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Abstract

In this thesis we consider Calderdén’s problem for harmonic maps in real-
analytic setting. In the first chapter we provide foundational and back-
ground material such as the existence and uniqueness of a solution to
the Dirichlet problem for the connection Laplacian, and the existence and
uniqueness of the Dirichlet Green kernel. In the second chapter we dis-
cuss the properties of the Dirichlet-to-Neumann operator associated to the
connection Laplacian and prove a result on reconstruction of geometric
data on the boundary from a given Dirichlet-to-Neumann operator. We
then use this to prove a uniqueness result for Calderén’s inverse problem
for the connection Laplacian on a vector bundle. In the third chapter we
generalise the notion of the Dirichlet-to-Neumann operator to maps be-
tween manifolds and discuss what kind of difficulties arise along the way.
We conclude the chapter with the uniqueness result for Calderén’s inverse

problem for maps between real-analytic manifolds.
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Notation

n-dimensional Euclidean space

determinant of a metric g

trace with respect to a metric g

divergence operator with respect to a metric g

gradient operator with respect to a metric g

= —div, o grad,, Laplace-Beltrami operator

space of smooth sections of a vector bundle E over a manifold N
space of test sections of E, i.e. the subspace of I' (E) formed by
smooth sections whose supports lie in the interior of the base N
p-Lebesgue space

(s,2)-Sobolev space

connection on a vector bundle E

connection Laplacian on a vector bundle E

homotopy classes of maps from X to Y

i-th homotopy group of X

i-th relative homotopy group of a pair (X,A)

i-th homology group of X

i-th relative homology group of (X,A)

i-th cohomology group of X

i-th relative cohomology group of (X,A)

Eilenberg-MacLane space with i-th homotopy group T’

denotes the sum ) a;a’, i.e. the Einstein summation
convention is assumed throughout the text



Contents

0 Introduction 1
1 Background material 11
1.1 Pseudodifferential operators . . ... ... .. ... ... . ......... 11
1.2 Dirichlet-to-Neumann operator . . . . . . . .. ... v v v v, 19
1.2.1 Definition of the Dirichlet-to-Neumann operator . ........ 19
1.2.2 Discussion on the Dirichlet problem . ................ 22
1.3 Green'skernel ... ... ... . ... . ... 28
1.3.1 Local fundamental solution for general elliptic systems . . . . . 35
1.3.2 Local Green’s kernel for the connection Laplacian. . . ... ... 39
1.3.3 Green’s kernel for the connection Laplacian . ........... 46
1.3.4 Construction of the Green kernel using parametrix . . ... ... 49
1.4 Method of the layer potentials for the scalar DtN operator . . . ... .. 51
1.4.1 Single- and double- layer potentials . ... ............. 51
1.4.2 Neumann Green’s function . . . .. ... ............... 54
1.4.3 Caseswhen Sisinvertible . ... ................... 57

1.4.4 Comparison theorem for heat kernel on manifolds with non-

positive sectional curvature . ... ...... ... .. ....... 59



CONTENTS viii

1.4.5 Li-Yau estimates for Green’s function on manifolds with non-

negative Ricci curvature . .. ... ...... ... .. ... ..., 64
2 Calderdn’s problem for the connection Laplacian 67
2.1 Introduction . ... .. ... . .. it 67

2.1.1 Well-posedness of the generalised heat equation and regularity

ofitssolution.. . . . .. ... ... .. 69

2.2 Reconstruction of the geometric data on the boundary .. ........ 71
2.2.1 Local factorisation of the connection Laplacian . ......... 71
2.2.2° The full symbol of the Dirichlet-to-Neumann operator A, gz. . . 78
2.2.3 Proofof Theorem 2.1.1 . . . ... ... ... ... . ........ 83
2.2.4 The case of Schrodinger type operators . . . . ........... 87
2.2.5 Gauge equivalence of the reconstructed connection ... .. .. 92
2.2.6 Thecaseofsurfaces . .......... ... ... . ... ..... 93

2.3 Global reconstruction of the geometricdata . . . ... ........... 94
2.3.1 Mainresult . ... .. ... .. .. 95
2.3.2 Preliminaries . ... ... ... ... ... 97
2.3.3 Immersions by Green kernels . ... ................. 99
2.3.4 Proofofthemainresult. ... ......... ... ... ..... 109
2.3.5 Proofof Theorem2.3.6 .. ... ... ... ... ... . ........ 113

3 Calderdn’s problem for harmonic maps 125
3.1 Dirichlet problem for harmonicmaps . . . ... ............... 125
3.1.1 Harmonicmaps. . . . .. ...t 125
3.1.2 Existence and uniqueness theorems .. ............... 129

3.1.3 Counterexamples. . . . . ... ... 130



ix CONTENTS

3.2 Topological extension problem and DtN operator for maps to manifolds

with non-positive sectional curvature . . . ... ... ............ 135
3.2.1 General topological extension problem . .............. 135
3.2.2 Special case of topological extension problem . ... ....... 137
3.2.3 Extension problem for maps of surfaces . . . ... ......... 139
3.2.4 Harmonic maps into S' and harmonic 1-fields . . . ... ... .. 141

3.3 Inverse problems of Calderén’s type for the Dirichlet-to-Neumann op-

erator on maps between manifolds . . ............ ... ..... 144

3.3.1 Calderdn’s problem for Dirichlet-to-Neumannmap . . ... ... 144

3.3.2 Linearisation and Jacobi operator . ................. 149

3.3.3 Mainresult . ... ... ... . ... 157

A Appendix 161
A1 Topological facts. . . . .. ... .. .. e 161
A.2 Harmonic forms on compact manifolds with boundary . ......... 166

References 180



CONTENTS




Chapter 0

Introduction

In this thesis we consider the generalisation of the geometric Calderén problem to
maps between manifolds. Let us state the classical geometric Calderén problem. Re-
call that the Laplace-Beltrami operator A, on a Riemannian manifold (N, g) is defined
by

A, = —div, o grad,,

where div, and grad, are the divergence and gradient operators associated with the

metric g. In local coordinates the Laplace-Beltrami operator is given by

1 0 . du
Aly=———— j_-_-
JU _lglaxi(\/lglg 8xf)’

where gU represent elements of the inverse matrix to g in the associated coordinate

frame, and |g| denotes the determinant of the matrix g in this frame. Let N be a
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compact manifold with boundary d N. Consider the following Dirichlet problem

Azu=0 inN,
ey
u=f on dN,

and the DtN operator

. du
R § Bl
A () =g == /gl.

The geometric Calderdn problem then is to reconstruct a Riemannian metric g from
the DtN map A,. The problem in this form is a geometric restatement [31] of an in-
verse problem in physics, which has important applications in the real world. One
of these applications is Electrical Impedance Tomography (EIT). In short, the process
of EIT goes as follows. Electrodes are attached to the surface of an object of study;
some voltage is applied to the electrodes and the current created in the electrodes in
response to the applied voltage is measured; the inverse problem of reconstructing
the data (such as conductivity) inside the object from the voltage-to-current measure-
ments is solved; different conductivities in various parts of the object are treated as
representing different tissues, materials, or irregularities. The mathematical part of
this process is the solution of the inverse problem. It was first studied by Alberto

Calderon [4, 5] and it is customary to call it Calderén’s problem.

Let us briefly discuss the underlying physics of Calderén’s problem. It is well known

that the static electric field E can be written in the form
E=vVu,

where V denotes the gradient operator and u is a function called the potential of the



electric field E. Note that we consider the opposite (to the one used in physics) sign
convention. Let us assume first, for simplicity, that the conductivity inside the object is
isotropic. Using Ohm’s law we obtain the following expression for the electric current
density

-

j= YE = }fﬁu, 2)

where the function y represents the conductivity. Now, assuming that no charges are
created or destroyed inside the object, the continuity equation should hold for the

electric current. Mathematically this is represented by the formula

vV-j=0, (3)

where V- denotes the divergence operator. Combining this relation with (2) we obtain

the following equation for the potential of the electric field

v %u—i( a“)—o 4
=5 Uaxi )=

Here and throughout the text we assume the summation convention over repeated
indices. When we apply some potential (voltage) f to the surface of the object an
electric field is created, such that the corresponding potential satisfies (4). Since the
potential is a continuous function, the condition u = f on the surface should be satis-

fied. Summarising everything, we obtain the following Dirichlet problem

)
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Here the domain € represents the interior of the object, and the boundary 92 rep-
resents its surface. Now, using Ohm’s law again we can write the expression for the
current flux through the surface of the object
2L -1 d
Ayf:J|aQ:YE|an:Y%u ’ (6)
o0

where v is the outward unit normal vector to the boundary d2 and L indicates the
projection to the normal vector ». The map A, which sends a (voltage) function on
the boundary to a (current flux) function on the boundary is usually simply called

in physics the voltage-to-current map. In mathematics this map is usually called the

Dirichlet-to-Neumann (DtN) map (or operator) associated with the operator
L, =V-yV, (7

The name comes from the fact that it maps Dirichlet boundary data to Neumann
boundary data. Suppose we are given a voltage-to-current (DtN) map on the sur-
face of an object (boundary of a domain). The Calderén problem is then to decide
if the conductivity y is uniquely determined by this voltage-to-current (DtN) map A,
and if it is, then to reconstruct y from it. This isotropic inverse problem was studied
by A. Calderdn in [4]. Note that the author used an equivalent formulation in terms
of the quadratic form
Q,(f)= fy [Vul*dv
Q

instead of the map A,. The physical meaning of Q, (f) is the power necessary to main-
tain the potential f on the boundary Q2. The author showed that in the case where y

is sufficiently close to a constant it can be nearly determined by Q, and in some cases



it can be calculated with a relatively small error. This pioneering work of Calderdn led
to many developments in inverse problems. See [43] for a comprehensive survey on

the topic of EIT and Calderdn’s problem.

In principle, the conductivity y inside the object of study need not be isotropic.
One important example of an anisotropic conductor is the muscle tissue in the human
body. Mathematically, anisotropic conductivity can be represented as a positive def-
inite, smooth, symmetric matrix function y = (yij ) on . The Dirichlet problem (in

Fuclidean coordinates) in this case is

% (yij%) =0 inQ,

u=f on 9%,
and the voltage-to-current (DtN) map is defined by

. du
Af=vyl=—| .

Unfortunately, in this case A, does not determine y uniquely. Namely, any change
of variables in 2 that leaves 912 fixed gives rise to a new conductivity with the same
voltage-to-current map. Refer to [43] for a more detailed discussion on this topic.
Let us now point out how this problem is related to the geometric Calderén problem
discussed above. If N is an open, bounded subset of R" with smooth boundary it was

noted in [31] that

where
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So in this case the geometric problem is equivalent to the one that arises in physics.

Let us return to the geometric Calderén problem. Note that in general one has

Ayrg = Ay,

where v is any diffeomorphism of N which is the identity on dN. Here v*g denotes
the pull-back metric along . This fact poses an obstacle to the unique reconstruction
of a metric from the DtN map. In the two-dimensional case, the Laplace-Beltrami
operator is conformally contravariant and, as a result, the DtN operators associated

with conformal metrics that are equal on the boundary coincide, i.e.

where c is a conformal factor equal to 1 on the boundary. Hence, in two dimensions
this is an additional obstacle to the unique reconstruction of the metric. The natural
question to ask is if those are the only obstructions to the unique recovery of the
metric from the DtN operator. The affirmative answer to this question was given in
[27]. Namely, the authors showed that the DtN operator given on an open subset
W C N determines a Riemannian surface N and the conformal class of metrics on
N that coincide in W. In the same paper the authors also showed a similar result for
higher dimensional manifolds (> 3) assuming that the structures are real analytic.
More precisely, the authors proved that the DtN operator given on an open subset
W C dN, in which N is real analytic, determines a connected compact real analytic
Riemannian manifold (N, g). This result was further generalised in [28] by relaxing

the compactness hypothesis to a completeness hypothesis, assuming that d N remains



compact. At the moment the problem for general compact connected Riemannian
manifolds remains open. We refer the reader to the survey [43] for the history of the

problem and a more detailed review of the results.

One way to generalise the geometric Calderén problem is to consider an inverse
problem for harmonic forms similar to the inverse problem in Proposition A.2.2 which
we use to prove Theorem 3.2.3 in Subsection 3.2.4. This problem was considered
in [25]. The other way to extend this results is to consider an inverse problem for
the connection Laplacian on a vector bundle. We discuss and study this problem in

Chapter 2.

There is another way to define the Dirichlet-to-Neumann operator A, which is also
common in the literature. We will use this definition throughout the text and call the
DtN operator defined in this way the classical (or scalar) DtN operator. Namely, we

define the classical DtN operator by the formula

_ou
_avaN’

Af 8

where v is the outward unit normal vector field and u is the unique solution to the
Dirichlet problem (1). It is well known (and will be shown later for more general
situation) that this operator has nice properties. More precisely, it is a classical elliptic

self-adjoint pseudodifferential operator of order one.

Let us talk briefly about the structure and contents of this thesis. In the first chap-
ter we provide foundational and background material. We start with the necessary
definitions and results in the theory of pseudodifferential operators, especially acting
on sections of vector bundles. For more detailed exposition we refer the reader to

the books [40, 42]. We continue with the definition and discussion of the connection
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Laplacian operator, which is a natural generalisation of the Laplace-Beltrami operator
to vector bundles with a connection. Alongside, we define and discuss the Schrodinger
(type) operators, which play an important role in the proof of the main result in Chap-
ter 3. We provide some properties of these operators, such as the symmetry and el-
lipticity, and then use them to show the existence and uniqueness of the solution to
the Dirichlet problem. Exploiting this we define the associated Dirichlet-to-Neumann
operator and discuss its properties. Our next section is devoted to the construction
of the Dirichlet Green kernel and discussion of its properties. Here we utilise a slight
modification of the classical method for the construction of Green’s function [cf. 2].
After this we give a brief explanation of a more general approach to the construction of
Green’s kernels based on the theory of pseudodifferential operators. The next section
describes a link between the Dirichlet-to-Neumann operator and single- and double-

layer potentials [41].

In the second chapter we discuss the properties of the Dirichlet-to-Neumann op-
erator associated with the connection Laplacian and prove a result on reconstruction
of geometric data on the boundary from a given Dirichlet-to-Neumann operator. This
part follows the method presented in [31], which was also used in [7] to obtain sim-
ilar results for the case of Hermitian vector bundles, though our main result for the
Schrédinger operators differs because of the way we want to apply it. We then use
this local reconstruction to prove a uniqueness result for the Calderén inverse prob-
lem for the connection Laplacian on a vector bundle. This part follows the idea of
immersions by Green’s functions (kernels) exploited in the paper [28] for the scalar
Dirichlet-to-Neumann operator. Note, that in their paper the authors consider the
manifold to be at least 3-dimensional complete real-analytic (possibly) non-compact

with compact boundary. In [27] the authors used a different approach, sheaves of an-



alytic functions, to obtain the result for compact manifolds, including 2-dimensional
ones.

In the third chapter we generalise the notion of the Dirichlet-to-Neumann operator
to maps between manifolds and discuss the difficulties that arise in this case. Namely,
the Dirichlet-to-Neumann operator is not always well defined. The first issue arises
when we try to find harmonic extension of a map from the boundary to the whole
manifold. In contrast to the classical case where the target manifold is the Euclidean
real line we can have non-trivial homotopy type of the target manifold. Because of
this, on the one hand, it is not always possible to extend a map from the boundary to
a map from the whole manifold. On the other hand, when this extension is possible
there may be more than one homotopy class of them. These issues are illustrated in
the counterexamples section. In the next section we discuss the arising general topo-
logical extension problem and particular cases such as the case of target manifolds of
the Eilenberg-MacLane type, the case of maps between surfaces, and the case of maps
to a circle, which has a link to harmonic 1-forms. After this we give examples of gener-
alisation of Calderdn’s problem for maps from domains of dimensions 1 and 2. These
examples are then followed by the statement of the general Calderén problem for
maps between manifolds. In contrast to the classical case, this problem is non-linear
and, therefore, we proceed by obtaining results on its linearisation. We then show that
the latter linearised problem is equivalent to Calderén’s problem for Schrédinger type
operators discussed in Chapter 2. We conclude the third chapter with a uniqueness

result for the Calderdn inverse problem for maps between real-analytic manifolds.
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Chapter 1

Background material

1.1 Pseudodifferential operators

In this section we will recall the definition of a (standard) pseudodifferential operator
(PDO) on vector bundles. We follow the exposition by Treves in [42]. Let Q2 be an open
subset of R". We need first to define the special class of functions called amplitudes. Let
m be any real number. We shall denote by S™ (£2, 2) the linear space of C*° functions

in Q2 x QxR" a(x,y,&), which have the following property:

To every compact subset #" of Q2 x 2 and to every triplet of n-tuples a, 3, y, there

is a constant C, 4., (#) > 0 such that

a,B,y

DEDEDIa(x,y,E)| < Cop, () A+]EN™™, ¥ (x,y) € #,and VE €R", (1.1)

where D, := —i0,. The elements of S™ (£, Q) are called amplitudes of degree < m
(in Q x Q). The space S™(,2) is endowed with a natural locally convex topology:

denote by p ., g, (@) the infimum of the constants C, 5 . (.#) such that (1.1) is true.

a,B,y
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One can see then that the function p 4, g, is a seminorm on S™(£2,Q) and defines
the topology of this space when .#" ranges over the collection of all compact subsets
of Q and a, 3,y over that of all n-tuples. Thus topologised, S™(£2,2) is a Fréchet
space. We denote the subspace of amplitudes independent of y by S™(Q2) and regard
its elements as smooth functions in Q x R" (rather than in Q x Q x R™). The topology
on S™(£2) is the induced subspace topology from S™ (£2,2). Hence, S™ (Q2) is a Fréchet
space, as a closed linear subspace of the Fréchet space. The intersection of all S™ () is
denoted by S™°° (). The quotient vector space S™ () /S~ (Q2) is denoted by S™ (£2)
and its elements are called symbols of degree < m. We use the term symbol for a
representative (€ S™(Q)) of an equivalence class in $™ () as well. We shall also
introduce the notion of a formal symbol. By a formal symbol we mean a sequence of
symbols A, €S™ (22) whose orders m; are strictly decreasing and converging to —co.

It is standard to represent it by the formal series

+00

Z A, (%, ). (1.2)

j=0

From such a formal symbol one can build true symbols, elements of S™ (£2) in the
present case, which all belong to the same class modulo S~ (£2). We will denote this

class by (1.2). In order to construct a true symbol one may proceed as follows:

First, one may state that a symbol a (x, &) belongs to the class (1.2) if, given any

large positive number M, there is an integer J > 0 such that

a(x,8)— ) ay, (x,8) €S (Q).

j=0
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Second, one can construct such a symbol a (x, £) as a sum of a series

Z X] (g)amj (X, g))

j=0

where y; (&) are suitable cutoff functions. By suitable we mean such that the above
series converges in the space S™ (2). Note that since we are using the cutoff functions
we are able to deal with terms A, (x, &) that are not “true” elements of S™ (), e.g.
the functions that are non-smooth or even not defined in neighborhoods of the origin
& = 0. (If such neighborhoods depend on x we may consider the cutoff functions that
also depend on x). The most important examples of formal symbols (1.2) with terms
A, (x, &) that are not C* functions of & at the origin are the classical symbols. The
formal symbol (1.2) is called the classical symbol if each term A, (x,&) is a positive-
homogeneous function of degree m; of & and if differences m; —m;,, € Z", for all j.
Recall that a function f (&) is called positive-homogeneous of degree d with respect to
£ in R™\ {0} if f (p&) = pif (&) for every p > 0 (but not necessarily for every real
p). For instance, the Heaviside function on R\ {0} is positive-homogeneous, but not

homogeneous, of degree zero.

As is customary in the literature, we denote by 2’ (2) and &’ (Q2) the spaces of dis-
tributions and compactly supported distributions, i.e. the continuous duals to C;* ()
and C* (Q), respectively, both assumed to be equipped with the weak topology. Let

us recall the Schwartz kernel theorem [22].

Theorem. Every K € 2'(Q x Q) defines a continuous linear map A from C;° () to
2'(Q) via

Ap(Y)=K(p @), ¢, € Ci°(Q). (1.3)
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Conversely, to any continuous linear map A : C;°(Q) — 2'(Q), there corresponds a
unique distribution K, (x, y) in Q x Q such that (1.3) holds. The distribution K, is called

the Schwartz kernel of A.
Let us continue with the definition of a (standard) PDO.

Definition. A linear operator A : C;° () — 2'(Q) is called a (standard) pseudod-
ifferential operator of order m if there is an element a € S™ () such that A can be

represented in the form

Au(x) = (Zﬂ)_“f f e (x, E)u(y)dydé, (1.4)

where it is understood that the integration with respect to y is effected first and the
one with respect to £ last. The function a(x, &) is called a (complete) symbol of the

PDO A. APDO is called a classical pseudodifferential operator if it has a classical symbol.

The set of standard pseudodifferential operators of order m will be denoted by
U™ (). The union of these sets for all m € R will be denoted by ¥ (2) and their
intersection by ¥~°° (€2). Let us give an example of PDOs from which the motivation

to consider them originates.

Example. Consider a linear differential operator A with smooth coefficients acting in

an open subset 2 of R". Namely, let

A= Z a, (x)D, (1.5)

|a|<m

where a is a multiindex, e.g. @ =(ay,...,a,) and a; is a non-negative integer, |a| =

a; + -+ a,, a,(x) are smooth functions of x € Q, D% = (—i)*2%/ax7, and D* =
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D% ...D%. Using the Fourier transform, we see that

D%u(x) = (2ﬁ)_”f J g% u(y)dyde,

where £ € R?, £¢ = &7 ...&%, and x- & = x;&; + -+ x,&, is the standard Euclidean

product on R". Combining this with the expression (1.5) we obtain

Au(x) = (2ﬂ)_nf f el (x,E)u(y)dydE, (1.6)

where the polynomial on & function o, (x,&) = . a, (x) &% is the usual symbol of the
differential operator A. One can see that o, (x, l’g(’x l)sg S™ () and, hence, the operator A
is a pseudodifferential operator of order m. Recall that the part of a (complete) symbol
corresponding to the highest derivatives, i.e. p,(x,§) = >. a,(x)&%, is called the
principal symbol of A. o

Note that we can readily generalise the notion of a principal symbol to classical
pseudodifferential operators. By a principal symbol of a classical PDO A € ¥ (Q2) with
formal symbol given by (1.2) we mean a,, (x,&), which is the positive-homogeneous

term of highest degree m, = m. The following properties of PDOs are well known

[40, 42].

Proposition 1.1.1. Let A be a pseudodifferential operator. Then its Schwartz kernel K,
is smooth off the diagonal, i.e. K, € C*° (Q x Q\diag (£2)), where the diagonal is defined

by diag (Q2) := {(x, x) € Q x Q}, and A defines continuous linear maps

A:CP(Q)—C™ (),

A:E'(Q)—> 2'(Q).



1. BACKGROUND MATERIAL 16

Remark. It is customary in the literature to define the PDOs using amplitudes a €
S™(Q,Q) in (1.4) instead of the symbols, but these two definitions in fact coincide
[40, 42]. Although the definition involving amplitudes has considerable expository
advantages in the general theory of PDOs it is redundant in this text, since we will be

exploiting only the symbols of PDOs.

We shall say that a PDO A is smoothing (regularizing) if it maps &’ (22) to C*° (£2).
In order for this to be the case, it is necessary and sufficient for the associated Schwartz
kernel K, (x, y) to be C* in 2 x Q. In terms of symbols, any smoothing operator has a
symbol a € S~ (2). The following theorem [42, Theorem 2.1] gives a more precise

description of the “regularizing” properties of a general PDO.

Theorem 1.1.2. Let A be a pseudodifferential operator in €, of order < m. Given any
real number s, the mapping u — Au can be extended as a continuous linear mapping

W () = W™ (82) of Sobolev spaces.

Note that we are using the definition of Sobolev spaces according to [42], that is
by #° we denote the (s, 2)-Sobolev space, i.e. the space of functions square integrable
together with first s derivatives (when s is a non-negative integer). For example, #°
denotes L. For a compact subset K C R" we denote by 7 (K) the subspace of #° (R")
consisting of a distributions having their support in a compact subset K. By #.°(£2)
we denote the union of the spaces #°(K) for K ranging over the collection of all
compact subsets of . Finally, #;° () denotes the space of distributions u in  such
that pu € #° (R") for any smooth function ¢ compactly supported in Q.

Now we are able to define pseudodifferential operators acting on vector-valued dis-
tributions. Let F" be a r-dimensional vector space over field F(= R, C). Let 2’ (Q;F")

(&' (92;F")) denote the space of (compactly supported) distributions in 2. Note that if
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we chose basis in F" then a F"-valued distribution is a vector with coordinates consist-
ing of r scalar distributions. Using this we can give the following natural definition.
A linear operator A: & (;F") —» &’ (Q; IE‘Z) is called a pseudodifferential operator of
order m if in any bases of F" and F! it is represented by a matrix of scalar pseudodif-
ferential operators of order m.

Let F, and F, be two vector bundles over a smooth manifold N with fibres F” and F',
respectively. Note that any F;-valued distribution (i = 1,2) in any local trivialisation
is represented by a vector with coordinates being scalar distributions. This allows
one to represent any linear operator I' (F;) — TI'(F,) in any local trivialisations as an
[ x r-matrix of linear operators C*° (N) — C°° (N). Therefore, it is natural to give the

following definition.

Definition. A linear operator A : & (F,) —» 2’(F,) is called a pseudodifferential op-
erator (of order m) if in any pair of local trivialisations it is represented by a matrix
of scalar pseudodifferential operators (of order m). The space of such operators is

denoted by ¥ (Fy, F,).

If vector bundles F, and F, are equal to the vector bundle F, then we say that Ais a
PDO (acting) on a vector bundle F and write A € ¥™ (F). Due to the above definition
most of the theory for scalar PDOs generalises to the case of vector bundles naturally,
e.g. the symbol calculus. In particular, if A and B are two PDOs on a vector bundle
F, then in a local trivialisation the symbol of the composition A o B is defined by the

formal symbol
1
D —88a(x,£) Db (x,E), (1.7)
~a! X

where a (x, &) and b (x, &) are the local symbols of A and B, respectively. Note that the

notion of a classical PDO in W™ (F,, F,) and its principal symbol make sense [40, 42].
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Moreover, the latter can be seen as a smooth section of 7*Hom,, (F;, F,) over T*N\O0,
positive-homogeneous of degree m on £ € T*N,\ {0}, where 7w : T*N\0 — N is the

canonical projection to the base.

We shall introduce the notion of ellipticity for a classical PDO. We say that a (clas-
sical) PDO A acting on a vector bundle F over a manifold N is elliptic if its principal
symbol p (x, &) maps a fiber F, to F, bijectively for all x € N, & € T'N\ {0}. Note that
in any chosen basis of F, this is equivalent to the requirement detp (x, &) # 0 for all
x € N, £ € TN\ {0}. An important property of a classical elliptic PDO is that it has
a two-sided parametrix. More precisely, the following theorem can be found in [42,

Chapter II, Theorem 2.4].

Theorem 1.1.3. Let A be a classical elliptic pseudodifferential operator of order m on a
closed (i.e. compact without boundary) manifold M acting on sections of a vector bundle
F, and a(x, &) be its principal symbol. Then there is an elliptic pseudodifferential oper-
ator B of order —m on N, with principal symbol a™! (x, &) (the inverse of a(x,&)), such
that

AoB—Id; and BoA—1Idy

are smoothing. This operator B is called the (two-sided) parametrix of A.

