation. A particular chemical 

substructure may be encoded by several different fingerprint bits. The true effect a substructure has 
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on the activation of a neuron depends on all the bits (with weights significantly different to zero) that 

encode this substructure. On the other hand, many of the bits in the Top-18 seem not to be linked to 

any structures strongly activating the neuron. 

In some cases, the analysis of bit weights confirmed the substructures proposed as activating causes 

in the compound analysis, i.e., the inspection of compounds strongly activating the neuron, whereas 

in other cases, chemical substructures that are present in the Top-12 compounds, were not supported 

by the corresponding bits having high weights. It can be concluded that information obtained for 

fingerprint bit weights can help to identify causes of neuron activation proposed in the analysis of 

compounds with strong activation. However, a high weight for a single fingerprint bit may not be 

sufficient to establish a chemical substructure as a cause for neuron activation, since the chemical 

substructure may be associated with different bits with potentially conflicting weights. By inspecting 

the neuron activations for different compounds containing a substructure, conclusions about the role 

of the substructure may be drawn. Consequently, compound activations and weights for fingerprint 

bits can be considered as complementary sources of information. 

 

8.3.6 Network-wide activation analysis for prototypical toxicophore compounds 
 

In the previous section it was established that a particular hidden neuron may detect one (or more) 

chemical substructures potentially linked to mutagenicity. It was observed that certain chemical 

substructures may be learned in different hidden neurons. For instance, epoxide structures seemed 

to cause activation of neuron 1-43 as well as neuron 1-180. To better understand the behaviour of the 

network as a whole when a single structure is put in the network, neuron activations for several 

compounds containing a defined toxicophore were investigated. In Table 8-3, the numbers of 

activated hidden neurons for various thresholds are reported. All compounds are predicted as 

mutagenic by the network. 
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Table 8-3 Neuron activation by compounds with defined toxicophores. Shown are how many hidden neurons are activated 
given different thresholds. 

 >0.05 >0.1 >0.25 >0.5 
 

 

1: aromatic nitro 

169 135 40 0 

 

 

2: aromatic amine 

160 105 15 0 

 

 

3: azide 

170 133 43 4 

 

 

4: diazo 

148 89 9 0 

 

 

5: nitrosamine 

148 104 17 0 

 

 

6: alkyl halide 

149 94 32 1 

 

 

7: polycyclic aromatic 

hydrocarbon (PAC) 

157 113 28 1 
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8: epoxide 

167 106 20 1 

 

It can be observed that for a relatively low activation threshold of 0.1, most of the compounds activate 

more than 100 hidden neurons. For the moderately high threshold of 0.25 the compounds activate 

between 9 (diazo) and 43 neurons (azide). Only one of the prototypical toxicophore compounds 

(azide) achieves an activation larger than 0.5 for more than one hidden neuron. All of the compounds 

studied here possess a defined chemical functionality linked to mutagenicity. These defined chemical 

features seem to be responsible for activation of a range of different hidden neurons. Since the 

model’s prediction is a linear combination of the hidden neuron activations (followed by the 

application of the sigmoid function), the learned features (mathematically described by hidden neuron 

activation) are directly responsible for the model’s prediction. 

To further understand the relation between co-activated neurons, some exemplary neurons were 

inspected more closely. To that end, the four neurons which had an activation larger than 0.5 for the 

phenyl azide compound are compared. One of the four neurons is neuron 1-69 which was already 

identified above to be sensitive to azide structures. Table 8-4 shows the pairwise correlation 

coefficients for activation of the four neurons across all training compounds. 

Table 8-4 Pairwise correlations of neurons activated by phenyl azide. Presented is the Pearson correlation coefficient, 
computed as described in section 8.2.4. 

 1-69 1-382 1-441 1-473 

1-69 1 0.395 0.553 0.486 

1-382 0.395 1 0.246 0.526 

1-441 0.553 0.246 1 0.343 

1-473 0.486 0.526 0.343 1 

 

All of the pairwise correlations are of low or medium magnitude. As can be seen in Figure 8-5B, very 

few pairs of neurons across the whole network possess correlation coefficients above 0.6. Correlation 

coefficients of low or medium size may indicate that the neurons detect the same chemical feature 

(in this case presumably azide), yet they may detect other chemical features along with azide. To gain 

a better understanding of what chemical substructures they may detect, the compounds with the 
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strongest activation and the fingerprint bits with the highest weights for the four neurons are 

compared below. 

Weights for all of the bits of the Morgan fingerprint linked to the azide group were analysed for the 

neurons from Table 8-4. All of the bits presented in Table 8-5 are associated with azide groups, 

however, some of the bits may not be activated by all azide compounds. For instance, bit 13 includes 

an aromatic carbon atom and hence it is only set on by compounds where the azide group is directly 

attached to an aromatic ring. In contrast, the bits 144, 1478, 86, 1205, 1311 and 1563 are only 

activated by aliphatic azide compounds possessing a specific atom environment next to the azide 

group. The bits 1449, 487, 725, 740, 1838 are activated by all azides (aromatic or aliphatic). On the 

other hand, some of the bits are not specific for azide compounds which means that compounds 

lacking an azide group may set those bits. For example, bit 1854 is also activated by aromatic azo 

compounds, as it only implies an aromatic ring with a nitrogen atom bound to any other atom via a 

double bond. 

Table 8-5 Detailed fingerprint bit weight analysis for neurons activated by phenyl azide. Bits encoding different parts of 
azide groups were identified and for the neurons 1-69, 1-382, 1-441 and 1-473 their weight and rank among all 2048 bits 
were determined. 

 1-69 1-382 1-441 1-473 

 rank weight rank weight rank weight rank weight 
 

 

1449 

34 0.0540 17 0.0706 22 0.0686 8 0.0740 

 

 

487 

3 0.0867 3 0.1098 1 0.1048 75 0.0387 

 

 

725 

68 0.0432 15 0.0614 38 0.0589 4 0.0793 
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740 

39 0.0517 28 0.0614 37 0.0591 6 0.0765 

 

 

1838 

76 0.0408 51 0.0489 48 0.0555 26 0.0534 

 

 

13 

15 0.0696 13 0.0782 58 0.0499 15 0.0583 

 

 

1854 

28 0.0590 14 0.0767 77 0.0422 503 0.0020 

 

 

1709 

1223 -0 856 -0 809 0 1041 -0 

 

 

144 

1653 -0.0078 1785 -0.0148 190 0.0251 196 0.0215 

 

 

1478 

543 0.0176 445 0.0006 604 0.0001 388 0.0079 
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86 

242 0.0176 359 0.0050 615 0 182 0.0228 

 

 

1205 

206 0.0204 1838 -0.0197 1436 -0.0036 1406 -0.0001 

 

 

1311 

1555 -0.0036 1868 -0.0222 1761 -0.0007 1773 -0.0147 

 

 

1213 

446 0.0054 308 0.0082 1341 -0.0124 1447 -0.0006 

 

 

1563 

1670 -0.0084 1725 -0.0099 16660 -0.012 229 0.0185 

 

From the table it can be seen that the bits common to all azide compounds are among the 100 bits 

with highest weights for the four neurons. Bit 487 is even in the Top-3 bits for three out of the four 

neurons. Since all azide compounds have all of those bits set on, all azide compounds will receive a 

strong positive contribution to the activations of all neurons from all those bits. Interestingly, the bits 

specific to aromatic azides (13, 1854) also possess relatively high weights for the different neurons 

and hence for aromatic azides an additional neuron activation occurs when compared to aliphatic 

azides. In contrast, the different bits associated only with aliphatic azides do not have high positive 

weights and hence do not significantly contribute to activation of those neurons. This may be due to 

the fact that the atom environments linked to aromatic azides are more frequent in the training set 

compared to the distinct aliphatic azides and hence present a clearer signal for the model to exploit 

during training. In summary, all four neurons possess high weights for fingerprint bits linked to the 
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azide group and hence it can be concluded that neuron activation is caused by the presence of the 

azide group in a compound. 

In addition to weights of fingerprint bits, the activation of the four neurons by training compounds 

was analysed. Figure 8-20 displays the 100 highest activations as bar charts with those belonging to 

azide compounds highlighted in red. Also reported are the mean activations of all training compounds 

(n=5889) and azides (n=44). 

 

Figure 8-20 Neuron activation by azide compounds. For the neurons 1-69, 1-382, 1-441 and 1-473, the Top-100 activations 
in the training set are plotted with azide compounds highlighted. 

 

For all neurons, the azide compounds have much higher mean activations compared to the full training 

set. Azide compounds outnumber non-azide compounds in the Top-10 for three of the neurons (1-69, 

1-441 and 1-473). Both learned fingerprint bit weights and compounds with the strongest activation 

confirm azide as a learned chemical feature for those neurons. In contrast, for neuron 1-382 the 

highest ranked azide compounds are found at positions 19 and 20. While azide compounds clearly 

activate this neuron more strongly than randomly selected compounds, it appears that a different 

chemical feature might lead to the strongest activations for this neuron. To further explore neuron 

1-382, the compounds most strongly activating the neuron are shown below in Figure 8-21. 
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Figure 8-21 Analysis of compounds strongly activating neuron 1-382. Details are given in the caption of Figure 8-8. 

 

Inspection of the Top-12 compounds for neuron 1-382 reveals that all compounds contain an aromatic 

amine, which is a known toxicophore for mutagenicity. Furthermore, nine of the 12 compounds are 

aromatic azo structures, another known toxicophore for mutagenicity. It seems that these are the 

most relevant chemical feature learned by neuron 1-382. To test this hypothesis, the fingerprint bits 

with the highest weights were analysed as shown in Figure 12. Many different bits linked to aromatic 

amines, azo compounds or azides can be found in the Top-18 bits. In addition, the bits 888 and 931 

possessing significant positive weights encode atom environments linked to aromatic amines and azo 

compounds, respectively. 
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Figure 8-22 Analysis of bits with high weight for neuron 1-382. Details are given in the caption of Figure 8-14 

 

In conclusion, neuron 1-382 has learned to detect aromatic amines, azo compounds and azide 

compounds, as fingerprint bits linked to all these chemical groups have been assigned high weights in 

the network. Many of the compounds most strongly activating neuron 1-382 combine an aromatic 

amine and an azo group in their structure. This provides further evidence that single neurons may be 

sensitive to different chemical groups. All of the four studied neurons are strongly activated by azide 

compounds, yet for neuron 1-382 other chemical groups seem to be more relevant learned features. 

 

8.4 Conclusion 
 

The explorative analyses conducted in this chapter confirm the hypothesis that hidden neurons may 

encode chemical features linked to the task the network was trained on (in this case Ames 
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mutagenicity). However, it was shown that a single neuron may detect more than a single chemical 

feature. This may be because learning several features in a single neuron does not reduce predictive 

performance of the network. If two distinct chemical features independently increase the mutagenic 

potential of compounds, then having a single hidden feature to detect either of them may be sufficient 

for the network to make correct predictions. Generally, the learning of weights in a network is not 

explicitly directed towards single neurons learning a single distinct chemical feature. 

Using prototypical toxicophore compounds, it was also discovered that different hidden neurons may 

detect the same chemical feature. By analysing this phenomenon more deeply for neurons detecting 

azides, it was shown that those neurons may still represent somewhat different chemical features (for 

example, neuron 1-382 is also strongly activated by aromatic amine and azo compounds). 

Thus far, the analysis of what chemical features cause strong activation of hidden neurons was 

performed manually by separately considering compounds that strongly activate hidden neurons and 

the fingerprint bits with highest weights. In the next chapter, a procedure to automatically extract the 

chemical features learned by hidden neurons is described. The approach consists of combining 

information gained from both compounds strongly activating neurons and the weights of fingerprint 

bits to hidden layers. It is acknowledged that weights linking interpretable fingerprint bits to hidden 

neurons are readily available only for the first hidden layer of a DNN model. However, it is expected 

that if the first hidden layer has been annotated with chemical features using this approach, then 

these annotations can provide information used to annotate the second hidden layer and so on. 

Moreover, other approaches to extract substructure may be possible (see Chapter 12).
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Chapter 9   Automatic extraction of chemical features 

activating hidden neurons of neural networks 
 

 

9.1 Introduction 
 

In the previous chapter, it was demonstrated that strong activation of hidden neurons may be caused 

by chemical features linked to mutagenicity. These neurons typically are strongly linked to toxic 

predictions (high confidence). Hence, it can be concluded that the model’s capability to make toxic 

predictions is dependent on chemical features detected in these neurons. Therefore, being able to 

determine the chemical features detected by hidden neurons may be useful to understand the 

model’s predictions. The aim of this chapter is to develop a strategy to automatically find chemical 

features responsible for activation of hidden neurons using training compounds as well as the trained 

model. In particular, a set of chemical substructures is extracted to represent chemical features 

detected in each hidden neuron. 

In Methodology, the general strategy to achieve the aim is described and theoretical background 

relevant to the employed techniques is provided. This is followed by an illustration of the application 

of the workflow to an exemplary hidden neuron. The same neural network model instance as in the 

previous chapter was analysed. Finally, the chapter is concluded by summarising key insights. 

 

9.2 Methodology 
 

In the following sections, details of the workflow for fragment extraction are described. The proposed 

approach includes several adjustable hyperparameters (expressions written in italics) for which initial 

values were selected based on insights from previous explorations. In the subsequent chapter, the 

success of the extraction is evaluated, and adjustments are made in order to improve the approach. 

 

9.2.1 Inclusion of compounds and fingerprint bits 
 

It was shown in the previous chapter that both compounds strongly activating a hidden neuron and 

fingerprint bits with high weights give insights into which chemical features are detected. For the 

manual analysis, a relatively low number of compounds (Top-12) and fingerprint bits (Top-18) were 
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analysed. However, it became clear that these are not sufficient to find all features responsible for 

neuron activation. For the automatic approach developed here, larger numbers of compounds and 

fingerprint bits were considered as described below. 

The threshold for inclusion of compounds was determined by their activations. Since distributions for 

activation of training compounds vary between different neurons, neuron-specific thresholds were 

used based on the distribution of activation values. In particular, compounds having an activation 

larger than the mean activation for the neuron plus three (i.e. ThreshCompound=3) standard 

deviations were included. 

In the previous chapter, the fingerprint bits of various neurons were displayed sorted by their weights. 

A steady decrease in importance was found, which did not reveal a clear distinction between relevant 

and irrelevant bits for a given neuron. Therefore, the 95th percentile (i.e. 5% of bits with highest 

positive weight; ThreshBits=0.05) was selected for the inclusion of fingerprint bits. This corresponds 

to 102 bits being selected per neuron for n=2048 input bits. 

 

9.2.2 Formal Concept Analysis for substructure extraction 
 

Chemical substructures were obtained for each neuron from the selected compounds and fingerprint 

bits using Formal Concept Analysis (FCA). FCA was introduced by Rudolf Wille in 1982 as a tool to 

hierarchically organise concepts (Wille, 1982). A formal concept (FC) in this context is a triple (U, A, R) 

consisting of sets of objects U, attributes A and binary relations R (indicating whether an object u 

possesses attribute a). In a FC, all included objects share all the included attributes. Furthermore, the 

FC is closed in the sense that there are no further attributes shared by all the objects and, in turn, no 

further objects exist that possess all included attributes. A hierarchical lattice consisting of all existing 

FCs for a given dataset can be derived from this basic definition. To visualise this framework, a simple 

example related to the studied problem is provided. Objects are chemical compounds, and their 

attributes are bits of the Morgan fingerprint indicating the presence of a certain atom environment in 

the compounds. A small set of compounds and bits was selected to ensure the explanations and 

visualisations are suitable as an accessible introduction to FCA, inspired by the explanations given in a 

review on chemoinformatics applications of FCA and related approaches (Gardiner & Gillet, 2015). 

Table 9-1 contains six different compounds as objects U and six different bits from a Morgan 

fingerprint as attributes A characterising the objects. Also displayed is which compounds set which bit 

of the Morgan fingerprint on (binary relations R). 
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Table 9-1 Binary relations between compounds and fingerprint bits as basis for FCA. A small number of compounds and 
fingerprints was selected to illustrate the foundations of FCA. The table indicates which compounds set on which of the 
selected fingerprint bits. 

 
 

 

Bit 487 

 

 

Bit 745 

 

 

Bit 1028 

 

 

Bit 1088 

 

 

Bit 1838 

 

 

Bit 1854 
 

 

1 

X   X X X 

 

 

2 

   X   

 

 

3 

X  X  X  

 

 

4 

X    X  

 

 

5 

  X    

 

 

6 

 X  X   

 

All FCs (eight in this case) defined by the triple (U, A, R) are displayed hierarchically in a Hasse diagram 

in Figure 9-1. In each box, the first line contains all compounds in the FC (the extent) and the second 
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line shows depictions of the atom environments encoded by the included fingerprint bits (the intent). 

The FC at the top of the diagram comprises the attributes shared by all compounds (which is an empty 

set in this case). Conversely, the FC on the bottom describes the set of compounds possessing all the 

attributes, which is also empty. For further explanations, the FC with the extent {1,3,4} and the intent 

{bit 487, bit 1838} is considered. This FC is a superconcept of the one at the top as its intent is a 

superset of the intent of the top concept (and equivalently, the extent is a subset of the extent of the 

top concept). This FC corresponds to the set of azide compounds in the dataset. Its intent, bit 487 and 

bit 1838 are set on by all azide compounds. Therefore, the FC can be considered as a concept capturing 

certain chemical characteristics. This FC is, in turn, a subconcept of the one with the extent {1}. 

Compound 1 is an aromatic azide compound and hence this represents a more specific concept than 

the more generic azides. This more specific chemical concept corresponds to more fingerprint bits 

shared by its members. The FC comprising all azides is also a subconcept of the one with the extent 

{3}. This FC corresponds to all azides also possessing bit 1028, indicating a pattern corresponding to a 

cyclohexane ring. As for the FC capturing aromatic azides, this is a more specific chemical concept 

compared to the one comprising all azide compounds. As can be seen, the FCA derives FCs with 

chemical meaning from information given as chemical compounds and fingerprint bits characterising 

the compounds.  



Chapter 9: Automatic extraction of chemical features activating hidden neurons of neural networks 

169 
 

 

Figure 9-1 Hasse diagram depicting the lattice derived using FCA. Each box contains a FC consisting of an extent (set of 
compound identifiers in the first line) and an intent (set of fingerprint bits). 

 

The capability to provide FCs with chemical meaning makes FCA a promising approach to identify 

chemical patterns causing activation of hidden neurons. Specifically, by applying FCA to the set of 

compounds strongly activating a neuron and the fingerprint bits possessing high learned weights for 

the same neuron, it is envisioned that the FCs that are obtained will correspond to certain chemical 

patterns associated with strong neuron activation. However, not all FCs may correspond to chemical 

features of interest. FCs may for instance contain just a single fingerprint bit and one bit alone may 

not be sufficient for neuron activation. Hence, only FCs whose intent reaches a certain relevance were 

considered. This was assessed by calculating the sum of weights of fingerprint bits in the intent. Only 

FCs with a sum of weights equal to half of the threshold for inclusion of compounds were included 

(i.e. ThreshWeightFC=0.5).  
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In addition, FCs were only considered if their extent exceeds a support threshold among all 

compounds selected for a given neuron. The rationale behind this is to avoid the identification of very 

specific chemical features (which do not generalise). The threshold initially selected was 0.2 (i.e. 

ThreshSupport=0.2; proportion of all compounds in the set selected for a given neuron). 

In the next step, chemical substructures were extracted for each selected FC. For each compound in 

the extent of a FC, atoms matching any of the fingerprint bits contained in the intent were retrieved 

using the atom environments provided in RDKit. Then, fragments were obtained for each compound 

by connecting neighbouring atoms retrieved in the previous step. Since not all retrieved atoms for a 

single compound were necessarily connected, more than one fragment may have been obtained for 

each compound. However, only the most relevant fragment for each compound was retained. This 

was the fragment with the highest sum of weights for bits included in the fragment (which was not 

necessarily all bits of the intent). Moreover, to ensure only fragments causing a sufficiently strong 

activation on the neuron were included, the fragment was only retained if the sum of weights was 

higher than a given threshold. The same threshold as applied to the summed weights of all bits of the 

intent was applied. In addition, a fragment was only kept if the matches among compounds in the 

extent exceeded ThreshSupport (see above). Finally, a structure was not kept if there was a more 

generic one with identical summed weight of fingerprint bits included. These steps are illustrated in 

the section below for an exemplary neuron. 

For extracted substructures, additionally weights are assigned to individual atoms of that fragment. 

These weights are intended to indicate the contribution the atom makes to the whole fragment in 

order to make model explanations more accurate. For a given fragment there is a set of fingerprint 

bits each with a corresponding weight (network weight from input neuron to the hidden neuron). The 

weights assigned to the atoms of the fragment correspond to the summed weight of fingerprint bits 

that the atom is associated with. The obtained values for each atom are scaled so that the weights of 

all atoms of a fragment sum to 1. In the following chapter, it will be evaluated whether using this 

refined weighting scheme for individual atoms results in more accurate model explanations. 

After a set of substructures has been extracted for a given neuron, the fragments are organised 

hierarchically in a network according to substructure-superstructure relationships. This facilitates the 

analysis of the fragments found for each neuron. The approach of hierarchically organising chemical 

fragments is comparable to self-organising hypothesis networks (SOHN) (Hanser et al., 2014). SOHN 

provides a framework to hierarchically organise structure-activity information as network. The basic 

element of the obtained hypothesis network is an individual hypothesis. A single hypothesis may 

consist of a structural or physicochemical feature related to a certain trend about a bioactivity 
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endpoint. Individual hypotheses that form the network may be derived from a variety of sources (e.g., 

a ML model or expert knowledge). The hierarchical networks may be used to analyse SAR knowledge 

or to build a predictive model. In the work presented here, the networks do not consist of different 

hypotheses for SAR trends. Instead, each node represents a chemical fragment that activates a hidden 

neuron (extracted according to descriptions above) and the network organises all of the chemical 

fragments extracted as strongly activating a given hidden neuron. The algorithm used to obtain the 

network is briefly described in the following paragraphs. 

The fragments extracted for all compounds were organised according to superstructure-substructure 

relationships and these relationships were established by performing substructure matches between 

extracted fragments. This is distinct from SOHN where these relationships are established using 

memberships of data instances (matching a certain substructure or having a certain property). As done 

in SOHN, all fragments extracted for a neuron are initially organised in a single network where the 

root is a generic ‘hypothesis’ (i.e. a substructure of all possible fragments). In this work, the network 

afterwards was separated into ‘subnetworks’. A subnetwork contains a single root (which is an actual 

substructure) and all its descendants (i.e. all superstructures of the root). The full network and the 

subnetworks have similarities to a rooted tree, yet the difference is that nodes in the (sub-)network 

may have more than one parent node. 

The root of the network is initialised to be a generic ‘hypothesis’ or fragment (which matches all 

possible fragments) as mentioned above. New fragments are added by comparing them to the ones 

already in the network. To add a new fragment, the most specific parent fragments were found. These 

are substructures of the new fragments which have no child fragments that are also substructures of 

the new fragments. The new fragment was added to the network as a child of its most specific parents. 

Then, the most generic children of the fragment were found. These are superstructures of the new 

fragment that do not have more generic substructures being also superstructures of the new 

fragment. The new fragment was inserted as a direct parent of the most generic children fragments 

found in this way. Once a new fragment has been added to the network, redundant connections 

between its parent and child fragments may need to be removed. Following these steps, the network 

was grown so that all extracted fragments for a given neuron were included in an iterative fashion 

(one fragment added at a time). The exact implementation for the network construction closely 

follows the description of the SOHN algorithm in the original paper (Hanser et al., 2014) although, as 

stated above, the purpose of the network is different from its original use. 

After the complete network has been obtained, it is separated into subnetworks where the root 

structures are genuine fragments instead of the generic ‘fragment’. This was done to facilitate the 
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subsequent analyses, as the root structures form a good starting point to inspect what substructures 

were extracted for a neuron. Exemplary subnetworks obtained according to this procedure are 

presented in section 9.3 below.  

It is worth noting that the computational cost of building the network increases strongly with 

increasing number of extracted substructures. Therefore, the maximum allowed number of 

substructures extracted per neuron was chosen to be 200. In order to ensure that the most relevant 

substructures are extracted also for neurons when this limit stops the substructure extraction, the FCs 

are considered in decreasing order of support for the extent. 

 

9.2.3 Summary of the workflow 
 

Figure 9-2 summarises the approach to obtain chemical substructures that strongly activate a given 

neuron. 
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Figure 9-2 Overview of the developed method for extracting fragments responsible for neuron activation. The expressions 
in italics represent adjustable parameters. 

 

9.3 Illustration of the workflow 
 

In the first step of the workflow for substructure extraction, compounds and fingerprint bits were 

selected for each neuron. While the number of fingerprint bits was fixed (95th percentile), the 

compounds selected depended on the distribution of activations observed for a given neuron. Figure 

9-3 shows the number of compounds selected per neuron. The maximum number of selected 
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compounds per neuron was 219, while the median was 110. No compounds were selected for 31 of 

the 512 neurons and hence no chemical structures were extracted for those neurons. 

