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Abstract 

 

This work aims at studying the impact ionisation properties of InAs for the 

exploitation of InAs avalanche photodiodes (APDs) in practical applications such as 

infrared sensing and optical fibre communications. It involved extensive 

experimental work in device fabrication, leakage current analysis, avalanche gain 

characterisation, excess noise and frequency response measurements.  

 

Following an optimisation of wet chemical etching procedures for InAs diodes, 

surface passivation using different commercially available dielectrics was 

investigated. SU-8 was identified as the most suitable dielectric for surface 

passivation. It reduces the surface leakage current and increases the robustness of 

InAs diodes, which enabled further progress in the fabrication of high speed InAs 

diodes. Furthermore, dark current analysis shows that in the SU-8 passivated InAs 

APDs the bulk leakage current is diffusion-dominated at temperatures ≥ 200 K. 

However, the surface leakage current that appears to originate from surface 

generation-recombination becomes a more dominant dark current source at 

temperatures < 200 K and in small-area APDs. High quantum efficiency, either 

higher or comparable to that of commercial InAs photodiodes, and avalanche gain > 

20 with low gain-normalised dark current density of ~ 5×10-6 A/cm2 at 77 K 

demonstrate the potential of InAs APDs for infrared sensing applications. 

 

As one of the first avalanche photodiodes from III-V semiconductors with single 

carrier multiplication characteristics, the effects of temperature, peak electric field 

and electric field gradient on the avalanche gain and excess noise of InAs APDs were 

investigated. Extremely low excess noise factors of ~ 1.45 - 1.6 were temperature- 

and gain-independent for avalanche gain > 3. A few unique impact ionisation 

properties of InAs, which are dissimilar from those of conventional APDs, were 

identified. These understandings of the ionisation properties are important in 

interpreting the avalanche characteristics when designing InAs APDs for practical 
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applications. The ability of InAs APDs to improve the sensitivity of a system was 

established by evaluating the APDs with a commercial low-noise pre-amplifier. 

 

The frequency response of the high speed InAs APDs was studied. The 3-dB 

bandwidth was determined to be ~ 3.5 - 4 GHz and it remained unaffected by 

avalanche gain and temperature. Maximum avalanche gains of ~ 125 and ~ 165 

produce record high gain-bandwidth products of 430 GHz and 580 GHz at room 

temperature and 77 K respectively. This is the very first practical demonstration of 

extremely high gain-bandwidth product using III-V semiconductors and it confirms 

the third ideal characteristics of InAs electron-APDs, besides the exponentially rising 

avalanche gain and extremely low excess noise independent of gain. Although the 3-

dB bandwidth is limited to ~ 3.5 GHz, the InAs APDs with its high gain-bandwidth 

products were able to amplify the 15-GHz optical signal by ~ 23 dB above the noise 

floor. This is potentially useful for 20-Gbps applications. 
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Glossary of terms 

 

APD   Avalanche photodiode 

ξ   Energy 

λ   Wavelength 

f   Frequency 

EM   Electromagnetic 

h   Planck’s constant (6.626068 ×10-34 m2kg/s) 

c    Speed of light (3×108 ms-1) 

Eg   Bandgap energy 

EHP   Electron-hole pair 

λc   Cut-off wavelength 

SNR   Signal to noise ratio 

PMT   Photomultiplier tube 

UV   Ultraviolet 

SWIR   Short wave infrared (1.4 – 3 µm) 

MWIR   Mid wave infrared (3 – 5 µm) 

MCP   Microchannel-plate 

CCD   Charge-coupled device 

HPT   Heterojunction phototransistor 

GBP   Gain-bandwidth product 

LWIR   Long wave infrared (8 – 12 µm) 

NIR   Near infrared 

FPA   Focal plane array 

SAM   Separate absorption and multiplication �     Electron ionisation coefficient 

β     Hole ionisation coefficient 

k   Ionisation coefficient ratio 

F   Excess noise factor 

M   Avalanche gain 
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e-APD   Electron-APD   

Vb   Bias voltage 

T   Temperature 

MBE   Molecular beam epitaxy 

W   Depletion width / avalanche region width 

Me   Pure electron initiated avalanche gain 

Mh   Pure hole initiated avalanche gain 

MOVPE  Metal organic vapour phase epitaxy 

ξth    Threshold energy of impact ionisation 

<l>    Mean ionisation path length 

RPL   Random path length 

Mi   Avalanche gain for a single ionisation event 

Fe   Pure electron initiated excess noise factor 

Fh   Pure hole initiated excess noise factor 

q   Electron charge (1.602×10-19 C) 

B   Bandwidth 

NA    Pre-amplifier’s noise 

Iph,pr    Unmultiplied photocurrent 

Id,pr    Unmultiplied dark current 

Mopt    Maximum exploitable avalanche gain 

RC   Resistance-capacitance 

Pe (Ph)   Ionisation probability of electron (hole) 

de (dh)   Dead space for electron (hole) �*(β*)   Enabled electron (hole) ionisation coefficient 

ξthe (ξthh)  Threshold energy of impact ionisation of electron (hole) 

E   Electric field 

Se (Sh)   Probability a free electron (hole) does not impact ionise 

rn    Uniformly distributed number 

le (lh)   Random ionisation path length of an electron (hole) 

nt   Total number of trials 

I-V   Current-voltage 

SMU   Source measurement unit 
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IF   Diode forward current 

Io   Diode saturation current 

Vt   Voltage drop across the diode 

n   Ideality factor 

kB   Boltzmann’s constant (1.3806503×10-23 m2 kg s-2 K-1) 

R   Series resistance 

r   Radius 

Idiff   Diffusion current 

Ig-r   Generation-recombination current 

Itunn   Band-to-band tunnelling current 

ni   Intrinsic carrier concentration 

A   Cross section area 

τeff    Effective carrier lifetime 

m*   Effective mass of electron 

ħ    Reduced Plank’s constant (1.05×10−34 J.s) 

αT   Tunnelling parameter 

Isurf   Surface leakage current 

C   Capacitance 

εr   Relative permittivity of dielectric 

εo   Permittivity of vacuum 

C-V   Capacitance-voltage 

d   Diameter 

N   Doping concentration 

Vbi   Built-in voltage 

Ipr    Primary photocurrent 

Iph   Photocurrent 

PSD   Phase sensitive detection 

LIA   Lock-in amplifier 

fref   Reference frequency 

PLL   Phase-lock-loop 

RMS   Root-mean square 

Vp-p    Peak-to-peak voltage 
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VLIA, RMS   Voltage reading on lock-in-amplifier 

Rsense   Sensing resistor 

NFA   Noise figure analyser 

GSG   Ground-signal-ground 

Z   Impedance 

Pdark,dB (Ptotal,dB) Noise power of the dark (dark + photo) current in dB 

Pdark,watt (Ptotal,watt) Noise power of the dark (dark + photo) current in Watt 

Np   Noise power of the photocurrent 

RF   Radio frequency 

MTA   Microwave transition analyser 

GPIB   General purpose interface bus 

VNA   Vector network analyser 

EAM   Electro absorption modulator 

FFT   Fast-Fourier Transform 

EA   Activation energy 

TLM   Transmission line method 

SiNx   Silicon nitride 

SiO2   Silicon dioxide 

BCB   B-staged Bisbenzocyclobutene 

Idark   Total reverse leakage current 

Jbulk   Bulk leakage current component (A/cm2) 

Jsurf   Surface leakage current component (A/cm) 

Rsystem   System resistance 

Rmeasured  Measured resistance between 2 TLM pads 

Rpad    Resistance between the TLM pad and semiconductor 

Rsemiconductor   Resistance along a certain length of the semiconductor 

dt   Distance  

RcontactA  Contact resistance-area product 

SEM   Scanning electron microscopy 

FTIR   Fourier Transform Infrared Spectrometer 

LIDAR  Light detection and ranging 

RdA   Dynamic resistance-area product 
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JA   Leakage current density 

ROIC   Read-out integrated circuit 

D
*   Detectivity 

Rp(λ)   Responsivity at a particular wavelength 

∆so   Spin-orbit splitting of the valance band energy 

Nb   Unintentional background doping concentration 

ND (NA)  Doping concentration of the n-doped (p-doped) region 

SIMS   Secondary Ion Mass Spectroscopy 

UID    Unintentional doping 

Samp    Pre-amplifier’s sensitivity 

SHIP   Silicon Heterointerface Photodetector 

vse (vsh)   Saturation drift velocity of electron (hole) 
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Chapter 1 
 
 

1.1 Introduction to photodetectors

Figure 1.1 Schematic of the electromagnetic spectrum

 

Semiconductor devices used to detect optical signals are called photodetectors. These 

optical signals consist of photons at a

semiconductor materials absorb the photons and convert them into electrical signal 

(either voltage or current). Figure 1.1 shows the electromagnetic (EM) spectrum 

from γ-ray to long radio wave

and f corresponds to a particular energy by the equation
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where h is the Planck’s constant and 

discussion, λ will be used to indicate the photon radiation energy throughout this 
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thesis. There is obviously no single photodetector that is usable for the entire range 

of EM spectrum. Depending on the applications, photodetectors are designed to be 

highly sensitive to a particular range of λ. For example, photodetectors for long-haul 

optical fibre communication are designed to respond to λ = 1300 to 1550 nm due to 

the low attenuation and dispersion in the optical glass fibre at these wavelengths.  

 

The operation of a photodetector involves a few processes including the generation 

of free carriers upon absorption of photons, carrier transport and the extraction of 

carriers to contribute to an output current or voltage [2]. The free carriers here refer 

to the electrons in the conduction band or the holes in the valence band which can 

move freely. These processes are crucial in determining a few basic requirements of 

a photodetector: 

 

i. Response to the radiation wavelength 

Photodetectors should be able to create as many free carriers as possible 

when the photons strike the semiconductors. Depending on the band structure 

and bandgap energy, Eg, of the semiconductor, a photon with energy more 

than Eg can be absorbed to create one electron-hole pair (EHP). In the event 

where the radiation energy is very high (in the X-ray or γ-ray), there can be 

more than one EHP per photon absorbed. Since the photon energy has to be > 

Eg, there will be wavelengths above which the photon will not contribute to 

an additional EHP in a semiconductor material, which is usually called the 

cut-off wavelength, λc, and can be related to Eg by  

 

�� � ����                                                                                          
1.2
 
 

After the EHPs are created, they need to be transported within the 

photodetector to give rise to an additional output current. There are many 

mechanisms which are specifically designed to improve the carrier transport 

so that maximum current or voltage can be detected at the output terminal of 

the photodetectors. Different types of photodetectors employ different carrier 
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transport processes and they will be briefly described in the next section. 

Carrier generation and transport are important in determining the ability of a 

photodetector to respond to a particular radiation and they are usually 

measured in terms of responsivity and quantum efficiency. 

 

ii. Gain or amplification 

A photodetector can amplify or multiply the generated carriers internally. In 

applications that detect signals with very low photon flux, the internal gain is 

especially important since it can increase the responsivity of the 

photodetector. Therefore, besides creating large number of EHPs, a 

photodetector should also be designed to provide high internal gain in order 

to maximise the signal detected at the output of the photodetector. Examples 

of photodetectors with gain are described in section 1.2. 

 

iii. Low noise  

While it is important to maximise the electrical signal generated by a 

photodetector, it is equally essential minimising the noise as this determines 

the minimum detectable signal. It is for this reason that the signal to noise 

ratio (SNR) is often used as a measure of the sensitivity of a photodetector. 

There are many factors that contribute to the noise of a photodetector such as 

multiplication noise, background radiation noise and flicker noise. However, 

the 2 major noise contributions for a photodetector are usually the shot noise 

and thermal noise. Shot noise is closely associated to the dark current and 

photogenerated current of a photodetector. This noise originates from the 

statistical fluctuation of the generation and flow of discrete charges or 

electrons within a photodetector. Thermal noise is also commonly called the 

Johnson noise. This is an internal device noise of any resistive device that 

arises from the randomly agitated carriers due to thermal energy. 

Multiplication noise is an additional noise source in APDs. This is due to the 

random nature of the multiplication process that produces a fluctuation of 

gain around its mean value. Therefore, designing an APD also involves 

maximising the internal gain and minimising the multiplication noise.  
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iv. Response speed 

The response speed of a photodetector is greatly influenced by the carriers 

transport and the gain mechanisms, in the case of APDs. Extremely high 

speed photodetectors are needed for the receiver module in optical fibre 

communication while moderate speed is acceptable for imaging applications. 

The speed limiting factors for photodetectors will be discussed in the 

following section. 

 

In addition to the 4 major basic requirements mentioned above, there are other 

requirements which are more design and application-specific such as the spatial 

uniformity of photoresponse, the linearity of photodetectors for a wide dynamic 

range, the size of the photodetectors, power consumption, stability and reliability 

issues. 

 

1.2 Types of photodetectors 

This section aims at reviewing some of the major types of photodetectors and 

discussing briefly their operating principles. Based on the requirements discussed in 

the previous section, we shall also outline a few advantages and limitations of each 

photodetector. 

 

1.2.1 Photoconductor 

A photoconductor has a simple structure where it consists of a slab of semiconductor 

with two ohmic contacts at both ends. When the photons strike onto the 

semiconductor, carriers can be generated by band-to-band transitions. When a 

moderate electric field is applied across the two terminals, the electrons, with higher 

mobility, move quicker through the depletion region while holes move slower due to 

lower mobility. To maintain charge neutrality, more electrons are attracted into the 

depletion region. Depending on the hole lifetime, the amount of additional electrons 

and hence the amount of additional electrical signal is different. This mechanism is 

responsible for providing the internal gain of photoconductor up to 106 [2]. A 
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photoconductor is easy to fabricate and low in cost due to its simple structure. It is 

usually used for infrared detection and is suitable for high photon flux sensing. 

However, it has high leakage current and generally operates at a much lower speed 

than photodiodes making it unsuitable for applications which need low intensity 

detection at very high frequency. 

 

1.2.2 Photomultiplier tube 

A photomultiplier tube (PMT) consists of an input window, a photocathode, dynodes 

and an anode. Most of the photocathodes are made of compound semiconductors [3] 

and the operating wavelength of a PMT relies on the photocathode materials. The 

incoming photons excite the electrons in the photocathode and the generated 

electrons are channelled into a vacuum tube which has a number of dynodes. 

Dynodes are the electron multipliers where the electrons are multiplied before finally 

being collected at the anode. The internal gain is highly dependent on the voltage 

applied across the dynodes and the number of dynodes. One of the major advantages 

of the PMT is its ability to provide extremely high internal gain up to 107 with 

negligible multiplication noise. This has enabled PMTs to provide very high 

sensitivity and act as a very good photodetector for very low photon flux applications 

down to single photon detection from ultraviolet (UV) up to visible wavelengths. 

 

However, the high operating voltages exceeding 1000 V has been a major issue, 

although there are currently PMTs with lower operating voltages < 1000 V [3] 

available in the market. Furthermore, the size of a PMT is much larger than that of 

other photodetectors due to the need for a long vacuum tube for the multiplication 

process. The quantum efficiency of commercially available PMTs is > 40 % only for 

λ between 400 and 700 nm. It drops to < 20 % for λ = 700 to 900 nm and the 

quantum efficiency is reduced further to < 2.5 % at λ = 900 to 1600 nm [3]. It can be 

expected that for short wave (SWIR) and mid wave infrared (MWIR) detections, it is 

difficult for PMTs to achieve a reasonable performance due to the inability of the 

photocathode to produce very low dark counts and high quantum efficiency. In 

addition, PMTs are not suitable for imaging purposes where small pixels with close 
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proximity are needed, typically < 30 µm. These issues have limited the use of PMTs 

to applications from the UV to the near infrared wavelengths and not for high-

resolution imaging purpose. This has triggered research on photodetectors with 

similar gain mechanism to provide high internal gain with low multiplication noise.  

 

Another type of PMT, that is different from the dynode PMT is the microchannel-

plate (MCP) PMT. As the name implies, the difference is the gain mechanism. In this 

case the MCP, made of a thin disk with a 2-D arrays of glass capillaries with very 

small diameters (microchannel), typically between 6 and 20 µm diameters [3], is 

used to multiply the primary electrons. The inner wall of the microchannel has 

proper electrical resistance and secondary emissive properties to multiply the 

primary electrons. The MCP offers a faster response speed in hundreds of ps 

(compared to dynode PMT in the ns range) [4]. Furthermore, the MCP is usually 

more compact in sizeand allows position sensitive detection by substituting the single 

anode with an array of individual anodes. However, the MCP does have a few 

disadvantages in terms of its presumably shorter life-time and higher cost than 

dynode PMTs. It also has a lower current carrying capacity, which leads to smaller 

range of linear response to light intensity [5].  

 

1.2.3 Phototransistor 

The operating principle of a phototransistor is to optically generate a base current 

which is then amplified in the base-collector junction [6]. Arrays of Si 

phototransistors were initially fabricated for solid-state imaging but the invention of 

charge coupled devices (CCDs) has overshadowed the development of Si 

phototransistors. Since then focus has been shifted to utilising phototransistors for 

optical fibre communication, where the idea of a heterojunction phototransistor 

(HPT) was initially proposed. The HPT consists of an emitter with wider bandgap 

material than the base and collector to improve the injection efficiency [6].  

 

HPTs generally have much lower operating voltages than APDs. Moreover, HPTs 

can provide gain up to ~ 100 [2] without the multiplication noise associated with the 
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avalanche effect in APDs. In the 1980s, HPTs were considered to have great 

potential as photodetectors in optical fibre communications due to the shift of optical 

fibre system to the 1300 and 1550 nm window with lower attenuation and dispersion 

[6]. One major disadvantage of HPTs is that the gain and speed reduce with 

increasing light intensity as the light intensity can alter the base potential. This has in 

turn caused the variation of gain-bandwidth product (GBP) with varying radiation 

power, with the highest reported GBP of ~ 10 GHz [6]. 

 

1.2.4 Charge-coupled devices 

A CCD is a combination of many metal-insulator-semiconductors in an array, 

typically used for imaging purposes. There is no external dc-photogenerated current 

upon exposure to light and the photogenerated carriers are stored and transported in 

the form of a charge packet. As the name implies, a CCD transfers or couples the 

charge packet from one image sensor to another. Therefore the spacing between each 

pixel is typically < 10 µm to ensure the high charge transfer efficiency. The charge is 

converted to voltage at the output of the array and only one amplifier is needed. 

CCDs are made of metal-oxide-semiconductor with Si and SiO2 as the 

semiconductor and oxide layer, respectively, due to the good interfacial properties of 

SiO2. 

 

Since the 1960s, CCDs have emerged as one of the main technologies for visible 

camera and imaging purposes. It has ~ 100 % quantum efficiency and its detection 

that integrates charge over a longer period also enables weak signal detection, 

obviously at the expense of slightly lower speed. Furthermore, it has very low dark 

current, low noise, low operating voltage and is robust. 

 

Regardless of its maturity in terms of technology, CCDs have only limited use from 

visible up to near IR wavelengths as they are made of Si. For MWIR and long wave 

infrared (LWIR), there is work on CCDs with InSb [7] and HgCdTe [2] but not much 

success reported, possibly due to the inability of III-V and II-VI semiconductor 

materials to form high-quality oxide layer needed to minimise the gate leakage 
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current. In terms of its response speed, CCDs are limited to 10s of MHz to ensure 

high charge transfer efficiency, which is sufficient for imaging purpose but not for 

optical communication. 

 

1.2.5 Photodiode and avalanche photodiode 

A photodiode involves the transport of the minority carriers. There are several types 

of photodiodes including p-n, p-i-n, heterojunction, and metal-semiconductor 

junctions. Photodiodes employ a semiconductor junction to create a high electric 

field region that is depleted of charge. The light is absorbed within this depletion 

region and the high electric field separates the photogenerated EHPs, giving rise to 

additional current, which is generally called the photocurrent, flowing in an external 

circuit. Photodiodes are usually operated at 0 V or relatively low bias voltages and 

generally have very high quantum efficiency and short response time due to the 

carriers travelling at saturated velocity within the depletion region when biased 

appropriately. Furthermore, the design of the heterojunction photodiode has led to 

the reduction in dark current and ensures that the photons are absorbed in the high 

field region to obtain high quantum efficiency. The heterojunction photodiode uses 

two types of lattice-matched semiconductors with different Eg. The semiconductor 

with larger Eg is transparent to the radiation photons so that it acts as a window for 

radiation photons to reach the smaller Eg semiconductor in the undoped region. 

Depending on the applications, a different material can be used as the absorption 

region so that radiation at the wavelength of interest can be detected in the high-field 

region. 

 

For long range or long haul detections, the level of photon flux can be quite low, 

causing a low level of photocurrent. Amplification of signal can be done using an 

external amplifier. However, at high bandwidth, commercially available amplifiers 

fail to provide high gain at low noise. Therefore APDs are used to provide internal 

gain to amplify the incoming signal prior to the amplifier. APDs are usually biased at 

much higher biases than photodiodes to produce sufficiently high electric fields in 

the depletion region. Provided that the energy gained from accelerating through the 
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electric field is higher than the threshold energy of impact ionisation, the 

photogenerated carriers can be multiplied through the impact ionisation process. This 

increases the photocurrent prior to the external amplifier circuit. However, the higher 

bias voltages will usually cause higher leakage current and the avalanche process is 

accompanied by the multiplication noise. The system sensitivity will improve only if 

the shot noise and excess noise from the APDs are lower than the noise from the 

external amplifier. Therefore the understanding of the characteristics of APDs with 

different semiconductor materials is crucial in designing APDs, so that the 

advantages of APDs can be fully exploited. A detailed theory of impact ionisation 

and APDs is provided in chapter 2. 

 

1.3 Competing materials for infrared photodetectors 

There has been an increasing attention on IR sensing and detection. This is because 

many applications, which are closely related to our daily lives, utilise the radiation 

spectra in the IR window. One of the very popular applications is imaging. While 

imaging with visible light can produce coloured pictures, imaging using IR can 

provide several features which are not achievable using visible camera. One clear 

example of images taken from visible and SWIR camera in a very dark night [8] is 

shown in figure 1.2. The SWIR camera utilises the night sky radiance reflected from 

the object to obtain much clearer images.  

 

 

Figure 1.2 Comparison of the images taken from a visible (left) and SWIR (right) 

cameras at night [8]. 
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Furthermore, SWIR imaging can also be used to obtain clear images in foggy 

conditions, detecting liquid level in a plastic container, food and fruits inspection, 

and biometrics verification [8]. The MWIR and LWIR sensors are excellent for heat 

leak detection, power line maintenance, and in detecting human activities which are 

pertinent for military applications.  

 

In addition, environmental monitoring and gas sensing have become increasingly 

important and many gases in the atmosphere have high absorption in the IR window. 

For example, CO2 and methane gases have high absorption at λ = 2 and 3.3 µm 

respectively. IR photodetectors with proper calibration can be employed for accurate 

gas sensing. In the medical field, IR detectors are also important because many 

biological molecules have distinctive absorption from near infrared (NIR) to MWIR 

[9]. For instance, the spectrum between 2 and 2.4 µm can be used for glucose level 

monitoring in the human body.  

 

In this section a brief review of bulk semiconductors for infrared detection is 

presented. Quantum well, quantum dot, type II superlattice and impurity doped 

semiconductors are not included as they appear to be less promising for developing 

APDs. Research on InSb photodetectors started earlier than Hg1-xCdxTe photodiodes. 

InSb photodetectors can be grown on substrates with 7-cm diameter and can be used 

in focal plane arrays (FPAs) for MWIR [10]. To achieve satisfactory performance, 

InSb photodiodes are operated at 60 – 80 K [11] and to date there are very few 

reports on InSb APDs [12], possibly due to the difficulty in suppressing the dark 

current. 

 

Hg1-xCdxTe photodiodes have been the dominant technology for IR sensing from 

MWIR to LWIR. This is because Hg1-xCdxTe offers bandgap tuning by varying its 

Hg and Cd compositions so that it can be tailored for optimised response at a 

particular IR region. However, Hg1-xCdxTe materials face several challenges related 

to the epitaxial growth, such as high production cost and availability of large-area 

lattice matched substrate [13]. Furthermore, the difficulty in growth is due to the high 

Hg pressure during growth, which causes problems in controlling the Hg and Cd 
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composition. The weak bonding of Hg atoms also causes Hg1-xCdxTe devices to be 

highly susceptible to process-induced damage [13]their use is limited to low-volume 

and high cost applications such as in the military sector. 

 

Over the past 4 decades, the issues related to Hg1-xCdxTe photodiodes have 

motivated researchers to work on alternative materials to provide ease of growth, 

fabrication and better uniformity. These materials include the lead salt ternary 

compounds such as Pb(SnTe) and Pb(SnSe). Compared to Hg1-xCdxTe, these IV-VI 

compounds are much easier to grow and they are more stable. However, they have a 

very high dielectric constant, causing large capacitance that limits the high frequency 

response. For example, the Pb(SnTe) alloy was reported to have a dielectric constant 

between 400 and 5800 [13]. Furthermore, the thermal expansion coefficient of these 

IV-VI compounds is much larger than that of the Si readout circuit (~ 20 times larger 

compared to InAs, InSb and Hg1-xCdxTe, which is only ~ 2 times larger) [13]. 

 

1.4 Development of APDs 

The development of APDs was initially driven largely by the demand of receivers for 

high speed long haul optical fibre communication [14]. This is because APDs can 

provide ~ 5 - 10 dB higher sensitivity than a normal p-i-n photodiodes [14]. In the 

first generation optical fibre system, which utilised λ = 800 to 900 nm, Si-based 

photodiodes and APDs undoubtedly have been the preferred choice because of the 

availability of the materials and its technological maturity. However, since Eg ~ 1.12 

eV, corresponding to λc = 1.1 µm, the applicability of Si APDs is restricted to 

applications involving the visible and NIR region. 

 

As the transmission window of optical communications migrated to λ = 1300 to 1550 

nm, semiconductor alloys of groups III and V have been introduced as replacement 

for Si APDs. In0.53Ga0.47As (hereafter as InGaAs) p-i-n photodiodes with Eg ~ 0.75 

eV, have been extensively exploited in the optical fibre communication systems. 

However, the high tunnelling current at high electric fields has prevented it from 

being used as an APD. This issue has been addressed by having a heterojunction 
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separating the absorption and multiplication (SAM) regions of the APD structure 

[15]. InGaAs was used as an absorption layer while a wider bandgap and lattice-

matched semiconductor such as InP was used as the multiplication region. This 

structure is commonly referred to as InGaAs/InP SAMAPD. Since then much efforts 

have been made to improve this InP-based APD, including having a planar structure, 

grading of the interface between InGaAs and InP, and design to increase the GBP 

and responsivity [14]. Furthermore, research on potential materials, such as 

InAl0.52As0.48 (here after as InAlAs) to substitute InP has been on-going to 

accommodate for a receiver module with bit-rate > 10 Gbps. However, there was not 

much success in exploring APDs suitable for 40 Gbps and the GBPs reported were 

all limited to below 340 GHz. GBPs of APDs will be reviewed and discussed in 

more detail in chapter 7. 

 

Looking beyond the telecommunication aspect, there is recently a great demand for 

photodetectors to be utilised in other applications such as long range active imaging 

[16] and X-ray detection [17]. In general, besides having low dark current, APDs can 

provide much higher sensitivity or SNR if the multiplication noise is minimised. It is 

well understood that to reduce the multiplication or excess noise, the electron α or 

hole β ionisation coefficients ratio k = β/α, must deviate as large as possible from 

unity [18]. To improve the performance of APDs, research on reducing the excess 

noise has been on-going for the past few decades.  

 

Since k is material dependent [19], efforts to reduce the multiplication noise has been 

in characterising new materials and also optimising the electric field profiles. Si has 

very low k but its applications are limited due to its Eg. Most of the III-V 

semiconductors usually have k > 0.3, producing a very high multiplication noise. 

