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Abstract 

In the context of current and any future climate change, methane (CH4) is an important 

greenhouse gas (GHG). However, current global trends of changes in atmospheric CH4 are 

unpredictable and the relative contributions of individual global sources and sinks are 

inadequately quantified. If net CH4 emissions are to be reduced, an improved 

understanding of key components, including natural wetlands, is required. 

A study was conducted in order to construct an annual landscape estimate of CH4 flux for a 

typical UK blanket bog site near to Lake Vyrnwy, North Wales. Flux measurements were 

made following an established chamber method and sampling was maintained throughout 

a calendar year and was spatially stratified by vegetation to facilitate landscape 

extrapolation. In order to identify which environmental variables controlled CH4 fluxes from 

the blanket bog, regression analyses were performed using environmental variables 

measured at the time of flux measurement. In order to identify the longer term influence of 

environmental conditions, regression analyses were also conducted with running averages 

of measurements from periods prior to the day of flux measurement. A series of in situ 

experiments were undertaken to test hypotheses which examined the different controls on 

the observed variation in CH4 fluxes, related to temporal and spatial patterns of CH4 flux 

and to putative biases of sampling methods due to the limited footprint of chambers. 

CH4 fluxes displayed a distinct seasonal pattern with low mean fluxes from January until 

June, when a dramatic increase in net methane emission occurred; higher CH4 fluxes 

continued until November and December. The site was a net source of CH4 and the best 

landscape estimate of CH4 flux (± standard error of the mean) was 9.8 (±3.8) g CH4 m-2 

year-1. Errors associated with the extrapolation of measurements to a landscape-scale 

estimate resulted in estimates that ranged from 8.6 (±3.7) to 11.1 (±3.8) g CH4 m
-2 year-1. 

Soil temperature and water table were the environmental variables which were most 
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consistently associated with CH4 fluxes. However, the relationship between fluxes and 

water table did not always control CH4 fluxes in an expected manner. At some sites CH4 

emissions were lower when the water table was closer to the surface, a result which 

contradicted the acrotelm-catotelm model of CH4 flux, but may be explained by the 

hysteresis of fluxes in response to changing water table. Strong hysteresis of CH4 fluxes was 

also apparent in response to temperature and radiation. 

Hourly measurements of CH4 flux showed high variability but no significant difference 

between measurements during day and night. Similarly, a replicated landscape-scale 

experiment of water table manipulation was expected to cause changes in CH4 flux but, 

despite controlling for other aspects of spatial variation, the manipulation had no 

significant effect on CH4 fluxes. Flux estimates were made using chambers with footprints 

that varied by three orders of magnitude and there was no significant effect on mean CH4 

fluxes. However, the variance of CH4 flux estimates strongly correlated with sample area 

with markedly smaller variance as chamber size increased. 

Overall estimates of landscape CH4 flux were in the range of previous estimates made for 

UK peatland sites, but virtually all estimates displayed high variability. Such variability 

constrained the comparison of different estimates but it is possible to use methods, such as 

chambers with very large footprints, to improve the results of in situ studies. 
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Chapter 1 General Introduction 

1.1 Historical context 

The earliest scientific description of methane (CH4) was made by Alessandro Volta in 1776 

after collecting ‘combustible air’ by disturbing sediments at Lake Magiorre (Gest, 1987). A 

steady accumulation of knowledge regarding CH4 has occurred over the intervening period 

and included several key observations. By 1787, Antoine Lavoiser had provided evidence 

that this gas was “carbonated hydrogen” (Wolfe, 1993) and in 1868 Antoine Béchamp 

provided the first evidence that CH4 production was a microbiological process (Bechamp, 

1868). Tyndall (1862) was the first to observe strong evidence of “calorific absorption” 

(sensu Tyndall, 1859) of radiant heat by CH4 (known as marsh-gas); gases which display this 

property are now known as greenhouse gases (GHGs). This property was investigated by 

Arrhenius (1896) who presented the first calculations of how increases in a GHG (CO2, 

known as carbonic acid) could lead to changes in global temperatures. Nielsen and Nielsen 

(1935) published details of the specific absorption bands of the infrared spectrum for CH4 

which subsequently enabled Migeotte (1948) to repeatedly observe that CH4 was present in 

the atmosphere.  Despite an understanding that atmospheric CH4 was a result of biological 

sources, it was subsequently believed to be at a “constant percentage” of around 2 ppmv 

(Glueckauf, 1951). 

Not until more than 30 years later were observations of the increasing atmospheric CH4 

concentration published. These include Rasmussen and Khalil (1981) who repeated CH4 

measurements during a 22 month period in a single location and found a substantial 

increase of around 2% per annum. Subsequent studies of past concentrations of 

atmospheric CH4 have been able to place this rate of increase in a historical context. 

Modelled estimates of atmospheric CH4 concentration extend back to the late Devonian 

(around 400 MA, see Beerling et al.  2009), but an extensive and directly observed record is 
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available from the concentration of CH4 in air bubbles which have been trapped inside polar 

ice. Measurements have been successfully retrieved from the last 802,000 years; a period 

which includes eight glacial and inter-glacial cycles (Loulergue et al.  2008). Whilst historical 

measurements from ice cores have been available since the 1970’s (e.g. Robbins et al.  

1973), the historically low concentrations of CH4 were not initially interpreted as an 

indication of increases of atmospheric CH4 in the intervening period, rather as a chemical 

transformation from CH4 to CO in the ice itself (Robbins et al.  1973). As records of past CH4 

concentrations have been extended (e.g. Loulergue et al.  2008), and due to the 

observation that CO is present in freshly fallen snow (Khalil, 2000), the suggestion of an 

increasing concentration of atmospheric CH4 is now widely accepted. 

1.2 Global trends of atmospheric CH4 concentration 

Whilst it has taken just over 200 years to progress from an initial description of CH4 to the 

observation that CH4 is currently accumulating in the atmosphere at an unprecedented 

rate, it is only within the last three decades that the net accumulation of CH4 in the 

atmosphere has been highlighted as an important global change issue. This is partially due 

to Tyndall’s early observation (1862) that CH4 is a potent GHG; the Global Warming 

Potential (GWP), which is a ratio of the warming that occurs as a result of radiative 

absorption by a gas (Radiative Forcing, RF, sensu Forster et al.  2007), of CH4 is 21 times 

greater than CO2 when considered over a 100 year period (Table 2.14 in Forster et al.  

2007). After water vapour and CO2, atmospheric CH4 is considered the third largest 

contributor to the greenhouse effect (Trenberth et al.  2007). However, it will become 

increasingly important due to the relatively large amount of atmospheric CO2 (379 ppm of 

CO2 compared to 1.8 ppm of CH4 in 2005; Forster et al. 2007) and asymptotic relationship 

between CO2 concentration and RF which means the absorption of radiation becomes 

relatively smaller at higher atmospheric concentrations of CO2 (see Fig. 4.5 in Archer, 2007).  
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The record of atmospheric CH4 concentrations derived from ice cores together with direct 

observation since the 1970s (Rasmussen and Khalil, 1981), have shown that the global 

average CH4 concentration of 1794 ppb in 2009 (Dlugokencky et al.  2011) was the highest 

since, at least, the mid-Pleistocene (Loulergue et al.  2008). This record also showed 

temporal variability of atmospheric CH4 at many scales. For the majority of the last 800,000 

years, atmospheric CH4 displayed a close association with global temperature, and 

atmospheric CO2, with a slowly decreasing concentration from 700 ppb during inter-glacial 

periods to 350 ppb during glacial periods (Loulergue et al.  2008). Yet, during the current 

inter-glacial period from ca. 5,000 years ago until the start of the industrial revolution ca. 

1750 (a period known as the Late Pre-Industrial Holocene, sensu Mitchell et al.  2011), 

atmospheric CH4 increased from around 580 ppb to 700 ppb (Sowers, 2010). The post-

industrial revolution rate of increase has generally been much higher, with rates of increase 

reaching 1% per year in the 1970s and 1980s (Blake and Rowland, 1988). Since the 1990s 

the rate of increase has reduced to nearly zero, but with considerable inter-annual variation 

(Dlugokencky et al.  2003); however, atmospheric CH4 was seen to start increasing again in 

2007 and 2008 at a rate of around 0.5% per annum (Dlugokencky et al.  2003; Rigby et al.  

2008). This complex pattern of recent increases has resulted in a current atmospheric CH4 

concentration of around 1800 ppb (Montzka et al.  2011) which is roughly 2.6 times higher 

than 1750 levels. As identified by Dlugokencky et al. (2011) this is proportionally much 

higher than other important GHGs such as CO2 and N2O which are about 1.3 and 1.2 times 

higher than pre-industrial levels, respectively (Jansen et al.  2007). 

In addition to examining this complex pattern over different timescales, attempts to 

identity the drivers of change in atmospheric CH4 are complicated by the diverse number of 

important sources and sinks of CH4 (Wuebbles and Hayhoe, 2002). The concentration 

changes during the glacial and inter-glacial cycles and observed for the second half of the 

Quaternary Period (Loulergue et al.  2008) are thought to result from astronomically 
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induced changes in insolation, known as the Milankovitch cycles (Khodri et al.  2001), 

amplified by other factors (Wolff et al.  2010). Consequently, attempts have been made to 

identify the relative contribution to changes in global temperatures either directly from 

changes in insolation, or from changes in atmospheric GHGs. For example, Yin and Berger 

(2012) showed the relative contribution to temperature changes varied between regions; 

changes in northern regions were driven by insolation, whereas changes in high southern 

latitudes were driven by GHGs.  

Studies of the slow increase in atmospheric CH4 during the Late Pre-Industrial Holocene, 

which started 5,000 years ago, have tested a variety of hypotheses including (i) a reduction 

in the tropospheric sink by OH radicals (Sowers, 2010), (ii) increases in wetland emission 

from tropical regions (Singarayer et al.  2011) and boreal regions (Chappellaz et al.  1997), 

and (iii) the early anthropogenic perturbation of the global CH4 cycle through inefficient rice 

production (Ruddiman, 2003). Evidence supporting all of these hypotheses not only comes 

from absolute changes in atmospheric CH4 but also from comparing ice cores from the 

Arctic (such as Greenland) and the Antarctic to identify changes in the inter-polar gradient 

(Chappellaz et al.  1997) and from changes in measurements of stable isotopes of 

atmospheric CH4. This latter technique can be used to identify whether sources of CH4 are 

biogenic (including wetlands), fossil or biomass burning (Ferretti et al.  2005). 

Studies of the rapid post-industrial revolution increases in atmospheric CH4 have produced 

similarly varied results, although the isotopic signature of increasing fossil emissions 

(Fletcher et al.  2004), estimates of the spatial distribution of emissions (Frankenberg et al.  

2008), and estimates that current anthropogenic emissions are between 135% (Fletcher et 

al.  2004) and 255% (Chen and Prinn, 2006) higher than current ‘natural’ emissions, have 

resulted in little doubt that human activities are responsible for this dramatic increase 

(Forster et al.  2007).  One debate regarding post-industrial revolution changes in 
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atmospheric CH4 has been fuelled by the observed slow-down in the rate of net 

accumulation which reached a nadir between 1990 and 2000 (Dlugokencky et al.  1998), 

before starting to increase again after 2007 (Dlugokencky et al.  2009). The diverse sources 

and sinks of atmospheric CH4, which are known to contribute to the global CH4 budget 

(Wuebbles and Hayhoe, 2002), are associated with an equally diverse range of potential 

hypotheses to explain this trend.  

The overall reduction in atmospheric CH4 has been attributed to a levelling-off of CH4 

emissions so that the atmosphere has been approaching a new ‘steady-state’ (Dlugokencky 

et al.  2011), a result of economic changes in the Soviet Union which affected emissions 

from fossil fuel production (Wang et al.  2004), or due to reduction in emissions associated 

with agriculture such as ruminants and rice production (Khalil and Rasmussen, 1993). Inter-

annual  variability has also been attributed to natural perturbations of climate, such as 

those following the Mount Pinatubo eruption (Dlugokencky et al.  1996) and El Niño 

conditions in 1997/1998 (Fletcher et al.  2004). The recent resumption of increasing 

atmospheric CH4 may be a result of increasing emissions from the Arctic due to warmer 

temperatures (Rigby et al.  2008), or due to higher emissions from tropical wetlands 

experiencing higher levels of precipitation (Dlugokencky et al.  2011), and/or due to 

increased biomass burning (Dlugokencky et al.  2009). 

1.3 Global CH4 budgets 

The overall rate of change in global atmospheric CH4 is accurately known, thanks to 

coordinated sampling across global networks such as those operated by NOAA 

(Dlugokencky et al.  2009) and CSIRO (Langenfelds et al.  2002). However, studies of 

changing atmospheric CH4, even when made over recent time periods, are unable to define 

the relative contribution of the wide number of sources and sinks to the ‘bottom line’ 

(Dlugokencky et al.  2009). The Intergovernmental Panel on Climate Change (IPCC) define 
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three globally important sinks of CH4 and 15 sources, which are divided into anthropogenic 

and natural categories (Table 7.6 in Denman et al.  2007). 

Of the estimates of global budgets used by Denman et al. (2007), which includes estimates 

made from global sampling networks, spatiotemporal distribution of isotopic CH4 ratios 

(known as ‘top-down’), and estimates constructed from known components (‘bottom-up’), 

the largest single anthropogenic source of CH4 is from ruminants (enteric fermentation 

mainly from cattle but also sheep, water buffalo and goats; Lerner et al.  1988) and ranges 

from 76 (Scheehle et al.  2002) to 189 Tg CH4 year-1 (Chen and Prinn, 2006). Estimates of 

emissions from the energy industry, which includes leakage from the extraction and 

production of coal, gas and oil, are typically the next largest anthropogenic source but, with 

a minimum of 74 Tg CH4 year-1 (Scheehle et al.  2002) and maximum of 106 Tg CH4 year-1 

(Wuebbles and Hayhoe, 2002), are much less varied than estimates of other sources. One 

of the most variable estimates of CH4 emissions are from rice agriculture; Scheehle et al. 

(2002) estimate a total of 31 Tg CH4 year-1, whereas other estimates can be as high as 112 

Tg CH4 year-1 (Chen and Prinn, 2006). The variability of rice agriculture estimates may be 

due to: (i) differences in methodology in calculating estimates, such as the different factors 

used to calculate net CH4 flux from the amount of carbon returned to the soil (Wang et al.  

2004); or (ii) temporal variation of emissions during different time periods when estimates 

are made. For example, the studies used by the IPCC relate to estimates of CH4 emissions 

from various years between 1983 and 2001. This was a period of changing rate of increase 

of atmospheric CH4 and, therefore, likely to be a period of changing emission from one or 

more of the global sources. Changes in irrigation (Li et al.  2002), fertilization (van der Gon, 

1999), and crop varieties used (van der Gon, 2000) may have all influenced CH4 emissions 

from rice agriculture at a global scale, thus increasing the variability between estimates 

over different time periods. 



24 
 

The remaining major anthropogenic sources of CH4 are those from waste management 

(including landfill and wastewater handling), where estimates range from 35 (Fletcher et al.  

2004) to 69 Tg CH4 year-1 (Scheehle et al.  2002); and biomass burning, which produces CH4 

due to incomplete combustion (Hein et al.  1997), where estimates ranged from 14 

(Scheehle et al.  2002) to 88 Tg CH4 year-1 (Fletcher et al.  2004). 

The natural sources of CH4 are dominated by wetland emissions with estimates which range 

from 100 (Wuebbles and Hayhoe, 2002) to 231 Tg CH4 year-1 (Fletcher et al.  2004). In 

comparison, the highest estimates used by the IPCC are no higher than 29 Tg CH4 year-1 

from termites (Fletcher et al.  2004), 15 Tg CH4 year-1 from oceanic sources (Houweling et 

al.  2000), 15 Tg CH4 year-1 from wild ruminants (Houweling et al.  2000), 14 Tg CH4 year-1 

from geological sources (Wuebbles and Hayhoe, 2002), 5 Tg CH4 year-1 from hydrates and 5 

Tg CH4 year-1 from wildfires (both from Houweling et al.  2000). 

The estimate of CH4 emissions from wetlands is the largest single global source (Table 7.6 in 

Denman et al.  2007) and is the summation of emissions from diverse types of ecosystems 

which are widely distributed over the globe (see Plate 1 in Matthews and Fung, 1987). The 

different environmental conditions in these wetland types result in large differences in net 

ecosystem productivity (Whiting and Chanton, 1993) and globally, CH4 emissions from 

wetlands are highly sensitive to changing environmental conditions (Cao et al.  1998). In 

addition, temporal variation in CH4 emissions from wetlands may also produce variable 

global estimates. For example, the estimate by Fletcher et al. (2004) was of emissions 

during 1998 and 1999, a period including an unusually high increase in atmospheric CH4 

linked to changing climatic conditions associated with El Niño conditions in 1997/1998, 

possibly increasing wetland emissions (Bousquet et al.  2006). This suggests that the high 

CH4 flux from wetlands estimated by Fletcher et al. (2004) may not be representative of 

‘normal’ global conditions; however, other estimates of fluxes from different time periods 
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often still result in similarly large wetland emissions (Hein et al.  1997; Bergamaschi et al.  

2001). 

As if to highlight the uncertainty of the components of the global CH4 budget, considerable 

recent debate has been made with regard to the existence, or not, of a previously 

undescribed CH4 source(s) which may represent up to 21% of all global emissions 

(Houweling et al.  2000). Using column-averaged concentrations of atmospheric CH4 

derived from SCIAMACHY , an instrument on board the ENVISAT satellite, and comparing 

the results with a priori global CH4 budgets, Frankenberg et al. (2005) suggested a 

previously unknown source of CH4 situated in tropical forests. A candidate CH4 source was 

identified from a physiological study but was highly contentious as, in contrast to all other 

biogenic sources which are thought to require anoxic conditions (Conrad, 1996), it was 

suggested that CH4 may be released by living plant tissue under oxic conditions (Keppler et 

al.  2006). Subsequently, studies made at varying scales have concluded that the existence 

of such a process was unlikely (Dueck et al.  2007; Bloom et al.  2010a), yet other 

observations of aerobic CH4 production (e.g. Mcleod et al.  2008) supported this novel 

claim. An updated calculation of terrestrial CH4 exchange from the satellite-borne 

measurements of atmospheric CH4 was published by Frankenberg et al. (2008) and 

indicated that the previously identified increase in CH4 emission from the tropics was 

erroneously increased due to interference of water vapour (their Fig. 3). Further 

contradictory results have recently been published (Gauci et al.  2010; Wang et al.  2011) 

and a mechanism of CH4 production has yet to be clearly identified (Bruhn et al.  2012) 

suggesting further research is required to identify the scale of any contribution to the global 

CH4 budget. However, the most pertinent study may be that by Frankenberg et al. (2008) 

which reduced the size of the unknown source of CH4 from the tropics in the original study 

by Frankenberg et al. (2005), precipitating the current debate. 
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1.4 Peatlands as a source of CH4 and store of carbon 

The global CH4 budget includes a diverse range of CH4 sources (Wuebbles and Hayhoe, 

2002). However, several important sources, including emissions from wetlands, termites, 

ruminants, waste management and rice agriculture, are all a result of similar processes of 

microbial (biogenic) CH4 production (Conrad, 1996). As microbial CH4 production is thought 

to be a strictly anoxic process (Lai, 2009), the observed association between wetlands and 

CH4 emission (Morrissey et al.  1994) is subsequently expected. The importance of wetlands 

as a major global source of CH4 (Denman et al.  2007) and the sensitivity of CH4 emissions 

from wetlands to changing environmental conditions (Cao et al.  1998) make estimates of 

emissions from all wetland types important. In order to better characterise globally 

distributed wetlands sub-classifications have been used, such as the 28 wetland-vegetation 

classes used by Matthews and Fung (1987), and the more-broadly defined three-class 

system of swamps, bogs and tundra used by Wang et al. (2004). This latter classification is 

primarily defined by latitude, with swamps occurring in tropical and sub-tropical regions, 

bogs typically occurring in temperate regions, and tundra occurring in the high northern 

latitudes (Wang et al.  2004). 

As wetlands in temperate and high latitudes are currently experiencing (Trenberth et al.  

2007), and predicted to experience (Holland and Bitz, 2003), strong climate change in 

response to increasing levels of GHG, it is imperative that CH4 fluxes from these regions are 

well characterised. Another feature of the classification used by Wang et al. (2004) is that 

they are peatlands, a sub-group of wetlands which all contain significant deposits of carbon 

(C) (Gorham, 1991). Estimates of the total amount of C globally stored in all soils vary 

between 1220 Pg C (Sombroek et al.  1993) and 1576 Pg C (Eswaran et al.  1993), but 

typically only include estimates of soils to 1 m below the surface (Post et al.  1982). This 

method ignores the significant amounts of C stored in peatlands at depths below 1 m (up to 

a maximum of 25 m; Zimov et al.  2006) and may underestimate actual global storage. For 
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example, an estimate of all soil C within the large northern circumpolar permafrost suggests 

that this region may contain 1672 Pg C (Tarnocai et al.  2009). Regardless of approach, 

estimates of peatland C storage are typically equal to, or greater than, the combined 

amount of C currently residing in the atmospheric and vegetation pools (1360 Pg C; 

Schimel, 1995). As Raupach and Canadell (2010) succinctly described the process, “life on 

Earth has created vast stores of detrital carbon”. The fate of this major global C store is 

critical within the context of a rapidly changing climate (Meehl et al.  2007) and potential 

emissions to the atmosphere as CH4 (Zimov et al.  2006), a potent GHG. 

The process of CH4 production within peat soils, and subsequent transport to the 

atmosphere is well described (Le Mer and Roger, 2001), with the anoxic decomposition of 

organic material in the layers of soil beneath the water table (known as the catotelm) 

resulting in methanogenesis (Clymo, 1984). The three known catabolic pathways of 

methanogenesis, defined by the principal substrate, are acetotrophy, CO2-reduction and 

methylotrophy (Boone et al.  1993), but in most peat soils the majority of CH4 production is 

thought to be a result of acetotrophy (Bridgham and Richardson, 1992). In contrast, the 

oxidation of CH4 (methanotrophy) is thought to occur in aerobic conditions in the layers of 

soil above the water table, known as the acrotelm in peatland systems. 

In addition to the production and oxidation of CH4, one other important component of the 

exchange of CH4 exchange within the soil-plant-atmosphere continuum is the transport of 

CH4 from sites of production in deeper areas to the atmosphere as summarised in Fig. 1.1. 

The method of transport to the atmosphere is key; one potential pathway is the diffusion of 

CH4 from the catotelm through the acrotelm, but as CH4 passes through aerobic soil 

conditions it is possible that a large proportion is consumed prior to being emitted to the 

atmosphere (Whalen and Reeburgh, 2000; Teh et al.  2005). In addition to diffusion, a 

major pathway for CH4 is transportation through plant vascular structures, which contain  
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Fig. 1.1 A summary of methane production and transport pathways to the atmosphere via 

diffusion, aerenchymous tissue and ebullition. CH4 is produced in the water-saturated 

anaerobic layer of soil (catotelm) and may also be consumed in any aerobic layer of soil 

above the water table (acrotelm). Adapted from Le Mer and Roger (2001).  
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porous aerenchymous tissue (Strom et al.  2003). Additionally, if the soil is water saturated, 

the formation and movement of bubbles of CH4 can be important; a process known as 

ebullition (Kellner et al.  2006). Regardless of the controversial suggestion that CH4 is 

actually produced from living plant tissue (see above), aerenchyma are structures which 

have evolved in some plant species to transport O2 to roots which may experience 

anaerobic conditions (Armstrong et al.  1991) and are known pathways through which 

above-ground vegetation influences net CH4 flux (Greenup et al.  2000). The acrotelm-

catotelm model of CH4 production and oxidation (Clymo, 1984), combined with the known 

pathways of transfer to the atmosphere (Topp and Pattey, 1997), provide a theoretical 

understanding of how net CH4 flux from peatlands is derived. 

1.5 Measurement methods 

The empirical measurement of CH4 fluxes from peatlands has been achieved using a variety 

of methods which vary in both scale and resource requirement. The smallest scale of 

measurement is usually achieved using extracted samples of soil, which are monitored 

under laboratory conditions. As samples are removed from natural conditions, without any 

vegetation which may provide aerenchymous transport (Lai, 2009), a common aim of these 

studies is to quantify potential rates of methane production and oxidation (e.g. Yrjala et al.  

2011). Whilst the observations of high potentials for methane production are expected 

because of the microbial methanogen populations which reside in wet, anaerobic soils, 

results showing high oxidation potentials from methanotroph populations in similar 

environments are more surprising (see King et al.  1990). High net oxidation rates have 

often been observed in dry forest soils (e.g. Wang and Ineson, 2003), however, even under 

predominantly anaerobic conditions the strong supply of CH4 substrate appears to enable 

considerable development of methanotroph populations which reduce the net emission of 

CH4 observed in peatland sites (Sundh et al.  1994). 
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In addition to soil samples, mesocosms of peatland systems, which include vertical sections 

of soils with intact vegetation, have been extracted from peatlands and maintained and 

measured under laboratory conditions. Mesocosms may vary greatly in size and incubation 

conditions from the very basic, such as storing outside (Dinsmore et al.  2009b), to more 

complex, fully replicated, individually controllable environment facilities (such as the 

Ecotron facility; Lawton, 1996). Regardless of size and complexity, such studies are often 

used to identify the responses of CH4 fluxes to experimental manipulation of conditions. 

Mesocosm studies have revealed clear responses of CH4 flux in peatland systems to many 

environmental drivers including water table (Blodau and Moore, 2003a) and temperature 

(White et al.  2008). In addition to revealing underlying ecosystem processes, these studies 

help to indicate the potential response of systems to changes in climate (Updegraff et al.  

2001) and land management (Freeman et al.  1993). However, as samples have to be 

extracted and transported from field sites, with incubation conditions tending to be 

uniformly controlled, they can be criticised for not realistically representing natural 

conditions (Blodau and Moore, 2003a). 

In situ measurements and studies of CH4 fluxes have been made in an attempt to provide 

representative flux estimates in a variety of peatlands including tundra (Mastepanov et al.  

2008), boreal (Bubier et al.  1993), temperate (Teh et al.  2011) and tropcial (Jauhiainen et 

al.  2008) locations. Methods of measurement have been varied but approaches are 

dominated by either the enclosure of an area of soil (and any above ground vegetation) 

within a chamber (e.g. Leppala et al.  2011), or the use of micrometeorological methods 

(e.g. Baldocchi et al.  2012; Hendriks et al.  2007; Hendriks et al.  2010; Herbst et al.  2011). 

Chambers of varying sizes can be used to measure fluxes from various sizes  of enclosed 

area or “footprint” (typically less than 1 m2), but one difference between chamber studies 

often relates to the method of chamber operation; fluxes can either be determined by 

differences between gas concentration flowing into the chamber and the concentration 
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flowing out (known as steady state), or fluxes calculated by the rate of change in gas 

concentration once a chamber has been sealed on the soil surface (known as non-steady 

state; Davidson et al.  2002). A further difference between non-steady state chambers is 

whether they are dynamic, which circulate air from the chamber to an external in situ gas 

analyser, or static, which do not circulate the air within the chamber, instead relying on the 

extraction, storage and transport of gas samples for subsequent laboratory analysis. 

Differences in the measured fluxes using either approach do not typically vary greatly 

(Moore and Roulet, 1991; Pumpanen et al.  2004) but care needs to taken in order to 

reduce the biases of each particular sampling method. For example, non-steady state 

chamber methods can underestimate emissions if increased headspace concentration of 

CH4 leaks out leaks out during measurement (Tingey et al.  2000). 

Flux measurements made with micrometeorolgical methods are the integrated value from 

a much larger footprint when compared to chambers and typically record greater temporal 

diversity. Micrometeroglical flux measurements are made with equipment mounted on 

stationary towers, which limits their spatial flexibility, but have also been mounted on 

airborne platforms to incorporate even larger footprints (Hill et al.  2011). All methods of in 

situ measurement have been used to follow spatial and temporal trends, but can also be 

used with experimental manipulations, such as alteration of temperature, rainfall and 

atmospheric CO2 (Carter et al.  2011), or transplantation of mesocosms to contrasting 

conditions (Yavitt et al.  2005). 

As the major purpose of in situ measurements is to produce unbiased, representative field 

estimates of fluxes, it is vital to minimise, or adjust for, biases in any method. Even if all 

measurement bias was removed, in situ measurements of CH4 flux still present formidable 

challenges, as variability of estimates is often found to be very large (Prieme et al.  1996). 

This reflects the heterogeneity of CH4 fluxes, which as they are the result of microbial-scale 
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processes have been observed to display micro-scale variation (Wachinger et al.  2000). This 

variation hinders the identification of underlying controls over CH4 fluxes in natural 

conditions (Ward et al.  2007), and contributes to the wide range in estimates seen at all 

scales (Blodau and Moore, 2003b; Polson et al.  2011). 

1.6 Summary 

The current increases in GHGs are a relatively recently identified global change issue. Whilst 

not being the largest contributor to the greenhouse effect, the high level of radiative 

forcing for CH4 is one of the reasons that CH4 is being recognised as an important target for 

reducing anthropogenic climate change (Shindell et al.  2012). Current global trends of 

changes in atmospheric CH4 are unpredictable and poorly understood with relative 

contributions of individual sources and sink inadequately quantified and, if net CH4 

emissions are to be reduced, an improved understanding of key components is required.  

Wetlands are an important global source of CH4, but estimates of the global CH4 emission 

from wetlands vary considerably. Despite the advanced nature of estimates of global CH4 

budgets (Olivier et al.  2005), observation is still a key research need for many components 

of the carbon cycle (Canadell et al.  2010). In a recent study of knowledge gaps regarding C 

and nitrogen (N) interactions in the soil at different scales, Gardenas et al. (2011) conclude 

that “reliable quantification of GHG emissions at the ecosystem scale is of paramount 

importance”. Consequently, this study includes an attempt to make a landscape estimate of 

CH4 fluxes at a typical peatland site in the UK and compare with previous estimates. Flux 

measurement techniques and methods of subsequent extrapolation need further 

improvement, particularly to overcome problems of estimating CH4 fluxes in heterogeneous 

landscapes such as peatlands. This study also includes attempts to utilise novel 

measurement techniques to explain the observed variation in CH4 fluxes and to increase 

the reliability of flux estimates. 
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The site selected for all in situ measurements in this study was a 22 km2 area of upland 

blanket bog near to Lake Vyrnwy in North Wales. In addition to representing a typically 

heterogeneous peatland landscape within which to study CH4 fluxes, the site was also a 

major scientific platform for a variety of other peatland studies. Whilst the site was 

extensively used by several projects which were part of the UK Population Biology Network 

(UKPopNet), it was also a platform for studying the impact of landscape-scale management 

changes on a variety of ecosystem services which are provided by the UK uplands.  
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Chapter 2 Landscape-scale estimate of greenhouse gas fluxes 

- a case study 

2.1 Introduction 

Since the establishment of individual sampling programmes demonstrating that 

atmospheric greenhouse gas (GHG) concentrations are increasing (such as Keeling, 1960 for 

CO2 and Rasmussen and Khalil, 1981 for CH4) and their subsequent geographical expansion 

into global sampling networks (such as that run by the National Oceanic and Atmospheric 

Administration (NOAA), for example Hein et al.  1997), it could be considered that the 

observation of the global atmospheric pools of CO2 and CH4 has been achieved. However, 

whilst current atmospheric concentrations can be placed within a historical context 

(Loulergue et al.  2008) and some seasonal, inter-annual and continental scale variations 

have been identified using such networks (such as Dlugokencky et al.  1998), these 

observations are limited in helping our understanding of the current processes that 

contribute to the overall exchange of GHG with the atmosphere. For example, the use of 

global observation networks identified a slow-down in the rate of atmospheric CH4 

increases during the 1990s (Dlugokencky et al.  1998) but the low resolution at which 

spatial variation had been observed resulted in a large number of conflicting hypotheses to 

explain this reduction. These include (i) the reduction in emissions from ruminants and 

from rice production (Khalil and Rasmussen, 1993; Dlugokencky et al.  1994); (ii) changes in 

fossil fuel production in former Soviet Union and Eastern Europe (Dlugokencky et al.  1994; 

Hein et al.  1997); (iiI) reduced venting during oil production in Organization of the 

Petroleum Exporting Countries (OPEC) (Dlugokencky et al.  1994); and (iv) changes in 

temperature, precipitation and atmospheric chemistry due to the 1991 Mount Pinatubo 

eruption (Dlugokencky et al.  1994).  The subsequent use of alternative estimates (in this 

case derived from demographic, social, economic and land use factors as well as ground-

based measurements (Olivier 1994)) have been used to support the hypothesis that the 
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1990’s reduction was due to falling emissions from the former Soviet Union (Dlugokencky 

et al.  2003) but without additional methods of budget construction, the question remains 

an open one. 

