
CatSD: Structural Database and
High-Throughput Predictive Workflows

for Homogeneous Catalyst Design

Marc Andrew Stephen Short

Submitted in accordance with the requirements for the degree of

Doctor of Philosophy

The University of Leeds

Faculty of Engineering and Physical Sciences

School of Chemical Engineering

November 2022



Intellectual Property

The candidate confirms that the work submitted is his own and that appropriate credit

has been given where reference has been made to the work of others. This copy has been

supplied on the understanding that it is copyright material and that no quotation from the

thesis may be published without proper acknowledgement. The right of Marc Short to be

identified as the author of this work has been asserted by Marc Short in accordance with

the Copyright, Designs and Patents Act 1988.

©2022 The University of Leeds, Marc Andrew Stephen Short

Signed

i



Acknowledgements

I would like to thank my supervisor Dr Bao Nguyen for his constant advice, guidance and

insight as well as his extensive chemical knowledge which was invaluable for the project.

I would also like to thank my other supervisors Dr Charlotte Willans and Dr Clare Tovee

(CCDC) for their support, insight and guidance during the course of the project. Further-

more, I would also like to thank Dr Samuel Boobier for his assistance with the machine-

learning models.

I would also like to acknowledge the contribution of our Master’s student Zeshen Wang for

performing the synthesis of the ligand candidates described in this thesis as well as Dr Tom

Nicholls from the Willans groups for performing the experimental validation work during

the COVID-19 lockdown.

I would also like to acknowledge that this work was undertaken on ARC3 and ARC4, part

of the High-Performance Computing facilities at the University of Leeds, UK. As well as the

support of the ARC team for their continued assistance with software and code optimisation

during the course of the project.

Thank you to the Centre for Doctoral Training in Complex Particulate Products and Pro-

cesses (cP3), the Engineering and Physical Sciences Research Council (EPSRC) and the

Cambridge Crystallographic Data Centre for providing the funding for the project.

ii



Abstract

Identification of highly active catalysts is an important process across multiple industries

including drug development, process chemistry and agrochemicals. The lack of under-

standing of ligand properties and catalytic pathways are limiting factors for the uptake

of more sustainable and highly active catalysts. Herein we report a novel method for the

identification of ligands and the prediction of their activity for homogeneous catalysts from

the Cambridge Structural Database. We present CatSD, a structural database complete

with catalytically relevant features to enable the mining of organometallic ligands from

the CSD. We also present a high-throughput computational workflow for the prediction of

activation energies and mechanistic exploration. This workflow is on a timescale similar

to experimental high-throughput screening and provides energies with an accuracy of 3.9

kcalmol−1. CatSD and the prediction workflow were applied to the Ullmann-Goldberg

reaction to identify novel ligands for amine and amide coupling partners. Over 10,000

ligands were identified from the CSD for both coupling partners. The workflow showed

excellent reliability for the generation of starting structures (99.7%) and good reliabil-

ity for the optimisation of important intermediates (>84%) and transition states (TSOA:

33-61%, TSSig: 83-85%). Several ligands were validated experimentally identifying a pre-

viously unreported active ligand class. The effect of ligand properties was explored using

machine learning to identify several key characteristics for both nucleophile coupling part-

ners. Machine learning was also used to predict activation energies without the need to

calculate the transition state. Models were optimised providing accuracy on par with the

accuracy of the workflow calculations. It is our hope that the methodologies presented in

this work will aid the discovery and design of ligands for homogeneous catalysts for the

wider chemistry community as well as stimulate further research in this field.
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Chapter 1: Introduction

Organometallic catalysis has emerged as a powerful tool in organic chemistry. The role of

a catalyst is to provide an alternative reaction pathway that has a lower activation energy

(EA) and therefore increased reaction rate, whilst not being consumed in the process.1 Cat-

alysts can be found in nature in the form of enzymes, in academic laboratories for research

and in industries such as petrochemicals, renewables and pharmaceuticals. Approximately

90% of all chemical products include at least one step using a homo- or heterogeneous cat-

alyst in the manufacturing process.2

Figure 1.1: Energy profile of a chemical reaction both with (red) and without (black) a
catalyst.

Although significant improvements have been made towards increasing substrate scope,

functional group tolerance, lower catalyst loadings and reaction conditions for a large va-

riety of synthetically relevant chemical transformations, there is still progress to be made

in terms of improving atom economy, cost and reducing the use of toxic compounds during
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chemical synthesis as well as making more economically viable transition metals available

for the wider synthetic toolbox. This could be achieved either through the improvement

of existing catalysts or the development of novel catalytic systems.

1.1 Computational Design in Chemistry

A core interest in chemistry is the creation of specific chemical structures and even more

importantly chemical structures with specific functions. Understanding the connection be-

tween chemical structure and activity allows chemists to make rational decisions to mod-

ify and improve performance. Structure-Activity Relationships (SAR) are valued across a

breadth of chemical disciplines ranging from catalysis and materials science to synthesis

and biology. Such an approach underpins physical organic chemistry whereby chemists aim

to characterize the molecular structure and rationalize activity via experimental and theo-

retical approaches. Theoretical tools, namely computational chemistry, allow the study of

molecular structures without the need for physical matter. Computational chemistry en-

ables the investigation into chemical behaviour via simulation, the quantification of which

allows for the prediction of desired properties and reactivity as well as the potential for the

guided design of highly active compounds.

Computational tools available today are based on a range of physical models of varying

degrees of sophistication and accuracy (Figure 1.2). Methods such as molecular mechan-

ics and semi-empirical methods are computationally cheaper and allow the mapping of

the chemical landscape in an approximate sense. More advanced methods such as den-

sity functional theory, Møller-Plesset perturbation theory and coupled cluster allow much

more accurate mapping of the energy surface granting access to more ‘advanced’ properties

such as where bonds are made and broken, electronic properties, excited states, hyperfine

coupling constants and zero-field splitting.3
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Figure 1.2: Ladder of available computational methods with increasing chemical accuracy.

Along with the rapid advancement of theoretical methods and their computational imple-

mentations, both hardware and software capabilities have also advanced at a similar pace.

Computational assessment of many properties can now be done on a time scale compa-

rable to experiment. For example, in 1980 the transition state calculation for the Diels-

Alder cycloaddition between butadiene and ethylene required approximately 6 months of

computational time.4 Today the same calculation at the Hartree-Fock level of theory takes

under a minute.4 Given these advancements the amount of new catalysts emerging from

computational design is still extremely low.5

1.1.1 Why Should we Design Catalysts Computationally?

Catalysis has become an integral component of modern-day chemistry from chemical syn-

thesis to catalytic converters in cars. Homogeneous catalysis particularly has transformed

the way synthetic chemists make target molecules with the development of advanced

transition-metal-based catalysts making new chemical transformations possible.

Chemists are often presented with surprising and unpredictable reactivity. The ability to

understand these unpredictable cases is key to being able to manipulate them to develop

solutions to known problems or to unlock new applications. Computational methods are

one way of trying to understand these complex problems, however, this is no easy task.
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Catalytic mechanisms are often very complex, proceeding through short-lived often unsta-

ble intermediates at low concentrations, making the isolation and/or characterization of

these species experimentally extremely difficult and sometimes impossible. While the iso-

lation of such intermediates is sometimes possible, often they are byproducts representing,

deactivation pathways, catalytically inactive species or prevalent side reactions. During

catalytic pathways the active metal centre may change between different oxidation states,

charges, coordinating geometries and spin states. In most cases the metal centre will also

carry multiple ligands to steer the reactivity and selectivity of the reaction, introducing

more potential pathways involving ligand exchange which can lead to side reactions or

deactivation of the catalyst.

The very nature of catalysts makes designing new catalysts from scratch a challenging task.

As catalysts aim to reduce the energetic cost of a reaction, this leads to a flatter potential

energy surface compared to the uncatalysed process. A flatter potential energy surface is

more likely to be perturbed by factors such as additives or solvents, leading to undesired

effects such as catalyst degradation, increased competition of side reactions and a change

in stereo- or regio-selectivity.5 The neglect of unanticipated interactions between reaction

components can lead to false assumptions, leading to a waste of both time and resources

for a catalyst that is doomed to fail, or could potentially lead to the discarding of promising

candidates.

Designing catalysts can therefore be considered as either designing a catalyst to fit within

an existing system or designing a new system from scratch, the latter being extremely

complex. A series of feasible mechanisms need to be identified that cover both productive

and unproductive pathways over a large range of energetically accessible conformations,

consisting of different oxidation states, spin states and ligation states. This is clearly an

enormous task, which is guided by the current understanding of chemical behaviour and

the availability of suitable theoretical models. Given current computational power and still

rather limited understanding of a wide range of commonly used synthetic transformations,

such an approach could be considered unfeasible. It is more manageable to predict relative

reactivity or selectivity from within a confined structural domain.

When evaluating potential modes of reactivity, first ground state and transition state ge-

ometries must be found. The success of which is highly dependent upon the input given
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by the chemist. A lack of mechanistic or structural understanding can lead to incorrect in-

puts, ultimately leading to the failure of the calculations. With each set of calculations an

individual reaction step is assessed, the investigation of which will only be as exhaustive as

our ability to ask the correct questions. Pathways which have not previously been thought

of or intentionally looked for will be much harder to find or missed entirely. Although new

reaction path methods such as Nudged Elastic Band and Growing String are able to poten-

tially find new low energy paths between reactants and products.6,7 Transition state theory

alone may also not explain reactivity and selectivity. Dynamic effects such as solvent and

counter-ion reorganisation, as well as deactivation pathways, may also play an important

role.8

The accuracy of available computational models must also be considered. While methods

exist to accurately calculate energies of chemical structures, namely coupled-cluster meth-

ods, these ‘gold standard’ methods are extremely computationally expensive in both time,

CPU cores and memory usage. The large number of atoms and therefore, electrons present

in transition metal complexes make coupled-cluster methods far too expensive for explor-

ing whole catalytic cycles, even with new approximation methods such as the domain-

based local pair natural orbital approximation, which reduces the cost down to that of a

similar density functional theory and scales linearly with system size.9 Such methods can-

not be realistically applied to a large number of possible structures without extensive com-

putational infrastructure. No single computational method is universally applicable and

benchmarking less expensive methods against higher-level methods is a time-consuming,

but often necessary process. Relatively small energy differences (∼2 kcal mol−1) can dra-

matically alter the selectivity of a reaction, therefore, choosing a method that performs

well for the system of interest is extremely important.
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Figure 1.3: Overview of high-throughput experimental screening, using multi-well plates,
to determine yields for a set combination of reaction conditions.

Traditional workflows, for example, automated high-throughput experimental screening,

could be considered to be much faster as it allows for hundreds of reactions to be carried

out in a day by one chemist, in a system that is closely related to the final target system.

However, this approach requires a large library of physical catalysts which must either be

synthesised or curated from commercial sources. Commercial catalyst screening kits are

available from chemical vendors such as Sigma-Aldrich. The ligands available in these kits

are limited to those that have been made synthetically or studied previously, introducing

the potential for a biased sampling of chemical space.

For more bespoke chemical transformations, highly specialised ligands are often required

which are not present in most physical libraries. These unique transformations are often

identified through mechanistic insight and can therefore be studied computationally in a

comparatively short time frame due to the fewer mechanistic pathways that need to be ex-

plored. Several examples of catalysts identified via this approach are already available.10–13

For systems which are completely unconstrained with a lack of fundamental understanding,

containing numerous possible mechanistic pathways, a different approach is required. A

combination of both experimental and computational methods, where the initial screening

is carried out experimentally, optimised computationally, and then repeated in an iterative

process could be a potential solution. Another alternative is to use a purely structural
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approach where mechanistic considerations are excluded entirely and a vast amount of

curated experimental data is used to link chemical structure to performance metrics such

as reaction rate or yield.

Current exploration of ligand space is done synthetically, usually starting from a lead com-

pound which has been shown to have some activity experimentally. Analogues are then

generated using chemical intuition and tested. Such an approach is viable for reactions

with a high mechanistic understanding and/or previous ligand knowledge. However, for

catalysts with little mechanistic exploration or limited to no ligand understanding such as

those for base metals or for new chemical transformations, this approach becomes less vi-

able. In this case, a lead ligand is likely to be identified by high-throughput experimental

screening of a select few ligands, again chosen through chemical intuition. In some cases,

this approach must also have sound theoretical backing before any experiments are ap-

proved, which due to the nature of the reaction of interest is difficult. Only through trial

and error and growing expertise do success rates increase. Moving from experimental to

computational screening offers multiple benefits in these cases by opening up the avail-

able ligand structures to community or proprietary 3D structure libraries and reducing the

experimental resources required.

Computationally driven catalyst design is an exciting prospect that will allow us to think

outside of our current understanding and preconceptions built up over centuries of chem-

ical research. Starting from large curated databases of three-dimensional chemical struc-

tures is a good starting point for ensuring that the process is both chemically diverse and

synthetically viable (Figure 1.4). Identifying catalysts that are impractical to make is a

waste of resources but confining to only the synthetically proven risks the exclusion of po-

tentially promising candidates. A careful balance must be made between chemical diversity

and synthetic availability.

The exploration of new ligands is limited to the availability of a lead ligand whereby its

functionalisation or modification is explored. Where no suitable starting point is available

significant resources are required to try and identify a lead compound. For poorly under-

stood catalytic systems such as first-row transition metal catalysts, the chance of success

is extremely low and in the majority of cases does not justify the resources required to ex-

plore. Using chemical structures from a structural database significantly reduces the raw
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resources, as only a computer is required. Structures contained in databases such as the

Cambridge Structural Database (CSD) have 3D X-ray data and therefore, have been proven

to be synthetically viable with a well-described synthetic pathway. The 3D structural data

can be used to screen for potential activity computationally before any commitment is

made to any experimental exploration. The development of tools that can aid the pro-

cess of identification and prediction of activity from the CSD can significantly speed up the

identification and exploration of novel ligands and catalytic systems.

Figure 1.4: Ideal workflow for ligand/condition identification using computational screen-
ing from a 3D structure database to predict activity. Resulting in a single experiment to
validate the prediction.

The development of predictive methodologies that can be applied systematically and that

can be implemented via automation are a useful complementary tool that can be used with-

out exhausting human resources. Automation can take care of the monotonous, tedious

and error-prone tasks of a systematic study, while humans make the intellectual decisions

to guide the study. The growing stores of chemical structural data available in databases

can be exploited by machines in a manner that is more precise and objective without in-

troducing bias from a chemist’s preconceptions. Such an approach could allow molecular

design to go beyond the limitations of a traditional, human-driven approach.

An ideal scenario would consist of an entirely computational screening process leading

up to a single experiment. Predictions of which would come from either directly calcu-

lated properties or machine learning models. The most effective approach is likely to be

a combination of both experimental and computational methods, harnessing the power of
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advancements in synthesis, physical chemistry and theoretical methods in order to study

synthetic pathways, the effect of catalyst structure and how it affects catalytic activity. As

technology advances the role of computational methods will become more pronounced.

Therefore, the development of user-friendly tools accessible to the wider synthetic com-

munity would be extremely valuable.

1.1.2 Sustainability and Assessment of Catalysts in Industry

The most common metals used in organometallic catalysis are precious metals (second and

third rows of the periodic table), namely rhodium, platinum, ruthenium and palladium.

Precious metals are commonly used as catalysts due to several unique characteristics:

• Stability: Precious metals are resistant to corrosion and oxidation with many of their

low-valent complexes being stable enough to oxygen that they can be used under

ambient conditions, without the need for an inert atmosphere. Precious metal com-

plexes also exhibit low ligand lability making them extremely stable in solution.14

• Oxidation state changes: A large number of important synthetically relevant chem-

ical reactions proceed via an oxidative addition-reductive elimination mechanism

which requires two-electron oxidation state changes at the metal centre, which pre-

cious metals readily undergo.

• Pi bond acidity: Precious metal complexes often exhibit a high affinity for pi bonds,

present in many functional groups in organic molecules, making them well-suited

for reactions which proceed via pi-bond activation.

• Selectivity: Precious metals often display unique selectivity for specific transforma-

tions. For example, the oxidation of ethylene with silver, palladium or platinum

yields ethylene oxide, acetaldehyde or CO and H2O respectively.15

• Characterisation: Due to their stability, precious metal complexes are often easily

isolated and characterised by common techniques such as nuclear magnetic reso-

nance (NMR) and X-ray diffraction (XRD). Precious metals generally form diamag-

netic complexes making them easier to analyse by NMR. Therefore, relating structure

to activity and selectivity is more straightforward.

Despite the prevalence of precious metal catalysts in the chemical industry, there are several

9



1.1. Computational Design in Chemistry Chapter 1: Introduction

problems relating to their use. By definition precious metals are scarce, and therefore are in

low natural abundance, very expensive and susceptible to supply fluctuations. As the global

distribution of precious metals in the earth’s crust is not uniform, they often have to be

imported from other parts of the world. In 2011, the British Geological Survey released the

list of metals at risk of supply disruption, with ruthenium, rhodium, palladium, osmium,

iridium and platinum being among those at the highest risk.16 Precious metals also have

several environmental implications. Due to their low natural abundance, the mining of

these metals requires increased use of fossil fuels and CO2 emissions. Furthermore, it is

predicted that less than 1% of precious metals are recycled due to the economic viability

of these processes. It is, therefore, of high importance that we move away from precious

metals to more sustainable alternatives.

The use of metals with a high abundance and balanced global distribution is therefore an

attractive alternative. The first-row transition metals (base metals) offer additional advan-

tages such as low cost and global availability. Base metals are considered to be metals with

minimal safety concerns, except nickel and chromium, compared to often toxic precious

metals. For example, 1300 ppm of iron is tolerable in active pharmaceutical ingredients

compared to 10 ppm for palladium, which also requires special measures to remove, creat-

ing large amounts of waste.17 While first-row transition metals could provide a sustainable

alternative there are several challenges with their use in catalysis due to due reactivity

creating problems with stability, selectivity and scope:

• Stability: Base metal complexes are often sensitive to oxidising conditions and re-

quire an inert atmosphere to prevent degradation. However, in some cases, this can

be avoided by the generation of the active species in situ from a suitable precursor.

• Oxidation state changes: Unlike precious metals which undergo the required two

electron change in the oxidation state required for oxidative addition-reductive elim-

ination processes, base metals generally undergo single electron transfer processes.

This means that special methods have to be found to promote two-electron processes.

• Selectivity: Base metals favour single electron transfer, this can lead to the gener-

ation of radical species which are hard to control and generate products in an un-

selective manner.18 Ultimately this leads to a lower functional group tolerance and

limited substrate scope.

10
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• Characterisation: The lower stability of base metal complexes means that they are

difficult to isolate and characterise. Complexes are often paramagnetic due to the

presence of a weak ligand field making NMR analysis of these species challenging.

Due to the preference for paramagnetic complexes, many studies on base metal catalysts

have been conducted on low-spin, diamagnetic carbonyl and cyanide complexes. Recently

there has been renewed interest in paramagnetic complexes for iron, nickel and cobalt for

catalysis. A base metal-catalysed C C coupling reaction was recently discovered where

the only ligands available in the reaction were weak-field halides, O–donors, solvent or

additives. Assuming the resulting catalytic species is high-spin due to the weak ligand field

available, this implies that paramagnetic base metal complexes are active catalysts.17 In

fact many recent high-spin first-row metal reactions have excellent selectivity.14 However,

it is not understood for which cases a high-spin catalyst would be advantageous. This is

due to a lack of fundamental understanding of the reaction mechanisms and coordinating

environments of the metals.

Table 1.1: Comparison of precious metals and base metals in catalysis.

Property Precious Metals Base Metals

Stability • Relatively stable to oxygen
• Low ligand lability

• Sensitive to oxidising
conditions

• Labile ligands

Oxidation State
Changes

• Readily undergo 2-electron
oxidation state changes

• Generally undergo 1-
electron oxidation state
changes

Selectivity • Display unique selectivity
• High pi bond affinity

• Unselective radical species
are common

• Lower functional group
tolerance

Characterisation • Stable complexes
• Usually diamagnetic

• Low stability
• Paramagnetic complexes are

common

The creation of new complexes of base metals that exhibit greater stability, selectivity and

have a greater substrate scope are required to move away from precious metals to a more

sustainable and cheaper catalysis space. As ligands in these reactions are often under-

studied, using 3D structure databases as a source of potential ligands is an attractive ap-

proach to identifying novel ligands. Experimental approaches in these cases are often trial
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and error and resource-demanding due to the lack of a suitable lead structure. Using a

computational approach both saves raw resources and provides a larger more diverse cov-

erage of chemical space, potentially increasing the chance of finding a suitable lead ligand.

1.2 Computational Approaches to Homogeneous Catalyst De-

sign

This brief introduction will cover a range of computational methods, software and ap-

proaches to the computational design of homogeneous catalysts. For a more extensive

review of the area, the following reviews are recommended. Li and Merz for a review of

metal ion bonding using molecular modelling.19 Pidko et al. for computational approaches

to transition metal catalysis.20 Fey et al. for the use of ligand descriptors for the prediction

of the chemical properties of transition metal complexes.21 Jensen et al. for a review of the

challenges faced in in silico catalyst design and Kulik et al. for an overview of the appli-

cations of high-throughput screening and machine learning to inorganic catalyst discovery

and the prediction of chemical properties.22,23

The advancement of computational modelling methods along with improved computa-

tional power has reached a point where it is a useful complementary tool in catalysis for

the interpretation of experimental results, either by predicting activity or selectivity, or by

guiding experimental workflows. Predictive strategies in catalyst design can be divided into

three main groups: (1) trial and error, (2) prediction models and (3) automated design.22

Trial and error methods cover the use of interactive computational tools along with chem-

ical intuition to test ideas through the use of 3D modelling or simulations to guide molec-

ular design. Examples range from using 3D molecular models to represent the volume

and shape of the catalytic site to the calculation of free energy profiles along the reac-

tion pathway.24,25 Where multi-step reactions are studied, computational cost can be high,

especially where high accuracy is required.

Prediction models aim to relate statistical data with quantitative or qualitative structure-

activity/property relationships (QSAR/QSPR) through the use of a set of ligand descriptors

to correlate ligand properties to a desired catalyst property, such as activity or selectivity.

Predictive models can quickly predict the properties of novel compounds similar to those

12



Chapter 1: Introduction 1.2. Computational Approaches to Homogeneous Catalyst Design

used in the training data. However, these models only relate to a specific region of chemical

space and therefore, predictions outside this space are unreliable.

Automated design is an umbrella term that covers the automation of the computational

tasks associated with the identification of catalyst candidates. Similar to predictive mod-

els, automated design uses an automated predictive model to navigate chemical space to

desired property regions and generate candidate molecules without input from the user.

Automated methods make use of the ever-growing library of chemical knowledge and ex-

ploit it in a way that humans are incapable of. Another benefit of automated design is

the removal of all bias introduced by humans, allowing molecular design to go beyond

human-imposed limitations.

The following review covers some of the most useful design methods relating to this project,

which focus on predictive modelling in homogeneous catalysis. For a more extensive re-

view of catalyst design methods see a recent review paper by Foscato and Jensen.22

Molecules are incredibly diverse; ranging from small simple organic molecules with several

hundred Daltons in molecular weight, organometallic complexes containing both metallic

and non-metallic elements, to large complex materials weighing hundreds of thousands of

Daltons. As molecules are three-dimensional by nature; effectively representing them in a

manner which captures their functionality, diversity and orientation in three-dimensional

space is a major challenge.

In catalyst design, the intrinsic properties are often described by descriptors, which encap-

sulate both the steric and electronic properties of the catalyst. A large array of descriptors

exist in the literature, most of which have been developed for drug design.22 However,

descriptors are also being developed for applications to catalysts such as those describing

metal-ligand bonds and ligand steric properties.21 An example of such descriptors from

Fey and co-workers aims to describe both phosphine and carbene ligands and their use

in transition metal catalysis.26,27 Examples of typical ligand descriptors include atomic

charges, pKa values, HOMO-LUMO gaps, geometrical features (sterimol parameters, bond

angles/distances) and the Tolman cone angle. In cases where steric interactions are domi-

nant such as stereoselective reactions, molecular interactions fields (MIFs) have been used

to predict enantiomeric excesses and to identify regions of maximum stereochemical in-

duction.28,29 Noncovalent interactions should also be considered, as they can significantly
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affect catalyst efficiency and selectivity.30 Recently several descriptors have been developed

to take these interactions into account.31 Fey and Durand provide an extensive view of the

current literature surrounding the use of ligand descriptors in catalyst design.21

The most commonly used approach for computational catalyst design is ligand additivity,

whereby the properties of heteroleptic complexes can be inferred from combinations of

homoleptic complexes.32 Additivity is also used in fragmentation methods where a ligand

is divided into smaller groups, with the properties of these smaller components used to

predict to properties of the combined structure (Figure 1.5).33 Fragmentation can be used

to either predict the properties of a singular ligand or a transition metal complex using the

properties of the individual ligands.

Figure 1.5: Example of ligand additivity where the properties of components are used to
predict the properties of a ligand.

1.2.1 Ligand Knowledge Bases

Traditional methods of screening catalysts include experimental optimisation and high

throughput screening. The reproducibility and time/cost restrictions of screening large

numbers of ligands experimentally make it difficult to compare ligand performance over

a wide range of substrates and reaction conditions. 50 years ago Tolman introduced ex-

perimentally measured descriptors to rationalise the properties of phosphorous ligands.34

Molecular descriptors allow the mapping of chemical space and can be used as a tool to

identify systematic trends in reactivity and stability. The emergence of quantum mechan-

ical methods allowed for these descriptors to be calculated computationally. Fey et al.

have developed computational methods of screening large numbers of free and complexed

ligands through the combination of structural databases and density functional theory

calculations to create a database of structural and electronic descriptors.26,27 Descriptors

from experimental and computational studies are used to create a ‘ligand knowledge base’
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(LKB) which aims to describe all of the available chemical space. Currently, databases exist

for monodentate and bidentate phosphorus ligands, carbenes and recently small organic

bidentate ligands.35–37 Curation of descriptors into a database provides a data-rich envi-

ronment which can be drawn upon for use in data analysis methods or for the identification

of similar compounds.

Descriptors contained in these ligand knowledge bases are limited as they need to account

for all transition metals. Descriptors such as bite angle are sensitive to the metal, its ox-

idation state and its electronic configuration. The metal the descriptor is generated from

imposes a structural demand on the ligand affecting the geometry and ligand field stabil-

isation.21 Therefore, descriptors used may not correctly describe the correct environment

for certain metals and reactions with different coordination environments than the one the

descriptor was calculated from.

Ligand knowledge bases offer an alternative method for ligand design, that is both po-

tentially faster and applicable to a wider chemical space. Interpretation of large datasets

to predict chemical properties enables a more direct route for catalyst design rather than

screening a wide chemical space. However, they are still underdeveloped.

Recently, Gensch et al. developed Kraken, a virtual open-access library for monodentate

phosphorous ligands.33 Semiempirical and DFT descriptors were calculated for a library

of 1558 organophosphorus compounds. Principal component analysis was used to map

the chemical space to allow for the identification of suitable ligands for a specific prob-

lem. Furthermore, a fragment-based approach was used to generate a library of 300,000

computationally generated ligands and machine learning was used to predict their chem-

ical properties. Inverse ligand design was used to successfully identify a set of ligands for

enantioselective Pd-catalysed sp3 sp2 cross-coupling between alkylboronic acids and aryl

halides. This approach required independent experimental studies to identify key chemical

features for high activity in order to identify the correct ligand space. While a fragment-

based approach is able to produce and map a large chemical space the synthetic viability

of the ligands generated from this approach is questionable. Chemical space mapping

can bridge the gap between computational and synthetic chemists due to the easily inter-

pretable data, allowing synthetic chemists to perform computer-assisted interactive ligand

exploration without an in-depth knowledge of computational chemistry.