 

Figure 9-3 Selected compounds per neuron. The plot shows the number of selected compounds (activation above threshold) 
for each hidden neuron sorted in descending order. 

 

For neuron 1-69, the sets of selected compounds and fingerprint bits are visualised in Figure 9-4. 51 

compounds possess a larger activation than the threshold (0.53 for this neuron). Naturally, only 

fingerprint bits set in any of the selected compounds are of relevance for the FCA. Of the 95th 

percentile of fingerprint bits for neuron 1-69 (102 bits), only 52 bits appeared in the selected 

compounds. This is reflected in Figure 9-4B, where the bits appearing in the selected compounds are 

displayed in red. 



Chapter 9: Automatic extraction of chemical features activating hidden neurons of neural networks 

175 
 

 

Figure 9-4 Selected compounds (A) and fingerprint bits (B) for neuron 1-69. Training compounds and fingerprint bits are 
sorted according to neuron activation and weight, respectively. In B, bits set in the selected compounds are highlighted in 
red. For visualisation purposes, only the Top-3000 compounds (out of the 5889 training compounds) and the Top-500 bits 
(out of 2048 bits) are included in the plots. 

 

Performing FCA on the obtained sets of compounds and fingerprint bits for neuron 1-69 yielded a 

lattice of 441 formal concepts. In Figure 9-5, a scatter plot shows the support of compounds in the 

extent (among the set of all selected compounds for the neuron) and the potential to activate the 

neuron (as the summed weight of all bits in the intent) for all FCs. Red lines have been added to the 

scatter plot to indicate the thresholds applied to filter the FCs based on support and summed weight 

of the fingerprint bits. The selected thresholds were 0.2 for support and half of the threshold applied 

earlier for inclusion of compounds based on neuron activation (0.265). Hence, only concepts in the 

upper right section of the plot (45 of 441 FCs) were retained to extract chemical substructures. 
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Figure 9-5 Support and potential for neuron activation of FCs. The support of the extent indicates what proportion of the 
51 included compounds are in the extent of the particular FC. The summed weight of the intent corresponds to the sum of 
weights for the fingerprint bits forming the intent of the FC. The red lines in the plot indicate the thresholds for inclusion 
applied to this neuron. Only FCs above the horizontal AND to the right of the vertical line are included. For clearer separation 
of the dots in the plot, the y axis is cut off at a summed weight of 1.1. The only formal concept with a summed weight above 
this is the one containing all bits (summed weight: 2.88), which has a support of 0. 

 

The extraction of chemical substructures is demonstrated for a single FC of neuron 1-69. The extent 

of this particular FC contains 11 compounds and hence it passed the selected threshold for the minimal 

support (0.2 x 51 compounds). The bits in its intent sum to 0.505 and hence it is the FC with the highest 

summed weight that passed the threshold for minimal support. In Figure 9-6, the atom environments 

corresponding to the bits in the intent are displayed. Six of the eight bits are associated with azide 

groups. The bits 1088 and 1750 encode atom environments linked to an aromatic ring. Based on the 

intent, this FC corresponds to aromatic azide compounds. 
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Figure 9-6 Fingerprint bits forming the intent of the selected FC. 

 

Figure 9-7 shows the compounds in the extent with the atoms that match any of the bits highlighted. 

In all structures, the azide group as well as at least one atom of the connected aromatic ring are 

highlighted. All of the compounds possess at least two unconnected fragments. The fragments not 

connected to the azide group comprise further aromatic rings in the compounds. As described above, 

only the fragment with the highest summed weight of involved bits was retained for each compound. 

In all cases this was the fragment containing the azide group.  
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Figure 9-7 Compounds forming the extent of the selected FC. Highlighted in red are all atoms being part of any of the bits 
in Figure 9-6. 

 

The extracted substructures may be identical for some compounds. For instance, compounds 1425, 

1615, 1759, 1651 and 3528 all yielded an azide group attached to a single aromatic carbon atom. In 

total, three distinct substructures were obtained for the investigated FC. These substructures are 

shown in Table 9-2. It can be seen that the substructures are closely related. Sub0 is a substructure of 

Sub1 and Sub2, while Sub1 is a substructure of Sub2. Hence, the structures represent related chemical 

fragments of different specificity. Sub0 matches azide groups attached to any aromatic carbon, 

whereas Sub1 requires 4 aromatic carbon atoms and matches phenyl rings but not imidazole-like 

heterocycles (as in compound 1425). While Sub0 matches all compounds in the extent of the FC, Sub1 

corresponds to a higher summed bit weight. Sub1 therefore causes a stronger activation of neuron 

1-69. Sub2 matches only compound 5431 and interestingly, while being more specific than Sub1, it 

comprises the same fingerprint bits. This is because the single nitrogen atom in the fragment of 

compound 5431 (like the uncharged nitrogen in the azide group) sets bit 725 on. Sub2 represents a 



Chapter 9: Automatic extraction of chemical features activating hidden neurons of neural networks 

179 
 

very specific substructure supported by a single compound of the FC. As described in Methodology, 

Sub2 was not retained as its support among compounds in the FC was too low. 

Table 9-2 Extracted substructures for the selected FC. 

Substructure Supporting 

compounds 

Supporting bits Summed bit weight 

 

 

Sub0 

1403, 1425, 1567, 

1615, 1723, 1759, 

2651, 2660, 3528, 

3878, 5431 

13, 487, 725, 740, 

1449, 1838 

0.346 

 

 

Sub1 

1403, 1567, 1723, 

2660, 3878, 5431 

13, 487, 725, 740, 

1449, 1750, 1838 

0.430 

 

 

Sub2 

5431 13, 487, 725, 740, 

1449, 1750, 1838 

0.430 

 

None of the extracted substructures included bit 1088. Matches with bit 1088 only occurred in the 

fragments with lower summed weight for a given compound (phenyl rings not connected to the azide 

fragment). The presence of such rings in compounds leads to even stronger activation of the neuron, 

yet this information was not retained since the extraction method does not allow for disconnected 

fragments. Despite this loss of information, the extracted substructures capture the major part of 

contributions to neuron activation for this FC. If bit 1088 is part of any connected fragments strongly 

activating the neuron, it is possible that this may be discovered in a different FC. 

Applying the above steps to all retained FCs of neuron 1-69 yielded a total of 25 unique fragments. To 

organise this information, the fragments were arranged into subnetworks according to substructure-

superstructure relationships as described in Methodology. For neuron 1-69 this procedure yielded 

eight subnetworks, of which four (Subnetwork 4, Subnetwork 5, Subnetwork 6 and Subnetwork 8) 

contain just a single fragment. Table 9-3 gives an overview of the subnetworks. 
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Table 9-3 Subnetworks of extracted substructures for neuron 1-69. Shown are the root fragment, the size of the subnetwork 
(number of fragments) and the range of summed weight the contained fragments possess. 

Subnet

work 

ID 

 Root Size Range of summed 

weights 

1 
 

 

14 0.271-0.346 

2 
 

 

14 0.271-0.346 

3 
 

 

3 0.346-0.490 

4 
 

 

1 0.319 

5 
 

 

1 0.319 

6 
 

 

1 0.319 

7 
 

 

5 0.284-0.490 

8 
 

 

1 0.277 

 

Subnetwork 3 consists of substructures with azide groups (including Sub0 and Sub1 from Table 9-2). 

This subnetwork is shown in Figure 9-8. The terminal leaf structure of Subnetwork 3 is a very specific 

azide fragment with several aromatic rings and an imine group. The root structure of Subnetwork 7 

(shown in Figure 9-8), contains a neutral and positively charged nitrogen connected by a double bond 

attached to an aromatic ring. The motif of the nitrogen atoms is part of the azide group. In fact, two 

child fragments contain the azide group, and these fragments overlap with Subnetwork 3. 
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Figure 9-8 Substructures forming Subnetwork 3 and Subnetwork 7. 

 

Subnetwork 1 and Subnetwork 2 were formed from distinct root structures, yet they are very closely 

related. While each subnetwork consists of 14 fragments, there is significant overlap between the 

subnetworks (16 unique fragments in the union of both subnetworks). Both subnetworks contain 

substructures related to the acridine scaffold with an imine group attached to the central ring. More 

specific substructures in both subnetworks include additional aromatic rings and various nitrogen 

groups. In contrast, the more generic substructures that do not encode the full acridine ring system 

match compounds containing heteroatoms in the acridine-like scaffold. 

The roots (and only fragments) of Subnetworks 4, 5 and 6 represent aromatic diazo structures with an 

additional amine group (secondary or tertiary amine) attached to one of the aromatic rings. Diazo 

structures themselves are a known toxicophore for mutagenicity, yet for neuron 1-69 an additional 

amine group seems to be necessary to strongly activate the neuron (i.e., to be above the thresholds 

defined for inclusion of substructures). The root of Subnetwork 8 is N-ethylaniline, indicating that a 

generic secondary aromatic amine causes activation of neuron 1-69. 
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Figure 9-9 Substructures forming Subnetwork 1. 
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Figure 9-10 Fragments forming Subnetwork 2. 
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9.4 Conclusion 
 

This chapter introduced a method to automatically extract chemical features in the form of 

substructures that are responsible for hidden neuron activation. The network structure supports the 

analysis of extracted substructures by storing them in an organised manner. Fragments within a 

subnetwork can be considered as more specific or generic versions of a particular chemical concept, 

whereas different subnetwork represent different (yet potentially closely related) chemical patterns. 

Furthermore, the network structure facilitates the matching of test compounds (to identify the cause 

for their neuron activation) with the fragments. If a test compound does not match the root structure 

of a subnetwork, it will not match any of the fragments in the subnetwork. More generally, if a test 

compound does not match a particular fragment within the network, it will not match any of its child 

nodes. 

By focussing on neuron 1-69, it was demonstrated that this approach can yield chemical features 

responsible for mutagenicity (azide and acridine). The extracted chemical substructures may be 

analysed directly to discover toxicophores for the modelled endpoint or they can be mapped onto test 

compounds in order to explain predictions made by the model for those compounds. In the following 

chapter, the extent to which the extracted fragments correspond to known toxicophores for 

mutagenicity will be evaluated as well as the extent to which the explanations provided for predictions 

of test compounds match their known causes of toxicity. These evaluations are used to measure the 

quality of the method developed here for substructure extraction and to design modifications to the 

method in order to improve its quality. Modifications may include changes to the introduced 

parameters or more fundamental changes to individual steps.
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Chapter 10   Evaluation and optimisation of the model 

explanation approach 
 

 

10.1 Introduction 
 

In Chapter 9, a technique to automatically extract chemical substructures responsible for the 

activation of hidden neurons was presented. The purpose of the technique is to enable interpretation 

of the neural network model on a global and on a local level. Global interpretability means 

understanding which chemical features are overall the most relevant ones for a model, whereas local 

interpretability refers to explaining individual predictions made by the model. 

In the previous chapters, a neural network model trained on experimental mutagenicity data was 

analysed. However, the true reason for toxicity is not always known. To facilitate evaluation of local 

and global interpretability, in this chapter, a model is trained on a dataset that has been labelled using 

the Derek Nexus software (Marchant et al., 2008) which detects the presence of structural alerts for 

mutagenicity. Global interpretability is then evaluated by comparing extracted substructures to 

chemical substructures recorded in Derek as being responsible for mutagenicity (i.e. toxicophores). 

Local interpretation requires the extracted substructures to be mapped to test compounds in order 

to explain the predictions. In this case, the atoms responsible for a positive label are known (defined 

by the Derek alerts), the concordance of the model’s explanation to the Derek alerts can be evaluated. 

First, the approach for substructure extraction presented in the previous chapter was evaluated 

globally and locally. Based on gained insights, changes were then made to the extraction workflow 

with the aim to improve its performance measured as global and local interpretability. Next, the 

modified workflow was evaluated on test compounds not previously used for model training, 

substructure extraction or validation of the explanation model. Finally, the optimised method for 

extracting substructures and explaining predictions was applied and evaluated on a model trained on 

experimental Ames labels, as it is experimental toxicity labels that are relevant in practical settings.  
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10.2 Methodology 
 

10.2.1  Dataset 
 

The Ames dataset investigated in Chapters 8 and 9 was used. The experimental labels were replaced 

by labels determined using the Derek Nexus software and any structural alerts identified by Derek 

were appended to the compound record. Of the 7662 unique original structures (the union of the 

training, validation and test sets), 7336 could be processed in Derek Nexus. The remaining structures 

were discarded. No changes were made to the membership of compounds in the different splits of 

the data (training, validation, test). The Derek Nexus software returned a SDF (structure-data file) 

containing each compound in a MolFile (connection table) format, any alerts matched by the 

compound (more than one possible) and which atoms were responsible for the alert(s) being matched. 

The Derek Nexus software added explicit hydrogen atoms to the chemical graphs and these were 

removed using RDKit prior to model building. According to its internal rules, the Derek Nexus software 

labels compounds as “INACTIVE”, “EQUIVOCAL”, “PLAUSIBLE” or “PROBABLE”. The latter three 

categories indicate the presence of one or more alerts and those compounds were labelled as the 

“positive” (i.e. toxic) class, with the others labelled as “negative” (i.e. non-toxic). Across the whole 

dataset, 3789 (0.516) compounds form the toxic class and 3547 (0.484) compounds form the non-

toxic class. 105 different Derek alerts were set across the whole dataset, 102 of these were set at least 

once in the training set. To refer to specific alerts, they were assigned IDs (Alert1 to Alert105; these 

IDs are different from those used in the Derek Nexus software). 

 

10.2.2  Model training 
 

A neural network model was trained using the Derek derived labels indicating whether or not a 

compound activated a Derek alert for mutagenicity. As for the model using experimental Ames labels, 

the model contained one hidden layer with 512 neurons. To find optimal values for other 

hyperparameters, a grid search was conducted. All considered hyperparameters are shown in Table 

10-1. 

A model was trained for a maximum of 10 epochs on the training set and evaluated after each epoch 

on the validation set. For a given hyperparameter combination, the model instance (after a particular 

training epoch) with the best performance (early stopping) was compared to models obtained for 

other hyperparameters. Among those models, the best performing model according to ROC-AUC 
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(best_model in Table 10-1) was selected to be used in this chapter. In addition, a second model 

instance using dropout during training was selected (dropout_model in Table 10-1). This was 

motivated by a conceptual advantage of dropout models relevant to the study. Compared to models 

not using dropout during training, individual neurons are expected to learn more meaningful features 

as the emergence of co-adaptations between neurons is restricted. A neuron with clearer defined 

features should facilitate the extraction of relevant chemical fragments. The model instance was 

selected by choosing the instance with the best performance among those using dropout. 

Table 10-1 Model instances used in the chapter. Shown are the hyperparameters of the model along with all tested values. 

Hyperparameter Tested values best_model dropout_model 

Batch size for optimisation 16, 32, 64 16 32 

L2 regularisation of neuron 

weights 

0, 0.00001, 0.001 0.001 0.001 

Dropout 0, 0.2, 0.5 0 0.5 

Learning rate 0.0001, 0.00033, 0.001 0.001 0.001 

 

10.2.3  Local evaluation 
 

10.2.3.1 Attribution methods 
 

A common strategy to interpret QSAR models is to highlight atoms in the chemical graph of a test 

compound according to their importance for the compound’s prediction (Jiménez-Luna et al., 2020). 

For example, different techniques have been developed to highlight atoms based on the importance 

of input features to the model. Integrated gradients (IG) applied to Morgan Fingerprint is one such 

established technique and was used within this study as a baseline (referred to as IG_input). The 

method developed here is called IG_hidden and is based on considering the importance of hidden 

neurons and the substructures extracted for those neurons. The results obtained using the IG_hidden 

method were compared to the baseline. 

 

10.2.3.2 IG_input 
 

IG determines an importance (positive or negative) for each input feature towards the prediction of a 

given test compound. In this project, the implementation of the method (IntegratedGradient class) 

provided in the Python library Captum (version 0.4.0) was used. Notably, the attributions for each 
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individual feature sum to the prediction (precisely, this is the difference in predicted probability 

relative to the empty bit vector baseline) made for the test compound (Sundararajan et al., 2017). This 

follows from the fact that gradients of features are integrated along the path from a baseline to a 

compound’s bit vector as described in Chapter 7. The attributions obtained for features (i.e. bits of 

the Morgan FP) were mapped to the atoms in a procedure comparable to a previous study (Preuer et 

al., 2019). Firstly, all atom environments belonging to a given fingerprint bit were collected. Multiple 

environments for a given bit may exist due to multiple occurrences of identical environments in a 

compound or due to bit collisions (i.e. different environments map to the same position in the bit 

vector). The total attribution for a given bit was shared equally between all associated atom 

environments (i.e. if two different environments map to the same bit, each environment receives half 

of the total attribution for the bit). Then, the total attribution for a given environment was shared 

equally by all atoms being part of the environment. Atoms may receive positive or negative 

attributions from different bits of the fingerprint. All attributions for a given atom were summed to 

obtain the final attribution for that atom. To simplify the calculations, only fingerprint bits with an 

attribution of at least 1% of the most important feature (positive or negative) were considered. An 

illustration of the method is provided in Figure 10-1. 
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Figure 10-1 Illustration of IG_input. In this simplified illustration, only attributions for two bits (Bit 1 and Bit 2) are depicted. 
The mapping between bits and atom environments was selected for illustration purposes and does not correspond to RDKit’s 
implementation of Morgan fingerprints. Bit 1 belongs to a single atom environment. Therefore, the full attribution for Bit 1 
(0.16) was assigned to the environment. Then, the environment attribution was shared equally between all atoms in the 
environment (1, 2, 3 and 4). A rare case of bit collision occurred for Bit 2: two different atom environments map to the same 
bit. Therefore, the bit attribution is shared equally between both environments. The first of the two environments contains 
four atoms and the environment attribution is shared among the respective atoms (2, 4, 5 and 9). The second of the two 
environments contains just a single atom, but has five occurrences in the compound. The environment attribution is shared 
between those five atoms (5, 6, 7, 8, 9). To obtain the depiction, the atom attributions obtained from all bits are aggregated. 
Details on how the highlight colours are obtained, are described in a section 10.2.3.6 below. 
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10.2.3.3 IG_hidden 
 

In the IG_hidden method, atom attributions for the chemical substructures activating hidden neurons 

are obtained in a comparable manner to IG_input. As for input features, IG can be used to assign an 

importance (i.e. attribution) to each neuron of a hidden layer and the attributions of a compound for 

all neurons in a network layer sum to the prediction made by the model. The activations of neurons 

in the hidden layer are treated the same way as input neurons were in IG_input to find attributions. 

As for IG_input, the Python library Captum was used (here: LayerIntegratedGradient class). The 

attributions found for a given neuron were mapped to the chemical structure of a test compound 

using the extracted substructures for that neuron. As described in the previous chapter, multiple 

chemical substructures organised in a hierarchical network (and separated into subnetworks) were 

extracted for each hidden neuron. The subnetworks were utilised to find substructures that match the 

test compound. If a test compound does not match a given substructure in a subnetwork, none of its 

(more specific) child substructures will match. The attribution for a neuron (obtained from the IG 

method) was shared between the set of most specific substructures matching the test compound. If a 

test compound matched none of the substructures extracted for a neuron, the attribution for that 

neuron was ignored. This means that the attribution for some of the neurons may not be used to 

explain the prediction (i.e. will not contribute to the atom colouring). The proportion of total positive 

and negative attribution accounted for is reported alongside the explanation. Two different schemes 

were investigated to map the attributions to individual atoms. In the first, the attribution for a given 

fragment was shared equally by all atoms of the fragment (as is done for environments in the IG_input 

method). In the second case, in addition to sharing the attribution among the atoms, different weights 

were considered for all atoms forming a fragment with the weights derived from the weight individual 

fingerprint bits have for the neuron, as described in the previous chapter (section 9.2.2). 

The general principle of the IG_hidden method is illustrated in Figure 10-2 for a simplified case of three 

hidden neurons. An attribution (positive or negative) was assigned to each neuron and for each 

neuron the matching substructures for the test compound were found and the neuron attribution 

value was shared across all atoms of the substructure. This was repeated for each neuron and atom 

attributions were summed to give a final model explanation. In the case shown, no weights were used 

for the atoms of extracted substructures.  
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Figure 10-2 Illustration of IG_hidden. In the first step, an attribution (positive or negative) was determined for each hidden 
neuron for the test compound. Then, the neuron attributions were converted to atom attributions using matching 
substructures. In this case, one matching substructure was found for each neuron. The substructure for the first neuron was 
a nitro group with an aromatic carbon (4 heavy atoms). Therefore, the neuron attribution was divided by 4 and an atom 
attribution of 0.06 was obtained. The same procedure was applied to the other neurons’ attributions. Notably, the attribution 
for Neuron 2 was negative, hence the blue colouring. Details for the atom colouring are provided in the section 10.2.3.6 
below. In this case, no weighting was applied to the atoms of a substructure. The rightmost structure contains atom 
colourings aggregated from the individual neurons’ atom attributions. 

 

10.2.3.4 Evaluation of attributions 
 

If the reason for a compound’s toxicity is known, the concordance of the model’s explanation with the 

true cause of toxicity can be evaluated. As described above, the output from Derek Nexus reports 

which atoms were responsible for an alert being fired. For a given compound, the ground truth is 

defined as the union of all atoms responsible for all alerts that are fired. Attribution ROC-AUC 

(McCloskey et al., 2019) was used to measure the concordance of atom attributions to the ground 

truth for a given positive compound. This metric is the same as the ROC-AUC score used to evaluate 

performance of binary classification models. That means that atoms are ranked according to their 
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attribution and at each threshold the TPR (true positive rate, i.e. recall) and FPR (false positive rate, 

i.e. 1-specificity) were recorded and then the area under the obtained ROC curve was determined. 

Note that the attribution ROC-AUC cannot be computed for compounds where all atoms form the 

ground truth of toxicity because no FPR can be computed. 

Naturally, attribution AUC values can only be determined for compounds matching an alert (actual 

positives). These cases can be further discriminated into TPs (correctly predicted as positive) and FNs 

(incorrectly predicted as negative). For a FN compound, the explanation cannot be expected to match 

the true cause of toxicity, since the model did not predict the compound as toxic. This is a mistake of 

the model. However, the primary objective of this analysis is to evaluate the performance of the 

attributions obtained from extracted substructures. Therefore, attribution AUC scores were only 

computed for TP compounds. Initially, IG_hidden was evaluated using the substructure extraction as 

described in the previous chapter. Following this evaluation, various changes were made to the 

extraction process in an attempt to achieve better explanation performance. These changes are 

described below. In all cases, the obtained AUC scores were compared to those obtained using 

IG_input. For both attribution methods, the distribution of attribution AUCs obtained for the set of 

compounds can be summarised using the median value for a simple comparison. 

 

10.2.3.5 Alert-specific attribution scores 
 

A deeper understanding of the performance of attribution methods can be gained by analysing 

attribution AUC scores obtained for specific alerts. It may be that an attribution method performs very 

well for some alerts, but poorly for others. For this analysis only compounds matching a single alert 

were considered. Two alerts (Alert39 and Alert87) were almost always found co-occurring with the 

alert for alkylating agents (Alert53) and in this case they were added to the support set for Alert53 to 

be included in the analysis. Then, for each alert the mean attribution AUC across compounds matching 

this alert was computed. 

 

10.2.3.6 Depiction of atom attributions 
 

Atom attributions for individual compounds were depicted using a colour map. Positive attributions 

(contributing to a toxic prediction) were highlighted red, while negative attributions (contributing to 

a non-toxic prediction) were highlighted blue. Neutral atoms (attribution = 0) were not highlighted 

(white ‘highlight’). To make the colouring between different compounds comparable, colours were 
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scaled according to the maximum atom attribution observed in a dataset, which may be positive or 

negative. The maximum atom attribution received full colour intensity and all atoms of the 

compounds in the dataset were assigned colours relative to this maximum. The colour intensity for 

individual atoms was assigned by interpolating in RGB colour space. To obtain a better discrimination 

of atoms in the lower range of attributions, the maximum colour intensity was assigned to all atoms 

with attributions at least 70% of the maximum, which has also been done in a previous study (Harren 

et al., 2021). Separate scales were used for IG_input and IG_hidden due to the observation that larger 

atom attributions were generally obtained for IG_input. The reason for this mostly seems to be that 

attributions for IG_hidden were ignored when no matches were found for a given neuron. As a result, 

colour intensities between IG_input and IG_hidden are not directly comparable. 

 

10.2.4  Global evaluation 
 

The global analysis is focussed on the entirety of extracted substructures and how well they match the 

chemical substructures associated with Derek alerts. Whether or not an extracted substructure 

matches an alert is evaluated by checking if the (extracted) substructure completely includes (i.e. is a 

superstructure of) a substructure belonging to a Derek alert (multiple substructures are possible). The 

set of substructures belonging to a given Derek alert was derived from the training compounds. In 

particular, all substructures (that occurred in the training set) belonging to a given alert were collected. 