Fortunately, it was found that their multiplication noise reduces [20, 21] when the 

avalanche region was reduced to a very thin layer, typically < 1 µm [22]. This 

method exploits the effect of dead space, which is defined as the minimum distance a 

carrier needs to travel before attaining sufficient energy to impact ionise, to make the 

statistical ionisation process more deterministic. Among the III-V APDs which have 

successfully reduced their APDs noise through this method are InP [23], GaAs [24], 
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InAlAs [25] and AlxGa1-xAs [26]. This effect of dead space on impact ionisation is 

also commonly called the non-local nature of impact ionisation as the behaviour is no 

longer solely governed by the local electric field strength. Furthermore, it was 

predicted that [27] APDs can be designed with graded-bandgap in the multiplication 

region to enhance the impact ionisation of electrons or holes, so that k can deviate 

further from unity. The graded-bandgap allows the carrier to travel from a wider 

bandgap to a narrower bandgap with lower threshold energy. The highly energetic 

carriers from the wider bandgap material can impact ionise quickly and more readily, 

leading to an enhanced α or β. Campbell et al. has reported this bandgap engineering 

structure using InAlGaAs quaternary materials which are lattice-matched to InP 

substrates. They claimed that the APDs have lower excess noise factors F due to the 

suppression of ionisation of secondary holes and the localisation of electron 

ionisation events in the narrower bandgap materials [28]. However, there were 

several reports on the conduction band-offset, both observed through experiments 

[29, 30] and modelling [31] using AlxGa1-xAs-GaAs. It was concluded that the 

additional energy an electron gains from the conduction band discontinuity is offset 

by the energy loss due to the higher phonon scattering rate [29-31].   

 

It can be summarised that there are generally three ways to obtain low-noise APDs, 

which are i) having material with k = 0 properties; ii) exploiting the effect of 

deadspace to reduce multiplication noise in APDs with k ~ 1; and iii) using graded-

bandgap although there are still doubts in the implementation of this bandgap 

engineering approach. Previous exploitation of the dead space effect is based on 

submicron scaling of the avalanche width. This has increased the tunnelling current 

of the APDs, causing higher shot noise. In addition, a thinner multiplication region 

also leads to a larger device capacitance, which limits the response speed of APDs. 

Hence, it can be suggested that research to discover potential materials with k = 0 

and exploit this to achieve low-noise and high speed APDs is still the most beneficial 

approach.  

 

Up until the early 2000s, only Hg0.7Cd0.3Te was shown experimentally and 

conclusively to possess the k = 0 characteristics. Hg0.7Cd0.3Te APDs show 
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exponentially rising avalanche gain M with increasing bias voltage while producing 

extremely low multiplication noise or F ~ 1. This class of APDs is commonly called 

electron-APD (e-APD) because only the electrons impact ionise to contribute to the 

avalanche gain. This characteristic is very much associated with the band structure of 

this material that has small Eg but large intervalley separation energies [14]. This has 

led to very small intervalley phonon scattering for electrons. The large difference 

between the effective mass of electron to hole also indicates that holes suffer from 

much higher scattering rate, causing the suppression of β. However, issues as 

mentioned in the previous section have inhibited the use of Hg1-xCdxTe photodiodes 

for daily and low cost applications. 

 

In the late 2000s, InAs APDs were reported to offer low excess noise and produce 

gain at low voltages [32, 33] comparable to that of Hg0.7Cd0.3Te APDs. With the 

mature III-V semiconductor growth technology, InAs with this HgCdTe-like e-APD 

behaviour can be a potential material for high-sensitivity photodetectors and infrared 

applications. 

 

1.5 Review on InAs APDs  

InAs with Eg = 0.36 eV at room temperature is certainly attractive for IR detections 

up to 3.6 µm. Due to its larger Eg than InSb and Hg0.7Cd0.3Te, InAs photodiodes 

promise a lower dark current and operating temperatures higher than 77 K, providing 

better sensitivity in its operating wavelengths. Furthermore, InAs possesses the k = 0 

characteristics, low dielectric constant and high electron saturation velocity, which 

can produce low-noise and high GBP APDs for optical fibre communications.  

 

In the early 1960s,  Lucovsky [34] reported p-n junction InAs photodiodes fabricated 

by diffusing Cadmium into the n-type InAs layer. The diffused wafer was cut into 1 

mm × 1 mm sample with Indium solders as the contacts. At 300 K, these 

photodiodes produced a reverse dark current of ~ 10 mA at a reverse bias voltage Vb 

= 10 V. Further characterisation of these InAs photodiodes [35] showed that the 

photocurrent is multiplied at the same rate as the dark current at 300 K, with M ~ 10 
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at Vb = 10 V.  

 

InAs p-i-n photodiodes with different i-layer thicknesses ranging from 0 (p-n 

junction) to 0.72 µm were reported by Lin et al. [36, 37]. It was reported that the 

surface and bulk leakage currents were reduced drastically with increasing the i-layer 

thickness. The low temperature measurement down to 40 K also showed that the 

total leakage current decreased by ~ 6 orders of magnitude compared to that at 

operating temperature, T = 300 K [37]. However, the InAs photodiodes were all 

operating at < 0.5 V, possibly due to high dark current at higher Vb. Furthermore, 

InAs photodiodes operating in the unity gain are also commercially available from 

Judson [38] and Hamamatsu [39]. 

 

Using Molecular Beam Epitaxy (MBE), Marshall et al. has successfully optimised 

the growth parameters and conditions such that epitaxially-grown InAs wafers with 

mirror-like surface can be obtained [40]. A lattice-matched wide bandgap material, 

AlAs0.16Sb0.84 was incorporated into the p-layer, aiming to reduce the bulk leakage 

current. The fabrication and processing of InAs diodes using wet chemical etchants 

were carried out and InAs diodes with reduced surface leakage current were reported 

[40]. A few different types of dielectric materials were used for surface passivation 

but were not successful in further reducing the dark current [41]. However, the 

unpassivated InAs diodes were reported to be able to operate at Vb > 10 V [40]. This 

has enabled the study of the impact ionisation properties of InAs. 

 

At room temperature, the InAs diodes with a depletion width W = 3.5 µm were 

reported to provide avalanche gain at Vb > 0.5 V [32]. The pure electron initiated 

avalanche gain Me was shown to be exponentially rising with increasing Vb up to ~ 

10 V [32], without a classical avalanche breakdown. On the other hand, figure 1.3 

shows that the pure hole initiated gain Mh ~ 1 up to 8 V, indicating a large difference 

between � and β. The excess noise measurement at room temperature also showed 

that the InAs APDs have F ~ 1.6 up to Me ~ 7 [33]. This has confirmed that the InAs 

APD has the e-APD characteristics, since only the electrons can impact ionise.  
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Figure 1.3 Pure electron and pure hole initiated avalanche gain at room temperature 

[32]. 

 

The characteristics of InAs APDs were also investigated at T = 77 K by Mikhailova 

et al. [42] and Marshall et al. [43]. Mikhailova et al. [42] has suggested that due to 

the spin orbit splitting being equal to the Eg of InAs at 77 K, band ‘resonance’ occurs 

and β becomes significantly larger than �. Marshall et al. however do not observe the 

impact ionisation of hole with Mh ~ 1 until the electric fields > 70 kV/cm [43]. Me on 

the other hand is initiated at ~ 6 kV/cm at 77 K. At a particular Vb, the Me of InAs 

APDs was shown to be lower compared to room temperature [43]. From the Me data, � of InAs APDs at room temperature [44] and 77 K [43] were derived using the local 

model to allow the estimation of Me for different structures of InAs APDs. The band-

to-band tunnelling current of InAs APDs was also investigated and the electric field 

for the onset of tunnelling current was found to be ~ 60 kV/cm at 77 K [43]. 

 

1.6 Motivation / overview 

From previous work, it was convincingly proven that InAs possesses very interesting 

impact ionisation properties which are ideal for an APD. Its λc, up to ~ 3.6 µm at 

room temperature, suits many different important applications. However, the leakage 

current at room temperature remains high and this has become a major obstacle for 
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further exploitation of InAs APDs for real practical applications.  

 

The surface passivation of InAs diodes needs to be investigated to further reduce the 

leakage current. The bulk leakage current can be reduced by having higher crystal 

growth quality or decreasing the operating temperature of InAs APDs. Therefore, a 

detailed dark current analysis as a function of temperature is important. The study of 

the avalanche gain at temperatures between 77 K and room temperature are also 

crucial in determining the optimum operating temperature for InAs APDs. Besides, 

there have been contradicting results on the impact ionisation properties of InAs at 

77 K [42, 43] and the uncertainty on the existence of band ‘resonance’ needs to be 

addressed as this can alter the mode of operation and design of InAs APDs.  

 

Since the first two ideals of InAs APDs, which are the exponentially rising gain and 

very low excess noise, have been demonstrated, it is also equally important to exploit 

the characteristic of InAs APDs to exhibit the third ideal of APDs with k = 0 

characteristics. The frequency response of InAs APDs shall be investigated and it can 

be hypothesised that the 3-dB bandwidth of the devices will not be limited by its 

avalanche gain, potentially providing extremely high GBP. 

 

To further discuss the work carried out based on the above motivations, this thesis 

will therefore be organized as follows: 

 

Chapter 2 discusses the background theories of impact ionisation in terms of the 

avalanche gain, excess noise and GBP. 

 

Chapter 3 describes all the basic APD characterisation and experimental methods 

which are useful in carrying out all the work discussed in this thesis. In each 

experimental technique, the associated background knowledge and the steps to 

ensure the accuracy of the measurements will be discussed. 

 

Chapter 4 revisits the fabrication steps of InAs diodes. The growth of InAs wafers 

using MBE and Metal Organic Vapour Phase Epitaxy (MOVPE) will also be briefly 
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described. The study on the etched mesa surface passivation using different dielectric 

materials and the fabrication of high speed InAs diodes using the best scheme of 

metal contacts will be presented. 

 

Chapter 5 shows the temperature dependence of the leakage current in InAs APDs 

from 77 to 290 K. The detailed dark current analysis by separating the bulk and 

surface leakage current components has helped to identify the dark current 

mechanisms within the InAs APDs. Besides that, it also enabled the estimation of the 

leakage current for different dimensions of the InAs APDs at different temperatures. 

The responsivity and detectivity of the InAs diodes will also be discussed.  

 

Chapter 6 examines the effects of temperature, depletion width, peak electric field 

and field gradient on the avalanche characteristics of InAs. The avalanche gain and 

excess noise characteristics are explained based on a few distinct impact ionisation 

properties of InAs. The measurements of M and F at different temperatures also 

allowed the investigation of band ‘resonance’ besides studying the variation of F 

with temperatures. Furthermore the incorporation of InAs APDs with a pre-amplifier 

has demonstrated the importance of low leakage current and pure electron injection 

to obtain high SNR. 

 

Chapter 7 intends to demonstrate the unlimited GBP of InAs APDs due to its k = 0 

characteristics. The fabrication of high speed InAs APDs allows the frequency 

response measurement to be carried out at 77 K and room temperature. It presents a 

record high GBP which clearly indicates that the avalanche build up time does not 

limit the 3-dB bandwidth of the devices. It is noted that the GBP is due to the highest 

achievable M of the prototype diodes, presenting experimentally one of the first 

extremely high GBP with k = 0 characteristics.  

 

Chapter 8 summarises all the work presented in this thesis. Future work and possible 

areas to extend the work are suggested and proposed. 

 

Appendices list the details of the InAs wafers used throughout this work, the high 
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speed InAs fabrication steps and a few detailed descriptions of the experimental steps 

which support the main content of this thesis. 
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2.1 Impact ionisation in semiconductors 

The process that gives rise to the avalanche gain in APDs is the impact ionisation. It 

is a process where the free carriers, either electrons or holes, obtain sufficiently high 

energy to promote an electron from the valence band to the conduction band, 

creating a new EHP [1]. To achieve this, the carriers are accelerated by an externally 

applied electric field and the minimum energy required for impact ionisation is 

commonly referred to as the threshold energy of impact ionisation, ξth. 

 

 

Figure 2.1 Schematic diagram of the electron initiated (left) and hole initiated (right) 

impact ionisation process. The initial state is denoted by ‘i’ and the subsequent final 

states are denoted as ‘1, 2 and 3’. 
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ξth depends largely on the band structure of the semiconductor material [1]. It is an 

important parameter which governs the impact ionisation rate of electrons and holes. 

Figure 2.1 illustrates the electron initiated and hole initiated impact ionisation 

process. It is clear that the conservation of energy requires ξth ≥ Eg for free carriers to 

impact ionise. The average numbers of ionisation events per unit distance travelled 

by the free carriers are often represented by � and β. The reciprocal of these 

ionisation coefficients will therefore provide the average distance a carrier needs to 

travel along the direction of electric field to produce a new EHP [1], which is often 

called the mean ionisation path length, <l>. 

 

2.2 Avalanche gain 

When a p-n or p-i-n semiconductor junction is biased at high voltage, it will produce 

a high electric field across the junction. If the free carriers are accelerated by the 

electric field to energies > ξth, a chain of impact ionisation events can occur. Figure 

2.2 shows a series of ionisation events which the primarily injected electron and the 

secondary EHPs have travelled within the avalanche region from distance x = 0 to W. � and β are typically highly dependent on the electric field. Therefore, depending on 

the strength of electric field, different M is produced for a particular type of 

semiconductor. 

 

The calculation of M using the current continuity equations are described in detail in 

[2]. From these equations, Me at x = 0 can be written as 

 

�� � 11 � � ��
�
 ������ 
�
�
 � �
�

�����  !��"#�
                 
2.1
 

 

Similarly, Mh at x = WT can be expressed as  
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Figure 2.2 Illustration of the pure electron initiated avalanche gain within the high 

field regions with electrons travelling in the x-direction and holes travelling in the -x-

direction. 

 

It should be noted that equations 2.1 and 2.2 are based on the assumption that the 

impact ionisation probability depends only on the local electric field [3], but not the 

history of the carriers, which is commonly referred to as the local model. This is a 

convenient way of predicting M when the non-local effect due to the dead space is 

insignificant. There are many types of modelling techniques which incorporate the 

effect of the dead space, such as random path length (RPL) [4], lucky-drift [5], 

recurrence method [6], and Monte Carlo models which incorporate the full band 

structure [7] or simplified band structure [8]. The RPL model, which is used in 

High Electric field 

p- 
region 

n- 
region 

i-region 

electron 

hole 

Primarily 

injected 

electron 

M = 5 

1 

2 

3 

4 

5 

x = 0 x = W x  

time 



Chapter 2 Background theory 

 

P. J. Ker Page 25 
 

chapter 6, will be discussed briefly in section 2.5. 

 

2.3 Excess noise 

Thus far, the parameters, such as α, β and M, which are discussed in the previous two 

sections, are the average or mean values of the overall statistical process. Since the 

impact ionisation is a stochastic process, there is a fluctuation of gain around its 

mean or average gain. This will give rise to a certain level of noise that is usually 

called the excess noise or multiplication noise, which can be characterised by the 

excess noise factor. Since F is the standard deviation of the avalanche gain for a 

single ionisation event Mi, from the mean gain, it can be expressed as 

 

) � *�+,-*�+-, ,                                                                                                 
2.3
 
 

where <Mi> = M is the average value of Mi. Using the local model, Mcintyre [3] has 

shown that F can be expressed as a function of M and k, provided k is constant 

throughout the avalanche region. The pure electron initiated multiplication noise Fe 

can then be calculated from  

 

)�
��
 � /�� 0 12 � 1��2 
1 � /
,                                                   
2.4
 
 

and the excess noise factor for pure hole injection Fh can be expressed as 

 

)$
�$
 � 1/�$ 0 12 � 1�$2 11 � 1/2                                                
2.5
 
 

The noise associated to the impact ionisation process can arise from two 

mechanisms. Firstly, the secondary carriers are produced in random positions within 

the avalanche region. Secondly, the number of carriers generated by the chain of 

impact ionisation within the avalanche region is random. It is clear from equations 
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2.4 and 2.5, that to produce APDs with low F, the difference between � and β should 

be as large as possible, with the ideal case of either one of them to be 0. To obtain the 

lowest possible F for a particular APD, the carrier type with higher ionisation 

coefficient should be injected as the primary carrier to initiate the impact ionisation 

process.  

 

 

Figure 2.3 Illustration of SNR for a system consisting of an APD and a preamplifier 

for APDs with k = 1 and k = 0.  

 

The multiplication or avalanche region plays an important role in determining the 

multiplication noise and GBP of an APD. The local model of impact ionisation has 

predicted that when k deviates extremely from unity with the ideal cases of k = 0 or 

∞, multiplication noise can be reduced and higher GBP can be obtained [3, 9]. This k 

value has been widely used as a figure of merit of multiplication noise. Although it is 

valid only for local-model impact ionisation, k provides a good indication of the level 

of multiplication noise and it will be used throughout this thesis. To illustrate the 

effect of F on the overall SNR of a system, we will provide an example of the two 

extreme cases of impact ionisation where k = 1 and k = 0. Considering that a receiver 

module or system consists of an APD and a pre-amplifier, figure 2.3 shows the SNR 

of the two cases as a function of M. The SNR for an APD incorporated with a pre-

amplifier can be calculated as 
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where q is the electron charge, B is the bandwidth, NA is the amplifier’s noise in 

A/(Hz)1/2, Iph,pr and Id,pr are the unmultiplied photo and dark currents respectively. 

 

Assuming the APDs have the same shot noise which is lower than the noise of the 

preamplifier and the same responsivity to the radiation, their SNRs are only affected 

by F. Figure 2.3 shows that there is a maximum exploitable gain Mopt for APDs with 

k = 1 because F is increasing at the same rate as M increases. For APDs with k = 0, 

the gain provided by the APD can continually increase the SNR as F < 2 independent 

on M. Similar trends and arguments apply for APDs with 0 < k < 1, with the Mopt is 

extended to higher M value due to lower F than the case of k = 1. 

 

2.4 Gain-bandwidth product 

The GBP is the product of the avalanche gain and the 3-dB bandwidth of an APD. 

The 3-dB bandwidth of an APD is determined by the carrier transit time, the 

avalanche build up time and the resistance-capacitance RC-time of the APDs. To 

obtain high bandwidth, the RC-time should be short by reducing the series resistance 

and capacitance of the APDs, and therefore will not be the centre point of the 

discussion here. However, the carrier transit and avalanche build up time are mainly 

dependent on the design and material of an APD. The GBP is used to define the 

ability of an APD to respond to high frequency signals because there is a close 

relationship between M and the 3-dB bandwidth. In the previous section, it has been 

demonstrated that APDs with k = 0 have the lowest F, producing higher SNR. In the 

following discussion, it will be revealed that this characteristic is also highly 

desirable to obtain high GBP. 

 

It was first reported by Emmons and Lucovsky [10] that the 3-dB bandwidth of 
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APDs is reduced at a particular value of M, depending on the material characteristic. 

Further theoretical work by Emmons [9] was done by relating the 3-dB bandwidth to 

k. He concluded that the frequency response is independent of M until the product of 

kM ~ 1. For kM > 1, the 3-dB bandwidth decreases with increasing M  [9]. It is clear 

from here that the 3-dB bandwidth can be independent of M up to higher values of M 

with smaller k. A more detail discussion of bandwidth based on the current pulse 

using the time-dependent carrier transport equations can be found in [2]. 

 

In the ideal case of k = 0, there is no avalanche build up time limit for the APD 

where the 3-dB bandwidth is almost constant, independent of M. This is because with 

β (or �) = 0, the current  pulse which  results from the initially injected  electron (or 

hole) increases during  a  time  period  which  is essentially  that  of  the  transit  time  

through  the  high-field  region. Depending on M, the injected electron (or hole) will 

undergo multiple impact ionisation events during that particular transit through the 

depletion region. The current pulse then decreases to zero in approximately the hole 

(or electron) transit time. Thus, the current pulse will last only for a maximum of the 

sum of one electron and one hole transit times. Since the pulse-width is independent 

of the amount of multiplication events, there is no GBP limitation for any values of 

M. 

 

2.5 Random path length model 

The RPL model relies on the randomly chosen ionisation path lengths to determine 

the ionisation probability of a carrier [4]. From this stochastic process, the avalanche 

gain and excess noise factors can then be calculated. This simple model uses a hard 

dead space model where the ionisation probability of electron Pe is zero for an 

electron travelling a distance x in a uniform electric field, that is less than the dead 

space de. This is given by  

 

@�
�
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where �* is the ionisation probability of the electron per unit distance, for a constant 

electric field, after de or the enabled electron ionisation coefficient. The hard 

threshold energy of electron ξthe can be determined using the equation 

 

�� � �M$�;� ,                                                                                                  
2.8
 
  

where E is the electric field. Following equation 2.7, the average distance between 

two electron ionisation events or <l> will be  

 

O �@�
�
�� � 1�C 0 ��
P

�                                                                        
2.9
 
 

Since � = 1/<l>, it follows that 

 

� � 11�C 0 ��
                                                                                           
2.10
 

 

From equation 2.7, the probability a free electron does not impact ionise after 

travelling a distance x can be expressed as  

 

5�
�
 � A 1expG��C
� � ��
H , � R  ��, � S �� K                                              
2.11
 

 

If we substitute Se(x) with a uniformly distributed number rn with 0 < rn < 1, the 

random ionisation path length of an electron is  

 

 T� � �� � ln WX�C                                                                                       
2.12
 

 

Similar derivation procedures for the expression of the hole random ionisation path 

length can be done by substituting Pe(x), Se(x), �, �*, de, ξthe and le with Ph(x), Sh(x), 
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β, β*, dh, ξthh and lh, respectively.    

 

Each simulation trial j (with nt being the total number of trials) is completed when all 

the carriers (electrons and holes) are no longer in the high field region. Then M and F 

can be calculated as  

 

� � ∑ [\X]\^_̀
\ ,                                                                                         
2.13
 

 

and  
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The performance of an APD needs to be evaluated in different aspects such as the 

associated noise contribution and the ability of the APD to respond to optical signals 

or photons. These assessments of APD can be carried out by different 

characterisation techniques which can provide useful information related to the key 

properties of an APD. The following sections will describe the implementation of 

these principle experimental methods and discuss how essential information can be 

extracted from the experimental results. 

 

3.1 Current-voltage measurement 

The most basic and fundamental characterisation of an APD is the current-voltage (I-

V) measurement. This measurement can be carried out by applying a bias voltage 

across the diode and measuring the resulting current value. The I-V from the forward 

and reverse bias of a diode can provide a lot of information regarding the 

characteristics of a fabricated diode. Since the I-V measurement can be done easily 

with a Keithley 236 or Keithley 237 source-measurement unit (SMU) or HP4104 

picoammeter, this characterisation is usually the first measurement after the 

fabrication. 

 

An APD is operated at a high reverse bias to induce a high electric field region that 

facilitates the impact ionisation of carriers. However, information regarding the 

quality of the material, the formation of the junction and the quality of the contacts 

can be obtained from the forward I-V. To extract these information, the forward I-V 

IF, can be fitted to an empirical equation [1], 

 

8a � 8b c��� 1 ;dM`/ef2 � 1g,                                                                    
3.1
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where Io is the saturation current, Vt is the total voltage drop across the diode, n is the 

ideality factor and kB is the Boltzmann’s constant. Usually the effect of series 

resistance and device heating will become significant at high forward current, hence 

an equivalent series resistance R is added to the equation, 

 

8a � 8b h��� i;
dM � 87
`/ef j � 1k                                                          
3.2
 
 

By fitting this equation to the experimental data, the value of R can be determined. 

An ideality factor of 1 signifies diffusion current whereas an ideality factor close to 2 

indicates the current is due to generation and recombination of carriers. 

 

 

Figure 3.1 Measured and fitted forward I-V characteristics of GaAs diodes. 

 

Figure 3.1 shows an example of the forward I-V of GaAs diodes with two different 

radii r. These I-Vs are fitted with the diode’s equation with n = 1.97 to 1.98, 

indicating it is generation and recombination current dominated and the crystal 

growth quality can further be improved. From this fitting, R which are largely 

contributed by the contact resistances between the metal and semiconductor can also 

be extracted. The contact resistance can be reduced by proper selection of metals as 

the p- and n-type contacts, and with an accurate scheme of the annealing 

Forward voltage (V)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

C
ur

re
nt

 (
A

)

10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

r = 200 µm
r =  100 µm
n = 1.98; R = 5 Ω
n = 1.97; R = 13 Ω



Chapter 3 Experimental methods 

 

P. J. Ker Page 34 
 

temperature. Moreover, the doping concentrations of the semiconductor that the 

metals are deposited on can also be increased to reduce the contact resistance. It is 

important to obtain low contact resistance because it will limit the maximum 

achievable gain and will impose an RC-time limit to the bandwidth of an APD. 

 

In the reverse bias region, as W and E increase, a few mechanisms can take place and 

contribute to the increase in the leakage current or dark current. Since the leakage 

current will translate directly into shot noise that will degrade the SNR of an APD, 

the I-V at the reverse bias is important to evaluate the performance of an APD. 

Generally, the dark current can be divided into the bulk and surface leakage currents. 

The bulk leakage current consists of the diffusion Idiff, generation-recombination Ig-r 

and band-to-band tunnelling Itunn components, given by the following equations [1]. 

 

8<+ll � 8b c��� 1 ;d/ef2 � 1g,                                                                  
3.3
 
 

8�m: � ;`+nop�ll ,                                                                                         
3.4
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where ni is the intrinsic carrier concentration, A is the cross-sectional area of the 

junction, τeff is the effective carrier lifetime, m* is the electron effective mass, ħ is the 

reduced Plank’s constant, and αT is a parameter dependent on the detailed shape of 

the barrier and is of the order of unity. 

 

The surface leakage current Isurf, on the other hand, is caused by the conducting 

surface of an etched mesa. Depending on the surface condition and the mechanism 

that contributes to Isurf, it can either involve high complexity modelling, or a constant 

Isurf independent of Vb, or it can be a simple model that follows the Ohm’s Law with 
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8wq:l � dx7                                                                                                   
3.6
 
 

 

Figure 3.2 Typical reverse I-V characteristic of the commercial Perkin Elmer Si APD 

at room temperature. The red circles indicate different current regimes, as discussed 

in the main text. 

 

A typical I-V characteristic of a Si APD is shown as an example in figure 3.2. In 

region (a), the dark current rises rapidly with increasing Vb and saturates to a more 

constant value. It can be expected that the dominant current mechanisms are the Idiff 

and Ig-r. Region (b) shows that the current is multiplied by its avalanche gain as Vb 

increases. As E is sufficiently high in the region (c), the avalanche breakdown 

characteristic of this Si APD is shown. APDs do not always exhibit tunnelling 

current as it surfaces only at very high E. Generally, material systems with a large 

bandgap and APDs with wide W can be employed to suppress Itunn.  

 

3.2 Capacitance-voltage measurement 

Two conductors which are separated by a dielectric will give rise to a capacitance C. 

This value depends on the relative permittivity of the dielectric εr, the area A of the 

Reverse voltage (V)
0 50 100 150 200

C
ur

re
nt

 (
A

)

10-9

10-8

10-7

10-6

10-5

Perkin Elmer Si APD

(a)

(b)

(c)



Chapter 3 Experimental methods 

 

P. J. Ker Page 36 
 

conductor, the thickness W of the dielectric layer, and they are related by the 

equation 

 

y � z:z�no ,                                                                                                 
3.7
 
 

where εo is the permittivity of vacuum. Similarly, the depletion region, formed 

between a p-n junction when a diode is reverse biased, will act as a dielectric 

separating two conductors. Capacitance-voltage (C-V) measurements therefore 

enable us to characterise the change in depletion width as the applied voltage 

increases. Throughout the work, the C-Vs of the diodes were measured using the 

HP4275 LCR meter. 

 

 

Figure 3.3 C-V characteristic of an InAs p-i-n diode with a diameter d = 250 µm at 

77 K. The red circles identify two regimes in the C-V curve, as described in the text. 

 

Figure 3.3 shows the C-V of an InAs p-i-n diode at 77 K. The C-V can be described 

by dividing it into two regions. Region (a) shows that the capacitance decreases 

rapidly with increasing Vb from 0 to 2 V. This is because W increases drastically due 

to the low background doping concentration in the i-layer. When W approaches the 
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n-layer at Vb > 2V in region (b), C decreases at a much slower rate as W increases 

more slowly due to higher doping concentration in the doped regions. 