15



1.2. Computational Approaches to Homogeneous Catalyst Design Chapter 1: Introduction

1.2.2 Quantum Guided Molecular Mechanics (Q2MM)

Asymmetric catalysis is an essential method for preparing biologically active compounds.

Its importance has led to the computational design of such catalysts being described as

a ‘holy grail’ of chemistry.38 Traditional methods involve high-throughput experimental

screening, conducting hundreds of reactions at once in multi-well plates, covering a large

range of reaction conditions. Determination of activity and selectivity is achieved through

chromatography. It is often very expensive to cover a wide range of chemical space and

reaction conditions, involving personnel, time, equipment and resource acquisition. Re-

ducing the number of ligands screened by using computational approaches will lead to a

significant reduction in both time and cost.

Computational quantum mechanical methods have long been used for the identification

of transition states to rationalize and predict stereochemical outcomes. Due to the large

computational cost of quantum mechanical methods such as DFT, especially for determin-

ing transition state structures, only a small number of conformations are sampled and the

screening of large ligand libraries is unfeasible compared to the time required for high-

throughput screening experiments. Several methods have been developed to make stere-

oselective screening computationally viable.

The AARON toolkit generates small libraries of transition states for a set of ligands using a

semiempirical conformational search. The structures of the lowest energy conformations

are then optimised using DFT to generate predictions.39 Sigman and co-workers used a

different but complementary approach whereby the stereoselectivity of a small training set

is fitted against a set of physicochemical parameters.40 This approach is based upon the

steric and electronic effects of substituents on the ligand instead of mechanistic information

and can therefore only be used on closely related structures.
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Figure 1.6: Comparison of Q2MM (TSFF) and traditional (TS) transition state modelling
methods.

The quantum-guided molecular mechanics method (Q2MM), uses DFT-generated transi-

tion states to parameterise a transition state force field (TSFF). The TSFF is built upon a

standard force field such as AMBER or MM3 and parameters are added from the DFT train-

ing data to parameterise metals and any uncommon bonding motifs, present in transition

states but not present in the standard force field. Due to the inability of molecular me-

chanics methods to optimise to saddle points, the transition state is treated as a minimum

(Figure 1.6). This force field is used to calculate the structure of the transition state. A

subsequent conformational search generates a set of conformers for each pathway, which is

repeated for the list of ligands and substrates. Stereoselectivity is then determined through

the Boltzmann averaged energy of the conformational ensemble. Q2MM has been applied

to several reaction types such as osmium-catalysed dihydroxylation, rhodium-catalysed

hydrogenations and stereoselective additions to aldehydes.41–43 Experimental stereoselec-

tivities were reproduced with a mean absolute error of 2.8 kJmol−1, where a prediction of

99% e.e. would yield 97-99.7% in the laboratory.

For a typical catalyst-substrate combination with less than 10 rotatable bonds, all con-

formations can be generated in about one hour on one CPU, offering significant speed

increases compared to the DFT equivalent.44 Generally most Q2MM software suffers from

poor usability and time inefficiencies, however, the Wiest/Norrby and Moitessier groups

have developed CatVS and ACE to begin to address this.44,45
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1.2.3 Machine Learning Approaches to Catalyst Design

Machine learning can be used to both predict a property of a chemical of interest and/or

to identify key properties for a desired output variable. For example, in catalyst design, a

model could be used to predict the activity of the catalyst by the prediction of the activation

energy of a specific reaction or use a predetermined activation energy value to identify

the key properties of the catalyst required for high activity. The general cheminformatic

approach is shown in Figure 1.7. Under this regime, machine learning models are built

by gathering/generating and curating a large quantity of data, encoding the molecules as

inputs (descriptors/features) and mapping them to the desired output property.

Figure 1.7: A general machine learning workflow for building a cheminformatics model.

Machine learning is a statistical-based method that can construct powerful correlation or

classification models from single or multi-variable datasets in order to predict outcomes.

The majority of machine learning methods are based on the assumption that a relationship

exists between intrinsic properties such as atomic properties, and a global property, such

as catalytic activity.46 Often a simple linear relationship is sufficient to correlate properties

but more complex nonlinear methods may be required depending on the complexity of the

system of interest. However, correlation does not always imply causation and therefore, the

applicability of these models should be carefully evaluated. Artificial neural networks and

kernel ridge regression models are the most commonly used machine learning methods in

homogeneous catalyst design.47

The selection of suitable descriptors is a key factor influencing the predictive power of the

model and can be guided by either mechanistic or structural insights. However, these are
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not necessary as one of the advantages of machine learning models is that they can be used

when the reaction mechanism is unknown.48

Deep learning uses a method of learning in which simple internal representations are com-

bined to form complex objects. Chemistry is a prime example of a field that in principle

is perfect for deep learning. The behaviour of molecules can not be determined by atoms

alone, but by their grouping into functional groups and the interactions between func-

tional groups at differing ranges. However, molecules also provide a set of challenges for

use with machine learning. Machine learning is the most successful in fields where there

is an abundance of data, with the most useful having datasets in the millions and even

billions of data points. In chemistry, lab-derived data is the gold standard, however, cur-

rently available databases do not possess data points within the same order of magnitude.49

Therefore, computational chemistry has emerged as the leading source of data due to the

ability to generate a large volume of data in a much shorter time than it would take ex-

perimentally in the laboratory. However, the accuracy of these results is poorer than those

collected experimentally.

Another common machine learning method, neural networks, has also not been used ex-

tensively due to the large amount of data required to train the models. The lack of curated,

accurate, consistent data, along with the multimolecular nature of catalytic processes are

major challenges in the application of these methods.22 A recent example of the applica-

tion of neural networks by Denmark and co-workers used a neural network to predict the

stereoselectivity of the addition of thiols to imines.50 It was found that even using training

data with low selectivity (<80% e.e.) highly selective catalysts could still be predicted well

outside of the training set. Recent applications by the Kulik group have predicted redox

potentials, spin-state splitting and atomisation energies of organometallic complexes.51–54

A notable example is the identification of metal complexes for the selective oxidation of

methane to methanol.55 Kulik et al. used a fragment-based approach with an artificial neu-

ral network to screen 16M macrocycles. They found that low-spin Fe(II) complexes with

strong-field (P, S- coordinating) ligands gave the best balance between hydrogen atom

transfer and methanol release from the metal. They also found that high valence metals

were rate limited by slow methanol release and that negatively charged axial ligands were

critical to promoting the release of methanol from the metal centre. Mn(II) and low-spin
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Fe(II) catalysts were predicted to have high turnovers. However, they were not tested

experimentally.

Accurate virtual high-throughput screening of transition metal complexes is challenging

due to the possibility of multireference (MR) character.56 Complexes with high multiref-

erence character complicates the calculation and prediction of chemical properties. Kulik

et al. recently developed a method for the prediction of multireference character using a

neural network.56 They computed MR diagnostics for 5,000 ligands in the CSD and found

that MR character correlated linearly with the inverse value of the average bond order over

the entire molecule. They also observed that MR character can be inferred from the sum

of the MR character of the ligands. Therefore, ligand additivity was used to train a neu-

ral network to predict MR character using the properties of the constituent ligands. This

work is only applicable to equilibrium structures, therefore not tested on structures such

as transition states. The ability to predict MR character without expensive computational

approaches will be important in making high-throughput computational screening viable

for a large range of transition metal catalysts, especially for metals which favour open-shell

species.

Random forest models have been used to predict the performance of palladium-based cat-

alysts used in amination reactions.57 Data was collected from over 4000 high throughput

experiments with a set of 120 atomic, molecular and vibrational descriptors used to model

the catalyst, ligands, substrates and additives. The random forest model showed superior

performance over linear regression analysis for predicting the tolerance of the palladium

catalyst for isoxazoles during C N bond formation. Recently random forest models were

also applied to the asymmetric relay Heck reaction to predict stereoselectivity.58 Quantum

chemically generated organic descriptors were found to predict enantiomeric excess well,

with an RMSE of 8.0±1.3%. Ligands were generated using a fragment-based approach by

varying R groups of common ligand scaffolds.
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Figure 1.8: Fragmentation approach explored by Das et al. for the relay Heck reaction.58

Gaussian process (GP) models can be used to predict properties from unseen inputs. Pre-

dictions are in the form of a mean value and associated variance relating to the confidence

of the prediction. The variance can be used to judge the reliability of the prediction and

whether it should be discarded and explicitly calculated and used to retrain the model.

This systematic approach allows retraining of the model increasing the quality of predic-

tions and allowing for increased refinement. Gaussian processes based prediction models

are the most attractive machine learning method available, due to being able to build

models with sparse data from small to medium-sized datasets from multiple sources and

differing qualities.59 However, they have not yet been applied to homogeneous catalysis,

but initial studies of heterogeneous catalysts look promising.59

The use of ligand knowledge bases as a source of descriptors for machine learning meth-

ods shows promise for the high-throughput identification of ligands for transition metal

catalysts. The first major milestone for deep learning in chemistry came from Dahl et al. in

2012 who won the ‘Merck Molecular Activity Challenge’ for their multitask neural network

which was able to predict the molecular activity of molecules in 15 different sites in the

body with greater accuracy than traditional machine learning methods such as boosted

decision trees.60 However, the first breakthrough for the modelling of molecules was the

‘molecular auto-encoder’ by Gómez-Bombarelli et al..61 Since then there has been a large

increase in advancements in the modelling of molecules. The most notable of which in-
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volves the representation of molecular structures. In their initial paper, Gómez-Bombarelli

et al. used the SMILES representation, however, the main disadvantage of SMILES for

molecular representation is the fact that it is not unique. Therefore, the introduction of

graph-based representations attempted to solve this as well as provide a way to represent

three-dimensional structures. There are now many different representations available,

meaning that there is a lack of standards for both benchmarking and comparing different

approaches. The are very few examples of machine learning successfully predicting ligand

activity which have been validated experimentally.57

The lack of ‘failed’ experimental data available in both the literature and chemical

databases makes building effective models from widely available data sources extremely

difficult. While it is important to know what works well, it is also important to know what

doesn’t. The standard of only publishing ‘good’ results and not the ‘failed’ data is counter-

productive and makes the curation of datasets for machine learning challenging. Making

the publication of all data along with a scientific publication will aid the uptake and quality

of future machine learning models.

1.3 Choice of Model Reaction: The Ullmann-Goldberg Reaction

Palladium has become one of the most important transition metals used in catalysis, with

applications in cross-coupling, insertions and other important chemical transformations. It

is now the most commonly used transition metal catalyst in the pharmaceutical industry,

being used in important synthetic reactions such as Suzuki-Miyaura, Buchwald-Hartwig

and Pd-borylation.62 However, as palladium is a precious metal it has a low abundance

and is, therefore, very expensive and avoided where possible in large-scale chemical pro-

duction. A cheaper and more sustainable metal catalyst is required in the future.

1.3.1 The Importance of C-N Bond Formation In Synthetic Chemistry

The addition of nitrogen to sp2 carbon centres is an important chemical transformation in

organic synthesis. A significant number of pharmaceutical compounds contain aryl carbon-

nitrogen bonds (Figure 1.9). Common synthetic routes to generate aryl amines are shown

in Figure 1.10. Route A shows the introduction of a C N bond via nitration of the benzene

ring at a C H bond followed by reduction of the nitro group to the amine. The amine can
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then be functionalised to introduce R groups. Functional group tolerance for route A is

limited due to the harsh conditions required to introduce the nitro group. Nucleophilic

aromatic substitution (SNAr) can also be used to form arylamines (Route B). Although the

reaction conditions are mild, strong electron-withdrawing groups are required at the ortho-

and para- positions to activate the C X bond. Route C is the superior route as it requires

milder reaction conditions and has a wider substrate scope. Halogenation of the benzene

ring is followed by transition metal-catalysed conversion of the C X bond to a C N bond.

Figure 1.9: Examples of pharmaceuticals that contain aryl carbon-nitrogen bonds.

Figure 1.10: General reaction schemes to generate arylamines. X = halide; EWG =
electron-withdrawing group.
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The palladium-catalysed Buchwald-Hartwig amination is the most common transition

metal-catalysed process for converting C X bonds to C N bonds. The Buchwald-Hartwig

amination uses phosphines as ancillary ligands, the most effective of which being dialkyl-

biaryl phosphines (e.g. BrettPhos and RuPhos).63 While palladium-catalysed aminations

have been extensively studied, the reactions have some disadvantages such as high cost,

the high molecular weight of ligands and the toxicity of palladium.

Copper is a suitable replacement for palladium as it shares similar chemistry. For example,

the traditional Ullmann coupling and Ullmann-Goldberg reaction share similar chemistry to

palladium cross-coupling and the Buchwald-Hartwig reaction respectively. Currently, 10%

of drug discovery and 5% of process chemistry synthetic routes contain an aryl-amine bond-

forming step.62 Process chemistry tends to avoid the use of toxic and expensive catalysts

in industrial processes due to cost and heavy metal contamination. Introducing copper as

a replacement for palladium will reduce the cost and environmental impact of industrial

processes as well as reduce supply issues due to its higher natural abundance.

However, copper has several issues making it less efficient than palladium for cross-

coupling reactions. First of all its complexes have low stability due to the ligands being

highly labile. Secondly, as the ligand and the nucleophile are N/O donors, high ligand and

catalyst loading are required to achieve a suitable population of the active catalytic species

in solution. Finally, the understanding of ligand properties is not very well understood and

therefore, designing ligands for specific chemical transformations is difficult. This makes

the Ullmann-Goldberg reaction an attractive target for the application of high-throughput

screening and machine-learning approaches.
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Scheme 1: General reaction schemes for the palladium-catalysed Buchwald-Hartwig am-
ination and Ullmann-Goldberg reaction.

1.3.2 Copper-catalysed Cross-Coupling

In 1901 Fritz Ullmann reported that copper compounds were able to catalyse the formation

of biaryl moieties through the coupling of two molecules of an aryl halide.64 This reaction is

now often referred to as the ‘classical Ullmann reaction’. The generally agreed mechanism

for this reaction involves the insertion of the copper into the aryl-halide bond, which then

undergoes oxidative addition with a second molecule of the aryl-halide and subsequently

eliminates the product through reductive elimination.

Scheme 2: General reaction scheme for the Ullmann-Goldberg reaction.

In 1903 Ullmann applied the same methodology for the synthesis of N-aryl amines, using

stoichiometric quantities of copper, and to ethers in 1905, commonly referred to as ‘Ull-
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mann condensation’.65,66 Irma Goldberg, in 1906, reported the first copper-catalysed syn-

thesis of aryl amides and also improved upon Ullmann’s original N-aryl amine synthesis by

moving from a stoichiometric to catalytic amount of copper (Scheme 2).67 Later in 1929,

William Hurtley reported the coupling between o-bromobenzoic acid and β -dicarbonyls

mediated by either Cu bronze or Cu(OAc)2.68 These early reactions, however, required

harsh conditions such as high temperature, stoichiometric copper, strong bases, long reac-

tion times and high boiling point polar solvents. There was also a limited substrate scope,

generally requiring electron-poor aromatic substrates. The use of stoichiometric copper

was required due to issues relating to the poor solubility of many of the copper sources

used.69

Ar X + Ar X
[Cu]

Ar Ar Ullmann reaction 1901 (1.1)

Ar X + Ar NH2
[Cu]

Ar NH Ar Ullmann-Goldberg reaction 1903
(1.2)

Ar X + Ar OH
[Cu]

Ar O Ar Ullmann-Goldberg reaction 1904
(1.3)

Ar X + Ar CONH2
[Cu]

Ar CONH AR Goldberg reaction 1906 (1.4)

Ar X + H R
[Cu]

Ar R Castro-Stephens reaction 1963
(1.5)

Scheme 3: Notable copper-mediated cross-coupling reactions.

1.3.3 Introduction to Copper

Copper is a period 4 transition metal (base metal) in group 11. Copper has an elec-

tronic configuration of [Ar]4s13d10 in its elemental form, commonly forming compounds

in its +1 and +2 oxidation states. Compounds containing copper(III) are known but are

far less common due to the high third ionisation energy of copper.70 The electronic con-

figuration adopted by copper is energetically favourable compared to [Ar]4s23d9 due to

the filled 3d subshell. Copper(I) complexes are diamagnetic with common geometries of

two-coordinate linear, three-coordinate trigonal planar, and four-coordinate tetrahedral,

whereas, copper(II) is paramagnetic and usually found in a tetragonal coordination envi-

ronment, with four short equatorial bonds and another one or two longer axial bonds.71

Other geometries of copper(II) complexes are known, including tetrahedral, square planar,
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and trigonal bipyramidal geometries.71 Although copper(I) might be predicted to be in a

more stable electronic configuration ([Ar]4s03d10) compared to copper(II) ([Ar]4s03d9)

due to the full d orbitals, copper(I) is thermodynamically unstable in the presence of water

(Scheme 4).71

2 CuI(aq) CuII(aq) + Cu0(s) Eθ = +0.36V

Scheme 4: Disproportionation of copper(I) to copper(II) and copper (0) in water.

Copper has a relatively high ionisation energy, therefore, copper(I) is relatively unstable

compared to copper(0) and undergoes spontaneous disproportionation into copper (II)

and copper(0). As a result, complexes of copper(I) often require handling under an inert

atmosphere to prevent decomposition when in solution. In the solid form copper(I) is often

the more stable oxidation state at moderate temperatures.

1.3.4 Role of Ligands

While the ability of some esters and ketones to accelerate the reaction was known since

1964.72 It was not known how they affected the reaction, the most common theory was

that they increased the solubility of the copper catalyst. The first example of an exogenous

ligand being used in the Ullmann reaction was in 1997 by Liebeskind and Buchwald, where

they used an over-stoichiometric additive in the copper-catalysed coupling of biaryls and

aryl ethers.73,74 Both Liebeskind and Buchwald proposed different roles for their respective

additives. Liebeskind suggested that the additive, thiophenecarboxylate, would accelerate

the coupling by facilitating the oxidative addition of the aryl halide to the copper. Buchwald

however, proposed that the additives naphthoic acid and caesium carbonate enhanced the

solubility of the intermediate copper species.72,75 There were several theories proposed to

explain the effect of ligands on the increased reaction rate. Stabilisation of the active Cu(I)

species, increasing the solubility of the copper catalyst, prevention of copper aggregation

and multiple ligation to the copper were all proposed as possible mechanisms.76

In the following years, the first examples of bidentate ligands were published, which proved

to be more efficient than the previously used monodentate ligands. The first example of

such ligands was by Buchwald a few years after his initial work with additives, where he

used phenanthroline and dibenzylideneacetone (dba) as ligands for the coupling of aryl

halides and imidazole.76 It was suggested that bidentate ligands were more effective as
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they blocked two coordination sites on the copper, therefore, the nucleophile and aryl cou-

pling partner would be closer together, facilitating reductive elimination.77 The majority

of ligands used in the Ullmann-Goldberg reaction are N and O donor ligands as P ligands

have been shown to be not very effective.78

Major contributors to identifying the role of ligands were the Taillefer and Buchwald

groups, each focusing on different aspects of the problem. Taillefer’s group focused on a

new class of imine-based ligands for the N- and O- arylation Ullmann-Goldberg reactions,

whereas Buchwald’s group was focused on kinetic studies of the N-arylation of amides.79–82

Figure 1.11: Ligands explored by Taillefer et al. and their respective yields.80

In 2007, Taillefer’s group reported the first ligand structure-activity relationship study.

They compared a series of bi-functional iminopyridines with phenanthrolines and

bipyridines to determine the effect of ligand structure on catalytic activity (Figure 1.11).80

Ligands containing only imines as the coordinating functional groups were found to be in-

effective in increasing the reaction yield. The introduction of a pyridine group onto an

aromatic imine showed an increase in yield, with bipyridines and phenanthrolines further

enhancing the yield to 82%. Using a tetradentate ligand showed only a slight increase in

yield over the more traditional bidentate ligands.80 Prominent electron effects were also ob-

served, with electron-withdrawing substituents on the imine moiety and electron-donating

substituents on the pyridine moiety leading to increased yields. Based on this observation

the authors proposed that the imine and pyridine moieties could intervene at different
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stages in the catalytic cycle. The electron-rich pyridine would donate electron density to

the copper atom, increasing its tendency to undergo oxidative addition and the electron-

poor imine would decrease electron density on the copper atom, making the catalyst more

susceptible to reductive elimination.80

Buchwald’s group put forward a different point of view based on their kinetic investi-

gations. They proposed that a series of different equilibrium-based processes were in-

volved.81 When the reaction was conducted at very low concentrations of 0.02 M of cat-

alyst (CuI) it was found that the reaction reached a maximum rate at approx. 0.2 M of

ligand. Based on this observation they concluded that the solubilising effect of the ligand

was either non-existent or was not the only effect caused by the ligand in the reaction.

They, therefore, proposed that the ligand could play a role in preventing the coordination

of two amide molecules to the copper atom, making the formation of the mono-amide

copper complex, a key reaction intermediate, more favourable, thus increasing the rate of

reaction.81

Scheme 5: Copper complex equilibrium in presence of high and low ligand concentrations.

Their hypothesis was that at high ligand concentrations, the copper atom is coordinated to

the diamine ligand and a halogen (X) from the precatalyst (Scheme 5). Ligand substitution

between the halogen and the amide anion then occurs to form an intermediate copper

amide complex, which goes on to react with the aryl halide to give the coupled product.

However, at low ligand concentrations, the copper is coordinated to two molecules of the

amide, which undergoes ligand substitution with the diamine ligand to form the same key

copper-amide complex, however at a slower rate due to the higher stability of the copper

bis-amide complex. The group found that the copper bis-amide species exists as aggregated

oligomers in the absence of the diamine ligand, and upon addition of the diamine ligand

breaks down into the monomeric species which undergoes fast and mild coupling with

the aryl halide to form the coupled product with a reaction half-life t1/2 = 3.1 min at
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0°C.81 They also found that at low ligand concentrations, the reaction rate decreases with

increasing amide concentration. This demonstrated that the copper bis-amide complex

was inactive and that the ligand played an important role in preventing its formation.81

The inclusion of ligands in the Ullmann-Goldberg reaction has led to the use of much

milder reaction conditions. Temperatures could be reduced to <100°C and copper and

ligand loadings reduced from stoichiometric amounts to 5-20 mol%.

1.3.5 Effect of Ligand Properties on Nucleophile Selectivity

Selective arylation of amino-alcohols is an important synthetic transformation, specifically

in medicinal chemistry as functionalised amino-alcohols are present in several classes of

pharmaceutically active compounds. Advances in copper catalysis have made the Ullmann-

Goldberg reaction an attractive method for this type of functional group incorporation.

However, the selectivity of either N or O is dependent on several factors, the coordinating

ability of the amino-alcohol and the nature of the ligand.

The first breakthrough in the understanding of N/O selectivity came from Buchwald et al.

in 2002.83 In their study of the arylation of β -amino-alcohols, it was found that changing

the reaction conditions had a dramatic effect on the selectivity of the reaction. Using NaOH

as a base and DMSO/H2O as the solvent favoured N-arylation (>50:1) whereas using a

weaker base such as K3PO4 or Cs2CO3 in the presence of ethylene glycol gave a reduced

ratio of N/O arylated product and using Cs2CO3 in butyronitrile favoured O-arylation albeit

with lower yields. Steric effects were also observed, using less reactive secondary amino-

alcohols increased competition between N and O as the increased steric bulk around the

more nucleophilic amino group hinders N -arylation.83 Chain lengths of n > 3, between

the amino and alcohol groups, give good selectivity of either the amino or alcohol groups

depending on the reaction conditions. Chain lengths of n= 2 or n= 3 give poor selectivity

due to the formation of a kinetically favoured 5 or 6-membered ring. As both the N and

O atoms are coordinated to Cu, both are susceptible to arylation, thus explaining the poor

selectivity.83
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Scheme 6: N and O selectivity of different ligands for the Ullmann coupling of amino-
alcohols with 4-iodo-toluene.

For the application on non-branched amino-alcohols, the use of an additional ligand was

required (Scheme 6). Using neocuproine (NEO) as the ligand in toluene, O-arylation is

favoured (89-91%, O/N= 18/1-24/1) whereas the use of isopropylcarbonylcyclohexanone

(IPCC) in DMF favours N -arylation (96-99%, N/O = 45/1-50/1).83 Similar results were

also obtained by Chan et al. in 2008 using a ligandless system of solvent and CuI for the

arylation of linear amino-alcohols.84 Changing the solvent showed dramatic changes in re-

action selectivity, DMF favoured the formation of the N -arylated product, whereas toluene

gave only O-arylated and N , O-diarylated product.84 The role of the ligand on selectiv-

ity was explained by the electronic effects of the ligand on the Cu atom (Figure 1.12).

Buchwald et al. proposed that the anionic ligand (IPCC) makes the Cu(I) coordinated

species less electrophilic and thus disfavouring the coordination of the hydroxyl group and

the more nucleophilic amine group is bound instead. The neutral ligand (NEO) makes

the Cu(I) coordinated species more electrophilic, favouring coordination of the hydroyxl

group over the amine.83

Figure 1.12: Ligand effect on N/O selectivity.

A few years later Buchwald and co-workers published a follow-up computational study

to explain the observed selectivity with the above ligands, using methylamine/methanol,
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aryl iodide and CuI catalyst.85 The calculations showed that coordination of the O atom

was always energetically favoured over the N atom and therefore, the selectivity could

not arise during the coordination of the nucleophile to the Cu atom. The selectivity could

instead be explained by the activation of the aryl halide. Using IPCC, N -arylation was

always favoured over O-arylation, with the lowest energy pathway being an outer sphere

single electron transfer mechanism. For neocuproine the O-arylation activation energy via

an inner sphere iodine atom transfer mechanism was lower than for the N -arylation.85

A similar computational study was performed by Fu and co-workers on amino-alcohols

instead of methylamine/methanol, which is a more realistic system.86 In their study

neocuproine was replaced with the less electron-rich, phenanthroline (PHEN). Their cal-

culations suggested that the oxidative-addition/reductive-elimination mechanism was the

most favourable, with the selectivity explained by a difference in the order of coordination

of the nucleophile and oxidative addition.86 As IPCC is an anionic ligand, the charge on

the complex with Cu(I) is 0 and therefore, is more prone to oxidative addition than the

complex of Cu(I) with phenanthroline, with a +1 charge. In order for oxidative addition to

occur with the Cu(I) PHEN complex, coordination of the nucleophile is required to create

a neutral species.86 As a result, the oxidative addition of the aryl halide to the Cu(I) IPCC

complex is relatively easy, with the rate-limiting step being the coordination of the nu-

cleophile to the Cu(III) species, whereas in the Cu(I) PHEN complex the rate-limiting

step is the oxidative addition of the aryl halide. As energy is required to coordinate the

nucleophile in the Cu(I) IPCC complex the more nucleophilic amino group coordinates

selectively, leading to N -arylation. The hydroxyl group preferentially coordinates to the

Cu(I) PHEN complex due to its higher acidity, leading to O-arylation.86

Scheme 7: Conditions used by Buchwald and co-workers (2009) for the coupling of
aminophenols with aryl iodides.82
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Buchwald’s group expanded their substrate scope to aminophenols in their study in 2009

(Scheme 7), which led to the development of conditions which gave almost complete O se-

lectivity in 3-aminophenols.87 Applying these conditions to 4-aminophenols however, gave

much lower yields and selectivities as well as being more sensitive to steric hindrance.87

Further expansion to 2-aminophenols gave no O-arylated product both with and without

additional ligands, with only N -arylated and N , N -diarylated products being observed.87

This suggested that arylation preferentially takes place at the more nucleophilic amino

group when both groups are bound to the copper.87 In a competition study using equimo-

lar amounts of aniline and phenol, however, only phenol-coupled product was observed.