Based on this basic property of extracted substructures (being a superstructure of at least one alert 

structure), various analyses were conducted for each respective set of extracted substructures 

(several different workflows for substructure extraction were tested as described in the following 

section). Firstly, the proportion of alerts for which superstructures were extracted was determined as 

well as the number of distinct superstructures extracted for each alert. This is to determined how well 

the extracted substructures cover the set of Derek alerts occurring in the training set. 

Also, the proportion of extracted structures that are superstructures of any alert structure was 

determined. This is to determine whether extracted structures are relevant with respect to toxic 

predictions. Notably, an extracted substructure may be relevant whilst not being associated with a 

Derek alert if it is related to negative predictions. To account for that, it was also determined what 

proportion of substructures extracted only in neurons associated with toxic predictions (confidence 

of toxic prediction >0.667) are ‘relevant’. 

Finally, the proportion of neurons associated with toxic predictions with at least one superstructure 

of alert structures among extracted substructures was determined. This was done to estimate 
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whether or not for relevant neurons (to toxicity) any meaningful substructures were extracted. 

Otherwise it might be helpful to analyse why no relevant substructures were extracted for affected 

neurons. 

 

10.2.5  Modifications to automatic substructure extraction 
 

The approach to automatically find chemical substructures activating hidden neurons was described 

in the previous chapter. In an attempt to improve the explanatory performance achieved, various 

modifications were made to the original approach as described below. The variations were all 

evaluated on the validation set using both model instances (best_model and dropout_model). Finally, 

one model instance and one approach was chosen for final evaluation on the test set. 

Compared to the original workflow, the aim was to improve the extraction of substructures associated 

with Derek alerts of low frequency in the training set. The first change (Variation 1) was to allow the 

inclusion of FCs where the support of the extent is below ThreshSupport (the proportion of compounds 

in the extent of a FC among all compounds selected for a neuron). However, a stricter threshold for 

the corresponding weight was applied to these FCs. Previously, ThreshWeightFC (the threshold 

applied to the sum of the FP bit weights in the intent of a FC). To have a stricter threshold for FCs with 

lower frequency, ThreshWeightLowSupp was introduced as additional parameter. It is a multiplier on 

the ThreshWeightFC and was selected to be 1.5 meaning that FCs not meeting ThreshSupport need to 

have a sum of weights in the intent of at least 1.5 x ThreshWeightFC. 

In Variation 2, an increased number of compounds and FP bits were considered by changing 

ThreshCompound from 3 to 2 and changing ThreshBits from 0.05 to 0.1. This means that training 

compounds with an activation of mean+2xSD and the 90th percentile of bits according to their weight 

were considered. This led to a much larger number of FCs for each neuron. To compensate for this, 

not all FCs were considered for substructure extraction. Each FC was checked whether it is novel 

compared to previously considered FCs for a neuron. This was done by keeping count of how often a 

given fingerprint bit has been included in previously considered FCs. A FC was considered novel if each 

of the bits in the intent had been included fewer than ThreshNoveltyFC (a newly introduced 

parameter) times in the intent of previously considered FCs. In variation 2, ThreshNoveltyFC was 

selected to be 1; ThreshWeightLowSupp was selected to be 1; and ThreshSupport to be 0. The latter 

means that no threshold on support was used. However, FCs were considered in decreasing order of 

support and the maximum number of extracted substructures per neuron was limited, meaning that 

FCs with low support might not be considered. 
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Variation 3 was introduced to limit the extraction of substructures not actually activating a neuron 

very strongly. This was motivated by the fact that only fingerprint bits with (high) positive weights are 

used to find chemical substructures. However, it may happen that an extracted substructure also 

contains fingerprint bits with strong negative weight which would lead to a lower true activation of 

the neuron than suggested by merely considering bits with positive weights. To account for this, the 

true neuron activation caused by a given substructure was estimated. This is difficult because a 

chemical substructure cannot be perfectly expressed as a Morgan Fingerprint due to the fact that 

some chemical environments of a compound are fully included in a substructure, whereas others are 

partially included (see illustration for an exemplary substructure in Figure 10-3). 

 

Figure 10-3 Scheme for estimating the neuron activation of a substructure. In this example the extracted substructure was 
a hydroxyl group attached to a single aromatic carbon atom and phenol was a compound matching this substructure in the 
extent of a given FC. The goal is to estimate how strongly the substructure activates the respective neuron. A: the atom 
environments that are completely and partially included in the substructure are shown. B: To estimate neuron activation for 
the substructure, various bit vectors were considered. All bit vectors contain the bits completely included in the substructure 
(Bit807, Bit1380, Bit1602; shown in red). The set of different bit vectors was generated by considering all potential 
combinations of bits partially included in the substructure (Bit745 and Bit1750; shown in blue). The estimated activation for 
the substructure (using phenol as associated compound) was the mean activation for all generated bit vectors. In practice, 
the substructure may match different compounds in the extent of a FC. In that case, the described procedure was applied to 
all the different compounds matching the substructure and the final estimate for the substructure’s neuron activation was 
the mean of activations obtained for different compounds. 

 

To account for this, a set of fingerprint bit vectors was generated for a substructure of a compound. 

Each of these contains the bits fully included in the substructure with distinct bit vectors generated by 
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considering all possible combinations of the bits partially included in the substructure. To estimate the 

neuron activation for a given compound-substructure pair, the mean activation of all bit vectors was 

calculated. In a given FC, a substructure may be supported by multiple compounds. The final estimate 

for the neuron activation of a substructure was the mean across all compound-substructure pairs 

within the FC. Only substructures whose estimated neuron activation exceeded ThreshWeightFC were 

retained. A new parameter with the name use_all_bits_check (whether or not the approach is applied) 

was introduced. Variation 3 used this approach with otherwise identical parameters as Variation 2. 

In Variation 4, ThreshNoveltyFC was selected to be 3. Otherwise identical parameters were used as in 

Variation 2. The motivation for this was to check if a less restrictive threshold for novelty of FCs would 

lead to more relevant substructures being extracted. 

An overview of all tested modifications is provided in Table 10-2. For all variations, global and local 

evaluation was conducted as described in the previous sections. In the local evaluation, the results are 

compared to atom attributions obtained when using IG_input. 

Table 10-2 Varied parameters for automatic substructure extraction. Shown are the parameters of the original approach 
as described in the previous chapter and Variations 1-4. use_all_bits_check refers to the procedure described in Figure 10-3. 
*Using the value 1000 for ThreshWeightLowSupport effectively means that no FCs with support below ThreshSupport are 
considered. **Using the value 1000 for ThreshNoveltyFC effectively means that no FCs are excluded due to that criterion. 

 Original Var1 Var2 Var3 Var4 

ThreshCompound 3 3 2 2 2 

ThreshBits 0.05 0.05 0.1 0.1 0.1 

ThreshSupport 0.2 0.2 0 0 0 

ThreshWeightFC 0.5 0.5 1 1 1 

ThreshWeightLowSupp 1000* 1.5 1 1 1 

ThreshNoveltyFC 1000** 1000** 1 1 3 

use_all_bits_check No No No Yes No 

 

10.2.6  Final evaluation on the test set 
 

Different neural network model instances (best_model and dropout_model) as well as different 

approaches for substructure extraction were compared on the validation set. Among these, one model 

instance and one extraction approach were selected for final evaluation on the test set. This was done 

to investigate if the observed performances generalise beyond the validation set on a set of 

compounds not used during training or validation of the models. The explanations provided by the 

extracted substructures were compared to those obtained when using IG_input. 
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The final evaluation was conducted in the same manner as the validation. For TP compounds (not 

having all atoms as ground truth), attribution AUC values were obtained by comparing atom 

attributions to atoms being part of Derek alerts as ground truth. Furthermore, average alert AUCs 

were computed in the same manner as described above. 

 

10.2.7  Analysis of proportion of attributions accounted for in IG_hidden 
 

As described above, when applying IG_hidden it may happen that no substructure matching the test 

compound has been extracted for a neuron. It that case, the attribution for this neuron was not used 

to colour atoms of the test compound. The extent to which this was the case was investigated for the 

studied dataset. In particular, for each TP compound in the validation set the proportion of (a) positive 

attributions, (b) negative attributions and (c) total attributions (i.e. sum of absolute positive and 

negative attributions) that could be considered for the atom colouring (i.e. a neuron had a 

substructure match for the test compound) were calculated. Moreover, for exemplary compounds the 

most relevant neurons (i.e. the neurons with the highest attributions) were considered and the 

presence or absence of substructure matches was analysed. 

 

10.2.8  Analysis of predictions for a model based on experimental Ames 

labels 
 

In addition to analysing model instances trained on Derek labels as alerts, a model trained on 

experimental Ames labels was analysed. The same model instance as in the two preceding chapters 

was used. For extracting substructures activating hidden neurons, the protocol selected for final 

evaluation in the previous section was used and the extent to which the model attributions 

correspond to atoms flagged for mutagenicity by the Derek expert system was investigated. This was 

done for TP compounds which are also labelled as positive by Derek. In addition to comparing 

performances for individual compounds, average attribution AUCs for Derek alerts were determined. 

To enable a more robust evaluation, the validation and the test set were pooled for these analyses. 

Notably, the validation set was not used to optimise the explanation method in conjunction with the 

model trained on experimental Ames data. 

Moreover, TP compounds not labelled by the Derek system were inspected. This analysis may provide 

insights on how Derek alerts may be refined to increase their coverage. Notably, compounds are also 

labelled as negative if they match an alert but the Derek software has knowledge of a negative 
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experimental result for a compound. In that case the experimental label in Derek is in conflict with the 

one found in the dataset for the present study and that information may be used to curate the data. 

Finally, TN compounds were analysed in order to understand how well IG_input and IG_hidden can 

explain negative predictions made by a model. 

 

10.3 Results 
 

10.3.1  Model evaluation 
 

The performance of both the models (best_model and dropout_model) was evaluated on the training 

and validation set using various metrics, as reported in Table 10-3. Both models achieved very high 

scores on the validation set (AUC > 0.97, accuracy > 0.9 and MCC > 0.8). For all metrics except recall, 

best_model performs slightly better than dropout_model. Notably, both models performed better 

than the one analysed in the previous chapters which was trained on experimental labels. This may 

be due to the fact that Derek labels are clearly defined by rules and are not prone to experimental 

uncertainty. 

Table 10-3 Classification metrics for models. Various metrics for best_model and dropout_model are compared on both 
training and validation sets. 

 best_model 

training 

dropout_model 

training 

best_model 

validation 

dropout_model 

validation 

ROC-AUC 0.997 0.993 0.974 0.970 

Accuracy 0.978 0.960 0.914 0.903 

Balanced accuracy 0.978 0.960 0.914 0.902 

Precision 0.976 0.951 0.918 0.889 

Recall 0.981 0.973 0.915 0.929 

Specificity 0.974 0.947 0.913 0.876 

F1 0.978 0.962 0.917 0.908 

MCC 0.956 0.920 0.828 0.807 

 

Furthermore, recall scores for specific alerts were determined for both models. If a model does not 

correctly predict compounds matching a particular alert as toxic, the model likely failed to find this 

alert as a reason for toxicity. The number of alerts with recall of at least 0.9 was recorded. On the 

training set (102 different alerts), this was the case for 88 alerts (0.862) with best_model and 78 alerts 
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(0.765) with dropout_model. The validation set contains 68 alerts. A recall of at least 0.9 was achieved 

for 49 (0.721) of them with best_model and 50 (0.735) with dropout_model, respectively. Overall, 

best_model performed slightly better than dropout_model with respect to most classification metrics. 

Nevertheless, it may be that the chemical features relevant to dropout_model prove to be more 

interpretable. 

 

10.3.2  Local evaluation of IG_input 
 

The capability of IG_input to explain predictions was evaluated on TP compounds in the validation set. 

For those compounds where not all atoms are part of the alert attribution, AUC scores are reported 

in Figure 10-4. The results for best_model are described in detail before briefly comparing these with 

the dropout_model.  

 

Figure 10-4 Attribution AUC scores for IG_input. Attribution AUC scores were computed for all TP compounds in the 
validation set (excluding compounds where all atoms are part of the ground truth). 

 

The median score for those compounds was 0.974. For 134 (out of 307) compounds a perfect score of 

1 was measured, while for 254 a score of at least 0.8 was achieved. This means that the IG_input atom 

attributions strongly match the ground truth for the majority of the compounds. However, for a few 

compounds the attributions did not agree well with the ground truth. For eight compounds, the 
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attribution AUC score was less than 0.5 and the minimum measured score was 0.06. Overall, IG_input 

worked very well to explain the predictions. For compounds with low AUC scores it is unclear whether 

those are because the model did not recognise the true cause of the toxic label or because the 

attribution method failed. Attributions for exemplary compounds along with the ground truth of the 

alerts and the respective attribution AUC scores (if defined) are shown in Figure 10-5. 
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Figure 10-5 Atom attributions using IG_input. Atom attributions were obtained from attributions of input features (i.e. 
fingerprint bits) as described in Methodology. Atom attributions for compounds are compared to atoms matching Derek 
alerts and measured as attribution AUC (if possible). Alerts in this Figure: 11: aromatic amine, 16: PAH, 17: hydrazine, 42: 
aromatic nitro, 44: azide, 53: alkylating agent, 62: PAH, 65: PAH, 97: PAH, 101: epoxide. 

 

Perfect AUC scores (=1) were observed for two of the depicted compounds (aromatic nitro: 5919, 

epoxide: 5974). A perfect AUC score corresponds to all atoms belonging to the alert receiving 
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attributions larger than all the remaining atoms. High AUC scores were also obtained for compounds 

6138 (PAH) and 6598 (azide). In the first case, attributions largely agree with the alert, yet not 

perfectly. Some of the alert atoms did not receive a high attribution, whereas some atoms not 

belonging to the alert also received high attributions. It is worth noting that the model explanation in 

essence captures a polycyclic aromatic system and it seems that aromatic atoms that are part of more 

than one ring received high attribution values. In the azide compound, the alert was also well 

explained with all three nitrogen atoms having received high attributions, although the connected 

carbon atom did not. For compound 6438 (hydrazine) an AUC of 0.72 was achieved and in this case 

the explanation did not match the ground truth very well. All of the alert atoms received positive 

attribution values, however, atoms in the isoxazole ring (especially the oxygen atom) also received 

strong positive attributions. 

While all considered compounds were correctly classified as toxic, in a few cases the attributions did 

not match the ground truth. An AUC score of 0.46 was found for compound 6506. This compound 

matches two alerts. The alert ‘alkylating agent’ is due to the iodine atom attached to the left ring. The 

iodine atom received a strong attribution, but the attached carbon atoms did not. Arguably, the most 

important atom for this alert was highlighted. Concerning the second alert (PAH type alert), some of 

the aromatic carbons received slightly positive attributions, but not the hydroxyl groups. This alert is 

not in good agreement with the respective atom attributions. The lowest AUC score of the dataset 

was found for compound 6478. A high attribution was assigned to the amine group which is very 

plausible, given that aromatic amine is an alert frequently occurring in this dataset. However, for this 

molecule the aromatic amine group is not part of the respective Derek alert, hence the very low AUC 

score. No AUC value could be computed for compound 5889 (since all of its atoms are part of the 

alert). This compound matched two Derek alerts (aromatic amine and PAH type alert) and most of the 

atoms for both alerts received positive attributions. Only two carbon atoms received slightly negative 

attributions. Even though not all atoms received positive attributions, the provided explanation 

matches both alerts fairly well. 

Since an absolute colour scale was used across the whole dataset, atom attributions can be compared 

across different compounds. It seems that the strongest atom attributions (i.e. colour intensities) were 

assigned to atoms belonging to small functional groups which are well represented in the training set 

and for which the compounds can be predicted as toxic very accurately (e.g. aromatic nitro, epoxide, 

azide). When the alert structures consist of larger parts of the compound (e.g PAH alert type), the 

colour intensities for individual atoms naturally will be lower. 
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In addition to analysing individual compounds, alert-specific attribution scores were computed, as 

reported in Figure 10-6. Only 50 alerts (out of 68 with at least one occurrence in the validation set) 

were considered. The remaining alerts either did not have any TP compounds or there were no 

compounds where that alert is the only alert. Of the 307 TP validation compounds, 36 were not 

included in this analysis as they matched multiple alerts. The reported scores are mean scores for a 

given alert, yet in several cases only a single compound represents an alert. For 40 out of the 50 alerts, 

a mean score of at least 0.8 was obtained (see Figure 10-6A). In Figure 10-6B, the performance of the 

alerts is depicted together with the frequencies the alerts occur in the training set. It can be seen that 

for all alerts with at least 80 occurrences (~1.4%) in the training set, a mean AUC of more than 0.8 was 

achieved. For alerts with fewer occurrences, there are some cases where lower AUCs were obtained, 

however, no clear trend exists between occurrences and AUC. Also for alerts with fewer than five 

occurrences in the training set, high AUC scores were obtained. Notably, the analysis of AUC 

distributions across the validation set is dominated by compounds belonging to the most frequent 

alerts. Of the 307 TP compounds analysed in Figure 10-4, 220 match one of the most frequent alerts 

(>80 occurrences in the training set). 
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Figure 10-6 Alert-specific AUC scores for IG_input. A: Mean attribution AUC scores for the alerts in descending order. B: 
Mean attribution AUC scores and occurrence of alerts in training set (logarithmic scale).  

 

The results presented here demonstrate a good explanatory performance using IG_input for 

best_model. Table 10-4 shows the corresponding performance metrics for dropout_model. Notably, a 

direct comparison is of limited meaning, as the set of TP compounds and also the set of alerts covered 

in TP compounds differs between the two models. Nonetheless, comparable explanatory performance 

was observed for the two models. In section 10.3.4 below, the performance achieved using IG_hidden 

will be compared to those shown here. 

 

 

 

 



Chapter 10: Evaluation and optimisation of the model explanation approach 

205 
 

Table 10-4 Explanatory performance of best_model and dropout_model. 

 best_model dropout_model 

Median AUC 0.974 0.964 

AUC ≥0.8 254/307 (0.827) 254/311 (0.817) 

Median alert AUC 0.900 0.894 

Alert AUC ≥0.8 38/48 (0.792) 36/52 (0.692) 

 

10.3.3  Global evaluation of extracted substructures 
 

For each extraction method and model, various numbers are reported in Table 10-5 to evaluate the 

quality of extracted substructures globally. The objective was to estimate how well the extracted 

substructures correspond to known Derek alert structures. 

Table 10-5 Global evaluation for various substructure extraction workflows. Reported are various figures characterising the 
total set of extracted substructures for both best_model and dropout_model. These are the number of distinct substructures 
extracted for all neurons, the number of Derek alerts for which superstructures were extracted, the number of neurons that 
are associated with toxic predictions for which superstructures of Derek alerts were extracted, the proportion of the 
extracted substructures that represents superstructures of Derek alert structures (‘relevant’), and the proportion of relevant 
substructures extracted from neurons associated with toxic predictions. *Neurons associated with toxic predictions are 
neurons for which the confidence of a positive prediction is at least 0.667 upon activation. The threshold used for all neurons 
here was selected to be the 20th percentile of maximal neuron activations across the dataset. For more details on confidence 
of neurons, see chapter 8. 

  Distinct 
substructures 

Extracted 
alerts 

Relevant 
neurons 
among toxic 
neurons* 

Relevant 
substructures 

Relevant 
substructures 
among toxic 
neurons* 

b
es

t_
m

o
d

el
 

Original 3213 49/102 169/205 0.286 0.312 

Variation1 29676 88/102 204/205 0.396 0.491 

Variation 2 33387 96/102 204/205 0.47 0.577 

Variation 3 33427 97/102 204/205 0.483 0.596 

Variation 4 35947 95/102 204/205 0.464 0.584 

d
ro

p
o

u
t_

m
o

d
el

 Original 3511 50/102 180/226 0.393 0.516 

Variation 1 37911 93/102 225/226 0.471 0.63 

Variation 2 39164 101/102 225/226 0.577 0.753 

Variation 3 39164 101/102 225/226 0.577 0.753 

Variation 4 49233 99/102 225/226 0.546 0.727 

 

Similar trends were observed for best_model and dropout_model. In both cases, the original 

extraction method yielded more than 3000 distinct substructures and the different variations tested 

resulted in much higher numbers of substructures. Notably, the larger number of distinct 

substructures corresponded to superstructures for a wider range of the Derek alerts. While the 

original workflow retrieved superstructures for only about half of all alerts in the training set, the 
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Variations 2, 3 and 4 resulted in superstructures for almost all of the alerts. Figure 10-7 shows the 

proportion of alerts for which superstructures were extracted using the original workflow for different 

frequencies of occurrence of the alerts in the training set. It can be seen that this method failed to 

extract superstructures for many of the less frequent alerts.  

 

Figure 10-7 Coverage of Derek alerts for original extraction workflow. Alerts were assigned to bins according to frequency 
of occurrence in the training set. The figure reports the proportion of alerts for which at least one superstructure was 
extracted in any of the neurons. The plot reports the figures for dropout_model. 

 

Also investigated was the number of neurons associated with toxic predictions for which 

superstructures of Derek alerts were among the extracted fragments. For the original workflow this 

was the case for the majority of neurons for both best_model (169/205) and dropout_model 

(180/226). The different variations of the extraction method increased these numbers further so that 

at least one superstructure was extracted for nearly all of those neurons. 

Finally, the proportion of the retrieved substructures that correspond to any Derek alert and hence 

can be considered ‘relevant’ was investigated. This was analysed for all substructures (extracted in 

any neuron) and also for those extracted from neurons linked to toxic predictions. As expected, a 

higher proportion was always found among substructures extracted from toxic neurons. Interestingly, 

the variations of the extraction process led to higher proportions of relevant structures, although also 

much higher numbers of substructures were retrieved for those. Moreover, consistently higher 

proportions were found for dropout_model compared to best_model. The retrieval of substructures 

belonging to more of the alerts as well as the larger proportion of relevant substructures being 
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extracted suggest that dropout_model may be better suited to extract meaningful substructures from 

its hidden neurons. 

In the following, exemplary fragments are shown for two different alerts. The substructures were 

taken from the Variation 2 approach applied to dropout_model. Firstly, substructures related to 

aromatic nitro compounds, the most frequent alert in the dataset, are shown in Figure 10-8 (labelled 

42-1 – 42-9). In total, 4999 distinct substructures related to the alert were retrieved (33387 

substructures in total). Substructures related to this alert were retrieved in 213 different neurons and 

in 179 neurons related to toxic predictions indicating a vast distribution across neurons in the neural 

network. It is worth noting that many of the structures are superstructures of different alerts at the 

same time. 

 

Figure 10-8 Exemplary substructures related to aromatic nitro (Alert42). The substructures were extracted in various 
neurons and selected to represent the variety of superstructures found for this alert. 
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The first substructure (42-1) matches all atoms marked by the Derek alert: a nitro group attached to 

a single aromatic carbon atom. Substructures 42-2 and 42-3 match an oxygen or nitrogen atom within 

the aromatic ring, respectively, and hence are more specific than 42-1. 42-4 includes 4 aromatic 

carbons and 42-6 a full phenyl ring. The remaining substructures include different chemical features 

and alerts. 42-5 includes a chlorine attached to an aliphatic carbon. 42-7 is also a superstructure of 

the polycyclic aromatic hydrocarbon alert. 42-8 includes even two further alerts: an epoxide and an 

aldehyde. 42-9 is an example of a very large and specific fragment. Such fragments were extracted 

rarely. 

Secondly, some selected superstructures for the less frequent alert ‘nitrogen or sulphur mustard’ 

(Alert39) are shown in Figure 10-9. In total, 327 substructures belonging to this alert were extracted 

in 166 different neurons and in 120 neurons linked to toxic predictions. This shows that less frequent 

alerts also seem to be detected in a large number of neurons. 

 

Figure 10-9 Exemplary substructures related to nitrogen or sulphur mustard (Alert39). The substructures were extracted in 
various neurons and selected to represent the variety of superstructures found for this alert. 

 

This alert structure consists of a nitrogen or sulphur atom which is connected to one or two halogen 

atoms via an ethyl group. The nitrogen or sulphur atom can activate the carbon next to the halogen 

in an intramolecular mechanism to make it a strong electrophilic. The first row of structures shows 

nitrogen mustard compounds. As with aromatic nitro compounds, other alerts may be included such 

as nitrosamine in 39-2 or a PAH and aromatic amine in 39-3. The second row shows sulphur mustard 
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compounds. Structure 39-6 is an example of a bromine as halogen atom. This shows that the extracted 

substructures related to Alert39 cover different chemical variations of this alert. 

 

10.3.4  Local evaluation of IG_hidden 
 

10.3.4.1 Analysis of overall and alert-specific performances 
 

The explanatory performance of IG_hidden was evaluated both for best_model and dropout_model 

by mapping extracted substructures onto test compounds and compared to the IG_input attribution 

method. A direct comparison between the two models (best_model and dropout_model) is not 

straightforward, as different compounds may have been predicted correctly and hence the set of TP 

compounds (and alerts) is not identical. A summary of the various evaluation scores is presented in 

Table 10-6. Each modelling method using IG_hidden is evaluated with and without weighting applied 

to the atoms of the substructures (see Methodology). 
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Table 10-6 Local evaluation metrics for different model instances and substructure extraction workflows. Reported are the 
median AUC (for TP compounds), the proportion of compounds with an AUC ≥0.8, the median alert AUC and the proportion 
of alerts with an alert AUC ≥0.8. The best attribution method for each model instance is in bold. 