 

Besides extracting the total W, the doping concentration N at a certain depletion 

distance can be determined by  

 

6
o
 � 2;z:z�n, { �dM� % 1y,(|                                                                 
3.8
 
 

At equilibrium, a built-in potential or voltage Vbi is developed across any p-n 

junction. This potential can be obtained by plotting 1/C2 against Vb. Assuming an 

abrupt single sided junction with constant doping concentration, a straight-line graph 

is produced and the intercept at 1/C2 = 0 gives Vbi.  

 

 

Figure 3.4  A plot of 1/C2 vs. reverse bias derived from the C-V measurement at 77 K 

on the InAs p-i-n
 diode. 

 

To illustrate the way in which Vbi is determined, the 1/C2 vs. Vb graph is plotted using 

the C-V data from an InAs p-i-n diode, as shown in figure 3.4. It is worth noting that 

this way of deriving the Vbi is based on the assumption that the junction is formed by 
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a p-n junction with constant doping concentration in both the p- and n-layer. In figure 

3.4, it can be seen that as the doping concentration in the i-layer increases when the 

depletion approaches the n-layer, the 1/C2 vs. Vb plot starts to deviate from the fitted 

straight line. 

 

Furthermore, the C-V graph can also be fitted by an algorithm that uses the doping 

concentration for each region and the intrinsic region width as adjustable parameters. 

Based on these parameters, the algorithm calculates the electric field profile to obtain 

the depletion width that best fits the measured capacitance. The i-layer can also be 

divided into several regions to accommodate for the variation in doping 

concentrations. For a specific diode area and the relative permittivity, the capacitance 

can then be computed and fitted to the experimental results. 

 

3.3 Photomultiplication measurement 

Impact ionisation of carriers is an important process in APD operation. To 

characterise the APD gain due to the impact ionisation of carriers, 

photomultiplication measurements were carried out. The avalanche gain is calculated 

as  

 

�
d
 � 89$
d
89: ,                                                                                       
3.9
 
 

where M(V) is the avalanche gain at a specific voltage, Ipr is the primary photocurrent 

induced by the generation of primary carriers, which then diffuse into the high 

electric field region; Iph(V) is the photocurrent at a particular Vb. Ipr and Iph(V) are 

measured using a SMU or a lock-in amplifier, which will be discussed in the next 

section. 

 

For this measurement, a laser was used as a radiation source and the laser spot was 

focused on top of a circular device. The photocurrent was measured under d. c. 

conditions to ensure that the dark current is adequately lower than the photocurrent. 
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To obtain a good SNR and to make sure M is calculated accurately, the photocurrent 

must be at least 2 orders of magnitude higher than the leakage current. Devices with 

high leakage current however will need the phase sensitive detection (PSD) 

technique to discriminate the photocurrent from the leakage current. InAs APDs are 

made from narrow bandgap material, thus producing high dark current at room 

temperature and the PSD technique is usually used. This is because the PSD 

technique using a Stanford Research Systems SR830 lock-in amplifier (LIA) can 

detect signals with a bandwidth as narrow as 0.01 Hz. Therefore the noise in the 

detection bandwidth is significantly reduced. 

 

There are several set-ups available to carry out the PSD measurement, either using 

external or internal modulation of laser. The modulation frequency of the laser is 

usually kept very low, typically < 1 kHz, to avoid any undesirable effects, such as the 

inability of the device and measurement system to respond to high frequency signals. 

This can complicate the measurement and affect the accuracy of the measurement. 

 

3.3.1 PSD – External modulation 

 

 

 

Figure 3.5 The photomultiplication measurement set-up with the external modulation 

of the laser using an optical chopper. 
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Figure 3.5 shows a typical measurement set-up, which utilises a SR830 LIA to 

measure the rise in photocurrent by measuring the voltage drop across the sensing 

resistor. The frequency of the optical chopper is fed into the LIA as the reference 

frequency fref. The phase-lock-loop (PLL) in the LIA actively tracks this external fref 

so that the measurement is not affected by any changes in fref. The LIA ideally 

responds to noise that is at fref and noise at other frequencies is removed by the low 

pass filter. This feature of “bandwidth-narrowing” is claimed to be the primary 

advantage of the LIA.  

 

The LIA displays the Root Mean Square (RMS) value of a sine wave at fref. The 

optically chopped laser will give rise to a square-wave photocurrent output at fref. A 

square wave, S(t) with a particular peak-to-peak voltage Vp-p consists of many 

components of sine waves at a multiple of the fundamental frequency with their 

amplitudes given as follow:   

 

5
}
 � ~ 2d9m9`t sin�`. 2t�:�l}  X^_,s,r…                                              
3.10
 

 

The LIA will detect and display only the amplitude of the first sine-wave component 

(or at fref) in RMS value. For example, for an input square wave with Vp-p = 2 V, the 

reading of the LIA (VLIA, RMS) will be 

 

d��>,��� � 2 � 2d1 � t � 1√2 � 0.9 d,                                                      
3.11
 
 

or 

 

d��>,��� � 2 � d9m9√2 � t                                                                               
3.12
 

 

Consequently, the value of Iph that is produced by a diode across the sensing resistor 

Rsense, is given by 
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89$ � d��>,��� � √2 � t2 � 17w�Xw� � d��>,���0.457w�Xw�                           
3.13
 
 

Generally, it is not crucial to measure the absolute value of the photocurrent as the 

calculation of M is based on the relative value of the photocurrent at a particular Vb 

with respect to the Ipr. However, knowing the exact value of photocurrent will be 

essential in calculating the responsivity of a diode. By measuring the power of the 

laser incident on a diode (without chopping), the responsivity can then be calculated. 

 

3.3.2 PSD – Internal modulation 

The photomultiplication measurement set-up with internal modulation of the laser 

can be carried out using a laser which can be modulated internally at a certain 

frequency as shown in figure 3.6. All other measurement equipments were kept the 

same as the the case of using external modulation. During this work, the HP 8168C 

tuneable wavelengths laser was used because it could provide laser at λ = 1460 to 

1600 nm and frequencies from 270 Hz to 10 kHz. Similarly, the modulation 

frequency was fed into the LIA as fref. Since the lasers in the infrared wavelengths are 

invisible, it is easier to focus the laser on the diodes using this method as the laser 

can be fibre-coupled.  

 

 

Figure 3.6 The photomultiplication measurement set-up with internal modulation of 

the laser. 
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For the photomultiplication measurements, either under d.c. condition or using PSD, 

there are a few main factors which need to be considered to ensure the accuracy of 

the results. Firstly, to accurately measure the avalanche gain that is initiated by one 

of the carrier type, either electron or hole, the purity of carrier injection into the high-

field region is very important. The laser spot needs to be tightly focused on the p-

type (or n-type) cladding layer for pure electrons (or pure holes) injection, so that no 

light is falling onto the mesa sidewalls. The absorption profile in the cladding layer 

will be different for lasers with different wavelengths. Hence, knowing the 

absorption coefficients and designing a thick enough cladding layer will also be 

crucial. To ensure the purity of carrier injections, measurements should be repeated 

with different sizes of devices and lasers with different λ. 

 

Secondly, at high Vb, the power dissipation of the device will be high especially in 

devices with high leakage current such as InAs APDs. Since the impact ionisation 

process is temperature dependent, device heating can either overestimate or 

underestimate the real M of the devices. Repeating measurements with a range of 

photocurrents can help to check if device heating is an issue. In addition, devices can 

be biased for a longer period and a constant photocurrent over a certain period can be 

an indication that the devices are not heating up. 

 

Thirdly, the series resistance in the circuit can cause inaccuracy in the measurement. 

It is usually due to the high contact resistance of the devices. At high M, the voltage 

drop across the resistor can be significant, causing the actual bias voltage across the 

diode to be lower than it is supplied by the SMU. Moreover, in the PSD 

measurement, Rsense should be selected such that the voltage drop across it is 

minimised while producing sufficiently high signal to noise ratio to be detected by 

the LIA. The difference in voltage across the diode needs to be taken into account so 

that M is not underestimated.  

 

Finally, the photocurrent will increase as Vb increases either due to impact ionisation 

or the increase in collection efficiency of free carriers. The primary photocurrent 

shall be determined accurately by taking into account the increase in the depletion 
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width, which can increase the collection efficiency. It has been shown [2] that the 

increase in Ipr can be approximated by a straight line with the equation 

 89: � �dx 0 �,                                                                                       
3.14
 

  

where b is the slope and e is the y-intercept. The increase in Ipr at low Vb can be fitted 

with this equation and is extrapolated throughout the measured Vb range as shown in 

figure 3.7. M can then be calculated by dividing the photocurrent by the extrapolated 

Ipr. This technique is usually referred to as the base line correction. Due to the long 

electron and hole diffusion lengths of InAs, the photomultiplication measurements on 

InAs APD during this work do not involve the base line correction. 

 

 

Figure 3.7 An example of base line correction method (top) to calculate M (bottom) 

in an InGaAs/InAlAs SAMAPD. 
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3.4 Excess noise measurement 

During this work, the excess noise factor of InAs APDs was measured at 

temperatures below room temperature. Since the dark current was significantly 

reduced and the photocurrent was at least two orders of magnitude higher, the noise 

power could be measured directly from a noise figure analyser (NFA). As shown in 

figure 3.8, the experimental set-up for this noise measurement is similar to that used 

by Campbell et al.
 [3] but the noise figure meter was replaced by an Agilent 8973A 

NFA which allows measurements of the noise power at frequencies of 10 MHz to 3 

GHz. The devices were probed using a 50 GHz ground-signal-ground (GSG) probe 

which was connected to a bias-tee through a well-shielded cable with SMA 

connectors at both ends. The d. c. bias voltage was applied to the APD via the bias-

tee which also coupled the high frequency noise power generated by the APD into 

the NFA with an input impedance of Z = 50 Ω. 

  

 

Figure 3.8 The experimental set-up for excess noise measurements using a noise 

figure analyser. 

 

NFA measures and displays the noise power with respect to the thermal noise kBT of 

the NFA at T = 296.5 K in units of dB. Each time before performing this 
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source (Model: Agilent 346B; Serial number: MY44420110). The details on the 

noise power at a particular frequency of this noise source and the step-by-step 
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calibration procedures are provided in Appendix B. To carry out the measurement, 

the noise power of the dark current (Pdark,dB) and the noise power of the dark and 

photocurrent (Ptotal,dB) of the diodes were measured. These two noise powers were 

converted into units of Watt (Pdark,watt, Ptotal,watt) using the equations 

 

@<�:�,<e � 10 log @<�:�,��MM/ef∆�                                                               
3.15
 
 

@MbM��,<e � 10 log @MbM��,��MM/ef∆�                                                              
3.16
 
 

The noise power contribution of the photocurrent Np was then calculated as 

 

69 � 110 �]�]��,��_� � 10 �����,��_� 2 � /ef∆�                                     
3.17
 
 

F was then determined by the equation 

 69 � 2;89:�,)�∆�                                                                             
3.18
    
 

 

Figure 3.9: The excess noise factors of an InGaAs/InAlAs SAMAPD at room 

temperature. Local model reference lines at k = 0 to 0.4 [4]. 

Avalanche gain
0 5 10 15 20

E
xc

es
s 

no
is

e 
fa

ct
or

0

2

4

6

8

10
k = 0.4

k = 0

k = 0.1

k = 0.2

k = 0.3



Chapter 3 Experimental methods 

 

P. J. Ker Page 46 
 

This set-up was tested by measuring the excess noise of an InGaAs/InAlAs 

SAMAPD. The results were as expected and as measured using a custom-built noise 

measurement set-up with PSD [5], following the local model reference line of k ~ 

0.2. After verifying the accuracy of this measurement set-up, the excess noise factors 

of the InAs APDs were measured at low temperatures. 

 

3.5 Frequency response measurement 

In this measurement, a HP 83402B 1300 nm laser which can be modulated up to 6 

GHz was used as the optical excitation source. The laser was modulated by a HP 

8341B radio frequency (RF) signal generator and fibre-coupled onto the devices 

using a single mode or multimode fibre. This RF source generates signals from 10 

MHz to 20 GHz. It was interfaced with a HP 70820A microwave transition analyser 

(MTA) through a General Purpose Interface Bus (GPIB) so that it could be 

controlled remotely by the MTA. The modulating power and frequency range of the 

laser was controlled using the MTA. 

 

 

 

Figure 3.10 The experimental set-up for the frequency response measurements using 

the microwave transition analyser and radio frequency generator. 
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connector on another. The devices were d. c. biased using a SMU and the resulting 

high-frequency photocurrent signal was fed into the MTA. The power of the signal 

was measured in units of dBm and was displayed on the MTA. The noise floor of 

this system, when the 50 GHz probe was open-circuited, was in the range of - 95 to - 

85 dBm for frequencies of 100 MHz to 10 GHz. During the frequency response 

measurements, the power of the laser was adjusted such that the power transmitted 

by the devices was above - 75 dBm to ensure the accuracy of the measurements. The 

external connections and the procedures used for this set-up are in Appendix C. 

  

 

Figure 3.11 The experimental set-up for the frequency response measurements using 

the VNA and EAM. 
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can modulate the signal up to 30 GHz with a 3 dB loss at this frequency, this set-up 

is only ideal for measurements at f < 30 GHz. The precautionary steps taken when 

using the EAM and VNA are listed in Appendix D.  

 

It should be noted that at high frequencies, power or signal loss can occur throughout 

the measurement system. These losses can be originated from the cables, bias-tee, 

high speed connectors, laser and the high speed GSG probe. If the system is not 

properly calibrated, the losses are reflected on the frequency response of the device 

under test, resulting in an underestimation of the bandwidth of the device. Therefore, 

the system calibration is crucial in making sure that the frequency response 

measurement results are accurate. The calibration can be carried out using a 2-port 

VNA or it can be done using the MTA and RF generator. In section 7.5, the 

experimental calibration results will be discussed in detail since the results are only 

valid for a particular set of connectors, cablings and bias-tee. The way in which the 

losses are corrected will also be described. For different set of measurements using 

different components, the calibration needs to be repeated. All these losses were 

computed in units of dB, for a particular frequency in the low frequency range, such 

as 100 MHz. 

 

3.6 Signal to noise ratio measurement 

 

 
Figure 3.12 The experimental set-up to measure the signal to noise ratio of a system 

with a diode and an amplifier. 
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As discussed in section 2.3, the APD itself does not provide higher sensitivity if it is 

not operating in conjunction with an amplifier. Furthermore, the total noise of the 

system must be dominated by the noise of the amplifier for an APD to be useful. 

Figure 3.12 shows a simple receiver module which uses a low-noise Stanford SR570 

pre-amplifier. The pre-amplifier can provide a d. c. bias up to 5 V and external 

supply such as battery can be added in series to increase the d. c. bias voltage. It has 

different sensitivities which define the gain of the pre-amplifier. The optical signal 

was provided by a HP 8168C tuneable laser at 1550 nm, which was modulated at a 

particular frequency. The photocurrent or electrical signal produced by the diode was 

amplified by the pre-amplifier before being channelled into the SR760 Fast Fourier 

Transform (FFT) Spectrum Analyser. The signal was displayed in the frequency 

domain and the signal’s amplitude corresponding to the modulating frequency of the 

laser was recorded in RMS voltage. The total noise of the system can also be 

measured from the spectrum analyser. Using this experimental set-up, the change in 

the SNR with respect to increasing avalanche gain was investigated.  

 

3.7 Low temperature characterisations 

With thermal energy as one of the main sources of energy, many mechanisms taking 

place within an APD are inevitably related to temperature. Therefore, characterising 

APDs at temperatures lower or higher than room temperature is desirable and can 

provide significant knowledge on the behaviour of an APD. The activation energy EA 

of a particular process or mechanism can also be calculated by using the Arrhenius 

Equation 

 

= � =� exp c �>/efg ,                                                                               
3.19
 
 

where B and B0 are constants. 

 

To carry out the low temperature characterisation, a low temperature on-wafer probe 

station was used to cool the device to a desired temperature. Figure 3.13 shows the 
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Janis ST-500 series low temperature probe station with two d. c. probe arms, an 

optical fibre probe arm and a probe arm with the high speed GSG probe. The sample 

chamber was evacuated by the rotary and diffusion pumps to ~ 2×10-5 mBar before it 

was cooled by the flow of liquid nitrogen from a pressurised liquid nitrogen dewar. 

The steps and details of evacuating the chamber, cooling and shutting down the 

system are attached in Appendix E. The minimum achievable temperature for this 

set-up was approximately 77 K and the temperature of the sample chamber was 

monitored by a temperature controller. To achieve temperatures above 77 K, the 

heater of the temperature controller could be activated to heat the sample chamber up 

to a desired temperature.  

 

 

Figure 3.13 The Janis ST-500 series low temperature probe station set-up. 
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multimode fibre could transmit lasers from the visible up to 2 µm without significant 

attenuation. The core of the fibre has a diameter of 62.5 µm and depending on the 

distance between the core and the device, the laser spot diverges to diameters 

typically between 80 and 100 µm. Similar to the photomultiplication measurements 

which were discussed in section 3.3, this measurement can be carried out at low 

temperature, either under d. c. conditions or using the PSD technique.  

 

The frequency response of the device at low temperatures was also measured using 

the Janis low temperature probe station. The probe arm connected with the high 

speed GSG probe was used for this purpose. The laser source used in this experiment 

has an output with FC/PC or FC/APC connectors. However, the multimode fibre was 

terminated with a SMA connector. To transmit the laser from a single mode fibre 

into the multimode fibre, an FC/PC to SMA connector was used. 
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Chapter 4 Growth and fabrication of high 

speed InAs photodiodes  

     
 

4.1 Background on growth and fabrication 

The growth and fabrication of devices are crucial to reduce both the bulk and surface 

leakage currents in InAs diodes. The growth conditions of InAs using MBE have 

been optimised for substrate cleaning, growth rate and growth temperature to obtain 

a mirror-like surface morphology. It was reported that 470 oC was the optimum 

growth temperature with a growth rate of ~ 0.83 ML/s (~ 2.512 Å/s) for MBE to 

produce wafers with very low surface defect density [1].  

 

Due to its ability to produce high quality thick InAs wafers at a higher growth rate, 

MOVPE was also used to grow InAs wafers. Thick undoped InAs layers with very 

low background doping concentrations have been the priority to produce InAs diodes 

with very wide depletion widths. To obtain high quality InAs layers, surface oxide-

cleaning at annealing temperatures of ~ 620 – 630 oC was carried out prior to the 

growth. Growth conditions were optimised at a growth temperature of ~ 600 oC with 

higher growth rate of ~ 10 – 14.6 Å/s for p- and i-layers, compared to ~ 7.5 Å/s for n-

layers. A higher growth rate was used to minimise the diffusion of dopants from the 

highly-doped p- and n-cladding layers into the i-layer. Since InAs is a narrow 

bandgap material on which ohmic contacts with metals can be easily achieved, the 

doping concentrations of the p- and n- cladding layers are controlled so that they are 

not unnecessarily high. 

 

All the InAs wafers used in this work were grown on InAs substrates, either p-doped, 

n-doped or undoped substrates. Hence, the problems related to lattice-mismatch do 

not exist. This is especially important for InAs APDs since thick structures are 
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necessary and they are operating at higher Vb and E. 

 

Besides the bulk leakage current that is mainly related to the quality of the material, 

etched mesa diodes are highly susceptible to surface leakage current, especially in 

the case of narrow bandgap materials. It was reported that the free surfaces (vacuum-

semiconductor interface) of InAs exhibit electron accumulation, resulting in the 

Fermi level to be pinned above the conduction band minimum [2, 3]. This 

conducting surface is believed to be the main source of surface leakage current. 

Therefore, proper surface treatment using optimised etching procedures are 

necessary to sufficiently suppress the surface leakage current for APD operation.  

 

The fabrication of InAs diodes using wet chemical etching was reported by Marshall 

et al. [1]. The surface leakage current was significantly reduced to allow APD’s 

characterisation. In this chapter, the fabrication of InAs diodes using wet chemical 

etching will be briefly discussed and the effect of the incorporation of wide-bandgap 

materials into InAs diodes will be investigated. Furthermore, the different surface 

passivations of the etched mesa sidewalls will be investigated to determine the most 

suitable dielectric for surface passivation. After identifying the optimised fabrication 

process, high speed InAs APDs are designed and fabricated to allow the frequency 

response measurements to be carried out. 

 

4.2 Wet chemical etching 

Before the optimisation of the surface passivation to reduce the surface leakage 

current, the fabrication using wet chemical etching was carried out as reported by 

Marshall et al. [1]. Ti/Au of about 20/200 nm was deposited as the p- and n-contacts 

of the InAs diodes. Neither of the contacts were annealed to avoid any diffusion of 

metal, especially gold into the semiconductor layers.  

 

To avoid any contamination during the chemical etching process, the InAs samples 

were not mounted on glass slides using wax and dedicated glasswares were used 

specifically for the etching of InAs diodes. The InAs wafers were first etched using a 
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phosphoric acid-based etchant of H3PO4:H2O2:H20 = 1:1:1 at an etching rate of ~ 1.1 

µm/minute. It was followed by a finishing etch using a sulphuric acid-based etchant 

of H2SO4:H2O2:H20 = 1:8:80 for 30 seconds [1]. Throughout the fabrication process, 

the samples were not exposed to T > 100 oC to avoid any surface degradation. 

 

To ensure the repeatability of the fabrication process, two layers of InAs diodes, n-i-

p (MR2560) and p-i-n (M3247), were fabricated using a NEWPIN mask. The 

NEWPIN mask design and the growth details of MR2560 and M3247 are in 

Appendix A1. Both the forward and reverse I-V of these diodes were measured to 

evaluate the quality of the fabricated diodes. 

 

 

 

Figure 4.1 The forward I-V characteristics of (a) M3247 and (b) MR2560 together 

with the structures of the devices at room temperature. 
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Fig 4.1 shows the forward I-V characteristics from both InAs p-i-n (M3247) and n-i-

p (MR2560) diodes together with the fitted parameters using equation 3.2 in section 

3.1. For MR2560, n are between 1.15 and 1.3, very close to 1, suggesting a good n-i-

p junction formed and there is more diffusion than generation-recombination current. 

The p-i-n diodes, however, show n closer to 2, probably due to the heterojunction 

formed between the InAs and AlAs0.16Sb0.84 blocking layer. This is because when the 

diode is forward biased, the diffused electrons from the n-layer to p-layer are blocked 

by the wide bandgap material. The accumulation of electrons (minority carriers in p-

layer) enhances the recombination of electrons, causing higher recombination 

current. The series resistance, mainly due to the contact between the metal and the 

semiconductor, is higher for InAs p-i-n diodes because p-contact is proven to be 

more difficult to form a good ohmic contact with InAs. A more detailed discussion 

on contact resistance for InAs diodes is presented in section 4.5.1 with an 

explanation based on the transmission line method (TLM). It can be seen that the 

contact resistance is low enough for most of the APD applications even without 

thermal annealing because InAs is a narrow bandgap material. However, the contact 

resistance may become a major issue when very small InAs APDs are used for high 

speed applications where high resistance will impose an RC limit.  

 

 

Figure 4.2 The dark current densities characteristics of MR2560. 
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The room temperature reverse I-V characteristics and leakage current densities for 

the InAs n-i-p APDs are shown in Fig 4.2. The I-V data are normalised to the device 

area and their respective current densities show good agreement with each other, 

indicating the bulk nature of the leakage current. A dark current density of ~ 100 

mA/cm2 was measured on these InAs diodes at room temperature [4]. Within the bias 

voltage range, there is no significant tunnelling current component observed and the 

non-scaling to device perimeter pointed out that the surface component is not the 

dominant leakage current component at room temperature. 

 

Low temperature I-V characterisation can be another indication of the quality of the 

fabricated diodes. This is because the bulk dominated leakage current is due to either 

diffusion or generation-recombination current. Hence the bulk leakage current will 

reduce proportionally to the reduction of ni or ni
2 with decreasing temperatures. The 

surface leakage current, on the other hand, consists of mechanisms which are more 

uncertain, and its temperature dependence is usually less significant compared to the 

bulk leakage current. I-V measurements of the InAs diodes were therefore taken at 77 

K. 

 

 

Figure 4.3 The I-V characteristic of a MR2560 diode with r = 50 µm at 77 K 

compared to room temperature. 
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Figure 4.3 shows an example of the leakage current in MR2560 diodes compared to 

that at room temperature. At Vb < 1 V, the leakage current reduces by > 3 orders of 

magnitude. Itunn can be observed at Vb > 5 V. The existence of Itunn can be confirmed 

by fitting the measured leakage current to the Itunn equation. In addition, the leakage 

current due to tunnelling must exhibit strong dependence on the diodes’ area to 

ensure its bulk dominated characteristic. As shown in equation 3.5, the Itunn is highly 

dependent on Eg. As InAs has a narrow bandgap, Itunn can happen even at low E, 

typically > 60 kV/cm [5]. To suppress this leakage current component, diodes with 

thicker W are needed to reduce the peak electric field. 

 

Throughout the work reported in this thesis, many layers of InAs wafers, either 

MOVPE or MBE grown, were fabricated, of which only those layers in Appendix A1 

are with sufficiently high quality and low leakage current at high Vb, which will be 

reported in the subsequent chapters. InAs wafers with lower quality and high surface 

defect density are listed in Appendix A2 with some brief comments based on their I-

V, C-V and avalanche gain characterisations at room temperature and 77 K. 

 

4.3 Study on the incorporation of wide bandgap material 

The incorporation of a wide bandgap material into a narrow bandgap material has 

been widely reported to reduce the dark current. To achieve room temperature 

operation for InSb, Ashley and Elliot incorporated a wide bandgap material at the 

interface of p- and i-regions to block the minority electrons flowing from the p-layer 

to the depletion region [6]. For InAs diodes, it was reported that the incorporation of 

a wide bandgap material, such as AlAs0.16Sb0.84, can block the electrons in the 

contacts from diffusing into the p-layer and depletion region, hence reducing the 

leakage current of the InAs diodes [1]. However, previous dark current comparisons 

were carried out based on different wafers grown by MBE and MOVPE. This has 

created an uncertainty whether the reduction of leakage current is due to the 

incorporation of a wide bandgap material or the difference in the quality of growth, 

which can also affect the leakage current level. While it served as an indication, InAs 

layers grown by different methods do not provide a very clear-cut comparison in 



Chapter 4 Growth and fabrication of high speed InAs photodiodes 

 

P. J. Ker Page 58 
 

demonstrating the effectiveness of the AlAs0.16Sb0.84 layer in blocking the electrons 

from diffusing into the depletion region. 

 

 

 

 

 

 

Figure 4.4 The cross section view of the M3279 InAs wafers with and without the 

AlAs0.16Sb0.84 blocking layer. 

 

InAs M3279 layer was used to study the effect of the blocking layer. The details of 

this wafer can be found in Appendix A1. Half of the M3279 sample was masked 

with photoresist, and the top 100 nm of InAs and 200 nm of AlAs0.16Sb0.84 of the 

other half were etched, leaving a big sample with (S1) and without (S2) the blocking 

layer, as shown in figure 4.4. This sample was fabricated using the processing steps 

described in section 4.2 and was cleaved into two samples (S1 and S2) just before the 

final wet chemical etching process. The purpose of this was to ensure that these two 

samples went through a very similar fabrication process, whenever it was possible, 

so that the difference in the dark current, if any, will only be due to the blocking 

layer. 

 

The room temperature I-V of S1 and S2 were measured and shown in figure 4.5. To 

ensure bulk dominated leakage current, the current densities shown in the figure were 

calculated based on the large area devices. There is a clear difference between S1 and 

S2 with S2 having ~ 4 times higher dark current density than S1. Figure 4.5 also 

present the dark current densities of a few other InAs wafers. All these InAs wafers 

without the blocking layer, either grown by MOVPE (MR2560) or MBE (M3884) 

show similar dark current densities as S2. Whereas, the reported dark current density 

of the M3247 with the AlAs0.16Sb0.84 blocking layer [1] shows similar leakage 

current level as S1. The reduction in dark current is believed to be mainly due to the 
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blocking layer which acts as a barrier that prevents the diffusion of electrons from 

the metal contact into the depletion region. 