When aniline was replaced with less electron-rich aniline derivatives, the N -coupled prod-

uct again became the dominant product.87 Based on this observation, the authors discussed

a mechanism in which deprotonation plays an important role in the catalytic cycle.

The more nucleophilic amino group binds to the Cu atom before deprotonation. Whereas

the more acidic phenol is deprotonated at the beginning of the reaction, prior to binding

to the Cu atom, and subsequently coordinates in its anionic form faster than the amine

due to the presence of the negative charge. Competition between these two complexes is

present in the reaction and the selectivity is dependent on their relative rates of formation

and oxidative addition. The nucleophilicity and deprotonation rate of the amine shifts the

equilibrium between these two species. Electron-poor amines are more competitive due

to being more acidic and hence, can be deprotonated before coordination as a negatively

charged species.87

1.4 Conclusions

Catalysts are a vital component of modern synthetic processes, required in the majority of

industrial chemical synthesis procedures. The development of new, highly active catalysts

is key to improving industrial processes and enabling the synthesis of previously unavail-

able chemical compounds. The drive towards sustainability in chemistry has made the

need to move from expensive and rare precious metals towards cheaper, readily available

base metals. However, the lack of understanding of these catalysts, both mechanistic and

ligand understanding, has made the uptake of these metals in catalysis slow.

Structural databases have become an invaluable source of chemical data that is currently

33



1.5. Aims & Objectives Chapter 1: Introduction

underutilised, especially in catalysis. Development of computational workflows that utilise

this data will be invaluable for the chemical exploration and prediction of activity for cata-

lysts. Such a process would reduce the number of resources required for route development

shortening the time required from lab to consumer. Current approaches to tackling this is-

sue were explored, most of which lack experimental validation or are limited in scope.

Multiple approaches to the computational discovery of novel catalysts are under develop-

ment. Ligand knowledge bases provide a database of ligands and their properties which

can be drawn upon to identify potentially highly active ligands. However, the structures

available are limited to those which are currently well-studied or commercially available.

Q2MM approaches have only been successfully applied to the prediction of stereoselec-

tivity and have not been applied to the identification of novel ligands. Machine learning

methods have started to increase in popularity but their predictions are rarely validated

experimentally. Machine learning models can be used to explore the importance of ligand

properties and predict specific properties of molecules of organometallic complexes but

requires large datasets, which are not readily available, and careful tuning of both the type

of model and the descriptor sets used.

The Ullmann-Goldberg reaction is a synthetically important C N coupling reaction similar

to the widely used Pd-based Buchwald-Hartwig reaction, making it a good test reaction

to demonstrate the applicability of such an approach. The history of the reaction was

explored as well as its advantages and disadvantages compared to palladium. Finally, the

current mechanistic and ligand understanding was explored. The prominence of nitrogen

and oxygen-based ligands provides a starting point for the targeting identification of novel

ligands within structural databases.

1.5 Aims & Objectives

Computational approaches are rarely used in the chemical industry, particularly in the field

of catalyst design and selection. Identification and validation of key structural features in

organometallic complexes enables the design of catalytic species for numerous applications

in silico. A rational approach based on extensive structural/activity data will be essential

in reducing resources dedicated to catalyst screening and late-stage development. Higher

success rates and reduced development time and resources will enable the catalyst industry
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to deliver solutions faster and more effectively.

The aim of this work is to apply structure-based design approaches, already established

in drug design, to the field of organometallic catalysis. Moving away from toxic and ex-

pensive rare-earth metals to safer, cheaper and more abundant base metal catalysts is an

attractive prospect for making chemical synthesis more sustainable. However, base metal

catalysis is less understood compared to precious metals. A lack of both mechanistic and

ligand understanding makes the development of ligands for these catalysts much more

challenging. As an example use case the Ullmann-Goldberg reaction is used to identify

new ligands to improve the viability of the reaction with respect to the Buchwald-Hartwig

reaction preferred in industry.

This will be done in the following steps:

i) Creation of a structural database (CatSD) from the Cambridge Structural Database

containing features relevant to organometallic catalysts.

ii) Development of a high-throughput computational workflow for the prediction of ac-

tivation energies. The time scale of which should be similar to experimental high-

throughput screening.

iii) Application of CatSD and the high-throughput workflow to a reaction of industrial

interest and limited ligand and mechanistic understanding. The output of which will

be used to link ligand/complex properties to catalytic activity.

iv) The accuracy of the workflow will be assessed via comparison with high-level wave

function methods and comparison with experimental data.

v) Machine learning will be used to link ligand steric and electronic properties to ac-

tivity. Models will also be used to predict activation energies both with and without

transition state structures to assess their accuracy and the ability to predict activation

energy without the need for calculation of the transition state.
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1.6 Thesis Layout

This thesis will follow the semi-automated high-throughput cheminformatic approach to

identifying and predicting ligand activity for homogeneous catalysis. Chapter 2 will de-

scribe the process of building the Catalyst Structural Database (CatSD), the definition of

structural features and using CatSD to search the Cambridge Structural Database for po-

tential ligand structures.88 Chapter 3 will introduce a new approach to predicting ligand

activity through a semi-automated high-throughput computational workflow along with

benchmarking data against higher-level wavefunction methods and 3D structural data.

Chapter 4 will describe the application of both the computational workflow and CatSD to

the Ullmann-Goldberg reaction, where both amine and amide nucleophiles are explored.

Chapter 5 describes machine learning models for the prediction of activation energy, iden-

tification of incorrect structures and the importance of ligand properties. Finally, a direc-

tion for future work in this field is posited. Figure 1.13 shows the methodological work-

flow employed in this thesis and the chapters of the thesis in which they are presented and

discussed.

Figure 1.13: An overview of the new computational and cheminformatic workflow devel-
oped in this work and the relevant chapters in which these steps are discussed.
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1.7 Data & Code Availability

All curated datasets and code described in this work are freely available at https:

//github.com/MarcS18/Thesis_ESI. The code is split into folders based on the chap-

ter and corresponds to the respective section number within the chapter. The folders also

contain sample data to demonstrate how the code works.
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Chapter 2: CatSD: Structural

Database for Catalyst Design and

Development

2.1 Introduction

Crystallographic databases are an invaluable resource for structural-based design due to

the breadth of structural data available which covers a large variety of chemical species.

Exploitation and interpretation of this large quantity of structural data has led to the gen-

eration of practically useful empirical conformation rules and interaction preferences.89,90

Creation of a structural database built upon the structure-rich CSD would provide a data-

rich resource for chemists to perform structure-based design, analysis or predictions for a

large variety of chemical problems within catalysis.

2.1.1 Structure-based Design

The CCDC CrossMiner approach is based on searching crystal structure databases such as

the Cambridge Structural Database (CSD) and the Protein Data Bank (PDB) in terms of

a pharmacophore query (Figure 2.1).91 This approach is primarily used for the structure-

based design of pharmaceuticals. Pharmacophore queries aim to describe the protein-

ligand interaction patterns, ligand scaffold or protein environments. Example features to

describe pharmaceutical properties include hydrogen bond donors/acceptors, planar rings

and excluded volumes. The main application of CSD-CrossMiner is as a complementary

tool in drug discovery to identify new drug candidates through analysing drug-protein

interactions.
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Figure 2.1: Graphical representation of the CrossMiner approach for drug design, where
the coloured spheres represent pharmacophore points are used to search the CSD or PDB
to retrieve matching chemical structures.91

Comparisons can be drawn between drug docking and catalysis. The catalyst can be con-

sidered as the protein and the substrate(s), the drug molecule. In this case, the ‘inverse’

approach is applied. where the substrate(s) (drug) is known and the catalyst (protein) is

unknown. The user will define the substrate(s) and the ‘catalophore’, a set of features used

to describe the properties of the ligand(s)/catalyst. Which can be used to search the CSD

for potential ligands for the chemical transformation of interest.

Unlike traditional ligand docking, which relies primarily on intermolecular interactions

such as hydrogen bonding and ionic interactions, catalysis relies on the electronic and steric

environment at the metal centre, the properties of which are influenced by the coordinated

ligands. Structural data alone is insufficient to represent the electronic environment and

therefore, must be coupled with a computational modelling method such as density func-

tional theory. Density functional theory is a time-consuming method so a faster method is

required to screen large numbers of molecules in a much shorter time frame in order for

it to be considered as an alternative to experimental screening approaches.

CSD-CrossMiner for catalysis would operate from a transition state where the user inserts

their substrate on a transition state template (reference structure), upon which the Cross-

Miner pharmacophore features can be applied to the ligand(s) and the database searched to

retrieve similar compounds which could be used as potential ligands. The generated struc-

tures will then either be exported and used for either DFT calculations or input directly

into a machine learning model to directly predict the activity of the ligand(s)/catalyst.
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2.1.2 CSD-CrossMiner Terminology

2.1.2.1 Feature and Pharmacophore points

Features are a point, centroid or vector placed in 3D space which represents a SMARTS

query to match when searching for matching structures. If the feature is a vector it also

includes geometric rules to define the directionality of the feature. A single-point feature

is represented as a single small translucent sphere. A directional feature is represented by

two types of spheres, base and virtual, which are displayed as small translucent spheres.

The base feature represents the feature itself, while the virtual point(s) represent the di-

rectionality of the feature. Directional features can have one or more virtual spheres to

represent different geometries (1 for a linear feature, 3 for a tetrahedral feature etc.).

A pharmacophore point is a feature that is necessary to ensure optimal interactions or

structure with a specific target. For example, in medicinal chemistry, the pharmacophore

point is a feature that is necessary for optimal intermolecular interactions with a specific

biological target to trigger or block its biological response. A pharmacophore point is rep-

resented as a mesh sphere. The sphere radius of each pharmacophore point represents the

tolerance radius and reflects the uncertainty in the position of the pharmacophore point.

The radius of a pharmacophore point can be varied to control the specificity of the query.

Like with features a directional pharmacophore point can also be used to represent the

directionality of a pharmacophore point using virtual sphere(s). In this chapter, this will

be referred to as a catalophore point.
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Figure 2.2: Visualisation of feature (orange) and pharmacophore points (purple), with
directionality (meshed=base, solid=virtual), excluded volumes (white) and exit vectors
(light blue) in CSD-CrossMiner. The green dashed line represents that features are con-
strained intramolecularly.

2.1.2.2 Excluded Volumes and Exit Vectors

An excluded volume is a feature that defines a volume in 3D space whereby no atom can

be present. An excluded volume is represented by a single mesh sphere. In medicinal

chemistry, an excluded volume feature defines an occupational volume where no solute

molecule can be present.

An exit vector is a two-point feature that represents a single, non-ring bond between two

heavy atoms, and is used to represent an R group of any composition or a branching point

in a structure. In CSD-CrossMiner an exit vector is bi-directional and therefore has no

directionality. An exit vector is represented as two mesh spheres.
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Figure 2.3: Feature selection pane as seen in CSD-CrossMiner.

Search terms are generated by adding features from the pharmacophore features pane in

CSD-CrossMiner. Features can be added either by right-clicking a matching atom (dis-

played by a small sphere) on a reference structure or by right-clicking the desired feature

on the feature pane (Figure 2.3) and moving the sphere onto the atom of interest. Fea-

ture spheres can be snapped to atoms by right-clicking the sphere and selecting ‘snap to

atom’, which will move the sphere to the nearest atom. Features can also be constrained

to be either intermolecular/intramolecular or to any other feature in the catalophore. In-

tramolecular constraints ensure that all features belong to the same structure in the hit

compounds.

Figure 2.4: Expanded view of a feature in the feature pane.

The tolerances of a sphere can be changed by expanding the feature in the feature pane

and altering the values, B for the base sphere and V for the virtual sphere (Figure 2.4). For
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excluded volumes specific SMARTS patterns can also be excluded (* excludes all atoms).

2.1.2.3 Structure and Feature Databases

A structural database contains the 3D coordinates of a set of chemical structures. Structural

databases can be generated straight from the CSD or from other community or proprietary

datasets. Structural databases are used as a basis to generate a feature database.

A feature database contains the 3D structures from the structural database but is indexed

with a set of feature definitions. Indexing matches the features in the feature database to

each structure in the structural database allowing them to be searched using the feature

points in a search query. Either the default feature definitions can be used or custom

definitions input by the user. This is the database that CSD-CrossMiner uses to perform

the 3D search against the query.
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2.2 Results and Discussion

2.2.1 Building CatSD

The structural database is built upon CSD_541 with the Mar20, May20, Aug20 and Feb21

updates. CatSD contains structures from the CSD which (a) are not polymeric, (b) have

no disorder, (c) for which 3D coordinates have been determined and (d) have a maximum

R-factor of 10%. This was to ensure that all structures present in the database had high-

quality 3D coordinates and to remove any polymeric structures, which are not relevant

to homogeneous catalysis. This resulted in a database containing approximately 658,000

structures.

To enable easier searching of the database a set of annotations are used to define specific

properties of each entry in the database. Each entry has a set of annotations taken directly

from the CSD, using the CSD Python API, containing the following values: (1) CSD identi-

fier, (2) CSD Refcode, (3) database name, (4) chemical formula, (5) R-factor, (6) is_organic

and (7) is_organometallic. These annotations allow the database to be searched in terms

of the quality of the 3D structure (R-factor) as well as whether the structure is organic or

organometallic. The ability to search for only organic structure is very useful due to several

issues with searching for localised features with CSD-CrossMiner (see Section 2.2.2).

CatSD itself is built from the Cambridge Structural Database however, the features included

within the database can be used for custom databases; both freely available and proprietary

through CrossMiner using the database generation tool. Custom annotation sets can also

be used by adding a custom .csv file containing the required annotations for each structure.

The script for extracting annotations from the CSD using the CSD-Python API is available

in the ESI.

2.2.2 Structural Features for Catalysis

Each entry in the structural database is annotated with a set of feature points which are

used to perform a 3D search. Each feature is defined by a hierarchy of SMARTS patterns

which must be tailored for each use case in order to represent different functionality within

a molecular structure.

The default feature set packaged with CSD-CrossMiner is insufficient for catalysis as it
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does not contain any features which are related to common metal-coordinating functional

groups. Several features included with CSD-CrossMiner are useful for catalysis such as

ring and ring_projected features for describing both aliphatic and aromatic ring systems,

heavy_atom for defining the location of heavy atoms (not H) and donor_projected and ac-

ceptor_projected for describing hydrogen bonding, either intra-ligand or between ligand

and substrate.

A new set of features were created for catalysis to enable searching of the CSD for common

coordinating functional groups used in organometallic chemistry. Each functional group

was defined by a SMARTS string then the SMARTS list expanded whenever an assignment

was considered incorrect when tested on a subset of CSD structures from the CSD Aug20

update (Figure 2.6). Table 2.1 shows the full list of SMARTS strings used in the catsd_-

coordinating_atom_general feature.

Figure 2.5: Geometries of the features used in CSD-CrossMiner.

Every feature in CatSD is a directional feature to ensure that the coordinating functional

groups matched are in the correct orientation to allow for binding to the metal centre.

All possible geometries and projections are shown in Figure 2.5. The geometry of the

feature is not directly related to the geometry at the base atom. This is due to the way that

CSD-CrossMiner calculates the projected points. For example, for a primary amide (N) a

trigonal feature would have the projected points located on both nitrogen hydrogen atoms.

However, as both hydrogens are occupying those positions the trigonal feature cannot be

used.

45



2.2. Results and Discussion Chapter 2: CatSD

Figure 2.6: Example feature definition with the directionality of an amide functional group
displayed on a matching structure in the CSD.

It is common for structures in the CSD to contain functional groups that have been proto-

nated in the crystal structure. In these cases, the SMARTS string also needs to match the

hydrogen atom. An example of this is pyridine where the SMARTS pattern for the nitrogen

atom is, n, for the nitrogen or, n-[#1], if the nitrogen is protonated. In this case, a linear_-

nb geometry is used to project the feature from the hydrogen instead. If a linear feature is

used the hydrogen atom will occupy the projected position and the structure would not be

matched by any search.
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Table 2.1: Features used in the CatSD coordinating_atom_general feature.

Number SMARTS Definition Base
Index

Geometry Functional
Group

1 [#6](-[#6])(-[#6]=[#6](-[#6])-[#8-
])=[#8]

5, 6 trigonal 2,5-
diketone

2 [#8-]-[#6] 0 tetrahedral alcohol

3 [#8H1]-[#6X4] 0 tetrahedral alcohol

4 [#1][#8H1]-[#6X4] 0 linear_nb alcohol

5 [#8X1]=[#6](-[#6;#7])(-[#7]) 0 trigonal amide

6 [#7X2]-[#6](=[#8]) 0 trigonal cyclic
amide

7 [#1][#7X3H2]-[#6](=[#8]) 0 tetrahedral primary
amide

8 [NX3H2](-[C]([!#8;!#7])([!#8;!#7])) 0 tetrahedral primary
amide

9 [#1][#7X3H1]-[#6](=[#8]) 0 linear_nb secondary
amide

10 [NX3H2](-[C]([!#8;!#7])([!#8;!#7])) 0 tetrahedral secondary
amide

11 [NX3H0](-
[C]([!#8;!#7])([!#8;!#7]))(-
[C]([!#8;!#7])([!#8;!#7]))-
[C]([!#8;!#7])([!#8;!#7])

0 tetrahedral tertiary
amide

12 [#1][NX3H2](-
[c]([!#8;!#7])([!#8;!#7]))

0 linear_nb aniline

13 [#1][NX3H2](-[c]([!#8])([!#8])) 0 linear_nb aniline

14 n-[#1] 0 linear_nb aromatic
nitrogen

15 n 0 trigonal aromatic
nitrogen

16 [#7]=[#7][#6] 1 trigonal azo

17 [#7]=[#7][#6] 0 tetrahedral azo

18 [#8H1][#6]=[#8] 0 trigonal carboxylic
acid

19 [#1][#8H1][#6]=[#8] 0 linear_nb carboxylic
acid

20 [#1][#8H1][#6]=[#8] 3 trigonal carboxylic
acid

21 [#8X1][#6]=[#8] 2 trigonal carboxylic
acid
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Continuation of Table 2.1

Number SMARTS Definition Base
Index

Geometry Functional
Group

22 [#8X1][#6]=[#8] 0 tetrahedral carboxylic
acid

23 [#6](-[#6])(-[#8]-[#6])=[#8] 4 trigonal ester

24 [#7]=[#6]-[#7][#1] 3 linear_nb imidazole

25 [#6;#1;#8;#7;#16][#7X2]=[#6] 1 trigonal imine

26 [#6]=[#7X3](-[#6;#1;#8;#7;#16])-
[#1]

3 linear_nb imine

27 [#6]=[#7]-[#6] 1 trigonal imine

28 [#6]#[#7]-[#6] 0 linear isocyano

29 [#8X1]=[#6]([#6])([#6]) 0 trigonal ketone

30 [#8-]-[#7]-[!#8] 0 trigonal n-oxide

31 [#1]-[#8]-[#7]=[#6] 0 linear_nb oxime

32 [#8-]-[#7]=[#6] 0 tetrahedral oxime

33 [#1]-[#8]-[#7]=[#6] 1 tetrahedral oxime

34 HOc 1 tetrahedral phenol

35 HOc 0 linear_nb phenol

36 [PX3](-[#8H0][#6])(-[#8H0][#6])-
[#8H0][#6]

0 tetrahedral phosphate
ester

37 [PX3](-[#6;#7])(-[#6;#7])-[#6;#7] 0 tetrahedral phosphine

38 [#7X2H1]=[#6] 0 tetrahedral primary
imine

39 [#7][#7][#1] 2 linear_nb pyrazole

40 c-[#7](-[#1])-(c) 2 linear_nb pyrrole

41 c[nX2]c 1 trigonal aromatic
nitrogen
ring

42 [#16-]-[#6] 0 tetrahedral thiol

43 [#16H1]-[#6X4] 0 tetrahedral thiol

44 [#1][#16H1]-[#6X4] 0 linear_nb thiol

45 HSc 1 tetrahedral thiophenol

46 HSc 0 linear_nb thiophenol

47 [NX3H2]([#6]([!#8;!#7])([!#8;!#7])) 0 tetrahedral primary
amine

48 [NX3H1]([#6]([!#8;!#7])([!#8;!#7]))
([#6]([!#8;!#7])([!#8;!#7]))

0 tetrahedral secondary
amine
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Continuation of Table 2.1

Number SMARTS Definition Base
Index

Geometry Functional
Group

49 [NX3H0](-
[#6]([!#8;!#7])([!#8;!#7]))(-
[#6]([!#8;!#7])([!#8;!#7]))-
[#6]([!#8;!#7])([!#8;!#7])

0 tetrahedral tertiary
amine

The general coordinating atom feature is a very general feature that broadly searches all

coordinating atom types. For a more specific search query each functional group is di-

vided into separate individual features (e.g. primary amide and phosphine). All features

included with CatSD are indexed and stored in the feature database so are ready to use

upon loading the database.

2.2.3 Using CatSD with CSD-CrossMiner

Approximately 57% of the structures contained in the CSD are metal-organic based.92 Util-

ising this data however is much more challenging as there are several issues with both how

the structures are stored and how the CSD software accesses and performs search queries.

Firstly, CSD-ConQuest, a 2D-based structure searching software for the CSD, contains a

search term, ‘4M’, which is a general term for any transition metal. This term is not avail-

able in CSD-CrossMiner, nor does SMARTS contain any similar value for defining transition

metal elements. To match the SMARTS string for a coordinating atom in an organometallic

structure it must include the metal atom as well. This makes the generation of features

for coordinating atoms very difficult. Each feature in a catalophore point either needs to

contain a list of every single transition metal element per feature or needs to have a sep-

arate feature for each transition metal. This is impractical and very time-consuming to

generate. In some cases you may also wish to search for structures with a specific tran-

sition metal element only, meaning new features will have to be generated and indexed

into a new database each time, meaning the features are not transferable across metals. A

substructure filter could also be used but this would involve having to list every unwanted

transition metal element as an exclusion rule, which is not practical from an ease-of-use

standpoint.
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Secondly, organometallic structures are considered as a single structure in CSD-CrossMiner.

Therefore, confining features to be intramolecular does not confine the features to within

a single ligand. This results in a large quantity of hit structures, especially for polydentate

ligands, where the two catalophore points are located on different ligands (Figure 2.7a,

2.7b). These hits are not viable, as they do not match the desired denticity due to each

coordinating atom being located on separate molecules.

(a) Atoms in
different
ligands

(b) Atoms in
different

molecules

(c) Incorrect
binding mode

(d) Multiple metal
atoms

Figure 2.7: Examples of incorrect hits when searching organometallic structures using
CatSD.

Thirdly organometallic structures require a lot of pre-treatment before they can be used for

activity prediction. Active catalytic states are hard to obtain crystal structures for, therefore,

the structures present in the CSD are either pre-catalysts or stable complexes of the metal

of interest. This complex must then be converted into the active catalytic form before it

can be used for activity prediction. This involves the automated removal of any unwanted

ligands, which is a difficult and time-consuming task.

Figure 2.8: Percentage of structures in the CSD that are organic and metal-organic.92

A much more attractive approach is to use the other 43% of the CSD containing organic

compounds and search for free ligands instead. For free ligands, features do not require

any transition metals to be included and one feature or set of features can be used to de-
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scribe one functional group across all transition metals. Removing the need for re-indexing

every time a new metal is studied and the generation of complex feature SMART strings.

As organic compounds only contain the structure of the free ligand, intramolecular con-

finement of features now works on the ligand only and the hits returned contain just the

ligand structure of interest. Finally, as there are no other components in the structure

no further treatment is required and the ligand structure can be used directly for ligand

activity prediction.

This approach is limited to ligands that can be crystallised as free ligands and not those

that can only be crystallised within an organometallic complex. Furthermore, free lig-

ands possess a higher degree of conformational flexibility and may exist in the CSD in a

conformation that is not the same as the one when bound to a metal centre. As CSD-

CrossMiner uses a 3D space search any ligand in an unfavourable binding conformation

will not be matched by the catalophore. Therefore, some ligands that are only accessible

in organometallic structures will not be identified when searching the CSD.

One possible approach to circumvent this issue is to create a custom database, whereby

all of the structures are from a DFT optimized structure where every ligand is bound to

simple metal complex such as PdCl2 and remove the PdCl2 moiety after. This will provide

a database with every free ligand in to correct binding conformation. However, this will be

extremely expensive both with computational resources and time. Such databases could

also include the curation of commercially available ligands to facilitate high-throughput

prediction in process chemistry and route selection.

2.2.3.1 Generating Catalophores

In order to search the CSD using CSD-CrossMiner a query needs to be generated describing

the key 3D structural features the structure must possess. The default name for the query

in CSD-CrossMiner is a pharmacophore as it is used primarily for the identification of

potential drug candidates. Due to the differences between pharmaceuticals and catalysts

and to discern between the two, we use the term ‘catalophore’ to describe the search query.

An overview of the process to generate a catalophore is shown in Figure 2.9.
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Figure 2.9: General workflow for the generation of a catalophore from a transition state
reference structure.

In order the generate the catalophore search query a reference structure should be used

to provide a basis for placing catalophore points. Example reference structures include an

active catalytic state or transition state. Figure 2.10 shows an example reference struc-

ture for the oxidative addition transition state for the Ullmann-Goldberg reaction with a

phenanthroline-based ligand.

Figure 2.10: Example transition state reference structure.

To define the coordinating atoms of a ligand the catsd_* features, included in the feature

database, should be used. The catalophore meshed base sphere should be placed on the

coordinating atom in the reference structure and the solid virtual sphere should be placed
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on top of the metal centre. This determines the directionality of the coordinating atom,

ensuring that it is in the correct conformation to enable binding to the metal. The tolerance

on the spheres can be adjusted to change the strictness of the search. A smaller tolerance

(Å) on the sphere enforces a smaller deviation between catalophore and hit and therefore,

a stricter coordination geometry. An example coordination environment in a catalophore

is shown in Figure 2.11 for a bidentate ligand using two catsd_coord_atom_general

features projecting onto a copper centre.

Figure 2.11: Catalophore with only coordinating atom features.

Additional structural features for the ligand can be added using CSD-CrossMiner’s standard

features such as heavy atoms, hydrogen bonds and planar/non-planar ring systems. In

Figure 2.12 a two-atom bridge has been defined using heavy_atom features (orange) to

create a 5-membered coordination ring. Three ring_planar_projected features are used

to identify similar structures in the CSD with a phenanthroline ring system motif. Features

should be connected intramolecularly to avoid hit structures where the coordinating atoms

or other features are present in two different components.
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Figure 2.12: Catalophore with coordinating atom and ligand features.

When identifying potential ligands, ideally, the ligands should not occupy the positions

taken by the substrates due to high steric crowding, to allow enough space around the

metal centre for the substrates to bind. To define the substrate sites excluded volumes

are used. Excluded volumes should be placed on the substrates in such a manner that

defines an area of space that the ligand should not occupy. Excluded volumes are soft

tolerances and therefore, the van der Waals radii of an atom may enter the volume occupied

by an excluded volume feature. This can be prevented by increasing the tolerance on

the excluded volume features. Figure 2.13 shows an example catalophore with excluded

volumes added on all substrate atoms, with a tolerance of the van der Waals radii of the

base atom.
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Figure 2.13: Catalophore with ligand features and substrate excluded volumes.