  Median 
AUC 

AUC≥0.8 Median 
alert 
AUC 

Alert AUC 
≥0.8 

b
es

t_
m

o
d

el
 

IG_input 0.974 0.827 0.900 0.792 

Original 0.867 0.576 0.683 0.396 

Original 
we 

0.875 0.576 0.683 0.417 

Var1 0.917 0.645 0.828 0.563 

Var1 we 0.938 0.645 0.850 0.542 

Var2 0.867 0.619 0.868 0.583 

Var2 we 0.903 0.642 0.866 0.583 

Var3 0.867 0.606 0.787 0.5 

Var3 we 0.900 0.635 0.815 0.521 

Var4 0.833 0.547 0.788 0.479 

Var4 we 0.889 0.611 0.781 0.5 

d
ro

p
o

u
t_

m
o

d
el

 

IG_input 0.964 0.817 0.894 0.692 

Original 0.933 0.637 0.729 0.404 

Original 
we 

0.917 0.627 0.686 0.404 

Var1 0.967 0.717 0.866 0.615 

Var1 we 0.958 0.711 0.873 0.615 

Var2 0.917 0.669 0.881 0.692 

Var2 we 0.935 0.727 0.903 0.712 

Var3 0.917 0.669 0.881 0.692 

Var3 we 0.935 0.727 0.903 0.712 

Var4 0.893 0.678 0.864 0.654 

Var4 we 0.939 0.736 0.895 0.673 

 

For best_model, IG_input achieved the best scores when evaluating both individual compounds and 

average values for different alerts. The IG_hidden attribution method closest to it when evaluating 

single compounds was Variation 1 with weights which achieved a median AUC of 0.938 (vs. 0.974 for 

IG_input) and a proportion of 0.645 (vs 0.827) compounds with an AUC of at least 0.8. Variation 2 

showed the highest median alert AUC (0.868 vs 0.900 for IG_input) and Variation 2 (both with and 

without weights) showed the highest proportion of median AUCs above 0.8 (0.583 vs. 0.792 for 

IG_input). 

For dropout_model, IG_input was the best attribution approach overall, however, the scores for the 

IG_hidden methods were very similar or even slightly higher in some cases. Variation 1 achieved a 

median AUC score of 0.967 (vs. 0.964 for IG_input). Variation 4 with weights achieved the highest 

proportion of compounds with an AUC of at least 0.8 (0.736 vs. 0.817 for IG_input). Variation 2 and 

Variation 3 (each with weights) achieved a slightly higher median alert AUC higher than IG_input 
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(0.903 vs 0.894). These IG_hidden methods also achieved a larger proportion of alerts with an AUC of 

at least 0.8 compared to IG_input (0.712 vs 0.692). Clearly, the explanations obtained with IG_hidden 

are more competitive with IG_input for dropout_model as opposed to best_model. From this it can be 

concluded that a network using dropout may simplify the extraction of meaningful molecular 

fragments to interpret the model. Conceptually, models using dropout should lead to single neurons 

representing more meaningful features in the model. 

Another observation, made for both best_model and dropout_model, is that the original workflow 

performed relatively well in terms of median AUC across all compounds, but the various modifications 

to the workflow led to higher average alert AUC scores. This suggests that good explanations are 

provided for a wider range of different substructure types. 

The AUC scores for individual compounds, obtained from various attributions methods for 

dropout_model, are depicted in Figure 10-10. It can be seen that IG_input clearly achieved the highest 

scores overall, although the highest median score was found for IG_hidden Variation 1. Among the 

different IG_hidden methods, Variation 2 with weights and Variation 4 with weights achieved the best 

scores. A more detailed comparison of these two approaches is shown in Figure 10-11A with a scatter 

plot comparing AUCs for individual compounds and Figure 10-11B with a scatter plot comparing mean 

AUC values for the different Derek alerts.  
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Figure 10-10 Comparison of attribution AUC scores for different attribution methods. AUC scores for individual compounds 
are reported for selected IG_hidden variations and IG_input. For each attribution method, AUCs for individual compounds 
were sorted in descending order and plotted as lines. The data is for dropout_model. The included IG_hidden variations 
were: original workflow with weights (Original we), Variation 1 (Var1), Variation 2 with weights (Var2 we) and Variation 4 
with weights (Var4 we). 
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Figure 10-11 Comparisons of compound AUCs and alert AUCs. Comparisons were made between Variation 2 with weights 
(Var2 we) and Variation 4 with weights (Var4 we) as well as between Variation 2 with weights and IG_input. A: Scatter plot 
for individual compound AUCs (Var2 we vs. Var4 we), B: Scatter plot for Derek alert AUCs (Var2 we vs. Var4 we), C: Scatter 
plot for individual compound AUC2 (Var2 we vs. IG_input), D: Scatter plot for alert AUCs (Var2 we vs. IG_input) 

 

When analysing the scatter plot for individual compounds (10-11A), the scores were very similar for 

the two methods with a large number of compounds in the upper right corner (AUC close to 1 for both 

methods). At lower AUC scores there were several compounds with relatively large differences in 

scores, however, these were a minority. In contrast, Figure 10-11B shows that IG_hidden Variation 2 

(with weights) outperformed Variation 4 (with weights) when analysing mean AUC scores for Derek 

alerts. Therefore, Variation 2 (with weights) was selected for final evaluation on the test set. 

In Figure 10-11C and 10-11D, Variation 2 (with weights) is compared to IG_input. While IG_input 

achieved higher scores overall, there were several compounds and alerts for which IG_hidden led to 

better explanatory performances. Table 10-7 provides an overview of mean AUC scores for some 
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selected alerts (frequent alerts and alerts with large differences in performance. A direct comparison 

of explanations for several individual compounds is provided in the following section. 

Table 10-7 Average alert AUCs. The table reports the average AUC scores for the 10 most frequent alerts in the training set 
as well as a selection of alerts where one of the attribution methods clearly outperforms the other. 

Alert ID Alert Name Proportion 
train set 

IG input IG_hidden 
(Variation 2 
(with weights) 

42 Aromatic nitro 0.130 0.983 0.918 

53 Alkylating agent 0.058 0.98 0.895 

97 PAH 0.043 0.764 0.54 

101 Epoxide 0.033 0.974 0.912 

31 N-Nitro or N-nitroso  0.029 0.98 0.95 

21 Aromatic amine or amide 0.027 0.891 0.95 

89 Aromatic azo 0.022 0.952 0.941 

28 Quinoline 0.022 0.8 0.863 

37 Aromatic 
hydroxylamine/ester 

0.017 0.973 0.862 

11 Aromatic amine or amide 0.015 0.895 0.948 

80 Isocyanate or 
isothiocyanate 

0.002 1 0.5 

34 Aromatic nitroso 
compound 

0.007 1 0.711 

61 Hydroperoxide 0.002 1 0.5 

65 PAH type alert 0.007 0.63 0.758 

40 Quinolone derivatives 0.003 0.674 0.992 

92 Halogenated alkene 0.011 0.357 0.762 

 

When considering the most frequent alerts, in almost all cases both attribution methods achieved 

high average AUC scores (>0.8). An exception was alert 339 with a score of 0.764 for IG_input and 0.54 

for IG_hidden (Variation 2 with weights). This is further discussed below when analysing atom 

attributions for individual compounds. Overall, these findings confirm that both methods provide 

accurate explanations for the most frequent alerts. 

Inaccurate explanations for at least one of the attribution methods occurred mostly in rarer alerts. 

However, as can also be seen in Figure 10-11D, IG_hidden performed better than IG_input for some 

alerts, while the opposite is the case for other alerts. Some of these alerts are listed in the table and 

examples of individual compounds are provided below. 
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10.3.4.2 Analysis of individual compounds 
 

In this section, model explanations (i.e. atom colourings) obtained from IG_input and IG_hidden are 

compared. As mentioned above, the colour intensity between the two methods is not directly 

comparable as different scales had to be used. It is of note that when using IG_hidden, some of the 

hidden neurons may not lead to substructure matches which means that the attributions for these 

neurons cannot be used to explain the prediction. Table 10-8 reports the proportion of total 

attribution that is accounted for by substructure matches as well as separate values for neurons with 

positive and negative attribution, respectively, for the compounds in Figures 10-12 to 10-15. These 

values are helpful to contextualise the explanations presented for IG_hidden in this section and a more 

detailed analysis of this issue is presented in a later section (10.3.6). 

Table 10-8 Overview of atom attributions accounted for by substructure matches for the IG_hidden method. If no 
substructure match is found for the fragments extracted from a neuron and the test compound, the neuron attribution is 
not used to explain the model prediction. Shown are the proportions of summed neuron attributions for which substructure 
matches exist for total (positive and negative), positive and negative attributions. 

ID Proportion total 

neuron attributions 

accounted for 

Proportion positive 

neuron attributions 

accounted for 

Proportion negative 

neuron attributions 

accounted for 

5919 0.253 0.271 0.124 

6005 0.36 0.447 0.016 

6561 0.157 0.178 0.074 

6083 0.058 0.06 0.007 

6155 0.011 0.013 0 

6520 0.049 0.055 0.024 

6033 0.063 0.078 0.032 

6097 0.18 0.189 0.162 

6153 0.353 0.419 0.077 

6207 0.141 0.159 0.042 

6116 0.078 0.107 0.009 

6219 0.067 0.069 0.051 

6476 0.082 0.097 0.007 

6533 0.285 0.223 0.403 

 



Chapter 10: Evaluation and optimisation of the model explanation approach 

216 
 

 

Figure 10-12 Comparison of atom attributions for individual compounds (Part 1). Shown are compounds with Derek alerts 
highlighted (first column), atom attributions along with the corresponding attribution AUC for IG_input (second column), 
and IG_hidden (Variation 2 with weights) for dropout_model. Alert42: aromatic nitro, Alert31: N-nitro or N-nitroso, Alert21: 
aromatic amine, Alert53: alkylating agent, Alert39: nitrogen or sulphur mustard. 

 

The first set of compounds (Fig 10-12) provides examples where both IG_input and IG_hidden led to 

high attribution AUC scores. For compound 5919, IG_hidden highlighted the full aromatic ring which 
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resulted in a lower AUC of 0.83, as in the Derek alert only the aromatic carbon next to the nitro group 

belongs to the ground truth. The AUC score depends on the definition of the alert and in this case 

highlighting the complete phenyl ring may still be considered a correct explanation. In contrast, the 

alert 352 (aromatic amine) is defined to comprise the complete phenyl ring (compound 6561). Both 

methods here led to a perfect AUC score and again IG_hidden highlighted the full ring, whereas 

IG_input mostly highlighted carbon atoms in close range to the amine group. For compound 6005, the 

nitrosamine group correctly received the highest attributions. Again, atoms next to the nitrosamine 

received positive attributions. Both methods obtained a perfect AUC score for compound 6083, yet 

only IG_hidden highlighted all atoms belonging to the nitrogen mustard motif (albeit some very 

weakly). IG_input assigned a negative attribution to the nitrogen atom which is essential to the 

electrophilic properties of the compound. A perfect AUC score was only achieved because the 

remaining carbon atom received a stronger negative attribution. In all these examples, IG_hidden 

assigned positive attributions to larger parts of the compounds compared to IG_input. This can be 

explained by the fact that the explanations given were derived from substructures potentially much 

larger than the atom environments of radius 1 used for IG_input. Similar observations can be made 

for the compounds depicted in the following figures. 

The next set of compounds (Figure 10-13) includes PAHs (Alert97) and related structures (Alert20 and 

Alert14) Alert97 is one of the most frequent alerts and one where IG_hidden achieved quite poor AUC 

scores (see Table 10-7). As reported in Table 10-8, the proportion positive attribution accounted for is 

low for all compounds in this set resulting in faint atom colourings for IG_hidden. While not visible, 

IG_hidden assigned (weak) positive attributions to all atoms in compound 6155, yet not all the rings 

are part of the ground truth according to rules defined in the Derek software. In other cases, IG_hidden 

assigned positive attributions to groups attached to the aromatic system, as, for instance, the sulphate 

group in compound 6520 (again very pale colouring). The attributions from IG_input were focussed 

on carbon atoms belonging to multiple rings. This is plausible as these atoms are part of atom 

environments indicative of polycyclic aromatic systems. Overall, IG_input achieved higher AUC scores 

for Alert97. Quite different attributions were obtained for compound 6033. While IG_input assigned 

positive attributions to all atoms, the focus is on the pyrrole-like ring within the polycyclic system. This 

led to a relatively high AUC score (0.863), yet it clearly did not provide the entire relevant polycyclic 

moiety as explanation. IG_hidden highlighted atoms only weakly and did not highlight the alert 

structure resulting in a poor AUC score (0.524). Similar as before, IG_input only highlighted parts of 

the complete ground truth fragment for compound 6097. Here the attributions provided by IG_hidden 

were mostly concordant with the alert structure.  
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Figure 10-13 Comparison of atom attributions for individual compounds (Part 2). Shown are compounds with Derek alerts 
highlighted (first column), atom attributions along with the corresponding attribution AUC for IG_input (second column), 
and IG_hidden (Variation 2 with weights) for dropout_model. Alert 97: PAH, Alert20 and Alert 14: PAH type alerts. 

 

In the next set (Figure 10-14), three examples where IG_hidden outperformed IG_input are provided. 

A good agreement between the attributions of IG_hidden and the ground truth exists for compound 
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6153 (quinolone derivative). As observed for other compounds, atoms not belonging to the ground 

truth also received (here weak) positive attributions. In contrast, the explanation provided by IG_input 

did not agree well with the ground truth. A perfect score was achieved by IG_hidden for compound 

6207. However, clearly the strongest attributions were given to the ring with the two amine groups. 

This may be since the aromatic amine group is also recognised by the network as an alert for 

mutagenicity. Also, IG_input mostly highlighted atoms of the PAH type system. However, the hydroxyl 

groups at the central ring received negative attributions which means that the attributions did not 

match the entire system. The thiophosphate alkyl ester was perfectly explained by IG_hidden for 

compound 6116. IG_input highlighted only parts of this group. When IG_input was outperformed by 

IG_hidden, this was mostly due to the fact that IG_input failed to recognise all components of large 

alert structures. 
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Figure 10-14 Comparison of atom attributions for individual compounds (Part 3). Shown are compounds with Derek alerts 
highlighted (first column), atom attributions along with the corresponding attribution AUC for IG_input (second column), 
and IG_hidden (Variation 2 with weights) for dropout_model. Alert40: quinolone derivative, Alert65: PAH type alert, Alert70: 
thiophosphate alkyl ester. 

 

The last set of compounds considered in this section (Figure 10-15) contains compounds for which 

IG_input provided better explanations. IG_input clearly highlighted the nitroso group in compound 

6219, whereas the explanation provided by IG_hidden resembles an aromatic amine. A similar 

observation can be made for compound 6476. Only IG_input correctly identified the isocyanate, while 

IG_hidden highlighted the nitrogen atoms attached to the respective phenyl ring. For compound 6533, 

IG_hidden failed to recognise the aziridine ring as a cause for mutagenicity. IG_hidden sometimes 

failed to provide accurate explanations for compounds containing alerts that are infrequent in the 

training dataset. 
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Figure 10-15 Comparison of atom attributions for individual compounds (Part 4). Shown are compounds with Derek alerts 
highlighted (first column), atom attributions along with the corresponding attribution AUC for IG_input (second column), 
and IG_hidden (Variation 2 with weights) for dropout_model. Alert34: aromatic nitroso, Alert 80: isocyanate or 
isothioscyanate, Alert32: azirine or aziridine. 

 

10.3.5  Final evaluation on the test set 
 

Table 10-9 reports the various evaluation scores obtained for the test set. For individual compounds 

IG_input achieved both a higher median AUC score and a higher proportion of compounds with a score 

of at least 0.8. IG_hidden achieved a slightly higher median alert AUC, yet for a larger proportion of 

alerts an average AUC of at least 0.8 was obtained when using IG_input. Figure 10-16 reports a 

compound-wise comparison (10-16A) as well as a scatter plot contrasting average alert AUC scores for 

IG_input and IG_hidden (10-16B). 
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It can be seen in Figure 10-16A that while IG_input overall achieved higher AUC scores on individual 

compounds, for some compounds IG_hidden achieved higher scores. Similar observations were made 

for the validation set. 

It can be seen in Figure 10-16B that for some alerts IG_hidden achieved very low scores compared to 

IG_input. 

Table 10-9 Evaluation of explanations on the test set. The model instance was dropout_model and IG_hidden used the 
parameters from Variation 2 with weights. Shown are median AUC, number of compounds with AUC at least 0.8, median 
average alert AUC, and number of alerts with average AUC of at least 0.8. 

 Median 
AUC 

AUC≥0.8 Median 
alert 
AUC 

Alert AUC 
≥0.8 

IG input 0.965 0.765 0.838 0.702 

IG 
hidden 

0.938 0.725 0.852 0.532 

 

 

Figure 10-16 Comparisons of compound AUCs and alert AUCs between IG_input and IG_hidden on the test set. The model 
instance used was dropout_model. The IG_hidden method Variation 2 with weights (Var2 we) was used. 

 

10.3.6  Analysis of the proportion of attributions accounted for in IG_hidden 
 

As mentioned above, when explaining the prediction of a test compound using IG_hidden, it may be 

that the test compound does not match any of the fragments extracted for a given neuron. In that 

case the attribution for this neuron does not contribute to atom colouring. Proportions of attributions 

(total, positive and negative) that the model explanation accounts for were reported above for 
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exemplary compounds (Table 10-8). Overall, the proportions were relatively low with a maximum of 

0.36 for total attributions, 0.447 for positive attributions and 0.403 for negative attributions. The most 

interesting value is arguably the one for positive attributions, as this corresponds to substructures 

used to explain toxic predictions. Conversely, we expect substructures indicative of non-toxicity to be 

much rarer, as non-toxicity often may be the result of the absence of toxic chemical features. Figure 

10-17A presents the distribution of proportions of positive attributions accounted for in TP 

compounds as a histogram, while Figure 10-17B shows the proportions and attribution AUCs for those 

compounds as a scatter plot. 

 

Figure 10-17 Analysis of positive attributions accounted for in model explanations by IG hidden. A: Histogram showing 
proportions of positive attributions accounted for in TP compounds of the validation set. B: Scatter plot showing proportions 
of positive attributions and attribution AUC values for individual TP compounds in the validation set. 

 

It can be seen that for many TP compounds only a small proportion of positive attribution was 

accounted for in the obtained model explanations. For many compounds this value was below 0.2, 

while the highest observed proportion across all TP compounds was 0.666. However, the magnitude 

of the proportions is not correlated with the quality of model explanations. High AUC scores were 

obtained for low, medium and high proportions of accounted for attributions. To further understand 

this matter, relevant neurons and corresponding matching and non-matching substructures were 

analysed for four exemplary compounds. In particular, the three neurons most relevant for a positive 

prediction were considered. The following figures show either matches of the test compound with 

extracted fragments for this neuron used to explain the predictions, or, if no matches were found, 

extracted substructures that are chemically similar to the test compound. Four examples with 

different characteristics are presented: 

 low proportion of positive attribution accounted for, high AUC (compound 6549, Figure 10-18) 
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 low proportion of positive attribution accounted for, low AUC (compound 5949, Figure 10-19) 

 high proportion of positive attribution accounted for, high AUC (compound 6439, 

Figure 10-20) 

 high proportion of positive attribution accounted for, low AUC (compound 6431, Figure 10-21) 

 

In the first example (compound 6549), very few of the neurons relevant for the toxic prediction (and 

none of the Top-3) contained substructures matching the compound. This resulted in very pale atom 

colouring (invisible without increasing colour intensity). Nonetheless, all the atoms of the Derek alert 

received higher attributions than the other atoms which led to a perfect AUC score, while this was not 

the case for IG_input. When inspecting substructures extracted for the most relevant neurons, 

examples of aryl hydrazine groups and nitrogen heterocyclic structures can be found which suggests 

that those neurons did recognise the relevant chemical features, although no exact match for the test 

compound could be found. Finding more relevant substructures for those neurons by improving the 

substructure extraction method could improve the explanation by increasing the assigned colour 

intensities for relevant atoms. 
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Figure 10-18 Analysis of positive attributions accounted for in compound 6549. Top part: Derek alert and explanations 
provided by IG_input and IG_hidden. On the right: the colours for IG_hidden are intensified so that the atom with the highest 
attribution is shown with full colour intensity. Bottom part: The three highest ranking neurons are shown based on 
attribution value. None of the substructures extracted for these neurons match the test compound. In each case, 
substructures that are close matches to the test compound are shown. Alert26: Arylhydrazine. 

 

As for compound 6549, the atom colourings for IG_hidden are very pale in this example (compound 

5949) corresponding to a low number of neurons for which matches could be found. By inspecting 

substructures for the most important neurons, substructures containing nitroso or N-hydroxy groups 

can be found. As for the first example, this suggests that those neurons detect the relevant features 

to some extent, yet no matches for the specific test compound exist. The substructure extraction 

method would need to be modified to yield more generic substructures for the relevant chemical 

features (aromatic nitroso and N-hydroxy). In that way a better explanation of the model prediction 

could be achieved. 
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Figure 10-19 Analysis of positive attributions accounted for in compound 5949. Details in Figure 10-18. Alert34: Aromatic 
nitroso, Alert37: Aromatic hydroxylamine/ester. 

 

For compound 6439, a relative high number of the neurons contributing to the positive prediction (all 

of the Top-3) had matches with the test compound and this resulted in a good explanation of the 

prediction. It is worth noting that the test compound (two nitro groups) also matches structures with 

other functional groups (e.g. nitro with amine in the meta position for neuron 1-236). This is because 

neither the charge of atoms nor the number of implied hydrogen atoms were considered for the 

substructure match. In this example around 0.6 of the positive attributions were accounted for and 

this seems to be sufficient to give a very good explanation. 
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Figure 10-20 Analysis of positive attributions accounted for in compound 6439. Details in Figure 10-18. In this case, matches 
were found for the test compound for all three neurons. Alert42: Aromatic nitro. 

 

Compound 6431 contains two Derek alert structures: the PAH type system and a precursor of 

1,2-dicarbonyl. Both IG_input and IG_hidden partially highlighted these parts of the compound, but 

relatively low AUC scores resulted from high attributions to atoms of the substituted tetrahydropyran 

ring, which is not a Derek alert structure. For the most relevant neuron, a match was found which 

matches parts of the polycyclic system, the 1,2-dicarbonyl precursor and the substituted 

tetrahydrofurane ring. While there were no matches for the second neuron (1-108), substructures for 

this neuron include the relevant polycyclic system and the tetrahydrofurane ring. For the third neuron, 

three matches were found which to some extent match all of the three mentioned chemical features. 

It seems that the tetrahydrofurane ring is a relevant chemical feature that, at least to some extent, 

contributes to the prediction made by the model. This means that the incorrect explanation is due to 
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the model making the correct prediction for the wrong reason (the Clever Hans effect (Lapuschkin et 

al., 2019)) and not due to the explanation method insufficiently explaining the model. 

 

 

Figure 10-21 Analysis of positive attributions accounted for in compound 6431.  Details in Figure 10-18. In this case, for two 
of the neurons a substructure match was found for the test compound (1-224 and 1-34). Alert29: PAH type alert, Alert65: 
1,2-Dicarbonyl compound or precursor. 

 

The observed low proportions of attributions accounted for when using IG_hidden are a limitation of 

the method. The considered examples suggested that an improved method to find substructures 

activating neurons may improve the model explanations either by providing a more accurate ranking 

of atoms (compound 5949) or by increasing colour intensity (compound 6549). In other cases 
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(e.g. compound 6431), incorrect explanations seem to be the result of the model rather than the 

explanation method.  

 

10.3.7  Analysing predictions for a model based on experimental Ames labels 
 

After validating IG_hidden using models trained on Derek alert labels, its usefulness was tested on a 

model trained on experimental Ames labels, as this is how QSAR models and explanation methods are 

used in practice. In this section, the following were investigated: (i) how well explanations for 

experimentally positive compounds correspond to Derek alerts, (ii) what can be learned from 

compounds that are experimentally positive but do not match a Derek alert, (iii) whether explanations 

for negative predictions can reveal deactivating features. 

 

10.3.7.1 Analysis of TP compounds that are also positive in Derek 
 

Firstly, it was evaluated how well explanations provided by IG_input and IG_hidden correspond to 

Derek alerts for TP compounds. In Table 10-10, performance on individual compounds (median AUC 

and AUC≥0.8) as well as average performance on individual Derek alerts (median alert AUC and alert 

AUC ≥0.8) are reported. Similar to models trained on Derek labels, the performance on individual 

compounds seems to be slightly better when IG_input was used. The same is true for the average 

performance on Derek alerts, however, there were a number of compounds and alerts where 

IG_hidden outperformed IG_input (see Figure 10-22A and 10-22B). This is in agreement with 

observations from models trained on Derek labels whereby each method was found to have 

complementary capabilities. Overall, AUC scores for both methods were somewhat lower compared 

to models trained on Derek labels. This is plausible since the neural network model generally displayed 

somewhat lower performance in classifying compounds. Perhaps unsurprisingly, it seems that 

predicting and also explaining well defined rules such as Derek alerts is a simpler task compared to 

predicting and explaining experimental results which are prone to experimental uncertainty. 

