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Abstract

Non-monotonic velocity profiles are an inherent feature of mixing flows obeying no-
slip boundary conditions. Here we consider simple ‘stretching and folding’ models
of laminar fluid mixing, composing orthogonal shears on the two dimensional torus,
and study the effect of imposing non-monotonic, piecewise linear shears. We give
conditions under which non-mixing regions (elliptic islands) emerge and the factors
which determine their size. We further study examples where no islands form,
proving (measure theoretic) mixing properties over open parameter windows.

Over the variety of systems considered, we encounter both uniformly and non-
uniformly hyperbolic examples (with singularities). This is reflected in their mixing
rates, exponential and polynomial respectively, which we establish using results from
the chaotic billiards literature. We put these systems in the context of similar lami-
nar mixing models, linked twist maps and a map of Cerbelli and Giona. Finally we
consider a broader range of mixing protocols, rigorously comparing their efficiency,
and discuss the challenges of relaxing piecewise linearity.
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Chapter 1

Background

1.1 Motivation

Mixing is a ubiquitous feature of fluid flows across all length scales, ranging from planetary atmo-
spheres to small scale industrial processes. In this latter context, optimising the homogenisation of
two initially segregated fluids for energy and time efficiency is a rich and expansive field of research.
A traditional approach to mixing relies on turbulence and diffusion as the primary mechanisms.
Consider two initially segregated fluids subject to a turbulent flow. As energy is transferred from
the large scales to the small, small scale flow structures develop which rapidly interweave the two
fluids. The boundary between the two fluids becomes progressively more intricate and is then
smoothed by molecular diffusion, resulting in a homogeneous mixture. While effective, the high
energy input required to maintain a high Reynolds number flow makes this an inefficient mixing
strategy when considering small length scales or highly viscous fluids. In microfluidics, this ap-
proach is impractical. Chaotic advection, essentially stirring, aims to arrive at the same state of
intricately interwoven fluid sheets by more direct means than simply relying on turbulence. It
achieves this through a repetitive process of stretching and folding. The first step stretches fluid
parcels into thin filaments, expanding in some direction u and contracting in some transverse di-
rection u⊥. The second step aligns these filaments next to each other and the process can begin
once more. Repetition causes the thickness of each filament to shrink finer and finer until length
scales are small enough for diffusion to dominate, smoothing the fluid interface to result in a homo-
geneous mixture. Chaotic advection dates back to the work of Aref (1984); for textbook references
see Ottino (1989b) and Sturman et al. (2006). A review of more recent developments is found in
Aref et al. (2017).

Factors such as the nature of the vessel surrounding the fluid and the particular stirring pro-
tocol employed can have a dramatic effect on mixing quality and the rate at which we approach
homogeneity. Imposing no-slip boundary conditions on the walls bounding the fluid naturally gives
rise to non-monotonic velocity profiles, characterised by zero motion at the boundaries and one or
more peaks in flow over the fluid bulk. An example is sketched in Figure 1.1(a), showing viscous
fluid forming a parabolic shaped profile when driven between two stationary plates by a pressure
gradient. In contrast, Figure 1.1(b) shows the monotonic flow profile driven not by pressure, but
by one of the plates moving horizontally with velocity V . Non-monotonic flow profiles lead to non-
uniform stretching around the domain, in terms of both the magnitude and axes (i.e. directions)
of stretching and contraction. This can potentially lead to an ‘unstirring’ effect where a parcel of
fluid is stretched in some direction u, only to be transported to the other side of the domain where
u is the direction of contraction and the stretch is undone. In many fluid mixing applications
non-monotonic flow profiles are unavoidable. It is therefore desirable to understand the potential
effects of non-monotonicity on mixing quality and mixing rates.
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∇p

(a)

V

(b)

Figure 1.1: Classical examples of viscous laminar flow between two infinitely long plates. Poiseuille
flow is shown in (a), driven by a horizontal pressure gradient ∇p and restricted by no-slip boundary
conditions at the plates. Couette flow is shown in (b), instead driven by one plate moving with
velocity V , no pressure gradient.

1.2 Modelling

Mixing in some domain X by chaotic advection concerns the study of time dependent fluid flows
v(x, t), where x ∈ X and t ≥ 0. Typically we assume these flows to be time T periodic v(x, t+T ) =
v(x, t) where T is the time taken to complete a single stretch and fold cycle or stir. This defines
a map f : X → X which sends the initial position of a particle x to its position f(x) after the
stir, i.e. after being subjected to the flow for time T . The long term behaviour of the flow v on
X is then described by repeated iterations of the map f . These flows are referred to as blinking
flows (see §1.5 of Sturman et al., 2006 for a variety of examples) and the maps f : X → X as
stroboscopic maps (Cerbelli and Giona, 2005).

One can similarly arrive at a discrete time map f by relying on some spatial periodicity. For
fluid moving through a cylindrical pipe (r, θ, z) with stirrers spaced periodically at z = L, 2L, . . . ,
we could take f to be the map taking the initial position of a particle x = (r, θ) on the cross-section
z = 0 to its intersection with the next cross-section z = L when subjected to the flow v. Such
a mapping is referred to as a Poincaré map which, in this example, reduces a three dimensional
flow to a two dimensional mapping which encodes much (but not necessarily all) of the mixing
dynamics. Studies of such systems can be found in Khakhar et al. (1987), Mezić et al. (1999).

The assumption that these flows are incompressible, ∇ · v = 0, tells us that f should preserve
volume. That is, no fluid is created nor destroyed during a stir and the density of the fluid remains
constant. Measure theory provides the mathematical framework for a rigorous study of volume
and allows us to encode this assumption into the model.

1.3 Measure theory

We provide a basic introduction here, a more detailed treatment is provided in e.g. Halmos (1976).

Definition 1.1. Let X be a set. We say that a collection of subsets A ⊂ P(X) is a σ-algebra if

1. X ∈ A,

2. If A ∈ A then X \A ∈ A,

3. If (An) is a sequence of sets in A then
⋃

n≥1An ∈ A.

2



To study the measures of length, area, volume etc. we consider X to be a metric space and
consider the Borel σ-algebra, the smallest such σ-algebra which contains all open sets of X. We
call the pair (X,A) a measurable space.

Definition 1.2. A measure on (X,A) is a mapping µ : A → [0,∞] such that

1. µ(∅) = 0,

2. If (An) is a sequence of sets in A with each Ai ∩ Aj = ∅ for i ̸= j, then µ
(⋃

n≥1An

)
=∑

n≥1 µ(An).

The triple (X,A, µ) is called a measure space. In short A ∈ A are the subsets of X to which
we can assign a measure µ(A). Throughout this thesis we will be concerned with finite measures
µ(X) <∞, which we may normalise to µ(X) = 1 to give a probability space. The broad definition
of a measure allows for a wide range of ways to compare the size of sets. We are primarily
concerned with the Lebesgue measure (see e.g. Halmos, 1976 for definition) which coincides with
the traditional notions of length, area, volume. For example, letting ν, µ be the Lebesgue measures
on R,R2, the measure of an interval I = [a1, a2] is ν(I) = a2 − a1 and the measure of rectangle
R = [a1, a2]× [b1, b2] is µ(R) = (a2 − a1)(b2 − b1). We define Lebesgue null sets to be those A ∈ A
with µ(A) = 0. By the above we see that line segments I ×{0} (taking b1 = b2) are Lebesgue null
with respect to µ. One can show that the countable union of Lebesgue null sets also has measure
0. We say that a property holds for almost every (a.e.) x ∈ X if it holds over some full measure set
X ′ ⊂ X, i.e. with Lebesgue null complement µ(X \X ′) = 0. Generally we treat zero measure sets
as negligible, proving results over a.e. x ∈ X. With the application of fluid mixing in mind, this
is assumption is reasonable as fluid parcels of negligible volume do not impact the global mixing
statistics.

Definition 1.3. Let (X,A, µ) be a measure space, f : X → X. We say that f is measure
preserving if µ(f(A)) = µ(A) for all A ∈ A.

Many reference texts will state this definition using preimages, µ(f−1(A)) = µ(A), as invert-
ibility of the map f is not assumed. All maps considered in this thesis are invertible so we adopt
the above definition. Given a measure space (X,A, µ) and a self map f : X → X which preserves
µ, we call the quadruple (X,A, µ, f) a measure preserving dynamical system. We now have a
correspondence

The flow v is incompressible (∇ · v = 0) ↔ f : X → X preserves the Lebesgue measure

which directs our analysis. To understand the mixing dynamics of laminar incompressible flows
v on some domain X, we study the Lebesgue measure preserving dynamical system (X,A, µ, f).
Ergodic theory describes the long term statistical behaviour of such systems.

1.4 Basic hyperbolic dynamics, ergodic theory

We provide a brief overview of classical ergodic theory here. A natural starting place is the
following:

Definition 1.4. Let (X,A, µ, f) be a measure preserving dynamical system, µ(X) = 1. We say
that f is ergodic if any invariant set f(A) = A satisfies µ(A) = 0 or µ(A) = 1.

In ergodic systems, then, invariant sets are either negligibly small or large enough to be essen-
tially indistinguishable from the whole domain. Intuitively, if our system is mixing we expect it to
be ergodic, for if f admitted an invariant set A with 0 < µ(A) < 1 we could split the domain into
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Figure 1.2: Part of an orbit fn(x) near a hyperbolic fixed point at the origin.

two invariant disjoint sets A,X \A which never mix and cannot be neglected as µ(A) < 1 implies
µ(X \A) > 0. Moreover, ergodicity implies another property we expect mixing systems to satisfy.

Definition 1.5. A dynamical system f : X → X on a metric space X is topologically transitive if
for every pair of open sets U, V ⊂ X there exists n such that fn(U) ∩ V ̸= ∅.

Noting that all non-empty open sets have positive Lebesgue measure, topological transitivity
implies that any non-negligible set U visits every region of the domain as we iterate f . Ergodicity,
then, is a necessary condition for mixing behaviour, but it does not constitute a full definition.

Consider the following classical example. Let X be the unit circle S1 = [0, 1] with 0 ∼ 1. Let
f(x) = x + α mod 1 where α is irrational, which preserves the induced Lebesgue measure µ on
X. It is not too hard to show that f is ergodic (see e.g. Brin and Stuck, 2002) but it is certainly
not mixing. Indeed if we segregate the domain into two, X = X1 ∪X2 := [0, 1/2) ∪ [1/2, 1), and
iteratively apply f we see that the interface between the subsets does not become progressively
more intricate, nor are the subsets interwoven. For f to be mixing, we should expect each subset
to be spread ‘evenly’ around the domain, i.e. for positive measure sets A,B ∈ A we expect that
the fraction of B which ends up in A approaches the proportion of A to the whole domain X. That
is,

µ(fn(B) ∩A)
µ(B)

→ µ(A)

µ(X)
.

Now for µ(X) = 1,

Definition 1.6. We say that f : X → X is (strong) mixing if

lim
n→∞

µ(fn(B) ∩A) = µ(A)µ(B).

As mentioned in section 1.1, mixing by chaotic advection relies on an iterative stretching pro-
cess, an idea we now make more precise. First we recall some basic dynamical systems termi-
nology. Let X be a Riemannian manifold, assume (for now) that f : X → X is a diffeomor-
phism with Jacobian Dfx at x ∈ X. If f preserves the Lebesgue measure on X, necessarily
this matrix has determinant 1. Given a point x ∈ X, we define its orbit as the bi-infinite se-
quence . . . , f−n(x), . . . , f−1(x), x, f(x), . . . , fn(x), . . . . We say that x is periodic with period m

if {fn(x) |n ∈ Z} is finite with cardinality m. Fixed points are those x ∈ X with f(x) = x, i.e.
periodic with period 1. If at such an x the Jacobian Dfx has eigenvalues off the unit circle, we call
it a hyperbolic fixed point.

A simple example is given by f : R2 → R2, f(x1, x2) = (x1/Λ,Λx2) where Λ > 1 is a constant.
It admits a single fixed point p = (0, 0) on which the Jacobian has eigenvalues Λ±1. Part of an
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(1,1)

(0,0)

shear

(2,3)

(0,0)

(mod 1)

Figure 1.3: Action of the cat map on the torus. Horizontal then vertical shears map the unit
square to a parallelogram in [0, 2] × [0, 3], split into 4 regions by the lines x, y ∈ Z. Modding out
by 1 then places these regions onto the original square.

orbit fn(x) near p is plotted in Figure 1.2. As time progresses, the point is drawn towards the
x2-axis and repelled from the x1-axis, sketching out the hyperbola x1x2 = const. which passes
through x. Note that the axes are invariant under f , with Df =

(
1/Λ 0
0 Λ

)
expanding the x2-axis:

Df (0, 1)T = (0,Λ)T and contracting the x1-axis: Df (1, 0)T = (1/Λ, 0)T . Conversely in backwards
time Df−1 contracts (0, 1)T and expands (1, 0)T We call these the unstable and stable directions
respectively, which generate vector subspaces Eu = ⟨(0, 1)T ⟩, Es = ⟨(1, 0)T ⟩. Note that the tangent
space at p splits as TpR2 = Es ⊕ Eu; this trait defines (uniform) hyperbolicity beyond a single
fixed point. Given an orbit fn(x), we define the associated cocycle as the product of Jacobians

Dfnx = Dffn−1(x) · ... ·Dff(x) ·Dfx.

Definition 1.7 (Sturman et al., 2006). A diffeomorphism f : M → M of a compact Riemannian
manifold M is Anosov if there exists constants c > 0, 0 < λ < 1 and a continuous splitting of the
tangent space TxM = Es

x ⊕ Eu
x at each x ∈M such that

• DfxE
s
x = Es

f(x),

• DfxE
u
x = Eu

f(x),

• ∥Dfnx v∥ ≤ cλn∥v∥ for v ∈ Es
x,

• ∥Df−n
x v∥ ≤ cλn∥v∥ for v ∈ Eu

x .

The fact that the constants c, λ can be defined globally (i.e. independent of x) such systems
are referred to as uniformly hyperbolic. A canonical example is the Cat Map (Arnol’d and Avez,
1968), which composes orthogonal shears on the two dimensional torus T2, taken as the unit square
[0, 1]2 mod 1. Shearing provides a measure preserving mechanism for stretching out fluid parcels
into thin filaments. The periodic boundaries of T2 then interweave these filaments, making this
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a natural model of stretching and folding in a bounded domain. Parameterising T2 by (x, y) ∈
(R/Z)2, the map H = G ◦ F : T2 → T2 can be expressed pictorially as

or in matrix form as(
x

y

)
7→

(
1 0

1 1

)
︸ ︷︷ ︸

DG

(
1 1

0 1

)
︸ ︷︷ ︸

DF

(
x

y

)
mod 1 =

(
1 1

1 2

)
︸ ︷︷ ︸

M

(
x

y

)
mod 1,

where DF , DG denote the Jacobians of the maps F , G and DH = M . The action of H is
shown in Figure 1.3. One can verify that the pair of shears together with the periodic boundaries
gives an area preserving diffeomorphism on T2. The fact that H can be defined using a single
hyperbolic matrix M allows for straightforward proofs of its ergodic properties (see e.g., Brin and
Stuck, 2002). Figure 1.4 gives a visualisation of its mixing behaviour, showing the forward images
of two initially segregated regions over 4 iterates. Letting λ = (3 −

√
5)/2, the matrix M has

eigenvalues λs = λ < 1 and λu = 1/λ > 1 with corresponding eigenvectors vs, vu. As M contracts
vs and expands vu we refer to these as the stable and unstable eigenvectors respectively. The
vector subspaces generated by these eigenvectors give the splitting described in Definition 1.7, as
M is constant the unstable and stable directions are the same at every point on the torus, as
are the rates of stretching and contraction. This is reflected in the striation width of the red
and blue strips of Figure 1.4, decaying like λn in the direction vs. As we iterate H the laminate
structure becomes finer and finer, spreading each region increasingly evenly around the domain,
and the mixing property follows. The length of the interface between the two regions grows as
λ−n, starting initially parallel to (0, 1)T and tending towards vu as we iteratively apply H.

While the regimented mixing resulting from uniform hyperbolicity may be desirable, it is far
from realistic in physical laminar mixing systems where the rates and directions of stretching,
contraction are typically non-uniform. Lypanunov exponents help us characterise more general
hyperbolicity in these systems.

Definition 1.8. Given f : X → X, the Lyapunov exponent χ(x, v) at the point x ∈ X in the
direction v is defined as

χ(x, v) = lim
n→∞

1

n
log ∥Dfnx v∥.

Lyapunov exponents measure the average exponential rate of expansion over vectors v ∈ TxX
under the cocycle associated with the orbit fn(x).

Definition 1.9 (Chernov and Markarian, 2006). A point x ∈ X is said to be hyperbolic if Lyapunov
exponents exist at x and none of them equals 0.

A map f : X → X is said to be hyperbolic if almost every point x ∈ X is hyperbolic.

Existence of Lyapunov exponents follows from Oseledets’ theorem (Oseledets, 1968). Para-
phrasing from Viana (2014), a general form in two dimensions is as follows. Let log+(·) =

max{log(·), 0} and write the operator norm as || · ||op. For p ≥ 1 denote by Lp the space of
measurable functions f : X → R such that ∥f∥p =

(∫
|f |p dµ

)1/p
<∞.
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vu

vs

Figure 1.4: Mixing behaviour of the Cat Map on two initially regions. The orthogonal shears
stretch out the regions into thin filaments which are then interwoven by the periodic boundaries.
The eigenvectors vu, vs of the defining matrix M give the directions of expansion and contraction.

Theorem 1.1 (Oseledets, Viana). Let F : X ×R2 → X ×R2 be given by F (x, v) = (f(x), A(x)v)

for some µ-preserving map f on a 2-dimensional manifold X and some measurable function A :

X → GL(2). Suppose log+ ∥A±1∥op ∈ L1 and define

λ+(x) = lim
n→∞

1

n
log ∥An(x)∥op, λ−(x) = lim

n→∞

1

n
log ∥(An(x))−1∥−1

op ,

where An(x) = A(fn−1(x)) · ... ·A(f(x)) ·A(x). Then for almost every x ∈ X,

1. either λ−(x) = λ+(x) and

lim
n→∞

1

n
log ∥An(x)v∥ = λ±(x) ∀v ∈ R2 \ {0}

2. or λ+(x) > λ−(x) and there exists a vector line Es
x ⊂ R2 such that

lim
n→∞

1

n
log ∥An(x)v∥ =

{
λ−(x) for v ∈ Es

x \ {0},

λ+(x) for v ∈ R2 \ Es
x.

Corollary 1.1. Further assuming that A takes values in SL(2) gives λ−(x) = −λ+(x). Hence if
at some x there exists v0 ∈ R2 with limn→∞

1
n log ∥An(x)v0∥ ≠ 0, then limn→∞

1
n log ∥An(x)v∥ ≠ 0

for all non-zero vectors v.

Applying this corollary to the cocycle generated by derivatives Dfx gives an efficient scheme
for establishing non-zero Lyapunov exponents. Let An(x) = Dfnx , which takes values in SL(2)
when f preserves the Lebesgue measure. If there exists v0 such that ∥Dfnx v0∥ grows exponentially
with n, Corollary 1.1 gives χ(z, v) ̸= 0 for all v ̸= 0. Note that the choice of norm is unimportant
here, norm independence of Definition 1.8 follows from equivalence of norms on finite dimensional
vectors spaces and the fact that 1

n log c → 0 for any constant c > 0. Similarly the magnitude of
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the starting vector v is unimportant: χ(x, cv) = χ(x, v) for any c ̸= 0.
For the Cat Map, it is straightforward to show (see e.g. Sturman et al., 2006) that Lyapunov

exponents are non-zero everywhere and are given by

χ(x, v) =

log λs for v ∈ ⟨vs⟩ \ {0},

log λu for v ∈ R2 \ ⟨vs⟩.

The rest of this chapter describes conditions under which hyperbolic systems are ergodic and
mixing. First, though, we conclude this section with some defining features of ergodic and mixing
systems. Define observables as measurable functions φ : X → R. With fluid mixing applications in
mind these could represent measurements such as temperature or concentration, but we keep their
definition more general. Studying the effect of f on φ, i.e. comparing the measurements φ ◦ fn

and φ, gives an alternate functional framework for understanding the mixing dynamics of f . We
call an observable φ essentially invariant if φ ◦ f = φ almost everywhere.

Proposition 1.1. The following are equivalent:

(1) (X,A, µ, f) is ergodic.

(2) Every essentially invariant observable is constant.

(3) For each φ ∈ L1 and a.e. x ∈ X,

φ̂(x) = lim
n→∞

1

n

n−1∑
k=0

φ(fk(x)) =

∫
φdµ. (1.1)

(4) For all A,B ∈ A,

lim
n→∞

1

n

n−1∑
k=0

µ(fk(B) ∩A) = µ(A)µ(B).

Proofs of the above are standard, found in e.g. Petersen (1983), Brin and Stuck (2002). Each
can be taken as definitions of ergodicity and can potentially offer a more efficient path to estab-
lishing the property, for example the functional approach of (2) may be easier than dealing with
measurable sets. Property (3) follows from the Birkhoff ergodic theorem (see Brin and Stuck,
2002) and states that in ergodic systems, time averages φ̂ and space averages are equal for L1

observables. Taking φ as the indicator function

χA(x) =

1 x ∈ A,

0 otherwise,

for measurable A, a useful corollary is that the proportion of time an orbit spends in A approaches
µ(A) as we consider more and more iterates. We will make use of this in section 7.1. Statement (4)
clarifies the link between ergodic and mixing properties, which we may also express in functional
form:

Proposition 1.2. The following are equivalent:

(1) (X,A, µ, f) is mixing.

(2) |Cn(φ,ψ, f, µ)| → 0 as n→ ∞ for all L2 observables φ,ψ where

Cn(φ,ψ, f, µ) =

∫
(φ ◦ fn)ψ dµ−

∫
φdµ

∫
ψ dµ.

We refer to Cn as the correlation function and consider results on its decay rate in section 2.3.
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1.5 Proving mixing properties

We give a brief outline here, aiming to describe the relevant theorems in the context of laminar
mixing rather than providing a detailed historic overview. Such an overview can be found in
Chernov and Markarian (2006). When proving mixing properties in later chapters, our approach
will be to apply a theorem of Katok and Strelcyn (1986) which gives conditions under which a
broad class of hyperbolic systems (in particular those with singularities) are mixing. To state it
we require some preliminary definitions.

The first of these is the Bernoulli property. Roughly speaking, a system (X,A, µ, f) being
Bernoulli (equivalently ‘having the Bernoulli property’) implies that it behaves as randomly as
possible. Its name derives from Bernoulli trials, the random process of repeatedly flipping a fair
coin. For our purposes, we do not require a precise definition. A more detailed treatment, with
systems relevant to fluid mixing applications in mind, is provided in Sturman et al. (2006) and
Springham (2008). Its relevance to our applications is that Bernoulli systems are automatically
strong mixing. Indeed we have

Bernoulli =⇒ strong mixing =⇒ ergodic,

referred to as the ergodic hierarchy for measure preserving systems.
When studying the Cat Map, we saw that the hyperbolic behaviour in the tangent space

manifested itself in the dynamics of H on the torus itself. The Hadamard-Perron theorem describes
this link for general Anosov systems. Given a metric space (M,d), let Br(x) denote the ball of
points y such that d(x, y) < r.

Theorem 1.2 (Hadamard-Perron, Sturman et al., 2006). Let f : M → M be an Anosov diffeo-
morphism. Then for each x ∈M there exist local stable and unstable manifolds

γs(x) = {y ∈ Br(x)(x) d(fn(y), fn(x)) → 0 as n→ ∞}

γu(x) = {y ∈ Br(x)(x) d(f−n(y), f−n(x)) → 0 as n→ ∞}

of the same dimension as, and tangent to, the subspaces Es
x and Eu

x respectively. The local man-
ifolds γs(x) and γu(x) are as smooth as f (so in particular, they are differentiable, since f is a
diffeomorphism). The size of the local stable and unstable manifolds at x is given by the radius
r(x) of the ball Br(x)(x), and moreover there is a uniform bound r(x) ≥ r′ > 0 for all x ∈M .

For the Cat Map, it is easy to see that at every x, the local manifolds are the line segments
passing through x parallel to vs, vu. Analogous constructions hold for non-uniformly hyperbolic
diffeomorphisms f , in particular at points x ∈ X with non-zero Lyapunov exponents (see Pesin,
1977). A key difference is that the size of these manifolds is no longer uniformly bounded away
from 0; they can be arbitrarily small. Pesin also shows that nonuniform hyperbolicity ensures
the existence of an ergodic partition. Let Λ denote the set of points x with non-zero Lyapunov
exponents χ(x, v) ̸= 0 for all vectors v ̸= 0.

Theorem 1.3 (Pesin, 1977). There are sets Λi ⊂ Λ, i = 0, 1, 2, . . . such that

1. Λi ∩ Λj = ∅, i ̸= j,
⋃

i≥0 Λi = Λ,

2. µ(Λ0) = 0, µ(Λi) > 0 for i > 0,

3. f(Λi) = Λi,

4. The restricted map f |Λi
: Λi → Λi is ergodic for i > 0.
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We now wish to connect up these positive measure components, showing that their union
forms one large (full measure) ergodic component. The classical technique to achieve this is the
construction of a Hopf chain (originally Hopf, 1939, 1940, see also Coudène, 2016; Wilkinson, 2009)
of local stable and unstable manifolds. In short, time averages are constant on both local manifolds
and the ergodic components so if any Λi can be connected to any other Λj via a chain of local
manifolds, time averages agree over all components and are therefore constant almost everywhere.
Ergodicity then follows by (3) of Proposition 1.1. In practice, since in non-Anosov systems local
manifolds can be arbitrarily small, a Hopf chain may be difficult to construct in the non-uniformly
hyperbolic setting. Assuming the Λi, i > 0, are open (see Pesin, 1977), topological transitivity
would also suffice to extend local ergodicity over the components Λi to their union.

Pesin further describes a countable partition into Bernoulli components. This was then gener-
alised in Katok and Strelcyn (1986) to a wider class of maps f : X → X, so called ‘smooth maps
with singularities’. Paraphrasing Sturman et al. (2006),

Theorem 1.4 (Katok and Strelcyn). Let (X,F , µ, f) be a measure preserving dynamical system
such that f is C2 smooth outside of a singularity set S. Suppose that the Katok-Strelcyn conditions
hold:

(KS1): ∃ a,C1 > 0 s.t. ∀ ϵ > 0, µ(Bε(S)) ≤ C1ε
a.

(KS2): ∃ b, C2 > 0 s.t. ∀x ∈ X \ S, ||D2
xf || ≤ C2 d(x, S)

−b.

(KS3): Lyapunov exponents exist and are non-zero almost everywhere.

Then at almost every x we can define local unstable and stable manifolds γu(x) and γs(x). Suppose
that the manifold intersection property holds:

(M): For almost any x, x′ ∈ X, ∃m,n s.t. fm(γu(x)) ∩ f−n(γs(x
′)) ̸= ∅.

Then f is ergodic. Furthermore the Bernoulli property holds, provided we can show the repeated
manifold intersection property:

(MR): For almost any x, x′ ∈ X there exists M,N such that for all m > M and n > N , fm(γu(x))∩
f−n(γs(x

′)) ̸= ∅.

We will rely on this theorem to prove mixing properties in later chapters so it is worth tak-
ing a moment to dissect its contents and give some context with laminar mixing applications in
mind. (KS1-2) are technical conditions on the influence of the singularity set, ensuring that it
is sufficiently small with respect to the measure µ (KS1) and that the second derivative of f
doesn’t ‘blow-up’ too fast in its vicinity (KS2). For spaces X of dimension 2 and above, what
we mean by the second derivative requires a technical definition, see for example the appendix of
Przytycki (1983). We simply remark here that (KS2) is trivially satisfied by piecewise linear trans-
formations. (KS3) is the hyperbolicity assumption which, together with (KS1-2), guarantee the
existence of local manifolds and a partition of X into Bernoulli components. The final conditions
(M), (MR) say that these components can be linked via images of these manifolds, giving global
ergodic and Bernoulli properties. In a fluids context, local stable and unstable manifolds roughly
describe the characteristic local flow direction in backwards and forwards time respectively (see
for example Beigie et al., 1994). The way in which parcels of fluid are stretched and spread across
the domain is then described well by the images of these local manifolds, and mixing properties
follow from intersection conditions on these images: (M) says that fluid parcels are spread all
around X (achieving topological transitivity), the stronger condition (MR) then guarantees that
they remain spread over subsequent stirs.
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Chapter 2

Applications and Modern
Advancements

2.1 Link to physical systems

The Cat Map, and similar systems which alternate orthogonal shears, serve as a simple model for
hand mixers where a pair of blades rotate in opposite directions, shearing a common fluid domain
horizontally, vertically, horizontally, and so on. That no material is lost in the mixing process
is modelled by the periodic boundaries of the torus. Dubbed ‘eggbeater flows’ (Ottino, 1989a),
these time dependent (i.e. unsteady) flows possess a necessary phenomenon for good mixing in
two dimensions: streamline crossing. In steady two dimensional flows mixing is necessarily poor
(Franjione and Ottino, 1992) with fluid parcels forever confined to their streamlines. Alternating
between two flows with intersecting streamline patterns provides a way of escaping this confinement.
An example of a simple eggbeater flow is sketched below.

Franjione and Ottino (1992) provide numerical illustrations of the dynamics typical to eggbeater
flows, defining symmetries which simplify their theory and may be exploited to optimise mixing
quality. Physical implementations of these flows are explored, including three dimensional pipe
flows with immediate engineering applications.

A more direct implementation is considered in Hertzsch et al. (2007), where mixing in a DNA
hybridisation chamber is achieved using alternating flows between ‘source-sink’ pairs. The depth of
the cylindrical chamber is assumed small enough that vertical variations in velocity are negligible
and a Hele-Shaw cell approximation holds. The flow induced by each pair is then well modelled
by that of fluid moving around a disk D with no-slip boundary conditions at its boundary ∂D.
Given a source-sink pair z+, z′− ∈ D, the streamline pattern consists of families of curves joining
z+ to z−, foliating D right up to its boundary, near which the contours limit onto near circular
arcs. When fluid reaches z− it is immediately reinjected at z+ along the same streamline, achieved
in practice by a pumping mechanism. As before, alternating between two sink-source pairs allows
fluid parcels to escape their starting streamlines and spread around D. The resulting system can
be linked to the eggbeater flows described above, achieved by ‘pinching together’ the sides of the
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torus perpendicular to the flow direction.
The location of the pairs in D and their ‘pump times’ (the time duration each pair is activated)

give control parameters for maximising mixing quality. Their analogues in the eggbeater model
are the foci of the shears (where the shears peak, half way along the domain the illustration above)
and their strength (the magnitude of the shear peak). Numerical simulations reveal mixing to
be poorest near the boundary ∂D where streamline patterns for each pair are barely transversal,
both limiting onto the outer circular boundary in a similar fashion. Mixing can be improved in
these regions by placing the source-sink pairs closer to the boundary, resulting in stronger local
transversality. The analogue to this in the eggbeater model is to push the foci of the shears away
from the centre, resulting in shears that are nearly monotonic over their domain, barring some
thin strip towards the edge. As a result the shears more closely resemble those of the Cat Map,
with known excellent mixing behaviour.

2.2 Mixing properties of stretching and folding models

In this section we review the application of ergodic theory techniques to prove mixing properties of
simple stretching and folding models. Many of the systems can be thought of as ‘Cat Map variants’,
similarly composing orthogonal shears on the torus but incorporating some feature which mimics
a phenomenon found in laminar mixing applications. Typically this breaks the Anosov property,
introducing singularities or non-uniform hyperbolicity.

Our first example is the Sawtooth Map, studied in Vaienti (1992). Letting α > 0, it takes the
form H = G ◦ F : T2 → T2 where F (x, y) = (x+ αy, y), G(x, y) = (x, x+ y) so that setting α = 1

recovers the Cat Map. We sketch the map for α < 1 below.

α

More generally, when α ∈ N the map H is a hyperbolic toral automorphism, uniformly hyperbolic
with easily provable mixing properties. When α is not integer valued, the map is discontinuous.
Action of the map on two initially segregated regions is shown in Figure 2.1. Comparing with
the same visualisation of the Cat Map (Figure 1.4) we see similar behaviour, with the stretching
and folding action mixing the domain, however not in such a uniform fashion. This is due to the
discontinuity over D = {(x, y) | y = 0} causing a ‘cutting and placing’ effect. The images of this
discontinuity D4 = ∪4

k=1H
k(D) are plotted in the fifth frame, showing the regions which have been

cut and realigned under H, . . . ,H4. Towards the edges of the magnified section we see that this
can aid mixing; when D4 lies on the red-blue interface, it means that each region has been cut and
placed alongside the other, resulting in thinner striations. In contrast, towards the top right of the
magnified section we see that a blue region has been cut only to be realigned next to another blue
region, so mixing is not enhanced. These situations together give non-uniform decay of striation
widths and non-uniform mixing as a result.

Cutting together with stretching and folding forms the basis for the design of several laminar
mixing devices, e.g. the partitioned pipe mixer (Khakhar et al., 1987; Mezić et al., 1999) and
the Kenics static mixer (Galaktionov et al., 2003). For a more detailed review of mixing by
discontinuous maps see Sturman (2012), Kreczak (2019).
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Figure 2.1: Mixing behaviour of the Sawtooth Map at parameter value α = 0.6. The forward
images of discontinuity line are plotted in the fifth frame, showing regions that have been ‘cut and
placed’. The magnified section illustrates regions where this has aided mixing, aligning red next
to blue, and others where it has not.

Returning to H, we may define Lyapunov exponents outside of the set D∞ =
⋃

k∈ZH
k(D), i.e.

the points x whose orbit never lands on D, so the associated cocycle is well defined. As µ(D) = 0,
so too is µ(D∞) and Lyapunov exponents exist almost everywhere. They are non-zero, analogous
to the Cat Map, by hyperbolicity of the constant Jacobian DH. The set D trivially satisfies (KS1-
2), so T2 partitions into a countable collection of ergodic components. Vaienti constructs a Hopf
chain, linking up the components via local manifolds to establish ergodicity (and stronger mixing
properties, following the work of Wojtkowski, 1981). While (like the Cat Map) the geometry of
these manifolds is quite simple, being parallel to the eigenvectors of DH, they are cut up into
arbitrarily small pieces by D∞ which aggravates analysis. The construction uses the method of
regular coverings, developed to prove ergodicity in billiards systems of hard balls. See §6.1 of
Chernov and Markarian (2006) and the references therein for an overview. Billiards often serve
as motivating examples for the development of new techniques to study statistical properties of
hyperbolic systems. They are, in general, far more complicated than the toral maps considered
here but their analysis shares many common attributes: encoding the dynamics in a Poincaré map,
showing that expansion via hyperbolicity dominates the cutting up effect of singularities, studying
recurrence to regions of strong hyperbolicity. We explore this relationship further in section 2.3,
looking first at a system where this ‘recurrence’ is central to its mixing behaviour.

As alluded to in section 1.1, see also Gouillart et al. (2008, 2007), walls bounding a fluid domain
impact finite time mixing quality and the rate of mixing within. Incorporating this behaviour into
simple stretching and folding models, Linked Twist Maps (hereafter LTMs) serve as a paradigm
for chaotic mixing in the presence of a boundary. Encompassing a broad class of maps, LTMs can
be defined on two dimensional manifolds beyond the torus, including the 2-sphere (Springham,
2008) and the plane (Springham and Wiggins, 2010). Here we restrict our focus to toral LTMs,
which are directly related to the maps studied in subsequent chapters. For (x, y) ∈ T2, consider
horizontal and vertical annuli P = {(x, y) | y0 ≤ y ≤ y1} and Q = {(x, y) |x0 ≤ x ≤ x1}. Write
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R \ P

R \QS = P ∩Q

F G

Figure 2.2: A linked twist map H = G ◦ F on the region R = P ∪ Q ⊂ T2. The boundary ∂R is
drawn in red, noting the periodic boundaries of T2.

their intersection as S = P ∩Q, union as R = P ∪Q. Define a horizontal shear F : R→ R by

(x, y) 7→

(x+ f(y), y) (x, y) ∈ P,

(x, y) otherwise,

where f : [y0, y1] → R is a C2 function satisfying

• f(y0) = 0,

• f(y1) = k for some k ∈ Z,

• f ′(y) ̸= 0 for y0 < y < y1 (monotonicity).

We call f a twist function. Similarly define vertical shears G : R→ R,

(x, y) 7→

(x, y + g(x)) (x, y) ∈ Q,

(x, y) otherwise,

for twist functions g : [x0, x1] → R, g(x1) = l ∈ Z. It follows that the composition H = G ◦ F :

R→ R is continuous, preserves the normalised Lebesgue measure µ on R, and leaves the rectangle
∂R invariant. Imposing

f ′(y0) = f ′(y1) = g′(x0) = g′(x1) = 0 (2.1)

ensures that H is a diffeomorphism. Otherwise it satisfies the conditions to be a smooth map with
singularities (Katok and Strelcyn, 1986). When the twist functions are piecewise linear, so too is
H. The relative signs of the twist functions f, g significantly impact the dynamics. We class LTMs
as co-rotating if the twists have the same sign (kl > 0), counter-rotating if they have different
signs (kl < 0). We focus first on co-rotating LTMs; an example is sketched in Figure 2.2 with
f(t) = g(t) = 3t/2, x0 = y0 = 0, x1 = y1 = 2/3.

We remark that taking x0 = y0 = 0, x1, y1 → 1 shrinks the complement X \R and we recover
the Cat Map for f = g = Id. For x1, y1 < 1 the invariant set ∂R forms the ‘boundary’ of the
model on which, barring the corner points, we shear in only one of the two orthogonal directions.
This behaviour extends into the fluid bulk, giving regions Pn, Qn on which Hn is given by Fn, Gn

respectively. These are clearly visible in the visualisation of Figure 2.3, contained within the
persistent unmixed red and blue regions respectively. For (x, y) ∈ Pn for example, the behaviour
in the tangent space over these n iterates is determined by

DHn = DFn =

(
1 f ′(y)

0 1

)n

=

(
1 nf ′(y)

0 1

)
,
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Figure 2.3: Mixing behaviour of the co-rotating piecewise linear linked twist map shown in Figure
2.2.

which is non-hyperbolic. Eventually, though, Fn(x, y) will hit S = P ∩ Q (Burton and Easton,
1980) and is subsequently sheared vertically some m ≥ 1 times by G until it lands in S once
more. The cocycle DGmDFn associated with this mapping (x′, y′) = Hn+m−1(x, y) is necessarily
hyperbolic. We may decompose any orbit in this way, logging returns to S, splitting the associated
cocycle into hyperbolic blocks DGmDFn. This forms the basis for establishing hyperbolicity in
co-rotating LTMs. Importantly, since each block will stretch and contract in different directions,
we must check that expansion from one block is not immediately undone by contraction from
the next. Cones are the standard tool for ensuring this does not occur, which we define formally
in Chapter 3. They ensure that all the blocks have roughly similar directions of stretching and
contraction, so no ‘unstirring’ occurs. Figure 2.3 illustrates this. We see that on successive returns
to S, fluid parcels are stretched in varying directions but we could bound these directions by a
fairly small gradient range. Existence of such a cone rests, in this case, on the twist functions being
co-rotating and monotonic.

Indeed if we flip the sign of g, (essentially considering the map H = G−1 ◦ F with F and G

as given in Figure 2.2) no such invariant cone exists and unstirring occurs. Figure 2.4 illustrates
this, showing the effect of H2, H4, H6, H24 on two initially segregated regions. The wide range
in gradients of the line segments making up the red-blue interface in S highlight the inconsistent
directions of stretching and contraction. As more and more iterates are considered, a heterogeneous
phase space emerges with non-mixed ‘island’ structures interspersed within a well mixed ‘sea’.
Together these island structures form an invariant positive measure set, so H is non-ergodic and
by extension non-mixing. We cover island structures more rigorously in Chapter 3, establishing
conditions under which they exist and what determines their measure.

We now give a brief summary of proven (measure theoretic) mixing results for toral LTMs. For
an account of earlier planar LTMs, topological mixing results, and more details see Sturman et al.
(2006) and Springham (2008). In Burton and Easton (1980), existence of an ergodic partition
is shown for smooth (i.e. twists satisfying equation 2.1) co-rotating toral LTMs. A geometric
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Figure 2.4: Mixing behaviour of a counter-rotating piecewise linear linked twist map over 2,4,6,24
iterates.

argument sketches out how this extends to the global Bernoulli property. Wojtkowski (1980)
considers linear twist functions, showing the Bernoulli property∗ for kl > 0 (co-rotating) and the
existence of an ergodic partition for kl < −4, where the twists are strong enough to form an
invariant cone. Przytycki (1983) then follows the Katok and Strelcyn approach, giving conditions
under which counter-rotating LTMs with linear twists satisfy (MR) and are therefore Bernoulli.
Noting the monotonicity condition for twist functions f and g, we may define their non-zero
(signed) strengths as

α =


inf

y0≤y≤y1

f ′(y) if k > 0,

sup
y0≤y≤y1

f ′(y) if k < 0,
β =


inf

x0≤x≤x1

g′(x) if l > 0,

sup
x0≤x≤x1

g′(x) if l < 0.

Przytycki shows that αβ < −C0 ≈ −17.244 and |k|, |l| ≥ 2 are sufficient conditions to prove (MR).
The key step is showing that the images of local manifolds Hn(γu), H

−n(γs) grow exponentially in
diameter, a necessary requirement to establish an intersection given that (by non-uniform hyperbol-
icity) the local manifolds may be arbitrarily small. In the co-rotating case this is straightforward,
Hn(γu) is piecewise linear monotonic curve whose diameter is the sum of the diameters of its con-
stituent line segments. Exponential growth can then be deduced by considering returns to S and
bounds on expansion factors derived from the invariant cone. In the counter-rotating case diameter
growth is not so straightforward. While the overall length of Hn(γu) may grow exponentially by
a similar cone construction, monotonicity is no longer assured. This means that the curve may
repeatedly fold in on itself, staying confined to a small region of the domain, and never meeting
H−n(γs). Such a ‘doubling back’ effect is illustrated clearly in the acute angles of Figure 2.4,
akin to the sharp kinks we would see in forward images of local unstable manifolds. To establish
sufficient diameter growth, then, we require that some individual line segment in Hn(γu) grows

∗Wojtkowski actually shows the K-mixing property which sits between mixing and Bernoulli in the ergodic
hierarchy. The Bernoulli property then follows from Chernov and Haskell (1996).
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exponentially in diameter and we disregard the rest. Przytycki gives a concise argument for the
existence of such a line segment, relying on periodicity specific to linear toral LTMs. We will return
to toral LTMs in section 2.3, first covering some other Cat Map variants.

The Katok Map (Katok, 1979) breaks the uniform hyperbolicity of the Cat Map by slowing
down trajectories near the fixed point (0, 0) until this point becomes neutral. We do not state its
lengthy definition here, see either the original work or Barreira and Pesin (2002). The key aspect of
this ‘slow down’ is that it preserves features of the original map (e.g. smoothness), indeed they are
topologically conjugate. A Pesin theory approach can be followed to establish mixing properties.
Maps of this form can be thought of as almost Anosov, hyperbolic outside of some finite set of
neutral points. Sitting at the edge of uniform hyperbolicity, they are typically more approachable
than other non-uniformly hyperbolic maps.

A further Cat Map variant is found in Liverani (2004). Making a change of coordinates, we can
think of the map Tε as the Cat Map H = G◦F with F replaced by the shear (x, y) 7→ (x+f(y), y)

where f(y) = y − 1+ε
2π sin(2πy), ε ≥ −1. At ε = −1 we recover the Cat Map and any perturbation

ε > −1 gives a shear that is non-linear and smooth. The map is Anosov for −1 < ε < 0 and
non-uniformly hyperbolic at ε = 0; mixing properties at this parameter value follow from the
existence of an invariant cone. Outside of this parameter range, the map admits elliptic islands, so
is non-mixing. We note that this mixing window corresponds to the parameter range over which
f is non-decreasing. Indeed, in all of the models above, monotonicity of the Cat Map shears has
been preserved and has been relied upon to establish mixing properties.