In conclusion of this section, let us note that the Schwartz kernel theorem gener-
alises to the case of operators on vector bundles, but to make it precise one should

consider the distributional densities or currents on manifolds [42].
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1.2 Dirichlet-to-Neumann operator

1.2.1 Definition of the Dirichlet-to-Neumann operator

Let (N, g) be a compact connected Riemannian manifold with boundary d N and
(E ,VE ) be a vector bundle over N of rank r with a connection V£ : T'(E) » T'(E ® T*N).

We assume that E is equipped with a compatible inner product (-, ), i.e. the relation
d(u,v); = <VEu,v>E +(u, VEV>E

holds for any pair of smooth sections u,v € T'(E). Note that both sides of the above
identity are differential forms. We use the standard notation I' (E) for C°°-smooth
sections of the vector bundle E, & (E) for smooth compactly supported in N (the
interior of N) sections of E, and #° (E) for #*-smooth sections, where #* = %52
and #*P denotes the (s, p)-Sobolev space. Note that in this notation #° (E) = L?(E).
The continuous dual of % (E) is denoted by 2’ (E) and assumed to be endowed with

weak topology.
We can define the L?—inner product of sections by

(U, v) 2 =J (u,v)pdV,,

N

where dV, is the Riemannian volume measure of (N, g). Similarly, we can define the

L?—inner product in T'(E ® T*N) by

(a, /3>L2(E®T*N) = f Tr, (o, B)g dVg:

N
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where the sections a, 3 € I'(E ® T*N) considered as the E—valued 1—forms, and Tr,

denotes the trace with respect to g.

Let us consider the connection Laplacian Af defined by
AF =—Tr, V*VF,

where VE=VE@ VIC:T(E®T*N) > T(E®T*N ® T*N) and V!¢ is the Levi-Civita

connection on (N, g). Note that we have the following equality [11]

AE = (VE)* VEJ

where (VE )* is the adjoint of V£ with respect to the L,—inner products defined above.
We will occasionally omit the word “connection” and call this operator the Laplacian
for brevity. When it will not make any confusion, we will also sometimes omit the

superscript E in the notation of the connection VZ.

Let us consider the Dirichlet problem for the Laplacian on a Euclidean vector bun-

dle E over a compact connected Riemannian manifold (N, g) with boundary d N:

Afu=0 onN,
(1.8)

ulpy =0 u€T(E),oc €T(E|sy).

It has a unique solution for every o € T'(E|;y). We briefly explain why this is true in
the next subsection. Now this allows us to introduce the Dirichlet-to-Neumann operator

Ag v 1 T(Elzy) = T'(E|sy) associated with the connection Laplacian VE by

_ E
Ag’vEO- = Vvu AN’



21 1.2 Dirichlet-to-Neumann operator

where u is the solution to (1.8), and v is the outward unit normal vector field on N.
A slight variation occurs when we consider the case of the connection Laplacian plus

a symmetric potential. Namely, when we adjust the Laplacian as

L,=A*+P

where P is a (Hermitian) symmetric endomorphism of a (Hermitian) vector bundle E.
Recall, that the endomorphism P of a (Hermitian) vector bundle E is called (Hermi-

tian) symmetric if for any two sections u, v € I' (E) the following relation holds

(Pu,v)p = (u,Pv)g.

This means, in particular, that in a local orthonormal frame the matrix P/‘; representing
P is (Hermitian) symmetric. We assume that O is not in the Dirichlet spectrum of L.

This holds, for example, when P is positive semi-definite, i.e. when

(Pu,u); =0,

for any u € T'(E). We will call this type of operator L, a Schréodinger (type) operator.

In this case the Dirichlet problem

Lyu=0, u€wWsi(E),
(1.9)

ulgy =0, o€W*(Elz),

also has a unique solution for s > +. Therefore, we can similarly define the Dirichlet-

to-Neumann operator A, pye @ I'(Elzy) — T'(E|sy) associated with the operator Lp



1. BACKGROUND MATERIAL 22

by

_ E
Ag’P’vEO- = Vvu AN’

where u is the solution to (1.9), and v is the outward unit normal vector field on JN.
The results for Schrodinger operators will be of importance in the third chapter. For
this reason, for each statement concerning the connection Laplacian we will discuss

its Schrodinger counterpart alongside or afterwards.

1.2.2 Discussion on the Dirichlet problem

We start with well-known Green’s identities. Let w e ' (E® T*N) and v € ' (E). Then

we have the first Green’s identity

(V'W,v) 12— (W, VV) 12(5oTen) = f (L,w,v)dS,,

ON

where dS, is the associated volume form on the boundary dN, and v is the outward
unit normal vector field on dN. Now let w = Vu, where u € I'(E). Then we obtain

the following identity for the Laplacian

(AEu,v>L2 =(V'Vu,v) 2 = (VU, VV) 12(5gren) +f (t,Vu,v)ds,, (1.10)

ON

which gives us the second Green’s identity

(Afy, v>L2 —(u, AEv>L2 = J (1,Vu,v)dS, —J (u,1,Vv)dS,. (1.11)

ON ON
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It follows from this identity that the connection Laplacian is symmetric, namely, the
equality

(AFu,v),, = (u,AFv),, (1.12)

holds for all u,v € 2 (E).
Let us show the uniqueness of the solution to (1.8). Suppose u; and u, are two
solutions of (1.8). Then their difference u = u; —u, is a solution to (1.8) with the

boundary condition ul|;y = 0. From (1.10) we obtain

0= (AEu,u>L2 = (Vu, Vi) 12zo1+n) +J (t,Vu,u)ds, =
N

2
= (Vu, V) j2zoren) = ”vu”LZ(E@T*N) )

which implies

and therefore

d (u,u); =2(Vu,u); =0.

From this we conclude that (u,u); is constant on N and since u vanishes on the
boundary it has to be identically zero on the whole manifold N. Hence, we have
u; —u, = u = 0, which shows that u; and u, are equal. This completes the proof of

uniqueness.

Remark. Since the potential of the Schrodinger operator is symmetric the identities
(1.11) and (1.12) hold also for L,. Moreover, since it is positive semi-definite we also
have

0= (Lpu,u);> = ||Vu||i2(E®T*N) + (Pu,u)g,
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which gives the uniqueness of the solution to the Dirichlet problem for L.

Existence of the solution can be shown in two steps. First, we use the Lax-Milgram
theorem to prove the existence of a weak solution u € #'! (E) to the inhomogeneous
Dirichlet problem

Afu=—AEG,
(1.13)
ulgy =0,
where & € #'! (E) in the right hand side is a given function. Then we use the elliptic
regularity to show that this solution is smooth if & is. Note that the connection Lapla-
cian and Schrodinger operator are elliptic, which is shown in Corollary 1.3.9. Below

we briefly discuss both steps.

Let us recall the Lax-Milgram theorem [15].

Theorem (Lax-Milgram). Let V be a Hilbert space and a(-,-) a bilinear form on V,

which is
1. Bounded: |a(u,v)| < C||u|l||v|| and
2. Coercive: |a(u,u)| > c||lull*

Then for any continuous linear functional f € V' there is a unique solution u € V to the
equation

a(u,v)=f(v),VveVv

and the following inequality holds

1
lull < = 11f I
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Let #,' (E) be the Sobolev space of sections vanishing on the boundary dN. Con-

sider a bilinear form a (-, -) which acts on u,v € 7/01 (E) as

a(u,v) =(Vu, Vv)2zern) -

We see that a (u, v) is a bounded bilinear form on 7/01 (E). For a given 6 € #'* (E) let

us take the functional

fe (V) =—(V&, VV)H(E@T*N) .

Clearly, this is a bounded linear functional on 7/01 (E). So it is left to show that a (u, v)

is coercive, i.e. there exists ¢ such that

IVUll?, o
LAEQTN)

> 0. (1.14)
2
llull;,

This follows, for instance, from the Sobolev embedding theorem [35]. We showed
that all the conditions of the Lax-Milgram theorem are satisfied, therefore, there is
a unique weak solution u € 7/01 (E) to (1.13). Note that in a similar manner we can
show the existence and uniqueness of a weak solution to the inhomogeneous Dirichlet
problem

Afu=o, ¢el?(E),
(1.15)

LL|3N == 0.

For this we have to choose the bounded linear functional f to be

fv)= (%V)LZ(E)-

Let us now state the elliptic regularity theorem (see, for example, [35]).



1. BACKGROUND MATERIAL 26

Theorem (Elliptic regularity). Let .Z be an elliptic operator acting on E. Suppose ¢ €

#7° (E) (smooth), and u € 2’ (E) solves the equation

Lu=p.

Then u € W**2(E) (respectively smooth).

Using this theorem we conclude that if & or ¢ is smooth then the solution u to
(1.13) or (1.15), respectively, is also smooth. Note that the elliptic regularity theorem
is a direct consequence of the existence of a parametrix for elliptic operators Theorem

1.1.3.

To obtain the solution to the boundary value problem (1.8) we take a smooth

extension & € I'(E) of o, and write u = w + &. We see that
Afu= Afw+ AFG,
Ulsy = Wloy + &lay = wlay + 0.

Now if w is the solution to (1.13), then u is the solution to (1.8).

Remark. The existence of a solution to the inhomogeneous Dirichlet problem

Lpu == _LP(S—,

u|5N = 07

is similar. In the Lax-Milgram theorem we consider the bilinear form

ap (W, v) =a(u,v) + (Pu,v) > = (Vi, Vv) p2gereny + (PU V) 12,
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which is clearly bounded. It is also coercive, since a is coercive and P is positive

semi-definite. The linear functional in this case will be

fs(v)=—(Ve&, vv)LZ(E®T*N) —(P&,V)2,

which is also bounded since P is bounded. The existence of a solution to the inhomo-

geneous Dirichlet problem

Lyu=¢, ¢el?(E),

ulaN :07

can be obtained similarly. Since L, is elliptic one obtains also the smoothness results
from the elliptic regularity theorem. Note that the requirement that P be positive semi-
definite is not necessary, in general, for the existence and uniqueness of the solution
to the Dirichlet problem. But if it is dropped then one has to use some alternative to

the Lax-Milgram theorem.

Note that the restriction to the boundary extends to the trace map
T W (E) > W2 (Ely), (1.16)
which has a right inverse
&: W2 (E|,y) = 7 (E), (1.17)

i.e. the map such that the equality 7 o & = Id holds; both maps are linear bounded

operators [3]. Using this we can show existence and uniqueness of the solution to the
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boundary value problem

Afu=0, uew*i(E),
(1.18)

g.(u):O-J O-EWS(EL?N):

(and its Schrodinger counterpart) for s > 1/2. Note that from the elliptic regularity the
solution u is smooth in the interior of N.

Consider the complexification C ® E = E @ iE of the Euclidean vector bundle E.
It has a natural structure of Hermitian vector bundle and a compatible connection

VCeE = VE @ VE. The associated Laplacian is

AC@E — AE @AE,

and we see that the complex analogue of the problem (1.15) decomposes into two real
ones. The same holds for the Schrodinger operator. So all the results on the existence
and uniqueness are straightforward from the real case. In the next chapter we will
consider the complexified objects (vector bundle, connection, Laplacian) and use the

same notation for them as for their real counterparts.

1.3 Green’s kernel

In this section we discuss Green’s kernel for the connection Laplacian and Schrodinger
operator on a compact manifold. Let us define Green’s kernel for the connection Lapla-
cian. Suppose we have a Euclidean (or Hermitian) vector bundle E over N. Then we
can define the vector bundle E R E over N x N whose fiber at the point (x,y) € N x N

ISE,QE,.
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Definition. A smooth section G of the vector bundle ERE defined away from the diag-
onal diag(N) = {(x, x) € N x N} is called the Green kernel of the connection Laplacian

on N if:
1. the integral of the function y — |G (x, ¥)|zg is finite for all x € N;

2. the relation

N

holds for all s € Z (E);

It is called the Dirichlet Green kernel if in addition it satisfies G (x,y) =0 forall x €N,
y € dN, x # y. Let us define a point analogue of this definition and prove the lemma

which implies the uniqueness of the Dirichlet Green kernel.

Definition. For any interior point x € N we call a smooth section F(y) of E, ® E

defined away from the point x an x-point potential if:
1. the integral of the function |F (y)] is finite;

2. the relation

J (F (), 8% (1)), dVy, =5 (x),

N

holds for all s € 2 (E);
3. F(y)=0for y € dN.

The above definitions are naturally generalised to the case of a Schrodinger oper-

ator.

Lemma 1.3.1. For any interior point x € N the x-point potential F () is unique.
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Proof. Suppose H (y) is another x-point potential. Then

f (F(y),As(y)),dV,, — J (H(y),As(y)),dV,, =s(x)—s(x) =0,

N N

for any s € Z (E). If K (y) denotes the difference F (y) —H (y), then we have

J (K(),A%s(y)),dV,, =0,

N

K(y)=0,y€?N.

Clearly, this difference is a smooth section of E, ® E defined away from the point x.
We see that the distribution defined by K () is a weak solution to (1.15) with ¢ = 0.
Since ¢ = 0 is smooth, the elliptic regularity implies that K () extends smoothly to the
point y = x. Therefore, K (y) is smooth on the whole of N and from the uniqueness
of a solution we have K (y) =0 for all y € N. It follows that F (y)—H (y) = 0, which

implies H (y) = F (y). ]
Corollary 1.3.2. The Dirichlet Green kernel of the connection Laplacian is unique.

Proof. For the interior points x it follows from Lemma 1.3.1, since G (x, y) is the x-
point potential. For x € dN, x # y it follows from the smoothness of G and the fact

that the interior of N is dense in N. O

The main ingredient in the proof of the above results is the elliptic regularity the-
orem. Therefore, the same results continue to hold for the Schrédinger operator.

We will be dealing mostly with the Dirichlet Green kernel. Therefore, we will
occasionally omit the word “Dirichlet” for brevity. Hopefully, this will not make any

confusion. One can see that in the sense of distributions the Green kernel can be
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thought of as a fundamental solution of the connection Laplacian, which is customary

to write as the symbolic identity
ATG(x,y)=1d-5,(y),

where 6, () denotes the Dirac delta centered at x. Note that this means, in particular,
that the left hand side vanishes for x # y. This is also true for the x-point potential
and justifies its name, since it can be thought of as “the potential created by an el-
ementary charge placed at x”. In the sense of operators, G (x,y) can be thought of
as the Schwartz kernel of the left inverse to the connection Laplacian. (Note that the
necessary condition for a linear operator L to have a left inverse is ker L = 0, which
is satisfied for the Dirichlet Laplacian.) Taking this into account and the fact that AE
is symmetric (1.12) we may expect that G is also symmetric. And this is indeed the

case, which we will prove using the following lemma.

Lemma 1.3.3. Let x; and x, be two interior points of N with corresponding point po-

tentials F, (y) and F,(y). Then
F1(x3) =T o Fy(x,),

where T : E, ® E, — E, ®E, is the canonical isomorphism.

Proof. Let us pick any two vectors &, € E, , n,, € E,, and define two sections u (y) =
<§X1,F1 (y))E andv(y)=<nX2,F2 (y)>E of E. Note that A*u(y) and A®v (y) vanish
X1 X2

for y # x, and y # x,, respectively, and both vanish at the boundary dN. Using the
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identity (1.11) we can write

0 = lim J (u(), A% (¥)),dV,, —

£—0
N\(Bs (X] )UBS(XZ))

_ J (AEu(y),V(J/»EdVg,y =

N\(Bs(xl)UBg(XZ))

e—0

= —lim J W), e, Vv (¥))e dS,, —

9B,(x1)UdB,(x2)

_ f (,Vu(y),v(y))edS,,

9B, (x1)U8B,(x2)

From this we conclude that

e—0

lim f ((U(J’),LVVV(J’»E_(vau(J’);V(y»E)dVg,y =

9B,(x1)

e—0

lim f (Va0 v () — (), 6, ¥v (1)) dV,,,

aBs(xz)

Let us now multiply the section v (y) in the first integral by y, (¥) and the section
u(y)in the second integral by y,, (¥), where y, (y)and y,, (y) have disjoint supports

and are equal to 1 in a small neighborhood of x; and x,, respectively. The first integral
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then

lim f (w3, 6V (e, VD)), — (VU e, DV D)),) AV, | =

e—0

aBs(xl)

lim J <u(}’)’AE (Xxl (J’)V(J’)»Edvg,y_

N\B,(x1)

_ J (AFu(3), 2, )V (), dV,, | =

N\Be(xl)

lim J (u), AF (e, V()), dV,, =

N\Be(xl)

=lim<€xl, f <F1(J/),AE(Xx1 (y)v(y)))EdVg,y> =

£—0
N\B,(x;) Ey,

<€x1’ v (X1)>E .
Similarly, the second integral is equal to (an, u (x2)>E, so we get the equality
<£x1: <nx2: Fz (x1)>E>E = <T)x2) <€x1’ Fl (x2)>E>E )

for any two vectors &, € E

X712

Ny, € E,- This implies the desired equality
F1(x3) =T 0 Fy(x,),

where 7 : E, ® E, — E, ® E,_is the canonical isomorphism. O
2 1 1 2
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Corollary 1.3.4. The Dirichlet Green kernel is symmetric, i.e. it satisfies

G(x,y)=710G(y,x),

where T : E, ® E, — E, ® E, is the canonical isomorphism. In particular, G (x,y) =0

whenever x or y lies on the boundary of N, x # y.

Proof. For distinct interior points x, y € N it follows from Lemma 1.3.3. If at least one
of the points x, y lies on the boundary d N it follows from the smoothness of G and the
fact that the interior of N is dense in N. More precisely, let x € N, y be any interior
point of N and {x;} be a sequence of interior points disjoint with y and converging to

x. Then

|G (x, y)l = lim |G (x, y)I = lim |G (y, x| =G (y,x)| =0,

which implies G (x, y) = 0. Based on this we can similarly prove the result for both x

and y lying on the boundary. ]

The proof of the above results relies on the identity (1.11), which holds also for the
Schrodinger operator. Therefore, there are Schrodinger counterparts for these results.

The definition of the Green kernel for the connection Laplacian is just the gener-
alisation of the notion of Green’s function for the Laplace-Beltrami operator. The ex-
istence and uniqueness as well as the properties (e.g. symmetry) of Green’s function
are well known (see, for example, Aubin 2). The classical approach to the construc-
tion of Green’s function is to take Green’s function in R" as the first approximation
locally, and then iteratively regularise the difference with the true Green’s function

until this difference becomes regular enough to use the Lax-Milgram theorem. In our
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considerations we will shortcut this path by taking a local fundamental solution as a
first approximation to the global Green’s kernel. The difference between these two
will then be a smooth section straight away, and we will deal with it by the use of the
Lax-Milgram theorem.

We shall start with the results on the existence of a local fundamental solution
for general elliptic systems in R", and then we restrict ourselves to the case of the

connection Laplacian.

1.3.1 Local fundamental solution for general elliptic systems

Consider a linear differential equation in an open subset U of R"

where 901 is a differential operator acting on vector-valued functions, and u, f are
functions valued in F" (real or complex r-dimensional vector space). This is the same

as the system of r linear differential equations in U C R"

imguﬁ (x)=f%x), (1.19)

wherea,f=1,...,r,x = (xl, e, x"), and zmg are linear differential operators. Note

that here and throughout the text we assume the Einstein summation convention, i.e.
whenever an index in an expression repeats the sum over this index is assumed. The

system is called elliptic in the sense of Petrowsky if

det p(x,&) #0for& #0,
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where p (x, &) is the principal symbol of 90, i.e. if the operator 901 is elliptic. Let L be
a second or first order linear differential operator with smooth coefficients given in a

domain of R" by

Lu= 4 (a”‘ ou )+bi ou +cu
© Oxi 0 xk o xi ’

where a'* assumed to be identically zero for a first order operator. Then its formal

formal adjoint R is defined as

3 —_— av 8 — _
Rv = Fp (alkaxi)_ Ep (blv)+cv.

Given this we say that the system of operators R is the formal adjoint to 9t if the linear
differential operator R4 is the formal adjoint of Mg, for each pair a,f = 1,...,r.
Note that the formal adjoint of the formal adjoint of an operator L is L itself, and a
system is called formally self-adjoint if it is equal to its formal adjoint. One can see
that in the definition of a formal adjoint the indices of R and 9t are lowered. This
brings us to the idea that we should consider R and 9t as bilinear forms. Indeed, the

motivation to consider this definition unfolds in the following proposition.

Proposition 1.3.5. For any smooth F"-valued functions u,v compactly supported in an

open subset V C U the following relation holds

J (Mu, v)p- dx = J (u, Rv)p- dx,
%4 1%
where (, )g: is the standard Hermitian (Euclidean) product in F" and dx is the standard

measure in R".

Proof. Let us consider the Hermitian case, the Euclidean one will follow. The matrix
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of (,)pr is given by the Kronecker delta 6,4, so we can write

J (Mu, v)p-dx = J (zmgu“) émv_ﬁdx = J (Emﬁaua)v_ﬁdx =
1%

\4 \4

o\ 0 i ou’ . ou” \—
= f (Dﬁﬁau )vﬁdx = f (a_xl (aﬁkaax’() +b, ox, + Cpall )vﬂdx,

Vv \%4

where z denotes the complex conjugate of z € C. Taking into account that u and v are

identically zero near the boundary of V we can integrate by parts to get

a 2 ik J — d i B B —
[ (o (et )+ o (47 7 ) e =

— 0 J —
ik i — —
ﬁag—)qvﬂ) + a—x1 (bﬁavﬁ) + cﬂavﬂ)dx =

I
Ra
=y

]
VR
Q
x‘%
~
VS
Q

= fuaf)%aﬁvﬁdx = fu“éayi)“tgvﬂdx = f (u, Rv)pr dx.

Vv v %

We shall say that an r x r matrix G(x, y) is a fundamental matrix in a domain
W C U of the system (1.19) if for every sufficiently differentiable vector function v

compactly supported in the interior of W we have

v(x)= JG (x, y)Rv (y)dy,
w
where ‘R is the formal adjoint of 91.
There are many results concerning fundamental system of solutions to elliptic sys-

tem of equations with coefficients of different regularities. We restrict ourselves to
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the case of elliptic systems with smooth coefficients. The following proposition sum-
marises known results on the existence of a fundamental matrix for elliptic systems

with smooth and analytic coefficients.

Proposition 1.3.6. Let zmg be an elliptic (in the sense of Petrowsky) system of r linear
differential operators with smooth (analytic) coefficients in an open neighborhood U € R"
of the origin. Then there exists an open neighborhood W of the origin and a fundamental
matrix G (x,y) in W of the system 9. The system of functions Gf (x,y) form a smooth
(analytic) solution to

MEGL (x,y) =0

for y # x, where 9 acts on y coordinate. Moreover, there is the following representation

of the fundamental matrix

Gf (x,y)=r"r" [Aﬁ (x,y,1,0) +Bf (x,y,1,¢)]og r] , (1.20)

where we do not sum over YL,x—y = r with r € Ry, [{| =1, A/Yj (x,y,r,¢) and
Bf (x,y,r,{) are smooth (analytic) in their arguments, B)/f =0 for odd n.

The existence of a fundamental matrix for elliptic systems with smooth coefficients
was proven in [32, 33]. Note that Petrowsky in [36] proves the analyticity of a solution
to general (possibly non-linear) analytic elliptic systems. These two works imply the
result in the case of analytic coefficients. The latter is also obtained by the use of a
separate self-contained approach utilizing plane waves in [23].

Note that a restriction of a fundamental matrix in W to an open subset W/ C W is
a fundamental matrix in W’.

We conclude this section with the notion of a strongly elliptic system. The system
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of equations (1.19) is called strongly elliptic in the sense of Petrowsky if

Re pj (x, &) nem’ ) 0,

for real £ and real or complex 7, both not equal to zero. Note that this notion of
ellipticity for systems is the strongest one. One may refer to [34] for an overview of

the different notions of ellipticity for systems and related results.

1.3.2 Local Green’s kernel for the connection Laplacian

Here we specialise the results of the previous section to the case of the connection
Laplacian and Schrodinger operators. Throughout this and the next sections we sup-
pose that the connection Laplacian is acting on a real vector bundle, though we should
note that there is a straightforward generalisation to the complex case. Consider the
connection Laplacian in local coordinates and local orthonormal frame and define a
system of linear differential operators L = +/|g|AF, where |g| denotes the determinant
of a metric g in these coordinates. We will show next that this system is elliptic and
formally self-adjoint. Let p €N, (xl, e, x”) be local coordinates and (¢;,...,¢,) be a
smooth local orthonormal frame in a neighborhood U of p in N, such that x (p) = 0.

We can write

(\/EAEs)a=Lgsﬂ=—|:5g3Xi( |g|giiaxj)+2(bg)jaxj+cg+d;;]sﬂ, (1.21)
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where 5;5‘ is the Kronecker delta, s = sﬁsﬁ is any local section, and the coefficients are

(bg)j = Vlglg™ (f) . (1.22)
ci=a.(b3), (1.23)
d;;: |g|gjk(w$)j(wg)k,j,k=1,...,n, (1.24)

where Wi denote the connection form of V* in this frame, i.e. we have V* £ = WyE,

and (wg)k = w;‘; (Oyx)-
If a connection V* is compatible with an inner product (-,-); on E, we have the

following relation

d(u,v)E=<VEu,v>E+<u,VEv>E. (1.25)

Note that in the orthonormal frame (¢;,...,¢,) the connection form of a compatible
connection is skew-symmetric. This can be seen by applying (1.25) to the orthonormal

frame

0= d5aﬁ = d <€a5 8[5>E = <8Tw;’ 8/5>E + <8a’ 8Ta)}g>E -

=6 pw, + 5(”@73 = Wpgy T Wep, fori =1,...,n,

and concluding that & = —w”, where the superscript T denotes the transposed matrix.

Using this we can prove the following simple lemma.

Lemma 1.3.7. The coefficients (baﬂ )j and c,g are skew-symmetric while the coefficient

d,p is symmetric.

Proof. Skew-symmetry of (baﬁ )j and c,p follows directly from the skew symmetry of
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the connection form w. For d,; we have

dsa = V188" (@p,), 87 (0pa), = V1glg™* (=1) (0,4), 677 (—1) (@4, =
\/Egjk (“)ap)k o (wYﬂ)j =/Iglg" (wap)k (wlﬁ))j = dyy,

where we used the fact that g/* is symmetric. [

For the Schrodinger operator the only difference is in the coefficient d,z, which
will have an additional symmetric term 4/ IgIPaﬁ, and, hence, the result also holds in

this case.

Now we are ready to prove an important proposition.

Proposition 1.3.8. The system Lg associated to the connection Laplacian (or the Schro-

dinger operator) is (strongly) elliptic in the sense of Petrowsky and formally self-adjoint.
Proof. One can see that the principal symbols of L is
pg (x,&) =65/ 1glg" (x) &x&y,

and since 4/|g| is a positive function this guarantees that the system L is strongly

elliptic in the sense of Petrowsky. Indeed, we see that

Re(pg (x,£)n, 7" ) = Re(5¢+/Iglg" () Ex& 0" ) =

Re (v/IglIEIZ Inl*) = v/l IEN2 lInll* # 0,

for non-zero vectors £ and 7. Let us now show the formal self-adjointness of Lg. For
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this we find its formal adjoint R to be
Rup =—[6pa0. (V181870 ) — 28,0 (bpa) + cpu+dga |-
Using the symmetry of ¢/ and Lemma 1.3.7 we obtain

Rap = —[ 8050 (V1818780 ) + 28 0 (bup) —cup +dup |-

It is left to see that the operator in the second term acts as
28,10 (bap) =2 (bap) 80 +2(80 (bep)' ) = 2(bup) 8 + 205,

so we have

Rap = [ 845 (V1818780 ) + 2 (bup) B+ 20p —cup +dup | =

= —[6up8 (V1818700) + 2 (bap) B + Cap +dup | = Lu,

showing that L is formally self-adjoint. O

Corollary 1.3.9. The connection Laplacian A® and the Schrédinger operator L, are

elliptic (pseudo)differential operators.