Excluded volume features should have a tolerance of the van der Waals radii of the base

atom (e.g. 1.55Å for N) or greater. SMARTS strings can also be used to exclude specific

functional groups from the substrate sites in niche cases, instead of all atoms.

Figure 2.14: Variables used when defining an excluded volume in CSD-CrossMiner.

A complete catalophore can then be used to search the CSD for structures matching the

search query. Figure 2.15 shows an example hitlist from the above catalophore. 2120 hits

were identified from within the CSD with the same structural motif. Example hits show

several results with the same phenanthroline ring system motif, along with a two-atom

bridge and two coordinating atoms in the correct orientation to allow binding to a metal

centre.
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Figure 2.15: Example hitlist from CSD-CrossMiner.

When looking at the structures in 3D space, the majority of structures possess the phenan-

throline ring system motif (Figure 2.16a) with varying R groups branching off of the ring

system. Using the space fill view (Figure 2.16b), to view the space occupied by the lig-

ands around the metal, we can see that no ligands are protruding into or occupying the

substrates sites. Hits can be exported as a .csv file or as 3D structures and visualised in

external software or in Mercury for additional analysis.
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(a) Wireframe (b) Space fill - coloured by hit cluster

Figure 2.16: CrossMiner hits overlaid on the reference structure. Left: Wireframe showing
the structural similarity between reference and hits. Right: Spacefill showing the open
substrate sites, ligands are coloured by hit cluster.

While the CSD-CrossMiner interface is a useful tool for creating and visualising the search

results, the data that can be exported using CSD-CrossMiner’s default interface is insuffi-

cient for use in building structures for pathway exploration or property prediction as extra

information is required. In order to perform the search and retrieve the extra information

regarding coordinating atoms the CSD-PythonAPI is used.

2.2.3.2 Searching the CSD via the Python API

Once a catalophore has been generated using the CrossMiner GUI it can be used to search

the CSD via CatSD to identify potential ligands. Searching must be conducted via the CSD-

Python API due to the requirement to extract additional information about the coordinating

atoms which is unavailable via the GUI.93 CSD-CrossMiner only return the structure of the

hit. Solvents, salts and any other structures in the crystal structure are not returned and

therefore minimal treatment is necessary. An example script is provided in the supplemen-

tary information available on GitHub (Appendix 2.A). Note: A CSD-Discovery license is

required to use both CSD-CrossMiner and the following search script.

2.2.3.2.1 Search Settings

The script supports the following arguments to adjust the search procedure:
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-n, --name

The name of the search, which is applied as a prefix to all output files. Value=str.

-d, --database

The feature database to search. The CatSD feature database should be used. The value

should be a file path to the location of the feature database, e.g. ‘./CatSD.feat’ if the feature

database is in the same folder as the search script. If no feature database is supplied the

script will default to using the standard CSD-CrossMiner feature database.

-c, --catalophore

The catalophore file, e.g. ‘example_catalophore.cm’. Values include the text string of the

name of the catalophore file or the file path of the catalophore file.

-m, --max-hit-structures

The maximum number of results to return from a search. Default=50000. Value=int.

-r, --rmsd

The maximum value of the rmsd between the catalophore and the hit structures. De-

fault=1. Value=float.

-w, --max-molecular-weight

The maximum molecular weight of the hit structures. Default=500. Value=int.

-t, --threads

The number of CPU threads to use for the search. Default=4. Value=int. An example

input is shown below:

python cm_search.py -n "example_search" -c "example_catalophore.cm"

-d "./CatSD.feat" -t 8 -m 10000

This will search the CatSD feature database using the ‘example_catalophore’ catalophore

with a maximum number of 10,000 hit structures using 8 threads and providing output

files with the prefix ‘example_search’. Further search refinement can be used to alter the

search procedure by modification of the python script. The following settings are used by

default:
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searcher.settings.max_hits_per_structure = 1

searcher.settings.three_cubed_packing = True

searcher.settings.complete_small_molecules = True

By default, the script only returns a maximum of one hit per structure. This is to reduce the

number of duplicate structures returned by the search. For some use cases, such as compar-

ing coordinating sites within the same ligand, this may not be desirable and should be either

increased or removed. Three cubed packing (3x3x3 packing) is enabled, which restricts

the search to 26 unit cells around the central unit cell. This allows for symmetry-related

copies of the feature points to be considered for a small molecule crystal structure that

matches. Complete small molecules is also enabled, this ensures that the entire molecule

is returned and not just the section that is within the catalophore bounding sphere. In

most cases, this should be kept enabled so that all the structures returned are complete

and can be used directly for structure building. Additional search settings can be found in

the CSD-PythonAPI documentation.93

2.2.3.2.2 Annotation Filters

Hit structures can be filtered based on the annotations present in the feature database in

two ways. First, the annotation can be defined in the catalophore file (see Section 2.2.3.1).

Second, the annotation filter can be applied within the search script. Annotation filtering

is a textual filtering rule that must be defined within the search query, using values that are

present within the feature database. An annotation filter consists of a ‘key’ and a ‘value’,

where the key corresponds to the annotation name and the value corresponds to the value

for each structure for that annotation. A mismatch between the annotation filter value and

the value for a specific entry will result in the hit not being returned. Below is an example

of how to apply an annotation filter within the script.

model.add_feature(Pharmacophore.AnnotationFilter("is_organic", "True"))

This will filter the hits from the search to ensure that all the structures match the

is_organic=True annotation. This will return only organic structures from within the

database. Custom annotations can be used with custom databases to enable personalised

filtering of hits.
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2.2.3.2.3 Structure Filters

Hits can also be filtered based on chemical structure. Structural filtering is useful in cases

where the presence of a certain element in a ligand could potentially lead to prominent

side reactions. For example in the Buchwald-Hartwig cross-coupling reaction, the aryl

halide coupling partner contains an I, Br or Cl atom, which is involved in the oxidative

addition step.94,95 If any I, Br or Cl atoms are present in any returned ligands this could

lead to significant side reactions between the nucleophilic coupling partner and the ligand

or oxidative addition of the ligand onto the Pd centre. Therefore, the exclusion of these

structures is highly recommended.

A considerable of structures present in the CSD contain Group 1 and Group 2 metal ions

within their crystal structures. This is due either to the conditions used to create the crys-

tal or that they have been included intentionally. Such structures are not suitable to be

used as ligands without the time-consuming treatment of the 3D structures. Unwanted

elements need to be removed and indexes of atoms adjusted to account for the removal

of these atoms. If the structure contains more than one ligand (e.g. [NaL3]
+, where L is a

bidentate ligand) the additional ligands also need to be identified and removed from the

structure as well as any unwanted ligands such as solvents (e.g. [NaL3(H2O)3]
+, where L

is a monodentate ligand). Elements which the user wishes to exclude from the search hits

can be defined in the following line. Elements must be defined using their atomic symbol.

not_elements = ["Br", "Cl", "I", "Li", "Na", "K", "Ca", "Mg", "Be"]

It is also useful to be able to set a limit for the molecular weight of returned hit struc-

tures. For example, many entries in the CSD contain motifs such as boron cages, poly-

meric structures or metal-organic frameworks. Such entries are not useful as ligands in

organometallic catalysis and must therefore be filtered out from the search results. The

easiest way to achieve this is by setting a maximum molecular weight. Commonly used

large phosphorous-based ligands such as XPhos, XantPhos and BINAP have a molecular

weight of 476 Da, 578 Da and 622 Da respectively. Higher molecular weight structures

are often harder to synthesise, are bulkier and may have issues with solubility. Structures

exceeding approx. 700 Da are likely to be too large to be used as a ligand therefore, we can

set a maximum limit to filter out these structures. The value of the molecular weight limit

will be dependent on the type of ligand being searched for, e.g. smaller organic ligands for
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base metals or bulky phosphorous ligands for precious metals. Therefore, the molecular

weight limit can be applied/adjusted using the -w keyword when running the search.

2.2.3.2.4 Identification of Coordinating Atoms

In order for the 3D structures from the CSD to be used for the generation of organometallic

complexes, the atom indexes for the coordinating atoms of each hit structure need to be

extracted and saved to a file for easy access. As the coordinating atoms in each ligand are

already defined in the catalophore, the location of the features can be used to locate the

coordinating atoms and extract their indexes. Each feature in CatSD contains the ‘catsd_-

’ prefix which can be used to identify the correct features with the CSD-PythonAPI and

extract the XYZ coordinates of each feature point in a hit. These coordinates are unique

for each hit and can then be compared with the XYZ coordinates of the hit structure to

locate the base atom that the feature point matched and extract the atom index.

Due to differences in decimal place value due to differences in XYZ coordinates between the

CSD entry and the CSD-CrossMiner hit and because of how computers perform and store

floating point numbers, directly matching the value of the coordinates between the feature

point and the base atom is not possible without treatment of the values. For example an

error of 0.0001 in an x value of 1.9995 rounds up to 2.000 whereas the value it is compared

to 1.9994 rounds to 1.999 and does not match. These errors can propagate forward making

matching identical values difficult. Therefore, all coordinates, both from the 3D structure

and the feature points, are rounded down to one decimal place and compared with a

tolerance of 0.1. If all three coordinates, x, y and z are within the tolerance the atom is

matched and the atom index extracted.

For linear_nb features the matched atom is hydrogen. In this case, as the hydrogen atom

is deprotonated upon coordination to the metal centre, the atom index of the atom it is

bonded to is required instead. The bonds that the hydrogen forms are retrieved from the

.mol CSD entry and the atom index of the bonded atom extracted instead.

2.2.3.2.5 Duplicate Removal and Structure Treatment

In the CSD there can be several entries per chemical structure, including different entries

and different salts. While different entries are easy to differentiate because they possess
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the same CSD identifier with a different number as a suffix (e.g. ZZZLWW01, ZZZLWW02,

ZZZLWW03), different salts possess completely different CSD identifiers. Therefore, the

comparison of CSD identifiers is insufficient to remove duplicates.

To remove duplicate structures SMILES matching is used to identify identical structures.

As CSD-CrossMiner returns a hit object for the component of the entry matched in the

search, not the full CSD entry, this means that the salts are not included in the hit SMILES

string. Therefore, matching via SMILES string is a straightforward easily accessible way to

locate and remove duplicate structures. If the structure of a new hit matches one that has

already been processed it is discarded.

Before the .mol 3D structure files are saved for each hit, the structures are cleaned up to

ensure they are in the correct format and all hydrogens are present for analysis or genera-

tion of complexes. All unknown bond types are assigned, all missing hydrogens are added

and formal charges are set to aid the calculation of complex charges later.

2.2.3.2.6 Search Output

The results of a search are saved in the ‘name.csv’ file. This file contains all of the hit

structures, as their CSD Identifiers and important information in the following format.

CSD_Identifier, Index, Chemical Name, Structure File, Coord Atoms,

Freq, rmsd

Index is a unique suffix for each CSD Identifier which is required when duplicates are not

removed, to distinguish between different crystal structures or coordination modes within

the same hit. Chemical Name is the chemical name of the hit structure. Structure

File is the name of the .mol file that is saved from the search. Coord Atoms are the

coordinating atom indexes identified from the search and is used to generate molSimplify

input files. Freq is the frequency for the ligand to be used in the molSimplify input files.

For example, if you are searching for ligands for a trigonal planar complex with one fixed

ligand, a bidentate search will have a frequency of 1 and a monodentate search will have a

frequency of 2 to fill the remaining two coordination sites. rmsd is the root mean squared

deviation between the hit structure and the catalophore.

All hit structures are saved locally in the 3D .mol format. The .mol format is used as it is a
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common file format for most computational chemistry programs and can be used with the

molSimplify python package for building organometallic complexes for exploration and

prediction.96 A .csv file containing all of the SMILES strings for each hit is also saved for hit

analysis or can also be used as an input for molSimplify, although this is not recommended

due to frequent errors converting SMILES to 3D, often giving incorrect or unusable com-

plexes.

The script also produces a molSimplify .dict file containing all of the relevant data required

to use the 3D structures to generate organometallic complexes using molSimplify. The file

contains the following information in the format:

CSD_Identifier, 3D structure file name, CSD_Identifier_1,

coordinating atom indexes, "build custom custom", "BA", formal charge

Values in quotes are fixed string values. CSD_Identifier is the CSD Identifier. 3

D structure file name is the name of the ligand .mol file saved from the search.

CSD_Identifier_1 is a unique name for each ligand and cannot be the same as

CSD_Identifier. The same suffix is used as in the .csv Index. By default _1 is used as a

suffix if there are no duplicate structures. If duplicate removal is turned off the suffix _X,

where X is an integer, is used for structures with the same CSD Identifier. coordinating

atom indexes are the atom indexes of the coordinating atoms extracted from the CSD-

CrossMiner search and are used to form the bonds between the ligand and the metal centre.

"build custom custom" tells molSimplify that the ligand is used to build a custom com-

plex. "BA" is the type of force field optimization to use by default when using the ligand

to build a complex. formal charge is the charge of the ligand and is used to calculate

the total charge of the output complex. For more information on how to use these files to

generate structures using molSimplify see Section 3.2.5.1.

63



2.3. Conclusions Chapter 2: CatSD

2.3 Conclusions

In conclusion, a structure-based design methodology was developed using CSD-CrossMiner

and the CSD-PythonAPI to enable the searching of the Cambridge Structural Database

to identify potential ligands for organometallic catalysis. A feature database, CatSD was

developed, based on the CSD, containing structural features related to catalysis. CatSD

enables the identification of key structural features required for catalysis, such as coordi-

nating atom geometries, specific functional groups and other molecular motifs such as ring

systems or hydrogen bonds. The ability to define the location of substrates to prevent steric

clashes with the ligand(s) is also outlined.

The application of CatSD for searching the CSD, via the generation of a catalophore search

query, using the CSD-PythonAPI was outlined using a simple example. The search script

as well as its functionality was outlined to enable users to modify and use it for their own

applications.

The limitations of the approach were also outlined, including being limited to organic struc-

tures and the inability to use the CSD-CrossMiner interface to conduct searches due to the

requirement for additional information. The ability to generate organometallic structures

from the identified 3D structures was also introduced and is explored further in Chapter

3 and Chapter 4.

2.A Appendix

All python scripts used in this chapter as well as example catalophores and the CatSD

feature definitions are available at https://github.com/MarcS18/Thesis_ESI.
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Chapter 3: High Throughput

Computational Workflow for

Organometallic Ligand Screening

3.1 Introduction

There has long been an interest in developing low-cost computational methods to model

transition-metal complexes. Computational chemistry aims to determine the electronic

structure of a chemical system in order to model reactivity or predict molecular properties.

The output of which can be used in cheminformatics models. The challenge of modelling

transition-metal complex is their diverse range of bonding, spin states and oxidation states.

This section describes both the developments and applications of a wide range of commonly

available computational modelling methods, of ranging cost and accuracy, in transition-

metal chemistry and their applicability in high-throughput computational screening.

3.1.1 Electronic Structure Methods

3.1.1.1 Force Fields

Affordable but reasonably accurate tools for structure generation and property prediction

are useful for efficient or high-throughput computational workflows. Force fields, while

popular in biochemistry and the modelling of proteins, have decreased in popularity in

recent years in transition metal chemistry. The majority of force fields were developed with

main group or protein chemistry in mind. However, several force fields were developed

for transition metal chemistry.97–99 The best performance is usually achieved by focusing

on a subset of properties such as structure, spectra or materials.23
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The most widely used force field for transition metals is the universal force field (UFF).98

The universal force field uses a set of rules based on the mixing of elements and on Badger’s

rules for relating bond length and bond strength, enabling the generation of parameters

for a large number of elements. Average errors for transition metal complexes using UFF

are around 0.05 Å to 0.10 Å.100,101 As a single oxidation state and spin state is used in

parameter generation for each metal, caution should be used when applying UFF to alter-

native oxidation and spin states, especially in open-shell transition metal complexes.98,101

For ligands that involve backbonding, metal-ligand bond orders must be adjusted to avoid

under or overestimating bond lengths.100

3.1.1.2 Transition State Force Fields

Force fields are generally parameterised for metals in their equilibrium structures and

therefore poor at describing transition states. Transition states are crucial for the design of

transition metal catalysts and therefore to model reaction mechanisms using a force field,

an alternative approach is required. The transition state force field (TSFF) approach was

developed by Houk and co-workers and popularised by Norrby and co-workers as ‘quan-

tum to molecular mechanics’ (Q2MM).102,103 The TSFF approach uses a force field that

has been fit on the hessian of a known transition state from quantum mechanical data (i.e.

DFT). The negative eigenvalue of the hessian is inverted so that the minimisation algorithm

optimises the structure to a transition state.

The TSFF approach can be applied to screen a large number of ligands. However, the

main limitation is the difficulty in accurately parameterising the force field and modelling

the change in steric contributions along the reaction coordinate. Q2MM has been shown

to be effective in identifying small energy differences between ligands required to predict

enantiomeric excess as well as identifying errors in experimental values.104,105

3.1.1.3 Semi-Empirical Methods

Semi-empirical quantum mechanical (SQM) methods are designed to bridge the gap be-

tween fast force field (FF) molecular mechanics methods and ab initio quantum mechanical

methods (QM). SQM methods combine quantum mechanics and parameters derived from

experimental data. Semi-empirical methods are faster by more than two orders of magni-

66



Chapter 3: Computational Workflow 3.1. Introduction

tude than full quantum mechanical methods and are therefore useful for initial geometry

guesses and large datasets where high accuracy is not required.106 The main disadvantage

of SQM methods is that it only works for molecules within the parameter space. OM2 is

used extensively for the study of excited states.107,108 For the computation of ground state

structures and energies, PM6 is favoured as it covers a large proportion of the periodic

table (70 elements).109,110 The accuracy of PM7 compared to DFT for the reproduction

of conformational energies of transition metal complexes was recently assessed.111 PM7

was shown to give large potential energy surface discrepancies from DFT, related to dis-

tortion of the coordination centre geometry and the false coordination of some atoms to

the metal centre. Application of PM6/PM7 methods to transition metal complexes should

be carefully examined for each system, especially where the system of interest has lim-

ited parameters in the method’s training set such as reaction intermediates and transition

states.

3.1.1.4 Tight Binding Methods

Density functional tight binding (DFTB) methods have emerged over the last 20 years.

DFTB uses the Kohn-Sham DFT energy and expands it based on the density fluctuation,

δρ, relative to the superposition of atomic reference densities. DFTB uses element pair-

specific parameterisation, which is difficult to parameterise. Currently parameterized ele-

ment pairs are only applicable to simple organic molecules and materials making the un-

suitable for use on transition metal complexes. To expand the applicability of tight binding

methods to a wider range of molecular systems, Grimme developed an Extended Tight

Binding method (xTB) for the computation of molecular geometries, vibrational frequen-

cies and non-covalent interaction energies.112 The methods termed GFNn-xTB (n=0,1,2)

use global and element-specific parameters for elements H-Ra.

The most recent variation of the xTB method GFN2-xTB expands on the prior GFN0-xTB

and GFN1-xTB methods as well as DFTB in several key areas:113

• GFN2-xTB uses a minimal valence basis set of atom-centred, contracted Gaussian

functions as in DFT. Polarization functions are applied to main group elements to

describe hypervalent structures and hydrogen is only assigned a single 1s function.

• The energy function closely resembles the DFTB3 method but expands upon it with
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the inclusion of electrostatic and exchange-correlation interactions up to the second

order. This allows the treatment of hydrogen and halogen bonds with electrostatics

rather than force field corrections.

• GFN2-xTB includes the D4 dispersion correction method to account for dispersion

interactions.

• No element-pair-specific parameters are used, so atoms are treated separately.

• GFN2-xTB focuses on geometries over bond energies when fitting, and therefore,

contains a systematic error for covalent bond energies. The application of a correc-

tion factor leads to more accurate properties compared to similar SQM methods.

Grimme and co-workers recently accessed the accuracy of the GFN2-xTB method for the op-

timization of 145 closed shell transition metal complexes for metals up to Hg.114 Optimised

structures were compared with high-quality hybrid DFT (TPSSh-D3(BJ)-ATM/def2-TZVPP)

gas phase structures or X-ray structures. GFN2-xTB was able to reproduce metal-ligand

bond length and bond angles with good accuracy with a mean absolute error (MAE) of 8.3

pm and 3.9° respectively. The universal applicability, speed and relative accuracy make the

GFN2-xTB method a useful tool for the study of large organometallic complexes. Recently

GFN2-xTB was applied to the automatic identification of transition states in 100 organic re-

actions, successfully identifying 89 out of 100 transition states.115 The mean average errors

for the reaction energy barrier were 14.9-19.2 kcal mol−1 compared to DFT (UB3LYP/6-

31G**). Errors reduced to 5.3 kcalmol−1 for reactions with a DFT energy barrier <30

kcalmol−1.115

3.1.1.5 Composite Methods

Composite methods have been developed by Grimme to bridge to gap between semiem-

pirical methods and DFT for calculating properties of large molecular systems, such as

supramolecular and biomolecular complexes.116 The original HF-3c method is designed to

correct for systematic deficiencies in small basis set HF calculations by correcting for basis

set superposition error with the geometric counterpoise scheme (gCP), correcting for dis-

persion using Grimme’s D3 approach and a correction for short-range basis incompleteness.

As no integrals are skipped, the HF-3c method is more costly than traditional semiempir-

ical methods, but the results are much more robust. Grimme then introduced PBEh-3c,
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based on the Perdew-Burke-Ernzerhof (PBE) functional with (42%) HF exchange along

with a double-ζ basis set, for the optimization of geometries and for the interaction ener-

gies of non-covalent complexes.117 Compared to HF-3c, PBEh-3c is more computationally

demanding however, yields much better geometries.

Figure 3.1: Image of the 3c composite methods according to their basis set size and amount
of Fock exchange.118

The B97-3c method is used for the calculation of accurate thermochemistry, structures,

non-covalent interactions and transition metal chemistry.118 B97-3c is based upon the

B97 GGA functional and includes the same three corrections, D3 three-body dispersion,

short-range bond length correction and minor modifications to the functional along with

a stripped down triple-ζ basis set, def2-mTZVP. The def2-mTZVP basis set is based on

Ahlrichs def2-TZVP basis set and includes several modifications, reduced polarisation on

hydrogen to decrease computational time and additional polarization functions on oxygen

for a better description of strong hydrogen bonds.118,119 The use of a GGA over hybrid

DFT (which contains HF exchange) improves the treatment of electronically complicated

systems such as open-shell species and transition metal complexes. The computational

time for B97-3c is between HF-3c and PBEh-3c, and two to three times faster than BP86-

D3/def2-TZVP (a GGA functional with the standard def2-TZVP basis set).118 B97-3c has

been shown to outperform the traditional B97-D3 GGA functional for geometries, with

RMSD of 0.71 pm and 1.16 pm respectively, making it an attractive method for screening

large numbers of transition metal complexes.118
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The most recent addition to the set of composite methods is r2SCAN-3c.120 r2SCAN-3c uses

the r2SCAN functional combined with a tailor-made triple-ζ basis set as well as D4 disper-

sion correction and geometrical counter-poise correction for London-dispersion and basis

set superposition error. r2SCAN-3c improves upon B97-3c for the prediction of main-group

thermochemistry on the GMTKN55 database, at twice the cost.120 For the reproduction of

geometries however, r2SCAN-3c performs similarly to B97-3c. For reaction and conforma-

tional energies as well as non-covalent interactions it outperforms hybrid-DFT/quadruple-ζ

approaches at two to three orders of magnitude lower cost.120

3.1.1.6 Density Functional Theory (DFT)

Density functional theory is one of the most popular computational methods for predict-

ing the properties of chemical systems due to its phenomenal accuracy-to-cost ratio.121,122

Density functional theory is based on the premise that the energy of a molecule in its

ground state, E0, can be determined from the electron density, ρ. The ground state energy

and molecular properties can be calculated from the ground state electron density, without

using the wave function of the system (Equation 3.1).

E0 = E0[ρ0] (3.1)

DFT calculations are often very accurate and offer significantly lower costs than post-HF

methods such as Moller-Plesset and coupled cluster. DFT scales to N x (2 < x < 3), where

N is the number of atoms, the number of degrees of freedom in the molecule, and how

close the starting structure is to the minimum.123 Achieving a structure representing a true

global minimum is often a time-consuming process as molecules can become trapped in

a local minimum on the potential energy surface. Initial conformer screening commonly

uses molecular mechanics due to its speed to overcome this.

The accuracy of DFT is dependent on both the functional and basis set used. Determi-

nation of a suitable functional often requires benchmarking on a relevant structure set to

reproduce the property of interest. BP86 and TPSS/TPSSh functionals show excellent per-

formance for first-row transition metal geometries while PBE0 is recommended for second

and third-row transition metals.124–126 Single-point calculations with hybrid functionals
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(such as TPSSh, B3LYP or PBE0) can give more reliable energies or molecular proper-

ties of transition metal compounds compared to GGA-based functionals.127 Performance

is very system-dependent and DFT functionals often fail to describe the static correlation

present in open-shell transition metal compounds.128 The covalency of metal-ligand bonds

is strongly affected by the amount of Hartree-Fock exchange in the functional. GGA func-

tionals may overestimate the covalency of bonds while hybrid functionals with high HF

exchange, approximately 30% or higher, will give too ionic bonds.

The degree of complexity and therefore precision of a basis set is defined as the number

of contracted gaussian-type orbitals used to represent each atomic orbital. To increase

precision two or more functions can be used to describe each orbital, commonly referred

to as double- or n-zeta basis sets.

Additional functions can be added to basis sets to describe polarisation and diffuse effects.

Polarisation functions describe the asymmetric deformation of the electron cloud between

atoms induced by bonding. To accommodate this, functions of higher angular momentum

are included to allow for orbital combination. Diffuse functions more accurately represent

the part of the atomic orbital furthest from the nuclei. These functions are required when

describing anions and large, ‘soft’ molecular systems such as second and third-row tran-

sition metals. To describe transition metal systems it is recommended to use a triple-zeta

basis set with polarisation functions to better describe the bonding environment, due to

multiple oxidation states and complex bonding between the metal and ligands.

Transition metals possess a large core electron count and therefore, require a large number

of basis functions to describe them. To reduce the number of basis functions used, those

functions can be replaced by an Effective Core Potential (ECP). The ECP models the effect

of the nucleus and core electrons as an average. ECPs greatly reduce the computational

cost, and for atoms with Z>Kr relativistic effects can be included.

Standard DFT functionals fail to account for London dispersion. To account for this Grimme

developed the D2, D3 and D4 dispersion correction methods. DFT-D3 is an atom-pairwise

dispersion correction which is added to the DFT energy and gradient.

EDF T−D3 = EKS−DF T + Edisp (3.2)
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DFT-D3 produces accurate results with DFT with little to no additional computational

cost.129,130

3.1.1.7 Post-HF Methods

As computing power increases and the development of reduced scaling algorithms pro-

gresses, the use of correlated wave function methods will become more and more viable.9

While single reference wave function methods such as coupled cluster display high scaling

(i.e. >O(N5)), they are able to achieve a chemical accuracy within 1 kcalmol−1 of experi-

ment in organic chemistry.23 While single reference wave function methods are promising

they remain non-viable for high-throughput screening due to their high cost, both in com-

putational power and time. These methods however are an effective benchmarking tool

for the initial exploration of a small number of structures to access the magnitude of errors

present in the lower-level methods used in high-throughput screening.