The diverse behaviour possible from removing the monotonicity condition is best illustrated
by the Chirikov Standard Map (Chirikov, 1971). Defined as Liverani’s example above but with
f(y) = K

2π sin(2πy), the map is integrable at K = 0 and nonlinear for K > 0. As such it serves
as a classic example of ‘transition to chaos’. Analysis of the system is famously challenging with
many open questions still remaining, e.g. are there values of K for which the map is ergodic?
See Giorgilli and Lazutkin (2000) for a more detailed discussion. Simpler examples have been
constructed where analysis is tractable using known techniques. A piecewise linear version of the
standard map was studied in Bullett (1986); Wojtkowski (1981), where f(y) = A (|y − 1/2| − 1/4),
and shown for certain parameter values to be hyperbolic (A ≥ 4) and mixing (A > A0 ≈ 4.0329).
Similar to Przytycki (1983), hyperbolicity (and by extension the mixing property using a similar
approach to Wojtkowski, 1980) are achieved by taking stronger and stronger shears. For A < 4

the map exhibits island structures surrounded by a chaotic sea. Over a countable parameter
subset S ⊂ [2, 4) a single polygonal island forms on which the map is periodic, rather than the
quasi-periodicity seen in ellipse shaped islands for generic parameters A /∈ S. Over S, Wojtkowski
establishes hyperbolicity outside of this island structure, relying on cone constructions. Strong
mixing properties over this chaotic domain follows from the work of Liverani and Wojtkowski
(1995), see their §14B. Smaller positive parameter values A ≈ 0 are the focus of Wojtkowski
(1982); coexistence of elliptic and chaotic behaviour is similarly observed, hyperbolicity shown
over a domain shrinking in measure (asymptotically) like A

16 ln
1
A (1 + o(1)) as A→ 0.

A further non-monotonic toral map is considered in Cerbelli and Giona (2005), retaining the
linear vertical shear of the Cat Map but replacing its horizontal shear by a ‘tent’ shaped profile,
see Figure 2.5(a). The map can be expressed as H : (x, y)T 7→ DH · (x, y)T mod 1, where

DH =


DH1 =

1 2

1 3

 0 < y < 1
2 ,

DH0 =

1 −2

1 −1

 1
2 < y < 1.
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H(B)
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(b)

Figure 2.5: Cerbelli and Giona’s map toral map H: (a) map definition, (b) effect on a three element
partition of the torus.

Figure 2.6: Mixing behaviour of Cerbelli and Giona’s map over 1,2,...5 iterates. Dashed arrows
show the effect of H2 on the red-blue interface in B, solid arrows show vu in A∪B and DH0v

u in
C.

Taking a phase shift y → y+1/2 mod 1 retrieves Wojtkowski’s example at K = 2. Note that DH1

is hyperbolic whereas DH0 is elliptic. One may expect, a priori, that this would be detrimental to
mixing (indeed Wojtkowski’s example is non-mixing at K = 2). For if H admits any periodic orbit
in the upper annulus 0 < y < 1/2, one or more elliptic islands would necessarily form within it.
However H possesses unique mapping behaviour which prohibits this. Consider the ABC partition
of T2 shown in Figure 2.5(b). One can show that H(A) ⊂ A ∪ B, H(B) = C, and H(C) ⊂ A

so that orbits entering the upper annulus necessarily escape after two iterates of H. Further, the
behaviour in the tangent space during this escape is characterised by DH0DH0 =

(−1 0
0 −1

)
so

that any cocycle can essentially be expressed as DHn
z = (−1)lDHm

1 for some l,m ∈ Z, perhaps
pre-/post-multiplied by DH0. Hyperbolicity follows as a straightforward consequence and mixing
properties can be deduced by more direct means than following the Katok-Strelcyn approach.

A visualisation of its mixing behaviour is given in Figure 2.6. Comparing the first and third
panes, the sign flipping effect of H2 on B is apparent with the dashed line segment (1/2, y),
1/2 < y < 1 on the red-blue interface mapping to (−1/2,−y) mod 1 ≡ (1/2, 1 − y) mod 1, i.e.
the segment (1/2, y), 0 < y < 1/2. Considering more and more iterates of H (and by extension
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more and more stretches by DH1) the interface limits onto two distinct directions vu and DH0v
u,

where vu is the unstable eigenvector of DH1. Similar to the Cat Map, in terms of the local
directions of stretching and contraction, the mixing is quite regimented. Indeed, the gradients of
local unstable manifolds are easily found to be parallel to vu in A ∪ B and DH0v

u in C, defining
a simple invariant unstable foliation. Globally, however, the mixing is non-uniform, owing to some
regions being stretched multiple times upon its return to A and others just once. Analogously,
the images of local manifolds spread around the domain in a non-uniform fashion. The so called
w-measure µw (Giona and Adrover, 1998) quantifies this space filling behaviour and is observed
to be singular (and possess multifractal properties, see Cerbelli and Giona, 2008). From a fluid
mixing perspective, µw provides an asymptotic invariant distribution of interface length between
stretched out fluid parcels. Using the visualisation of Figure 2.6, peaks in µw form where the
striation widths are finest, highlighting the regions where diffusion would play a significant role.
For the Cat Map (and other Anosov systems conjugate to it by a differentiable conjugacy) we
would expect the measure to be non-singular. Note that this excludes Liverani’s example Tε over
−1 < ε < 0, for which the conjugacy is only C0 (see §5 of Cerbelli and Giona, 2005).

The authors define another property of H, further distancing it from Anosov maps. The
alternating-sign property states that given an oriented line segment, its forward images intersect
every ε-ball (topological transitivity) and cross them in both directions. For H, this follows from
the tight folding behaviour around the fixed points (0, 0) and (0, 1/2). MacKay (2006) revises
this definition to the non-orientability of the invariant foliations. As no Anosov map can hold
this property (including Liverani’s example above) the authors propose it to be the ‘watershed’
between uniform and non-uniform chaotic maps. Subsequent literature surrounding Cerbelli and
Giona’s map has approached it in the context of so called pseudo-Anosov maps, first introduced
by Thurston (1988). We do not provide details here (none of the maps in subsequent chapters
appear to possess the property); for a full definition and properties of pseudo-Anosov maps see
Boyland (1994). MacKay (2006) proves the pseudo-Anosov property for H, immediately showing
many of the properties which Cerbelli and Giona proved from first principles. The proof involves
the construction of a finite Markov partition for the map, encoding much of the dynamics of H in
a much simpler system, represented as a subshift of finite type on symbol sequences. See Robinson
(1995) for an introduction; Wright (2018) also studies specific Markov partitions for H.

Several perturbations and generalisations to H have been proposed. Demers and Wojtkowski
(2009) define a countable family of maps preserving the pseudo-Anosov property, constructing
Markov partitions and analysing the associated symbolic dynamics. Perturbations which ‘smooth’
the singularities of the tent shaped shear are commented on in Cerbelli and Giona (2008); MacKay
(2006). While certain aspects of the dynamics may be preserved†, numerical experiments suggest
that mixing with respect to the Lebesgue measure is not one of them. We observe, therefore,
that non-monotonic toral maps with proven mixing properties are quite rare. They fit into two
categories: maps such as Wojtkowski’s where the mixing property follows only from taking stronger
and stronger shears, or maps such as Cerbelli and Giona’s where precise mapping behaviour and
properties of the Jacobian align to produce a pseudo-Anosov transformation. In an industrial
mixing context, these examples correlate to (potentially unnecessary) increased energy expenditure
or systems whose mixing dynamics are potentially too sensitive to perturbations. This motivates
our first research question:

(Q1): Can we perturb Cerbelli and Giona’s map, and still retain mixing with respect to the Lebesgue
measure?

More precisely, we try to answer whether elliptic islands necessarily form under continuous (i.e. pa-
†Following from proven results on perturbations to pseudo-Anosov maps, see MacKay (2006) and the refer-

ences therein. Cerbelli and Giona (2008) provide numerical evidence of preserved properties under their smooth
perturbation.
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rameterised with a real parameter) perturbations to H as we destroy the pseudo-Anosov structure.
With the aim of modelling realistic flow profiles in both shears, our next question asks:

(Q2): Can we construct mixing systems incorporating two non-monotonic shears?

This would move us closer the egg-beater type flows considered in section 2.1. Global mixing has
been observed numerically in such systems, but measure theoretic mixing in the sense of Definition
1.6 has not yet been established. Finally, we explore:

(Q3): What are typical mixing rates in these systems?

That is, what is the rate of decay of |µ(fn(B) ∩ A) − µ(A)µ(B)| with n? Such questions are
answered in the language of ‘decay of correlations’, we review results on this topic in the following
section.

2.3 Establishing mixing rates

Recall from section 1.4 that f : X → X preserving µ is mixing if |Cn(φ,ψ, f, µ)| decays to 0 for all
L2 observables φ,ψ. So far we have only been concerned with whether |Cn| converges to 0, now
we turn our attention to the rate of convergence. That is, what is the rate at which we approach
homogeneity? What is the mixing rate? The decay of |Cn| relates to classical questions on the
statistical properties of dynamical systems, such as the nature of the convergence (1.1). For a
dynamical system (X,A, µ, f) and observable φ : X → R,

∫
φdµ = 0, we say that the central limit

theorem (CLT) holds if the random variable

x→ 1√
n

n−1∑
i=0

φ ◦ f i(x)

(x distributed according to the measure µ) converges in law‡ to a normal distribution N (0, σ2) (see
Baladi, 2001). The variance σ2 is related to autocorrelations Cn(φ,φ, f, µ) by σ2 =

∑∞
n=−∞ Cn

(Chernov and Markarian, 2006) so a prerequisite for the CLT is the summability of Cn. Mixing
(Cn → 0) therefore does not imply the CLT, we require stronger conditions on its decay:

Definition 2.1. We say that f : X → X preserving µ enjoys exponential decay of correlations if
there exists constants 0 < θ < 1 and c(φ,ψ) > 0 such that

|Cn(φ,ψ, f, µ)| ≤ c θn.

Similarly we say that f enjoys polynomial decay of correlations if there exists α > 0 and c(φ,ψ) > 0

such that
|Cn(φ,ψ, f, µ)| ≤ c n−α.

It is easy to see that correlations are summable in the exponential case but this condition
generally fails in the polynomial case for α ≤ 1. In non-uniformly hyperbolic systems, polynomial
decay of correlations is typical (Hu, 2001) and so the CLT may fail with the standard

√
n scaling.

This slow decay can aggravate numerical studies, e.g. calculating Lyapunov exponents, whose
convergence is observed to follow a similar law. In the discussion above we have imposed minimal
conditions on the observable φ, merely that it is real valued. Typically we state an explicit function
space Φ(X) and say e.g. that correlations decay exponentially for f for φ ∈ Φ(X).

Definition 2.2. Let a > 0. We say that φ : X → R is Hölder continuous with exponent a if there
exists C > 0 such that |φ(x)− φ(x′)| ≤ Cd(x, x′)a for all x, x′ ∈ X.

‡Equivalently ‘converges in distribution’.
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The space of Hölder continuous functions is a common choice for Φ(X) and, unless explicitly
stated otherwise, can be assumed for the rest of this section. With fluid mixing observables in mind
(e.g. temperature, concentration) imposing this regularity on φ is reasonable as such observables
are assumed to be smooth or at least piecewise smooth.

For linear, uniformly hyperbolic systems like the Cat Map, correlations decay exponentially for
Hölder continuous observables and superexponentially for C∞ observables (Baladi, 2001). Early
approaches to these and more general Anosov systems employed spectral methods, establishing a
spectral gap for the transfer operator. Finite Markov partitions were key here, the symbolic repre-
sentation linking their dynamics to classical one dimensional models of statistical mechanics whose
theory (thermodynamic formalism) could be drawn upon and expanded. For more information see
Bowen (1975); Ruelle (1978).

Development of methods for establishing correlation decay rates in more general hyperbolic
systems was driven by studies of dispersing billiards§. Here the tools developed to deal with
Anosov systems weren’t effective as Markov partitions for the billiards maps were no longer finite,
rendering the symbolic representation inefficient (Chernov and Markarian, 2006). Other efforts
(Bunimovich et al., 1991) yielded suboptimal bounds on decay rates until the seminal work of
Young whose construction (commonly referred to as a Young tower) established exponential decay
of correlations for certain dispersing billiards, first using the traditional transfer operator (Young,
1998) then image coupling methods (Young, 1999). The approach is tractable for a wider class of
hyperbolic systems with singularities, including maps of relevance to us, so we provide some details.
For a measure preserving system (X,A, µ, f) and positive measure A ∈ A, the Poincaré recurrence
theorem says that the return time function rA : A→ N, x 7→ inf{n > 0 | fn(x) ∈ A} is well defined
for almost every x ∈ A. Young considers a reference set ∆0 with hyperbolic product structure: the
intersection of continuous families of unstable and stable manifolds {γu} and {γs}, with each γu

meeting each γs transversally at a single point (see Young, 1998 for a precise definition). Correlation
decay is then linked to recurrence on ∆0 as follows. If there exists C > 0 and θ < 1 such that

µ({x ∈ ∆0 |R(x; f,∆0) > n}) < Cθn, (2.2)

then correlations of f decay exponentially for Hölder observables. Here R(x; f,∆0) denotes the
return time to ∆0 under f with additional technical constraints; see the original papers for details.
The revised approach of Young (1999) also allowed slower mixing rates to be addressed: If there
exists C > 0 and α > 0 such that

µ({x ∈ ∆0 |R(x; f,∆0) > n}) < Cn−α, (2.3)

then correlations of f decay polynomially for Hölder observables. In some systems ∆0 may be
simple to construct and the return time distribution straightforward to bound, see e.g. Chernov
and Young (2000) where the scheme is applied to the Cat Map. In general, however, the manifold
structure may be too complicated to explicitly construct ∆0. Even if this were possible, we would
have to deal with all the iterates of f to understand its recurrence, a similarly prohibitive condition.
Extensions to the theory thus focused on methods which avoided explicitly constructing ∆0 and
reduced to checking simple conditions on one iterate of the map f (or perhaps some finite number
of iterates fm). This resulted, after the work of Chernov (1999); Markarian (2004) in the following
scheme of Chernov and Zhang (2005). They assume a number of conditions (CZ1-7) on a map f :

M →M with singularity set S. We state these explicitly later in Chapter 6, jumping forwards now
to their main theorem. Given a curve W , denote its length by |W | and its connected components

§Poincaré maps of these billiards fall into the category of ‘smooth maps with singularities’ as defined in section
1.4
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of W ∩ (M \ S) by Wi.

Theorem 2.1 (Chernov and Zhang, 2005, Theorem 10 with m = 1). Let f be defined on a 2D
manifold M and satisfy the requirements (CZ1-7). Suppose

lim inf
δ→0

sup
W :|W |<δ

∑
i

λ−1
i < 1, (2.4)

where the supremum is taken over unstable manifolds W and λi denotes the minimal expansion
factor on Wi. Then the map f :M →M enjoys exponential decay of correlations.

The final key requirement (2.4) states that the cutting up of forward images of local manifolds
by S is dominated by expansion in their lengths via hyperbolicity. In many systems, expansion
factors vary widely depending on the location of W in M and may be weak in certain regions. If we
expect expansion to dominate eventually, i.e. once W is mapped to regions of stronger expansion,
condition (2.4) may be replaced by a multi-step expansion condition comparing the expansion
under fm to the cutting by Sm = ∪m−1

i=0 H
−i(S).

Alongside giving (relatively) straightforward to verify conditions for exponential mixing, the
scheme can be used to deduce non-exponential mixing rates as follows. Suppose H : X → X

has suspected polynomial decay of correlations. We discuss the case α = 1 here, motivated by
the Poincaré map of the Bunimovich stadium (originally Bunimovich, 1974, for an overview see
Chernov and Zhang, 2005) and linked twist maps. Choosing a subset M ⊂ X where hyperbolicity
appears ‘strong’, we define the first return map HM (x) = HrM (x)(x), using its strong hyperbolic
properties over one (or several) iterates to satisfy (2.4). It follows, taking f = HM in the above
theorem, that HM :M →M exhibits exponential decay of correlations and admits a Young tower
with base ∆0 ⊂M and exponential tail distribution

µ({x ∈M |R(x;HM ,∆0) > n}) < Cθn. (2.5)

Suspicion of polynomial decay of correlations normally follows from observing

µ({x ∈ X |R(x;H,M) > n}) < Cn−1, (2.6)

which we extend, making use of (2.5), to return time statistics to the subset ∆ ⊂M :

µ({x ∈ X |R(x;H,∆0) > n}) < Cn−1. (2.7)

Comparing with (2.3), we may then directly appeal to the results of Young and polynomial decay of
correlations follows. The step between (2.6) and (2.7) is non-trivial and typically relies on utilising
unique mapping behaviour of HM . Early efforts, see Chernov and Zhang (2005); Markarian (2004),
established weaker bounds |Cn| < c (lnn)2/n for the stadium map. Chernov and Zhang (2008) saw
the improvement of these bounds to the expected O(1/n) law, we revisit this work later in Chapter
6. Springham and Sturman (2014) applied the above theory to linked twist maps, in particular
the example sketched in Figure 2.2 with x0 = y0 = 0, x1 = y1 = 1/2. Similar to the method
of establishing the mixing property, they appealed to the good hyperbolic behaviour over returns
to P ∩ Q and established a two-step expansion for the return map. Recovering (2.7) relied on a
unique feature of the map, that long returns to P ∩Q were ‘isolated’, i.e. immediately succeeded
and preceded by immediate returns. A geometric argument (Sturman and Springham, 2013) gave
an optimal lower bound on correlations, establishing |Cn| = O(1/n).

Recalling condition (KS1) from Theorem 1.4, a modification was made to the one-step ex-
pansion condition in Chernov and Zhang (2009) to deal with systems satisfying (KS1) but only
with a < 1. In such systems, the unstable manifold |W | may be cut up by S into an arbitrarily
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large number of pieces Wn. If the expansion factors satisfy λn ∼ c n then achieving the bound
(2.4) is challenging, indeed the sum may even diverge. Note that the linked twist map¶ studied
in Springham and Sturman (2014) is of type a < 1 but, again, isolation of long return times gave
sufficient geometric information to reduce (2.4) to a finite summation. The new one-step expansion
condition requires some q ∈ (0, 1] such that

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

< 1, (2.8)

where the supremum is taken over all unstable curves, Wi are the components of W split by
the singularity set for f , Vi = f(Wi). In essence, (2.8) ensures that components of the images
of short unstable curves grow on average (see Chernov and Zhang, 2009). This, together with
some adjustments to the (CZ1-7) conditions, gives exponential decay of correlations for Hölder
observables.

¶More precisely the return map, on which most of the analysis is based, is of type a < 1.
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Chapter 3

Mixing by Piecewise Linear Shears

3.1 Guide for the following chapters

The rest of this thesis is organised as follows. We begin by defining a general framework of alter-
nating shear maps, encompassing all the systems studied in later chapters. We explore their typical
dynamics with some numerical visualisations and establish conditions under which they exhibit
non-hyperbolic or hyperbolic behaviour, characterised by elliptic islands or non-zero Lyapunov
exponents a.e. respectively. We apply these results to a family of maps which limits onto the Cat
Map and Cerbelli and Giona’s map, establishing parameter windows of hyperbolicity and elliptic
behaviour. In Chapter 4 we prove mixing properties over subsets of the hyperbolic windows, moti-
vated by (Q1). We next consider a two-parameter family of maps composing two non-monotonic
shears, addressing (Q2). Chapter 5 considers the situation of unbounded return times in a non-
monotonic system, which poses an inherent challenge to proving mixing properties. We explore
how it may be overcome, proving mixing properties of a non-monotonic linked twist map and a
new map, the orthogonal tents map (OTM), the natural generalisation of Cerbelli and Giona’s map
with two non-monotonic shears. We show that this map has a polynomial mixing rate in Chapter
6, in contrast to the exponential mixing rate seen elsewhere in the parameter space. Finally in
Chapter 7 we study a broader range of mixing protocols, summarise our work in terms of (Q1-3),
and suggest natural extensions.

3.2 Alternating shear maps framework

Let 0 ≤ ai < bi ≤ 1 and fi : [ai, bi) → R be differentiable, we call fi a twist function. Given a
collection of twist functions fi, i = 1, . . . , N with mutually disjoint domains satisfying ∪i[ai, bi) =

[0, 1), we define a horizontal shear F : T2 → T2 piecewise by F (x, y) = (x + fi(y), y) mod 1 for
y ∈ [ai, bi). We remark that F is continuous if for each i = 1, . . . , N − 1 we have limy→bi fi(y) =

fi+1(ai) mod 1 and limy→bi fN (y) = f1(ai) mod 1. We say that F is non-monotonic if there exists
an open interval on which some fi satisfies f ′i > 0 and another on which some fj satisfies f ′j < 0.

We define vertical shears as piecewise functions G(x, y) = (x, y+gi(x)) mod 1 for collections of
twists gi. An alternating shear map (ASM) H : T2 → T2 is a composition of vertical and horizontal
shears H = G ◦ F . Table 3.1 gives the parameterised families of ASMs considered in subsequent
chapters. Application of the map H models performing a single ‘stir’ on the domain and iteratively
applying H gives the simplest possible stirring protocol of alternating F,G, F,G, . . . . The majority
of this thesis will be restricted to analysis of this simple stirring protocol as the key aspects of the
mixing dynamics are captured by repeated iteration of ASMs and typically this choice of protocol
maximises stretching and folding behaviour over a fixed number of shear applications. We make
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Map F G Twist functions Comments

Hη

η f1 : [0, 1− η) → R,
y 7→ y/(1− η)

f2 : [1− η, 1) → R,
y 7→ (1− y)/η

g1 : [0, 1) → R,
x 7→ x

Piecewise linear.

Gives Cerbelli and
Giona’s map at η = 1/2.

Limits pointwise onto
the Cat Map as η → 0.

H(ξ,η)

η ξ

f1 : [0, 1− η) → R,
y 7→ y/(1− η)

f2 : [1− η, 1) → R,
y 7→ (1− y)/η

g1 : [0, 1− ξ) → R,
x 7→ x/(1− ξ)

g2 : [1− ξ, 1) → R,
x 7→ (1− x)/ξ

Piecewise linear.

Limits pointwise onto
Hη as ξ → 0.

Gives the Orthogonal
Tents Map (OTM) at
ξ = η = 1/2.

Hη,β

η

β η β

See section 5.2.1

Piecewise linear.

Limits pointwise onto
a class of LTMs as
η → 0.

Limits pointwise onto
the map H(η,η) as
β → 0.

PSM

f1 : [0, 1) → R,
y 7→ 4y(1− y)

gi = fi

Continuous, nonlinear

Parabolic velocity profile
modelling Poiseullie flow.

Table 3.1: A collection of non-monotonic ASMs H = G ◦ F .
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this idea more concrete in Chapter 7 when we consider a wider variety of stirring protocols.
All ASMs considered will be non-monotonic, that is, composed of one or more non-monotonic

shears. As a starting point towards a general theory of non-monotonic ASMs we will largely restrict
our analytical work to piecewise linear ASMs, i.e. with linear twist functions. An ergodic theory
analysis of these systems is tractable and piecewise linear ASMs still exhibit a variety of dynamics
typical to laminar fluid mixing. We relax the piecewise linearity condition in Chapter 7 and perform
a numerical analysis of the Parabolic Shears Map (PSM). We begin with a qualitative look at the
typical mixing dynamics resulting from iterating a piecewise linear non-monotonic ASM.

3.3 Visualisation of piecewise linear ASMs

Consider the map Hη at η = 2/5. Figure 3.1 gives two visualisations of the mixing dynamics. The
first (a) shows the orbits of a grid of 400 equally spaced points under repeated application of Hη. It
is a Poincaré section of the underlying continuous time dynamics (alternating periodically between
horizontal and vertical shear flows), sampled at the end of each ‘stir’. The phase space clearly splits
into regions of regular and chaotic behaviour, with elliptic islands about the period three orbits
zk ∈ {(2/3, 13/15), (0, 13/15), (1/3, 1/5)}, ζk ∈ {(1/3, 11/15), (0, 11/15), (2/3, 2/5)} surrounded by
a chaotic sea. Points starting within an island trace out ellipses around the periodic orbit, forming
invariant subspaces which act as a barrier to mixing. Behaviour outside of these islands appears
ergodic and chaotic, with the orbits eventually hitting every positive measure subset in the sea and
neighbouring orbits separating at an exponential rate. As a visualisation tool for ASMs, Poincaré
sections provide a computationally cheap way of assessing mixing quality by highlighting regions
of regular behaviour. A disadvantage, however, is that small or particularly thin islands can often
become lost in the noise of the surrounding chaotic sea. Such analysis is also purely qualitative,
making effective comparison of mixing quality over a family of ASMs challenging.

An alternative is to study finite time Lyapunov exponent (FTLE) fields across a uniform grid of
points. For any two points z, z′ within an island, separated by a vector v ̸= 0, the distance between
their images Hn(z), Hn(z′) behaves as ∥DHn

z v∥ and is always bounded above by maximum island
diameter. This uniform bound gives limn→∞

1
n ln ∥DHn

z v∥ ≤ 0. Note that since H preserves the
Lebesgue measure, DHn

z takes values in SL(2). By Oseledets theorem (Theroem 1.1), if some
vector v gave χ(z, v) < 0 then some other v′ would give χ(z, v′) = −χ(z, v) > 0. It follows that
χ(z, v) = 0 for all v ̸= 0 so we expect small FTLEs within islands, decaying to 0 as we consider
more and more iterates of the map. In the ergodic, chaotic region around these islands, we expect
Lyapunov exponents to converge to some single non-zero quantity. An illustration of this is given
in Figure 3.1(b) where the FTLE field has been calculated for a uniform grid of a million points
over two thousand iterates. Alongside capturing the qualitative picture of the mixing dynamics,
this data set quantifies the average rate of stretching in the chaotic sea and allows us to estimate
the measure of the islands by simply counting FTLEs below a certain threshold. We can estimate
to arbitrary precision by increasing the grid density and iterating for longer with tighter thresholds,
albeit with increased computational cost. In systems exhibiting slower than exponential mixing
rates, it may require very large n for 1

n ln ∥DHn
z v∥ to satisfy convergence criteria.

The visualisation methods described above both aim to describe asymptotic mixing behaviour.
With applications in mind, it is also important to consider mixing efficiency of ASMs over a smaller
number of iterates. We can make a qualitative assessment of this by splitting the domain into
two subsets and simply iterate both forwards, essentially modelling the mixing behaviour of the
underlying flow on two initially segregated fluids. We illustrate this in Figure 3.2 where the effect
of Hη,...,H5

η is shown on two strips, coloured red and blue. Comparing with Figure 3.1 we note
that the elliptic islands are still the primary barrier to mixing, alongside the non-uniform rates of
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(a) (b)

Figure 3.1: (a) Orbits of a grid of points over 3000 iterates of Hη at η = 2/5. (b) FTLE field for
the same map over a uniform grid of 1000× 1000 points, 2000 iterates considered.

stretching and contraction in the surrounding chaotic sea. For this reason, even when considering
short time scale mixing, being able to predict and measure island structures is desirable. We
explore the conditions under which island structures exist and what dictates their measure in the
next section.

3.4 Island structure analysis

Let D denote the singularity set for a piecewise linear ASM H : T2 → T2. The set Sn =

∪n−1
i=0 H

−i(D) then divides up the torus into regions Aj on which the cocycle DHn
z is constant.

That is, points z ∈ Aj all experience the same stretching behaviour over the next n applications
of H. If z is periodic with period n and DHn

z is elliptic, then necessarily Lyapunov exponents
χ(z, v) will be zero and we can expect χ(z′, v) = 0 for z′ in some neighbourhood of z, dictated by
the proximity of Sn to z. We make this precise with the following proposition.

Proposition 3.1. Let H : T2 → T2 be a piecewise linear, continuous, area-preserving map with
singularity set D. Suppose H admits an order n periodic orbit {z1, z2, . . . , zn} such that the asso-
ciated cocycle M = DHn

z1 satisfies |tr(M)| < 2 and dist(zk,D) > 0 for k = 1, . . . , n. Then there
exists an ellipse E centred at z1 such that Hn(E) = E and H is non-ergodic.

Proof. Let B(z, r) denote the closed ball of radius r centred at z. Given that dist(zk,D) > 0 for
k = 1, . . . , n, we can find r⋆ > 0 such that Hk

(
B(z1, r⋆)

)
∩ D = ∅ for k = 0, . . . , n. Letting ∥ · ∥

denote the operator norm, a lower bound on r⋆ is given by

(∥DHz1∥ · ∥DHz2∥ · ... · ∥DHzn∥)
−1 · min

k=1,...,n
dist(zk,D) > 0.

It follows that any point z in this ball also has derivative cocycle DHn
z =M . Denote the complex

conjugate of a point ζ = a + bi ∈ C by ζ = a − bi. By the condition on its trace, M has distinct
eigenvalues λ, λ on the unit circle with non-zero imaginary parts. Their associated complex
eigenvectors will be of the form (a± bi, 1)T . It is easily verified that Imλ ̸= 0 implies b ̸= 0 and we
may assume without loss of generality that λ has associated eigenvector (a + bi, 1)T with b > 0.
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Figure 3.2: Mixing behaviour of Hη at η = 2/5 on two initially segregated regions coloured red
and blue.

Writing the components of M as mi, the system of equations is

m1(a+ bi) +m2 = λ(a+ bi)

m3(a+ bi) +m4 = λ

which, by equating real and imaginary parts, reduces to

m1 = Reλ+
a

b
Imλ, m2 = −

(
b+

a2

b

)
Imλ, m3 =

1

b
Imλ, m4 = Reλ− a

b
Imλ. (3.1)

Define the matrices∗

P =

(√
b a√

b

0 1√
b

)
, R =

(
Reλ −Imλ

Imλ Reλ

)
which have unit determinants and satisfy

MP =

(
m1 m2

m3 m4

)(√
b a√

b

0 1√
b

)
=

1√
b

(
m1b m1a+m2

m3b m3a+m4

)

=
1√
b

(
bReλ+ a Imλ aReλ− b Imλ

Imλ Reλ

)

=
1√
b

(
b a

0 1

)(
Reλ −Imλ

Imλ Reλ

)
= PR.

Hence P−1MP is a rotation matrix and therefore preserves the unit circle: P−1MPS1 = S1 where
we define S1 = {(u, v)T ∈ R2 |u2 + v2 = 1}. It follows that MPS1 = PS1, so M preserves the set

∗The idea to use the matrix P , which greatly simplifies our analysis, came from Gidea et al. (2011).
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PS1. Let (x, y)T = P (u, v)T , then (u, v)T = P−1(x, y)T so that(
x√
b
− ay√

b

)2

+
(√

by
)2

= 1,

which simplifies to
x2 − 2axy + (a2 + b2)y2 − b = 0. (3.2)

This is in the form of a general quadratic equation

Ax2 +Bxy + Cy2 +Dx+ Ey + F = 0 (3.3)

and represents an ellipse if B2 − 4AC < 0. Indeed

B2 − 4AC = (−2a)2 − 4(1)(a2 + b2)

= −4b2 < 0.

Write the major and minor axes of this ellipse as r1 and θr1 respectively, where 0 < θ ≤ 1†. If
a ̸= 0 then its major axis will make an angle α with the x-axis, where

tan(2α) =
2ab

b2 − a2 − 1
.

Write this ellipse centred at the origin as E(0, r1, θ, α). By linearity, M also preserves ellipses
E(0, r, θ, α) for r > 0. Taking r = r⋆, we have that E := E(z1, r

⋆, θ, α) ⊂ B(z1, r⋆). It follows
that Hn(E) = E as required. Let V be the region bounded by E and containing z1, then the set
U = ∪n−1

k=0H
k(V ) is invariant under H with measure µ(U) = nπθ(r⋆)2 > 0. If necessary we can

take a smaller r⋆ to ensure that U does not have full measure, then H is not ergodic.

While the crude lower bound nπθ(r⋆)2 on the unmixed region is enough to prove non-ergodicity,
tighter bounds would help us assess the overall mixing quality. The above proof gives a collection
of ellipses {Ek}k=1,...,n such that each Ek is centred at zk and bounds a region Vk with H(Vk) =

Vk+1 mod n. We now ask, how large can we make the regions Vk and still retain invariance? This
amounts to scaling up the ellipses Ek until they touch the singularity set D. We will then compare
the measures of each Vk, finding an upper bound on how much we can scale up the ellipses
by, which gives formula for the total measure of the unmixed region around the periodic orbit
µ(U) = nmink µ(Vk).

Fix k and lift T2 to the plane by L : T2 → R2 so that zk 7→ (0, 0). Let Si denote the segments
which make up L(D), write the lines which contain them as y = βix+ γi. Note that since points
on the torus are at most a distance 1/

√
2 apart, we need only consider the segments in the ball

B(0, 1/
√
2). The image E = L(Ek) is now an ellipse centred at the origin and can be described by

the equation
Ax2 +Bxy + Cy2 + F = 0

which bounds a region V of measure

µ(V) = 2π|F |√
4AC −B2

. (3.4)

For each Si, to ensure that V ∩ Si = ∅ we require that E ∩ Si is empty or a single point. Solving
the line intersection equations gives

Ax2 +Bx(βix+ γi) + C(βix+ γi)
2 + F = 0

†We have equality when PS1 is a circle, the case a = 0, b = 1.
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or equivalently
(A+Bβi + Cβ2

i )x
2 + (Bγi + 2Cβiγi)x+ (Cγ2i + F ) = 0.

Single intersection implies that

(Bγi + 2Cβiγi)
2 − 4(A+Bβi + Cβ2

i )(Cγ
2
i + F ) = 0

which is solved by

Fi :=
(Bγi + 2Cβiγi)

2

4(A+Bβi + Cβ2
i )

− Cγ2i .

Hence the largest such E which avoids L(D) bounds a region V of measure

µ(V) = inf
i

2π|Fi|√
4AC −B2

.

Now Vk = L−1(V) so we have found an expression for µ(Vk) = µ(V) as required. We now repeat
this over each k = 1, 2, ... and compare to find µ(U) = nmink µ(Vk). The values A,B,C for each
ellipse Ek can be derived from the eigenvector of the cocycle DHn

zk
as described in the proof of

Proposition 3.1. We carry out this procedure explicitly for the map Hη:

Proposition 3.2. The map Hη : T2 → T2 is non-ergodic for 1/3 < η < (9−
√
33)/8 ≈ 0.407. In

particular it admits elliptic islands with total measure

µ(U) ≥ h(η) =
πη(1− η)

√
α(η)

9η2 − 21η + 9
(3.5)

where α(η) = 36η3 − 93η2 + 54η − 9.

Proof. The periodic orbits identified for Hη at η = 2/5 extend to general η and are given by

...→ z1 =

(
2

3
, 1− η

3

)
→ z2 =

(
0, 1− η

3

)
→ z3 =

(
1

3
,
1

3
− η

3

)
→ ...

and
...→ ζ1 =

(
1

3
, 1− 2η

3

)
→ ζ2 =

(
0, 1− 2η

3

)
→ ζ3 =

(
2

3
,
2

3
− 2η

3

)
→ ...

which are bounded away from D. Starting with z1, the cocycle DH3
z1 is given by

DH3
z1 =

(
1 1

1−η

1 2−η
1−η

)(
1 − 1

η

1 η−1
η

)2

=

(
η2−4η+2
η(η−1)

−3η2+6η−2
η2(η−1)

3η2−7η+3
η(η−1)

η2−7η2+10η−3
η2(η−1)

)

and is elliptic for 1/3 < η < (9 −
√
33)/8. On this parameter range, its eigenvectors (a ± bi, 1)T

are complex with imaginary part

b =
(1− η)

√
α

2η(3η2 − 7η + 3)
. (3.6)

It follows from Proposition 3.1 that Hη is non-ergodic on this parameter range and we proceed to
calculate the measure of the elliptic islands using the procedure described above. Lifting to the
plane and translating z1 → (0, 0) sends the discontinuity lines y = 1 and y = 1 − η to y = η/3

and −2η/3 so that βi = 0 and γi ∈ {η/3,−2η/3}. Now Fi reduces to (Bγi)
2/(4A) − Cγ2i which,

combining with the values A,B,C from (3.2), gives Fi = −b2γ2i . Hence the largest ellipse E1 about
z1 which avoids D bounds an region V1 of measure

µ(V1) = inf
i

2π|Fi|√
4AC −B2

=
2πb2 (η/3)

2

√
4b2

=
πη2b

9
.
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Figure 3.3: Approximate total island measure forHη over 0.3 ≤ η ≤ 0.45 using finite time Lyapunov
exponents over 2000 iterates. An analytical lower bound h(η) is shown as the solid line.

One can perform a similar calculation on z2, z3 and verify µ(V3) > µ(V2) = µ(V1) so that the total
measure of the islands around the orbit zk is πη2b/3. Performing the same calculation over the
other periodic orbit ζk yields the same total island measure so that around both orbits we have
islands of total measure

h(η) =
2πη2b

3
=

2πη2(1− η)
√
α

6η(3η2 − 7η + 3)
.

The lower bound (3.5) then follows, noting that there may be other elliptic periodic orbits which
we have not considered.

A comparison of this lower bound with approximate total island measure is shown in Figure
3.3. We consider the map Hη where η increases in fixed increments of 0.002 between 0.3 and
0.45. For each of these 76 parameter values, FTLEs are calculated over 2000 iterates on a grid of
350× 350 points with those decaying below 0.01 classed as belonging to an island structure. The
proportion of such points is then plotted against the analytical lower bound h(η). We note that
over 0.36 ≤ η ≤ 0.38 the bound appears suboptimal, owing to the existence of other elliptic periodic
orbits which appear and disappear over this narrow parameter window. Beyond the domain of h(η)
no island structures are captured by the numerics and the dynamics appear globally hyperbolic.
That is, no orbits appear to get trapped in an elliptic cycle and each are characterised by non-zero
Lyapunov exponents. We explore how to prove this in the next section.

3.5 Establishing hyperbolicity

Given a piecewise linear ASM H : T2 → T2 with singularity set D, let Aj , j ∈ J denote the
connected components of T2 \D on which the Jacobian DH is constant. Given a point z we define
its itinerary as the sequence Aj0 ,Aj1 , . . .Ajn where each jk is the j ∈ J is such that Hk(z) ∈ Aj .
This sequence is well defined for all z ∈ T2 \ S∞, where S∞ = limk→∞ Sk. We may then write the
cocycleDHn

z as the product Mjn−1
. . .Mj0 whereMj isDH on Aj . A typical ASM may admit some

Mj which are hyperbolic and others which are not. A first step towards proving non-zero Lyapunov
exponents is to show that any itinerary can be decomposed into blocks I = Ajk , . . . ,Ajk+l

such
that the corresponding cocycle block M = Mjk+l

. . .Mjk is hyperbolic. Index these cocycle blocks
as Mi, i ∈ I, then any cocycle DHn

z can be written as product of hyperbolic matrices Mim . . .Mi1 ,
perhaps premultiplied and postmultiplied by some matrices Mj which do not form a complete
block.
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L

v−

v+

α

Figure 3.4: Illustration of a cone C (shaded) with axis L and opening α. Similarly defined as the
cone bounded by v± containing some vector v parallel to L.

Now as we follow the orbit Hn(z), completing itinerary blocks Ii, we see stretching and con-
traction of tangent vectors v by the hyperbolic matrices Mi. Note that this does not necessarily
imply that χ(z, v) ̸= 0 (non-zero average stretching rate) as stretching from one matrix Mi may be
immediately undone by contraction from the next. To avoid this situation, we establish invariant
expanding cones. The use of cones to establish hyperbolicity dates back to the work of Alekseev
(1969); a standard definition is as follows:

Definition 3.1 (Chernov and Markarian, 2006). Let L ∈ R2 be a line, 0 < α < π/2. A cone C
with axis L and opening α is the set of all vectors v which make an angle ≤ α with L.

Note that C does not include the zero vector. In practice it is often easier to define a cone using
the bounding vectors v± which make an angle α with L. This defines two cones (one containing L
and another containing L′ ⊥ L), C is then uniquely defined by specifying a third vector v ∈ C not
equal to v±. An example illustration is given in Figure 3.4. We define two properties of cones:

Definition 3.2. Given a matrix M , we say that a cone C is invariant under M if Mv ∈ C for all
v ∈ C. We say that C is expanding with respect to a norm ∥ · ∥ if ∥Mv∥ > ∥v∥ for all v ∈ C.

Let M be a hyperbolic matrix with determinant 1. We seek easily verifiable conditions under
which a cone is invariant and expanding under M with respect to a norm ∥·∥. Write the eigenvalues
of M as λ, 1/λ with |λ| > 1. Define its unstable, stable eigenvectors as vu, vs such that Mvu = λvu

and Mvs = vs/λ. Normalise them so that ∥vu∥ = ∥vs∥ = 1.

Proposition 3.3. A cone C, bounded by vectors v±, is invariant and expanding under a hyperbolic
matrix M if vu ∈ C, vs /∈ C, and ∥Mv±∥ > ∥v±∥.

Proof. As M is hyperbolic, {vu, vs} form a basis for R2. If vu ∈ C, vs /∈ C vectors v ∈ C can be
written as v = αvu+βvs where β/α lies in some interval a ≤ β/α ≤ b containing 0 with v± parallel
to vu + avs and vu + bvs. Applying the transformation gives Mv = λαvu + βvs/λ, we verify that
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if β/α ∈ [a, b] then (β/λ)/(λα) = β/(λ2α) ∈ [a/λ2, b/λ2] ⊂ [a, b] since |λ| > 1. Hence Mv ∈ C,
satisfying the invariance condition.

For expansion let ex(v) := ∥Mv∥/∥v∥, then ex(vu) > 1 and ex(vs) < 1. As we rotate v from vu

to vs, we pass through one of v± and ex(v) has at most one local minimum. If ex(v±) > 1, then
this minimum must lie between v± and vs, i.e. outside of the cone, so {ex(v) | v ∈ C} is minimal
at one of its boundaries v±.

Proposition 3.4. Given a piecewise linear ASM H : T2 → T2, suppose that for a.e. z ∈ T2 the
cocycle DHn

z can be split into blocks Mi, i ∈ I, of finite length. If this family of matrices admit a
shared invariant expanding cone C then Lypanunov exponents χ(z, v) are non-zero for v ̸= 0.

Proof. For each z, any v0 ∈ C will remain trapped in the cone C under premultiplication by
the Mi and will be expanded each time by some factor Ki > 1. Letting N denote the maximum
block length, the average expansion over each iterate is bounded below by (mini∈I Ki)

1/N , which is
strictly greater than one for finite N . The norm ∥DHn

z v0∥ therefore grows exponentially, producing
a positive Lyapunov exponent χ(z, v0) > 0. The result then follows from Corollary 1.1 to Oseledets’
theorem in two dimensions.

Establishing hyperbolicity, then, relies on finding suitable itinerary blocks Ii. For some systems
these blocks may be obvious but for others, particularly those with many Mj , the choice may be
less clear with the number of possible itineraries over n iterates bounded above by |J |n. As such
there is no one-size-fits-all approach to this step but we can suggest some guiding principles. First
we must identify the components Aj on which the Mj are non-hyperbolic and ensure that a.e.
point z ∈ Aj escapes, that is, there exists n ≥ 1 such that Hn(z) /∈ Aj . This provides a collection
of blocks M = Mj′M

n
j on which we can test the cone conditions. An ideal situation is for all

itinerary blocks to terminate on a common component Al, with Ml hyperbolic, as then tangent
vectors are pulled towards its unstable eigenvector vul at the end of the block, suggesting invariance
in some cone surrounding vul . In practice, establishing such precise mapping behaviour to a single
Al may be challenging and result in (for large |J |) an unwieldy number of long blocks Mi. In such
a situation it may be easier to establish mapping behaviour to some family of components Aj ,
j ∈ J ′ ⊂ J for which the associated unstable eigenvectors vuj of the Mj are close enough to each
other to ensure an invariant cone.

Again, the map Hη serves as a straightforward example for illustrating this process.

Proposition 3.5. Hη admits non-zero Lyapunov exponents χ(z, v) ̸= 0 for almost every z ∈ T2,
v ̸= 0, when 0 < η < 1

3 .

We give the same argument provided in Myers Hill et al. (2022b), making some minor notational
changes.

Proof. To ease notation write H = Hη. Its Jacobian is given by

M0 =

(
1 − 1

η

1 η−1
η

)

for over A0 : 1− η < y < 1, and

M1 =

(
1 1

1−η

1 2−η
1−η

)
over A1 : 0 < y < 1− η. We remark that M0 is elliptic for η > 1/4.

Figure 3.5 gives a partition of T2 into three sets A = A1 and B,C ⊂ A0. One can show that
H(A) ⊂ A ∪ B, H(B) ⊂ A ∪ C, H(C) ⊂ A so that orbits leaving A return after spending one or
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A

1− η

B

η 1− η

C
C

H

1− η

1− 2η

η

η

Figure 3.5: Partition of the torus for H, establishing return times to A in {1, 2, 3}. Case illustrated
η = 1

4 , the image of the partition is also shown with consistent shading.

two iterations in B ∪ C. Hence we may form itinerary blocks

I1 = A1, I2 = A0A1, I3 = A0A0A1,

with corresponding matrices

M1 = M1, M2 = M1 M0, M3 = M1 M
2
0,

all of which are hyperbolic over 0 < η < 1/3. By Proposition 3.4, it is sufficient to show that these
matrices share an invariant expanding cone. Given a vector v = (v1, v2)

T , define its gradient as
g = v2/v1. Starting with invariance, one can verify that the gradients gui , gsi of the unstable, stable
eigenvectors of Mi satisfy

gs1(η) < gs2(η) < gs3(η) < gu3 (η) < gu2 (η) < gu1 (η),

for all 0 < η < 1/3 so that the cone bounded by the unstable eigenvectors of M1 and M3 is
invariant. Explicit expressions for these gradients is available as supplementary material‡.