The development of another ‘top-down’ method to measure GHG has increased 

understanding of fluxes in and out of the atmospheric pool, namely, satellite-borne 

measurements of trace gas concentrations. The first combined satellite-borne 

measurements of CH4 and CO2 were made using SCIAMACHY, launched onboard the 

ENVISAT satellite in 2002 to measure atmospheric concentration of CH4 and CO2 at a 

ground-scale of 60 km by 30 km (Frankenberg et al.  2005; Schneising et al.  2011). 

SCIAMACHY measures vertical columns of atmosphere over the entire globe in 6 days 

(Frankenberg et al.  2005) and provides observations which are starting to increase the 

understanding of anthropogenic influences, such as rice cultivation (Zhang et al.  2011) or 

burning of fossil fuels (Bovensmann et al.  2010), and natural influences, such as emissions 

from mud volcanoes (Georgoulias et al.  2011), on CH4 fluxes at a regional scale. Early 

problems with the algorithm used to estimate fluxes have been rectified  (Frankenberg et 

al.  2008). However, satellite-borne measurements, with a pixel size of 1800 km2, are still 

not suited to identifying the impact of specific anthropogenic behaviours on CH4 fluxes nor 

identifying highly spatially variable CH4 fluxes which have been observed to occur in 

spatially small hotspots of activity (Bubier et al.  1993; McNamara et al.  2008; Leppala et al.  

2011). For example, felling of trees in a temperate forest has been shown to significantly 

reduce CH4 oxidation rates, whereas thinning trees led to an increase in CH4 oxidation 

(Bradford et al.  2000). Consequently, the distinction between felling and thinning is 

important when constructing GHG budgets for temperate forest sites yet, given the typical 

scale of forest felling and thinning, it could not be made using satellite-borne 

measurements. An example of highly spatially variable CH4 fluxes was provided by 

Dinsmore et al. (2009a) who estimated that within a distance of 0.6 km in a low-lying raised 
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bog, CH4 fluxes varied from 0.07 to 5.13 g CH4 m-2 year-1 in different microtopographic 

classes. The identification of which classes were responsible for significant proportions of 

fluxes (one class covered 0.5% of the spatial area but was responsible for 12% of CH4 

emissions) could only be achieved through measurements at a suitably fine scale. 

The limitations of global sampling networks and satellite-borne measurements are 

potentially countered through the complimentary use of ‘bottom-up’ approaches. If 

measurements are used to make estimates of fluxes from all possible sources and sinks for 

a particular GHG, it is possible to create a full global budget for comparison with global 

changes (Wuebbles and Hayhoe, 2002), and to precisely identify how a single source or sink 

changes over time. Understanding the flux components of GHG budgets is essential for 

those stakeholders, including high-level policy makers with a desire to prevent further 

increases in atmospheric concentration (IPCC, 2007), or for individual land managers with a 

desire to assess the influence of management techniques on C exchanges in a variety of 

environments (Dobbie et al.  1996; Dannenmann et al.  2007; Ward et al.  2007). Even 

though tall tower and aircraft-mounted measurements have been used to make regional or 

continental scale estimates (for example, see Hill et al.  2011) all ‘bottom-up’ 

measurements are limited to single spatial points and always need to be extrapolated into 

estimates of a wider area. Careful consideration of the number and location of sampling 

points is needed to ensure samples are spatially representative, particularly in 

heterogeneous landscapes. Samples also need to represent any temporal variation, 

something which, even in relatively accessible landscapes within the UK, is rarely achieved. 

Of the ‘bottom-up’ approaches used by the IPCC in their Fourth Assessment Report (see Fig. 

7.7 in Denman et al.  2007) estimates of CO2 fluxes (such as Janssens et al.  2003) are based 

on direct measurements of fluxes by eddy covariance flux towers which include 

measurements throughout several annual cycles (see, for example, Valentini et al.  2000; 

Baldocchi et al.  2001). Valentini et al.’s (2000) study of CO2 fluxes from European forests 
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also included a range of spatial variation with 15 sites used ranging from 41 °N to 64 °N and 

20 °W to 24 °E, whilst Baldocchi et al., and the references therein, included full annual 

measurements from 34 sites in Europe, North and South America and Asia (2001). In 

contrast, the ‘bottom-up’ estimates of CH4 fluxes used by the IPCC are more limited, with a 

single review used for estimates of global CH4 fluxes from wetlands (Wuebbles and Hayhoe, 

2002).  This estimate was taken from Khalil (2000), who in turn took it from Matthews 

(2000), who derived it from three studies (Matthews and Fung, 1987; Aselmann and 

Crutzen, 1989; Bartlett et al.  1989) that had estimates which ‘converged around 100 Tg CH4 

year-1’. Mathews and Fung (1987) made an estimate of ca. 110 Tg CH4 year-1 for the global 

CH4 fluxes from wetlands which used five classes of wetlands (nonforested bog, forested 

bog, nonforested swamp, forested swamp, and alluvial). Whilst their study focused on 

developing methods of identifying the spatial distribution of wetlands, they choose typical 

fluxes for each class of wetland from just four studies. The class which data from the 

current study would be assigned to, nonforested bog, was represented by two studies. The 

first (Svensson, 1980) took measurements from an ombrotrophic mire in Sweden between 

31st May and 7th September 1974, whilst the second (Sebacher et al.  1986) took a transect 

of measurements across Alaska during August 1984. Aselmann and Crutzen (1989) used 

data from 20 studies, divided into seven classes of wetlands (bogs, fens, swamps, marshes, 

floodplains, lakes and rice paddies) to make a global CH4 flux from wetlands of between 40 

and 160 Tg CH4 year-1. Of the 20 twenty studies used, three were included which took 

‘yearly’ measurements. The class which the current study would have been assigned to is 

the ‘bog’ class and was represented by four studies. Of these four studies, only Clymo and 

Reddaway (1971) took measurements outside of the months May to September as they 

measured from October to April at intervals greater than a month. Bartlett et al. (1989) 

updated the estimate made by Mathews and Fung (1987) by including an additional 14 

studies of wetland CH4 fluxes, three of which are described as having ‘annual data’. Of the 
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studies in ‘non-forested bogs, no measurements were made outside of June to September. 

The final estimate by Bartlett et al. (1989) was 111 (±125) Tg CH4 year-1 but uncertainty 

estimates were considered to be conservative as they did not include errors in the 

calculation of global coverage of wetland areas. As a result of the current limited availability 

of representative CH4 flux data, the current study was designed to focus upon CH4 fluxes 

from a typical upland blanket bog of the UK. Despite containing a very high proportion of 

the UK’s soil C stocks (Bellamy et al.  2005; Bradley et al.  2005) and having a high potential 

for high trace gas emissions (Macdonald et al.  1996; Lloyd et al.  1998), only one previous 

study has measured CH4 fluxes throughout an entire annual cycle in an upland blanket bog 

(Ward et al.  2007). 

The study presented here attempts to estimate the terrestrial fluxes of CH4 and dark 

ecosystem respiration from a 22 km2 area of upland blanket bog in Wales during a single 

calendar year. This landscape is heterogeneous at many scales with elevation varying from 

300 to 550 m above sea level, whilst the site has been managed for a variety of economic 

purposes. For example, since the early 1990s, the vegetation has been mown to provide a 

mixture of habitats for bird species conservation (Bowker et al.  2007). From a microbial 

perspective, central to the production and consumption of CH4, there is even greater 

heterogeneity as the varied microtopography results in a mixture of hydrological conditions 

and peat depths (Wilson et al.  2010). Additionally, the variation in vegetation provides a 

mixture of substrate inputs and transport mechanisms for atmospheric CH4 emissions 

(Greenup et al.  2000; Hornibrook et al.  2009). 

The current study used 0.038 m2 chambers for sampling fluxes at a monthly frequency, with 

the objective of making a representative estimate of the entire landscape CH4 flux. In 

meeting this challenge, the approach used was to stratify the sampling areas with dominant 

ecotypes and using a remotely sensed imaging of the entire landscape to enable 
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proportional spatial extrapolation. Each ecotype was identifiable by dominant vegetation 

type and identified under the following National Vegetation Community types (Rodwell et 

al.  1991): heather, dominated by Calluna vulgaris and categorised as M19b; grass, 

dominated by species of Molinia, M24; Juncus, dominated by species of Juncus, M23b; or 

sedge, dominated by species of Eriophorum, M20a. 

The main aim of this study was to produce annual estimates, with error terms, of CH4 flux 

and dark ecosystem respiration (which will be subsequently referred to as respiration) for 

22 km2 of upland blanket bog in the UK. In addition, hypotheses that CH4 flux and 

respiration were significantly different when (i) measured in areas dominated by different 

vegetation, or (ii) measured during different months of the year were also tested.  
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2.2 Materials and methods 

2.2.1 Study site description 

The study site was close to Lake Vyrnwy in the Berwyn Mountains of North Wales (SH 

97661 22002) which falls within a Royal Society of the Protection of Birds (RSPB) Reserve, a 

National Nature Reserve (NNR), Site of Special Scientific Interest (SSSI), Special Protection 

Area (SPA) and Special Area of Conservation (SAC). Between 1961 and 1990, annual air 

temperature was 6.4 °C and annual rainfall 1501 mm (Freitag et al.  2010), with the 

initiation of blanket bog growth in the Berwyn Mountains due to changing climate rather 

than deforestation (Charman, 2002). Within the Reserve, the study area was limited to 22 

km2 of blanket bog and sampling was focused around three meteorological stations, with 

four identified vegetation types within a 20 m radius of the station (see Fig. 2.1): Eunant (SH 

92336 22015), Hafod (SH 96619 21523) and Hirddu (SH 94839 21011).  

2.2.2 Flux measurements 

Static non-steady state chambers (for example see Holland et al.  1999; Bradford et al.  

2001; Leppala et al.  2011; Toet et al.  2011) were employed for monthly measurements of 

methane flux and respiration between December 2008 and January 2010 from four 

vegetation types around each meteorological station. Five flux measurements were made 

at each combination of site and vegetation type to ensure measurements were 

representative and to enable failed measurements to be discarded. Circular collars, 20 cm 

diameter and 20 cm height, were inserted to a mean (±standard error of the mean, SEM) 

depth of 2.96 (±0.23) cm during August 2008, 3 months prior to the first measurements 

being taken with 25 cm high chambers of the same diameter. Sand (Building sand, B&Q, 

Eastleigh, Hampshire, UK) was packed around the exterior of each collar to enhance the 

seal between collar and soil surface. Collars and chambers were constructed from opaque 

polyvinyl chloride (PVC) piping, the chambers also included a PVC lid, sealed with solvent 
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Fig. 2.1 Location of Lake Vyrnwy with three primary sites highlighted with stars: Eunant (red 

star, Ordnance Survey National Grid SH 92336 22015), Hafod (black, SH 96619 21523) and 

Hirddu (blue, SH 94839 21011). The entire study area is marked with a dashed line.   
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cement (Tangit PVC-U; Henkel AG & Co. KGaA, Düsseldorf, Germany) and were covered in 

aluminium thermal foil to reduce internal heating of the chamber from direct solar 

radiation. 

During measurements, the collar and chambers were held together using an airtight 5 cm 

wide rubber band. Once sealed, CH4 was added to a mean (±SEM) concentration of 33.3 

(±1.0) ppm to enable detection of methane oxidation (Freitag et al.  2010) but without 

significantly enhancing oxidation; Saari et al. (2004) showed that below a level of 100 ppm, 

oxidation was not significantly enhanced. A retrospective study was made using a cavity-

enhanced absorption technique (Hendriks et al.  2008) and showed no significant effect on 

CH4 fluxes from the enhancement of CH4 in the headspace (see Appendix A for details). SF6 

was also added to the headspace at the start of each measurement to a mean (±SEM) 

concentration of 6.18 (±0.11) ppb and, as an inert gas, was used to calculate rates of 

chamber leakage during the measurement period for all gases of interest (Tingey et al.  

2000) and identify chambers which were not effectively sealed to the soil surface. 

Immediately following the addition of CH4 and SF6, five gas samples, 20 cm3, were extracted 

from each chamber using a 20 cm3 plastic syringe at recorded intervals of between 20 and 

30 minutes and stored in pre-evacuated 12 cm3 vials (Exetainer 839W, Labco Ltd, High 

Wycombe, UK). Mean total sampling time (±SEM) was 103 (±0.6) minutes and the actual 

time of any gas sample extraction was accurately recorded. Despite being purchased as pre-

evacuated, all vials were evacuated until fully empty (four vials were evacuated 

simultaneously for 30 seconds with a 0.2 kW pump with a flow rate of 30 l min-1 (Type 

N748.4FT.18; KNF Neuberger, Freiberg, Germany)) and checked for leakage, by passing the 

pump exhaust through water, to ensure vials were fully evacuated and lids effectively 

sealed. 
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In order to reduce any physical disturbance of the chamber and surrounding soil during 

measurements, samples were taken via a 1.5 m length of vacuum tubing (Tygon 

Formulation R-3603 Tubing, Part number AAC00002, Saint-Gobain Performance Plastics, 

Akron, OH, USA), fitted to the top of the chamber through a rubber septum (SubaSeal No. 

25, Sigma-Aldrich, St Louis, MO, USA) in a pre-drilled 1 cm port, and entirely sealed at the 

external end.  Prior to extracting each sample, the air in the vacuum tubing was mixed with 

the chamber headspace by pumping with the syringe to ensure extraction of a well mixed 

sample. 

Samples were analysed upon return to the lab for CH4, CO2 and SF6 using a Perkin Elmer 

AutoSystem XL gas chromatograph (GC; PerkinElmer Instruments, Shelton, CT, USA) 

equipped with a 3.7 m Porapak Q 60/80 mesh column, flame ionization detector (FID) and 

electron capture detector (ECD). Samples were injected into the GC by an automated 

sampler (Biology Electronic Services, University of York, UK) and 6 port gas sampling valve 

(part number 610N, Arnel Inc, Parlin, NJ, USA); the over-pressurisation of vials enabled 

samples to automatically flow into the gas sampling valve from the automated sampler. The 

GC was operated at temperatures of 120 °C, 40 °C and 350 °C respectively for the injector, 

column and detectors; N2 was the carrier gas, flowing at 30 mL min-1. The GC was calibrated 

using certified standards (BOC Gases, Guildford, Surrey, UK) of 103 and 523 ppm for CH4 

and CO2, respectively, and for SF6, a uniform standard of 0.008 ppm was created from a 

single set of serial dilutions of pure SF6 (BOC Gases) with N2. 

2.2.3 Data handling 

Trace gas fluxes were calculated using the slope of linear regression between CH4 (or CO2) 

concentration and time for each individual coverbox measurement. A decision algorithm 

was constructed and used to objectively determine how fluxes were calculated in a manner 

which removed the influence of erroneous data points, corrected for headspace leakage, 
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entirely removed a measurement or enabled further subjective examination when 

required. Details of the algorithm are provided in Appendix B.  

The distribution of flux data within each block was checked for normality using the 

Kolmogorov-Smirnov test with the PROC UNIVARIATE procedure and NORMAL option on 

SAS® (SAS Institute Inc., Cary, NC, USA), and checked for sphericity (the equality of variance 

between months and vegetation types, see Field and Miles, 2010) using Mauchly’s test with 

PROC GLM, REPEATED AND PRINTE options on SAS®. Where the assumption of sphericity 

was incorrect, or could not be assessed, a Greenhouse-Geisser correction was made to the 

degrees of freedom (Howard and Mendelssohn, 1999; Field and Miles, 2010; Kooij et al.  

2011). The effect of vegetation type and sampling month were tested using a repeated 

measures ANOVA (again with the PROC GLM, REPEATED and PRINTE options on SAS®) and 

Duncan’s post hoc testing (PROC GLM, MEANS and DUNCAN options on SAS®), adjusted by 

the Bonferroni correction (Field and Miles, 2010), for comparison of vegetation means 

within each sampling month. Annual flux estimations were tested for normality (PROC 

UNIVARIATE, as before), and for homogeneity of variance (Levene’s test using PROC 

ANOVA, MEANS AND HOVTEST=LEVENE options on SAS®). 

The extrapolation from the point measurements, which were necessarily limited both 

spatially and temporally, to estimating annual landscape CH4 and CO2 fluxes for 2009 was 

made using a linear interpolation between each monthly measurement to produce annual 

estimates for each vegetation type which were subsequently extrapolated spatially using a 

vegetation classification of the study site. 

2.2.4 Annual landscape estimate 

An annual flux and error term was produced for each vegetation type by linearly 

interpolating between monthly flux measurements throughout 2009. The mean flux 

measurement of each block (combination of site and vegetation type) was used to create a 
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block measurement for each month. The linear interpolation was made between each block 

flux from December 2008 to January 2010 (PROC EXPAND procedure and METHOD=JOIN 

option on SAS®) and all 2009 values were summed. 

In order to extrapolate the annual fluxes across the site, the proportional coverage of each 

vegetation type was calculated using a maximum likelihood supervised classification 

(Mather, 2004 pp. 221) of 1 m resolution aerial images acquired in 2006 with the IKONOS 

satellite (made available by the Countryside Council of Wales, MacBean personal 

communication), and using ENVI 4.6.1 image processing software (ITT Visual Information 

Solutions, Bracknall, Berkshire, UK).  The high spatial resolution and multispectral IKONOS 

images have been shown to produce highly accurate vegetation classifications in a variety 

of landscapes, including the UK uplands (Belluco et al.  2006; Carleer and Wolff, 2004; 

Mehner et al.  2004). Reference data, which consisted of identified examples of each 

vegetation type, were collected using a differential GPS (MobileMapper CX, Ashtech S.A.S., 

Carquefou, France) across the site, taking into account aspect and elevation to account for 

varying illumination. The initial classification used 75% of the reference data as training 

data, whilst the remaining 25% were used as validation data for post hoc accuracy testing of 

the classification by calculating the probability of a pixel being correctly classified (%). Once 

proportional values had been calculated for each class, the mean of each vegetation type 

were appropriately weighted and combined to give a single landscape mean (µl ) using: 

                                                                    
 

   
        

 

                                                           

where Ri is the proportional coverage (%) of each vegetation type i and Fi is the mean flux 

of each vegetation type i. A single landscape standard deviation (σl) was also calculated by 

weighting and combining the standard deviation of each vegetation type as follows: 
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where σi is the standard deviation of each vegetation type i. 

In order to incorporate the error term of the vegetation classification (probability of 

incorrect classification) into the landscape estimate, the accuracy term was used to adjust 

the proportional coverage to represent a range of scenarios (following methods from 

Bubier et al.  2005). Specifically, to estimate the highest landscape flux, the proportional 

coverage (%) of the strongest emitting class (Cs) was increased by the largest estimated 

error as follows: 

                                                          
 

    
      

 

                                                     

where Cis is the initial coverage estimate (%) for the strongest emitting class, A is the 

probability of a pixel being correctly classified (%) and Cv is the initial coverage estimate for 

each vegetation class, and the proportional coverage (%) of all other classes (Co) is reduced 

as follows: 

                                                                        
 

    
                                                                    

where Cio is the initial coverage estimate (%) of each of the other classes. The lowest 

landscape flux was estimated in a similar manner, where the proportional coverage of the 

weakest emitting vegetation class was increased using Equation (2.3), whilst the other 

classes were reduced using Equation (2.4). 
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2.3 Results 

2.3.1 Flux measurements 

Out of a total of 829 measurements made at the field site, 556 CH4 fluxes were accepted by 

the decision algorithm (see Appendix B), ranging from -2.14 to 18.21 mg CH4 m
-2 h-1 for 

grass, -1.71 to 4.56 mg CH4 m
-2 h-1 for heather, -2.62 to 17.95 mg CH4 m

-2 h-1 for Juncus and 

-2.67 to 15.35 mg CH4 m
-2 h-1 for sedge. In addition, 574 CO2 fluxes were measured, ranging 

from 0 to 1596.4 mg CO2 m
-2 h-1 for grass, 0 to 723.2 mg CO2 m

-2 h-1 for heather, 0 to 

3136.5 mg CO2 m
-2 h-1 for Juncus and 0 to 2924.7 mg CO2 m

-2 h-1 for sedge. 

Mean monthly CH4 fluxes for each vegetation type during 2009, calculated from block 

measurements, show a distinct seasonal pattern. Fluxes remained close to zero, with some 

net CH4 oxidiation, during the first five months of 2009 followed by peak fluxes (net 

emission of CH4) in June, which continued until the end of 2009 (Fig. 2.2). Sedge was a 

particularly strong source of CH4 even in December. The one vegetation type which 

displayed an exception to this pattern was heather which changed from a consistent small 

source of CH4 to a small sink from March to June. A large amount of variation in CH4 fluxes 

between measurement sites is apparent, but sphericity was not testable due to insufficient 

degrees of freedom. The assumption that sphericity had been violated, and subsequent 

adjustment of degrees of freedom (   = 0.1285), resulted in no significant overall effect of 

vegetation type (p = 0.153), no significant overall effect of sampling month on CH4 fluxes 

(p = 0.103) and no interaction between vegetation type and time of sampling (p = 0.319). 

Mean monthly CO2 fluxes also showed a seasonal pattern with some similarities: a large 

increase in respiration followed low fluxes at the start of the year, and a slower decline in 

activity in the second half of the year. However, differences in the timing of peak fluxes for 

CH4 and CO2 are evident as the highest respiration occurred in May and June for all 

vegetation types (Fig. 2.3) as opposed to between July and October for CH4 fluxes. After  
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Fig. 2.2 Mean (± SEM) CH4 flux measurement (mg CH4 m-2 h-1) of each vegetation type 

during each sampling event from December 2008 to January 2010. There is no significant 

effect of vegetation (p = 0.153), of sampling month (p = 0.103) or of interaction between 

vegetation and sampling month (p = 0.319), n = 3. 
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Fig. 2.3 Mean (± SEM) dark ecosystem respiration measurement (mg CO2 m
-2 h-1) of each 

vegetation type during each sampling event from December 2008 to January 2010. There is 

a significant effect of vegetation (p < 0.001), sampling month (p < 0.001), and of interaction 

between vegetation and sampling month (p = 0.002). Within each sampling month, 

vegetation types with the same letters are not significantly different from each other (post 

hoc Duncan’s test with a Bonferroni correction of significant p-value of 0.004), n = 3. 
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making a similar correc on for lack of sphericity as for the methane data (   = 0.1516), there 

was a significant overall effect of vegetation type on CO2 fluxes (p < 0.001), a significant 

overall effect of sampling month on CO2 fluxes (p < 0.001) and a significant interaction 

between vegetation type and time of sampling (p = 0.002). Post hoc testing within each 

month showed significant effects (p < 0.004) of vegetation type during April 2009, June 

2009 until October 2009, December 2009 and January 2010 as illustrated in Fig. 2.3. 

2.3.2 Annual landscape estimate 

The estimation of an annual landscape CH4 flux was calculated from the estimates of annual 

CH4 fluxes for each vegetation type, using linear interpolation between monthly 

measurements (Fig. 2.4). These estimates suggest that each vegetation type was a source of 

emission during the measurement period. The apparent difference in variance between 

each vegetation type, specifically the large variation in estimates for Juncus compared to 

the smaller variation in grass and heather estimates, was not significant. The annual CH4 

emission from sedge (annual mean (±SEM) estimate of 19.9 (±5.1) g CH4 m
-2 year-1) and 

Juncus (12.0 (±11.5) g CH4 m
-2 year-1) appeared higher than from grass (3.6 

(±1.0) g CH4 m
-2 year-1) or heather (1.0 (±0.7) g CH4 m

-2 year-1) but differences were not 

significant (p = 0.217). 

 An estimate of annual dark ecosystem respiration at the landscape scale was similarly 

based on annual respiration estimates for each vegetation type (Fig. 2.5). A significant 

effect of vegetation type on respiration was observed (p < 0.001) with post hoc Duncan’s 

showing that Juncus (annual mean (±SEM) estimate of 6.4 (±0.5) kg CO2 m
-2 year-1) was 

significantly higher than all other vegetation types, heather (1.4 (±0.3) kg CO2 m
-2 year-1) 

was significantly lower than all other vegetation types, and there was no significant 

difference between grass (4.1 (±0.1) kg CO2 m
-2 year-1) and sedge (4.2 (±0.5) kg CO2 m-2 

year-1). 
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Fig. 2.4 Mean (± SEM) annual estimation of CH4 flux (g CH4 m
-2 year-1) for each vegetation 

type. There is no significant effect of vegetation on methane flux (F(3,8) = 1.85, p = 0.217), 

n = 3.   
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Fig. 2.5 Mean (± SEM) annual estimation of dark ecosystem respiration (kg CO2 m
-2 year-1) 

for each vegetation type. There is a significant effect of vegetation on respiration 

(F(3,8) = 32.70, p = 0.000771); vegetation types with the same letters are not significantly 

different from each other (post hoc Duncan’s test), n = 3.  
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The initial red, green and blue IKONOS scene (Fig. 2.6) was used to produce the vegetation 

classification shown in Fig. 2.7. The validation data showed the accuracy of the classification 

(probability of a pixel being correctly classified) to be 72.2%. The proportional coverage of 

each vegetation type was calculated as 3.4%, 34.3%, 17.9% and 27.8% for grass, heather, 

Juncus and sedge, respectively, with heather dominating the tops of ridges and some 

North-facing slopes. In addition to the four identified classes of vegetation type, an 

additional unclassified category was produced containing pixels which were not allocated to 

a trained class (covering 6.2% of the study area) and pixels belonging to groups excluded 

from the study: road surface (1.2%), bracken dominated vegetation (5.0%), and forested 

areas (4.2%). By comparison with the initial scene, or from prior knowledge of the site, it is 

clear that the classification had correctly placed areas covered by cloud in the unclassified 

class (for example Fig. 2.8), but had misclassified areas of forest as heather (for example, 

the Southern section of forest in the South-Eastern corner of the scene; Fig. 2.7); an error 

which was likely to have reduced the landscape estimate of both CH4 flux and respiration as 

heather had the lowest mean flux measurements. In contrast, the classification was unable 

to recognise all patches of mown heather (for example Fig. 2.9) which was likely to have 

increased both landscape estimates for the opposing reason. 

Final landscape estimates, shown in Table 2.1, include the best estimate (±SEM) of annual 

landscape flux for methane, 9.8 (±3.8) g CH4 m
-2 year-1, and for respiration, 3.5 (±0.6) kg CO2 

m-2 year-1. Using IPCC estimates of the Global Warming Potential (GWP) for CH4 over a 100 

year period (Forster et al.  2007), the annual landscape flux for methane is 0.24 (±0.10) kg 

CO2
equivalent m-2 year-1. Also shown is the influence on these best estimates of the most 

extreme influence of the 72.2% accuracy in the vegetation classification. With regards to 

annual landscape estimates of methane flux, the assumption that all misclassified pixels 

could have been classified as the weakest emitter, heather, resulted in an increased 

proportional coverage of heather to 40.9%, and the lowest estimate of  
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Fig. 2.6 Original IKONOS image (aerial photo) of the study area taken in 2006. The 

resolution of the image is a 1 x 1 m pixel size and the image relates directly to the study 

area marked on the 1 km grid of Fig. 2.1. 
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Fig. 2.7 Vegetation classification of the entire study area based on the IKONOS image in 

Fig. 2.6. The resolution of the image is a 1 x 1 m pixel size. The legend relates to the four 

supervised vegetation classes and an unclassified class, consisting of unidentifiable pixels 

and excluded pixels containing roads, forest and bracken. 
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Fig. 2.8 Contrast of aerial photo and classification showing clouded areas as unclassified. 

Both images are centred around SH 93892 21368 and cover an area of 500 m by 725 m.  
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Fig. 2.9 Contrast of aerial photo and classification showing mown heather as unclassified. 

Both images are centred around SH 94865 21858 and cover an area of 500 m by 725 m.  
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Table 2.1 Impact of vegetation classification errors on annual landscape estimates of CH4 

and CO2 fluxes. Different methods of estimating the proportional coverage of each 

vegetation class provide (i) the best estimate and (ii) a wider range of estimates for 

landscape fluxes. 

Estimate Proportional coverage (%)  Annual landscape flux (±SEM) 

 Grass Heather Juncus Sedge 
Methane 

(g CH4 m
-2 year-1) 

Respiration  

(kg CO2 m
-2 year-1) 

Best 3.4 34.3 17.9 27.8 9.8 (±3.8) 3.5 (±0.6) 

Lowest CH4 3.0 40.9 15.5 24.1 8.6 (±3.7)  

Highest CH4 3.0 29.7 15.5 35.3 11.1 (±3.8)  

Lowest CO2 3.0 40.9 15.5 24.1  3.2 (±0.6) 

Highest CO2 3.0 29.7 26.7 24.1  3.9 (±0.6) 
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of 8.6 (±3.7) g CH4 m
-2 year-1. In contrast, the assumption that all misclassified pixels could 

have been the strongest emitter, sedge, resulted in an increase of proportional coverage of 

sedge to 35.3%, and the highest estimate of 11.1 (±3.8) g CH4 m-2 year-1. Similarly, the 

lowest annual landscape estimate for respiration of 3.2 kg CO2 m-2 year-1 resulted from 

increasing the proportional coverage of heather, and the largest annual landscape estimate 

for respiration of 3.9 (±0.6) kg CO2 m-2 year-1 resulted from increasing the proportional 

coverage of Juncus to 26.7%. 
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2.4 Discussion 

2.4.1 Seasonal CH4 measurements 

Very few studies of CH4 fluxes from upland blanket bogs in the UK which include flux 

measurements made across all seasons have been performed or published and it appears 

that Ward et al. (2007) have made and presented the only previous complete series of 

annual measurements from an upland blanket bog in the UK. Others who have made 

measurements in similar conditions, including raised bogs in the lowlands of the UK and 

flushed gully mires, include: Clymo and Pearce (1995), who combined measurements from 

a raised bog over a 30 month period and presented them as a single annual pattern; Baird 

et al. (2010) and Dinsmore et al. (2009a), who also made regular field measurements in 

raised bogs for 10 and 19 months, respectively; and Hughes et al. (1999), who present 

fortnightly measurements over a six year period from a flushed gully mire. Most published 

studies only sample during summer months (for example Fowler et al.  1995a; McNamara 

et al.  2008), or are reliant on modelled fluxes which are uncalibrated for a specific site or 

time period (Worrall et al.  2003; Worrall et al.  2007b; Worrall et al.  2009). Whilst not 

primarily aiming to provide annual estimates, the period typically excluded from typical 

peatland studies (Fowler et al.  1995a; Saarnio et al.  1997; Bubier et al.  2005; McNamara 

et al.  2008) includes the first four to five months of the year, which during 2009 at the 

current study site exhibited relatively low fluxes, and the last three to five months of the 

year, which displayed an extended shoulder of activity from the sedge and heather 

vegetation types. 

The impact of excluding entire seasons from studies which aim to construct representative 

annual estimates of fluxes include: (i) the systematic biasing of measurements, in this case, 

the exclusion of non-summer fluxes may have biased a seasonal estimate towards higher 

CH4 fluxes; (ii) limiting the range of environmental conditions over which measurements are 
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made, subsequently constraining the scope of model extrapolation; and (iii) the possibility 

of missing key seasonal events. This final point was clearly demonstrated by Mastepanov et 

al. (2008) in an Arctic study which revealed that the CH4 flux during a three week post-

growing season period was equal to the combined flux during the entire summer growing 

period. Extreme winter conditions and significant periods of permafrost and snow cover 

provide practical and scientific reasons why full annual measurements are rare in Arctic and 

Boreal based studies (Jackowicz-Korczynski et al.  2010), but such constraints are less 

justifiable for restricting the sampling strategy of UK-based seasonal studies. 

2.4.2 Seasonal flux patterns 

The seasonal pattern of CH4 fluxes from the current study (Fig. 2.2), with low CH4 fluxes and 

some net CH4 oxidation during first five months of 2009 followed by rapid increase in 

activity and longer decline of activity to the end of the year is, surprisingly, not unique. 