Proof. The principal symbols of both operators coincide and are equal to

Pi(x, &) = 528X (x) Ex,
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which has a determinant equal to

(gkl (X)gkgz)r = |§|§r >0,

forallx e N, & € TN\ {0}. ]

In order to construct the global Green kernel on N we need to show that there is
a local Green kernel near the interior point p € N. Namely, there is an open subset
U > p trivializing E and a Green kernel G on U. This means that for any v € Z (E|;)

we should have the identity

V(x) = f <G(x’y),AEV (-y)>EdVg,J"

U

Using the results in the previous section we prove the following lemma.

Lemma 1.3.10. For any interior point p of N there is a local Green kernel (for the

connection Laplacian or the Schrédinger operator) near p.

Proof. By Proposition 1.3.8 the system Lg is elliptic and formally self-adjoint, there-
fore, by Proposition 1.3.6 there is an open neighborhood W of x (p) and a fundamental

matrix Gy (x, y) satisfying
v (x) = JG;;‘ G, V)LV (1) dy,
w

where dy is the standard measure on R", and we used the fact that L is formally
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self-adjoint. Note that this can be rewritten as

v (x) = f Gs (e, V18I (A%v (1)) dy =

w

_ f G (x,)5,5 (A5 (1)) VIg Oldy =

w

:J (6% (6,0, A% (1), dV,, (1.26)
w

where 6,4 represents the fiber inner product in the chosen orthonormal frame. From

(1.26) we see that G** (x, y) represents the local Green kernel near p. ]

Note that this follows also from Theorem 1.1.3 and the existence of a solution to
the Dirichlet problem for the connection Laplacian. Let us point out that a restriction
of a Green kernel on U to an open subset U’ C U is a Green kernel on U’. In conclusion,

let us prove the lemma which will be used in the next section.

Lemma 1.3.11. Letp €N, (xl, e, x”) be local coordinates and (¢4, ..., €,) be a smooth
local orthonormal frame in a neighborhood U of p in N. Let X = X'3. be a smooth vector
field in U. Then & = |1/§ | Vf; is a first order linear differential operator (system) with

smooth coefficients and its formal adjoint is

2 =|ygIVE —|/glIld - divX,

where divX = |—‘/1§|3xi (|\/§ |X i) is the divergence of X. In particular, the relation

f (Viu,v)E dV, = —f (u, Vf;V)EdVg —J (divX) (u,v)g dV,

U U U
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holds for all u,v € Z (E|,).

Proof. For any local section s = sﬁeﬁ we have
(vl vis) = 255" = (55 - IVElX a0+ v/glx (wf), )s",

SO | Vg | V% is indeed a first order linear differential operator with smooth coefficients.

To find its formal adjoint we write

Rop =—0pq " Oy o(lvglX") +vglX! (wﬁa)i'

Note that the first term acts as

_5(1[5 : |\/§|Xiaxi _5(1[3 : (axi (l\/ngl))s

and w is skew-symmetric. Therefore, we obtain

Ry =—8up - |VEIX B — | VEIX (00p), = Bup - (8 (1VEIX)) =

1 .
:_gaﬂ - |1/§| 501/3 : w(axi (l\/glxl)) :_"%a[a’ _|1/§| 6a[5 'diVX;

which proves the desired

R =148 Vi —1/glId-divX.

Finally, the integral relation follows from Proposition 1.3.5. ]
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1.3.3 Green’s kernel for the connection Laplacian

This section is devoted to the proof of the existence of the global Dirichlet Green kernel

for the connection Laplacian and the Schrodinger operator.

Proposition 1.3.12. Let N be a compact smooth (analytic) Riemannian manifold with
boundary, E be a smooth (analytic) Euclidean bundle over N with a compatible (an-
alytic) connection VE. Then there exists a unique (analytic) Dirichlet Green kernel G
for the associated connection Laplacian AE (or the Schrédinger operator with (analytic)

potential).

Proof. We showed the uniqueness of G in Corollary 1.3.2. Let us now prove the ex-
istence of the Green kernel for the connection Laplacian. Let us fix a point p in the
interior of N. By Lemma 1.3.10 there is an open neighborhood U > p and a local
Green kernel G (x, y). Let u(y) be a smooth cutoff function on N, such that u(y) is
equal to 1 in some open neighborhood V C U of p and has a compact support in U.
Consider a smooth section u(y)G (x,y) defined on V x N away from the diagonal.

For any section s € Z (E) we have

J (LG (x,y), Afs (), dV, , =

N

:f<M(y)é(x,y),AE3(J’)>EdVg,y:

U

= f (G, y),u()AFs (), dV,,,

U

where the first equality is due to u being compactly supported in U. Note that the
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following identity holds

pAEs = AF(us) + (A u)s — ngradg S5
where A, = —div, o grad, is the positive Laplace-Beltrami operator. Plugging it into

the integral we have

f <G (¢, y), AF(us) — (Agu)s — 2V§radg“s>E dv,, =

U

= .M(X)S(X)""f <(Ag.u) (}’)G(X,J’)as(y)>EdVg,y_

U

_J <G (x,y), 2V§radgus (y)>E dv,,.

U

Using Lemma 1.3.11 we see that the last integral is equal to

—2f (VEa1uG (6, 3),5(3)) dV,, + 2f (81) (G (x,3),5 (1)), AV, .
U U
where we used the fact that u is compactly supported and equals to 1 on V > x.

Therefore we obtain

J (DG (0, ), A% (), AV, , =

N

—s (x)_f ((Agu(y) + 2v§radgu) G(x,y),s(y)>E AV, =

N

:s(x)—J (R(x,¥),s(¥))gdVy,-
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Note that the section

R(x, )= (Bgu(y)+ 2V grad, o) G Y)

is well defined and smooth on V x N due to the properties of u. Now let us define
G,(x,y) =u(y)G(x,y)+ G(x,y), where G (x,y) is the smooth solution to (1.15)

with ¢ (y) =R(x,y), i.e. we have

APG(x,y)=R(x,y) y€N,

G(x,y)=0 y € ON.

We argue that G, (x, y) is the desired Green kernel for x near p. Indeed, we have

J (G, (x,y),A%s (), dV, , =

N

:f<M(J’)G(X,J’)+é(x’J’):AES(y)>EdVg,y =

N
=5 (x)~ J (R(x.7)5 (1) dV,, +f (A%G 0, 1),5 (1)), 4V, =5 (x).
N N

In addition, in light of Proposition 1.3.6 and our construction of G, we conclude that
it is smooth on V x N\diag(V), G,(x,y) = 0 for y € N, and the integral of y —
|Gp (x, y)| is finite. The global Dirichlet Green kernel G (p, y) for any interior point
p can be defined now as G, (p,y). This will not depend on the choices we made
when constructed G, due to Lemma 1.3.1. Note that G (x,y) = G,(x,y) forx € V,
Yy € N by Lemma 1.3.1, which gives the smoothness of G (x,y) for x € N™, y € N.

Now by symmetry from Lemma 1.3.3 we can continue G (x, y) smoothly to x € N,
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x # y € N. Finally, in the analytic case the analyticity of G is due to the fact that
ATG(x,y)=0,

for y # x, and the analyticity of a solution to elliptic system with analytic coefficients
[23, 36]. One can see that the proof for the Schrodinger operator is a straightforward

generalisation. O

We know that in the sense of distributions we have for the connection Laplacian

(or the Schrodinger operator)
ATG(x,y)=1d-5,(y). (1.27)

In other words G (x, ) € 2’ (E) is a distribution for each x € N. It is well known that
the right hand side of (1.27) belongs to the Sobolev space W (E) with k > %, where

n = dim N. Therefore, from the elliptic regularity theorem we have
G(x,)e W (E), (1.28)

where k > 7.

1.3.4 Construction of the Green kernel using parametrix

In this section we sketch a construction of the Green kernel using a general the-
ory of PDOs. Let us consider (N ,g,E,VE () E) as the restriction of the structure
(1\7, g,E, VE, (,)E) to N, where N ¢ N and (N‘,g) is a closed (i.e. compact without

boundary) Riemannian manifold. The connection Laplacian A* is an elliptic differen-
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tial operator. Using Theorem 1.1.3 we see that it has a parametrix ¥,, i.e. we have
the equality
goAE == Id + %,

in N, where Z# is a smoothing operator. Since % is a smoothing operator it has a

smooth kernel R (x,y) € C*° (N x N; E R E), meaning that
f%u (x) = f (R(ny):u(y))Ey dVg,y'
N

Now, we know that there is a smooth section K (x,y) € C*° (N x N; E R E) such that

AK(x,y)=R(x,y) inN,

K(x,y)=0 on JN.

This section defines a smoothing operator
Hu(x)= f (K6, y),u(y))g, dVy,-
N

Let us consider the difference ¢, — .%#". Its composition with the Laplacian acts on

ue 9(E|y) as

(G, — ) ANFu=9G AN u— o APu=u+Ru— H Au=

=u +%’u—J (K (x,y),AEu(y)>E dv,,

N
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and using the symmetry of the connection Laplacian we get

u+,@u—J <A§K(X,J’),U(J’)>Ey dVg,y+

N
E —
+ f (VE K (6,3, (y)>Ey ds, =u.
3N
Therefore, we see that the pseudodifferential operator ¢ =%, — %  is the left inverse
to the connection Laplacian. Its kernel G (x,y) is a Green kernel of the connection

Laplacian.

1.4 Method of the layer potentials for the scalar DtN

operator

1.4.1 Single- and double- layer potentials

By the scalar Dirichlet-to-Neumann operator we mean the DtN operator associated with
the Laplace-Beltrami operator A. In this section we obtain some properties of the
scalar DtN operator using the method of layer potentials. We start by introducing the
layer potentials and their relation to the DtN operator. This material is well known and
we follow closely the exposition in [41, Chapter 7]. Let Q be a compact n-dimensional
Riemannian manifold with boundary. Suppose Q C M, where M is an n-dimensional
Riemannian manifold without boundary, and on M there is a fundamental solution
E(x,y) to the equation

A E(x,y)=6,(x), (1.29)
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where E(x,y) can be thought of as the Schwartz kernel of an operator E(x,D) €

U~2(M). Assume that E(x,y) = E(y, x). Then we have as x — y

E(x,y) ~c,dist(x,y)* " +..., n>3, (1.30)

E(x,y)~c,logdist(x,y)+..., n=2,

where ¢, = —[(n—2)Area(S" )] for n > 3, ¢, = 1/2, and dist (x, y) denotes the
distance between x and y [2, 41]. We define the single- and double-layer potentials

of function f on 91 as follows

ZLf(x)= Jf(y)E(X,y)dS(y), (1.31)
20
and
OE
2Lf(x)= Jf(y)ﬁ(x,y)ds(y), (1.32)
20 Y

for x € M\ 9. Given a function v on M \ 912, for x € 9Q, let v, (x) and v_(x) denote
the limits of v(z) as z — x, from z € Q and z € M \ 2 = 0, respectively, when these
limits exist. Then we can write the following properties of these layer potentials [41,

Chapter 7, Proposition 11.1]. For x € dQ2 we have
S fx)=F1 f(x)=Sf(x), (1.33)

21, f(x)= :I:%f(x) + %Nf(x), (1.34)
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where &1, f(x) and 21, f(x) denote (1 f), (x) and (21 f), (x), respectively, and

forx € 9Q
Sf(x)= ff(}')E(x,y)dS(y), (1.35)
El9)
JE
Nf(x)= ZJf(y)ﬁ(X,y)dS(y)- (1.36)
20 Y

By [41, Chapter 7, Proposition 11.2] we have the following
S,N € 7 1(9Q), S is elliptic. (1.37)
Now, recalling the definition of the Dirichlet-to-Neumann operator A, we can write

f [f(y)j—f(x,y)ds(y) — Af(y)E(x,y)] dS(y) =21 f(x)— FLAf(x), (1.38)
y

a0

for x € M \ 99, and using Green’s formula, we conclude

u(x), xe€q,
9l f(x)—FLIAf(x) = (1.39)

0 xeM\Q,

where u is a harmonic extension of f to Q. Taking the limit of (1.39) from within ©,
and using (1.33) and (1.34), we get f =(1/2)f +(1/2)Nf —SAf, which implies the
identity

SA = —%(1 —N). (1.40)
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Now, by Green’s formula,

(Af, 8)1200) = —(du, dVv) 20y = (f, Ag) 120505 (1.41)

where u and v are harmonic extensions to 2 of f and g, respectively. In other words,

we see that A is symmetric.

Proposition 1.4.1. The Dirichlet-to-Neumann operator A in 9% is an elliptic pseudod-

ifferential operator of order 1.

Proof. By (1.37) the operator S is elliptic and so admits a left parametrix R, i.e. an
operator R such that R € ¥}(dQ) and RS = I +R_,, with R_., € ¥~°°(3Q). Multiply-
ing (1.40) by R from the left we get A = —%(R—RN) —R__,A. Therefore, we see that
A € ¥'(9Q). The ellipticity of A follows from the ellipticity of R, as a parametrix of

the elliptic (1.37) operator S. O

1.4.2 Neumann Green’s function

Let us take a closer look at the relation (1.40). We see that if we could make N
to be identically zero, then the operator —2S would be the left inverse to A. This
is equivalent to the requirement that E is the Green function on 2 with Neumann

boundary condition, i.e. we should have

AyE(x,y)=0,(y) inQ,

[fTE(x,y):O on 9N.
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Unfortunately, this boundary value problem does not have a solution. Indeed, due to

Green’s identity we ought to have

J;—f(x,y)ds (Y):fAyE(x:J’)dS (y)=J5x (ds(y)=1, (1.42)

y
a0 Q Q

which contradicts ;—VE(x, y) being identically zero on the boundary. On the other hand,
y

if we require

JE (x.y) = 1

av, YT Vol (89)
for any x € Q and any y € 91, then the condition (1.42) will be met. Therefore, it
is natural to define the Neumann Green’s function as a solution to the boundary value
problem

A,G(x,y)=06,(y) inQ,
(1.43)
5—fy(x,y) = —vOz(lasz) on 9Q.

If this problem has a solution then it is unique up to a constant if we add the symmetry

condition. More precisely, we have the following result.

Proposition 1.4.2. Let 2 be a compact Riemannian manifold with boundary 9. Sup-
pose there is a symmetric Neumann Green’s function G (x, y) on . Then it is unique up

to a constant. In particular, if we add the normalisation condition, e.g.

JG(x,y)dS(y)=0,

aQ

then the normalised symmetric Neumann Green’s function is unique.

Proof. Suppose G (x,y) is another Neumann Green’s function. Then the difference
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H(x,y)=G(x,y)—G(x,y) satisfies

A H(x,y)=0 inQ,

g%(x,y)zo on 0.

By elliptic regularity H (x, y) is smooth on y variable in . Using the boundary condi-
tion, we see that H (x, y) belongs to the kernel of the Dirichlet-to-Neumann operator,
which consists of constants. Hence, H does not depend on y, and by symmetry it does

not depend on x also, i.e. H is constant. The last statement follows immediately. [

Now, if we define the single- and double- layer potentials using this Neumann

Green’s function, then from the identity (1.40) we obtain
—25A =1

on the subspace of functions orthogonal to constants. From this identity we conclude
that the Dirichlet-to-Neumann operator defines the restriction of the normalised Neu-
mann Green’s function to the boundary. In particular, if there are two compact mani-
folds with diffeomorphic boundaries such that the DtN operators are naturally equiv-
alent under this diffeomorphism, then the restrictions of the normalised Neumann

Green’s functions to the boundary are naturally equivalent under this diffeomorphism.
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1.4.3 Cases when S is invertible

Let us look closer at the operator S defined before. We can try to solve the problem

Au=0, inQ,
(1.44)
u=f, on 99,
in terms of single-layer potential. If we consider
u(x)=Slh(x), xeqQ, (1.45)
then (1.44) is equivalent to
f =Sh. (1.46)

The single-layer potential has the following important property [41, Chapter 7, Propo-

sition 11.3]. For x € 90, we have

d o)
. = —h. 1.4
3v5ﬂl+ h(x) avyl_h(x) h (1.47)

Now we can prove the following theorem concerning the kernel of S.

Theorem 1.4.3. Let M be a complete simply connected n-dimensional manifold with
E(x,y) — 0 as dist(x,y) — oo, where n > 3 and E(x,y) is a fundamental solution of
the Laplace operator on M. If Q is a compact connected domain of M with non-empty

smooth boundary and connected complement, then S has a trivial kernel.

Proof. Suppose h € C°(d2) belongs to the null space of S. Then, by (1.46) and the
uniqueness of the solution to (1.44) with f = 0, we have &lh(x) = 0 on Q. By
(1.47), the jump of (8/3v)1Lh(x) across 92 is —h, so we have for w = <L h|, on
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the complement ¢ = M \ Q that
Aw=0ono0, —| =h. (1.48)

Note also that w(x) — 0 as dist(x,d) — +o0, this is a consequence of w = Sl h
and the definition (1.31) of the single-layer potential. From (1.33) we see that &l h
does not jump across 92, and since, by supposition, Sh = 0, we also have w = 0 on
d9Q. The maximum principle for harmonic functions [17, Chapter 8] forces w = 0 on

0, so h =0, which completes the proof. l

This theorem is a slight generalisation of the result in [41, Proposition 11.5] con-

cerning the case M = R".

Remark. Using Theorem 1.4.3 we can give a different definition of the Dirichlet-to-
Neumann operator on manifolds satisfying the conditions of the theorem. We simply

multiply (1.40) on the left by the inverse of S to get
1 -1
A= _ES (I—N). (1.49)

Note that for an arbitrary compact manifold 2 with boundary we can always define
the DtN operator via (1.49) by an appropriate choice of M and E (x, y). Namely, we
can chose M to be a compact manifold with boundary 8 M, such that Q is contained
in the interior of M, and E (x, y) to be the Dirichlet Green’s function on M. The proof
of the invertibility of S in this case is almost identical to the proof of Theorem 1.4.3.

Indeed, instead of the convergence of w(x) to zero at infinity we have w(x) = 0 on
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J M, which follows from

w(x)=S1h(x)= Jh(J/)E(x,y)dS(y),
a0

and the fact that E (x, y) is the Dirichlet Green’s function, i.e. E(x,y) =0forx € dM.

In the next two sections we discuss the possible circumstances under which the
required asymptotic behavior in Theorem 1.4.3 takes place. We show that these can
be non-positivity of the sectional curvature or non-negativity of the Ricci curvature.
In the former case we derive the required behavior from the heat kernel comparison,

and in the latter case from the Li-Yau estimates for Green’s function, when it exists.

1.4.4 Comparison theorem for heat kernel on manifolds with non-

positive sectional curvature

We know from [37] that if M is a complete Riemannian manifold, then there exists a

heat kernel H(x, y,t) € C*°(M x M x R*) such that

H(x,y,t)=H(y,x,t), ltingH(x,y, t)=0,(y), (1.50)

(A— %)H =0, H(x,y,t)= JH(x,z, t —s)H(z,y,s)dz.

The last equality is a heat semigroup property. If M is compact with non-empty bound-
ary then there exists a heat kernel subject to Dirichlet or Neumann boundary condi-
tions [17, 37]. We will need the following additional properties of the heat kernel for

the proof of the heat kernel comparison theorem. Let us state them according to [37].

Lemma 1.4.4. On a complete Riemannian manifold the heat kernel H(x, y, t) is a strictly
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positive function for all t.

Lemma 1.4.5. Let B(x,R) be a geodesic ball of radius R with center x in a space form
(i.e. complete connected Riemannian manifold of constant sectional curvature), then its

) . . oH
heat kernel H(x, y,t) is only a function of r = dist(x, y) and t, moreover, 5~ <O0.

Using these Lemmas, we can prove the following heat kernels comparison theorem
for manifolds of non-positive sectional curvature, which is a counterpart of Cheeger-
Yau comparison theorem for manifolds with non-negative Ricci curvature [37, Chapter

III, Theorem 2].

Theorem 1.4.6. Let M be a complete Riemannian manifold with sectional curvature
ky(o) < k < 0. Fixing an arbitrary point x € M and a r, > 0, the heat kernel

H, (x,y,t) of B(x,ro) and the heat kernel &, (r(x, ), t) of V(x, ;) satisfy
&, (r(x,y),t) = H, (x,y,t), (1.51)

where B(x,r,) C M is the ball of radius r, centered at x, V(k,r,) is the ball of radius
ro in the space form of curvature k, and boundary conditions will either be Dirichlet or

Neumann.

Proof. Let us follow the proof of [37, Chapter III, Theorem 2] adjusting it to our case.

Using the properties of the heat kernels (1.50) we can write the following sequence
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of equalities

H(x,y,t)—&(r(x,y), t)—J f —(é”(x z,t —s)H(z,y,s))dzds =

B(x, ro)

— _f L(X GG _S)[g(r(x,z), t—s)]H(z,y,s)dzds+
+ J f E(r(x,2),t —s)iH(z, y,s)dzds =
B(x,rg) ds
= _J f A&(r(x,z),t —s)H(z,y,s)dzds+
B(x,rg)

t
+ f f &(r(x,z),t —s)AH(z,y,s)dzds,
B(x,rg)

where A, A are respectively the Laplacian operators on the space form and M. Using

the second Green’s identity and either Dirichlet or Neumann boundary conditions, we

get
-
&-AH = A& -H.
B(X,ro) JB(X,ro)
Hence,
t r 3
H(x,y, t)—&(r(x,y),t) :f (—A&+ A&) - Hdzdt.

0 JB(x,rg)
By Lemma 1.4.4, we know that H > 0. Thus, for the proof of the theorem it is sufficient
to show that (A—A)& < 0. Let (1, £), where r € (0,1,), £ € S™!, be geodesic spherical
coordinates on the ball B(x, r,). Then the operators A and A have the following forms:
. 02 dlog +/det g
A= 901, $(r) = — ==,

2 dlog+/d
A= (DS plr, 8= “EVEEE,

where g and g are Riemannian metrics on the ball B(x, r,) € M and the ball V(k, r,) in
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the space form of curvature k, respectively, and det g is the determinant of the metric
g. Since sectional curvature k(o) < k < 0 by the Volume Comparison Theorem
of P Gunther and R. L. Bishop (see, for instance, Theorem III.4.1 in [8]) we have
¢(r,&) > ¢(r). Therefore (A —A)& = (¢(r,&) — ¢ ()% < 0, where we have used

the inequality g—f < 0 provided by Lemma 1.4.5. O

Let G, (x,y) be the Dirichlet Green’s function for the ball B(y,r,) € M. From

[17, 37] we know that it can be defined by

G, (x,y) =J H, (x,y,t)dt,
0

where H, (x,y, t) denotes the Dirichlet heat kernel on the ball B(y, r,), assuming that
the integral on the right converges. Using Theorem 1.4.6 we can derive the compari-
son for Dirichlet Green’s functions on balls in M and R". Indeed, it follows easily from

the theorem and (1.50) that for a fixed y € M, x # y, and all r, > 0 we have

(o]

G, (x,) :J H, (x,y,t)dt Sf &, (r(x,y), t)dt =G, o(r(x,y)), (1.52)
0 0
where G, ,(r(x, y)) is the Dirichlet Green’s function for the ball of radius r, in R". By
[2, Theorem 4.4] the spectrum of the Dirichlet Laplacian on a ball is strictly positive.
Combining this with [17, Theorem 13.4] we see that both integrals in (1.52) converge

for distinct x and y. As a consequence of properties (1.50) Dirichlet Green’s function
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is smooth for x # y, and satisfies

AG, (x,y)=6,(x), G, (x,y) =0, (1.53)

G,,(x,y) =0, for all x € 3B(y, ro).

Now, assuming that M is simply connected, we have the following useful corollary.

Corollary 1.4.7. Let M be a simply connected complete n-dimensional Riemannian man-
ifold with sectional curvature k;(0) < 0, n > 3. Then there exists a positive fundamental

solution with the following asymptotic behavior
E(x,y)— 0asdist(x,y) — oo, (1.54)

where E(x, y) is a fundamental solution to the Laplace equation (1.29) (an entire Green’s

function on M).

Proof. Fix an arbitrary point y € M. Let R, > R; > 0 and x € B(y,R;). By the

maximum principle for harmonic functions [17, Chapter 8], we have

GRZ(X:J’)ZGRI(X,}’) VXEB(%R1)\{}’} (155)

The Dirichlet Green’s function for a ball B(y,R) in R" is Gg.o(r(x,y)) =c, |x — yPP" =

¢,R>™". Proceeding to the limit R — 0o, we get

Eo(r(x,y)) =c,lx—yI"™" (1.56)
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the entire Green’s function on R". From (1.55) and (1.52) we have

Gr(x,y) < Eo(r(x, ¥)), (1.57)
for any R > 0. This allows us to define

E(x,y) = lim Gg(x,y) (1.58)

and check that E(x, y) is an entire Green’s function on M. This can be done by using
the bound (1.57), the monotonicity (1.55), and Harnack’s principle (see, for example,
[17, Corollary 13.13]). Now, varying y € M, we get E(x,y) as a smooth symmetric
function of (x,y) € M x M \ diag(M). From (1.56), (1.57), and (1.58) we get the

desired behavior, since |x — y|*™" — 0 as dist(x, y) — oo. ]

1.4.5 Li-Yau estimates for Green’s function on manifolds with non-
negative Ricci curvature
The second class of manifolds that admit vanishing at infinity entire Green’s function is

complete Riemannian manifolds with non-negative Ricci curvature. We define Green’s

function on a complete Riemannian manifold as before by

G(x,y)= J H(x,y,t)dt,
0

if the right hand side converges. According to [17] it is not always the case. For
example, if M is compact then the right hand side is infinite everywhere and there is

no fundamental solution of the Laplace operator on M. On the other hand, if G(x, y)
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is finite (for all distinct x, y € M), then it is positive by Lemma 1.4.4 and represents
a fundamental solution of the Laplace operator. In particular, we see that for the
Euclidean plane the Green function defined in the above way does not exist (not finite),
since the integral diverges, see details in [17, p. 342].

Under the above assumptions on a manifold we have the following estimate [37,

Theorem 4.13].

Theorem 1.4.8. Let M be a complete Riemannian manifold without boundary and with

Ric(M) = 0, if G(x, y) exists, then

oo (o]

dt dt
S G(X, .y) S C2(n)

G
™ 2y Ve(VD) 2 Ve(VD)

and

oo oo

c\(n) d < G(x,y) < Cy(n) i

e Ve (VOV, (VD) ) Ve (WO, (VO

where V,.(+/t) = Vol(B,(+/t)) and C,(n), C,(n) are positive constants depending only on

the dimension n of M.

From the above theorem we get the following result for an asymptotic behavior of

Green’s function.

Corollary 1.4.9. Let M be a complete Riemannian manifold without boundary and with

Ric(M) = 0, if G(x, y) exists, then G(x,y) — 0 as dist(x,y) — +00.