It is clear, then, that it is possible to construct an invariant cone and, in fact, we have multiple
options. The minimal cone is the smallest gradient range we can take to include all the unstable
eigenvectors, defined at each parameter value. This will be a particularly useful construction in
section 4.1 as it gives good bounds on the gradients of local unstable manifolds. Its η-dependence,
however, makes the expansion factor calculations quite tedious. Given that gs3(η) < infη g

u
3 (η)

across 0 < η < 1
3 , the cone bounded by the vectors v± with gradients g+ = supη g

u
1 (η) = 2√

5−1

and g− = infη g
u
3 (η) = 1 is invariant. Write this η-independent cone as C; it is sketched explicitly

in Figure 3.4. To simplify the calculations take ∥ · ∥ to be the ∥ · ∥∞ norm (recall from section 1.4
that we have a free choice of norm) then ∥(v1, v2)T ∥ = |v2| for all vectors in the cone, since within

C we always have |v2| ≥ |v1|. Normalise the cone boundaries as v± =
(

1
g± , 1

)T
; we calculate:

• ∥M1(1, 1)
T ∥ = 2η−3

η−1 > 3

• ∥M2(1, 1)
T ∥ = 3η2−7η+3

η(1−η) > 9
2

• ∥M3(1, 1)
T ∥ = 4− 10

η + 3
η2 > 1

‡See doi.org/10.1007/s00332-022-09790-0
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• ∥M1

(√
5−1
2 , 1

)T
∥ =

(1+
√
5)(η−1)−2

2(η−1) > 3+
√
5

2

• ∥M2

(√
5−1
2 , 1

)T
∥ = 2

√
5η2−3

√
5η−5η+6

2η(1−η) > 39−7
√
5

4

• ∥M3

(√
5−1
2 , 1

)T
∥ =

(3
√
5−1)η3−(7

√
5+7)η2+(3

√
5+17)η−6

2η2(η−1) > 31−9
√
5

4

for all 0 < η < 1
3 , so that the cone is expanding across the parameter range. The result then

follows from Proposition 3.4.

As a finite collection of lines, the singularity set D = {(x, y) | y = 0, 1 − η} of the piecewise
linear map Hη easily satisfies the assumptions of Katok and Strelcyn’s Theorem. As such, much
of the work is complete towards showing the mixing property for Hη over 0 < η < 1/3. We pursue
this in the following chapter, where we also consider the parameter space (9−

√
33)/8 < η < 1/2

and extend our analysis to the map H(ξ,η) composing two non-monotonic shears.
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Chapter 4

Proving Mixing Results - Bounded
Return Times

4.1 Mixing properties of Hη

In this section we establish mixing properties for H = Hη over a subset of the hyperbolic range
0 < η < 1/3. In particular, we show:

Theorem 4.1. H has the Bernoulli property for 0 < η < η1 ≈ 0.324.

This proof was the subject of Myers Hill et al. (2022b). We present the same argument here,
making minor notational and organisational changes. Recalling Theorem 1.4, the Bernoulli prop-
erty follows from condition (MR) which requires understanding the mapping behaviour of H and
its inverse H−1. The action of H on the ABC partition of Figure 3.5 and the invariant cone C
provide sufficient information about the behaviour of H on T2 and DH on the tangent space. We
seek similar constructions for H−1. As H−1 = F−1 ◦ G−1, the inverse map is differentiable over
z ∈ T2 \G(D), with constant Jacobian over the sets G(A0), G(A1) given by M−1

0 , M−1
1 . Figure 4.1

shows the partition for returns to the set a := G(A1), passing through b ∪ c ⊂ G(A0). Itineraries
follow the same pattern: a, ba, and bca, giving blocks

I = G(A1), I2 = G(A0)G(A1), I3 = G(A0)G(A0)G(A1),

with corresponding matrices M1, M2, and M3 respectively. The eigenvectors of each of these
matrices allow us to construct an invariant expanding cone C′. Let gsi (η), gui (η) be the gradients
of the stable, unstable eigenvectors of Mi. One can verify that

gu1 (η) < gu2 (η) < gu3 (η) < gs3(η) < gs2(η) < gs1(η)

for 0 < η < 1
3 so that we can take our minimal backwards cone to be the cone bounded by the

unstable eigenvectors of M1 and M3. As before, taking the union of these cones over 0 < η < 1
3

gives an η-independent invariant expanding cone C′ for H−1.

4.1.1 Establishing ergodicity

By (KS1-3) stable and unstable manifolds exist almost everywhere. These are line segments
aligned with the subspace Es

z as defined in Theorem 1.1, taking f = H to find the stable direction,
and f = H−1 to find the unstable direction. The following lemma provides bounds on the gradients
of these line segments.
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1− η

1− η

c
c

a

a

b

η

H−1

1− ηη

Figure 4.1: A partition of the torus based on returns to a under H−1 and its image under H−1.
Case illustrated η = 1

4 .

Lemma 4.1. Given local unstable, stable manifolds γu(z), γs(z) at z ∈ X ′, let m0,n0 be the
smallest non-negative integers such that Hm0(z) ∈ H(A), H−n0(z) ∈ H−1(a). Then

• Hm0(γu(z)) contains a segment γ aligned with some vector v ∈ C,

• H−n0(γs(z)) contains a segment γ′ aligned with some vector v′ ∈ C′.

Proof. We first note the link between the two minimal cones. Let vu(Mj), vs(Mj) be vector
subspaces generated by the unstable and stable eigenvectors of some hyperbolic matrix Mj . Clearly
vu(M1) = vs(M

−1
1 ) = vs(M1) and, in fact, we can always relate the stable, unstable eigenvectors

of Mj to the unstable, stable eigenvectors of Mj . For j = 2, 3 these are given by

vs(Mj) = M1vu(Mj) (4.1)

and
vu(Mj) = M1vs(Mj). (4.2)

To see this, note that in the j = 2 case:

M−1
2 ·M1 vu(M2) = M−1

0 M−1
1 ·M1 vu(M2)

=
(
M1M

−1
1

)
M−1

0 vu(M2)

= M1M2 vu(M2)

= cM1 vu(M2)

for some c with |c| > 1. This implies M1vu(M2) is in the stable subspace of M2, showing (4.1).
The same argument applied to the right hand side of (4.2) yields |c| < 1 as required. The case
j = 3 is analogous.

Now let γu(z) be the local unstable manifold at some z ∈ X ′. By the partition construction,
m0 is in {0, 1, 2}. Now Hm0(γu(z)) is a piecewise linear curve, the union of at most 3 line segments
γj . Since z lies outside of the singularity set S, Hm0(z) lies in the interior of some γj , call it γ.

By definition, for any ζ, ζ ′ ∈ γu(z)

dist(H−n(ζ), H−n(ζ ′)) → 0
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as n→ ∞. By extension we have that

dist(H−n(ξ), H−n(ξ′)) → 0 (4.3)

for any ξ, ξ′ ∈ γ.
This means that H−1(γ) ⊂ H−1(a) must be aligned with some vector in the cone region Cs

bounded by vs(M1) and vs(M3), which includes vs(M2). For if it falls outside of this region, it will
be pulled into the invariant expanding cone C′ for H−1, which contradicts (4.3). Now if we apply
H to H−1(γ) ⊂ A, γ must align with a vector in M1 Cs. By (4.2), this is precisely the minimal
cone for H. The argument for local stable manifolds is analogous, instead using (4.1).

The main result of this section is the following.

Proposition 4.1. Condition (M) holds for H when 0 < η < η1 ≈ 0.324.

We will use the known behaviour of returns to H(A) (resp. H−1(a)), and expansion during
this return, to grow the images of local manifolds to the point where an intersection is certain in
A1 = H(A)∩H−1(a). This is a quadrilateral, shown in Figure 4.2. We call any line segment in A1

which joins its upper and lower boundaries a v-segment. Similarly we call any line segment in A1

which joins its left and right (sloping) boundaries a h-segment. Clearly v- and h-segments must
always intersect. Given z, z′ ∈ X ′ our aim, then, is to find m,n such that Hm(γu(z)) contains a
v-segment and H−n(γs(z

′)) contains a h-segment.
The key issue we have to overcome in the growth stage is that while the images of the segments

may grow exponentially in total length, the alternating-sign property (as described in Cerbelli and
Giona, 2005) means that they can repeatedly double back on themselves, meaning that their total
diameter does not necessarily grow. We state some useful properties of line segments:

Definition 4.1. Let Γ be a line segment. We define the height of Γ as ℓv(Γ) = ν ({y | (x, y) ∈ Γ}),
the width of Γ as ℓh(Γ) = ν ({x | (x, y) ∈ Γ}), where ν is the Lebesgue measure on R.

Definition 4.2. Given a partition element A, we say that Γ has simple intersection with A if
its restriction to A is empty or a single line segment. Conversely we say that Γ has non-simple
intersection with A if its restriction to A contains more than one connected component. A sketch
of these cases is given in Figure 4.2.

Due to vectors in C having dominant vertical components and vectors in C′ having dominant
horizontal components, ℓv(·) (resp. ℓh(·)) measures the diameters of images of unstable (resp.
stable) manifolds under H (resp. H−1). Non-simple intersection ensures we have sufficient geo-
metric information to establish v- and h-segments. We start with the method for growing unstable
manifolds, partitioning a = H(A) into three sets ai, where the subscript i is the return time of
its elements to a. This is shown in Figure 4.2. The growth stage involves iteratively applying the
following lemma.

Lemma 4.2. Let Γp−1 be a line segment satisfying

(C1) Γp−1 ⊂ a,

(C2) Γp−1 is aligned with some vector in the minimal invariant cone C for H,

and which has simple intersection with each of the ai. Then there exists a line segment Γp satisfying
(C1), (C2),

(C3) Γp ⊂ Hi(Γp−1) for a chosen i ∈ {1, 2, 3}, and
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1− ηη
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a1
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a2
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Γ

η

η

1− η

1− 2η
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Figure 4.2: Left: a partition of a into three parts ai, where i is the return time of points in ai to a.
A line segment Γ is shown which has simple intersection with a3 and non-simple intersection with
a2. Right: the equivalent plot for A, considering return times under H−1.

(C4) ℓv(Γp) ≥ (1 + δ) ℓv(Γp−1) for some δ = δ(η) > 0, independent of Γp−1.

Proof. The process of generating Γp from Γp−1 is as follows. Based on the location of Γp−1 in a,
we will restrict Γp−1 to one of the ai then map it forwards under Hi to give Γp, satisfying (C3).
By definition of the ai, (C1) is satisfied. If Γp−1 is aligned with some v ∈ C, Γp is aligned with
Miv. By cone invariance, this is also in C, so (C2) is satisfied.

The expansion in diameter can be bounded from below by

Ki(η) = inf
v∈C

||Miv||
||v||

where, again, we are using the ||·||∞ norm. Since we have already shown that the cone is expanding,
if Γp−1 is entirely contained within some ai then taking Γp = Hi(Γp−1) ensures expansion in
diameter. Where it becomes more interesting is when Γp intersects multiple ai. Looking at each of
the Mi across the invariant cone, at every parameter value M1 has the smallest expansion on its
eigenvector vu(M1), M2 and M3 have the smallest expansion on the other cone boundary vu(M3).
Letting λi be the magnitude of the unstable eigenvalue of Mi, K1 and K3 are given by

K1(η) = λ1(η) =
3− 2η +

√
5− 4η

2 (1− η)

and

K3(η) = λ3(η) =
3− 9η + 2η2 +

√
−36η3 + 93η2 − 54η + 9

2η2
.

Next
K2(η) =

2η − 3

1− η

1

gu3 (η)
+

3− η

η
,

calculated using the lower elements of M2, the unit vector
(

1
gu
3
, 1
)T

, and the fact that M2 reverses
the orientation of vectors in the cone.

Throughout, we assume that Γp−1 has simple intersection with each of the ai. Suppose Γp−1

intersects a1 and a2, and write its restriction to these sets as Γ1 and Γ2 respectively. Since K1(η)

and K2(η) are both greater than 2 for all 0 < η < 1
3 , and one of Γ1,Γ2 has diameter greater than or

equal to 1
2 , we can restrict to that segment Γi and expand under Hi to establish that Γp has larger
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diameter than Γp−1. Now suppose Γp−1 intersects a1 and a3. If the proportion of the diameter of
Γp−1 in a1 is greater than 1

K1(η)
, we can simply expand from there. Otherwise Γ3 has diameter

greater than or equal to 1− 1
K1(η)

, and we can expand from a3 provided that

K3(η) >
1

1− 1
K1(η)

.

The above is satisfied for approximately η < 0.332. The case where Γp−1 intersects a2 and a3 is
similar and does not further restrict the parameter range.

Now suppose Γp−1 intersects a1, a2, and a3. By the same argument as before, we require

K3(η) >
1

1− 1
K1(η)

− 1
K2(η)

.

Solving this numerically, the above inequality is satisfied for approximately η < 0.327. In any case,
then, (C4) is satisfied.

The method for growing the backwards images of local stable manifolds is entirely analogous.
We divide up A = H−1(a) into A1, A2, A3 based on return time to A under H−1 (see Figure 4.2).
The relevant hyperbolic matrices associated with the return map are Mi, which share an invariant,
expanding cone C′. We make minor adjustments to the (C) conditions to give:

Lemma 4.3. Let Γp−1 be a line segment satisfying

(C1’) Γp−1 ⊂ A,

(C2’) Γp−1 is aligned with some vector in the minimal invariant cone C′ for H−1,

and which has simple intersection with each of the Ai. Then there exists a line segment Γp satisfying
(C1’), (C2’),

(C3’) Γp ⊂ H−i(Γp−1) for a chosen i ∈ {1, 2, 3},

(C4’) ℓh(Γp) ≥ (1 + δ) ℓh(Γp−1) for some δ = δ(η) > 0, independent of Γp−1.

Proof. As before, define

Ki(η) = inf
v∈C′

||Miv||
||v||

.

All of the Mi see their minimum cone expansion on the cone boundary given by the unstable
eigenvector of M3. The key calculation we have to make is the parameter value η1 such that

K3(η) >
1

1− 1
K1(η)

− 1
K2(η)

(4.4)

for 0 < η < η1. We can solve numerically, giving η1 ≈ 0.324.

Both of these lemmas hold, then, provided that 0 < η < η1. They ensure the exponential
growth in diameter of the segments Γp up to some ΓP which has non-simple intersection with some
ai (or Ai for the stable case). At this point we will map directly into v- and h-segments.

Lemma 4.4. For any line segment ΓP ⊂ a which is aligned with a vector in C and has non-simple
intersection with some ai, Hk(ΓP ) contains a v-segment for some k ∈ {0, 3, 5}.

Proof. All non-simple intersections give useful geometric information about ΓP . Suppose it has
non-simple intersection with a3. Then as a connected straight line segment, it must traverse a1,
that is, it connects the upper and lower boundaries of a1, passing through a1. By definition, this
ΓP contains a v-segment. Now suppose ΓP has non-simple intersection with a2. It follows that ΓP
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a3
H5

a1

Q3

P1P4

P2P3

H5(P1) H5(P2)

H5(P3)H5(P4)

Figure 4.3: Case (I). A quadrilateral Q3 ⊂ a3 and its image in a1 under H5. Any line segment
Γ which joins the sloping boundaries of a3 will join the sloping boundaries of Q3, and hence
H5(Γ ∩Q3) is a v-segment.

vu(M3)

x∗ 1− x∗

L

L∗

Figure 4.4: Geometry of line segments satisfying case (II).

traverses a1 (v-segment) or ΓP traverses a3, connecting its sloping boundaries. This is case (I). We
will show that any such segment contains a v-segment in its 5th image. Finally assume that ΓP

has non-simple intersection with a1. It follows that we traverse a3, case (I), or the restriction to
a2 is sufficiently large that its 3rd image contains a v-segment, case (II).

We will start by showing case (I). Consider the quadrilateral Q3 ⊂ a3, defined by the four
points Pj , shown in Figure 4.3. Explicit coordinates for each of these points are given as part of
the supplementary material. All of the points in the interior of Q3 share the same itinerary path
under 5 iterations of H, BCAAA, so H5(Q3) is also a quadrilateral and any straight line segment
contained within Q3 maps into a new straight line segment under H5. It is clear that any ΓP

which traverses a3, joining its sloping boundaries, must also traverse Q3. The sloping boundaries
of Q3 map into the upper and lower boundaries of a1 under H5, so if ΓP connects these sloping
boundaries, H5(ΓP ) contains a v-segment.

Case (II) can be argued similarly. We assume that ΓP has non-simple intersection with a1 and
that we do not traverse a3 in such a way that we can argue as in case (I). We will concentrate first
on the left portion of a2; we shall soon see that the analysis for the right portion is analogous.

Since we assume ΓP does not connect the sloping sides of a3, it must intersect the a1, a3

boundary on L, shown in Figure 4.4. The solid thick line shown is aligned with clockwise bound
on the invariant cone, with gradient gu3 . The intersection of ΓP with the a3, a2 boundary must lie
in L∗, whose x-range is bounded above by x∗.
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H3(Q2)

a1

Figure 4.5: Case (II) for η either side of the critical value η0 = 1− 1√
2
.

Let Γ be the restriction to a2. We will show that Γ, constrained by the x∗, intersects a
quadrilateral whose image under H3 stretches across a1 in much the same way we saw in case
(I). For η ≤ η0 = 1 − 1√

2
≈ 0.293, such a quadrilateral Q2 exists and has all four corners on

the lines x = 0, y = 1 (see left hand side of Figure 4.5). Starting with the top-right and cycling
anti-clockwise, these corners have coordinates

R1 =

(
−η3 + 7η2 − 13η + 7

3η2 − 10η + 8
, 1

)
, R2 =

(
2
(
2η2 − 5η + 3

)
3η2 − 10η + 8

, 1

)
,

R3 =

(
0,

5η2 − 13η + 8

η2 − 7η + 8

)
, and R4 =

(
0,

−η3 + 7η2 − 14η + 8

η2 − 7η + 8

)
.

Any line segment joining the a2, a3 boundary to the a2, a1 boundary must connect the parallel
boundaries of Q2 and therefore maps into a v-segment. At the critical value η = η0 the point R1

lies on the rightmost corner of a2, (1 − η, 1). Now let η > η0 and consider the quadrilateral Q′
2

defined by the corners R2, R3, R4, and

R′
1 = (x′, y′) =

(
−η2 + 2η − 1

η(2η − 3)
,
−2η2 + 6η − 4

2η − 3

)
. (4.5)

This final corner also maps into y = 1 − η under H3. Hence any line segment which joins the
parallel sides of Q′

2 maps into a v-segment. Certainly if x∗(η) < x′(η) for η0 < η < η1, then Γ will
connect the parallel sides of Q′

2. First we solve line equations to give

x∗(η) =
ηgu3 (η)

gu3 (η)−
η

1−η

which is bounded from above by x∗(η1) ≈ 0.5512. Next by (4.5),

x′(η) =
−η2 + 2η − 1

η(2η − 3)

which is bounded from below by x′(η1) ≈ 0.5998, establishing the result.
The case where Γ traverses the other (right) part of a2 is analogous. Note that we can transform

one part of a2 into the other by reflecting in the lines y = 1− η
2 and x = 1

2
∗, written as (Sx◦Sy)(a2) =

a2. Now the images of Q2 and Q′
2 under Sx ◦Sy span across the right portion of a2 in an analogous

∗Since the lines are orthogonal, Sx ◦ Sy = Sy ◦ Sx.
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r2r3 ◦◦
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Q2

S(Q2)

◦H−3(r2)

◦
H−3(r3)

H−3(Q2)

H−5(Q3)

A1

Figure 4.6: Two quadrilaterals Q2 ⊂ A2 and Q3 ⊂ A3 which map into A1 under H−3 and H−5

respectively. Their long boundaries map into the sloping boundaries of A1, so segments Γ which
join these long boundaries map into h-segments. Case illustrated η = 1

4 .

fashion to before and also map into v-segments under H3. Making the same assumption as before,
that case (II) holds but case (I) does not, we know that Γ intersects the a2, a3 boundary at some
point (x, y) with x > 1 − x∗ (see Figure 4.4). To ensure that Γ connects the parallel sides of
(Sx ◦ Sy)(Q′

2), it remains to check that the x-coordinate of (Sx ◦ Sy)(x
′, y′), 1 − x′, is strictly

less than 1 − x∗ across η0 < η < η1. Indeed, 1 − x′(η) < 1 − x∗(η) follows from x∗(η) < x′(η),
established in the previous case.

Lemma 4.5. For any line segment ΓP ⊂ A which is aligned with a vector in C′ and has non-simple
intersection with some Ai, H−k(ΓP ) contains a h-segment for some k ∈ {0, 3, 5}.

Proof. The argument is similar to the forwards-time case. A partition of H−1(a) = A by return
time is shown in Figure 4.2. Case (I) assumes that Γ connects the two A2, A3 boundaries through
A3, case (II) assumes that Γ joins the two sloping boundaries of A1 through A2∪A3, but that case
(I) does not hold. We will show that in case (I) H−5(Γ) contains a h-segment, and in case (II)
H−3(Γ) contains a h-segment. Starting with Γ satisfying case (I), Figure 4.6 shows a quadrilateral
Q3 ⊂ A3 with two short sides on the A1, A3 boundaries. It follows that Γ must connect a segment
which joins the longer sides of Q3, through Q3. The argument is now the same as in the forwards
time analysis, all points in Q3 share the same itinerary under 5 iterations of H−1, bcaaa, so
H−5(Q3) is a quadrilateral in A. One can verify that it is wholly contained in A1 ⊂ A and that its
longer sides map into its sloping boundaries (see right image in Figure 4.6). H−5(Γ) then contains
a segment which connects these two boundaries through A1, that is, H−5(Γ) contains a h-segment.
Explicit expressions for the corner coordinates of Q3 and their images under H−5 will be given as
supplementary material.

Moving onto Γ satisfying case (II) and first focusing on the upper portion of A2, for η ≤
η0 we can follow the same argument, defining a quadrilateral Q2 ⊂ A2 with itinerary baa and
H−3(Q2) ⊂ A1 (see Figure 4.6). Its long sides must be joined by Γ, and map into the boundary of
A1, so H−3(Γ) contains a h-segment. Starting with the bottom corner of Q2 nearest the A2, A3

boundary and cycling anti-clockwise, label these points as r1, . . . , r4, which have coordinates

r1 =

(
η3 − 4η2 + 3η + 1

3η2 − 10η + 8
,
η3 − 4η2 + 3η + 1

3η2 − 10η + 8

)
, r2 =

(
5η3 − 20η2 + 24η − 8

4η3 − 18η2 + 23η − 8
, 1− η

)
,
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Figure 4.7: Case (II) for η > η0. Any Γ satisfying case (II) must intersect the A1A3 boundary
on L and the A2A3 boundary on L∗. This gives a lower bound on x∗ on the x-coordinate of this
intersection so that if x∗ > x′, then Γ joins the parallel sides of Q′

2.

r3 =

(
−η4 + 8η3 − 23η2 + 25η − 8

4η3 − 18η2 + 23η − 8
, 1− η

)
, and r4 =

(
2− η2

3η2 − 10η + 8
,

2− η2

3η2 − 10η + 8

)
.

For η > η0 we consider the quadrilateral Q′
2 with corners r2, r3, r4 and

r′1 =

(
3η2 − 5η + 1

η (2η − 3)
,
−2η3 + 7η2 − 6η + 1

η (2η − 3)

)
.

This is shown in Figure 4.7, with the x-coordinate of r′1 highlighted as x′(η). Like in the forwards-
time case, we need to check that x′(η) is not so far along the A2, A3 boundary that any Γ satisfying
case (II) does not connect the parallel sides of Q′

2. Letting gu3 (η) be the gradient of the anti-
clockwise invariant cone boundary for H−1, this amounts to showing that x′(η) < x∗(η) where
(x∗, y∗) lies on the intersection of the lines

y = η +
1− 2η

1− η
(x− η)

(the A2, A3 boundary) and
y = 1− 2η + gu3 (η)(x− 1 + η),

shown as the solid bold line in Figure 4.7. Solving for x gives

x∗(η) =
η2 + 3η − 1 + gu3 (η)(1− η)2

gu3 (η)(1− η)− 1 + 2η
.

One can now verify that x′(η) < x′(η1) < x∗(η1) < x∗(η) for all η0 < η < η1, establishing the
result. To conclude case (II) we must extend the analysis to the other portion of A2. This process
is entirely analogous to the forwards time case, taking reflections in x = 1

2 and y = 1
2 − η

2 . An
example is shown in Figure 4.6, with the image of Q2 under these reflections shown as S(Q2).

We are now ready to prove Proposition 4.1.

Proof of Proposition 4.1. Let γu(z) be the local unstable manifold at some z ∈ X ′. Let m0 ≥ 0 be
the smallest integer such that Hm0(z) ∈ a. Then by Lemma 4.1, Hm0(γu(z)) contains a segment Γ0

in a, aligned with some vector in the invariant cone C. We can then iteratively apply Lemma 4.2 to
generate a sequence of line segments with exponentially increasing diameter (Γp)0≤p≤P with each
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Q+
c+1

Q−

c−1

H−1(Q−)

H(Q+)

Figure 4.8: Two quadrilaterals Q+, Q− in A1 which map into A1 under H and H−1 respectively.
Any v-segment must join the dotted sides of Q+, hence maps into another v-segment. Similar for
h-segments and Q−.

Γp ⊂ Hm0+mp(γu(z)) for some mp > 0. Since the sequence has exponentially increasing diameter,
after some finite number of steps P , the line segment ΓP must have non-simple intersection with
one of the ai. Lemma 4.4 then tells us that Hk(ΓP ) contains a v-segment for some k ∈ {0, 3, 5}. It
follows that Hm(γu(z)) contains a v-segment where m = m0+mP +k. Similarly given z′ ∈ X ′, we
can apply Lemmas 4.1, 4.3, and 4.5 to find n such that H−n(γs(z

′)) contains a h-segment. Since
z and z′ were arbitrary, condition (M) of Theorem 1.4 holds.

This establishes H as ergodic over 0 < η < η1. Stronger mixing properties can now be easily
shown.

4.1.2 Establishing the Bernoulli property

Proposition 4.2. Condition (MR) holds for H when 0 < η < η1 ≈ 0.324.

Proof. To establish (MR) it is sufficient to show that the image of a v-segment under H contains
a v-segment, and the image of a h-segment under H−1 contains a h-segment. We can approach
this in the same way as before, defining quadrilaterals which these segments must traverse and
looking at their images. Define the quadrilateral Q+ by the corners (starting from the leftmost
and cycling anti-clockwise)

c+1 =

(
1 + η − η2

3− 2η
,
(1− η)2

3− 2η

)
, c+2 = (0, 0) ,

c+3 =

(
(1− η)2

3− 2η
,
(1− η)2

3− 2η

)
, and c+4 =

(
2− η

3− 2η

2(1− η)2

3− 2η

)
.

This is shown in the first diagram in Figure 4.8. Note that the we have shifted the domain
horizontally to more easily see A1 as a quadrilateral. Any v-segment must join the dotted sides of
Q+, which map into the upper and lower boundaries of A1, so v-segments map into v-segments.
We can similarly define the quadrilateral Q− by the corners (starting from the leftmost and cycling
anti-clockwise)

c−1 =

(
1 + η − η2

3− 2η
, 0

)
, c−2 =

(
2− η

3− 2η
, 0

)
, c−3 =

(
(1− η)2

3− 2η
, 1− η

)
, and c−4 = (0, 1− η).

Again, h-segments must connect the dotted sides of Q−, which map into the sloping boundaries of
A1, hence h-segments map into h-segments.

We are now ready to prove the main theorem of this section.
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Proof of Theorem 4.1. Noting that (KS1) and (KS2) were trivially satisfied, the Bernoulli prop-
erty holds for H over 0 < η < η1 by Theorem 1.4 and Propositions 3.5, 4.1, and 4.2.

We now move our attention to the other part of the parameter range nearer Cerbelli and Giona’s
Map, establishing mixing properties in a subset of (9−

√
33)/8 < η < 1/2. As in Myers Hill et al.

(2022b) we let ε = 1/2− η and consider H as an ε-perturbation from the CG map.

4.2 Mixing properties of Hε

In this section we will show:

Theorem 4.2. H has the Bernoulli property for η2 ≤ η < η3 where η2 ≈ 0.415 and η3 ≈ 0.491.

4.2.1 Establishing hyperbolicity

Proposition 4.3. We have non-zero Lyapunov exponents χ(z, v) ̸= 0 for almost every z ∈ T2,
v ̸= 0, when 0 < ε < ε1 ≈ 0.0931.

Proof. The partition and possible itinerary paths Ij around the partition are the same as before.
Define the corresponding matrices Mi using the derivative matrices

M0 =

(
1 −2

1−2ε

1 −1−2ε
1−2ε

)
and M1 =

(
1 2

1+2ε

1 3+2ε
1+2ε

)
.

Again, M3 is the matrix which dictates our parameter range. It is hyperbolic for ε < ε1, where
ε1 =

√
33−5
8 ≈ 0.0931. M2 is hyperbolic for ε strictly greater than 0.

Following Proposition 3.4, it remains to define an invariant cone and show that it is expanding.
Defining guj and gsj as before, one can verify that

gs3(ε) < gs1(ε) < gs2(ε) < gu2 (ε) < gu1 (ε) < gu3 (ε)

for 0 < ε < 1√
3
− 1

2 ≈ 0.0774, and

gs1(ε) < gs2(ε) < gu2 (ε) < gu1 (ε) < gu3 (ε) < gs3(ε)

for 1√
3
− 1

2 < ε < ε1. Hence the cone C, bounded by and including the unstable eigenvectors of
M2 and M3, is the minimal invariant cone. The common cone C is then defined as the open region
bounded by the unstable eigenvector of M2 at ε = 0 and the unstable eigenvector of M3 at ε = ε1.

Under the || · ||∞ norm, these are the unit vectors (1, 1)T and
(√

33−3
6 , 1

)T
respectively. One can

show that

• ||M1(1, 1)
T || >

√
33+9
4

• ||M2(1, 1)
T || > 1

• ||M3(1, 1)
T || > 9+

√
33

6

• ||M1

(√
33−3
6 , 1

)T
|| > 9+5

√
33

12

• ||M2

(√
33−3
6 , 1

)T
|| > 7− 2

√
33
3

• ||M3

(√
33−3
6 , 1

)T
|| > 1

for all ε in our range, so that our cone is expanding.

This establishes non-uniform hyperbolicity. As before, the next section shows ergodicity.
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Figure 4.9: Part (a) gives partition of A based on return time to A under iterations of H−1. Part
(b) shows a subdivision A4∪A5 = A2, with the boundary between these sets defined as the segment
joining the points Q1, Q2. Case illustrated ε = 0.05.

4.2.2 Establishing ergodicity

Proposition 4.4. Condition (M) holds for H over ε0 < ε ≤ ε2, where ε0 ≈ 0.00925 and ε2 ≈
0.0850.

The overall method for establishing (M) is unchanged. The key constructions are the partitions
of H(A) and H−1(a) given in section 4.1.1, and the invariant cones C for H (given above) and C′

for H−1. Defining the Mj as before, C′ is defined at each ε as the cone bounded by (and including)
the unstable eigenvectors of M2 and M3, i.e. the non-zero vectors with gradient gu3 < g < gu2 . One
can show (by the same method as before) that C′ is invariant and expanding.

For the sake of brevity, we will only describe the process of growing the backwards images of
local stable manifolds. The process for unstable manifolds is entirely analogous and, due to C
covering a smaller gradient range than C′, results in less stringent bounds on the parameter range.

While for the η-perturbation the growth stage was relatively straightforward and the h-segment
mappings more involved, the opposite is true for the ε-perturbation. If we were to follow the same
method as before, reducing the parameter range to satisfy equations like (4.4), we would be left
with just a fragment of the parameter range. Our way around this necessitates growing piecewise
linear curves rather than line segments. To ensure that we can find the diameter of a curve by
summing the diameters of its constituent line segments, we require that a curve does not double
back on itself, that is, the projection to the x-axis is injective. The lemma for the growth stage is
as follows:

Lemma 4.6. Let Γp−1 be a piecewise linear curve satisfying

(C0’) Γp−1 does not double back on itself,
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(C1’) Γp−1 ⊂ A,

(C2’) Each line segment in Γp−1 is aligned with some vector in the minimal invariant cone C′ for
H−1,

and which has simple intersection with each of the Ai. Then there exists a piecewise linear curve
Γp satisfying (C0’), (C1’), (C2’),

(C3’) Γp ⊂ H−i(Γp−1) for a chosen i ∈ {1, 2, 3},

(C4’) ℓh(Γp) ≥ (1 + δ) ℓh(Γp−1) for some δ = δ(ε) > 0, independent of Γp−1.

Proof. Figure 4.9(a) shows the return time partition of A = H−1(a) under H−1. Define Kj(ε)

for j = 1, 2, 3 as before. Both M1 and M2 see their minimum expansion over C′ on the unstable
eigenvector of M2. As does M3 for ε < ε⋆ ≈ 0.07735, then on its own unstable eigenvector for
ε > ε⋆. Since C′ is expanding, each of the Kj(ε) are strictly greater than 1 across our parameter
range.

First suppose Γp−1 lies entirely within one of the Aj . Each of its constituent line segments
L(xi, vi) can be defined by an end point xi and the vector vi taking xi to the other end point, with
vi ∈ C′. Satisfying (C3’) we let Γp = H−j(Γp−1), then each L(xi, vi) is mapped to a new segment
L(H−j(xi),Mjvi) which lies in A, is aligned in C′ and has expanded in diameter by a factor of at
least Kj(ε).

As the union of these new line segments, Γp satisfies (C1’) and (C2’). It does not double back
on itself since Mj will have the same orientation preserving (or reversing) effect on each of the vi.
This satisfies (C0’) and tells us that the diameter of Γp is the sum of the diameters of the new line
segments†, meaning its diameter has expanded by at least the factor Kj(ε), satisfying (C4’).

The above is the simplest case we will consider. The picture becomes more complicated as
we allow intersections with multiple Aj . First assume that Γp−1 intersects A1 and one of A2 or
A3. We proceed by restricting to one of the Aj , Γj := Γp−1 ∩ Aj , and expanding from there,
Γp = H−j(Γj). By the same reasoning given for the η-perturbation, we require

K2(ε) >
1

1− 1
K1(ε)

(4.6)

and
K3(ε) >

1

1− 1
K1(ε)

. (4.7)

Solving (4.6) gives ε > ε0 ≈ 0.00925, the lower bound on our parameter range. Solving (4.7) gives
ε < ε3 ≈ 0.0885, slightly larger than the upper bound on our parameter range ε2.

Next assume that Γp intersects A1, A2, and A3. The case where Γp intersects A2 and A3 but
not A1 follows as a trivial consequence and will be addressed at the end of the proof. Clearly if
the proportion of the diameter in A1 exceeds K1(ε)

−1,

ℓh(Γ
1)

ℓh(Γp−1)
>

1

K1(ε)
,

then we can take Γp = H−1(Γ1) to satisfy (C0’-5’). Otherwise we have to expand from some subset
of Γ2 ∪ Γ3, giving Γp such that

ℓh(Γp) >
1

1− 1
K1(ε)

ℓh(Γ
2 ∪ Γ3).

†Assuming its not 1, at which point Γp has non-simple intersection with some Aj
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To reduce the ε dependence of the problem and simplify the equations, we will take take

c = sup
ε0<ε≤ε2

1

1− 1
K1(ε)

≈ 1.4765

and show
ℓh(Γp) > c ℓh(Γ

2 ∪ Γ3). (4.8)

We will give an argument for expanding Γp−1 which intersects the lower portion of A2. The
argument for the upper portion is entirely analogous due to the 180◦ rotational symmetry of both
the partition of A and the invariant cone.

Consider the subdivision of A2 into points which remain in A for a further iteration of H−1

after returning, A4, and those which do not, A5. This subdivision is shown in Figure 4.9(b). The
labelled points are

Q1 =

(−4ε3 − 2ε2 + ε+ 1
2

12ε2 + 16ε+ 1
, 0

)
and Q2 =

(
1 + 2ε

2 + 2ε
,
3ε+ 2ε2

2 + 2ε

)
so that the segment L1 along the A4, A5 boundary has gradient

k1 =
12ε2 + 16ε+ 1

(2ε+ 1)(2ε+ 5)
.

The segment along the A4, A3 boundary has gradient

k2 =
4ε

2ε+ 1
.

Strictly speaking, at larger ε values A4 contains an additional region in the lower part of A5 near(
1
2 − ε, 0

)
. The only assumption we make about points in A5 is that they return to A after two

iterations, so treating this additional region as part of A5 has no impact on our analysis.
The region A4 has some useful properties. Firstly, like A3, segments contained within A4 return

to A after 3 iterations. This‡ means we can take Γp = H−3(Γ3∪Γ4) and have a much larger initial
curve to expand from. Secondly, diameter expansion is generally strong from A4. The itinerary
path is baa with corresponding matrix

M4 = M−1
1 M−1

1 M−1
0

which expands vectors at least as much as any of the other Mj : K4(ε) > Kj(ε) for all ε0 < ε ≤ ε2,
j = 1, 2, 3. Finally if Γp−1 intersects A5, then it must traverse A4 since, by assumption, it also
intersects A3. The case where Γp−1 does not intersect A5 is trivial, reducing to the case where
Γp−1 only intersects A1 and A3, since A3 and A4 both map into A under H−3 and K4 > K3.

Assume, then, that Γp−1 intersects A5. Let Γp = H−3(Γ3∪Γ4). Our aim is to minimise ℓh(Γp),
considering all possible curves Γp−1 dictated by the invariant cone, and showing that it still satisfies
(4.8). To arrive at the minimal case we can make several assumptions. Firstly, ℓh(Γ3) = 0. The
condition that we intersect A3 does not stipulate any minimum diameter in A3, it can be arbitrarily
small. Since M3 and M4 have the same orientation reversing effect on vectors in the cone, assuming
Γp does not have diameter 1 (at which point we has non-simple intersection with some Aj),

ℓh(Γp) ≥ K3(ε) ℓh(Γ
3) +K4(ε) ℓh(Γ

4).

Comparing with (4.8), taking ℓh(Γ3) > 0 grows the RHS of (4.8) by c ℓh(Γ3), but grows the LHS
of (4.8) by at least K3(ε)ℓh(Γ

3). Since K3(ε) > c for every ε0 < ε ≤ ε2, in the minimal case
‡Together with the fact that M3 and M4 have the same orientation reversing effect on the invariant cone
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ℓh(Γ
3) = 0. We note that the condition (4.8) now looks like

ℓh(H
−3(Γ4)) > c ℓh(Γ

4 ∪ Γ5),

which is satisfied if
K4(ε) > c

ℓh(Γ
4) + ℓh(Γ

5)

ℓh(Γ4)
. (4.9)

To show that this holds, we will put lower bounds on

ℓh(Γ
4)

ℓh(Γ4) + ℓh(Γ5)
(4.10)

and K4(ε), then compare their product with c.
By a purely geometric argument, comparing the admissible gradients given by the invariant

cone with the lines which make up the partition boundaries, we have a lower bound

ℓh(Γ
4)

ℓh(Γ4) + ℓh(Γ5)
>

(2ε+ 1)(2ε+ 1− 2k+5 )

(2ε+ 1)(−k−4 (2ε+ 3)− k+5 (2ε+ 5)) + 12ε2 + 16ε+ 1
:= B1(ε)

where k+5 = supε g
u
2 (ε) ≈ −0.08750 and k−4 = infε g

u
3 (ε) ≈ −0.6688. The calculation of this bound

can be found in appendix A.
We will now put a lower bound on K4(ε), the minimum expansion of M4 over the minimal cone.

This is on the anti-clockwise boundary, vu(M2), which can be described as the vector (1, k5(ε))
T

with

k5(ε) =
ε−

√
ε (4ε2 + 5ε+ 1)

2ε+ 1
< 0.

By calculating the matrix entries of M4 and noting that M4 reverses the orientation of vectors,
one can show that

K4(ε) =
3 + 46ε+ 52ε2 + 8ε3

1 + 2ε− 4ε2 − 8ε3
− 12ε+ 14

1− 4ε2
k5(ε).

Let L(ε) be the linear approximation for k5(ε),

L(ε) =
ε− ε0
ε2 − ε0

(k5(ε2)− k5(ε0)) + k5(ε0)

=
ε− ε0
ε2 − ε0

(k−5 − k+5 ) + k+5 .

One can verify that d
dεk5 < 0 and d2

dε2 k5 > 0 for ε0 < ε ≤ ε2, so that L(ε) > k5(ε) across this
parameter range and is equal at its extremes. This implies

K4(ε) ≥
3 + 46ε+ 52ε2 + 8ε3

1 + 2ε− 4ε2 − 8ε3
− 12ε+ 14

1− 4ε2
L(ε) := B2(ε)

To show condition (4.9), and complete this final case, it is sufficient to show that

B1(ε)B2(ε) > c ≈ 1.4765. (4.11)

One can show that B1(ε)B2(ε) is monotone increasing (see appendix A) over ε0 < ε ≤ ε2 and
therefore takes its minimal value at ε0. Plugging in this value gives

B1(ε0)B2(ε0) ≈ 1.532235,

which establishes (4.11).
The case where ℓh(Γ1) = 0 follows as a trivial consequence. B1(ε) is still a lower bound for

the proportion of Γp−1 in A3 ∪ A4 so we only need to compare B1(ε)B2(ε) against c = 1 in this
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case.

One can follow an entirely analogous argument to prove the equivalent lemma for growth in
forwards time:

Lemma 4.7. Let Γp−1 be a piecewise linear curve satisfying

(C0) Γp−1 does not double back on itself,

(C1) Γp−1 ⊂ a,

(C2) Each line segment in Γp−1 is aligned with some vector in the minimal invariant cone C for
H,

and which has simple intersection with each of the ai. Then there exists a piecewise linear curve
Γp satisfying (C0), (C1), (C2),

(C3) Γp ⊂ Hi(Γp−1) for a chosen i ∈ {1, 2, 3},

(C4) ℓv(Γp) ≥ (1 + δ) ℓv(Γp−1) for some δ = δ(ε) > 0, independent of Γp−1.

We now give the argument for mapping into h-segments and v-segments, whose definitions we
generalise to piecewise linear curves which connect the relevant boundaries of A1.

Lemma 4.8. Let ΓP ⊂ A be a piecewise linear curve with each of its line segments aligned with a
vector in C′. If ΓP has non-simple intersection with some Ai, then H−k(ΓP ) contains a h-segment
for some k ∈ {0, 4}.

Proof. In comparison with Lemma 4.5, we have fewer non-trivial cases to consider. We claim
that any ΓP which has non-simple intersection with A2 contains a h-segment, that is, it can only
connect A2 to itself by traversing A1. Since if ΓP were to connect the two parts of A2 through A3,
it would have to contain a segment with gradient

g <
1
2 − ε− 2ε

1
2 − ε−

(
1
2 + ε

) = −1− 6ε

4ε
=: h(ε),

the gradient of the line segment joining the points
(
1
2 − ε, 12 − ε

)
and

(
1
2 + ε, 2ε

)
. However g is

bounded from below by gu3 (ε) with

gu3 (ε) ≥ gu3 (ε2) ≈ −0.6688

across ε0 < ε ≤ ε2. Now
h(ε) ≤ h(ε2) ≈ −1.4397

across the range, so that g > h(ε) at each ε. Hence if ΓP has non-simple intersection with A2,
it follows that it contains a h-segment. The same clearly holds if ΓP has non-simple intersection
with A3.

Assume, then, that ΓP has non-simple intersection with A1. This implies that ΓP connects
the two sloping boundaries of A1 through b = A2 ∪ A3. We will show that H−4(ΓP ) contains a
h-segment. Figure 4.10 shows a region D ⊂ b, bounded by two piecewise linear curves ω, ζ. These
curves can be defined by their end points on ∂b and their turning points, whose full coordinates
are given in the supplementary material. Label these points as ωj , ζj , j = 1, 2, 3, 4 so that the
x-coordinate increases with j. These curves (and hence D) are contained within b for ε ≤ ε2, with
ζ2 limiting onto the right boundary of b (y = x − 1

2 + ε) as ε → ε2. In particular ε2 ≈ 0.08504 is
the positive solution to the cubic equation

8ε3 + 20ε2 + 10ε− 1 = 0.
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ω

ζ

D

b

B

β αD

H4(α)

H4(β)

H−4(ζ)

H−4(ω)

A1

Figure 4.10: Left: Two regions D ⊂ b and D ⊂ B, bounded by the piecewise linear curves ω, ζ and
α, β respectively. Right: Their images in A1 under H−4 and H4 respectively, establishing h- and
v-segments.

The argument for mapping into h-segments is roughly analogous to that given for the η-
perturbation. Applying H−4 to D gives a quadrilateral in A1 with sides on its left and right
boundaries (the images of ζ and ω under H−4). Clearly any ΓP which joins the left and right sides
of b must join ω and ζ through D. Let Γ be this part of the curve, then H−4(Γ) must be a piecewise
linear curve joining H−4(ω) and H−4(ζ) through H−4(D). That is, H−4(Γ) is a h-segment.