Annual measurements from other areas of blanket bog include an upland site in Northern 

England (Ward et al.  2007) where emissions of CH4 during 2003 peaked in August, but the 

following year, emissions peaked in September (when unfortunately, measurements 

ceased). Ward et al. (2007) concluded that the seasonal pattern observed follows the 

seasonal pattern of temperature (air temperature showed a significant correlation with CH4 

fluxes, r2 of 0.280). However, examination of the data reveals that higher CH4 fluxes were 

maintained throughout the autumn period of 2003, with mean fluxes in November still 

being higher than in June of the same year. Results from non-upland blanket bog sites, such 

as a raised bog in Wales (see Fig. 4 in Baird et al.  2010) and a mid-boreal mire in Northern 

Europe (see Fig. 1 in Leppala et al.  2011), also showed similar late-summer peaks and a 

steady decline through autumn. One of the longest set of measurements (bi-weekly CH4 

flux measurements over a six year period) were made at a flushed gully mire, also in Wales, 

and showed a similar slow autumnal decline, with fluxes not returning to low spring levels 

until after the end of each calendar year (see Fig. 3 in Hughes et al.  1999). The discrepancy 
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between this observed seasonal pattern and models of CH4 fluxes which are based on 

temperature and show a quicker autumnal decline (e.g. Fig. 1a of Ginzburg et al.  2011) may 

have meant the consistently observed ‘late-autumn shoulder’ of atmospheric CH4 

concentration in the Northern hemisphere remained unexplained (Dlugokencky et al.  

1994). With the exception of higher fluxes in May and June, dark ecosystem respiration at 

the current site showed a more typical seasonal pattern (Fig. 2.3) which is also seen at 

other blanket bog sites (Ward et al.  2007). The Juncus vegetation type showed some 

maintenance of higher respiration fluxes throughout autumn, but not as distinctive as it 

was for the CH4 fluxes. 

Environmental controls on CH4 fluxes at Lake Vyrnwy are discussed in detail in Chapter 3 

but if CH4 fluxes consistently peak later in the year than do maximum temperatures or 

incoming solar radiation, and exhibit a late-autumn shoulder of activity then any hypothesis 

must explain both these factors. Fenner et al. (2005) showed that the thermal response of 

various carbon-cycling enzymes altered according to seasonality which, if also applicable to 

methantrophy or methanogenesis, may explain a delayed response to temperature or 

radiation through seasonal acclimation. The late-autumn shoulder of activity, and 

contrasting rapid increase of activity during early-summer, could be produced by differing 

speed of response to two or more environmental variables, or by the differing speed of 

response by populations of methanogens and methanotrophs. Differing responses by 

methanogen and methantroph populations are suggested by MacDondald et al. (1998) as 

the reason for conflicting responses to temperature that they observe at different times of 

the season. They conducted a semi-seasonal study of CH4 fluxes from monoliths extracted 

from a blanket bog and generally observe a positive response of CH4 flux to temperature, 

however a negative response was seen when peat temperatures were decreasing in late 

summer. Flux measurements from a replicated manipulation of water table on peat 

monoliths, extracted from the same Lake Vyrnwy site used in the current study, showed a 
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marked delayed response of net CH4 flux of four months to experimental lowering of the 

water table (Lukac et al. personal communication) suggesting delayed responses may not 

only occur in response to temperature and radiation. Observations of the seasonal 

acclimation of soil CH4 processes to changes in environmental conditions are not common. 

However, an inter-annual study by Hughes et al. (1999) showed that, after experimental 

simulation of a moderate summer drought and subsequent reduction in CH4 emissions, the 

CH4 flux returned to higher control emissions within three years. 

2.4.3 Effect of vegetation on CH4 fluxes 

In contrast to theoretical reasons (Le Mer and Roger, 2001; Philippot et al.  2009) and 

empirical evidence (Frenzel and Rudolph, 1998; Bellisario et al.  1999; Greenup et al.  2000) 

supporting the importance of vegetation type in controlling CH4 fluxes, there was no 

significant effect of vegetation on CH4 fluxes in the current study. It was felt that the 

apparent difference in flux means, and the potential impact on the annual landscape 

estimate, meant stratification by vegetation type was justified and the lack of significant 

difference was influenced by the large spatial variability of flux measurements in relation to 

the small number of replicates. As the most variable of vegetation types, the fluxes from 

Juncus were possibly not representative of similar areas across the site. Sampling in the 

current study was spatially biased towards the top of ridges; these sites were selected so 

that all flux measurements could be associated with measurements from meteorological 

stations (see Chapter 3) which were sited on ridges to enable remote interrogation and for 

use by other users of the scientific ‘platform’ at Lake Vyrnwy. This was an unusual location 

for areas dominated by Juncus species which are more typically associated with wet areas 

around water courses (as seen in Fig. 2.8) and higher CH4 fluxes (Roura-Carol and Freeman, 

1999). Consequently, the estimates of annual landscape CH4 flux presented here are likely 

to be conservative. This could be rectified with wider spatial sampling to incorporate 

topographical variation across the site (such as hydrological heterogeneity), or by the 
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inclusion of key environmental conditions (such as water table) in the models used to 

extrapolate CH4 fluxes. For example, the construction of regression models between CH4 

fluxes and environmental conditions (as in Chapter 3) can be used as a basis for spatial 

extrapolation, rather than just using vegetation coverage.  Without any stratification, the 

annual landscape estimate of CH4 flux was not greatly altered by removing the vegetation 

stratification; estimates were reduced to 9.1 (3.5) g CH4 m
-2 year-1 from a stratified estimate 

of 9.8 (3.8) g CH4 m-2 year-1, primarily due to the increased contribution of the grass 

vegetation type (which in effect increased from a proportional coverage of 3.4% to 25%) 

but this influence was not greater due to the corresponding decreased contribution of the 

heather vegetation type (from 34.3% to 25%), the lowest emitter of CH4. 

2.4.4 Annual landscape estimate 

All estimates of annual landscape CH4 flux in the current study, including the most extreme 

possibilities potentially resulting from misclassification, suggest that the blanket bog around 

Lake Vyrnwy is a net source of CH4. In comparison to other estimates of UK blanket bog, the 

best estimate (±SEM) of 9.8 (±3.8) g CH4 m
-2 year-1 at this site sits between the 2.1 g CH4 m

-2 

year-1 estimate made at Loch More, Caithness by Fowler et al. (1995b) and the 17.2 g CH4 

m-2 year-1 at Moor House, North Pennines by McNamara et al. (2008). Both these estimates 

were extrapolated from measurements taken between May and June and neither provided 

an error term on the final estimate, but they do differ in method of measurement; eddy 

covariance technique was used at Loch More and non-steady state chambers were used at 

Moor House. The only study that measured CH4 fluxes throughout the year at an upland 

blanket bog Ward et al. (2007) did not produce a landscape estimate but other estimates 

have been made for a variety of northern peatlands in Europe and North America. 

Dinsmore et al. (2009a) estimated an annual flux of ca. 0.1 g CH4 m
-2 year-1 for a low-lying 

peat bog using a simple non-stratified method of extrapolation, whilst Drewer et al. (2010) 

produced marginally higher annual estimates of between 0.2 and 0.5 g CH4 m
-2 year-1 for 
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the same site and period. Clymo and Pearce (1995) estimated an annual flux of 4.3 g CH4 

m-2 year-1 for a raised bog in the UK, and higher estimates of 5.1 and 8.3 g CH4 m
-2 year-1 for 

two separate snow-free seasons were obtained from a mixture of bogs and fens in North 

America by Bubier et al. (2005). Higher still are the estimates of 27.3 g CH4 m
-2 year-1 from a 

fen site in Fennoscandia (Saarnio et al.  1997), 17 and 23 g CH4 m
-2 year-1 for two years from 

another fen site in northern Europe (Drewer et al.  2010). and of between 8.1 and 19.1 g 

CH4 m-2 year-1 from fens in a variety of successional states during the snow free period 

(Leppala et al.  2011). In this context, the fluxes from the blanket bog around Lake Vyrnwy 

are higher than most other peatland sites and years in the UK, but lower than the CH4 

emissions from more nutrient rich fens in arctic and sub-arctic locations. 

The annual landscape estimate of ecosystem respiration at Vyrnwy (3.5(±0.6) g CH4 m-2 

year-1) is lower than the mean summer maximum at a blanket bog in Northern England (6.5 

kg m-2 year-1 by Ward et al. 2007) and higher than the mean night-time respiration from a 

blanket bog in Scotland (0.8 kg m-2 year-1 from Fowler et al. 1995a). McNamara et al. (2008) 

estimated an annual landscape flux of respiration at Moor House of 1.4 kg CO2 m
-2 year-1 

with a combined Global Warming Potential (GWP) for CH4 and ecosystem respiration of 1.8 

kg CO2
equivalent m-2 year-1. This combined GWP at Moor House falls below the error term of 

GWP at Vyrnwy (3.8 (0.7) kg CO2
equivalent m-2 year-1), but the relative contribution of CH4 at 

Moor House (22.3% of GWP) is much higher than for Lake Vyrnwy (6.5% of GWP). Whilst 

the focus of the current study was primarily CH4 fluxes, it would initially appear that, when 

considering relative contribution to GWP, CH4 fluxes are of much less importance than for 

CO2. However, as photosynthesis was not measured the net exchange of carbon between 

terrestrial and atmospheric pools cannot be identified. Ward et al. (2007) showed that, 

throughout the year, photosynthesis at an upland blanket bog in Northern England 

remained in equilibrium with respiration, with the exception of the summer period when 

the site became a net sink for CO2. A similar balance between respiration and 
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photosynthesis at Lake Vyrnwy would reduce overall GWP and increase the relative 

importance of the CH4 fluxes. The relative amount of different GHGs is important when 

considering ecosystem responses to some types of land management and to future changes 

in climate. For example, artificially draining peatlands would be expected to decrease CH4 

fluxes and increase respiration (Strack and Waddington, 2007; Dinsmore et al.  2009b); 

whilst projected increases in temperature and alteration to monthly rainfall due to climate 

change have been projected to increase both CH4 flux and soil respiration (Worrall et al.  

2007b). 

2.4.5 Annual landscape flux error term 

Of the annual landscape estimates mentioned in Section 2.4.4, most did not include an 

error term. Only Bubier et al. (2005) and Dinsmore et al. (2009a) indicated any more than a 

single value when providing a landscape estimate. For studies which extrapolate spatially 

using stratified measurements and remotely-sensed landscape images (such as Saarnio et 

al.  1997; McNamara et al.  2008; Forbrich et al.  2011), this limitation may be due to the 

lack of any convention for combining error terms from flux estimates (standard deviation or 

standard error) with the errors in the classification accuracy of the remotely sensed image. 

Of the published methods for combining these two types of error term, Dinsmore et al. 

(2009a) tested the sensitivity of their landscape flux estimate to inaccuracies in 

classification by sequentially altering the proportional coverage of classes by plus or minus 

10%.  It is not clear how this value of 10% classification error was derived, but the results of 

this analysis show that, depending on which landscape class is adjusted, the landscape 

estimate alters by between 3% and 36% for CH4 flux and by between 1% and 38% for 

estimated N2O flux. These authors suggested how their estimate might respond to 

classification errors, but provided little information on the validity of the chosen error 

boundaries. 
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Whilst landscape-scale extrapolations of CH4 flux rarely include error terms, some more 

recent studies have (i) measured at a landscape scale so do not require an up-scaling of 

error term (for example, see Zona et al.  2009; Hill et al.  2011); (ii) made ‘top-down’ 

estimations using inversion methods and derived error terms for landscape estimates, in 

part, from a priori emissions estimates (for example, see Zhao et al.  2009); (iii) determined 

uncertainty though bootstrapping approaches (for example, see Hatala et al.  2012); or (iv) 

spatially weighted extrapolations of error derived replicated chamber measurements (for 

example, see Teh et al.  2011). 

The error estimation method used in the current study followed another established 

method for spatial extrapolation which, unlike the method used by Teh et al. (2011),  

included a quantitative estimate of pixel classification error (Bubier et al.  2005). Briefly, the 

method consists of three stages: (1) calculation of the classification inaccuracy of the 

remotely sensed image (% of pixels incorrectly classified); (2) calculation of the maximum 

upper effect of misclassification on fluxes, specifically, increasing the percentage coverage 

of the strongest emitting class by the percentage of classification inaccuracy calculated in 

Stage (2) and calculating the resulting change (% increase from original) in landscape 

estimate; (3)  additive combination of the maximum proportional change calculated in 

Stage (2) with the standard deviation (as % of the mean) of the flux measurements. With 

two exceptions, the current study followed the above methodology. Firstly, the maximum 

upper and lower effects of misclassification were calculated to show the range of extreme 

cases and not just one which increased net landscape emissions. Secondly, the final stage 

(Stage 3) was discarded due to the lack of support which Bubier et al. (2005) provided for 

the additive combination of error which is considered inappropriate (Field and Miles, 2010). 

Even without the additive combination of errors used by Bubier et al. (2005) a landscape 

estimate and error term was still calculated in the current study which included (i) the 

inherent spatial variation of fluxes and gas flux measurement and calculation error; (ii) 
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spatial extrapolation errors. Both these errors revealed that, as the most extreme estimates 

of CH4 and CO2 fluxes as a result of spatial extrapolation errors fell within the one standard 

error of the mean (as per Table 2.1), further resources would be best directed in reducing 

the spatial variation in fluxes and errors from gas flux measurements (by increasing the 

number of sites or increasing number of flux time points) rather than in improving the 

vegetation classification. The calculation of a landscape estimate with an error term is also 

useful for subsequent meta-analyses; for example, the IPCC estimate of global CH4 

emissions from ‘Natural Sources’ (which includes wetlands) included standard deviation of 

the means of best estimates (FAQ 7.1, Fig. 1 in Denman et al.  2007) from several studies 

(Table 7.6 in Denman et al.  2007). Bottom-up estimates from spatially-extrapolated 

measurements which included error terms would have enabled a meta-analysis of data 

with appropriate weighting according to variance, but, like other meta-analyses of CH4 flux 

data (e.g. Polson et al.  2011), the absence of an error term (such as in Wuebbles and 

Hayhoe, 2002) meant IPCC estimates were not able to distinguish between estimates with 

varying levels of uncertainty. 

2.4.6 Data handling 

Not all studies are transparent about how decisions are made regarding flux calculation 

from observed relationships between headspace concentration and time. For example, 

Saarnio et al. (1997) state that ‘clearly disturbed’ relationships were removed from the 

analysis but do not provide further explanation. Specifically, the use of more than two time 

points enables the identification of single erroneous time points (as in Fig. B.3 (b)), the 

identification of the shape of the relationship between concentration and time, and the 

identification of series with no discernable relationship whatsoever. The development of a 

decision algorithm incorporated a large number of steps, in order to satisfactorily replicate 

subjective decisions as to removal of single points or entire measurements from the 

analysis, provided a method which was objective, reproducible and transparent.  



69 
 

The use of r2 values as the sole criteria for accepting or rejecting a measurement can cause 

bias through rejection of fluxes close to zero, since experimental noise may be relatively 

high when compared to the increases in headspace concentrations. One published method 

which aims to avoid this problem is by Forbrich et al. (2010) who, in addition to checks on r2 

values, used filter analysis using an empirically-derived acceptable standard deviation of 

residuals. Whilst this prevents the removal of low fluxes, it also assumes that such fluxes 

have a genuine relationship between headspace concentration and time. The algorithm 

used in the current study makes no such assumption when experimental noise is high 

enough to prevent the identification of a significant relationship, by producing a flux of zero 

when such a relationship is not evident (see Fig. B.3 (c)). 

2.4.7 Summary 

CH4 fluxes from this upland blanket bog site displayed a distinct seasonal pattern with low 

emission of CH4 and some net CH4 oxidation occurring from January until June, when a 

dramatic increase in CH4 emission occurred. Higher emissions of CH4 fluxes continued 

throughout a late-autumn shoulder of activity and, in some cases, continued until 

November and December. The site was a net source of CH4 and the best landscape estimate 

of CH4 flux (± standard error of the mean) was 9.8 (±3.8) g CH4 m-2 year-1. Whilst this 

estimate includes error associated with measurement, the additional consideration of 

errors associated with the extrapolation of measurements to a landscape-scale estimate 

resulted in estimates that ranged from 8.6 (±3.7) to 11.1 (±3.8) g CH4 m
-2 year-1. Differences 

in the mean estimate of CH4 flux from areas dominated by different vegetation were 

observed, but not significant during this study. 
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Chapter 3 Association of environmental variables with CH4 

flux from upland blanket bog 

3.1 Introduction 

CH4 is an important greenhouse gas (Forster et al.  2007) produced and oxidised by a 

number of well described processes (see Wuebbles and Hayhoe, 2002 for one estimate of 

the global CH4 budget). It is estimated that net emissions from wetlands account for 

between 69% and 89% of natural sources of CH4 emissions (Denman et al.  2007), whilst 

oxidation of CH4 in dry soils is the only known non-atmospheric process of CH4 oxidiation 

(Wuebbles and Hayhoe, 2002). The production and oxidation of CH4 is undertaken by 

microbial populations in soils (Le Mer and Roger, 2001), yet the exchange of CH4 between 

soil and atmosphere is also affected by above ground vegetation (for example, see Greenup 

et al.  2000; or Strom et al.  2003) so in order to incorporate all of these factors which 

influence CH4 exchange between soil and atmosphere, measurements must include the 

soil-plant-atmosphere continuum. 

The highest rates of CH4 production are frequently observed in wetland habitats (for 

example, see Saarnio et al.  1997) and the highest rates of consumption are associated with 

dry forest soils (for example, see Castro et al.  1995). In addition to spatial heterogeneity, 

variations in CH4 fluxes also appear to be seasonally dependent with larger fluxes occurring 

during summer and autumn periods. This has been observed at the current study site (see 

Chapter 2) and elsewhere in the UK. For example, Hughes et al. (1999) measured CH4 fluxes 

at fortnightly intervals over a six year period and repeatedly observed higher CH4 emissions 

during the summer and autumn than in the winter or spring. The identification of factors 

which control CH4 fluxes will lead to better understanding of the dominant systems 

involved in CH4 cycling, improve predictions of CH4 fluxes at locations and during time 

periods which have not been directly measured, and will improve predictions of the impact 
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that climate change may have on future CH4 fluxes. To identify significant controls of CH4 

flux at a blanket bog site near Lake Vyrnwy in North Wales (see Fig. 2.1), a regression 

analysis between fluxes measured monthly over a 14 month period and environmental 

variables measured continuously over a similar time period was undertaken. 

Two approaches are common when identifying environmental controls on the natural 

variation of CH4 flux: (i) laboratory based manipulations of environmental conditions of 

extracted soils or mesocosms (for example, see Moore and Dalva, 1993), and (ii) in situ 

measurements across a range of environmental conditions (for example, see Moore et al.  

2011). In situ manipulations of environmental conditions in field sites are less common, 

possibly due to the significant resources required to alter conditions in remote locations, 

but combines features of both common approaches (for example, see Beier et al.  2004). 

Depending on which method is used, statistical analyses are required to identify if there is a 

significant response of CH4 flux to the manipulated variable, or whether CH4 fluxes are 

significantly associated with a measured environmental variable. A wide range of studies 

have been undertaken in a variety of habitats and conditions and results are not consistent, 

even when studies have been made under similar conditions. For example, Bubier et al. 

(1995) showed that CH4 fluxes observed at a site in a peatland complex in the Northern 

Study Area of the Boreal Ecosystem-Atmosphere Study in Manitoba (Canada) increased as 

depth to the water table reduced, whereas Bellisario et al. (1999) who sampled in the same 

study area show the inverse relationship. No hypothesis was presented to explain how 

these conflicting results were found from measurements at the same habitat, but they 

were not a result of inconsistencies with the method of water table measurement. The 

value of depth to water table, which is used in the current study, increases as the water 

table moves further below the soil surface, being a negative value when the water table is 

above the surface; however an alternative reporting convention ‘water table position’ 
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decreases as the water table moves further below from the soil surface and is a positive 

value when the water table is above the surface. 

The direct controls of net CH4 fluxes can be described as the balance between the microbial 

production and oxidation of CH4 in the soil, combined with the rate of exchange of CH4 

between soil and atmosphere (Le Mer and Roger, 2001). Consequently, it is expected that 

any environmental conditions which directly, or indirectly, influence any of these 

components will exert control over CH4 fluxes. For example, temperature has been shown 

to control CH4 fluxes as it directly influences the rate of CH4 production and other processes 

which are involved in CH4 production, such as acetate production (Segers, 1998). 

Alternatively, a higher level of radiation has also been shown to control CH4 fluxes as it 

leads to higher substrate provision though increased plant growth. Subsequently, a large 

number of environmental conditions have been shown to be significant controllers of CH4 

fluxes. 

Published examples include general meteorological conditions such as air temperature 

(Ward et al.  2007), shortwave incoming radiation (Hendriks et al.  2010), 

photosynthetically active radiation (PAR; Ward et al.  2007), humidity (Tsuyuzaki et al.  

2001) rainfall (Kettunen et al.  1996) and atmospheric pressure (Tokida et al.  2007); soil 

conditions such as soil temperature (Becker et al.  2008), water table (Bubier et al.  2005), 

soil moisture (Dinsmore et al.  2009a), pH, soil conductivity (Bubier et al.  1995) and redox 

potential of the soil (Conrad, 1996); soil concentration of CH4 (Dinsmore et al.  2009a), Ca2+ 

(Bubier et al.  1995), N and SO4
2- (Silvola et al.  2003); and biological components of systems 

such as vegetation cover (Bubier et al.  1995), esterase activity (Freeman et al.  1998) and 

transcriptional dynamics of genes associated with methanogenesis (Freitag et al.  2010).  

The variety of results from previous studies makes the analysis of environmental controls of 

CH4 fluxes at any site both interesting and unpredictable, but the most commonly identified 
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environmental controls over CH4 fluxes are water table depth and soil temperature. Not 

only are these variables most commonly found as significant controls of CH4 flux in a variety 

of studies, they are also predicted by existing theoretical models of CH4 flux. Models based 

on the vertical distinction of the acrotelm and catotelm within the soil profile (Clymo and 

Pearce, 1995; Le Mer and Roger, 2001) suggest water table is a key driver of net CH4 flux as 

the size of the aerobic proportion of the soil profile can influence rates of methanogenesis, 

methanotrophy and CH4 exchange between soil and atmosphere. Temperature is also 

considered a key driver of fluxes as it influences all biological activity including rates of CH4 

production  (for example, see Segers, 1998), CH4 oxidation (for example, see Crill et al.  

1994) and substrate provision for methanogens (for example, see Eriksson et al.  2010). 

Studies typically use concurrent measurements of environmental conditions to identify 

controls on CH4 fluxes. Even when seasonal measurements of environmental conditions are 

used as independent variables in models of CH4 fluxes, it is typically difficult to predict a 

mean seasonal flux (for example, see Bubier et al.  2005). However, observations of 

hysteresis effects of CH4 fluxes due to changes in water table (Moore and Roulet, 1993), 

temperature (Updegraff et al.  1998) and PAR (Joabsson et al.  1999) suggest that 

environmental conditions prior to the day of flux measurement may provide better 

predictions of CH4 flux. Previous studies have used a variety of techniques in examining 

prior conditions which range from quantitative cross correlations (Kettunen et al.  1996) to 

visual identification of hysteresis effects (Song et al.  2003). A limitation of the current study 

is the seasonal covariance between several environmental variables. These include a 

temperate seasonal pattern of temperature, radiation and, to some extent, humidity. Such 

multicollinearity may make it hard to identify the importance of individual environmental 

controls (Field and Miles, 2010). A satisfactory solution is the complimentary manipulation 

of environmental conditions of extracted soils in otherwise controlled environments which 
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has been undertaken with water table using samples from the same field site (Lukac et al. 

personal communication). 

It is possible to combine approaches of experimental manipulation and in situ 

measurement to produce landscape scale manipulations but requires a large amount of 

resources to undertake any such manipulation. Fortuitously, the current managers of the 

Lake Vyrnwy site, the Royal Society for the Protection of Birds (RSPB), had obtained 

extensive funding for the blocking of drains from the European Union LIFE project. The 

management of the blanket bog around Lake Vyrnwy has varied historically, but has often 

focused on the delivery of a single ecosystem service (sensu Millennium Ecosystem 

Assessment, 2005) including recreational hunting, water provision, the grazing of livestock, 

or biodiversity conservation (Roberts, 2000; Bowker et al.  2007). One practice applied to 

large areas of the blanket bog during the 1960’s and 1970’s, was the creation of drains to 

dry the site and improve conditions for livestock (Wilson et al.  2010). A subsequent, 

contrasting approach, which has also been implemented at many other blanket bog sites in 

the UK (Armstrong et al.  2009), has been the blocking of previously man-made drains in 

order to restore hydrological conditions and improve the condition of the blanket bog for 

several rare bird species (Wilson et al.  2010). This also provided a platform for studying the 

effect of manipulating one particular environmental factor: hydrological conditions. 

Observations of a spatial association between high CH4 fluxes and wetter sites (Bubier et al.  

1993) together with results from laboratory-based manipulative experiments on extracted 

peatland samples (Moore and Dalva, 1993, inter alia) suggest that the blocking of drains will 

cause an increase in CH4 fluxes. However, results from in situ studies conducted over 

spatially or temporally larger scales are less clear. For example, Hughes et al. (1999) drained 

a bog which, when compared with a control site, initially led to lower CH4 fluxes. Continued 

monitoring of CH4 fluxes in the Hughes et al. study showed that CH4 fluxes of the drained 
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site had returned to control levels after three years, suggesting the treatment had no long-

term effect. Another in situ study which failed to clearly identify the effect of treatment was 

the comparison of a restored peatland site, with blocked drains, and a non-restored site 

with intact drains (Waddington and Day, 2007). The restored site had significantly higher 

CH4 fluxes than the control site in two of the three years following the drain blocking, and 

CH4 fluxes at the restored site were higher in all years following the treatment when 

compared to the year prior to the blocking of drains. Unfortunately, as the restored site had 

significantly higher CH4 fluxes than the control site in the year prior to restoration, and as 

CH4 fluxes at the control site were also higher in all years following the treatment, it is not 

clear whether such differences were due to the experimental manipulation, or the inherent 

spatial and temporal variation in CH4 fluxes. Regardless of a priori expectations, any 

experimental design should enable the clear identification of any treatment effect. 

The studies presented within this chapter were aiming to identify significant in situ 

associations between CH4 flux and a large number of environmental conditions in an upland 

blanket bog. These included both conditions observed at the point of flux measurement 

and conditions prior to the point of measurement. An additional hypothesis which was 

tested was that CH4 flux was significantly altered due to a landscape-scale manipulation of 

hydrological regime.  
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3.2 Materials and methods 

3.2.1 Study site and flux measurements 

The 22 km2 of upland blanket bog around Lake Vyrnwy, North Wales (described in Section 

2.2.1) was used as the study site for a regression-based approach to landscape-scale 

estimates of CH4 flux and subsequent comparison with other extrapolation methods. The 

CH4 flux measurements, made with non-steady state chambers (see Section 2.2.2), were 

used as dependant values in the construction of the following regression-based models. 

CH4 fluxes were measured monthly between December 2008 and January 2010 from four 

vegetation types, replicated around three meteorological stations (see Section 2.2.1). Five 

flux measurements were made at each combination of site and vegetation type and the 

sampling strategy was designed to incorporate variation from areas dominated by four 

vegetation types, grass, heather, Juncus and sedge. Fluxes were calculated from five 

consecutive samples, extracted from the chamber headspace over a total period of 

between 80 and 120 minutes. The exact time of extraction was recorded and after GC 

analysis for CH4 and SF6, the slope of linear regression between CH4 concentration and time 

for each individual measurement was calculated. At the start of each measurement, CH4 

was added to each chamber headspace to enable detection of CH4 oxidation and SF6 was 

also added to observe any leakage from the headspace during the measurement period. 

Each flux was calculated using an algorithm which was designed to objectively remove any 

erroneous data time points from a single series and to determine if leakage should be 

compensated for, or if a measurement should be entirely discarded. See Sections 2.2.2 and 

2.2.3 for further details. 

An annual landscape estimate, derived from linear interpolation between monthly CH4 

measurements and spatially extrapolated using the proportional coverage of each 

vegetation type, calculated using IKONOS images of the site was used for comparison 
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purposes. Survey data collected at the site were used to both supervise and validate the 

vegetation classification, enabling the calculation of proportional coverage of each 

vegetation type and the accuracy of the classification. See Section 2.2.4 for further details. 

3.2.2 Environmental data 

A dedicated meteorological station (WS-GP1 and all associated sensors, listed below, all 

from Delta-T Devices, Cambridge, UK) was established at each of three sampling sites 

described in Section 2.2.1 during 2008 (see Fig. 2.1) and was positioned within 10 m of each 

vegetation area where flux measurements were to be made. The following environmental 

variables were recorded at each site from May 2008 to January 2010: air temperature and 

relative humidity (RH) from a combined sensor (RHT2nl-CA) positioned 2 m above ground, 

photosynthetically active radiation (PAR, 400 – 700 nm; QS2), solar radiation (300 – 3000 

nm; D-PYRPA-CA), wind speed and wind direction (D-034B-CA) and rainfall (RG2+WS-CA). In 

addition, soil temperature (sensor type ST1, installed 10 cm below the surface) and depth 

to water table (water table, measured using 30 mm wide piezometers inserted up to a 

depth of 1 m) were measured at each of the four vegetation types around each 

meteorological station. All variables were measured automatically, with the exception of 

water table which was measured manually when gas flux measurements were made. 

Hourly mean values were calculated for soil temperature, air temperature, PAR, solar 

radiation, humidity and wind speed. Rainfall was summed to produce hourly totals, and 

hourly values (measured on-the-hour only) were also recorded for wind direction. 

Missing hourly values for the automatic sensors, due to equipment failure, livestock 

damage, etc., were gap-filled with estimates calculated from one of two methods, 

depending on the length of gap. For data gaps of a single hour, an estimate was calculated 

from the mean of the adjoining values, but for data gaps of more than one hour estimates 

were made using regressions between the sensor with the missing values (dependant 
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variable) and sensors which were fully functioning during the data gap (independant 

variables). Regression models used to estimate values for each data gap were constructed 

subject to two main criteria. (i) At least one independent variable, produced from a similar 

sensor type at another location or vegetation type (soil and air temperatures were 

considered similar, as were PAR and solar radiation), had to be present for the entire data 

gap. If there was more than one non-missing variable present for the entire gap, a multiple 

regression approach was used. (ii) The coefficient of determination (r2) for the correlation 

between actual and predicted values had to be greater than 0.8. If no similar non-missing 

variable was present during a data gap, multiple models were constructed across shorter 

time periods which, once estimated values were combined, filled the entire data gap. When 

a multiple regression approach was required, a forward-selection technique was used that 

also included an additional step to remove previously-added independent variables which 

were no longer significant (p<0.05, PROC REG procedure with the SELECTION=STEPWISE 

option on SAS®, v9.2). An example of the resulting models for data gaps in the soil 

temperature record, and the strong correlation between predicted and actual values, are 

shown in Fig. 3.1. In reality, the data gaps were only several hours or days and simple 

regression models frequently yielded r2 values greater than 0.95 resulting in high 

confidence in the quality of gap filled data. Further details of each data gap-filling 

regression model are included in Appendix C. 

3.2.3 Regression between CH4 flux and environmental variables 

The environmental variables (independent values: soil temperature, air temperature, PAR, 

solar radiation, humidity, wind speed, rainfall and water table) which best explained the 

variations seen in CH4 flux measurements (dependent values) for each vegetation type 

were identified using regression approaches. 
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Fig. 3.1 The results from data gap-filling models for each period of missing soil temperature 

data showing strong correlation values between predicted and actual values. Each model is 

labelled with a four letter code, where the first two characters define location (Eu = Eunant, 

Ha = Hafod and Hi = Hirddu) and the last two characters define type of vegetation (Gr = 

grass, He = heather, Ju = Juncus and Se = sedge), and the starting date of the data gap.  
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3.2.3.1 Multiple regression between CH4 flux and concurrent environmental variables 

Following a frequently used approach (see, for example, Granberg et al.  1997; Moore et al.  