Using Theorem 1.4.8, we can also find an examples of manifolds that do not admit
a positive Green’s function. Indeed, let us take, for example, a cylinder " x R with

a product metric of canonical metrics on S"~! and R. We have Ric(S" x R) > 0. Note
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that for a point x = (p,7) € S x R the ball B,(+/t) is contained in the product
St x [t — +/t,7T + +/t]. Hence, we conclude that V,(+/t) < 2Vol(S" 1)+/t. Then for

any £ > 0 we have

“dt 1 < dt
= — =+00.
L V.(JD) - 2Vol(s™ ) | Vi

This leads to a contradiction if we suppose that G(x, y) exists and then apply Theorem
1.4.8. So we conclude that there is no positive Green’s function on S"! x R with the

canonical metric.



Chapter 2

Calderon’s problem for the connection

Laplacian

2.1 Introduction

Let (N, g) be a compact connected Riemannian manifold with non-emtpy boundary
0N, and let E — N be a Euclidean vector bundle endowed with a compatible connec-
tion V. Consider the connection Laplacian AF associated with the connection V.
It is a natural generalisation of the Laplace-Beltrami operator. We define the corre-
sponding Dirichlet-to-Neumann (DtN) operator A, yx by sending a section ¢ on the
boundary dN to the outward normal covariant derivative of its harmonic extension.
In this chapter we study the DtN operator A, y: as a pseudodifferential operator
on the boundary. We follow the strategy in the paper [31] by Lee and Uhlmann for the
Laplace-Beltrami operator. They showed that the Riemannian metric on the boundary
can be recovered from a given DtN operator. In addition, if the dimension of the man-

ifold is greater than 2, they showed that all the normal derivatives of the metric can
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be recovered as well. This result was used in [31] to recover a Riemannian manifold
from the DtN operator under some assumptions on the geometry and topology of a
manifold, and subsequently in [27, 28] under the assumption of real-analyticity. This
method also appears in the work of Ceki¢ [7] on Calderdén’s problem for Yang-Mills
connections.

It is well known that a Riemannian metric on a manifold can be recovered from
the Laplace-Beltrami operator. This can be done by considering the principal symbol
of the Laplacian which is equal to |& |§(x), where £ € TN, x € N. The Dirichlet-to-
Neumann operator is a classical elliptic pseudodifferential operator of order one on the
boundary. Therefore, it is natural to use the same idea for the recovery of the geometric
data on the boundary from the DtN operator. There is a local factorisation of the
Laplacian into the composition of two operators near the boundary which establishes
the relationship between the symbols of the DtN operator and Laplacian. In particular,
it turns out that the principal symbol of the DtN operator is the (minus) square root
of the principal symbol of the boundary Laplacian. Therefore, the principal symbol of
the DtN operator is equal to — [£] | , and it is straightforward to determine the metric
from it. The rest part of the symbol is expressed in terms of the local geometric data
in a more sophisticated way. By analysing these expressions we are able to recover
the geometric data on the boundary from the full symbol of the DtN operator. More

precisely, we prove the following result.

Theorem 2.1.1. Suppose dimN =n > 3. Let (xl, . ..,x”_l) be any local coordinates
for an open set W CIN and (€4, ...,€,) any local frame of E over W, and let {Aj, S 1}
be the full symbol of the DtN operator A in these coordinates and local frame. For any
p € W, the full Taylor series of g and V¥ at p in boundary normal coordinates and

boundary normal frame is given by an explicit formula in terms of the matrix functions
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{}\j} and their tangential derivatives at p.

On surfaces, the DtN operator naturally scales under the conformal changes of a
metric. As a consequence, we cannot recover the normal derivatives of a metric and

a connection at the boundary. So the result in this case is a bit weaker.

Theorem 2.1.2. Let (N, g) be a Riemannian surface. Let (xl) be any local coordinate
for an open set W CON and (€4, ...,€,) any local frame of E over W. Let {Aj, j< 1} be
the full symbol of the DtN operator A in these coordinate and local frame. Then for any
p € W the metric g and the connection VE at p in these coordinate and frame is given by
an explicit formula in terms of the matrix functions {Aj} and their tangential derivatives

at p.

2.1.1 Well-posedness of the generalised heat equation and regu-

larity of its solution.

In this subsection we describe the result by Treves [42, III.1]. In order to be precise
we introduce the original setting. Let X be a smooth manifold; n = dimX; t be the
variable in the closed half-line R, ; T be some positive real number.

We shall deal with functions and distributions valued in a finite-dimensional Hilbert
space H over C. The norm in H will be denoted by ||, whereas the operator norm in
L (H), the space of (bounded) linear operators in H, will be denoted by ||-||. The inner
product in H will be denoted by (:,)y. The space of H-valued distributions in X will
be denoted by 2’ (X; H).

Let A(t) be a pseudodifferential operator of order 1 in X, valued in L (H), de-
pending smoothly on t € [0, T). If we fix basis in H, then A(t) is a matrix whose

entries are scalar pseudodifferential operators in X. This means that in every local
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chart (2, x4,...,x,), A(t) is congruent modulo smoothing operators which are C°-

functions of t to an operator

Ag(Du(x) = (2ﬂ)_"f e Cag (x,t,8)0(8)dE, ueC(QH),

where ag, (x, t, &) is a smooth function of t € [0, T) valued in S (Q; L (H)), the space
of symbols valued in L (H).
According to Treves [42, II1.1], the heat equation for A(t) is well-posed and pos-

sesses a regularity property described below if the following conditions are satisfied:

1. Let(9,x4,...,Xx,) be anylocal chart in X. There is a symbol a, (x, t, &) satisfying
aq (x,t,&) is a C* function of t € [0, T) valued in S* (Q; L (H)),

and defining the operator A, (t) congruent to A(t) modulo smoothing operators

in Q depending smoothly on t € [0, T), such that

2. to every compact subset K of Q x [0, T) there is a compact subset K’ of the open

half-plane C_ = {z € C; Rez < 0} such that

3. the map

0 (x,6,6) tg/) ‘HoH
(1+1€)

is a bijection (hence also a homeomorphism), forall (x,t) €K, £ € R,z € C\K'.

z-Id—

The regularity property that we are interested in is described in the following theorem

[42, III, Theorem 1.2].

Theorem 2.1.3. Let & be an open subset of X, u a C* function of t in [0, T') valued in

92'(X;H).



71 2.2 Reconstruction of the geometric data on the boundary

Suppose that u(0) € C*° (0’; H) and that

%—A(t)ue C*(0x[0,T);H).

Thenue C*® (0 x[0,T);H).

This theorem is one of the main ingredients in the proof of Proposition 2.2.4, which

relates the symbol of the DtN operator to the symbol of the connection Laplacian.

2.2 Reconstruction of the geometric data on the bound-

ary

In this section we find the relation between full symbols of the DtN operator and the
connection Laplacian, and then use this relation to prove Theorem 2.1.1. We follow
the general strategy used in [31] for the DtN operator associated with the Laplace-

Beltrami operator.

2.2.1 Local factorisation of the connection Laplacian

Let us recall the construction of geodesic coordinates with respect to the boundary.
For each g € N, let v, : [0,€) — N denote the unit-speed geodesic starting at q and
normal to dN. If {xl, e x”_l} are any local coordinates for N near p € dN, we can
extend them smoothly to functions on a neighborhood of p in N by letting them be
constant along each normal geodesic y,,. If we then define x" to be the parameter along
each y,, it follows that {xl, el x”} form coordinates for N in some neighborhood of p,

which we call the boundary normal coordinates determined by {xl, cees x”_l}. In these
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coordinates x" > 0O in the interior of N, and JN is locally characterised by x" = 0.

The metric in these coordinates has the form
n—1
g =Z g (xh, .. x") dxidx + (dx™).
ij=1

Let (€4,...,€,) be a smooth local frame of E|,y near p € dN, we can extend it to
a smooth local frame (¢,,...,¢,) in a neighborhood of p in N by means of parallel
transport along each y,, i.e. for each g we find the unique solution to the parallel

transport equation

E —
quea =0,

salyq(o) =e€, fora=1,...,r.

We call this frame the boundary normal frame determined by (¢4, ..., €,). In boundary

normal coordinates we have then

vE

3/ax“

£, =0. 2.1)

In local frame a section u is represented as a vector-valued function on N and the
connection V* acts as

Viu=du()+w()u,

where w = cokdxk denotes the matrix of the connection form of VZ. From (2.1) we

d
= =0.
o= os)

Remark 2.2.1. If the connection V* is compatible with an inner product (-,-); on E,

have then
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we have the following relation
d(u,v), = <VEu,v>E+<u,VEv>E. (2.2)

Note that if the frame (€4, ..., €,) is orthonormal then the associated boundary normal

frame is also orthonormal, since we have

%,
PR (earep )y = <Vf€a, 8/5>E + <sa,erﬁ>E =0
<8a’€ﬁ>E|t:0 = <€a’ 6/5>E =0,a 7& /3’

<8a> 8a>E|t:0 = (6(1: 6a>E = 1'

We will use further the following notation, x = (x’,x"), x’ = (xl, e, x”‘l), 0, =
9/axi, D,j =—10,;, and D, = (D,,...,D,.), with similar definitions for D,., d,, and J,..

As usual the Einstein summation convention will be assumed throughout.

In boundary normal coordinates and boundary normal frame, the connection Lapla-
cian is

Afu=Au+ gV [Zwiaxju + ((Vaxico) (8,) + wiw]-) u] ,

where (g'/) is the inverse of the matrix (g;;), A is the (scalar) Laplace-Beltrami oper-

ator on N. We can write

n—1
Lu:=Afu= [A+ i Z VD, +Q] u,

j=1
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where

Vi=2g"%w,, j=1,...,n—1

n—1

Q :Z g! [(Vaxico) (0,i)+ coicoj] .

i,j=1
The Laplace-Beltrami operator in boundary normal coordinates can be written as
- 1
Au =Z 0 0, (0" g"u) = 8mdu+ 3 (3,x10g 0) 8.nu+
i,j=1

n—1
. 1 .. .
+ Z (g”axi O+ Eg” (8,11og ) O, u+ (8,:g") 8xju) ,

ij=1

where p = det (gij). Using this we can write
—L=—A—iV'Dy—Q=D? +iF (x)D,n +Q(x,D,.), (2.3)

where

n—1
OO =5 2, 8 (008 (),

k=1

n—1
Q(x, D)= g (x) DuDy—
k=1

n—1

k,1=1

The Dirichlet-to-Neumann operator in boundary normal coordinates and boundary
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normal frame is

du

& voIoN dxn

B
oN ON

where u is the harmonic extension of o. The next proposition shows that there is a
useful local factorisation of the Laplacian into a composition of two first-order pseu-

dodifferential operators.

Proposition 2.2.2. There exists a pseudodifferential operator A(x,D,.) of order one in

x" depending smoothly on x" € [0, T], for some T > 0, such that
—L =(Dyn +iF (x) —iA(x,D,.)) o (Dyn +iA(x,D,.)) (2.5)

modulo a smoothing operator.

Proof. We use the symbol calculus to construct such an operator A(x, D,.). From (2.3)

we get

L+ (Dyn + iF —iA) o (Dyn +1A) = —D?, —iFD,n —Q+ D?, + iF D, —

—iAD,, +iD,A—FA+AA=AA—Q+i[D,.,A]—FA. (2.6)

Let a denote the full symbol of A(x,D,,) and q denote the full symbol of Q (x, D,.).
Then, by (1.7) the full symbol of (2.6) is

1
Zﬁagana —q+ dwa—Fa,
—IK!
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and q splits into three terms

n—1

q(x,&) =), g ()&~

—1i ”2—1: [”21: (%gkl (x) 8.1 log & (x)+ 8. gk (x)) + Vl] £—Q=

k=1

=dq; (X, 5/) +q; (X, 5/) +qo(x),

where g, (x,&"), q; (x, &) and q, (x) are the quadratic, linear and constant in &’ parts

of q(x, &), respectively. Let us write

a(x,&)~ D a;(x.€),

j<1

where a; are positive-homogeneous of degree j in &', that is we will define A by a
formal symbol. We shall determine a; recursively so that (2.6) is zero modulo symbols

of smoothing operators.

The homogeneous terms of degree two in (2.6) give us
a,a; —q; =0,

so we can choose

4, = —/T. 2.7)

Note that g, and, therefore, also a; are scalar matrices. The terms of degree one in

(2.6) give us

n—1
aoal + a1a0+ Z aglalelal - ql + axnal _Fal = O,
l
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and using relation (2.7), we get

n—1
—24/q2a0t Z 91/ Q2D /@2 = 1 — O //Q2 + F /5 = 0,
1

thus we have

ag =

1 n—1
> BTGP /T — G — B /T + F T | (2.8)
2/% | 4

The terms of degree zero in (2.6) give us

n—1 n—1

a_1a1 + ala_1+ Z a(:lalelaO_i' Z aglaoDxlal_F
l l

1 n—1
+ 5 Z agkaglalekalal _qo + axnao _Fao - O,

k,l

and using relation (2.7) again, we get

n—1 n—1
1
a,=——,/1»- ) D_ia,— JriayD +
1= s | 20 % VxSl /By
1<
+§ a&:ka&l »\/q_szkal »\/q_z_ qo + 8xna0 _Fao} 3 (2-9)
k1

where q, is given by (2.8). Continuing the recursion for the terms of degree m < —1

we have
1
—2./q20_1 + Z Eﬁgaijak + 0,na,, —Fa,, =0.
J.k.K )
m<j,k<1

|K|=j+k—m
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Therefore we get

1 1
a, 1= —dKXa.D¥a, +8,4a,,—Fa,, | . 2.10
m—1 2‘/@ ]’;,K K\ & Hi¥x Yk xn“m m ( )
m<j,k<1
|K|=]J'+k—m
]

Remark 2.2.3. Let p € dN. Note that we can extend (N ,8,E,VE ) along the boundary
ON near p. This means that there is a vector bundle (E",VE ) over a Riemannian
manifold (N, §) such that N is included in N isometrically, the restriction of (£, V*)
to N coincides with (E, VE), and the point p lies in the interior of N. Clearly, near
p € N there is an extension of boundary normal coordinates (so that x" €(—e, €))
and boundary normal frame. Due to the construction of A(x, D,,) one sees that the
factorisation in Proposition 2.2.2 extends to a neighborhood of p in N, i.e. there
exists a PDO A(x,D,,) of order one in x’ depending smoothly on x" € [T, T], for

some positive T < T, such that it coincides with A(x, D,.) for x" € |:O, T].

2.2.2 The full symbol of the Dirichlet-to-Neumann operator A, y:.

Our next step is to relate the operator A(x, D,,) with the Dirichlet-to-Neumann oper-

ator A, ye. It turns out that this relation is quite simple.

Proposition 2.2.4. The operator A satisfies the following relation
A(X’DX/)|3N (02 E axnu|aN - Ag,vEO-

modulo a smoothing operator, where u is the harmonic extension of o.
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Proof. Let p € dN. Using Remark 2.2.3 we consider an extension (1\7 ,8,E, vE ) along
ON near p. Choose a coordinate chart (£2,x’) in dN containing p and denote by
(x’, x™) the corresponding boundary normal coordinates in N. Let Q' C © be a precom-
pact open subset and o a section in #/?(E|,y) compactly supported in ’. Consider

a solutionu € #*(E) c 7' (N;E) to

ulay=o.

By Proposition 2.2.2 and Remark 2.2.3, this problem is locally equivalent up to some

smooth section h to the following system of equalities for u, v:

(Id “Dn + iA(x,Dx/))u =V, Ul =0,

(Id - Dy +iF (x)—iA(x,D,))v=heCc®([-T,T] x Q’;C").

The second equation above can be viewed as a backwards generalised heat equation;

~

making the substitution t = T — x", it is equivalent to
1d-8,y—(A—F)v=—ih, t €[0,2T] (2.11)

Since h is smooth and A—F depends smoothly on t, by the transposed Leibniz formula
we conclude that v € C* ([-T,T]; 2’ (2;C")) (cf. [42, Remark 1.2]). By elliptic
regularity for the Laplacian Af, u (and therefore also v) is smooth in the interior of

N, and so v|,._; is smooth. Now, if we were to show that the solution to (2.11) is
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smooth for t € [O, ZT) then we are done. Indeed, we would have
Id-Dyu+iA(x,D)u=vec®((-T,T],x;C"),

and in particular, the restriction to the boundaryv|,._, is smooth. Now, if we set

Ro = v|,y, then
Id-Dyulyy =—iAu|,, +Ro=—iA|, 0 +Ro=—iAl;y0+Ro,

and we will get the desired result since R is a smoothing operator. So in order to
conclude the proof it is left to show that v is smooth for t € [O, 2T). We will do this

in the subsequent lemma. ]

Lemma. There is an operator B in the congruence class of A— F which satisfies the
conditions for a well-posed heat equation in Section 2.1.1. As a result, the solution v to

the equation (2.11) is smooth for t € |:O, 2:7’).

Proof. We will start by checking the conditions for the operator A—F. If some of them
will not be satisfied then we will adjust the symbol of A— F to obtain B. The first
condition is satisfied due to the construction of A. Denote by a; = —Id - ,/q; and a,
the principal part and the reminder part, respectively, of the full symbol of A—F (F has
order zero). Let ||| be the (operator) norm on complex r x r-matrices induced from
the Hermitian norm on C". Note that for any matrix M we have ||M|| > |A|, where A

is any eigenvalue of M, which implies that the matrix

Id-z2—M
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is non-degenerate when |z| > ||M||. Indeed, its eigenvalues are equal to z — A and we

have

2= Al = |z] = [A] = 2] = [[M]] > 0.

Since A—F is an elliptic PDO of order 1 in Q and ' is precompact we have the following

uniform in [—T, T ] x 2 bounds

clel <lal < ¢ (1+16P7)"; (2.12)

|aco| < G, (2.13)

where ¢, C,, and C, are some positive constants. Using this we see that the matrix

+
Id-g——Td=0 (2.14)

1/

(1+1g7)"
is non-degenerate for |z| > C; + C,. Indeed, from (2.12),(2.13) the norm of the quo-
tient term is bounded from above by the constant C; + C,. It is left to check if (2.14)

is non-degenerate when z = x +iy with —e < x, for some sufficiently small e > 0. We

have
Id-(x+iy+ ‘@2 1/2)— as‘)z S =1d-p—Ag, (2.15)
(1+1€%) (1+1€%)
where
p=x+iy+%,
(1+1€P)
and
a
A= —=p.
(1+1gP)

We know that the matrix (2.15) is non-degenerate when |p| > ||ASO || Since g, can be
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arbitrarily small for & close to O we cannot guarantee that p will not vanish for any

small € > 0. Therefore, we have to adjust the symbol of A—F. From (2.12) we obtain

VB ¢
(1+ |€|2)1/2 2

when |£] > 1. Hence, when e < § we have

2
_ V92 c 2
|p|2_y2+(x+_(1+|€|2)1/2) >(5_6) 5

for |£| > 1. From (2.13) we see that

C2
ool < 5o

which is less than (% —e) when €] > Co(§ —e)_l. LetR = max(l,CO(g —e)_l),
then the matrix (2.15) is non-degenerate for || > R. On the other hand, for || <R
we know that ||ASO|| < C,. Now let us consider the congruent operator B (t,x’, D,.)

by adjusting the full symbol as

a; +ago—Id-y (&),

2

where Y (§) = Ce™ % and the constant C is equal to e (1 +R2) 2 (CO + %) One sees

that now for |£| < R we have

Vi + v (&) 2
|p|2:y2+( m) (CO+§—€) >C(?2||A§O

so the matrix (2.14) for the adjusted operator is non-degenerate in this case. In the
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other cases it is clear that it remains non-degenerate, which guarantees that the oper-
ator B(t,x’,D,.) satisfies the conditions for a well-posed heat equation. The second

part of the lemma follows immediately. Indeed, since B is congruent to A— F we have
Id-3,v—B(t)veC™ ([—T, T] X Q’;Cr)
and, therefore, by Theorem 2.1.3 the solution v is smooth for t € [O, 2T ) O

Corollary 2.2.5. The full symbol of the DtN operator A, v is the same as the full symbol
of A(x,D,/)|,;y- In particular, the DtN operator is a classical elliptic pseudodifferential

operator of order 1.

We are now in a position to recover the geometric data (the metric g and the

connection V#) on the boundary N from the given DtN operator A.

2.2.3 Proof of Theorem 2.1.1

Let {xl, ... ,x”} denote boundary normal coordinates associated with {xl, ... ,x”_l}

and (&q,...,&,) denote boundary normal frame defined by (€4,...,€,). Note that since

Oun&i = —ngn (0n &™) g1
nu

it also suffices to determine the inverse matrix ( g“) and its normal derivatives instead

of (g;;) and its normal derivatives. Using Corollary 2.2.5 and (2.7) we get

A==V,
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and we have at any p € N,

n—1 2
qs (P, 5/) :Z gkl (p)&i& = (Traiekl) s

k,l=1

where r is the dimension of the vector bundle E. Thus, the principal symbol of the

DtN operator determines g at each boundary point p.

Next from Corollary 2.2.5 and (2.8) we have

n—1
= D, —(qq1— Oyn F =
Yo = 5 | 20 VAP VB~ 01 = 2T ¢ \/q_]
- O/ + 5—— gM (%) 0 g () + Ty,  (2.16)
R DL
where

n—1

Bt g 3 (58 02 logs 0+ g ))&

T, = Z 021/

kl

is an expression involving only g;;, g, and their tangential derivatives along JN.

Note that > gklg,, =n—1, and so

n—1 n—1
= > &) Bg (1) =D g (x) 88" (x).

k=1 kl=1

If we set K = 3.g", h = Yl g h*, and ||E|]> = D gMEE, = q,, we can rewrite

(2.16) in the form

n—1

Ao (8)=—
o)== ep &=

M) Ece + 2”5,” Z &1+ T, (2.17)
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From antisymmetric part A, (&) — A, (—&) we obtain

. n—1
14 gl:
€] &

which allows us to determine V! and multiplying by 1/2g,; we get

1 , .
Egkzvl =gug w; =6 w; = wy,

so we determined the connection matrix w; for k =1,...,n—1 on the boundary N.
Let us look at the remaining terms. Only the first term in (2.17) is unknown yet. But

we can recover it from all the other terms. Thus, we can recover the quadratic form
e

When n > 2, this in turn determines h*! = 3, g"!, since

1
RKL = okl 4 P (Zqugpq) gkl' (2.18)

Now let us look at (2.9). We have

n—1 n—1
1
A= - 0 D, Ay— OaAoD +
: 2@[ DI I D
1<
+§ 8€k 351 vV Q2D Dyiy/q5 — Qo+ Opn A — FAO:|
k1
L + L 0o+ T4 ( )
= — n o , W) =
2@‘10 2@x0 1 (8k1> @y
n—1
1

. n—1
1
— = > MG+ —— > BV + T (g @), (219)
8lIg &2 4
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where T_; (g4, w;) is an expression involving only g,;, g*', their first normal deriva-
tives and the boundary values of w;. Here again looking at the antisymmetric part of
A_; we determine 8,V and subsequently 8,.c, for k =1,...,n—1. The first term of

(2.19) is again determined by the other terms, which allows us to recover

n—1

1
_ aankl ,
8l&|? 2 Skt

k,l=1

and hence also 9,.x*'. Due to (2.18) the latter determines J,.h" = 32 g".

Proceeding by induction, let m <

—1, and suppose we have shown that, when

—1>j=m,
n—1 l n—1
A= lllicH i+ ——— amv &+ T; (8> i)
’ ||2€ | J;;l( ) |27 ;

where T; (g, ;) involves only the boundary values of g, gX!, their normal deriva-
tives of order at most |j|, and also for j < —1 involves the boundary values of w;, and
their normal derivatives of order at most |j| — 1. From Corollary 2.2.5 and (2.10) we

get

A= —— | auA, + >, aK;\ DKA —FA, | =
2./, & K

m<j,k<1
|K|=j+k—m
n—1 n—1
_ |m1| klgg a|m 1|V€+T (
1t - l 1(8x> @)
l2g || '“MZ ||2£f||2 "o "

Taking the antisymmetric part of A,,_; we can determine 8JT_1IV1 and, therefore, also

3,121_“60;(- The first term is again determined by the other terms. So we can recover
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alm ik and thus /7% g also. This completes the induction step.

2.2.4 The case of Schrodinger type operators

One can see that the Schrodinger operator L, differs from the connection Laplacian
only in order zero. So we can think of the former locally as of the latter but with Q
adjusted by P. Therefore, it is straightforward to adapt the Propositions 2.2.2 and

2.2.4 to this case. Namely, the operator L, will have the similar factorisation
—Lp, =(Id - Dy +iF (x)—iAp(x,D,))o(Id - Dyn +iAp (x,D,.)),
and the following equality will hold
Ap (X, D)oy 0 = Ay pyrO.

So the full symbols of these two operators coincide.

Example 2.2.1. The operator

L=A +- 172 g
& 7% T 4(n—1)"¢

is called the conformal Laplacian, where A, = —div, o grad, is the Laplace-Beltrami
operator and S, is the scalar curvature of g. Clearly, it is equal to L, with the (sym-

metric) potential
n—2

= —4(n—1)Sg' (2.20)
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The conformal Laplacian has the following conformal scaling property

for any conformal factor c, i.e. any smooth positive function on N. As a result, the
Dirichlet-to-Neumann operator associated with L, is invariant under the conformal

transformations of the metric with conformal factor satisfying

C|¢9N = 1)
(2.21)

avclaN =0.

Namely, for these transformations we have

where A, is the DtN operator associated with L,. Because of this conformal invariance
we can only expect to recover the metric up to conformal scaling by conformal factors
satisfying (2.21). Let ¢ = e2f for some smooth function P, then the conditions (2.21)

are equivalent to

plaN = 07
(2.22)

8vp|8N =0.

Assuming these conditions are satisfied the formula for the transformation of the scalar

curvature on the boundary is

_ _ 2
Sewg =S, —2(n—1)A,p=S5,—2(n—1)3J;p.

e2rg
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Since there is no restriction on 9°p on the boundary we see that the potential (2.20)
cannot be uniquely determined from the DtN operator in this case. Moreover, it cannot
be uniquely determined even in the real-analytic setting, since there exist real-analytic

functions satisfying (2.22). For further details on this topic we refer the reader to [29].
This leads us to the extension of our main result to the case of the added potential.

Theorem 2.2.6. Suppose dimN =n > 3. Let (xl, ey x"_l) be any local coordinates for
an open set W CIN and (€4, ..., €,) be any local frame of E over W, and let {Aj, i< 1}
denote the full symbol of the DtN operator A, py: in these coordinates and local frame.
For any p € W, the metric on a boundary g, its normal derivative g,; and the connection
matrix w; are given by explicit formulae in terms of principal (A,) and subprincipal (A,)

symbols of A, py:. In addition,

1. If the full Taylor series of P at p is known then the full Taylor series of g and V-
at p in boundary normal coordinates and boundary normal frame are given by an
explicit formula in terms of the matrix functions {Aj }, their tangential derivatives

and the full Taylor series of P at p.

2. If all normal derivatives of order > 2 of g at p are known then the full Taylor
series of g, P, and V¥ at p in boundary normal coordinates and boundary normal
frame are given by an explicit formula in terms of the matrix functions {X i }, their

tangential derivatives and the normal derivatives of order > 2 of g at p.
The proof of this result is similar to that of Theorem 2.1.1.