Nonetheless, both explanation methods provided good explanations for the majority of the TP 

compounds.  
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Table 10-10 Evaluation of explanations extracted from the model trained on experimental Ames labels. Shown are median 
AUC, number of compounds with AUC at least 0.8, median average alert AUC, and number of alerts with average AUC of at 
least 0.8. 

 Median 
AUC 

AUC≥0.8 Median 
alert 
AUC 

Alert AUC 
≥0.8 

IG input 0.905 347/478 0.848 31/54 

IG 
hidden 

0.883 306/478 0.814 29/54 

 

 

Figure 10-22 Evaluation of individual compounds and alerts for model trained on experimental Ames labels. A: Scatter plot 
showing attribution AUC scores for individual compounds for IG_input and IG_hidden. B: Scatter plot showing average 
attribution AUC scores for individual alerts. 

 

10.3.7.2 Analysis of TP compounds that are negative in Derek 
 

Next, TP compounds that do not match any of the Derek alerts were inspected. A total of 78 such 

compounds were found in the validation and test set. In Figure 10-23, six exemplary compounds are 

shown. These compound are of interest as they may hint at potential refinements of Derek alerts to 

increase their sensitivity to flag Ames mutagenic compounds. Another possibility is that these 

compounds in principle do match Derek alerts but are still reported as negative due to the Derek 

system having access to the same compound being measured as negative. This would supersede the 

match and result in a negative Derek label. In this case, this information could be used to curate the 

data in the Derek system by comparing the label to the source dataset used in the present study. 
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Figure 10-23 Explanations for TP compounds that are negative in Derek. Shown are generated model explanations from 
IG_input and IG_hidden for compounds correctly predicted as toxic in the Ames test, while being labelled as negative by 
the Derek software. 

 

If a compound does not match a Derek alert, the explanation for a positive prediction may hint at 

substructures that might be good candidates for a new or refined Derek alert. Notably, explanations 

provided by IG_input and IG_hidden may provide complementary information. For compound 6055, 

IG_input most strongly highlighted an ether group next to a double bond, whereas IG_hidden 

highlighted the cyclodiketone moiety. Compound 6100 contains an acridine structure with an 

additional fused phenyl ring. Both methods highlighted certain parts of that polycyclic aromatic 

system. Compounds 6144 and 6587 contain aromatic amine groups which were highlighted. In 

addition, IG_input highlighted the imine in compound 6587, whereas IG_hidden highlighted large 

parts of the polycyclic system. In compound 6557, IG_hidden clearly highlighted the epoxide structure, 
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whereas an aliphatic ring carbon received the strongest attribution in IG_input. Compound 6325 

contains two epoxide groups and both were highlighted by IG_hidden, whereas IG_input highlighted 

one of the two along with an aldehyde group. 

Overall most of the shown compounds contain chemical groups covered in Derek alerts. Their negative 

label may stem from a negative experimental result in the Derek system or an unusual chemical 

environment in which the alerts occurs which might result in the compound not matching the alert. In 

the latter case, the model explanations for such compounds may aid to refine the definition of Derek 

alerts. 

 

10.3.7.3 Analysis of TN compounds 
 

In the final section, how well the attribution methods can explain negative predictions was 

investigated. Figure 10-24 presents explanations generated with IG_input and IG_hidden for some 

representative TN compounds. Table 10-11 reports the proportion of attributions accounted for with 

matches, as was also investigated above for the model trained on Derek labels. 

Compound 5892 contains an aromatic amine, yet it was negative in the Ames test due to the effect of 

the sulfonate group and the chlorine which both withdraw electron density from the aromatic ring 

which reduces stability of the nitrenium ion intermediate essential for the compound’s mutagenicity 

(Furukawa et al., 2022). Both methods assigned positive attributions to the amine group and IG_input 

assigned negative attributions to parts of the sulfonate group and the aromatic carbon next to the 

chlorine, but not the chlorine itself. With IG_hidden only a very pale negative attribution was assigned 

to the sulfonate group. 

In compound 5965, atoms in the polycyclic system received positive attributions using both methods. 

IG_input assigned negative attributions to the aliphatic carbon and the attached hydroxyl group, 

whereas no negative attributions were obtained by IG_hidden. This can be explained by the fact that 

only around 0.02 of the negative attributions for this compound can be explained with matches (see 

Table 10-11). Overall, matches for hidden neurons with a negative attribution were less frequent than 

the ones with positive attributions. This means that IG_hidden can better explain tendencies of the 

model to make positive predictions as opposed to negative ones. 

Compound 5979 contains a structural alert for mutagenicity (aromatic nitro) as well as a deactivating 

group (trifluoromethyl). Both IG_input and IG_hidden correctly assigned corresponding attributions, 
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but the intensity for the trifluoromethyl group in IG_input is more pronounced thus correctly 

reflecting the negative prediction. 

Also compound 6337 contains both atoms with positive and negative attributions. The nitro group 

was assigned positive attribution while atoms in the aliphatic carbon chain were assigned negative 

attributions. This can be observed both for IG_input and IG_hidden. 

No positive atom attributions can be found in the remaining two compounds (6443 and 6564). In 6443, 

IG_input assigned negative attributions to both the tert-butyl group and atoms in the 5-membered 

ring attached to the phenyl group. IG_hidden assigned (very weak) negative attributions to atoms in 

the 5-membered ring and attached methyl groups. Both IG_input and IG_hidden assigned negative 

attributions to atoms of the aliphatic carbon chain for compound 6564. 

 

Figure 10-24 Explanations for TN compounds. Shown are generated model explanations from IG_input and IG_hidden for 
compounds correctly predicted as non-toxic in the Ames test. 
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Table 10-11 Overview of atom attributions accounted for by substructure matches in IG_hidden method for compounds 
shown in Figure 10-24. More details on how values were obtained in the caption of Table 10-8. 

ID Proportion absolute 

neuron attributions 

accounted for 

Proportion positive 

neuron attributions 

accounted for 

Proportion negative 

neuron attributions 

accounted for 

5892 0.258 0.272 0.244 

5965 0.161 0.223 0.024 

5979 0.521 0.601 0.407 

6337 0.303 0.275 0.341 

6443 0.217 0.218 0.216 

6564 0.203 0.137 0.222 

 

For some of the above compounds parts of the molecule support a positive prediction, while other 

parts of the compound support a negative prediction. In other compounds structural features 

supporting a positive prediction are not present and the negative prediction may be attributed to 

certain parts of the compounds. In cases where there is no strong negative attribution, the negative 

prediction can be interpreted as resulting from the absence of mutagenic features. 

It can be observed that the colour intensities are not always perfectly consistent with the prediction. 

For instance, for compound 5979 red colouring seems to be more prevalent across the molecule than 

blue colouring (for both IG_input and IG_hidden), yet the compound was predicted as negative. This 

is due to the fact that the attributions result from a comparison to a baseline (empty bit vector). The 

prediction for the baseline notably is not neutral (i.e. 0.5), but instead around 0.2 for the model trained 

on experimental Ames labels. This means for IG_input that red colour intensities will be stronger than 

blue ones if the predicted probability is higher than the one for the baseline. The same effect applies 

to IG_hidden. Moreover, for IG_hidden positive or negative attributions may not be mapped to the 

structure if no matching substructures have been extracted for the corresponding neuron which may 

also lead to inconsistencies in model prediction and atom colouring. Implications of those factors will 

be further discussed in Discussion. 

 

10.4 Discussion 
 

In this chapter, neural network models were explained by using chemical substructures found to 

activate individual neurons in the network. By evaluating the model explanations using the Derek 
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alerts, the workflow for extracting substructures could be optimised (discussed in 10.4.1). In section 

10.4.2, the developed method to explain model predictions (IG_hidden) is compared IG_input as an 

established method to interpret neural networks. Moreover, it is reflected how explanation models 

may be best evaluated. After initially investigating models trained on the Derek alerts as labels, a 

model trained on experimental Ames labels was investigated to determine the usefulness of the 

developed technique in a more practical setting (discussed in 10.4.3). Finally, it is discussed how the 

obtained model explanations (in terms of atom attributions) can be best visualised to a user of the 

method. 

 

10.4.1  Modifications to the substructure extraction workflow 
 

The workflow for automatic extraction of substructures activating hidden neurons described in the 

previous chapter was evaluated both globally, by analysing the entirety of extracted substructures, 

and locally, by considering explanations provided for individual predictions. It was found that the 

original workflow extracted substructures relevant for frequent alerts but failed to extract 

substructures for many of the less frequent alerts. This is consistent with the observation of relatively 

low median alert scores which indicate a poor performance for many of the alerts. 

To address this weakness, several modifications were made to the original workflow. First, the 

thresholds for compounds considered to be strongly activating and fingerprint bits considered to be 

significant were adjusted to increase the number of compounds and bits included in the FCA. This 

resulted in a much larger number of FCs, however, by introducing ThreshNoveltyFC (ensuring FCs are 

novel with respect to already considered FCs), the number of FCs that had to be analysed was limited. 

Another adaption was to set ThreshSupportFC to zero. This means that FCs corresponding to chemical 

patterns infrequent in compounds activating the neuron may also be considered. The changes were 

effective in extracting fragments corresponding to rare Derek alerts as well as increasing explanatory 

performance for many of the alerts. 

Overall, the changes resulted in a much larger number of extracted substructures across the neurons 

which may complicate a manual analysis of those substructures. However, since the substructures are 

organised in hierarchical networks, it is possible to start by only inspecting generic structures at the 

top of the subnetworks. In contrast, when interested in substructures causing very strong activation, 

the substructures may be filtered by this condition yielding typically more specific substructures. 

Furthermore, the running time of the modified workflow was increased compared to the original. 

Optimising the running time was beyond the scope of this project, however, the extraction process is, 
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in principle, very well suited to parallelisation as the extraction of substructures is done independently 

for each neuron. By distributing the programme across different computational cores, the running 

time could be significantly reduced. 

Notably, all tested variations of the original workflow (Variation 1-4) resulted in marked increases in 

explanatory performance compared to the original workflow for both best_model and dropout_model 

(see Table 10-6). All variations included modifications to improve extraction of rare alerts. This 

suggests that the success of the workflow may not be very sensitive to the exact parameters used. 

However, the suitability of the workflow on other toxicity endpoints with other relevant features 

needs to be evaluated. 

 

10.4.2  Comparison of IG_hidden with IG_input 
 

Overall, IG_input and IG_hidden achieved comparable median AUC scores on individual compounds 

and averaged AUC scores for compounds matching specific Derek alerts. For both attribution methods, 

different compounds classes were explained with different degrees of success. Some of the alerts (e.g. 

aromatic nitro, epoxide) were very well explained by both methods. Other alerts were explained well 

only by one of the methods (e.g. IG_input was better for isocyanate whereas IG_hidden was better 

for halogenated alkene). Generally, very frequent alerts in the training set were well explained by both 

methods. IG_hidden struggled to provide good explanations for some of the rare alerts. In these cases, 

the workflow for extracting substructures may fail to find a number of appropriate substructures in all 

relevant neurons. Table 10-5 demonstrates that superstructures for almost all alerts were retrieved. 

However, to explain the predictions of individual compounds, the substructure must match the test 

compound. Having extracted a superstructure for a certain alert does not guarantee an accurate 

explanation for any compound matching that alert. In many such cases IG_input provided better 

explanations. On the other hand, IG_input sometimes failed to explain alerts constituted by large 

fragments for which IG_hidden provided more accurate explanations. IG_hidden in general highlights 

larger proportions of a compound in positive predictions. 

Interestingly, the two attribution methods may provide quite different explanations for the same 

model predicting the same compound. This illustrates that each method is merely a model attempting 

to rationalise a prediction, yet the ‘true’ cause remains elusive. In some cases, both methods provide 

very similar explanations which also match the known cause of a Derek alert. In such cases, it would 

seem reasonable to assume that the attribution methods are well aligned with the actual model 

behaviour. In cases where only one of the attribution methods provides a correct explanation, 
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weaknesses of one attribution method may be found. If the other attribution method correctly 

explains the prediction, it can be suspected that the model gave the correct prediction for the right 

reason. Finally, a model may make a correct prediction but neither attribution method provides a 

correct explanation. This may be either because both attribution methods are not well aligned with 

the actual model in this case or because the model made the correct prediction for the wrong reasons 

(the Clever Hans effect) (Lapuschkin et al., 2019). To distinguish these cases, more in-depth analyses 

involving more different attribution methods may be required. 

In general, more benchmark datasets are required where the ground truth is known. The benchmarks 

should cover a wide range of chemical patterns (e.g. small and large groups as the ground truth) to 

test how robust the methods are with respect to those different cases. Many previous studies 

reported successful (and in part unsuccessful) examples for various attribution methods without 

conducting a systematic analysis for the entire dataset (Harren et al., 2021; Jiménez-Luna et al., 2021; 

Preuer et al., 2019; Rodríguez-Pérez & Bajorath, 2020b). Other studies more systematically evaluated 

the quality of explanations by considering simple rules (such as atom counts, or the presence of certain 

functional groups) (Matveieva & Polishchuk, 2021; Sheridan, 2019) or activity cliffs (Jiménez-Luna et 

al., 2022) to obtain ground truths. In this work, toxicophores were found to be a suitable benchmark 

to evaluate the performance of attribution methods. Mutagenicity can be considered an insightful 

endpoint as a large number of diverse chemical features are known (Kazius et al., 2005) which all must 

be detected by a model. While Derek Nexus is a proprietary software, publicly available collections of 

toxicophores (e.g. ToxAlerts) (Sushko et al., 2012) may serve as a benchmark to the whole community. 

In practice, different attribution methods may be used in a complementary fashion. However, to 

interpret these, good knowledge of the strengths and limitations of different approaches will be 

required. The approach introduced in this work (IG_hidden) is conceptually different to various 

approaches that focus on input features (IG_input, SHAP, LIME) and hence it may be particularly suited 

to provide unique insights. 

 

10.4.3  Applying IG_hidden to a model trained on experimental Ames labels 
 

It was shown that IG_hidden also provides meaningful explanations when applied to a model trained 

on experimental Ames data rather than the Derek alert labels. Similar observations as for the models 

trained on the Derek labels were made. Overall, IG_input seemed to provide more accurate 

explanations for TP compounds, yet for several compounds and alerts IG_hidden provided better 

explanations thus confirming the complementarity of the approaches. 
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For toxic compounds not matching Derek alerts, model explanations may be useful to refine Derek 

alerts or to propose novel structural alerts for a different endpoint. However, a prerequisite for 

meaningful model explanations is good performance of the respective model to predict toxicities (P. 

Polishchuk, 2017). While Ames mutagenicity is a well understood toxicity endpoint that can be fairly 

well predicted with QSAR models, this may not be the case for less well understood toxicity endpoints 

including in vivo toxicities. The suitability of model explanations to discover novel toxicophores for 

complex toxicity endpoints would need to be demonstrated in further studies. 

Most focus in this work has been put on correctly explaining the cause of toxicity. However, making 

negative predictions is important as these indicate the safety of a chemical (Williams et al., 2016). 

Absence of toxicity may, in principle, be due to the lack of toxic features or due to features deactivating 

toxic features within the compound. For instance, moieties reducing the electron density in an 

aromatic system prevent mutagenicity of aromatic amines as the stability of nitrenium ions is reduced 

(Furukawa et al., 2022). QSAR models may correctly predict such effects and explanation methods 

may provide the correct mechanistic explanation. By inspecting compounds that match known 

structural alerts while being predicted as negative, novel deactivating moieties may be detected by 

model explanation methods. However, it has to be stated that in the present work IG_input more 

reliably highlighted negative features compared to IG_hidden. IG_hidden may be able to identify 

hidden neurons that contribute to negative predictions, yet in many cases the proposed method for 

substructure extraction did not find fragments matching test compounds. In order to improve the 

extraction workflow, focus might also be put on how well known deactivating features can be 

retrieved for relevant neurons in order to correctly explain negative predictions. However, 

deactivating features are less well known and understood than structural alerts (toxicophores) for 

mutagenicity, as well as other toxicity endpoints, which makes it more challenging to validate 

explanations made for negative predictions. 

 

10.4.4  Depiction of atom attributions 
 

The two attribution methods (IG_input and IG_hidden) were used to generate atom attributions 

indicating the importance of atoms to the model predictions for test compounds. As in previous 

studies, a colour scale was used to visualise the magnitude of atom attributions (Feldmann et al., 2021; 

Harren et al., 2021). The scale in this work used red to indicate atoms contributing to toxic predictions 

and blue to indicate atoms contributing to non-toxic predictions. To make explanations for different 

compounds comparable, an absolute colour scale was employed where colour intensities are relative 



Chapter 10: Evaluation and optimisation of the model explanation approach 

239 
 

to the largest atom attributions found in the dataset. However, different scales were used for IG_input 

and IG_hidden due to the observation that generally larger atom attributions occurred for IG_input.  

A significant observation is that the summed colour intensities are not always consistent with the 

predicted class. In particular, a user might expect that for a compound predicted as negative blue 

colour intensities would exceed red colour intensities, and vice versa for positive predictions. 

However, for the IG approach, attributions for input features or hidden neurons are obtained in 

relation to a baseline, for which an empty bit vector was selected. For the models considered in this 

work the predicted probability for an empty bit vector was not neutral, but rather a clearly negative 

prediction (e.g. ~0.2 for dropout_model where 0.5 is considered neutral). Compounds with a predicted 

probability larger than this will have a stronger intensity of red colour, yet may be predicted as 

negative if the predicted probability is below 0.5. This situation could be prevented if the difference 

in attributions between the baseline and a neural prediction were distributed equally among all atoms 

in the compound. In other words, the colour for each atom would be shifted towards blue to some 

degree so that blue colour intensity would be equal to red colour intensity if the predicted probability 

is equal to 0.5. For this work it was decided to not make this adjustment. Red colours in negative 

predictions can be interpreted as features supporting a positive prediction while not being enough to 

observe toxicity (according to the prediction). It follows that the meaning of colours needs to be made 

clear to any user of the model explanations to prevent misinterpretations. 

The inconsistencies between atom colouring and model predictions described in the previous 

paragraph apply both to IG_input and IG_hidden. However, an additional factor contributes to this 

result for IG_hidden. If no substructure matches exist between a test compound and substructures 

extracted for a neuron, the attribution for this neuron is not used to colour atoms. It was observed for 

dropout_model that typically less than half of the total attribution is accounted for in atom colourings. 

This is the reason why lower atom attributions are observed for IG_hidden when compared to 

IG_input so that that different colour scales are necessary for visualisation (see above). The low 

proportion of attribution accounted for in model explanations can be considered a limitation of 

IG_hidden, but it has to be stated that the ranking of atoms nonetheless corresponds to good model 

explanations evaluated using attribution AUC scores. One consequence is that if the proportion of 

attribution accounted for is particularly low, then atom colourings will be very pale or even not visible 

to a user. Pale colours can be interpreted as if IG_hidden is not able to make a confident explanation 

of a prediction (due to the lack of matching substructures), although the proportion of attribution 

accounted for in the model explanation is not correlated to the quality of explanations. Either way, 

increasing the proportion of attribution would be desirable by, for example, modifying the workflow 

for extracting substructures. As was shown for some examples, the lack of matching substructures 
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may indeed lead to an incorrect explanation which could be remedied if a superior method for 

extracting substructures can be found in the future. This also shows that IG_hidden can be further 

optimised to potentially become an even more powerful tool to explain model predictions. 

 

10.5 Conclusion 
 

In this chapter, neural network models were trained on Derek labels in order to measure the 

explanatory performance of the proposed method for explaining model predictions. In the global 

evaluation, it was found that the substructure extraction covers most Derek alerts present in the 

dataset. Overall, good explanations were achieved for both IG_input and IG_hidden, while each 

method provided superior performances for certain compounds and Derek alerts making them, in 

principle, complementary. A limitation of IG_hidden was that substructure matches to the test 

compound were not found for all relevant neurons. 

All models studied in this chapter were neural networks with one hidden layer. In the following 

chapter attempts are made to extend the method to networks with at least two hidden layers. 
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Chapter 11 Explaining predictions for deep neural networks 
 

 

11.1 Introduction 
 

The aim of this chapter was to explore the usefulness of the developed approach for interpretability 

(IG_hidden) when explaining predictions made by neural networks with more than one hidden layer 

(i.e. DNNs). This is of relevance as the neural networks used for toxicity prediction, and for most QSAR 

tasks, typically have more than one hidden layer and hence demonstrating the applicability of the 

developed approach for those models is necessary.  

First, the Derek dataset (see Chapter 10) was used to train and analyse a DNN model with 2 hidden 

layers. Then the IG_hidden method was applied to the first hidden layer of the model to determine if 

the predictions could be explained. Finally, the neurons in the second hidden layer were explored for 

the Derek model as well as 2-layer networks trained on further toxicity and bioactivity datasets. This 

was done to determine whether IG_hidden could be applied to those neurons. 

 

11.2 Methodology 
 

11.2.1  Model training and evaluation 
 

Neural networks containing two hidden layers were trained on a number of datasets in order to 

analyse whether DNNs may outperform neural networks which consist of a single hidden layer. The 

datasets are the one with Derek alerts as labels (see Chapter 10), and assays from the Tox21 dataset 

(see Chapter 5) and the ToxCast (see Chapter 6) dataset. In addition, a number of bioactivity datasets 

obtained from ChEMBL were investigated (Bosc et al., 2019). Only assays with at least 2000 labels and 

at least 10% actives were retained for the various datasets. This resulted in the inclusion of four assays 

for the Tox21 dataset, 43 assays for the ToxCast dataset and 52 assays for the ChEMBL dataset. For 

the Derek dataset, the training, validation and test set were unchanged. For the individual assays from 

the other datasets, the data was split into training (80%), validation (10%) and test (10%). The training 

data was used to train the model and the validation set was used find the best set of hyperparameters. 

The test data was used to evaluate the final model. 
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For the Derek dataset, the hyperparameters tested to find the best performing two-layer model are 

reported in Table 11-1. The best performing model was compared to the one layer models used in 

Chapter 10. Note that all models used dropout, due to the better performance for feature extraction.  

Table 11-1 Parameters used for hyperparameter optimisation (Derek dataset). Selected hyperparameters in bold 

Hyperparameter Tested values 

Neurons first layer 512 

Neurons second layer 128, 256, 512 

Batch size for optimisation 16, 32, 64 

L2 regularisation of neuron weights 0, 0.00001, 0.001 

Dropout first layer 0.2, 0.5 

Dropout second layer 0.2, 0.5 

Learning rate 0.0001, 0.00033, 0.001 

 

For the other datasets, the hyperparameters tested are reported in Table 11-2. In these cases, models 

were trained with one hidden layer and the performance was compared to models trained with two 

hidden layers. Note that the radius of the Morgan FP was also used as a hyperparameter for these 

datasets. Moreover, ‘weight’ was used as a hyperparameter to account for the imbalance of labels in 

some of the assays. When the option ‘balanced’ was used, the loss for data instances belonging to the 

minority class were scaled up according to the imbalance ratio using the function 

compute_class_weight in scikit-learn.  

Table 11-2 Parameters used for hyperparameter optimisation (Tox21, ToxCast and ChEMBL dataset). 

Hyperparameter Tested values 

Morgan FP radius 1, 2 

Neurons first layer 512 

Neurons second layer 0, 256, 512 

Batch size for optimisation 32, 64 

L2 regularisation of neuron weights 0, 0.00001, 0.001 

Dropout (both hidden layers) 0.2, 0.5 

Learning rate 0.0001, 0.00033, 0.001 

weights 1, ‘balanced’ 

 

For all the models, early stopping was applied in the same way as described in Chapter 8 and Chapter 

10. That is, the ROC-AUC score of the model was evaluated on the validation set after each epoch (10 
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epochs in total) and among these the best model was retained as the model instance which was 

compared to other hyperparameter configurations. 

 

11.2.2  Interpreting DNN models by applying IG_hidden to the first hidden 

layer 
 

The IG_hidden procedure, which was successfully applied to a neural network with a single hidden 

layer, was applied to the first hidden layer of a DNN to determine if substructures could be extracted 

that explain model predictions. This was done by using the optimised workflow for substructure 

extraction from Chapter 10 (Variation 2 with weights) for the DNN trained on Derek labels. As in the 

previous chapter, model explanations for IG_hidden and IG_input were compared to the ground truth 

(i.e. Derek alert atoms) and attribution AUC scores were computed for TP compounds in the validation 

set. Moreover, average alert AUC scores were determined. 

 

11.2.3  Exploration of neurons in the second hidden layer 
 

The relationship between various hidden neurons was analysed by calculating pairwise Pearson 

correlation coefficients between neurons, as described in Chapter 8. Each neuron was represented by 

a d-dimensional vector where each element represented the activation that the respective training 

compound caused. 