  

 

Figure 4.5 Dark current densities of S1 and S2, compared with the dark current 

densities of other MBE and MOVPE grown InAs wafers with and without the 

AlAs0.16Sb0.84 blocking layer. 

  

 

Figure 4.6 Measured quantum efficiencies of samples S1 and S2 at room 

temperature. 
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The responsivities of S1 and S2 were also measured at room temperature from λ = 

532 to 1520 nm. Figure 4.6 compares their quantum efficiencies and it is clear that 

the S2, without the wide-bandgap blocking layer, can provide higher responsivity. At 

radiation wavelengths of 1064 and 1520 nm, it is estimated that ~ 25 % of the 

carriers generated in the top 100 nm of the InAs layer are blocked by the 

AlAs0.16Sb0.84 layer, causing lower responsivity. Together with the dark current 

comparison in figure 4.5 this responsivity measurement also proves that minority 

electrons injected from the contacts are successfully blocked. 

 

From this simple study, it is clear and conclusive that the bulk leakage current of 

InAs diodes can be reduced by incorporating a wide bandgap material in the p-layer 

to prevent the diffusion of the minority carriers from the contact. The design should 

be further optimised by studying the conduction and valence bands offset of other 

lattice-matched wide bandgap materials so as to further reduce the bulk leakage 

current. Besides that, wide bandgap materials which are not easily oxidised should be 

explored so that it does not need to be encapsulated by the InAs layer, which will 

reduce the quantum efficiency of the diode.  

 

4.4 Passivation of InAs diodes 

As discussed at the beginning of this chapter, the surface condition of an etched mesa 

diode is important to ensure low surface leakage current, especially in narrow 

bandgap semiconductor such as InAs. Besides a suitable etchant, surface passivation 

using an appropriate dielectric can be another important surface treatment that can 

prevent surface degradation that leads to surface leakage current. Ideally, the surface 

passivation should turn the semiconductor’s etched surface into insulator-like 

material, which can completely eliminate the surface leakage current. A few 

commercially-used dielectrics such as silicon nitride (SiNx), silicon dioxide (SiO2) 

and B-staged Bisbenzocyclobutene (commonly referred to as BCB) were used to 

passivate InAs diodes but the results were not encouraging [7]. In fact, the surface 

was degraded and a much higher leakage current was observed in diodes which were 

passivated by SiNx and SiO2. BCB showed the best results among these passivation 
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dielectrics. A study on the different curing temperatures and time for BCB showed 

that the optimum condition for InAs diodes was at 300 oC for 1 minutes. However, 

the BCB passivated diodes did not show significantly lower dark current than the one 

which were not passivated [7].  

 

Recently, the dark current density of the SU-8 passivated type-II InAs/GaSb strained 

layer superlattice detectors [8] was reported to reduce by 4 orders of magnitude at 77 

K, compared to the unpassivated devices. SU-8 is a high contrast negative 

photoresist that is widely used for the fabrication of high aspect ratio MEMS devices 

and devices for optoelectronic applications [9]. It is designed to produce uniform 

thick films between 0.2 and 100 µm. SU-8 consists of bisphenol A novolac epoxy 

resin and a photoacid generator, which acts as the curing agent [9]. When SU-8 is 

exposed to UV, this curing agent generates a strong acid (HCbF6) that causes the 

epoxy resin to form a solid structure with a high cross-linking density. This photo-

polymerised SU-8 possesses good physical and chemical robustness. Furthermore, it 

is almost transparent to wavelengths > 350 nm, making it suitable for the passivation 

of infrared photodetectors [10]. 

 

Since it involves only spin-coating and UV exposure, the passivation technique using 

SU-8 can be incorporated easily into the fabrication process of InAs diodes. The 

passivation process also does not involve high temperature, which is crucial to avoid 

any possibility of contact diffusion and surface degradation. However, SU-8 has not 

been used as the surface passivation for InAs diodes. Therefore, SU-8 was used to 

passivate the InAs diodes in order to investigate the effectiveness of this dielectric 

material for surface passivation.  

 

The freshly etched MR2558 InAs n-i-p sample was cleaved into two pieces, one 

acting as the reference sample and the other one was passivated using SU-8 5 using 

the steps listed below:- 

i. Bake the sample for 1 minute at 100 oC to completely dehydrate the surface. 

ii. Spin SU-8 5 for 30 seconds at 3000 rpm to produce a film of ~ 5 µm, 

covering the whole sample. The thickness of the film can be varied by using 
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different spin speed, with thicker film at lower spin speed. The estimated film 

thickness can be referred to in [10]. 

iii. Pre-bake the sample at 65 oC for 1 minute, followed by a soft bake at 95 oC 

for 3 minute. The baking time for different thicknesses of film can be found 

in [10]. 

iv. Photolithography and UV expose the sample for ~ 50 seconds using mesa 

mask. Note that SU-8 is a negative photoresist, hence the area which is 

exposed to the UV will be hardened, whereas the unexposed area will be 

developed.  

v. Post-exposure bake at 65 oC for 1 minute, followed by another bake at 95 oC 

for 1 minute. The baking time for different thicknesses of film can be found 

in [10]. 

vi. Develop the sample in SU-8 developer for 1 minute and rinse the sample with 

isopropyl alcohol. 

 

The room temperature I-V of both the reference and passivated samples were 

measured and shown in figure 4.7 (a). Both samples show a very similar level of dark 

current at room temperature. As the temperature decreases to 77 K, there is a clear 

difference in dark current between these two samples, as shown in figure 4.7 (b). At 

low Vb, there is a reduction of ~ 2 orders of magnitude for the SU-8 passivated 

sample. At Vb > 15 V, the reduction in dark current for the SU-8 passivated sample is 

more obvious, approaching > 3 orders of magnitude. Therefore, there is a significant 

suppression of dark current, mainly from the surface leakage current, when the InAs 

diodes are passivated by SU-8.  

 

The SU-8 can be hard baked to obtain a more durable structured film on the diodes. 

However, since SU-8 has very good mechanical properties, hard bake or high 

temperature curing is usually not required. It is recommended [10] that the hard bake 

temperature should be between 150 and 200 oC but the exact baking time is not 

specified. From the previous experience in fabricating InAs diodes, the surface can 

be degraded if the sample is exposed to high temperatures. Therefore, an additional 

SU-8 passivated sample was used to carry out the hard bake process at 150 oC for 20 
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minutes. The hard curing of SU-8 did not turn out well for the InAs diodes as they 

showed almost short-circuit like room temperature I-V immediately after the curing 

process. After ~ 24 hours, the surface settles down and it shows diode-like 

characteristics at room temperature but with a little higher dark current than the 

reference sample, as shown in figure 4.7 (a).  

 

 

 

Figure 4.7 The I-V characteristic of the MR2558 reference diode with 50-µm radius 

compared with those passivated by SU-8 with and without hard bake at (a) room 

temperature and (b) 77 K. 
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The I-V measurement at 77 K revealed that the surface of the etched mesa was 

degraded by the hard bake or hard curing process. From figure 4.7 (b), the diodes 

show constantly higher leakage current than those which are not hard baked. At low 

Vb, the leakage current is even higher than the reference sample. Therefore, it is 

suggested that the hard curing process is not needed as it does not improve but 

degrade the etched mesa surface. 

 

 

Figure 4.8 The I-V characteristic of a MR2560 50-µm radius reference sample, 

samples with SU-8, BCB, SiO2 and SiNx passivations at (a) room temperature and (b) 

77 K. 

 

Reverse voltage (V)
0 5 10 15 20 25

C
ur

re
nt

 (
A

)

10-6

10-5

10-4

10-3

10-2

10-1

r = 50 µm
reference (no passivation)
r = 50 µm
SU-8 5 
r = 50 µm
BCB 
r = 50 µm
Si02 

r = 50 µm
SiNx 

(a)

Reverse voltage (V)
0 2 4 6 8 10 12

C
ur

re
nt

 (
A

)

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

r = 50 µm
reference (no passivation)
r = 50 µm
SU-8 5 
r = 50 µm
BCB 
r = 50 µm
Si02 

r = 50 µm
SiNx 

(b)



Chapter 4 Growth and fabrication of high speed InAs photodiodes 

 

P. J. Ker Page 65 
 

To study and investigate the difference between all the four passivation dielectric 

materials, namely SiO2, SiNx, BCB and SU-8, one big sample from MR2560 was 

fabricated. To eliminate the possibility of surface degradation due to the fabrication 

and wet chemical etching, this sample was cleaved into 5 smaller samples just before 

the surface passivation was carried out. Each of them was passivated by SiO2, SiNx, 

BCB, SU-8 and the last one was left as reference sample. The processing steps for 

the surface passivation using BCB are detailed in Appendix F. Since they were all 

fabricated through exactly the same process before surface passivation, the difference 

in diodes’ performance is mainly due to the different surface passivations. 

  

The I-Vs of all the samples were measured at room temperature and presented in 

figure 4.8 (a). The reference, SU-8 and BCB passivated samples show very similar 

leakage current levels at room temperature. The SiO2 and SiNx passivated samples 

have significantly high dark currents, similar to those reported previously [7].  

 

The low temperature I-V characteristics were also investigated at 77 K. From figure 

4.8 (b), the leakage current of the SiO2 and SiNx passivated samples is shown to be 

very high, reaching 10 mA within 0.5 V. The surface degradation due to these two 

passivations is so significant that the diodes have almost a conductor-like surface 

regardless of the operating temperature. At 0 V, the BCB and SU-8 passivated 

samples show a lower dark current than that of the reference sample. Unfortunately, 

the dark current of the BCB passivated diodes increases rapidly with increasing Vb, 

to a level close to that of the reference sample. SU-8 passivated diodes are still the 

ones with the highest performance, consistently having > 2 orders of magnitude 

lower dark current than the reference and BCB passivated samples.  

 

Since the SU-8 passivated sample showed the lowest dark current, the I-V 

characteristic at a few temperatures between 77 K and room temperature was 

investigated. The reference sample was also measured concurrently and again used 

for comparison. The dark current of both samples were analysed by separating the 

bulk and surface leakage components. This was done using the equation [11] 
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At each temperature, the total leakage current Idark, of the InAs diodes with different 

r = 200, 100, 50 and 25 µm were measured. The bulk leakage component Jbulk(T) in 

A/cm2 and surface leakage component Jsurf(T) in A/cm were extracted using the 

fitting equation. The details on how to separate these two current components will be 

described in section 5.3. Jbulk(T) and Jsurf(T) are plotted against the inverse of 

temperature, 1000/T, in figure 4.9.    

 

Jbulk(T) of both samples are very similar, as expected. This is because Jbulk(T) should 

be highly dependent on the quality of the grown sample, and not on the fabrication 

and passivation process. Since they are from the same wafer, their values of Jbulk(T) 

are comparable. The Jsurf(T) of the samples, on the other hand, become different as 

the temperature reduces from 295 to 77 K. At 295 K or room temperature, their 

Jsurf(T) are similar, hence showing almost equal Idark as shown in figure 4.8 (a). As T 

decreases, the Jsurf(T) of the SU-8 passivated sample reduces at a quicker rate, as can 

be seen in figure 4.9, therefore producing Idark which is ~ 2 orders of magnitude 

lower at 77 K. 

 

 

Figure 4.9 Jbulk(T) and Jsurf(T) of the MR2560 reference and SU-8 passivated sample 

against 1000/T. 
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Besides having a lower dark current, the SU-8 passivated diodes are also more 

robust. They can be biased at higher Vb and can be measured several times without 

much surface degradation. This feature will be critical when the InAs diodes are used 

in practical applications where high gain and constant biasing of the diode are 

necessary. 

 

From this study, the SU-8 dielectric has been identified as the most suitable dielectric 

for the surface passivation of InAs diodes, to date. UV curing of SU-8 which does 

not involve high temperature baking is proven to produce lower dark current than the 

InAs sample with SU-8 that is hard cured at 150 oC. The study of the bulk and 

surface current components versus temperature also clearly point out the 

effectiveness of SU-8 as a surface passivation dielectric that is able to reduce the 

surface leakage current. Furthermore, this passivation technique has also increased 

the robustness of the InAs APDs. This is especially crucial when higher reverse 

biasing is needed for high gain applications. Finally, it will be discussed later in 

section 4.5 that identifying the SU-8 as the passivation technique also serves as one 

of the important aspects in realising the fabrication of high speed InAs APDs.  

 

4.5 Fabrication of high speed InAs APDs 

The fabrication of high speed InAs APDs was made possible after identifying SU-8 

as the most suitable dielectric material for etched mesa surface passivation. This is 

important as there is no semi-insulating substrate which is lattice-matched to InAs. 

Growing InAs diodes on lattice-mismatched substrate such as GaAs will inhibit high 

voltage operation of InAs diodes, causing huge difficulty in achieving APD 

operation. With this suitable dielectric, the GSG pads can therefore be deposited on 

the flat SU-8 film due to the lack of a lattice-matched semi-insulating substrate. 

 

Before carrying out any device fabrication and frequency response measurement, a 

few experiments and calculations, such as contact resistance measurements using the 

TLM, RC-limited bandwidth calculation and transit time limited bandwidth 

calculation, were studied and investigated.  
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To achieve high speed operation, the limitation of bandwidth due to RC should be 

avoided by having a low contact resistance and junction capacitance. The RC-limited 

bandwidth is defined as 

 

��� � 12t7y                                                                                               
4.2
 
 

The diode junction capacitance can be calculated and estimated as discussed in 

section 3.2 using equation 3.7. However, the series resistance, which is mainly due to 

the contact resistance, cannot be computed in a straight forward manner. Therefore, 

the TLM is used to estimate the contact resistance. 

 

4.5.1 Choice of metals for contacts 

From previous InAs diode fabrication and measurements, it was found that the InAs 

p-contact has a different contact resistance from the n-contact, and the metal that is 

deposited should be chosen according to the lowest value of resistance without 

sacrificing the reverse leakage current characteristic. Besides the choice of metals, it 

should be noted that the doping concentration of the cladding layers that form the 

contact with the metal must be adequately high in order to minimise the contact 

resistance. In this aspect, all cladding layers of our InAs p-i-n and n-i-p structure 

wafers have doping concentrations > 2x1017 cm-3, which is sufficient to produce a 

good ohmic contact for a narrow bandgap semiconductor. 

 

 

                    

 

 

 

Figure 4.10 Contact resistance measurement using the TLM pads. 

 

d1 d2 d3 d4 d5 
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The TLM experiment was performed by depositing different metals on p- and n-

layers on the 100×50 µm2 TLM pads, as shown in figure 4.10. Ideally, an isolation 

etching should be done around the block of TLM pads to prevent leakage current 

from flowing through other additional paths. Then, the I-V between two TLM pads 

was measured for different distances (d1, d2, d3, d4, d5).  

 

 

Figure 4.11 Different resistance components in the TLM measurement. 

 

 

Figure 4.12 An example of R vs. dt plot for a Ti/Au n-contact. 

 

The set-up or system used for the I-V measurement needs to be calibrated in order to 

accurately calculate the contact resistance between the metal and semiconductor. To 

measure the system resistance Rsystem which includes the probes, cables and junction 

box, two probes were connected and the I-V was measured. The Rsystem was 

determined to be ~ 4.9 Ω. The resistances between two TLM pads Rmeasured were 
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computed by dividing the voltage by the current. The total measured resistance 

between two pads can be written as  

 7���wq:�< � 279�< 0 7w��+�bX<q�Mb: 0 7w�wM��,                          
4.3
  
 

where Rpad is the resistance between the TLM pad and the semiconductor, and 

Rsemiconductor is the resistance along the length of the semiconductor, as shown in 

figure 4.11.  

 

An example of a plot of Rmeasured vs. distance dt based on the measurement of a Ti/Au 

n-contact is shown in figure 4.12. From the Rmeasured vs. dt plot and by extrapolating 

the graph to dt = 0, that is with zero length of semiconductor, the Rmeasured(dt = 0) = 

2Rpad + Rsystem. Subtracting the Rsystem, Rpad can be obtained. Then the contact 

resistance-area product RcontactA, can be calculated by multiplying the Rpad by the area 

of each TLM pad. Rcontact for different sizes of device and contact area can then be 

computed. 

 

A few different types of metals were used for both p- and n-contacts and the metals 

with the corresponding values of RcontactA are listed in table 4.1 below. 

 

Types of contact Metal 
Contact resistance-area product, RcontactA 

(Ω/cm2) 

InAs p-contact 

Au/Zn/Au 4.53×10-4 Ω-cm2 

Ti/Au 3.73×10-4 Ω-cm2 

Ti/Pt/Au 3.01×10-4 Ω-cm2 

InAs n-contact 

InGe/Au 3.45×10-5 Ω-cm2 

Ti/Au 3.48×10-5 Ω-cm2 

Ti/Pt/Au 6.33×10-5 Ω-cm2 

 

Table 4.1 List of RcontactA for p- and n-contacts with different metals. 
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To obtain a better ohmic contact with lower resistance, thermal annealing of the 

metal contact is always an option or alternative for high speed device fabrication. 

However, due to the narrow bandgap nature, InAs has quite a low contact resistance 

even without annealing. Thermal annealing however was done for experiment and 

observation purposes but it did not improve the contact resistance significantly. To 

make matters worse, the value of Rcontact was increased after annealing at a certain 

temperature. For instance, annealing the Ti/Pt/Au p-contact at 350 oC increased 

Rcontact. This may be due to the enhanced out-diffusion of As atoms towards the 

metals, causing the formation of a TiAs/PtAs intermixing zone [12]. It was also 

shown in section 4.4, that baking the devices at 150 oC can degrade the performance 

of the InAs APDs. Thus, to prevent any surface degradation, to avoid any 

unnecessary metal diffusion from the contact into the semiconductor, and since 

annealing did not improve Rcontact significantly, thermal annealing of contacts was not 

carried out in the fabrication of high speed InAs APDs. Finally, from the data 

obtained through this TLM experiment, Ti/Pt/Au and Ti/Au were used for the p-

contact and n-contact, respectively. 

 

4.5.2 Device fabrication and bondpad design  

 

Figure 4.13 Mask set design for high speed InAs APDs with different designs of 

GSG pads. 
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A new mask set was designed to fabricate the high speed InAs APDs, which could be 

measured and probed using a 50-GHz GSG probe. Before designing the mask set, a 

few experiments were carried out such as optimising the exposure time and baking 

time for SU-8 to develop into a thick, durable and hard planar film without 

sacrificing the yield of the smallest workable devices. Furthermore, investigating the 

effect of isotropic etching profiles of InAs diodes was proven to be significant 

because the sizes of the diodes became smaller as the etch depth went deeper. In 

addition, the isotropic etching profile was also dependent on the orientation of the 

wafer. This, if not properly designed, could cause the top contact to fall on the mesa 

sidewalls and the GSG tracks or pads not being able to make contact with the top and 

lower contacts. The experimental details and considerations regarding issues of the 

SU-8 exposure and baking time, and the isotropic etching profile were discussed with 

the aid of figures in Appendix G. Moreover, the RC-limited bandwidths of each size 

of devices were also calculated and estimated based on the values of W and Rcontact.  

 

The mask set consists of devices with diameters ranging from 25 to 250 µm. Since 

the W of the InAs diodes was large, contributing to lower C, a few larger size devices 

with d = 250 and 150 µm were included to investigate and demonstrate the RC-

limited bandwidth. Besides that, GSG pads with different designs, as shown in figure 

4.13, were included to investigate if there is any impedance mismatch between the 

50-Ω measurement system and the GSG pads, and parasitic effects between the 

signal tracks and the conducting substrate. 

 

Due to the long diffusion length of minority electrons in InAs, pure electron injection 

can be obtained even in diodes with an n-i-p structure, provided that the laser spot is 

accurately focused on the p-layer. Since most of the MOVPE grown n-i-p InAs 

diodes have a wider W than the p-i-n diodes due to thicker i-layer, the GSG pads for 

the n-i-p diodes have been designed to have a top metal cap, aiming to block the laser 

from falling onto the n- and i-layer. The design of the GSG pads for p-i-n and n-i-p 

diodes are shown in figure 4.14. 
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Figure 4.14 Design of high speed InAs p-i-n and n-i-p APDs to obtain pure electron 

injection. The metal cap on top of the n-i-p diode is to prevent light from falling onto 

the n- and i-layers.  

 

   

Figure 4.15 High speed InAs p-i-n APDs (left) and InAs n-i-p APDs (right) with top 

metal cap. 

 

Using this newly designed high speed mask set, the InAs p-i-n (MR2538) and n-i-p 

(MR2558) APDs were fabricated using the metal contacts as mentioned in section 

4.5.1. The etched mesa surface were passivated by ~ 10 µm thick SU-8 before 

depositing the GSG pads with 30/400 nm Ti/Au. The 10-µm thick SU-8 can cause 

problem to the deposition of GSG pads as the metals travel through the interception 

point between areas with and without SU-8. To overcome this problem, 2 coils 

containing Ti and 2 coils containing Au were used to enable the deposition of Ti and 
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Au from opposite directions. This problem can also be solved by depositing the GSG 

pads metals using a metal sputterer machine which will rotate the samples while 

sputtering metals. The pictures of the fully fabricated InAs p-i-n and n-i-p APDs are 

shown in figure 4.15.     

 

The fabricated high speed devices were also inspected under the scanning electron 

microscopy (SEM). Figure 4.16 shows the overview and the cross section of a diode. 

It was observed that the GSG pads were able to extend through the 10-µm SU-8 

slope and make contact with the lower contact. Furthermore, the SU-8, with the 

optimised UV exposure and baking time, was able to fully protect the etched mesa 

surface. 

 

The room temperature I-V of the high speed InAs APDs was measured. The forward 

and reverse I-V characteristics of the diodes are shown in figure 4.17.  

 

  

 

 

Figure 4.16 Top view (left) and cross section view (right) of the high speed InAs 

APDs under SEM. 

 

For clarity, only forward I-Vs of selected device sizes are shown in figure 4.17 (a).  

The forward I-V shows that the high speed diodes have higher series resistance than 

the NEWPIN diodes. For example, the 250-µm diameter high speed diode has a 

series resistance of 20 Ω, whereas a 50-µm radius NEWPIN diode has only 13 Ω. 

This can be attributed to two factors. Firstly, the lower metal contact of the high 
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speed diode has a smaller area contact, whereas the NEWPIN diode has a large-area 

lower contact on the p-substrate of the wafer. Secondly, the thin and long GSG pads 

deposited on the SU-8 can also contribute to the higher contact resistance. 

 

 

 

Figure 4.17 (a) The forward I-V characteristic and (b) the reverse current densities of 

the MR2558 high speed InAs APDs. The forward I-V and reverse current density of 

MR2558 diodes fabricated using NEWPIN mask is also shown for comparison. 

 

The reverse leakage currents of the diodes with nominal diameters of 250, 150, 100, 

75, 50 and 25 µm were all scaled with their area. Due to the isotropic etching profile, 

the diameters of these devices were effectively reduced by about 15 µm. The current 

densities of the diodes are plotted in figure 4.17 (b). It is clear that the high speed 

InAs APDs have very similar dark current densities to that of APDs fabricated using 
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the simpler NEWPIN mask. This has shown that the additional processing steps 

involved in the fabrication of high speed devices are well controlled such that the 

performance of the high speed APDs is not compromised at room temperature. 

 

4.6 Temperature dependence of the spectral response 

InAs is a III-V binary semiconductor compound which can provide good quantum 

efficiency up to the mid-infrared wavelengths. Other well established semiconductor 

technologies, such as Si, GaAs and InGaAs can be used for applications up to 

wavelengths of 1.7 µm. Therefore, InAs is a good candidate for applications which 

require detection at ≥ 2 µm. As temperature decreases, the leakage current of InAs 

APDs reduces. However, this is accompanied by an increase in Eg, causing the λc to 

decrease. 

 

 

Figure 4.18 The spectral responses of a homojunction InAs n-i-p diode at 77, 100, 

150, 200, 250 and 295 K. 

 

The temperature dependence of the spectral response was measured on a packaged 

homojunction InAs MR2775 n-i-p diode using the Fourier Transform Infrared 

Spectrometer (FTIR). The normalised spectral responses from 77 to 295 K are shown 

in figure 4.18. It is worth noting that the figure shows the peak-normalised response 
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in arbitrary unit. The FTIR set-up has a standard ceramic light source that is able to 

transmit radiation from 1.7 to 25 µm [14]. Therefore, it can be expected that for λ < 

2.0 µm, the radiation power is very low, resulting in very low response at 1.5 µm and 

this should not be regarded as the short wavelength cut-off. In section 5.6, it will be 

shown that the InAs diodes are able to provide ~ 50 % quantum efficiency even 

down to λ = 1.3 µm. However, this measurement is primarily aimed at investigating 

the long wavelength cut-off of the InAs diodes which are at λ > 3 µm. The λc, which 

is taken at the 50 % of the peak response, at each temperature were determined from 

the spectral responses. These values were compared with the reported equation of the 

temperature dependence of the InAs bandgap energy, Eg(T), by Fang et al. [13] 

 

��
f
 � 0.415 � h2.76 � 10m� f,f 0 83 k                                                   
4.4
 
 

The comparison between the measured λc and the λc = Eg/1.24 calculated from the 

equation are presented in table 4.2. The measured and calculated λc show good 

agreement and λc ranges from 3 to 3.55 µm as T increases from 77 to 295 K.  

 

Temperature (K) 50 % λc (µm) Reported λc (µm) 

77 3.036 3.065 

100 3.061 3.103 

150 3.146 3.195 

200 3.279 3.300 

250 3.402 3.416 

295 3.552 3.530 

 

Table 4.2 Comparison between the 50% λc observed from the spectral responses and 

the λc calculated from Eg(T) by Fang et al. [13]. 
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Chapter 5 Temperature dependence of 

leakage current in InAs APDs 

     
 

5.1 Introduction 

In chapter 1, it has been discussed that InAs, with Eg = 0.36 eV, can be utilised in 

active imaging [1], gas sensing [2], free space communications [3] and satellite based 

environmental monitoring [4]. In these applications, the photon flux can be low and 

amplification of the signal is necessary. However external amplification can degrade 

the overall SNR especially when high gain at high frequency is required. 

Commercially available amplifiers that can provide high gain at high bandwidth with 

very low noise are unfortunately limited and expensive. 

 

APDs can circumvent this problem since their internal gain mechanism can 

significantly improve the overall system sensitivity. For instance, HgCdTe APDs 

have been incorporated into FPAs to facilitate long range high sensitivity active 

imaging [1]. In chapter 1, we have reviewed that both HgCdTe and InAs APDs 

possess the ideal APDs characteristics of k = 0 with very low F. However, due to the 

narrow bandgap of InAs, InAs photodiodes exhibit higher room temperature dark 

current than photodiodes made from wider bandgap materials such as InGaAs. 

Consequently, to achieve the same dark current density as in InGaAs photodiodes, 

cooling is necessary. An additional challenge in InAs photodiodes is the difficulty in 

suppressing the surface leakage current [5]. Hence there is a need to understand the 

significance of both the surface and bulk leakage currents as a function of 

temperature.  

 

Section 1.5 revisited a few fabrication and dark current analysis of InAs photodiodes 

by Lin et al. [6, 7]. However, the operating voltage of the InAs photodiodes is still 
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limited below 0.5 V. A detailed study on the dependence of surface and bulk leakage 

currents on high reverse bias and the dependence of these leakage current 

components on temperature have only been reported by this work [8]. 

 

In this chapter, we discuss a systematic study and analysis of the leakage current in 

MR2558 InAs APD as a function of temperature. The InAs APDs have a nominal 6 

µm intrinsic layer, as well as a 1.5 µm n- and 3.5 µm p-cladding layers. These 11-µm 

thick structures impose stringent requirements on the fabrication and processing of 

the APDs. The surface of the mesa was sufficiently passivated by SU-8 to suppress 

the surface leakage current and ensure bulk dominated leakage current at room 

temperature. The dark current analysis encompassed a wide temperature range from 

77 to 290 K. Analysis of the bulk and surface current components enables the 

extraction of activation energies. To obtain a desired dark current density for a 

specific application, the required operating voltage, operating temperature and the 

area of an InAs APD can also be determined from this analysis. The avalanche gain, 

responsivity and detectivity of the InAs APDs will also be discussed. 