Proof of Theorem 2.2.6. The proof follows the same steps as the proof of Theorem
2.1.1. In particular, one can see that the first two symbols of A, pyr and A, yr co-

incide. Therefore, we can recover the metric g¥, its normal derivative d,.g*, and
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the connection matrix w; on the boundary. Now, the symbol of order —1 is slightly

different and is equal to

n—1 . n—1

1
A, =— 3k 3. V! ———P+T (g, w).
YA 2 Skt t 4||€f||2 2, &V E 2||€ [ Skt> 1

k,l=1 =1

Now, depending on what is known (normal derivatives of g or the full Taylor series
of P), in addition to what was recovered in the proof of Theorem 2.1.1 we can also
recover the potential P or the second normal derivative of g on the boundary. Pro-

ceeding by induction, let m < —1, and suppose we have shown that, when —1 > j > m

n—1

7\,~: |Jn|Kkl gkgl'l_
’ |2€|| szzl(x )
i n—1 1
+— 3|i|Vl€z+—_3li+1| P+ T;(gu>w;,P),
12&7||* ; ) 1287 !

where T; (g, w,, P) involves only the boundary values of gy, g their normal deriva-
tives of order at most |j|, and also for j < —1 involves the boundary values of w,; and
P, and their normal derivatives of order at most |j| — 1 and |j + 1| — 1, respectively.

Thus, we get

1
Apr =5 | Bunt . —aKADK —FA, | =
Va2 !

2 q j,k,K
m<j,k<1
|K|=j+k—m
1 n—1 n—1
— ( Im 1| kl)g g |m 1|V g +
- _ k
12& (1™ k;l 127 ||2 " Z

+——3mMp+T (g4, 0,P),
”25 ”1 m-x -1 kl l
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ki

which allows us to determine 8/7 V!, 877"« (and, therefore, also 37 *g") or

6’X|T|P. This completes the induction step. [

Remark 2.2.7. In general, if we do not want to assume that the metric or potential are

known, then from the symbol A; we can recover the expression

3
|
-

()& +4 € ol P = (3l + 40l p) £,

k,l1=1 k=1

and, consequently, the expression
alkk . 1d + 4gM it p

Note that since the first term is scalar we can recover the off-diagonal components of
P. Taking the traces both with respect to the metric and inner product on fibers we

can see that modulo all the lower order derivatives we can recover the expression
2-n)dh+4n—1)1r35"p = (2—n)a h+4(n—1)3 " Tr P (2.23)

It is clear that we cannot say anything about the first and the second term of the sum
separately. This fact agrees with what we saw in Example 2.2.1 with the potential
given by scalar curvature. So, for each j in order to recover one of the terms in the
sum (2.23) we should know the other one. For example, if the potential is given in
the form

P = glelk (224)

with some known functions Fj;, then the second term of (2.23) will be known from

the previously obtained derivatives of g*! up to order |j + 1|. This will allow to de-
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termine 8!

xn

h and, therefore, the derivatives of g up to order |j| + 2. So, for this type
of potentials the full Taylor series of g (and, therefore, of P) on the boundary can be

recovered from the full symbol of the DtN operator.

2.2.5 Gauge equivalence of the reconstructed connection

Let m; : E — X and 7tz : F — Y be two smooth vector bundles over smooth manifolds.
We say that a morphism of vector bundles ¢ : E — F covers a smoothmap ¢ : X —» Y

if the relation 7, o ¢ =1 o 7, holds, that is the following diagram is commutative

¢
—_—

E
I~
5 v

—

mF

<—m

Note that any morphism ¢ covers a unique underlying smooth map of the bases. We
say that an isomorphism ¢ intertwines with linear operators Ay and B acting on vector

bundles E and F, respectively, if

Ap(p 7t osorp) = oBr(s) o,

for any section s € ' (F). One of the corollaries of the local reconstruction result is the

following proposition on gauge equivalence.

Proposition 2.2.8. Let (Ni, gi,Ei,Vi), where i = 1,2, be two Euclidean smooth vector
bundles defined over connected compact Riemannian manifolds with boundary. Suppose
that for some open subsets ©.; C 0 N, there exists a vector bundle isomorphism ¢ : E; |21 -
E,|y, that intertwines with the corresponding Dirichlet-to-Neumann operators Ay, and

Ay,,. Then the isomorphism ¢ is a gauge equivalence, ¢*V? = V1, and covers an isometry
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Y (21, 81) — (g, 82)-

Proof. Clearly, the isomorphism ¢ intertwining the DtN operators Ay, and Ay, is

equivalent to having the equality of operators

Ay, (s)= ¢_1 oAy, ((ib ©0so 1/)_1) o).

The operator on the right hand side is a natural pull-back of the operator Ay, along ¢.
Therefore, the metric and connection on (E;, ;) reconstructed from its full symbol
are equal to 1*g, and ¢*V?, respectively. On the other hand the full symbols of the
above two operators coincide. Hence, we have g, = ¢*g, and V! = ¢*V?, which

completes the proof. O

Remark 2.2.9. In order to reconstruct the metric and connection we only need to
know the principal and subprincipal symbols of the DtN operator. Therefore, since
these symbols coincide for the connection Laplacian and the Schrédinger operator,
Proposition 2.2.8 holds for the latter one as well. Though, due to Remark 2.2.7 we can
conclude that there should be imposed some additional requirements on a potential
(e.g. (2.24)) in order to recover it on the boundary from the full symbol of the DtN

operator.

2.2.6 The case of surfaces

In two dimensions, we can only aim to reconstruct a conformal class of metrics from
the DtN operator. This is because the connection Laplacian is conformally contravari-

ant in two dimensions. Indeed, from the definition of the connection Laplacian we
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have

E _ _—uAaAE
A, =e A,

where the subscript indicates the metric used to define the connection Laplacian.
E _ . . E _ .
Clearly, Au=0 if and only if A u=0. The unit normal vector at the boundary for

the conformal metric is equal to

d

—u/2 s
R

Therefore, we have the following identity for the DtN operators

—u/2

Aeug’vE = e oN ° Ag’vE.

This identity shows that the DtN operators constructed using conformal metrics coin-
cide if a conformal factor e” equals to 1 at the boundary. This fact poses obstacles to
the recovery of the normal derivatives of the geometric data at the boundary of sur-
faces. However, we can still recover the metric and the connection on the boundary
from the symbol of the DtN operator. This follows immediately from the proof of the

Theorem 2.1.1.

2.3 Global reconstruction of the geometric data

In this section we prove a uniqueness result for the Calderdn inverse problem for the
connection Laplacian on a vector bundle. Our main hypothesis is that the geometry of
a vector bundle, that is a connection, a compatible inner product, and a Riemannian

metric on the base manifold, are real-analytic. This Calderén problem is motivated by
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the Aharonov-Bohm effect that says that different gauge equivalence classes of elec-
tromagnetic potentials have different physical effects that can be detected by exper-
iments. Thus, our uniqueness result shows that different gauge equivalence classes
of connections have different boundary data, that is such classes are detectable by
boundary measurements.

We discuss some of the related literature on this problem in due course, but now say
a few words about the classical Calderédn problem. Recall that the classical result by
Lassas and Uhlmann [27], see also [28, 30], says that the topology and geometry of a
real-analytic Riemannian manifold with boundary can be recovered from the Dirichlet-
to-Neumann map for the Laplace-Beltrami operator. The main result of this chapter
can be viewed as a version of the Lassas-Uhlmann theorem in the setting of vector
bundles, which allows us to recover additional topological and geometric structures.

We proceed with the statement of related hypotheses and conclusions in more detail.

2.3.1 Main result

Let (N;g;), where i = 1,2, be two connected compact Riemannian manifolds with
boundary, and let E; be vector bundles over N;. We assume that each E; is equipped
with a connection V' and a Euclidean structure, that is a compatible inner product
(-,")g,. For open subsets ; C JN; we denote by Ay, the corresponding Dirichlet-to-
Neumann operators defined on a compactly supported sections of E;|y, . Recall that
a vector bundle isomorphism is called Euclidean, if it preserves Euclidean structures.

Our main result in this section is the following theorem.

Theorem 2.3.1. Let (Ni, g:, E;, Vi), where i = 1,2, be two Euclidean real-analytic vec-

tor bundles defined over connected compact real-analytic Riemannian manifolds with
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boundary, equipped with real-analytic connections. Suppose that dimN; > 3 for each
i = 1,2, and for some open subsets %.; C JN; there exists a real-analytic Euclidean vector
bundle isomorphism ¢ : E;|y, — E,|y, that intertwines with the corresponding Dirichlet-
to-Neumann operators Ay, and Ay, . Then the bundles E, and E, are isomorphic, and
moreover, there exists a real-analytic Euclidean vector bundle isomorphism ® : E; — E,

that covers an isometry ¥ : (Ny, g,) — (N, &5), such that *V? = V' and ®|y; = ¢.

We will see further (Remark 2.3.12) that this result continues to hold in the case
of a Schrodinger operator with a real-analytic potential of the form (2.24).

We note that the presence of Euclidean structures on vector bundles E; in Theorem
2.3.1 plays an auxiliary, but important role. On the one hand, neither the connection
Laplacian nor the associated DtN operator depend on them. On the other, we do not
know whether the assumption that the isomorphism ¢ in Theorem 2.3.1 is Euclidean,
and the conclusion that so is its extension ®, can be dropped.

It is an open problem whether the conclusions in Theorem 2.3.1 hold for arbitrary
smooth geometric data, connections and Riemannian metrics, of vector bundles. Un-
der different conditions a similar problem has been considered by Cekic¢ [6, 7]. Let
us also mention that in [26] the authors consider the Calderén problem for the wave
operator of the connection Laplacian on Hermitian vector bundles, and obtain conclu-
sions similar to the ones in Theorem 2.3.1 without any hypotheses on the geometry
of vector bundles.

Note that the hypothesis on the dimension of the base manifolds N; in our results
is essential for the conclusions to hold. In dimension two the connection Laplacian
behaves differently when a Riemannian metric on the base changes conformally, see
2.2.6, and the Riemannian metric on the base cannot be recovered. Results on related

problems in dimension two can be found in [1, 19].
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The proof of Theorem 2.3.1 builds on an elegant idea in [28]. Using Green kernels
for the connection Laplacian, we construct immersions of our vector bundles into some
function space, and recover the geometry and topology from their images. We believe
that some technical details of our argument in the setting of vector bundles might
be of independent interest, and the improvements give a more streamlined proof of
the original results in [28]. We believe that the result in Theorem 2.3.1 can be ex-
tended to vector bundles over non-compact complete manifolds with compact bound-
aries. We will also explain why the conclusions of Theorem 2.3.1 continue to hold for
the Dirichlet-to-Neumann operators associated with Schrodinger operators of special
type, that is connection Laplacians with symmetric real-analytic potentials of the form
(2.24). The result for these operators will play an important role in the proof of the

main theorem in Chapter 3.

2.3.2 Preliminaries

Let us briefly discuss the behavior of the connection Laplacian when a Riemannian
metric or a connection change. First, if § = exp (2¢) g is another Riemannian metric,

then a direct computation shows that
Ags = exp (—2¢) (Ags —(n—2) Vf;s) ,

where X = grad(yp) is the gradient vector field with respect to a metric g, and n
is the dimension of N. In particular, when n = 2, the operator Ag is conformally
contravariant, and a section s € I'(E) is harmonic or not with respect to g and &
simultaneously. Second, consider another connection V¥ on E, and denote by Ag

the corresponding connection Laplacian. Recall that a vector bundle isomorphism
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& : E — E is called a gauge equivalence if ®*V* = V¥, that is
VEs =310 VE(do5s)
for any section s € ' (E). In a local frame for E, this relation is equivalent to
w=y'dy+y \dy,

where w and & are the connection forms of V£ and V¥ respectively, and y is the
matrix of ®. A straightforward calculation shows that the connection Laplacians of

gauge equivalent connections are related by the formula
Ag = lo Ag (®os) (2.25)

for any section s € I'(E). These properties determine the behavior of other quantities
closely related to the Laplacian, such as its Green kernel and Dirichlet-to-Neumann

operator.

Now let (Ni, E;, Vi), where i = 1,2, be two vector bundles over compact Rieman-
nian manifolds with boundary (N,g;), equipped with connections V. Suppose that
these data are gauge equivalent in the following sense: there exists a vector bundle
isomorphism & : E; — E, that covers an isometry ¥ : (N;, g;) — (N,, g,) such that
®*V?2 = V!. Then, using relation (2.25) it is straightforward to conclude that the

corresponding Dirichlet-to-Neumann operators A; and A, intertwine, that is

A osoyp) =0 oAy (s)oy
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for any smooth section s of E,|,y , where ¢ = ¥|;y and ¢ = &|5,. Recall that
the converse of this is given by Proposition 2.2.8 and can be viewed as the boundary
version of Theorem 2.3.1. Note that there is no restriction on dimension of N in Propo-
sition 2.2.8. Similar results continue to hold for the Dirichlet-to-Neumann operator

associated with the connection Laplacian with a symmetric real-analytic potential.

2.3.3 Immersions by Green kernels

Let E be a Euclidean real-analytic vector bundle over a connected compact real-analytic
manifold N with boundary, equipped with a real-analytic connection V£. In this sec-
tion we assume that n = dim N = 3, and describe how one can reconstruct E from the
Dirichlet-to-Neumann operator Ay, where 3 C dN is an open subset. Our argument
develops the ideas from [28] to the setting of vector bundles, and we attempt to make
the related technical details to be rather explicit.

Fix a point p € Z. First, note that we may consider N as a subset of a larger real-
analytic manifold N. More precisely, choosing boundary normal coordinates
(xl, e ,x“) around p, we may identify a neighborhood of p in N with the Euclidean
half-ball

B*(0,p) ={(x',...,x") €B"(0,p) : x" > 0},

where B" (0, p) is an open Euclidean ball of radius p > 0 in R". Then, as the manifold
N one can take the manifold obtained by gluing B" (0, p) to N such that points in
B* (0, p) are identified with points in N by means of boundary normal coordinates.
Below by U we denote the open set N\N. For the sequel it is important to note that
the set U does not really depend on N. In other words, if there are two manifolds N;

of the same dimension and two points p; € X; C dN;, where i = 1,2, then choosing a
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sufficiently small p > 0 we may assume that the sets N;\N; and N,\N, coincide.

It is straightforward to see that a real-analytic metric g on N extends to a real-
analytic metric & on N, if p is sufficiently small. Similarly, the above construct shows
that a real-analytic vector bundle E over N extends to a real-analytic vector bundle E
over N such that £ y is trivial. Making p > 0 smaller if necessary, we may also assume
that a real-analytic Euclidean structure and a real-analytic connection V on E extend
to a Euclidean structure and a connection V on E. If the former were compatible on
E, then by real-analyticity so are the latter on E. Note that in the case of Schrédinger
operators with real-analytic potentials we may also assume that the potential P ex-
tends to a real-analytic potential P on N. Below by G we denote the Dirichlet Green

kernel (for the connection Laplacian or Schrédinger operator) on E.

Denote by & the trivial vector bundle E ,- For a given integer { <2 —n/2, where

n is the dimension of N, we define the map ¥ : E — #* (&) by setting

~

B 3ve— (v, G(x,) ;€ 7(8), (2.26)

where x € N. The condition on ¢ guarantees that the space 7/02_‘ (&) embeds into the
Holder space C%*(&) for some a > 0, and hence, the dual space #*~2 contains the
delta function. Then, by elliptic regularity we conclude that G (x, ) lies in #*(&). In
addition, it is straightforward to show that

|G (x1,-) =G (x,,

)|7/€ < CldiSt (x15 x2)a

for some constant C; > 0, where for simplicity we may assume that the points x;

and x, € N lie in the same chart. Thus, we conclude that the map ¥ is continuous.
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Note that the map (2.26) can be also defined for Schrédinger operators and the above

results are true in this case as well. Similarly, we have the following statement.

Lemma 2.3.2. Let { be an integer such that £ < 1—n/2. Thenthe map ¥ : E — #* (&)

defined by (2.26) is C'-smooth.

Proof. Since the map ¥ : E — #* (&) is linear on each fibre, for a proof of the lemma
it is sufficient to show that the map that sends a point x € N to the function G (x,-),
viewed as an element in the Sobolev space #*, is smooth. Below we assume that x
ranges in a chart on N where the vector bundle E is trivial. First, we claim that for

any section ¢ € 7/0_6 (&) the section

P (x) = J (G (e, ), ¢ (), dVvol (),
N
is differentiable, where (¢ is an extension of ¢ by zero, and for any h € R" the linear

functional

d - 3 . 3
P — Zhiﬁw (x)= Zhiﬁf (GGx,y), ¢ (y)>y dVol(y) (2.27)

N

defines an element in #* (&). Indeed, by standard theory the section v can be viewed

as the solution to the Dirichlet problem

in the Sobolev space #, **2, and since { < 1 —n/2, it lies in the Hélder space C**

for some a > 0. To show that the functional defined by (2.27) lies in #* (&), it is
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sufficient to show that

o -
'Zhia A (x)| < Clhllol,
: X

for some constant C > 0, where | - |_, stands for the Sobolev norm. The latter is a

direct consequence of the inequality |1ﬁ |_€ 5 S C’|@|_;, which follows from standard
theory, together with the Sobolev embedding theorem. Thus, we obtain the linear

operator

L :R" 9h.—>Zhi%G(x,-)eW &),

and claim that it is the differential of the map x — G (x, ). In other words, we claim

that for any ¢ > 0 the inequality
|G(x+h)')_é(xz')_l‘x (h)|g < Elhl

holds, for any h € R" such that |h| < & for an appropriate 6 > 0. In the notation

above, for the latter it is sufficient to show that

d

: < CIRI" (el (2.28)
Jdxt

P (x)

P e+ 1) =4 (x)= )y

for some positive constants C and a, and arbitrary h € R". Recall the so-called

Hadamard formula:

1

1/3(x+h)—1/3(x):Zyi(x)hi, where yi(x)zj%(x+th)dt,

0

where we use a trivialisation of E to view sections around x as vector-functions. Using
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this relation, we obtain

0
Jdx

N EASEEIO)

i

‘z/i(x+h)—z/3(x)—2hi iz/i(x)‘=

1 1/2
< ( [ pierar-ni (x)|2dt) < [l I < €] I
0

SCCIGL ™ < Clelg IhI™,

where in the second inequality we estimate the integral via the Holder norm and |h|%,
and in the third we use the Sobolev embedding theorem. Thus, relation (2.28) is
demonstrated, and we conclude that the map x — G (x,-) is differentiable. Finally,
for a proof that it is smooth, it remains to show that the map x — L, is continuous.

The latter is a consequence of the inequality

< Clhl|x, _lea lpl_,

'Z(%J)(m— Zhe)n

for some positive constants C and a, which can be proved in a fashion similar to the

one above. Thus, we are done. O

One can see that the main ingredient of the proof is that A is an elliptic operator of
order two, and as a result G (x, -) belongs to the Sobolev space #'*. As we mentioned
before, Schrodinger operators have the same properties. Therefore, Lemma 2.3.2 is
true in the Schrodinger setting also. It allows us to study the map ¥ from a viewpoint
of differential geometry. As we shall see below, the map ¥ is a linear embedding on
each fibre £, for x ¢ dN, and collapses the fibre to the origin for x € dN. Further,
it maps the base manifold N, viewed as the image of the zero section, to zero in

. To avoi ese degeneracies we often restrict it to the open set E° obtaine
7(&). T d these deg ft trict it to the op t £° obtained
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by considering E on the interior of N and removing the zero section. The following

statement shows that the map ¥ is well-behaved on E°.

Lemma 2.3.3. Let { be an integer such that £ < 1—n/2. Thenthemap ¥4 : E — #'* (&)
defined by (2.26) is a linear embedding on each fibre E,, where x ¢ dN. Moreover; it is
an injective immersion on the set E, obtained by removing the image of the zero section

from E over the interior of N.

Proof. First, we show that the map ¥ is a linear embedding on each fibre E,. For
otherwise, there exists a point x in the interior of N and a non-zero vector v, € E,
such that the product <vx, G (x, -)>x equals zero in #*(&). The latter in particular
implies that

(vx, G (x,y)>x =0 forall yeU\{x}. (2.29)

Since the left-hand side above is real-analytic, we conclude that relation 2.29 continues
to hold on N\ {x}. Now lets € 2 (E) be a compactly supported section such that

s(x) =v,. Then, we obtain

0= f {((ver G(x,y))x ,AFs (y)>y dVol(y) =

N

=<vx,J(G(x,y),AEs(y)>deol(y)> = (Ve
N

X

where we changed the order of operations in independent variables x and y in the
second relation, and used the definition of the Dirichlet Green kernel in the third.
Thus, we conclude that the vector v, has to vanish, and the kernel of a linear operator
given by (2.26) is trivial, that is the map ¥ is indeed a linear embedding on each fibre.

A similar argument shows that the map ¥ is injective everywhere on E°. Indeed,
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suppose that there exist two points x, and x, in the interior of N and non-zero vectors
v,, and v, in the fibres over them such that <vxl, G (xy, -)> and <vx2, G (x,, -)> coincide

in #¢(&). Then, it is straightforward to see that
g
(e GO )), = (04 G (xpy)), forall yeU\{xy,xp}.  (2.30)

As above, by unique continuation we may assume that relation 2.30 holds for all y €
N\ {x;,x,}. In addition, since the map ¥ is injective on fibres, we may assume that
x| # x, Letse€ 9 (E) be a compactly supported section such that s (x;) = v,, and

s (xy) = 0. Then, we obtain

<vx1,vx1>=<vx1, f <é(x1,y),AEs(y)>ydVoZ(y)> =
N

X1

_ J ((vs,s G(x1, ), ,A%s (y))y dvol (y),

N

and due to 2.30 this is equal to

f<<v,(2,é(xz,y)>x2,Aés(y)>ydv()z(y):

N
= <vx2,J (G(xz,y),AEs (y))y dVol (y)> = (vxZ,s (x2)> = <vx2,0> =0.
N )
Thus, the vector v, vanishes, and we arrive at a contradiction.

Finally, to show that the map ¢ is an immersion we analyse its differential D, :
TVXE — W'(&). First, note that a connection on the vector bundle E defines the

decomposition of the tangent space TvxE as the direct sum H,,_ ®F,, where H, isthe so-
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called horizontal subspace, see [ 18]. Since the differential of the projection 7 : E — N
establishes an isomorphism D, # : H, — T .N, we may view tangent vectors from
T, E as pairs (X, &), where X € T,N, and & € E,. With these identifications, it is

straightforward to show that

D, 9 (X,&) = v\, VxG (x,7), ; + (&G (x,7)), ;> (2.31)

where by the covariant derivative V4G (x,-) we mean the derivative with respect to
the variable x on E X E, that is given by V (ux ® uy) = Vf;ux ® u,. Now choosing
appropriate test-sections in the fashion similar to the one above, it is straightforward
to show that the differential D, ¥ is injective. In more detail, assume that the right-
hand side of relation 2.31 equals zero for some X € T, N and & € E,. Then, by unique

continuation we may assume that
<VX,VXG(x,y)>XE+<§,G(x,y)>xE:0 forall yeN\{x}. (2.32)

Now choosing a compactly supported section s € @(E) such that s(x) = & and

V§s| =0, we obtain
X

0= J (v VG G, ), A%s (), dVol (y) +
N
+J ((6,60e, 7)), A% (), dvol (),

N

and changing the order of scalar product and integration we get
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<vx,VXJ (G(x,y),AES (y))y dVol (y)> +

N x
+ <5f (G (x,y),A%5 (), dvol (y)> = (v, Vis) +(£,8) = 0+ (£,£).
N x
Thus, the vector £ € Ex vanishes, and by relation 2.32 we conclude that the term
(vx, VG (x, -))X equals zero. Now choosing a test-section s € & (E) such that Vys|, =

v,, it is straightforward to see that the vector v, equals zero as well. Thus, the differ-

ential D, ¢ is indeed injective, and we are done. O

The main ingredients in the proof of this lemma are the definition of the Dirich-
let Green kernel and unique continuation due to real-analyticity. Both of these are
also present in the setting of the Schrodinger operators with real-analytic potentials.
Hence, Lemma 2.3.3 holds in this setting as well. Note that the image of the total
space E under ¢ can be viewed as the cone whose link is the image of the subset S, E
that is formed by vectors of unit length. Then the image of ¥ (EO) is precisely the set
obtained by removing the origin from this cone. By Lemma 2.3.2 and Lemma 2.3.3 it is
straightforward to see that the set ¢4 (EO) is a C'-smooth submanifold of #*(&). The
main idea behind the proof of Theorem 2.3.1 is to recover the topology and geometry
of E from this image.

We end this discussion with a lemma that describes another property of the image

of 9.

Lemma 2.3.4. For given two distinct points q, and q, in the interior of N let V, be the

direct sum 9 ((E)ql) Y ((E)qz ), viewed as subspace of #* (&). Suppose that for some
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point x € N the intersection ¢ ((E )X)OVGB is non-trivial. Then the point x has to coincide

with one of the points q; or qs.

Proof. Suppose the contrary, the point x does not coincide neither with q; nor with
q,. Then there are vectors v, € £, w,, € qu’ w,, € qu such that v, is non-zero and

satisfies the equality

(v G062, 5 = (Waio G (00, 0)), g +(Wey G (92, )), 5 (2:33)

for any y € U. Since both parts of this identity are real-analytic functions of y, we
conclude that it continues to hold for all y in the complement of the points x, q;, and
q, in N. Since x does not coincide neither with g, nor with q,, there exists a smooth
sections € ¥ (E ) whose support does not contain q; and g,, and such that s (x) = v,.

Then, by definition of the Dirichlet Green kernel we obtain

(Vs Vi) = <vx,f (G (x,y), Afs (J’)>y dVvol (y)> =
= J (v, G (x,3)),, A%s (1)), dVol(y),

N

applying 2.33 we get

f (w16 (@1,2)),, A5 (1)), dVol(y) +J (w16 (@203)),, A5 (7)), dVol(y)

N N

and changing the order of scalar product and integration we have
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<W‘I1’J<G(q1:}’),AE5(y)>ydVOl(_y)> +

41

+<wq2, f <é(q2,y),AEs(y)>ydVoZ(y)> =

q2

= (qu,S (q1)> + <Wq2:5 (q2)> =0,

where we used the fact that the section s is chosen so that it vanishes at q; and g, in the

last equality. Thus, we conclude that v, equals zero and arrive at a contradiction. [J

This proof again uses only the definition of the Dirichlet Green kernel and unique
continuation, which are present also in the case of Schrodinger operators with real-

analytic potentials. Thus, Lemma 2.3.4 continues to hold in this case as well.

Remark 2.3.5. Summarising the comments on Schrodinger setting throughout this
section we see that all of the results in this section continue to hold if we replace the

connection Laplacian by the Schrédinger operator with real-analytic potential.

2.3.4 Proof of the main result

Now let E; be two real-analytic vector bundles over real-analytic manifolds N;, where
i = 1,2, and suppose that for some open sets 3; C JdN; there exists a vector bundle
isomorphism ¢ : E;|, — E,|y;, that intertwines with the Dirichlet-to-Neumann oper-
ators Ay and Ay, . Suppose that ¢ covers a diffeomorphism ¢ : 3, — . For a fixed
point p; € ¥; we set p, = ¢ (p,), and choose local coordinates on the X,’s around

these points that are related by 1). Note that by Theorem 2.1.1 the metrics g; coincide
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in such coordinates. Thus, making the ¥;’s smaller if necessary, we see that the map
Y 1 X, — X, is an isometry. Since the metrics are real-analytic, by Theorem 2.1.1
we also conclude that their extensions g; coincide in neighbourhoods of the points p;
in N;. In other words, the isometry 1) : &, — X, extends to a real-analytic isometry
v : W, — W,, defined by identifying boundary normal coordinates, where W; is a
neighbourhood of the point p; in N,. In the sequel, we also identify the sets W;\N,
and W, \N,, and denote them by U.