2011; Worrall et al.  2007b; Dinsmore et al.  2009b) multiple regressions between CH4 

fluxes and all their associated environmental variables were made. All of the CH4 flux 

measurements were analysed together in a single model, and subsets of the CH4 flux 

measurements, subsetted according to vegetation type, were also analysed in separate 

multiple regression models for grass, heather, Juncus and sedge. The environmental 

measurements used as independent variables, and referred to as concurrent 

measurements, were those taken at the hour closest to the first extraction from the 

chamber headspace, with the exception of wind speed, rainfall and water table which used 

daily measurements of wind run (the product of an instantaneous wind speed 

measurement and period of time), daily total rainfall, and water table measured in 

conjunction with all flux measurements. A forward step-wise multiple regression approach 

was used that included an additional step to remove any independent variables which, 

having been significant (p<0.05) during an earlier step, became non-significant as other 

independent variables were added in subsequent steps (SAS® v9.2). The use of daily values 

of wind speed and rainfall as independent variables was required as daily values had been 

used to construct data gap filling regression models (see Appendix C). The positive skew of 

the distribution of the CH4 flux measurement, indicated by the difference between the 

mean (1.01 mg CH4 m-2 h-1) and median (0.03 mg CH4 m-2 h-1) CH4 flux measurement, 

suggested that flux measurements required transforming to achieving a more normal 

distribution. Subsequently, CH4 flux measurements were converted to log10 (mg CH4 m
-2 d-1 

+ 2.7) to correct for the positive skew and used as the dependent variable in regression 

models. The results of these models were compared with results from models which used 

untransformed fluxes as dependent variables. 
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3.2.3.2 Single regression between CH4 flux and the running averages of environmental 

variables 

The late-autumn shoulder of activity seen in the seasonal pattern of CH4 fluxes (see Fig. 2.2 

and the discussion in Section 2.4.2) and other observations of delayed response of net CH4 

exchange to environmental conditions (Hughes et al.  1999; Lukac et al. personal 

communication; Fenner et al.  2005) suggested an alternative approach to the regression 

between CH4 fluxes and environmental variables could also be taken. This approach used 

the average of environmental measurements from the period prior to the day of flux 

measurement, referred to as the running average. The running average was calculated as 

the moving average of n daily values, where n ranged from 0 (the day of the flux 

measurement) to 180 (the period ranging from the day of flux measurement to 180 days 

prior to flux measurement). Daily values were defined as daily mean measurements for soil 

temperature, air temperature and humidity, and as daily total measurements for PAR, solar 

radiation, wind speed (also defined as daily total wind run: the distance covered in a day) 

and rainfall. Regressions were made using all CH4 flux measurements, and using four 

subsets of measurements (grass, heather, Juncus and sedge) with each environmental 

variable being used as a single independent variable in a series (0 to 180 days) of separate 

single regression models (SAS® v9.2, PROC REG with no additional options). 

In order that the running average could be calculated for depth to water measurements, 

and in the absence of automated measurements throughout the study period, daily water 

table measurements were modelled. A crude hydrological model using rainfall as the single 

independent variable was constructed for each combination of site and vegetation type. An 

association between water table measurements in peatlands and rainfall measurements on 

the day, or the days prior to water table measurement (Evans et al.  1999; Weiss et al.  

2006) has been demonstrated, so the running average over 30 days (as described above) 

was used to identify what period of rainfall best explained the observed variation in water 
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table. Individual models were created for each combination of site and vegetation type and 

the period of rainfall which best described water table varied from 0 (the day of water table 

measurement) to 12 (the average of 12 days prior to water table measurement), as did r2 

values for each model: 0.169 to 0.878. The running average of rainfall which produced the 

model with the highest r2 for each site and vegetation type was selected to model water 

tables at the relevant site. Two of these models (Juncus at Hafod and at Hirddu) were not 

significant but, in the absence of other daily values of water table, were still used. 

3.2.3.3 Multiple regression of CH4 flux and the running averages of environmental 

variables 

A fully inclusive multiple regression analysis of all possible combinations of eight running 

averages, each over 0 to 180 days, was not considered practical as it would have resulted in 

the running of ca. 1 x 1018 multiple regression models. Instead, soil temperature, solar 

radiation and modelled water table were selected as the only independent variables for the 

multiple regressions of running averages with CH4 flux. Whilst air temperature and PAR 

were also considered to be likely significant regressors of CH4 flux, they were excluded due 

to their co-variation with soil temperature and solar radiation, respectively. 

Running averages over different periods from the same sensor were not used together as 

independent variables in the same model, but ca. 5 x 106 multiple regression models for 

each vegetation type were still produced. Attention is drawn to the increased probability of 

Type I errors due to the high number of individual models constructed (Field and Miles, 

2010). Consequently, the interpretation of the results was limited when viewing each single 

regression model and, when viewing this analysis in its entirety, only consistent patterns of 

association between variables and fluxes were considered as significant (see Section 3.4). 
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3.2.4 Impact of ditch blocking on CH4 flux 

3.2.4.1 Study site description and experimental design 

Measurements were made in the upland blanket bog around Lake Vyrnwy, North Wales (as 

generally described in Section 2.2.1) and focused within three distinct catchments 

(see Fig. 3.2): Eunant Fach (centred around SH 92651 22937), Eunant Fawr (SH 94164 

22248), and Eiddew (SH 93411 24807). One of the dominant features of the blanket bog at 

the Lake Vyrnwy site were the large number of man-made ditches (also known as grips) 

which were cut across the hillside in the 1950-1970’s to increase drainage in favour of 

sheep grazing (Wilson et al.  2011a). Whilst this management technique was used at many 

other blanket bogs across the UK  (Worrall et al.  2007a), the management of the blanket 

bog at Lake Vyrnwy was changed to reverse any artificial drainage and 100 km of drains 

have been blocked since 2007 to improve the unfavourable status of the site (Wilson et al.  

2011a). In the Eunant Fach, Eunant Fawr and Eiddew catchments the blocking of drains was 

not uniformly implemented, but a fully-replicated block design was established so that 

within each of the three catchments used in this study, a pair of sub-catchments was 

created with each sub-catchment either being assigned the drain blocking treatment or 

retained as an unblocked control (see Fig. 4.2). All sub-catchments were selected to be a 

similar size (mean (±SEM) size was 30.5 (±3.3) ha), and each pair was positioned on the 

same hillside, no more than 250 m apart, so a similar aspect and slope was maintained. The 

decision of which sub-catchment received the blocking treatment within any particular pair 

was made at random so this fully-balanced design could be used as a basis for studying the 

effect of drain blocking on CH4 fluxes. 

3.2.4.2 Flux measurements and data handling 

Several sets of measurements were made within each sub-catchment to identify any 

differences in CH4 fluxes in a variety of micro-sites. Specifically, 10 flux measurements were 
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Fig. 3.2 Location of Lake Vyrnwy with the study site for the impact of ditch blocking on CH4 

flux. The three pairs of blocked (red dashed line) and unblocked (blue dashed line) sub-

catchments are marked.  
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made at all combinations of two vegetation types, heather and sedge, two elevations, 

lower (470-475 m.a.s.l.) and upper (520 - 525 m.a.s.l.) and two management techniques, 

blocked and unblocked. Specific locations within each combination of factors were 

arbitrarily selected prior to the start of the campaign to enhance unbiased sampling within 

each sub-catchment (e.g. with regards distance to drains etc.). Flux measurements were 

made during a single campaign from the 24th to the 27th March, 2009 with static non-steady 

state chambers as described in Section 2.2.2 and using SF6 for leak detection. Briefly, fluxes 

were calculated from five consecutive samples, extracted from the chamber headspace 

over a mean (±SEM) total period of 87.8 (±1.07) minutes. The exact time between 

extractions was recorded and after GC analysis for CH4 and SF6, the slope of linear 

regression between CH4 concentration and time for each individual measurement was 

calculated. At the start of each measurement, CH4 was added to each chamber headspace 

to enable detection of CH4 oxidation and SF6 was also added to observe any leakage from 

the headspace during the measurement period. Each flux was calculated using an algorithm 

which was designed to (i) objectively remove any erroneous data time points from a single 

series, (ii) determine if leakage should be compensated for, and (iii) determine if a 

measurement should be entirely discarded. See Sections 2.2.2 and 2.2.3 for further details. 

Seasonal CH4 flux measurements made during 2009 (see Fig. 2.2) revealed March to be a 

period of relatively low net CH4 flux, so a second campaign part was undertaken in August 

2010, when measurements were repeated in a limited number of micro-sites in all sub-

catchments. Expectations that aerenchymous plants are important pathways for CH4 

emissions in wet locations (Greenup et al.  2000) and the observation that hydrological 

conditions at elevations below blocked drains are strongly effect by drain blocking at 

Vyrnwy (Wilson et al.  2010) meant that comparisons between blocked and unblocked sub-

catchments were only made at lower elevation sedge micro-sites. Fluxes were measured 

within 5 m of the first campaign, but did not use the exact same location. 



86 
 

Two final statistical comparisons were made: the first using all fluxes from the campaign in 

March 2009 and, after testing all groups for normality and homogeneity of variance, 

compared all three effects of drain blocking, elevation and vegetation. The second 

comparison was restricted to data obtained from lower elevation sedge sites during March 

2009 and August 2010 and used an appropriate test on the effect of drain blocking and 

season. 
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3.3 Results 

3.3.1 Environmental variables 

3.3.1.1 Water table 

Time plots of all environmental variables measured throughout the study period, from each 

site and each vegetation type, are shown in Fig. 3.3 to Fig. 3.15. There was no clear 

seasonal pattern for the manual (Fig. 3.3) or modelled (Fig. 3.4 to Fig. 3.6) measurements of 

water table but the shallowest manual measurements, which occurred during November 

2009, coincided with the largest amount of rainfall (Fig. 3.11). As expected, the modelled 

daily values of water table showed higher variability than monthly manual measurements. 

In addition, modelled values produced lower minimum values at most sites and vegetation 

types (Fig. 3.4 to Fig. 3.6). Due to the close proximity of the grass and Juncus vegetation 

types at the Eunant site, water table measurements for both vegetation types at this site 

were taken from the same series of piezometers. Water table measurements could not be 

made at any sites in January 2009 due to frozen conditions. 

The assumption of sphericity between monthly manual measurements was not testable 

due to insufficient degrees of freedom but assuming that sphericity was violated, degrees 

of freedom were adjusted (   = 0.2933). Results of a repeated measures ANOVA showed a 

significant effect of vegetation type (p = 0.012), a significant within-vegetation effect of 

sampling month on water table (p <0.001) but no interaction between vegetation type and 

time of sampling (p = 0.653). Post hoc testing within each month showed significant effects 

(p < 0.00385) of vegetation type on water table during December 2008 (between grass and 

sedge), April 2009 (between grass and heather, and between grass and sedge), June 2009 

(between grass and heather, and between grass and sedge) and November 2009 (between 

grass and sedge) as illustrated in Fig. 3.3.  
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Fig. 3.3 Mean (±SEM) depth to water table (cm) for four vegetation types, made at the 

same time as with each flux measurement from December 2008 to January 2010, n = 3. No 

measurements were possible in January 2009 due to frozen conditions. Within each 

sampling month, vegetation types with the same letters are not significantly different from 

each other (post hoc Duncan’s test with a Bonferroni correction at the p = 0.00385 level). 
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Fig. 3.4 Modelled and measured depth to water table (cm) from three vegetation types at the Eunant site from May 2008 to January 2010. The same actual 

measurements were used for both grass and Juncus vegetation types at this site. No measurements were possible in January 2009 due to frozen conditions. 
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Fig. 3.5 Modelled and measured depth to water table (cm) from four vegetation types at the Hafod site from May 2008 to January 2010. No measurements 

were possible in January 2009 due to frozen conditions. 
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Fig. 3.6 Modelled and measured depth to water table (cm) from four vegetation types at the Hirddu site from May 2008 to January 2010. No measurements 

were possible in January 2009 due to frozen conditions. 
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Fig. 3.7 Daily mean soil temperature (°C) measured at a 10 cm depth from four vegetation types at the Eunant site from May 2008 to January 2010. 
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Fig. 3.8 Daily mean soil temperature (°C) measured at a 10 cm depth from four vegetation types at the Hafod site from May 2008 to January 2010. 
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Fig. 3.9 Daily mean soil temperature (°C) measured at a 10 cm depth from four vegetation types at the Hirddu site from May 2008 to January 2010. 
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Fig. 3.10 Daily mean air temperature (°C) from the Eunant, Hafod and Hirddu sites during 

May 2008 to January 2010.  
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Fig. 3.11 Daily total rainfall (mm) from the Eunant, Hafod and Hirddu sites during May 2008 

to January 2010.  
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Fig. 3.12 Daily total PAR (mol m-2) from the Eunant, Hafod and Hirddu sites during May 

2008 to January 2010.  
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Fig. 3.13 Daily total solar radiation (MJ m-2) from the Eunant, Hafod and Hirddu sites during 

May 2008 to January 2010.  



 

99 
 

 

Fig. 3.14 Daily mean humidity (%) from the Eunant, Hafod and Hirddu sites during May 

2008 to January 2010.  
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Fig. 3.15 Daily total wind run (km) from the Eunant, Hafod and Hirddu sites during May 

2008 to January 2010. 
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3.3.1.2 Temperature 

Annual mean soil temperatures at all sites and vegetation types had similar seasonal 

patterns, diverging between vegetation types during winter months, particularly during 

periods such as February 2009 and January 2010 when snow was observed on the ground. 

Another noticeable divergence between soil temperatures occurred from March to June 

2009 at Eunant and Hafod when the Juncus soil temperature was warmer than all other 

vegetation types by around 1 °C. There was a significant difference between the 2009 

annual mean soil temperature of each vegetation type (ANOVA, p = 0.040), and a post hoc 

Duncan’s test showed that Juncus was significantly warmer than heather and sedge, but 

not grass (Fig. 3.16). Daily mean air temperatures from each site had very similar seasonal 

patterns to each other (Fig. 3.10) but differences existed between the annual mean air 

temperatures at each site; the annual mean air temperature during 2009 for Eunant, Hafod 

and Hirddu were 8.05 °C, 7.75 °C and 7.10 °C, respectively. 

3.3.1.3 Other environmental variables 

Daily total rainfall exhibited similar seasonal patterns at each site (Fig. 3.11); for all sites the 

driest period was during February 2009 and the wettest during November 2009. However, 

at 2398 mm, 1915 mm and 2151 mm for Eunant, Hafod and Hirddu, respectively, the total 

rainfall amounts during 2009 at each site varied considerably, the highest being 25% 

greater than the lowest. Both measures of radiation (daily total PAR and daily total solar 

radiation) had similar levels throughout the year at all sites with high variability during the 

summer, when low levels of radiation were still observed during some summer days (Fig. 

3.12 and Fig. 3.13). During 2009, total PAR was 5954 mol m-2, 6448 mol m-2 and 

5961 mol m-2 and total solar radiation was 2178 MJ m-2, 2571 MJ m-2 and 2351 MJ m-2 (or 

the yearly total solar radiation for 2009 was 604 kW h-1 m-2, 714 kW h-1 m-2, 652 kW h-1 m-2), 

for Eunant, Hafod and Hirddu, respectively. A less pronounced seasonal pattern of humidity 

existed at all sites as humidity only reduced below 80% between April and July (Fig. 3.14). 
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Fig. 3.16 Annual mean (± SEM) soil temperatures (°C) at a 10 cm depth from four vegetation 

types at all sites during 2009, n = 3. There was a significant effect of vegetation type on soil 

temperature (p = 0.040). Letters represent significant differences between vegetation 

types. 
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Annual mean values for each site during 2009 were 93.5% for Eunant, 91.7% for Hafod and 

93.4% for Hirddu. There was no strong seasonal pattern for wind run measurements from 

any site, although the windiest days occurred at each site between October and January in 

2008 and 2009 (Fig. 3.15). During 2009, the annual total wind run was 259720 km, 144175 

km and 162782 km (or a mean wind speed of 8.24 m s-1, 4.57 m s-1 and 5.16 m s-1) for 

Eunant, Hafod and Hirddu, respectively. This considerable variation showed the windiest 

site, Eunant, was 80% windier than the least windy site, Hafod. 

3.3.2 Multiple regression between CH4 flux and concurrent environmental variables 

In order to determine which environmental variables were controlling CH4 fluxes measured 

throughout 2009, a series of regression models between fluxes and environmental 

variables were separately constructed for data from each vegetation type (where models 

which used data from heather vegetation types are referred to as heather models) and for 

all data, regardless of vegetation type. The initial approach was to use all environmental 

variables measured at the same time as fluxes (known as concurrent measurements) as 

independent variables in multiple stepwise regression models. As the positive skew of the 

distribution of CH4 flux measurements suggested fluxes required transforming, separate 

models were constructed with untransformed and log10 transformed fluxes so that the 

effect of transformation could be identified. Results from models that used untransformed 

CH4 fluxes showed that water table, soil temperature, air temperature and humidity were 

the only significant (p<0.05) independent variables selected at any step of the model-

building process (Table 3.1). None of the eight independent variables could be significantly 

related to the CH4 flux in the grass model. Depth to water table (r2 = 0.141) was the only 

independent variable related to CH4 flux in the heather model. Water table was also the 

first independent variable selected for the Juncus model and had a larger r2 (0.244) than 

soil temperature (r2 = 0.079), which was the only other significant independent variable 

explaining CH4 flux. Water table was not significant at any step of the Sedge regression  
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Table 3.1 Results of multiple regressions between CH4 flux and concurrent measurements 

of environmental variables for all data and for data subsetted by vegetation type (heather, 

Juncus and sedge; see text). The dependent variable (CH4 flux) was either untransformed or 

log10 transformed. No significant regression models were produced for fluxes from grass 

vegetation. 

Step and 
parameters 

CH4 flux  Log10 (CH4 flux + 2.7) 

Heather Juncus Sedge All Heather Juncus Sedge All 

First step         
Independent 

variable 
Water 
table 

Water 
table 

Soil 
temp 

Soil 
temp 

Water 
table 

Water 
table 

Soil 
temp 

Water 
table 

β 0.049 -0.123 0.424 0.431 0.005 -0.013 0.031 -0.006 
r2 0.141 0.244 0.247 0.072 0.108 0.255 0.145 0.103 
p 0.019 0.001 0.001 0.001 0.042 0.001 0.017 <0.001 

Second step         
Independent 

variable 
 

Soil 
temp 

Humidity 
Water 
table 

  Humidity 
Soil 

temp 
β  0.244 0.079 -0.056   0.007 0.039 
r2  0.079 0.168 0.086   0.178 0.030 
p  0.047 0.003 <0.001   0.004 0.024 

Third step         
Independent 

variable 
   

Air 
temp 

   
Air 

temp 
β    -0.178    -0.021 
r2    0.049    0.070 
p    0.003    0.001 

Final model         
Intercept (β) -0.247 1.784 -7.809 0.317 0.404 0.779 -0.197 0.509 

r2 0.141 0.323 0.415 0.206 0.108 0.255 0.329 0.202 
p 0.019 0.001 <0.001 <0.001 0.042 0.001 0.001 <0.001 
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model, with soil temperature (r2 = 0.247) and humidity (r2 = 0.168) being the only significant 

independent variables. When all data were combined and used as the dependent variable 

in a single multiple regression model three environmental variables were significant: soil 

temperature (r2 = 0.072), water table (r2 = 0.078) and air temperature, which gave quite a 

weak final r2 value of 0.204. The Juncus and sedge regression models which contained a 

much wider range of flux values (see Fig. 2.2 and Fig. 2.4) also had the highest r2 values, 

with a maximum value of 0.415. In contrast, the grass and heather models with less 

variable fluxes produced lower r2 values (0.141) or, in the case of the grass model, no 

significant regressions at all. 

Table 3.1 also indicates that log10 transformation of fluxes did not have a consistent effect 

on r2 values (and increased significance) for the multiple regressions between CH4 fluxes 

and each environmental variable. The biggest change in regression due to logging the data 

occurred in the Juncus model as, despite an improvement of r2 value for water table, soil 

temperature was no longer significant when transformed fluxes were used. This resulted in 

a reduction of r2 for the final Juncus model from 0.323 to 0.255. The other notable impact 

of logging the data occurred in the model which used all data as the use of transformed 

fluxes, resulting in water table being the first selected independent variable, rather than 

soil temperature. Overall, final r2 values of all models were marginally lower (0.202 

compared to 0.206) when transformed flux data were used as dependent variables. The 

lack of improvement in final model r2 led to the decision to use untransformed fluxes in the 

remaining models. 

3.3.3 Single regression between CH4 flux and the running averages of environmental 

variables 

The next series of regression models used the running average of environmental variables 

over varying periods prior to the day of flux measurement as independent variables in 
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order to identify the influence of environmental conditions over varying periods of time. 

This included average values from the same day of flux measurement (day 0) increasing up 

to seasonal averages over the preceding 180 days before the day of flux measurement (day 

180). Single regression models were constructed for each environmental variable and the r2 

values produced by each regression model (that used running averages from 0 to 180 days) 

are shown on a single plot (see, for example, Fig. 3.17). Each plot shows all r2 values for 

each combination of dependent (all data, or subsetted by vegetation type) and 

independent (soil temperature, air temperature, PAR, solar radiation, humidity, wind 

speed, rainfall and water table) variables. Fig. 3.17 and Fig. 3.18 show that r2 values for all 

regressions increased to a greater or lesser extent when running averages were used as 

independent variables. As the period of running average prior to the day of flux 

measurement was extended, the r2 from models of most combinations of variables steadily 

increased to a peak, followed by a reduction in r2 value as the period of running average 

extended further. The progression in-to and out-of phase was most apparent for all 

measurements of temperature and radiation. The peak phase for soil temperature (a 

running average of between 32 and 74 days) was reached before air temperature (between 

85 and 93 days) or PAR and solar radiation (which both peaked between 134 and 158 days). 

The peak phase for humidity did not appear to have been reached within a running average 

period of 180 days. In contrast, r2 values from models which used water table appeared to 

decrease with the running average period, particularly for the heather models. 

3.3.4 Multiple regression of CH4 flux and the running averages of environmental 

variables 

The final series of regression-based models utilised the running averages of several 

environmental measurements together as independent variables in a series of multiple 

regression models to explain the measured CH4 flux data. Separate models were again 

constructed for fluxes from each vegetation type and for all data, regardless of vegetation  
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Fig. 3.17 Results (r2 values) from a series of regression models between CH4 fluxes of each 

vegetation type (dependent variable) and the running average of each environmental 

variable over 0 to 180 days prior to flux measurement (independent variable: soil 

temperature, air temperature, PAR and solar radiation). If significant, the most significant p 

value, and period of running average (day), are annotated on the plot.  



 

108 
 

 

Fig. 3.18 Results (r2 values) from a series of regression models between CH4 fluxes of each 

vegetation type (dependent variable) and the running average of each environmental 

variable over 0 to 180 days prior to flux measurement (independent variable: humidity, 

wind speed, rainfall and water table; see Fig. 3.17).  
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type. As discussed in Section 3.2.3, not all environmental variables were used but soil 

temperature, solar radiation and water table were chosen as independent. Specifically, soil 

temperature and solar radiation were chosen since they had shown to be more significantly 

related to CH4 than air temperature and PAR, respectively (Table 3.1 and Fig. 3.17) and 

water table is shown in other studies to be significantly related to CH4 flux (see, for 

example, Bubier et al.  2005). The use of running averages from just three environmental 

variables, varying over 0 to 180 days prior to the day of flux measurement, resulted in ca. 

six million possible regression models for each vegetation type which restricts how results 

can be presented. 

Results are shown here initially from models which use just two environmental variables: 

soil temperature and solar radiation. The results from all regression models for each 

vegetation type are shown on a single plot, with r2 values shown as a response variable to 

the change in running average period for both environmental variables (Fig. 3.19 to Fig. 

3.21). In order to show results clearly, r2 values are grouped into coloured classes, with blue 

indicating models with low r2 and red indicating models with relatively high r2 values. Any 

non-significant regression models are not included in any class, and are subsequently left 

blank on each plot. Results are first presented from each pair of environmental variables, 

specifically, soil temperature and solar radiation (Fig. 3.19), soil temperature and water 

table (Fig. 3.20), and solar radiation and water table (Fig. 3.21).  Results are then shown 

from models which use all three environmental variables. No results from attempts to 

explain heather fluxes are included in this section as all regression models were non-

significant. 

3.3.4.1 Soil temperature and solar radiation 

The use of running averages of soil temperature and solar radiation in the grass models 

(Fig. 3.19a) revealed that neither variables were significant in the same model, regardless of  
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Fig. 3.19 Results (r2, represented by response value) from a series of multiple regression 

models between CH4 flux (dependent variable) and the running average of soil temperature 

and solar radiation over 0 to 180 days prior to flux measurement. Blank response values 

represent non-significant models. Subsets of data from grass (a), Juncus (b) and (c) sedge 

and data from all vegetation types (d) are shown. Heather models using all combinations of 

running averages used in the heather models were non-significant.  
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Fig. 3.20 Results (r2, represented by response value) from a series of multiple regression 

models between CH4 flux (dependent variable) and the running average of soil temperature 

and depth to water table over 0 to 180 days prior to flux measurement (see Fig. 3.19).  
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Fig. 3.21 Results (r2, represented by response value) from a series of multiple regression 

models between CH4 flux (dependent variable) and the running average of depth to water 

table and solar radiation over 0 to 180 days prior to flux measurement (see Fig. 3.19).  
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the combination of running average periods used. Effectively, the straight vertical lines 

which peaked around 32 days and the straight horizontal lines which peaked around 134 

days were the same individual results produced for soil temperature and solar radiation in 

the series of single regression models (Fig. 3.17) and there is no additional explanation 

produced from combining these variables in a single model. In contrast, the results from 

the Juncus models (Fig. 3.19b) revealed a distinctive area of the plot, stretching diagonally 

between ca. 50 to 100 days for soil temperature and ca. 140 to 180 days for solar radiation, 

where r2 values show an interaction between soil temperature and solar radiation. The 

interaction is a result of both environmental variables being significant in all the regression 

models represented in this non-linear pattern. 

The absence of blank r2 values in the results from the sedge models (Fig. 3.19c) shows that 

all models were significant. In addition, two areas of interaction are visible: one between 

ca. 0 to 15 days for soil temperature and ca. 0 to 30 days for solar radiation, and the 

second, larger area between ca. 120 to 180 days for soil temperature and ca. 5 to 105 days 

for solar radiation. However, unlike the Juncus models, the highest r2 values from the sedge 

models (horizontal lines around 150 days) were no higher than from the series of single 

regression models (Fig. 3.19d). Results for models which used all data were very similar to 

those from the sedge models, with the exception that r2 values were considerably lower. 

3.3.4.2 Soil temperature and water table 

Water table was not significant in any of the grass models that used soil temperature and 

water table as independent variables. This resulted in the straight vertical lines and absence 

of interaction seen in Fig. 3.20a. In contrast, as soil temperature and water table were both 

significant in all Juncus models, there were no strict linear patterns in Fig. 3.20b, regardless 

of the combination of running averages used. The dominant pattern of straight vertical lines 

in Fig. 3.20c indicates that soil temperature was significant in all sedge models. However, 
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water table was also significant in a number of models when the running average of soil 

temperature was between 0 and 18 days. 

The results from this series of models which used data from all vegetation types show 

similar results to the Juncus models as soil temperature and water table were both 

significant in all models (Fig. 3.20d). The one notable difference, however, was a pattern of 

higher r2 values observed when the running average period for soil temperature and water 

table was ca. 30 to 75, and ca. 0 to 10 days, respectively. An interaction between soil 

temperature and water table was also not observed in this area for the grass or sedge 

models, either. Rather, this reflected the increased r2 values observed in the series of single 

regression models for heather that used running averages (Fig. 3.18). 

3.3.4.3 Water table and solar radiation 

As when used with soil temperature, water table was again not significant in any of the 

grass models that used water table and solar radiation as independent variables (Fig. 

3.21a). As before, the absence of strict linear patterns in Fig. 3.21b, indicates that both 

solar radiation and water table were significant in all Juncus models. Solar radiation was the 

only significant independent variable in most of the sedge models (see Fig. 3.21c). However 

exceptions to this occurred when (1) the models were not significant, as indicated by the 

blank r2 values when the running average period of solar radiation was less than 17 days; 

and (2) when water table was also significant, as indicated by a pattern of interaction 

between ca. 0 to 60 days for water table and 17 to ca. 90 days for solar radiation. 

Water table and solar radiation were both significant independent variables in all models 

which used data from all vegetation types (Fig. 3.21d). The results showed similar patterns 

to the results from the sedge models, and again showed an additional area of high r2 values 

when water table was less than ca 10 days. 
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3.3.4.4 Soil temperature, solar radiation and water table 

The following results are all from models which used the three variables soil temperature, 

solar radiation and water as independent variables, each represented by a running average 

over a period of between 0 (the day of the flux measurement) and 180 days (an average 

over the preceding 180 days prior to the flux measurement). Again, presentation of the 

resulting r2 from each of ca. 6 million different regression models is problematic and is also 

compounded by the problem of plotting all three of the contributing variables. This has 

been achieved by constructing plots which included r2 values from the running average of 

soil temperature on the x-axis, solar radiation on the y-axis and were repeated for each 

value (0 to 180 days) of water table along an unseen z-axis. All 181 plots for each running 

average of water table are not presented here; rather a selection of nine plots each 

representing a different running average periods of water table (see, for example, Fig. 3.22 

to Fig. 3.24). Each series of results were selected as those which best represented the 

changing patterns of regression model r2 throughout the entire range of running averages 

of water table. Water table was not significant in any of the grass models that used soil 

temperature, solar radiation and water table and are consequently not shown as they were 

identical to Fig. 3.19a. 

The series of results from the Juncus models (Fig. 3.22) retained some of the patterns 

produced when only soil temperature and solar radiation were used in each model (see Fig. 

3.19b). However, the inclusion of water table which was significant in all models removed 

the interaction, seen as a diagonal non-linear pattern, between soil temperature and solar 

radiation (Fig. 3.19b). As the running average period of water table was increased above 

day 0, r2 values around 150 days of radiation and 45 days of soil temperature decreased 

from their initial level to a minimum at day 17 (Fig. 3.22b). From day 17, r2 values across 

large areas of the plots increased consistently up to a maximum at day 170 (Fig. 3.22c to h). 

All three environmental variables were significant when the running average period of  
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Fig. 3.22 Results (r2, represented by response value) for Juncus vegetation from a series of 

multiple regression models between CH4 flux (dependent variable) and the running average 

measurements of soil temperature, solar radiation and depth to water table over 0 to 180 

days prior to the day of flux measurements. A series of results are shown (a to i) as the 

running average period of depth to water table changes from 0 days to 180 days.  
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Fig. 3.23 Results (r2, represented by response value) for sedge vegetation from a series of 

multiple regression models between CH4 flux (dependent variable) and the running average 

measurements of soil temperature, solar radiation and depth to water table over 0 to 180 

days prior to the day of flux measurements. A series of results are shown (a to i) as the 

running average period of depth to water table changes from 0 days to 180 days.  
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Fig. 3.24 Results (r2, represented by response value) for data from all vegetation types from 

a series of multiple regression models between CH4 flux (dependent variable) and the 

running average measurements of soil temperature, solar radiation and depth to water 

table over 0 to 180 days prior to the day of flux measurements. A series of results are 

shown (a to i) as the running average period of depth to water table changes from 0 days to 

180 days.  
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water table was 56 days and higher (Fig. 3.22e to i). This interaction between all three 

variables was centred on an area when the running average of soil temperature and solar 

radiation was ca. 180 and 45 days, respectively, as can be seen by the changing area of 

interaction in Fig. 3.22e to i. 

The series of results from the sedge models (Fig. 3.23) also showed similar patterns as the 

sedge models which only used soil temperature and solar radiation as independent 

variables (Fig. 3.19c). These features included high r2 values when the running average of 

solar radiation was around 150 days, and two areas of interaction. Water table was 

significant in a single area of the plots where the running average of soil temperature and 

solar radiation was ca. 0 to 15 and ca. 0 to 90 days, respectively. Consequently, this was the 

only area which contained an interaction between all three variables. Water table was 

significant in this area when its running average period was between 0 and 141 days and r2 

values increased and decreased over this period in a similar manner to the pattern seen 

when only soil temperature and water table were used (Fig. 3.20c). Specifically, areas of 

high r2 values were at their largest on days 2, 45 to 58, and around 112, but at their 

smallest on days 25 and 81. 

The series of results from models which used all vegetation types (Fig. 3.24) showed similar 

patterns to the corresponding regression models which did not include water table (Fig. 

3.19d). Water table was significant in all models, so patterns changed across wide areas of 

the plots as the running average period for the water table increased. However, changes in 

all areas followed a similar progression as the running average of water table increased. 