 

5.2 Temperature dependence of the leakage current 

 

 

Figure 5.1 Schematic cross section view of the MR2558 InAs n-i-p diode structure. 

 

The MR2558 InAs n-i-p structure was grown on a p-type doped InAs substrate using 

MOVPE at a growth temperature of 600 °C. A schematic cross section view of the 

diode structure is shown in figure 5.1. The p- and n-type dopants were Zn and Si 

respectively. The details of this wafer can be found in Appendix A1. The fabrication 
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of circular mesa photodiodes, with 205, 105, 55 and 30-µm radii, was carried out as 

described in section 4.2. Since the SU-8 has been identified as the best surface 

passivation for InAs diodes to date, the etched mesa walls were passivated by 

depositing a layer of SU-8 [9]. The passivation technique and procedures have been 

explained in section 4.4. Due to the high room temperature leakage current at large 

reverse biases, the device capacitance was measured at 77 K and it confirmed that 

doping concentrations > 5×1017 cm−3 were obtained in both the n- and p-type 

cladding layers and unintentional doping concentrations varying between 7×1014 and 

2×1015 cm−3 were obtained in the i-layer. Depletion widths up to 4.5 µm were 

achieved within the bias range reported. 

 

 

Figure 5.2 Reverse dark currents of the MR2558 InAs n-i-p diodes with r = 55 µm. 

 

The forward and reverse I-V measurements were performed at T = 77 to 290 K using 

the Janis ST-500 series low temperature on-wafer probe station as described in 

section 3.7. At each temperature, all the 205, 105, 55 and 30-µm radii devices were 

tested and the data were recorded. The dark currents for photodiodes with r = 55 µm 

are shown in figure 5.2. Clearly, the surface leakage current is sufficiently 

suppressed that the reverse leakage current decreases with decreasing temperatures. 

The Ti/Au metal formed good contact with all of the InAs photodiodes since the 

series resistances for all sizes of the photodiodes were found to be between 5 and 12 
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Ω at room temperature. The ideality factor is ~ 1.1, suggesting relatively good 

quality n-i-p junctions. 

 

To investigate and analyse the temperature dependence of the total leakage currents, 

dark currents at 0.3 V, prior to the onset of avalanche gain, were plotted against 

1000/T. The temperature dependence of the dark current was modelled using the 

following current expressions 

 

8_ � n��� h���
f
2/ef k,                                                                              
5.1
 
 

8, � =��� h���
f
/ef k,                                                                              
5.2
 
 

where A and B are adjustable constants, and Eg(T) is the temperature dependent 

bandgap of InAs [10].  

 

 

Figure 5.3 The fittings of I1 and I2 to the temperature dependent total leakage current 

of a diode with r = 55 µm at 0.3 V. 

 

Since the intrinsic carrier concentration is given by 
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`+   ��� h���
f
2/ef k,                                                                                
5.3
 
 

I1 and I2 are proportional to ni and ni
2, respectively. Both I1 and I2 were used to fit the 

total leakage current across the range T = 77 to 290 K. However, we were unable to 

achieve a satisfactory fit using a single expression from I1 or I2. Figure 5.3 shows the 

fittings of I1 and I2 to the total leakage current of a diode with r = 55 µm at 0.3 V. 

 

5.3 Dark current analysis 

Since the total leakage current consists of the bulk and surface leakage current 

components, further analysis of the dark current was carried out by separating the 

total leakage current into Jbulk and Jsurf across the range of applied bias from 0 to 15 

V [11]. The dark currents at a fixed voltage for photodiodes with different radii were 

fitted with equation 4.1 [11]. 

 

 

Figure 5.4 An example on how to extract Jbulk and Jsurf using the fitting technique at T 

= 290 K and Vb = 0.3 V. 

 

The measured I-V data from diodes with r = 30 to 205 µm at T = 77 to 290 K were 

used as the input parameters for an algorithm that searches for the best combination 
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of the Jbulk(T) and Jsurf(T) to fit the measured I(T). An example of the fitting is shown 

in figure 5.4 at T = 290 K and Vb = 0.3 V, with the fitted Jbulk = 96 mA/cm2 and Jsurf = 

46 µA/cm. 

 

 

 

Figure 5.5 Comparison between the area normalised bulk current Jbulk (top) and the 

perimeter normalised surface current Jsurf (bottom) with modelled components 

proportional to ni
2 and ni. The inset shows the forward I-V at 77 K with the 

background-induced photocurrent. 

 

Jbulk and Jsurf at 0.3 V were then plotted against 1000/T in figure 5.5. It is clear that 
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Jbulk is well modelled by I2 for the temperatures between 200 and 290 K, whereas Jsurf 

can be fitted by I1 for the entire temperature range measured. Therefore, Jbulk is 

proportional to ni
2
 while Jsurf is well described by ni. EA = 0.36 eV for Jbulk and EA = 

0.18 eV for Jsurf were calculated using the Arrhenius equation, as discussed in section 

3.7. 

 

Figure 5.5 shows that the bulk component is proportional to ni
2 for temperatures ≥ 

200 K, indicating that Jbulk is dominated by the diffusion of carriers from the cladding 

layers. It is worth noting that the Jbulk saturates at T < 125 K while Jsurf continues to 

decrease with decreasing temperature. Closer inspection of the forward I-V below 

125 K, as in the inset of figure 5.5, shows that this saturated Jbulk is due to the 

background-induced photocurrent owing to insufficient shielding. On the other hand, 

Jsurf is directly proportional to ni for the entire temperature range reported indicating 

that the surface current is due to generation and recombination at the surface. The 

value of EA = 0.18 eV, which is one-half of the bandgap energy, indicates that there 

are energy states or energy traps in the mid-bandgap energy level which act as 

generation and recombination centres along the etched mesa surface [12]. 

 

 

Figure 5.6 Modelled bulk and surface leakage currents of a 2 mm-diameter device 

and a 25×25 µm2 pixel in the absence of the background induced photocurrent from 

150 to 290 K. 
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To estimate the significance of Jbulk and Jsurf in devices with different dimensions, the 

bulk leakage currents and surface leakage currents for a large area 2 mm-diameter 

device and a small 25×25 µm2 device were modelled using I1 and I2 in the absence of 

the background induced photocurrent. The large area photodetector would be of 

interest for light detection and ranging (LIDAR) and gas sensing purposes while the 

small 25×25 µm2 device corresponds to a typical pixel dimension in imaging FPAs. 

From figure 5.6, it can be seen that in the 2 mm-diameter device, the bulk leakage 

current dominates over the surface leakage current at T > 200 K. However, surface 

leakage current is more significant for a small pixel indicating that more effort is 

needed to reduce the surface current component if the InAs APD is targeted for 

FPAs. 

 

5.4 Dark current comparison 

 

Figure 5.7 Reverse dark current densities reported by Ghosh et al. for InAs/GaSb 

APDs (λc = 4.14 µm at 77 K) [13], InAs0.89Sb0.11 photodetectors by Gao et al. (λc = 

4.64 µm at 295 K) [14],  HgCdTe APDs by Rothman et al. (λc = 4.8 µm at 77 K) 

[15], and InAs photodiodes by Lin et al. [7], compared with the result reported here 

for an InAs APDs at 77 K. 

 

In this section, the leakage current of the InAs APDs are evaluated by comparing 
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them to other reported results. To facilitate the comparison, the current densities for 

all the APDs were calculated using the total leakage currents and the device areas. In 

figure 5.7, the dark current density comparison at 77 K shows that the InAs diodes 

have much lower dark current than other competing technologies, except the 

HgCdTe APDs. However, at Vb > 4 V, it is clear that the tunnelling current of our 

InAs APDs is better suppressed than that of the HgCdTe APDs. This is because the 

HgCdTe APDs have a W ~ 0.5 µm while our InAs APDs are designed to have W > 3 

µm so that E is much lower.  

 

 

Figure 5.8 Reverse dark current densities reported by Reine et al. (λc = 4.06 µm at 

160 K) [16] and Perrais et al. (λc = 5 µm at 77 K) [17] for planar MWIR HgCdTe 

APDs, compared with the result reported here for an InAs APD and the extracted 

InAs APD purely bulk current density at 150 K. 

 

Figure 5.8 compares the dark current densities calculated for the InAs APDs reported 

here at 150 K with the MWIR planar HgCdTe APDs from Reine et al. at 160 K and 

Perrais et al. at 150 K. These APDs have λc = 4.06 µm and λc = 5 µm at temperatures 

of 160 and 77 K respectively. It is clear that the dark current density of the mesa-

etched InAs APD is lower than that from Perrais et al. and is comparable to that of 

the planar MWIR HgCdTe APD from Reine et al. at Vb < 4 V. At higher Vb, the InAs 

APDs showed significantly lower leakage. Moreover, the pure bulk current density 
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extracted from our result is lower still, indicating that planar InAs APDs, fabricated 

either by ion implantation or diffusion of dopants, could potentially yield lower dark 

current by eliminating the surface current component. 

 

 

Figure 5.9 Reverse dark current densities of the commercial InAs photodiodes from 

Judson [18] and Hamamatsu [19], compared with the result reported here for an InAs 

APD at room temperature. 

 

The dark current density of our InAs diodes is plotted together with those from other 

commercial Judson and Hamamatsu InAs photodiodes in figure 5.9. Both the 

commercial photodiodes have Vb < 0.5 V, suggesting high leakage current at higher 

Vb. On the contrary, our InAs diodes have the advantage of having low dark current 

even at higher Vb up to 20 V to provide avalanche gain. Even at low Vb, our InAs 

diodes have much lower dark current density than the Judson InAs photodiodes 

while having comparable dark current to the Hamamatsu InAs photodiodes. 

 

5.5 Avalanche gain and dynamic resistance-area product 

With our improved growth, fabrication and passivation techniques, the leakage 

current of the InAs APDs has been well suppressed. The band-to-band tunnelling 

current was not observed at Vb < 15 V at all temperatures due to the low 
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unintentional background doping of ~ 7×1014 cm-3 and hence low peak electric field. 

This has allowed the avalanche gain of the InAs e-APDs to be measured up to high 

Vb. 

 

Figure 5.10 shows the avalanche gains and the gain-normalised dark current densities 

of the InAs APDs at 290 and 77 K. A predominantly electron injection profile was 

obtained by focusing a 633-nm laser onto the p-layer. The position of the laser spot 

was optimised to obtain the maximum avalanche gain. However there was a small 

amount of unintentional hole injection through the absorption at the mesa side walls. 

Despite the contamination of hole injection which decreases the avalanche gain, the 

InAs e-APD can provide a useful gain of 25 at 13 V and 19.5 V, at 290 and 77 K 

respectively. The measurement was also checked using 3 different incident light 

powers ranging between 10 and 100 µW to ensure that there is no heating effect 

which can cause the avalanche gain to vary. 

 

 

Figure 5.10 Avalanche gain and the gain-normalised dark current densities at 290 

and 77 K. 

 

The temperature dependent dark current discussed in section 5.2 and the avalanche 

gain characteristics presented here, show that lowering the operating temperature of 
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as evident in figure 5.10. At 77 K, although the bulk diffusion and surface generation 

current components were suppressed at low Vb, the total leakage current was 

dominated by the band-to-band tunnelling above 15 V. However, M as high as 22 

can still be obtained at 18.6 V when a gain-normalised dark current density of ~ 

5×10-6 A/cm2 was assumed to be the maximum acceptable value. The peak electric 

field was calculated to be ~ 60 kV/cm at 15 V [20]. To further reduce the tunnelling 

current, lower i-layer background doping is necessary to reduce the peak electric 

field. A lower background doping will also yield wider W and therefore higher M at a 

given Vb [21].  

 

Another parameter which is closely related to the performance and quality of an APD 

is the dynamic resistance-area product RdA = (dVb/dJA) at a specific Vb, where JA is 

the leakage current density and Rd is the dynamic resistance. From 0.1 to 15 V, the 

RdA of our InAs APD was calculated to be between 34 and 0.6 Ω-cm2 at room 

temperature. At 77 K, these values increased to 910 MΩ-cm2 and 172 kΩ-cm2. 

 

RdA of an APD is important when the APD is interfaced with other circuitry in a 

system. For instance, most of the commercially available readout integrated circuits 

(ROICs) for FPAs require a minimum RDA of 1 kΩ-cm2. The RdA of an APD is 

mainly dependent on the rate of change of dark current with respect to Vb. From 

figure 5.2, it is shown that the total dark currents increase gradually with increasing 

Vb at each temperature. From 0.1 to 12 V, the RDA of the InAs APDs was calculated 

to be between 3.7 and 1.1 kΩ-cm2 at 200 K. It can be estimated, from figure 5.10, 

that the avalanche gain at 200 K is between 7 (77 K) and 18 (290 K) at Vb = 12 V. 

Therefore, the minimum RDA requirement of the ROICs can be satisfied by operating 

the InAs APDs with useful avalanche gain at temperatures which can be achieved by 

thermoelectric coolers. The temperature dependence of the avalanche gain in InAs 

APDs will be discussed in more detail in chapter 6.  

 

5.6 Responsivity and detectivity of InAs APDs  

While the avalanche gain can amplify the incoming signal, the amount of free 
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carriers generated upon receiving the photon flux, which can be characterised by the 

responsivity, is equally important. The responsivity is a measure of the ability of a 

photodiode to respond to the incoming signal or radiation. It is calculated based on 

the amount of photocurrent induced per unit power, in units of A/W. Besides the 

dark current density, the responsivity is one of the important parameters that 

determine the figure of merit of a photodetector, which is the detectivity. 

 

 

Figure 5.11 The responsivities of Judson [18] and Hamamatsu [19] InAs photodiodes 

compared with the responsivity reported here for an InAs APD at 77 and 295 K. 

 

The responsivity measurement was carried out using discrete wavelength laser 

sources from 1.3 to 2 µm. Across the measured wavelengths, the InAs APDs 

achieved ~ 50 % quantum efficiency without antireflection coating. Due to the long 

minority carrier diffusion length of InAs, it can be predicted that the 50 % quantum 

efficiency can be extended to wavelengths close to the λc of InAs at different 

temperatures. The responsivity of the InAs diodes is also compared with the 

responsivity of the commercially available InAs photodiodes such as those from 

Judson [18] and Hamamatsu [19], as shown in figure 5.11. It can be seen that the 

InAs APD has comparable responsivity to Judson photodiodes and has about 15 % 

higher quantum efficiency than Hamamatsu photodiodes. It is worth noting that this 

InAs APD’s structure is not optimised to provide high quantum efficiency. The diode 
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can be designed so that the photon source is illuminated near the high electric field 

region to further improve the diode’s responsivity.  

   

 

Figure 5.12 The detectivities of Judson [18] and Hamamatsu [19] InAs photodiodes 

at 1.55 µm compared with the detectivity reported here for an InAs APD from 77 to 

295 K. (Lines are present to aid visualisation) 

 

The detectivity D
* can be described by the ratio of the responsivity at a particular 

wavelength Rp(λ) to the total noise current. In photodiodes, the total noise current is 

dominated by the shot noise and thermal noise as discussed in section 1.1. Hence the 

detectivity can be expressed as [22] 
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Using the responsivity and dark current density data, the detectivity of the InAs 

diode was calculated at 1.55 µm from 77 to 290 K and is shown in figure 5.12. The 

responsivity at 1.55 µm is independent of T, hence the detectivity increases from 

2×109 cmHz1/2/W at 290 K to 2.5×1012 cmHz1/2/W at 77 K owing to the reduction in 

dark current. A comparison with other commercial InAs photodiodes shows that the 
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approximately 10 times higher than the detectivity of the Hamamatsu photodiode at 

77 K. At room temperature, while Judson InAs photodiodes has comparable 

responsivity to our InAs diodes, its dark current density is much higher, causing its 

detectivity to be lower. On the other hand, from figure 5.9 and 5.11, although the 

Hamamatsu InAs photodiodes has similar dark current density to our InAs diodes at 

room temperature, its quantum efficiency is 15 % lower, leading to a lower 

detectivity than our InAs diode. Therefore, it is clear that both the responsivity and 

the dark current density are the important indicators for high detectivity and our InAs 

diodes have both of these advantages against the commercial InAs photodiodes. We 

believe that when it is operated in conjunction with a preamplifier, the InAs APDs 

can provide significantly better sensitivity than unity gain photodiode. 

 

5.7 Conclusion 

Although the SU-8 passivation has not completely suppressed the surface leakage 

current, it has reduced the surface current component sufficiently such that the 

temperature dependence of the leakage current in InAs APDs can be analysed. 

Relatively low dark current densities are achieved at both 77 and 290 K with RdA = 

910 MΩ-cm2 at 77 K and RdA = 34 Ω-cm2 at 290 K at Vb = 0.1 V. Detailed dark 

current analysis, separating Jbulk and Jsurf components, revealed that the bulk leakage 

current in these InAs APDs is carrier-diffusion dominated while the surface leakage 

current is caused by the mid-gap generation and recombination of carriers. 

Furthermore, this analysis allows the estimation of the total leakage current for a 

certain dimension or size of the InAs APD. 

 

The dark current density comparison at 77 K shows that the design of our InAs 

diodes has successfully suppressed the tunnelling current at high bias voltages 

besides keeping a low dark current level. At 150 K, the comparison with other APDs 

technologies reaffirms the importance and potential of having improved mesa or 

planar InAs APDs to achieve minimum dark current levels and allow the potential 

benefits to be exploited fully.  
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Our InAs APDs have comparable or higher detectivity than the commercial InAs 

photodiodes due to high responsivity and low dark current density. The avalanche 

gain characteristic of the InAs e-APD has also been investigated. M ~ 25 was 

measured at 13 V and 19.5 V at T = 290 K and 77 K respectively. Low temperature 

operation can reduce the dark current density of the InAs APD substantially but at 

the expense of a lower M. However, the high responsivity, the low dark current 

density coupled with the ability to provide avalanche gain with very low F, have 

suggested that InAs APDs can be a promising photodetector for infrared sensing. 
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Chapter 6 Avalanche gain and excess noise 

of InAs APDs 

     
 

6.1 Introduction 

As discussed in section 1.4, in conventional APDs W is designed to be as thin as 

possible to increase the bandwidth and to reduce F at a given M. The effect of the 

dead space is exploited to produce lower F. While beneficial for noise reduction, the 

thinning of W increases the tunnelling current considerably leading to a higher shot 

noise, particularly in narrow bandgap semiconductors. Depending on Eg of the 

material, this imposes a minimum acceptable W so that the tunnelling current can be 

sufficiently suppressed. For detection at wavelengths beyond 1.8 µm, materials with 

Eg < 0.68 eV are needed. Thus, suppression of the tunnelling current will be a major 

challenge if W is reduced substantially to reduce F and to increase the bandwidth. 

This approach is impractical and it is necessary to identify semiconductor materials 

with disparate ionisation coefficients such that k is as small as possible [1]. 

 

InAs APDs were proven to provide Me with very low Fe [2], but the high leakage 

current of InAs e-APDs at room temperature, due to its narrow Eg, produces high 

shot noise. Fortunately the dark current was found to reduce substantially when the 

InAs APDs were cooled from room temperature to 77 K [3]. In addition to the 

reduced dark current, Marshall et al. [4] reported reduced Me at 77 K in contrast to 

most of the well-established APDs’ technologies such as Si [5], GaAs [6], InP [7, 8] 

and InAlAs [7]. However, in their work, Marshall et al. attributed the reduced M to 

the reduced value of � without considering the influence of the variation of W with 

T. The depletion width of undoped InSb wafer was reported to increase from ~ 2 to 

10 µm when it was cooled below 30 K [9], possibly due to the freezing of impurities 

which act as unintentional dopants. Due to larger Eg, this may happen in InAs at T > 
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30 K. Since for a given value of �, Me increases approximately exponentially with W, 

it is important that the analysis of the temperature dependence of Me is carried out, 

taking into account the possible variation of W with temperatures.  Hence, the first 

objective of this chapter is to obtain an accurate temperature dependence of Me from 

77 to 295 K in InAs e-APDs taking into consideration the temperature dependence of 

W in InAs APDs. 

 

Moreover there are only limited studies on the temperature dependence of F. Kanbe 

reported that the measured excess noise in Si APDs increased slightly with 

increasing temperatures but concluded that the variation is negligible [10]. For III-V 

semiconductors, both measured [11] and modelled [12] excess noise of InGaAs/InP 

APDs were also found to be decreasing with reducing temperatures, with their 

effective k varying from 0.42 to 0.53 as T changes from 240 to 360 K. AlxGa1-xAs 

APD with x = 0 to 0.4, on the other hand, were reported to have little variation of F 

within the accuracy of measurement as T changes [13]. The only low temperature 

excess noise of InAs APDs was reported at 77 K [4]. Fe at 77 K was measured to be 

lower than that at room temperature and it was attributed to the increase in ξth and de 

at 77 K. However Marshall et al. did not rule out the possibility of a measurement 

error in Fe. This is because for Fe to drop from ~ 1.6 (at 295 K [2]) to ~ 1.3 (at 77 K 

[4]), the increase in ξth (∆ξth) has to be significantly larger than the increase in Eg 

(∆Eg) with decreasing T from 295 to 77 K. Therefore, in this work we will report the 

first comprehensive measurement of the excess noise over a wide range of 

temperatures to investigate the variation of Fe with T and address the discrepancy in 

the previous excess noise measurements in InAs APDs. 

 

Besides the observed reduction in Me, there appears to be contradicting results of the 

impact ionisation behaviour at 77 K. Mikhailova et al. reported that when the spin-

orbit splitting of the valance band energy ∆so is equal to the Eg of InAs at 77 K, band 

“resonance” occurs [14]. A similar phenomenon was also discussed by Norton [15] 

for the SWIR HgCdTe APDs with Eg ~ 0.9 eV. Grein et al. [16] predicted that this 

effect could produce an enhancement of β in AlGaSb, but only at low E = 33 kV/cm 

in his simulation. In contrast the reported Me and Fe characteristics at 77 K by 
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Marshall et al. suggest that holes do not impact ionise until E > 70 kV/cm [4]. 

However, as T increases from 77 K to room temperature, Eg varies from 0.4 to 0.35 

eV in InAs [17]. It is not obvious if the band “resonance” may occur as Eg shifts 

closer to the reported range of ∆so at temperatures between 77 and 200 K [18] and 

whether this will change the value of Fe < 2 observed under pure electron injection in 

InAs e-APDs. Therefore, both the temperature dependence of Me and Fe can also be 

used to verify whether the band “resonance” effect occurs in InAs. 

 

In addition, it has been reported briefly that in InAs p-i-n APDs with uniform electric 

field profiles, thicker W can provide higher M at a particular Vb [19]. Hence the i-

layer of the APD structure should be designed to be as thick as possible. However, to 

achieve W > 3 µm, unintentional background doping concentrations Nb < 2×1015 cm-3 

are mandatory. InAs grown by liquid phase epitaxy and MBE have been reported to 

have n-type [20, 21] Nb between 1×1015 cm-3 and 6×1016 cm-3. Therefore in APDs 

with thick W, a p-n
- junction with a significant field gradient is likely to form prior to 

achieving a full depletion. The electric field gradient was reported to affect F in 

GaAs [22] and InAlAs [23] APDs but this effect is not well known in e-APDs. 

Unlike conventional semiconductors, e-APDs have � that is weakly dependent on E 

[24]. Consequently impact ionisation can occur at positions away from the vicinity of 

the peak electric field, at the p-n
- junction. Thus, the effect of the peak electric field 

and field gradient on Me and Fe for InAs e-APDs will also be investigated in this 

chapter. Finally, to demonstrate that the internal gain of InAs APDs can improve the 

system sensitivity, the InAs APDs were used with a pre-amplifier and the SNRs were 

calculated for increasing M. Furthermore, the importance of having low leakage 

current and pure electron injection profile for InAs APDs will also be illustrated 

through this SNR measurement. 

 

To facilitate understanding for the subsequent sections, table 6.1 presents brief 

details of the wafers used throughout this chapter. More details on these wafers can 

be obtained in Appendix A1. 
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Wafers Thicknesses (µm) Electric field profiles 

M3247 p/i/n : 1/3.5/1.9 
Fully depleted i-region with uniform electric field 

M3279 p/i/n : 2.3/0.9/1.9 

MR2537 n/i/p : 2/6/3 

Undepleted p-n
- junction with peak electric fields 
and field gradients 

MR2538 p/i/n : 2/6/2 

MR2835 p/i/n : 2/6/2 

MR2840 p/i/n : 2/6/2 

MR2558 n/i/p : 1.5/6/3.5 

MR2559 n/i/p : 1.5/6/3.5 

 

Table 6.1 Brief details of the wafers used.  

 

6.2 Capacitance and built-in voltage 

 

Figure 6.1 Capacitance-voltage of M3247 at 77, 100, 150, 200 and 250 K. 

 

The C-V of M3247 was measured from T = 77 to 250 K using the set-up described in 

section 3.2 and 3.7. The temperature dependence of the C-V is crucial in 

investigating the change in W with T. Figure 6.1 shows the C-Vs of M3247 with d = 

250 µm at different T. It is clear that the C-Vs converge to similar values for Vb > 0.4 

V, indicating that W does not change significantly with T. Since M3247 has low Nb ~ 

Reverse voltage (V)

0.0 0.5 1.0 1.5 2.0

C
ap

ac
ita

nc
e 

(F
)

0

10-11

2x10-11

3x10-11

4x10-11

5x10-11

77 K
100 K
150 K
200 K
250 K



 Chapter 6 Avalanche gain and excess noise of InAs APDs 

P. J Ker Page 100 
 

2×1014 cm-3 with W ~ 3.5 µm, a full depletion width was achieved at Vb < 2 V, 

forming a p-i-n junction with a uniform electric field. 

 

 

Figure 6.2 Derived Vbi at the measured temperatures and the previously reported Vbi 

at 77 and 295 K fitted with the modelled Vbi for M3247. 

 

Vbi at each temperature were obtained by the extrapolation of the bias dependent 1/C2 

curve to zero, as explained in section 3.2. These values vary from - 0.3 to - 0.07 V as 

T changes from 77 to 250 K, as shown in figure 6.2. Hence, the initial difference in C 

for Vb = 0 to 0.4 V is mainly due to the change in Vbi with T. The extrapolation of 

1/C2, to extract Vbi, is valid prior to full depletion of the structure. The extracted Vbi 

agrees well with the modelled Vbi using the equation [25] 

 

dx+ � /ef; T` h6>6£`+, k,                                                                       
6.1
 
  

where NA is the doping concentrations of the p-doped region and ND is the doping 

concentrations of the i-region which was assumed to be n-type with an unintentional 

background doping, as reported for InAs grown by MBE [20, 21]. NA = 2×1018 cm-3 

and ND = 2×1014 cm-3 deduced from Secondary Ion Mass Spectroscopy (SIMS) and 
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C-V were used to produce a good fit to the extracted and previously reported [26] Vbi 

as shown in figure 6.2.  

 

To investigate the electric field profiles of a few different layers of InAs wafers, the 

C-V measurements at 77 K were also carried out for MR2835 and MR2840. 

Determination of the type of unintentional doping (UID) is crucial for the estimation 

of the electric field profiles. While the n-type UID has been widely reported for 

MBE-grown InAs [20, 21], there is very little literature reporting the UID type of 

MOVPE-grown InAs. 

  

 

Figure 6.3 I-V characteristics of the fully- and partially-etched p-i-n and n-i-p InAs 

diodes. 
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The MOVPE grown p-i-n (MR2538) and n-i-p (MR2537) InAs diodes, both having 

nominal i-region thickness of 6 µm, were fully- and partially-etched as illustrated in 

figure 6.3. The room temperature reverse current of each diode was measured. For 

the p-i-n diodes no significant difference in the dark current was observed between 

the fully- and partially-etched diodes, whereas more than an order of magnitude 

difference was observed for n-i-p diodes. This trend can be explained by the presence 

of an n-type UID. In the p-i-n diode, the depletion width or junction starts to form at 

the p-i interface. Therefore the active area of the diode is defined once the etch depth 

reaches the i-layer, confirming the n-type UID. For the partially-etched n-i-p diode, 

the electric field is thought to spread across a much wider area at the bottom i-p 

junction producing much higher dark current than a fully-etched mesa diode.   