Similarly, choosing frames related by ¢, we may identify the trivialisations of E; |5,
and E,|y, around the points p; and p, = ¢ (p;). They extend to trivial vector bundles,
which we may assume are defined over W, and W,, and the isomorphism ¢ extends to
— E, defined by identifying the corresponding bound-

the isomorphism & : £,

ary normal frames. Note that & covers the isometry ¥ : W; — W,. By Theorem 2.1.1
the real-analytic connection matrices of V! and V2 coincide in such frames, and we
conclude that the isomorphism ® is a gauge equivalence, that is ®*V? = V!. We
continue to use the notation & for the vector bundles E; -

In the presence of a potential as we saw in Theorem 2.2.6 it is not possible to
recover it simultaneously with a metric even if it is real-analytic. Due to this fact
we have to restrict the Schrodinger setting to the real-analytic potentials of the form
(2.24) for which the reconstruction result on the boundary continues to hold as was
noted in Remark 2.2.7. One can see then that in this restricted Schrédinger setting the
potentials P; and P, coincide in U.

Theorem 2.3.1 is a consequence of the following statement. Below by E? we denote
the vector bundles E; with removed zero sections over the interiors of N;, where i =

1,2.

Theorem 2.3.6. Under the hypotheses of Theorem 2.3.1, consider the maps ¥, : E; —
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W' (&) defined by (2.26), where i = 1,2. Suppose that the vector bundle isomorphism

® : & — &, described above, intertwines with the ¥’s, that is
9,0 =909, on &. (2.34)

Then the images 9, (E2) and @ o ¢, (E?) coincide as subsets in #'* (&), and the map
G, odoY : Ef - Eg extends to a real-analytic vector bundle isomorphism J : E; — E,

that covers an isometry j : N, — N, such that J*V? = V.

Now we show how Theorem 2.3.6 implies Theorem 2.3.1.

Proof of Theorem 2.3.1. First, note that if a vector bundle isomorphism ¢ : E;|y —
E,|y, preserves inner products on E; and E,, then so does its extension & : & —
&. This statement follows directly from the definition of ® as an isomorphism that
identifies boundary normal frames. Now we claim that the conclusion of Theorem
2.3.6 implies Theorem 2.3.1. Indeed, by relation (2.34), we see that the vector bundle
isomorphism J : E; — E, coincides with & on the set ElIU’ and the isometry j : N; —
N, coincides with W on U. Thus, they are genuine extensions of the isomorphism
¢ and the isometry v from the boundary, and satisfy the conclusions of Theorem
2.3.1. Since ® preserves the inner products, we conclude that the products (-, ) and

|U, and hence, by unique continuation coincide everywhere on

J*{-,"), coincide on E,
E,. Thus, the isomorphism J preserves inner products, and its restriction to E, satisfies

all conclusions of Theorem 2.3.1.

For a proof of Theorem 2.3.1 we need to prove relation (2.34), that is the vec-

tor bundle isomorphism ® : & — & intertwines with the immersions ¥,’s. Since &
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preserves Euclidean structures, for the latter it is sufficient to show that
G, (¥ (x),¥(y)) =d2G, (x,y) forall (x,y)eUxU.

Choosing coordinates on W; and W, related by ¥, we may assume that & : W; —» W,
is the identity. Similarly, choosing local trivialisations of the E; w, = & related by @,
we assume that so is ®. Thus, it remains to show that the Green matrices G, and G,
viewed as sections of the trivial bundle & K &, coincide. For classical Green functions,
that is when the rank of & equals one, this statement is well known, see [28, Lemma
2.1]. It is a consequence of standard regularity theory together with uniqueness of

Dirichlet Green functions. Below we outline a version of this argument in our setting.

First, since under our assumptions the isomorphism & is the identity on &, the
hypothesis in Theorem 2.3.1 means that the Dirichlet-to-Neumann operators A; and
A, restricted to sections supported in W; N dN; and W, N JN,, respectively, coincide.
Pick a point x € U, and for a non-zero vector v, in the fibre &, consider a solution s

to the Dirichlet problem
APs=0, sl =(v, G (x, ')>x,£"1 ,

on N,. We define a continuous section § of E, away from x by extending s as
(vx, G, (x, -))x g O U\ {x}. Note that the section (vx, G, (x, -)> B solves the Dirichlet

X,

problem

Abig = 0, -SlaN1 = <Vx’ Gl (x, ')>x,E1 ’

and since the Dirichlet-to-Neumann operators coincide, we conclude that so do the

normal derivatives of s and <vx, G, (x, -)>x ; on the boundary W, N dN,. Thus, the
>E1
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section § is C'-smooth, and the standard application of Green’s formulae shows that
§ is weakly harmonic on N,\ {x}, and hence, is smooth. Since a vector v, € &, is
arbitrary, and the Euclidean structures agree, this construction yields a smooth section

H(x,y)e(E), ® (Ez)y such that:
. AiZH(x,y) =0 for y € N,;

* H(x,y)=G,(x,y)fory €U, y # x;
e H(x,y)=0 for y € IN,.

In particular, we see that A§2H (x,) =206, on 1\72, and the standard argument used to
prove uniqueness of the Dirichlet Green kernel shows that H (x, y) coincides with the
Dirichlet Green kernel G, (x, y) for all y € N,. Thus, the Green matrices G, (x,-) and

G, (x,-) indeed coincide on the set U\ {x}, and we are done. ]

Remark 2.3.7. Theorem 2.3.6 continues to hold in the restricted Schrodinger setting
with an additional relation

P, =J7'h,J.

Indeed, the proof essentially uses real-analyticity and the existence and uniqueness
of a solution to the Dirichlet problem for the connection Laplacian, and as we saw

previously those are the features of the restricted Schrodinger setting as well.

2.3.5 Proof of Theorem 2.3.6

We start with outlining the general strategy of a proof. Let B, C N, be the largest
connected open set containing the fixed point p; € dN; and such that for any x € B;

there exists a unique j(x) € N, such that the images of fibres ® o ¥, ((El)x) and
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Y, ((Ez)j(x)) coincide and the operator
Je=9"0d0% (), — (E),, (2.35)

is an isometry with respect to the inner products on the fibres. Note that if the sub-

spaces ® 0 %, ((E,).) and %, ((Ez) ), by Lemma 2.3.3 the map J,, defined in 2.35,

J0)
is automatically an isomorphism of the fibres, and defines a fibre preserving map

J: E1| — E,. Note that the set B, contains the neighbourhood W; of p, constructed
By

above. Indeed, since ¢ intertwines with the maps %, and %, on &, we have

&, (v,, Gy (x, 7)), = (PugoVa, Ga (T (), ¥ (¥))), (2.36)

forall x,y € U, and v, € (El)x. Choosing a real-analytic non-zero section v on W,
since both sides in the relation above are real-analytic, we conclude that this relation
continues to hold for all x € W;, y € U. Since v, may take arbitrary values, it is
straightforward to see that for any x € W; we may choose W (x) as the point j (x)
in the definition of the set B;. Indeed, relation (2.36) implies that for any x € W;
the operator J, coincides with & : (E"l)x — (Ez)j(x)’ which is an isometry by its own
definition. By Lemma 2.3.3 it is a unique point that satisfies this condition. Thus, the
set W, indeed lies in B,. This is true in the restricted Schrédinger setting also since as

we saw before Lemma 2.3.3 remains valid.

Our main aim is to show that the set B, coincides with N;. Once this statement
is proved, we shall show that the map J : E; — E,, defined on each fibre by relation

2.35, is a vector bundle isomorphism that satisfies the conclusions of the theorem.

Suppose the contrary, B, # N,. Then there exists a point x, € B, that lies in the
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interior of N, that is x, ¢ dN,. Since W, C B, the point x, lies in the complement
N,\W,, and in particular, we see that x, ¢ U.

Step 1. First, we claim that the map J can be extended to the fibre (El)xl over Xxj.

Lemma 2.3.8. Let x, € dB, be a point such that x, ¢ dN,. Then there exists a unique
point x, in the interior of N, such that the images of fibres ®0 %, ((El )Xl) and %, ((Ez)xz)
coincide, and the corresponding operator J,., is an isometry. Moreover, for any non-zero
vector v, € (El)xl there exists a unique non-zero vector w,, € (]’E"z)x2 such that

oY (Vxl) =%, (sz)’ |Vx1|1§1 = |WX2|E ’

2

and for any converging sequence v, — Vv, , where p, — x;, we have J (vpk) — w,, as

k — +o0.

Proof. Let p, € B; be a sequence of points that converges to the point x; € dB;, and g,
be the corresponding sequence of points such that the images of fibres ¢ o0 ¢, ((El)pk)
and ¥, ((Ez)qk) coincide. Since N, U 9N, is compact, then choosing a subsequence,
which we denote by the same symbol g, we may assume that g, — q, € N, as k —
+00. For a non-zero vector v, € (El)xl pick a sequence v, € (El)pk that converges to

V.., and let w; € (Ez)qk be the corresponding sequence such that

X712
o9 (v)=%w) and |vlz =Iwilg,-

Since the sequence w; is bounded, we may assume, again after choosing a subse-

quence, that w; converges to some vector w, € (Ez)q as k — +o00. It is straightfor-
0

ward to see that the norm of w, equals the one of v, . Now for a proof of the lemma

it remains to show that q, ¢ dN,. If the latter holds, then we may take g, as x,, and
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the statement follows directly by continuity of ® o ¢, and %,.

Suppose the contrary, q, € N,. Then by continuity we obtain
09 (v,,)= lim @0 (v) = lim & (w) =%, (wy,)-

Since the point x, lies in the interior of N, by Lemma 2.3.3 the left-hand side above
is non-zero, while since q, € N,, the right-hand side vanishes. Thus, we arrive at a

contradiction.

Let us prove the uniqueness. Suppose there is another pair (fcz, wﬁz) € E, such that
®o (gl (VX1) = %2 (Wffz)’

where wy, is non-zero. Then we have the equality

Y, (chz) =Y (sz) s

and the last part of Lemma 2.3.3 implies that X, = x, and Wi, =W, . O

Step 2. Now we analyse the images %, of the maps % in #* (&), where i = 1, 2.
Take a non-zero vector v, € (El)xl’ and let x, € N, and w,, € (EZ)x2 be a point and
a vector respectively that satisfy the conclusions of Lemma 2.3.8. In particular, the
vectors ® o ¥, (vxl) and %, (wx2) coincide in #¢ (&), and we denote this value by u.
By Lemma 2.3.3 we see that locally the sets ® (%, ) and %, are submanifolds in 7 (&),
whose tangent spaces can be viewed as the images of the differentials D (® o ¢,) and
D%,. Combining this with Lemma 2.3.8, we conclude that the tangent spaces T,® (%,)

and T, 2, coincide as subspaces in #* (&). Using the inverse function theorem we may
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represent ® (#,) and %, locally near u as graphs of smooth functions defined on an

open subset in

V=T,®(R,)=T,R,.

In more detail, let IT be orthogonal projection onto ¥ in #* (&), and consider the map
Mo¥,:E,— ¥, vx'—>H(<vx,Gz(x,-)>).

By Lemma 2.3.3, its differential is an isomorphism near u, and hence, there exists a
C'-smooth inverse map H, : @ — E,, defined in the neighbourhood @ of I1(u) in ¥.

Then, it is straightforward to see that %, is the graph of the map
Fy:0— v, v+— %, (H,(v))—v.

Similarly, one shows that there exists a C'-smooth map H, : ¢ — E;, which we may

assume is defined on the same set @, such that ® (2,) is the graph of the map
F:0— vt v— $o0Y (H,(v))—.

From this construction we see that the vectors v, € (El)x and w, € (Ez)x are
1 2

precisely the images H, o IT(u) and H, o I1(u), and the isomorphism J has the form
H, o H{' on the open subset

Q, =H,(0)n#]"(B,) C Ey, (2.37)

where 7, : E; — Nj is the vector bundle projection.

For the sequel we need the following lemma.
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Lemma 2.3.9. The maps H; : 0 — E; constructed above, where i = 1,2, are real-analytic
in a neighbourhood of Tl (u) in V. In particular, there exists a neighbourhood of v, in

E, such that the map H, o H ! is real-analytic on it.

Proof. Choosing an orthonormal basis (¢;) in ¥, where i = 1,..., m, we may identify
the vector space ¥ with R™. First, we claim that the map [To %, : E, » ¥ ~ R™
is real-analytic in a neighbourhood of w,., that is the coordinate functions, given by
products

(IT0 %, 0:), = (%, i) » where i=1,...,m,

and (-,-), stands for the scalar product in #* (&), are real-analytic. By definition of

9, for the latter it is sufficient to show that the sections
x+—>((~;2(x,-),<pi)e€Ex where i=1,...,m,

are real-analytic in a neighbourhood of x,. Let f; € 7/0_5 (&) be a vector dual to ¢;, that
is such that ¢; (s) = (s, f;)_, forany s € 7/0_5 (&). Since the canonical map f — (-, f)_,

preserves scalar products, we conclude that

(GZ (X, ')’ (pi)g = J <GZ (X, y):fi (}’)>y,52 dVOlg (J’) .

U
Recall that the point x; does not lie in the closure U c N,. Then, by properties of
the Green kernel, it is straightforward to see that the integral on the right-hand side
above defines a harmonic section in any neighbourhood of x; that is disjoint with U.

Any harmonic section is real-analytic under our hypotheses, and we conclude that so

is the integral above. Thus, the coordinate functions (%,, ¢;), are real-analytic in a
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neighbourhood of x; for all i = 1,...,m. Further, we conclude that the map H,, as
the inverse map to Il o %,, is also real-analytic in a neighbourhood of IT (u).
A similar argument shows that the maps [To® 0%, and H, are real-analytic as well.

Hence, the map H, o H; " is real-analytic as the composition of real-analytic maps. [J

Step 3. Now we claim that the images of ® (%,) and £, coincide around the point

u. This is the consequence of the following lemma.

Lemma 2.3.10. The maps F,; : @ — ¥ constructed above, where i = 1,2, coincide in a

neighbourhood of T1(u) in V.

Proof. Fix an orthonormal basis (goj) in ¥+, where j = 1,2,...,00. For a proof of
the lemma it is sufficient to show that the coordinate functions (F LY j) , and (Fz, v j) .

coincide for all j = 1,2, ..., 0o, where (-, -), is the scalar product in #* (&). Note that

(Fz’ 80]'),3 (v) = ({42, %)[ °H, (’U)_('U:‘Pj)g (2.38)

for any v € 0. The argument used in the proof of Lemma 2.3.9 shows that the function
(%, @ j) , 1s real-analytic in some neighbourhood of v, , and by Lemma 2.3.9 we also
know that the map H, is real-analytic in a neighbourhood of IT (u). Since the second
term on the right-hand side of (2.38) is linear in v, we conclude that the function
(Fz, @ j) , Is real-analytic in a neighbourhood of I1(u), which we may also denote by
0. This statement holds for all values j =1,2,..., 00, with the same set O.

Similarly, one shows that all functions

(Fl,goj)é (v)=(<I>o‘§1,<pj)éoH1 (fu)—(v,cpj)e (2.39)

are also real-analytic on the same set ¢. Without loss of generality, we may assume
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that the open set @ is connected. Now by the choice of the point x;, we know that the
maps ® o ¢, and ¥, oJ coincide on an open subset 2, C E;, defined in 2.37, whose
closure contains v, . Recall that the map J coincides with H, o H ' on Qy, and hence,
the maps ® o ¢, o H; and %, o H, coincide on H 1_1 (£2,) c 0. Combining the latter with
relations (2.38) and (2.39), we conclude that the real-analytic functions (F LY j) . and
(FZ, goj) , coincide on an open subset H;'(£4) C 0, and hence, coincide on & for all

j=1,2,...,00. Thus, we are done. O

Due to the conical structure of the images ® (%,) and %#,, from the above we
conclude that there are conical neighbourhoods of u, that is neighbourhoods invariant
under multiplication by t > 0, that coincide. In fact, as the following lemma shows,

even a stronger statement holds.

Lemma 2.3.11. There is a neighbourhood O, of the point x; € N, such that for any
X € O, there exists z € N, such that the images of fibres ® o ¥, (El)x and %, (Ez)z

coincide.

Proof. Choose a neighbourhood O, of x; € N, such that O, C 7, o H, (€), where
#t, : E; — N, is the vector bundle projection. We intend to show that for any x € O,
there exists z € N, such that the image ® o ¥, (El)x lies in ¥, (E"Z)Z. Since these
images are vector spaces of the same dimension, the statement of the lemma follows
immediately.

First, for a given point x € O, and a vector v, € (El)x, the considerations above
show that the image ®0 ¥, (v, ) lies in the set ¥, (CH, (0)), where CH, (©) is a conical
open set,

CH,(0)={tweE,: teR, t>0, andwe H,(0)}.
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Thus, there exists z € N, such that ® o ¢, (v,) lies in ¥, (E"Z)Z. We claim that for any
w, € (E1)x its image ® 0 ¢, (w,) lies in %, ((EZ)Z)
Suppose the contrary, that is there exists a non-zero vector w, € (El)x such that

its image ® 0 ¢, (w,) lies in %, ((Ez)y), where z # y. Then, we see that

209 (w,—v,) €% ((E),) e %((E),).

Since the vectors v, and w, are different, arguing as above, we may find another point
q € N, such that 0%, (w, —v,) lies in %, ((Ez)q) Now by Lemma 2.3.4 we conclude
that the point q coincides with either z or y, and in each case it is straightforward
to arrive at a contradiction. For example, if ¢ = z, we immediately conclude that the
vector

@o‘gl(wx):@o%l(wx—vx)+<1>o%1(vx)

lies in the image ¥, ((EZ)Z), and by Lemma 2.3.3, the points z and y coincide. O

Using this lemma we can extend the map J to an open neighbourhood O, of x;. By
the argument in Step 2 it is real-analytic. Moreover, it is an isometry on fibres over the
open set O; N B; and since Euclidean structures are real-analytic we conclude that J is
an isometry on fibres over the whole set O,. This means that O, C B; and we arrive at
a contradiction with the assumption B, # N, since the point x;, € O; C N; has been
chosen on the boundary dB;. Thus, we conclude that the set B; coincides with the
whole manifold N;.

Step 4. Now we collect final conclusions. First, relation 2.35 defines the fibre preserv-
ing map J : E, — E,. By the argument in Step 2 we see that locally it can be written in

the form H, o H 1_1, and hence, is smooth, and by Lemma 2.3.9 is real-analytic. Since
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by definition it is an isomorphism on each fibre, we conclude that it is a real-analytic

vector bundle isomorphism. In particular, it covers a real-analytic map j : N, — N,.

Note that the isomorphism J coincides with the isomorphism & on fibres over W; C
N,. Since the latter is a gauge equivalence, the connections J*V? and V! coincide
on W,, and since they are real-analytic and N, is connected, they coincide on Nj.
Similarly, the map j : N, — N, coincides with the isometry ¥ on W,, that is the real-
analytic metrics j*g, and g; coincide on W;, and hence, they coincide everywhere on
Nj. Thus, the vector bundle isomorphism J is indeed a gauge equivalence that covers

an isometry.

Remark 2.3.12. The results of this section remain valid in the restricted Schrodinger
setting. Let us explain step by step why this is the case. As we already discussed the
results up to Step 1 remain valid. The main ingredient of Step 1, Lemma 2.3.8, is
valid since its proof relies on the definition of the Dirichlet Green kernel and Lemma
2.3.3, which still holds as was noted in Remark 2.3.5. Step 2 remains valid because it

essentially uses Lemma 2.3.3 and the real-analyticity of the solutions to the equation

Ly =0.

Step 3 is still valid because it uses real-analyticity again, Lemma 2.3.3, and Lemma
2.3.4, which are still valid as was discussed in Remark 2.3.5. Finally, Step 4 relies
on the previous results and, therefore, also remains valid. Note that due to the local

reconstruction result Remark 2.2.7 the potentials over W, are related by the formula

131=<I>_101320<I>.
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Now again the isomorphism J coincides with the isomorphism ® over W;, and since

P, and J7! o P, o J are real-analytic we have the relation

P,=J"1ob,0l.

Therefore, the result in Theorem 2.3.1 remains valid in the restricted Schrodinger

setting.
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Chapter 3

Calderon’s problem for harmonic

maps

3.1 Dirichlet problem for harmonic maps

3.1.1 Harmonic maps

Let us recall the definition of a harmonic map. Let (N, g) be a connected compact
orientable Riemannian manifold and (M, h) be a connected complete orientable Rie-
mannian manifold. We assume manifolds have dimensions n and m, respectively.

Given a smooth map u : N — M, we define the tension field operator T as
T(u) =Tr, Vdu, (3.1)

where du € T (T*N ® u*TM) is the differential of u, and V = VT V®' ™™ is the induced
connection on the vector bundle T*N ® u*TM.

Note that the tension field can be equivalently defined as 7 (u) = —d*du, see [11].
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Definition 3.1.1. A map u : N — M is called harmonic if its tension field vanishes

T(u)=0.

A straightforward calculation [cf. 11] shows that in local coordinates the equation

7 (u) = 0 takes the form of the following system of non-linear equations

, - ou aul
Au' + g*Ti——— =0,
& Liigxa axh
where i,j,l = 1,...,m, a,p = 1,...,n, and we assume the summation over the re-

peated indices. Here l“jil are the Christoffel symbols of the Levi-Civita connection on
M, A is the Laplace—Beltrami operator, and g®” is the inverse matrix to Zup-

For a smooth map u : N — M we define its energy (functional) as

E(u) = %f |dul Vol,,
N

where |dul|? is the energy density of the map u defined by
|dul* (x) = Tr, (u*h) (x),

which in local coordinates has the form

8 () hy (u () o o ().

The direct calculation of the first variation of the energy functional [cf. 11] gives

the formula
dE (u,)
dt

= —f (v,7(u)) Voly,
t=0

N
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where u, is a family of maps N — M depending smoothly on ¢, such that u, = u and

Juy

V= at

t=0

We see that 7 (u) = 0 is the Euler-Lagrange equation for the energy functional.
This gives us the well-known variational characterisation of harmonic maps. Namely,
harmonic maps are critical points of the energy functional.

The second variation of the energy functional is also well-known and leads to the

definition of the Jacobi operator.

Proposition 3.1.2. [14 ] The second variation of the energy functional is given by

0%E (ust)
_— = J,v,w)Vol,,
dsot J( u¥>w) Vol
s,t=0 N
dug, _ Ouyy

where v =

, and J, = A" —Trace, RM (du,-)du is the Jacobi

ds s,t=0

J
s,t=0 ot

operator; RM is the Riemann curvature tensor on M, and A" := A*™ is the connection

Laplacian acting on sections of the pull-back bundle u*T M.

An important example of harmonic maps arises when we take M to be R. In this
case the tension field operator is the Laplace-Beltrami operator A on N and harmonic
maps are just harmonic functions. Harmonic maps and, in particular, harmonic func-
tions have been studied extensively, see [12] and references there.

In the Introduction we defined the classical DtN operator (8). Clearly, the unique-
ness of the solution to (1) is crucial for the definition of the DtN operator and the
existence of solutions defines its domain. Our aim is to generalise the definition of the
DtN operator to maps between manifolds. First of all we need to consider the Dirichlet
problem for harmonic maps. There are two different variants of the Dirichlet problem

for harmonic maps. One of them fixes the homotopy type of a map and the other is
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not.

* Dirichlet problem. Assume N is compact with smooth boundary dN. Given

¢ : N — M, find a harmonic map u with u = ¢ on JN.

* Homotopy Dirichlet problem. Assume N is compact with smooth boundary
JN. Given ¢ : N — M, find a harmonic map u with u = ¢ on JN that is
homotopic to ¢ relatively N, i.e. there exists a family of maps u, : N — M,

with 0 < t < 1, such that uy = ¢, u; =u, and u, = ¢ on dN.

Note that for a closed compact case there is a similar homotopy problem which reads

as follows.

* Homotopy problem. Assume N is closed and compact. Given a smooth map

¢ : N — M, find a harmonic map u homotopic to ¢.

Following the definition of the classical DtN operator we consider the following setting.
Let N be a smooth connected Riemannian manifold with boundary d N and M be
a smooth Riemannian manifold, then (under some assumptions) to a smooth map
¢ : dN — M we can assign its unique harmonic extension u : N — M and get du|y :
N,ON — T,,)M, for any p € N, where A,dN C T,N is the normal line for N
in N at the point p € dN. In this setting the Dirichlet-to-Neumann operator sends
amap ¢ € C*°(JdN,M) to a section A[¢] of the pull-back bundle ¢*TM, where
Al¢]l(x) = du(v,) and v, € A, ON is the outward unit normal vector at the point
x € dN. We will call this (non-linear) operator the Dirichlet-to-Neumann map in order
to distinguish between the DtN operator for harmonic maps and linear DtN operator

on vector bundles.
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3.1.2 Existence and uniqueness theorems

Of course, the definition of the DtN operator for harmonic maps is valid only under
the assumption that the Dirichlet problem for harmonic maps has a solution for any
map ¢ € C°° (dN, M) and this solution is unique. This is not the case in general, but
there are some results which give us the conditions under which the above assumption
holds. For the homotopy Dirichlet problem we have the following existence result of

Hamilton [20].

Theorem 3.1.3 (Hamilton). Suppose N is compact with (nontrivial) boundary, and M
is complete with non-positive sectional curvature. Let u, : N — M be a smooth mapping.
Then there exists a smooth harmonic mapping u : N — M such that u = u, on dN and

u homotopic (relative to dN) to u,,.
In addition Hartman proved the following uniqueness theorem [21].

Theorem 3.1.4 (Hartman). Suppose N is compact with (nontrivial) boundary, M is
complete with non-positive sectional curvature, and u, : N — M is harmonic. Then any

harmonic map u; : N — M homotopic to u, relative to d N must coincide with u,,.

Example. If we consider M = R and a real valued function ¢ € C*° (JN), then the
classical Dirichlet problem arises. It is well known [cf. 2] that in this case there exists
a unique harmonic map (real valued function) u : N — R such that u = ¢ on JN.
This result also follows from the discussion in Chapter 1 since the Laplace-Beltrami
operator is a connection Laplacian for the trivial connection on the trivial vector bundle

of functions.

In light of these theorems it is natural to restrict ourselves to the case when the

target manifold M is complete and has non-positive sectional curvature.
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In order to define the Dirichlet-to-Neumann map we need to use both existence
and uniqueness results for the homotopy Dirichlet problem. These results may not

hold in general, so we continue our discussion with some counterexamples.