3.1.2 Computational Modelling of First Row Transition Metals

Computational investigations into reaction pathways are more complicated for paramag-

netic species because the accuracy of DFT on high-multiplicity species (S>0) is dependent

on the functional used.131 Additionally, first-row transition metals often have multiple spin-

states of similar energies. Since the relative energies of spin states are geometry depen-

dant, a change in geometry during a reaction can lead to the crossing of the potential

energy surfaces. Therefore, multiple energy surfaces have to be considered when studying

the reaction pathways of these systems. One advantage, however, is that the complex can

switch spin states to avoid high energy barriers (spin acceleration).132,133
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Figure 3.2: Minimum Energy Crossing Point between a singlet and triplet state.

On a three-dimensional surface such as the potential energy surface, there are multi-

ple crossing points between spin states across the surface, the lowest of which are the

minimum-energy crossing points (MECPs). If the MECP lies below both transition states

there is no additional hindrance from a change in the spin state because the selection rule

against spin flipping is relaxed due to strong spin-orbit coupling.132,133 If the MECP lies

above the transition state of the excited-state potential energy surface then the change in

the spin state creates an additional barrier. There are currently few very examples of spin

changes in transition metal catalysed reactions.134–136

3.2 Results & Discussion

3.2.1 Benchmarking of Computational Methods

The optimisation of transition metal complexes with DFT is often less accurate than for

organic compounds due to relativistic and static correlation effects.137,138 Most transition

metal complexes used in catalysis contain large organic ligands. The relative arrangement

of these ligands is determined by dispersion forces which are not accounted for in standard

DFT.139 Ensuring accurate molecular geometries is crucial for the calculation of reliable

molecular properties and removing undetected errors. Benchmarking both the functional

and basis set used is an important step in ensuring an accurate representation of the chem-

ical system of interest and developing an accurate/cost-efficient method for the desired
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application.140–142

Assessing a large dataset containing both small and large ligands, where dispersion forces

influence geometries, requires a method that can account for all effects. Most GGA func-

tionals do not include dispersion correction, leading to significant errors in molecular ge-

ometries. Using functionals which are parameterized with dispersion interaction included,

such as the Minnesota functionals (M06*), range-separated functionals or using Grimme’s

D3 dispersion correction is recommended.129,143,144 It should be noted that the Minnesota

functionals do not display the formally correct R−6 behaviour so the use of D3 dispersion

correction is recommended.145

3.2.1.1 Functional Benchmark

Currently, the only method to benchmark transition metal complexes with real structures

is against X-ray diffraction data. There are a few things to consider when comparing DFT-

optimised structures and X-ray diffraction data. First, as atomic charge, Z, increases the

x-ray scattering ability of the atom increases. It is, therefore, difficult to determine the

position of light elements (small Z) in the presence of heavy elements (large Z), especially

hydrogen. Secondly, geometric parameters of transition metal centres are modified by the

influence of surrounding molecules compared to the gas phase and uncertainty is depen-

dent on molecular flexibility. Typical uncertainties for transition metal structures range

from 0.01-0.02 Å for metal-ligand bond lengths and 1-2° for ligand-metal-ligand bond an-

gles, compared with <0.01 Å for organic molecules.146 These uncertainties, however, are

relatively small compared to the known overestimation of bond lengths by DFT methods.147

Thirdly, crystal packing effects and vibrational frequencies, i.e. the difference between the

DFT-minimum and the vibrationally averaged x-ray structure at the temperature of the ex-

periment, is assumed to be small and negligible. The assumption can be justified by the

fact that the basis set is fitted to match experimental data and therefore, reduces statistical

error. Care should be used when describing bonds that are not well parameterised by the

basis set such as metal-carbene and metal-allyl bonds. Finally, although x-ray structures

are meaningful and suitable for distinguishing between suitable functionals, they are less

accurate than validation against gas phase experiments such as gas electron diffraction

(GED).124
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The X-ray structures used in the benchmark were manually retrieved from the Cambridge

Structural Database. Structures were chosen which met the criteria of the catalyst active

state in the Ullmann-Goldberg reaction (see Section 4.1.2.2):

• a three-coordinate copper(I) centre

• a deprotonated N nucleophile

• two monodentate or one bidentate ligand(s) with N, O, S or P donor atom(s)

All retrieved structures contain bulky ligands and bulky electron-withdrawing nucleophiles

(Figure 3.3), this can be assumed to be due to the low stability of the intermediate structure

in the solid phase when non-bulky substituents are used. Only eleven structures meet these

criteria in the CSD, one of which contains boron and therefore, is excluded due to problems

with SCF convergence in DFT calculations.

Figure 3.3: Chemical structures of the 10 available crystal structures best representing the
trigonal planar active catalytic state.
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Table 3.1: Copper(I) complexes used for benchmarking, their ligand types and X-ray struc-
ture accuracies.

CSD Refcode Ligand Type Denticity R factor (%) Average σ(C-C) (Å)

AKEFOL PP Bidentate 6.70 0.011-0.030

JOHHOE NN Bidentate 5.09 0.006-0.010

JOHJAS PP Bidentate 4.24 0.001-0.005

LACNAH P, P Monodentate 6.59 0.006-0.010

NEJROL P, P Monodentate 4.78 0.001-0.005

WURJEZ P, P Monodentate 4.03 0.001-0.005

WURJID P, P Monodentate 3.11 0.001-0.005

WURJOJ P, P Monodentate 4.25 0.001-0.005

WURJUP P, P Monodentate 3.11 0.001-0.005

XOZPAG P, P Monodentate 4.61 0.001-0.005

The ten structures used for benchmarking (Table 3.1) all contain phosphorus ligands, ex-

cept one (JOHHOE). All structures have high C C bond accuracy of 0.001-0.010 Å except

AKEFOL which is higher at 0.011-0.030 Å, which is acceptable for the use of benchmark-

ing structures as average bond length errors are expected to be in the several picometer

range. Crystallographic R-factors, the discrepancy between the structure and the observed

X-ray data, all lie below 7.5% so structures can be assumed to be of sufficiently high quality

to represent the structure of the active catalytic state for comparison with DFT optimised

geometries.

GGA, meta-GGA, hybrid and meta-hybrid functionals were chosen based on those used

commonly in the literature such as B3LYP, M06, M06L and PBE0 and those that are recom-

mended from benchmark studies, TPSS, TPSSh, BP86, wB97X-D and MPWLYP1M.85,124,148

D3 dispersion was used for functionals for which parameters are available, using Becke-

Johnson damping for all but M06, M06-L and wB97xD.149 Calculations were also run with-

out D3 dispersion correction to compare the effect of dispersion correction on the repro-

duction of complex geometries. All calculations were performed using the def2-TZVP basis

set, to ensure at least triple-ζ quality on all atoms and to minimise errors due to basis set

incompleteness, while still being computationally viable on large metal-containing struc-

tures. The ultrafine integration grid (99 radial shells with 590 angular points) was used
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to remove grid differences, as the Minnesota functionals have been shown to require the

ultrafine grid for sufficient accuracy.150

Computational methods were compared in the reproduction of the coordination environ-

ment, using the mean absolute error (MAE) (Equation 3.3) in the Cu Nu and Cu L bond

distances and L Cu L and L Cu Nu bond angles between the DFT optimised structures

and X-ray structure as well as computational time for the entire benchmark data set:

MAE =
2

N(N − 1)

N−1∑
i=1

N∑
j>1

��Ri j(DFT)− Ri j(X-ray)
�� (3.3)

where N is the number of data points and Ri j is the value of interest, distance or angle,

between atoms i and j. All computational times are reported as total single-core CPU time.

Table 3.2: Assessment of density functionals with the def2-TZVP basis set, in terms of the
mean absolute error in metal-ligand bond length (Cu L / Å), ligand-metal-ligand bond
angle (L Cu L, °) and single core computational time for the benchmark dataset.

MAE

Functional d(Cu L) (Å) a(L Cu L) (°) Computational Time (h)

B3LYP 0.066 4.237 4931

M06 0.034 3.413 7850

M06-L 0.020 4.127 7127

TPSSh 0.032 3.927 5435

MPWLYP1M 0.063 4.310 6508

BP86 0.030 4.157 2143

wB97xD 0.030 4.253 9220

B3LYP-D3(BJ) 0.023 3.693 6179

M06-D3(0) 0.028 3.480 11140

M06-L-D3(0) 0.019 4.320 5271

TPSSh-D3(BJ) 0.016 3.333 6172

TPSS-D3(BJ) 0.017 3.663 3886

PBE0-D3(BJ) 0.018 3.587 5502

BP86-D3(BJ) 0.026 4.560 4036

Without D3 dispersion correction, all methods overestimate bond lengths by several pi-

cometers due to steric crowding at the metal centre caused by DFT’s inability to account for
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London dispersion interactions. Increased steric interactions at the metal cause elongation

of the metal-ligand bond resulting in the overestimation of bond lengths. The GGA/meta-

GGA functionals, BP86 and M06-L, perform better than the hybrid functionals when pre-

dicting bond lengths, and similar metal-ligand bond angles, but BP86 is much more com-

putationally efficient taking less than half the time compared with hybrid functionals and

M06-L. The most commonly used literature functionals B3LYP and M06 overestimate bond

length by a large margin, 0.066 Å and 0.034 Å respectively, with M06 performing better

with respect to bond angles.

Upon the inclusion of D3 dispersion correction to properly account for London dispersion

forces, the meta-GGAs, TPSS-D3(BJ) and M06-L-D3(0) generally predict bond lengths bet-

ter than the GGA and hybrid functionals, only beaten by TPSSh-D3(BJ). However, GGA

and meta-GGAs show worse performance compared to hybrid functionals for predicting

bond angles. The best-performing functional TPSShD3(BJ), a meta-GGA hybrid, shows

the best performance for both bond lengths and bond angles. The inclusion of 10% HF

exchange upon a meta-GGA provides a good balance between bond length and bond an-

gle reproduction while being of similar computational cost to the other, worse-performing

functionals. Functionals with lower computational costs also have lower accuracy. Overall,

TPSShD3(BJ) is a good balance between computational cost and accuracy.

3.2.1.2 Basis Set Benchmark

All basis set calculations were performed with the TPSSh functional with D3 dispersion

with Becke-Johnson damping (D3(BJ)) and an ultrafine integration grid. The most com-

mon literature basis sets, the Pople basis sets and LANL2DZ basis set, were used along with

the def2-SVP and def2-TZVP Ahlrich basis sets. Ahlrich basis sets have defined and well-

tested auxiliary basis sets available for use with the RI-J and RIJCOSX approximations in

ORCA.151 Pople and def2-SVP basis sets were applied to all atoms except Cu, which was

assigned either LANL2DZ or def2-TZVP respectively. Def2-TZVP was also assigned to het-

eroatoms for one method denoted def2-TZVP(Het), with def2-SVP on all other atoms.
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Table 3.3: Assessment of basis set combinations in terms of the mean absolute error in
metal-ligand bond length (Cu L / Å), ligand-metal-ligand bond angle (L Cu L / °) and
single core computational time for the benchmark dataset.

Basis Set MAE

General Cu d(Cu L) (Å) a(L Cu L) (°) Computational Time (h)

6-31G LANL2DZ 0.064 6.123 400

6-31G(d) LANL2DZ 0.065 6.853 670

6-31G(d,p) LANL2DZ 0.064 6.950 692

6-31+G(d,p) LANL2DZ 0.056 5.433 4778

def2-SVP def2-TZVP 0.017 4.253 1414

def2-TZVP(Het) def2-TZVP 0.017 4.183 2570

def2-TZVP def2-TZVP 0.016 3.333 6173

The choice of basis set on the copper has a large effect on Cu-L bond distances. The use of

the double-ζ LANL2DZ basis set with ECP gives MAEs of over 0.06 Å. Use of a double-ζ

basis set for copper is therefore not recommended and a triple-ζ basis set (e.g. def2-TZVP)

should be used. The Pople family of basis sets underperform compared to the Ahlrich

family, with larger MAEs for both bond lengths and bond angles. Of the Pople basis sets

the larger, 6-31+G(d,p), performs the best. All Pople basis sets show similar MAEs for

bond lengths, however, the inclusion of polarisation functions on heavy atoms, gives larger

bond angle errors. Further inclusion of polarisation functions on hydrogen gives slightly

increased errors for bond angles and decreased errors for bond lengths. Inclusion of dif-

fuse functions (6-31+G(d,p)) improves bond lengths and angles by up to 0.01 Å and ∼1°

respectively. However, the overestimated bond lengths are still seen with the LANL2DZ

basis set at 0.056 Å and a computational time of greater than six times that of the other

Pople basis sets.

The Ahlrich double-ζ basis set, def2-SVP shows superior performance compared to the

Pople double-ζ basis sets with a bond angle MAE over the best Pople basis set, 6-31+G(d,p)

of 4.253° and 5.433° respectively, at a third of the computational cost. Bond distances

appear to be primarily dictated by the basis set applied to the metal centre rather than

the basis set applied to the ligands. The triple-ζ def2-TZVP provides an acceptable bond

length accuracy of 0.016 Å. Changing the basis set on atoms except Cu has no effect on
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the Cu L bond distance, with a difference of 0.001 Å. The inclusion of a triple-ζ basis set

on the nucleophile nitrogen atoms also provides no added accuracy, while almost doubling

the computational cost. The best accuracy-cost ratio basis set combination is the def2-

SVP/def2-TZVP providing reasonable accuracy at just over a fifth of the computational

cost of using a full triple-ζ basis set on all atoms. The final DFT method used herein is the

TPSShD3(BJ) functional with the def2-SVP basis set on all atoms except Cu which use the

def2-TZVP basis set.

3.2.2 Method Comparison

DFT benchmark results were compared with semi-empirical (PM6), extended tight bind-

ing and composite methods. PM6 calculations were performed in Gaussian 09, calculating

the force constant on all optimisation steps. Extended tight binding calculations were

performed in xtb 6.3 with the verytight optimization criteria. Composite methods we per-

formed in ORCA 4.2.1 and optimised with the default convergence criteria, integration grid

and slow SCF convergence (SlowConv). For PBEh-3c and B97-3c, the resolution of identity

(RI) approximation was used for the Coulomb (J) integral (RI-J) for a significant decrease

in computational time.152 RI-J introduces a very small error which is usually smaller than

basis set errors and much smaller than electronic structure method errors so can be consid-

ered negligible.153 Zero-point energies using RI-J differ slightly from those without RI-J,

but the error is systematic and cancels for relative energies.154

Table 3.4: Assessment of Extended Tight Binding methods in terms of the mean absolute
error in metal-ligand bond length (Cu L / Å), ligand-metal-ligand bond angle (L Cu L
/ °) and single core computational time for the benchmark dataset.

MAE

Method d(Cu L) (Å) a(L Cu L) (°) Computational Time (mins)

GFN0-xTB 0.149 13.217 53

GFN1-xTB 0.073 4.643 122

GFN2-xTB 0.029 4.657 98

GFN2-xTB is the best performer Of all three GFNn-xTB extended tight binding methods

(Table 3.4). GFN2-xTB gives the best reproduction of bond lengths, MAE=0.029 Å, but

falls behind GFN1-xTB for bond angles, albeit by a small margin of 0.014°. The large dif-
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ference in bond lengths and lower computational time make it the superior extended tight-

binding method. GFN0-xTB shows poor performance in all aspects with a bond length and

angle error of 0.149 Å and 13.217° respectively and should not be used in these systems.

Table 3.5: Assessment of composite 3c methods in terms of the mean absolute error in
metal-ligand bond length (Cu L / Å), ligand-metal-ligand bond angle (L Cu L / °) and
single core computational time for the benchmark dataset.

MAE

Method d(Cu L) (Å) a(L Cu L) (°) Computational Time (h)

HF-3c 0.287 29.023 145

PBEh-3c 0.035 3.247 503

B97-3c 0.013 2.307 84

Results from the composite methods are shown in Table 3.5. HF-3c performs very poorly

with large bond length and angle errors of 0.287 Å and 29.0° respectively. A substantial

improvement is made with PBEh-3c, with a bond length and angle MAE of 0.035 Å and

3.3° respectively. A surprise performer however is the B97-3c method with a reduction in

MAE to 0.013 Å and 2.3° along with a greater than four times decrease in computational

time compared to PBEh-3c.

The best-performing method from each class of computational method was compared to

find the best cost/accuracy method for a high-throughput computational workflow.

Table 3.6: Comparison of the Mean Absolute Error of the metal-ligand bonds distance,
bond angle and computational time for the PM6, GFN2-xTB, B97-3c and TPSShD3(BJ)
computational methods on the benchmark dataset. Computational time is rounded to the
nearest hour.

MAE

Method d(Cu L) (Å) a(L Cu L) (°) Computational Time (h)

PM6 0.066 11.267 7

GFN2-xTB 0.029 4.657 2

B97-3c 0.013 2.307 84

TPSShD3(BJ)/def2-SVP 0.017 4.253 1413

TPSShD3(BJ)/def2-TZVP 0.016 3.333 6172
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Comparison of the best performers for each computational method, PM6 (semi-empirical),

GFN2-xTB (extended tight binding), B97-3c (composite) and TPSShD3(BJ) (DFT), show

some unexpected results. For the fast non-DFT methods, GFN2-xTB outperforms the com-

monly used PM6 with a greater than two times improvement in all measured criteria.

GFN2-xTB however falls behind DFT in terms of accuracy, making it the superior method

for pre-optimization before higher-level DFT calculations. Of the DFT-based methods, sur-

prisingly the B97-3c composite method outperforms the best DFT functional TPSShD3(BJ),

even with a full triple-ζ basis set. B97-3c is slightly better than TPSShD3(BJ) for bond

lengths and shows higher accuracy in bond angles by 1° at only 1.4% of the computational

cost. The use of a triple-ζ basis set along with the carefully balanced corrections included

in B97-3c provides an accurate representation of the Ullmann-Goldberg reaction’s active

catalytic state.

The structures used for benchmarking mostly contain phosphorus-based ligands and one

nitrogen ligand due to the availability of representative crystal structures. As the majority

of ligands used in the Ullmann-Goldberg reaction are N, O or S donor ligands the bench-

mark is not fully representative of the target ligands. However, it is the best/only data

available for benchmarking the active Cu(I) species. Herein, GFN2-xTB and B97-3c were

taken forward as potential candidates for the electronic structure method used for high-

throughput computational screening due to their impressive cost/accuracy ratios.

3.2.3 Literature Ligands: A Development Dataset

In order to develop and test a high-throughput computational workflow a suitable test

dataset of ligands is required. The dataset is used to ensure that both the developed method

is accurate at modelling and identifying correct organometallic intermediate and transition

state complexes, and reliable, to ensure that the failure rate is kept as small as possible.

A reliable process ensures that computational resources are used efficiently and the data

generated is usable. For example, the calculation of activation energy requires at least two

correct structures, the active intermediate and the transition state. A failure in either of

the two structures makes the other unusable. Increasing the complexity of a mechanism

of interest increases the number of points of failure, therefore reliability is of paramount

importance.
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The test dataset should be made of ligand structures, ideally of those used in the literature.

The use of literature ligands ensures that the workflow works for the target reaction, as

intermediate structures and transition states are known to exist, and is applicable to the

classes of ligands used. Extracting these ligands manually from the literature is an ex-

tremely time-consuming task, therefore a data mining approach from chemical databases

was used.

Data mining is a technique for searching large-scale databases using sophisticated data

search capabilities and statistical algorithms to discover patterns and correlations in large

preexisting databases, primarily used as a way to discover new meaning in data. Several

chemical databases currently exist focusing on different aspects of chemical data. Chemical

structure databases such as PubChem and ChemSpider focus on the curation of chemical

structures and properties.155,156 Reaxys and SciFinder focus on chemical reaction informa-

tion and the Occupational Chemical Database focuses on chemical safety.157–159

The Reaxys database contains over 105 million organic, inorganic and organometallic com-

pounds and reaction data from over 42 million different chemical reactions.157 The major-

ity of data is curated from literature and patents making it an ideal environment for data

mining organometallic structures, ligands and reaction data. The raw data contained in

this database, however, is not useful for comparative analysis of reactions unless extracted

and curated into a new, usable format.

3.2.3.1 Dataset Curation

Chemical reaction data was retrieved for all of the available reaction conditions for C N,

C O and C S Ullmann-Goldberg coupling reactions. A series of searches were performed

to retrieve all of the relevant data from Reaxys. Reaction type (name of a reaction) can be

used to search the Reaxys database. The "Ullmann condensation" search term retrieves

approximately 4000 search results, which is much lower than expected, considering it is

a reasonably common reaction. Therefore, it can be assumed that the majority of the Ull-

mann coupling reactions present on Reaxys do not contain the "Ullmann condensation"

reaction tag.
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Scheme 8: Reaxys search term used to extract literature ligands for the Ullmann-Goldberg
reaction.

Scheme 8 shows the general search term used to extract Ullmann-Goldberg reaction data

from Reaxys. The requirement for an Ullmann-Goldberg coupling reaction is a halogen

atom attached to an aryl/heteroaryl group which reacts with either ammonia or a primary

or secondary amine/amide. Copper/Cu is defined as the catalyst, X is Cl, Br or I and Ar

is any aryl or heteroaryl group. The use of the default Reaxys R group term to define R

groups returns over 100,000 hit reactions. However, upon inspection, over half of these

hits are reactions involving copper-palladium dual catalyst systems, Chan-Lam couplings,

click chemistry and reactions where the amine is present in the aryl starting material and

does not undergo a chemical transformation during the reaction. Moreover, there are no

reactions containing primary or cyclic amines/amides.

The final search query uses the Reaxys GH* groups, with GH representing a general (R)

group or hydrogen and * representing either cyclic or acyclic structures, ensuring all pos-

sible amine coupling partners are retrieved. To remove unwanted reaction types, several

exclusion criteria were included. Palladium and Boron atoms were excluded, removing

copper-palladium tandem coupling reactions and Chan-Lam couplings respectively. To ex-

clude intramolecular reactions, unreacted aniline’s and click chemistry reactions, atom

mapping, denoted (n) where n is the index of atom/group, was used to map the location

of the aryl group and nitrogen atom of the amine in the reactants and product. Approxi-

mately 20,000 reactions were retrieved, each of which contained multiple entries.

It should be noted that this term does not capture intramolecular Ullmann-Goldberg reac-

tions. However, the search term covers a wide enough chemical space that any additional

reactions obtained from additional searches are unlikely to contain a considerable number

of unique ligands, and would require a different computational approach to model the in-

tramolecular effects in DFT calculations. The search term was repeated for C O and C S

coupling reaction by replacing the NH GH* with OH and SH respectively to generate a

set of raw reaction data.
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3.2.3.2 Dataset Treatment and Refinement

3.2.3.2.1 Reagent Filtering

The data was exported from Reaxys in Extensible Markup Language (XML) format and the

relevant data was extracted using Python. A common flaw with large chemical databases is

that the data stored in the database frequently contains incorrect chemical names, incorrect

spelling and is not formatted in a consistent manner. There were several issues encountered

with the data structure used within the Reaxys database which had to be resolved.

<xf >
<reactions >

<reaction index ="x">
<RX > General reaction information

<RXD.TXT > Preperation
<RX01 > Reactants

<RX.RXRN > Reactant (s) Ref Code(s)
<RX.RCT > Reactant Name(s)

<RX02 > Products
<RX.PXRN > Product Ref Codes(s)

<RX.PRO > Product Name(s)
<RXD > Reaction conditions

<RXD01 >
<RXD.YPRO > Product
<RXD.YD > Yield as a percentage
<RXD.NYD > Yield as a number

<RXDS01 >
<RX.STG > Reaction step

<RXD02 >
<RXD.SRCT > Reactants (not always present )

<RXD03 >
<RXD.RGT > Reagents

<RXD04 >
<RXD.CAT > Catalyst

<RXD05 >
<RXD.SOL > Solvent

<RXD.TIM > Time
<RXD.T> Temperature

<Citations > Citation Data
<RY > Coordinates

<RY.RCT > Reactant coordinates rn= reference in RX for reactant <
RX.RXRN >

<RY.PRO > Product coordinates rn= reference in RX for product <RX.
PXRN >
<\ reaction >

<\ reactions >
<\xf >

Listing 3.1: Simplified structure of the XML file extracted from Reaxys and the data
contained within each section.

Some data entries contain non-alphanumeric characters, such as subscript and italic mark-

ers, these have to be removed before data extraction otherwise data cut-off is observed.
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Due to the inconsistent location of the data in the XML files, extracting the data to a useful

format is non-trivial (Listing 3.1). As each hit (<RX>) has several entries (<RXD>), each

entry has to be iterated sequentially. The Python lxml.etree.iterparse() parser was

used to parse the XML files in an iterative manner generating a tuple of an event and its

associated element. A series of if statements are used to match the tag (e.g. RX01) event

and the associated element (text) is extracted and assigned to the relevant variable. For

each reaction (<RX>) the reactants and products are assigned, and then each entry (<RXD>)

is iterated through to retrieve all of the associated reaction data (method, yield, number of

steps, reagents, catalysts, solvent, time, temperature and literature reference). After each <

RXD> has been parsed the data is organised and manipulated to account for inconsistencies

present in the Reaxys database:

1. Catalyst: The catalyst can be found in either the reagent (<RXD.RGT>), or catalyst

(<RXD.CAT>) section of the XML file. If the catalyst is contained within <RXD.CAT>

it can be retrieved directly. However, if the catalyst is contained within <RXD.RGT>

a filter (‘copper’, ‘Copper’ or ‘Cu’) is used to find the relevant chemical name and

assigned it as the catalyst.

2. Ligand: The Reaxys database has no specific data field for ligands, therefore, the

identity of the ligand is contained within either the reagents or catalyst section. To

extract the ligand a set of common reagents is used as a filter, where each reagent

is checked against. If a match is found it is added to general reagents however if no

match is found it is assumed to be the ligand. Common reagents include acids, bases,

metal salts (excluding copper) and additives. Upon manual inspection, this method

proves to be sufficient for identifying the large majority of ligands, only failing where

a common reagent name is present in the ligand or when an exotic reagent is used

and not caught by the filter. Ligands which are contained within the copper catalyst

as a precatalyst and exotic reagents were extracted manually.

3. Solvent: Solvents are sometimes located within the reagents section <RXD.RGT>.

Therefore, a solvent filter, containing common laboratory solvents, is used alongside

the reagent filter to ensure the correct assignment of the solvent.

4. Multiple catalyst entries: In some cases entries contain multiple catalysts (<RXD.

CAT>) data fields, one for the ligand and one for the copper species. The copper filter
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is used to correctly assign the catalyst if matched, and the ligand if not matched.

5. Reference: All citation data is arranged into a commonly used citation format (e.g.

ACS).

The treated data can then be written to the data file in the comma-separated variable

(.csv) format and the variables cleared. After all entries (<RXD>’s) have been parsed the

reactants and product can be cleared and the process repeated for each reaction (<RX>) in

the XML file to give the final data file.

Before the data is ready for analysis any unwanted characters in the file are removed (e.g.

‘[]’, ‘;’) to make the file easier to read when analysed using commonly used spreadsheet

software. Several special characters also need to be corrected to account for spelling errors

and inconsistencies in the Reaxys database, for example, oxidation states (‘(1)’ to ‘(I)’) and

the use of grave over quotation marks (`to ’). This treatment is required as these characters

can cause errors when used in the command line in either Windows or Linux.

3.2.3.2.2 Entry Stripping

A key step in data analysis is the treatment of the retrieved data in order to produce a con-

sistent dataset containing only useful data points. The parsed Reaxys data was trimmed

to remove any entries that contain either no ligand or no yield, as only the ligand struc-

tures were required with their relevant yields. Manual extraction of ligands contained in

precatalysts was also completed at this stage. Table 3.7 shows the number of entries for

each reaction, with a yield and an explicit ligand, extracted from Reaxys.