This included areas of high r2 values which were at their largest at day 3, reducing until day 

17, after which they steadily increased up to day 148. Whilst the general pattern of plots is 

similar to results from the sedge models (Fig. 3.23), the area of highest r2 values is in a 

similar location as that observed in the results from the Juncus models (Fig. 3.22). 
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3.3.5 Regression results summary 

By changing independent variables used in the model for each vegetation type it was 

possible to compare how different models produced the varying maximum r2 values and 

altered which environmental variables were significant (Table 3.2). The use of running 

averages in single regression models produced a varied response of maximum r2 dependent 

on which vegetation type was used. A positive effect was observed for grass and sedge, but 

a lower maximum r2 was produced for heather and Juncus. The subsequent use of running 

averages in multiple regression models meant that, with the exception of heather, final r2 

values were higher than when simply derived from the use concurrent measurements 

alone, but r2 values were never higher than 0.5. 

3.3.6 Impact of ditch blocking on CH4 flux 

Out of 300 individual flux measurements, 214 (71.3%) CH4 fluxes were accepted by the flux 

algorithm and all combinations of management technique, vegetation, elevation, and 

season (where season represents the different month and year that fluxes were measured) 

were represented. Measurements were averaged to produce a single measured CH4 flux for 

each combination of factors. The mean (±SEM) CH4 flux of heather sites in March 2009, 

regardless of other factors, was -0.132 (±0.079) mg CH4 m
-2 h-1, compared to -0.219 (±0.032) 

mg CH4 m-2 h-1 for heather vegetation during March of the seasonal study in 2009 (see 

Fig. 2.2). Similarly, the mean (±SEM) CH4 flux from/to sedge sites in March 2009 and August 

2010 were -0.0534 (±0.088) and 0.212 (±0.436) mg CH4 m
-2 h-1, respectively, compared to 

0.280 (±0.338) and 6.886 (±1.651) mg CH4 m-2 h-1 during March and August of the 2009 

seasonal study. 

The first analysis of data collected during March, 2009 (see Fig. 3.25) controlled for both 

vegetation and elevation and showed that ditch blocking did not appear to have a 

significant effect on CH4 fluxes (Friedman’s ANOVA, p = 0.827). The test was repeated twice 
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Table 3.2 Maximum r2 values achieved from each approach used in the regression 

modelling between CH4 flux and environmental variables for data from each vegetation 

type, and all data combined. Approaches used (i) concurrent environmental variables in 

multiple regressions, (ii) running averages of environmental variables in periods varying 

from 0 to 180 days prior to the day of flux measurement in single regression models, and 

(iii) running averages of soil temperature, solar radiation and water table (from 0 to 180 

days) in multiple regressions. Results that were not significant are indicated by n/s. 

Vegetation 
type 

 Environmental variables input 

 
Multiple 

concurrent 
 

Single 
running average 

 
Multiple 

running average 

Grass n/s 
Soil temp. (32 days); 

0.118 
Soil temp. (32 days); 

0.118 

Heather 
Water table; 

0.141 
n/s n/s 

Juncus 
Water table & 

soil temp.; 
0.323 

Humidity (180 days); 
0.307 

Water table (170 days) & 
solar radiation (47 days) & 

soil temp. (180 days); 
0.390 

Sedge 
Soil temp. & 

humidity; 
0.415 

Solar radiation (156 days); 
0.446 

Soil temp. (0 days) & 
solar radiation (0 days) & 

water table (58 days); 
0.493 

All 

Soil temp & 
water table & 

air temp.; 
0.206 

Humidity (180 days); 
0.168 

Soil temp. (180 days) & 
solar radiation (50 days) & 

water table (148 days); 
0.221 
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Fig. 3.25 Mean (±SEM) CH4 flux (mg CH4 m-2 h-1) of different management techniques 

(blocked and unblocked drains), vegetation (heather and sedge) and elevation (lower (470-

475 m.a.s.l.) and upper (520 - 525 m.a.s.l.)). After controlling for vegetation and elevation, 

management technique did not have a significant effect on CH4 fluxes (Friedman’s ANOVA, 


2(1) = 0.05, p = 0.827), n = 3. 
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to separately examine the effect of vegetation, whilst controlling for elevation and ditch 

blocking, and the effect of elevation, whilst controlling for vegetation and ditch blocking. 

Results showed no significant effect of either vegetation (p = 0.663) or elevation (p = 0.190) 

on CH4 fluxes. 

The final analyses of data focused on the sedge vegetation at lower elevations only, but 

included CH4 measurements from March 2009 and August 2010 (see Fig. 3.26). After 

controlling for season and vegetation, ditch blocking did not appear to have a significant 

effect on CH4 fluxes (Friedman’s ANOVA, p = 0.758). When this test was repeated, but 

controlling for ditch blocking, there was also no significant effect of season on CH4 fluxes 

(p = 0.355). 
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Fig. 3.26 Mean (±SEM) CH4 flux (mg CH4 m-2 h-1) of different management techniques 

(blocked and unblocked drains), and season (March 2009 and August 2010). After 

controlling for season and vegetation, management technique did not have a significant 

effect on CH4 fluxes (Friedman’s ANOVA, 2(1) = 0.09, p = 0.758), n = 3. 
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3.4 Discussion 

3.4.1 Environmental conditions 

With average air temperature of 8.05 °C, 7.75 °C and 7.10 °C, respectively, the Eunant, 

Hafod and Hirddu sites were all warmer during 2009 than the average air temperature 

during 1961-1990 at a location with a similar elevation less than 4 km from all sites (Afon 

Eiddew; see Fig. 2.1), which was 6.4 °C (Freitag et al.  2010). In addition, all sites received 

more rainfall during 2009 than the average during 1961-1990 (also at Afon Eiddew), which 

was 1501 mm (Freitag et al.  2010); the Eunant site received 2398 mm, which was also 

considerably more than the amount received at both the Hafod (1915 mm) and Hirddu 

(2151 mm) sites. During 2009, the Eunant site was also much windier (259720 km; total 

wind run see Section 3.2.2) than either Hafod (144175 km) or Hirddu (162782 km), a 

difference which was most likely a result of its higher elevation of 546 m, compared to 473 

and 508 m for Hafod and Hirddu, and closer proximity to the steep-sided valleys to the west 

of the study site (Fig. 2.1). Comparison between vegetation types showed that soils at 

Juncus sites were significantly warmer than heather and sedge sites during 2009, and that 

water table was significantly deeper from the surface at grass sites than at heather and 

sedge (Fig. 3.3). 

The considerable differences in environmental conditions between meteorological stations, 

which were a maximum of 4 km apart, and significant differences between vegetation 

types, which were a maximum of 40 m apart but generally about 10 m apart at each site, 

demonstrates the small-scale variation which existed in this heterogeneous site. Similar 

studies of peatlands also provide evidence of significant small-scale heterogeneity in 

environmental conditions such as soil temperature and water table (McNamara et al.  2008; 

Dinsmore et al.  2009a). Temperature (for example, see Christensen et al.  2003) and water 

table (for example, see Bubier et al.  1993) have been shown to be important controls of 
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CH4 fluxes in peatlands but small-scale spatial variations of environmental conditions are 

typically neglected in studies of CH4 fluxes made at a large spatial scale (such as Walter et 

al.  2001a; Bloom et al.  2010b). The impact of ignoring small-scale variation has the 

potential to miss relatively high proportions of overall flux as they may occur in spatially 

limited (Saarnio et al.  1997; Becker et al.  2008; Schrier-Uijl et al.  2010; Teh et al.  2011) or 

temporally limited points (Mastepanov et al.  2008). Walter et al. (2001b) tested the impact 

of ignoring microtopographical variations in water table across wetlands in a 1° by 1° grid 

cell, a variation they suggest is linked to differences in elevation and vegetation coverage. 

The inclusion of a simple assumption, that 10% of the wetland area in each cell is 

permanently flooded, 30% is permanently dry enough to stop all CH4 emissions and 60% 

has the cell’s mean water table, appears to improve CH4 flux predictions in northerly 

latitudes and indicates that the a priori assumption that water table is constant at such 

large scales reduces the ability of such models to accurately predict CH4 fluxes. 

3.4.2 Environmental controls on CH4 fluxes 

Concurrent soil temperature or water table were found to be significant controllers of CH4 

fluxes from all vegetation types except grass (Table 3.1). This result is well supported by a 

large variety of studies which also found CH4 fluxes to be controlled by soil temperature 

and water table at sites in the UK (for example, see McNamara et al.  2008; or Dinsmore et 

al.  2009a), Scandinavia (for example, see Christensen et al.  2003), Siberia (for example, 

see Sachs et al.  2010) and North America (for example, see Bubier et al.  1993; or Bellisario 

et al.  1999). However, the relationship between fluxes from heather sites and depth to 

water table in the current study was positive, i.e. when the water table was deeper, net CH4 

fluxes were higher. This result was unexpected as it is not predicted by existing acrotelm-

catotelm models of net CH4 flux which suggest that a soil profile that contains a greater 

aerobic proportion will reduce methanogenesis and increase methanotrophy (Clymo and 

Pearce, 1995; Le Mer and Roger, 2001). Surprisingly, a similar relationship also has been 
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reported in a number of other studies in the UK uplands (McNamara et al.  2008; Dinsmore 

et al.  2009a), at other peatland systems in Scandinavia (Kettunen et al.  1996; Nykanen et 

al.  1998), Siberian tundra (Sachs et al.  2010), and North American bogs (Bellisario et al.  

1999) and fens (Strack et al.  2004; Treat et al.  2007). In addition, similar relationships have 

been found at restored peatland sites (Marinier et al.  2004) and during a lab-based 

manipulation of samples, Moore and Roulet (1993) found that fluxes initially increased 

during 10 days of water table lowering. Perhaps because observed relationships are weak 

or because this unexpected relationship between water table and CH4 fluxes departs from 

such a strong paradigm, it is often not fully acknowledged or discussed, even when 

apparent from published data. For example, Dinsmore et al. (2009a) disregarded this aspect 

of their multiple regression which contributed to a high r2 of 0.80 but contended that 

maximum CH4 emissions were associated with water table being closest to the surface 

because this ‘often occured’. The weak positive association between water table and CH4 

fluxes (r2 = 0.08) observed by McNamara et al. (2008) when analysing weekly 

measurements was not discussed, rather an association between wet locations and high 

CH4 emissions was identified (their Fig. 1 and Fig. 4) when comparing fluxes from a variety 

of locations. Similarly, Bellisario et al. (1999) only discussed the expected relationship 

between water table and CH4 flux which was apparent when ‘a wide range of peatlands’ 

were considered, and not the positive association between water table and CH4 flux that 

was identified (r2 of 0.22). One explanation for the unexpected but frequently observed 

relationship between water table and CH4 fluxes at the heather sites is provided by Strack 

et al. (2004) and Sachs et al. (2010) who suggest that when water levels are above the 

surface they either act as a restriction on substrate supply, due to lower productivity, to the 

system or as a barrier to some of the pathways of CH4 emission from soils. Alternatively, 

several studies (Nykanen et al.  1998; Marinier et al.  2004; Treat et al.  2007) identified an 

increasing depth to water table to be responsible for increased CH4 emissions. The water 



 

128 
 

table observed by Marinier et al. (2004), which was more than 25 cm below the surface for 

roughly half their sampling period, and the ‘disturbed nature’ of the field site were 

suggested for their observation of the unexpected relationship between CH4 fluxes and 

water table. Treat et al. (2007) and Nykanen et al. (1998) suggested that a deepening water 

table may cause a release of previously stored CH4. The heather sites in the current study 

had relatively shallow depths to water table but very rarely moved above the soil surface at 

any site (Fig. 3.3 to Fig. 3.6) so these hypotheses are not well supported by the current 

study. 

An alternative hypothesis is provided by Kettunen et al. (1996) who, after analysing CH4 

fluxes from a Finnish minerotrophic fen and environmental conditions over 14 days prior to 

the day of flux measurement, were able to identify the hysteresis of CH4 flux following 

changes in water table which they suggested may be because ‘a rise in water table is 

followed by a lowering of the water table’. The results of this study show that, in contrast 

to regression models which used concurrent water table measurements, all multiple 

regression models with significant running averages of water table always displayed a 

negative relationship (Fig. 3.20 to Fig. 3.24): when the water table was closer to the soil 

surface, net CH4 fluxes were higher. As running averages represented conditions prior to 

the day of flux measurement, this study supports the suggestion that the response of CH4 

fluxes to water table is delayed. Further evidence for the hysteresis of CH4 fluxes in 

response to water table at Lake Vyrnwy comes from a parallel fully replicated manipulation 

of peat monoliths extracted from the same site (Lukac et al. personal communication) 

which showed a clear delayed response of CH4 fluxes four months after lowering the water 

table. 

The potential impact of using concurrent measurements of controlling variables to model 

an output from a hysteretic system is shown in Fig. 3.27. If a CH4 flux displays an immediate  
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Fig. 3.27 A generalised relationship between CH4 flux and water and the influence of 

hysteresis and limited sampling period on regression analysis. The response of CH4 flux (b) 

to changing water table (a) can be immediate (          ) or delayed (          ). The comparison of 

CH4 flux and water table (c) shows that an immediate response () produces a strong 

expected relationship (         , r2 = 1.00) between water table and CH4 flux, whereas a 

delayed response () produces either a weak relationship when the full sampling period is 

used (          , r2 = 0.07), or a strong inverse relationship when the sampling period is limited  

(           , r2 = 0.99).  
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response to a changing water table (Fig. 3.27b), an idealised regression model between 

these variables would clearly produce an expected strong relationship (see ‘Immediate 

response, r2 = 1.00’ in Fig. 3.27c), i.e. when the water table is near to the surface, CH4 fluxes 

are high. Without changing the underlying magnitude or direction of the response, the 

inclusion of a delayed response of the CH4 flux to water table drastically alters this apparent 

relationship. A further regression model shows the resulting relationship can become very 

weak (see ‘Delayed response full, r2 = 0.07’ in Fig. 3.27c) or, if the sampling period is limited, 

can become a strong negative relationship (see ‘Delayed response limited, r2 =0.99’ in Fig. 

3.27c) which is actually the reverse of the real effect of water table. The hysteresis 

displayed in this model may explain the unexpected significant relationships between CH4 

flux and water table seen in a number of studies, particularly those where sampling was 

temporally limited (Bellisario et al.  1999; Marinier et al.  2004; McNamara et al.  2008; 

Sachs et al.  2010). 

3.4.3 Impact of environmental conditions prior to day of flux measurement 

As indicated from the results of regression models using running averages of temperature 

and radiation (Fig. 3.17), there appeared to be a strong hysteresis effect between CH4 fluxes 

and changing temperature and radiation. The progression ‘in to’ and ‘out of’ phase, as the 

running average period was extended prior to the day of flux measurement, showed that 

preceding environmental conditions apparently exerted greater control on CH4 fluxes than 

concurrent conditions. Of the studies which identified the influence of preceding conditions 

on CH4 fluxes (for example, see Moore and Roulet, 1993; or Kettunen et al.  1996) many 

found a delayed response of CH4 fluxes to changes in water table which ranged from 7 days 

(Jerman et al.  2009) to 4 months (Lukac et al. personal communication).  The only 

published field-based study that identifies hysteresis of CH4 fluxes in response to 

temperature appears to be from Song et al. (2003) who note a delayed response of around 

one month, but they did not comment on the significance of soil temperature in controlling 
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the flux. Additional evidence that hysteresis of CH4 fluxes in response to changing 

temperature was provided by Updegraff et al. (1998) who assessed the influence of thermal 

history on CH4 fluxes. Their short-term incubations of peat samples collected from a variety 

of wetlands showed clear hysteresis and also suggested that the strength of hysteresis of 

CH4 emission varied according to availability of substrate. Combined with the generally 

weak relationship between CH4 fluxes and environmental variables seen at heather sites in 

the current study, this may explain why no hysteresis is seen at sites dominated by slow 

growing vegetation (Smith and Forrest, 1978; Wallen, 1987) . 

The combination of running average measurements from soil temperature, solar radiation 

and water table in multiple regression models revealed complex patterns of control of CH4 

fluxes for Juncus and sedge sites. Hysteresis of CH4 fluxes from Juncus and sedge dominated 

sites was evident in response to changing environmental conditions over both short and 

long time scales. The timing of the response varied for each vegetation type; sites 

dominated by Juncus responded to changes over a 60 day period prior to measurement for 

solar radiation and 180 days previously for soil temperature and water table (see Fig. 3.22), 

but sites dominated by sedge responded to changes that occurred immediately prior (soil 

temperature and solar radiation) and around 60 days previously (water table, see Fig. 3.23). 

The existence of two periods of control on CH4 fluxes is directly supported by a study which 

manipulated levels of radiation and water table experienced by mesocosms extracted from 

bog and fen sites in North America (Updegraff et al.  2001). Short term CH4 flux had a strong 

significant relationship (r2 between 0.54 and 0.65) with short term productivity of the 

mesocosms, which was not evident in longer-term comparisons. These authors suggested 

that root exudates controlled CH4 fluxes over a short time scale but this relationship was 

reduced at longer time scales because of the influence of other plant litter inputs. 
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The hysteresis of CH4 fluxes to changes in environmental conditions can be explained by a 

variety of hypotheses which, as they are not mutually exclusive, may combine to produce 

multiple hysteresis effects, as seen in the current study. Hypotheses include (i) delayed 

substrate provision, either due to the importance of root death in providing substrate for 

CH4 production (Updegraff et al.  2001) or due to population dynamics of separate 

populations which are responsible for each processes leading to the terminal step of CH4 

emission or oxidation (Jerman et al.  2009); (ii) acclimation to conditions by the 

methanotroph or methanogen populations (Blodau and Moore, 2003a); and (iii) storage of 

CH4 in soil which delays the exchange with the atmosphere (Moore and Dalva, 1993; Strack 

and Waddington, 2008). The hypotheses which best explain the hysteresis seen in the 

current study must account for the differing periods of hysteresis seen at sites with 

different vegetation. This suggests an abiotic factor such as an extended mean residence 

time of CH4 in soil is less likely, but that temporal variation in substrate provision from 

different plant communities may result in different levels of carbon input (Smith and 

Forrest, 1978; Wallen, 1987) and different speeds of decomposition of plant litter seen in 

similar blanket bogs (Heal et al.  1978; Latter et al.  1998). Alternatively, differences in 

functional genes for methanogenesis and methanotrophy which were significantly 

associated with net CH4 flux at the Lake Vyrnwy site (Freitag et al.  2010) showed that 

differences in microbial activity occurred at small spatial scales which may affect the ability 

of the methanotroph and methangen population to acclimatise to changing conditions. 

3.4.4 Sampling strategy and the analysis of environmental controls on CH4 fluxes 

The sampling of CH4 fluxes in this study incorporated seasonal variation across 14 months, 

and spatial variation which was stratified by vegetation type. The range of variation in CH4 

fluxes explained by environmental variables in this regression analysis (11.8% to 49.3%, see 

Table 3.2) are at the lower half of values from similar studies at other peatland sites (for 

example, see Saarnio et al.  1997; or Dinsmore et al.  2009a) which range from 17% (Laine 
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et al.  2007) to 98% (Fowler et al.  1995a). Of the studies at other sites, those which used 

measurements taken in a variety of conditions throughout the year appear to produce 

results with lower r2. This includes Ward et al. (2007) who sampled over 15 months and 

explained 23.5% to 36.5% of variation in CH4 fluxes and Laine et al. (2007) who sampled 

over 14 months and produced 21 models for each plot resulting in a wide range of 

explained variation (17% to 87%). In contrast, studies which have explained higher 

proportions of variation tend to be those which were limited to a period of one month or 

less (such as Fowler et al.  1995a who explained 98% of variation), or those which combine 

all temporal variation of fluxes to a single seasonal value (such as Bubier et al.  2005 who 

explained 60% to 94%). The delayed response to environmental conditions observed in the 

current study provides one suggestion as to why analyses of data sets with greater 

temporal variation explain a limited proportion of variation. Specifically, as all stages of a 

seasonal cycle are included in the analysis, hysteresis of CH4 fluxes in response to 

environmental conditions caused the relationship between CH4 fluxes and concurrent 

environmental conditions to deteriorate. To test the influence of using limited temporal 

variation, a further regression analysis was undertaken following the same methods as the 

multiple regressions between CH4 fluxes and concurrent environmental variables (see 

Section 3.2.3.1). Single seasonal averages for 2009 of CH4 flux and environmental conditions 

were used as model inputs in order to remove all temporal variations. There were no 

significant relationships between CH4 fluxes and any environmental variables for fluxes 

from grass sites, but very high proportions (>99%) of variation in fluxes from heather, 

Juncus and sedge sites were explained by air temperature, rainfall and humidity, 

respectively. These results suggest that most unexplained variation in CH4 fluxes at Vyrnwy 

was due to temporal, rather than spatial variation. 
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3.4.5 Impact of ditch blocking on CH4 flux 

The blocking of drains has been shown to produce a gradual recovery of hydrological 

conditions of the blanket bog at Lake Vyrnwy. For example, depth to water table was 

reduced ca. 2 cm downslope of blocked drains and, unlike unblocked locations, depth to 

water table responded strongly to rainfall in blocked sub-catchments (Wilson et al.  2010). 

As water table is a commonly identified controller of net CH4 flux from a variety of wetlands 

(Bubier et al.  1993, inter alia) this change in management practice can also be expected to 

influence the balance between CH4 production and oxidation as the size of the anoxic and 

oxic zones of the soil column is altered (see Le Mer and Roger, 2001). 

As well as accounting for other putative controls of CH4 flux, the spatial stratification of a 

landscape has been shown to dramatically improve landscape estimates of CH4 flux by 

Schrier-Uijl et al. (2010) who used chambers with a measurement area of 0.072 m2 to 

estimate the CH4 flux from an area within the footprint of an Eddy Covariance (EC) system. 

Without stratification, the estimate from the chamber measurements was more than 55% 

lower than the EC-derived estimate (which was assumed to be an accurate integrated 

measurement from the entire area), whereas with stratification there was only a 13% 

difference between the methods. Stratification, however, does not always result in 

comparable results from different scales of measurement as shown by Teh et al. 

(2011)whose discrepancies between EC and chamber measurement were due to the 

heterogeneous landscape in which measurements were made. Despite stratifying 

measurements by vegetation and elevation there was still no measured significant effect of 

drain blocking on CH4 fluxes at Lake Vyrnwy. 

Placing this result in the context of published studies is not straight-forward; whilst direct 

manipulations of the water table in extracted samples have been relatively common and 

shown to significantly affect CH4 fluxes (e.g. Daulat and Clymo, 1998; Urbanova et al.  
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2011), the number of in situ comparisons between drainage treatments in wetlands is 

limited. Furthermore, results from tests of the effect of wetland drainage or restoration are 

not always clear as the low number of replicates in field manipulations often prevents any 

statistical comparison between treatments (e.g. Hughes et al.  1999; Fenner et al.  2011). In 

addition, pseudoreplication of sampling (sensu Hurlbert, 1984) may only show significant 

differences between sites, rather than clearly identify the effect of any treatment (e.g. 

Nykanen et al.  1995; Strack and Waddington, 2007). Nykanen et al. (1998) compared a 

total of 25 drained and natural wetlands in Finland and found a strong effect of drainage on 

CH4 fluxes (p<0.001) in nutrient poor sites (ombrogenous bogs). However, the drained sites 

had also been used for forestry for between 30 and 50 years so it is not clear whether 

differences in CH4 fluxes were only a result of hydrological changes or due to other 

observed changes including soil structure, pH, air temperature, microform and vegetation. 

Whilst the study at Lake Vyrnwy was made within a balanced, independent, manipulated 

design at a landscape scale, there was no apparent response of CH4 flux to the blocking of 

drains. Given the strong response of CH4 flux to water table manipulations in mesocosm 

experiments (Daulat and Clymo, 1998 inter alia), the absence of response was unexpected. 

This may be attributed to several reasons: (i) high spatial variability in the response of 

hydrological conditions to drain blocking; (ii) the length of time which a landscape responds 

to a change in hydrological regime; (iii) a lack of statistical power of the current study, 

which only had three replicates; (iv) the absence of response to the initial changes in 

hydrological regime when drains were first constructed at the site; and/or (v) underlying 

geomorpholigical status of the site which means water table is robust to drain blocking. 

Wilson et al. (2010) and Kelly (2008) observed significant changes in water table depth in 

blocked sub-catchments at Lake Vyrnwy within the same timescale as the current study but 

sampling in both of those studies was concentrated around drains. In contrast, sampling in 

this study was arbitrarily made within each combination of factors (elevation, vegetation 
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and drainage treatment) but not focused specifically around drains. As no significant 

difference in water table measurements between blocked and unblocked was observed 

(after controlling for vegetation and elevation; Friedman’s ANOVA, p = 0.274), a 

heterogeneous spatial response of hydrological conditions to drain blocking is one possible 

contributing factor. Further landscape scale manipulations which include more replicates, 

or further stratification of sampling to account for spatial heterogeneity within each 

replicate, would better reveal the response of CH4 flux to drain blocking. 

3.4.6 Summary 

Soil temperature and water table were the environmental variables which were most 

consistently associated with CH4 fluxes, however, the relationship between fluxes and 

water table did not always control CH4 fluxes in an expected manner. At some sites CH4 

emissions were lower when the water table was closer to the surface, a result which 

contradicted the acrotelm-catotelm model of CH4 flux, but may be explained by the 

hysteresis of fluxes in response to changing water table. Strong hysteresis of CH4 fluxes was 

also apparent in response to temperature and radiation. A replicated landscape-scale 

experiment of water table manipulation was expected to cause changes in CH4 flux but, 

despite controlling for other aspects of spatial variation, no significant effect on CH4 fluxes 

was observed. 
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Chapter 4 The effect of temporal and spatial biases of 

measurement methods on apparent CH4 flux 

4.1 Introduction 

Blanket bogs in the UK Uplands are heterogeneous landscapes due to a combination of 

natural and anthropogenic factors. For example, spatial variation in vegetation (see Section 

2.3.2 and Fig. 2.7), hydrology (Wilson et al.  2010 who examined the effect of different 

hydrological management practices), and climate (see Section 3.3.1) at the blanket bog 

around Lake Vyrnwy occur at a variety of different scales. One specific example is the high 

level of microclimate variation reported by Suggitt et al. (2011). 

In addition to this marked spatial variation, temporal variations in environmental conditions 

such as temperature, PAR and depth to water table also occurs, with both diurnal and 

annual cycles (Fig. 3.3 to Fig. 3.15). CH4 flux has been observed to be controlled by some of 

these dynamic features at Lake Vyrnwy with depth to water table and soil temperature 

being the most consistent (see Section 3.3.2). Other studies report similar and additional 

control by all of these features at other wetland sites such as vegetation (Dinsmore et al.  

2009a), hydrology (Bubier et al.  2005), air temperature, soil temperature and PAR (Ward et 

al.  2007). The heterogeneous nature of these controllers of CH4 flux contributes to the 

complex and varied patterns of CH4 fluxes observed in many in situ wetland studies (inter 

alia Waddington and Roulet, 1996). 

In addition to the inherent variability in CH4 fluxes, additional variation in estimates can be 

expected as a result of biases in sampling methods. The commonly used method of manual 

chamber is always limited to the times at which field sites are visited. In some cases this 

means temporal series of measurements are always made at the same time of day (Fenner 

et al.  2011), but in most studies measurements are limited to daylight hours only (Section 

2.2.2, e.g. Alm et al.  1999). If a CH4 flux displays no temporal variation, then time restricted 
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measurements would still be representative of longer time periods. Conversely, consistent 

diurnal cycles of CH4 fluxes combined with biased sampling towards a particular time of day 

could lead to important systematic measurement bias. 

Diurnal variations of CH4 flux from wetlands may occur for several reasons. Direct factors 

include the control of rates of methanogenesis, and to a lesser extent rates of 

methanotrophy (King and Adamsen, 1992), as a result of diurnal variations in soil 

temperature, which themselves may display a delayed response to diurnal patterns of air 

temperature (see Fig. 5 in Laine et al.  2007). Indirect factors may include any diurnal 

variations in the temporal functions of plants as providers of substrate for methanogenesis, 

and/or as pathways for the transport of CH4 from the sub-soil to the atmosphere through 

aerenchymous tissue. Substrate provision by plants, whether via carbohydrates used for 

acetotrophy or CO2 used for CO2 reduction, is an important control of CH4 flux (Le Mer and 

Roger, 2001). The association between substrate supply and microbial methanogenesis is 

well established (Whiting and Chanton, 1993), yet the understanding of the speed of 

response of CH4 fluxes to newly introduced carbon substrate is less clear. For example, King 

et al. (2002) observed that atmospheric CO2 was assimilated by wetland plants, discharged 

as a substrate for methanogenesis to microbial populations in the soil, and re-emitted back 

to the atmosphere as CH4 within two hours. This is in marked contrast to a study by 

Joabsson et al. (1999) who didn’t see any significant reduction in CH4 flux until after 34 days 

of shading treatment to the above ground vegetation. The function of aerenchymous tissue 

as a CH4 conduit is complicated as, dependent on the wetland plant species involved, two 

processes may be occurring (Section 4.1.4 in Lambers et al.  1998). The first, diffusion, is a 

result of the CH4 concentration gradient between the soil and atmosphere and does not 

vary greatly with diurnal changes in temperature (Chanton, 2005). In contrast, the second, 

an active gas flow system, is produced by internal pressure gradients, or humidity 

differentials, and is a result of diurnal cycles of insolation (Chanton et al.  1993). 
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As a result of the combined influence of all these factors, diurnal measurements of CH4 flux 

at different peatland sites have produced diverse results. For example, studies have either 

shown the absence of diurnal variation (Greenup et al.  2000) or CH4 fluxes which peak 

during hours of daylight (Fowler et al.  1995b) or darkness (Laine et al.  2007). At our 

current state of knowledge, without direct measurements, the diurnal patterns of CH4 flux 

at a particular study site cannot be predicted, and any estimation of resulting measurement 

bias, is not possible. 

In addition to the method of chamber deployment, chamber designs are equally important 

in generating possible systematic measurement biases and have been studied extensively. 

For example, by creating a controlled spatially homogeneous efflux of CO2 through an 

artificial mineral soil (of quartz sand), Pumpanen et al. (2004) were able to compare fluxes 

from a variety of chamber designs against a known reference flux. They were able to 

examine a number of features of chamber design, including the influence of internal fans, 

vents, collars, air flow-through and saturation of the headspace during measurements. One 

feature of chamber design that was not examined, and is rarely examined in other 

published studies, is the effect of enclosing different sized areas or “footprints” within a 

chamber. As for temporal variation, if a CH4 flux displays no spatial variation, then spatially 

limited measurements such as those made with a small chamber, would be representative 

of larger areas. However, in reality CH4 fluxes are highly spatially variable and, as a result, a 

limited chamber size may lead to systematic measurement bias depending on the inherent 

scale (or "grain" sensu Dungan et al.  2002) of any spatial heterogeneity. Specifically, as a 

balance of the microbial production and oxidation of CH4, net CH4 fluxes ultimately occur at 

a microbial scale (Le Mer and Roger, 2001). Net CH4 fluxes are also influenced by proximal 

processes, such as the aerenchymous transport of CH4 from the catotelm (Clymo and 

Pearce, 1995) to the atmosphere, which also vary at small scales. For example, artificial 

conduits which replicated the role of aerenchymous tissue as a pathway for CH4 efflux, 
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were found to be just 1 mm in diameter (Greenup et al.  2000). Even the smallest sized 

sampling methods, such as the 10 cm diameter chambers used by Hughes et al. (1999), 

integrate all this small-scale variation into a single CH4 flux measurement. 

An untested assumption of making multiple flux measurements in a spatially 

heterogeneous landscape is that the use of chambers which enclose smaller areas will 

produce estimates with larger variances (Davidson et al.  2002; Denmead, 2008). However, 

comparisons between methods which measure fluxes from different sized areas are 

typically also made using different methodologies and, frequently, with different ways of 

spatially extrapolating the estimates (see Prieme et al.  1996; Riutta et al.  2007). This 

means the direct impact on flux estimates of “footprint size” is rarely directly examined. 

Potential effects of “footprint size” include the ratio of chamber edge to chamber area. For 

example, a relatively large chamber edge may affect the relative bias of soil disturbance, 

including root severance (Heinemeyer et al.  2011), and leakage of headspace 

concentration (Tingey et al.  2000). The method followed by Czobel et al. (2005), who used 

a series of chambers enclosing different sized areas (between 0.004 and 4.5 m2), did enable 

an assessment of chamber area, but they did not directly test for the effect of area. 