3.1.3 Counterexamples

In this section we discuss some counterexamples to the existence and uniqueness of
a solution to the homotopy Dirichlet problem. The easiest counterexample to the
uniqueness of the solution to the homotopy Dirichlet problem is probably given by the
maps from the interval N = [0, 7] to a unit sphere M = S", n > 1. If we pick ¢ :
[0, ] — S™ to be a geodesic joining antipodal points p and q in S”, then any geodesic
joining these two points will represent a harmonic map homotopic to ¢ relative to
dN. Now, it is well known that there is infinite number of geodesics joining antipodal
points on a sphere and since n > 1 all of them are homotopic to ¢ relative dN. Hence,
we have infinite number of solutions to the homotopy Dirichlet problem in this case.
One can obtain a generalisation of this example to higher dimensions as follows. Let

N be a unit hemisphere

defined in coordinates by
Sfr = {(xo,xl,...,xk)ERk+1 :x§+xf+---+xlf =1,x;, = O},
and let M be a unit sphere S™ C R""! defined in coordinates by

S”={(xo,xl,...,xn)E]R”Jr1 :x§+xf+---+x5=1}.
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Suppose that k > 1 and n > k + 1. Let ifl : R¥*! < R™"! be the inclusion defined in
coordinates by

(X0> X715+ > X)) = (X0, X154+ +» X%, 0,...,0).

The boundary N is then S*7! given in coordinates by
Skl = {(xo,xl,...,xk) e RF 1 xg +xf + ---+x£_1 =1,x, = O},
and the following inclusion holds
ON =51 cik (RF) cR*.

One can see that the map ¢ =1 o jf defines an inclusion of S i into S", this inclusion
is totally geodesic and, hence, harmonic. Therefore, the homotopy Dirichlet problem
for ¢ has a solution given by u = ¢. Let us now show that this solution is not unique.
Consider the subgroup SO (n—k + 1) of SO (n+ 1) which stabilises the elements of
the subspace i]’:_l (Rk) c R"!, Its elements can be represented as a block diagonal

matrix

I 0
R,= ,
0 A

where I is k x k identity matrix and A € SO (n—k + 1). Clearly, each R, defines an
isometric diffeomorphism S"*! — S"*! and, thus, a totally geodesic map. Since there
is no retraction of S _kk onto its boundary there is at least one point y € S_kF such that
(cp 67 (y)n) #(0,...,0) € R™ 1. Now, it is well known that SO (n—k + 1)
acts transitively on spheres of constant radius in R™**!. Therefore, there will be

infinitely many different maps R, o ¢. Moreover, due to the choice of a subgroup
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SO (n—k+ 1) we see that R, o |,y = ¢|,y- Finally, all the maps R, o ¢ are harmonic
(in fact totally geodesic) as a composition of a harmonic map with a totally geodesic
map [11]. Therefore, we see that there is an infinite number of harmonic maps ho-
motopic to ¢ relative to dN. Note that the fact that they all homotopic to ¢ follows

from their definition and path-connectedness of SO (n —k + 1).

The following example from [38] shows that the existence and uniqueness of a
solution to the Dirichlet problem for harmonic maps may depend on the dimension of
manifolds. Let R® — R""! be the injection i (x;,...,x,) = (xq,...,X,,0). We consider
the following Dirichlet problem: Find a rotationally symmetric harmonic map u : B" —

S™ c R""! such that u|;z. = i|ps, i.e. u maps the boundary B" to the equator of S™.

Let (r, 0) be polar coordinates on B" and (p, ¢) geodesic coordinates on S" such
that p is a distance from the north pole of S™ and ¢ € S"'. With respect to these
coordinates, the metric on B" is dr?+r2d 02 and the metric on $" is d p+(sin® ¢ ) d 2.
Clearly we may identify the 6 and ¢ coordinates. Thus, we are looking for a solution
of the form

i

u(r,0)=(p(r),0), uharmonic, p(l)zz.

Note that

u*(dp?+sin® p dp?) = (p/(r))2 dr? +sin®p (r) d62.

Choose an orthonormal frame 6,,...,6,_; on S"! such that

n—1
do*=>"02, 0,=dr.
i=1
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With respect to this frame, the metric on B" is

202 202 2
reo; 4.0+ 67,

and the pull-back of the metric of S™ is
. : PR
sin® p 02+ ... +sin’ p 6% +(p’(r))” 62

Hence |dul* = (p')* +(n—1) Sh;# and

2

1 .
E(u)=f J [(p’)2+(n—1)m]r”_ldrd0:
n—1 0

r2
' 2 sin?
[(p’) +(n—1) p]r”_ldr.

= Vol (S“_l)J —

0

For any 7 (r) € C>° ((0,1)),

1
= Vol (S”_l)f [p'n +2(n—1)sinp cosp - r~2n]r"dr

0

o—iE( +tn)
BT o
1

= Vol (S”_l)f ) [—2 (r"p') +(n—1)sin2p - r‘zr"_l] dr,

0

where we used integration by parts to obtain the first term. Hence the Euler-Lagrange

equation becomes

—2 (r"_lp’)/ +(n—1)sin2p - r" > =0,

or

1 i(rn_ld_p)_n—lsin2p_0
r—ldr dr 2 r2
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Substituting t = logr and a = 2p, we get the equation

d? d
d—§+(n—2)d—(:—(n—1)sina=0,

where t € (—00,0] and a(0) = 7 since r € [0,1] and p (1) = 7/2. We assume u (0)
to be the north pole, or p (0) = 0. Then tliinooa(t) = 0. Thus the Dirichlet problem
for rotationally symmetric maps reduces to the following ODE problem with boundary
conditions:

‘fT‘Z +(n—2)i—‘f—(n—1)sina=0,

a(0)=m, tliglwa(t) =0.

The solution to this problem depends on the dimension n, therefore, we continue with
three separate cases.

1. Case n = 2. The desired solution is a (t) = 4tan™' (e'). Hence p (r) = 2tan"'r.

It can be seen that the map u is the inverse of stereographic projection. We see

that we have existence and uniqueness in this case.

2. Case 3 < n < 6. We have infinitely many solutions in this case. Which gives us

an example of non-uniqueness of a solution to the Dirichlet problem.

3. Case 7 < n. We do not have a solution in this case. Which gives us an example
of non-existence of a solution to the Dirichlet problem. Strictly speaking, only

in the class of rotationally symmetric maps.

Let us finish this section with a counterexample to the existence of a solution to a
homotopy problem for closed manifolds. It was noted in [13] that there is no har-
monic map from a two-dimensional torus (TZ, g) to a two-dimensional sphere (SZ, h)

of degree +1, whatever the metrics g, h.
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3.2 Topological extension problem and DtN operator
for maps to manifolds with non-positive sectional

curvature

3.2.1 General topological extension problem

As we saw above, under some assumptions we can define the Dirichlet-to-Neumann
map following the definition of the classical DtN operator. One of these assumptions
is that there is an extension of the map from the boundary to the whole manifold.
Note that there is an important difference when we define the classical DtN operator
and the DtN map. Namely, since R is contractible every map dN — R (real valued
function) extends to a map N — R and all such maps are homotopic to each other
relatively N, i.e. there is only one homotopy class of maps N — R relative to dN.
This is not true in general (and, in particular, in the case of non-positively curved
target manifold), because not every map of the boundary 6N — M can be extended
toamap N — M, and, in contrast, there can be more than one homotopy class of such
extensions. Indeed, if we take N to be a disk and M to have non-trivial fundamental
group, then the map of the boundary N = S* — M representing a non-trivial loop
clearly does not have an extension to the whole disk N. On the other hand, if we
also take M to be S? and the map N = S! — S? = M to be the standard inclusion
of the equator, then this map can be extended as an inclusion of the upper or lower
hemispheres, and these maps are clearly not homotopic. It means that we can define
the DtN map not for any map of the boundary 0N and we have to deal with the

topological extension problem. In general it can be formulated as follows.
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Topological extension problem. Let N and M be topological spaces and W be a sub-
space of N. Suppose we have a continuous map ¢ : W — M. Then we can
ask the following questions. When the map ¢ extends to a continuous map
® : N —» M, namely, when there is a map ® : N — M, such that ®|,, = ¢? If

such extensions exist, then what are the homotopy classes of these extensions?

The topological extension problem is quite hard to deal with in general, but it becomes
somehow easier if we consider the target manifolds M of the Eilenberg-MacLane type.
We actually consider the case of target manifolds of non-positive sectional curva-
ture, that are Eilenberg-MacLane spaces K (7t; (M), 1). Indeed, from the well known
Cartan-Hadamard theorem we conclude that such manifolds have contractible uni-
versal cover, which implies that they can only have the first homotopy group as a
non-trivial one.

If we consider the case of the abelian fundamental group m; (M) then it is well
known fact that the Eilenberg-MacLane spaces K (7t; (M), 1) are classifying spaces for
the first cohomology group with coefficients in 7, (M), i.e. every element ¥, of the
first cohomology group H* (N, t; (M)) of the space N is represented by the homotopy
class [f ] of the maps N — K (7t; (M), 1). This fact allows us to restate the topological

extension problem by means of the long exact sequence of the pair (N,JN)

...——H'(N,dN,n, (M));*>H1 (N, 7, (M) ——

— L L H'(ON,n, (M) —>—H?(N,dN, n, (M) — ...
where the map i* is induced by the natural inclusion i : dN — N, the map j* is in-
duced by the natural inclusion j : (N,#) — (N,JdN), and & is the connecting map.

We see that an element [¢] € H! (N, 7r; (M)) lifts to H! (N, 7; (M)) (to give rise to
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an extension of ¢ to N) if and only if its image 6 ([¢]) = 0 € H*(N, N, nr; (M)).
Moreover, this lifting is unique if and only if j* is trivial. Although, the answer to
the topological extension problem is now in computation of cohomology groups and
maps between them, it is very hard to do this in any particular case. Moreover, the fun-
damental groups of the Cartan-Hadamard manifolds are usually highly non-abelian.
Therefore, for the most part of the Cartan-Hadamard manifolds we do not have the
long exact cohomology sequence described above. In contrast, we always have the

long exact sequence

oo —— 1, (N, ON) =2 11, (ON) —— 71, (N) —2 11, (N, ON) — ...

\ l L ®,

7y (M)

of homotopy groups of a pair. From this sequence we see that the homomorphism ¢,
lifts to the homomorphism &, only if the composition u = ¢, o 6 is trivial, but it is not

a sufficient condition for the lift.

3.2.2 Special case of topological extension problem

Our main result in this section concerns manifolds with simply connected boundary
and is stated in the following proposition. The proof of this proposition is based on
some technical results from algebraic topology. We provide these results and all the

necessary definitions in Section A.1.

Proposition 3.2.1. Let N be a compact connected manifold with non-empty boundary
dN, and M be a manifold that is a K (T, 1)-space. Suppose that dN is simply connected.

Then for any continuous map ¢ : dN — M and any homomorphism h : m;(N) —» T
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there is a continuous extension ¢ : N — M such that ¢|,y = ¢, @l ) =h, and every

two such extensions are homotopic relative to dN.

Proof. Using Fact A.1.1 we take the associated finite CW structure on N so that (N, dN)
is a CW pair. This CW pair is homotopic to a CW pair with only one 0-cell, and hence,
the 1-skeleton of the latter space can be viewed as the bouquet (wedge sum) of a
finite number of circles S'. Since dN is simply connected we may assume without
loss of generality that the 1-skeleton of dN has no 1-cells (see [16, p. 58]). Now
take the generators y;, i € I of the fundamental group of the 1-skeleton N! = VS !
such that the map y; : S' — \/S! = N'! is a natural inclusion of i-th circle. ll\?f)te
that [y;] € m; (N). Let us send lteliese generators to some representatives 7; in m; (M),
such that [#;] = h[y;]. This defines ¢ on the 1-skeleton N'. The attaching maps
&z : D* 5 8! — N for 2-cells are of the form &, = y;! -...-y;", where & = +1 and
k; € I. The images of these maps are Si =@po 5i = }72 S ?i“ Since we attach
2-cells via boundary maps 52 the classes [62] € m; (N?) = 7, (N) (the last equality
follows from the Cellular Approximation Theorem, see [16, p.52]) are trivial, and it
follows that their images [5 i] € 1, (M) under the homomorphism h are also trivial.
Using Lemma A.1.4 we can define ¢ on 2-skeleton N2. Since all higher homotopy
groups 7; (M), i > 2 vanish the same procedure with the use of Lemma A.1.4 can
be implemented to higher-dimensional cells, which allows to extend ¢ to all of N
by induction on I-skeletons N'. Thus, we get the extension ¢ : N — M such that
@ulr,vy = h. Now it suffices to get @[,y = . It follows from Lemma A.1.3 for N
and Corollary A.1.1. If there is another extension ¢’ : N — M such that ¢’ ) = h,
then it is homotopic to ¢ on 1-skeleton N, by the construction of ¢. Using Borsuk’s

Theorem for the CW pair (N ,N 1) we obtain a homotopy between ¢’ and ¢ on whole

N. [
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Example 3.2.1. The main example in this setting is a manifold N obtained by the
excision of an n-dimensional open ball from an n-dimensional compact connected
manifold X, where n > 3. The boundary of the obtained manifold will be S"™!, and it

is well-known fact that it is simply connected for n > 3.

If we restrict ourselves to the case of domain manifolds being compact surfaces we

get an additional result.

3.2.3 Extension problem for maps of surfaces

As we already discussed, in general, the topological extension problem for maps from
smooth manifolds with boundary to Eilenberg-MacLane spaces K (71, (M), 1) can be
reformulated in terms of the group theory. Namely, the question of the classification
of topological extensions can be reformulated as the question of the classification of
group homomorphism extensions for the fundamental groups of the associated spaces.
To get some examples and explicit solutions we will consider N = Q to be a compact
connected orientable surface with connected boundary 2 % Shsti:90Q—Qisa
natural inclusion. Let ¥ =i, ([y]) € 7, (2, *).

We argue that even in this setting the topological extension problem cannot be
simply solved. Let  be endowed with a normal structure of a CW complex, i.e. Q is

obtained by attaching the disk D? to the 1-skeleton of

sk (@ =\/s1 V5L V]
i=1 i=1

by a loop

= ngagb;a; .. blalbl_lal_1 e m (Q,%),
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where g is the genus of the surface Q. The fundamental group 7, (£2,%) of this
surface then isomorphic to <}7,a1, by,..., @, belybgagbtart .. byaybitart = 1>. We
see, that we can actually express y in terms of other generators, since [ = 1 we get
¥ = abya; bt .. a,b,a; b, So we may assume that 7, (€2, %) is isomorphic to a
free group F,, = (al, by,...,a,, bg> on 2g generators. It is actually true, and the best
way to see this is probably to note that the surface €2 is homotopically retracts to its CW
subcomplex Xg/ Sclli Xg/ S 1{, which has the needed fundamental group. It is more con-
venient to col;sliderlt:hlis bouquet instead of Q2. The useful feature of free groups is that
every homomorphism from a free group is completely defined by the images of its gen-
erators. In this sense the topological extension problem reads as follows. Assume that
we have a homomorphism of fundamental groups ¢, : 7, (9Q,*) — m; (M, x). When
does this homomorphism extend to a homomorphism &, : 7, (Q,*) — m; (M,*)?

Suppose we have an extension ®, and let us look at the image of the generator

[vy]e m (89Q,%) ~ ([y]). We have

CI)* ([Y]) - 90* © l* ([Y]) = QP* (?) = (,0* ([ab bl] [az: bz] oo [ag: bg]) =

=y, (@), . (b)]...[¢.(ag), ¢, (b,)],

where [x,y] = xyx1y™! is the commutator of elements x and y. Since the funda-
mental group of Q is free, the images ¢, (a;), ¢, (by), k = 1,...,g can be arbitrary
elements of 1, (M, ). Hence the extension exists if and only if the element ¢, (¥) can
be expressed as a product of < g commutators in 7t; (M, x). This leads us to the ques-
tion “what elements in 7, (M, %) can be expressed as a product of < g commutators?”
In general, it is not clear how to answer this question. Thus, we will further specify

our setting to get the following proposition.
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Proposition 3.2.2. Let Q be a compact orientable surface of genus g with boundary
00 ~ S as above, and M be a closed manifold with the abelian fundamental group. Let
@ : dQ — M. Then ¢ extends to a map ® : Q — M if and only if [ @] represents a trivial

element of 1, (M, ).

Proof. We have seen above that the map ¢ extends to a map @ if and only if the
class [¢] can be expressed as a product of < g commutators in 7, (M, ). Since the
fundamental group 7, (M, *) is abelian all commutators vanish. Thus, the map ¢

extends to a map & if and only if [¢] =0 € 7, (M, *). ]

Example 3.2.2. Let M in the above proposition be a 2-dimensional torus T?2. It is well
known that the fundamental group of T? is the abelian group Z @ Z. Using the above
proposition we see that a map from the boundary of a surface to a torus extends if and

only if it is null-homotopic.

Example 3.2.3. Let M be a circle S'. It is well known that the fundamental group of
S! is the abelian group Z. Then a map from the boundary 9 extends if and only if it

is null-homotopic.

If we consider the extension problem for maps from a general manifold N to a

circle then there is an approach exploiting the connection to harmonic 1-fields.

3.2.4 Harmonic maps into S! and harmonic 1-fields

It is well known fact that there is 1-1 correspondence between the space |:N ,S 1:| of
homotopy classes of maps from a topological space N to a circle S! and the integral
cohomology H' (N) of N. Eells and Sampson in [14, Example (D), p.128] show that

for the case of N being a manifold this correspondence can be established through the
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relation between harmonic 1-forms on N and harmonic maps to S!. In this subsec-
tion we use this correspondence to find out when a map from the boundary dN to
a circle S! extends to a map from the whole N. We start with a construction of the

correspondence.

Fact 3.2.1 ([14, Example (D), p.128]). Suppose N is connected. Fix a point P, € N.
Given any integral harmonic 1-field w (i.e. closed and coclosed harmonic 1-form with

integral periods) and any smooth path y, from P, to a point P € N, we define the number

f(P)=fw-

Yp

A different choice ¥, of yp may give a different number f(P), but

fP)—f(P)= J w

p—rp
is an integer since the periods of w are integral. Hence, w determines a well defined map
f., : N — S! by letting f,, (P) be the residue class modulo 1 of f (P).

Now since w is harmonic, every P € N has a neighborhood U in which df = w.
Thus Af = 6df +dof = 6w = 0in U, i.e. the map f,, is harmonic. In the case of
a manifold without boundary it is easy to see that w — f,, establishes an isomorphism

[N,S'] = H'(N,2).
Our main result in this subsection is the following theorem.

Theorem 3.2.3. Amap ¢ : 3N — S! extends to a map ® : N — S* if and only if the
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corresponding cohomology class [aw] € H' (0N, Z) satisfies

Ja¢Ai*A=0for any A€ H"2(N), (3.2)
oN
where i : N — N is the natural inclusion of the boundary and a, is any representative
of the cohomology class [aw] € H' (0N, 7).
Moreover, if ¢ is extendable then all its extensions are classified by the relative integral

de Rham cohomology H' (N, Z).

The relative integral de Rham cohomology is the lattice in the space of the relative
de Rham cohomology consisting of elements with integral periods. Note that the con-
dition (3.2) in the above theorem is really on a cohomology class [aw] € H'(ON,7Z)

since

f(a¢+dﬂ)Ai*A:fa¢Ai*A+fdﬁ /\i*;\=0+Jﬁ/\i*(dA)=o,

oN oN oN oN
for every 0-cochain f, and it follows that this condition is topological. To prove the
above theorem we shall use the results based on Hodge-Morrey and Friedrichs decom-
positions and analogues of the de Rham theorems for manifolds with boundary. All
the additional technical results and definitions can be found in Section A.2.

Note that we have the following commutative diagram

H'(N,Z)—~H'(N,Z)——H'(dN,Z),

>~ >~

[N,s']———[0N,S']

where r is the restriction map and e is the natural inclusion of Dirichlet forms. This
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diagram allows us to obtain harmonic extensions of a map ¢ : N — S in few steps.
Firstly, using the Fact 3.2.1 we lift ¢ to a corresponding 1-form a, € H 1(0N, 7). Sec-
ondly, using Proposition A.2.3 and Corollary A.2.8 we extend this form to an integral
harmonic 1-field w, € H 1(N,Z) (note that by Proposition A.2.3 there are obstacles
(A.13) to the extension, meaning that it does not always exist). Finally, using the Fact
3.2.1 again we define a harmonic map ¢ = f% : N — S, which is by the construction
clearly restricts to ¢ on the boundary. Note that by Corollary A.2.8 the extension w,
is defined up to an integral Dirichlet harmonic 1-field. In other words by Theorem
A.2.6 all such extensions w, and correspondingly all the extensions & are classified

by the relative integral de Rham cohomology H rl (N,7Z).

Proof of Theorem 3.2.3. The part “if” follows from the above correspondence and Propo-
sition A.2.3. The last part of the theorem follows from Corollary A.2.8. For the proof
of the part “only if” suppose we have an extension ®. Then we can represent it by the
integral harmonic 1-field wg. From the exactness of w, and Green’s formula we see
that conditions (A.13) hold for the whole cohomology class [i*w, ] and in particular

for Ay O

3.3 Inverse problems of Calderon’s type for the Dirichlet-

to-Neumann operator on maps between manifolds

3.3.1 Calderdn’s problem for Dirichlet-to-Neumann map

Our aim is to generalise the Calderén problem to the setting of harmonic maps, but

let us first discuss couple of low-dimensional examples of the DtN map.
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Example 3.3.1. The lowest dimension we can take for N is 1. Under the assumption
of connectedness of N we have that N should be a closed interval [0,1], where [ is
the length of N. The boundary of N consists of two points 0 and [, and the map
u:JdN — M is basically equivalent to the choice of two (possibly non-distinct) points
u(0) and u(l) in M. If M is complete, then for any two points p,,p; € M there is
a harmonic map u : [0,I] — M such that u(0) = p, and u(l) = p,, which is just a
geodesic with a constant speed parametrisation joining p, and p,. This means that we
have

au
at

:v’

where t € [0,1] is the (normal) coordinate on N and v € R is a constant (speed).
Assuming that the DtN map is well defined (for two fixed endpoints and a homotopy

class of paths joining them) we obtain

_ _( 0 u
MO =di() = di(—5 )| ==Y LM,
and
_ _( 0 u
A[u] (l) = du(vl) = du(a) . = E . € Tu(l)M'

So the DtN map assigns to two points in M the outward speed at these points. In the

classical case of functions, i.e. when M = R we have the equation

_._ 0% _
T(u)=ﬁu=0.

Let u(0) =a and u (1) = b. Then the harmonic extension of u is equal to



3. CALDERON’S PROBLEM FOR HARMONIC MAPS 146

and the DtN operator acts as

A= 5| =224 =A@,
t=l

Therefore, we can find the length of the interval via

- b—a u(@)—u(0) a—b  u(0)—u(l)
CAW](D) A[I(D) A[u]()  A[u](0)

Let us mention briefly the geometric meaning of the DtN map in this case. Fix a point

Do € M. Let r (p,) be the injectivity radius at p, and pick 0 < & < r (p,). Suppose that

u(e) = p, runs over the points in the geodesic sphere in M of radius ¢ centered in

Do- Assume that the DtN map is well defined for N = [0, ¢] and harmonic extensions

being homotopic to geodesics joining points u (0) = p, and u (&) = p,. Then the map
du

p1=u(e) = Alul(e) = ET €T, M

t=¢

is a Gauss map on the considered geodesic sphere, i.e. it sends a point on a geodesic

sphere to the outward unit normal vector at this point.

Example 3.3.2. Now we want to discuss the case of surfaces, i.e. the manifolds N of
dimension 2. The energy functional is N-conformally invariant, i.e. it does not depend
on metric in a fixed conformal class on N [38]. As a result, if there are two conformal
metrics on N then the map u is harmonic with respect to one of them if and only if it
is harmonic with respect to the other one. Similarly to what we saw in 2.2.6 because
of this conformal invariance the DtN maps are related as

W2 .
Apg = e on " Ne>
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where g and e" g are two conformal metrics on N, the maps A, and A,,,, respectively,
are two DtN maps associated with these metrics. On can see that if the conformal
factor is equal to 1 on the boundary, then the DtN maps are equal. Therefore, we can
only try to recover from the DtN map the metric on N up to a conformal class. Our
conjecture in this 2-dimensional case is that one can recover a conformal class of a

metric on N from a given DtN map.

We want to consider the inverse geometric problem of Calderdn’s type which utilise
the DtN map instead of the classical DtN operator. First of all we should ensure that

the DtN operator is well defined. For this reason we need the following hypothesis.

Hypothesis 3.3.1 (H*). The topological extension problem is solvable for the data

(N,0N, M, [u],[a]),

where [u] € [0N, M] is a fixed homotopy class and a homotopy calss [ii] € [N, M] is

its extension, i.e. []|;y = [ul.

If in addition to Hypothesis H* the Homotopy Dirichlet Problem has a unique so-
lution for all smooth maps @i : N — M in a homotopy class [i], then the Dirichlet-to-
Neumann operator Ay , y 41a] 1S Well-defined. This is the case assuming N is compact
and M is complete with non-positive sectional curvature, due to Theorem 3.1.3 and

Theorem 3.1.4.

Definition 3.3.1. Let N; and N, be connected compact Riemannian manifolds with
boundaries dN; and JN,, respectively. Let ¢ : dN; — IN, be a diffeomorphism
and M be a complete Riemannian manifold. Suppose that the Dirichlet-to-Neumann

maps Ay = Ay, ¢ [u10a,] @0d Ay = Ay, o, [1,]15,) ar€ Well-defined for [u;] = [y ou,]
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and some [ii;],[i,]. Then we say that the Dirichlet-to-Neumann maps A; and A,

intertwine if

¢pyo A (uop)=A, (U)o,

for all smooth u € [u, ], where ¢, is defined by the following commutative diagram

O (W TM) =25 M

lnl w l

i.e. ¢, is the morphism from the pullback bundle ¢Y* (u*TM) = (uo )" TM covering
1. In other words, A; and A, intertwine if for any smooth u € [u,] and any point

x € ON; we have

du (vy) = duoyp (v,),

where u o € C* (N, M) is the unique harmonic extension of uo ) € C*° (d N;, M),
v, € T, N; is the outward unit normal vector to IN; at x, and vy ,) € TN, is the

outward unit normal vector to dN, at ¢ (x) € IN,.
The inverse problem that we want to consider leads us to the following conjecture.

Conjecture 3.3.2 (Weak). Let N; and N, be compact Riemannian manifolds with bound-
aries dN; and JN,, respectively. Let M be a complete Riemannian manifold with non-
positive sectional curvature. Let ¢ : dN; — JN, be a diffeomorphism. Assume that

Hypothesis H* holds for data
(Ny, 0Ny, M, [u;],[@;]) and (N, 0Ny, M, [u,],[d,]),

with [u;] = [¢ ou,] and some [ii,], [, ]. If ¢* O AN, g [uy 1] (uogp)= AN, g [y, 05] (w)
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forallu e C*° (0N,, M) in a homotopy class [u,] € [0N,, M ]. Then there is an isometry

¢ : N, — N, such that 43|3N1 = ¢.

This weak conjecture is a generalisation of the conjecture for the classical DtN
operator. In other words, we are asking if it is possible to determine a Riemannian
manifold from a given Dirichlet-to-Neumann map on its boundary. Since the DtN map
defined on some homotopy class of extensions we may be able to also determine this

homotopy class. Which leads us to the following strong conjecture.

Conjecture 3.3.3 (Strong). In addition to the statement of Conjecture 3.3.2 we have

[i,]=[dy0 ¢ ].

There is no equivalent of this conjecture in classical setting, because, as we men-
tioned before, all the extensions of (functions) maps to R are homotopic. In the pre-
vious chapter we obtained the uniqueness result for the linear Calderén’s problem on
vector bundles. Thus, in order to solve the generalised Calderén’s problem for maps
between manifolds it is natural to consider the linearisation of the DtN map and in-

verse problem for it. Therefore, we continue with the discussion of this linearisation.