Table 3.7: Number of data points extracted from Reaxys for each Ullmann-Goldberg reac-
tion class after curation.

Coupling Reaction Curated Entries

C N 10728

C O 2814

C S 750

3.2.3.3 Retrieval of Ligand Structures

The chemical structures of the ligands were retrieved using the Chemical Identifier Resolver

(CIR), an open-source cheminformatics Python module for the retrieval of chemical struc-
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tures from chemical databases such as PubChem and ChemSpider.160 Ligand structures

were retrieved as SMILES strings for use with molSimplify (Section 4.2.4.2), as stored 3D

structures in chemical databases, may not have the ligand in the correct binding confor-

mation. The 2D nature of SMILES strings allows the generation of the 3D structure of the

ligand in the correct binding conformation. Where no structure is found due to an incor-

rect chemical name in the Reaxys data, the ligand structure was manually retrieved. Salts

and solvents were removed from the SMILES strings using the openbabel toolkit to retain

only the structure with the largest molecular weight.161 Where the ligand is the smallest

component of the salt, e.g. acetate in tetrabutylphosphonium acetate, the counter-ion was

removed manually. All structures were checked against the literature to ensure that the

correct chemical structures were retrieved and corrected where required. SMILES strings

were then stored in .csv format with structure name, and duplicate structures were removed

to yield the final dataset (ligands_lit_set), containing 345 ligands (64 monodentate and

281 bidentate).

3.2.4 Reliable Optimisation of Transition States

Before a final method is chosen for high-throughput screening a reliable method for the

optimisation of transition state structures must be identified. Locating and optimising tran-

sition states is a difficult and time-consuming task. Traditionally a trial and error approach

is used, where an initial guess structure is generated from chemical intuition for the re-

action of interest and the structure is optimised using eigenvector following algorithms.

Identification of the correct transition state can take a few minutes to multiple months and

a lot of computational resources depending on the method used. New methods have been

developed to try and identify the transition state from the starting material and product

structures. The nudged elastic band (NEB) and growing string methods take the starting

materials and products as optimised structure files and identify the minimum energy path

and saddle point between the two structures.6,7,162,163 A traditional eigenvector following

optimisation is then used to find the final transition state structure. These methods are

popular in the solid-state and surface chemistry community but have not seen much use in

molecular chemistry. This is due to the fact that in solid-state and surface chemistry one of

the reactants is a static 2D object. This reduces the number of orientations possible in the

starting structure if two molecules are forming a bond, making the generation of an ini-
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tial guess much easier. While NEB-based methods are useful for finding a transition state

they are computationally expensive due to the number of steps and gradient calculations

required.

Figure 3.4: Mechanisms explored by Buchwald et al. (2010).85

To identify a reliable method for optimising organometallic complexes to a transition state,

several transition state identification methods were tested. Nudged elastic band (NEB-TS),

climbing image nudged elastic band (NEB-CI), eigenvector following from an initial guess

(OptTS) and relaxed scan with subsequent eigenvector following were tested. GFN2-xTB

and B97-3c were used as potential electronic methods for geometry optimisation as they

were the best accuracy/cost ratio methods from the benchmarking. All methods were

employed using ORCA 4.2.1 interfaced with xtb 6.3.2. Two ligands from the Buchwald

mechanistic study85 with methylamine and methanol as well as ten commonly used lig-

ands (Figure 3.5) from the ligands_lit_set with piperidine were used to test each method.

Iodobenzene was used as the aryl halide coupling partner in all reactions. Optimisation

of two transition states, oxidative addition (TSOA) and sigma bond metathesis (TSSig) as

presented by Buchwald et al. were used (Figure 3.4).85
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Figure 3.5: Ten ligands used for testing transition state optimisation methods.

In all cases, the NEB methods (NEB-TS and NEB-CI) were able to identify a saddle point

between the starting materials and product with both GFN2-xTB and B97-3c. However,

subsequent optimisation to the saddle point failed in the majority of structures often op-

timising to an incorrect transition state. The success of the NEB optimisations was reliant

on a suitable starting orientation of the starting materials. In a high-throughput workflow,

this would be difficult to determine for every single ligand. The requirement for the opti-

misation of both starting and final structures as well as the additional optimisation steps

makes the NEB methods unsuitable for a high-throughput workflow. The same failure to

optimise to a correct transition state was observed using the OptTS eigenvector following

method for both GFN2-xTB and B97-3c. Including the calculation of the hessian signifi-

cantly improved the success rate of correct transition state identification. Recalculation of

the hessian every 20 optimisation steps was sufficient for the Buchwald ligands, success-

fully identifying all eight transition states. However, for the literature ligands recalculation

of the hessian every 20 steps was insufficient, yielding several incorrect transition states.

Reducing the number of steps until recalculation to two successfully identified all transi-

tion states across both sets of ligands. Using a hybrid hessian, including only the transition

state active atoms, also proved to be ineffective at locating the correct transition state in

the majority of ligands.

Recalculation of the hessian every five steps was found to be the best balance of computa-

tional time and reliability in identifying the correct transition state. The requirement for

hessian calculation is likely due to the potential energy surface of the Ullmann-Goldberg

reaction being very flat, especially for the oxidative addition transition state. Calculation of
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the hessian using B97-3c can take up to 2 days on 4 CPU cores for large ligands. This large

computational requirement for these calculations makes B97-3c not viable as an optimisa-

tion method for a high-throughput workflow. In comparison, the hessian calculation at the

GFN2-xTB level of theory takes approximately 20 minutes on 4 CPU cores. This reduced

hessian calculation time along with good accuracy in benchmarking makes GFN2-xTB an

attractive choice for high-throughput computation. Therefore, GFN2-xTB was chosen as

the method for all optimisation steps for both intermediate and transition state structures

as well as frequency calculations.

Another important factor in the reliable optimisation of transition states is generating a

good starting structure. The starting structure must be both a good initial guess and easy

to generate automatically. Transition state templating satisfies both criteria. A template

of the transition state of interest is generated at the same level of theory as the optimisa-

tion method using a simple ligand. The simple ligand is then replaced with the ligand of

interest, ensuring the initial guess is as close to a correct transition state as possible. This

process can be easily automated with Python modules such as molSimplify.96 To further

improve the reliability of the transition state optimisation the ligand can be pre-optimised

by constraining the substrates and optimising the ligand to a minimum. Pre-optimisation

removes all of the imaginary frequency originating in the ligand increasing the chance that

the eigenvector followed by the transition state optimisation is the one corresponding to

the correct transition state.

A summary of the transition state optimisation process is described below:

1. Generate a transition state at the GFN2-xTB level of theory using a simple ligand.

2. Automatically replace the ligand using Python.

3. Constrain the substrates and pre-optimise the ligand to a minimum at the GFN2-xTB

level of theory.

4. Optimise the entire structure to a transition state at the GFN2-xTB level of theory

using eigenvector following.

5. Perform frequency calculation to confirm that the structure is at a minimum or has

one imaginary frequency, as well as calculate thermochemistry.
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3.2.4.1 Automatic Identification of Correct Transition States

Manual validation of transition state structures is not a viable approach for a high-

throughput screening workflow. The vast number of ligands used (>100) and the require-

ment to generate a visualisation of the transition state is an extremely time-consuming

process subject to human error. Automated validation of both stable and transition state

structures is a requirement to make the process viable on a large scale. Automation of the

process reduces both the total time and error in the analysis stage as well as frees up the

chemist to interpret the data. While the validation of intermediate structures is relatively

simple, requiring only the presence of zero imaginary frequencies, validation of transition

states is more difficult. Transition states require only one imaginary frequency and that

the imaginary frequency corresponds to the correct bond-forming/breaking process.

In order to validate the structure of the transition state a modified version of the TS vetting

requirements presented by Jacobsen et al. is used.164 This validation procedure is not

based on an intrinsic reaction coordinate (IRC) calculation and therefore, reduces the total

computational time and resources required. The transition state structure must meet all of

the following three criteria: i) exactly one imaginary frequency of the hessian. ii) the TS

active bond (bond being broken or formed) must be of an intermediate length:

1.7≥ ri j

(r cov
i + r cov

j )
> 1.0 (3.4)

where ri j is the bond length between atoms i and j and r cov
i and r cov

j are the covalent radii

of atoms i and j. iii) the eigenvector corresponding to the imaginary frequency should

have motion along one of the TS active bond stretching modes:

��vst retch
i · v ts

��≥ S0 (3.5)

where vst retch
i is the eigenvector of the imaginary frequency, vst retch

i is the unit vector of

the stretching mode of bond i and S0 is the amount of overlap between the two vectors.

S0 is a constant of default value 0.33. The value of S0 needs to be tuned depending on the

type of transition state. Transition states which are not a simple bond stretch along the TS

active bonds are not well described with an S0 value of 0.33. For example, in transition
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states possessing a bend-like character, commonly observed in some oxidative additions,

tuning the value of S0 is required.

3.2.5 Automated Structure Generation

In order to explore organometallic mechanistic pathways with a large number of ligands

(>1000) in an efficient manner, structures must be generated automatically. Individual

generation of 10,000’s of structures, depending on mechanistic complexity, is not a viable

method, both in time and resources. To explore a mechanistic pathway all-important inter-

mediate structures, as well as transition states must be generated with the ligand of interest

for each step. For each step, an organometallic complex must be generated with specific

ligands and properties such as coordination number, charge and spin. Each organometallic

complex in a step should possess very similar properties such as the oxidation state of the

metal centre, spin (depending on the metal), coordination number and geometry, with the

only difference being the ligands present. The type of ligand(s) present will determine

the charge of the complex, which must therefore be calculated automatically. An effective

approach is therefore to define a base structure for each complex of interest and then re-

place/add the ligand(s) automatically and calculate the charge and spin of the complex

for use in computational calculations.

3.2.5.1 Generation of stable/intermediate structures

Organometallic complexes are generated in an automated manner using the molSimplify

Python toolkit.96 For each organometallic complex in a mechanistic pathway the metal

centre including oxidation state and spin (in most cases), coordination number, and ge-

ometry is constant between complexes in the same step. This creates a template structure

where only the ligand(s) needs to be adjusted for each structure. The ligand(s) and their

frequency in the complex can then be defined for each unique ligand, the values of which

depend on the ligand denticity or requirements for the final complex (additional fixed lig-

ands). Any ligand that is required in every complex (fixed) can be included within the

template. This process can be automated using Python with a suitable data source con-

taining all of the required ligand data (3D structure/SMILES, frequency and indexes of

the coordinating atoms). This allows the automated generation of molSimplify input files

and subsequent automatic generation of the organometallic complexes and their respec-
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tive charges and spins. MolSimplify generates the charge of the complex automatically

using openbabel.161 In cases where a ligand must be deprotonated upon coordination to

the metal centre, deprotonation is done automatically using a set of deprotonation rules

which use SMILES matching to match functional groups. The deprotonation rules can be

customised based on the user’s needs. Structures can also be optimised with a force field

to clean up the structures both before and after ligand addition. An example molSimplify

input file for the generation of the active catalytic species in the Ullmann-Goldberg reac-

tion, which is a stable three-coordinate Cu(I) complex with one bidentate ligand and one

deprotonated nucleophile is shown below.

-name AADMPY10_CuLpyr_1

-core copper

-oxstate I

-coord 3

-geometry tpl

-lig AADMPY10, pyrrolidinone

-ligocc 1, 1

-spin 1

-ff uff

-ffoption ba

-keepHs auto, False

-ligalign true

-skipANN true

The file contains all of the relevant information regarding the complex to be generated,

including information about the metal centre, the structure of the ligands, how to depro-

tonate the ligands and whether to clean up the structure using a force field. Let’s break

down each line.

-name AADMPY10_CuLpyr_1

The -name line defines the name of the structure to be used in the output files.

For example, the above example will output the structure as a .xyz file to the lo-

cation ./AADMPY10_CuLpyr_1/AADMPY10_CuLpyr_1/AADMPY10_CuLpyr_1.xyz. This

value should contain all of the relevant information required to identify the complex. This
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provides a file structure where all of the complexes are separated allowing for easier han-

dling of computations and analysis.

-core copper

-oxstate I

-spin 1

The metal centre is defined using the above terms. -core states the element to be used as

the metal centre. The value can either be the name of the element or the atomic symbol

(e.g. copper, cu, iron, fe). The oxidation state of the metal is defined with the -oxstate

keyword. Values use roman numerals (e.g. I, IV, V) for positive oxidation states or negative

numbers (-1, -2, ...) for negative oxidation states. Finally, the spin of the metal centre is

defined with the -spin keyword and its value is the spin multiplicity of the metal centre

(e.g. 1 - singlet, 2 - doublet, 3 - triplet).

-coord 3

-geometry tpl

To define the geometry of the complex the following keywords are used. -coord defines

the coordination number of the complex (number of bonds between the metal centre and

ligands). -geometry defines the geometry of the complex (e.g. tpl - trigonal planar). For

a full list of values see Appendix 3.A.1. Custom geometries can be used if required, please

see the official molSimplify documentation for instructions.96

-lig AADMPY10, pyrrolidinone

-ligocc 1, 1

Next, the ligand(s) to be added to the metal are defined. -lig contains the names of the

ligands to be added. The names defined here are looked up from the ligands.dict file

located in the default molSimplify folder which is by default located at /home/username

/molSimplify/Ligands/. This is also the same folder where the 3D structure files must

be present in order for the script to work correctly. The CSD-CrossMiner search script

generates a *.dict (where * is the name of the search) file containing all of the relevant

values for each ligand from the CSD. The contents of which must be copied directly into the

default ligands.dict file. 3D structure files exported from the CSD-CrossMiner search

must also be copied to the /home/username/molSimplify/Ligands/ folder.
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The -ligocc keyword defines the frequency of each ligand in the same order they are

stated in -lig. In this example, AADMPY10 is a bidentate ligand and therefore only one

is required for the trigonal planar complex along with one nucleophile. If AADMPY10 was

a monodentate ligand -ligocc 2, 1 would be the correct values to include two mon-

odentate ligands and one nucleophile to fill all coordination sites.

-lig AADMPY10.mol, C1CC(=O)NC1

-ligocc 1, 1

-smicat [2, 19], [4]

Structures can also be generated from the 3D structure files located in the same folder as

the input files by defining the file name of the ligand 3D structure (e.g. AADMPY10.mol)

or by SMILES string and the indexes of the coordinating atoms (e.g. [2, 19]) in the SMILES

string. Atom indexes must be enclosed in square brackets for each ligand and separated

by a comma using the -smicat keyword. The indexes of the coordinating atoms must be

defined for every explicitly defined file/SMILES string. Note: Indexes for atoms start from

0.

-ff uff

-ffoption ba

The complex can be cleaned up using a force field at several stages during structure gen-

eration. -ff defines the force field to be used. For organometallic structures, only the UFF

(Univeral Force Field) force field is recommended. -ffoption defines when the structure

is optimised. b optimises the ligands before they are added to the metal centre. This is

only recommended when using SMILES strings. a optimises the structure after the ligands

have been added. Both options can be used together (ba), which will optimise the ligands

before addition and the complex after all ligands are added. It is recommended to use at

least the a option to clean up the structure, especially for bulky ligands where there is a lot

of steric congestion. This ensures that any unusual structures generated during ligand ad-

dition are cleaned up before being used as a starting point for computational calculations.

For example, two ligands being very close together can cause errors in ligand structures in

subsequent calculations.

-keepHs auto, False
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It is common that upon coordination to a metal the ligand is deprotonated. In these cases,

hydrogen atoms need to be removed from the starting 3D structure of the ligand. This can

be done using the -keepHs keyword. In order to deprotonate the ligand, for example, the

active catalytic state in the Ullmann-Goldberg reaction has a deprotonated nucleophile, the

False value can be used. To keep all hydrogen atoms use the True value. Custom deproto-

nation rules can be used for deprotonation for a large range of ligands containing a variety

of functional groups. This can be achieved using the auto value which uses SMARTS

matching to deprotonate matching functional groups. Custom deprotonation rules can be

defined by altering the self.remHsmarts line in the molSimplify/Classes/globalvars

.py file by replacing the list of SMARTS strings with a user-defined list. Ensure that the

order of -keepHs values matches the ligand list in -lig.

-ligalign true

The -ligalign keyword is used to call the ligand alignment tool. This ensures that the

ligands are added to the metal in order of steric bulk. This improves the structures gener-

ated as adding bulky ligands last can often lead to them not having enough space causing

incorrect structures or failure of the program. Possible values are true and false.

-skipANN true

The -skipANN keyword is used to call the use of ANN-calculated bond lengths. This is only

supported by molSimplify for specific elements and geometries. Ensure that the metal and

geometry you are using are supported otherwise it can be turned off using the true value

to save computational time.

Structures are generated automatically with the command:

molsimplify -i {input_file}

To generate all structures instead of just one, bash can be used to loop over all molSimplify

input files:

for f in *.inp; do

molsimplify -i {f};

done

The calculated charge and spin values for the complex are output to the terachem_input
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file and are important for the generation of computational input files.

3.2.5.2 Generation of transition state structures

Transition state structures are much harder to generate from scratch due to the non-

standard bond lengths and bond angles present in the transition state. To generate a good

starting structure for a transition state calculation the ligand replacement tool in molSim-

plify is used to replace the ligand in a transition state template with the ligands retrieved

from CSD-CrossMiner, or from a SMILES string or other 3D structure file (e.g. .xyz or

.mol).96

Figure 3.6: Transition state core for the oxidative-addition transition state of the Ullmann-
Goldberg reaction. 2-pyrrolidinone and iodobenzene are used as substrates.

Structures are built from a template structure that uses a ‘simple’ and ‘common’ ligand as

a base. The template should be an optimised transition state of the transition state of in-

terest. This structure should be optimised at the same level of theory as the computational

calculations to be employed for the entire ligand dataset. An example ‘core’ is shown in

Figure 3.6 for the oxidative-addition transition state for 2-pyrrolidinone and iodobenzene

using 3,4,7,8-tetramethyl-1,10-phenanthroline (TMPHEN) as the base ligand. An example

input file for automated ligand replacement with molSimplify is shown below.
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-name AADMPY10_TSOA_pyr_1

-core tsoa_pyr

-oxstate 0

-spin 1

-replig true

-lig AADMPY10

-ligocc 1

-ccatoms 6,15

-ligloc true

-ligalign true

-keepHs auto

-ffoption c

-skipANN true

The input file has several differences compared to the stable intermediates. Let’s break

down each line.

-name AADMPY10_TSOA_pyr_1

-ligalign true

-skipANN true

The above lines are the same as the stable/intermediate structure generation, see Section

3.2.5.1 for an explanation of these keywords.

-core tsoa_pyr

-oxstate 0

-spin 1

Instead of a metal centre -core defines the name of the transition state template. This

is the structure of the optimised transition state to be used as a template for ligand re-

placement. The structure file should be placed in the /home/username/molSimplify/

Cores/ folder and an entry added to the cores.dict file containing the following infor-

mation in the following format: "alias":"name of the XYZ file","indexes of the

coordinating atoms", "maximum denticity". For the oxidative-addition transition

state for 2-pyrrolidinone using 3,4,7,8-tetramethyl-1,10-phenanthroline as the templating
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ligand, the entry is "tsoa_pyr:TSOA_PYR.xyz,6 15,6". Where atom indexes 6 and 15

are the indexes of the two TMPHEN nitrogen atoms and the core has a maximum denticity

of 6. The -oxstate keyword is the oxidation state of the entire core. In this example the

metal centre is copper(I) and is bound to a deprotonated nucleophile of charge, -1, and

a neutral ligand so the core has an oxidation state of 0. -spin is the spin of the core. In

most cases, this will be the same as the stable/intermediate complexes.

-replig true

-lig AADMPY10

-ligocc 1

In order to enable ligand replacement the -replig true command has to be added. The

ligand to be added is defined as -lig "ligand". As with the stable complexes the ligand

can be defined as a 3D structure from the ligands.dict file or be defined as a 3D structure

file in the current folder or a SMILES string. The ligand coordinating atoms are taken

directly from the ligands.dict file. When using a structure not defined in ligands.

dict, e.g. a SMILES string, the -smicat keyword should be used to define the indexes

of the coordinating atoms as described for intermediate structures (see Section 3.2.5.1).

The number of each ligand is defined using -ligocc "frequency".

-ccatoms 6,15

-ccatoms defines the atom indexes of the atoms in the ligand to be replaced in the core

which coordinates to the metal centre. -ccatoms 6,15 refers to the two nitrogen atoms

in the TMPHEN ligand in the core.

-ligloc true

The -ligloc keyword enforces ligand location. This ensures that the ligand is placed in

the correct position around the metal centre.

-keepHs auto

As in the stable complexes -keepHs is used to deprotonate the ligand structures. As only

the ligand is added to the structure only auto need to be used if using custom deprotonation

rules. true and false can be used if no deprotonation or forced deprotonation is required

respectively.

100



Chapter 3: Computational Workflow 3.2. Results & Discussion

-ffoption c

In order to maintain the transition state mode in structure generation both force field

options b and a cannot be used as they will optimise the structure to a minimum and

remove the transition state mode. A new -ffoption c has been implemented to fix this.

c stands for core-constrained and freezes all the atoms in the core, resulting in only the

ligand being optimised. As the core is already optimised at the desired level of theory using

a force field on this part of the structure will move the structure away from the minimum.

Therefore the core-constrained optimization both maintains the transition state mode and

structure of the substrates as well as minimises the ligand structure. c can be used alongside

b as b does not optimise the core, only the ligand before addition.

Table 3.8: Success rate for different force field optimization methods for transition state
generation for the Ullmann-Goldberg reaction, (TSOA: oxidative-addition, TSSig: sigma-
metathesis) for a set of 345 literature ligands using SMILES strings for the ligands.

Success Rates Before (b) Core (c) Before + Core (bc) No Force Field

TSOA 71% 87% 86% 68%
TSSig 82% 93% 93% 79%
Total 76% 90% 90% 74%

Table 3.8 shows the success rate for each force field option for the generation of two tran-

sition states (TSOA and TSSig) for the Ullmann-Goldberg reaction using 345 literature

ligands. Ligands were added to the structure via SMILES string. Using core-constrained

optimization improves the success rate of structure generation by∼15% compared to using

no force field and before optimization. Using both before and core-constrained optimiza-

tion offers no advantage compared to just core-constrained force field optimization but

comes at an additional computational cost from the additional force field optimisation

step.

3.2.5.3 Correction of Coordinating Atom Indexes

Due to the deprotonation of some ligands during complex generation, the atom indexes

of the coordinating atoms in the ligand may be different from those extracted from CSD-

CrossMiner. This is due to the removal of the hydrogens in the atom lists. The location at

which the hydrogens were present in the atom list determines whether correction of these

indexes is required (Figure 3.7). Correction of the atom indexes is required for the correct
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analysis of these atoms when extracting specific properties from computational output files.

Figure 3.7: Example of the shift in coordinating atom index upon complex generation due
to deprotonation.

To correct the indexes of these atoms the following method is employed:

1. The atom lists for the CuLI and ligand is read from their respective .xyz/.mol files.

2. The Cu and I atoms are removed from the CuLI complex atom list.

3. The two lists of atoms are compared.

The complex atom list is iterated through and the atomic symbol is compared to the free

ligand atom list. When a miss-match is found the index (n) is recorded and then compared

against the next item (n + the number of miss-matched items) in the list. If the index of

the miss-matched item is greater than the index of the coordinating atoms no adjustments

are needed. If the index of the miss-matched item is before the index of the coordinating

atom a hydrogen has been removed. Therefore, the coordinating atom index is adjusted

based on the number of miss-matched indexes lower than the coordinating atom index.

This process fails if a hydrogen has been removed from a section of an atom list containing

multiple hydrogen atoms (Figure 3.8). In this case, the following process is employed:
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Figure 3.8: Example of the shift in coordinating atom index upon complex generation due
to deprotonation where both hydrogens are in the same block.

For each atom at location (n) in the list, the list is propagated forward to find the length of

the section in the list with the same repeating atomic symbol. This process is done for both

structures. The lengths of the repeating sections are then compared, if they are not equal

then the deprotonated hydrogen was present in that section of the atom list. The starting

index of the section containing the removed hydrogen is then compared to the index of the

coordinating atoms. The index is then adjusted using the same comparison method.

3.2.6 Calculation of Activation Energies

Figure 3.9: Reaction studied to analyse the computational workflow.

Activation energies for all ligands in the ligands_lit_set were calculated using the devel-

oped workflow. Activation energies were calculated for the oxidative addition (TSOA) and

sigma metathesis (TSSig) pathways for the Ullmann-Goldberg reaction between piperidine

and iodobenzene. Ligand structures were supplied via SMILES string. DMF was used as

the solvent and caesium carbonate as the base.
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Figure 3.10: TSOA and TSSig pathways for the Ullmann-Goldberg reaction.

All structures in the mechanisms were generated automatically as described in Section

3.2.5. For the intermediate complexes, CuLI and CuLpip a trigonal planar geometry was

used with a Cu centre with an oxidation state of I and spin 0. Iodide and piperidine ligands

were supplied as SMILES strings. Forced deprotonation was used for piperidine. Com-

plexes were optimised before and after generation using the UFF force field. Structures

were optimised to a minimum and frequencies were calculated at the GFN2-xTB level of

theory. Single point energies were calculated at the B97-3c level of theory.

For transition states, a transition state core for both the TSOA and TSSig transitions state

was generated at the GFN2-xTB level of theory using TMPHEN as a base ligand. The

optimised transition states were used as cores for structure generation. Geometry was set

to trigonal bipyramidal for TSOA and trigonal planar for TSSig. Spin and charge were set

to 0. Ligands were replaced automatically by defining the atom indexes of the coordinating

nitrogen atoms in the TMPHEN ligand. The initial ligand structure was optimised with the

Universal Force Field using the core-constrained optimisation method. Structures were

pre-optimised using GFN2-xTB by constraining the Cu, C and I atoms involved in the bond

breaking and forming step for TSOA and the Cu, N, C and I atoms involved in the bond

breaking and forming step in TSSig. The resulting structures were optimised to a transition

state in ORCA 4.2.1 using GFN2-xTB. Frequencies were calculated at the GFN2-xTB level

of theory and single point energies at the B97-3c level of theory.

Additives (e.g. caesium carbonate and ions) were optimised to a minimum and frequencies

were calculated at the GFN2-xTB level of theory. Single point energies were calculated at

the B97-3c level of theory.

All single point energies are converted to the Gibbs free energy by the addition of the
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correction term from the frequency calculation:165

G0 = Eel(B97-3c) + Gcor rect ion(GFN2-xTB) (3.6)

Gibbs’s free energies for additives were stored in a database. Activation energies are cal-

culated as the difference in the sum of the Gibbs free energies of the components in each

step of the reaction:

EA =
n∑
1

Gproducts −
n∑
1

Greactants (3.7)

The activation energy of each pathway was calculated as the difference between the Gibbs

free energy of the transition state and the lowest energy intermediate structure. Relative

energies were calculated relative to the CuLI complex. All calculations were run on the

ARC3 supercomputer at the University of Leeds. All calculations used 4 CPU cores and 4GB

RAM. Resulting relative and activation energies were stored as the data_lit_set dataset.