However, their results indicate that the smallest chambers not only had the highest 

variation, but also the largest net uptake of CO2. Whilst conforming to predictions that 

spatially heterogeneous fluxes combined with small chambers will increase variability, it is 

not clear how smaller chambers may result in increased photosynthesis, but respiration 

may be reduced as a result of root severance (Heinemeyer et al.  2011). Although some 

work has been carried out on CO2 fluxes, any such effect on CH4 fluxes are yet to be 

identified. The inherent variability and the spatial and temporal limitations of sampling 

methods contribute to the high variability of CH4 flux estimates, such as the coefficient of 

variation of between 30 - 100% found by Prieme et al. (1996). One consequence of such 

high variability may be the difficulty in adequately identifying the controls of CH4 fluxes. For 
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example, a regression model between CH4 fluxes and environmental variables constructed 

for a site in Finland (Saarnio et al.  1997) did not significantly explained CH4 fluxes measured 

at the same site several years later (Becker et al.  2008). 

In the study presented here, a series of experiments examined specific questions relating to 

the temporal and spatial variability of CH4 fluxes at the blanket bog around Lake Vyrnwy. 

Specifically, in order to identify any diurnal cycle and any resulting bias in the 

measurements limited to daylight hours in Chapters 2 and 3, the hypothesis that CH4 fluxes 

significantly differed between day and night was tested for areas dominated by different 

vegetation types and during different times of the year. In addition, in order to assess the 

effect of using chambers of limited sizes in a heterogeneous landscape, the hypothesis that 

apparent CH4 flux was significantly altered by the size of chamber used to measure was also 

tested. 

.  
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4.2 Materials and methods 

4.2.1 Comparison of diurnal CH4 fluxes using continuous measurement system 

4.2.1.1 Study site description 

All measurements were made at a single site in the upland blanket bog around Lake 

Vyrnwy, North Wales (see Section 2.2.1), and located 40 m from the Hirddu meteorological 

station on a ridge to the south of the Hirddu Fawr stream (Fig. 2.1). The site included 

discrete patches of vegetation, each dominated by grass, heather, Juncus or sedge (see 

Section 2.1 for details) and was the location for flux measurements during two 

measurement campaigns: the first was during May 2010 and the second from the end of 

August to the start of September 2010. Two weeks prior to the start of the first set of 

measurements, three collars, 20 cm in height, were inserted ca. 5 cm into the soil (precise 

values were recorded for the calculation for headspace volume) of each vegetation type 

and used for the subsequent measurements during both campaigns. 

4.2.1.2 Flux measurements 

Near-continuous measurement of CH4 fluxes was achieved by combining a cavity-

enhanced-absorption spectrometer (Fast Greenhouse Gas Analyzer (FGGA), model 907-

0010, Los Gatos Research, Inc., Mountain View, CA, USA, see Mastepanov et al.  2008 for 

example) together with an established multiplexed automatic chamber system 

(Heinemeyer et al.  2007). Specifically, the FGGA was connected in parallel to an automated 

system which used an infra-red gas analyser (IRGA, model 8100, Li-Cor, Lincoln, NE, USA), 

12 long term chambers (model 8100-101, Li-Cor) and a custom-built multiplexing unit 

(Biology Electronic Services, Biology Department, University of York, UK) which facilitated 

automatic hourly flux measurements using both gas analysers (CH4 and CO2) from each 

chamber. Each flux measurement consisted of a period of 180 s, during which the chamber 
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was automatically sealed and changes in headspace concentration over time were used to 

calculate the apparent flux. 

Previous measurements made with this custom-built multiplex unit and other similar 

systems have been restricted to sites either without vegetation (including forests without 

understory vegetation) or where vegetation is not taller than ca. 15 cm (see Heinemeyer et 

al.  2011 for examples from several different ecosystems). In order to remove this 

constraint and enable flux measurements to be made on sites that include taller vegetation, 

such as ericaceous dwarf shrubs, the modifications described below were made to nine 

long term chambers by Biology Electronic Services and Biology Mechanical Workshop 

Services (Biology Department, University of York, UK). 

The modified automatic chambers were based around Li-Cor long-term chambers and 

maintained several design features, including: (i) multiplexed system capable of 

automatically measuring up to 16 collars; (ii) software to control the order, frequency and 

duration of measurements; (iii) mechanism to open the chamber top (dome) to minimise 

disturbance to the soil and vegetation within each collar when the chamber was open. 

Modifications were required to enclose taller vegetation resulting in the raising of the 

original dome ca. 50 cm above the soil surface, and taller vertical sides, that retracted 

downwards when the chamber was open, to entirely enclose the headspace. 

Schematic diagrams of the chamber design and in-situ photo are shown in Fig. 4.1. The 

transparent dome and opaque mechanism (arm) for opening and closing the dome were 

retained from the original chambers but an upper Perspex plate, 12 mm, was added, onto 

which the dome of the chamber sealed when closed. The upper Perspex plate was 

positioned 47.5 cm above a lower opaque base plate which sealed over the 20 cm diameter 

soil collar with a rubber flange (Fig. 4.1). The lower plate did not rest directly on the soil 

surface; rather the entire chamber was supported with thin adjustable aluminium legs.  
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Fig. 4.1 Schematic diagram and photos of the modified Li-Cor long term chamber which, in 

addition to a moving dome, had a “concertina” sleeve that folded downwards when open 

(a;c) and was pulled upwards with a ram in order to fully close the chamber (b;d).  
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In order to enclose the chamber headspace, a 25 cm diameter flexible “concertina” sleeve 

made of UVI polythene sheeting (product code PM0027, First Tunnels Ltd, Barrowford, 

Lancs., UK) was attached to a protruding lip on the lower plate by a jubilee clip compressed 

onto a 1 cm wide rubber pad. The flexible sleeve was attached to a transparent movable 

circular guide which was raised or lowered as the chamber was closed or opened. The 

vertical movement of the guide was achieved by two cast acrylic rods (5 mm diameter, The 

Plastic Shop, Coventry, UK) which were both attached to a separate ram (18 inch actuator, 

Maplin Electronics, Rotherham, UK) and synchronised with the movement of the dome. 

Once raised, the top of the guide was pulled against a circular gasket on the underside of 

the upper plate with the effect that the polythene sleeve became the vertical sides of the 

closed and chamber and was effectively sealed at both ends. Vegetation was contained 

within the chamber, and prevented from either damaging, or being damaged by, the 

moving polythene sleeve, by an inner sleeve of plastic-coated wire netting. 

Whilst being able to enclose vegetation up to ca. 60 cm above the soil surface, the tall 

chambers were designed to mimic the original (short) chambers ability to minimise 

disturbance to the soil and vegetation within each collar when the chamber was open. 

Specifically, the potential bias from shading, the increase in temperature and the sheltering 

of soil and vegetation from rainfall and wind was minimised by the lowering of the vertical 

sides of the chamber cylinder, which did not extend more than 5 cm above the collar when 

open. The polythene concertina provided suitable flexibility for the chamber sleeve and, in 

order to prevent distortion of the chamber volume during measurement, was extended so 

that it did not move in windy conditions. In addition, the main upper components of the tall 

chamber where made from Perspex to minimise shading and each chamber was positioned 

so that when open, its dome and moving arm where to the North of each collar. 
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4.2.1.2.1 Comparison of modified and unmodified chambers 

Modified tall chambers were used to measure fluxes from sites with heather, Juncus and 

sedge vegetation and unmodified short chambers were used on sites with shorter grass 

vegetation. Given the increased volume of the tall chambers relative to the measured 

surface, and despite the increased headspace mixing by the spatial distribution of inlet and 

outlet pipes, it is possible that a systematic error in fluxes measured with tall chambers was 

created due to vertical differences in trace gas concentration: a problem which is 

commonly solved with the addition of internal fans (see Davidson et al.  2002 for a 

discussion of the effect of adding fans). Laboratory-based comparisons between both types 

of chambers were made to empirically determine if the different chamber design led to 

differences in observed fluxes of CH4 or CO2. Additionally, tests were made to establish the 

need for an internal fan within the tall chambers. The short Li-Cor chambers are not 

produced with internal fans but use the constant flow-through of air, provided by the inlet 

and outlet pipes leading from and to the gas analyzer, to enhance headspace mixing 

(Davidson et al.  2002). Adjustments were made to the tall chamber so that the inlet pipe 

was positioned ca. 20 cm from the soil surface but the outlet pipe was positioned at the top 

of the dome of the chamber, in contrast to the short chamber where both inlet and outlet 

pipes were positioned at the top of the dome.  

4.2.1.2.2 Comparison of modified and unmodified chambers - methods 

A soil, known to strongly oxidise CH4 (Wang and Ineson, 2003), was obtained from Grimston 

Wood, near York. To maximise and standardise the observed fluxes, samples from the O 

horizon (specifically the F and H layers) were taken and passed through a 5.6 mm sieve to 

remove all roots. The soil was well-mixed and 2.5 l placed into each of eight collars, 20 cm 

in diameter and 10 cm in height, which had been sealed to an underlying MDF board. 
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All eight collars were measured with the short and tall chambers within a 90 minute period 

using the multiplexed system described above. Half of the samples were measured first 

with tall chambers and then with short chambers, and the other half of samples were 

measured in an alternative order, with random assignment of each sample into either 

group. Specifically, after a pre-experiment measurement, all samples were ranked and 

placed in pairs of similar initial CH4 flux. Then each sample from any pair was randomly 

allocated into one of the two different measurement groups. 

A similar experimental design was followed for testing the inclusion of internal fans within 

the tall chambers. Using the allocation procedure as above, the eight same soil samples 

were measured once with tall chambers, either with or without an internal fan. When 

included, a 0.84 W brushless fan motor (model 2408NL-04W-B10, NMB (U.K.) Ltd, 

Bracknell, UK.) was placed approximately half up the tall chamber (ca. 25 cm from the soil 

surface) and positioned so that air flowed in an upwardly direction whilst the chamber was 

closed. Fluxes were calculated for both experiments with the same algorithm described for 

the study comparing diurnal CH4 fluxes (see Section 4.2.1.3) and appropriate paired 

comparisons made, firstly, for the tests of chamber type and, secondly, for the effect of 

adding fans. 

4.2.1.2.3 Comparison of modified and unmodified chambers - results and discussion 

There was no significant difference between observed fluxes of CH4 (Wilcoxon signed-rank 

test, p = 0.055) or CO2 (p = 0.148) when tall and short chambers were used. Whilst the p-

value for CH4 was close to significance, the median observed rate of methane oxidation was 

highest in the tall chambers; an unexpected result had the volume of the tall chamber 

made it harder to detect changes in the headspace concentration. In addition, there was no 

significant difference between observed fluxes of CH4 (Wilcoxon rank-sum test, p = 0.248) 

or CO2 (p = 1.000) when fans were either present or absent during chamber closure. These 
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empirical tests on the tall chambers suggested they functioned in an equivalent way to the 

unmodified short Li-Cor chambers and that any reduced mixing in the larger headspace of 

the tall chambers did not significantly alter measured fluxes. 

4.2.1.3 Data handling 

CH4 fluxes were calculated using the slope of linear regression between headspace 

concentration and time during each chamber closure. Within the 180 second period that 

each chamber was monitored, an initial ‘dead band’ (Li-Cor Biosciences, 2007) of up to 90 

seconds was identified, after which time the vertical sides and dome of the chamber had 

fully moved into a closed position. Changes in the measured headspace concentration 

during this dead band were discarded to negate any influence on the regression slope of 

each flux measurement.  

A decision algorithm was used to assess fluxes produced from the regression slope whereby 

all slopes which were significantly different from zero (at the p < 0.05 level) were accepted 

for further analysis. Of the flux measurements which were not significantly different from 

zero, any with a coefficient of variation (CV) of the headspace concentration equal to or 

greater than 0.5 % were discarded as they were considered to be non-linear. Alternatively, 

any with a CV of less than 0.5 % were accepted and counted as zero fluxes, as they showed 

no net exchange of CH4. 

A final component of the algorithm identified any unusual patterns within a chamber 

closure by comparing fluxes during the first and last 45 seconds of each measurement 

period. If the absolute value of any of these fluxes differed by more than 0.5 mg CH4 m
-2 h-1 

then the flux measurement was manually reviewed and a decision made either to accept 

the initial decision or discard the flux. Out of a total of 1234 flux measurements, 75 were 

manually reviewed and 26 were discarded. In addition to producing consistent, objective 

results this algorithm also matched previous experience in screening for unusual flux 
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measurements. Such discarded measurements occurred for a variety of reasons, including 

trapped vegetation, trapped cables, or faults with the rams. 

Fluxes (mg CH4 m
-2 h-1) were calculated from the changes in headspace concentration (ppm) 

over time as in Equation (2.1), including an adjustment for air temperature, headspace 

volume and area of soil within the chamber. Missing fluxes, due to removal by the decision 

algorithm, were not gap filled. 

Separate analyses were made for each campaign (May and August 2010) to assess diurnal 

differences in fluxes. Measurements of solar radiation from the adjacent meteorological 

station were used to distinguish whether fluxes were measured in daylight or darkness. Due 

to the difference in diurnal length and occasional gaps in the flux measurements from each 

chamber (due to system failure or removal by the decision algorithm), four measurements 

from each diurnal period were randomly selected and summed to produce single day and 

night values from each chamber for each campaign. The differences between summed day 

and night values from each chamber were tested for normality (Kolmogorov-Smirnov) and 

appropriate statistical comparisons were made to test for the effect of diurnal period on 

CH4 fluxes. A secondary statistical comparison between CH4 fluxes from different vegetation 

types also used the randomly selected fluxes from each chamber (as described above), 

regardless of diurnal period. Total flux estimates for each chamber were tested for 

normality and homogeneity of variance (Levene’s) before an appropriate test on the effect 

of vegetation and any post hoc analyses. 

4.2.1.4 Regression between CH4 flux and environmental variables 

A meteorological station (WS-GP1 and associated sensors, as described in Section 3.2.2, 

Delta-T Devices, Cambridge, UK) and pressure sensors (Baro-Diver, Sclumberger Water 

Sevices, Delft, The Netherlands) were established at the site and gave uninterrupted 

quarter-hour readings of air temperature, soil temperature at a depth of 10 cm for each 
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vegetation type, PAR, solar radiation, humidity, wind speed, wind direction and 

atmospheric pressure during, and two weeks prior to, each campaign. 

Using the same method described in Section 3.2.3, the environmental variables which best 

explained the variations seen in CH4 flux measurements from all chambers, and from each 

vegetation type, were identified using a regression approach. Specifically, forward step-

wise multiple regression models were constructed (see Section 3.2.3.1 for further details) 

for fluxes from each subset of chambers and concurrent environmental variables. 

Concurrent environmental variables were calculated as the average value over a 15 minute 

period which was closest to the time of flux measurement or, in the case of rainfall, the 

total value over the closest 15 minute period. 

The suggestion of a delayed response by CH4 fluxes to changing environmental conditions in 

Section 3, and the hysteresis effect seen in the short-term response of CH4 fluxes to 

temperature (Updegraff et al.  1998) and PAR (Joabsson et al.  1999) meant a second 

regression approach was undertaken which used a running average over the period prior to 

the time of flux measurement (see Section 3.2.3.2 for further details). Individual single 

regression models were created for CH4 fluxes from each combination of vegetation type 

and all periods of running average for each environmental variable, where the running 

average ranged from 15 minutes to 10 days and increased in 15 minute intervals (see 

Section 3.2.3.2). 

4.2.2 Impact of chamber area on apparent flux 

4.2.2.1 Study site description 

Measurements were made within 100 m2 of upland blanket bog in the upland blanket bog 

around Lake Vyrnwy, North Wales (as generally described in Section 2.2.1), located in the 

Eunant catchment on a ridge to the south of the Eunant Fach stream (SH 93256 23040, see 
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Fig. 4.2). Elevation at the site varied between 496 - 524 m.a.s.l. and, whilst the site initially 

appeared as a single patch of vegetation dominated by heather and sedge, heather 

coverage actually varied between 5% and 70% within the 7.5 m2 locations for flux 

measurements. All measurements were made between the 18th and 25th of August, 2009. 

4.2.2.2 Flux measurements and data handling 

12 locations were each measured with four static non-steady state chambers of varying 

sizes. Three of the chambers were constructed from Perspex cylinders, 40 cm in height, 

sealed to collars, 20 cm in height, which were inserted into the soil. The height of the 

chambers and collars were uniform, yet their diameter differed between 10 cm, 30 cm and 

90 cm which resulted in different areas over which fluxes were measured of 0.00785 m2, 

0.0707 m2 and 0.636 m2, respectively. The fourth type of chamber was based on a 

previously developed agricultural cloche system (for example see the 'mega-chamber' in 

Pangala et al.  2010) whereby semicircular steel hoops (Premier Polytunnels, Barnoldswick, 

UK) were inserted into the ground to support a cloche cover made from a layer of 

transparent fabric (Woven Ripstop Film Translucent, Shelter Systems, Santa Cruz, CA) and a 

layer of polythene sheeting. Five hoops, 1.5 m wide at the base and ca. 0.8 m high, were 

evenly spaced over 5 m which resulted in a much larger area, 7.5 m2, of measurement than 

could be achieved with a portable chamber. The cloche cover extended beyond the hoops 

to form a flange, ca. 50 cm wide, all around the cloche and a double layer of sandbags was 

used to seal the flange and make an effectively airtight headspace inside the chamber. 

Fluxes were calculated using the slope of linear regression between CH4 concentration and 

time for each individual measurement. Changes in headspace concentration and 

subsequent flux determination were calculated by two methods depending on the type of 

chamber: 
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Fig. 4.2 Location of Lake Vyrnwy with the study site for different measurement areas 

highlighted with a red star (SH 93256 23040).  
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 (i) Cloche. Once the flange of the cloche cover was sealed with sandbags, fluxes inside the 

cloche were determined with an established method (for example Pangala et al.  2010) 

using an internal open-path Tuneable Diode Laser (TDL, Gas Finder 2.0, Boreal Laser Inc., 

Edmonton, Canada), which had been set up inside the cloche prior to sealing, to measure 

changes in CH4 concentration at a rate of 1 Hz. Measurements were made for a period of 15 

minutes, whilst ensuring that significant leakage did not occur (see below). The laser from 

the TDL was transmitted across the length of the cloche (4 m) to a retro reflector unit and 

returned in a parallel path where it was received by a detector. Both the TDL and retro 

reflector were mounted on tripods at a height of ca. 0.6 m. 

In order to ascertain rates of leakage from the cloche, N2O was added to the chamber 

headspace and used in a similar manner to SF6 in Section 2.2.2. Whilst N2O is not a sensu 

stricto inert gas with which to trace leakage, N2O fluxes were always observed to be below 

detection (emission or uptake) at several blanket bog sites in Vyrnwy less than 2 km away 

(Toet, personal communication). As with SF6, any changes in N2O headspace concentration 

observed in the cloche were consequently attributed to leakage rather than soil exchange. 

The use of N2O during this study also meant leakage could be monitored in real time and, if 

appropriate, cloches could be re-sealed before re-attempting a measurement. 

Rates of leakage from the cloche were determined by the addition of 70 ml of 100% N2O to 

the headspace through 1.5 m of vacuum tubing (1.6 mm internal diameter, Tygon 

Formulation R-3603 Tubing, Part number AAC00002, Saint-Gobain Performance Plastics, 

Akron, OH, USA), immediately after the cloche was sealed. An internal fan, positioned next 

to the end of the vacuum tubing, ran for 30 seconds to assist even distribution within the 

headspace. Subsequently, the headspace concentration of N2O was measured using a 

photo-acoustic infrared analyzer (INNOVA 1412, LumaSense Technologies, Santa Clara, CA, 

USA) which extracted consecutive samples, 300 ml, with an intermittent pump from the 
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cloche at 2-minute intervals. Samples were extracted through 2 m of PVC tubing (4 mm 

internal diameter, Portex, Product code 800/000/280, Smiths Medical International, Hythe, 

UK) which passed from a suspended position ca. 0.5 m from the soil surface in the centre of 

the cloche, underneath the sealed flange, and to the external analyser.  

Each flux was calculated using an algorithm which, in addition to calculating the flux from 

the slope of linear regression between CH4 concentration and time, was designed to 

objectively determine if leakage should be compensated for, or if a flux measurement 

should be entirely discarded. In a similar manner to the algorithm described in 

Section 2.2.3, fluxes were accepted if a strong linear relationship (r2 ≥ 0.9) existed between 

CH4 concentration and time; they were also adjusted for leakage if the decline in N2O 

concentration was also linear (r2 ≥ 0.9). However, fluxes were also discarded if more than 

25% of the maximum headspace concentration of N2O leaked from the cloche during the 

measurement period, which indicated significant system leakage. 

Once finished, all components of the cloche were quickly removed and within a mean 

(±standard error of the mean, SEM) of 44 (±4.8) minutes, measurements commenced with 

the three smaller Perspex chambers inside the same area measured by the cloche. 

 (ii) Cylindrical Perspex chambers. This method follows a similar method described in 

Section 2.2.2. Briefly, the collars for each size of cylindrical Perspex chamber were gently 

inserted into the soil and the seal between collar and soil improved by packing sand around 

the exterior of each collar. Chambers were then sealed to each collar with reinforced 

transparent tape and fluxes were determined by the extraction of six consecutive gas 

samples, 20 cm3, from each chamber at five minute intervals over a 25 minute period. The 

exact time of extraction was recorded and, after GC analysis for CH4 and SF6, the slope of 

linear regression between CH4 concentration and time for each measurement was 

calculated. SF6 was added prior to the initial sample extraction in order to estimate rates of 
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chamber leakage but, unlike the method in Section 2.2.2, the chamber headspace was not 

enhanced with CH4 as the site was relatively wet and CH4 oxidation was not expected. 

Each flux was calculated using an algorithm which was designed to objectively remove any 

erroneous data time points from a single series and to determine if leakage should be 

compensated for, or if a measurement should be entirely discarded (see Section 2.2.3 for 

details). 

The final statistical analysis between measured fluxes from differing size of chambers at the 

same location only included locations where none of the fluxes had rejected due to their 

respective decision algorithms. Fluxes for each chamber size were tested for normality 

(Kolmogorov-Smirnov) and homogeneity of variance (Levene’s) before an appropriate test 

on the effect of chamber size and post hoc analyses. Following a method used in other 

systems where the size of sampling unit had been experimentally manipulated (Culp et al.  

1994), the relationship between CH4 flux variance and sample area was examined using a 

linear regression model. 
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4.3 Results 

4.3.1 Comparison of diurnal CH4 fluxes using continuous measurement system 

4.3.1.1 Effect of different diurnal periods and vegetation types on CH4 fluxes 

All acceptable CH4 flux measurements made during both four day campaigns in May and 

August/September 2010 are shown in Fig. 4.3 and Fig. 4.4, respectively, and reveal high 

temporal variability during short periods. For example, the low CH4 flux during daylight 

hours on 24th May contrasted with the higher flux observed during the 22nd May. Net flux 

values were comparable with those obtained with a non-automated chamber (coverbox) 

method from a similar time of year in 2009 (see Fig. 2.2) as no single flux from any 

vegetation was higher than 2.5 mg CH4 m
-2 h-1. 

No diurnal pattern of CH4 fluxes over time was apparent for any vegetation type and the 

non-parametric test on the difference between the summed day and night fluxes during the 

first campaign showed no significant difference between the median values (Wilcoxon 

signed-rank using PROC UNIVARIATE on SAS®, p = 0.850). Mean (±SEM) summed CH4 fluxes 

over the first campaign were 1.483 (±1.458) mg CH4 m
-2 during the day and 2.030 (±1.969) 

mg CH4 m
-2 during the night. As with the seasonal CH4 flux measurements at Vyrnwy during 

2009 (Fig. 2.4), the comparison between different vegetation types showed sedge to be a 

particularly strong source of CH4 (see Fig. 4.5) and vegetation did have a significant effect 

on CH4 fluxes (Kruskal Wallis using PROC NPAR1WAY on SAS®, p = 0.041). The mean (±SEM) 

emission of CH4 from sedge during the first campaign (15.539 (±12.686) mg CH4 m
-2) was 

higher than any other vegetation (see Fig. 4.5), however, post hoc tests between sedge and 

the other three vegetation types were not significant (Wilcoxon rank sum using PROC 

NPAR1WAY and EXACT WILCOXON option on SAS® with a Bonferroni-corrected alpha value 

of 0.0167). Results for individual comparisons were p = 0.100 for sedge and grass, p = 0.200 

for sedge and heather, and p = 0.100 for sedge and Juncus. 
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Fig. 4.3 Mean (±SEM) CH4 flux (mg CH4 m-2 h-1) of each vegetation type for each hourly cycle of measurements during four days of near-continuous 

monitoring in May 2010. Where SEM is shown, n = 3. Dashed lines are for illustrative purposes only. Shaded areas indicated hours of darkness. 
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Fig. 4.4 Mean (± SEM) CH4 flux (mg CH4 m-2 h-1) of each vegetation type for each hourly cycle of measurements during four days of near-continuous 

monitoring in August and September 2010 (see Fig. 4.3 for details). Shaded areas indicated hours of darkness. 
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Fig. 4.5 Mean (± SEM) total CH4 flux (mg CH4 m
-2) for each vegetation type during four days 

of near-continuous monitoring in May 2010. There was a significant effect of vegetation on 

methane flux (H(3) = 8.23, p = 0.041) but post hoc pairwise comparisons (with Bonferroni 

corrections) between sedge and each other vegetation type were non-significant.  
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In comparison to 915 measurements made during the May 2010 campaign, only 284 CH4 

flux measurements were successfully made during the second campaign in 

August/September 2010, and only one 24-hour period was successfully monitored (see 

Fig. 4.4). However, fluxes from sedge sites were still notably larger than during May and 

were comparable with values obtained at a similar time of year during the seasonal study 

(see Fig. 2.2) with a maximum individual flux of 15.2 mg CH4 m
-2 h-1. Mean (±SEM) summed 

daytime flux was 0.762 (±1.139) mg CH4 m-2 h-1 and mean summed night-time flux was 

4.673 (±3.478) mg CH4 m-2 h-1, but the difference between them was not significant 

(Wilcoxon signed-rank, p = 0.052). Vegetation did have a significant effect on CH4 fluxes 

(Kruskal Wallis, p = 0.038) with sedge again producing the highest mean emission of CH4 

during the second campaign (see Fig. 4.6). However, as before, selective post hoc 

comparisons (Wilcoxon rank sum) between sedge and the other vegetation types were all 

non-significant (with grass, p = 0.700; with heather, p = 0.100; and with Juncus, p = 0.100). 

4.3.1.2 Environmental data 

Only plots of environmental variables during the first campaign are displayed, since the 

second campaign was limited to a single 24-hour period of flux measurements and 

considered too short a period to study temporal trends. The fine temporal resolution of 

measurements (Fig. 4.7) showed differing responses of soil temperature at sites dominated 

by different vegetation types, to diurnal variations in insolation and air temperature. For 

example, Juncus soil temperature showed very little diurnal response and, whilst the 

responses from grass, heather and sedge soil temperatures were all delayed, grass had a 

smaller amplitude and a more delayed response. No rainfall fell during the five days of flux 

measurement in May, 2010. 

There was no obvious association between the high temporal variations seen in CH4 fluxes 

(Fig. 4.3) and changes in environmental variables (Fig. 4.7) but the lower sedge fluxes that 
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Fig. 4.6 Mean (± SEM) total CH4 flux (mg CH4 m
-2) for each vegetation type during four days 

of near-continuous monitoring in August and September 2010. There was a significant 

effect of vegetation on methane flux (H(3) = 8.44, p = 0.038) but post hoc pairwise 

comparisons between sedge and each other vegetation type were non-significant.  
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Fig. 4.7 Mean soil temperature (°C) measured at a 10 cm depth for four vegetation types, 

mean air temperature (°C), total PAR (mol m-2), total solar radiation (MJ m-2), mean 

humidity (%), mean air pressure (mbar), and wind run (km) measured hourly from 21st to 

25th May 2010.  
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occurred during 24th May coincided with falling atmospheric pressure and immediately 

prior to a decrease in air temperature and increase in humidity.  The contrast between 

wind direction during two 24-hour periods of the 22nd and 24th May (Fig. 4.8) marked a 

change in dominant wind direction, from the SW during the 22nd to the N and NW on the 

24th, and suggested a change in weather front and air mass over the site between these two 

days. 

4.3.1.3 Regression between CH4 flux and environmental variables 

As in Section 3, in order to determine which environmental variables were controlling CH4 

fluxes, a series of regression models between fluxes and environmental variables were 

separately constructed for each vegetation type and for all data, regardless of vegetation. 

The initial approach used all environmental variables measured to the nearest quarter-hour 

to each flux measurement (referred to as concurrent measurements) as independent 

variables in multiple stepwise regression models. The results presented in Table 4.1 show 

air pressure was the only independent variable significantly related to CH4 flux in the grass 

(p<0.001, r2 = 0.189) and sedge models (p=0.002, r2 = 0.042). Wind speed (p<0.001, r2 = 

0.058) was the first significant independent variable selected in the heather model, 

followed by soil temperature (p=0.011, r2 = 0.027). Soil temperature was also the only 

significant independent variable selected by the Juncus model (p=0.029, r2 = 0.021). When 

data from all vegetation types were combined in a single multiple regression model, soil 

temperature (p<0.001, r2 = 0.021) was selected at the first step and air pressure (p<0.001, r2 

= 0.018) was selected at the second. Regardless of whether one or two significant 

independent variables were included, all models produced weak final r2 values, the largest 

being 0.189 for grass. 

The final series of regression models used the running average of environmental variables 

over varying periods prior to the point of flux measurement as independent variables. 
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Fig. 4.8 Proportional wind direction (%), grouped by cardinal, primary intercardinal and 

secondary intercardinal directions, during two 24-hour periods (starting at 00:00) in May 

2010.   
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Table 4.1 Results of multiple regressions between CH4 flux and concurrent measurements 

of environmental variables for all data and for data subsetted by vegetation type (grass, 

heather, Juncus and sedge). 

Step and 
parameters 

CH4 flux 

Grass Heather Juncus Sedge All 

First step      
Independent 

variable 
Air pressure Wind speed Soil temp Air pressure 

Soil 
temp 

β 0.002 -0.022 0.030 0.020 0.050 
r2 0.189 0.058 0.021 0.042 0.021 
p <0.001 <0.001 0.029 0.002 <0.001 

Second step      
Independent 

variable 
 Soil temp   Air pressure 

β  0.029   0.007 
r2  0.027   0.018 
p  0.011   <0.001 

Final model      
Intercept (β) -1.543 -0.239 -0.342 -18.543 -7.716 

r2 0.189 0.084 0.021 0.042 0.039 
p <0.001 <0.001 0.029 0.002 <0.001 
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Running average values were used, from the nearest quarter-hour (0 hours) increasing in 15 

minute intervals up to running averages from the preceeding 10 days (240 hours). As in 

Section 3.3.3 (Fig. 3.17 and Fig. 3.18), single regression models were constructed for each 

environmental variable for all running averages, and the r2 values produced by each 

regression model (that used running averages from 0 to 240 hours) are shown in a single 

plot. Each plot shows all r2 values for each combination of dependent (all data, or subsetted 

by vegetation type) and independent variables (soil temperature, air temperature, PAR, 

solar radiation, humidity, wind speed, rainfall and air pressure).  

In contrast to the analysis with seasonal CH4 fluxes (see Section 3.3.3), Fig. 4.9 and Fig. 4.10 

show that, when compared to models using concurrent measurements, r2 values were not 

greatly increased when running averages were used. Also, no progression in-to and out-of 

phase was observed for any environmental variable but plots were similar to the undefined 

patterns produced when random simulated data was used to test this form of analysis. The 

absence of a steadily moving pattern suggested that the subsequent approaches to 

multiple regression between CH4 fluxes and running averages of environmental variables in 

Section 3.3.4 were not useful with this short-term, high temporal resolution data set. 