Lemma 4.9. Let ΓP ⊂ a be a piecewise linear curve with each of its line segments aligned with a
vector in C. If ΓP has non-simple intersection with some ai, then Hk(ΓP ) contains a v-segment
for some k ∈ {0, 4}.

Proof. Analogous to the previous lemma, non-simple intersection with a2 or a3 imply that ΓP

already contains a v-segment. To see this, note that if ΓP connected the two parts of a2 through
a3, it would have to contain a segment with gradient

g(ε) >
1
2 − ε

2ε
=: h(ε).

However g(ε) is bounded from above by the anti-clockwise invariant cone boundary gu3 (ε) and

gu3 (ε) ≤ gu3 (ε2) ≈ 1.669 < 2.440 ≈ h(ε2) ≤ h(ε)

across ε0 < ε ≤ ε2. As before, then, it remains to assess the case where ΓP has non-simple
intersection with a1. It follows that ΓP joins the upper and lower boundaries of B through B.
Figure 4.10 shows a region D bounded by ∂B and two piecewise linear curves α, β. These curves
are contained within B across ε0 < ε ≤ ε2, with α2 limiting onto the line y = 1 as ε → ε2.
Applying H4 to D gives a quadrilateral spanning across A1, with sides H4(α), H4(β) on its lower
and upper boundaries respectively. Clearly ΓP must connect β to α through D, and therefore
H4(ΓP ) contains a v-segment.

We are now ready to establish ergodicity over ε0 < ε < ε2.
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Proof of Proposition 4.4. By the same argument given in the proof of Proposition 4.1, by Lemmas
4.1, 4.7, 4.9, given any z ∈ X ′ we can find m such that Hm(γu(z)) contains a v-segment. Similarly
by Lemmas 4.1, 4.6, 4.8, given any z′ ∈ X ′ we can find n such that H−n(γs(z

′)) contains a
h-segment. It follows that they intersect which, since z and z′ were arbitrary, establishes (M).

4.2.3 Establishing the Bernoulli property

Proposition 4.5. Condition (MR) holds for H when ε0 < ε ≤ ε2.

Proof. Follow the same argument given in the proof of Proposition 4.2, replacing η by 1
2 − ε.

We are now ready to prove the main theorem of this section.

Proof of Theorem 4.2. Let η2 = 1
2 − ε2 and η3 = 1

2 − ε0. Noting that (KS1) and (KS2) were
trivially satisfied, the Bernoulli property holds for H over η2 ≤ η < η3 by Theorem 1.4 and
Propositions 4.3, 4.4, and 4.5.

4.2.4 Remarks

We remark that the parameter limits given in Theorems 4.1, 4.2 are not optimal. For example,
ε2 is not the highest upper bound on the ε-mixing window that our analysis allows for, but it
is very close. By considering a 5-iterate mapping into h- and v-segments, this bound could be
increased only very slightly. Improving the bound B1(ε) would increase it further, but would in
turn complicate the already lengthy algebraic manipulations.

When following the Katok and Strelcyn approach, it is typical to be left with parameter ranges
where hyperbolicity can be established but proving the mixing property is more challenging. See
for example the families of maps studied in Przytycki (1983), Wojtkowski (1981). In both of these
examples, the strength of the shears is increased to break up elliptic islands and ensure an invariant
cone. Indeed, the Wojtkowski (1981), Bullett (1986) map at parameter valueK = 4 exhibits similar
dynamics to a variation of Cerbelli and Giona’s map with a double strength non-monotonic shear,
i.e taking H = G◦F 2. In contrast, for Hη the shear strength is not varied, in particular integrating
the twist functions gives∫ 1

0

f(y) dy =

∫ 1−η

0

y

1− η
dy +

∫ 1

1−η

1− y

η
dy =

1

2
,

independent of η.
We now focus on a new ASM, the map H(ξ,η) which limits pointwise onto Hη by taking ξ → 0.

4.3 Mixing properties of H(ξ,η)

Analysis of the map H(ξ,η) over 0 < ξ, η < 1 was provided in Myers Hill et al. (2022a). We
present the same arguments in this section, establishing parameter windows where the dynamics
are hyperbolic, mixing, and non-mixing.

Theorem 4.3. Let H,M, I1, I2, I3 be the parameter sets shown in Figure 4.11.

• For (ξ, η) ∈ H, H(ξ,η) has non-zero Lyapunov exponents.

• For (ξ, η) ∈ M, H(ξ,η) is mixing.

• For (ξ, η) ∈ I1, I2, I3 and their reflections in the lines η = ξ and η = 1 − ξ, H(ξ,η) is
non-mixing.
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Elliptic islands

Mixing (M)

⊂

Hyperbolic (H)

Figure 4.11: Shown behaviour of H(ξ,η) over the parameter space 0 < ξ, η < 1.

Explicit definitions for these sets are given later in Proposition 4.10. As in the previous section,
our approach is to follow the Katok and Strelcyn scheme.

Lemma 4.10. For all 0 < ξ, η < 1 the map H(ξ,η) satisfies (KS1-2).

Proof. Write H = H(ξ,η) and partition the torus into four rectangles Rj using the lines x = 0,
y = 0, x = 1 − ξ, and y = 1 − η, as shown in Figure 4.12. Letting Aj = F−1(Rj), the Jacobian
DH is defined everywhere outside of the set D = ∪j∂Aj and is constant on each of the Aj , given
by Mj , where

M1 =

(
1 1

1−η
1

1−ξ 1 + 1
(1−ξ)(1−η)

)
, M2 =

(
1 1

1−η

− 1
ξ 1− 1

ξ(1−η)

)
,

M3 =

(
1 − 1

η
1

1−ξ 1− 1
η(1−ξ)

)
, M4 =

(
1 − 1

η

− 1
ξ 1 + 1

ηξ

)
.

1− η

R1 R2

R3 R4y2

y1

A2

A2

A1

A3
A3

A1

x1 x2

A′
3

A′
1

A′
1

A′
3

A′
2

A′
2

Figure 4.12: A partition of the torus into four rectangles Rj , and their images Aj under F−1
η ,

A′
j under Gξ. The smallest partition elements A4 and A′

4 are left unlabelled. Case illustrated
ξ = η = 0.2.
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Letting A′
j = G(Rj) = H(Aj), the derivative of H−1 is defined everywhere outside of the set

D′ = ∪j∂A
′
j and is constant on each of the A′

j . The labelled intersections with the axes are
y1 = (1− ξ)(1− η), y2 = 1− η + ξη, x1 = η(1− ξ), and x2 = 1− ξη.

Using the notation of Theorem 1.4, we take our map as f = H, our domain as X = T2, and
our singularity set as S = D. Taking µ to be the Lebesgue measure on T2, clearly µ(S) = 0. Since
we can cover D with arbitrarily thin rectangles, (KS1) follows for some C1 > 0 with a = 1. Since
H is piecewise linear, (KS2) follows trivially.

As in Myers Hill et al. (2022a), we will focus first on the reduced parameter space ξ = η

for 0 < η < 1/2 and then extend our results to more general parameters (ξ, η). We begin by
establishing non-zero Lyapunov exponents, (KS3).

4.3.1 Hyperbolicity of H(η,η)

Proposition 4.6. We have non-zero Lyapunov exponents χ(z, v) ̸= 0 for almost every z ∈ T2,
v ̸= 0, when 0 < η < 1/2.

Proof. Let H = H(η,η). We note that each of the matrices Mj , with ξ = η and 0 < η < 1/2, are
hyperbolic. Write the gradients of their unstable, stable eigenvectors as guj , gsj . One can verify
that

gu4 (η) < gu2 (η) < gs2(η) < gs1(η) < gs4(η) < gs3(η) < gu3 (η) < gu1 (η) (4.12)

across 0 < η < 1/2. This allows us to define a cone region C in the tangent space, bounded by
the unstable eigenvectors of M2 and M3, which includes all of the unstable eigenvectors of the Mj ,
and none of the stable eigenvectors. For each matrix we define

Kj(η) = inf
v∈C

∥Mjv∥
∥v∥

.

Using the || · ||∞ norm, these are given as follows:

K1 =
2− η

1− η
, K2 =

1− η

η
, K3 =

1− η

η
, and K4 =

1− η + η2

η2
.

All are strictly greater than 1 for 0 < η < 1/2, so C is invariant and expanding with respect to the
matrices Mj over this parameter range. The result then follows from Proposition 3.4.

4.3.2 Ergodicity of H(η,η)

In this section we will prove the following:

Proposition 4.7. Condition (M) holds for H when 0 < η < η1 ≈ 0.2389.

The proof consists of three stages. Non-zero Lyapunov exponents a.e implies the existence of
local unstable and stable manifolds γu(z) and γs(z) at z. The first stage, Lemma 4.11, describes
the nature of these local manifolds. In the next stage, Lemmas 4.12 and 4.13, we give an iterative
scheme for growing the backwards (forwards) images of any local (un)stable manifold. We then
grow the images of these manifolds up until the point where the images connect up certain partition
boundaries. This then allows us, by Lemmas 4.14 and 4.15, to establish an intersection in the next
several iterates.

Let C′ be the cone bounded by the stable eigenvectors of M2 and M3, including the stable
eigenvectors of each of the Mj . It follows that this cone is invariant and expanding under H−1.
The cones C and C′ provide bounds on the gradients of local manifolds:
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Lemma 4.11. For a.e. z, γu(z) is a line segment aligned with some v ∈ C, and γs(z) is a line
segment aligned with some v′ ∈ C′.

Proof. Analogous to the proof of Lemma 4.1. C can be described as the cone region bounded by the
stable eigenvectors of M−1

2 and M−1
3 and including the stable eigenvectors of each M−1

j . Clearly
v must be aligned in this cone, for if it falls outside of this region, repeatedly applying the M−1

j

will pull v towards the invariant expanding cone C′, resulting in exponential growth in its norm,
which contradicts (4.3).

Lemma 4.12. Let η < η1. Given a line segment Γp−1, aligned with some v ∈ C and having simple
intersection with each Aj, there exists a line segment Γp ⊂ H(Γp−1) such that

(C1) Γp is aligned with some vector in C,

(C2) ℓv(Γp) ≥ (1 + δ) ℓv(Γp−1) for some δ = δ(η) > 0, independent of Γp−1.

Proof. Suppose Γp−1, aligned with some v ∈ C, has simple intersection with all the Aj and each
intersection is non-empty. Write the restriction of Γp−1 to Aj as Γj . Now if for some j

Kj(η, v) ℓv(Γ
j) > ℓv(Γp−1), (4.13)

we can take Γp = H(Γj) to satisfy (C2). If Γp−1 was aligned with v ∈ C, Γp is now aligned with
Mjv ∈ C, so (C1) is also satisfied. If (4.13) does not hold, the proportion of Γj in Γp−1 is bounded
above by K−1

j . Suppose (4.13) does not hold for j = 2, 3, 4. Then the proportion of Γ1 in Γp−1 is
bounded below by

ℓv(Γ
1)

ℓv(Γp−1)
> 1− 1

K2
− 1

K3
− 1

K4
.

Hence taking Γp = H(Γ1) satisfies (C2) provided that

K1(η, v) >
1

1− 1
K2

− 1
K3

− 1
K4

,

which rearranges to
4∑

j=1

1

Kj(η, v)
< 1

and holds for any v ∈ C provided that

sup
v∈C

4∑
j=1

1

Kj(η, v)
< 1. (4.14)

Unit vectors in C are of the form (k, 1)T for k0 ≤ k ≤ k1 with k0 = η/ (η − 1), k1 = 1. For each j

let Mj =
(

aj bj
cj dj

)
, then

4∑
j=1

1

Kj(η, v)
=

4∑
j=1

1

|cjk + dj |

=
1

c1k + d1
+

1

−c2k − d2
+

1

−c3k − d3
+

1

c4k + d4

=: Φ(η, k)

where we have used the fact that M2 and M3 are orientation reversing. Now

∂2Φ

∂k2
=

2c21
(c1k + d1)3

+
2c22

(−c2k − d2)3
+

2c23
(−c3k − d3)3

+
2c24

(c4k + d4)3
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which, by comparing with the terms of Φ(η, k), is clearly positive. Hence for each η, Φ as a function
in k is convex, giving

sup
v∈C

4∑
j=1

1

Kj(η, v)
= sup

k0≤k≤k1

Φ(η, k) = max{Φ(η, k0),Φ(η, k1)}.

Over 0 < η < 1
2 we have that Φ(η, k0) > Φ(η, k1) so that (4.14) holds over 0 < η < η1 where

η1 ≈ 0.2389 solves the equation Φ(η, k0) = 1. So for η in this range, choosing one of Γp = H(Γj)

will always satisfy (C2). The case where Γp−1 has empty intersection with one or more of the Aj

follows as a trivial consequence.

The equivalent lemma for the growth of line segments under H−1 is as follows. Recall the
partition of the torus into four sets A′

j given in Figure 4.12.

Lemma 4.13. Let η < η1. Given a line segment Γp−1, aligned with some v′ ∈ C′ and having
simple intersection with each A′

j, there exists a line segment Γp ⊂ H−1(Γp−1) such that

(C1’) Γp is aligned with some vector in C′,

(C2’) ℓh(Γp) ≥ (1 + δ) ℓh(Γp−1) for some for some δ = δ(η) > 0, independent of Γp−1.

Proof. The argument is analogous. Parameterise C′ by (1,m)T for m0 ≤ m ≤ m1 with m0 = −1,
m1 = η/(1−η). Then the condition on expansion factors equivalent to (4.14) reduces to the bound
max{Ψ(η,m0),Ψ(η,m1)} < 1 where

Ψ(η,m) =
1

−b1m+ d1
+

1

b2m− d2
+

1

b3m− d3
+

1

−b4m+ d4
.

One can verify that Ψ(η,m0) = Φ(η, k1) and Ψ(η,m1) = Φ(η, k0) so that the lemma holds over
0 < η < η1.

Moving onto the final mapping stage, call any line segment Γ ⊂ R1 which joins the upper and
lower boundaries (y = 0, y = 1 − η) a v-segment. Similarly we call any line segment Γ ⊂ R1

which joins the left and right boundaries (x = 0, x = 1− η) a h-segment. Clearly v-segments and
h-segments must always intersect.

Lemma 4.14. Let Γ be a line segment contained within some A′
j. If Γ has non-simple intersection

with some Aj, then Hk(Γ) contains a v-segment for some k ∈ {1, 2, 3, 4}.

Proof. Note that the sets A′
1, A′

3 are entirely contained within the strip {x ≤ 1− η}, and the sets
A′

2, A′
4 are entirely contained within the strip {x ≥ 1 − η}, so Γ lies entirely within one of these

strips. Suppose first that it lies in {x ≤ 1 − η}, then Γ must have non-simple intersection with
A1 or A3. Non-simple intersection with A2 and A4 is possible, but involves wrapping vertically
around the torus, and in doing so implies non-simple intersection with A1 or A3. Assume Γ has
non-simple intersection with A1. Then it must either connect the segments 2a and 2b (shown in
Figure 4.13) though A2 or connect the segments 4a and 4b through A4, depending which way it
connects the two parts of A1. The same is true when Γ has non-simple intersection with A3.

Equivalent analysis can be applied to the strip {x ≥ 1 − η}. For Γ in this strip, it follows
that Γ connects 3a to 3b through A3 or connects 1a to 1b through A1. This gives four possible
cases. Denote the case where Γ connects ja to jb through Aj by case (j). We will show that all
cases reduce to case (3). Suppose first that Γ satisfies case (4), connecting 4a to 4b through A4.
Then H(Γ) connects 4a’ to 4b’ through A′

4 (see Figure 4.13). To do this, H(Γ) must connect the
segments 1a and 1b, passing through A1. That is, H(Γ) satisfies case (1). One can similarly show
that if Γ satisfies case (1) then H(Γ) satisfies case (2), and that if Γ satisfies case (2) then H(Γ)

satisfies case (3). This case is illustrated in Figure 4.13.
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Figure 4.13: Four pairs of line segments ja, jb on the boundaries of Aj , and their images ja′, jb′
under H on the boundaries of A′

j . A line segment Γ is shown which satisfies case (2). Its image
H(Γ) ⊂ A′

2 connects 2a’ to 2b’, necessarily satisfying case (3).

Looking at the images 3a′ = H(3a) and 3b′ = H(3b), we see that any line segment in A′
3 which

joins 3a’ to 3b’ must pass through y = 0 and y = 1 − η, the lower and upper boundaries of R1.
It follows that if Γ satisfies case (3), H(Γ) contains a v-segment. For any of the four cases (j),
j = 1, 2, 3, 4, Hk(Γ) will contain a v-segment for k = 3, 2, 1, 4.

Lemma 4.15. Let Γ be a line segment contained within some Aj. If Γ has non-simple intersection
with some A′

j, then H−k(Γ) contains a h-segment for some k ∈ {1, 2, 3, 4}.

Proof. The argument is almost entirely analogous, we say that Γ satisfies case (j′) if Γ connects
jA’ to jB’ through A′

j (see Figure 4.14 for an illustration of the relevant segments). Γ is entirely
contained within one of the strips {y ≤ 1 − η} or {y ≥ 1 − η} which, together with the fact that
Γ has non-simple intersection with some A′

j , implies that Γ satisfies case (j’) for some j. Again,
we have that if Γ satisfies case (4’) then H−1(Γ) satisfies case (1’). This reduces to case (3’), and
in turn reduces to case (2’). Any segment connecting 2A to 2B through A2 must pass through the
lines x = 1− η and x = 0, the right and left boundaries of R1. It follows that for Γ satisfying case
(j’), j = 1, 2, 3, 4, H−k(Γ) contains a h-segment for k = 3, 1, 2, 4.

We are now ready to establish ergodicity.

Proof of Proposition 4.7. For a.e. z, by Lemma 4.11, Γ0 = γu(z) is a line segment aligned with
some vector v ∈ C. By Lemma 4.12 we can generate a sequence of line segments (Γp)0≤p≤P , with
Γp ⊂ Hp(γu(z)) and the diameter of Γp growing exponentially with p. It follows that after finitely
many P steps, ΓP must have non-simple intersection with one of the partition elements Aj . Since
H−1(ΓP ) lies entirely within some Aj , ΓP lies entirely within some A′

j . Now by Lemma 4.14,
Hk(ΓP ) contains a v-segment for some k ∈ {1, 2, 3, 4}. Hence we have found m = P + k such that
Hm(γu(z)) contains a v-segment. Similarly for a.e. z, by Lemmas 4.11, 4.13, and 4.15, we can find
n such that H−n(γs(z

′)) contains a h-segment. It follows that they must intersect.

4.3.3 Mixing properties of H(η,η)

Proposition 4.8. Condition (MR) holds for H when 0 < η < η1 ≈ 0.2389.

Proof. Given z ∈ X ′, by Lemmas 5.1, 4.12, 4.14, we have found M0 such that HM0(γu(z)) contains
a segment Γ which joins 3a’ to 3b’ through A′

3. As shown in the previous section, this means that
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Figure 4.14: Four pairs of line segments jA′, jB′ on the boundaries of A′
j , and their images jA,

jB under H−1 on the boundaries of Aj .

Γ contains a v-segment. It also follows that Γ satisfies case (2) so, by induction, we have that
H2k(Γ) contains a v-segment for k ∈ N. Consider the quadrilateral Q1 ⊂ A1, defined by its corners

q1 =

(
(1− η)3

1 + (1− η)2
, 0

)
, q2 =

(
(1− η)2

1 + (1− η)2
, 0

)

q3 =

(
0,

(1− η)3

1 + 2(1− η)2

)
, q1 =

(
0,

(1− η)4

1 + 2(1− η)2

)
.

An illustration of Q1 and its image H(Q1) ⊂ A2 are shown in Figure 4.15. One can show that
each of the points qi map into the boundary of A2 so that if Γ joins the dashed boundaries of Q1,
then H(Γ) satisfies case (2). For Γ joining 3a’ to 3b’ through A′

3, Γ must intersect the line y = 0

at some point (x, 0) with 0 ≤ x ≤ xv = η2(1 − η)
(
1− η + η2

)−1. Hence our Γ joins the dashed
lines of Q1 as described, provided that xv(η) ≤ q1(η). This holds for η ≤ η2 ≈ 0.4302. Since
η2 > η1, this holds in our parameter range so H(Γ) satisfies case (2). By the same argument as
before, by induction it follows that H1+2k(Γ) contains a v-segment for k ∈ N. Let M = M0 + 2,
then Hm(γu(z)) contains a v-segment for all m ≥M .

By an entirely analogous argument, showing that h-segments and their images under H−1

must satisfy case (3)§, given any z′ ∈ X we can find N = N0 + 2 such that H−n(γs(z
′)) contains

a h-segment for any n ≥ N . Since z and z′ are arbitrary, this establishes (MR).

We remark that Lemma 4.10 and Propositions 4.6, 4.7, 4.8 give the Bernoulli property over
0 < η < η1 by Theorem 1.4. We now extend our arguments to the wider parameter space ξ ̸= η.

4.3.4 The full parameter space

We begin by establishing some symmetries of the parameter space.

Parameter space symmetries

Note that the system of maps H(ξ,η) = Gξ ◦ Fη given in the introduction is well defined and
incorporates two non-monotonic shears for all 0 < ξ, η < 1. Two symmetries exist which allow us

§Showing the equivalent to the xv(η) < q1(η) bound for H−1 requires only η < η′2 ≈ 0.4643.
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3a’

3b’

q1 q2

q3
q4

Q1

H(Q1)

A2

Figure 4.15: Diagram showing that if a segment Γ connects 3a’ to 3b’ through A′
3, then H(Γ) must

satisfy case (2).

to reduce this parameter space by a factor of four. Firstly consider σ1(ξ, η) = (η, ξ), reflection in
the line η = ξ. We claim that

S1 ◦Gξ ◦ Fη = Fξ ◦Gη ◦ S1

where S1 : T2 → T2 maps (x, y) 7→ (y, x). This follows from the fact that S1(Aj) = G−1
η (S1(Rj))

for j = 1, . . . , 4 and the definitions of F , G given in the introduction. Let H = F ◦ G (shearing
vertically first instead of horizontally) then it follows that we have a semi-conjugacy between H(ξ,η)

and H(η,ξ) = Hσ1(ξ,η). Clearly H and H share the same mixing properties, so mixing properties of
Hσ1(ξ,η) follow from those of H(ξ,η).

Similarly take σ2(ξ, η) = (1− η, 1− ξ), reflection in the line η = 1− ξ. One can verify that

S2 ◦Gξ ◦ Fη = F−1
1−ξ ◦G

−1
1−η ◦ S2

where S2 : T2 → T2 maps (x, y) 7→ (1− y, 1− x), noting that S2(Aj) = G1−η(S2(Rj)). This gives
H(ξ,η) conjugate to H−1

σ2(ξ,η)
, which has the same mixing properties as Hσ2(ξ,η).

Taking both of these symmetries into account, we need only study the reduced parameter space
P defined by ξ ≤ η ≤ 1− ξ with 0 < ξ ≤ 1

2 .

Elliptic islands

Proposition 4.9. H exhibits elliptic islands of positive measure over the following parameter
spaces:

(I1): 1
2 < η ≤ 1− ξ for 0 ≤ ξ < 1

2 ,

(I2): 0 < ξ < min

{
1− 1

3η ,
8η3−22η2+18η+

√
4η3−4η2+1−5

2(4η3−9η2+7η−2)

}
,

(I3): max
{

1
3−3ξ ,

2ξ2−4ξ+1
2ξ2−3ξ+1

}
< η < 1

2 .

Proof. This is a straightforward application of Proposition 3.1. Starting with I1, consider the
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periodic orbit {z1, z2} where

z1 =

(
−2ξ2η + 5ξη − ξ − 3η + 1

4ξη − 4η + 1
,
−2ξη2 + 3ξη + 2η2 − 4η + 1

4ξη − 4η + 1

)
and

z2 =

(
−
η
(
2ξ2 − 3ξ + 1

)
4ξη − 4η + 1

,
−2ξη2 + 5ξη + 2η2 − 5η + 1

4ξη − 4η + 1

)
.

We claim that for (ξ, η) ∈ I1 both z1 = (x1, y1) and z2 = (x2, y2) are contained in the interior
of A3, i.e. both F (zk) are in R3. Now F (x1, y1) = (x2, y1) and F (x2, y2) = (x1, y2) so we
require 0 < xk < 1− ξ and 1 − η < yk < 1, which is easily verified for (ξ, η) ∈ I1. It follows that
dist(zk,D) > 0 and the associated cocycle is M3M3. We remark that tr(M2) = (trM)2−2 detM so
that for area preserving matrices M , we have |tr(M2)| < 2 ⇐⇒ |trM | < 2. Hence the conditions
listed in Proposition 3.1 are verified provided that |2− 1/(η − ηξ)| < 2, i.e. 4η(1 − ξ) > 1, which
clearly holds over I1.

The analysis for I2 and I3 is analogous. They correspond to islands around period 6 orbits
with itinerary A3, A3, A1, A3, A3, A1. The condition on the trace of the associated cocycle gives
ξ < 1 − 1/(3η), equivalently η > 1/(3 − 3ξ). The other bounds on I2, I3 come from requiring
dist(zk,D) > 0.

The parameter regions In and their symmetries under σ1, σ2 are shown in Figure 4.11. These
are the three largest (in terms of proportion of the parameter space) elliptic island families over P
but do not constitute an exhaustive list. We encountered the straight side of ∂I2 in Proposition
3.2. The period 3 elliptic periodic orbit seen there bifurcates to give the above period 6 orbit upon
taking a second non-monotonic shear (ξ > 0).

Mixing properties

In this section we generalise our approach for proving mixing properties over the line η = ξ to
subsets of P. Inequalities on generalised expansion factors dictate where in P we can establish
hyperbolicity and (MR). Starting with hyperbolicity, across P the traces of the Mj(ξ, η) satisfy
|trMj | > 2 for j = 1, 2, 4. For M3 we have trM2(ξ, η) = 2 − 1/ (η − ηξ) which has absolute
value greater than 2 provided that 1/ (η − ηξ) > 4, i.e. for η < 1/ (4− 4ξ). Let P ′ denote the
points in P for which this inequality is satisfied. We remark that the cone C bounded by the
unstable eigenvectors of M2 and M3, containing those of M1 and M4, is invariant and expanding
for parameter values in P ′. The cone C′ for H−1 is similar, bounded by the stable eigenvectors
of M2 and M3. Under the || · ||∞ norm, the cone boundaries of C are given by the unit vectors
(k0, 1)

T and (k1, 1)
T , where

k0(ξ, η) =
−2ξ

1 +
√
1− 4ξ + 4ξη

< 0 and k1(ξ, η) =
2− 2ξ

1 +
√
1− 4η + 4ξη

> 0.

The cone boundaries of C′ are given by the unit vectors (1,m0)
T and (1,m1)

T , where

m0(ξ, η) =

√
4ξη − 4ξ + 1− 1

2ξ
and m1(ξ, η) =

√
4ξη − 4η + 1− 1

2ξ − 2
.

As before, write the components of Mj as aj , . . . , dj then the expansion factor Kj(ξ, η, k) of
the matrix Mj in the direction (k, 1)T ∈ C is given by |cjk + dj |. Noting that each matrix has
determinant 1, the expansion factor Kj(ξ, η,m) of the matrix M−1

j in the direction (1,m)T ∈ C′
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c3

Bernoulli B

ξ

η

Figure 4.16: Plot of analytical results over P. The curves c1 and c2 define P ′, c3 defines B ⊂ P ′,
on which H is respectively hyperbolic, mixing. Note that c3 meets c2 at the point (η1, η1).

is given by |dj − bjm|. Let

Φ(ξ, η, k) =

4∑
j=1

1

Kj(ξ, η, k)
and Ψ(ξ, η,m) =

4∑
j=1

1

Kj(ξ, η,m)
,

then by the same reasoning as before, the growth lemmas for H and H−1 require

max{Φ(ξ, η, k0),Φ(ξ, η, k1)} < 1 and max{Ψ(ξ, η,m0),Ψ(ξ, η,m1)} < 1

respectively. We may now give our derived mixing windows:

Proposition 4.10. Let H be defined by parameter values (ξ, η) ∈ P.

• For (ξ, η) ∈ P ′, H is non-uniformly hyperbolic.

• For (ξ, η) satisfying max{Φ(k0),Φ(k1),Ψ(m0),Ψ(m1)} < 1, shown as the set B in Figure
4.16, H is Bernoulli.

Proof. We adjust the argument given for the case ξ = η. One can verify that the chain of in-
equalities (4.12) holds for all (ξ, η) ∈ P ′ so that C is invariant. Similarly one can verify that each
of the Mj expands vectors parallel to the cone boundaries, so C is expanding. Existence of this
invariant expanding cone implies non-zero Lyapunov exponents over a full measure set, so H is
hyperbolic for parameter values in P ′. Moving onto proving (M), Lemmas 4.11, 4.14, and 4.15 are
entirely analogous. Lemma 4.12 follows from max{Φ(ξ, η, k0),Φ(ξ, η, k1)} < 1 and Lemma 4.13 fol-
lows from max{Ψ(ξ, η,m0),Ψ(ξ, η,m1)} < 1. One can verify that this reduces to Ψ(ξ, η,m1) < 1,
shown as the region B ⊂ P ′ bounded by ξ = 0, c2, and the curve c3 given by Ψ(ξ, η,m1) = 1 (see
Figure 4.16). Condition (MR) follows from adapting the xv(η) < q1(η) inequality. Solving line
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intersection equations gives

xv(ξ, η) =
ηξ(1− ξ)

1− η(1− ξ)
and q1(ξ, η) =

(1− η)(1− ξ)2

1 + (1− η)(1− ξ)

so that xv(ξ, η) < q1(ξ, η) reduces to

ξ <
(1− η)2

1− η + η2

which holds over B. Again, the equivalent inequality to xv(ξ, η) < q1(ξ, η) for H−1 results in a less
stringent condition on the parameter space, hence also holds over B. It follows, then, that H is
Bernoulli over parameter values (ξ, η) ∈ B.

We now prove our main theorem.

Proof of Theorem 4.3. Given a parameter set P ⊂ (0, 1)× (0, 1), define

Σ(P ) = P ∪ σ1(P ) ∪ σ2(P ) ∪ (σ2 ◦ σ1)(P ).

Letting H = Σ(P ′), M = Σ(B), the first two statements in Theorem 4.3 follow from Proposition
4.10 and the semi-conjugacies established in section 4.3.4. The statement on elliptic islands is
similar, following from the semi-conjuacies and Proposition 4.9.

4.4 Summary

For both systemsHη, H(ξ,η) considered in this chapter, the derived mixing windows are suboptimal.
Note that we could use the same convexity argument used in the proof of Lemma 5.9 to improve
the mixing window η < η1 for Hη, but not by much. It cannot be used to improve the mixing
window of Hε as there we are growing piecewise linear curves, made of up line segments of varying
gradients, so we cannot minimise expansion over a single vector v ∈ C. Similarly we cannot use the
method of growing piecewise linear curves for H(ξ,η) as the Jacobians Mi,Mj over neighbouring
partition elements Ai, Aj always have opposite orientation preserving/reversing effects on vectors
v ∈ C.

In general, if we rely on a matrix Mi for expansion and that matrix loses hyperbolicity at
a parameter value η = η0, using the methods described in this chapter the mixing window will
necessarily be bounded away from this parameter value. Essentially near η0 we have Ki(η) ≈ 1

so that
∑

j 1/Kj < 1 is satisfied only when the other expansion factors Kj , j ̸= i are very large.
Similar to the method of dealing with non-hyperbolic regions, this can potentially be overcome
by considering expansion over more and more iterates, avoiding using Mi itself. In practice this
greatly increases the total number of matrices Mj we must consider. Indeed, if Ai contains a
periodic orbit then this number is infinite. Establishing growth conditions in this fashion may be
tractable at single parameter values (we will see such an example in the next chapter) but it is
much harder to show over large parameter spaces, e.g. for H(ξ,η) the rest of the region P ′ and
beyond.

Figure 4.17 compares a numerical evaluation of the dynamics over the parameter space P with
the results of this chapter. The tighter mixing windows established for the map Hη (i.e. with ξ = 0)
appear to extend out some distance into the two dimensional ξ > 0 parameter space. Chains of
island structures persist between the two large island windows I2, I3 identified in Proposition 4.9.
These islands fall in the strip

1

3− 3ξ
< η <

4ξ − 9 +
√

16ξ2 − 40ξ + 33

8ξ − 8
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η

ξ

•CG

•Cat

•OTM

Figure 4.17: Left: a discretised parameter space P. FTLE fields are calculated at each parameter
value (pixel), coloured red in the case of elliptic islands, blue where the dynamics appear ergodic.
The black lines highlight a strip where a key matrix is non-hyperbolic. Right: proven behaviour
over P in this chapter; islands (red), hyperbolicity (light blue), Bernoulli (blue). Notable maps on
the periphery are also labelled.
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on which the matrix M = M1M3M3 is non-hyperbolic. It is essentially the extension of the
matrix M3 = M1M0M0 from the proof of Proposition 3.5 (hyperbolicity of Hη) into the full (ξ, η)
parameter space. Comparing with proven results to the right, note that the curve η = 1/(3− 3ξ)

also bounds the regions I2, I3. Whether H(ξ,η) is hyperbolic in this strip depends on the precise
location its periodic orbits. If the cocycle associated with an orbit is some power of M and the
orbit is bounded away from D, elliptic islands form.

Like the Cat Map and Cerbelli and Giona’s map, the rightmost corner of P (labelled at the
OTM) appears hyperbolic and mixing in numerical tests. Proving this will be subject of the next
chapter, requiring a modification of the methods employed in this chapter to deal with the situation
of unbounded return times.
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Chapter 5

Proving Mixing Results - Unbounded
Return Times

5.1 Introduction

In the examples examined in Chapters 3 and 4, return times to a hyperbolic region A were bounded
above by some N ∈ N. For Hη we had N = 3 and for H(ξ,η) we only considered the case
N = 1. Unbounded N is not a fundamental barrier to analysis. Linked twist maps, for example,
have established mixing properties despite return times diverging as we approach the boundaries.
Proving this, however, either relies on monotonicity (co-rotating case, see Wojtkowski, 1980) or
periodic behaviour specific to LTMs (counter-rotating case, see Przytycki, 1983). In the more
general non-monotonic piecewise linear setting, there is an inherent challenge to establishing growth
lemmas. We sketch the details here. If N is unbounded, since µ(A) is finite, elements of the return
time partition A =

⋃
n≥1An must have measures decaying to 0, typically accumulating at some

point p. Any line segment Γ near p may then intersect arbitrarily many partition elements Aj .
Due to non-monotonicity we must restrict to a single partition element to grow our line segment
forwards, which, following an approach similar to section 4.3.2 involves the expansion factors Kj

satisfying S =
∑

j 1/Kj < 1. These expansion factors typically grow with return time n as
Kn ∼ c n so for Γ arbitrarily close to p, the sum S is potentially unbounded, likely greater than 1.
We note that this is entirely analogous to the problem with the older one-step expansion condition
(2.4) from Chernov and Zhang (2005).

Roughly speaking, our method for getting around the problem outlined above is to leverage
the geometric properties of any line segment Γ for which the condition S < 1 fails. Assuming it
fails the growth lemma, the self similar structure of the partition elements accumulating to p then
allows for an inductive argument, implying that Γ must intersect fewer and fewer Aj and giving a
contradiction. Our primary aim in this chapter is to show that H(ξ,η) at ξ = η = 1/2 is Bernoulli.
The partition of the return map we construct to achieve this is quite complicated so we show our
method for establishing growth lemmas in a simpler example, a non-monotonic linked twist map.
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η

β

(a)

η β

(b)

S = P ∩Q

RcR \ P

R \Q

(c)

Figure 5.1: A pair of orthogonal non-monotonic shears F (a) andG (b), parameterised by 0 < β < 1
and 0 < η < 1 − β, which act on the annuli P and Q respectively. Their composition leaves the
complement Rc of R = P ∪Q invariant.

5.2 Mixing properties of non-monotonic LTMs

5.2.1 Map definition

Let H be the map G◦F , acting on the torus T2. Taking local coordinates (x, y) ∈ (R/Z)2, F maps

(x, y) 7→


(x+ f1(y, η), y) mod 1 for y ≤ 1− β − η,

(x+ f2(y, η), y) mod 1 for 1− β − η ≤ y ≤ 1− β,

(x, y) mod 1 for y ≥ 1− β,

and G maps

(x, y) 7→


(x, y + f1(x, η)) mod 1 for x ≤ 1− β − η,

(x, y + f2(x, η)) mod 1 for 1− β − η ≤ x ≤ 1− β,

(x, y) mod 1 for x ≥ 1− β,

where f1(t, η) = t/(1− β − η) and f2(t, η) = (1− β − t)/η.
We remark that taking the pointwise limit β → 0 gives the single parameter family of maps

H(η,η) studied in section 4.3. Taking the other limit η → 0 gives a family of co-rotating linked twist
maps with known mixing properties (Sturman et al., 2006; Wojtkowski, 1980) over 0 < β < 1.
Taking both limits gives the Cat Map. Letting µ be the normalised Lebesgue measure on R = P∪Q,
see Figure 5.1(c), we remark that H : R → R is measure preserving and invertible. The main
theorem of this section is the following:

Theorem 5.1. Let β = 1/2, η = 1/4. Then H : R→ R is is Bernoulli.

The first task is to establish non-zero Lyapunov exponents, which we will prove over the full
parameter space.

5.2.2 Establishing non-uniform hyperbolicity

Proposition 5.1. Across parameter values 0 < β < 1 and 0 < η < 1 − β, the map H : R → R

admits non-zero Lyapunov exponents χ(z, v) ̸= 0 for almost every point z ∈ R and vector v ̸= 0.

Proof. Let HS : S → S be the return map to S, mapping z 7→ Hm(z) where m = inf{k >

0 |Hk(z) ∈ S}, which is well defined for almost every z ∈ S. By an entirely analogous argument
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to that given in Sturman et al. (2006), the orbit of almost every z ∈ R will hit S with positive
frequency. Returns to S serve as a natural way to split up itineraries into blocks, non-zero Lyapunov
exponents a.e. follow from the existence of an invariant expanding cone for DHS . Noting that
HS = GS ◦ FS

∗, the cocycle DHS at z ∈ S is given by DGl
z′DF k

z , where z′ = F k(z), and k, l ∈ N.
The location of z and z′ in S decide whether we shear using f1 or f2 when we apply FS and GS .
Fixing k and l, these two binary choices give 4 possible values for DGl

z′DF k
z . Denote these by

Mj,k,l for 1 ≤ j ≤ 4, explicit expressions are as follows:

M1,k,l =

(
1 k

1−β−η
l

1−β−η 1 + kl
(1−β−η)2

)
, M2,k,l =

(
1 k

1−β−η

− l
η 1− kl

η(1−β−η)

)
,

M3,k,l =

(
1 −k

η
l

1−β−η 1− kl
η(1−β−η)

)
, M4,k,l =

(
1 −k

η

− l
η 1 + kl

η2

)
.

One can verify that for all j, k, l and parameter values β, η the matrices Mj,k,l are hyperbolic,
and therefore admit unstable and stable eigenvectors. Let C = Cβ,η be the cone bounded by the
unstable eigenvectors of M2,1,1, M3,1,1 and containing the vector (0, 1)T . Let ∥·∥ be the ∥·∥∞ norm.
One can verify, by calculating the gradients of eigenvectors and measuring norm expansion over
the cone boundaries (Proposition 3.3), that C is invariant and expanding. Note that hyperbolicity
does not immediately follow from Proposition 3.4 as the block length N = k + l − 1 (equivalently
the return time to S) is unbounded. Following the approach of Sturman et al. (2006), the fact
that (almost every) orbit Hn(z) hits S with some positive frequency αz > 0 allows us to adapt the
argument of Proposition 3.4 to the case of unbounded N .

For large n and a.e. z the cardinality of {0 ≤ i ≤ n − 1 |Hi(z) ∈ S} is roughly αzn, certainly
bounded below by αzn/2

†. Let

K = inf
j,k,l
v∈C

∥Mj,k,lv∥
∥v∥

,

strictly greater than 1 since C is expanding. Then for any v0 ∈ C,

1

n
log ∥DHn

z v0∥ ≥ 1

n
log
(
K

1
2αzn∥v0∥

)
=
αz

2
log(K) +

1

n
log ∥v0∥

so that χ(z, v0) ≥ αz log(K)/2 > 0. We may then extend to non-zero Lyapunov exponents for
general v ̸= 0 as before, using Corollary 1.1.

Following the argument presented in Sturman et al. (2006), (KS1-2) easily hold for H. This,
together with Proposition 5.1, allows us to define local stable and unstable manifolds γs(z) and
γu(z) almost everywhere. Recall that by the Katok and Strelcyn (1986) theorem, ergodicity and
the Bernoulli property for H then follow from conditions (M) and (MR) respectively, where:

(M): For almost any z, z′ ∈ R, ∃m,n s.t. Hm(γu(z)) ∩H−n(γs(z
′)) ̸= ∅.

(MR): For almost any z, z′ ∈ R there exists M,N such that for all m > M and n > N , Hm(γu(z))∩
H−n(γs(z

′)) ̸= ∅.

We require some basic properties of the inverse map H−1 : R → R. We remark that the cone
region C′, bounded by the stable eigenvectors of M2,k,l, M3,k,l and containing (1, 0)T is invariant
and expanding under each M−1

j,k,l. The return map H−1
S is well defined, and almost every orbit

H−k(z) hits S with positive frequency.
∗Where FS , GS are the return maps to S under F , G. Unchanged from the case of monotonic LTMs, their

composition is HS (Sturman et al., 2006).
†By a combinatorial argument, see Sturman et al. (2006).
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5.2.3 Establishing the Bernoulli property

In this section we will prove (MR) at the parameter values β = 1/2, η = 1/4. We begin with
Lemmas 5.1 and 5.2, which describe the nature of local manifolds when mapped into S. In Lemmas
5.3 and 5.4 we give an iterative scheme for growing the forwards images of any local unstable
manifold until they satisfy a geometric property. Growth in the backwards images of any local
stable manifold is analogous, establishing an intersection by a simple geometric argument.

Lemma 5.1. For a.e z ∈ R, there exist m,n ∈ N such that Hm(γu(z)) contains a line segment
in S aligned with some v ∈ C, and H−n(γs(z)) contains a line segment in S aligned with some
v′ ∈ C′.

Proof. Since H is piecewise linear, γu(z) and γs(z) are line segments, aligned with some vectors u
and u′ respectively. By definition, for any ζ, ζ ′ ∈ γu(z)

dist(H−n(ζ), H−n(ζ ′)) → 0 (5.1)

as n→ ∞. Similarly for any ζ, ζ ′ ∈ γs(z)

dist(Hn(ζ), Hn(ζ ′)) → 0 (5.2)

as n→ ∞. Let m = inf{k ≥ 0 |Hk(z) ∈ S} and n = inf{k ≥ 0 |H−k(z) ∈ S}. Provided that DHk
z

are well defined for all k ∈ Z (the set of points z for which this does not hold has zero measure)
it follows that Hm(γu(z)) contains a line segment in S, aligned with some vector v = DHm

z u.
Note that C can be described at the cone region bounded by the stable eigenvectors of M−1

2,k,l and
M−1

3,k,l and including the stable eigenvectors of each M−1
j,k,l. Now v lies in C, for if v /∈ C then

repeatedly applying the return map H−1
S (applying the matrices M−1

j,k,l in the tangent space) will
pull v towards the invariant expanding cone C′, resulting in exponential growth in its norm, which
contradicts (5.1). Similarly v′ must lie in C′ to avoid contradicting (5.2).

Partition S into four squares Sj using the lines y = 1/4 and x = 1/4 (see Figure 5.2). Note that
DF is constant on the strips S1 ∪ S2, S3 ∪ S4, and DG is constant on the strips S1 ∪ S3, S2 ∪ S4.
Parameterise the tangent space by (v1, v2)

T ∈ R2 and consider the cone subspaces C = C+ ∪ C−
defined by (v1, v2)

T ∈ C+ if v1v2 ≥ 0, (v1, v2)T ∈ C− if v1v2 ≤ 0. Similarly define C′
±. These cones

give stronger bounds on the gradients of the images of local manifolds, depending on their location
in S:

Lemma 5.2. Let Γ,Γ′ be line segments in S, aligned with vectors v ∈ C, v′ ∈ C respectively. It
follows that HS(Γ) contains a line segment:

(A1) Contained within S1 ∪ S3, aligned with some vector in C+, and/or

(A2) Contained within S2 ∪ S4, aligned with some vector in C−.

Similarly H−1
S (Γ′) contains a line segment

(B1’) Contained within S1 ∪ S2, aligned with some vector in C′
−, and/or

(B2’) Contained within S3 ∪ S4, aligned with some vector in C′
+.