 

Assuming the depletion starts from the p-i interface due to the n-type UID, the C-V 

was modelled to extract Nb, W and the E profiles. The i-region was divided into 

multi-regions to accurately model the C-V profiles. This multi-region C-V model can 

be found in [27]. The calculated E profiles at 12 V are shown in figure 6.4. M3247 

was the only fully depleted p-i-n diode while the i-layers of MR2835 and MR2840 

were not fully depleted due to higher Nb and thicker i-layers, producing p-n- 

junctions with non-uniform electric fields.  

 

 

Figure 6.4 Electric field profiles of M3247, MR2835 and MR2840 at Vb = 12 V.  

Depletion widths (µm)

0 1 2 3 4

E
le

ct
ri

c 
fi

el
d 

( x
10

4  V
/c

m
)

0

2

4

6

8

10

M3247
MR2835
MR2840



 Chapter 6 Avalanche gain and excess noise of InAs APDs 

P. J Ker Page 103 
 

 

Figure 6.5 Depletion widths at different Vb for M3247, MR2835 and MR2840. Lines 

show the depletion widths for different background doping concentrations of 2×1015, 

1×1015, 7.5×1014, 5×1014 and 2.5×1014 cm-3. 

 

The extracted values of W as a function of Vb are shown in figure 6.5. At Vb < 4 V, 

M3247 and MR2835 have the largest and the smallest values of W, respectively. It 

can be seen that M3247 depletes very rapidly at Vb = 0 and 1 V, corresponding to a 

very low value of Nb ~ 2×1014 cm-3 while MR2835 and MR2840 appear to have Nb ~ 

2×1015 cm-3 and ~ 7.5×1014 cm-3 respectively. At higher Vb, M3247 depletes more 

gradually as it approaches a full depletion of the undoped region. 

 

6.3 Avalanche gain in InAs APDs 

5 layers of InAs wafers, M3247, M3279, MR2835, MR2840 and MR2558 were used 

in the avalanche gain measurement. The details on these wafers are attached in 

Appendix A1. Photomultiplication measurements were carried out from T = 77 to 

295 K on M3247 and M3279 using the PSD with an external modulation, as 

described in section 3.3.1. The PSD method was used so that M can be measured up 

to the highest possible electric field as this method could differentiate the 

photocurrent from the dark current.  
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During this photomultiplication measurement, all the factors, including pure carrier 

injection profile, device heating, series resistances and collection efficiency, which 

would affect the accuracy of this measurement, as described in section 3.3, were 

taken into account. Using the set-up described in section 3.7, the avalanche gain at 

different T was measured using 543- and 633-nm lasers. The measurements on 

M3247 and M3279 were repeated for T = 77, 100, 150, 200, 250 and 295 K, while M 

of MR2835, MR2840 and MR2558 were measured at 77 K. Since accurate sample 

temperatures were crucial in these measurements, the experiments were carried out 

only when the temperature of the sample chamber was kept constant at the desired 

temperature for > 20 minutes. 

 

 

Figure 6.6 (a) Pure electron initiated avalanche gain of M3247 at 77, 100, 150, 200, 

250 and 295 K. (b) Avalanche gain at Vb = 5, 8 and 10 V for different temperatures.  

 

From figures 6.6 (a) and 6.7, both M3247 and M3279 exhibit exponentially rising 

Me. It is clear that as T increases from 77 to 295 K, Me at a given Vb increases. The 

confirmation of a constant W with T in the previous section is important because for 

k = 0 and under constant electric field, the local ionisation model predicts M = exp 

(�W). Since W is constant, the temperature dependence of Me shown in figure 6.6 (a) 

and 6.7 are only dominated by the changes in the ionisation parameters. 

 

Figure 6.6 (b) shows that from 77 to 295 K, Me increases quite linearly with T at a 

given Vb. In wide bandgap semiconductors such as Si and GaAs, the reduced 
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temperature lowers the number of phonon scattering events leading to a larger 

population of hot carriers that increases the impact ionisation events. On the other 

hand in narrow bandgap materials, in which impact ionisation can occur at energies 

close to the Eg [28, 29], the role of minimum ionisation energy is more significant at 

low electric fields. Consequently in InAs, with large Γ-X and Γ-L valley separation 

energies reported to be ≥ 2Eg [18, 28, 30], it is reasonable to suggest that the 

temperature dependence of the electron ionisation threshold energy dominates over 

that of phonon scattering. Therefore, assuming that the ionisation threshold energy is 

proportional to Eg which increases with decreasing temperatures, the electron 

ionisation coefficient may be expected to decrease with temperatures, consistent with 

our measurement results on M3247 and M3279. 

 

 

Figure 6.7 Me of M3279 at 77, 100, 150, 200, 250 and 295 K. 

 

Furthermore, it is also interesting to note that M3247 and M3279, with fully depleted 

and uniform electric field in the avalanche region, show the dependence of Me on W, 

with higher Me at a particular Vb when W is wider. On the contrary, in most of the 

well established semiconductors such as Si, GaAs, InP and InAlAs, APDs with 

thinner W can provide higher M at a particular Vb due to higher E. Figure 6.8 

compares their Me at 77 K and the trend of higher Me with wider W remains for T = 

77 to 295 K. This characteristic has been reported briefly by Marshall et al. [19] at 
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room temperature. The k = 0 characteristic of InAs APDs and the weak dependence 

of � on electric field were considered to be the reasons for this phenomenon.  

 

 

Figure 6.8 Comparison of the avalanche gain of M3247 and M3279 at 77 K. 

 

  

Figure 6.9 Comparison of the avalanche gain between M3247, MR2835 and 

MR2840 at 77 K. 

 

While the effect of W on Me is understood for fully depleted p-i-n structures with 
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n
- junction with a peak electric field and field gradient throughout the avalanche 

region. As mentioned in section 6.1, a p-n junction field profile is likely to form if 

the i-layer of InAs APD is designed to be as thick as possible. The avalanche gain of 

MR2840 and MR2835 were therefore investigated and compared. Both of these InAs 

wafers have ~ 6 µm i-region but with different Nb ~ 7×1014 cm-3 for MR2840 and ~ 

2×1015 cm-3 for MR2835, hence forming different peak electric fields and field 

gradients, as shown in figure 6.4. For comparison, figure 6.9 shows the avalanche 

gain of M3247, MR2835 and MR2840 at 77 K. Above 4 V, MR2840 produces the 

highest Me at a given Vb. M3247 produces slightly higher Me than MR2835 up to Vb 

= 12 V. At Vb > 17 V MR2835 exhibits a more rapid increase in Me than the other 

two diodes.  

 

At Vb > 4 V, figure 6.4 shows that MR2840 has the largest W at a given Vb. At each 

Vb, the Me of MR2840 is higher than M3247 and MR2835. From the C-Vs, the peak 

electric field of MR2835 is ~ 2 times higher than that of MR2840 at a given Vb. The 

difference in electric field gradients between MR2840 and MR2835 is also much 

larger than those between M3247 and M3279. However they are still showing the 

high dependency of Me on W instead of the peak electric field. Besides the β = 0 

characteristic of InAs e-APD and � is weakly dependent on the electric field, it is 

believed that this characteristic is also due to the onset of electron impact ionisation 

at very low E, typically < 5 kV/cm. Since there is only electron that impact ionises, a 

wider W would mean that the electron can travel longer within the high-field region, 

allowing the initially injected electron to impact ionise multiple times in a single 

transit, producing higher Me. Therefore results from figures 6.4 and 6.9 show that in 

general InAs APDs with wider W produce higher Me at a given Vb regardless of the E 

profile. The field gradient does not appear to have significant influence on Me for E < 

70 kV/cm.  

 

However, for Vb > 12 V, MR2835 has the highest rate of increase of Me with Vb. It is 

also noted that Vb > 12 V corresponds to peak fields > 80 kV/cm in MR2835. 

Consequently, this rapid rise in Me could be attributed to two factors. First, from the 
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reported � for InAs at 77 K [4], it was shown that � increases more quickly for E > 

80 kV/cm. Second, the increase in Me is accelerated by the onset of hole impact 

ionisation at E > 70 kV/cm. The change in the rate of increase in Me with bias due to 

the onset of hole impact ionisation has also been observed in a Monte Carlo 

simulation of InSb devices [31].  

 

To check the hole impact ionisation property of InAs at 77 K, MR2558 n-i-p InAs 

APDs were used. Pure hole injection was achieved by fibre-coupling 543- and 633-

nm lasers onto the n-layer of the 200-µm radius devices. Figure 6.10 shows that Mh > 

1 only at Vb > 18 V. This corresponds to peak electric fields > 70 kV/cm. 1150- and 

1550-nm lasers were also used to show the increase in M for mixed injection profiles 

as they have only ~ 80 and ~ 70 % absorption [32] in the 1.5-µm n-layer, 

respectively. In figure 6.10, it also shows that the side injection onto the p-layer 

produces the highest gain, indicating the large difference between � and β. 

 

 

Figure 6.10 Comparison of avalanche gains for different carrier injection profiles.   

 

6.4 Excess noise in InAs APDs 
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and the calculations have been discussed in section 3.4. The fabrication of these InAs 

wafers into devices with GSG pads was described in section 4.5. Pure electron 

injection was achieved by fibre-coupling the 633-nm laser onto the 250 µm-diameter 

devices. Since this measurement set-up could not discriminate the photocurrent from 

the reverse leakage current, the photocurrent was kept to at least 2 orders of 

magnitude higher than the dark current. An example of the photocurrent and dark 

current of M3247 was shown in figure 6.11, together with its derived Me at an 

intermediate temperature of 200 K. 

 

 

Figure 6.11 Me, reverse leakage current and photocurrent measured on a d = 250 µm 

M3247 InAs diode under top illumination during the noise measurement at an 

intermediate temperature of 200 K. 

 

Figure 6.12 shows Fe of M3247 from 77 to 250 K. They vary between 1.45 and 1.6 

at Me > 3 for this temperature range. Within the experimental errors, Fe is unaffected 

by the variation in T. The excess noise was not measured for T > 250 K due to higher 

leakage current in the InAs diodes and the photocurrent was comparable to the dark 

current. 

 

Fe of InAs eAPDs is clearly lying below the lower limit corresponding to k = 0 in the 

local model [1]. This very low Fe can be attributed to the reduced randomness in the 
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ionisation path length due to the dead space effect. For APDs with k = 1, <l> at high 

gain is comparable to W. Hence de (dh) becomes comparable in length to <l> only 

when W is thin, usually significantly less than 1 µm [33]. However, in the case of k = 

0, <l> is much shorter than W so that multiple ionisation events occur to build up the 

gain within a single transit time. As a result the dead space effect is dominant even in 

W >> 1 µm, such as in our InAs eAPD.  Hence, αde, which is the ratio of de to <l> 

(since 1/α = <l>), can be used as a measure of the dead space effect, with a higher 

value of αde indicating more deterministic ionisation behaviour [2, 34]. 

 

  

Figure 6.12 Pure electron initiated multiplication noise measured on M3247 at 77, 

100, 150, 200 and 250 K under top illumination. The line shows the calculated valies 

with local model for k = 0. 

 

The previously reported Fe of InAs APDs at room temperature [2] and 77 K [4] are 

also plotted in figure 6.12 for comparison. The room temperature Fe is measured 

using a custom-built set-up [35], which can differentiate the photocurrent from the 

dark current and the result is very similar to those reported here from 77 to 250 K. 

However, the previous 77 K result is clearly lower than our current result. The 

reduction in Fe at 77 K was attributed to the increase in ξth at lower temperature [4]. 

We strongly believe that the lower Fe is due to a few experimental errors, which are 

closely related to the measurement set-up used previously. 
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Previous 77 K noise measurement Current low T noise measurement 

Two DC-probes connected to a junction 
box. (DC-probes have 3 and 10 dB loss 
at 12 MHz and 30 MHz respectively) 

GSG probe which can handles 
frequency up to 50 GHz. 

BNC tri-axial and co-axial cables 
connected to co-axial cable with SMA 
connectors. 

High frequency co-axial cable with 
SMA connectors (up to 20 GHz). 

Measured noise power needs to be 
corrected / calibrated using a reference 
diode. 

Measured noise power corresponds to 
the shot noise of the photocurrent at 
unity gain. 

Devices are fabricated with designs for 
low-frequency measurements. 

Devices are fabricated with designs for 
frequency response measurements up to 
GHz range. 

 

Table 6.2 Comparison between the previous and current low temperature noise 

measurement set-ups. 

   

 

Figure 6.13 Normalised frequency responses of the DC-probes for the Janis ST-500 

series low temperature probe station [36]. 

 

The major differences between the previous and current low temperature noise 

measurements are summarised in table 6.2. For the new measurement method, a few 

important aspects are improved such as having an APD design suitable for high 
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frequency measurements, the GSG probe, the high frequency cablings and 

elimination of junction box. These are crucial to ensure that the actual noise powers 

of the APDs are measured. More importantly from figure 6.13 the DC-probes have 

power losses of ~ 3 and ~ 10 dB at 12 and 30 MHz respectively. These were the 

frequencies at which the results were obtained for the previous 77 K measurements. 

Hence it is highly possible that this is the major factor that causes the 

underestimation of Fe.  

 

 

Figure 6.14 Pure electron initiated multiplication noise measured on M3247, 

MR2835 and MR2840 at 77 K under top illumination. The line shows the calculated 

valies with local model for k = 0. 

 

The investigation on the effect of electric field gradient on excess noise was done by 

measuring Fe of MR2835 and MR2840 from T = 77 to 250 K. The excess noise 

results were very comparable to those from M3247, varying between 1.45 and 1.6. 

For comparison, figure 6.14 summarises an example of Fe for M3247, MR2835 and 

MR2840 at 77 K. These results show that Fe is independent of the electric field 

gradient. We believe that the lack of dependence on the field gradient in InAs e-APD 

is due to the very weak dependence of α on E and the impact ionisation of electrons 

can occur at very low E. Therefore the impact ionisation process can happen 

throughout the depletion widths of the APDs and is no longer confined in the high-
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field region, as what observed in GaAs APDs [22]. This has led to a weak 

dependence of Fe on the field gradient.  

 

 

Figure 6.15 Excess noise characteristics measured on M3247 with illumination on 

the mesa sidewalls and hole-dominated excess noise factors on a 75-µm diameter 

MR2559 diode from 77 to 250 K. The line shows the calculated valies with local 

model for k = 0, 0.5, 0.6 and 15.  

 

To further verify if the band “resonance” effect occurs, the excess noise 

measurements were also carried out with mixed-injection and hole-dominated 

injection profiles from 77 to 250 K. When the laser spot was focused near the mesa 

sidewalls of M3247, MR2835 and MR2840, where the carriers were largely 

generated in the depletion regions, a drop in M was observed at every Vb compared to 

the top illumination. This was also accompanied by an increase in F in which they 

were following the k = 0.5 - 0.6 lines as shown in figure 6.15. Hole-dominated 

injection profile was obtained by focusing the laser spot onto the top of 75-µm 

diameter MR2559 InAs n-i-p APDs. Due to the size of the laser spot, there was a 

contamination of electron injection. However, the domination of hole injection can 

be observed as M < 2 even at Vb > 10 V. The resulting F were measured to be 

extremely high, following the k = 15 line. Both mixed and hole-dominated injections 

show that β << α as M is much lower with much higher F. Hence it is clear that band 
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“resonance” effect which can greatly enhance β cannot be observed in InAs APDs at 

the reported temperatures. 

 

6.5 Limitations of local model and hard dead space model 

Values of � of the InAs e-APDs at room temperature [19] and 77 K [4] were 

previously derived and parameterised using the local model [1]. This model assumes 

that the effect of dead space is negligible in the impact ionisation process. However, 

it is evident from the excess noise measurements that the effect of dead space is 

significant in InAs e-APDs with thick W.  While the previously derived α using the 

local model can predict Me reasonably well [4, 19], this model is not appropriate for 

the prediction of Fe. Therefore, the nonlocal effect needs to be taken into account 

when modelling the InAs e-APDs regardless of its operating temperatures. 

 

 

Figure 6.16 Average Fe of M3247 at 77 K with the associated error bars, the fittings 

using the RPL model to obtain α* and de, and the RPL simulated Fe using the 

parameterised α* and single effective ξthe. The reference local model line of k = 0 is 

plotted for comparison. 

 

We have attempted to fit the Me and Fe results using the Random Path Length model. 

The details of this RPL model have been discussed comprehensively in [37] and 
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section 2.5. From this model, α* and ξthe can be determined and calculated using 

equation 2.8 [37]. 

 

Figure 6.16 shows the average values of Fe from a series of noise measurements on 

different devices at 77 K together with its associated error bars. Using the RPL 

model with E and W as fixed input parameters, we extracted α* and de for each pair 

of the measured Me and Fe at a given Vb. For the reported electric field range, β = 0 

was used in this model as no impact ionisation of holes was observed. From figure 

6.16, we found that the RPL model can provide excellent fit to the measured Me and 

Fe only for M > 4. We believe this is because at M < 4, the measured Fe is more 

sensitive to the experimental errors.  

 

 

Figure 6.17 (a) Electric field dependent de that is used to determine ξthe. (b) The 

comparison between the measured Me on M3247 and M3279, and those modelled 

using the newly parameterised α* and ξthe at T = 77 K. 

 

Using equation 2.8, ξthe was obtained by a linear fitting to the de vs 1/E graph as 

shown in figure 6.17 (a). It can be seen that the single effective ξthe using this ballistic 

model does not fit entirely to the simulated de. This results in ~ 17 % underestimation 

of de at high E and ~ 22 % overestimation of d at low E. α* derived from the RPL 

model was parameterised with the equation 
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where A, B and c are constants for a particular range of E. The parameterised α* and 

derived ξthe were verified and cross-checked by modelling the Me of M3247 and 

M3279, which have W ~ 3.5 and 0.9 µm respectively. Despite the use of a single 

effective ξthe, figure 6.17 (b) shows that the simulated Me using the parameterised α* 

can predict Me with < 8 % deviation from the measured data of M3247 and M3279. 

Furthermore, the predicted Fe is still within the error bars of the measured Fe, as 

shown in figure 6.16. 

 

 

Figure 6.18 α* of InAs eAPD at 77, 100, 150, 200 and 250 K (symbols) and their 

parameterised α* (dashed lines). 

 

Similar procedures were carried out to model the Me and Fe results at 100, 150, 200 

and 250 K. Figure 6.18 shows the extracted α* together with the fitted parameterised 

equations at each temperature. The A, B and c constants for a particular range of E 

and the values of ξthe at each temperature are summarised in table 6.3. α* and ξthe at 

each temperature was again verified by fittings to the experimental results. However, 

the deviation of the RPL simulated Me from the experimental data increases as 

temperature increases from 77 to 250 K.  
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T (K) A (cm
-1

) B (V/cm) C (arb.) E (kV/cm) ξthe (eV) 

77 
3.7929××××10

4 

1.0418××××10
5
 

1.8459××××10
5 

6.2404××××10
5
 

0.339 

0.353 

27-33 

33-53 
0.764  

100 
3.3839××××10

4 

7.2097××××10
4
 

1.2900××××10
5 

4.0550××××10
5
 

0.345 

0.340 

23-31 

31-50 
0.676  

150 
3.3787××××10

4 

4.8753××××10
4
 

1.0064××××10
5 

1.8348××××10
5
 

0.365 

0.358 

20-27 

27-47 
0.596  

200 
3.2818××××10

4 

5.0244××××10
4
 

8.5080××××10
4 

1.6737××××10
5
 

0.370 

0.362 

18-24 

24-42 
0.531  

250 
3.8157××××10

4 

5.0173××××10
4
 

9.5240××××10
4 

1.4431××××10
5
 

0.374 

0.370 

17-22 

22-37 
0.472  

 

Table 6.3 Newly parameterised α* from 77 to 250 K for different electric field range 

and the effective ξthe. 

 

 

Figure 6.19 Electric field dependent avalanche gain and the RPL simulated Me from 

77 to 250 K.  

 

As shown in figure 6.19, the RPL model could not provide reasonable fittings to the 

Me of M3247 for T > 77 K. We believe that this is because the impact ionisation 

threshold of the semiconductor materials with small Eg but large Γ-X and Γ-L valley 
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separation energies such as InAs is soft [28]. Consequently the single effective hard 

threshold used in this model was unable to achieve satisfactory fittings. An analytical 

band Monte Carlo similar to [28] is therefore needed to provide a more accurate 

modelling of InAs e-APDs. 

 

6.6 Signal to noise ratio 

Although it is widely understood that an APD can provide internal gain to improve 

the overall sensitivity of a system, it is not obvious throughout this work that InAs 

APDs with excellent impact ionisation properties can improve the SNR unless they 

are operated in conjunction with a commercial amplifier. To investigate if the 

avalanche gain of the InAs APDs can provide better SNR due to low excess noise, 

the SNR measurements and calculations were carried out using the experimental set-

up as discussed in section 3.6. The HP 8168C tunable laser was internally modulated 

at 1.13 kHz. Since the 3-dB bandwidth for the low noise SR570 pre-amplifier was > 

20 kHz for pre-amplifier sensitivities Samp > 10 µA/V, Samp = 20 and 100 µA/V were 

used. Using a multimode fibre with a core’s diameter of ~ 62.5 µm, the laser was 

fibre coupled onto the top of the d = 50, 75 and 150 µm devices and the 

measurements were carried out at 200 K due to high dark current at room 

temperature. The photocurrent signal was displayed on the SR760 FFT Spectrum 

Analyser at ~ 1.13 kHz while the noise was spread across the entire frequency range. 

 

The SNR was first measured on the d = 150 µm MR2840 InAs APDs with Samp = 20 

and 100 µA/V. The SNR was calculated by taking the power ratio of the signal at 

1.13 kHz to the noise level. At each sensitivity level, with the InAs APDs biased at 

0.5 V (M ~ 1), the power of the laser was attenuated or reduced such that the 

photocurrent signal at 1.13 kHz was almost equivalent to the noise floor, producing 

SNR ~ 1. The SNR was measured and calculated for Vb = 0.5 to 14 V. The results are 

presented in figure 6.20.  
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Figure 6.20 SNR for MR2840 InAs APDs with 150-µm diameter with Samp = 20 and 

100 µA/V. 

 

 

Figure 6.21 SNR for MR2840 InAs APDs with different diameters at Samp = 100 

µA/V. 

 

At Samp = 20 µA/V, the gain of the pre-amplifier is higher but at the expense of 

higher amplifier’s noise [38]. Therefore, the InAs APDs were able to improve the 

SNR more significantly with its internal avalanche gain. On the other hand, the 

measurement with Samp = 100 µA/V shows that the SNR increases slower when the 
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pre-amplifier gain and noise are lower. The SNR starts to increase slower when the 

contribution of noise by the dark current from the APDs is comparable to the pre-

amplifier’s noise at Vb > 8 V. It is clear that to improve the SNR of a system using an 

APD, the total system noise must be dominated by the amplifier’s noise. It can be 

expected that as the bandwidth increases to the GHz range, as in the case of optical 

communication, the pre-amplifier’s noise will be high. In this case, it will be even 

more advantageous in using an APD. 

 

To obtain high SNR with its internal gain, it is equally crucial to ensure the primary 

carriers which initiate the avalanche gain in InAs APDs are the electrons. A brief 

study on the effect of the carriers’ injection profile on the SNR was carried out by 

measuring the SNR of InAs APDs with different diameters at a fixed Samp. Due to the 

size of the fibre core and the divergence of the laser spot, the laser spot falling on the 

devices was estimated to be ~ 90-µm diameter. Hence, mixed injection profile was 

obtained by measuring devices with diameters < 100 µm. 

 

At Samp = 100 µA/V, figure 6.21 shows the measured and calculated SNR for the 

InAs APDs with different diameters. Measurements on the InAs APDs with 

diameters from 150 to 50 µm show that the SNR increases at a slower rate for 

smaller devices. While the leakage current of the smaller devices is lower, the mixed 

injection profile causes M to reduce significantly with increasing Vb. Furthermore, as 

shown in figure 6.15, the excess noise increases quickly with increasing M for mixed 

injection, causing the degradation of the overall SNR.  

 

The study on the effect of avalanche gain from the InAs APDs on the overall SNR 

shows that the internal gain can improve the SNR if the shot noise and avalanche 

noise from the APD are below the noise of the pre-amplifier. At low bandwidth, the 

pre-amplifier is able to provide very high gain with very low noise. However, as the 

bandwidth increases, the APDs are able to provide better SNR by amplifying the 

optical signal before channelling it into the pre-amplifier. Since the electrons in InAs 

are more readily impact ionise than holes, with k = 0, the injection profile is 

extremely crucial to ensure that maximum avalanche gain can be provided with 
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minimal excess noise. This study also demonstrates that for InAs APDs, pure 

electron injection is important to maximise the SNR and optimised APDs’ structure 

is needed to ensure that the optical photons are fully absorbed in the p-layer of the 

InAs APDs in order to provide the highest M with lowest possible F. 

 

6.7 Conclusion 

To summarise the discussion, this chapter has experimentally concluded the 

followings: 

i. The depletion widths of InAs APDs do not change for T = 77 to 250 K. 

ii. The MOVPE-grown InAs has an n-type background doping. 

iii. Me increases with rising temperature in InAs eAPDs. 

iv. The field gradient and peak electric fields < 70 kV/cm do not have much 

influence on Me. Instead, W is more critical in determining Me, with higher 

Me at a given Vb for wider W. 

v. Within the accuracy of the measurement, Fe of InAs e-APDs do not change 

with temperatures and electric field gradients. The variation can be neglected 

in practical applications. 

vi. The previously reported Fe at 77 K is lower than that newly reported here and 

the reason is attributed to the non-optimised measurement set-up and APD 

designs used previously. 

vii. For semiconductor materials with k = 0 characteristics, the effect of dead 

space is significant even in APDs with thick W. 

viii. No band “resonance” was observed for T = 77 to 250 K. 

ix. The local model is not appropriate in modelling InAs e-APDs due to the 

effect of the dead space. The non-local model which uses hard deadspace 

such as RPL was unable to produce a good fit to the avalanche gain results. 

x. The SNR of a receiver system can be improved by using an InAs e-APD. 

Pure electron injection and low dark current are crucial in order to obtain the 

maximum SNR. 

 

The excess noise and avalanche gain results also suggest that having a p-i InAs diode 
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with very thick and very lowly doped i-region is more desirable than a p-i-n structure 

with thinner i-region. Although not fully depleted, a structure with thick i-region can 

ensure the continuous increase in W with increasing Vb to achieve higher Me. It is 

also important to maintain E < 70 kV/cm in the avalanche region to preserve the e-

APD characteristics. Furthermore, maintaining E < 70 kV/cm will also ensure low 

Itunn. 

 

From the experimental results, a few distinct characteristics of InAs e-APDs are 

highlighted such as the weak electric field dependence of �, the positive temperature 

dependence of �, the onset of pure electron initiated avalanche gain at E as low as 5 

kV/cm and the multiple electron impact ionisation events within a single transit 

through the avalanche region. These attributes are mostly opposite to the 

conventional behaviours of other III-V semiconductor APDs. Therefore it is 

important to not overlook these points because it may lead to an incorrect design and 

interpretation of the characteristics of InAs e-APDs. 
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extremely high GBP 

     
 

7.1 Introduction / motivation 

The development and advancement of APDs was initially driven by the optical fibre 

communications industry to improve the sensitivity of the receiver module. Due to 

the inability of Si APDs to respond to wavelengths suitable for second and third 

generation long-haul optical communication, InGaAs/InP APDs are the dominant 

APD technology in optical fibre communication receiver module. However, these 

InP-based APDs are mainly used for data rates up to 10 Gbps [1-4]. As data rates 

increase to accommodate the high volume of internet traffic, the sensitivity of the 

InP-based receiver is insufficient due to its limited GBP of ~ 100 - 170 GHz. For 

data rates > 10 Gbps, it is increasingly important to have APDs with very high GBP. 

Intensive research has been carried out to identify potential materials to replace InP 

such as InAlAs-based APDs.  