4.3.2 Impact of chamber area on apparent flux 

The proportion of measurements from the Perspex chambers which were rejected by the 

flux algorithm due to excessive leakage (38.9%) was higher than from the cloche (0%) and 

contributed to the result that, from 12 original locations, only two locations had successful 

measurements with all sizes of chamber. To ensure a suitable number of replicate 

measurements from all chamber sizes at the same locations were obtained, the original flux 

algorithm (described in Section 2.2.3) was altered to accept larger amounts of chamber 

leakage (down to 25% of the initial headspace concentration). Results from the adjusted  
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Fig. 4.9 Results (r2 values) from a series of regression models between CH4 fluxes of each 

vegetation type (dependent variable) and the running average of each environmental 

variable over 0 to 240 hours prior to flux measurement (independent variable: soil 

temperature, air temperature, PAR and solar radiation). If significant, the most significant p 

value, and period of running average (day), are annotated on the plot.  
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Fig. 4.10 Results (r2 values) from a series of regression models between CH4 fluxes of each 

vegetation type (dependent variable) and the running average of each environmental 

variable over 0 to 240 hours prior to flux measurement (independent variable: humidity, 

wind speed, rainfall and water table; see Fig. 4.9).  
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flux algorithm showed that CH4 fluxes ranged from 0 to 8.491 mg CH4 m
-2 h-1 for 10 cm 

chambers, 0 to 5.140 mg CH4 m
-2 h-1 for 30 cm chambers, 0 to 3.981 mg CH4 m

-2 h-1 for 90 

cm chambers, and 0.963 to 8.571 mg CH4 m
-2 h-1 for cloches. 

The mean (±SEM) CH4 flux from all locations and chamber sizes was 3.574 (±0.479) 

mg CH4 m
-2 h-1 compared to a mean flux of 3.529 (±1.673) mg CH4 m

-2 h-1 from all heather 

and sedge sites during the seasonal study in August 2009 (see Fig. 2.2). 

When only CH4 fluxes from locations measured with all chamber types were used, mean 

fluxes (±SEM) for each chamber size were: 3.215 (±1.871) mg CH4 m-2 h-1 for 10 cm 

chambers, 2.226 (±1.152) mg CH4 m
-2 h-1 for 30 cm chambers, 2.650 (±0.9319) mg CH4 m

-2 

h-1 for 90 cm chambers, and 4.710 (±0.402) mg CH4 m
-2 h-1 for cloches (see Fig. 4.11). Using 

location as a block effect, chamber size did not have a significant effect on CH4 fluxes 

(Friedman’s ANOVA using PROC FREQ CMH2 options on SAS®, p = 0.209), but a primary 

feature of the results was the marked reduction in SEM as larger chambers were used. 

Results from the linear regression model showed that the standard deviation of CH4 fluxes 

was significantly correlated with the log10 of the area within each chamber (p = 0.019, see 

Fig. 4.12) with an r2 value of 0.961. 
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Fig. 4.11 Mean (± SEM) CH4 flux measurement (mg CH4 m
-2 h-1) of chambers with different 

sized areas (m2). Flux measurements were made at the same locations and within one hour 

of each other. Note the log10 scale on the x-axis.  
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Fig. 4.12 Relationship between the standard deviation of mean CH4 flux (mg CH4 m-2 h-1) 

and the log10 of the area within each chamber (log10 (m
2)). Results from a linear regression 

model were significant (p = 0.019) with an r2 value of 0.961. 
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4.4 Discussion 

4.4.1 Comparison of diurnal CH4 fluxes 

The development of a system to automatically measure multiple replicates of CH4 fluxes 

from sites with taller vegetation (see Section 4.2.1.2) enabled near-continuous monitoring 

of CH4 fluxes in a blanket bog. These measurements revealed no significant difference 

between fluxes measured during the day and night, a result that, combined with the 

absence of repeatable diurnal pattern, suggests that studies that are limited to measuring 

CH4 flux in daylight hours (for example, see Section Chapter 2) are representative of other 

times of the day. Strong diurnal patterns have been observed at sites with vegetation that 

produce pressurized flow-through (Lambers et al.  1998) of gases in aerenchyma, since 

insolation can result in an internal pressure gradient within the aerenchyma and, 

consequently, higher CH4 fluxes during the day (Chanton et al.  1993). In contrast, diurnal 

patterns are also evident at sites where diurnal changes in soil temperature produces 

stronger fluxes between 22:00 - 24:00 hours (Laine et al.  2007). Soil temperature was 

found to be a significant controller of CH4 fluxes at heather and Juncus sites during the May 

campaign, but never explained more than 3% of the variation in CH4 fluxes (Table 4.1). This 

suggests that, as observed at other ombrotrophic peatlands in the UK (Greenup et al.  

2000), the absence of diurnal pattern is because neither pressurized flow-through or 

immediate response of methanogenic and methanotrophic populations to changing soil 

temperature occurred at these sites. 

The variability of the sedge fluxes during May 2010 does suggest that infrequent 

measurements of CH4 fluxes, such as weekly or monthly sampling typical of chamber-based 

measurements, may not be representative of CH4 fluxes in the intervening periods. For 

example, estimates of CH4 fluxes from sedge for the month of May based on simple 

multiplication, extrapolated from single CH4 flux measurements, would be 330.5 mg CH4 m
-2 
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month-1 if measurements were made 12:00 on the 22nd May, but -17.58 mg CH4 m
-2 month-1 

had measurements been made 48 hours later. An alternative method of extrapolation uses 

regression models relating CH4 fluxes to controlling environmental factors. Long-term, or 

large scale, records or predictions of controlling environmental factors can subsequently be 

used to extrapolate estimates of CH4 fluxes over larger temporal or spatial scales (Becker et 

al.  2008; Koehler et al.  2011). However, this approach is only appropriate if CH4 fluxes are 

found to be strongly associated with specific environmental variables. Unfortunately, the 

maximum amount of variation that could be explained by concurrent environmental 

variables in this study was 18.9%, being less than 5% for Juncus and sedge (Table 4.1). No 

hysteresis (sensu Section 3.4.3) in the response of CH4 fluxes to environmental conditions 

was observed for any combination of vegetation and environmental variable so conditions 

immediately prior to the time of flux measurement did not appear to control CH4 fluxes. 

The low r2 values produced from this study (Fig. 4.9, Fig. 4.10 and Table 2.1) may be a result 

of the limited variation of values used in models during such a short time period: had 

sampling incorporated greater seasonal variation in CH4 fluxes and environmental 

conditions (temperature, radiation etc.), relationships may have been more significant 

(Dinsmore et al.  2009a). However, results from this study suggest that if simple linear 

methods of extrapolation are to be used to estimate CH4 fluxes over a longer time period, 

sampling needs to be more frequent than monthly or weekly to better represent the 

natural temporal heterogeneity of CH4 fluxes from the blanket bog at Lake Vyrnwy. 

In addition to examining fine scale temporal trends of CH4 flux, results from this study also 

showed significant differences in CH4 fluxes between vegetation types at this site. The 

higher mean emission of CH4 from sedge during both measurement campaigns confirms the 

effect of aerenchymous plants observed elsewhere (Greenup et al.  2000), although the CH4 

fluxes from Juncus were no different from sites dominated by non-aerenchymous 

vegetation (Fig. 4.5 and Fig. 4.6). The IKONOS classification of the site at Lake Vyrnwy 
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(Fig. 2.7) and the map of the site (Fig. 2.1) show that Juncus dominates at lower elevations 

close to streams. In contrast, the Juncus measured during this study was growing on a ridge 

and was relatively dry. Mean (±SEM) water table depth measured manually at frequent 

occasions from 15/05/2010 and 26/05/2010 at each collar was -41.9 (±0.3) cm from the 

surface, in contrast to a mean of -7.12 (±0.17) cm observed by Wilson et al. (Wilson et al.  

2011b) at sites close to streams and drains. As all the sampling in the current study was 

spatially limited to a single site, there is no expectation that Juncus will produce similar 

fluxes at other locations at Lake Vyrnwy, or at other blanket bog sites. 

4.4.2 Impact of chamber area on apparent flux 

Comparisons between different scales of CH4 measurement are typically made using varied 

measurement techniques, such as micrometeorological approaches, including Eddy 

Covariance (EC), and chambers (Riutta et al.  2007; Forbrich et al.  2011). Comparisons using 

this approach either show CH4 flux measurements to be comparable (Schrier-Uijl et al.  

2010) or considerably different (Sachs et al.  2010): such conflicting results may be a result 

of differences in scale of variation within a landscape, method of measurement, or method 

of extrapolation. Homogeneous landscapes, where the proportions of landforms enclosed 

within a measurement area reflect the proportions of the wider landscape (such as in 

Forbrich et al.  2011), tend to be more comparable. In contrast, heterogeneous landscapes. 

which include more variable quantities and strengths of CH4 sources in each measurement 

footprint (such as those in Teh et al.  2011; Baldocchi et al.  2012), tend to have larger 

differences in apparent flux when using different scales of measurement. 

Standard statistical comparisons between direct measurements are normally not possible, 

as micrometeorological methods are not usually replicated in the same independent 

manner as for chambers, comparisons often resulting between the mean and variance of a 

number of chambers and a single integrated value from EC method (for example, see Fig. 5 



 

175 
 

in Clement et al.  1995; or Fig. 2 in Schrier-Uijl et al.  2010). In contrast, the results of the 

current study, with balanced comparisons of the effect of chamber area on CH4 fluxes, 

showed no significant difference in apparent CH4 flux at Lake Vyrnwy despite the sample 

area within each chamber type varying by over three orders of magnitude (Fig. 4.11). As 

any differences in methods of measurement or extrapolation were minimised or, in the 

case of the three sizes of Perspex chambers, entirely removed, this showed that any effects 

of scale did not significantly alter CH4 flux estimates. This suggests there was no discernable 

bias associated with the chamber edge, such as the impact of root cutting during collar 

insertion on CO2 fluxes (Heinemeyer et al.  2011) or lateral diffusion and leakage into and 

out of the chamber headspace (Hutchinson and Livingston, 2001), which would have 

increased as the ratio chamber edge to sampling area in the smaller diameter chambers 

increased. The care taken over shallow insertion of collars, and use of SF6 and N2O to 

correct for leakage, may have reduced any such bias in this study. 

In addition to testing the effect of sample area on apparent CH4 flux, the current study also 

revealed a strong negative relationship between sampling area size and standard error of 

the mean for estimates of CH4 flux (Fig. 4.12). This has two implications with regard to the 

spatial distribution of CH4 fluxes at the study site: (i) As demonstrated with other ecological 

phenomena (Bellehumeur et al.  1997), the reduced variation from larger chambers clearly 

demonstrated that CH4 fluxes occurred at spatially heterogeneous rates. Specifically, as CH4 

flux (mg CH4 m-2 h-1) was an average measure of CH4 exchange from each chamber, any 

extreme ‘hotspots’ (Becker et al.  2008) of CH4 production or oxidation included within 

larger chambers will be “diluted” within the average flux. In contrast, the inclusion or 

exclusion of hotspots with smaller chambers results in more variable flux measurements. 

This result contrasts with predictions that the mean and variability will remain constant as 

sampling size increases in a spatially homogeneous landscape (Bellehumeur et al.  1997). (ii) 

Standard error still increased as chamber area decreased below 0.07 m2 which also 
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suggested the scale (Dungan et al.  2002) of spatial heterogeneity of CH4 fluxes was smaller 

than 0.07 m2, i.e. the size of the hotspot of CH4 activity was smaller than 0.07 m2. 

The cause of the hotspots in CH4 activity was not identified during the current study but 

there are several possible reasons for this observed heterogeneous distribution. Whilst all 

vegetation can function as a provider of substrate for CH4 emission (Whiting and Chanton, 

1993), one specific functional group of plant species, including sedges and rushes, can 

provide aerenchymous structures that function as a conduit of CH4 from the sub-soil to the 

atmosphere (Clymo and Pearce, 1995). The relative abundance of members of this 

functional group may contribute to the strength of CH4 emission. The site used for the 

current study initially appeared to be a homogeneous mix of heather and sedge vegetation, 

with a ubiquitous covering of Sphagnum spp., yet quantitative estimates of the 

proportional coverage of heather for each measurement location showed marked 

differences. It was also observed that sites with a higher coverage of (non-aerenchymous) 

heather had a lower coverage of (aerenchymous) sedge, and vice-versa. Regression models 

showed there was no significant relationship between CH4 flux and heather coverage for 

any of the different sized chambers (0.008 m2, p = 0.919; 0.07 m2, p = 0.789; 0.6 m2, p = 

0.204; 7.5 m2, p = 0.666). The lack of significant relationship with heather coverage, 

particularly for the smallest chambers that had displayed the highest variation in estimates 

of the mean CH4 flux (Fig. 4.12), suggests that small scale variation in aerenchymous plant 

structures was not the factor driving hotspots of CH4 activity. Other putative candidates, 

which were not examined during the current study, are small-scale spatial variations in 

abiotic factors, including soil hydrology (Becker et al.  2008), or biotic factors such as soil 

invertebrates and their associated gut-fauna which includes methanogens (Konig, 2006). 

Craneflies are a dominant soil invertebrate species in blanket bogs in the UK (Carroll et al.  

2011) and whilst studies of their gut-flora are limited, Rogers and Doran-Peterson (2010) 

have shown cranefly species are capable of digesting lignocellulose as a result of the diverse 
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microbial communities present in the fermentation chamber of their gut. The identification 

of the underlying reasons for hotspot of CH4 activity could enable appropriate stratification 

of the blanket bog and, consequently, a more representative estimate of landscape flux. 

A common feature of all current studies presented here was the large standard error (SEM) 

of the mean CH4 fluxes (Section 4.3.1.1, Fig. 4.11, Fig. 3.25 and Fig. 3.26). As well as 

highlighting the heterogeneous nature of CH4 fluxes at Lake Vyrnwy, such large variability of 

estimates increased the difficulty in distinguishing between different treatments, whether 

relating to the time of day that measurements were made, size of chamber used, or the 

large-scale blocking of drains. Whilst statistical comparisons were possible, the lack of 

significance in each of these studies does not provide convincing answers to the questions 

about temporal and spatial variation. 

4.4.3 Summary 

Hourly measurements of CH4 flux showed high variability but no significant difference 

between measurements during day and night. Flux estimates were made using chambers 

with footprints that varied by three orders of magnitude and there was no significant effect 

on mean CH4 fluxes. However, the variance of CH4 flux estimates strongly correlated with 

sample area with markedly smaller variance as chamber size increased. This result revealed 

features of the spatial variation of CH4 fluxes, but also suggests that, when large numbers of 

replicates are not available, the use of larger chambers in future studies could considerably 

reduce variability in flux estimates and help identify any subtle differences in treatments. 
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Chapter 5 General Discussion 

5.1 Peatlands as a source of CH4 

Despite the expectation that northern peatlands function as net emitters of CH4 (Worrall et 

al.  2007b), observations of CH4 oxidation at blanket bogs are not uncommon (Clymo and 

Pearce, 1995; Fowler et al.  1995b). The drainage of the blanket bog at Lake Vyrnwy over 

the last 40 years (Wilson et al.  2010), and the high variability of CH4 fluxes in other 

peatland sites (McNamara et al.  2008) lead to uncertainty in any assumptions about the 

net direction of CH4 flux at the blanket bog used in the current study. The observation that 

the blanket bog around Lake Vyrnwy is a net source of CH4 is therefore important 

(Table 2.1) and matches reported estimates from similar sites in the UK (Fowler et al.  

1995b; McNamara et al.  2008). Whilst sampling in the current study was deliberately 

stratified to measure CH4 fluxes from a range of vegetation types, a constraint on the 

estimate of landscape flux was the spatial limitation of observations. Specifically, all 

measurements were made at the tops of ridges and none were taken in water courses or 

pools. Only a small proportion of the total area at the Lake Vyrnwy site is covered by water 

courses or pools yet they may provide ‘hotspots’ of CH4 emission (sensu Becker et al.  2008) 

due to the domination of anoxic conditions and increased ebullition of CH4 from the soil to 

the atmosphere (Kellner et al.  2006). Without measurements at these microsites, their 

relative contribution to the landscape CH4 flux is unknown, but as permanently (or 

generally) flooded sites, it can be assumed they increase, rather than decrease, any annual 

estimate of CH4 flux to the atmosphere. 

Scaling up the best annual estimate (±SEM) of CH4 flux from the current study at the Lake 

Vyrnwy site during 2009 of 9.8 (±3.8) g CH4 m
-2 year-1 would produce an annual estimate for 

upland peatlands in the UK of 0.2 (±0.08) Tg CH4 year-1 assuming that the 20530 km2 of 

similar peatland estimated by Cannell et al. (1999) produced the same CH4 flux. This 
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estimate of peatland CH4 flux represents the major natural terrestrial emissions from the 

UK, as emissions from wild ruminants and termites can be considered negligible (Verkerk 

and Bravery, 2001; Wuebbles and Hayhoe, 2002); this figure is equal to 10% of the 

estimated 1.9 Tg CH4 year-1 for all anthropogenic CH4 emissions in the UK during 2003 

(Baggott et al.  2005). Additional uncertainty in any UK estimate of peatland CH4 flux is 

derived from uncertainties in the area of the UK covered by peatlands with estimates 

ranging from 14790 to 29209 km2 (Worrall et al.  2007b). Extrapolating from the current 

study, these large differences would change the relative CH4 emission of peatlands to 

between 7.6% and 15.1% of anthropogenic CH4 emissions. Parties to the United Nations 

Framework Convention on Climate Change (UNFCCC) have not been required to include 

‘natural’ carbon emissions (such as those from peatlands) in National Inventory Reports 

(Cannell et al.  1999) but CH4 emissions from upland peatlands are large, despite only 

covering between 6.6% and 13% of the terrestrial area in the UK (Milne and Brown, 1997; 

Worrall et al.  2007b). 

5.2 Hysteresis 

In addition to estimates of overall landscape CH4 fluxes, the examination of spatial and 

temporal patterns of CH4 flux in the current study emphasised several important factors. 

One interesting temporal feature was the repeated evidence of hysteresis in the response 

of CH4 fluxes to changing environmental conditions. The existence of an autumnal ‘shoulder 

of activity’ in observed seasonal patterns of fluxes (Fig. 2.2), a feature which has been 

found in other published studies, but frequently not discussed (Ward et al.  2007), gave an 

initial indication that CH4 fluxes do not simply respond to concurrent seasonal conditions. 

This lack of immediate response was emphasised by the low proportions of the variation in 

seasonal CH4 fluxes that were explained by concurrent environmental variables (Table 3.1), 

and even lower proportions when trying to explain hourly measurements (Table 4.1). The 

positive relationship between depth to water table and CH4 flux (Table 3.1; with CH4 
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emission increasing as depth to water table increased) was an observation which conflicted 

with the expected response of CH4 flux to water table (Le Mer and Roger, 2001) but could 

also be explained by the existence of hysteresis (Fig. 3.27). This unexpected response can 

also be seen from the work of others but has been left undiscussed (Bellisario et al.  1999; 

McNamara et al.  2008; Dinsmore et al.  2009a), and explained using alternative 

hypotheses. One hypothesis was the function of water table above the surface as a barrier 

to substrate provision for methanogenesis (Strack et al.  2004) or as a barrier to the 

transport of CH4 through aerenchymatic structures of vascular plants (Sachs et al.  2010) 

but this was not supported by the current study as water table rarely moved above the soil 

surface long enough to inhibit plant productivity (Fig. 3.3 to Fig. 3.6) and the positive 

relationship was only observed at sub-sites dominated by non-aerenchymous heather 

vegetation (Table 3.1). The hypothesis that a deepening depth to water table may cause a 

release of CH4 previously stored at lower depths of soil (Nykanen et al.  1998; Treat et al.  

2007) was also not supported by the current study as monthly manual measurements of 

water table were never less than 15 cm from the surface, and relatively shallow when 

compared to measurements from other vegetation types. The absence of automated 

measurements and subsequent lack of fine-scale temporal changes in water table 

prohibited the detailed examination of the effect of water table movement on CH4 fluxes 

and, consequently, satisfactory assessment of this alternative hypothesis in the current 

study. 

 An additional result from the current study which supported the hysteretic response of CH4 

flux to environmental conditions came from the detailed examination of this relationship 

between CH4 fluxes and the running averages of environmental conditions prior to the 

point of measurement (Fig. 3.17 to Fig. 3.24). The progression ‘in to’ and ‘out of’ phase of 

results from numerous regression models (see Section 3.4.3 for details) demonstrated that 

temperature and radiation prior to the day of flux measurement exerted more control over 
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CH4 fluxes than the same measurements made at the same time as the flux measurements. 

This approach was not always successful in identifying controls as this influence could not 

be found when examining the relationship between hourly CH4 fluxes and environmental 

conditions (Fig. 4.9 to Fig. 4.10). This may have been a result of the limited seasonal range 

in CH4 fluxes and environmental conditions that was observed, and/or the limited period 

that environmental conditions were measured prior to the point of CH4 flux measurement: 

10 days for the hourly study, compared to 180 days for the seasonal study. Whilst requiring 

a site with potentially extensive pre-existing records of environmental variables, the use of 

environmental variables prior to the point of CH4 flux measurement may help to increase 

the predictive power of CH4 flux models. 

5.3 Multiple controls 

A number of apparently significant environmental controls on CH4 flux were identified in 

the current study, varying according to vegetation type, the frequency and length of the 

study of CH4 fluxes, and whether relationships were calculated with concurrent or running 

averages of preceding environmental variables. For example, during the 14 month seasonal 

study (see Chapter 3) there was a significant relationship between CH4 fluxes from sedge 

sites and concurrent measurements of soil temperature and humidity (p < 0.001, r2 = 0.415, 

Table 3.1), but also between the running averages of soil temperature, solar radiation and 

water table prior to the day of flux measurement (with a maximum r2 of 0.493, p<0.001, 

Table 3.2). In addition, there was a significant relationship between CH4 fluxes and 

concurrent measurements of air pressure (p = 0.002, r2 = 0.042, Table 4.1) when hourly 

measurements were made over a four day period (see Section 4.3.1). These apparently 

conflicting results may be a result of different measurements being used as independent 

variables in the different regression models for each study; in the seasonal study soil 

temperature, air temperature, PAR, solar radiation, humidity, wind speed, rainfall and 

manual water table measurements were used in the concurrent regression models, 
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whereas soil temperature, solar radiation and modelled water table were the only 

measurements used in the final combination of regression models using running averages 

(Section 3.2.3). The four day hourly study used the same measurements as the seasonal 

study with the exception of water table measurements and the inclusion of atmospheric 

pressure (Section 4.2.1.4). A mixture of results may also have been generated as a result of 

autocorrelation between independent variables used in the multiple regression models 

(Field and Miles, 2010) although subtle differences do exist between the diurnal patterns of 

similar measurements of temperature and radiation (Fig. 4.7). Alternatively, CH4 fluxes may 

be controlled by a variety of processes as suggested by results from repeated studies 

carried out at the same locations (e.g. compare Saarnio et al.  1997; and Becker et al.  

2008). As suggested by Levy et al. (2012), these conflicting results, and relatively low 

proportion of variability in CH4 fluxes explained by environmental variables (Table 3.1 and 

Table 4.1), may also be the result of a general low association between the measured 

variables and actual variables which directly influence the production, oxidation and 

transport of CH4. 

The use of running averages of environmental variables in single regression models showed 

a unimodal period of maximum control prior to the day of flux measurement, the specific 

period depending on the combination of vegetation type and environmental variable 

(Fig. 3.17 and Fig. 3.18). The use of more than one running average of environmental 

variables in multiple regression models showed two periods of control such as the 

preceding 60 days (where soil temperature controls a large amount of variation in CH4 flux) 

and the preceding 150 days (where solar radiation is important, see Fig. 3.19). The 

asymmetrical shape of seasonal CH4 fluxes (Fig. 2.2) also supports the existence of two such 

periods of control since fluxes did not correspond with seasonal patterns of any single 

environmental variable (Fig. 3.3 to Fig. 3.15). Whilst this study suggested the existence of 

two periods of control, the specific method of control could either be different periods of 
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hysteresis in response to two changing environmental variables as suggested by Updegraff 

et al. (2001), or the differing hysteretic responses of methanogens and methanotrophs to 

changes in the same environmental variable, as suggested by Macdonald et al. (1998). The 

use of pulse-labelled 13CH4 to measure rates of CH4 oxidation, in contrast to net CH4 flux, 

has been undertaken at the same Lake Vyrnwy site. Results are not yet available (Subke, 

personal communication) but the study will produce seasonal measurements of relative 

rates of CH4 oxidation and production, hopefully unravelling how differing responses by 

methanogens and methanotrophs to changing environmental conditions may contribute to 

the distinctive patterns of net seasonal CH4 flux. 

5.4 High variability of CH4 flux measurements 

Several problems were highlighted during the current studies of CH4 fluxes made at Lake 

Vyrnwy. The most consistent feature of results was the large error associated with virtually 

all estimates of mean CH4 flux. Of all the estimates of CH4 flux in Chapter 2, Chapter 3 and 

Chapter 4, the coefficient of variation (CV) was only reduced below 40% (Fig. 2.4, Table 2.1, 

Fig. 3.25, Fig. 3.26, Fig. 4.5 and Fig. 4.6,) when large chambers covering 7.5 m2 of soil 

surface were used as part of the study of chamber area on apparent flux (CV of 17.1%; 

Fig. 4.11). These errors incorporate the inherent variation of observed CH4 fluxes, which 

was emphasised by the low number of replicates, and any measurement errors. The 

temporal variability in the current study was high, whether measured at a seasonal 

(Fig. 2.2) or hourly frequency (Fig. 4.3, Fig. 4.4) and spatial variability was also very large, 

even after stratifying for vegetation, elevation or treatment of drains (Fig. 2.4, Fig. 3.25, 

Fig. 3.26 and Fig. 4.5). The use of environmental conditions to explain the variability 

observed in CH4 fluxes showed that most unexplained variation was due to temporal, rather 

than spatial, variation (see Section 3.4.4), yet spatial variation was still high when compared 

to errors of vegetation classification (see Section 2.3.2). 
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The high variability in fluxes observed in this study confounds the sensitivity of experiments 

(sensu Hurlbert, 1984) designed to compare inherent differences in CH4 flux due to 

vegetation types or management practices. This was evident in Chapter 2 where there was 

no apparent significant effects of vegetation type on fluxes (Fig. 2.4) despite an expected 

effect of the presence of aerenchymous vegetation (Greenup et al.  2000) and despite the 

similar comparison in Section 4.3.1 which showed a significant vegetation effect (Fig. 4.5). 

In addition, the apparent lack of effect on CH4 fluxes from blocking of ditches (Section 4.3.2) 

may have been a consequence of the high variability in fluxes (Fig. 3.25) as drained sites 

were expected to have lower CH4 emissions. There were no strong a priori expectations of 

diurnal cycles in CH4 flux, with results from previous studies at other sites being 

contradictory (e.g. Fowler et al.  1995b; Greenup et al.  2000; Laine et al.  2007) but high 

variability may again have contributed to the lack of apparent difference between 

estimates of day and night CH4 fluxes (Section 4.3.1.1). 

An obvious solution to making measurements in highly variable systems is to increase the 

number of replicates to an appropriate level (Denmead, 2008), the over-arching constraints 

on increasing replicates are the resources required. This is particularly pertinent for in situ 

studies, such as all those in the current study, with inherent variation considered to be 

greater in such ‘natural’ field conditions when compared to more controlled ex situ 

laboratory studies. General restrictions in the current study included the resources required 

for CH4 flux measurements in a relatively remote location, with more specific restrictions 

existing for each separate study. For example, co-located environmental variables were 

required for each CH4 flux measurement due to the natural variation in environmental 

conditions across the site and necessitated the establishment of dedicated meteorological 

stations which subsequently restricted the numbers of replicates, and spatial coverage of 

sampling (Chapter 2 and 3). The establishment of a short-term continuous measurement 

system (Section 4.2.1) meant temporal variation in CH4 flux was observable at an hourly 
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scale, but also meant that replicates were limited by the number of independent chambers 

in the multiplexed system. The one study which, regardless of limitations of time and 

equipment, was still restricted by the ownership and management of the site itself was the 

in situ study of drain blocking (Section 4.2.2). Even when greater resources are available 

and studies of CH4 flux conducted with larger numbers of replicates, variability of estimates 

can still be high. For example, the measurement of CH4 fluxes at 21 sites, 10 of which were 

organic soils, by Levy et al. (2012) resulted in a mean CH4 flux (± standard error of the 

mean, SEM) from all organic soil sites of 6.0 (±1.4) g CH4 m
-2 year-1 with a high coefficient of 

variation (CV) of 75.9%. 

One alternative to making in situ comparisons of CH4 fluxes is the extraction and 

manipulation of samples in analogous laboratory-based studies with larger numbers of 

replicates and controlled uniform environmental conditions (Dinsmore et al.  2009b). 

However, the extraction and movement of samples may result in CH4 fluxes being 

unrepresentative of typical field fluxes (Blodau and Moore, 2003a). Consequently, the 

explanatory or predictive power of such experimental results may not be directly applicable 

to the field system. An alternative solution is to design experiments without replication 

such as the “optimal impact study design” by Green (1979) which was a precursor to 

Before-After-Control-Impact approaches (BACI; Pitcher et al.  2009, inter alia) which are 

considered suitable for large scale manipulations requiring a single control and single 

treatment site. One early, successful example of this approach is the ecosystem scale 

manipulations at the Hubbard Brook Experimental Forest site which resulted in dramatic 

changes in dependent variables such as the concentration of NO3¯ (see Fig. 7 of Likens et al.  

1970). However, without further replication, BACI approaches have been criticised for not 

being able to identify any inherent differences between control and treatment sites 

(Hurlbert, 1984), nor identify that sites may ”drift apart” regardless of the imposed 

manipulation (Underwood, 1992). A final approach, which avoids the large scale replicated 
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manipulations used in Section 4.2.2, is the in situ manipulation of conditions at a smaller 

scale. This may include small scale manipulation of conditions, such as the heating of 0.5 m2 

of soil with cables by Ineson et al. (1998) or 20 m2 plots treated with passive warming 

systems (Beier et al.  2004). Limitations of smaller scale manipulations include unintended 

disturbances to conditions, which may increase as plot size decreases and edge effects 

increase (Beier et al.  2004), but in the context of the study at Lake Vyrnwy, also influence 

the acceptance of the results by stakeholders. Specifically, a consultation with stakeholders 

including farmers and land managers in the uplands around Lake Vyrnwy revealed that, 

regardless of how statistically rigorous the results may be, they would not be convinced by 

the results of a small scale experimental manipulation, preferring a landscape scale 

demonstration of the effect of any change in management (Ineson, personal 

communication). 

An alternative approach, which reduced the variability of in situ CH4 flux measurements and 

would increase the sensitivity of landscape scale manipulations, was the measurement of 

large areas or “footprints” of soil surface within a single chamber (Fig. 4.11). A single large 

footprint may enclose the same area as a larger number of small footprints but the reason 

for the low variability of estimates is subtly different. If a large number of randomly 

selected replicates are measured this will increase the likelihood of measurements being 

closer to the average flux, but it will also increase the denominator used to calculate the 

standard deviation of the estimate (Fowler et al.  1998). The use of fewer numbers of larger 

chambers results in a lower denominator (or fewer degrees of freedom) when calculating 

error terms, but variation (specifically, the sum of the squares of the deviations) is still 

reduced as a heterogeneous range of fluxes are averaged into a single flux. It may be 

expected that this effect is greater when making measurements in heterogeneous 

landscapes yet, despite clear recognition that CH4 fluxes are spatially heterogeneous 

(Davidson et al.  2002), this has not been demonstrated previously for CH4 fluxes. Despite 
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emphasising the benefits of using chambers with large footprints, results from this study 

also demonstrate that, if used carefully, chambers with smaller footprints still produced an 

estimate of CH4 flux which was not significantly different to those found using larger 

chambers (Fig. 4.11). Consequently, smaller chambers may still be preferable in some 

situations as they require fewer resources yet still produce reasonable estimates of mean 

CH4 flux. 

An implication from the study of different sized chambers (Section 4.3.2) is that the most 

sensitive way of measuring landscape scale manipulations is with the measurement of the 

largest possible footprint. In the case of direct measurement of surface CH4 flux, the largest 

footprints are achieved using micrometeorological approaches, including eddy covariance 

(EC). EC measurements produce a single spatially integrated measurement from a footprint 

which is typically over “a few km2” (Moncrieff et al.  1997) but are fixed to a single location, 

with any spatial comparisons being dependent on natural variations of wind direction and 

strength (Herbst et al.  2011) rather than through direct comparison. To satisfactorily 

compare several replicates of treatment and control sites with this technique several EC 

systems would be simultaneously required. Whilst data from increasing numbers of EC 

systems are collated into global observation networks (e.g. FLUXNET in Baldocchi et al.  