Moreover, an attempt was made to identify neurons detecting chemical features that were not 

already detected in neurons of the first hidden layer. It was assumed that a neuron detecting novel 

chemical features would not have high correlation with any neuron in the first hidden layer. Also the 

weight of the neurons in the second layer to the output neuron were considered, as only neurons with 

a positive weight contribute to a toxic prediction. To understand the chemical features learned by the 

neuron, the compounds most strongly activating the neuron were inspected. In addition, it was 

analysed whether compounds matching certain alerts cause strong activation in relation to 

compounds matching no Derek alerts. 

Finally, it was analysed whether individual neurons detect specific chemical features or rather detect 

toxicity in general. To that end, the ROC-AUC value was used as a metric. In particular, the activation 

of each compound in a neuron was considered as ‘prediction’ which yields a ranked list of compounds 

for each neuron. This ranked list was compared to Derek labels and allows the computation of a 



Chapter 11: Explaining predictions for deep neural networks 

244 
 

ROC-AUC value. A high ROC-AUC value would be obtained, when a large number of toxic compounds 

activate the neuron more strongly compared to non-toxic compounds. 

 

11.3 Results 
 

11.3.1  Evaluation of Derek models 
 

Neural networks with two hidden layers (i.e. DNNs) were trained on the Derek dataset and the best 

model was compared to the model instances analysed in Chapter 10. It can be seen in Table 3 that, 

across a range of different classification metrics, the DNN (2layer_model) outperformed both one-

layer networks on the validation set, albeit by a small margin. 2layer_model was only outperformed 

by dropout_model on recall and best_model achieved the same specificity. However, when 

considering the test set, 2layer_model achieved the highest score only for precision and specificity. 

Overall, the observed differences were quite small between the models.  

Table 11-3 Classification metrics for Derek models. Various metrics for best_model, dropout_model and 2layer_model are 
compared on the validation and test set. In bold the highest score on validation or test set across the different models. 

 best_model 

validation/test 

dropout_model 

validation/test 

2layer_model 

validation/test 

ROC-AUC 0.974/0.966 0.970/0.965 0.977/0.964 

Accuracy 0.914/0.908 0.903/0.900 0.918/0.906 

Balanced Acc. 0.914/0.908 0.902/0.898 0.918/0.907 

Precision 0.918/0.919 0.889/0.897 0.918/0.932 

Recall 0.915/0.912 0.929/0.922 0.923/0.892 

Specificity 0.913/0.904 0.876/0.874 0.913/0.922 

F1 0.917/0.916 0.908/0.910 0.921/0.914 

MCC 0.828/0.816 0.807/0.799 0.836/0.812 

 

11.3.2  Interpreting the DNN by applying IG_hidden to the first hidden layer 
 

IG_input and IG_hidden (applied to neurons in the first hidden layer) were used to explain predictions 

of 2layer_model. The median AUC on TP compounds, the proportion of compounds with an AUC of at 

least 0.8, the median alert AUC, and the proportion of alerts with an average AUC of at least 0.8 are 
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reported in Table 11-4 for each method. Attribution AUCs and alert AUCs for individual compounds 

and alerts are shown in Figure 11-1. 

Table 11-4 Evaluation of explanations for the 2-layer Derek model. Comparisons were made for the model instance 
2layer_model on the validation set. IG_hidden used the parameters from Variation 2 with weights. Shown are median AUC, 
number of compounds with AUC at least 0.8, median average alert AUC, and number of alerts with average AUC of at least 
0.8. The better approach for each metric is in bold. 

 Median 
AUC 

AUC≥0.8 Median 
alert 
AUC 

Alert AUC 
≥0.8 

IG_input 0.984 0.841 0.907 0.714 

IG_hidden 0.938 0.725 0.906 0.735 

 

 

Figure 11-1 Comparisons of compound AUCs and alert AUCs between IG_input and IG_hidden on the validation set. The 
model instance used was 2layer_model. The IG_hidden method Variation 2 with weights (see Chapter 10) was used and 
applied to the neurons of the first hidden layer. 

 

Similar as seen in Chapter 10 for dropout_model, IG_input outperformed IG_hidden when evaluating 

individual compounds. However, when considering alert AUC scores both methods achieved 

comparable performance and IG_hidden had a slightly higher proportion of alerts with an average 

AUC of at least 0.8 (0.735 vs 0.714). As observed in Chapter 10, each approach was superior for a 

different set of compounds and alerts so that the approaches can be considered as complementary. 

Overall, the observed AUC scores for IG_hidden were comparable to those recorded for 

dropout_model. This means that the proposed method may be applied successfully on the first hidden 

layer of a DNN. Notably, no further modifications were made to the approach and this provides 

evidence for the robustness of the approach on different model instances. 



Chapter 11: Explaining predictions for deep neural networks 

246 
 

11.3.3  Exploration of neurons in the second hidden layer 
 

A pairwise correlation analysis was conducted (as for neural networks consisting of a single hidden 

layer in Chapter 8) in order to understand the relations between different hidden neurons. All pairwise 

neuron correlations are shown in a heatmap in Figure 11-2A. The pairwise correlations recorded 

between neuron pairs within the first hidden layer, neuron pairs between the first and second hidden 

layer, and neuron pairs within the second hidden layer are visualised as histograms in Figure 11-2B. 
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Figure 11-2 Correlation analysis of hidden neurons. A: pairwise correlations were calculated between all hidden neurons. 
Neurons with a maximum activation of <0.01 were excluded. Neurons in the 1st hidden layer: 0-505 (506 of the 512), Neurons 
in the 2nd hidden layer: 506-926 (421 of the 512). B: Pairwise correlations are grouped into pairs of neurons in the first layer 
‘within first layer’, pairs of neurons in the first and second layer (‘between first and second layer’) and pairs of neurons in 
the second layer (‘within second layer’). The histogram of pairwise correlations for each group is shown. Correlations of 
neurons with themselves were ignored. 

 

In the heatmap, the neurons 0-505 belong to the first hidden layer, while the neurons 506-926 belong 

to the second hidden layer. Although not labelled in the heatmap, the boundary between neurons in 

the first and second hidden layer is clearly visible, due to the largely different correlations occurring 

between the different groups of neuron pairs (as shown in Figure 11-2B). Neuron pairs within the first 

hidden layer have mostly no or very little correlation. A correlation of above +0.5 was found (blue 
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histogram) for a small number of those pairs only. In contrast, the vast majority of neuron pairs within 

the second hidden layer either have a strong positive correlation (>+0.9) or a moderately strong 

negative correlation (<-0.5). This means that many of the neurons in the second layer detect the same 

chemical features. Neuron pairs between the first and second hidden layer possess correlations across 

a wide range of values (from -0.5 to +0.8). A high correlation between a neuron in the second layer 

and a neuron in the first layer suggests that the neuron in the second layer detects similar features as 

those detected in the neuron in the first layer. 

In the following an attempt was made to identify neurons in the second layer which detect novel 

chemical features (i.e. not already detected in the first layer). For all neurons in the second layer 

(excluding the ones with a maximum activation <0.01) the maximal correlation with any neuron in the 

first layer was determined as well as the weight assigned to the neuron in the output neuron (see 

Figure 11-3).  

 

Figure 11-3 Search for 2nd layer neurons detecting novel chemical features. x-axis: maximal correlation observed with any 
of the neurons un the first hidden layer. The neurons selected for further analysis were labelled. 

 

It can be seen that the majority of neurons in the second hidden layer had a fairly high correlation 

(>+0.7) with at least one neuron in the first hidden layer. This suggests that these neurons do not 

detect novel chemical features (at least not primarily) as their activations were similar to those of one 

or more neurons in the first hidden layer. Positive and negative weights of varying magnitude were 
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observed for the strongly correlated neurons. A few second-layer neurons were not strongly 

correlated to neurons in the first layer (max correlation <+0.5), but most of them had a weight to the 

output neuron of close to zero which means that they had very little relevance for the prediction made 

by the network. An exception was neuron 2_46 which had a relatively high weight to the output 

neuron (+0.089) and at the same time was not strongly correlated to any neurons in the first layer 

(max correlation +0.462). Hence this neuron was selected for further analysis as well as the two 

neurons with the highest weight to the output neuron (2_89 and 2_278). 

To find out which chemical features were detected in the respective neurons, it was analysed whether 

compounds matching a particular Derek alert on average activate the neuron more strongly than 

compounds matching no Derek alerts. The Derek alerts with the highest ratio between mean 

activation of matching compounds and mean activation of non-matching compounds are reported in 

Table 11-5 for each of the three neurons. Furthermore, the Top-3 training compounds most strongly 

activating each neuron are shown in Figure 11-4. 

Table 11-5 Most relevant features detected in neurons. Shown are the Top-5 Derek alerts with the highest mean activation 
of the neuron (reported as the ratio to the mean activation of compounds matching no Derek alert). Shown is also the 
number of alerts with such a ratio of at least 5 and for reference the mean activation of compounds matching no Derek alert. 

 Neuron 2_46 Neuron 2_89 Neuron 2_278 

Rank 1 90: triazin tpye (4187) 31: N-nitro or N-
nitroso (221) 

31: N-nitro or N-
nitroso (258) 

Rank 2 22: cyclopropane type 
(2553) 

44: azide (208) 44: azide (253) 

Rank 3 84: quinone (2491) 87: dihalide type (206) 87: dihalide type (248) 

Rank 4 46: pyran type (2152) 102: Aromatic azoxy 
(182) 

102: Aromatic azoxy 
(243) 

Rank 5 45: ketone or 
aldehyde type (2046) 

78: aromatic N-oxide  
(172) 

39: nitrogen or 
sulphur mustard (208) 

Number of alerts with 
ratio >5 

65/102 96/102 97/102 

Mean activation of 
compounds matching 
no alert 

8.5x10-5 7.4x10-3 6.2x10-3 
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Figure 11-4 Top-3 compounds for neurons 2_46, 2_89, 2_278. Below each compound its index and neuron activation are 
reported. 

 

Some of the Top-5 alerts for neuron 2_46 (Table 11-4) can be observed in the Top-3 compounds. 

Compound 1666 matches Alert22 (cyclopropane type) and compound 519 matches Alert90 (triazin 

type). A large number of alerts (65) has a mean activation of at least 5 times larger than the mean 

activation for compounds matching no Derek alert. This suggests that the neuron detected a large 

number of different chemical features. It was further analysed whether the features learned by this 

neuron provide 2layer_model with a predictive advantage over best_model and dropout_model. To 

that end, the 30 validation compounds most strongly activating neuron 2_46 (all toxic) were inspected. 

All of them were predicted as toxic by 2layer_model, yet the same is true for both best_model and 
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dropout_model. Hence it does not seem that neuron 2_46 has learned chemical features that cannot 

also be learned in the first layer of a model. 

Neuron 2_89 and 2_246 seem to have learned very similar chemical features. The Top-3 compounds 

are identical and four of the Top-5 alerts are identical. In fact, the two neurons possess a very high 

pairwise correlation (0.987). Also note that in both neurons the mean activation for almost all alerts 

is at least five times larger than the mean activation for compounds matching no Derek alerts. This 

suggests that both neurons detect almost all relevant chemical features to predict compounds as toxic 

(i.e. matching any Derek alert). Next, it was therefore investigated how well individual neurons in the 

first and second hidden layer can classify toxic compounds (see Methodology). 

For each neuron in the first and second hidden layer of 2layer_model a ROC-AUC score was computed 

for the training and the validation set. ‘Toxic’ was considered as the true label and neurons that rank 

toxic compounds higher than non-toxic ones possess a score above 0.5. A score of 1 would mean that 

all toxic compounds are ranked higher than non-toxic ones. Conversely, if a neuron ranks all non-toxic 

compounds higher than toxic ones, a score of 0 would be achieved. Both a score of 0 and 1 hence 

would indicate perfect discrimination of toxic and non-toxic compounds. The distribution of AUC 

scores found for individual neurons in the first and second layer is shown for the training set in Figure 

5A and for the validation set in Figure 11-5B. 

It can be seen that the vast majority of neurons in the second layer were capable of distinguishing 

between toxic and non-toxic training compounds (i.e. stronger activation for one of the classes) 

(Figure 11-5A). Some of these neurons ranked toxic compounds higher (AUC>0.95), while others 

ranked non-toxic compounds higher (AUC<0.05). In contrast, an AUC of above 0.85 or below 0.15 was 

found for very few neurons in the first hidden layer. A moderately high AUC (0.6-0.85) would suggest 

that a neuron ranks some toxic compounds higher than others, but not all toxic ones higher than non-

toxic ones. This is consistent with the finding that neurons in the first layer detect some of the relevant 

chemical features, but different neurons detect different features. Notably, neurons in dropout_model 

(one layer) neither possessed extreme AUC values (<0.1 or >0.9) (see Appendix Figure D1). Generally, 

the same observation was made for the validation compounds (Figure 11-5B), although as expected 

the neurons tended to discriminate slightly less well between toxic and non-toxic compounds (no 

AUC <0.025 or >0.975). It is worth mentioning that some of the neurons in the second layer of 

2layer_model discriminate between toxic and non-toxic with comparable performance to the model 

itself (AUC on training set: 0.999, AUC on validation set: 0.977). 
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Figure 11-5 ROC_AUC scores for individual neurons. To compute the ROC-AUC scores, the neuron activations for neurons 
were considered as predictions. A: training set, B: validation set. 

 

The AUC scores for the neurons analysed above are reported in Table 11-5. The scores are consistent 

with the findings in Table 11-4. The neurons 2_89 and 2_278 ranked nearly all toxic compounds higher 

than non-toxic ones and hence they possess AUC scores relatively close to 1. In contrast, neuron 2_46 

seemed to detect only some of the chemical features relevant for toxicity which corresponds to a 

moderate AUC score. 
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Table 11-6 ROC_AUC scores for exemplary neurons. Reported are the scores for the same neurons as in Table 11-4. 

Neuron ID Training set Validation set 

2_46 0.643 0.606 

2_89 0.965 0.934 

2_278 0.977 0.977 

 

It was reported above (Figure 11-2) that pairs of neurons in the second layer either had a very strong 

positive correlation (> +0.95) or a moderate negative correlation (~-0.5). An obvious explanation for 

this finding is that those neurons with AUC scores close to 1 were strongly positively correlated and 

similarly for those with AUC scores close to 0, while pairs between the two groups were negatively 

correlated. To check this, the neurons with most extreme AUC values on the training set were 

considered (AUC<0.05 or >0.95) and all pairwise correlations within the respective group of neurons 

and between the groups were determined and visualised using histograms (Figure 11-6). 

 

Figure 11-6 Pairwise correlations of selected neurons in Derek model. Among neurons in the second layer of 2layer_model, 
those with an AUC of below 0.05 or above 0.95 on the training set were selected. Shown are pairwise correlations for neuron 
pairs within each group (group1: AUC<0.05, group2: AUC>0.95) and between the groups. 

 

It can be seen that all pairs of neurons within a group (AUC>0.95 or AUC<0.05) are strongly positively 

correlated (vast majority > +0.95). This means that neurons within these groups are strongly activated 

by the same compounds and hence detect the same chemical features. For instance, the training 

compound activations for neuron 2_89 and 2_278 (both AUC >0.95 for training compounds) are shown 

in Figure 11-7A. The strong positive correlation is clearly visible. In contrast, neuron pairs between the 

two groups were negatively correlated which means that different compounds activated the 
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respective neurons strongly. Also for this case an example is shown using the neurons 2_89 

(AUC >0.95) and neuron 2_32 (AUC < 0.05) (Figure 11-7B). It can be seen that compounds strongly 

activating neuron 2_89 have an activation close to zero for neuron 2_32 and vice versa. 

 

Figure 11-7 Training compound activations for neuron pairs. A: neurons 2_89 and 2_278. B: neurons 2_89 and 2_32. 

 

It can be concluded that the majority of neurons in the second hidden layer did not recognise specific 

chemical features and rather were activated by virtually all toxic (or non-toxic) compounds. The 

assumption behind the approach developed to explain model predictions (IG_hidden) is that there is 

some diversity in which chemical features are detected in different neurons in a hidden layer. Here, it 

was demonstrated that this is not the case for neurons in the second hidden layer of 2layer_model 

and hence no attempt was made to extract substructures for those neurons. Instead, different toxicity 

and bioactivity datasets were studied next to determine whether these findings are specific to the 

model obtained for the Derek dataset and are more generally valid.  

 

11.3.4  Evaluation and exploration of additional toxicity and bioactivity 

datasets 
 

Various toxicity and bioactivity datasets were considered to test whether the observations made for 

2layers_model with respect to the features detected in the second hidden layer also occur in other 

models. As described in Methodology, a grid search testing different hyperparameters was conducted 
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for each assay. The best score observed on the validation set for a model with 1 layer and a model 

with 2 layers for each dataset are reported in Figure 11-8. 

 

Figure 11-8 Comparison of best 1-layer and 2-layer model for Tox21, ToxCast and ChEMBL datasets. Shown are AUC scores 
of the best performing model with 1 and 2 layers on the validation set. 

 

It is worth noting that AUC scores generally were higher for models trained on the ChEMBL assays 

when compared to the Tox21 and ToxCast assays. This might be due to there being a higher proportion 

of actives in the ChEMBL assays or due to the ChEMBL data containing series of chemically similar 

analogues. But this was not further investigated. For the Tox21 and ToxCast assays, the model with 

two layers performed better in some cases, but for approximately an equal number of assays models 

with one layer performed best. In contrast, for most ChEMBL assays, models with 2 layers performed 

better. However, in all cases the differences in AUC score between the best model with one layer and 

two layers were quite small. 

In the following, the 2-layer models for some of the assays were further analysed. Assays for which 

the best 2-layer model outperformed the best 1-layer model were selected, as these would potentially 

be assays where the 2-layer model may have learned chemical features missed by the respective 1-

layer model. The assays are reported in Table 11-7 along with the AUC scores for the best 1-layer and 

2-layer models. A complete list of hyperparameters for the models is reported in Table D1 (Appendix 

D). 
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Table 11-7 Selected assays for further analysis. Selected were two assays from the ToxCast dataset and two assays from the 
ChEMBL dataset. Shown are AUC scores for the best performing 1-layer and 2-layer model. 

Assay Best AUC 1 layer Best AUC 2 layers 

ATG_ERa_TRANS_up 0.793 0.807 

ATG_RXRb_TRANS_up 0.768 0.782 

Adenosine A1 
receptor 

(CHEMBL226) 

0.913 0.924 

Peroxisome 
proliferator activated 

receptor alpha 
(CHEMBL239) 

0.870 0.880 

 

For each 2-layer model, it was tested whether the neurons in the second layer detect specific chemical 

features not detected in the first hidden layer. To do that, pairwise correlations between neurons as 

well as AUC scores for individual neurons were determined (see above). These are reported for the 

individual assays in Figures 11-9 through 11-12. 

It can be seen that pairs of second layer neurons of the model for ATG_ERa_TRANS_up were either 

strongly positively correlated or had a negative correlation of moderate strength (Figure 11-9A). The 

neurons in the second layer had AUC scores close to 0 or 1 on the training data (Figure 11-9B). These 

observations are very similar to those made for 2layer_model (Derek data, see above). The same is 

true for the assays CHEMBL226 (Figure 11-11) and CHEMBL239 (Figure 11-12). This suggests that the 

neurons in the second layer for these models also detected toxic or bioactive compounds rather than 

specific chemical features. Different observations were made for the model on ATG_RXRb_TRANS_up. 

In this case, none of the neuron pairs (within or between layers) were strongly correlated 

(Figure 11-10A). Moreover, the neurons in the second hidden layer were not found to have AUC values 

close to 0 or 1. Instead the AUC values for those neurons ranged between 0.3 and 0.65, with most 

being very close to 0.5. 
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Figure 11-9 Analysis of second layer neurons: ATG_ERa_TRANS_up. A: pairwise correlations of neurons (using training 
compounds). For details see caption of Figure 11-2. B: AUC scores of neurons on training compounds. For details see caption 
of Figure 11-5. 
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Figure 11-10 Analysis of second layer neurons: ATG_RXRb_TRANS_up. For details see caption of Figure 11-9. 
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Figure 11-11 Analysis of second layer neurons: Adenosine A1 receptor. For details see caption of Figure 11-9. 
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Figure 11-12 Analysis of second layer neurons: Peroxisome proliferator activated receptor alpha. For details see caption of 
Figure 11-9. 

 

The model for the ATG_RXRb_TRANS_up assay was further analysed in order to understand its 

behaviour. First, the predicted probabilities of the model on the training and validation data were 

inspected (see Figure 11-13A). It can be seen that, while the model achieved a relatively high AUC 

score, most predicted probabilities were close to 0.5. Notably, binary cross-entropy was used as the 

loss function to fit the model. Binary cross-entropy measures the distance of predicted probabilities 

of training data to the true labels (0 or 1) and hence the model did not fit the training data very well 

(in terms of binary cross-entropy). It was therefore suspected that the resulting model had been 

stopped early (the epoch was not recorded during the grid search). To further analyse this, the model 
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instance obtained in the grid search was trained for a further 10 epochs with identical 

hyperparameters. After each epoch of training, the AUC on training data, the AUC on validation data 

and the loss (average binary cross entropy across all batches of an epoch) were recorded (Figure 

11-13B). 

It can be seen that the average loss of the initial model was very high (data point at training epochs=0) 

and decreased steadily over the following epochs. Interestingly, the AUC score on both training and 

validation set dropped strongly after the first epoch of training, although the loss decreased. It seems 

that the model achieved a very good ranking of compounds (high AUC), while predicted probabilities 

were still very close to 0.5 (high binary cross entropy loss). In the following training epoch, AUC scores 

on both training and validation set increased. The AUC on training reached its highest value after 10 

epochs when also the loss was lowest. The AUC on validation data never exceeded the initial AUC, 

while the model instance after seven epochs reached the highest value among those subjected to 

further training (~0.75). This analysis seems to confirm that the initial model instance resulted from a 

model stopped very early during training. 
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Figure 11-13 Follow-up analyses on 2-layer model trained on ATG_RXRb_TRANS_up. A: Histogram showing predicted 
probabilities of model on training and validation set. B: The model instance saved during the grid search was trained for 10 
further epochs. Shown in the line plot are AUC scores on the training set (of initial model and after each epoch), AUC scores 
on the validation set (of initial model and after each epoch), mean binary cross-entropy (BCE) loss of the initial model and in 
each epoch. The value at training epochs=0 is the average BCE loss of the initial on batches of training data (while no training 
is conducted). The value at training epochs=1 is the average BCE loss across all batches in the first epoch. 

 

To better understand the effect of the further training epochs on the model, the model instance after 

10 additional training epochs was analysed. Most predicted probabilities fall in the range 0-0.8 (see 

Figure D2, Appendix D), with a majority of predictions close to zero (non-toxic is the majority class). 

Pairwise neuron correlations and AUC scores of individual neurons are shown in Figure 11-14. It can 

be seen that the model shows similar characteristics as the models obtained for the other assays 
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(pairwise correlations between neurons in the second layer mostly close to +1 or below -0.5; neurons 

in second layer with AUC values relatively close to 0 or 1). The deviant behaviour of the model 

obtained in the grid search hence seems to be due to early stopping and not due to the assay.  

 

Figure 11-14 Analysis of second layer neurons after 10 training epochs on initial model on ATG_RXRb_TRANS_up. A: 
pairwise correlations between neurons (for details see caption of Figure 11-2). B: AUC scores of individual neurons on the 
training set (for details see caption of Figure 11-5). 

 

In conclusion, all the analysed two-layer models showed characteristics similar to the 2layer_model 

(Derek model), as long as they were not stopped very early during training. In all cases neurons in the 

first hidden layer seemed to detect specific chemical features (although it may be a number of 

different features), while neurons in the second hidden layer combined those features such that 
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nearly all those relevant for one the classes to be predicted were detected in individual neurons. The 

interpretation method developed in this thesis is based on the assumption that hidden neurons detect 

specific chemical features. This was not the case for the neurons in the second hidden layer of the 

analysed neural networks and hence the developed approach was deemed to be not applicable to 

those neurons. 

 

11.4 Discussion 
 

The aim of this chapter was to adapt the developed approach to interpret DNN models. It was shown 

that the approach can be applied to neurons in the first hidden layer of a DNN consisting of two layers 

and this resulted in overall good explanations of model predictions. Next, the neurons in the second 

hidden layer of DNNs were investigated. It was found that those neurons did not detect specific 

chemical features but instead they seemed to mostly group different chemical features associated 

with toxic and non-toxic predictions together. That is, the neurons could be divided into two ‘clusters’ 

of very similar neurons, A key assumption of the method for extracting substructures is that specific 

chemical features can be identified in individual neurons and hence the method was deemed 

inappropriate for application on the second layers of the DNNs under study. 

It may still be the case that chemical features detected in the first hidden layer are refined to some 

extent which could make the second hidden layer useful to the network in terms of its predictive 

performance. For most of the datasets studies here the two layer DNNs provided a benefit in 

performances compared to networks consisting of a single layer, albeit the benefit was small in all 

cases. However, it seems that applying the IG_hidden method to neurons in the first hidden layer is 

sufficient to cover most chemical knowledge learned by the DNN.  