Proof. We will show this for the image of Γ; the argument for Γ′ is analogous. Note that if HS(Γ)

contains a line segment in S1 ∪ S3 it must have been mapped there by G using the f1 type shear.
Hence it is aligned with a vector of the form M1,k,l v or M3,k,l v, for some k, l ∈ N. One can verify
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that the images of C under these matrices are contained within C+ as required. Similarly M2,k,l

and M4,k,l map the cone into C−.

It is useful to define additional potential properties of line segments, similar to those given in
the above lemma, but with the signs of the cones reversed:

(A1’) Contained within S1 ∪ S3, aligned with some vector in C−, and/or

(A2’) Contained within S2 ∪ S4, aligned with some vector in C+.

(B1) Contained within S1 ∪ S2, aligned with some vector in C′
+, and/or

(B2) Contained within S3 ∪ S4, aligned with some vector in C′
−.

Call any line segment in S which joins the lines y = 0 and y = 1/2 a v-segment. Similarly define
h-segments as those which join the line x = 0, x = 1/2 across S. We define the horizontal and verti-
cal lengths of a line segment Γ by ℓh(Γ) = ν ({x | (x, y) ∈ Γ}) and ℓv(Γ) = ν ({y | (x, y) ∈ Γ}), where
ν is the Lebesgue measure on R. We remark that at the parameter values β = 1/2 and η = 1/4,
the cones C± are bounded by the unit vectors (using the ∥ · ∥∞ norm) (0, 1)T and

(
±(2−

√
3), 1

)T
.

Similarly the cones C′
± are bounded by the unit vectors (1, 0)T and

(
1,±(2−

√
3)
)T

.

Lemma 5.3. Let β = 1/2, η = 1/4. Let Γ ⊂ S be a line segment satisfying either (A1) or (A2).
Then at least one of the following consequences hold:

(C1) HS(Γ) contains a v-segment,

(C2) H2
S(Γ) contains a v-segment,

(C3) There exists a line segment Λ ⊂ FS(Γ) satisfying (B1) or (B2) with ℓh(Λ) ≥ (1 + δ1) ℓv(Γ)

for some δ1 > 0.

Proof. Figure 5.2(a) shows a partition of S into four squares Sj , each in turn partitioned by return
time to S under F . Note that each Sj contain similar quadrilaterals A2

j within which points have
return time 2. We claim that if Γ traverses some A2

j , joining its sloping boundaries, it follows that
HS(Γ) ⊂ H3(Γ) contains a v-segment. Let Γ2

j = Γ ∩ A2
j , then Γ2

j is a line segment with return
time 2 to S under F , with endpoints on the two sloping boundaries. These boundaries map into
the lines x = 0 and x = 1

2 (the left and right boundaries of S) under F 2, so FS

(
Γ2
j

)
= F 2

(
Γ2
j

)
is a

line segment in S which joins its left and right boundaries. That is, FS

(
Γ2
j

)
is a h-segment. Now

FS

(
Γ2
j

)
must traverse some B2

j , the quadrilaterals which have return time 2 to S under G (see
Figure 5.2(b)). By an analogous argument, GS

(
FS

(
Γ2
j

))
⊂ G2

(
FS

(
Γ2
j

))
contains a v-segment.

Hence (C1) is satisfied.
Now suppose Γ traverses none of the A2

j and assume Γ satisfies (A1). It follows that Γ satisfies
one of the following cases:

(A1.1) Γ lies entirely below the upper sloping boundary of A2
1,

(A1.2) Γ lies between the lower sloping boundary of A2
1 and the upper sloping boundary of A2

3,

(A1.3) Γ lies entirely above the lower sloping boundary of A2
3.

We start with case (A1.1). Let Γk = Γ ∩ Ak
1 (see Figure 5.2); then the image FS(Γ) is made up

of at most 3 line segments λk = F k
(
Γk
)
, k = 1, 2, 3. If ℓh

(
λk
)
> ℓv(Γ) for k, then we can take

Λ = λk to establish (C3). Since Γ is aligned in C+, for each k we have that ℓh
(
λk
)
≥ 4k ℓv

(
Γk
)
,

with equality when Γ is aligned with the cone boundary (0, 1)T . Assume that we cannot satisfy
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Figure 5.2: A partition of S into four squares Sj . Each Sj are then partitioned based on return
time to S under the map (a) F , (b) G, (c) F−1, (d) G−1. For sets with specific labels (e.g. Ak

j )
the subscript j refers to the parent set Sj and the superscript k is the return time.
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(C3) by taking Λ to be λ1 or λ2, that is, we have 4(1) ℓv
(
Γ1
)
≤ ℓv(Γ) and 4(2) ℓv

(
Γ2
)
≤ ℓv(Γ).

Now since ℓv
(
Γ1
)
+ ℓv

(
Γ2
)
+ ℓv

(
Γ3
)
= ℓv(Γ) these two inequalities give

ℓv
(
Γ3
)
≥
(
1− 1

4(1)
− 1

4(2)

)
ℓv(Γ) =

5

8
ℓv(Γ)

so that
ℓh
(
λ3
)
≥ 4(3)

5

8
ℓv(Γ) > ℓv(Γ).

In either case, then, (C3) is satisfied. We remark that this analysis is roughly analogous to
deriving the key bound on the reciprocals of expansion factors from the previous chapter, reducing
to verifying that

3∑
k=1

1

4k
< 1.

By an analogous argument, (C3) follows from (A1.3) as

3∑
k=1

1

4k − 2 +
√
3
≈ 0.483 < 1, (5.3)

where we have used the fact that within each Ak
3 , expansion of F k is poorest over the other C+

boundary
(
2−

√
3, 1
)T

. For Γ satisfying case (A1.2), let Γj = Γ∩Sj . Clearly for one of the j = 1, 3

we have
ℓv(Γj) ≥

1

2
ℓv(Γ). (5.4)

Assume first that this holds for j = 1. As before, label the partition elements with return time k
as Ak

1 (see Figure 5.3). The set A1
1 is bounded by ∂S1 and the line y = (1− x)/4, A2

1 is as before,
and for k ≥ 2 the line separating Ak

1 and Ak+1
1 has equation y = (2k − 1 − 2x)/8k. Note that Γ1

can intersect arbitrarily many of the Ak
1 . Hence we cannot simply apply the previous method of

summing the expansion factors as, noting (5.4), we require

∑
k≥1

1

4k
<

1

2

and this sum clearly diverges. Instead, then, suppose that there exists Γ1 which violates the Lemma
and aim for a contradiction. Note that for any three element subset K = {k1, k2, k3} ⊂ N, we have
that ∑

k∈K

1

4k
≤

3∑
k=1

1

4k
<

1

2

so that Γ1 must intersect four or more of the partition elements Ak
1 . By the geometry of the

partition, it follows that

(†) Γ1 traverses Ak
1 for some k ≥ 3, connecting the lines y = 2k−1−2x

8k and y = 2(k−1)−1−2x
8(k−1) .

We state (see Appendix B for proof) that if Γ1 traverses Ak
1 for some 3 ≤ k ≤ 6, then H2

S(Γ1)

contains a v-segment, satisfying (C2). The line segment Γ1, then, must traverse Ak
1 for some k ≥ 7

and must not traverse A6
1. This gives an upper bound ℓv(Γ1) ≤ L6 = 1/32, the height of the

segment joining the lower corner of A6
1 to the upper boundary of S1 on y = 1/4. Suppose first

that Γ1 traverses A7
1, let Γ7

1 = Γ1 ∩ A7
1. Then since the gradient of the lower boundary of A7

1 is
steeper than that of its upper boundary, and Γ7

1 is aligned with some vector in C+, we can derive
a lower bound ℓv

(
Γ7
1

)
≥ h7 (see Figure 5.3). Specifically h7 = y7 − 11/48, where y7 solves the pair
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1
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1
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1

A1
1 L6
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v+

Figure 5.3: The upper section of S1 with sets of constant return time Ak
1 highlighted. The length

L6 shows the maximum height of a line segment satisfying case (A1.2) which does not traverse A6
1.

The length h7 is the minimum height of a line segment which traverses A7
1, defined using the cone

boundary v+ =
(
2−

√
3, 1
)T

. The gradients in the magnified region have been altered to ease
viewing.

of equations y = 2(7−1)−1
8(7−1) + (2 +

√
3)x,

y = 1
8(7) (2(7)− 1− 2x),

(5.5)

i.e. the intersection of the line passing through the lower left corner of A7
1 aligned with the cone

boundary
(
2−

√
3, 1
)T

of C+, and the upper boundary of A7
1. This gives h7 =

(
30 +

√
3
)
/10764

so that, letting λ7 = F 7
(
Γ7
1

)
,

ℓh
(
λ7
)
≥ 4(7)h7 ≈ 0.0825

>
1

16
= 2L6 ≥ 2ℓv(Γ1) ≥ ℓv(Γ)

where we have used (5.4). Hence taking Λ = λ7 satisfies (C3), so that if Γ1 violates the lemma,
it must not traverse A7

1, which in turn puts a smaller upper bound on ℓv(Γ1). We now continue
by induction, assume that Γ1 traverses Ak

1 but does not traverse Ak−1
1 . Then by an analogous

argument to the base case ℓv(Γ1) is bounded from above by Lk−1 = 1/(8k − 24) and ℓv
(
Γk
1

)
is

bounded from below by

hk =
2 +

√
3

2(k − 1)
(
4
√
3k + 8k + 1

) .
Now one can verify that

ℓh
(
λk
)
≥ 4(k)hk =

2k
(
2 +

√
3
)

(k − 1)
(
4
√
3k + 8k + 1

)
> 2Lk−1 =

1

4k − 12

for k > k1 ≈ 5.0537, so that ℓh
(
λk
)
> 2ℓv(Γ1) ≥ ℓv(Γ). It follows by induction that if Γ1 violates

the lemma, it cannot traverse Ak
1 for all k ≥ 7. But this contradicts (†), so for j = 1 the lemma

must hold.
For j = 3 the argument is analogous, the minimum height of segments traversing the set Ak

3 is
given by the length of the set’s boundary on the line x = 0. That is,

hk =
2k − 1

8k
− 2(k − 1)− 1

8(k − 1)
=

1

8k(k − 1)
.

By symmetry, the lengths Lk−1 remain unchanged, and the expansion factors for each Ak
3 are
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given by 4k +
√
3− 2. Noting that if Γ3 traverses Ak

3 for some 3 ≤ k ≤ 6 then H2
S(Γ1) contains a

v-segment (see Appendix B), the induction argument in the case j = 3 works for k satisfying:

4k +
√
3− 2

8k(k − 1)
>

1

4k − 12
.

Indeed, the above holds for k > k1 ≈ 5.0545, proving the lemma in the case j = 3 and completing
the case where Γ satisfies (A1).

Let Γ satisfy (A2), as before we split into the following cases:

(A2.1) Γ lies entirely below the upper sloping boundary of A2
2,

(A2.2) Γ lies between the lower sloping boundary of A2
2 and the upper sloping boundary of A2

4,

(A2.3) Γ lies entirely above the lower sloping boundary of A2
4.

Starting with case (A2.2), Γ intersects some collection of the sets Ak
j for k = 1, 2, 3, j = 2, 4.

Noting that the expansion factors for Ak
3 and Ak

4 are 4k +
√
3− 2 and 4k respectively, (C3) holds

provided that
3∑

k=1

1

4k +
√
3− 2

+

3∑
k=1

1

4k
< 1.

Comparing with (5.3), this clearly holds. Now for case (A2.1), the induction step‡ rests on the
inequality

4k +
√
3− 2

8k(k − 1)
>

1

8k − 24
,

which holds for k ≥ 4, and the base step k = 3 rests on the inequality

4(3) +
√
3− 2

8(3)(3− 1)
>

5

32
,

where 5/32 is the y-coordinate of the top left corner of A2
2. Concluding with case (A2.3), the

minimum height of the segment traversing sets with return time k ≥ 3 is hk from case (A1.1), so
that the induction step rests on 4k hk > Lk−1 for k ≥ 4 and the base step rests on 4(3)h3 > 5/32.
One can verify that these indeed hold. The condition in (C3) that Λ satisfies (B1) or (B2) follows
from the fact that for all k ≥ 1, DF k

z , z ∈ S1 ∪ S2, maps C into C′
+ and DF k

z , z ∈ S3 ∪ S4, maps C
into C′

−.

We now give the equivalent lemma for growth under GS . Let H : R → R be the map F ◦ G,
i.e shearing vertically then horizontally. As before, the return map HS : S → S is given by
HS = FS ◦GS .

Lemma 5.4. Let β = 1/2, η = 1/4. Let Λ ⊂ S be a line segment satisfying either (B1) or (B2).
Then at least one of the following consequences hold:

(C1’) HS(Λ) contains a h-segment,

(C2’) H2
S(Λ) contains a h-segment,

(C3’) There exists a line segment Γ ⊂ GS(Λ) satisfying (A1) or (A2) with ℓv(Γ) ≥ (1 + δ2) ℓh(Λ)

for some δ2 > 0.

Proof. By an analogous argument to the proof of Lemma 5.3, after eliminating the cases where
HS(Λ) contains a h-segment, we can split into the following cases:

‡In the case k = 4, L3 is actually smaller than 1/8, but the bound holds nonetheless.
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(B1.1) Λ lies entirely left of the right sloping boundary of B2
1 ,

(B1.2) Λ lies between the left sloping boundary of B2
1 and the right sloping boundary of B2

3 ,

(B1.3) Λ lies entirely right of the left sloping boundary of B2
3 .

(B2.1) Λ lies entirely left of the right sloping boundary of B2
2 ,

(B2.2) Λ lies between the left sloping boundary of B2
2 and the right sloping boundary of B2

4 ,

(B2.3) Λ lies entirely right of the left sloping boundary of B2
4 .

For a = 1, 2, 3, the argument for (B1.a) is then entirely analogous to (A1.a), as is the argument
for (B2.a) to (A2.a).

We are now ready to prove the main theorem of this section.

Proof of Theorem 5.1. For almost any z, by Lemmas 5.1 and 5.2 we can find m0 such that
Hm1(γu(z)) contains a line segment Γ0 satisfying (A1) or (A2). Then iteratively apply Lem-
mas 5.3 and 5.4 to generate a sequence of line segments (Γp)0≤p≤P with each Γp ⊂ Hmp(Γp−1) for
some mp ∈ N and ℓv(Γp) growing exponentially with p. It follows that after finitely many steps P
either

• ΓP satisfies (C1) or (C2), or

• there exists ΛP ⊂ FS(ΓP ) satisfying (C1’) or (C2’).

In the first case HmP+1(ΓP ) contains a v-segment for some mP+1 ∈ N. Hence Hm+mP+1(γu(z))

contains a v-segment where m =
∑P

i=0mi. In the second case we have that HS(ΛP ) or H2
S(ΛP )

contains a h-segment. Noting that the images of h-segments under GS contain v-segments (shown
at the start of the proof of Lemma 5.3), GS ◦ Hn

S = Hn
S ◦ GS , and ΛP ⊂ FS(ΓP ), we have that

H2
S(ΓP ) or H3

S(ΓP ) contains a v-segment. Hence Hm+m′
P+1(γu(z)) contains a v-segment for some

m′
P+1 ∈ N.
By the rotational symmetries of both the cone fields and the return time partitions (see Figure

5.2), the argument for growing the backwards images of local stable manifolds is entirely analogous.
Hence for almost any z′, we can find n ∈ N such that H−n(γs(z

′)) contains a h-segment. Clearly
h-segments and v-segments must always intersect, establishing (M), so that H is ergodic. By the
above, we have found M1 such that HM1(γu(z)) contains a v-segment Γ, which lies in S1 ∪ S3 or
S2 ∪ S4. Since Γ must traverse some A2

j , by the same argument given at the start of the proof
of Lemma 5.3, it follows that H3(Γ) contains a v-segment and, by induction, so does H3k(Γ) for
all k ∈ N. Now note that F (Γ) must connect the left and right boundaries of some Sj , and so
(G ◦ F )(Γ) traverses some A2

j′ . Hence H4(Γ) contains a v-segment, as does H4+3k(Γ). Apply this
argument once more, so that H8(Γ) and H8+3k(Γ) contains a v-segment for all k ∈ N. These
sequences, together with 4 and 8, cover all the naturals n ≥ 6, so that Hm(γu(z)) contains a
v-segment for all m ≥ M = M1 + 6. Analogously we can find N = N1 + 6 such that H−n(γs(z))

contains a h-segment for all n ≥ N , establishing (MR).

5.2.4 Remarks

While proving mixing properties of non-monotonic LTMs is worthwhile in its own right, the map
Hη,β , η = 1/4, β = 1/2 above serves as a relatively simple example for showing our method
of establishing growth lemmas in non-monotonic systems with unbounded escape times. The
symmetrical nature of the shears made this a convenient choice, allowing us to keep calculations to
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a minimum. The same method could certainly be used (with perhaps some minor adjustments) to
prove mixing properties ofHη,β across much of the hyperbolic parameter range given in Proposition
5.1. This is a purely computational exercise, revealing nothing new about the dynamics of piecewise
linear non-monotonic LTMs, so we omit the details.

Conceivably one could also break the symmetry between the horizontal and vertical shears,
introducing a third parameter ξ ̸= η into G, as we did in section 4.3. Numerical experiments
suggest that mixing behaviour persists for small β, and (ξ, η) in the mixing windows found in
section 4.3. Similarly the families of elliptic islands would persist, provided that:

• The periodic orbit associated with the island family persists under small β perturbations.

• It remains bounded away from the singularities, including those introduced by the boundary
region.

• The associated cocycle remains elliptic.

Numerical tests show that the above conditions do hold for small β, provided that (ξ, η) lies
sufficiently far (determined by β) from the parameter boundaries ∂Ij .

In line with Springham and Sturman (2014) we expect correlations of Hη,β to decay polyno-
mially for Hölder continuous observables. Following the Chernov and Zhang (2005) approach (or
similar), some steps would be slightly more complicated than for monotonic LTMs, namely the cone
constructions and structure of the singularity set for HS . Other matters may be more straightfor-
ward as replacing monotonic shears by non-monotonic profiles of equal strength necessarily makes
them steeper. This is generally beneficial to hyperbolicity and increases expansion factors, to the
extent that it may be possible to show a one-step expansion for HS , rather than the two-step
necessary for the LTM of Springham and Sturman (2014). Again, proving this would likely be a
computational exercise, revealing little more about the dynamics of non-monotonic LTMs. Indeed,
the phenomenon which gives rise to polynomial mixing, fluid shearing in just one direction near
boundaries, is unchanged from the monotonic setting.

5.3 Mixing properties of the OTM

5.3.1 Introduction

Recall the map H(ξ,η) studied in section 4.3. Here we study the special case H = H(1/2,1/2), which
sits on the cusp of the open hyperbolic parameter space P ′. As the composition of two orthogonal
symmetric ‘tent’ shaped shears, we refer to this map as the Orthogonal Tents Map (OTM). It is
the natural extension to the CG Map, replacing its linear shear by a 90◦ rotation of its nonlinear
horizontal shear.

Several unique features separate it from the rest of the (ξ, η) parameter space. Firstly since
both 1/η and 1/(1 − η) are integer valued over 0 < η < 1 if and only if η = 1/2, H is the only
map in the 0 < ξ, η < 1 parameter space with all integer valued derivative matrices and can be
expressed as H(x, y) = DHz · (x, y)T mod 1, where z = (x, y). Before any further analysis this
immediately implies that periodic orbits are dense on T2, as the cardinality of any orbit containing
a rational point (s/q, p/q) ∈ T2 with s, p, q ∈ N is bounded above by q2 (see Cerbelli and Giona,
2005).

Periodicity underlies another fundamental feature of H. Consider the four line segments lj
shown in Figure 5.4. Each has gradient ±1 and have endpoints (s/4, p/4) for some s, p = 0, 1, 2, 3, 4.
One can verify that H(l1) = l2, H(l2) = l1, H(l3) = l4, H(l4) = l3 so that each are periodic with
period 2 and their union l = ∪j lj is invariant under H. A comparison with linked twist maps is
useful here. In those maps the boundary ∂R forms an invariant set, similarly of positive length,
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Figure 5.4: Line segments lj satisfying H : l1 ↔ l2, l3 ↔ l4. Each are periodic with period 2, their
union is invariant under H.
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Figure 5.5: A partition of the torus into four rectangles Sj , and their preimages Aj , A′
j under

F,G−1.

which is imposed on the system to model ‘slow moving fluid near walls’. In contrast, the invariant
set l of the OTM is not imposed, rather it arises from the specific dynamics of H. Informally we
may treat the lj as ‘ghost boundaries’, n− 1 dimensional manifolds which are advected back and
forth, around which we see poor stretching and slowed mixing, akin to the boundary behaviour of
LTMs. As an aside, noting that the lj together span the full length and width of the torus, thinking
of these segments as ‘stirrers’ following a periodic protocol gives an alternate way of driving the
underlying flow (under idealised Stokes flow conditions). In this section we will show that the
slowed stretching near these ghost boundaries / stirrers do not prevent us from establishing mixing
results. Our main theorem is as follows:

Theorem 5.2. The map H : T2 → T2 is Bernoulli with respect to the Lebesgue measure.

As before we begin by establishing hyperbolicity.

5.3.2 Establishing non-uniform hyperbolicity

Proposition 5.2. H is non-uniformly hyperbolic.

Partition the torus into the four squares Sj shown in Figure 5.5. The Jacobian DH is then
constant on the preimages Aj = F−1(Sj), given by the matrix Mj where

M1 =

(
1 2

2 5

)
, M2 =

(
1 2

−2 −3

)
, M3 =

(
1 −2

2 −3

)
, M4 =

(
1 −2

−2 5

)
.

For any z ∈ X ′ with n-step itinerary

Aj1 , Aj2 , Aj3 , . . . , Ajn ,
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the cocycle DHn
z is given by

DHn
z =Mjn . . .Mj3Mj2Mj1

with each jk ∈ {1, 2, 3, 4}. Our aim is to decompose any cocycle into hyperbolic matrices which
share an invariant expanding cone. Note that while M1 and M4 are hyperbolic, M2 and M3 are not.
Hence when M2 or M3 appear in a cocycle at Mjk , we must combine them with its neighbouring
matrices Mjk+l

, . . . ,Mjk+2
,Mjk+1

for some l ∈ N.
Consider the countable family of matrices

M = {M1,M4,M1M
n
2 ,M3M

n
2 ,M4M

n
2 ,M1M

n
3 ,M2M

n
3 ,M4M

n
3 }

with n ∈ N. Similarly define

M′ = {M−1
1 ,M−1

4 ,M−1
1 M−n

2 , . . . ,M−1
4 M−n

3 }.

Our method for establishing non-uniform hyperbolicity mirrors that employed to show Propo-
sition 5.1. We first show (Lemma 5.5) that M and M′ give sufficient blocks for a decomposition of
the cocycles DHn

z and DH−n
z . Lemma 5.6 then shows that these families admit invariant expand-

ing cones. For non-monotonic LTMs, the matrix blocks described the behaviour in the tangent
space under returns to a subset S. That almost every orbit hit S with positive frequency then im-
plied that we complete blocks with positive frequency and non-zero Lyapunov exponents followed.
We will show that blocks from M may similarly be linked with recurrence to a positive measure
subset σ and non-zero Lyapunov exponents follow as a result.

Lemma 5.5. At almost every z, the cocycle DHn
z can be decomposed into blocks from M. At

almost every z, the cocycle DH−n
z can be decomposed into blocks from M′.

Proof. This argument was presented in Myers Hill et al. (2022a); for completeness we replicate it
here.

It is sufficient to show that itineraries cannot get trapped in A2 or A3, barring some set of
zero measure. We will consider the set A3, with the argument for A2 being entirely analogous. In
particular we will show that µ(Bn) → 0 as n → ∞ where Bn = {z′ ∈ A3 |Hk(z′) ∈ A3 for all 1 ≤
k ≤ n}.

Let H = F ◦G. For any z′ ∈ A3,

Hk(z′) ∈ A3 for all 1 ≤ k ≤ n ⇐⇒ (G ◦ F )k(z′) ∈ A3 for all 1 ≤ k ≤ n

⇐⇒ [F ◦ (G ◦ F )k](z′) ∈ S3 for all 1 ≤ k ≤ n

⇐⇒ [(F ◦G)k ◦ F ](z′) ∈ S3 for all 1 ≤ k ≤ n

⇐⇒ Hk(z) ∈ S3 for all 1 ≤ k ≤ n

where z = F (z′) ∈ S3. Hence recurrence in A3 under H can be understood by instead studying
recurrence in S3 under H. Letting Bn = {z ∈ S3 |Hk(z) ∈ S3 for all 1 ≤ k ≤ n}, by the above we
have Bn = F (Bn) and µ(Bn) = µ(Bn) since F preserves µ. The simpler geometry of S3 makes this
a convenient choice. Iteratively define U1 = H(S3)∩S3, Un = H(Un−1)∩S3 so that Bn = H−n(Un).
Since H preserves µ, we have µ(Bn) = µ(Un). Let V = H−1(S3) ∩ S3 be the set of points in S3

which stay in S3. An equivalent definition for the Un is U1 = H(V ), Un = H(Un−1∩V ). Restricting
to V in this way is beneficial as H|V : V → S3 is an affine transformation, mapping quadrilaterals
to quadrilaterals. The sets V = V1 ∪V2 and U1 = P1 ∪Q1 are shown in Figure 5.6, both composed
of two quadrilaterals with corners on ∂S3. Note that V1, P1 share the corners p11 = (1/4, 1/2),
p31 = (0, 3/4) and V2, Q1 share the corners q11 = (1/4, 1), q31 = (1/2, 3/4), all of which are periodic
with period 2.
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p22

p32

p42

q12

q22

q32

q42

•r2 •r
′
2

•sn
•

s′n

Figure 5.6: Left: Two subsets V (blue) and U1 (red) of S3, each composed of two quadrilaterals.
Right: The image U2 = H(U1 ∩ V ) in S3, the dashed lines show the boundary of V .

The intersection U1 ∩ V is made up of two quadrilaterals P1 ∩ V1 and Q1 ∩ V2 with corners
on the period 2 points and the points r1 = (1/10, 3/5), r′1 = (1/6, 2/3), s1 = (1/3, 5/6), and
s′1 = (2/5, 9/10). Mapping these quadrilaterals forward under H gives U2 = P2 ∪ Q2 where
P2 = H(Q1 ∩ V2) and Q2 = H(P1 ∩ V1). Label the corners of these quadrilaterals by pi2 and qi2,
i = 1, 2, 3, 4, as shown in Figure 5.6.

We claim that for general n ∈ N, Un is made up of two quadrilaterals Pn, Qn with corners

p1n =

(
1

4
,
1

2

)
, p2n =

(
0,

3n+ 1

4n+ 2

)
, p3n =

(
0,

3

4

)
, p4n =

(
n

4n− 2
,
1

2

)
,

q1n =

(
1

4
, 1

)
, q2n =

(
1

2
,
3n+ 2

4n+ 2

)
, q3n =

(
1

2
,
3

4

)
, q4n =

(
n− 1

4n− 2
, 1

)
,

labelled in the same way as the case n = 2. The intersection Pn ∩ V1 will be a quadrilateral with
corners p1n, rn, p3n, r′n, and Qn ∩ V2 will be a quadrilateral with corners q1n, sn, q3n, s′n, where

rn =

(
1

4n+ 6
,
3n+ 3

4n+ 6

)
, r′n =

(
n

4n+ 2
,
2n+ 2

4n+ 2

)
,

sn =

(
2n+ 2

4n+ 6
,
3n+ 6

4n+ 6

)
, s′n =

(
n+ 1

4n+ 2
,
4n+ 1

4n+ 2

)
can be obtained by solving the line intersection equations. One can verify that H(p1n) = q1n+1,
H(rn) = q2n+1, H(p3n) = q3n+1, H(r′n) = q4n+1, and H(q1n) = p1n+1, H(sn) = p2n+1, H(q3n) = p3n+1,
H(s′n) = p4n+1, so that H(Pn ∩ V1) = Qn+1 and H(Qn ∩ V2) = Pn+1. Hence

H(Un ∩ V ) = H ((Pn ∩ V1) ∪ (Qn ∩ Vn))

= H(Pn ∩ V1) ∪H(Qn ∩ V2)

= Qn+1 ∪ Pn+1

= Un+1

and the claim follows by induction. Now in the limit n → ∞, Pn limits onto the line segment
F (l2) joining (0, 3/4) to (1/4, 1/2) and Qn limits onto the line segment F (l1) joining (1/4, 1) to
(1/2, 3/4). This give µ(Un) → 0 as required.

The argument for dividing upDH−n
z into blocks from M′ is entirely analogous, instead studying
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Figure 5.7: Partitions of the return sets σ, σ′ (white) for H,H−1 into four sets σj ⊂ H(Aj),
σ′
j ⊂ H−1(A′

j).

the escape behaviour from A′
2 and A′

3 under H−1.

Lemma 5.6. The matrices in M admit an invariant expanding cone C. The matrices in M′ admit
an invariant expanding cone C′.

Proof. Parameterise the tangent space by (u, v)T ∈ R2. The first claim was shown in Myers Hill
et al. (2022a) using the cone C = {(v1, v2) ̸= 0 | |v2| ≥ ϕ |v1|} where ϕ is the golden ratio (1+

√
5)/2.

Here we define a slightly wider cone C = {(v1, v2) ̸= 0 | |v2| ≥ φ |v1|}, φ = 21/13, which still contains
all the unstable eigenvectors of matrices in M and none of the stable eigenvectors. Hence C is
invariant and one can verify that it is also expanding (minimum expansion factors are calculated
later in Table 5.1, in particular the minimum expansion of a matrix M over C under the ∥·∥∞ norm
is given by min±K±(M)). Defining C′ = {(v1, v2) ̸= 0 | |v1| ≥ φ |v2|}, the second claim follows by
an entirely analogous argument.

Recurrence to σ

Define σ as the union of the sets σ1 = H(A1), σ2 = H(A2 ∩ H(A3)), σ3 = H(A3 ∩ H(A2),
σ4 = H(A4). By construction, any orbit escaping A2, A3 or passing through A1, A4 must pass
through σ. By the proof of Lemma 5.5, the return map Hσ : σ → σ is well defined at µ-almost
every z ∈ σ. Similarly define σ′ = ∪jσ

′
j using the A′

j and the return map H−1
σ′ : σ′ → σ′ for H−1.

The sets σ, σ′ are shown as the unshaded regions in Figure 5.7.
We begin by identifying the points in σ with return time 1, i.e. H−1(σ)∩ σ. The preimages of

σ1, σ4 are simply A1, A4 and by definition we have H−1(σ2) = A2 ∩H(A3) so that H−1(σ2)∩ σ =

A2 ∩ σ3 := ς3 and similarly H−1(σ3) ∩ σ = A3 ∩ σ2 := ς2. See Figure 5.8(a) for an illustration.
Now consider recurrence to σ with return times greater than 1, the white regions of Figure

5.8(a). Starting with z ∈ A3, by the definition of σ, the return time rσ(z) = inf{n ≥ 1 |Hn(z) ∈ σ}
is k + 1 where k is the escape time inf{n ≥ 1 |Hn(z) /∈ A3}. Figure 5.9(a) shows a partition of
A3 into sets Ak of constant escape time, bounded by the boundary preimages H−k(∂A3). Points
in Ak spend k iterates in A3 then escape via A1, A2, or A4 and consequently return to σ. We
partition each Ak based on this escape path, shown as the red lines in Figure 5.9(b). The labelling
Ak

j,i is such that Ak
j,i ⊂ Ak ⊂ Ai and Hk(Ak

j,i) ⊂ Aj . It transpires that when points escape after
spending 4 or more iterates in A3, they can only do so via A1 or A4. Similarly partitioning A2

and combining with Figure 5.8(a) gives a partition of σ into sets on which DHσ is constant. The
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ς3

ς2

(a) (b)

Figure 5.8: Part (a) shows the portions of σ (red, blue) with return time 1 to σ. Points in the
white region have return times of 2 or more. Part (b) shows the singularity set S for the return
map Hσ. Red dashed lines denote the shared boundaries of the σj .

boundaries of these partition elements are shown in Figure 5.8(b) and constitutes, together with
∂σ, the singularity set S for Hσ. We remark that outside of the sets ς2, ς3 the Jacobian DHσ takes
values in M. Noting Hσ(ς2) = H(ς2) ⊂ σ3 and Hσ(ς3) = H(ς3) ⊂ σ2 we have that within ς2 the
Jacobian of H2

σ is given by MM3 for some M ∈ M∪ {M2} and within ς3 it is given by MM2 for
some M ∈ M ∪ {M3}. Hence, at almost every z ∈ σ the Jacobian of Hσ or H2

σ is some matrix
from M.

We are now ready to establish non-uniform hyperbolicity.

Proof of Proposition 5.2. The proof of Lemma 5.5 shows that almost every orbit Hn(z) hits σ.
Similar to LTMs, we can show that almost all of those then continue to return to σ with some
positive frequency αz. This follows straightforwardly from the fact that H preserves the Lebesgue
measure on T2, a compact metric space, and σ is measurable. A proof is given in Lemma 6.3.3 of
Sturman et al. (2006), originally from Burton and Easton (1980). As in the proof of Proposition
5.1, for large enough n we can guarantee that we hit σ at least αzn/2 times and the cocycle DHn

z

then contains as many applications of DHσ. By the above, applying DHσ either completes a block
from M or does so over the next iterate (the case where we land in ς2, ς3). At worst, then, we have
roughly half as many blocks from M in DHn

z as we have returns to σ. Certainly this proportion
is greater than a quarter, so DHn

z contains at least αzn/8 blocks from M. We may now argue as
in Proposition 5.1. Letting

K = inf
M∈M
v∈C

∥Mv∥
∥v∥

,

Lemma 5.6 gives K > 1. By the above, for any v0 ∈ C,

1

n
log ∥DHn

z v0∥ ≥ 1

n
log
(
K

1
8αzn∥v0∥

)
=
αz

8
log(K) +

1

n
log ∥v0∥

so that χ(z, v0) ≥ αz log(K)/8 > 0. We may then extend to non-zero Lyapunov exponents for
general v ̸= 0 as before, using Corollary 1.1.
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Figure 5.9: Partitions of the region A3. Part (a) shows a partition into sets Ak where k is the
escape time. Part (b) shows a subdivision into sets Ak

j,3 ⊂ Ak where j is such that Hk(Ak
j,3) ⊂ Aj .

Red lines in each Ak are the preimages of the A1A2 boundary under Hk.
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5.3.3 Nature of local manifolds

Noting that (KS1-2) were shown in section 4.3, by Theorem 1.4, local unstable and stable mani-
folds γu(z), γs(z) exist at a.e. z. Recall the conditions (5.1), (5.2) from section 5.2.3 which points
on these manifolds must satisfy. Piecewise linearity of H ensures that these local manifolds are
line segments containing z, aligned with some vector v. Our first task is to find bounds on the
gradient of v based on the location of z ∈ T2.

Lemma 5.7. For almost every z, there exists m,n ∈ N such that Hm(γu(z)) contains a line
segment in σ aligned with some v ∈ C, and H−n(γs(z)) contains a line segment in σ′ aligned with
some v′ ∈ C′.

Proof. By definition of the σj , σ′
j , we have that σj = H(σ′

j) for j = 1, 4, and σj = H2(σ′
j) for

j = 2, 3. For almost every z the number m = min{k ≥ 1 |Hk(z) ∈ σ} is well defined, as is
the cocycle DHm

z . On some portion of γu(z) around z, the cocycle DHm
z will be constant and

maps to some line segment Γ under Hm. Hence Hm(γu(z)) contains a segment Γ in σ, aligned
with some vector v. Now if Γ lies in σ1, its preimage is a segment in σ′

1 aligned with the vector
M−1

1 v. Now to satisfy (5.1), M−1
1 v must lie in some stable cone C′

s which contains all the stable
eigenvectors of matrices in M′ and none of the unstable eigenvectors. Hence v ∈M1C′

s. Similarly
if z ∈ σ4 then v ∈ M4C′

s, if z ∈ σ2 then v ∈ M2M3C′
s, and if z ∈ σ3 then v ∈ M3M2C′

s. Such
a stable cone C′

s is given by {(v1, v2) ̸= 0 | |v2| ≥ |v1|}; one can verify that MC′
s ⊂ C for each

M ∈ {M1,M4,M2M3,M3M2}, verifying v ∈ C. The argument for v′ ∈ C′ is entirely analogous.

The expanding and invariance properties of the cone C formed from M will be key to growing
the images of unstable manifolds. We can ensure stronger expansion by refining the cone, defining
C+, C− ⊂ C by

(C+) 3 |v1| ≥ |v2| ≥ φ |v1|, v1v2 > 0,

(C−) 3 |v1| ≥ |v2| ≥ φ |v1|, v1v2 < 0.

Lemma 5.8. Let Γ be a line segment in σ, aligned with some v ∈ C. It follows that Hσ(Γ) or
H2

σ(Γ) contains a line segment:

(A1) Contained within σ1 ∪ σ3, aligned with some vector in C+, or

(A2) Contained within σ2 ∪ σ4, aligned with some vector in C−.

Proof. Suppose first that Γ does not lie entirely within ς2 or ς3. Then Γ contains a component Γ̃

(possibly the whole of Γ) on which DHσ is a matrix from M. If Hσ

(
Γ̃
)

lands in σ1 ∪ σ3, then
this Jacobian is in the subset {M1,M1M

n
2 ,M3M

n
2 ,M1M

n
3 } ⊂ M. Case (A1) then follows from

verifying that MC ⊂ C+ for each M in this subset. Case (A2) can be argued similarly. If Γ ⊂ ς2∪ς3
then it contains a component on which the Jacobian of H2

σ is in M and we can follow a similar
argument.

5.3.4 Growth lemma

Lemma 5.9. Let Γ ⊂ σ be a line segment which satisfies either (A1) or (A2) and has simple
intersection with each of the Aj. Then at least one of the following consequences hold:

(C1) There exists k such that Hk(Γ) contains a line segment having non-simple intersection with
some Aj,

(C2) There exists k such that Hk(Γ) contains a line segment Λ satisfying (A1) or (A2) with
ℓv(Λ) ≥ (1 + δ) ℓv(Γ) for some δ > 0, independent of Γ.
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Figure 5.10: Part (a) shows the singularity curves dividing up σ1 ∪ σ3 with some key partition
elements labelled. The elements A1

3,2, A4 ∩ σ split σ1 ∪ σ3 into six subsets σ1a, . . . , σ3b, any two
of which are either disjoint or have intersection given by A4 ∩ σ or one of the three subsets which
make up A1

3,2, see part (b). R denotes the set σ3a ∩ σ3b.

Proof. Figure 5.10(a) shows the singularity set for the return map Hσ over σ1 ∪ σ3 \ ς3, and the
singularity set of H2

σ over ς3. The singularity lines partition σ1 ∪ σ3 into sets Ak
j,i with the same

labelling scheme as Figure 5.9(b).
Let Γ satisfy case (A1) and suppose it has non-simple intersection with A1

4,2. Now since Γ

has simple intersection with A3, observing Figure 5.10(a) it is clear that Γ must traverse A1
3,2.

Restricting Γ2 = Γ ∩A2, H
(
Γ2
)
⊂ H(Γ) is a line segment which has non-simple intersection with

A4, i.e. (C1) is satisfied with k = 1. Assume, then, that Γ has simple intersection with A1
4,2 and

therefore does not traverse A1
3,2. If Γ ⊂ σ3 then Γ lies entirely within one of two sets σ3a, σ3b

(shown in Figure 5.10(b)) whose union is σ3, intersection is R = A1
3,2 ∩ σ3. For Γ ⊂ σ1, simple

intersection with A3 implies that Γ does not traverse A4 ∩σ1. This, together with the two disjoint
sets which make up A1

3,2 ∩ σ1, implies that Γ lies entirely within one of four subsets σ1a, . . . , σ1d,
shown in Figure 5.10(b). The behaviour of Hσ over the sets σ1a, σ1b is shown explicitly in Figures
5.11, 5.12.

Let ∥ · ∥ denote the ∥ · ∥∞ norm. Starting with σ1a, the derivative of Hσ takes values in
M1a = {M1,M4M

k
2 ,M3M

l
2 | k ∈ N, l = 1, 2, 3}. The unlabelled sets in Figure 5.11 are the partition

elements Ak
4,2 for k ≥ 5, limiting onto the point (0, 1/4) as k → ∞ in the obvious fashion. We

remark that any Γ ⊂ σ1a has simple intersection with all of the partition elements Ak
i,j ⊂ σ1a. If Γ

is entirely contained within some partition element A corresponding to M ∈ M1a, and is aligned
with some unit vector v ∈ C+, then ℓv (Hσ(Γ)) = ∥Mv∥ℓv(Γ). Minimum expansion factors are
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Figure 5.11: The singularity set of Hσ over σ1a. Unlabelled sets are given by Ak
4,2 for k ≥ 5

which limit onto the point (0, 1/4) in the obvious fashion. The dashed red line is ∂P (ε), useful for
establishing (KS1) for Hσ.
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straightforward to calculate. Parameterise unit vectors in C by (v1, 1)
T where 1/3 ≤ v1 ≤ 13/21

and write the components of matrices M ∈ M as
(
a b
c d

)
. Then by cone invariance and the fact that

vectors (v1, v2)
T ∈ C have norm |v2|, we have that ∥Mv∥ = |cv1 + d|. This is monotone increasing

in v1 if sgn(c) = sgn(d), monotone decreasing if sgn(c) ̸= sgn(d), so that ∥Mv∥ is minimal on
(1/3, 1)T or (13/21, 1)T in these respective cases. Table 5.1 shows the components of matrices
M ∈ M and the minimum expansion factors K+(M) which follow.

M Components K+(M) K−(M)

M1

(
1 2
2 5

)
17

3

79

21

M4

(
1 −2
−2 5

)
79

21

17

3

M1M
n
2 (−1)n

(
2n+ 1 2n+ 2
6n+ 2 6n+ 5

)
8n+

17

3

16n

7
+

79

21

M1M
n
3 (−1)n

(
1− 6n 6n+ 2
2− 14n 14n+ 5

)
16n

3
+

131

21

56n

3
+

13

3

M2M
n
3 (−1)n

(
1− 6n 6n+ 2
10n− 2 −10n− 3

)
80n

21
+

89

21

40n

3
+

7

3

M3M
n
2 (−1)n

(
1− 6n −6n− 2
2− 10n −10n− 3

)
40n

3
+

7

3

80n

21
+

89

21

M4M
n
2 (−1)n

(
1− 6n −6n− 2
14n− 2 14n+ 5

)
56n

3
+

13

3

16n

3
+

131

21

M4M
n
3 (−1)n

(
2n+ 1 −2n− 2
−6n− 2 6n+ 5

)
16n

7
+

79

21
8n+

17

3

Table 5.1: Minimum expansion factors K±(M) = infv∈C± ∥Mv∥/∥v∥ for each M ∈ M over the
cones C±.

If Γ intersects A4
4,2 and A3

3,2 (traversing A3
4,2) then H3

(
Γ ∩A3

4,2

)
is a line segment in A′

2 ∩A4,
connecting the A3, A4 boundary to the A2, A4 boundary. Noting that A′

2 ∩ A4 is made up of two
quadrilaterals, see Figure 5.5, there are two possible ways this can occur. Firstly, it can connect
points (x, 1) to (2y − 1, y) with 1/2 ≤ x ≤ 3/4. Its image under F then connects (x, 1) to (1, y)

so that then, shearing vertically by G, its image under H connects (x, 2 − 2x) to (1, y), passing
through y = 0. Since x ≤ 3/4, we have 2 − 2x ≥ 1/2 so that H4

(
Γ ∩A3

4,2

)
must have non-

simple intersection with A2. The second case, where H3
(
Γ ∩A3

4,2

)
connects points (x, 1/2) and

(2y − 1/2, y), is similar so that (C1) is satisfied.
Assume, then, that Γ does not traverse A3

4,2. Two possible cases follow; either Γ lies entirely
below the upper boundary of A3

4,2, or Γ lies entirely above the lower boundary of A3
4,2. In the first

case let Γ1 = Γ ∩A1. If K+(M1) ℓv(Γ1) > ℓv(Γ), then we may take Λ = H(Γ1) ⊂ Hσ(Γ) to satisfy
(C2). Taking K+(M1) = 17/3 from Table 5.1, this holds provided that ℓv(Γ1)/ℓv(Γ) > 3/17.
Noting that Γ ⊂ A1 ∪ A2, if the above inequality does not hold, then the proportion of Γ in A2

satisfies ℓv(Γ2)/ℓv(Γ) > 14/17. Observing Figure 5.11, Γ2 intersects some collection of sets Ak
4,2,

indexed by a consecutive subset {k0, k0 + 1, ...} ⊂ N with k0 ≥ 3. Assume that Γ2 intersects just
two of these sets Γ2 = Γk0

∪ Γk0+1. As we saw in Chapter 4, if

1

K+

(
M4M

k0
2

) +
1

K+

(
M4M

k0+1
2

) < 1

then at least one of Γk = Γk0
, Γk0+1 satisfies ℓv

(
Hk+1(Γk)

)
> ℓv(Γ2) and by extension if

1

K+

(
M4M

k0
2

) +
1

K+

(
M4M

k0+1
2

) < 1

α

then ℓv
(
Hk+1(Γk)

)
> αℓv(Γ2). Now noting that K+

(
M4M

k
2

)
is monotonic increasing in k we
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have
k0+1∑
k=k0

1

K+

(
M4Mk

2

) ≤
4∑

k=3

1

K+

(
M4Mk

2

) =
3

181
+

3

237
<

14

17

so that, together with ℓv(Γ2)/ℓv(Γ) > 14/17, for some k condition (C2) follows by taking Λ =

Hk+1
(
Γ ∩Ak

4,2

)
. The case where Γ intersects just one of the Ak

4,2 follows as a trivial consequence.
Suppose Γ ⊂ σ1a violates the lemma, by the above we have that Γ intersects three or more of

the Ak
4,2, which by the geometry of the partition (see Figure 5.11) implies

(†) Γ traverses Ak
4,2 for some k ≥ 4, connecting the lines Lk : y = k+1−4kx

4k+2 and Lk−1 : y =
k−4(k−1)x

4k−2 .