2005), large numbers of EC systems are rarely used in single studies of landscape scale 

experiments. An alternative to several static measurement points is a highly mobile, 

airborne EC system, which can rapidly take measurements from large footprints in several 

landscape scale replicates, but is limited by topography and require plot sizes of multiple 

km2 to calculate flux measurements (Hill et al.  2011). 

5.5 Summary 

In addition to emphasising the role of the UK uplands as an important source of CH4, this 

discussion has highlighted several features which were repeatedly supported from the 
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current studies. The first feature was hysteresis in the response of CH4 fluxes to changing 

environmental conditions. This was something which could explain the ‘inverse’ 

relationship found between water table and CH4 flux and which became evident when 

regressing running averages of environmental variables against measured CH4 fluxes. 

Hysteresis was also one factor possibly contributing to the extended activity of CH4 

emission observed at the blanket bog around Lake Vyrnwy towards the end of 2009. The 

delayed response of CH4 fluxes means that, rather than using concurrent environmental 

variables in regression studies which produce notoriously low proportions of variability of 

CH4 fluxes, environmental variables temporally aggregated prior to the time of flux 

measurement can be used to improve the results of regression studies. 

The second feature was the variety of environmental controls which were significantly 

related to CH4 fluxes and the multiple periods of control by environmental conditions prior 

to the day of flux measurement. As a result of the production, oxidation and transport of 

CH4 between the soil and atmosphere, it can be expected that a variety of environmental 

conditions contributed to the observed net CH4 flux. 

The final feature is the consistent high variability in virtually all estimates of CH4 flux. Whilst 

this reflects the spatial heterogeneity of CH4 fluxes, which in turn reflects small-scale 

variation in hydrological and thermal conditions, substrate provision, and availability of 

transport pathways, it also provides a constraint when attempting to compare different 

estimate of CH4 flux. A novel approach for reducing variability of estimates was shown to be 

the use of chambers with very large footprints, although chambers with smaller footprints 

still provide useful data on the direction and magnitude of CH4 fluxes.  
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Appendix A CH4 headspace enhancement 

There is an expectation that net CH4 oxidation would not occur in an upland blanket bog 

due the dominance of anaerobic soils (Le Mer and Roger, 2001), with some models of CH4 

fluxes for UK uplands having no capacity for net CH4 consumption to be incorporated under 

any circumstances (Worrall et al.  2007b). In direct contrast to this, observations from 

blanket bogs in the UK do actually report net oxidation to varying degrees (Fowler et al.  

1995b; Macdonald et al.  1996; Macdonald et al.  1997). The protocol followed in the 

current study (Freitag et al.  2010) enabled the detection of net oxidation but has the 

potential to bias flux results by artificially enhancing oxidation in any anaerobic areas of 

soil, and by misinterpreting leakage of CH4 from the headspace (specifically where the 

chamber meets the soil surface) as oxidation. Both these potential biases would result in 

increasingly negative flux measurements, lowering emissions or increasing oxidation. The 

development and availability of new technologies to measure CH4 concentration (Fast 

Greenhouse Gas Analyzer (FGGA), Los Gatos Research, Mountain View, CA, USA) meant a 

comparison was possible between fluxes from enhanced and unenhanced headspaces using 

a cavity-enhanced absorption technique (Hendriks et al.  2008). 

12 mesocosms, 25 cm diameter and 35 cm height, were extracted using a section of opaque 

PVC piping of the same dimensions from grass, heather and sedge vegetation types at Lake 

Vyrnwy (SH 93909 25871) for a retrospective study at the University of York. The 

mesocosms were extracted and returned to York on the 3rd March 2010 where they were 

stored externally for seven days with water tables maintained at the level observed in Lake 

Vyrnwy (16.3 cm, 9.7 cm and 5.3 cm below the surface for grass, heather and sedge, 

respectively), before fluxes were measured with and without headspace enhancement. All 

cores were measured using a non-steady state chamber, 25 cm diameter and 30 cm height, 

constructed in a similar way as described in Section 2.2.2, an important exception being the 
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addition of two ports: an inlet, positioned 2 cm above the base of the chamber, and an 

outlet, positioned 2 cm below the top of the chamber. Two 1 m sections of 3.2 mm internal 

diameter tubing (Bev-a-line IV, Thermoplastic Processes, Inc., Georgetown, DE, USA) were 

used to connect both ports to the FGGA so that once the chamber was sealed a closed loop 

between the FGGA and chamber was created. Rather than inserting a collar into the soil 

surface, the chamber was sealed to the exterior of the section of pipe used to extract the 

cores which had been left around each core. Using the internal pump of the FGGA at a rate 

of 55 ml s-1 and a sampling rate of 1 Hz, flux measurements were made for 15 minutes 

without CH4 enhancement and, after a ten minute rest period with the chamber removed, 

another 15 minute measurement period with a headspace concentration of CH4 enhanced 

to a mean (±SEM) of 29.6 (±1.1) ppm. Fluxes were calculated using the same decision 

algorithm as previously described and, as SF6 had also been added to the headspace after 

closure and sampled from the chambers at 0, 5, 10 and 15 minutes, all fluxes were adjusted 

for leakage if necessary. Gas samples were extracted using a syringe, stored in 12 ml vials 

and analysed for SF6 using a Perkin Elmer AutoSystem XL GC as described in Section 2.2.2. 

Enhancing the ambient headspace concentration of CH4, led to no significant difference in 

CH4 fluxes for all mesocosms (Wilcoxon signed-rank, p = 0.700) nor was there an effect for 

each individual group of vegetation (grass, p = 0.250; heather, p = 0.875; and sedge, 0 = 

0.250). There was a median reduction in CH4 flux by 1.34 mg CH4 m
-2 h-1, but the lack of 

difference in fluxes is seen as evidence that methane oxidation is not artificially enhanced 

by the levels of headspace enhancement used in the current study. The potential bias of 

misinterpreting loss of headspace concentration due to leakage being interpreted as net 

oxidation was avoided in the current study by the simultaneous addition of SF6 and 

subsequent leakage adjustment by the flux algorithm. Overall, CH4 flux measurements at 

Lake Vyrnwy do not appear to be more negative than other results when considering the 

range of measurements  (mean fluxes -0.8 to 2.8 mg CH4 m-2 h-1) from other UK blanket 
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bogs (Macdonald et al.  1998; Ward et al.  2007; McNamara et al.  2008; Hornibrook et al.  

2009). 
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Appendix B Flux decision algorithm 

CO2 fluxes are not mentioned in the following section, but were calculated using an 

identical strategy as described for CH4 fluxes. Fluxes were calculated using the slope of 

linear regression between CH4 concentration and time for each individual coverbox and 

sampling. To remove the influence of erroneous data points (for example, as a result of 

faulty vial seal causing the leakage of a sample within a time series) and to provide a quality 

check for all 829 measurements, a decision algorithm was used to objectively and 

consistently determine how fluxes were calculated (see Fig. B.1 for CH4 and Fig. B.2 for 

CO2). The algorithm was designed to produce outcomes based on the following four sets of 

conditions: 

(i) Accept - no adjust. Fluxes were calculated directly when a strong linear relationship 

(defined by r2 ≥ 0.9) between time and the headspace concentration of CH4 was found. No 

adjustment for leakage was made if the SF6 flux was either positive (Fig. B.1 and Fig. B.2; 

Outcomes 4, 7, 10, 14, 17 and 20), or because the apparent SF6 change was ‘effectively 

zero’ (Outcomes 21, 24 and 26). ‘Effectively zero’ is defined as when the regression slope 

was not significantly different from zero (at the p > 0.05 level), the coefficient of variation 

was less than 30%, and the range of headspace concentrations was within a defined limit 

(0.01 ppm for SF6). The flux (F, in mg CH4 m
-2 h-1) was calculated as follows: 

                                                                            
  

  
 
  

 
                                                                

where    is the change of CH4 concentration (ppmv) in respect to the change in time,    

(hour) calculated with PROC REG and RSQUARE options in SAS® using the slope of the 

regression between concentration and time, V  is an adjustment for headspace volume 

(dm3), T is an adjustment for temperature (K), A is the surface area within the chamber 

(m-2).  
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Fig. B.1 Schematic of the decision algorithm for CH4 flux calculation. The 27 possible 

outcomes (numbered in bold), the proportion of decisions reached and four groups of 

required actions (refer, reject, accept and accept with leakage adjustment) are shown.  
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Fig. B.2 Schematic of the decision algorithm for CO2 flux calculation. The 21 possible 

outcomes (numbred in bold), the proportion of decisions reached and four groups of 

required actions (refer, reject, accept and accept with leakage adjustment) are shown.  
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(ii) Accept - adjust. Fluxes were calculated as before but also adjusted for leakage when the 

headspace concentration of SF6 declined in a strong linear manner (Outcomes 1, 5, 8, 11, 15 

and 18). This combination of flux and leakage adjustment gave an emission rate of: 

                                                                        
  

  
 
  

 
                                                               

where L is the following adjustment for leakage (mg m-2 h-1): 

                                                                         
  

  
 
  

 
                                                           

where  S is the change of SF6 concentration (ppmv) in respect to    (hour), and I  is the 

ratio of the CH4 flux intercept to the SF6 flux intercept (no units). In order to achieve an r2 

value above 0.9, occasionally one time point was removed from each series of five time 

points. 

 (iii) Reject. Measurements were rejected if an excessive leakage of headspace SF6 (>  50% 

of the maximum concentration) occurred during the measurement period (Outcomes 2 and 

12) or where the starting (T0) concentration of CH4 was equal to or greater than 100 ppm 

(Outcomes 3, 6, 13, 16, 23 or 25). 

(iv) Refer. The final component of the decision algorithm identified measurements with 

weaker linear relationships (where r2 < 0.9) between time and the headspace concentration 

of CH4 or SF6, and where the apparent change in concentration was not effectively zero. 

These outcomes were signalled by the decision algorithm for further manually overseen 

examination (Outcomes 9, 19, 22 and 27). By altering the time point originally removed by 

the algorithm or, as was the case for 0.01% of calculations, the removal of two time points 

resulted in acceptance by the algorithm under the conditions of (i) or (ii). 

The six examples of results shown in Fig. B.3 and Fig. B.4 represent six different outcomes 

from the decision algorithm produced in 71% and 69% of CH4 and CO2 flux calculations, 
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respectively. Fluxes were produced from all the points in a time series and adjusted for 

chamber leakage for 16% of CH4 and 18% of CO2 flux measurements (for example see 

Fig. B.3 (a) where the CH4 flux was 5.91 mg CH4 m
-2 h-1 and CO2 flux was 818.3 

mg CO2 m
-2 h-1). The removal of one time point from a time series resulted in acceptable r2 

values for ca. 10% of CH4 fluxes and 3% of CO2 fluxes (for example see Fig. B.3 (b); rather 

than being rejected, a CH4 flux of 0.07 mg CH4 m
-2 h-1 and CO2 flux of 372.0 mg CO2 m

-2 h-1 

were produced). Fluxes were produced from all points in a time series but not adjusted for 

chamber leakage in 3% of CH4 fluxes and 22% of CO2 fluxes (for example see Fig. B.3 (c); CH4 

flux of 3.59 mg CH4 m
-2 h-1, CO2 flux of 518.4 mg m-2 h-1). Fluxes were discarded due to SF6 

leakage in 12% of all flux calculations (for example see Fig. B.4 (a)), or discarded due to low 

r2 values in 11% fluxes (for example see Fig. B.4 (b)). The decision algorithm was directed to 

produce ‘zero’ fluxes in 20% of CH4 fluxes and 2% of CO2 fluxes (for example see Fig. B.4 (c), 

CH4 flux of 0 mg CH4 m
-2 h-1, CO2 flux of 0 mg CO2 m

-2 h-1). 
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Fig. B.3 Examples of headspace concentrations of CH4 (▲), CO2 () and SF6 (■) for three 

typical outcomes of the decision algorithm: (a) all gases had acceptable r2 values (≥ 0.9, 

solid line); (b) after one time point was removed (Х), r2 values were acceptable; (c) the 

relationship of SF6 against time (dashed line) was not effectively different from zero.  
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Fig. B.4 Examples of headspace concentrations of CH4 (▲), CO2 () and SF6 (■) for three 

typical outcomes of the decision algorithm: (a) SF6 decreased excessively (> 50%); (b) after 

one time point was removed, r2 values were still unacceptable for all gases; (c) the 

relationship of all gases with time (dashed line) was not effectively different from zero.  
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Appendix C Data gap filling regression models 

The aim of these models was to fill data gaps of more than one hour in the environmental 

data for three locations at the Lake Vyrnwy field site from 23 May 2008 to 31 January 2010. 

The fundamental approach was to correlate values across sensors at all locations in order to 

construct a regression model which could then be used to predict missing values. There 

were a number of reasons for the occurrence of data gaps including equipment failure, 

damage from livestock (such as chewed cables and soil temperature probes), equipment 

theft, water-damaged loggers and wind-damaged anemometers. Out of a potential of 

445,680 hourly values across all sensors, 134 data gaps resulted in 119,372 (26.8%) missing 

values. 

A regression model was generated for each data gap, with non-missing values used as 

explanatory variables in a stepwise selection procedure (PROC REG procedure with the 

SELECTION=STEPWISE option on SAS®, v9.2, SAS Institute Inc., Cary, NC, USA). This 

automated selection procedure was based on a forward step-wise regression (see page 220 

of Grafen and Hails, 2002) but included a step which, once an additional explanatory 

variable had been added to the model, removed any existing explanatory variables in the 

model if their p-value increased above 0.05. All variables were categorised into five groups: 

soil temperature, air temperature, radiation (solar radiation and PAR), humidity, and 

rainfall, and each model only included independent variables from the same group as the 

dependent variable. In order to realistically fit night-time radiation levels and rainfall on dry 

days, the intercept for models of radiation and rainfall was forced through zero. All models 

were required to meet several criteria: the presence of at least one independent variable, 

produced from a similar sensor type, for the entire gap and the r2 for the correlation 

between actual and predicted values had to be more than 0.8. Details of missing periods of 

data and the resulting gap-filling models (Table C.1 to Table C.6) and comparisons between 
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predicted and actual values (Fig. 3.1 and Fig. C.1) show that each regression model met 

these criteria. The models which were constructed to fill gaps in the hourly measurements 

of wind speed and rainfall yielded low r2 values (between 0.557 and 0.681), so gaps in the 

wind speed and rainfall data were modelled using daily values (daily total wind run and 

daily total rainfall). Regression models derived in this way produced acceptable r2 values 

between 0.850 and 0.944 and the comparison between results from the hourly and daily 

approaches are shown in Table C.5 and Table C.6. 
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Table C.1 Periods of missing soil temperature data for various locations and vegetation types (Loc), with details of individual data gap-filling models created 

from stepwise regression against non-missing soil temperatures from other locations and vegetation types. Each soil temperature sensor is represented by 

a four letter code, where the first two characters define location (Eu = Eunant, Ha = Hafod and Hi = Hirddu) and the last two characters define type of 

vegetation (Gr = grass, He = heather, Ju = Juncus and Se = sedge). The coefficient of determination (r2) and degrees of freedom (df) are given. 

Loc Missing dates Model parameters r2 df 
EuGr 04/10/08 - 04/03/09 EuGr = -0.422 + 0.339*HiGr + 0.065*EuHe + 1.096*EuSe - 0.452*HiSe 0.991 7105 
EuGr 22/09/09 - 31/01/10 EuGr = -0.815 + 1.067*EuJu 0.953 815 
HaGr 23/05/08 - 22/03/09 HaGr = 1.795 + 0.167*HiGr - 0.113*EuHe + 0.755*EuSe 0.985 1896 
HaGr 03/04/09 - 01/07/09 HaGr = 1.378 + 1.053*EuGr - 0.270*EuHe + 0.205*HaHe - 0.473*EuSe + 0.318*HiSe 0.996 443 
HaGr 04/07/09 - 23/09/09 HaGr = 1.666 + 0.547*HaHe + 0.332*HiHe 0.989 4962 
HaGr 21/10/09 - 09/12/09 HaGr = -0.705 + 1.110*EuJu 0.980 4729 
HiGr 31/07/09 - 11/08/09

1
 HiGr = 0.708 + 0.607*EuGr - 0.313*HaHe + 1.050*HiHe - 0.183*HaJu - 0.159*HiJu - 0.126*EuSe + 0.133*HaSe 0.996 1361 

HiGr 11/08/09 - 21/10/09 HiGr = 0.473 + 0.43*HaHe + 0.574*HaJu 0.945 6953 
HiGr 21/10/09 - 19/11/09 HiGr = -0.421 + 0.955*EuJu 0.986 3257 
EuHe 22/09/09 - 19/11/09 EuHe = -2.549 + 1.152*EuJu 0.989 5154 
HaHe 13/01/09 - 17/02/09 HaHe = -0.015 + 0.182*HiGr + 0.794*EuHe - 0.093*HiJu + 0.111*EuSe + 0.052*HiSe 0.997 6775 
HaHe 24/02/09 - 27/02/09 HaHe = 0.075 + 0.141*HiGr + 0.793*EuHe - 0.065*HiHe - 0.095*HiJu + 0.249*HiSe 0.997 5548 
HaHe 21/10/09 - 19/11/09 HaHe = -2.927 + 1.277*EuJu 0.982 5850 

HaHe 27/01/10 - 27/01/10 
HaHe = -0.367 + 0.090*HaGr - 0.203*HiGr + 0.659*EuHe - 0.462*HiHe - 0.147*EuJu + 0.089*HaJu + 0.158*HiJu - 0.096*EuSe + 
0.472*HaSe + 0.466*HiSe 

0.994 1231 

HiHe 05/08/08 - 08/10/08 HiHe = -0.128 + 0.436*HiGr + 0.117*EuHe - 0.369*EuSe + 0.806*HiSe 0.993 10115 
HiHe 14/01/09 - 30/01/09 HiHe = -0.284 + 0.395*HiGr + 0.230*EuHe + 0.055*HiJu - 0.434*EuSe + 0.757*HiSe 0.995 6099 
HiHe 17/02/09 - 17/02/09 HiHe = -0.284 + 0.395*HiGr + 0.230*EuHe + 0.055*HiJu - 0.434*EuSe + 0.757*HiSe 0.995 6099 
HiHe 04/03/09 - 07/03/09 HiHe = 0.330 + 0.049*EuGr + 0.510*HiGr + 0.100*EuHe + 0.094*HaHe - 0.301*EuSe + 0.486*HiSe 0.995 2891 
HiHe 29/04/09 - 29/04/09 HiHe = 0.160 + 0.524*HiGr + 0.315*EuHe + 0.073*HaHe + 0.034*HaJu + 0.094*HiJu - 0.206*EuSe - 0.069*HaSe + 0.203*HiSe 0.998 1360 
HiHe 20/10/09 - 19/11/09 HiHe = -1.981 + 1.134*EuJu 0.969 6029 
EuJu 23/05/08 - 19/08/09 EuJu = 2.171 + 0.745*EuHe + 0.116*EuSe 0.989 4011 

                                                           
1
 This single time period included 11 periods of missing data, all of which were gap-filled using the same model. 
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Table C.1 continued. 

Var Missing dates Model parameters r2 df 
HaJu 23/05/08 - 05/06/08 HaJu = 2.197 - 0.203*HiGr + 0.501*EuHe + 0.075*EuSe + 0.046*EuGr + 0.020*HaHe + 0.283*HiHe 0.983 3194 
HaJu 23/09/08 - 22/03/09 HaJu = 1.473 + 0.556*EuHe - 0.168*EuSe + 0.544*HiSe 0.991 5820 
HaJu 30/04/09 - 09/07/09 HaJu = 2.161 + 0.150*EuGr - 0.236*HiGr + 0.552*EuHe + 0.146*HaHe + 0.172*HiHe - 0.164*EuSe + 0.280*HiSe 0.984 3191 
HaJu 21/10/09 - 21/10/09 HaJu = -1.009 + 1.116*EuJu 0.975 5815 
HaJu 01/11/09 - 09/12/09 HaJu = -1.009 + 1.116*EuJu 0.975 5815 
HiJu 27/05/08 - 24/07/08 HiJu = 2.227 - 0.298*HiGr - 0.865*EuHe + 1.670*EuSe + 0.112*EuGr + 0.159*HiHe 0.984 2892 
HiJu 28/08/08 - 29/08/08 HiJu = 1.779 - 0.362*HiGr - 0.818*EuHe + 1.091*EuSe + 0.533*HiSe + 0.220*EuGr + 0.146*HaJu 0.983 2808 
HiJu 23/09/08 - 17/12/08 HiJu = 2.770 - 0.453*EuHe - 0.544*HaHe + 1.617*EuSe + 0.129*HiSe 0.976 6776 
HiJu 15/04/09 - 29/04/09 HiJu = 1.563 - 0.135*EuGr - 0.446*HiGr - 0.753*EuHe + 0.321*HaHe + 0.472*HiHe + 0.688*EuSe + 0.395*HaSe + 0.310*HiSe 0.990 1360 
HiJu 23/05/09 - 02/07/09 HiJu = 2.217 + 0.380*EuGr - 0.323*HiGr - 0.702*EuHe - 0.152*HaHe + 1.148*EuSe + 0.426*HiSe 0.985 2891 
HiJu 24/07/09 - 25/07/09 HiJu = 1.563 - 0.135*EuGr - 0.446*HiGr - 0.753*EuHe + 0.321*HaHe + 0.472*HiHe + 0.688*EuSe + 0.395*HaSe + 0.310*HiSe 0.990 1360 
HiJu 07/09/09 - 10/09/09 HiJu = 0.755 + 0.596*EuHe - 0.672*HaHe - 0.471*HiHe - 0.125*EuJu + 0.931*HaJu + 0.702*EuSe 0.936 735 
HiJu 06/10/09 - 19/11/09 HiJu = 0.724 + 0.951*EuJu 0.984 5220 
EuSe 22/09/09 - 19/11/09 EuSe = -2.835 + 1.224*EuJu 0.985 4013 

EuSe 10/12/09 - 27/01/10 
EuSe = -1.296 + 0.504*HaGr - 0.379*HiGr + 0.946*EuHe - 0.359*HaHe - 1.336*HiHe + 0.374*EuJu + 0.095*HaJu + 0.694*HaSe + 
0.450*HiSe 

0.981 1232 

HaSe 29/05/08 - 22/03/09 HaSe = 0.232 + 0.264*HiGr - 0.158*EuHe + 0.843*EuSe 0.991 3741 
HaSe 15/05/09 - 01/07/09 HaSe = -0.179 + 0.342*EuGr + 0.150*HiGr - 0.088*EuHe + 0.418*HaHe - 0.261*HiHe + 0.457*EuSe 0.992 2473 
HaSe 19/08/09 - 23/09/09 HaSe = 0.579 + 0.618*HaHe + 0.588*HiHe - 0.243*HaJu 0.987 6239 
HaSe 10/10/09 - 10/10/09 HaSe = 0.035 + 0.371*HaGr + 0.318*HaHe + 0.477*HiHe + 0.039*EuJu - 0.219*HaJu 0.997 4146 
HaSe 21/10/09 - 09/12/09 HaSe = -1.941 + 1.168*EuJu 0.976 4174 
HiSe 04/06/08 - 05/06/08 HiSe = -0.119 - 0.081*HiGr + 0.925*EuSe - 0.439*EuGr + 0.153*HaHe + 0.491*HiHe 0.991 5588 
HiSe 31/07/09 - 11/08/09

2
 HiSe = -0.001 - 0.401*EuGr - 0.230*EuHe + 0.108*HaHe + 0.357*HiHe + 0.057*HaJu + 0.105*HiJu + 1.267*EuSe - 0.259*HaSe 0.997 1360 

HiSe 11/08/09 - 21/10/09 HiSe = -0.795 + 0.472*HaHe + 0.613*HaJu 0.993 6952 
HiSe 21/10/09 - 19/11/09 HiSe = -2.568 + 1.217*EuJu 0.984 3257 

 

                                                           
2
 This single time period includes 11 periods of missing data, all of which are gap-filled using the same model.  
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Table C.2 Periods of missing air temperature data for various locations (Loc), with details of individual data gap-filling models created from stepwise 

regression against non-missing air temperatures from other locations. Each air temperature sensor is represented by a two letter code which defines 

location (Eu = Eunant, Ha = Hafod and Hi = Hirddu). The coefficient of determination (r2) and degrees of freedom (df) are given. 

Loc Missing dates Model parameters r2 df 
Eu 08/07/08 - 22/09/09 Eu = -0.535 + 1.071*Ha 0.956 10071 
Eu 22/09/09 - 31/01/10 Eu = 0.129 + 1.089*Hi 0.957 8746 
Ha 07/10/08 - 08/10/08 Ha = 0.825 + 0.893*Eu 0.956 10071 
Ha 21/10/09 - 31/01/10 Ha = 0.629 + 0.993*Hi 0.993 11249 
Hi 23/05/08 - 24/06/08 Hi = -0.552 + 0.041*Eu + 0.946*Ha 0.994 8744 
Hi 10/08/08 - 11/08/08 Hi = -0.577 + 1.001*Ha 0.993 11249 
Hi 23/09/08 - 08/10/08 Hi = 0.191 + 0.879*Eu 0.957 8745 
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Table C.3 Periods of missing PAR (Par) and solar radiation (Rad) data for various locations (Loc), with details of individual data gap-filling models created 

from stepwise regression against non-missing radiation measurements from other locations. Each radiation sensor is represented by a five letter code, 

where the first two characters define location (Eu = Eunant, Ha = Hafod and Hi = Hirddu) and the last three characters define type of measurement (Par or 

Rad). The coefficient of determination (r2) and degrees of freedom (df) are given. 

Loc Missing dates Model parameters r2 df 
EuPar 23/05/08 - 07/10/08 EuPar = 0.002*HaRad 0.806 5977 
EuPar 07/10/08 - 08/10/08 EuPar = 0.003*EuRad 0.837 5977 
EuPar 08/10/08 - 28/01/09

3
 EuPar = 0.002*EuRad + 0.001*HiRad 0.843 5976 

EuPar 22/09/09 - 31/01/10 EuPar = 0.068*HiPar + 0.002*HiRad 0.825 3503 
HaPar 23/05/08 - 07/10/08 HaPar = 0.002*HaRad 0.863 5826 
HaPar 07/10/08 - 08/10/08 HaPar = 0.003*EuRad 0.791 5134 
HaPar 08/10/08 - 17/02/09 HaPar = -0.001*EuRad + 0.002*HaRad + 0.001*HiRad 0.866 5132 
HaPar 24/02/09 - 27/02/09 HaPar = 0.251*EuPar - 0.001*EuRad + 0.002*HaRad + 0.001*HiRad 0.874 5130 
HaPar 21/10/09 - 31/01/10 HaPar = 0.082*HiPar + 0.002*HiRad 0.852 4196 
HiPar 23/05/08 - 07/10/08 HiPar = 0.002*HaRad 0.845 4197 
HiPar 07/10/08 - 08/10/08 HiPar = 0.003*EuRad 0.823 3505 
HiPar 08/10/08 - 29/04/09 HiPar = 0.0002*EuRad + 0.002*HiRad 0.869 3504 
EuRad 23/05/08 - 22/09/08 EuRad = 0.822*HaRad 0.923 8739 
EuRad 22/09/09 - 31/01/10 EuRad = 13.939*HiPar + 0.873*HiRad 0.936 3504 
HaRad 07/10/08 - 08/10/08 HaRad = 1.123*EuRad 0.923 8739 
HaRad 21/10/09 - 31/01/10 HaRad = 1.092*HiRad 0.970 4197 
HiRad 23/05/08 - 12/08/08

4
 HiRad = 0.884*HaRad 0.949 11233 

HiRad 23/09/08 - 08/10/08 HiRad = 1.031*EuRad 0.933 8402 

                                                           
3
 This single time period included four periods of missing data, all of which were gap-filled using the same model. 

4
 This single time period included six periods of missing data, all of which were gap-filled using the same model. 
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Table C.4 Periods of missing humidity data for various locations (Loc), with details of individual data gap-filling models created from stepwise regression 

against non-missing humidites from other locations. Each humidity sensor is represented by a two letter code which defines location (Eu = Eunant, Ha = 

Hafod and Hi = Hirddu). The coefficient of determination (r2) and degrees of freedom (df) are given. 

Loc Missing dates Model parameters r2 df 
Eu 03/08/08 - 06/08/08

5
 Eu = 4.409 + 0.954*Hi 0.930 9422 

Eu 06/08/08 - 22/09/08 Eu = 9.121 + 0.917*Ha 0.906 10748 
Eu 22/09/09 - 31/01/10 Eu = 4.409 + 0.954*Hi 0.930 9422 
Ha 07/10/08 - 08/11/08 Ha = -0.483 + 0.988*Eu 0.906 10748 
Ha 21/10/09 - 31/01/10 Ha = -2.411 + 1.010*Hi 0.960 11249 
Hi 23/05/08 - 24/06/08 Hi = 2.384 + 0.355*Eu + 0.630*Ha 0.974 9421 
Hi 10/08/08 - 11/08/08 Hi = 5.990 + 0.951*Ha 0.960 11249 
Hi 23/09/08 - 08/10/08 Hi = 2.191 + 0.976*Eu 0.930 9422 

 

  

                                                           
5
 This single time period included five periods of missing data, all of which were gap-filled using the same model. 
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Table C.5 Periods of missing wind speed data for various locations (Loc), with details of individual data gap-filling models created from stepwise regression 

against non-missing wind speed data from other locations using both hourly measurements and daily wind run. Each rainfall sensor is represented by a two 

letter code which defines location (Eu = Eunant, Ha = Hafod and Hi = Hirddu). The coefficient of determination (r2) and degrees of freedom (df) are given. 

Loc Missing dates 
Hourly wind speed  Daily wind run 

Model parameters r2  df Model parameters r2 df 
Eu 07/08/08 - 21/09/08 Eu = 1.770*Ha 0.776 4157 Eu = 1.842*Ha 0.881 120 
Eu 22/12/08 - 31/01/10 n/a

6
   Eu = 1.596*Hi 0.863 120 

Ha 22/10/09 - 31/01/10 n/a
1
   Ha = 0.878*Hi 0.986 470 

Hi 23/05/08 - 23/06/08 Hi = 0.025*Eu + 1.064*Ha 0.964 2830 Hi = 1.130*Ha 0.979 120 
Hi 24/09/08 - 07/10/08 Hi = 0.483*Eu 0.767 2831 Hi = 1.130*Ha 0.979 120 

  

                                                           
6
 No independent variables were present for the entire data gap. 
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Table C.6 Periods of missing rainfall data for various locations (Loc), with details of individual data gap-filling models created from stepwise regression 

against non-missing rainfall from other locations using both hourly and daily rainfall totals. Each rainfall sensor is represented by a two letter code which 

defines location (Eu = Eunant, Ha = Hafod and Hi = Hirddu). The coefficient of determination (r2) and degrees of freedom (df) are given. 

Loc Missing dates 
Hourly rainfall total  Daily rainfall total 

Model parameters r2  df Model parameters r2 df 
Eu 07/08/08 - 21/09/08 n/a

7
   Eu = 1.131*Hi 0.850 261 

Eu 23/09/09 - 31/01/10 Eu = 0.920*Hi 0.555 6217 Eu = 1.131*Hi 0.850 261 
Ha 04/08/08 – 21/09/08 n/a

1
   Ha = 0.874*Hi 0.944 285 

Ha 22/09/08 - 18/02/09 n/a
1
   Ha = 0.683*Eu 0.844 297 

Ha 22/10/09 - 31/01/10 Ha = 0.875*Hi 0.841 6822 Ha = 0.874*Hi 0.944 285 
Hi 23/05/08 – 23/06/08 Hi = 0.152*Eu + 0.818*Ha 0.849 6129 Hi = 0.239*Eu + 0.786*Ha 0.953 255 
Hi 24/09/08 - 18/02/09 Hi = 0.607*Eu 0.555 6217 Hi = 0.752*Eu 0.850 261 

 

                                                           
7
 No independent variables were present for the entire data gap. 
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Fig. C.1 Results from data gap-filling models for each period of missing air temperature (Air, 

°C), PAR (Par, mmol m-2 s-1), solar radiation (Rad, Wm-2), humidity (Hum, %), wind speed 

(Win, ms-1) and rainfall (Rai, mm) data. Each model is represented by a five letter code; the 

first two characters define location and the last three characters define type of 

measurement (Air, Par, Rad, Hum or Rai), and the starting date of the data gap.  
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