 

Both InAlAs- and InP-based III-V optical communications APDs exploited the 

design of a thin avalanche region to obtain high GBP besides having low excess 

noise due to the effect of the deadspace [5]. However, there is a minimum tolerable 

W before the onset of tunnelling current. The optimum W of InP and InAlAs were 

reported to be ~ 200 nm [6] and ~ 150 nm [7], respectively. Yasuoka et al. [2] has 

reported a GBP of 170 GHz with 80 nm InP multiplication region at the expense of 

high tunnelling current. The reported GBPs for InAlAs-based APDs were also 

limited below 320 GHz [8-14]. The GBPs of the InP- and InAlAs-based APDs with 

different W reported to date are summarised in figure 7.1.  
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Figure 7.1 The reported GBP limits of the high bandwidth APDs with different 

material systems using different avalanche regions, compared to our InAs e-APDs 

with unlimited GBP. 

 

It was pointed out since early theoretical work from Emmons [15] and Mcintyre [16] 

that the key material property that determines the GBP and excess noise of an APD is 

k, as discussed in chapter 2. Materials with lower k can produce higher APDs 

performance, with the ideal case of k = 0. Recently, Kang et al. has exploited this by 

using an APD incorporating a Ge absorption layer grown on a Si multiplication layer 

to achieve a high GBP of ~ 340 GHz, with k = 0.09 [17]. Zaoui et al. [18] further 

characterised these Ge/Si APDs at higher bias voltages and showed that the non local 

effect could increase the bandwidth but at the expense of a very high dark current. 

Furthermore, a Ge photodetector with avalanche region as thin as 30 nm was 

demonstrated to produce a GBP ~ 300 GHz [19]. The Silicon Heterointerface 

Photodetector (SHIP) which used the InGaAs absorption layer and Si multiplication 

layer was also reported to produce high GBP of ~ 300 GHz [20]. Although the 

characteristics of these APDs are encouraging, the GBP is still limited to a particular 
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value due to the impact ionisation of holes. The avalanche widths and GBPs of these 

APDs are also summarized in figure 7.1. 

 

Chapter 1 has discussed that since early 2000s, APDs with β = 0 were demonstrated 

[21, 22] and due to their characteristics of deriving its avalanche gain from only the 

impact ionisation of electrons, they are referred to or classified as e-APDs. This ideal 

characteristic of APDs can be exploited to achieve an exponentially rising gain 

without a classical breakdown, very low excess noise or multiplication noise, and 

bandwidth that is unlimited by avalanche gain. The first two characteristics are now 

well established in practice as well as in theory, using the HgCdTe [21] and InAs 

[22-24] material systems. Perrais et al. have demonstrated the concept of infinite 

GBP by using the Hg0.7Cd0.3Te e-APD which can provide GBPs of > 1 THz [25]. 

Due to the high leakage current, these e-APDs were operated at 77 K. Currently, the 

bandwidths of these Hg0.7Cd0.3Te devices are limited to hundreds of MHz [25]. The 

motivation of this work is therefore to exploit k = 0 to achieve the third ideal 

characteristic of InAs e-APDs by obtaining extremely high GBP. This work is 

reported in [26]. 

 

7.2 High speed InAs e-APD structures 

The fabrication of high speed InAs e-APDs was realised only after identifying the 

SU-8 as the most suitable surface passivation [27], as discussed in section 4.5. In 

addition, to achieve high GBP, the avalanche gain must be high before the onset of 

tunnelling current. The ability of the MOVPE to grow high quality InAs wafers with 

a thick i-layer and low unintentional background doping concentration is essential as 

InAs APDs with thick W can provide higher M at a particular Vb [28] and suppress 

the band-to-band tunnelling current.  

 

High speed InAs p-i-n (MR2538) and n-i-p (MR2558) wafers were fabricated into 

vertically-illuminated APDs, as shown in figure 7.2. The details on the choice of 

metal, APDs design and device processing have been discussed in section 4.5. 
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Figure 7.2 The cross-section views of the high speed InAs p-i-n and n-i-p e-APDs 

with their thicknesses and doping concentrations of the layers. The quoted 

background doping concentrations in the undoped regions are the minimum 

achievable doping. Also shown are the way in which the lasers are focused onto the 

p-layer during the photomultiplication and frequency response measurements to 

achieve pure electron injection [26]. 

 

These two InAs wafers were grown by MOVPE on InAs p-type substrates. The p- 

and n-cladding layers were highly doped to decrease the contact resistance. Due to 

the diffusion of dopants from the cladding layers to the i-layer, the background 

doping concentrations across the 6-µm i-layers are not uniform. The quoted values in 

figure 7.2 are the minimum achievable background dopings throughout the i-layers 

and they are derived from the C-V characteristics discussed in the next section. 

 

7.3 C-V of high speed InAs e-APDs 

In section 4.5, it has been shown that although the fabrication of high speed InAs e-

APDs involves more processing steps, the I-V at room temperature is not degraded. 

However, to accurately measure the C-V, the leakage current must be low. Hence the 

C-Vs of the InAs diodes were measured at 77 K. The C-Vs of MR2558 devices with 

different diameters d are shown in figure 7.3. Due to the isotropic etching profile, the 

actual d of those devices were reduced effectively by ~ 15 µm. These effective d 

values of the diodes were measured under the microscope by estimating the 
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diameters of the active areas. Furthermore, based on the C-Vs of the diodes, these 

effective values were deduced. The sizes of these high speed InAs diodes will be 

referred to by their effective d throughout this chapter.  

 

 

Figure 7.3 The C-Vs of the MR2558 high speed APDs with different diameters at 77 

K. 

 

 

Figure 7.4 The area normalised capacitances of the MR2538 and MR2558 high speed 

InAs e-APDs. 
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Figure 7.3 shows that the capacitance of the smallest size device is limited by the 

parasitic capacitance, most probably due to the GSG pads. The capacitance saturates 

to ~20 fF for bias voltages > 1 V. Therefore, the capacitance per unit area or the area 

normalised capacitances of both the MR2538 and MR2558 were deduced based on 

the diodes with d = 60 to 235 µm. The area normalised capacitances are summarised 

in figure 7.4. From these values, the depletion widths and the background doping 

concentrations were derived. Due to the high background doping and thick i-layers, 

they are not fully depleted. MR2538 p-i-n diodes achieve W ~ 3 µm while MR2558 

n-i-p diodes have W ~ 5 µm at 12 V. 

 

7.4 Photomultiplication of high speed InAs e-APD 

 

Figure 7.5 The avalanche gains of MR2538 and MR2558 high speed InAs e-APDs at 

room temperature. 

 

The photomultiplication or avalanche gain of the high speed InAs e-APDs was 

measured using a HP8168C wavelength tuneable laser. The lowest wavelength, 1462 

nm was used as this was the closest to the laser used for the frequency response 

measurement which will be discussed later in section 7.6. The 1462 nm laser was 

internally modulated at a frequency of 270 Hz using the measurement set-up 

described in section 3.3.2. Pure electron injection is important to obtain high 
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avalanche gain in InAs e-APDs, hence it is also crucial in obtaining high GBP. The 

designs of the InAs APD structures to achieve this for both p-i-n and n-i-p diodes are 

shown in figure 7.2.  

 

The avalanche gain of the high speed InAs APDs was measured at room temperature. 

The pure electron initiated avalanche gains are shown in figure 7.5. It is clear that at 

a particular Vb, MR2558 which has a wider W, provides higher M than MR2538. In 

section 6.3, this effect of W on M has been discussed in more detail and it is proven 

to be true for fully depleted p-i-n junctions with uniform electric field and for single-

sided depleting p-n
- junctions with field gradient.  

 

In the context of bandwidth, it can be expected that MR2558 with a wider W will 

produce lower bandwidth than MR2538 if the bandwidth is transit time dominated. 

This is because both the primary electron and secondary carriers will need to travel a 

longer distance through the depletion width, causing the current pulse to be longer. 

To achieve high GBP, high M and high bandwidth are necessary. It is therefore likely 

that there may be a trade-off between M and bandwidth in InAs e-APDs in the transit 

time limited bandwidth cases. However, since the carrier transit time and M increase 

linearly and exponentially with increasing W, respectively, it is expected that higher 

GBP can be obtained in InAs e-APDs with thicker W. Besides, wider W allows the 

measurement to be extended to higher Vb by suppressing the tunnelling current. 

 

7.5 System calibration of the frequency response measurement 

Due to the imperfect cables, bias-tee, high speed connectors, GSG probe and laser, 

there was power loss at different frequencies, as mentioned in section 3.5. Therefore 

this loss was taken into account when the frequency responses of the diodes were 

measured. The losses were extracted using a 2-port E8364B PNA Series VNA, as 

shown in figure 7.6. Port 1 is acting as a RF signal transmitter while port 2 is 

receiving and measuring the power. All the cables, bias-tee and high speed 

connectors were connected between the 2 ports and the power loss due to these 

components was measured.  
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Since the calibration of the system is very crucial so that the bandwidth of the device 

will not be under or overestimated, the power losses were also determined in a 

similar way by using the RF generating source and MTA. The RF generator 

transmits high-frequency signals and the MTA acts as the receiving end. The 

frequency responses of the calibration normalised to 100 MHz using these two 

methods are summarised in figure 7.7. It is clear that both the methods produce very 

similar results. This has confirmed and reassured that the calibration of the 

measurement system is accurate and reliable. 

 

 

Figure 7.6 The calibration methods for the bias-tee, high speed cablings and 

connectors using the RF generator with MTA (left) and that using a VNA (right). 

 

 

Figure 7.7 The normalised frequency response of the bias-tee, high speed cablings 

and connectors using the RF generator with MTA and that using a VNA. 
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The loss of the laser was measured by feeding the output of the laser source into an 

Agilent 86100B wide-bandwidth optical/electrical oscilloscope. The laser was 

modulated by the RF generator from 100 MHz to 10 GHz and the optical sine-wave 

signal was measured by the oscilloscope. The oscilloscope displayed the optical 

sinewave with the amplitude in units of V. It should be noted that the external trigger 

of the oscilloscope must be provided and an external timing reference must be 

connected to the trigger input connector. This is because the oscilloscope is not able 

to trigger directly on the test signal.  

 

 

Figure 7.8 The calibration method for the 1300-nm laser using a wide-bandwidth 

optical oscilloscope. 

 

 

Figure 7.9 The normalised power loss of the 1300-nm laser. 
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The RMS voltage of the signal was measured across the frequency range and the 

corresponding power was calculated with a 50-Ω input impedance. The power in 

dBm can then be calculated and the power loss with respect to 100 MHz is computed 

and shown in figure 7.9.  

 

Finally, the insertion loss of the 50-GHz GSG probe, which is less than 1 dB for the 

entire frequency range of 50 GHz, was taken from the datasheet of the Picoprobe by 

GGB Industries Inc. [29]. All the losses were added (in dB) with respect to 100 

MHz. Throughout the frequency response measurement, which will be discussed in 

the next section, the same cables, bias-tee, high speed connectors, laser and GSG 

probe were used. 

 

7.6 Frequency response and gain-bandwidth product 

The frequency response measurement was carried out on both the MR2538 and 

MR2558 high speed InAs e-APDs. The equipments and measurement set-up have 

been described in detail in section 3.5. The system calibration results described in the 

last section were used to calculate the actual frequency response of the high speed 

InAs e-APDs.    

 

 

Figure 7.10 The normalised frequency responses of the MR2538 and MR2558 high 

speed InAs e-APDs with diameters of 10 to 85 µm at 77 K and room temperature. 

The modelled 3-dB bandwidths for W = 3 and 5 µm plotted for comparison. 
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It is surprising that the 3-dB bandwidth of both the MR2538 and MR2558 are limited 

to ~ 3.5 GHz at both 77 K and room temperature. This bandwidth is not RC-limited 

as both the MR2558 and MR2538 have different contact resistance and very different 

depletion widths, hence the capacitances are different. Furthermore, besides the 

devices with d = 135 and 235 µm which are clearly RC-limited, the frequency 

responses from both the p-i-n and n-i-p high speed InAs e-APDs with d = 10, 35, 60 

and 85 µm are very similar. For clarity purpose, these identical results are 

summarised in figure 7.10. 

 

Gain, M 
Simulated 3-dB bandwidth (GHz) 

W = 3 µm W = 4 µm W = 5 µm W = 6 µm 

1 12.281 9.181 7.317 5.935 

2 11.597 8.734 6.974 5.807 

10 10.394 7.786 6.236 5.194 

100 10.355 7.765 6.214 5.177 

 

Table 7.1 The modelled 3-dB bandwidths for k = 0 APDs with W = 3 to 6 µm for M 

= 1 to 100 using the RPL model by assuming vse = 1.5×105 m/s and vsh = 0.75×105 

m/s.  

 

From the discussion in section 7.4, it is expected that MR2538 can produce a higher 

3-dB bandwidth than MR2558. This is because the carrier transit time is much 

shorter in MR2538 due to thinner W. To estimate the 3-dB bandwidth of these 

devices due to carrier transit and avalanche build-up time, the RPL model was used. 

With the k = 0 characteristic and without the effect of the deadspace, devices with W 

= 3 to 6 µm were simulated. The saturation drift velocity of electron vse in InAs was 

reported to be 1.5×105 m/s [30]. Since there is no value reported for holes, the 

saturation velocity of hole vsh in InGaAs was taken as 0.75×105 m/s [31]. Uniform 

electric fields were assumed across the depletion region and the current pulses were 

computed. The 3-dB bandwidths were calculated by Fast-Fourier Transform using 
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the MATLAB software. The simulation was carried out for different M values. The 

results are summarised in table 7.1.  

 

Clearly, from table 7.1, the bandwidths of the diodes decrease with increasing W. 

Matching the k = 0 characteristics, as M increases, the bandwidths do not roll-off 

even up to M = 100. The bandwidths are not limited by the avalanche build-up time 

as they are for k > 0 material systems at high M. For MR2538 and MR2558 high 

speed InAs e-APDs with W = 3 and 5 µm, respectively, 3-dB bandwidth of ~ 3.5 

GHz is definitely way lower than what it is expected, as plotted in figure 7.10. 

According to the simulated results, these values should be between 7 and 11 GHz. 

Therefore, the 3.5-GHz measured bandwidth is certainly neither carrier transit nor 

avalanche build-up time limited despite having very wide W.  

 

Following from the above discussion, the carrier transit time, avalanche build up 

time and RC time are ruled out as the root cause for limiting the 3-dB bandwidth of 

the InAs e-APDs. The frequency responses at 77 K and room temperature also show 

that the 3.5-GHz bandwidth is temperature insensitive. As described in section 4.5, a 

few different designs of GSG pads were included in the mask set to evaluate the 

effect of GSG pads on the frequency response of the diodes. These different designs 

of signal tracks and GSG pads have also proven that the capacitance between the 

GSG pads and the parasitic capacitance between the signal tracks and the p-type 

conducting substrate are not the limiting factors. Therefore, the parasitic effect 

associated to the SU-8 as a dielectric material is considered to be restricting the 

bandwidth to ~ 3.5 GHz. This is because the material properties of SU-8 at high 

frequencies are not well studied and understood. However, proofing the infinite GBP 

with k = 0 characteristics of InAs can still be made possible if the APDs can provide 

very high M and the ~ 3.5 GHz bandwidth remains. Therefore subsequent 

measurements were done on MR2558 because it could produce much higher M. The 

suppression of tunnelling current due to the wider W in MR2558 also enabled 

measurement to be taken up to higher Vb.  
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Figure 7.11 The normalised frequency responses of MR2558 high speed InAs e-

APDs with d = 35 to 235 µm at Vb = 10 V. Modelled RC-limited responses of the d = 

235 and 135 µm devices [26]. 

 

The frequency responses of all sizes of MR2558 high speed devices were measured 

at 77 K and room temperature. There is no observable difference in the frequency 

response at different temperatures. The frequency responses of the devices at Vb = 10 

V are shown in figure 7.11. The two largest devices demonstrate bandwidths which 

are RC-limited. The value of R has been discussed in section 4.5.2, with R = 20 and 

70 Ω for devices with d = 235 and 135 µm, respectively. Their capacitances are 

calculated from the area normalised capacitance presented in section 7.3. The RC-

limited bandwidths were simulated using LT-SPICE with the fitted and calculated R 

and C. The 50 Ω contributed by the system was included into the value of R when 

the simulation was carried out. The modelled results are plotted together in figure 

7.11 for comparison. 

 

For devices with d ≤ 85 µm, the 3-dB bandwidth is limited to ~ 3.5 GHz at low M, as 

shown in figure 7.11. The avalanche gain was measured using phase sensitive 

detection, as described in section 7.4. The dark current, photocurrent and avalanche 

gain of the MR2558 InAs e-APDs are shown in figure 7.12. 
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Figure 7.12 The dark currents and photocurrents (top) of a 50-µm diameter MR2558 

InAs e-APDs. The avalanche gain (bottom) of the InAs e-APDs at different reverse 

bias voltages at room temperature and 77 K.  

 

The frequency response and M were measured for each Vb to deduce the GBP of the 

devices. The 3-dB bandwidths at different M are presented in figure 7.13. Unlike 

other conventional APDs where the bandwidth rolls-off at high M, the InAs e-APDs 

possess a bandwidth that is not limited by M, with the highest GBP of ~ 430 and ~ 

580 GHz at room temperature and 77 K, respectively [26]. The fluctuation between 

3.5 and 4 GHz is mainly due to experimental limitation and should not be treated as 

the change in 3-dB bandwidth. It is worth noting that these GBP values are limited 

by the maximum achievable stable M in these InAs prototype diodes. As the 

technology matures further, especially in terms of growth and fabrication of InAs e-
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APD, the leakage current is expected to be lower and higher M could be achieved, 

potentially providing GBP exceeding 1 THz. 

 

 

Figure 7.13 The 3-dB bandwidth of the MR2558 high speed InAs e-APD with 

different avalanche gain at room temperature and 77 K [26]. 

 

7.7 Frequency response at > 10 GHz  

Although the 3-dB bandwidth of the InAs e-APD is limited to ~ 3.5 GHz, its 

bandwidth that is unlimited by the avalanche gain will potentially allow it to be 
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to improve the system sensitivity. To study the frequency response of the InAs e-
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7.14 shows the noise when the GSG probe was open-circuited. It can be seen that at 
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Figure 7.14 The noise floor of the measurement system with the VNA at frequencies 

from 0.1 to 40 GHz. 

 

The absolute measured power at 200 MHz, 1, 10, 15 and 20 GHz are shown in figure 

7.15. It is clear that due to the high noise floor at frequencies > 16 GHz, the signal 

powers measured at 20 GHz are still within the system noise even at the highest Vb. 

However, with M > 4 at Vb > 5 V, the signal powers at 10 and 15 GHz are amplified 

above the noise floor. At the highest Vb = 15 V, the signal power at 15 GHz can still 

be amplified by ~ 23 dB above the system noise floor. The comparison with the 

power gain at 200 MHz and 1 GHz also shows that the signal powers are amplified 

by similar amplitudes regardless of the frequency of the signal. Figure 7.16 shows 

the avalanche gain measured at Vb = 15 V using the LIA and VNA at different 

frequencies from 270 Hz to 15 GHz. There is a small fluctuation in the calculated 

gain from VNA due to the limitation of the measurements and derivation of the 

voltage gain from the power gain. However, the similarity of M regardless of the 

signal frequency again shows the k = 0 characteristics of the InAs e-APDs since the 

bandwidth is not limited by its avalanche build-up time. 
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Figure 7.15 The measured power at 200 MHz, 1, 10, 15 and 20 GHz for different 

bias voltages at room temperature. 
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GHz. Hence it is believed that the InAs e-APDs can be exploited for applications up 

to 20 Gbps despite the 3-dB bandwidth of ~ 3.5 GHz. In addition, due to the onset of 

avalanche gain at very low Vb, the InAs e-APDs can be operated at low operating 

voltage, therefore consuming much less power than the conventional InP-based 
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APDs. Operating the 20-Gbps InAs e-APDs in 2×20 Gbps parallel integrated optical 

receiver [32], InAs e-APDs can potentially be used as low noise and low operating 

power APDs in 40-Gbps optical communication. 

 

 

Figure 7.16 The calculated M at Vb = 15 V at room temperature for different 

frequencies from 270 Hz to 15 GHz. 

 

7.8 Conclusion  

High speed InAs e-APDs have been fabricated after identifying SU-8 as the suitable 

surface passivation of the etched mesa sidewalls. The optimised MOVPE growth 

conditions have made the growth of thick InAs layers with low background doping 

possible, producing InAs e-APDs with higher M at a particular Vb. The frequency 

responses of the e-APDs with W = 3 and 5 µm were measured, producing similar 3-

dB bandwidth of ~ 3.5 GHz. The transit time, avalanche build up time, RC-time and 

the design of the signal tracks were ruled out as the factors which limit the bandwidth 

to 3.5 GHz. Instead, the parasitic effect due to the SU-8 dielectric material was 

considered to be the limiting factor. Growing the InAs structure on a semi-insulating 

substrate may be able to eliminate this effect to produce higher bandwidth, as 

reported recently by Shi et al. [33] for InAs photodiodes. However, it involves very 
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challenging growth of InAs on a lattice-mismatched substrate, causing high leakage 

current, which inhibits APD operation. 

 

Despite having low 3-dB bandwidth of ~ 3.5 GHz, the avalanche gain and frequency 

response of the MR2558 InAs e-APDs were demonstrated to produce very high 

GBPs of ~ 580 GHz and 430 GHz at 77 K and room temperature, respectively. 

Although it was theoretically made known that materials with k = 0 can provide gain-

unlimited bandwidth, this is one of the very first practical work that exploits the e-

APD’s characteristics to achieve extremely high GBP, potentially exceeding 1 THz.  

 

Further characterisation of these high speed InAs e-APDs at frequencies > 10 GHz 

demonstrate the potential of using InAs e-APDs for 20-Gbps applications. Due to the 

property of having a bandwidth that is not limited by its avalanche gain, the internal 

gain provided by the InAs e-APDs is able to amplify the 15-GHz signal by ~ 23 dB 

above the noise floor. Further improvement in growth and fabrication is likely to 

reduce the leakage current at room temperature, which can make InAs e-APDs to be 

more attractive for optical fibre communication. Moreover, the InAs e-APD with 

thick W also allows APDs with larger sizes to be used for non-fibre based imaging 

and sensing applications without the bandwidth being RC-limited. 
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further work 

     
 

8.1 Conclusion 

It was reported back in the 1960s that the band structures of InAs and InSb [1] could 

produce characteristics which are ideal for APDs. However, there is little literature 

reporting a comprehensive study of their impact ionisation properties, possibly due to 

the high leakage current at high bias voltages, resulting from their narrow bandgaps. 

Until recently, Marshall et al. have produced a fabrication recipe for InAs diodes [2] 

to reduce the surface leakage current significantly, such that the avalanche 

characteristics at room temperature could be investigated. Therefore, the research 

work reported in this thesis was targeted to further reduce the dark current of InAs 

APDs by etched mesa surface passivation, to study the avalanche properties of InAs 

APDs with different designs and operating conditions, and to develop APDs with 

very high GBP based on the impact ionisation characteristics of InAs.  

 

The fabrication recipe of InAs diodes using wet chemical etchants has been revisited 

in chapter 4. The surface passivation using different dielectric materials such as SU-

8, BCB, SiO2 and SiNx were investigated with SU-8 being identified as the most 

effective dielectric in reducing the surface leakage current, especially below room 

temperature. The SU-8 surface passivation has also increased the robustness of the 

InAs APDs such that they can withstand higher bias voltages, which will be proven 

to be critical when InAs APDs are utilised in practical applications. Without having a 

semi-insulating substrate that is lattice-matched to InAs, the discovery of this 

suitable dielectric has made the fabrication of high speed InAs APDs possible by 

providing a flat insulting film for the deposition of GSG pads. Before fabricating the 

high speed InAs diodes, Ti/Pt/Au and Ti/Au were identified as the most suitable 
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metals for the p- and n-contacts, respectively, after taking into consideration the low 

contact resistances and low leakage current. A new mask set was designed to suit the 

isotropic and deep etching profile of InAs diodes. The heat and UV curing of SU-8 

dielectric were also optimised. With a set of well-controlled fabrication procedures, 

the dark current densities of the high speed InAs APDs remained low despite going 

through a more complicated fabrication process. In addition, the temperature 

dependence of the spectral responses of a packaged InAs diode was measured using a 

FTIR spectrometer and the variation of bandgaps with temperatures agreed well with 

those which were previously reported using photoluminiscene [3]. 

 

Chapter 5 analysed the temperature dependence of the leakage current in SU-8 

passivated InAs APDs and identified the bulk and surface leakage current 

mechanisms with their respective activation energies. The analysis also enabled the 

estimation of the leakage current of InAs diodes with different dimensions at 

different operating temperatures. By operating the InAs APD at temperatures 

achievable by thermoelectric cooling, the APD can provide useful gain while 

satisfying the minimum RDA requirements of most of the commercially available 

ROICs. This chapter also discussed and compared the responsivity and detectivity of 

our InAs diodes with those of the commercial InAs photodiodes. The high 

responsivity and low dark current density of the InAs diodes led to either higher or 

comparable detectivity with commercial InAs photodiodes. Furthermore, the ability 

to provide M > 20 with a gain-normalised dark current density of 5×10-6 A/cm2 at 77 

K has demonstrated the potential of InAs APDs for infrared sensing applications.  

    

The study of the avalanche gain and excess noise characteristics in chapter 6 aimed 

at providing a clearer idea in designing and operating an InAs APDs. Within the 

practical operating temperatures of InAs APDs, the depletion widths do not change 

with temperatures. This has confirmed that the reduction in Me with decreasing T was 

mainly due to the change in ionisation parameters in InAs. The avalanche gains of 

InAs APDs with different electric field profiles were investigated and the depletion 

width was determined to be the dominant factor that influenced Me at a given Vb, 

instead of the peak electric field and field gradient. To complement the temperature 
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and field dependent study on avalanche gain, the excess noise of InAs APDs with the 

same structures were also measured. Within the accuracy of the measurement, the 

excess noise factors remained low, between 1.45 and 1.6, and the variation with 

respect to temperatures and electric field gradients were determined to be negligible 

in practical applications. The discrepancies in previous low temperature noise 

measurement were explained based on previously non-optimised designs of APD and 

measurement set-up. F below that predicted by the local model at k = 0 were 

attributed to the effect of the dead space even in APDs with very thick W. Therefore 

thin W is not needed for APDs with k = 0 in order to exploit the dead space effect for 

lower F. The demonstration of the ability of InAs APDs to provide higher sensitivity 

or SNR was done by using the APD with a pre-amplifier. Low dark current and pure 

electron injection were determined to be the important requirements to obtain a high 

SNR for InAs e-APDs. 

 

Following from the fabrication of high speed InAs diodes, the frequency response of 

InAs APDs was presented in chapter 7. With a proper and systematic system 

calibration, the 3-dB bandwidth of the InAs APDs with W ~ 3 and 5 µm was 

measured to be ~ 3.5 GHz, which is much lower than that predicted by modelling 

(between 7 and 11 GHz). The SU-8 dielectric was determined to be the major 

limiting factor of this 3-dB bandwidth. Despite this constraint, the high avalanche 

gain from the InAs APDs has enabled the demonstration of gain-unlimited 

bandwidth, with record high GBPs of 430 and 580 GHz at 295 and 77 K 

respectively. This is considered to be a major breakthrough as this is the very first 

experimentally demonstrated bandwidth that is not affected by its avalanche gain 

using III-V semiconductors, although it has been theoretically understood since 

1960s for APDs with k = 0. The frequency responses of the InAs APDs were also 

measured up to 20 GHz despite the 3-dB bandwidth of ~ 3.5 GHz. With such a high 

GBP, the InAs APDs could amplify the optical signal at 15 GHz by ~ 23 dB above 

the equipment noise floor. This has proven the ability of InAs APDs to support 20-

Gbps operations, with the advantage of low operating voltages or low power 

consumption.  
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8.2 Proposed further work  

As discussed in chapter 4 and Appendix A2, most of the recently grown InAs wafers, 

either by MBE or MOVPE, suffered from high leakage current and unusual 

breakdown that inhibit APD operation at Vb > 10 V. It is not clear to us the actual 

reasons which lead to low-quality InAs wafers. This problem can be a major 

stumbling block to further developing InAs APDs, especially for real practical 

applications such as gas sensing and FPAs for imaging. To achieve this, the growth 

conditions must be optimised such that the InAs wafers have thick epilayers with low 

surface defect density, very low UID in the i-region and minimum dopant diffusion 

from the cladding into the i-layer. The repeatability of the growth conditions and 

parameters for InAs wafers is also crucial in exploring different InAs APDs design to 

increase the avalanche gain of InAs APDs at low Vb. 