We will show that this leads to a contradiction through an inductive argument. If Γ intersects A3
4,2,

it must traverse A4
4,2. Let yk = (k + 1)/(4k + 2) be the sequence of points where Lk meets x = 0.

Since the gradients of Lk are monotone decreasing in k, a lower bound h4 ≤ ℓv
(
Γ ∩A4

4,2

)
is given

by y′4 − y4 where (x′4, y
′
4) is the intersection of the lines y = y4 + φx and L3 : y = (4 − 12x)/14.

Specifically

h4 =
191

675
− 5

18
=

7

1350
. (5.6)

As before let Γ2 = Γ ∩ A2. Observing Figure 5.11, since L3 meets the boundary of A1 and A2

at the point (1/10, 1/5), the height of Γ2 is bounded by ℓv(Γ2) ≤ L3 = y2 − 1/5 = 1/10. Letting
Λ = H5

(
Γ ∩A4

4,2

)
, we have that

ℓv(Λ) ≥ K+

(
M4M

4
2

)
h4 =

56(4) + 13

3

7

1350
=

553

1350
≈ 0.4096

and ℓv(Γ) < (17/14) ℓv(Γ2) ≤ 17/140 ≈ 0.1214, so that (C2) is satisfied. For the inductive step,
assume that Γ traverses Ak

4,2, but does not traverse Ak−1
4,2 . Using the same method as before we

calculate
hk =

21

2 (2k + 1) (68k − 47)
(5.7)

and
Lk−1 =

k − 1

4k − 6
− k − 1

4k − 2

(k − 1)

(2k − 3) (2k − 1)
. (5.8)

Then (C2) is satisfied with Λ = Hk+1
(
Γ ∩Ak

4,2

)
provided that K+

(
M4M

k
2

)
hk > (17/14)Lk−1,

i.e.
56k + 13

3

21

2 (2k + 1) (68k − 47)
− 17

14

(k − 1)

(2k − 3) (2k − 1)
> 0, (5.9)

which holds for all k > 4 as required. It follows by induction that if Γ violates the lemma it must
not traverse any Ak

4,2 for k ≥ 3, contradicting (†), so that the lemma must hold when Γ ⊂ σ1a lies
entirely below the upper boundary of A3

4,2. The case where Γ ⊂ σ1a lies entirely above the lower
boundary of A3

4,2 is more straightforward, with (C2) following from the inequality

3∑
k=1

1

K+

(
M3Mk

2

) + 1

K+

(
M4Mk

2

) =

3∑
k=1

3

56n+ 13
+

3

40n+ 7
≈ 0.206 < 1. (5.10)

The lemma holds, then, for general Γ ⊂ σ1a.
Moving onto the case Γ ⊂ σ1b, write its intersections with the lower and upper regions y ≤

1/2 and y ≥ 1/2 as ΓL and ΓU respectively. Observing Figure 5.12, ΓL can intersect up to
5 partition elements from AL = {A1

3,2, . . . , A1 ∩ σ}, on which DHσ takes a value in ML =

{M1,M3M
k
2 ,M4M

k
2 | k = 1, 2}. Let

α =
∑

M∈ML

1

K+(M)
=

3

17
+

2∑
k=1

(
3

40k + 7
+

3

56k + 13

)
≈ 0.342.
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A2
3,2

L0

A2
4,2

A1
4,2

A1
3,2

A1 ∩ σ1

A1
4,3

A4 ∩ σ1

P

Figure 5.12: The singularity set of Hσ over the lower part of σ1b with the top portion of A4 ∩ σ1
omitted. Unlabelled sets are given by Ak

4,3 for k ≥ 2 which limit onto the point (1/4, 1/2) in the
obvious fashion. The segment P is the preimage under H of the segment joining (1/2, 3/4) to (1, 1)
in S4. The length L0 denotes maximum height of any segment in σ1b bounded by P and y = 1/2.
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Dividing through by α, for any subset N ⊂ ML (including ∅ and ML) we have

∑
M∈N

1

αK+(M)
≤ 1.

Hence we may always expand from some A ∈ AL, taking Λ = Hσ(Γ ∩ A), which by the above
inequality satisfies αℓv(Λ) ≥ ℓv(ΓL). Hence (C2) is satisfied when ℓv(ΓL) > αℓv(Γ). It remains to
show the case ℓv(ΓL) ≤ αℓv(Γ), i.e.

ℓv(ΓU ) ≥ (1− α)ℓv(Γ). (5.11)

Observing Figure 5.12, the set of partition elements which ΓU can intersect is given by AU =

{A4∩σ1, Ak
4,3 | k ≥ 1}, so MU = {M4,M4M

k
3 | k ≥ 1}. Note that any two element subset N ⊂ MU

satisfies ∑
M∈N

1

K+(M)
≤ 1

K+(M4)
+

1

K+(M4M3)

=
21

79
+

21

127
= β ≈ 0.431

(5.12)

and α+β < 1. It follows that if ΓU intersects two or fewer of the elements of AU , we can guarantee
(C2) by the standard method, summing the reciprocals of expansion factors. Assume, then, that
ΓU intersects three or more elements from AU . It follows that

(‡) ΓU traverses Ak
4,3 for some k ≥ 1, connecting the lines Lk : y = (4k+2)x+k+2

4k+4 and Lk−1 :

y = (4k−2)x+k+1
4k .

We now follow a similar inductive argument to before, assuming that Γ violates the lemma and
aiming to contradict (‡). Let (xk, yk) =

(
k+2
4k+6 ,

k+2
2k+3

)
denote the intersections of the lines Lk with

the boundary y = 2x of σ. Assume Γ traverses Ak
4,3, write its restriction to this set as Γk. Since

the gradients of the Lk are monotonic increasing in k and vectors in C+ have gradients bounded
above by 3, A lower bound on ℓv(Γk) is given hk = y′k − yk, where (x′k, y

′
k) is the intersection of

the line y − yk = 3(x− xk) and Lk−1, in particular

hk =
8k2 + 18k + 7

16k2 + 28k + 6
− k + 2

2k + 3
=

3

16k2 + 28k + 6
. (5.13)

For the base case suppose that ΓU traverses A1
4,3. Let (xU , yU ) be the intersection with y =

1/2 + x/2, the boundary between A1
4,3 and A4 ∩ σ1. Note that this point maps to (1, yU ) under

H with yU < 2/3. Figure 5.12 shows the preimage P in A4 ∩ σ1 of the segment joining (1/2, 3/4)

to (1, 1) between A3 and A4. Specifically P lies on the line y = 7/12 + 5x/12 and H(P) lies
on y = 1/2 + x/2. If Γ intersects P, then H(Γ) connects (1, yU ) to a point on the segment
joining (1/2, 3/4) to (1, 1). Since yU < 3/4, it follows that H(Γ) traverses A3, making non-simple
intersection with A4, so that (C1) is satisfied. Assume, then, that ΓU does not intersect P. This
gives an upper bound ℓv(ΓU ) ≤ y0 − 1/2 =: L0, where (x0, y0) = (7/19, 14/19) is the intersection
of P with the boundary of σ1 on y = 2x (see Figure 5.12). Noting (5.11), (C2) follows with
Λ = H2

(
Γ1
)

if the inequality K+(M4M3)h1 > L0/(1− α) is satisfied. Indeed(
16

7
+

79

21

)
3

16 + 28 + 6
− 9

38(1− α)
≈ 0.00277 > 0

so that the base step of the induction holds. The inductive step is roughly analogous, reducing to
checking the inequality

K+

(
M4M

k
3

)
hk − Lk−1

1− α
> 0, (5.14)
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Figure 5.13: Behaviour of Hσ over σ3b \ ς3 and H2
σ over ς3, shaded in blue.

where Lk−1 = yk−2 − 1/2 is the height of the partition element Ak−1
4,3 . One can verify that this

inequality holds (the function is monotonic decreasing in k ≥ 2 with limit 0 as k → ∞), establishing
the lemma for Γ ⊂ σ1b.

Next consider Γ ⊂ σ3b, shown in Figure 5.13. Note that outside of ς3 (shaded in blue) the
Jacobian DHσ is some matrix from M, but over ς3 we have DHσ = M2 /∈ M. Therefore if
we are to expand from some subset of Γ ∩ ς3, to ensure that Λ satisfies one of (A1-2) we must
map forwards using H2

σ, whose Jacobian is always a matrix from M (analogous to the escape
behaviour shown for A3, shown in Figure 5.9(b)). The relevant subset of matrices, then, is M3b =

{M1,M1M
k
3 ,M2M

k
3 ,M3M

k
2 ,M4M

k
2 | k = 1, 2}. Noting that Γ can have non-simple intersection

with the sets A2
4,2 and A1

1,3, the relevant inequality to verify is( ∑
M∈M3b

1

K+(M)

)
+

1

K+(M1M3)
+

1

K+ (M4M2
2 )

< 1.

Indeed, the above sums to δ ≈ 0.807 < 1, so that restricting to one of the partition elements and
expanding from there (using H2

σ inside of ς3, Hσ otherwise) will always satisfy (C2) with some
k ≤ 3. This leaves the cases Γ ⊂ σ1c, σ1d, σ3a. Noting that rotating σ1c by 180◦ about the point
(1/4, 3/4) gives σ1b, and C+ is invariant under this rotation, the argument is essentially analogous.
Similarly the arguments for σ1d, σ3a are equivalent to those for σ1a, σ3b respectively. This concludes
the case where Γ satisfies (A1).

Let Γ satisfy (A2). Define the transformation T : T2 → T2 given by T (x, y) = (1 − x, y +

1/2) mod 1. One can verify that T ◦ T = Id and T ◦H = H ◦ T so that Hn = T ◦Hn ◦ T . Now
since T (σ2 ∪ σ4) = σ1 ∪ σ3 and DTC+ = C−, the line segment T (Γ) satisfies (A1). By our analysis
above, T (Γ) then satisfies (C1) or (C2). Noting that T (Aj) = A5−j , if T (Γ) satisfies (C1) then
there exists k such that Hk(Γ) = (T ◦Hk ◦T )(Γ) has non simple intersection with A5−j , so (C1) is
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satisfied. Similarly since ℓv(·) is T -invariant, if T (Γ) satisfies (C2) then the same holds for Γ.

5.3.5 Establishing the Bernoulli property

We are now ready to establish the mixing property.

Proof of Theorem 5.2. By the Theorem 1.4, since (KS1-2) were shown in section 4.3 and (KS3)
was shown in Proposition 5.2, it suffices to show (MR). By Lemmas 5.7, 5.8, for a.e. z we can
find m0 such that Hm0(γu(z)) contains a line segment Γ0 satisfying (A1) or (A2). Now iteratively
apply Lemma 5.9 until (C1) is satisfied, giving m1 such that Hm1(Γ0) contains a line segment Γ1

which has non simple intersection with some Aj . Define a v-segment as any line segment traversing
S1, connecting its upper and lower boundaries. Similarly define a h-segment as any line segment in
S1 which connects its left and right boundaries. Consider the four parallelograms Qj ⊂ Aj given
by Q1 = A1 ∩S2, Q2 = A2 ∩S1, Q3 = A3 ∩S4, Q4 = A4 ∩S3. It was shown in the proof of Lemma
4.14 that:

(M1) If Γ1 has non-simple intersection with some Aj1 , it traverses some Qj2 , connecting its sloping
boundaries.

(M2) If Γ1 traverses Qj2 , j2 = 1, 2, 3, 4, then Hk(Γ1) traverses Q3 for k = 2, 1, 0, 3 respectively.

(M3) The image of any line segment traversing Q3 contains a v-segment.

The above gives m2 ∈ {1, 2, 3, 4} such that Hm2(Γ1) contains a v-segment Γ ⊂ H(Q3) ∩ S1, with
this parent set given by the quadrilateral with corners (0, 0), (1/6, 0), (1/2, 1/2), (1/3, 1/2), so that
Γ connects points (x1, 0) and (x2, 1/2) with 0 ≤ x1 ≤ 1/6 and 1/3 ≤ x2 ≤ 1/2. It follows that Γ

traverses Q2 which, by (M2-3), implies that H2(Γ) contains a v-segment and so does H2+2k(Γ) for
k ≥ 0 by induction. Applying F to Γ has no effect on (x1, 0) and wraps (x2, 1/2) horizontally around
the torus so that F (Γ) contains a segment joining (0, y) to (x2, 1/2) with y < 1/2. Now G has no
effect on (0, y) and maps (x2, 1/2) to (x2, 1/2+2x2) mod 1. Since 1/2+2x2 ≥ 1/2+2/3 = 7/6 > 1,
H(Γ) contains a segment joining (0, y) to (x3, 1) with x3 ≤ x2 ≤ 1/2. It follows that H(Γ) must
traverse Q4 which, by (M2-3), implies that H5(Γ) contains a v-segment. Using the same induction
as before we have that H5+2k(Γ) contains a v-segment for all k ≥ 0 which, together with the same
result for H2+2k(Γ), implies that Hk(Γ) contains a v-segment for all k ≥ 4. Hence there exists
M = m0 +m1 +m2 + 4 such that Hm(γu(z)) contains a v-segment for all m ≥M .

Now for almost any z′, by Lemma 5.7 we can find n0 such that H−n0(γs(z
′)) contains a line

segment Γ′ ∈ σ′, aligned with some v ∈ C′. Define the transformation T (x, y) = (1−y, 1−x) mod 1.
One can verify that T ◦T = Id and T ◦H−1 = H◦T so thatH−k = T ◦Hk◦T . Now since T (σ′) = σ

and DT C′ = C, we have that T (Γ′) is a line segment in σ, aligned with some v = DT v′ ∈ C. We
now follow Lemmas 5.8, 5.9 and the argument above to find n1 such that (Hm ◦ T )(Γ′) contains
a v-segment for all m ≥ n1. The image of a v-segment under T is a segment joining the left and
right boundaries of S4. Noting Figure 5.5, we have that H−m(Γ′) = (T ◦ Hm ◦ T )(Γ′) traverses
the parallelogram Q′

2 = A′
2 ∩ S4, connecting its sloping boundaries. It was shown in the proof

of Lemma 4.15 that if Γ′ traverses Q′
2 then H−1(Γ) contains a h-segment, so that H−n(γs(z

′))

contains a h-segment for all n ≥ N = n0 + n1 + 1. Since z and z′ were arbitrary and h-segments
and v-segments must always intersect, (MR) holds.

Remark 5.1. The v-segments Λ obtained above satisfy H−1(Λ) ⊂ Q3, H−2(Λ) ⊂ Q2 so that
Λ ⊂ H(A3 ∩H(A2)) = σ3. Similarly the h-segments derived from these v-segments can be shown
to lie in σ′

2.
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Figure 5.14: Gray: lin-log and log-log plots of the estimated autocorrelation function |Cn| over
n = 1, . . . , 64 iterates for the OTM. Red: rolling average over two elements.

5.3.6 Remarks

We conclude this chapter comparing the dynamics and analysis of the OTM with maps studied
in previous sections. In spirit, the method for establishing the growth lemma was analogous to
that seen in the simpler setting of the non-monotonic linked twist map (section 5.2.3). The more
complicated geometry of the return set σ and increased variety of accumulation regions obfuscate
this relationship but the underlying inductive argument is unchanged. While we have relied on the
specific geometry of the OTM and the non-monotonic LTM, we expect a similar method could be
used in any system where the partition elements follow a self similar accumulating pattern. Such
structure is observed in many return map systems.

The Bernoulli property for the rest of P ′ could potentially be proven by an argument adapted
from this one. In some sense M is the widest class of matrices one would ever need to consider,
comprising cocycles corresponding to every possible escape from the problematic regions A2 and A3,
non-hyperbolic for the OTM, weakly hyperbolic in its vicinity over P ′. In practice, establishing
the necessary geometric bounds over such a wide parameter space would be challenging, likely
necessitating splitting up the analysis into many cases. The symmetry arguments also would not
hold, likely pushing the number of required calculations beyond a manageable (or at least readable)
level§.

The map H(ξ,η) over P ′ is uniformly hyperbolic with singularities. As such, following the
work of Young (1998), one would expect correlations to decay exponentially in this case. In
contrast, a straightforward calculation using the sets Pn, Qn of section 5.3.2 gives µ(Pn) = µ(Qn) =

n/
(
32n2 − 8

)
so that µ(Bn), the measure of the unmixed region in A3, is given by µ(Bn) = µ(Un) =

n/
(
16n2 − 4

)
. This suggests that the mixing rate is at best polynomial and numerical evidence

supports this. Figure 5.14 shows the numerically estimated decay of the autocorrelation function
Cn(φ,φ,H, µ) for the OTM H and observable φ(x, y) = 5 sin(4πx) − 7 sin(6πy). The lin-log plot
suggests that |Cn| exhibits slower than exponential decay, the log-log plot suggests an algebraic
decay rate for the tail end of the distribution. The next chapter attempts to make these predictions
rigorous, applying the results covered in section 2.3 to find upper bounds on the correlation decay
rate for H(ξ,η) at ξ = η = 1/2 (the OTM) and across the mixing window (ξ, η) ∈ M.

§One could argue that our analysis of the OTM already crossed this threshold!
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Chapter 6

Rates of Mixing

6.1 Introduction

We begin with the scheme outlined in Chernov and Zhang (2005). It gives conditions under which
the distribution of return times to a certain subset Λ decays exponentially and exponential decay
of correlations follows by construction of a Young Tower. We first list some basic properties for
systems amenable to the scheme, paraphrased from Chernov and Zhang (2005).

Let M be an open domain in a 2D C∞ compact Riemannian manifold M with or without
boundary, f :M →M .

(CZ1): Smoothness. The map f is a C2 diffeomorphism of M \S onto f(M \S), where S is a closed
set of zero Lebesgue measure.

(CZ2): Hyperbolicity. At any x ∈ M ′ ⊂ M where Dfx exists, there exists two families of cones Cu
x

(unstable) and Cs
x (stable) such that Dfx(Cu

x ) ⊂ Cu
f(x) and Dfx(C

s
x) ⊃ Cs

f(x). There exists
a constant λ > 1 such that

||Dfx(v)|| ≥ λ||v|| ∀v ∈ Cu
x and ||Df−1

x (v)|| ≥ λ||v|| ∀v ∈ Cs
x.

These families of cones are continuous on M ′, and the angle between Cu
x and Cs

x is bounded
away from zero. For any f -invariant measure µ′, at almost every x ∈ M we have non-zero
Lyapunov exponents and can define local unstable and stable manifolds Wu(x), W s(x).

(CZ3): SRB measure. The map f preserves a measure µ whose conditional distributions on unstable
manifolds are absolutely continuous, and is mixing.

(CZ4): Distortion bounds. Let λ(x) denote the factor of expansion on the unstable manifold Wu(x).
If x, y belong to an unstable manifold Wu such that fn is defined and smooth on Wu, then

log

n−1∏
i=0

λ(f ix)

λ(f iy)
≤ α(dist (fnx, fny))

where α(·) is some function, independent of Wu, with α(s) → 0 as s→ 0.

(CZ5): Bounded Curvature. The curvature of unstable manifolds is uniformly bounded by a constant
B ≥ 0.

(CZ6): Absolute continuity. If W1,W2 are two small unstable manifolds close to each other, then
the holonomy map h : W1 → W2 (defined by sliding along stable manifolds) is absolutely
continuous with respect to the induced Lebesgue measures νW1 and νW2 , and its Jacobian is
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bounded:
1

C ′ ≤
νW2

(h(W ′
1))

νW1(W
′
1)

≤ C ′

for some C ′ > 0, where W ′
1 ⊂W1 is the set of points where h is defined.

(CZ7): Structure of the singularity set. For any unstable curve W ⊂ M (a curve whose tangent
vectors lie in unstable cones) the set W ∩ S is finite or countable and...∗

Denote the length of a line segment W by |W |. Denote the connected components of W ∩ (M \ S)
by Wi. We are now ready to give the result from Chernov and Zhang (2005), specifically their
Theorem 10 with m = 1.

Theorem 6.1 (Chernov and Zhang). Let f be defined on a 2D manifold M and satisfy the
requirements (CZ1-7). Suppose

lim inf
δ→0

sup
W :|W |<δ

∑
i

λ−1
i < 1 (6.1)

where the supremum is taken over unstable manifolds W and λi denotes the minimal expansion
factor on Wi. Then the map f :M →M enjoys exponential decay of correlations.

Following the analysis of section 4.3, the one step expansion estimate (6.1) may seem familiar.
Indeed, its similarity with our growth condition (see Lemma 4.12) allows us to deduce, with minimal
further analysis, exponential mixing of H(ξ,η) for parameter values (ξ, η) near the Cat Map.

We further state a more recent scheme of Chernov and Zhang (2009), aimed towards proving
exponential mixing for systems of type a < 1 (see the discussion of section 2.3). Let Ω denote a
two dimensional connected compact Riemannian manifold, f : Ω → Ω preserving a measure µ. Let
d denote the distance in Ω induced by the Riemannian metric ρ. For any smooth curve W in Ω,
denote by |W | its length, and by mW the Lebesgue measure on W induced by the Riemannian
metric ρW restricted to W . Also let νW = mW /|W | be the normalised (probability) measure on
W.

(H1): Hyperbolicity of f (with uniform expansion and contraction). There exist two families
of cones Cu

x (unstable) and Cs
x (stable) in the tangent spaces TxΩ, for all x ∈ Ω, and there exists

a constant Λ > 1, with the following properties:

1. Df(Cu
x ) ⊂ Cu

fx and Df(Cs
x) ⊃ Cs

fx whenever Df exists.

2. ∥Dxf(v)∥ ≥ Λ∥v∥, ∀v ∈ Cu
x and ∥Dxf

−1(v)∥ ≥ Λ∥v∥, ∀v ∈ Cs
x.

3. These families of cones are continuous on Ω and the angle between Cu
x and Cs

x is uniformly
bounded away from zero.

We say that a smooth curve W ⊂ Ω is an unstable (stable) curve if at every point x ∈ W the
tangent line TxW belongs in the unstable (stable) cone Cu

x (Cs
x).

(H2): Singularities and smoothness. Let S0 be a closed subset in Ω, such that M := Ω \ S0 is
a dense set in Ω. We put S±1 = f∓S0.

1. f :M \ S1 →M \ S−1 is a C2 diffeomorphism.

2. S0 ∪ S1 is a finite or countable union of smooth, compact curves in Ω.

3. Curves in S0 are transversal to stable and unstable cones. Every smooth curve in S1 (resp.
S−1) is a stable (resp. unstable) curve. Every curve in S1 terminates either inside another
curve of S1 or on S0.

∗There is an additional requirement in the countable case, irrelevant for use case.
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4. There exists b ∈ (0, 1) and c > 0 such that for any x ∈M \ S1

∥Dxf∥ ≤ c d(x,S1)
−b. (6.2)

(H3): Regularity of smooth unstable curves. We assume that there is a f -invariant class of
unstable curves W ⊂M that are regular (see Chernov and Zhang, 2009).

(H4): SRB measure. µ is a Sinai-Ruelle-Bowen (SRB) measure which is mixing.
(H5): One-step expansion. There exists q ∈ (0, 1] such that

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

< 1, (6.3)

where the supremum is taken over all unstable curves, Wi are the components of W split by the
singularity set for f , Vi = f(Wi).

Theorem 6.2 (Chernov and Zhang). Under the conditions (H1)–(H5), the system (f, µ) enjoys
exponential decay of correlations.

Remark 6.1. Condition (H1.3) has been relaxed in subsequent schemes (Demers and Zhang,
2014; Wang et al., 2021) and can be replaced by

3’. These families of cones are continuous on components of Ω \ S0 and the angle between Cu
x

and Cs
x is uniformly bounded away from zero.

Theorem 6.2 still follows under this relaxed assumption by applying (for example) Theorem 1 of
Wang et al. (2021). Despite the improvement over (6.1), condition (H5) still fails for many systems
over one iterate. See, for example, the modified stadia considered in Chernov and Zhang (2009).
It can be replaced by a multi-step expansion condition, establishing (H5) for some higher power
fn of the map f and its singularity set f−n(S0).

We apply these schemes to deduce the mixing rates of the map H(ξ,η), first for parameters near
the Cat Map using Theorem 6.1, then at ξ = η = 1/2 (the OTM) using Theorem 6.2

6.2 Exponential mixing rates

Recall the map H(ξ,η), its derivatives Mj and their shared invariant expanding cone C, explicitly
stated in section 4.3. Letting ∥ · ∥2 denote the Euclidean norm, define expansion factors

Kj(ξ, η) = inf
v∈C

∥Mjv∥2
∥v∥2

.

Recall the mixing window B from Proposition 4.10, plotted in Figure 4.16. In this section we prove:

Theorem 6.3. For parameter values (ξ, η) ∈ B further satisfying

4∑
j=1

1

Kj(ξ, η)
< 1, (6.4)

the map H(ξ,η) enjoys exponential decay of correlations. This window E is plotted in Figure 6.1.

The argument is presented in Myers Hill et al. (2022a); for completeness we restate it here. In
essence, we express our system in the notation of Theorem 6.1 and verify the conditions (CZ1-7).

Proof of Theorem 6.3. Take M = M = T2 and f = H(ξ,η). Starting with (CZ1), take S = D as
defined in section 4.3 and let M ′ = T2 \ D. Clearly f : M ′ → f(M ′) is a C2 diffeomorphism and

95



c2

Hyperbolic P ′

c1

c3
c4 B

Exponential
Mixing E

ξ

η

Figure 6.1: Plot of analytical results over P. The curves c1 and c2 define P ′, c3 defines B ⊂ P ′,
c3 and c4 define E ⊂ B, on which H is respectively hyperbolic, mixing, and exhibits exponential
decay of correlations.

µ(D) = 0. Moving onto (CZ2), take Cu
x = C and Cs

x = C′ for all x ∈ M ′. These are continuous
(constant even) over M ′ with cone invariance, expansion†, transversality shown in the proof of
Lemma 4.6. (CZ3) follows from Theorem 4.3, noting that Bernoulli implies strong mixing in the
ergodic hierarchy. Next (CZ4), (CZ5) follow from piecewise linearity of H and (CZ6) follows
from (KS1-3), shown in section 4.3. Finally since vectors tangent to D lie in C′, unstable curves
W (with tangent vectors in C) meet D transversally. Since D is a finite collection of segments,
W ∩ D is finite, satisfying (CZ7).

It remains to show the one step expansion condition (6.1). Note that by inspection of the
partition Ai in Figure 4.12, we can pick δ sufficiently small so that any unstable manifold of length
δ has at most three intersections with D, giving four connected components Wi = W ∩ Ai. Note
that each expansion factor λi is then bounded from below by K(ξ, η) and the result follows by
(6.4).

Across (ξ, η) ∈ B we have that K1(ξ, η, v) and K2(ξ, η, v) always attain their infimum over
the unstable eigenvector v2 of M2, K3(ξ, η, v) and K4(ξ, η, v) always attain their infimum over the
unstable eigenvector v3 of M3. Hence (6.4) holds provided that Ω(ξ, η) < 1, where

Ω(ξ, η) =
1

K1(ξ, η, v2)
+

1

K2(ξ, η, v2)
+

1

K3(ξ, η, v3)
+

1

K4(ξ, η, v3)
.

Figure 6.1 shows the curve c4 given by Ω(ξ, η) = 1 in B, which together with c3, c2, ξ = 0 give the
exponential mixing window E ⊂ B where Theorem 6.3 holds.

†Expansion in the || · ||2 norm follows from a similar argument.
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6.3 Polynomial mixing rates

Let H denote the OTM, H(ξ,η) with ξ = η = 1/2. The aim of this section is to prove that H enjoys
polynomial decay of correlations, in contrast to the exponential mixing rates seen in the previous
section. We show:

Theorem 6.4. Correlations Cn(φ,ψ,H, µ) for H satisfy

|Cn(φ,ψ,H, µ)| ≤ c n−1

for some constant c and Hölder observables φ,ψ.

Our method follows that outlined in section 2.3, deducing the polynomial decay under H
from exponential decay of some induced return map HA, where returns to A experience ‘strong’
hyperbolic behaviour. The natural choice for A, following the work of section 5.3, is the set σ. We
begin by proving the Bernoulli property for Hσ.

6.3.1 Bernoulli property

Proposition 6.1. The return map Hσ is Bernoulli with respect to the probability measure µσ =

µ(σ)−1µ.

We will show the conditions (KS1-3) and (MR); the result then follows from Theorem 1.4.

Lemma 6.1. The return map Hσ satisfies (KS1-3).

Proof. Starting with (KS1) we follow a similar approach to Springham and Sturman (2014), their
Lemma 4.1. We show that there exists a,C1 > 0 s.t. ∀ ϵ > 0, µσ(Bε(S)) ≤ C1ε

a for S = S ∩ σ1a;
the argument for the rest of S is similar and the result then follows by taking a larger C1. Recall
the line segments Lk from (†) which for k ≥ 3 terminate on the points (0, (k + 1)/(4k + 2)) and
(1/(4k − 2), (k − 1)/(4k − 2)) on the line L : y = 1/4− x/2. Let P (ε) denote the parallelogram in
σ1a of width 2

√
ε, height

√
ε, with sides aligned with x = 0 and L (see Figure 5.11). For small ε,

P (ε) contains all line segments Lk where 2
√
ε ≥ 1/(4k − 2), i.e. k ≥ k0 = ⌈1/(8

√
ε) + 1/2⌉, with

µ(Bε(P (ε))) = (2
√
ε+ 2ε)(

√
ε+ 2ε) = 2ε+ 6ε3/2 + 4ε2 < 12ε.

The ball Bε(P (ε)) then covers all of Bε(S) except the collection Lk, 4 ≤ k ≤ k0 − 1 and the seven
line segments Lj which terminate on y = 2x. The measure of the ball around these latter line
segments satisfies

µ(Bε(∪jLj)) ≤ 14 ε

(
max

j
|Lj |+ 2ε

)
< c1ε

for some finite c1, so it remains to estimate
∑k0−1

k=4 µ(Bε(Lk)). We can calculate

|Lk| =

√(
1

4k − 2

)2

+

(
k + 1

4k + 2
− k − 1

4k − 2

)2

=

√
8k2 + 4k + 1

4(4k2 − 1)2
<

1

k
(6.5)

so that
k0−1∑
k=4

µ(Bε(Lk)) < 2ε

k0−1∑
k=4

1

k
+ 2ε < 4ε2k0 + 2ε log k0 < c2ε

a

for some 0 < a < 1, c2 > 0 since k0 < ε−1/2 and there exists finite c such that c εa > ε log 1
ε for

any 0 < a < 1.
Since Hσ is piecewise linear, condition (KS2) follows trivially and we move onto (KS3).

Existence of Lyapunov exponents almost everywhere follows from Oseledets’ theorem (Oseledets,
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Figure 6.2: The set σ′ superimposed on σ, their intersection left white. A h-segment (red) and a
h′-segment (blue) are plotted in R and R′ respectively.

1968) provided that log+ ∥DHσ∥ is integrable. This follows from the fact that if z ∈ σ has return
time rσ(z) = k, then the Jacobian of Hσ at z satisfies ∥DHσ∥ ≤ c1k for some finite c1 > 0, and
that the measure of the sets {z ∈ σ | rσ(z) = k} are of order k−3. That these Lyapunov exponents
are non-zero follows from Lemmas 5.5, 5.6 and an argument similar to that given for H in section
5.3.2.

Lemma 6.2. The return map Hσ satisfies (MR).

For a.e z ∈ σ, local manifolds γu(z), γs(z) under Hσ align with those of H. Note that Hσ

does not immediately inherit (MR) from H as while successive images of local manifolds under
H contain h-segments and v-segments, these segments may not lie in the successive images under
Hσ.

Let R denote the quadrilateral σ3 ∩σ′
2 and R′ = σ2 ∩σ′

3. Define a h-segment as a line segment
spanning R with endpoints on ∂σ3. Similarly define a h′-segment as a line segment spanning R′

with endpoints on ∂σ2. Examples are plotted in Figure 6.2. We will show that there exists M,N

such that for all m ≥M , n ≥ N , Hm
σ (γu(z)) intersects H−n

σ (γs(z
′)) in either R or R′.

By the remark after Theorem 5.2 we can find some n2 such that H−n2(γs(z
′)) contains a

h-segment in σ′
2, which in turn contains a h-segment in R. As a line segment in σ, this h-

segment lies in H−n1
σ (γs(z

′)) for some n1 ≤ n2. Note that we have a hyperbolic period 2 orbit
(1/4, 1/4) ↔ (3/4, 3/4) under Hσ, alternating between R and R′. Any h-segment Λ contains a
point ζ on the unstable manifold through (1/4, 1/4) so H−2

σ (Λ) contains a point ζ ′ on the manifold
closer to (1/4, 1/4) and extends beyond the boundaries ∂σ3 by the expansion of H−2

σ . Hence
H−2

σ (Λ) contains a h-segment and by induction so does H−2k
σ (Λ) for all k ≥ 1. The odd iterates

H−2k+1(Λ) similarly span R′ so that

(†) Given arbitrary z′ ∈ σ, there exists N such that for all n ≥ N the image H−n
σ (γs(z

′)) contains
a h-segment or a h′-segment.

Define a v′-segment as a line segment vertically spanning σ2 ∩ S4. Condition (MR) now follows
from establishing

(‡) Given arbitrary z ∈ σ, there exists M such that for all m ≥M the image Hm
σ (γs(z

′)) contains
both a v-segment and a v′-segment.
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y1

Γ1

F (Γ1)

Γ2
y2 F (Γ2)

Γ3

A1
3,2

Γ2

x1

Figure 6.3: Left: The upper part Γ1 ⊂ A1 of a v-segment in σ3 \ (H(σ2)∩σ3) and its images F (Γ1)
(dashed), H(Γ1) ∩ S1. Right: A right part Γ2 ⊂ A1 of H(Γ1) and its images F (Γ2), H(Γ2) ∩ S1.
This image necessarily contains a line segment Γ3 traversing A1

3,2.

Recall the quadrilaterals ςj ⊂ σj of points with return time 1 (see Figure 5.8(a)). It follows from
the definitions of the σj that H(ς2) ⊂ σ3 and H(ς3) ⊂ σ2. The edges of ς3 on the A1, A2 boundary
map into the lines x = 1/2, x = 1, in particular onto the red dashed lines on the boundary of
S2 in Figure 5.8(b) so that the image of any line segment in ς3 which joins these edges contains
a v′-segment. A analogous result holds for lines segments traversing ς2 and since this behaviour
occurs within the return set σ we have that v-segments map into v′-segments under Hσ and vice
versa. It follows that v(’)-segments map into v(’)-segments under H2

σ. It suffices to break into the
odd iterates to satisfy the ‘and’ condition of (‡).

By following the steps (M1-3) in the proof of Theorem 5.2 we can find m2 such that Hm2(γu(z))

contains a v-segment Γ ⊂ σ3 ∩S1 with H−1(Γ) ⊂ A3, H−2(Γ)A2, H−3(Γ) ⊂ A1, H−4(Γ) ⊂ A4. In
particular H−1(Γ) lies in H(A2∩H(A1)), i.e. outside of σ2, so that Γ lies in σ3 \ (H(σ2)∩σ3). The
set H(σ2) ∩ S1 (shown in blue in Figure 6.3) is the quadrilateral with corners (7/68, 0), (3/34, 0),
(27/68, 0), (7/17, 0), which splits σ3 ∩ S1 into left and right parts. We assume first that Γ lies in
the right part, intersecting the line y = 1/2 at some point (x1, 1/2) with x1 ≥ 7/17 and the A1, A2

boundary y = 1/2−x/2 at some point (1−2y1, y1). These intersections define a line segment Γ1 ⊂ Γ,
which lies in A1 shown in Figure 6.3. Applying F maps (x1, 1/2) to itself (wrapping horizontally
around the torus) and maps (1 − 2y1, y1) to (0, y1). Applying G then leaves (0, y1) invariant and
wraps (x1, 1/2) vertically around the torus to (x1, 1/2 + 2x1) mod 1 ≡ (x1,−1/2 + 2x1). Since
x1 ≥ 7/17 we have that −1/2 + 2x1 ≥ 11/34 > 10/24 ≥ 1/2 − x1/2 so that (x1,−1/2 + 2x1) lies
above the line y = 1/2 − x/2. We restrict again to A1, giving Γ2 ⊂ H(Γ1) with endpoints on
(x1,−1/2 + 2x1) and some point (1 − 2y2, y2) on y = 1/2 − x/2. This line meets y = −1/2 + 2x

at (2/5, 3/10) so that y2 ≤ 3/10 (see Figure 6.3). Now F (Γ2) joins (0, y2) to (5x1 − 2, 2x1 − 1/2)

and so H(Γ2) joins (0, y2) to (5x1 − 2, 12x1 − 9/2). The set A1
3,2 is bounded by the parallel lines

y = 7/16 − 5x/8 and y = 3/8 − 5x/8. Since y2 < 3/8 and 12x1 − 9/2 ≥ 15/34 > 109/272 ≥
7/16 − 5(5x1 − 2)/8 we have that H(Γ2) contains a segment Γ3 which traverses A1

3,2. The image
H(Γ3) then traverses Q3 so that H2(Γ3) ⊂ H4(Γ) contains a v-segment in σ3. Critically we have
that Γ2,Γ3 ⊂ H(A1) ⊂ σ but Γ4 ⊂ H(A2 ∩ H(A1)) which is not in σ. Hence H3

σ(Γ) contains a
v-segment and we can apply the H2

σ result above to show that Hk
σ(Γ) contains a v-segment for all

k ≥ 2. Similar analysis can be applied to Γ in the left portion of σ3 \ (H(σ2)∩ σ3). It follows that
Hk

σ(Γ) contains a v′-segment for all k ≥ 3, establishing (‡) with M = m1 + 3.
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Figure 6.4: Unstable and stable cone fields Cj , Cs
j over the subsets σj ⊂ σ for the return map Hσ.

Also shown in red are the gradients of the line segments which make up the boundary ∂σ which
lie outside of all cone fields.

6.3.2 Invariant cones

We now derive specific unstable and stable cone fields for the return map Hσ, wide enough to
ensure invariance (H1.1) yet fine enough to produce tight bounds on expansion factors, vital for
verifying (H5). Define the cones C1, . . . , C4 by

(C1) 3|v1| ≥ |v2| ≥ 7|v1|/3, v1v2 > 0,

(C2) 5|v1|/3 ≥ |v2| ≥ φ|v1|, v1v2 < 0,

(C3) 5|v1|/3 ≥ |v2| ≥ φ|v1|, v1v2 > 0,

(C4) 3|v1| ≥ |v2| ≥ 7|v1|/3, v1v2 < 0,

and the following stable cones

(Cs
1) |v1| ≥ |v2|,

(Cs
2) 9/10 ≥ v2/v1 ≥ −8/10,

(Cs
3) 8/10 ≥ v2/v1 ≥ −9/10,

(Cs
4) |v1| ≥ |v2|.

In the notation of section 6.1, for general z ∈ σ we take Cu
z = Cj and Cs

z = Cs
j for z ∈ σj . These

cone fields are plotted in Figure 6.4.

Lemma 6.3. The above cones satisfy DHσ C
u
z ⊂ Cu

z′ and DHσ C
s
z ⊃ Cs

z′ for all z ∈ σ where DHσ

exists, z′ = Hσ(z).

Proof. We begin with the unstable cones. Table 6.1 shows the possible values of DHσ at z if z ∈ σi

and z′ ∈ σj . The calculations for z′ ∈ σ1, σ4 are similar to those made in the proof of Lemma 5.8,
noting that each Cj is contained within C and, for example, M1M

k
j C ⊂ C1 for j = 2, 3, and k ≥ 0.
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DHσ σ1 σ2 σ3 σ4

σ1 M1 - M3M
k
2

M4

M4M
k
2

M4M
k
3

σ2 - -
M3

M3M2

M3M
2
2

M4

M4M2

M4M
2
2

σ3

M1

M1M3

M1M
2
3

M2

M2M3

M2M
2
3

- -

σ4

M1

M1M
k
2

M1M
k
3

M2M
k
3 - M4

Table 6.1: Possible values of the JacobianDHσ at z if z ∈ σi (rows) and z′ = Hσ(z) ∈ σj (columns).
Exponent k takes values in N, dashes are shown if no transition is possible, e.g Hσ(σ1) ∩ σ2 = ∅.

For z′ ∈ σ2 we verify thatM2M
k
3 (−1, 3)T = (−1)k(−24k+5,−40k−7)T ∈ C2 andM2M

k
3 (−3, 7)T =

(−1)k(60k + 11,−100k − 15)T ∈ C2 for all k ≥ 1 so that DHσ C
u
z ⊂ Cu

z′ for z ∈ σ4. For z ∈ σ3

we have M2(3, 5)
T = (13,−21)T ∈ C2 and M2(13, 21)

T = (55,−89)T ∈ C2, ensuring invariance in
this particular case also, despite M2 being non-hyperbolic. Entirely symmetric calculations can be
made for z′ ∈ σ3, verifying the result for all unstable cones.

For the stable cones, we remark that taking Cs
z = Cs

1 for all z ∈ σ would satisfy DHσ C
s
z ⊃ Cs

z′

but since M−1
2 (1,−1)T = (−1, 1)T we would be unable to derive sufficient uniform bounds on

expansion factors (H1.2). The matrix M−1
3 exhibits a similar problem so we must slim down the

cones Cs
z when DH−1

σ ∈ {M−1
2 ,M−1

3 } which, observing Table 6.1, is for z ∈ σ2, σ3. To remedy
this, for such z we slim down the cones Cs

z to Cs
2 , Cs

3 above. As these cones lie in the wider invariant
cone |v1| ≥ |v2|, the lemma follows from checking that DHσ C

s
z ⊃ Cs

z′ for z ∈ σ2, σ3. This can be
verified via direct calculations.

6.3.3 Structure of the singularity set

Using the notation of (H2) in section 6.1, let S0 = ∪j∂σj , the union of ∂σ and the red dashed
lines in Figure 5.8(b). The set M = Ω \ S0 is clearly dense in Ω and Hσ is a C2 diffeomorphism
from M \ S1 onto M \ S−1, being linear on each component.

The set S0 ∪ S1 is the countable union of bounded line segments with the endpoints of each
segment terminating on another segment, giving (H2.2).

The gradients of the segments in S0 take values in {±8/5,±2,∞} which avoid unstable and
stable cones Cu

z , Cs
z (see Figure 6.4). The gradients of singularity curves in σ1 and σ4 are bounded

between -1 and 1 (approaching these limits as we approach the accumulation points) so lie in Cs
1 , Cs

4 .
The gradients of singularity curves in σ1 and σ4 are bounded between -11/14 and 11/14 so lie in
Cs
2 , Cs

3 since 11/14 < 8/10. Similar calculations show that the gradients of segments in S−1 lie in
unstable cones.

We conclude this section with showing (H2.4). Condition (6.2) can only fail when ∥DHσ∥
becomes unbounded, i.e. at points z approaching the accumulation points. We consider the case
with z ∈ Ak

4,2 near (0, 1/4), the other cases are similar. Recall Figure 5.11 and the lines Lk from
(†). We note that d(z,S1) is bounded above by the length of the segment joining z = (x, y) to
(x, yk(x)) on Lk, which in turn is bounded above by the height of the segment joining (x, yk(x))
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to (x, yk−1(x)) on Lk−1. This height is

yk−1(x)− yk(x) ≤ yk−1

(
1

4k − 2

)
− yk(x)

(
1

4k − 2

)
=

1

2(2k − 1)2
≤ c1/k

2

for some constant c1 > 0. The operator norm of DHσ over Ak
4,2 satisfies ∥DHσ∥ ≤ c2k for some

c2 > 0 so that (6.2) holds for some c > 0 whenever we choose b > 1/2.

6.3.4 One-step expansion

We will verify (6.3) for the map f = H2
σ, q = 1/2. We begin with a basic statement on expansion

over unstable curves.

Lemma 6.4. Let M be the constant Jacobian of f over Wi. Then

λ− := inf
v∈C

∥Mv∥
∥v∥

≤ |Vi|
|Wi|

≤ sup
v∈C

∥Mv∥
∥v∥

=: λ+.