3.3.2 Linearisation and Jacobi operator

Let u be a smooth mapping of N to M, and let v be a smooth vector field on M along
u. There always exist € > 0 and a smooth mapping U of the product N x (—¢,¢) to M

such that the family u, (-) = U (-, t), t € (—¢, €) has the following properties

0
Uy =1u, ot =v. (3.3)
at |-
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Let A be a pseudo-differential operator (on smooth mappings between manifolds). We

define the linearisation of a pseudo-differential operator as follows.

Definition 3.3.4. The V-linearisation of an operator A at a map u € C* (N, M) is the

linear operator A, (u) on a vector bundle u*TM, defined by the formula

b

t=0

A (uW)v= (V*iAut)
at

where v is a section of the vector bundle u*TM, a family of mappings u, is defined

*
_vU ™

using u and v in the conditions (3.3), and V* = is a connection on the bundle

U*TM induced by the connection V on TM.

The linearisation has the following natural properties. If Ais a differential operator,
then A, is also a differential operator, see [24]. Later, see Proposition 3.3.6, we will
show that the linearisation of the DtN map gives a pseudodifferential operator the
vector bundle u*TM.

Note that for the connection on the pull-back bundle u*T M we have the following

useful formula [14]

Vi ™du(Y)— vy ™ du(X) = du ([, YD), G

where X and Y are vector fields on N.
If we consider the Levi-Civita linearisation of the tension field operator we get the

following result.

Proposition 3.3.5. If V is the Levi-Civita connection on M then V-linearisation T, (u)

of the tension field operator T at a map u is the Jacobi operator J,,.
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Proof. By the definition

T, (Wv= (V%T (ut))

= (V*a Trngut)
t=0 g

t=0

The covariant derivative V*, commutes with Tr,. Thus we have
at

T, (Wv= (Trgv*a Vdut)
at

T Tr, (V’;a_tVdut)

t=0

For a vector field X € I'(TN) which is constant on t when seen as a vector field on
N x (—e, &) we have Vs (t) = (V;‘(s) (t) for any t € (—¢, €). By the definition of the

Riemann curvature tensor R we have
V% Vidu,(Y)=ViVidu,(Y)+R"| X 9 du,(Y)—V; du, (Y
2 Vx u (Y)=Vy 2 u, (Y) 31 u, (Y)— X2 u, (Y),
and we see that the last term vanishes since [X , %] = 0. Next, using (3.4) we see that

0 d
V%dut (Y) = Vidu, (E) +du, ([E,YD ,

where the last term vanishes since Y € I'(TN) is constant on t when seen as a vector

field on N x (—¢, ¢). So we have

T, (Wyv="Tr, ((Vf“V?‘dut (%) +R* (-, %) du, ())) -

=Tr, (V.VYv+RY (du(?),v)du(:) = Ay — Tr,RY (du(-),v)du() =J,v.

Thus, the proposition is proved. ]

Using the above proposition we obtain the following result for the Levi-Civita lin-



3. CALDERON’S PROBLEM FOR HARMONIC MAPS 152

earisation of the DtN operator.

Proposition 3.3.6. If V is the Levi-Civita connection on M then V-linearisation of
the Dirichlet-to-Neumann operator A at a map u is the Dirichlet-to-Neumann operator

DtN (7, (1)) associated with the linearisation T, (i), i.e.
A, (u) = (DtN (7)), (u) = DtN (7, (2)) = DtN (Jg),

where it : N — M is a harmonic extension of a map u : N — M, and DtN (A) denotes

the DtN map associated with an operator A.

Proof. We have

A, (W) v = (DN (1)), (u)v = (v*imzv (T)u[)

= (vymu)] = (vaa(55))

t=0

t=0

and using (3.4) we obtain

=V.a2v=DtN(J;)v=DtN (7, (u))v,

2
an

which proves the proposition. ]

We see that the linearisation of the DtN operator on harmonic maps gives us the
DtN operator associated to the Dirichlet problem for the Jacobi operator. Now if we
omit the term with the Riemannian tensor in the definition of the Jacobi operator we

get the inverse problem for the connection Laplacian. Thus it is natural to consider
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the latter problem first.

The Jacobi operator
Jgv = A" — Tr R (du(-),v)du(")

is the connection Laplacian with a potential P acting on sections of the pull-back vector
bundle u*TM, where
P(v)= —TrgRM (du(-),v)du(-).

When the Jacobi operator is considered acting on smooth sections vanishing at the

boundary we call it the Dirichlet Jacobi operator.

Proposition 3.3.7. The potential P is symmetric. In addition, if the target manifold M
has non-positive sectional curvature at the points of the image u(N), then the Dirichlet

Jacobi operator J; is positive. In particular, O is not in the Dirichlet spectrum of J.

Proof. The symmetry of P follows from the symmetry of the Riemann tensor. Namely,

for any two sections v,w € T (ﬂ*TM ) we have

(P (), W)gery = (—Tr R* (du(-),v)du(:),w)_.,,, =
=—Tr (R (du("),v)du(),w)_.. . =—Tr, (RM (du(),v)du(-),w) . =

oTM T TTM

= —Try (RM (du ("), w)du (), V)., = (P (W), V)grru

where the penultimate equality is due to the symmetry of the Riemann tensor. For the
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proof of the second part we consider the expression

(JaV, Vgpy = <Aav —Tr,RY (du(-),v)du("), v)E*TM =

= (A", v) Tr RM (du(-),v)du(-),v (3.5)

H*TM_< >E*TM’

for any non-zero section v € ¥ (H*TM ) The first term of (3.5) is positive by (1.10)
and (1.14). Using the symmetry of the Riemann tensor again we see that the second

term of (3.5) is equal to
—Trg (R (du(-),v)du (), V) .py, = Trg (RM (v, dL () AT (), V)., -

This expression is non-negative due to the non-negativity of the sectional curvature
along the image u(N). Hence, the Dirichlet Jacobi operator is positive as a sum of

positive and non-negative terms. O

Taking this into account we see that the Jacobi operator J; is of the Schrodinger
type considered in the previous chapter.
Let us prove the proposition concerning the linearisations of intertwining opera-

tors.

Proposition 3.3.8. Let N; and N, be connected compact Riemannian manifolds with
boundaries d N, and JN,, respectively. Let i : dN; — JN, be a diffeomorphism and
M be a complete Riemannian manifold. Suppose that the Dirichlet-to-Neumann maps
Ay = Ay, g fudiay] @A Ay 2= Ay, o) 1u,11a,] @r€ well-defined for uy, = u, o) and some
[i,],[i,]). Let V be the Levi-Civita connection on M and L, and L, be V-linearisations

of the DtN maps A, and A, at maps u; = u, o) and u,, respectively. Suppose A; and A,
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intertwine. Then L, and L, also intertwine, that is for any v € T (u’Z‘TM ) we have

L1(¢_1°V°¢):¢_1°L2(V)°1/),

where the bundle morphism ¢ : ujTM = ¢* (uZTM) — u; TM covers ).

Proof. Let v be a section of u;TM and u, be defined by (3.3) with u, = u, and

- (3)
—o Jt

where the bundle morphism h, covers u,, i.e. the following diagram is commutative

ou,
at

= h2 ov,
t=0

ON, —>—M

Let i1, (x) = u, (1 (x)). Then iy (x) = uo (¥ (x)) = u, (¥ (x)) =y, (x) and

ou ()| _ . (] _ 9\ -
a1 tzo_dut(x)(at)tzo—d(ut(w(x)))(at)tzo—
—du, () (5 )| =haovCo,
t=0
which gives
ai, b oove
Etzo—hz voa.

Note that since u, o1 = u; we have h, = h; o ¢, where the bundle morphism h;
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covers uy, i.e. the following diagram is commutative

Therefore, we have
ai,

| =hie¢Tovou.

t=0

Now, by the definition of linearisation, we have

7 oL oy=¢7"o (V] A )

o, (3.6)

t=0

and

Li(¢ 7 ovey) = (VA (@)

t=0

Since A, and A, intertwine for any smooth u € [u,] we have

Ay (W)= ¢, 0 A (uorp)op™.

Substituting this into (3.6) we obtain

L) = (v uoni@owoy™)|  =(Vig,on@)ov?)
= (v4™yon @)ow)| = duo( VLA @) )oy

= ¢y, o VI™AL @)

t=0

Jou =g oLy (¢ ovoy)oy!

-

t=0
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which is equivalent to the equality

¢ oL, (V)op =Ly (¢p 7 ovor))

proving the proposition. O

3.3.3 Main result

In this section we state and prove a uniqueness result for Calderén’s problem for har-
monic maps between real-analytic manifolds. The following theorem is an analogue
of Theorem 2.3.1, the uniqueness result for Calderén’s problem for the connection

Laplacian.

Theorem 3.3.9. Let N, and N, be real-analytic compact Riemannian manifolds with
real-analytic boundaries dN; and JN,, respectively. Let M be a complete real-analytic
Riemannian manifold with non-positive sectional curvature. Let ¢ : dN; — JIN, be a

real-analytic diffeomorphism. Assume that Hypothesis H* holds for the data
(N1, 9Ny, M, [u;],[i;,]) and (Ny, IN,, M, [u,],[d,]),

with [u,] = [y ou,] and some [, ],[i,]. Suppose that dimN; > 3, for each i = 1,2,
and v intertwines with the corresponding Dirichlet-to-Neumann operators. Then there

is a real-analytic isometry 1) : N; — N, such that | o = Y.

Proof. Let us fix a map u, : 9N, — M and denote by L; and L, the V-linearisations of
Ay = Ay, g ] @0 Ag 2= Ay, o) 1u,]1a,] @t the maps u; = 1 ou, and u,, respectively.
Since 1) intertwines with DtN operators A; and A, we have by Proposition 3.3.8 that

the bundle isomorphism ¢ : ujTM = ¢~ (uzTM ) — u,TM covering 1 intertwines
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with the linearisations L, and L,. As usual we will be working in boundary normal
coordinates and boundary normal frame. Using Theorem 2.2.6 and Proposition 2.2.8
we conclude that isomorphism ¢ is a gauge equivalence, the diffeomorphism 1) is an
isometry, and the first normal derivatives of the metrics g, and g, coincide. Now let us
take a closer look at a potential. As we saw above the potential for the V-linearisation

L of the DtIN map Ay , ,)[z) @t @ map u : IN — M is given by
P=—-Tr,R" (du,-)dx,
where U is a unique harmonic extension of u, RM is the Riemannian tensor on M. Note

that the harmonic extension u solves the elliptic quasilinear equation

i appi OU OW
T(W=Au +g Fﬁaxaﬁ: ,

and by the standard theory [e.g. 36] it is analytic. In local coordinates the potential is

given by

Pg (x) = —g" (RS, (@()) (dT ()] (dT(x))] = g% (x)FL, (@(x)),

where Fl‘iﬂ (u(x)) = —R‘gyﬁ (u(x))(du (x))i (du (x));S depends only on Riemannian
tensor on M and the map u. One can see that the potential is analytic as a combi-
nation of analytic functions. Note that for a given map u there is a unique harmonic
extension u, so we can assume that the map u and therefore the functions F}} P (u(x))
are known on the whole manifold N. Therefore, using Remark 2.2.7 we see that the

full Taylor series of P and g at the boundary are given in terms of the full symbol of

the linearisation L. The rest of the proof is similar to the proof of the main result in
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Chapter 2 (Theorem 2.3.1). Let us discuss each step of the latter and mention the re-
quired modifications in order to generalise it to the present setting. As was mentioned
in Remark 2.2.9, we can apply the Schrédinger version of Proposition 2.2.8 in our
case. Namely, we have that the bundle isomorphism ¢ : ujTM — u;TM is a gauge
equivalence which covers an isometry v : dN; — JN,, and the potentials are related
via

Pi(x)=¢ "o P (Y (x))o ¢, (3.7)

for any x € dN,, i.e. P, is a natural pull-back of P, along ¢. Now, the real-analytic
manifolds N; can be extended to larger real-analytic manifolds N;, and all the geo-
metric structures including the potentials can be extended to real-analytic ones over
N;, i = 1,2. Due to Proposition 1.3.12 there is a unique real-analytic Dirichlet Green
kernel G on E associated with the operator L,. Hence, we can still define the map
¢ : E — "' (&) by (2.26). This map has the same properties as before, i.e. the Lem-
mas 2.3.2, 2.3.3, and 2.3.4 continue to hold as was mentioned in Remark 2.3.5. Now,
due to Theorem 2.2.6 and Remark 2.2.7 the setting in 2.3.4 generalises to the present
case with an addition that the potentials coincide in &, i.e. the relation (3.7) extends
to the relation

Pi(x)=®"oP, (¥ (x))od,

for any x € W;. Finally, the result follows from Theorem 2.3.1 and Remark 2.3.12 by
taking ¢ = . ]
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Appendix A

Appendix

A.1 Topological facts

In this subsection we present all the necessary definitions and technical details from

algebraic topology. We mainly refer to [16].

Definition. A triangulation of a topological space X is a simplicial complex K, home-

omorphic to X, together with a homeomorphism « : K — X.

We will use the same notation X for a simplicial complex representing a triangula-
tion of a topological space X. Throughout this section B" and S™ denote the standard

n-dimensional Euclidean unit (closed) ball and sphere, respectively.

(o]
Definition. A CW complex is a Hausdorff space X with a fixed partition X =(J | Je{ of
q=0 i€,
X into pairwise disjoint set (cells) ] such that for every cell e] there exists a continuous
map f! : B! — X (a characteristic map of the cell e]) whose restriction to IntB? is a

homeomorphism IntB? & e whose restriction to S9 = B?—IntB? maps S™" into the

union of cells of dimensions < g (the dimension of the cell e?, dim e? is, by definition,
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q). The following two axioms assumed satisfied.
(C) The boundary éf = E? - e? = fiq (Sq_l) is contained in a finite union of cells.

(W) Aset F C X is closed if and only if for any cell e? the intersection F N E? is closed

(in other words, (fl.q)_l (F) is closed in BY).

A CW subcomplex of a CW complex X is a closed subset composed of whole cells.
It is clear that a CW subcomplex of a CW complex is a CW complex. An example of
CW subcomplex of a CW complex X is the n-skeleton X" or sk, X which is the union

of all cells e! with g < n.

Definition. A pair of topological spaces (X,Y) is called a CW pair if X is a CW complex

and Y is its CW subcomplex.
We will be using sometimes the term vertices instead of 0-cells of a CW complex.

Definition. Let (X,Y) be a pair of spaces. Two maps X — Z are called homotopic
relative to Y (or relatively Y) if there exists homotopy between these maps which is

constant on the subspace Y.

Fact A.1.1. Every smooth (compact) manifold admits a (finite) triangulation. Moreover,
if a compact manifold has a boundary then it admits a compatible finite triangulation,
i.e. such that the restriction of this triangulation to the boundary is a triangulation of

the boundary.

This is a classical result which can be found in [44]. Note that a triangulated
manifold has a natural structure of a CW complex, and if the manifold has a boundary

then it forms a CW pair with its boundary.
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Definition. A pair (X,A) of topological spaces is called a Borsuk pair if for every topo-
logical space Y, every continuous map F : X — Y, and every homotopy f, :A—Y

such that f, = F|,, there exists a homotopy F, : X — Y such that F, = F and F,|, = f,.
Theorem (Borsuk). Every CW pair is a Borsuk pair.
For the proof of this theorem we refer to [16].

Corollary A.1.1. Let (N,W) be a CW pair. Let ¢ : W - M and ¢ : W — M be
homotopic. If the map ¢ has an extension ® : N — M then the map ¢ also has an

extension ® : N — M which is homotopic to ®.
Proof. Follows from the direct implication of Borsuk’s Theorem. O

Definition. A topological space X is called n-connected if for ¢ < n the set [S?,X]
of homotopy classes of maps from S? to X consists of one element (that is, any two

continuous maps S? — X with g < n are homotopic).
A 1-connected CW complex is also said to be simply connected.

Theorem A.1.2. [16, p.58 JLet n be a non-negative integer. An n-connected CW complex
is homotopy equivalent to a CW complex which has one 0-cell and no cells of dimensions
1,2,...,n. In particular, every path connected CW complex is homotopy equivalent to a

CW complex with only one vertex.

Theorem. [16, p. 138] Let n be a positive integer, and let T be a group which is supposed

to be commutative if n > 1. Then there exists a CW complex Y such that

I, ifq=n,
(V)=

0, ifq#n,
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where 1, (Y) denotes qth homotopy group of Y.

The spaces in the above theorem are called Eilenberg-MacLane spaces or K (1, n)-

spaces.

Lemma A.1.3. Let X be a simply connected CW complex. Then any map from X to a

K (T, 1)-space is null-homotopic.

Proof. Using Theorem A.1.2 we get a CW complex X which is homotopy equivalent to
X and has only one vertex as its 1-skeleton. Let us prove that any map f : X — K (T, 1)
is homotopic to a trivial map. We use the induction by the dimension of skeletons
of X. Clearly, the map f is trivial on the 1-skeleton. Now it suffices to prove that if
the map f is homotopic to a trivial map on the n-skeleton X", then it is homotopic
to a trivial map on the (n + 1)-skeleton X"*!, where n > 1. The CW pair (X"*!,X")
is a Borsuk pair by Borsuk’s Theorem. Hence, there is a homotopy of f|z... to map
grt! : X™! — K(T,1) such that the restriction of gi*! to X" is a constant map. This
means that gi*' factorises through a map to a bouquet .\/S”Jr1 = X™1/X". Every
map from a bouquet \/S”Jr1 to K(T', 1) represents an elenfefnt of m,.,(K(T,1)) =0,
iel

n+1

0 with a constant

n > 1, and thus it is null-homotopic. This gives us a homotopy of g
map. Using induction we conclude that the set [X ,K(T, 1)] ~ [X,K(T',1)] has only

one element - homotopy class of a constant map. ]

Lemma A.1.4. Suppose we have the following diagram
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where X and Y are topological spaces (for example X can be an (n— 1)-skeleton of a CW
complex with some n-cells attached), 6" is an attaching map of an n-cell B" to the space
X, i is the standard inclusion of the boundary. Then the map f extends to a map f if and

only if the composition f o 6" is null-homotopic.

Proof. The part “only if” follows from the induced map on homotopy groups. Namely,
the map uo 6" is null-homotopic, since it shrinks to the centre of the corresponding n-
cell B". Thus, the homotopy class [uo 6"] € m,_,(X | B") is trivial. Suppose we have
an extension f. Then by the conditions of the Lemrrslzlwe have fou=f and f 06" =
f ouo 8", which gives us the required result [f o "] = [f ouo 5”] = f([uos"]) =
f(0)=0¢€m, 4 (Y).

The part “if” follows from the direct construction. Let h : "1 x [0,1] = Y be a
null-homotopy of the map f o 6", i.e. h(x,1) = f o &" and h(x,0) = const. Define
an extension f as follows. Let the map f coincides with f on X, and on B" let it be

defined in a spherical coordinates by the equality f (x, ) = h(x, ). Clearly, the map

f is a well-defined extension of the map f. ]

Theorem A.1.5 (Poincaré). For an arbitrary path connected space X, the Hurewicz ho-
momorphism [16, p. 179]h : n,(X) — H,(X) is an epimorphism whose kernel is the

commutator subgroup [1,(X), ©,(X)] of the group m,(X). Thus,
Hy(X) = my(X)/ [ (X), T (X)],

or in other words H,(X) = (71,(X)),, where (7,(X)),,; is the abelianisation of the group

71 (X).
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A.2 Harmonic forms on compact manifolds with bound-

ary

In this subsection we present all the necessary definitions and technical details on
harmonic forms (fields).

Let Q%(N) be the space of k-forms on a Riemannian manifold N. Using a Rieman-
nian metric on a manifold N we can split a vector field X € T'( TN|,,) on the boundary
dN into its tangential and normal parts X = X!l + X*. With this in mind we define the

operation t on X € I'( QkN|aN)
tw(Xy,. .., X)) = wX), ..., X, ¥X,,...,X, € T(TN|sy),

and operation n by

nw = w|;y —tw,

for k > 1, and tw = w for k = 0. These forms are called the tangential component
and the normal component, respectively. The tangential component tw is uniquely
determined by the pull-back i*w under the inclusion i : dN — N. This gives the
relation

Mw=1i"tw =tw. (A.D)

The tangential and normal components of a differential form have the following

useful commutation relations.
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Proposition A.2.1. [39, p.27]

1. The normal and tangential components are Hodge adjoint to each other

*(nw) = t(xw) and * (tw) = n(xw). (A.2)

Here x(nw) and *(tw) are understood by the action of * on an arbitrary extension

of (nw) and (tw), respectively, followed by the restriction to dN.

2. The exterior derivative commutes with the tangential projection t, and the co-

differential with the normal projection n of w € Q*(N) in the following sense

i*(t(dw)) = d(i*tw) and i*(x(n w)) = (—1)*VOF DG (xnw)).  (A.3)

Under the identification (A.1) these relations become

t(dw) =d(tw) and n(6 w) = 6 (nw). (A.4)

3. For differential forms w € Q*(N) and n € Q"(N) let y = tw A xnn. Then

X = (C(), Lvn>Ak Uy, (AS)

where u,; € Q" '(0N) is the Riemannian volume form on dN. Note that

Us = tulsy

where u € Q"(N) is the Riemannian volume form on N.

We use the following notations for a number of different spaces.
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Definition. O (N) = {w € QX()|tw = 0} is the space of Dirichlet forms.
0, (N) = {w € QX(N)|nw = 0} is the space of Neumann forms.
HK(N) = {A € QX(N)|dA =0and 51 = O} is the space of harmonic fields.
F5(N) = QF(N) N 5£%(N) is the space of Dirichlet fields.
#% (N) = Q5 (N) N #*(N) is the space of Neumann fields.
EX(N) = {da|a € Q1 (N)} is the space of exact forms.
Ck(N) = {6B| B € QF1(N)} is the space of co-exact forms.
#* (N) = {x € #*(N)|x = de} is the space of exact harmonic fields.

#K(N) = {x € #*(N)|x = dy} is the space of co-exact harmonic fields.

An important result - the analogue of the Hodge decomposition for manifolds with

boundary.

Theorem (Hodge-Morrey decomposition [39, p.81]). Let N be a compact Riemannian

manifold with boundary dN. There is the L?-orthogonal decomposition
QF(N) = K(N) @ CK(N) @ s25(IN). (A.6)
The proof of this theorem is based on Green’s formula for manifolds with boundary
((dw,n)) = ((w,5n))+ftco/\*nn, (A.7)

ON

where ((a, 8)) = f a A xf3. From this formula we can see that the space of harmonic
N

fields is not the same as the space of harmonic forms (i.e. solutions of Aw = 0) on

a manifold with boundary. The last part in this decomposition can be further decom-

posed as follows.
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Theorem (Friedrichs decomposition [39, p.86]). Let N be a compact Riemannian man-

ifold with boundary ON. There is the L?-orthogonal decompositions

AH(N) = HL(N) © A5 (N), (A.8)

HK(N) = % (N)® #5(N). (A.9)
Let us now look at 1-forms. It is clear that we have the orthogonal decomposition
w=twdnw, w €T'(T*N|zy) (A.10)

and in this decomposition tw can be naturally identified with i*w.

We want to know when a 1-form on the boundary d N extends to a harmonic 1-field

on a manifold N. For this we need the following proposition.

Proposition A.2.2 ([39, p.129]). Let N be a compact manifold with boundary, and v €
QKN )| oy There exists a harmonic field w € #*(N) obeying the boundary condition
ty = tw, if and only if

tdy = 0 and J tyh Asndy = O0VA, € HE(N). (A.11)

ON

In other words the boundary value problem

dwo=56w=0 weNkN)

tw =ty P € QKN

is solvable if and only if the conditions (A.11) satisfied.
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We actually want to solve a slightly different boundary value problem (BVP). Namely,

we want to replace the boundary condition tw =ty by i*w = @, a € Q}(JdN).

Proposition A.2.3. The boundary value problem

do=06w=0 weN(N)

(A.12)
ifw=a a < N(oN)
is solvable if and only if
da =0 and Jd ANi*(xAy)=0forall A, € jfé(N). (A.13)
N

Proof. First, we choose any continuation a € Q'(N) of the form @ € Q'(dN). From
the relations A.1, A.10 we have i*a = i*ta = a. Next want to check the conditions
(A.11) and to use Proposition (A.2.2) with ¢ = a. Let us look at the first condition

tda = 0. By (A.3) and (A.1) we have
i*(tda) =d(i*ta) =d(i*a) =da =0.
By (A.2) and (A.1) the second condition can be rewritten as

ftl/) A*DAy = J (FtY) AT (tx Ay) = fc’t ANi*(xAy)=0forall A, € %gf(N),
JON

ON ON

since i"ty) = i"tw = i*w = a. We see that the conditions do not depend on the chosen

continuation a of a. O

Let us continue by establishing an extent of the uniqueness of the solution.
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Proposition A.2.4. When the solution to the boundary value problem (A.12) exists it is

unique up to Dirichlet harmonic fields.

Proof. Let w,; and w, be two solutions to (A.12). Then & = w; — w, is a solution to

the boundary value problem

ddo=6w0=0 &€Q(N)

=0 (or te> =0)
which defines the Dirichlet harmonic fields. O
Proposition A.2.5. Let w be a solution to the boundary value problem (A.12). Then

cohomologous to w form v = w +df, dff € #'(N) is the solution to the boundary

value problem

dv=56v=0 vei(N)
s (A.14)

i*v=a, a, € QY(ON)

where @, cohomologous to a.

Proof. It is clear that v is a harmonic field. For the boundary condition we have

iv=i*w+i'dB=a+d@i*p)=a,,

where @, is cohomologous to a for any dff € #1(N). [

Example. If the boundary value problem (A.12) is solvable, then the boundary value
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problem
.

dwo=6w=0 weQl(N)

{ifw=a, a, € QY(4N)

nw=20

\

is solvable for some @; cohomologous to a. It follows from the previous Proposition

and the Friedrichs decomposition.
Let us now provide some useful isomorphisms for cohomology.

Theorem A.2.6 ([39, Theorem 2.6.1, Corollary 2.6.2]). For a compact Riemannian

manifold N with boundary N there are isomorphisms

H*(N,d) = #% (N) = H(N)

HY(N,8) = s#5(N) = HE(N),

where Hf:(N) is a cohomology of a complex (ijV (\N), 5) and Hf(N) is a relative de Rham

cohomology defined by a complex (Q’;J(N ), d).

Our next aim is to connect the obtained results on 1-forms to circle-valued maps.

For this we need the following theorem.

Theorem A.2.7 ([9]). There are non-singular bilinear pairing between the space of rel-
ative k-cycles R,_;(N) = R (N) and the space of Dirichlet harmonic k-fields on N given

by periods map

R (N) x #L(N) — fwk
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Proof. The proof is a direct consequence of [ 10, Theorem 3, Corollary 8.1]. O

This, for example, means that we have an integral lattice in the space %g’j(N ) (k-th
relative de Rham cohomology group) which is formed by fields (forms) with integral
relative periods. Let us call it integral Dirichlet harmonic k-fields (integral relative de
Rham cohomology).

We need the following corollary.

Corollary A.2.8. By the addition of sufficient Dirichlet harmonic 1-field we can get a
solution of BVP (A.12) with integral relative periods. All the other solutions with integral
relative periods are given by the addition of integral Dirichlet harmonic 1-fields. We call

such solutions the integral harmonic fields.
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