 

Currently InAs APDs with the best performance are the mesa-etched diodes with 

SU-8 surface passivation. In chapter 4 and 5 it is clear that the surface leakage still 

needs to be reduced, especially for operating temperatures below room temperature 

and for small pixel devices. Ammonium sulfide ((NH4)2S) was reported to reduce the 

surface leakage current of Type-II InAs/GaSb Superlattice photodiodes by ~ 2 orders 

of magnitude [4]. Since InAs APDs face a similar problem as other narrow bandgap 

photodiodes where the surface is pinned near the mid-gap, ((NH4)2S) surface 

passivation may also help in reducing the surface leakage current. Different 

((NH4)2S)-based solution concentrations and sample immersion time shall be used so 

that optimum passivation condition can be determined. Furthermore, although the 

mechanism was not well understood, a reduction of ~ 5 orders of magnitude in 

leakage current was reported for InAs0.91Sb0.09 photodiodes by exposing the mesa 

diodes to argon ion plasma [5]. A further reduction by ~ 2 orders was observed when 

the samples were illuminated by white light at 0.1 W/cm2 at room temperature and 

the samples were cooled to low temperature before withdrawing the white-light 

illumination [5]. This can be used as one of the surface treatments for etched-mesa 

InAs diodes. In addition, a technique called epitaxial overgrowth where a lattice-

matched wide bandgap material is grown on the etched-mesa surface is also reported 
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to be capable of reducing the surface leakage current [6]. Wide bandgap materials 

such as AlAs0.16Sb0.84 can be used for InAs diodes to carry out this epitaxial 

overgrowth. Since Al-containing semiconductors can be oxidised easily, a layer of 

SiNx can be deposited onto the overgrowth epilayer to prevent oxidation of the wide 

bandgap material. 

 

Planar InAs APDs, either by dopant diffusion or ion implantation, can prevent the 

diode surfaces from exposure to the air, potentially mitigating the surface leakage 

current. There are 2 groups reporting Zn-diffused InAs p-n junctions [7, 8] with high 

leakage current at Vb < 1 V. We have attempted Zn-diffusion at 500 oC for 60 

minutes on a large area InAs sample. Results in Appendix H shows that Zn can be 

incorporated into InAs up to concentrations of ~ 1×1019 cm-3 with a diffused depth of 

~ 2 µm. While the fabricated InAs mesa diodes from this large-area Zn-diffused 

sample show high leakage current at room temperature, there is a reduction of ~ 3 to 

5 orders in dark currents at 77 K as shown in Appendix H. Further study on InAs Zn-

diffused p-n junction shall be carried out with high-quality InAs wafer with low UID. 

Recently, Sandall et al. reported that Helium implantation could be employed to 

electrically isolate InAs photodiodes such that the implanted areas were made highly 

resistive [9]. Further annealing of the samples showed leakage current comparable to 

mesa-etched InAs diodes at low Vb. However, further optimisation of ion 

implantation such as the implantation profiles, ion concentrations and energy are 

needed to eliminate the catastrophic breakdown [9] and to allow higher Vb operation.  

 

In chapter 6, it has been shown that the local model and hard dead space non-local 

model are not appropriate and not sufficient to model InAs e-APDs due to its impact 

ionisation properties which need soft ionisation threshold modelling. Therefore, an 

analytical band Monte Carlo model shall be developed to accurately model the 

results described in chapter 6. Throughout the work presented in this thesis, it is clear 

that InAs APDs possess many characteristics which are distinctly opposite to 

conventional III-V semiconductors APDs. The development of a proper modelling 

technique for InAs e-APDs will definitely assist in further understanding, more so 

discovering new characteristics of InAs e-APDs.  



Chapter 8 Conclusion and proposed further work 

 

P. J. Ker Page 151 
 

InAs APDs with a wide depletion width can provide high gain at low Vb while 

suppressing the tunnelling current. However, it is difficult to obtain large W > 8 µm 

with a single p-i-n junction, unless the UID is < 2×10-14 cm-3 throughout the i-layer. 

Therefore engineering InAs APDs with different design is needed, such as an APD 

with cascaded i-regions with p-i-p
-
-i-n structure. Initial electric field profile 

modelling, doping calibration for p
--region, growth and fabrication of InAs APDs 

with this structure has been carried out. Appendix I shows the SIMS of M4049 

wafer, I-Vs of the double mesa InAs diodes, excess noise factors at room 

temperature, avalanche gain and depletion width. Unfortunately, this layer still shows 

high leakage current and unusual device breakdown. It remains unclear if this is due 

to the crystal quality of the wafer, fabrication or the electric field profile of the 

diodes. However, it is clear from Appendix I that these APDs with cascaded i-

regions enable W to grow much quicker than a single p-i-n junction diode. Further 

trials shall be carried out by having more cascaded i-regions but the repeatability of 

high quality growth shall be dealt with prior to exploring more complicated device 

structures.  

 

While chapter 7 has demonstrated that InAs e-APDs have unlimited GBP due to the 

k = 0 characteristics, the 3-dB bandwidth of the devices are limited to ~ 3.5 GHz. 

The RPL simulation predicts that InAs APDs with W ~ 5 µm can produce a 3-dB 

bandwidth of ~ 7 GHz. However, the overshoot velocity of electrons above vse can 

potentially further increase the 3-dB bandwidth [10]. Since the major limiting factor 

is determined to be the SU-8 dielectric, further work can be done by growing InAs 

on GaAs semi-insulating substrate [8] such that air-bridge can be employed to 

deposit the GSG pads onto the semi-insulating substrate. Obviously the strain due to 

the lattice-mismatch between GaAs and InAs can impose a major challenge to 

growth and fabrication, which if not properly optimised, will cause high leakage 

current and inhibit APD operations. Furthermore He-implanted InAs was reported to 

produce high resistivity of ~ 1×107 
Ω/square [9]. This technique can be employed so 

that this high resistivity InAs layer can play the same role as a semi-insulating 

substrate for GSG pads deposition, without the need of using the SU-8 dielectric. 

This proposed work is important in determining the actual transit-time limited 
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bandwidth of InAs e-APDs. 

 

The proposed areas of further work described above have equal degree of 

importance. However, it shall be noted that having high quality crystals, consistent 

and repeatable growth of InAs wafers are the key to further exploitation of InAs e-

APDs for practical applications. 
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Appendices 

     
 

Appendix A1: InAs wafers details 

 
a The actual depletion widths quoted at a bias voltage of 12 V since the structure was 

not fully depleted due to the thick i-layers and high background doping 

concentrations. 

Wafer 

ref. 

Intrinsic region p-type cladding n-type cladding 

Nominal 

width 

(µm) 

Actual 

width 

(µm) 

doping 

(x1015 cm-3) 

width 

(µm) 

doping 

(x1018 cm-3) 

width 

(µm) 

doping 

(x1018 cm-3) 

M3279 

p-i-n 
1.0 0.9 ~ 3 2.3c 5.0 1.9 2.0 

M3247 

p-i-n 
3.5 3.5 ~ 0.2 1.0c 6.0 1.9 2.0 

MR2558 

n-i-p 
6.0 5.0a ~ 0.5b 3.5 1.0 1.5 0.5 

MR2559 

n-i-p 
6.0 4.5a ~ 0.7b 3.5 1.0 1.5 0.5 

MR2560 

n-i-p 
6.0 3.2a ~ 1.5b 3.5 1.0 1.5 0.5 

MR2537 

n-i-p 
6.0 3.3a ~ 1.4b 3.0 3.0 2.0 0.5 

MR2538 

p-i-n 
6.0 3.0a ~ 2.0b 2.0 3.0 2.0 0.5 

MR2835 

p-i-n 
6.0 3.0a ~ 2.0b 2.0 3 2.0 0.1 

MR2840 

p-i-n 
6.0 4.5a ~ 0.7b 2.0 3 2.0 0.1 

MR2775 

n-i-p 
6.0 3.0a ~ 2.0b 2.0 1.0 2.0 0.2 
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b The unintentional background doping concentrations quoted are the lowest 

achievable doping concentrations. The doping concentrations across the i-layer vary 

due to the diffusion of dopants from the cladding layers. 
c The p-layer consists of a 200-nm thick AlAs0.16Sb0.84 that is capped with a 100-nm 

thick InAs layer. The p-type cladding width quoted includes these layers. 

 

 

Figure A.1 The NEWPIN mask design which is used for quick evaluation of InAs 

wafer quality. 
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Appendix A2: InAs wafers details 

Layer 
number 

No. of 
Wafers 

Layer structure 
(p/i/n or n/i-p) 

Comments 

MR2714 
(p-i-n) 

1 2/6/1.5 (µm) � Very high dark current of 10 mA at Vb < 1 V. 

MR2715 
(p-i-n) 

1 2/6/1.5 (µm) � Very high dark current of 10 mA at Vb < 1 V. 

MR2745 
(p-i-n) 

1 2/6/1.5 (µm) � Very high dark current of 10 mA at Vb < 1 V. 

MR2774 
(p-i-n) 

1 2/6/1.5 (µm) � Very high dark current of 10 mA at Vb < 2 V. 

MR2776 
(p-i-n) 

1 2/6/1.5 (µm) � Very high dark current of 10 mA at Vb < 5 V. 

MR2836 
(p-i-n) 

2 2/6/1.5 (µm) 

� Show unusual breakdown at Vb < 10 V. 

� Dark current density ~ 260 mA/cm2 at 0.1V. 

� Bad surface property. 

MR2837 
(p-i-n) 

2 2/6/1.5 (µm) 
� Show unusual breakdown at Vb < 10 V. 

� Dark current density ~ 155 mA/cm2 at 0.1V. 

MR2838 
(p-i-n) 

2 2/6/1.5 (µm) 

� Show unusual breakdown at Vb < 10 V. 

� Dark current density ~ 145 mA/cm2 at 0.1V. 

� Bad surface property. 

MR2841 
(p-i-n) 

2 2/6/1.5 (µm) 
� Show unusual breakdown at Vb < 10 V. 

� Dark current density ~ 98 mA/cm2 at 0.1V. 

M3884 
(p-i-n) 

1 2/5/2 (µm) 
� Unknown catastrophic breakdown at Vb < 7 V. 

� Dark current density ~ 80 mA/cm2 at 0.1V. 

M3948 
(p-i-n) 

1 2/5/2 (µm) 
� Show unusual breakdown at Vb < 7 V. 

� Dark current density ~ 100 mA/cm2 at 0.1V. 

M3954 
(p-i-n) 

1/4 2/5/2 (µm) 
� Show unusual breakdown at Vb < 7 V. 

� Dark current density ~ 90 mA/cm2 at 0.1V. 

M3978 
(p-i-n) 

1 2/10/2 (µm) � Very high dark current of 10 mA at Vb < 1 V. 

M4049 
(p-i-p-i-n) 

1 
2/2.5/0.1/2.5/2 

(µm) 
� High dark current and unusual breakdown at Vb 

< 6 V. 

M3897, 
M3949, 
M3977, 
M4033 
(n-p

-
-n) 

4 1/1.5/1 (µm) � Used for doping calibration for the MBE 
machine. 

 

* Wafer numbers start with ‘M’ are grown by MBE and with ‘MR’ are grown by 

MOVPE*  
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Appendix B: Using the Agilent N8973A noise figure analyser 

1. Connect the noise source (model: Agilent 346B; Serial number: 

MY44420110) to the NFA, with one end connected to the bias-tee and 

another end to the noise source drive output + 28 V (pulsed). 

2. Press <ENR> to make sure that the excess noise ratio (ENR) table matches 

the noise source. The ENR table specifically for the noise source is as 

follows:- 

 

Frequency (MHz) Power (dB) 

10 15.51 
100 15.42 

1000 15.29 
2000 15.43 
3000 15.43 
4000 15.38 
5000 15.37 
6000 15.34 
7000 15.35 
8000 15.38 
9000 15.38 

10000 15.28 
11000 15.23 
12000 15.16 
13000 15.11 
14000 15.20 
15000 15.26 
16000 15.28 
17000 15.17 
18000 14.57 

 
Table B.1 The noise power of the Agilent 346B MY44420110 noise source at 

different frequencies. 

 

3. Choose the start and stop frequency by pressing <Frequency/Points> � 

select the start and stop frequency. 

4. Choose number of points between start and stop frequency by pressing 

<Frequency/Points> � [Start/Stop] 
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5. Choose number of averaging points by pressing <Averaging/Bandwidth> � 

select the number of averaging points. 

6. Press <sweep> � select [continuous] 

7. Press <calibrate> � <calibrate> (to start calibration). 

8. Wait until the calibration is completed. 

9. Press <Result> � [Phot] :- you should see the graph which matches the ENR 

table of the noise source. 

10. Disconnect the noise source from the NFA. 

11. Connect the probe to the bias-tee.  

12. Probe the device and bias the device at a desired voltage. 

13. Sweep the noise level with (Ptotal,dB) and without (Pdark,dB) laser or radiation.  

14. Record data such as dark current, primary photocurrent, photocurrent at a 

particular bias voltage and the calculated gain. 

15. Saving the noise data:- <File> � [save] � [Trace] � type filename (≤ 8 

characters) � <Enter> 

16. Repeat step 12 to 15 as required. 

 

<…> – button on the NFA 

[…]    – button on the front panel 
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Appendix C: Using the HP 8341B RF modulating source and HP 

70820A microwave transition analyser 

 

A. Electrical connections between the RF source and MTA (at the back of these 

equipments) 

� GPIB to GPIB - *MTA has 2 GPIB. Use the centre GPIB.* 

� MTA 10 MHz input to RF Source 10 MHz output 

 

B. To use MTA:- 

i. Instr. Preset – to calibrate all to zero / default 

ii. Main (L) 

iii. RF out on (R) 

iv. Noise Filter on (R) 

v. Sweep(R) � Freq � Start (Set freq.) � Stop (Set freq.) � Source 

Power (<+10 dBm) 

vi. Noise Filter (R) � set 50 kHz 

vii. Config(L) � Trace Point (R) � Adjust trace point/steps 

viii. Scale (L) � Autoscale (R) 

ix. Trigger (L) � Cont or Single (R) 

x. Traces (L) � avg. Hld. (R) � Smooth on (R) 

xi. Use Marker (L) to check/measure. 

 

** On the panel: (L) – Left Side; (R) – Right Side ** 

 

To change the freq/div or time/div – Main ���� Sweep ���� Time/Freq 

To change the P/div or V/div – Scale 
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Appendix D: Using the 2-port E8364B PNA Series vector network 

analyser for frequency response measurement 

The external connections between the equipments are shown in figure 3.11 in chapter 

2 a. Here, the step-by-step operation of the set-up is listed below together with a few 

precaution steps. 

 

i. Set the interested frequency range on the VNA. For example, 10 MHz to 40 

GHz. You can choose either a linear or log frequency sweep. 

Sweep � Sweep type  

ii. Set the number of points throughout the frequency range (Higher number of 

points will slow down the measurement speed) 

Sweep � Number of points  

iii. Set the number of averaging points 

Channel � Average  

iv. Set the IF bandwidth (Lower IF bandwidth settings make higher dynamic 

range calibrations at the expense of slower measurement speed) 

Sweep � IF bandwidth  

v. Reverse bias the EAM at -1 V. Set the power at port 1 of the VNA to be +9 

dBm and turn on the power  a (Do not turn on the RF power before reverse 

biasing the EAM as this will operate it in the forward bias range)  

Channel � Power 

vi. Turn on the laser c. You should see that the current reading of the SMU 

connected to the EAM increases significantly. 

vii. Start the measurement using port 2. Repeat the measurements and save the 

data in the format of “.prn”. 

Trace � Measure 

Scale � Autoscale or change the scale 

viii. When all the measurement is done, turn off the laser. 

ix. Turn off the RF power from port 1.  

x. Set the d.c bias of the EAM to 0 V d. 
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xi. It is recommended that the VNA and SMU are not powered off as it will risk 

damaging the EAM due to a voltage spike. Disconnect the EAM from those 

instruments before powering off the VNA and SMU. 

 
a When connecting the EAM and VNA, please wear the electrostatic discharge wrist 

band to avoid any electrostatic discharge which can damage the equipments. 

 
b The reverse bias voltage and the RF power from port 1 can vary to maximise the 

amplitude of the modulated laser. However, the operating voltage of the EAM is 

between 0 and -4 V. Make sure that the EAM is biased (d.c. + RF component) within 

this range so that it is not damaged. Furthermore, it should be noted that the 

maximum acceptable RF power of the EAM is + 13 dBm. A conversion table 

between the power in dBm and the peak-to-peak voltage for a 50-Ω system is shown 

below. 

 

Power (dBm) Peak-to-peak voltage (V) 
-5 0.3557 
-4 0.3991 
-3 0.4477 
-2 0.5024 
-1 0.5637 
0 0.6325 
1 0.7096 
2 0.7962 
3 0.8934 
4 1.0024 
5 1.1247 
6 1.2619 
7 1.4159 
8 1.5887 
9 1.7825 

10 2.0000 
 

Table D.1 The conversion table between power in dBm and the peak-to-peak voltage 

of a 50-Ω system. 

 



Appendices 
 

P. J. Ker Page 161 
 

c The typical current level of the laser is from 35 to 65 mA. Since the maximum 

optical input rating of the EAM is +14 dBm or 25 mW, it is always a good practice 

to measure the output power of the laser before connecting it to the EAM to avoid 

any damage to the EAM. 

 
d Turn off the RF power first before setting the d.c. bias to 0 V so that the EAM will 

not be forward biased. 
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Appendix E: Low temperature probe station 

 

 

[a] [b] 

[e] 

[f] 

[c] [g] 

[d] 

C 

H 

A 

M 

B 

E

R 

 

E

V

A

C

U

A

T 

I 

O

N 

 



Appendices 
 

P. J. Ker Page 163 
 

 

[f] 

[c] 

[j] 

[h] 

[i] 
C 

O

O

L 

I 

N

G 

 

P

R

O

C

E

D

U

R

E 

 



Appendices 
 

P. J. Ker Page 164 
 

 
 

[f] 

[c] 

[j] 

[h] 

[i] [e] 

[a] 

[g] 

[d] 

S 

H

U

T

D

O

W

N 

 

V

A 

C 

U

U

M  

 

S 

Y 

S 

T 

E

M 

 



Appendices 
 

P. J. Ker Page 165 
 

[a] [b] 

[e] 

[f] 

[c] 
[g] 

[d] 

R 

E 

M 

O 

V 

I 

N 

G 

 

S 

A 

M 

P 

L 

E 

S 

 



Appendices 

P. J. Ker Page 166 
 

Appendix F: BCB passivation on InAs diodes 

1. Take the Cyclotene out from the fridge. (the BCB film will be too thick if it is too 

cold) 

2. Bake sample at 100 oC for 1 minute to dehydrate the surface. 

3. Cool the sample and stick on blue tacky paper. 

4. Set the spin speed to 2000 rpm *. 

5. Spin the sample.  

6. Put Adhesion promoter (AP3000) on the sample then spin it. 

7. Put the BCB onto the sample, wait for 15 second, then spin. 

8. Remove the sample from the blue tacky paper. 

9. Bake the sample for 2 minutes 30 seconds at 100 oC. 

10. Stick the sample on a blue tacky paper and spin BCB onto the sample at 3000 

rpm *. 

11. Bake the sample for ~ 5 minutes at 100 oC. 

12. Anneal the sample at 300 oC for 1 minute (Use slow temperature ramp up and 

down time - 5 minutes each). 

13. To open the contact windows, spin the SPR220 onto the sample. Pattern it using 

the top contact mask and develop using MF26A. 

14. RIE etching recipe: CFH3:O2 = 35:12 (sccm)  

Pressure = 35 mTorr 

RF power = 70 W 

Estimated etch rate ~ 80 to 100 nm/min 

15. Clean the sample surface by dipping into 1 % buffered HF for 40 seconds to have 

better contact resistance. 

 

*Estimated thickness for BCB with different spin speed:  

 5000 rpm: ~ 2.35 µm 

 3000 rpm: ~ 3.05 µm 

2000 rpm: ~ 3.76 µm 
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Appendix G: Fabrication of high speed InAs APDs 

The fabrication steps of the high speed InAs p-i-n and n-i-p diodes were almost 

similar. The only difference is the deposition of the GSG pads where the top mesas 

of the n-i-p diodes were covered by a metal cap whereas the top mesas of the p-i-n 

diodes were opened to enable pure electron injection. 

 

There are basically two major difficulties in fabricating the high speed InAs diodes. 

Firstly, these InAs wafers were thick, with ~ 6 µm i-region and the total etching 

depth was approaching 10 µm. Due to the isotropic etching profile of the wet 

chemical etchants, the InAs layers were etched vertically and horizontally, leading to 

the undercut of the mesa sidewalls. Furthermore, depending on the orientation of the 

wafer, the undercut is more severe on the facet which is parallel to the minor wafer 

flat and less severe on the facet which is parallel to the major wafer flat, as shown in 

figure G.1. Hence the designs of the top contact and surface passivation mask set 

have taken these factors into account. Besides, starting from the first step of the 

fabrication, the orientation of the wafer was observed in such a way that the signal 

tracks could connect the diodes from the facet which has less severe undercutting. 

This was to make sure that the signal tracks could connect the devices more easily 

without making into contact with the mesa sidewalls. 

 

Secondly, the UV exposure and baking time of SU-8 were crucial for several 

reasons. Overexposing the SU-8 to UV was needed so that a gradual slope was 

formed at the interface between the dielectric and top mesa, and at the interface 

between the dielectric and lower contact. Since the mesas were etched ~ 10 µm, this 

was particularly crucial to ensure that the GSG tracks could make contacts with the 

top and lower contacts. Furthermore, there were instances where the SU-8 cracked 

when the samples were dipped in acetone. Hence, the SU-8 needed to be fully cured 

by UV exposure and baking so that the dielectric was sufficiently durable and hard 

for the subsequent fabrication processes. While the two major considerations 

mentioned above suggested that overexposing the SU-8 to UV would mitigate these 

problems, overdose of UV exposure would also cause the smaller mesa diodes to be 
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fully covered by SU-8, leading to the inability of the signal tracks to make contact. 

There was therefore a trade-off in the UV exposure dosage. After a series of 

optimisation trials, the optimum UV exposure time was determined to be 15 seconds 

(when the UV400 mask aligner has a 1 second optimum exposure time for standard 

GaAs). The SU-8 was best pre-baked at 65 oC for 3 minutes, followed by 95 oC for 7 

minutes. The post-exposure baking time was determined to be at 65 oC for 2 minutes, 

followed by 95 oC for 3 minutes. After developing the SU-8 for 1 minute to open the 

windows for contacts, the sample was again exposed to UV for 115 second, followed 

by a 1 and 2 minutes baking at 65 oC and 95 oC respectively, to harden the SU-8. 

 

 

Figure G.1 The schematic diagram of the major and minor flats of a 2-inch InAs 

wafer (left) and the picture illustrating the etching profile of an InAs diode with an 

etch depth of ~ 10 µm. 

 

The fabrication steps of the high speed InAs diodes are listed below in the sequence 

that they were carried out. 

 
Fabrication steps for high speed InAs p-i-n and n-i-p layers with slight 

difference in fabrication steps for n-i-p diodes (Italics):- 

i. Cleave a sample from the wafer (p-i-n or n-i-p) and clean in heated n-butyl 

acetate, acetone and isopropyl alcohol. 
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ii. Spin the BPRS100 photoresist onto the sample at 4000 rpm and pattern it 

using the top contact mask a. 

iii. Deposit top contacts with appropriate choice of metal b by evaporation. 

iv. Lift-off the mask in acetone and clean the sample c. Then, spin the BPRS100 

onto the sample at 4000 rpm and pattern it using the mesa mask a. 

v. Etch the mesa through to the n-type (p-type) layer (~ 10 µm in this case) 

using the wet chemical etchants d. 

vi. Lift-off the mask in acetone. Immediately after this, bake the sample at 100 
oC to dehydrate the surface. Then spin the SU-8 at 2000 rpm onto the sample. 

vii. Pre-bake, align the dielectric mask a, UV expose, post-bake and develop the 

sample in SU-8 developer followed by a rinse using isopropyl alcohol e.  

viii. Expose the sample to UV for 115 seconds. Then bake it at 65 oC for 1 minute 

followed by baking at 95 oC for 2 minutes. 

ix. Spin the SPR220 onto the sample at 4000 rpm. 

x. Pattern the photoresist mask using the mask for PIN bondpads (NIP 

bondpads) a. The optimum exposure time was ~ 12.4 seconds. 

xi. Deposit the GSG pads using Ti/Au = 30/400 nm from both sides f. 

 
a The alignment of each photoresist mask should be within the tolerance of < 2 µm. 

This is because the misalignment can cause even more severe implication in the 

following fabrication steps. If the mask is not well aligned, clean the sample in 

acetone and repeat the process. 
b The choice of metal is discussed in section 3.5.1. The metal for p-type contact is 

Ti/Pt/Au = 10/20/200 and for n-type contact is Ti/Au = 25/200. To ensure better 

adhesion of metals on semiconductor, the deposition of metal was carried out when 

the pressure of the chamber was < 2×10-6 mBar. 
c Clean the sample in a heated n-butyl acetate, acetone and isopropyl alcohol. 
d Wet chemical etchants as described in chapter 4. 
e The optimum pre-bake, exposure and post-bake time discussed earlier in the 

beginning of appendix G were used. The time can vary if the thickness of the film is 

different. 
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f The deposition of GSG pads are discussed in section 4.5.2. This is to ensure the 

GSG pads can make contacts with the top and lower contacts, especially across the 

interface between the dielectric and lower contacts. 

 

 

Fig G.2 The picture of a fully fabricated high speed InAs diode with the 

corresponding SEM image. 
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Appendix H: Zinc-diffusion 

 

 

Figure H.1 Zinc diffusion profile on InAs sample at T = 500 oC for 60 minutes from 

SIMS. 

 

 

Figure H.2 Dark current characteristics at room temperature and 77 K from 

fabricated InAs mesa diodes with Zn-diffused p-dopant. 
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Appendix I: InAs APDs with cascaded i-regions (M4049) 

 

 

Figure I.1 Four layers of InAs wafers to calibrate 2×1016 cm-3 for p--region for InAs 

APDs with cascaded i-regions. 

 

 

Figure I.2 SIMS for Be (p-type) and Si (n-type) dopants of the M4049 InAs wafers 

with cascaded i-regions. 
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Figure I.3 Simulated electric field profile using Poisson equation based on SIMS. 

 

 

 

Figure I.4 I-Vs of the M4049 double mesa diodes with inner size//outer size for (a) 

circular devices and (b) square devices. I-Vs show that the reverse current scales with 

the inner size of the double mesa diodes. 
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Figure I.5 Depletion widths with increasing Vb for M4049 compared to M3954 which 

has very similar W as M4049. 

 

 

 
Figure I.6 (a) Pure electron initiated avalanche gain of M4049 (W ~ 4.6 µm) 

compared to M3954 (W ~ 4.6 µm) and M3247 (W ~ 3.5 µm) at room temperature. (b) 

Pure electron initiated and mixed injection avalanche gain of M4049 at room 

temperature.  
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Figure I.7 (a) Pure electron initiated avalanche gain of M4049 (W ~ 4.6 µm) 

compared to M3954 (W ~ 4.6 µm), MR2840 (W ~ 4.5 µm at Vb = 12 V), M3247 (W ~ 

3.5 µm), M3204 (W ~ 1.9 µm) and M3279 (W ~ 0.9 µm) at 77 K. 

 

 

Figure I.8 Pure electron and mixed injections excess noise factors of M4049 InAs 

APDs at room temperature. 
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