In previous studies it was reported that hidden neurons of DNNs may detect pharmacophores or 

toxicophores and that neurons in deeper layers tend to detect larger chemical structures (Mayr et al., 

2016; Preuer et al., 2019). However, the model instances they trained were not available for further 

examination. A major difference between the DNNs in the cited studies and the present study is that 

they used multi-task DNNs. In multi-task DNNs predictions for different tasks need to be made which 

means that the model needs to discover which chemical features are relevant for a certain task. Thus 

the last hidden layer of a multi-task DNN must detect chemical features specific to individual tasks or 

relevant to a set of modelled tasks (as some chemical features may be associated with different 

toxicity mechanisms). For this reason, it may be that the IG_hidden method can be better applied to 

hidden neurons of multi-task DNNs rather than single task DNNs, but this was beyond the scope of 
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the present study. It may also be the case that the choice of model architecture (number of layers, 

number of neurons, type of activation function, use of dropout etc.) and training parameters (loss 

function, optimization scheme etc.) impact what features individual neurons learn and hence how 

well suited the developed approach is to explain the model predictions. 

The approach developed to extract substructures that activate a hidden neuron uses information 

about weights linking neurons to input features, which is only available for neurons in the first hidden 

layer. Therefore, the approach would need to be modified in order to be applicable to neurons in deep 

layers. Some suggestions on how that might be achieved are provided in Chapter 12. 

 

11.5 Conclusion 
 

The suitability of the IG_hidden method to explain predictions made by DNNs was investigated. The 

workflow developed to extract substructures was based on the assumption that individual neurons 

detect specific chemical features and that these can be found by considering the training compounds 

that most strongly activate the neuron. This was not the case for the neurons in the second hidden 

layer of the two layer DNNs and hence no attempts were made to extract substructures from the 

second layer. Nonetheless, it was shown that IG_hidden can be applied to neurons in the first hidden 

layer and, at least for the DNNs under study here, this seems to be sufficient to capture most of the 

chemical features learned by the model in order to explain the predictions. 
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Chapter 12 Conclusions and future work 
 

This thesis investigated various aspects regarding the use of QSAR models for toxicity predictions of 

chemicals. In Chapters 5 and 6 the performance of multi-task and imputation models was compared 

to that of single task models. Moreover, attempts were made to rationalise observed differences in 

performance. In Chapters 8, 9, 10 and 11, a novel method to interpret neural network models was 

developed and analysed. In particular, the approach extracts substructures responsible for the 

activation of hidden neurons and uses this information to explain predictions made by the model.  

In this chapter, first the results of the thesis are summarised. Then, limitations are described and 

suggestions for future work are made. 

 

12.1 Summary 
 

12.1.1  Multi-task and imputation modelling for toxicity prediction 
 

In Chapter 5, various multi-task and imputation modelling approaches (multi-task DNN, FN, Macau) 

were tested on two in vitro toxicity datasets (Ames and Tox21). For traditional multi-task modelling 

(when no auxiliary assay data for test compounds is available), very little differences in performance 

between single task and multi-task models were found. In contrast, multi-task imputation models 

(when auxiliary assay data for test compounds is available) clearly outperformed single task 

imputation models. Attempts were then made to explain the observed differences between single 

task and multi-task imputation models. It was found that multi-task imputation models provide the 

largest benefits for compounds that are dissimilar to training compounds (which is when single task 

models tend to struggle) and for compounds with a large number of auxiliary assay labels available. 

Nonetheless, very little additional information (a single auxiliary label) may be sufficient to provide a 

benefit over the single task model. It was found that the MI-entropy ratio between target assay and 

auxiliary assay is a useful indicator to identify suitable auxiliary assays. 

In Chapter 6, the suitability of multi-task imputation models on a larger toxicity dataset (ToxCast) was 

tested. As in Chapter 5, the multi-task imputation models clearly outperformed single task models. 

The recently published GHOST technique was tested as a strategy to aid with imbalanced datasets. 

For some of the assays, the MCC scores could be improved, however, GHOST was not found to be 

useful for all the assays. The impact of sparsity on model accuracy was then investigated by removing 
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randomly selected labels from the training set. This led to a drop in performance for both single task 

and multi-task models with the latter still being clearly superior. Moreover, the MI-entropy ratio was 

confirmed to be a useful metric to identify the most useful auxiliary assays within the large dataset. 

Multi-task imputation techniques have been found to be very successful compared to single task 

techniques in this thesis. Naturally, these approaches are limited by the availability of experimental 

data about test compound and hence not applicable to virtual compounds. Yet it was found that even 

limited experimental data about a test compound can strongly improve predictions made for the 

compound. Unsurprisingly, the best auxiliary assays are those most closely related to the target assay. 

On the other hand, if two assays measure the same target effect they may contain very little 

independent information and the imputation model in this case might not provide any new insights, 

even though the performance metric for the target assay improved. Nonetheless, even assays not very 

closely related to the target may lead to meaningful improvements of model performance making 

imputation techniques suitable for a wide range of applications in toxicity prediction. Imputation 

models provide a means to combine any known experimental data about a test compound with its 

chemical structure, in order to improve predictions made for an unknown property of the compound. 

 

12.1.2  Using extracted substructures to explain neural network models 
 

In Chapter 8, a neural network with a single hidden layer trained to predict Ames mutagenicity was 

used to explore which chemical features are learned in individual neurons by examining both training 

compounds that strongly activating a neuron as well as learned weights connecting the neuron to 

input features. It was found that several different chemical features may be detected in a single hidden 

neuron. In turn, a particular chemical group may cause the activation of a number of different hidden 

neurons. 

In Chapter 9, a method that automatically extracts substructures activating a hidden neuron was 

developed. The approach uses FCA to find meaningful chemical concepts by making use of (i) training 

compounds strongly activating the neuron and (ii) fingerprint bits with high weights that are contained 

in the selected compounds. A limitation of the method is that in its original form it can only be applied 

to the first hidden layer of a (feedforward) neural network. This is further discussed below.  

Chapter 10 introduced a method to use the extracted substructures to explain predictions made by 

the model. This was done by using IG to determine the importance of neurons to the prediction 

(IG_hidden). By using a neural network trained on Derek alert labels (where “toxic” labels were 
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assigned according to clearly defined rules), the model explanations of IG_hidden were evaluated and 

compared to those found using the published IG_input method which is based on input features. The 

obtained model explanations were improved by changing parameters in the substructure extraction 

workflow. IG_hidden was slightly outperformed by IG_input when evaluating on individual 

compounds, yet both methods achieved comparable scores when considering average scores for 

individual alerts. Both methods performed better on different sets of compounds and hence may be 

used complementarily. 

In Chapter 11, the applicability of IG_hidden to DNNs was tested. It was shown that the method (with 

the optimised parameters identified in Chapter 10) can be successfully applied to the first hidden layer 

of a DNN trained on Derek labels. Next, the role of neurons in the second hidden layer of DNNs trained 

on several different tasks (Derek labels, Tox21, ToxCast, ChEMBL) was analysed. It was found that the 

majority of those neurons do not detect specific chemical features and instead they detect all features 

linked to either toxicity or absence of toxicity. The method was therefore considered to be not 

applicable to neurons in the second hidden layer. However, it appeared that in the studied networks 

the most relevant chemical features were extracted in the first hidden layer and hence applying 

IG_hidden to the first hidden layer could provide good model explanations. 

 

12.2 Limitations and future work 
 

12.2.1  Multi-task and imputation modelling for toxicity prediction 
 

For traditional multi-task models, at best very small improvements were found over the best single 

task model. For future work this raises the question of whether multi-task approaches are well suited 

for some datasets but not for others, or if improved multi-task modelling strategies could have led to 

better results for the datasets used in this thesis. 

Ideally, characteristics of datasets where multi-task modelling will be successful can be defined. As 

described in Chapter 5, a previous study found the presence of structurally similar compounds (to the 

test set for the target assay) in the training set for an auxiliary assay as relevant for the success (Xu et 

al., 2017). If structurally similar compounds are present and the assays are correlated, the 

performance for the target assay may be increased, while the opposite was found if the assays are 

uncorrelated. In the studied dataset there, very little overlap existed between the assays and more 

general explanations for a wider range of datasets is required. Moreover, it would be helpful to 
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determine whether the same reasons determine the success of multi-task techniques other than 

multi-task DNNs (e.g. Feature Net). 

FN models in this study were all trained following the same procedure. This was to include all assays 

and to use binary assay labels to fill gaps in the first step of the technique (see Methodology in 

Chapter 5). Feature Net models might be improved if poorly predicted auxiliary tasks are excluded, as 

these may add more noise than signal to the models in the second step. Moreover, using the raw 

predicted probabilities for the active class instead of binary labels might lead to better models, as this 

could provide a more nuanced signal. Further experiments may improve the performance of FN 

models.  

In a very recent study, multi-task DNNs based on graph convolutions clearly outperformed various 

single task models for the task of in vivo brain penetration (auxiliary tasks were in vitro assays related 

to brain penetration) (Hamzic et al., 2022). It remains unclear, whether the modelling technique or 

the characteristics of the dataset were responsible for the success. In conclusion, more studies are 

required to disentangle the effects of datasets (especially the overlap and correlation between assays) 

and modelling techniques on the success of traditional multi-task models. 

The datasets used in the experiments were chemically standardised, yet another source for bias was 

not addressed. Actives in high-throughput screening assays may be false positives due to unspecific 

effects such as compound aggregation or interfering with the readout instead of the specific 

biochemical interactions of interest. Such compounds are also referred to as PAINS (Pan-Assay 

Interference compoundS) (Baell & Holloway, 2010; Klarner et al., 2022). In particular, a multi-task 

model may learn to detect PAINS rather than truly interesting compounds. For future studies, this 

issue should be addressed by either filtering out suspected PAINS or by conducting thorough 

experimental validations for actives. 

In this work, in vitro toxicity tasks were used to test the success of imputation models. These models 

combine information about chemicals (chemical descriptors) with partially available experimental 

toxicity profiles of the compounds. In principle, the included modalities may be further extended. For 

toxicity prediction, in vivo effects are ultimately of interest. To predict in vivo toxicity, in vitro toxicity 

assay data (i.e. measuring cellular mechanisms related to the toxicity of interest) may be used as 

additional information, for instance in a FN model. In vitro toxicity data has been shown to be useful 

to predict in vivo toxicity in some previous studies (Liu et al., 2017; Thomas et al., 2012). Other recent 

studies used biological features such as gene expression profiles or morphological cell changes caused 

by compounds (Cell Painting Assay) to predict bioactivity and toxicity with some success (Moshkov et 

al., 2022; Seal et al., 2022; Trapotsi et al., 2021). Further studies are required to identify strategies on 
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how to best combine sparse heterogeneous data to predict toxicity. The multi-task techniques tested 

in this thesis might prove suitable also for such applications. 

 

12.2.2  Using extracted substructures to explain neural network models 
 

While the developed approach (IG_hidden) has shown some promising results, it possesses certain 

limitations. Firstly, the approach in its current form can only be applied to the first hidden layer of a 

neural network. The approach would need to be adapted in order to be applicable to deeper layers of 

a feedforward neural network or to neurons in a graph-convolutional neural network. Several 

suggestions are made in the following paragraphs. 

The approach for substructure extraction in the first hidden layer combines information about training 

compounds that strongly activate the neuron with FP bits having high learned weights. Neurons in the 

second hidden layer are not directly connected to the input layer. Instead, they are connected to 

neurons in the first hidden layer. Once the current approach has been applied to the first hidden layer, 

those extracted substructures may be used instead of fingerprint bits to inform the substructure 

extraction for the second hidden layer. In particular, for a given neuron in the second hidden layer, 

the neurons in the preceding layer and the respective substructures may be used together with 

strongly activated training compounds to conduct the FCA and subsequent steps. One problem may 

be an increased computational cost, as a large number of substructures may have been extracted for 

a given neuron, while just one chemical environment is attached to an input bit (unless bit collisions 

occur). However, it may be that it is sufficient to consider a low number of neurons from the preceding 

layer to successfully adapt this approach. 

Another idea is to determine how important an input feature is to a deep neuron using IG, although 

they are not directly connected with a weight in the network. In this work, IG has been used to 

determine the importance of an input feature to the model prediction (IG_input) and to determine 

the importance of a hidden neuron to the model prediction (IG_hidden). Similarly, the technique may 

be applied to determine the importance of an input feature to the activation of a deep neuron (all 

three problems are mathematically equivalent). Notably, IG would yield the most relevant input bits 

for the activation of an individual compound. In this way, substructures could be directly extracted 

from the training compounds (without conducting FCA). Or instead, for a given neuron the set of 

relevant input features could be determined across different training compounds (for instance, by 

averaging) to obtain a set of most relevant input features to be used in the FCA. 
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The two ideas proposed so far may be applicable to DNNs based on input features (such as Morgan 

FP), but not for other architectures like GCNs. GCNs perform graph convolutions on hidden 

representations of individual atoms (or bonds) to aggregate information from their vicinity, before 

obtaining a d-dimensional representation of a complete compound. In this representation (as shown 

in this work for hidden layers of a feedforward neural network), one dimension may encode the 

presence of substructure(s) relevant for the predicted task. The ideas described below are also 

applicable to such architectures. 

IG has been applied to GCNs to identify atoms of a compound most relevant to the model prediction 

(Jiménez-Luna et al., 2021). Likewise, it may be used to determine which atoms are most relevant for 

the activation of neurons in the fully connected layers. This could be applied to training compounds 

that strongly activate the respective hidden neuron. Connected atoms in those training compounds 

could then be extracted as relevant substructures for the neuron. In a similar way, atoms or fragments 

could be removed from the input representation of a given training compound to check if they impact 

on the neuron activation of the compound. In this way relevant atoms and fragments may be 

identified. This is comparable to the approaches used to interpret QSAR models by perturbing the 

input representation of test compounds, summarised in Chapter 7. Each approach would yield 

chemical substructures to be used in IG_hidden. 

Another possibility could be to use generative models in order to generate fragments that strongly 

activate a hidden neuron. Generative models are widely used for feature visualisation in the image 

domain (A. Nguyen et al., 2016) and are also applied to de novo design of compounds with desired 

properties (Bilodeau et al., 2022). For this application, a model would be required to generate 

substructures rather than complete compounds. The respective neural network QSAR model could be 

used to score generated fragments on how strongly they activate the relevant neuron of the neural 

network. This would mean that a separate model needs to be trained for each hidden neuron. For this 

to be efficient, a transfer learning approach might be possible where a general model would be trained 

to generate substructures which ideally can be quickly fine-tuned in order to obtain models for 

individual neurons. Substructures could then be sampled from the obtained generative models to be 

used in IG_hidden. 

Another limitation of the approach is the poor performance on some of the infrequent alerts in the 

training set. In the current approach, substructures are extracted only from the training set. However, 

it is not necessary to know the toxicity label of a compound in order to test if it activates a given 

neuron. Therefore, any compound in principle may be used for the substructure extraction. For 

instance, compounds from ChEMBL may be used to extend the set of compounds used. Due to the 



Chapter 12: Conclusions and future work 

272 
 

database size, it may be impractical to use all compounds in ChEMBL. A better strategy may be to 

cluster ChEMBL compounds according to chemical similarity and then sample from the clusters to 

ensure a diverse set of compounds is used. In this way the set of compounds used to extract 

substructures may be more balanced (in terms of different Derek alerts in this instance) than the 

training set which might improve the extraction of substructures associated with rare alerts. 

The absence of substructures belonging to a certain alert may also be because compounds matching 

an alert do not activate any neuron very strongly. Instead, they might activate a number of neurons 

with moderate strength. A possible solution might be to extract substructures that activate a 

combinations of neurons rather than just a single neuron. Ideally, a projection of the original activation 

space could be found in which the dimensions correspond to the presence of specific alerts (more 

than this is the case for individual hidden neurons). For instance, Principal Component Analysis (PCA) 

could be used to obtain a projected space and then substructures corresponding to ‘activation’ of a 

given PC could be extracted. Also, this would potentially make the method more efficient as the 

substructure workflow could be run for a number of PCs which is much smaller than the number of 

neurons, provided that a large proportion of the original variance can be retained. 

A limitation identified in Chapter 10 is that no substructure matches can be found for some of the 

neurons for a given test compound. Some of the changes suggested above may help to alleviate this 

problem. Another approach could be to encourage the method to find more generic substructures 

that match larger numbers of test compounds. For instance, a less strict threshold for neuron 

activation could be applied to smaller and hence more generic fragments. A trade-off has to be made 

however, as lowering the threshold too much could mean that unimportant substructures are 

increasingly extracted. Another strategy might be to describe substructures not as SMILES but rather 

with more flexible SMARTS. SMARTS patterns may describe specific substructures that strongly 

activate a neuron while allowing for different variations in the substructure (for instance, a match with 

any halogen atom rather than chlorine). Some attempts have been made to automatically construct 

meaningful SMARTS patterns that discriminate molecule classes in a previous study (Bietz et al., 2015).  

The method proposed in this thesis was specifically developed to interpret neural networks and hence 

it is not model-agnostic. It is therefore not applicable to other ML algorithms. Attribution methods 

have mostly been used to explain predictions for other ML algorithms used in the field of QSAR 

modelling. As was seen by comparing IG_hidden to IG_input, IG_hidden may correctly explain 

predictions that are not well explained by input feature attribution methods. To confirm this, 

benchmarking of IG_hidden on a wider range of datasets as well as against more attribution 

techniques will be necessary. IG_hidden already performed comparably well as IG_input (when 
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evaluating on alerts rather than individual compounds). The proposed changes to the substructure 

extraction (see above) might make IG_hidden even more performant. 

 

12.3 Final conclusions 
 

Multi-task imputation has been shown to be promising technique for toxicity prediction in this work. 

When experimental toxicity data about test compounds of interest is available, multi-task imputation 

strategies may provide a clear benefit in performance compared to single task QSAR models. Such 

strategies could be adopted in various situations to improve the accuracy of toxicity prediction. 

A novel method to interpret neural networks was developed. The method may complement the 

toolbox of existing interpretation techniques as it may provide insights not obtainable from methods 

focussing on input features. Several suggestions were made above to extend the applicability of the 

approach to different neural network architectures and how to improve its explanatory performance. 

Hence the method has the potential to make toxicity predictions more interpretable. This can both 

increase the confidence in predictions made by the models and provide actionable hypotheses to 

chemists, for instance when optimising drug candidates to reduce their toxicity. 
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Appendix 
 

 

Appendix A 
 

A sparse matrix 𝑋 with 𝑚 rows and 𝑛 columns can be factorised to: 

𝑋𝑚𝑥𝑛 =  𝑈𝑚𝑥𝑑  ×  𝑉𝑑𝑥𝑛 

In probabilistic matrix factorisation (PMF), the entries of matrix 𝑋 are considered to originate from a 

probability distribution (e.g. a Gaussian). The likelihood term of the matrix 𝑋 given the model can be 

described as:  

𝑝(𝑋|𝑈, 𝑉, 𝛼) =  ∏ ∏[𝒩(𝑋𝑖,𝑗|𝑈𝑖
𝑇𝑉𝑗, 𝛼−1)]

𝐼𝑖,𝑗

𝑀

𝑗=1

𝑁

𝑖=1

 

Where 𝒩(𝑥|𝜇, 𝛼−1) is a Gaussian distribution with mean 𝜇 and precision 𝛼 (the inverse 𝛼−1 is the 

variance), and 𝐼𝑖,𝑗 is 1 if the matrix cell 𝑋𝑖,𝑗 was observed and zero otherwise. Furthermore, 

multivariate prior distributions for 𝑈 and 𝑉 are formulated defined by a mean of 0 and a joint precision 

for 𝑈 (𝛼𝑈) and 𝑉 (𝛼𝑉) across all dimensions. Their likelihood is given by: 

𝑝(𝑈|𝛼𝑈) =  ∏ 𝒩(𝑈𝑖|0, 𝛼𝑈
−1𝐼)

𝑁

𝑖=1

 

𝑝(𝑉|𝛼𝑉) =  ∏ 𝒩(𝑉|0, 𝛼𝑉
−1𝐼)

𝑀

𝑗=1

 

It can be shown that fitting a model by maximising the likelihood term for 𝑋 is equivalent to the 

previously shown objective which minimises the sum of squared residuals with squared regularisation 

terms for 𝑈 and 𝑉 (see section 3.4.7). The Macau algorithm (Simm et al., 2015) is an example of 

Bayesian probabilistic matrix factorisation (BPMF). (Salakhutdinov & Mnih, 2008) The use of fixed 

regularisation terms requires the search for ideal parameters. By using a Bayesian approach, model 

complexity can be automatically controlled using Bayesian inference. 

Bayesian inference means that initial beliefs about a variable (here the model parameters) are 

expressed using a prior distribution which is updated to obtain a posterior distribution after the data 

has been observed. The method is based on Bayes’ theorem which states: 
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𝑃(𝐻|𝐸) =  
𝑃(𝐸|𝐻) × 𝑃(𝐻)

𝑃(𝐸)
 

where 𝐻 stands for a hypothesis (here a certain value for model parameters) and 𝐸 for the evidence 

(here the observed data in the matrix). 𝑃(𝐻) is the prior distribution describing the initial beliefs about 

hypotheses and 𝑃(𝐸|𝐻) is the likelihood term which describes how likely it is to observe the data 

given a hypothesis. The prior distributions for 𝑈 and V are formulated as in the equations above. 

A special property of Macau is that it allows the incorporation of side information (e.g. chemical 

descriptors of a compound) into the model. Side information is used to modify the latent distribution 

of an instance in the form of a linear model. Specifically, the mean of the latent distribution is shifted 

by adding the product of the side information features and a learned weight matrix. The prior 

distribution for instance 𝑖 of 𝑈 (𝑈𝑖) is obtained by: 

𝑝(𝑈𝑖|𝑥𝑖, 𝜇𝑈, 𝛼𝑈) =  𝒩(𝑈𝑖|𝜇𝑈 +  𝛽𝑖
𝑇  × 𝑥𝑖 , 𝛼𝑈

−1) 

Where 𝑥𝑖 is a vector containing side information for instance 𝑖 and 𝛽𝑖 is a weight vector of the same 

dimensionality as 𝑥𝑖. If the training matrix contains no observations for a 𝑈𝑖, then the posterior 

distribution is fully determined by the side information. 

Another feature of BPMF (and hence Macau) is that no assumptions are made for the parameters of 

the prior distributions of 𝑈 and 𝑉. Instead, these are inferred using the data from so-called hyperprior 

distributions in an additional layer of Bayesian inference. Normal-Wishart distributions are used as 

the hyperprior distributions. Normal-Wishart distributions are the product of a Normal and a Wishart 

distribution (which is a multivariate generalisation of the gamma distribution). The hyperprior 

distribution is initialised with uninformative parameters (i.e. containing no beliefs about any of the 

matrix elements). 

The predictive distribution for each entry of the matrix 𝑋𝑖,𝑗  is given by the product of the posterior 

distributions 𝑈𝑖  and 𝑉𝑗. Since it is difficult to find the joint distribution (𝑈, 𝑉) analytically, Gibbs 

Sampling is used, which is a Markov chain Monte Carlo method (MCMC) (Neal, 1993). A Markov chain 

describes a stochastic sequence of states where the probability of obtaining a state depends only on 

the state of the previous chain element. Monte Carlo methods generally refer to algorithms where, 

instead of solving a task analytically, a good approximation is searched by employing stochastic 

sampling. Gibbs sampling can be used when a joint distribution cannot be easily found analytically 

(and hence directly sampled from), but sampling is possible from the conditional distributions. 

As stated above, a prediction in the Macau model is obtained by taking the inner product between 

single samples from the latent distribution over an instance from 𝑈 (𝑈𝑖) and an instance from 𝑉 (𝑉𝑗) 
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(e.g. a user and a movie, respectively, in the Netflix task). By taking many consecutive samples from 

𝑈𝑖  and 𝑉𝑗, a distribution for the predicted value can be obtained. Each sampling operation is 

conditioned on the observed data, the respective counterpart of the previous iteration (𝑈 for 𝑉 and 

vice versa) and the respective hyperparameters common for all 𝑈𝑖  and 𝑉𝑗 respectively. The 

hyperparameters of the prior distribution are inferred from hyperprior distributions. Hence, prior to 

the sampling from the posterior distributions for 𝑈 and 𝑉, the hyperparameters of these have to be 

sampled conditioned on the hyperpriors and the posterior distribution of the previous iteration. The 

Gibbs sampling can be summarised as follows: 

 Initialise the prior distributions 𝑈1 and 𝑉1 

 For t in [1, …, 𝑇] (the number of samples 𝑇 to be drawn is defined by the user): 

o Sample the hyperparameters (Θ = {𝑚𝑒𝑎𝑛, 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛}) for 𝑈 and 𝑉 (from the 

hyperprior distribution) conditioned on the current state of 𝑈 and 𝑉 and the fixed 

parameters of the hyperprior distributions: 

Θ𝑈
𝑡  ~ 𝑝(Θ𝑈|𝑈𝑡, Θ0) 

Θ𝑉
𝑡  ~ 𝑝(Θ𝑉|𝑉𝑡 , Θ0) 

o For each 𝑖 in [1, …, 𝑁] (𝑁 instances in 𝑈): 

 Sample a vector representing instance 𝑖, conditioned on observed data 𝑋, the 

current state of 𝑉 and the current hyperparameters for 𝑈: 

𝑈𝑖
𝑡+1 ~ 𝑝(𝑈𝑖|𝑋, 𝑉𝑡, Θ𝑈

𝑡 ) 

o For each 𝑗 in [1, …, 𝑀] (𝑀 instances in 𝑉): 

 Sample a vector representing instance 𝑗, conditioned on observed data 𝑋, the 

current state of 𝑈 and the current hyperparameters for 𝑉: 

𝑉𝑗
𝑡+1 ~ 𝑝(𝑉𝑗|𝑋, 𝑈𝑡, Θ𝑉

𝑡 ) 

o A value for each 𝑋𝑖,𝑗 can be computed by multiplying the sampled 𝑈𝑖  and 𝑉𝑗. The 

obtained values form part of the predictive distribution for each cell of the matrix. 