Proof. Given any ε > 0, consider a piecewise linear approximation Ŵi to Wi such that∣∣∣∣∣ |Vi||Wi|
− |V̂i|

|Ŵi|

∣∣∣∣∣ < ε

where V̂i = f(Ŵi) gives a piecewise approximation for Vi. Each of the piecewise components will
be line segments aligned with vectors in C so that their expansion factors will be bounded by λ±,
giving the result.

We also derive basic inequalities on the length of a given Wi.

Lemma 6.5. Let L0,L1 be the singularity curves on which Wi terminates, write these intersections
as (x0, y0) and (x1, y1). Then

√
(x1 − x0)2 + (y1 − y0)2 ≤ |Wi| ≤ |y1 − y0|

√
1 +

1

g2

where g = inf |v2/v1| over (v1, v2)
T ∈ C.

Proof. Noting that the lower bound is trivial, we focus on the upper bound. Since g > 0 for all
unstable cones C, the projection of Wi to the y-axis is injective. Without loss of generality suppose
y1 > y0, then we can parameterise Wi as a curve (x(y), y) for y0 ≤ y ≤ y1. Now

|Wi| =
∫ y1

y0

√(
dx

dy

)2

+

(
dy

dy

)2

dy

≤ (y1 − y0) sup
y0≤y≤y1

√
1 +

(
dx

dy

)2

≤ (y1 − y0)

√
1 +

1

g2

as tangent vectors (x′(y), 1)T to Wi lie in C.

Let P1 = {(0, 1/4), (1/2, 1/4), (1/2, 3/4), (1, 3/4)} denote the accumulation points similar to
that of σ1a, P2 = {(1/4, 1/2), (1/4, 1), (3/4, 0), (3/4, 1/2)} the accumulation points similar to that
of σ1b. Let ε be small. Given a set P , let Bε(P ) denote the union of the balls Bε(p) ∩ σ, centred
at p ∈ P of radius ε. The following describes the images of balls about P1 ∪ P2 under Hσ.
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Lemma 6.6. Given small ε > 0, there exists some ε′ > 0 such that Hσ(Bε(P1 ∪ P2)) covers
Bε′(P1 ∪ P2).

Proof. We describe the covering of Bε′((1/2, 3/4)), analysis for the other points in P1 ∪ P2 is
analogous. For any ε > 0, Bε(P1 ∪ P2) contains the sets Ak

4,3 for all k ≥ k0 where k0 ∈ N depends
on ε. Each Ak

4,3 consists of two quadrilaterals, one in the ball around (1/4, 1) and the other in the
ball around (1/4, 1/2). Figure 6.5(a) shows this latter quadrilateral, with corners on the points

r1 =

(
k + 1

4k + 2
,
k + 1

2k + 1

)
, r2 =

(
k − 1

4k − 2
,
1

2

)
, r3 =

(
k

4k + 2
,
1

2

)
, r4 =

(
k + 2

4k + 6
,
k + 2

2k + 3

)
.

Since DHσ is constant on Ak
4,3, given by the integer valued matrix M4M

k
3 = (−1)k

(
2k+1 −2k−2
−6k−2 6k+5

)
,

its image Hσ

(
Ak

4,3

)
is given by the quadrilateral with corners given by M4M

k
3 r

T
j mod 1. For odd

k we can calculate these corners as

r′1(k) =

(
1

2
+

1

4k + 2
,
3

4
− 5

8k + 4

)
, r′2(k) =

(
1

2
+

1

4k − 2
,
3

4
− 5

8k − 4

)
,

r′3(k) =

(
1

2
,
3

4
+

1

8k + 4

)
, r′4(k) =

(
1

2
,
3

4
+

1

8k + 12

)
,

shown in Figure 6.5(b). For even k the corners of Ak
4,3 in the ball around (1/4, 1) map into the

r′j . Writing this quadrilateral as Q(k), since r′2(k + 1) = r′1(k) and r′3(k + 1) = r′4(k) we have
that ∪k≥k0

Q(k) is the polygon with corners r′2(k0), r′3(k0), and limk→∞ r′1(k) = limk→∞ r′4(k) =

(1/2, 3/4). Noting that r′3(k0) > 3/4 and r′2(k0) lies on the line y − 3
4 = − 5

2 (x − 1
2 ), there exists

ε′ such that ∪k≥k0
Q(k) covers all points (x, y) ∈ Bε′((1/2, 3/4)) with y ≥ 3

4 − 5
2 (x − 1

2 ). The
image Hσ(Bε((1, 3/4)) ∩ A4) fills the remaining portion of Bε′((1/2, 3/4)), since Hσ = H on A4,
H(1, 3/4) = (1/2, 3/4), DH (−2, 1)T = (0,−1)T , and DH (0,−1)T = (2,−5)T .

Proposition 6.2. Condition (6.3) holds for H2
σ when there exists ε > 0 such that W∩Bε(P1∪P2) =

∅.

Proof. We claim that an unstable curve W of vanishing length, bounded away from the accumula-
tion points, is split into at most 9 components Wi by the singularity set for H2

σ. The upper bound
follows from analysis of the original singularity set for Hσ. Let PF denote the set of fixed points
under H, PF = {(0, 1/2), (1/2, 0), (1/2, 1/2), (1, 1)}. Observing Figure 5.8, if W ∩ Bε(PF ) ̸= ∅
then W is split by S into at most 5 components Wj , and if W ∩Bε(PF ) = ∅ then the upper bound
is 3. We consider these cases separately.

Take, for example, W ∩ Bε((0, 1/2)) ̸= ∅. Observing Figure 5.12, four of the components Wj

map into A′
4 under Hσ, and their images lie in some sector Bε′((1, 1/2))∩A′

4. We can take ε small
enough that this sector lies entirely in A4, so that no further splitting occurs during the next iterate
of Hσ. The other component W ∩A1 maps into some sector Bε′((0, 1/2))∩A′

1 and is split into at
most 5 components, giving at most N = 9 components in total. The other cases W ∩ Bε(p) ̸= ∅,
p ∈ PF , are analogous. Now suppose W ∩Bε(PF ) = ∅. S splits W into at most 3 components Wj

and, by Lemma 6.6 and the above, each Hσ(Wj) is bounded away from the accumulation points
P1 ∪ P2 and the fixed points PF . Hence each Hσ(Wj) is split into at most 3 components during
the next iterate of Hσ, again giving at most N = 9 components in total.

The weakest expansion of DH2
σ over cones Cj on σj using the euclidean norm is that of M1M4 =(−3 8

−8 21

)
on σ1 (or equivalently M4M1 on σ4), and is given by

c =
∥M1M4(3, 7)

T ∥
∥(3, 7)T ∥

√
(−9 + 56)2 + (−24 + 147)2

32 + 72
=

√
8669

29
≈ 17.29
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Ak
4,3

Wk

W⋆

W

•

r2
•

r3

• r4

• r1

A1 ∩ σ

(a)

Al
1,3

•r′1

•r′2

•r′3•r′4

Uk

Uk,l

(b)

Figure 6.5: Part (a) shows an unstable curve W passing near to the accumulation point (1/4, 1/2),
split into W⋆ below y = 1/2 and the collection Wk ⊂ Ak

4,3. Part (b) shows the image Uk =

Hσ(Wk) ⊂ Hσ

(
Ak

4,3

)
, which for odd k lies near the accumulation point (1/2, 3/4) and contains

subcurves Uk,l ⊂ Al
1,3.

so that, by Lemma 6.4, |Vi| ≥ c |Wi| for each component Wi. Now for q = 1/2 we have

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

=
∑
i

√
|W |
|Vi|

|Wi|
|W |

=
∑
i

√
|Wi|
|Vi|

√
|Wi|
|W |

≤ 1√
c

N∑
i=1

√
|Wi|
|W |

.

Letting xi = |Wi|/|W | and taking vectors u =
(√
x1, . . . ,

√
xN
)
, v = (1, . . . , 1) we have that∑N

i=1 xi = 1 and so
(∑N

i=1

√
xi

)2
= (u · v)2 ≤ (u · u) (v · v) =

(∑N
i=1 xi

)
N = N by the Cauchy-

Schwarz inequality. Hence ∑
i

(
|W |
|Vi|

)q |Wi|
|W |

≤
√
N√
c
< 1

since N ≤ 9 < c.

Proposition 6.3. Condition (6.3) holds for H2
σ when W ∩Bε(P2) ̸= ∅ for all ε > 0.

Proof. We begin with the case W ∩Bε((1/4, 1/2)) ̸= ∅ and let ε→ 0. We may choose δ sufficiently
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small so that W intersects A1 ∩ σ and some collection of sets Ak
4,3, k0 ≤ k ≤ k1, where k1 → ∞

as ε → 0, k0 → ∞ as δ → 0. Therefore, S splits W into a lower component W⋆ ⊂ A1 ∩ σ and
upper components Wk ⊂ Ak

4,3, illustrated in Figure 6.5(a). We study how the images of these
components under Hσ are split up by S.

Recall the corners rj(k) which define Ak
4,3 near (1/4, 1/2). The curve Wk has endpoints on r1r2

and r3r4, and all tangent vectors to W lie in C1. For odd k the image Uk = Hσ(Wk) is a curve
joining r′1r′2 to r′3r′4, with tangent vectors aligned in M4M

k
3 C1. This curve is split by S into an

upper portion Uk,⋆ ⊂ A4 ∩ σ, and a collection Uk,l ⊂ Al
1,3 for some consecutive range l0 ≤ l ≤ l1

which depends on k. Each Al
1,3 is bounded by the lines

Ll : y −
1

2
=

2l

2l + 1
(x− 1/4) (6.6)

and Ll−1, hence a lower bound on l0(k) is given by the largest l such that r′2(k) lies on or above Ll−1.
One can verify that r′2(k) lies on Ll−1 when k = 7l− 4 and approaches (1/2, 3/4) monotonically in
x and y so that l0(k) ≥ ⌊k+4

7 ⌋. To determine an upper bound on l1, note that r′4r′1 lies on the line

y − 3

4
− 1

8k + 12
= −6k + 8

2k + 3

(
x− 1

2

)
, (6.7)

meeting the A4 boundary L : y = 1/2 + x/2 at the point

(xk, yk) =

(
7k + 10

14k + 19
,
21k + 29

28k + 38

)
. (6.8)

We similarly calculate that the line Ll meets y = 1/2 + x/2 at the point

(Xl, Yl) =

(
l

2l − 1
,
1− 3l

2− 4l

)
.

The intersection of Uk with y = 1/2 + x/2 must be some point (x, 1/2 + x/2) with x ≥ xk so that
an upper bound on l1(k) is the smallest l such that xk ≥ Xl, which reduces to l ≥ 7k + 10, hence
l1(k) ≤ ⌈7k+10⌉ = 7k+10. For even k the splitting behaviour is entirely analogous, with Hσ(Wk)

intersecting S in the neighbourhood of (1, 1/4).
For the lower component W⋆, the image U⋆ = Hσ(W⋆) = H(W⋆) lies in a neighbourhood of

H(1/4, 1/2) = (1/4, 1) and is split by S into a collection U⋆,j ⊂ Aj
4,3, j0 ≤ j ≤ j1, where j1 → ∞

as ε→ 0, j0 → ∞ as δ → 0. Write W⋆,j = H−1
σ (U⋆,j), Wk,⋆ = H−1

σ (Uk,⋆), Wk,l = H−1
σ (Uk,l), then

W splits into components

W =

 ⋃
j≥j0

W⋆,j

 ∪

 ⋃
k≥k0

Wk,⋆

 ∪

 ⋃
k≥k0

l1⋃
l=l0

Wk,l

 (6.9)

on which DH2
σ is constant. Let Vi = Hσ(Ui) = H2

σ(Wi), then for q = 1/2:

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

=
∑
i

√
|Wi|
|Vi|

√
|Wi|
|W |

=
∑
j≥j0

√
|W⋆,j |
|V⋆,j |

√
|W⋆,j |
|W |

+
∑
k≥k0

√
|Wk,⋆|
|Vk,⋆|

√
|Wk,⋆|
|W |

+
∑
k≥k0

l1∑
l=l0

√
|Wk,l|
|Vk,l|

√
|Wk,l|
|W |

≤
∑
j≥j0

√
1

Λ⋆,j

√
|W⋆,j |
|W |

+
∑
k≥k0

√
1

Λk,⋆

√
|Wk,⋆|
|W |

+
∑
k≥k0

l1∑
l=l0

√
1

Λk,l

√
|Wk,l|
|W |

by Lemma 6.4, where Λi is the minimum expansion factor of DH2
σ on Wi over the cone C1. Define
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W⋄ =W \W⋆ and let 0 ≤ p ≤ 1 denote the proportion |W⋄| = p |W |, then

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

≤ sup
0≤p≤1

(
lim

j0→∞

∑
j≥j0

√
1

Λ⋆,j

√
(1− p)|W⋆,j |

|W⋆|

+ lim
k0→∞

∑
k≥k0

√
1

Λk,⋆

√
p |Wk,⋆|
|W⋄|

+ lim
k0→∞

∑
k≥k0

l1∑
l=l0

√
1

Λk,l

√
p |Wk,l|
|W⋄|

)
.

We put upper bounds on each of these sums using lower bounds on the expansion factors Λi and
geometric bounds on the curves Ui terminating on S. We use asymptotic notation f ∼ g for
functions f, g if f/g → 1, and write f ≲ g if there is some function h such that f ≤ h ∼ g.

Starting with the first sum, DH2
σ is given by M4M

j
3M1 = (−1)j

(
−2j−3 −6j−8
6j+8 18j+21

)
on each com-

ponent W⋆,j with minimum expansion factors given by

Λ⋆,j = inf
7/3≤m≤3

√
(−2j − 3− 6jm− 8m)

2
+ (6j + 8 + 18jm+ 21)2

1 +m2

∼ inf
7/3≤m≤3

√
(2 + 6m)

2
+ (6 + 18m)2

1 +m2
j =

48
√
145

29
j := c⋆ j.

(6.10)

Each curve U⋆,j has tangent vectors in M1C1 satisfying 41/17 ≤ |v2|/|v1| ≤ 17/7, v1v2 ≥ 0. For
each j > j0, U⋆,j traverses Aj

4,3 so that (making a similar calculation to equation 5.13) Lemma 6.5
gives

a⋆
j2

≲ |U⋆,j | ≲
b⋆
j2

(6.11)

for a⋆ = 13
80

√
2, b⋆ = 41

192

√
1 + 172/412 (calculated in the appendix, section C.1). The upper bound

also trivially holds for j = j0. Let Λ+
1 , Λ−

1 denote the maximum and minimum expansion factors
of M1 over C1, then

|W⋆| =
∑
j≥j0

|W⋆,j | ≥
∑
j≥j0

|U⋆,j |
Λ+
1

≳
a⋆

Λ+
1

∑
j≥j0+1

1

j2
≥ a⋆

Λ+
1 (j0 + 1)

∼ a⋆

Λ+
1 j0

where we have used the fact that

1

j2
≥ 1

j(j + 1)
=

1

j
− 1

j + 1

and considered the telescoping sum. Similarly |W⋆,j | ≲ b⋆/
(
Λ−
1 j

2
)

so that

|W⋆,j |
|W⋆|

≲
b⋆Λ

+
1 j0

a⋆Λ
−
1

1

j2
.
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Hence

∑
j≥j0

√
1

Λ⋆,j

√
(1− p)|W⋆,j |

|W⋆|
≲
∑
j≥j0

√
1

c⋆j

√
(1− p)b⋆Λ

+
1 j0

a⋆Λ
−
1

1

j2

=

√
(1− p)b⋆Λ

+
1 j0

c⋆a⋆Λ
−
1

∑
j≥j0

j−3/2

≤

√
(1− p)b⋆Λ

+
1

c⋆a⋆Λ
−
1

2

√
j0

j0 − 1

→ 2

√
(1− p)b⋆Λ

+
1

c⋆a⋆Λ
−
1

(6.12)

as j0 → ∞, where we have used
∑

j≥j0
j−3/2 ≤

∫∞
j0−1

x−3/2 dx.
Moving onto the next summation, Λk,⋆ is determined by M2

4M
k
3 = (−1)k

(
14k+5 −14k−12

−34k−12 34k+29

)
and satisfies

Λk,⋆ ∼ inf
7/3≤m≤3

√
(14− 14m)2 + (34− 34m)2

1 +m2
k =

104√
29
k =: c⋄ k.

For odd k the curve Uk,⋆ has endpoints (1/2, y0) on r′3r′4 and (2y1−1, y1) on L, where y1 is bounded
by the intersections of r′4r′1 and r′3r

′
2 with L (see Figure 6.5(b)). An upper bound on |y1 − y0| is

given by taking (1/2, y0) = r′3 and (2y1 − 1, y1) = r′4r
′
1 ∩ L. Noting (6.8), this gives

|y1 − y0| ≤
3

4
+

1

8k + 4
− 21k + 29

28k + 38
=

6k + 9

56k2 + 104k + 38
∼ 6

56
k−1.

Uk,⋆ has tangent vectors (v1, v2)
T in Mk

4,3 C1 ⊂ C4, so that |v2/v1| ≥ 7/3. By Lemma 6.5 we

then have |Uk,⋆| ≲ b⋄/k, where b⋄ = 6
56

√
1 + 9

49 ≈ 0.117. The minimum expansion factor of
M4M

k
3 = (−1)k

(
2k+1 −2k−2
−6k−2 6k+5

)
over C1 is given by

inf
7/3≤m≤3

√
(2− 2m)2 + (6− 6m)2

1 +m2
k =

8
√
145

29
k =: γ k

which gives |Wk,⋆| ≲ b⋄/
(
γk2
)
. The analysis for even k is analogous and gives the same upper

bound. We next require a lower bound on |W⋄|. For k > k0, Wk is a curve with tangent vectors
in C1 which traverses Ak

4,3. Making the same calculation as (5.13), |Wk| is bounded below by the
shortest path across Ak

4,3, the line segment passing through r4 with gradient 3. That’s

|Wk| ≥

√(
1

16k2 + 28k + 6

)2

+

(
3

16k2 + 28k + 6

)2

∼
√
10

16k2
(6.13)

so that
|W⋄| ≥

∑
k≥k0+1

|Wk| ≳
a

k0
(6.14)

with a :=
√
10/16. Hence

∑
k≥k0

√
1

Λk,⋆

√
p |Wk,⋆|
|W⋄|

≲
∑
k≥k0

√
1

c⋄k

√
pb⋄k0
aγ

1

k2
→ 2

√
pb⋄
c⋄aγ

as k0 → ∞, by a similar argument to (6.12).
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For the third summation, Λk,l is determined by the matrix

M1M
l
3M4M

k
3 = (−1)k+l

(
−48kl − 10k − 18l − 3 48kl + 10k + 42l + 8

−112kl − 26k − 42l − 8 112kl + 26k + 98l + 21

)

and satisfies (for large k, l)

Λk,l ∼ inf
7/3≤m≤3

√
(48− 48m)2 + (112− 112m)2

1 +m2
kl = 64 kl =: c kl.

We can show an upper bound |Uk,l| ≲ b/l2 where b = 3
32

√
1 + 9

49 ≈ 0.102 (see section C.1) so that
|Wk,l| ≲ b/(γkl2). Now by (6.14),

l1∑
l=l0

√
1

Λk,l

√
p|Wk,l|
|W⋄|

≲
l1∑

l=l0

√
1

c kl

√
pbk0
aγkl2

≤
√

1

c k

√
pbk0
aγk

7k+10∑
l=⌊ k+4

7 ⌋

l−3/2

≤ 2

√
1

c k

√
pbk0
aγk

 1√
⌊k+4

7 ⌋ − 1
− 1√

7k + 10


∼ 2

√
1

c k

√
pbk0
aγk

(√
7− 1√

7

)
1√
k
.

Letting h = (
√
7− 1/

√
7)2 = 36/7, we have that

∑
k≥k0

l1∑
l=l0

√
1

Λk,l

√
p|Wk,l|
|W⋄|

≲ 2

√
pbhk0
caγ

∑
k≥k0

k−3/2

→ 4

√
pbh

caγ

as k0 → ∞. Hence for q = 1/2

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

≤ sup
0≤p≤1

(
2

√
(1− p)b⋆Λ

+
1

c⋆a⋆Λ
−
1

+ 2

√
pb⋄
c⋄aγ

+ 4

√
pbh

caγ

)
. (6.15)

It is simple to show that for s, t > 0 the function f(p) = s
√
1− p+t

√
p always attains its maximum

value at p = t2/(s2 + t2). Hence letting

s = 2

√
b⋆Λ

+
1

c⋆a⋆Λ
−
1

≈ 0.450, t = 2

√
b⋄
c⋄aγ

+ 4

√
bh

caγ
≈ 0.639

gives

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

≤ s

√
s2

s2 + t2
+ t

√
t2

s2 + t2
≈ 0.781 < 1

as required. The analysis is analogous for W near (1/4, 1) and extends to W near (3/4, 0) and
(3/4, 1/2) using the symmetry T (x, y) = (1− x, y+ 1/2) which commutes with Hσ (as seen in the
proof of Lemma 5.9).

Equivalent analysis verifies the two step expansion for curves near the other accumulation points
p ∈ P1. We provide the relevant calculations to the appendix, Proposition C.1. We are now ready
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to apply Theorem 6.2.

6.3.5 Decay of correlations

Theorem 6.5. The return map Hσ : σ → σ enjoys exponential decay of correlations. In particular
it admits a Young tower with base ∆0 satisfying the exponential tail bound

µ ({z ∈ σ |R(z,Hσ,∆0) > n}) ≤ const θn (6.16)

for all n ≥ 1 where θ < 1 is some constant.

Proof. We run through the conditions for applying Theorem 6.2. Invariance of the unstable and
stable cone fields Cu

z , Cs
z was the subject of section 6.3.2, satisfying (H1.1). Condition (H1.2)

follows by taking Λ =
√
85/41, with this lower bound attained by considering the expansion

of M−1
2 over the cone boundary of Cs

2 with gradient −8/10. Noting Remark 6.1, we next show
(H1.3’). The cone fields are continuous over the components σj of Ω\S0, indeed they are constant.
Noting that all of the stable cones lie within Cs

1 and all of the unstable cones lie in C, a positive
angle between stable and unstable cone fields follows from Cs

1 ∩ C = ∅. (H2) was the subject of
section 6.3.3. Unstable manifolds provide a class of Hσ invariant unstable curves which satisfy
the regularity conditions listed in Chernov and Zhang (2009). Piecewise linearity of the map
trivially implies their bounded curvature and bounds on distortion; absolute continuity follows
from Lemma 6.1. (H4) follows from Proposition 6.1, where we showed that Hσ is Bernoulli with
respect to the normalised Lebesgue measure on σ. Noting Remark 6.1, (H5) follows for the map
H2

σ by Propositions 6.2, 6.3, C.1.

We follow the approach outlined in Chernov and Zhang (2008) to infer the polynomial mixing
rate of H from the exponential mixing rate of Hσ. For reference, their M and M ⊂ M are our T2

and σ ⊂ T2, their F : M → M and F :M →M are our H and Hσ respectively. With ∆0 above,
define

An = {z ∈ T2 |R(z,H,∆0 > n)}.

We will show

Proposition 6.4. µ(An) = O(n−1).

Theorem 6.4 then follows from the work of Young (1999). Proving Proposition 6.4 involves
treating separately a set of infrequently returning points. For each z ∈ T2 and n ≥ 1 define

r(z;n, σ) = #{1 ≤ i ≤ n |Hi(z) ∈ σ},

counting the number of times the orbit of z hits σ over n iterates of H. Define

Bn,b = {z ∈ T2 | r(z;n, σ) > b lnn}

where b is a constant to be chosen shortly.

Lemma 6.7. µ(An ∩Bn,b) = O(n−1).

Proof. This follows from (6.16), choosing b large enough so that n θb lnn < n−1. See Chernov and
Zhang (2008), or Springham and Sturman (2014) for a detailed proof.

Proposition 6.4 then follows from similarly establishing

Lemma 6.8. µ(An \Bn,b) = O(n−1).
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Analysis of the set An \Bn,b is the focus of Chernov and Zhang (2008). It consists, for large n,
of points which take many iterates to hit ∆0 and hit σ infrequently during these iterates. Chernov
and Zhang define m-cells

Mm = {z ∈ σ |R(z;H,σ) = m+ 1}

for m ≥ 0. For the OTM the coloured regions of Figure 5.8(a) form M0 and for m > 0 each set
Mm is the union ∪i,jA

m
i,j . For these latter sets, the authors assume that their measures decrease

polynomially
µ(Mm) ≤ C1/m

r, (6.17)

where r ≥ 3. Further they assume that if z ∈Mm then F (z) ∈Mk with

β−1m− C2 ≤ k ≤ βm+ C3 (6.18)

for some β > 1 and unimportant constants Ci > 0. It is straightforward to verify that (6.17)
holds for r = 3: each Am

i,j has length similar to |Lm| = O(m−1), see (6.5) and width similar to
|Wm| = O(m−2), see (6.13). Recalling the bounds l0 and l1 found in the proof of Proposition 6.3,
we see that for our map Hσ, condition (6.18) holds with β = 7. In §4 of Chernov and Zhang (2008)
the authors describe an ‘ideal situation’ under which the action of F on the cells Mm is equivalent
to a discrete Markov chain. This requires:

(I1) The components of each Mm and their images under F are exact trapezoids which shrink
homotetically as m grows,

(I2) The measure µ has constant density,

(I3) F is linear over each component,

(I4) Condition (6.18) holds with C2 = C3 = 0 (no irregular intersections).

These conditions, together with:

µ(F (Mm) ∩Mk)

µ(F (Mm))
= C4

m

k2
+O

(
1

m2

)
(6.19)

for some C4 > 0 and k satisfying (6.18), are sufficient to establish the lemma. The authors show
that their cells admit good linear approximations and the irregular intersections are of relative
measure O(1/k) so that (I1) and (I4) are essentially satisfied, removing some portion of negligible
measure from each cell. They then go on to estimate the effect of nonlinearity and nonuniform
density of µ to address (I2) and (I3), requiring a more sophisticated approach. For our system (I2)
and (I3) are already satisfied byHσ, so it remains to verify (6.19) forHσ, show that our Ak

i,j are well
approximated by exact trapezoids, and calculate the relative measure of the irregular intersections.
For (6.19), areas of the regular intersections can be calculated using the shoelace formula on the
corner coordinates pk,l, pk,l, given explicitly in the appendix, section C.1 and Proposition C.1.
Our cells are near exact trapezoids, unlike the billiards systems considered in Chernov and Zhang
(2008) whose cell sides are curvilinear, our cell boundaries are linear with the sides (e.g. Lm,
Lm−1) near parallel for large m. For the irregular intersections, (6.19) still gives an upper bound
on their measure and there are some constant C2 +C3 of them. The total number of intersections
scales with m by (6.18) so they have negligible measure compared to µ(Hσ(Mm)).
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6.4 Summary

Akin to Cerbelli and Giona’s map, where precise mapping behaviour gave rise to its atypical‡

pseudo-Anosov dynamics, precise mapping behaviour of the OTM on the segments lj gives rise
to more atypical behaviour, global mixing but at a reduced rate. This is in contrast to the
exponential mixing rate proven in E and expected across P ′ (maps over this parameter set are
uniformly hyperbolic with singularities). One could argue that since the dynamics are entirely
contingent on this behaviour, not preserved under small perturbations, it has minimal relevance to
applications. We argue, however, that the OTM serves as a simple model for two key phenomena
in laminar mixing.

The first of these is the ‘stirrers’ analogy mentioned in section 5.3.1. Defining our map as
the change after each stir, i.e. one cycle of the stirrers’ periodic protocol, the space the stirrers
occupy forms a natural invariant set. Imposing no-slip boundaries on the stirrers influences the
neighbouring fluid bulk, spawning trajectories which ‘stick’ to them for arbitrarily many stirs.
The way in which orbits under the OTM escape the partition elements A2, A3 containing the lj
mirrors this sticking behaviour. While linked twist maps (like the non-monotonic example studied
in section 5.2) provide a paradigm for mixing in the presence of a static boundary, the OTM
perhaps addresses the situation of moving boundaries (i.e. stirrers). Realistic mixing devices may
exhibit both phenomena, stretching and folding using interspersed stirrers, with slowed mixing
near the vessel walls. Constructing an ASM which captures both of these is not trivial. By the
analysis of section 5.1, introducing a boundary means we must vary the non-monotonic shears (e.g.
their strength) to maintain parabolic Jacobians, but this has to be balanced against preserving the
precise periodic structure of the lj .

Its second use is as a rough description of non-ergodic ASMs restricted to their chaotic sea.
Like the OTM, the tail end of their correlation decay is determined by escapes from non-hyperbolic
regions, with points arbitrarily close to island boundaries experiencing non-hyperbolic behaviour
for arbitrarily many iterates. Recalling Figure 2.4, showing mixing dynamics of a non-ergodic
counter-rotating LTM, accumulating behaviour onto the outer invariant ellipses (equivalently the
boundary of the chaotic region) is observed, analogous to the accumulation onto lj for the OTM.
For comparison, see the similar visualisation for the OTM given later in Figure 7.5(a). Elliptic
island and ghost boundaries, then, influence the surrounding chaotic dynamics in a similar fashion,
trapping nearby orbits for long time periods and thus slowing mixing to a polynomial rate. The
OTM then forms a watershed between global mixing at an exponential rate (e.g. across P ′) and
polynomial mixing alongside islands, the zero measure of the ghost boundaries permitting global
mixing at these precise parameters.

The analysis presented in this chapter is restricted to asymptotic mixing rates inherent to the
ergodic theory approach. Naturally, realistic mixing devices are not run for infinite time, rather
just until some mixing threshold has been met, i.e. sufficiently thin striation widths for diffusion
to dominate. The asymptotic description is appropriate when the tail end of the distribution is
representative of the whole, see e.g. the estimated correlation decay of the OTM (Figure 5.14).
In other systems, like those with perhaps long but bounded return times to a hyperbolic region,
the (presumably exponential) tail end may be less relevant. A future extension to this work could
include relating the rate of escapes from non-hyperbolic regions to the finite time decay rates
of correlations. Depending on the specifics of the systems and the threshold for mixing, it may
be preferable to optimise for fast polynomial decay over initially slow but eventually exponential
decay.

‡In the context of the wider H(ξ,η) parameter space.
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Chapter 7

Wider Protocols, Summary &
Outlook

7.1 Mixing protocols

7.1.1 Introduction

Recall the system of two orthogonal non-monotonic shears H = H(ξ,η) from section 4.3. Repeated
application of H amounts to alternating between the two shears F and G, where F maps

(x, y) 7→

(x+ f1(y, η), y) mod 1 for y ≤ 1− η,

(x+ f2(y, η), y) mod 1 for y ≥ 1− η,

and G maps

(x, y) 7→

(x, y + f1(x, ξ)) mod 1 for x ≤ 1− ξ,

(x, y + f2(x, ξ)) mod 1 for x ≥ 1− ξ,

where f1(t, α) = t/(1− α) and f2(t, α) = (1− t)/α.
This is an example of a periodic protocol, which we define as any map of the form HP =

Glp ◦ F kp ◦ · · · ◦ Gl1 ◦ F k1 , represented as the 2p-tuple P = (k1, l1, . . . , kp, lp), where p and each
entry ki, li are in N. Using this notation, H is the periodic protocol with P = (1, 1). We remark
that by periodicity we can rearrange protocols such as F ◦ G3 ◦ F to G3 ◦ F 2 i.e. P = (2, 3), so
any periodic binary sequence in F and G∗ can be represented by some 2p-tuple P .

The aim of this section is to test the mixing efficiency of various protocols. To do this we will
compare Lyapunov exponents normalised by the energy required to complete a protocol. Noting
that for any 0 < α < 1 ∫ 1−α

0

f1(t, α) dt+

∫ 1

1−α

f2(t, α) dt =
1

2
,

an appropriate measure of energy expenditure for a periodic protocol P = (k1, l1, . . . , kp, lp) is
E(P ) = 1

2

∑p
i=1 ki + li. The original protocol then satisfies E((1, 1)) = 1.

The metric we have chosen to test mixing efficiency essentially follows that of D’Alessandro et al.
(1999), where a similar analysis was performed for the Sawtooth Maps studied in section 2.2. In
that setting the Jacobian DHP is constant a.e. and therefore the variation in protocol performance
is entirely determined by its trace. For our map H(ξ,η) the analysis is less straightforward, owing
to the wider variety of possible cocycles over z ∈ T2. To make the data visualisation easier, we
will restrict to the one dimensional parameter space ξ = η with 0 < η < η3 ≈ 0.2389. The latter

∗Other than all F or all G, which results in a fully integrable, non-mixing system.
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restriction ensures that we can derive rigorous bounds on Lyapunov exponents, in particular it
ensures that all systems resulting from periodic protocols P are ergodic. We will cover this in the
following section.

7.1.2 Ergodic properties

In this section we will show the following:

Theorem 7.1. Let P = (k1, l1, . . . , kp, lp) be a 2p-tuple with values in N. Then for parameter
values ξ = η, 0 < η < η3, the map HP = Glp ◦ F kp ◦ · · · ◦Gl1 ◦ F k1 is ergodic, mixing with respect
to the Lebesgue measure.

The proof is largely adapted from that of the (1,1) protocol. We will use the Katok and Strelcyn
(1986) scheme, and give a brief account of the alterations that are necessary.

Proof. Starting with hyperbolicity, it is sufficient to show that given P and η there exists a cone C
such that DHP C ⊂ C (invariance) and ∥DHP v∥/∥v∥ > 1 for all v ∈ C (expansion). For simplicity
we will use the ∥·∥∞ norm and the original cone C, bounded by the unit vectors v2 = (η/(η−1), 1)T

and v3 = (1, 1)T .
Let Hi = Gli ◦ F ki . Clearly if for each 1 ≤ i ≤ p the cone C is invariant and expanding

under DHi, the same holds for DHP . Parameterise the torus by (x, y)mod 1, and split it into four
rectangles Rj such that 0 < x < 1− η in R1 and R3, 1− η < x < 1 in R2 and R4, 0 < y < 1− η in
R1 and R2, 1− η < y < 1 in R3 and R4. To simplify the notation drop the subscripts from ki, li
then DHi is constant on each of the four Aj,k = F−k(Rj). Write its restriction to Aj,k as Mj,k,l,
each of which are hyperbolic for all k, l ∈ N and therefore admit stable and unstable eigenvectors.
One can verify that for each k, l ∈ N the unstable vectors all lie in C and the stable vectors all lie
outside of C, so that the cone is invariant under each of the matrices Mj,k,l. It follows that each of
these matrices see their minimum expansion Kj,k,l over the cone boundaries v2 and v3:

Kj,k,l = inf
v∈C

∥Mj,k,l v∥
∥v∥

= min{∥Mj,k,l v2∥, ∥Mj,k,l v3∥}.

For each j the expansions of v2 and v3 under Mj,k,l are straightforward to calculate and can be
shown to be monotonic increasing in k and l. Hence for each j we have

∥Mj,k,l v2∥ ≥ ∥Mj,1,1 v2∥ and ∥Mj,k,l v3∥ ≥ ∥Mj,1,1 v3∥, (7.1)

so that cone expansion of each DHi follows from cone expansion of DHP with the original protocol
(1,1).

Moving onto establishing (MR), non-zero Lyapunov exponents a.e. implies the existence of
local stable and unstable manifolds γs(z), γu(z) at a.e. point z ∈ T2. Decompose HP as HP =

Hp◦· · ·◦H1, then rather than establishing the growth lemma for HP , we show it for each of the Hi.
In forwards time, the inequalities (7.1) together with the explicit calculation for the (1,1) protocol
establish

min


4∑

j=1

1

∥Mj,k,l v2∥
,

4∑
j=1

1

∥Mj,k,l v3∥

 < 1 (7.2)

for all k, l ∈ N. In backwards time we remark that the cone C′ bounded by the unit vectors
u2 = (1,−1)T and u3 = (1, η/(1 − η))T is invariant and expanding under DH−1

P . Letting s :

{1, 2, 3, 4} 7→ {1, 3, 2, 4}, one can show that for each j

∥M−1
j,k,lu2∥ = ∥Ms(j),l,kv3∥ and ∥M−1

j,k,lu3∥ = ∥Ms(j),l,kv2∥
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so that the inequality which underpins the growth lemma in backwards time,

min


4∑

j=1

1

∥M−1
j,k,l u2∥

,

4∑
j=1

1

∥M−1
j,k,l u3∥

 < 1, (7.3)

also follows from (7.1).
By an analogous argument to that given for the (1,1) protocol, for a.e. z ∈ T2 there ex-

ists some finite r1 = m1p + i such that (Hi ◦ · · · ◦H1 ◦Hm1

P ) (γu(z)) has non-simple intersection
with Aj,k′ , for some j, where k′ = ki+1 with the subscript calculated modulo p. The case (j)
analysis and the geometric bound xv(η) ≤ q1(η) still hold when mapping under Hi, so that
(MR) follows when mapping under each Hi. That is, there exists finite r2 = m2p + i′ such
that (Hi′ ◦ · · · ◦H1 ◦Hm2

P ) (γu(z)) contains a v-segment and so too do its forward images under
Hi′+1, Hi′+2, . . . It follows that Hm

P (γu(z)) contains a v-segment for all m ≥ m2+1. The argument
for backwards time mapping into h-segments is entirely analogous.

By the Katok and Strelcyn scheme, the system defined by the map protocol map HP is
Bernoulli, hence strong mixing and ergodic by the ergodic hierarchy. We will now use ergodic-
ity to establish rigorous bounds on their normalised Lyapunov exponents.

7.1.3 Bounds on Lyapunov exponents

A basic corollary of Birkhoff’s ergodic theorem, see (1.1) in Proposition 1.1, is that for an ergodic
(w.r.t µ) map f : X → X, the proportion of time any typical orbit spends in a set A is given by
µ(A)/µ(X). Suppose that f : T2 → T2 is piecewise linear, with a partition {Aj}j∈J such that each
matrix Mj , given by Df restricted to Aj , is constant. Then for a.e. z ∈ T2, out of the n matrices
which multiply to give the cocycle Dfnz , the proportion of these that are Mj will approach µ(Aj)

in the limit n→ ∞. Note that this does not allow for a direct calculation of Lyapunov exponents,

χ(z, v) = lim
n→∞

1

n
log ∥Dfnz v∥ ,

since matrix multiplication is generally non-commutative. We can, however, leverage this limiting
behaviour to derive upper and lower bounds on χ(z, v) whenever we have an invariant cone C. For
an orbit zk = fk(z), define the sequence (jk) with elements in J by jk = j s.t. zk ∈ Aj . For unit
vectors v0 ∈ C we can write

∥Dfnz v0∥ =

n∏
k=1

∥∥Dfkz v0∥∥∥∥Dfk−1
z v0

∥∥
=

n∏
k=1

∥∥Mjk−1
vk−1

∥∥
∥vk−1∥

where vk := Dfkz v. By cone invariance, the vectors vk lie in C so that we can bound each factor by∥∥Mjk−1
vk−1

∥∥
∥vk−1∥

≥ inf
v∈C

∥∥Mjk−1
v
∥∥

∥v∥
=: Kjk−1

. (7.4)
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Now since log(·) is monotone increasing we have

log ∥Dfnz v0∥ ≥ log

(
n∏

k=1

Kjk−1

)

=

n∑
k=1

logKjk−1

so that

χ(z, v) ≥ lim
n→∞

1

n

n∑
k=1

logKjk−1
.

Out of the n terms in the above summation, the proportion of these with subscript j will approach
µ(Aj) in the limit n→ ∞. Hence

χ(z, v) ≥
∑
j∈J

µ(Aj) logKj . (7.5)

for a.e. z ∈ T2. We remark that by Theorem 1.1, this bound holds for generic v ̸= 0, not necessarily
in C, barring vectors parallel to the local stable manifold γs(z).

Upper bounds of the form
χ(z, v) ≤

∑
j∈J

µ(Aj) logLj (7.6)

can be derived by the same argument, where Lj = supv∈C ∥Mjv∥/∥v∥. The inequalities (7.5)
and (7.6) give a variety of bounds for the Lyapunov exponent as Kj , Lj depend on the choice of
invariant cone and norm. For the sharpest bounds one should always take the smallest invariant
cone possible, but the choice of norm is less clear cut.

7.1.4 Analysis of E = 3 protocols

Consider protocols P of energy E = 3. Omitting protocols which are equivalent to others by
periodicity, e.g. (1, 2, 2, 1) and (2, 1, 1, 2), there are 12 in total. They fall into the categories of
completing one ‘stir’:

(1, 5) (2, 4) (3, 3) (4, 2) (5, 1)

two stirs:
(1, 1, 1, 3) (1, 1, 2, 2) (1, 1, 3, 1) (1, 2, 1, 2) (2, 1, 2, 1) (1, 2, 2, 1)

or three stirs:
(1, 1, 1, 1, 1, 1)

within the E = 3 energy budget. All of these protocols P can be expressed in the form P =

(k1, l1, k2, l2). Protocols such as (1, 1, 1, 3) are already in this form, others such as (1, 5) can be
doubled up to give (1, 5, 1, 5) with the change in the energy normalising factor noted†. Writing
each protocol in this consistent fashion will allow us to estimate Lyapunov exponents using a single
algorithm and normalise as necessary for comparison at the end. Since by periodicity (k1, l1, k2, l2)

is equivalent to (k2, l2, k1, l1), we can always flip the order of the pairs so that l2 ≥ l1 and, in the
case l2 = l1, k2 ≥ k1. Fix a protocol P and write Hi = Gli ◦ F ki so that HP = H2 ◦H1. As in the
proof of Theorem 7.1 the Jacobian DH1 of H1 is constant over each Aj,k1 and is given by Mj,k1,l1 .
These four matrices form an invariant cone C(k1, l1) which, for k2, l2 satisfying the inequalities
above, also serves as an invariant cone for DH2 as C(k2, l2) ⊂ C(k1, l1). By extension, C(k1, l1) is
an invariant cone for the entire protocol HP . Its Jacobian takes one of 42 = 16 values, with DHP

†Similarly we contract (1, 1, 1, 1, 1, 1) to (1, 1, 1, 1) and note the energy change.
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at z equal to Mj′,k2,l2Mj,k1,l1 if z ∈ Aj,k1 and (Gl1 ◦ F k1)(z) ∈ Aj′,k2 .
To estimate Lyapunov exponents, we require the weights

µ ({z |DHP =Mj′,k2,l2Mj,k1,l1}) = µ
(
Aj,k1 ∩ (Gl1 ◦ F k1)−1(Aj′,k2)

)
= µ

(
F k1(Aj,k1

) ∩G−l1(Aj′,k2
)
)

= µ
(
Rj ∩G−l1(Aj′,k2

)
)

= µ
(
Gl1(Rj) ∩ (Aj′,k2

)
)

= µ
(
(F k2 ◦Gl1)(Rj) ∩Rj′

)
,

(7.7)

where we have used the area preserving properties of shears F k1 , Gl1 , F k2 and the definitions Aj,k =

F−k(Rj). This clarifies that µ ({z |DHP =Mj′,k2,l2Mj,k1,l1}) is independent of k1, l2 and can be
calculated by studying the transitions between the rectangles Rj under F k2 ◦Gl1 . Straightforward
(yet lengthy) calculations yield a transition matrix

T =



− (η−1)4(−kl+2η−1)
kl+η2−2η+1

η(η−1)3(−kl+η−1)
kl+η2−2η+1

η(η−1)3(−kl+η)
kl+η2−η

klη2(η−1)2

kl+η2−η

η(η−1)3(−kl+η)
kl+η2−η

klη2(η−1)2

kl+η2−η
klη2(η−1)2

kl+η2 −η3(η−1)(kl+η)
kl+η2

η(η−1)3(−kl+η−1)
kl+η2−2η+1

klη2(η−1)2

kl+η2−2η+1
klη2(η−1)2

kl+η2−η −η3(η−1)(kl+η−1)
kl+η2−η

klη2(η−1)2

kl+η2−η −η3(η−1)(kl+η−1)
kl+η2−η −η3(η−1)(kl+η)

kl+η2

η4(kl+2η−1)
kl+η2


where the quantity (7.7) is given by the entry Tj,j′ on jth row and j′th column. To ease viewing
we have dropped the subscripts k2, l1 → k, l.

Given a protocol map HP , by (7.5), (7.6) its positive Lyapunov exponent χP satisfies

4∑
j,j′=1

Tj,j′ logKj,j′ ≤ χP ≤
4∑

j,j′=1

Tj,j′ logLj,j′ (7.8)

where Kj,j′ , Lj,j′ denote the minimum, maximum expansion factors of the matrix Mj′,k2,l2Mj,k1,l1

over the invariant cone C(k1, l1). It remains to specify a norm under which these expansion factors
are calculated. Various ∥ · ∥p norms were tested; the p = 1 norm appeared to give the largest lower
bounds and the p = 2 norm appeared to give the smallest upper bounds. Under the p = 1 norm,
minimum expansion factors over C(k1, l1) are attained on one of the cone boundaries, i.e. either
the unstable eigenvector of M2,k1,l1 or M3,k1,l1 . Maximum expansion factors are bounded above
by the operator norm of each matrix M , which under the p = 2 norm is

√
λ where λ is the largest

eigenvalue of the symmetric matrix MTM . The vector giving this maximal expansion often lies in
the invariant cone so this upper bound (on Lj,j′) is optimal. Even if it didn’t, Lj,j′ calculated in
this fashion still provides the upper bound (7.8).