3.2.7 Evaluation of Accuracy

3.2.7.1 Activation Energy Benchmark

In general, DFT is known to reproduce geometries and frequencies with reasonable quality

for its low cost, but energies are a weak point. Calculated energies are generally poor if

the system studied is outside the training set of the functional used, which normally does

not include transition states or atypical bonding situations. To assess the accuracy of the

calculated activation energies, the GFN2-xTB and B97-3c relative energies for 100 ran-

dom ligands from the ligands_lit_set were compared against the ‘gold standard’ domain-

based local pair natural orbitals - coupled cluster singles doubles and perturbative triples

(DLPNO-CCSD(T)) wavefunction method for the ligand exchange step, oxidative addi-

tion transition state and sigma metathesis transition state.9 Correlated methods such as

CCSD(T) are unparametrised, based on real physical principles and should truly repro-

duce experimental results. Both energy calculations use the same GFN2-xTB optimised

structures. Coupled cluster energies were calculated at the DLPNO-CCSD(T)/def2-TZVPP

level of theory and compared to the GFN2-xTB and B97-3c energies. The def2-TZVPP ba-
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sis set was chosen to ensure sufficient basis set completeness as coupled cluster methods

are much more sensitive to basis set completeness compared to DFT, while not requiring

excessive computational resources.166

In order to transform the DLPNO-CCSD(T) electronic energy (Eel) into a true G0, vibra-

tional corrections must be included, and calculated using either DFT or xTB. To account for

solvation, GC DS and GEN P , from an energy or frequency calculation computed with DFT or

xTB with the desired solvent is added to the electronic energy to obtain Gsol v:

Gsol v = Eel(DLPNO-CCSD(T)) + Gcor rect ion(DFT) + GC DS(DFT) + GEN P(DFT) (3.8)

where Gsol v is the Gibbs free energy in the solvent, Eel(DLPNO-CCSD(T)) is the zero-point

energy calculated at the DLPNO-CCSD(T) level, Gcor rect ion(DFT) is the energy required

to transform Eel into G0 at a given temperature and pressure and is only dependent on

geometry and frequencies so can be calculated at a lower level of theory such as DFT or xTB,

GC DS is the cavity term and GEN P is the entropy term from the interaction of the medium

and the molecular surface charges. Confirmation of the reliability of the DLPNO-CCSD(T)

zero-point electronic energy is verified by ensuring the T1 diagnostic is less than 0.02 to

confirm the reliability of the orbitals and T2 amplitudes of less than 1 to check for multi-

reference character. The solvent model based on density (SMD) implicit solvent model

was used for B97-3c and DLPNO-CCSD(T), using DMF as the solvent. The generalised

Born model with surface area contributions (GBSA) implicit solvation model was used for

GFN2-xTB, using DMF as the solvent. All relative energies were calculated relative to the

CuLI starting complex. The activation energy was calculated as the difference between the

Gibbs free energy of the transition state and the lowest energy intermediate structure.
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(a) Raw Values (b) Scaled

Figure 3.11: Comparison of activation energies for GFN2-xTB vs DLPNO-CCSD(T)/def2-
TZVPP for 100 literature ligands, including ligand exchange, TSOA and TSSig.

Figure 3.11 shows the the correlation between GFN2-xTB and DLPNO-CCSD(T)/def2-

TZVPP relative energies. GFN2-xTB energies correlate poorly to coupled cluster with an

R2 value of 0.63 and RMSE of 13.82 kcalmol−1. When the relative GFN2-xTB energy is

scaled to the DLPNO-CCSD(T)/def2-TZVPP energy using the equation of the line the RMSE

decreases to 4.67 kcalmol−1, however the R2 value remains poor. Therefore, GFN2-xTB

should not to used to calculate the Gibbs free energy of the structures in the Ullmann-

Goldberg reaction.

(a) Raw Values (b) Scaled

Figure 3.12: Comparison of activation energies for B97-3c vs DLPNO-CCSD(T)/def2-
TZVPP for 100 literature ligands, including ligand exchange, TSOA and TSSig.

Figure 3.12 shows the correlation between B97-3c and DLPNO-CCSD(T)/def2-TZVPP rel-

ative energies. B97-3c energies correlate excellently with coupled cluster, with an R2 value
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of 0.96. RMSE is superior to GFN2-xTB at 7.76 kcal mol−1 improving to 5.34 kcalmol−1

when scaling the energies using the equation of the line. B97-3c is much better than GFN2-

xTB for calculating the Gibbs free energy of complexes in the Ullmann-Goldberg reaction.

(a) TSOA (b) TSSig

Figure 3.13: Comparison of activation energies for B97-3c vs DLPNO-CCSD(T)/def2-
TZVPP for 100 literature ligands, transition states only.

When only transition states are compared B97-3c correlates reasonably well with the

DLPNO-CCSD(T) calculated activation energies, with a mean average error of 3.9

kcalmol−1 across both transition states, with 89% of structures falling with <1.5× RMSE.

B97-3c performed slightly better for TSOA than TSSig with an RMSE of 2.86 and 4.15

kcalmol−1 respectively. This difference in RMSE is likely due to the bonding involved in

the TSSig transition state not being as well described by the functional. The TSOA tran-

sition state involves a more common oxidative addition step which is likely present in a

larger quantity in the functional training data due to it being common across several dif-

ferent reaction types. Whereas the TSSig transition state contains a far less common C N

stretched bond which is likely poorly described by the functional. Structures containing

oximes and O-Cu-O 5-membered ring motifs generally correlate poorly with a>1.5× RMSE

between the two methods. However, only 8 ligands containing oximes have been reported

for the Ullmann-Goldberg reaction (ligands_lit_set), and this was not deemed a significant

problem for ligand exploration. DFT methods were not tested as they were considered too

computationally expensive as seen in the method benchmarking (see Section 3.2.1). Thus,

B97-3c represents a good balance between computational time and accuracy for the calcu-

lation of activation energies for the Ullmann-Goldberg reaction. Based on this benchmark
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all optimisations and frequency calculations use GFN2-xTB. All energy calculations use the

B97-3c composite method.

3.2.7.2 Success Rates

To analyse the reliability of the workflow the success rates for the generation of the initial

structures and the optimisation of intermediate and transition state structures was deter-

mined. Table 3.9 shows the success rate for the generation of initial structures for all

ligands in the ligands_lit_set dataset. All ligands were supplied as SMILES strings.

Table 3.9: Success rate for the generation of organometallic complexes for all ligands in
the ligands_lit_set dataset.

Structure Success Rate (%)

CuLpip 96
CuLI 96
TSOA 86
TSSig 93

The success rate for initial structure generation is generally good across all structures.

TSOA shows a much lower success rate than the intermediate structures and TSSig. The

majority of failed structures were structures containing monodentate ligands. This is likely

due to the increased steric bulk around the metal centre for the TSOA transition state and

increased steric demand of two monodentate ligands around the copper centre leading to

failed ligand insertion or incorrect ligand structures. Table 3.10 shows the success rates

with bidentate ligands only.

Table 3.10: Success rate for the generation of organometallic complexes for only bidentate
ligands in the ligands_lit_set dataset.

Structure Success Rate (%)

CuLpip 98
CuLI 98
TSOA 97
TSSig 99

When bidentate ligands only are considered, the success rate of initial structure generation

is much higher. The success rate of intermediate structures increases by 2% to 98%. A

significant improvement is observed in both transition state starting structures with an
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improvement of 11% and 6% for TSOA and TSSig respectively. All success rates are above

97% which shows excellent reliability for the structure generation step. Due to the nature

of the low stability of ligands in the Ullmann-Goldberg reaction only bidentate ligands are

of interest, making the success rate excellent for this purpose.

Table 3.11: Success rate for the optimisation of organometallic complexes for only biden-
tate ligands in the ligands_lit_set dataset.

Structure Success Rate (%)

CuLpip 93
CuLI 93
TSOA 88
TSSig 94

The second aspect of reliability in the workflow is the reliable optimisation of structures

to either a minimum or a transition state. Intermediate structures require no imaginary

frequencies and transition states require one imaginary frequency corresponding to the

correct bond-forming process (Cu C for TSOA and C N for TSSig). A correct transition

state was determined via manual inspection of the imaginary frequency. The success rates

for each structure are summarised in Table 3.11. Successful structure optimisation was

generally very good across all structures, both intermediates and transition states. The

common cause of failure for intermediate structures CuLpip and CuLI was the presence

of small imaginary frequencies 0 >x >-40 cm−1. To improve the reliability of these op-

timisations the convergence criteria were tightened to use the TightOpt criteria in ORCA.

While iterative optimisation methods, where the structure is automatically distorted along

the imaginary frequency and re-optimised, are available in ORCA they currently do not

work with the extended tight-binding methods. When these methods become available, a

further increase in optimisation reliability can be expected.

For transition states, TSOA shows a lower success rate than TSSig. This is likely due

to the shallow potential energy surface in these transition states as observed previously

in Section 3.2.4, making the location of the transition state difficult. In some cases, it

may also be possible that the TSOA transition state does not exist for specific ligands as

it follows a different mechanistic pathway. Overall the optimisation success rates are very

good considering the number of calculations required.
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(a) Reaction of the ligand (b) Ligand dissociation

Figure 3.14: Example incorrect transition states for the TSOA pathway.

Common causes of incorrect transition states were dissociation of the ligand (Figure

3.14b), the inability to find the transition state or incorrect transition states, such as a

reaction between the ligand and the substrates (Figure 3.14a). Overall the success rates

are very good for a high-throughput workflow and show excellent reliability across both

intermediate and transition state structures.

3.2.7.3 Calculation Time

Figure 3.15: Histogram of the single core computational time required to calculate the
activation energy for all ligands in the ligands_lit_set dataset.

The total single core computational time was calculated for each ligand in the ligands_-

lit_set to determine the average time taken per ligand. Each activation energy requires 4

optimisations, 2 transition state optimisations, 4 frequency and 4 energy calculations. Each
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calculation used 4 CPU cores and 4GB of RAM. The distribution of total calculation time is

shown in Figure 3.15. The average time taken to calculate the activation energy for a single

ligand is approximately 15h of single core computational time. For very large ligands,

calculations can take >50 CPU hours. A similar full DFT calculation would take anywhere

from a few days to a few months per ligand depending on the size of the ligand and the

number of optimisation steps required, especially where a hessian calculation is required.

This method provides a good balance between accuracy, reliability and both computational

time and resources, making it ideal for a high-throughput predictive workflow.

3.2.7.4 Asymmetric Ligands

For asymmetric ligands, both isomers need to be considered when calculating the activity

of the ligand. One orientation of the ligand in the complex may be significantly more

active than the other, especially in some cases such as asymmetric catalysis. The need to

calculate an inverted structure is dependent on the geometry of the complexes of interest.

For example, three-coordinate trigonal planar complexes are mirror images upon ligand

inversion and therefore do not need to be recalculated. Transition state structures, in

the case of the Ullmann-Goldberg reaction, have two possible isomers which need to be

compared to predict the activity of the ligand (Figure 3.16).

Figure 3.16: Comparison of three coordinate intermediate and transition state structures
upon ligand inversion for both symmetric and asymmetric ligands.

In order to assess the need to generate both structures for each transition state in the com-
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putational workflow, all asymmetric ligands in the ligands_lit_set were used to compare

the activation energies for both isomers. Both isomers were generated with the same struc-

ture generation procedure described in Section 3.2.5 including the forced location of the

ligand to ensure that the ligand was in the opposite orientation. The structures were op-

timised to a transition state using GFN2-xTB and their activation energies were calculated

at the B97-3c level of theory. The comparison of activation energies of the original and

inverted ligand is shown in Figure 3.17.

Figure 3.17: Activation Energy of the original TSOA (orange) and TSSig (blue) transition
states compared to their activation energies upon ligand inversion for all asymmetric lig-
ands in the ligands_lit_set. Black lines show parity and ± 3.9 kcalmol−1, the determined
error in the calculation. Activation energies were calculated at the B97-3c level of theory.

The correlation of original activation energy and activation energy upon ligand inversion

has an average difference of 2.3 kcalmol−1 (2.8 and 1.9 kcalmol−1 for TSOA and TSSig

respectively) between isomers and is within the error of the calculation, 3.9 kcal mol−1

(Section 3.2.7.1). As the Ullmann-Goldberg reaction is a symmetric reaction, only one

isomer needs to be generated. The need to generate only one isomer significantly reduces

the computational time required. As the transition state calculation is the most compu-

tationally expensive step of the prediction workflow, doubling the number of this type of

calculation would almost double the computational time and resources required per ligand.
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For asymmetric synthesis tasks, however, it is recommended to generate both isomers.

3.2.8 Final Computational Workflow

The following section provides a complete step-by-step walkthrough of the full computa-

tional workflow. A summary of the workflow is shown in Figure 3.18. The workflow re-

quires Python 3, ORCA version 4.2 or later, xtb version 6.3 or later and the custom version

of molSimplify (see ESI).3,93,167 Due to compatibility, the workflow requires a Linux-based

operating system. This workflow assumes that the ligand structures and data file has been

generated as described in Chapter 2. A .csv file containing ligand SMILES string and coor-

dinating atom data may also be used. An example of this is provided in the ESI. All scripts

used in this section are also provided in the ESI.

Figure 3.18: Summary flow chart of the high-throughput computational workflow for the
calculation of activation energies from ligand structure files.

3.2.8.1 Structure Generation

Before structure generation, all 3D structures files from the CSD-CrossMiner search should

be copied to the molSimplfy/Ligands/ folder. The contents of the {search}.dict file should

also be copied into the ligands.dict file. Transition state cores also need to be generated at

the desired level of theory and added to the molSimplfy/Cores/ folder and cores.dict file

along with the atom indexes of the atoms to be replaced. If custom deprotonation rules

are being used the SMARTS strings need to be placed on line 538 of the molSimplify
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/Classes/globalvars.py file in the molSimplify installation folder. MolSimplify input

files are generated using the TS_mols_gen_xyz.py script. This script contains all of the

information required to generate the correct organometallic structures using molSimplify.

If the script is being used for another reaction this file needs to be edited to generate

the correct structures as described in Section 3.2.5. MolSimplfy input files can then be

generated using the following command:

python TS_mols_gen_xyz.py {search}.csv

where {search}.csv is the file containing the ligand data obtained from the CSD-

CrossMiner search. Structures can then be generated by running the following bash script

in the folder containing all of the molSimplify input files.

for f in *.inp; do

molsimplify -i {f};

done

3.2.8.2 Generating Computational Input files and Running Calculations

The input files for the computational calculations are generated automatically using the

TS_input_gen_HPC_constrain.py script. This script contains all of the parameters used

in the computational calculations such as methods, solvent, computational resource re-

quirements and atom constraints for the TS optimisation. If another reaction is being

studied this script needs to be edited to provide the correct parameters and TS active atom

constraints. Charge, spin and 3D coordinates are automatically identified from the molSim-

plify output files. By default, all optimisation and frequency calculations use the GFN2-xTB

method and all energy calculations use the B97-3c method. Other computational methods

can be used if required. Computational input files can then be generated by running the

following bash script:
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cd molsimplify_input_files || exit

cd Runs || exit

for dir in */; do

if [ -d "$dir" ]; then

cd "$dir" || exit

for dir2 in */; do

if [ -d "$dir2" ]; then

cd "$dir2" || exit

python ../../../../TS_input_gen_HPC_constrain.py

cd ..

fi

done

cd ..

fi

done

Computational calculations can then be run by either looping through the Runs/ folder or

by copying the folder to a high-performance computing facility and running the calcula-

tions through a batch queuing system. Calculations should be run sequentially in the order

pre-optimisation> optimisation> frequency> energy. This is to prevent calculations from

failing due to the previous calculation not being complete.

Once the calculations have finished the Runs/ folder can then be cleaned using the pro-

vided script to remove any unneeded output files. This drastically reduces the size of the

folder allowing for easier copying if using a high-performance computing facility. Energies

for additional structures such as additives, products and reactants need to be calculated

separately.

3.2.8.3 Structure Verification and Calculation of Activation Energies

To verify if the optimised structures are correct the ts_check.py script is used

by looping through the folders using the same bash script as above but replacing
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TS_input_gen_HPC_contrain.py with ts_check.py. The values of S0 and tolerances

for the magnitude of imaginary frequencies can be adjusted. If another reaction is being

studied, the atom indexes of the TS active atoms need to be changed to those in the TS

core of interest.

Figure 3.19: Example energy profiles for the oxidative addition transition state for two
ligands from the Buchwald et al. (2010) study with methylamine and methanol nucle-
ophiles.85

Activation energies can then be calculated by running the Energy_Analysis_CrossMiner

.py script. Again, if another reaction is being studied this script needs to be adjusted to

ensure the calculation of the activation energy is correct. Activation energies are calculated

and output in a .csv file. Figure 3.19 shows an example output from the workflow for the

Ullmann-Goldberg reaction using the Buchwald et al. ligands as an energy profile for the

oxidative addition pathway.85

3.3 Conclusions

The high-throughput computation prediction of ligand activity for organometallic catalysts

is currently limited by the lack of accurate low-cost computational methods as well as the

lack of reliable methods for generating and optimising transition states. The development

of accurate, reliable and low-cost tools will aid the discovery of new organometallic cata-

lysts computationally.
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This chapter presented a novel semi-automated computational workflow for the prediction

of catalyst activity which (i) automatically generates both intermediate and transition state

organometallic complexes, (ii) performs computational calculations for the determination

of structural and electronic properties, (iii) analyses and predicts the activation energy for

each ligand. The workflow is flexible allowing it to be used for any reaction of interest by

modification of the source code.

The Ullmann-Goldberg reaction was used to develop and test the workflow. The activation

energies for 345 ligands were calculated. The resulting activation energies were bench-

marked against the ‘gold-standard’ coupled-cluster method, with an error of 3.9 kcalmol−1

at a much lower computational cost than traditional DFT.

This workflow offers several advantages over currently used methods due to its faster speed

and lower computational cost, coupled with good accuracy compared to higher-level meth-

ods. This workflow has wide applicability in catalyst design, ranging from pharmaceutical

process development, mechanistic exploration and novel catalyst design. It can also be

applied in various chemical areas such as pharmaceuticals, agrochemicals or chemical dis-

covery.

3.4 Methodology

All scripts used in this chapter are available on GitHub at https://github.com/MarcS18/

Thesis_ESI.

3.4.1 Computational Methods

Semi-empirical and DFT methods were performed using Gaussian09.168 Composite and

coupled cluster methods were performed using ORCA 4.2.1.3 The University of Leeds su-

percomputer, ARC3, was used on standard nodes with 24-core Broadwell E5-2650v4 CPUs

at 2.2 GHz with turbo and 128 GB of memory.169 Complexes were optimised in the gas

phase using the default convergence criteria unless stated otherwise. Extended Tight Bind-

ing calculations were performed with xtb 6.3.2167 on an AMD Ryzen 3900X 12-core CPU

at 3.8 GHz with turbo and 16 GB of memory. XTB calculations were optimised to the tight

criteria unless stated otherwise. The solvent model based on density (SMD) implicit sol-

vent model was used for B97-3c and DLPNO-CCSD(T) and the generalised Born model
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with surface area contributions (GBSA) implicit solvation model was used for GFN2-xTB.

DMF was used as the solvent in all cases.

3.A Appendix

3.A.1 molSimplify

3.A.1.1 Geometry Values

Possible values for -coord: 1, 2, 3, 4, 5, 6, 7, 8.

Table 3.A.1: Possible values for -geometry.

Value Geometry

no None
li Linear
tpl Trigonal Planar
sqp Square Planar
thd Tetrahedral
spy Square Pyramidal
tbp Trigonal Bi-pyramidal
oct Octahedral
tpr Trigonal Prismatic
pbp Pentagonal Bipyramidal
sqap Square Antiprismatic

3.A.2 Activation Energy Benchmarking

(a) Raw Values (b) Scaled

Figure 3.A.1: Comparison of activation energies for B97-3c vs DLPNO-CCSD(T)/def2-
TZVPP for 100 literature ligands, combined transition states.
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(a) Raw Values (b) TSSig

Figure 3.A.2: Comparison of activation energies for B97-3c vs DLPNO-CCSD(T)/def2-
TZVPP for 100 literature ligands, ligand exchange only.

(a) Raw Values (b) Scaled

Figure 3.A.3: Comparison of activation energies for GFN2-xTB vs DLPNO-CCSD(T)/def2-
TZVPP for 100 literature ligands, TSOA only.
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(a) Raw Values (b) Scaled

Figure 3.A.4: Comparison of activation energies for GFN2-xTB vs DLPNO-CCSD(T)/def2-
TZVPP for 100 literature ligands, TSSig only.
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Chapter 4: Application of CatSD to

the Ullmann-Goldberg Reaction

4.1 Introduction

4.1.1 Reaction Mechanisms

The first mechanistic hypotheses for the Ullmann-Goldberg reaction began to emerge in

the 1960s, with several different mechanisms being proposed until the 1990s.72,75,170–173

While it was generally agreed that the coordination of the nucleophile to the copper was

involved, the process for the activation of the aryl halide was under dispute. The observed

reactivity of the aryl halide followed the order I > Br > Cl, which is the opposite of the

observed reactivity for common aromatic nucleophilic substitution reactions. Therefore, it

was obvious that the metal was involved in some way in activating the aryl halide.

The proposed mechanisms can be divided into four main classes:

1. Radical mechanisms.

2. σ-metathesis mechanisms.

3. π-complexation mechanisms.

4. Oxidative addition/reductive elimination mechanisms.

4.1.1.1 Radical based mechanisms

The first postulation of free-radical involvement in the Ullmann-Goldberg reaction was by

Waters in 1937.174 However, it was not until 1970 that the first radical mechanism was pro-

posed by Bunnett.170 He proposed a radical type aromatic nucleophilic substitution (SRN1)
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after studying the reaction of iodoarenes with potassium amide. Bunnett’s mechanism is

initiated by the single electron transfer from the ‘outer sphere’, where the initiator does not

coordinate to the aryl halide, to form a radical anion (Scheme 9). While Bunnett’s study

was not conducted on a system containing a metal catalyst, any metal that can undergo

single electron transfer would be suitable as an initiator. Copper can both act as a single

electron oxidant in many reactions such as dehydrogenative functionalisation, as well as a

single electron reductant.175,176

(ArX) − Ar + X− (4.1)

Ar + Nu− (ArNu) − (4.2)

(ArNu) − ArNu + (ArX) − (4.3)

Scheme 9: General reaction scheme for the SRN1 mechanism proposed by Bunnet.170

A few years later, another radical mechanism was proposed by Kochi and Jenkins, called

Halogen Atom Electron Transfer (HAT) or ‘inner sphere’ electron transfer.171 In comparison

to Bunnett’s mechanism the aryl radical is formed by the transfer of a neutral halogen atom

from the aryl halide to the copper atom (Scheme 10).

CuII + Nu− CuINu + X− (4.4)

ArX + CuINu Ar + CuIIXNu (4.5)

Ar + CuIIXNu ArNu + CuIX (4.6)

Scheme 10: General reaction scheme for Halogen Atom Transfer via the SRN1 mechanism.

The first evidence of a radical mechanism emerged in 1978 from a study by Arai et al.

who were studying the reaction of 1-bromoanthraquinone with 2-aminoethanol, catalysed

by copper bromide. Formation of a paramagnetic species was detected by EPR experi-

ments, which was identified as the 1-bromoanthraquinone radical anion, formed by elec-

tron transfer from the Cu(I) species (Scheme 11). The production of anthraquinone was

also detected and was explained by the dehalogenation of the 1-bromoanthraquinone rad-

ical anion. This was the first study that supported the SRN1 radical pathway.

However, several authors published evidence against the formation of radicals during the

reaction. A comparative study between different SRN1 processes by Bowman found that

Cu-catalysed coupling was the most efficient for the synthesis of heterocycles, however,
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CuIX + ArX CuIIX2 + Ar (4.7)

Ar + Nu− (ArNu) − (4.8)

(ArNu) − + CuIIX2 ArNu + CuI + X− (4.9)

Scheme 11: General reaction scheme for copper catalysed SRN1 mechanism.

showed many differences from radical processes.177,178 Firstly, the addition of radical scav-

engers or oxygen did not inhibit the reaction and therefore, led the authors to believe that a

radical process was not involved.177,178 Secondly, multiple radical clock experiments have

been used to investigate the existence of the aryl radical intermediate, all with negative

results, except for one experiment by Fier and Hartwig.179 Fier and Hartwig observed that

a small amount of radical-derived product was formed, however only in small quantities,

showing that radical mechanisms can occur, but do not govern the reaction mechanism.179

Radical clock experiments are based upon the fact that under a radical mechanism, the

Ullmann-Goldberg coupling of the nucleophile should be much faster than the most kinet-

ically favoured 5-exo-trig ring closure of a methylcyclopentane moiety.180 This has been

proposed several times but has yet to be demonstrated.181

Another set of experiments by Hartwig et al. used a set of aryl chlorides and bromides with

higher reduction potentials than the aryl iodide.182 Therefore, if a radical mechanism was

involved the reaction rate should increase with increasing reduction potential but it was

observed that the less reducible aryl iodides had higher reaction rates, leading the authors

to exclude a radical mechanism.182

In 2010, Buchwald contested both of these experimental methodologies. He suggested that

the intermediate aryl radical could not exist as a free radical but instead existed as a caged

radical pair and therefore, is unable to react with the alkene in the radical clock experi-

ments, invalidating the results of these tests.85 He also explained Hartwig’s experiments in

terms of the less effective coordination of these substrates to copper.85

4.1.1.2 σ-bond metathesis

Bacon and Hill proposed in the mid-1960’s a mechanism in which the copper forms a four-

centred σ-complex with a lone pair of electrons on the halogen atom inducing polarisation

of the C X bond, facilitating the attack of the nucleophile.173 However, such a mechanism
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is not easy to prove as multi-centre processes are hard to differentiate from those involving

ionic intermediates. Litvak and Shein put forward an adaption of this mechanism whereby

they combined the four-centre intermediate with a radical process, and later Aalten et al.

reported a similar mechanism that proceeds through an intimate-electron transfer, using

the Cu(I)/Cu(II) redox couple.75,172

ArBr + CuI(OR)Ln
-L

+L
ArBrCuI(OR)Ln−1 ArBr −CuII(OR)Ln−1 (4.10)

ArBr −CuI(OR )Ln−1 Ar

OR

CuILn−1

Br−

ArOR + CuIBrLn−1 (4.11)

Scheme 12: Litvak’s proposed mechanism for the copper-catalysed etherification reac-
tion.172

In general, this mechanistic pathway can be summarised by Scheme 12. The first step

of the displacement of the halide by the nucleophile to form the catalytic species. The

copper then coordinates to the aryl halide via a four-centred intermediate. Coordination

generates a partial positive charge on the C X carbon through polarization of the C X

bond, assisting the substitution by the nucleophile. Copper remains in the +1 oxidation

state throughout the entire catalytic cycle. In 2004, a non-radical basedσ-bond metathesis

pathway was proposed by Van Allen.183

Figure 4.1: Van Allen’s proposed 4-centre sigma metathesis transition state.85

4.1.1.3 π-complexation

In Weingarten’s work reporting the activity of Cu(I), he also proposed a mechanism for the

activation of the aryl halide.72 During the investigation of the reaction to form a phenyl

ether from bromobenzene and potassium phenoxide, the existence of the [Cu(OPh)2]
−was

proposed. This copper species would coordinate to the π system of the aryl halide, essen-

tially acting as an activating group, making the C X bond more susceptible to nucleophilic
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substitution (Scheme 13). However, there is scant experimental evidence to support this

hypothesis.

Scheme 13: Weingarten’s proposal for the intermediate via π-complexation.