 From all samples in the predictive distribution, the first 𝑛 (to be defined by the user) samples 

are discarded as so-called burn-in samples. 
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Appendix B 
 

Table B1 Median ROC-AUC values and interquartile ranges for compound-based splits. Median scores and interquartile-
ranges for each technique and dataset on the test set across the 20 random seeds. Before computing the median, the mean 
across the different assays for a single run was calculated. The best model for each dataset in bold. 

  Ames Tox21 

Single task 
RF 0.866 (0.865-0.866) 0.818 (0.817-0.820) 

XGB 0.863 (0.862-0.864) 0.811 (0.811-0.813) 
ST-DNN 0.842 (0.840-0.844) 0.788 (0.784-0.790) 

Multi-task 

RF-FN 0.862 (0.860-0.863) 0.803 (0.802-0.804) 

XGB-FN 0.853 (0.852-0.855) 0.812 (0.811-0.813) 

ST-DNN-FN 0.836 (0.835-0.839) 0.774 (0.770-0.779) 
MT-DNN 0.871 (0.868-0.874) 0.825 (0.822-0.830) 
Macau 0.873 (0.872-0.874) 0.830 (0.830-0.831) 

 

Table B2 Median ROC-AUC values and interquartile ranges for assay-based splits. Single task models are included as a 
benchmark. Median scores and interquartile ranges for each technique and dataset on the test set across 20 different 
random seeds. Before computing the median, the mean across the different assays for a single run was calculated. The best 
model for each dataset is in bold. 

  Ames Tox21 

Single task 
RF 0.848 (0.846-0.849) 0.817 (0.815-0.818) 

XGB 0.848 (0.846-0.848) 0.805 (0.804-0.807) 
ST-DNN 0.831 (0.829-0.833) 0.780 (0.778-0.783) 

Multi-task 
XGB-FN 0.923 (0.923-0.924) 0.866 (0.865-0.867) 

MT-DNN 0.935 (0.934-0.938) 0.867 (0.864-0.870) 
Macau 0.944 (0.943-0.945) 0.888 (0.887-0.888) 
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Comparison of traditional single task and multi-task models 

 

Table B3 Median MCC scores on compound-based splits: Ames 

 TA100 TA100_S9 TA102 TA102_S9 TA1535 TA1535_S9 TA1537 TA1537_S9 TA97 TA97_S9 TA98 TA98_S9 mean 

RF 0.632 0.571 0.376 0.436 0.536 0.614 0.57 0.59 0.247 0.442 0.647 0.64 0.525 

XGB 0.616 0.593 0.332 0.47 0.588 0.639 0.72 0.609 0.317 0.375 0.646 0.653 0.547 

DNN 0.577 0.563 0.358 0.375 0.524 0.609 0.65 0.599 0.244 0.436 0.655 0.655 0.520 

RF_FN 0.603 0.592 0.342 0.227 0.554 0.554 0.616 0.55 0.305 0.496 0.636 0.633 0.509 

XGB_FN 0.6 0.568 0.344 0.335 0.502 0.622 0.63 0.655 0.315 0.485 0.637 0.662 0.529 

DNN_FN 0.611 0.579 0.38 0.296 0.516 0.606 0.64 0.585 0.305 0.501 0.628 0.641 0.524 

MT-DNN 0.594 0.584 0.268 0.371 0.564 0.56 0.646 0.65 0.418 0.518 0.662 0.66 0.541 

Macau 0.553 0.535 0.289 0.24 0.525 0.509 0.635 0.529 0.409 0.437 0.624 0.614 0.492 

RF_FN, 
imput 

0.756 0.748 0.562 0.607 0.675 0.79 0.712 0.765 0.669 0.825 0.759 0.787 0.721 

XGB_FN, 
imput 

0.764 0.759 0.47 0.576 0.677 0.807 0.735 0.78 0.683 0.747 0.724 0.803 0.710 

DNN_FN, 
imput 

0.737 0.748 0.522 0.55 0.702 0.734 0.704 0.743 0.573 0.647 0.711 0.775 0.679 

 

 

 

 

 

 

 



 

280 
 

Table B4 Median F1 scores on compound-based splits: Ames 

 TA100 TA100_S9 TA102 TA102_S9 TA1535 TA1535_S9 TA1537 TA1537_S9 TA97 TA97_S9 TA98 TA98_S9 Mean 

RF 0.715 0.694 0.449 0.516 0.541 0.645 0.58 0.64 0.364 0.492 0.714 0.735 0.590 

XGB 0.723 0.733 0.423 0.539 0.609 0.651 0.749 0.657 0.326 0.463 0.713 0.742 0.611 

DNN 0.685 0.707 0.4 0.406 0.545 0.629 0.675 0.63 0.341 0.475 0.723 0.749 0.580 

RF_FN 0.696 0.714 0.4 0.308 0.581 0.584 0.64 0.604 0.393 0.577 0.711 0.726 0.578 

XGB_FN 0.71 0.717 0.448 0.419 0.545 0.649 0.667 0.699 0.385 0.559 0.714 0.756 0.606 

DNN_FN 0.707 0.708 0.442 0.308 0.553 0.633 0.675 0.617 0.403 0.537 0.708 0.741 0.586 

MT-DNN 0.701 0.718 0.337 0.4 0.598 0.594 0.671 0.684 0.486 0.582 0.735 0.757 0.605 

Macau 0.651 0.666 0.356 0.254 0.535 0.522 0.653 0.558 0.449 0.5 0.699 0.718 0.547 

RF_FN, 
imput 

0.824 0.827 0.635 0.667 0.688 0.812 0.734 0.796 0.719 0.857 0.812 0.849 0.768 

XGB_FN, 
imput 

0.83 0.841 0.557 0.64 0.706 0.813 0.764 0.811 0.73 0.795 0.784 0.859 0.761 

DNN_FN, 
imput 

0.806 0.831 0.592 0.602 0.722 0.756 0.736 0.772 0.626 0.696 0.773 0.84 0.729 
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Table B5 Median ROC-AUC scores on compound-based splits: Ames 

 TA100 TA100_S9 TA102 TA102_S9 TA1535 TA1535_S9 TA1537 TA1537_S9 TA97 TA97_S9 TA98 TA98_S9 Mean 

RF 0.891 0.872 0.773 0.85 0.902 0.878 0.942 0.912 0.736 0.849 0.893 0.893 0.866 

XGB 0.897 0.879 0.789 0.847 0.878 0.874 0.905 0.886 0.806 0.812 0.879 0.907 0.863 

DNN 0.871 0.867 0.759 0.775 0.896 0.867 0.891 0.89 0.694 0.813 0.876 0.908 0.842 

RF_FN 0.865 0.883 0.745 0.846 0.909 0.837 0.933 0.928 0.775 0.838 0.88 0.894 0.861 

XGB_FN 0.868 0.862 0.798 0.813 0.835 0.845 0.914 0.92 0.791 0.795 0.883 0.912 0.853 

DNN_FN 0.862 0.858 0.769 0.778 0.875 0.839 0.882 0.907 0.684 0.807 0.881 0.904 0.837 

MT-DNN 0.884 0.881 0.802 0.821 0.896 0.852 0.919 0.923 0.807 0.865 0.896 0.908 0.871 

Macau 0.876 0.872 0.784 0.846 0.894 0.885 0.932 0.925 0.828 0.854 0.884 0.904 0.874 

RF_FN, 
imput 

0.952 0.951 0.874 0.948 0.972 0.936 0.98 0.979 0.946 0.974 0.948 0.956 0.951 

XGB_FN, 
imput 

0.955 0.947 0.876 0.947 0.963 0.944 0.981 0.975 0.96 0.968 0.951 0.965 0.953 

DNN_FN, 
imput 

0.94 0.935 0.871 0.903 0.948 0.939 0.954 0.953 0.832 0.921 0.933 0.959 0.924 
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Table B6 Median MCC scores on compound-based splits: Tox21 

 NR-
AhR 

NR-AR NR-
AR-
LBD 

NR-
Aromatase 

NR-ER NR-ER-LBD NR-
PPAR-
gamma 

SR-ARE SR-
ATAD5 

SR-HSE SR-
MMP 

SR-p53 mean 

RF 0.428 0.526 0.724 0.454 0.417 0.564 0.207 0.403 0.167 0.195 0.446 0.29 0.402 

XGB 0.498 0.587 0.694 0.395 0.4 0.528 0.205 0.437 0.277 0.203 0.516 0.376 0.426 

DNN 0.439 0.57 0.636 0.393 0.43 0.562 0.239 0.414 0.311 0.218 0.486 0.315 0.418 

RF_FN 0.4 0.526 0.707 0.409 0.405 0.584 0.187 0.331 0.179 0.092 0.443 0.243 0.376 

XGB_FN 0.491 0.568 0.692 0.409 0.412 0.572 0.23 0.46 0.257 0.303 0.492 0.336 0.435 

DNN_FN 0.433 0.57 0.657 0.349 0.402 0.546 0.291 0.393 0.294 0.211 0.456 0.287 0.407 

MT-DNN 0.468 0.577 0.692 0.365 0.42 0.598 0.212 0.434 0.326 0.253 0.49 0.348 0.432 

Macau 0.369 0.587 0.689 0.281 0.433 0.487 0 0.317 0.089 0 0.385 0.192 0.319 

RF_FN, 
imput 

0.495 0.526 0.737 0.418 0.632 0.651 0.376 0.472 0.388 0.248 0.557 0.404 0.492 

XGB_FN, 
imput 

0.544 0.615 0.784 0.41 0.592 0.697 0.409 0.53 0.443 0.367 0.617 0.506 0.543 

DNN_FN, 
imput 

0.488 0.568 0.7 0.406 0.565 0.641 0.403 0.491 0.452 0.317 0.54 0.442 0.501 
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Table B7 Median F1 scores on compound-based splits: Tox21 

 NR-
AhR 

NR-AR NR-
AR-
LBD 

NR-
Aromatase 

NR-ER NR-ER-LBD NR-
PPAR-
gamma 

SR-ARE SR-
ATAD5 

SR-HSE SR-
MMP 

SR-p53 Mean 

RF 0.462 0.533 0.725 0.385 0.458 0.556 0.196 0.441 0.144 0.161 0.488 0.231 0.398 

XGB 0.556 0.578 0.696 0.4 0.43 0.549 0.225 0.53 0.301 0.124 0.59 0.411 0.449 

DNN 0.48 0.565 0.645 0.376 0.442 0.539 0.213 0.483 0.319 0.219 0.55 0.313 0.428 

RF_FN 0.447 0.533 0.706 0.354 0.42 0.582 0.167 0.407 0.147 0.104 0.479 0.237 0.382 

XGB_FN 0.549 0.565 0.699 0.431 0.457 0.585 0.252 0.549 0.281 0.284 0.569 0.373 0.381 

DNN_FN 0.479 0.565 0.657 0.352 0.415 0.544 0.253 0.45 0.286 0.203 0.512 0.29 0.466 

MT-DNN 0.509 0.571 0.691 0.345 0.45 0.592 0.18 0.498 0.316 0.216 0.553 0.337 0.417 

Macau 0.376 0.578 0.687 0.176 0.396 0.395 0 0.323 0.034 0 0.41 0.106 0.290 

RF_FN, 
imput 

0.539 0.533 0.735 0.342 0.661 0.629 0.367 0.546 0.347 0.267 0.598 0.43 0.500 

XGB_FN, 
imput 

0.596 0.607 0.783 0.429 0.617 0.701 0.425 0.607 0.465 0.343 0.676 0.537 0.566 

DNN_FN, 
imput 

0.527 0.565 0.706 0.41 0.575 0.644 0.403 0.556 0.471 0.329 0.599 0.456 0.52 
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Table B8 Median ROC-AUC scores on compound-based splits: Tox21 

 NR-
AhR 

NR-AR NR-
AR-
LBD 

NR-
Aromatase 

NR-ER NR-ER-LBD NR-
PPAR-
gamma 

SR-ARE SR-
ATAD5 

SR-HSE SR-
MMP 

SR-p53 Mean 

RF 0.896 0.78 0.895 0.793 0.783 0.824 0.775 0.815 0.795 0.785 0.844 0.842 0.819 

XGB 0.888 0.787 0.878 0.779 0.745 0.824 0.742 0.814 0.814 0.743 0.87 0.853 0.811 

DNN 0.883 0.746 0.834 0.742 0.737 0.812 0.755 0.793 0.791 0.714 0.843 0.801 0.788 

RF_FN 0.871 0.778 0.891 0.813 0.769 0.832 0.777 0.799 0.75 0.709 0.821 0.827 0.803 

XGB_FN 0.882 0.762 0.885 0.754 0.755 0.847 0.773 0.82 0.812 0.751 0.865 0.833 0.812 

DNN_FN 0.869 0.73 0.828 0.724 0.717 0.814 0.751 0.773 0.759 0.702 0.836 0.804 0.776 

MT-DNN 0.879 0.767 0.884 0.788 0.772 0.847 0.812 0.823 0.827 0.784 0.871 0.865 0.827 

Macau 0.888 0.792 0.905 0.787 0.787 0.846 0.805 0.822 0.82 0.805 0.859 0.847 0.830 

RF_FN, 
imput 

0.915 0.842 0.983 0.883 0.853 0.929 0.905 0.857 0.885 0.836 0.906 0.907 0.892 

XGB_FN, 
imput 

0.917 0.828 0.984 0.822 0.847 0.943 0.894 0.868 0.911 0.853 0.908 0.917 0.891 

DNN_FN, 
imput 

0.905 0.786 0.915 0.805 0.817 0.887 0.844 0.838 0.861 0.804 0.884 0.88 0.852 
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Comparison of single task and multi-task imputation models 

 

 

Table B9 Median MCC scores on assay-based splits: Ames 

 TA100 TA100_S9 TA102 TA102_S9 TA1535 TA1535_S9 TA1537 TA1537_S9 TA97 TA97_S9 TA98 TA98_S9 mean 

RF 0.576 0.538 0.432 0.355 0.584 0.572 0.66 0.641 0.315 0.413 0.553 0.621 0.522 

XGB 0.607 0.544 0.402 0.41 0.536 0.572 0.691 0.65 0.279 0.524 0.605 0.62 0.537 

DNN 0.575 0.528 0.415 0.172 0.518 0.561 0.667 0.65 0.27 0.408 0.591 0.638 0.499 

RF_FN 0.699 0.698 0.437 0.546 0.691 0.687 0.704 0.735 0.412 0.571 0.669 0.742 0.633 

XGB_FN 0.726 0.695 0.48 0.566 0.732 0.802 0.726 0.711 0.559 0.728 0.697 0.705 0.677 

DNN_FN 0.68 0.648 0.449 0.505 0.673 0.706 0.722 0.704 0.412 0.63 0.704 0.734 0.631 

MT-DNN 0.711 0.672 0.508 0.585 0.716 0.71 0.752 0.789 0.511 0.683 0.728 0.746 0.676 

Macau 0.716 0.708 0.426 0.566 0.73 0.743 0.722 0.743 0.562 0.704 0.735 0.796 0.679 

 

 

Table B10 Median F1 scores on assay-based splits: Ames 

 TA100 TA100_S9 TA102 TA102_S9 TA1535 TA1535_S9 TA1537 TA1537_S9 TA97 TA97_S9 TA98 TA98_S9 Mean 

RF 0.688 0.655 0.483 0.414 0.617 0.597 0.685 0.683 0.338 0.417 0.622 0.71 0.576 

XGB 0.705 0.686 0.436 0.469 0.54 0.597 0.711 0.688 0.361 0.603 0.689 0.722 0.601 

DNN 0.69 0.662 0.483 0.238 0.547 0.591 0.692 0.69 0.326 0.457 0.676 0.727 0.565 

RF_FN 0.785 0.782 0.504 0.595 0.721 0.701 0.733 0.77 0.462 0.6 0.729 0.809 0.683 

XGB_FN 0.799 0.785 0.583 0.593 0.761 0.81 0.755 0.742 0.606 0.769 0.765 0.783 0.729 

DNN_FN 0.769 0.747 0.538 0.554 0.708 0.725 0.752 0.732 0.465 0.682 0.769 0.799 0.687 

MT-DNN 0.789 0.766 0.6 0.616 0.741 0.723 0.775 0.816 0.562 0.723 0.791 0.811 0.726 

Macau 0.788 0.788 0.508 0.593 0.756 0.747 0.747 0.766 0.6 0.742 0.793 0.849 0.723 
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Table B11 Median ROC-AUC scores on assay-based splits: Ames 

 TA100 TA100_S9 TA102 TA102_S9 TA1535 TA1535_S9 TA1537 TA1537_S9 TA97 TA97_S9 TA98 TA98_S9 Mean 

RF 0.871 0.864 0.776 0.699 0.909 0.864 0.886 0.928 0.781 0.825 0.894 0.883 0.848 

XGB 0.879 0.856 0.804 0.744 0.907 0.85 0.894 0.918 0.702 0.823 0.884 0.902 0.847 

DNN 0.862 0.848 0.735 0.682 0.894 0.827 0.899 0.917 0.723 0.806 0.883 0.907 0.832 

RF_FN 0.902 0.922 0.857 0.863 0.969 0.947 0.947 0.951 0.868 0.957 0.94 0.934 0.921 

XGB_FN 0.932 0.906 0.853 0.865 0.97 0.916 0.958 0.97 0.871 0.971 0.936 0.932 0.923 

DNN_FN 0.917 0.893 0.805 0.804 0.964 0.901 0.955 0.964 0.819 0.908 0.936 0.944 0.901 

MT-DNN 0.928 0.916 0.888 0.881 0.98 0.932 0.98 0.981 0.888 0.971 0.946 0.946 0.936 

Macau 0.944 0.932 0.897 0.893 0.98 0.951 0.979 0.982 0.881 0.977 0.953 0.959 0.944 

 

 

Table B12 Median MCC scores on assay-based splits: Tox21 

 NR-
AhR 

NR-AR NR-
AR-
LBD 

NR-
Aromatase 

NR-ER NR-ER-LBD NR-
PPAR-
gamma 

SR-ARE SR-
ATAD5 

SR-HSE SR-
MMP 

SR-p53 mean 

RF 0.475 0.607 0.592 0.392 0.325 0.571 0.329 0.367 0.191 0.362 0.483 0.18 0.406 

XGB 0.518 0.58 0.579 0.363 0.292 0.568 0.294 0.423 0.273 0.392 0.507 0.223 0.418 

DNN 0.527 0.592 0.554 0.308 0.317 0.603 0.327 0.395 0.268 0.363 0.514 0.238 0.417 

RF_FN 0.496 0.621 0.681 0.409 0.422 0.639 0.338 0.439 0.291 0.336 0.536 0.346 0.462 

XGB_FN 0.543 0.642 0.677 0.443 0.524 0.703 0.381 0.483 0.411 0.462 0.611 0.372 0.521 

DNN_FN 0.552 0.599 0.597 0.396 0.43 0.676 0.381 0.477 0.416 0.401 0.571 0.328 0.485 

MT-DNN 0.555 0.626 0.567 0.428 0.435 0.704 0.371 0.503 0.422 0.383 0.607 0.438 0.503 

Macau 0.5 0.621 0.514 0.272 0.368 0.63 0.111 0.513 0.132 0.17 0.529 0.267 0.385 
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Table B13 Median F1 scores on assay-based splits: Tox21 

 NR-
AhR 

NR-AR NR-
AR-
LBD 

NR-
Aromatase 

NR-ER NR-ER-LBD NR-
PPAR-
gamma 

SR-ARE SR-
ATAD5 

SR-HSE SR-
MMP 

SR-p53 Mean 

RF 0.518 0.587 0.59 0.328 0.295 0.551 0.276 0.422 0.157 0.281 0.519 0.124 0.387 

XGB 0.573 0.568 0.568 0.331 0.268 0.559 0.308 0.51 0.306 0.396 0.58 0.259 0.436 

DNN 0.564 0.575 0.544 0.258 0.308 0.599 0.238 0.473 0.263 0.356 0.567 0.256 0.417 

RF_FN 0.536 0.603 0.686 0.333 0.373 0.629 0.295 0.514 0.25 0.345 0.594 0.288 0.453 

XGB_FN 0.594 0.632 0.675 0.429 0.513 0.71 0.397 0.561 0.437 0.475 0.668 0.405 0.541 

DNN_FN 0.588 0.587 0.603 0.361 0.409 0.687 0.33 0.545 0.42 0.414 0.625 0.342 0.492 

MT-DNN 0.6 0.601 0.556 0.428 0.458 0.703 0.323 0.568 0.413 0.373 0.657 0.451 0.511 

Macau 0.497 0.603 0.5 0.169 0.305 0.588 0.051 0.541 0.086 0.08 0.558 0.184 0.347 

 

 

Table B14 Median ROC-AUC scores on assay-based splits: Tox21 

 NR-
AhR 

NR-AR NR-
AR-
LBD 

NR-
Aromatase 

NR-ER NR-ER-LBD NR-
PPAR-
gamma 

SR-ARE SR-
ATAD5 

SR-HSE SR-
MMP 

SR-p53 Mean 

RF 0.91 0.81 0.809 0.778 0.718 0.896 0.788 0.827 0.812 0.776 0.882 0.794 0.817 

XGB 0.887 0.756 0.857 0.814 0.685 0.886 0.735 0.819 0.809 0.755 0.889 0.775 0.806 

DNN 0.872 0.727 0.833 0.755 0.685 0.859 0.665 0.796 0.81 0.757 0.875 0.734 0.781 

RF_FN 0.927 0.857 0.958 0.857 0.763 0.949 0.874 0.847 0.874 0.833 0.907 0.887 0.878 

XGB_FN 0.901 0.794 0.942 0.833 0.784 0.953 0.876 0.853 0.898 0.773 0.931 0.862 0.867 

DNN_FN 0.888 0.77 0.927 0.804 0.749 0.935 0.771 0.827 0.875 0.79 0.899 0.811 0.837 

MT-DNN 0.909 0.782 0.94 0.822 0.768 0.965 0.863 0.858 0.899 0.815 0.919 0.873 0.868 

Macau 0.921 0.838 0.951 0.886 0.768 0.967 0.909 0.872 0.897 0.831 0.913 0.899 0.888 
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Appendix C 
 

Table C1 Manually selected hyperparameters for XGB and XGB-FN 

Hyperparameter Selected value 

Num_round 700 

Eta 0.1 

Colsample_bytree 0.5 

Alpha 1 

lambda 10 

Scale_pos_weight 1 

 

Table C2 Manually selected hyperparameters for multi-task DNN 

Hyperparameter Values 

Hidden layers 2 

Nodes per hidden 

layer 

2048 

Learning rate 0.0003 

Dropout 0.2 

L2 regularisation 0.0001 

Batch size 50 

Number of epochs 10 

Class weight 1 

 

Table C3 Manually selected hyperparameters for Macau 

Hyperparameter Values 

Num_latent 16 

nsamples 3200 

burnin 400 
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Appendix D 
 

 

Figure D1 ROC_AUC scores for individual neurons: dropout_model. Neuron activations of compounds were considered as 
predictions and hence it was evaluated how well neurons rank toxic compounds higher than non-toxic ones. A: training set, 
B: validation set. 
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Figure D2 Predicted probabilities of model on ATG_RXRb_TRANS_up after 10 additional training epochs. 

 

Table D1 Hyperparameters of studied DNNs from the ToxCast and ChEMBL dataset. 

Hyperparameter ATG_ERa_TRANS_up ATG_RXRb_TRANS_up ChEMBL226 ChEMBL239 

Morgan FP radius 1 2 1 2 

Neurons first layer 512 512 512 512 

Neurons second 

layer 

512 256 512 512 

Batch size for 

optimisation 

32 64 64 64 

L2 regularisation of 

neuron weights 

1x10-5 1x10-5 0 0.001 

Dropout (both 

hidden layers) 

0.2 0.2 0.2 0.2 

Learning rate 0.001 0.0001 0.001 0.001 

weights 1 1 balanced 1 
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