Figure 7.1 shows a comparison of Lyapunov exponents, normalised by energy, for 6 of the 12
protocols listed above. Similarly performing protocols are omitted for ease of viewing, e.g. (5, 1)

and (1, 5). The analytical upper and lower bounds are shaded in the relevant colour. There is a
notable disparity in the tightness of the bounds (7.8). Starting with the original protocol (1, 1),
when η is very small the dynamics are dominated by repeated stretching by the matrix M1. This
pulls tangent vectors very close to its unstable eigenvector and stretches them with expansion
factor roughly equal to λ+, its larger eigenvalue. As a consequence, the p = 2 norm upper bound
provides an excellent approximation as L1,1 is precisely λ+ (the matrix M1 is symmetric). The
p = 1 norm lower bound fares worse, calculating expansion at the boundaries of the very wide
cone C, where vectors are rarely aligned. The (1, 1, 1, 3) protocol is similar, hindered by the same
wide cone C. The p = 1 lower bound more closely mirrors the numerically evaluated χ̂ as the cones
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Figure 7.1: Comparison of normalised Lyapunov exponents χ̂ for a selection of E = 3 protocols
over the ergodic parameter space 0 < η < 1/5. Crosses show numerically estimated χ̂, shaded
region shows analytical upper and lower bounds. Order of protocols in the legend matches that of
the plot.
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become narrower, see e.g. (1, 5).
Comparing the relative performance of each protocol, we see that the protocols which completed

more stirs within the energy budget achieved larger values of χ̂, and this behaviour is consistent
across the entire parameter range. We also note, however, a clear performance gap between proto-
cols such as (3, 3) and (1, 5) which both complete one stir but have allocated their energy budget to
each shear in a balanced and less balanced way respectively. The same is true comparing (1, 2, 1, 2)

and (1, 1, 1, 3). This suggests the following ranking system:

(A) Sort protocols P into groups Pp by number of stirs completed p - more is better.

(B) Within each group, sort the P ∈ Pp by variance - lower is better.

Here we define the variance of each tuple P = (k1, . . . , lp) is in the standard way,

Var(P ) =
1

2p

p∑
i=1

(
ki −

E

p

)2

+

(
li −

E

p

)2

,

noting that the mean strength of each shear in a protocol of energy E is E/p. Ordering the E = 3

protocols of Figure 7.1 based on (A), the primary ranking, then (B), the secondary ranking, gives
a predicted ranking in agreement with the numerically evaluated χ̂ and the analytical bounds. We
now turn to E = 4 protocols to test this ranking algorithm across a broader range of protocols.

7.1.5 Analysis of E = 4 protocols

Combinatorial calculations, similar to those employed for the E = 3 setting, are employed to show
that there are 34 protocols of energy E = 4, unique in the sense that they cannot be rearranged
by periodicity to give one another. For ease of comparison over this larger set of protocols, we
restrict to a single parameter value η = 1/5. Other parameter values were tested and, similar to
the E = 3 study, gave the same rankings under changes in η. Since η = 1/5 lies in the proven
ergodic parameter space, we can still derive analytical upper and lower bounds for the majority of
protocols. The exceptions to this being the protocols which complete three stirs over each periodic
cycle, e.g. (1, 2, 1, 1, 2, 1), which cannot be expressed as a 4-tuple (k1, l1, k2, l2). Extending our
analytical work to these protocols would necessitate a larger 4 × 4 × 4 transition array T , each
element of which would be far more complicated to calculate. Protocols which complete two stirs
are already in the necessary form, protocols which complete one can be doubled up, and finally
the single protocol which completes four stirs (1, 1, 1, 1, 1, 1, 1, 1) can be compressed to (1, 1, 1, 1).

Figure 7.2(a) plots the performance of each of the 34 protocols, organised by (A) into groups Pp

then further subdivided by the secondary ranking (B). The same colour is used when two protocols
have the same predicted ranking, the order within each colour grouping is random. Error bars show
the analytical bounds when they can be calculated, again using the ∥ · ∥1 and ∥ · ∥2 norms. Our
first observation is that maximising the number of stirs within an energy budget still appears
to maximise the normalised Lyapunov exponent. Numerically evaluated χ̂ for the (1, 1) protocol
(dark blue) is clearly larger than that of any other protocol considered. We remark, though, that
this is purely an observation. To prove this, analytical bounds for the (1, 1) protocol would need
to be improved and bounds for the 7 protocols which complete three stirs in the energy budget
would need to be derived. We see similar sharp jumps in χ̂ moving between P2 and P1 but a
less stark change moving between P3 and P2, the (2, 2, 2, 2) protocol performing almost as well as
(3, 1, 1, 1, 1, 1).

We now study the capability of our ranking method to categorise each protocol from the tuple
data alone. Performance is overall good, the consistent negative trend over the rankings of Figure
7.2(a) showing that no protocol has been incorrectly categorised. The method entirely predicts
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P4 P3 P2 P1

(a)

P4 P3 P2 P1

(b)

Figure 7.2: Part (a) shows ranking of all E = 4 protocols into groups Pp by (A), then further ranked
by variance (B). Same colour signifies equivalent ranking, error bars show analytical bounds where
available. Part (b) considers a tertiary ranking (C).
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the variation over protocols in P1, identifying the symmetric protocol (4, 4) as optimum and χ̂

decreasing over the pairs (4±n, 4∓n), n = 1, 2, 3. Protocols in P3 are similarly correctly split into
the two obvious groupings, the two which contain a strength 3 shear and the five which do not.
The suggested groupings for the P2 protocols are reasonable with the best and worst protocols
clearly identified. The performance is somewhat weaker over the mid-ranking protocols (purple
and brown) with notable variation within each grouping. For the purple grouping we observe that
protocols (3, 3, 1, 1) and (3, 1, 1, 3) outperform (3, 1, 3, 1) and (1, 3, 1, 3). The obvious distinction
between these pairs is the balance between horizontal and vertical shears, the former protocols
evenly sharing its shears between the two orthogonal directions. The latter protocols significantly
bias a certain direction and χ̂ suffers as a result, almost to the level of the brown protocols of
greater variance. This suggests a tertiary ranking :

(C) Sort by |
∑
ki − li| - lower is better,

which rewards protocols which maximise ‘balance’ between the orthogonal directions. Figure 7.2(b)
shows all E = 4 protocols, grouped by (A), (B), and then (C). Including this tertiary ranking
appears to capture well the sub-grouping variation observed previously and even suggests subdivi-
sions, e.g. in P3, that were not obvious at first glance but hold true upon closer inspection of the
numerically estimated χ̂. While further rankings levels may provide an even finer classification, with
expected limit being that of pairs (and self pairs) of the form (k1, l1, . . . , kp, lp) ↔ (l1, k1, . . . , lp, kp),
the three level method considered here strikes a good balance between ease of computation and
quality of the final ranking.

7.1.6 Remarks

Our analysis above aligns with the findings of D’Alessandro et al. (1999), but in the non-monotonic
(uniformly hyperbolic) setting. To maximise chaotic mixing over a given energy budget, the best
approach is to alternate between orthogonal shears of similar strength, weak enough to max-
imise the number of stirs completed. Naturally this cannot be taken to an extreme. Taking very
weak shears may produce island structures, detrimental to overall mixing quality, however strong
stretching rates may be in the chaotic sea. In the above we mitigated this possibility be specifying
a minimum shear strength, allowing us to establish mixing properties using the results of section
4.3. To use these results we have also restricted ourselves to a fairly limited parameter space. An
interesting extension to the study would be to take F and G as the symmetric shears of the OTM.
Here the original protocol F,G, F,G, . . . is presumably not the optimal choice. While the shears
are (just) strong enough to achieve global mixing, the weak stretching near the ghost boundaries
gives a reduced χ̂ and polynomial tail on mixing rates (Theorem 6.4). A better choice may be to
alternate between F 2 and G2, see Cheng et al. (2021)‡ for a numerical study of mixing rates in
such systems.

Aperiodic mixing protocols may provide a means to utilise many weak shears and avoid islands,
destroying the symmetries of the flows intrinsically linked to their structure (Franjione et al., 1989;
Franjione and Ottino, 1992). Such random protocols show potential as efficient mixers (Liu et al.,
1994) but equally may give rise to poor mixing and be difficult to implement in an industrial context
(Franjione and Ottino, 1992). Fixing η in the mixing window of H(η,η) and some 0 < p < 1, we
remark that shearing horizontally (applying F ) with probability p and shearing vertically with
probability 1 − p generates an aperiodic mixing protocol with straightforward to prove mixing
statistics. Indeed, with p bounded away from 0 and 1 we may split the protocol into blocks of the
form Gl ◦ F k and employ a similar argument to section 7.1.2.

‡Unpublished at the time of writing.
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×

Elliptic islands

Exp. mixing
⊂

Mixing
⊂

Hyperbolic

P6 Map

CG Map

OTM

Cat Map

Figure 7.3: Plot of proven mixing behaviour over the full 0 ≤ ξ, η ≤ 1 parameter space for H(ξ,η),
i.e. including the limiting maps Hη and its symmetries. Notable maps are highlighted, alongside
an atypical example marked with ×.

7.2 Summary & outlook

We conclude this chapter with a summary of our findings and some natural avenues for further
analysis. We begin with the effect of non-monotonicity in the piecewise linear systems analysed.
The spread of gradients inherent to non-monotonic shears necessarily realigns tangent vectors and,
by extension, curves defining the interface between two mixing fluids. This can be detrimental to
mixing, allowing stretching under one stir to be subsequently undone, opening up the potential
for persistent regions of non-stretching behaviour. We made this idea precise in Proposition 3.1,
showing that ellipticity over a periodic orbit precludes global mixing. Sometimes, however, vector
realignment is strong enough to map relevant vectors v close to their antipodes −v. By linearity,
stretching can then continue as normal. Cerbelli and Giona’s map can be thought of as the most
extreme example of this, where where passing through the non-hyperbolic upper plane gives an
exact sign change v → −v. We showed, see Chapters 3 and 4, that such precise realignment
is not necessary, existence of an invariant cone suffices to establish global stretching behaviour
(Proposition 3.4). This orientation reversing behaviour did complicate establishing mixing results,
however. The ‘doubling back’ effect in the images of local manifolds forced us to discard portions of
the image and focus on the growth of a single line segment, leading to suboptimal mixing windows.

Recalling our research questions at the end of section 2.2, we are ready to answer (Q1). The
mixing property can indeed persist under certain perturbations to the CG Map, see Theorems 4.1
and 4.2, despite loss of the pseudo-Anosov property. The same is not true for all perturbations,
though, with the CG map sitting at the very edge of the hyperbolicity window for Hη. Taking
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Figure 7.4: Three trajectories, one chaotic (black) and two elliptic (red, blue) for the map H(ξ,η)

at ξ = 0.286, η = 1/2. Zoomed image shows a closeup on the ‘island’ centred at a period two point
on the singularity set.

any η > 1/2 births island structures around a period two orbit§ which grow to envelop the entire
domain as η → 1. This limiting map, essentially a counter-rotating Cat Map defined by the single
matrix

M =

(
1 0

1 1

)(
1 −1

0 1

)
=

(
1 −1

1 0

)
,

is entirely periodic with period 6.
Including a second non-monotonic shear parameterised by ξ > 0 gives a further way of perturb-

ing the CG Map. Numerical results (see Figure 4.17) suggest that mixing behaviour persists under
small such perturbations (small ξ with η < 1/2). Too large a perturbation, however, may give the
right conditions for islands to form, hitting e.g. the parameter sets I2 and I3 of Proposition 4.9,
also sketched in Figure 7.3. Keeping η = 1/2 fixed and varying ξ (exploring the parameter space
between the CG Map and the OTM) may similarly produce island structures, but whose internal
dynamics differ substantially from the situation examined in Proposition 3.1. Here, the period 2
orbit which seeds the pair of islands,

z1 =

(
1− ξ

2
,
1

2

)
↔ z2 =

(
1− ξ

2
, 0

)
,

lies on the singularity set D marking the boundary between the partition elements A1 and A3.
Consequently, there no longer exists a neighbourhood about each point obeying the same itinerary
(the cocycle is not even well defined on the periodic orbit). Orbits within these islands, if they
form, no longer trace out concentric ellipses. Figure 7.4 plots such an example at ξ = 0.286,
marked with a × on Figure 7.3. Three orbits are plotted, two elliptic in nature and one hyperbolic,
the latter filling in the chaotic sea enclosing the island pair. The red and blue orbits trace out
pairs of similar closed curves about the zi, the radial distance to these points governed by the
orbit’s cocycle, a binary sequence between the matrices M1 and M3. Numerically observed to be
aperiodic, why this cocycle gives rise to such wildly oscillatory behaviour requires a more detailed
analysis, beyond the scope of this thesis.

Moving onto more typical behaviour (that exists beyond atypical parameter sets of negligible
measure) we address (Q2). Global mixing can indeed be achieved by composing orthogonal non-

§In particular the same orbit given in the proof of Proposition 4.9, taking ξ = 0.
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monotonic shears, proven in a wide neighbourhood of the Cat Map (Theorem 4.3, sketched in
Figure 7.3) and observed numerically beyond (Figure 4.17). For certain parameters (ξ, η) however,
formation of elliptic islands precludes ergodicity. Indeed this situation occurs at most parameters,
the set I1 (see Proposition 4.9) and its reflections alone covering half the parameter space 0 <

ξ, η < 1. Considering the wider parameter space 0 ≤ ξ, η ≤ 1, we observe unique dynamics for H
whenever its Jacobians are integer valued. From the uniformly hyperbolic Cat Map to the entirely
periodic ‘P6 Map’ and the pseudo-Anosov CG Map half way in between, a rich variety of dynamics
is possible from such a simply defined family of maps. A new example to add to this list is the
OTM whose ghost boundaries permit only non-uniform hyperbolicity and necessitate a far more
involved approach to proving mixing statistics. We arrive at an interesting, perhaps unexpected
conclusion to (Q3). Despite not imposing physical boundaries, a polynomial mixing rate may
still emerge, in contrast to the exponential mixing rate proven elsewhere and observed across the
hyperbolic parameter space (see Figure 7.3) of which the OTM lies at the cusp.

Whether the boundaries are imposed or arise as periodic structures, the reduced rate of mixing
in LTMs and the OTM follow from the same fundamental dynamical feature: parabolic¶ invariant
sets near which hyperbolic orbits are trapped for arbitrarily long periods. For ergodicity to hold,
these sets necessarily have measure 0. In the piecewise linear setting we have considered, they are
line segments of positive length. For general nonlinear maps, a single parabolic point can influence
its neighbourhood and slow the mixing to a polynomial rate, the Katok Map (Katok, 1979) being
a canonical example.

Another example, with a more straightforward definition and clearer relevance to laminar mix-
ing applications, comes from taking horizontal and vertical twists f(y) = 4y(1 − y) and g = f .
A sketch was given earlier in Table 3.1. Composing two parabolic shape shears, modelling the
Poiseuille flow profile of Figure 1.1(a), we refer to this map as the parabolic shears map (PSM)
and denote it by H. It can be thought of as a smoothed version of the OTM, much closer to
the eggbeater type systems considered in section 2.1. While the peak of the shear is smoothed:
f ′(1/2) = 0, each shear still possesses singularities over the no-slip boundaries. As such H fits
the definition of a ‘smooth map with singularities’ in the sense of section 1.5. The fixed points of
H match those of the OTM, namely (0, 0), (0, 1/2), (1/2, 0), and p = (1/2, 1/2). The behaviour
of H near p is crucial to its mixing dynamics. A simple calculation yields DHp = Id so H has a
parabolic fixed point at the centre of the domain.

The substantial influence of p on its surroundings is illustrated in Figure 7.5, comparing the
effect of the OTM and PSM on two initially segregated regions. In (b), while certain regions
exhibit stronger stretching behaviour, the shear gradients are twice as strong as one approaches the
singularity lines and ghost boundaries are absent, the slow stretching behaviour near p adversely
affects the overall mixing quality. Although no neighbourhood around p appears to form an
invariant set, any finite time measure of mixing captures a sort of transient or parabolic island.
The plots of finite time Lyapunov exponents in Figure 7.6 provide a clearer picture of its evolving
boundary, demarcating a shrinking region of poor stretching (near zero χn) against a convergent
backdrop. Its measure appears to decay to zero, the expected limit being the local manifold
terminating on p. We can estimate this decay numerically, fixing some low threshold c = 1/10

and approximating µ({z |χn(z) < c}) for increasing n. Figure 7.7 plots this approximation, the
roughly linear decay under log-log scaling suggesting a polynomial law for the shrinking island.

It also provides a rough approximation for the distribution of escape times away from p. If
such escapes are followed by strong stretching (as the numerics suggest) then we arrive at a similar
situation to the OTM, where return times to some region of ‘good hyperbolicity’ can be inferred
from escape times and a similar distribution holds. By the work of Young (1999), polynomial decay

¶Equivalently ‘neutral’ in the language of section 2.2. For our purposes characterised by a Jacobian with trace
equal to 2.
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(a)

(b)

Figure 7.5: Comparison of mixing dynamics between (a) the OTM and (b) the PSM on two initially
segregated regions coloured red and blue.

Figure 7.6: Convergence of FTLEs χn(z) for the PSM, iterates shown: n = 22, . . . , 27. Lighter
colour corresponds to higher values of χn(z).
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Figure 7.7: Shrinking of the region exhibiting low FTLEs. Noting the log-log scaling, the decay
appears polynomial in nature.

Figure 7.8: Tail end of the (estimated) autocorrelations |Cn| for the PSM, same observable as
Figure 5.14. Log-log scaling suggests a polynomial law.
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of correlations would presumably follow. Figure 7.8 supports this hypothesis, showing estimated
decay of the autocorrelation function |Cn| for the observable φ(x, y) = 5 sin(4πx) − 7 sin(6πy).
Proving such statements about the PSM (or even plain hyperbolicity) is certainly more challenging
than the piecewise linear examples we have considered. The smooth non-monotonic nature of the
dynamics near the point p necessarily dilate cone fields and its non-linear nature aggravates analysis
of escape and return times.

We conclude with the observation that in every ASM we have considered, ergodicity and hyper-
bolicity appear to go hand in hand. While our proven mixing windows do not extend right across
those of hyperbolicity, this is an artefact of our method (see the discussion of section 4.4) and
does not signify absence of the property. A natural question is whether it is possible to construct
an ASM with non-vanishing Lyapunov exponents a.e. but whose ergodic partition cannot be re-
duced to a full measure component. Else, is hyperbolicity of an aperiodic point incompatible with
confinement to an invariant set of positive, non-full measure? Other types of hyperbolic systems
admit such counterexamples, see e.g. the billiards example given in Wojtkowski (1986). Does the
restricted structure of ASMs, specifically continuous ASMs, permit such counterexamples?
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Appendix A

Bounds from the proof of Lemma 4.6

A.1 Establishing the lower bound B1(ε)

Following the argument presented in Myers Hill et al. (2022b), in this section we derive a lower
bound

ℓh
(
Γ4
)

ℓh (Γ4) + ℓh (Γ5)
> B1(ε)

on the proportions of a piecewise linear curve Γp−1, constrained by the invariant cone, in the
regions A4 and A5. We do this by maximising ℓh

(
Γ5
)

and minimising ℓh
(
Γ4
)
, i.e we assume that

Γp−1 takes the longest possible path (in diameter) across A5, and the shortest possible path across
A4. These are straight line segments, each aligned with one of the cone boundaries. Write the
gradient of segments across A4 and A5 as k4 and k5 respectively. We now have to choose where
on the L1 (boundary between A4 and A5) Γp−1 intersects so that the proportion in A4 is minimal.
The lines where each segment terminates are shown in Figure A.1(a). Note that L2 is the line
y = k2x, and L3 is the line y = x −

(
1
2 − ε

)
. The diameter of the A4 segment passing through

(x1, y1) ∈ L1 is given by

ℓh
(
Γ4
)
= x1 −

y1 − k4x1
k2 − k4

(A.1)

and the diameter of the A5 segment passing through (x1, y1) ∈ L1 is given by

ℓh
(
Γ5
)
=
y1 +

(
1
2 − ε

)
− k5x1

1− k5
− x1, (A.2)

valid for (x1, y1) ∈ L1 above a certain threshold. This is the point Q3, defined as the intersection
of L1 with the line y = k5

(
x− 1

2 + ε
)
, the lowest point on L1 such that the segment in A5 still

intersects L3 ∩ A. We claim that Q3 is the point where the proportion (4.10) is minimal. To see
this, note that as we move along L1 from Q2 to Q3, both diameters grow linearly. Parameterise
the path as Q2(1 − z) + Q3z for z ∈ [0, 1]. Now, at each ε, ℓh

(
Γ4
)
(z) grows like m4z + c4 for

some m4 > 0, and c4 > 0 the diameter of the segment in A4 passing through Q2. Next, ℓh
(
Γ5
)
(z)

grows like m5z for some m5 > 0 since it grows from 0. Now

ℓh
(
Γ4
)

ℓh (Γ4) + ℓh (Γ5)
(z) = 1−

ℓh
(
Γ5
)

ℓh (Γ4) + ℓh (Γ5)
(z)

= 1− m5z

m4z + c4 +m5z

= 1− 1
c4

m5z
+ m4

m5
+ 1
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Q2

Q1

L2

L3

L1

(a)

Q3

Q′
3

S4

S′
5

S5

S′
4

L2

L3

L1

(b)

Figure A.1: A close-up on the lower portion of A2, ε = 0.05. Part (a) shows the lines which bound
the regions A4 and A5. Part (b) shows the curve (thickest line) across A2 which minimises (4.10),
crossing L1 at Q3. Also shown is the segments S4 which provides a lower bound for its diameter in
A4. Segments S′

4 and S′
5 are defined to give further bound on (4.10) with minimal ε dependence.
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which is minimal at z = 1, so (4.10) is minimal at Q3. We will now derive a lower bound on (4.10)
which has weaker ε dependence.

Figure A.1(b) shows the path through Q3 in bold. Its gradient in A5 is given by k5(ε), aligned
with the unstable eigenvector of M2. Its gradient in A4 is given by k4(ε), aligned with the unstable
eigenvector of M3. Writing the segment in A5 as S5, note that

ℓh
(
Γ4
)

ℓh (Γ4) + ℓh (Γ5)
≥ ℓh(S4)

ℓh(S4) + ℓh(S5)

where S4 is the segment in A4 connecting Q3 with L2, with gradient aligned with the steepest
possible k4(ε) over the parameter range, k−4 = infε k4(ε2) ≈ −0.6688∗. We have equality at ε = ε2.

Now define S′
5 as we did S5, but aligned with the least steep gradient in the parameter range,

k+5 = supε k5(ε) = k5(ε0) ≈ −0.08750. Write its point of intersection with L1 as Q′
3. Note that

Q3 = Q′
3 when ε = ε0. Define S′

4 as having the same gradient as S4, but passing through Q′
3.

We claim that
ℓh(S4)

ℓh(S4) + ℓh(S5)
≥ ℓh(S

′
4)

ℓh(S′
4) + ℓh(S′

5)
(A.3)

with equality at ε = ε0. Barring this case, note that the inequality is not immediate as both
ℓh(S

′
4) > ℓh(S4) and ℓh(S′

5) > ℓh(S5). Assume the non-trivial case ε > ε0 and rewrite (A.3) as

1

1 + ℓh(S5)
ℓh(S4)

>
1

1 +
ℓh(S′

5)
ℓh(S′

4)

,

which is equivalent to
ℓh(S5)

ℓh(S4)
<
ℓh(S

′
5)

ℓh(S′
4)
. (A.4)

Define the diameter differences ∆i = ℓh(S
′
i)− ℓh(Si) and write Q3 as (x1, y1), Q′

3 as (x′1, y
′
1), and

Q1 as (x0, 0). Then ∆5 = x1 − x′1. We can solve the line intersection equations to show that

ℓh(S4) = x1 −
y1 − k−4 x1
k2 − k4

=
k2x1 − y1

k2 − k−4

(A.5)

so that

∆4 = x1 −
k2x

′
1 − y′1 − k2x1 + y1

k2 − k−4

=
k2(x

′
1 − x1) + k1(x1 − x′1)

k2 − k−4

=
k1 − k2

k2 − k−4
∆5.

(A.6)

We can rewrite (A.4) as
ℓh(S

′
5)−∆5

ℓh(S′
4)−∆4

<
ℓh(S

′
5)

ℓh(S′
4)
,

which rearranges to
∆4

∆5
<
ℓh(S

′
4)

ℓh(S′
5)
.

∗The minus sign in k−4 refers to it being the clockwise bound on the invariant cone

130



By (A.6), (A.5), and y′1 = k1(x
′
1 − x0) this is

k1 − k2

k2 − k−4
<

k2x
′
1−k1(x

′
1−x0)

k2−k−
4

1
2 − ε− x′1

,

which can be simplified to (k1 − k2)
(
1
2 − ε

)
< k1x0. So (A.4) holds, provided that

12ε2 + 16ε+ 1

(2ε+ 1)(2ε+ 5)
− 4ε

2ε+ 1
<

12ε2 + 16ε+ 1

(2ε+ 1)(2ε+ 5)
·
−4ε3 − 2ε2 + ε+ 1

2

12ε2 + 16ε+ 1
,

which reduces to 1− 4ε+ 4ε2 < (1 + 2ε)2, valid for all ε > 0. This verifies the claim, giving us a
lower bound

ℓh
(
Γ4
)

ℓh (Γ4) + ℓh (Γ5)
≥ ℓh(S

′
4)

ℓh(S′
4) + ℓh(S′

5)
=

k2x
′
1 − y′1(

1
2 − ε

)
(k2 − k−4 )− y′1 + k−4 x

′
1

.

Noting that y′1 is very small and positive†, removing it from the denominator gives a new bound

ℓh
(
Γ4
)

ℓh (Γ4) + ℓh (Γ5)
>

k2x
′
1 − y′1(

1
2 − ε

)
(k2 − k−4 ) + k−4 x

′
1

:= B1(ε)

which has fewer terms to consider and is still a sufficiently strong bound for our purposes.

A.2 Expanding the expression for B1(ε)

We will now show the expanded form of B1(ε),

k2x
′
1 − y′1(

1
2 − ε

)
(k2 − k−4 ) + k−4 x

′
1

=
(2ε+ 1)(2ε+ 1− 2k+5 )

(2ε+ 1)(−k−4 (2ε+ 3)− k+5 (2ε+ 5)) + 12ε2 + 16ε+ 1
. (A.7)

To simplify the notation, let x = x′1, k4 = k−4 and k5 = k+5 . Then y′1 = k1(x − x0) and we can
write

B1(ε) =
(k2 − k1)x+ k1x0

k4x+
(
1
2 − ε

)
(k2 − k4)

(A.8)

Let φ = 2(1 + 2ε)(5 + 2ε). Then φk1 = 24ε2 + 32ε + 2, φk1x0 = −8ε3 − 4ε2 + 2ε + 1, and
εk2 = 8ε(2ε+ 5) so that multiplying (A.8) by φ/φ yields

B1(ε) =
(8ε(2ε+ 5)− (24ε2 + 32ε+ 2))x− 8ε3 − 4ε2 + 2ε+ 1

k4φx+
(
1
2 − ε

)
(8ε(2ε+ 5)− k4φ)

=
(−8ε2 + 8ε− 2)x+ (1− 2ε)(2ε+ 1)2

k4φx+ (1− 2ε)(2ε+ 5)(4ε− k4(2ε+ 1))

=
−2(1− 2ε)2x+ (1− 2ε)(2ε+ 1)2

k4φx+ (1− 2ε)(2ε+ 5)(4ε− k4(2ε+ 1))

=
−2(1− 2ε)x+ (2ε+ 1)2

k4φx
1−2ε + (2ε+ 5)(4ε− k4(2ε+ 1))

.

Now by

x =
k5(ε− 1

2 ) + k1x0

k1 − k5

=
−k5(2ε+ 5)(1− 2ε) + (1− 2ε)(1 + 2ε)

2(2ε+ 5)(k1 − k5)
,

†Also noting that the numerator and denominator are both positive.
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we have that
k4φx

1− 2ε
= k4(2ε+ 1)

−k5(2ε+ 5) + 1 + 2ε

k1 − k5
(A.9)

and
−2(1− 2ε)x =

k5(1− 2ε)2

k1 − k5
− (1− 2ε)2(1 + 2ε)

(2ε+ 5)(k1 − k5)
(A.10)

so that

B1(ε) =
k5(2ε− 1)2(2ε+ 5)− (1− 2ε)2(1 + 2ε) + (2ε+ 1)2(2ε+ 5)(k1 − k5)

k4(2ε+ 1)(2ε+ 5)(−k5(2ε+ 5) + 1 + 2ε) + (2ε+ 5)2(k1 − k5)(4ε− k4(2ε+ 1))
,

where we have substituted in (A.9), (A.10) and multiplied top and bottom by (2ε + 5)(k1 − k5).
Write its numerator and denominator as N(ε) and D(ε). Expanding the k1 term,

N(ε) = k5(2ε+ 5)
(
(2ε− 1)2 − (2ε+ 1)2

)
+ (2ε+ 1)(12ε2 + 16ε+ 1− (1− 2ε)2)

= −8εk5(2ε+ 5) + (2ε+ 1)(8ε2 + 20ε)

= (2ε+ 5)(4ε(2ε+ 1)− 8εk5(2ε+ 5))

and

D(ε) = k4(2ε+ 1)(2ε+ 5) (−k5(2ε+ 5) + 1 + 2ε)− k5(2ε+ 5)2(4ε− k4(2ε+ 1))

+
12ε2 + 16ε+ 1

2ε+ 1
(2ε+ 5) (4ε− k4(2ε+ 1))

= (2ε+ 5)

(
k4
[
(2ε+ 1)(−k5(2ε+ 5) + 1 + 2ε) + k5(2ε+ 5)(2ε+ 1)− (12ε2 + 16ε+ 1)

]
− 4εk5(2ε+ 5) +

4ε

2ε+ 1
(12ε+ 16ε+ 1)

)
.

Noting that the k4k5 terms cancel and (1 + 2ε)2 − (12ε2 + 16ε+ 1) = −4ε(2ε+ 3),

B1(ε) =
4ε(2ε+ 1)− 8εk5

−4εk4(2ε+ 3)− 4εk5(2ε+ 5) + 4ε
2ε+1 (12ε

2 + 16ε+ 1)
.

Multiplying top and bottom by 2ε+1
4ε establishes (A.7).

A.3 B1(ε)B2(ε) is monotone increasing

Starting with the bound on K4(ε),

B2(ε) =
3 + 46ε+ 52ε2 + 8ε3

1 + 2ε− 4ε2 − 8ε3
− 12ε+ 14

1− 4ε2
L(ε)

=
3 + 46ε+ 52ε2 + 8ε3

(1− 2ε)(1 + 2ε)2
− 12ε+ 14

(1− 2ε)(1 + 2ε)
L(ε)

=
3 + 46ε+ 52ε2 + 8ε3 − (1 + 2ε)(12ε+ 14)L(ε)

(1− 2ε)(1 + 2ε)2
.

Combining with our expanded expression for B1(ε),

B1(ε)B2(ε) =
(2ε+ 1− 2k+5 )(3 + 46ε+ 52ε2 + 8ε3 − (1 + 2ε)(12ε+ 14)L(ε))

(1− 2ε)(1 + 2ε)2(−k−4 (2ε+ 3)− k+5 (2ε+ 5)) + (1− 2ε)(1 + 2ε)(12ε2 + 16ε+ 1)

where we have divided through by (1 + 2ε)/(1 + 2ε). Write its numerator and denominator as
P (ε) and Q(ε), then B1(ε)B2(ε) is monotone increasing if P ′Q − PQ′ > 0. Note that as a linear
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function, L′(ε) = k6 ≈ −1.85175 is constant. The factors derived from P are then

P (ε) = (2ε+ 1− 2k+5 )(3 + 46ε+ 52ε2 + 8ε3 − (24ε2 + 40ε+ 14)L(ε)),

P ′(ε) = 6 + 92ε+ 104ε2 + 16ε3 − (48ε2 + 80ε+ 28)L(ε)

+ (2ε+ 1− 2k+5 )(46 + 104ε+ 24ε2 − (48ε+ 40)L(ε)− k6(24ε
2 + 40ε+ 14))

which, since (2ε + 1 − 2k+5 ) > 0, L(ε) < 0, and k6 < 0, are both positive for ε > 0. Hence over
the parameter range ε0 < ε ≤ ε2, P is maximal at ε2. Differentiating again, one can verify that
P ′′ > 0, so that P ′ is bounded below by P ′(ε0). Now for the factors derived from the denominator,

Q(ε) = (8ε3 + 4ε2 − 2ε1)(k
−
4 (2ε+ 3) + k+5 (2ε+ 5)) + (1− 4ε2)(12ε2 + 16ε+ 1),

Q′(ε) = (24ε2 + 8ε− 2)(k−4 (2ε+ 3) + k+5 (2ε+ 5)) + (8ε3 + 4ε2 − 2ε1)(2k
−
4 + 2k+5 )

− 8ε(12ε2 + 16ε+ 1) + (1− 4ε2)(24ε+ 16)

which, since 8ε3+4ε2− 2ε1 < 0 and −8ε(12ε2+16ε+1)+(1− 4ε2)(24ε+16) = 16+16ε+ · · · > 0

over the parameter range, are also both positive. Hence Q bounded below by Q(ε0). Again, one
can verify that Q′′ < 0 so that Q′ is bounded above by Q′(ε0).

Hence P ′Q− PQ′ > P ′(ε0)Q(ε0)− P (ε2)Q
′(ε0) ≈ 29.853, positive as required.
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Appendix B

Mapping behaviour of a
non-monotonic LTM

Lemma B.1. For any line segment Γ which satisfies case (A1.2) and traverses Ak
1 or Ak

3 for some
3 ≤ k ≤ 6, the image H2

S(Γ) contains a v-segment.

Proof. Let Γ traverse Ak
1 , intersecting the boundaries of Ak

1 given in (†) at the points zk = (xk, yk)

and zk−1 = (xk−1, yk−1). Calculating intersections with the lines y = (1− x)/4 and x = 0 gives

2k − 5

8k − 16
< yk−1 <

2k − 3

8k − 8
,

which together with 3 ≤ k ≤ 6 gives
1

8
< yk−1 <

9

40
. (B.1)

Letting Γk = Γ ∩ Ak
1 , we have that F k(zk) = (1/2, yk) and F k−1(zk−1) = (1/2, yk−1) so that

FS

(
Γk
)
= F k

(
Γk
)

is a line segment joining (1/2, yk) to F (1/2, yk−1) = (1/2+4yk−1, yk−1) mod 1.
By (B.1) we have that 1 < 1/2 + 4yk−1 < 7/5 so that FS

(
Γk
)

passes through (1/2, yk) and some
point (2/5, y) with yk−1 < y < yk. This first point is invariant under G and the latter maps into
G(2/5, y) = (2/5, y+2−8/5) = (2/5, y+2/5). By (B.1) we have y+2/5 > yk−1+2/5 > 1/2 so that
(G◦FS)(Γ) contains a line segment passing through (1/2, yk) and (x, 1/2) for some 2/5 < x < 1/2.
This line segment lies in S and must traverse A2

4 by yk < 1/4, so that HS(Γ) = (GS ◦ FS)(Γ)

contains a segment traversing A2
4. It follows from a previous argument that H2

S(Γ) contains a
v-segment.

For Γ traversing Ak
3 , by the symmetry of FS in the line y = 1/4 and the argument above we

have that FS(Γ) contains a line segment connecting the points (1/2, 1/2 − yk) and (4/5, y′) for
some 1/2 − yk < y′ < 1/2 − yk−1. Again, it follows that (G ◦ FS)(Γ) traverses A2

4 and the result
follows.
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Appendix C

Two-step expansion calculations from
section 6.3.4

C.1 Calculations for Proposition 6.3

We begin by showing the bounds (6.11). Note that U⋆,j is a curve traversing Aj
4,3 near (1/4, 1) with

tangent vectors (v1, v2)
T in the cone M1C1 satisfying 41/17 ≤ |v2|/|v1| ≤ 17/7. Noting that the

geometry of Aj
4,3 near (1/4, 1) is a 180◦ rotation of Aj

4,3 near (1/4, 1/2) and the cone is invariant
under this rotation, we can follow an analogous argument to (6.14) to calculate a⋆. In particular
|U⋆,j | is bounded below by the length of the segment passing through r4 with gradient 17/7, which
gives a⋆ = 13

√
2/80 as required. For the upper bound, the height of |U⋆,j | is bounded above by the

height of the line segment with endpoints on r3(j) and Lj−1 with gradient 41/17. In particular

ℓv(U⋆,j) ≤
48j2 + 41j + 29

(2j + 1)(48j + 17)
− 1

2
=

41

2(96j2 + 82j + 17)
∼ 41

192 j2

so that, by Lemma 6.5 and |v2/v1| ≥ 41/17, |U⋆,j | ≥ b⋆/j
2 with b⋆ = 41

192

√
1 + 172/412 as required.

We move onto calculating b such that |Uk,l| ≲ b/l2. Define a (k, l)-cell as the intersection
Hσ

(
Ak

4,3

)
∩ Al

1,3 near the accumulation point (1/2, 3/4), shown as the magnified region in Figure
6.5(b), the quadrilateral bounded by the lines Ll, Ll−1 (as defined in equation 6.6) on ∂Al

1,3 and
Lk, Lk−1 on ∂Hσ

(
Ak

4,3

)
. The explicit equation for Lk is given in (6.7), letting us calculate the

corner coordinates pk,l ∈ Lk ∩ Ll as

pk,l = (xk,l, yk,l) =

(
16kl + 7k + 23l + 10

32kl + 12k + 44l + 16
,
12kl + 3k + 17l + 4

16kl + 6k + 22l + 8

)
. (C.1)

The curve Uk,l traverses the (k, l)-cell with endpoints on the segments pk,lpk−1,l and pk,l−1pk−1,l−1

and has tangent vectors in the cone M4M
k
3 C1. Roughly speaking, for large k the vectors in this

cone are essentially parallel to the cell boundaries Lk, Lk−1 with gradient approaching -3, so that
ℓv(Uk,l) is given to leading order by yk,l − yk,l−1 ∼ 3

32 l
−2. Noting that M4M

k
3 C1 ⊂ C4 for any k,

we can bound the gradient of vectors as |v2/v1| ≥ 7/3 so that by Lemma 6.5 we have |Uk,l| ≲ b/l2

with b = 3
32

√
1 + 9

49 . A more careful calculation similar to that of b⋆ above gives the same bound
to leading order.

C.2 Two-step expansion near P1

We will follow similar analysis to the proof of Proposition 6.3 to show:
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Proposition C.1. Condition (6.3) holds for H2
σ when W ∩Bε(P1) ̸= ∅ for all ε > 0.

Proof. We consider the case where W lies near the accumulation point (0, 1/4), split by S into
subcurves W ⋆ = W ∩ A1 and W k = W ∩ Ak

4,2. The image of the lower subcurve U⋆ = Hσ

(
W ⋆

)
lies near the accumulation point (1/2, 1/4) = H(0, 1/4) and is split by S into curves U⋆,j ⊂ Aj

4,2.
The image of each upper subcurve Uk = W k maps close to (3/4, 1/2) for k odd, (3/4, 0) for k
even. Analysis for both of these cases is analogous, as before we take k to be odd and consider
the geometry of S near the accumulation point (3/4, 1/2). We calculate the corners of Ak

4,2 near
(0, 1/4) as

r1 =

(
0,

k

4k − 2

)
, r2 =

(
1

4k − 6
,
k − 2

4k − 6

)
, r3 =

(
1

4k − 2
,
k − 1

4k − 2

)
, r4 =

(
0,

k + 1

4k + 2

)
.

so that, using the integer valued matrix M4M
k
2 = (−1)k

(
1−6k −6k−2
14k−2 14k+5

)
, its image Hσ

(
Ak

4,2

)
is the

quadrilateral with corners

r′1 =

(
3k + 1

4k − 2
,
2k − 7

4k − 1

)
, r′2 =

(
3k − 2

4k − 6
,
2k − 9

4k − 6

)
,

r′3 =

(
3k − 2

4k − 2
,

k

2k − 1

)
, r′4 =

(
3k + 1

4k + 2
,
k + 1

2k + 1

)
.

The curve Uk has endpoints on the segments r′1r
′
2 and r′3r

′
4 and is split by S into an upper portion

Uk,⋆ in A4 above y = 1/2 and subcurves Uk,l ⊂ Al
1,2 where l0 ≤ l ≤ l1. Comparison of the point

r′2 with the lines Ll : y− 1/4 = − 2l+1
2l+2 (x− 1) and Ll−1 on ∂Al

1,2 yields l0(k) ≥ ⌊k−4
7 ⌋, intersecting

r′1r
′
4 with y = 1/2 yields l1(k) ≤ 7k+2. Let Wi = H−1

σ

(
U i

)
then W splits in an analogous fashion

to (6.9) with DH2
σ constant on each component. It follows that for q = 1/2,

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

≤ sup
0≤p≤1

2

√
(1− p)b⋆Λ

+
1

c⋆a⋆Λ
−
1

+ 2

√
pb⋄
c⋄aγ

+ 4

√
pbh

caγ


where the new constants satisfy (letting K(M) denote the minimum expansion of M over C1)

• K
(
M4M

j
2M1

)
∼ c⋆j

• K
(
M2

4M
k
2

)
∼ c⋄k

• K
(
M1M

l
2M4M

k
2

)
∼ ckl

• K
(
M4M

k
2

)
∼ γk

• a⋆/j
2 ≲ |U⋆,j | ≤ b⋆/j

2

• |Uk,⋆| ≲ b⋄/k

• |W k| ≳ a/k2

• |Uk,l| ≲ b/l2

and Λ±
1 , h are unchanged from (6.15). The expansion factors can be calculated in the same fashion

as (6.10), in particular

c⋆ =
48
√
145

5
, c⋄ = 8

√
197, c = 64, γ =

8
√
145

5
.

The constant a⋆ is obtained by considering the shortest path across Aj
4,2 with tangent vectors

aligned in the cone M1C1, bounded by the length of the segment with endpoints on r4(j) and
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Lj−1 (as defined in (†), proof of Lemma 5.9) with gradient 41/17. The constant b⋆ is obtained by
considering the maximum height of a segment joining Lj−1 to Lj , given by the segment passing
through r3(j) ∈ Lj with gradient 17/17, and applying Lemma 6.5. In particular a⋆ =

√
1970/464

and b⋆ = 17
192

√
1 + 172

412 . Similar analysis to the calculation of a⋆ but using the wider cone C1 yields
a =

√
55/80. We again apply Lemma 6.5 to find b⋄, with ℓv

(
Uk,⋆

)
bounded above by the height

1/(4k− 2) ∼ 1/(4k) of r′3(k) above y = 1/2. Tangent vectors of Uk,⋆ lie in the cone M4M
k
2 C1 ⊂ C4

so that b⋄ = 1
4

√
1 + 9/49 provides the upper bound. Finally we calculate b, following a similar

approach to section C.1. For each k the segments r′1r
′
4 and r′2r

′
3 lie on the lines Lk and Lk−1

respectively, with

Lk : y − k + 1

2k + 1
= −14k + 5

6k + 2

(
x− 3k + 1

4k + 2

)
.

Define a (k, l) cell as the intersection of Hσ(A
k
4,2) ∩ Al

1,2, given the by quadrilateral bounded by
the lines Lk, Lk−1, Ll, Ll−1. Its corners pk,l, . . . , pk−1,l−1 are given by

pk,l =

(
(3k + 1)(2l + 3)

8kl + 11k + 3l + 4
,
16kl + 15k + 7l + 6

4(8kl + 11k + 3l + 4)

)
with (as before, to leading order terms for k large) ℓv

(
Uk,l

)
bounded above by the height of

the segment ℓv
(
pk−1,lpk−1,l−1

)
∼ 7/32l−2. Again, tangent vectors to Uk,l lie in C4 so that b =

7
32

√
1 + 9/49 gives an upper bound |Uk,l| ≲ b/l2 by Lemma 6.5.

As before we take

s = 2

√
b⋆Λ

+
1

c⋆a⋆Λ
−
1

≈ 0.186, t = 2

√
b⋄
c⋄aγ

+ 4

√
bh

caγ
≈ 0.488,

giving

lim inf
δ→0

sup
W :|W |<δ

∑
i

(
|W |
|Vi|

)q |Wi|
|W |

≤ s

√
s2

s2 + t
2 + t

√
t
2

s2 + t
2 ≈ 0.522 < 1

as required.
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