This pathway was deemed plausible for several reasons. First of all η2-Cu(I)-benzene com-

plexes had been synthesised the year before.184 Secondly, η6- haloarene-Cr(O) complexes

had been shown to be very effective in aromatic nucleophilic substitution reactions.185 Fi-

nally, calculations have shown that η6 coordination is preferred over η2 or η1 coordination

in complexes of copper and benzene.186 However, in practice η6 complexes are very rare,

whereas η2 complexes are more common between copper and aromatic ligands.184,187

Moreover, Paine pointed out that this mechanism did not explain the accelerating effect

observed with an ortho carboxylate group, whereas moving the carboxylate group to the

para position gives no increase in reaction rate.188 Also, the comparison of copper with

Cr(0) complexes is not valid as the order of halide reactivity is reversed in the Cr(0) case

with F and Cl being the most reactive aryl halides.189 This mechanistic pathway can be

summarised in the following catalytic cycle (Scheme 14):

Scheme 14: Proposed catalytic cycle involving the π-complex intermediate.

Cu(I) coordinates to the π system of the aromatic ring. The aryl halide then undergoes

nucleophilic substitution due to polarization of the C X bond. The coupling product then

dissociated to restore the Cu(I) catalyst. Throughout the entire catalytic cycle, the copper
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remains in the +1 oxidation state.

4.1.1.4 Oxidative/reductive mechanisms

Several literature sources elicit the formation of Cu(III) intermediates in the Ullmann reac-

tion. Cohen first proposed the existence of a Cu(III) intermediate, when studying the reac-

tion of o-iodo-N , N ,dimethylbenzamide with copper chloride and benzoic acid in DMF.190

It was observed that increasing the concentration of benzoic acid increased the formation

of N , N -dimethylbenzamide while decreasing the formation of the Cl-substituted o-chloro-

N , N -dimethylbenzamide. It was also observed that upon the addition of copper chloride,

the reverse is true. To explain this behaviour he proposed a mechanism via the oxidative

addition of the aryl halide to the copper salt, leading to a Cu(III) intermediate.

Along with Cohen’s proposed mechanism, he also ruled out the possibility of two other

proposed mechanisms. The observed reactivities could not be explained by the forma-

tion of four-centred intermediates. A radical mechanism was also excluded as no N -

methylbezamide was observed in the reaction, which would be formed from rapid hy-

drogen abstraction from the methyl group ortho to the aryl radical.

Following Cohen, Bethell investigated the reaction of primary amines with 1-

halogenoanthraquinones promoted by copper salts.191 Two products were detected, the

aminated anthraquinone and the dehalogenated anthraquinone. It was observed that the

reaction rate was dependent on the halogen (I> Br> Cl), but this had no effect on the ratio

of the two products. Secondly, deuteration experiments showed that N-deuteration of the

amine gave only a small kinetic isotope effect and did not affect the product ratio, whereas

deuteration on the α carbon of the amine gave a large kinetic isotope effect leading to a

large increase in the formation of the amine product. Finally, Bethell observed that the

ratio of aminated to dehalogenated product was directly proportional to the concentration

of the amine. Bethell explained these results by suggesting an intermediate arylcopper(III)

complex with one or more amine ligands and one amide ligand. The ratio of aminated to

dehalogenated products is determined by the competition between intramolecular hydro-

gen transfer from the C H bond of the amide ligand and intermolecular amination.
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Scheme 15: Two proposed pathways for the order of the oxidative addition and transmet-
allation steps.

There are currently two potential oxidative addition/reductive elimination pathways

(Scheme 15). The first of which involves the oxidative addition of the aryl halide to the

copper to form a copper(III) intermediate. The halide is exchanged with the nucleophile

and reductive elimination releases the coupled product. The second and most favoured

pathway is where the nucleophile reacts with the copper(I) halide before the oxidative

addition takes place. Unlike palladium cross-couplings, where the oxidative addition step

precedes transmetallation, in the copper system, the order of these steps is still under de-

bate and either of the two routes could take place.192

The mechanism for the Ullmann condensation reaction is still uncertain and may be de-

pendent on ligand properties, substrates and reaction conditions. The current generally

accepted mechanism is that of the oxidative addition/reductive elimination pathway after

coordination of the nucleophile as Cu(III) intermediates are not very stable and the oxida-

tive addition step is promoted by the high electron density on the Cu atom in the Cu(I)

intermediate.193

4.1.2 Modelling Transition States

4.1.2.1 Oxidation state of Copper

Three oxidation states of copper have been found to be effective in copper-catalysed cross-

coupling reactions. Copper sources of oxidation states Cu(0), Cu(I) and Cu(II) have been

successfully used in Ullmann-Goldberg reactions, with salts and oxides working well for
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several nucleophiles.69 This observation suggests that a common copper species is formed

during the reaction, and a lot of work in the early 1960s was aimed at the electrochemical

behaviour of copper sources.72,75,188 Weingarten in 1964 proposed that Cu(I) could be the

common intermediate as it was observed that Cu(I) sources led to slightly higher reaction

rates.72 It was later demonstrated that Cu(II) species could be reduced to Cu(I) in the

presence of coordinating molecules, with common nucleophiles such as phenoxides and

amines acting as the redox counter partner.72,188

In 1987, Paine, using electron microscopy and X-ray powder diffraction, found that Cu(0)

particles were covered in a layer of Cu2O. He proposed that if this Cu2O layer leached into

the solution it would provide the required Cu(I) species for catalysis. Observation of the

surface of the solid catalyst recovered after the reaction showed crystals of Cu2O, which

were not present on the original catalyst.188 This supported the hypothesis of leaching, as

the crystallisation of Cu2O would only be possible if it had leached into the solution and

then recrystallised after the reaction.188

Evidence for the oxidation of Cu(0) to Cu(I) in the presence of a ligand such as phenan-

throline was only recently observed by Taillefer et al. using in situ cyclic voltammetry.194

Wei et al. also proposed that oxidation from Cu(0) to Cu(I) was possible by reaction with

atmospheric oxygen, on the basis of colour change and catalytic results under different con-

ditions for the reaction of aryl halides and amines in water using metallic copper powder

as the copper source.195

These investigations demonstrate that Cu(I) is the active catalytic species however, the

initial source of copper is suggested to be unimportant for the outcome of the reaction,

due to the generation of Cu(I) in situ, via oxidation and reduction processes.75

4.1.2.2 Catalyst resting state

Identification of key reaction intermediates and, in particular, the catalyst resting state

has been the focus of numerous investigations. Prior to the use of ancillary ligands in the

reaction, stoichiometric amounts of a copper(I) source were used to couple heteroatom

nucleophiles with organic halides to afford the C-heteroatom coupled product. Several

groups have studied complexes of copper(I) alkoxides, phenoxides and amidate and their

reactivity with alkyl and aryl halides to afford C O and C N coupled products. One of the
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first reports by Bacon and Karim studied the reaction of aryl halides with phthalimides.196

It was observed that the most reactive system used a Cu:phthalimide ratio of less than one,

where increasing the quantity of phthalimide reduced reactivity. This was the first example

supporting a mechanism where the active species is a copper(I) mononucleophile complex,

with the copper(I) dinucleophile complex being unreactive. Further evidence supporting

the copper(I) mononucleophile intermediate species was provided by Paine when studying

the reaction of diphenylamine with aryl halides to form triphenylamines.188 Paine observed

that the reaction was zero order with respect to the amine nucleophile, suggesting that the

copper(I) species in solution coordinates to the nucleophile in a fast and irreversible step

to give the intermediate species [Ph2NCuI], which reacts with iodobenzene in the rate-

determining step. This observation along with the work of Bacon and Karim suggests that

the catalyst resting state is a copper(I) species ligated by one deprotonated nucleophile

ligand.

A more recent study by Buchwald and co-workers expanded on the work from Bacon and

Karim, investigating the effect of ligand concentration on the active copper species in so-

lution.81 They studied the role of 1,2-diamine ligands on the N -arylation of amides. When

a low concentration of diamine ligand is used ([L] = 0.04 M) an inverse rate dependence

of amide concentration is observed due to the preferential formation of the unreactive di-

amidate copper complex over the active diamine copper(I) amidate. High concentrations

of diamine ligand ([L] = 0.28 M) gave the diamine copper(I) halide complex as the ma-

jor species in solution, which readily converts to the active amidate complex. To confirm

the proposed catalyst resting state copper(I) pyrrolidinoate was reacted stoichiometrically

with 3,5-dimethyliodobenzene in the presence of the diamine ligand yielding the coupling

product.82 This was further confirmed by DFT calculation by Guo and co-workers, vali-

dating the reactivity of the [LCu(NHAc)] complex.197 Jutand and co-workers identified

the same structure for the catalyst resting state as proposed by Buchwald, with a 1:1:1

ratio of ligand, copper(I) and deprotonated nucleophile when studying the reaction of

iodobenzene with cyclohexylamine by NMR, electrochemistry and DFT, in the presence of

a 1,3-diketone ligand.198–200 Other publications by Hartwig, Peters and Fu also determined

that the catalyst resting state had the same trigonal planar geometry.181,182,201
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Scheme 16: Equilibrium between dimeric [L2Cu][Cu(Nu)2] and neutral monomeric
[LCu(Nu)].

To determine the species present in solution Hartwig and co-workers characterized several

copper(I) imidate and amidate complexes with bidentate N,N and P,P auxiliary ligands.182

The species present in solution was determined to be a dimeric [L2Cu][Cu(Nu)2] ionic

species in equilibrium with the neutral monomeric [LCu(Nu)] species, as determined by

NMR spectroscopy and conductivity experiments. All tested complexes successfully reacted

with iodobenzene to give their C N coupled products in high yields, while the anionic

species [Cu(Nu)2]
− present in the form [Cu(Nu)2][Bu4N] was unreactive. Therefore, the

three-coordinate [LCuNu] complex was proposed to be the active intermediate. Similar

studies with copper(I) phenoxide complexes with phenanthroline and cyclohexadiamine

auxiliary ligands gave the same conclusion of a three-coordinate active intermediate.201

Expanding on bidentate ligands Taillefer and co-workers used a tetradentate bis(imino-

pyridine) ligand.202 The coordination of the tetradentate ligand to copper(I) iodide in ace-

tonitrile leads to the formation of a highly insoluble dimeric complex ([Cu2L2]I2). The small

fraction of dimeric complex available in solution forms the active monomeric copper(I) pre-

catalyst upon displacement. This was evidence that the ligand does not necessarily need to

aid the solubilisation of the copper(I) complex. The formation of insoluble dimeric species

creates a reservoir of copper(I) protected from degradation processes, which would other-

wise occur in solution.

The majority of the literature favours a trigonal planar complex where the deprotonated

nucleophile is coordinated to the Cu(I) centre before activation of the aryl halides occurs.

The addition of auxiliary ligands prevents the formation of less reactive, multiply-ligated

copper complexes, ensuring the active catalyst resting state is present in high concentra-

tions.81,82,197
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Scheme 17: Generally accepted Ullmann-Goldberg reaction mechanism.203

4.2 Results and Discussion

4.2.1 Ligand Exchange Mechanism

Identification of the rate-determining step is important for calculating the correct activation

energy for a reaction. Calculation of the wrong step in the mechanistic pathway doesn’t

represent the energy barrier required for the reaction to proceed. If there is a reaction

intermediate whose energy is lower than the initial reactants, then the activation energy

needed to pass through any subsequent transition state depends on the Gibbs free energy

of that transition state relative to the lower-energy intermediate. The rate-determining

step is then the step with the largest Gibbs energy difference relative either to the starting

material or to any previous intermediate on the diagram.

For the Ullmann-Goldberg reaction, the sigma metathesis pathway contains only one tran-

sition state, which is, therefore, likely the rate-determining step. For the oxidative addi-

tion/reductive elimination pathway, it has been shown previously that the oxidative ad-

dition step is the rate-determining step.85 To confirm the rate-determining step for both

pathways the ligand exchange step was modelled to verify that the exchange between the

iodide and nucleophile to form the active catalytic species is not the rate-determining step.

Three exchange mechanisms were modelled: dissociative (iodide dissociated, followed by

coordination of the nucleophile then deprotonation), associative deprotonation (coordi-
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nation of the nucleophile followed by deprotonation then dissociation of the iodide) and

associative I dissociation (coordination of the nucleophile followed by dissociation of the

iodide then deprotonation of the nucleophile).

All three ligand exchange pathways were calculated for 10 ligands from ligands_lit_set.

Ligands consisted of a range of N, O- donor atoms and functional groups as well as ligand

charges (-2 to+1). Structures were optimised at the GFN2-xTB level of theory and energies

were calculated at the B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory. The

energy diagrams for ligand L0003 are shown in Figure 4.2. Energy diagrams for the

remaining ligands can be found in Appendix 4.A.1.

(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.2: Ligand exchange mechanisms for ligand L0003 from the ligands_lit_set cal-
culated at the GFN2-xTB//B97-3c and GFN2-xTB//DLPNO-CCSD(T)/def2-TZVPP levels
of theory.

The associative deprotonation pathway is the lowest energy pathway for 9 out of the 10

ligands. For the remaining ligand, the associative I dissociation pathway is the lowest in

energy. This ligand contains a BINOL structure and is the only ligand with a -2 charge,

therefore, ligands with a -2 charge likely proceed with dissociation of the iodide before

deprotonation. This is likely due to the large build-up of negative charge on the copper

centre if the nucleophile is deprotonated before the iodide dissociates, resulting in a net

-3 charge (Cu(I)). For ligands with a charge of +1, 0 and -1, deprotonation of the nucle-

ophiles is favoured before iodide dissociation. This is likely due to coordination promoting

the deprotonation of the nucleophile and the ability of copper the stabilise the additional
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negative charge on the nitrogen.

In all cases, ligand exchange does not proceed via a high-energy transition state. The

process is either energetically favourable (∆G < 0 kcalmol−1) or proceeds through a low

energy intermediate (∆G < 10 kcalmol−1). This observation is consistent across both

the B97-3c and DLPNO-CCSD(T) calculations. This verifies that the ligand exchange be-

tween iodide and the nucleophile to generate the active catalytic species is not the rate-

determining step of the reaction and therefore, does not need to be modelled to predict

activity.

4.2.2 Analysis of Literature Ligands

The literature ligand set (ligands_lit_set) was analysed to identify the most common struc-

tural motifs in frequently used ligands in the Ullmann-Goldberg reaction. Due to the low

complex stability in the Ullmann-Goldberg reaction, only bidentate ligands were analysed

due to the additional stability from the chelate effect. The majority of bidentate ligands

are N N, O O or N O ligands, with only 7% containing a coordinating sulfur or a phos-

phate group. Nitrogen-containing functional groups are the most common with amines,

amides, imines and pyridines making up the majority of coordinating functional groups,

especially in cases where both coordinating functional groups are identical. A summary of

the coordinating functional groups present in ligands_lit_set is shown in Table 4.1.
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Table 4.1: Frequency of functional groups which coordinate to the copper centre in the
ligands_lit_set for bidentate ligands only. 1 group represents only one of the two coordi-
nating functional groups, 2 groups are both functional groups.

Functional Group Frequency 1 Group 2 Groups

alcohol 22 6 8
aldehyde 1 1 0
amide (N) 51 33 9
amide (O) 38 38 0
amine 138 48 45
carbene 7 1 3
carboxylic acid 41 39 1
ester 4 4 0
ether 1 1 0
hydrazine 13 11 1
imidazole 5 1 2
imine 41 13 14
indole 4 2 1
ketone 24 8 8
nitrile 2 0 1
N-oxide 15 13 1
oxime 10 6 2
phenol 30 24 3
phosphate 2 2 0
phosphine 12 4 4
phosphine oxide 2 2 0
pyrazole 3 1 1
pyridine 56 30 13
pyrimidine 1 1 0
pyrrole 26 24 1
selenophene 1 1 0
tetrazole 1 1 0
thiol 2 2 0
thiophene 2 2 0
thiophenol 1 1 0
triazole 1 1 0

Importantly, 67% of the bidentate ligand contain a 2-atom bridge, 26% a 3-atom bridge,

and 3% a 4-atom bridge. Given the dominance of bidentate ligands with two atoms bridges,

they were selected as the preferred mode of coordination for the ligand search.
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Table 4.2: Number of bridging atoms between the ligand coordinating atoms for the lig-
ands in the ligands_lit_set.

Number of
Bridging Atoms

Frequency

1 2
2 187
3 73
4 9
5+ 7

A ligand with a 2 atoms bridge and second-row donor atoms, i.e. TMPHEN, was selected

for generating the template for the transition states which would be employed in the ligand

search. TMPHEN was also selected due to its limited conformational flexibility, enabling

easier identification of transition states, while still being relatively bulky, due to the methyl

groups, to provide some steric bulk around the copper centre. TMPHEN is also commonly

used in the literature so the presence of the transition states is highly likely.

Figure 4.3: Chemical structure of TMPHEN.

4.2.3 Ligand Discovery

Ligands for amine and amide nucleophiles, the two most common coupling partners, were

explored. Piperidine (PIP) and 2-pyrrolidinone (PYR) were selected as coupling part-

ners in order to minimise conformational flexibility in the organometallic intermediates

and transition states (Figure 4.9). The two non-radical-based mechanisms, oxidative-

addition/reductive-elimination (TSOA) and sigma metathesis (TSSig) were used to cal-

culate the activity of the ligands. Both mechanisms only contain closed-shell transition

metal complexes. Radical mechanisms were not included due to the difficulty of mod-

elling open-shell transition metal complexes in a high-throughput manner. For both nu-

cleophiles, the TSOA and TSSig transition states were generated using TMPHEN as the

ligand, and iodobenzene as the aryl halide. GFN2-xTB was used to identify the transition
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states as it’s the same level of theory as the high-throughput computational workflow, en-

suring the reference structures are as close to the transition state as possible. The structure

was optimised to a transition state and the imaginary frequency was checked for the cor-

rect vibrational mode. These transition states were used as reference structures to gener-

ate catalophores in CSD-CrossMiner to identify potential ligands from the CSD. Reference

structures were named Pip_TSOA_ref and Pip_TSSig_ref for the TSOA and TSSig transi-

tion states for piperidine and Pyr_TSOA_ref and Pyr_TSSig_ref for the TSOA and TSSig

transition states for 2-pyrrolidinone.

As both pathways need to be compared, the same ligand set is required for both pathways.

Therefore, the more sterically demanding TSOA reference structure was used to generate

the catalophores. The less sterically demanding TSSig reference structures will yield a

higher number of potential ligands, of which a high number will fail due to steric clashes

during the generation of the TSOA starting structure. A summary of the catalophore gen-

eration process for both nucleophiles is shown in Figure 4.4.

Figure 4.4: Workflow for the generation of catalophores for the Ullmann-Goldberg reac-
tion with a piperidine (PIP) nucleophile and a 2-pyrrolidinone (PYR) nucleophile to yield
the datasets ligands_CSD_Pip_set and ligands_CSD_Pyr_set respectively.

4.2.3.1 Ligand Discovery for Amine Nucleophiles

The Pip_TSOA_ref reference structure (Figure 4.5a) was imported into CSD-CrossMiner

and catsd_coordinating_atom_general features were placed on each TMPHEN nitrogen

atom and projected onto the copper atom with a tolerance of 0.75 Å. A bridge of two
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Scheme 18: Reaction overview for the Ullmann-Goldberg reaction studied using an amine
nucleophile (piperidine).

heavy_atom features between the two nitrogens was placed on the two bridging carbon

atoms, with a tolerance of 0.75 Å. A tolerance of 0.75 Å was chosen to define a two-atom

bridge while also allowing sufficient flexibility for a three-atom bridge. The features were

constrained to be intramolecular. The substrate sites were defined by placing excluded vol-

ume features on each atom of piperidine and iodobenzene with a tolerance equal to the van

der Waals radii of the base atom (H = 1.20 Å, C = 1.77 Å, N = 1.66 Å and I = 2.04 Å).204

A smaller tolerance of 1.5 Å was used for copper to allow for coordinating atoms to occupy

the space around the copper, while also preventing ligand atoms from occupying the space

of the metal. Thus, the created pocket represents the space where both substrates occupy

in the transition state of the RDS of the reaction, with soft tolerance allowing the vdW

radii of atoms to overlap within the excluded substrate cavity, to allow for variations in in-

dividual transition states with different ligands and substrates. Ligands which pre-arrange

in this manner will more likely favour the required geometry of the transition state. The

catalophore was saved as a .cm file (Figure 4.6).

(a) TSOA Core (b) TSSig Core

Figure 4.5: Transition state cores for TSOA and TSSig for piperidine. Cores were used to
generate the catalophore and as a template for structure generation.

The catalophore searches were conducted using the CSD-PythonAPI with a maximum
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molecular weight of 500 Da, a maximum root-mean-square-deviation (RMSD) in geom-

etry between catalophore and the hit of 1,205,206 with Br, Cl, I, Li, Na, K, Ca, Mg, Be and

transition metals excluded.93 Only organic structures were included in the search by set-

ting is_organic to True. SMILES code matching was used to remove duplicate structures.

3D structures were cleaned by assigning all unknown bond types, adding all missing hy-

drogens and setting all formal charges.

Figure 4.6: Catalphore used for the CSD-CrossMiner search of the CSD the piperidine
nucleophile.

The catalophore search resulted in 26022 total hits, 14483 of which were unique. 27 hits

failed due, likely due to issues with the data contained in the CSD and how it is accessed

through the Pharmacophore API in the CSD-Python API. Indexes of the coordinating atoms

were automatically identified from the hit structure by matching the catsd_coordinating_-

atom_general feature, used to define the coordinating atoms, to the base atom and exported

for use in structure generation. A molSimplify .dict file containing all of the relevant data

required to use the 3D structures to generate complexes using molSimplify was also gen-

erated. Structures were exported in .mol format. The resulting ligand set was named

ligands_CSD_PIP_set.
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4.2.3.2 Ligand Discovery for Amide Nucleophiles

Scheme 19: Reaction overview for the Ullmann-Goldberg reaction studied using an amide
nucleophile (2-pyrrolidinone).

The Pyr_TSOA_ref reference structure (Figure 4.7a) was imported into CSD-CrossMiner

and catsd_coordinating_atom_general features were placed on each TMPHEN nitrogen

atom and projected onto the copper atom with a tolerance of 0.75 Å. A bridge of two

heavy_atom features between the two nitrogens was placed on the two bridging carbon

atoms, with a tolerance of 0.75 Å. The features were constrained to be intramolecular.

The substrate sites were defined by placing excluded volume features on each atom of 2-

pyrrolidinone and iodobenzene with a tolerance equal to the van der Waals radii of the

base atom (H = 1.20 Å, C = 1.77 Å, N = 1.66 Å, O = 1.50 Å and I = 2.04 Å). A smaller

tolerance of 1.5 Å was used for copper to allow for coordinating atoms to occupy the space

around the copper, while also preventing ligand atoms from occupying the space of the

metal. The catalophore was saved as a .cm file (Figure 4.8).

(a) TSOA Core (b) TSSig Core

Figure 4.7: Transition state cores for TSOA and TSSig for 2-pyrrolidonone. Cores were
used to generate the catalophore and as a template for structure generation.

The catalophore searches were conducted using the CSD-PythonAPI with a maximum

molecular weight of 500 Da, a maximum root-mean-square-deviation (RMSD) in geom-

etry between catalophore and the hit of 1,205,206 with Br, Cl, I, Li, Na, K, Ca, Mg, Be and
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transition metals excluded.93 Only organic structures were included in the search by set-

ting is_organic to True. SMILES code matching was used to remove duplicate structures.

3D structures were cleaned by assigning all unknown bond types, adding all missing hy-

drogens and setting all formal charges.

Figure 4.8: Catalphore used for the CSD-CrossMiner search of the CSD for the 2-
pyrrolidinone nucleophile.

The catalophore search resulted in 33780 total hits, 18886 of which were unique. 37 hits

failed due, likely due to issues with the data contained in the CSD and how it is accessed

through the Pharmacophore API in the CSD-Python API. Indexes of the coordinating atoms

were automatically identified from the hit structure by matching the catsd_coordinating_-

atom_general feature, used to define the coordinating atoms, to the base atom and exported

for use in structure generation. A molSimplify .dict file containing all of the relevant data

required to use the 3D structures to generate complexes using molSimplify was also gen-

erated. Structures were exported in .mol format. The resulting ligand set was named

ligands_CSD_PYR_set.

4.2.4 Calculation of Activation Energies

Activation energies were calculated for a set of commonly used synthetic conditions.

Copper(I) iodide was used as the precatalyst, caesium carbonate as the base and N,N-

dimethylformamide (DMF) as the solvent. Two non-radical pathways were explored, ox-
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idative addition/reductive elimination, TSOA, and sigma metathesis, TSSig, (Figure 4.9).

Figure 4.9: The mechanisms of the Ullmann-Goldberg reaction explored, containing im-
portant intermediates and transition state structures.

Four complexes were generated for each pathway. The precatalyst after ligand exchange

and product complex, CuLI. The active catalytic species, containing one bidentate ligand

and the deprotonated nucleophile coupling partner, CuLNu. For the oxidative addition

pathway, the oxidative addition step is the rate-determining step, therefore only this tran-

sition state is generated. For the sigma metathesis pathway, only one transition state is

required. The stable intermediates, CuLI and CuLNu are common across both pathways,

therefore, only four complexes need to be generated for each ligand.

4.2.4.1 Ligand protonation state rules

As organic N, O and S based ligands often contain alpha hydrogens, the protonation state of

the ligand coordinating atoms needs to be considered. Protonation or deprotonation of the

ligand results in a different charge on the complex, electronic properties and differences in

geometries. The presence of a hydrogen atom will significantly alter the steric environment

around the copper due to the difference in steric bulk between sp2/trigonal planar and

sp3/tetrahedral nitrogen atoms. Deprotonation also influences bonding properties as a

free nitrogen lone pair in the p orbital of N− can provide significant pi donation to the

metal centre due to better orbital overlap with the copper d orbitals compared to neutral

tetrahedral nitrogen, where the lone pair is used in the Cu N σ-bond.
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Figure 4.10: Pi-donation of a full p-orbital with metal d-orbitals.

A set of ligand protonation state rules was generated via analysis of the protonation states

of common ligand coordinating functional groups in the Cambridge Structural Database.

The number of protonated and deprotonated ligands available for each functional group

was extracted for complexes with only one copper atom. The results are shown in Table

4.3.

Table 4.3: Protonation states of common ligand functional group from the Cambridge
Structural Database and their associated pKa range in DMSO.207

Functional Group Number of entries Unchanged Deprotonated pKa207

Amine 3793 3747 46 ∼40

Aniline 199 165 34 25–31

Hydrazine 102 101 1 25–29

Imine 218 215 3 ∼31

Amide 906 14 882 17–25

Carboxylic acid 4622 18 4604 9–13

Alcohol 1169 991 178 ∼30

Thiol 34 1 33 5–12

Phenol 2939 99 2840 10–19

Thiophenol 68 0 68 5–12

Phosphonic acid 209 4 205 ∼2

Nitrogen-based donors tend to keep their hydrogen atom, with amines, anilines, hydrazines

and imines all having a high ratio of protonated to deprotonated structures. The only ex-

ception is amides where the deprotonated donor is favoured due to resonance stabilisa-

tion of the negative charge with the oxygen atom. There are several exceptions where

there are other functional groups present in the ligand that are able to stabilise the gen-
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erated negative charge. Deprotonated ligands are also observed for carboxylic acids, phe-

nols and thiophenols, all of which possess a high degree of resonance stabilisation. Alco-

hols favour the protonated form upon complexion with copper, with a 9:1 ratio of proto-

nated:deprotonated structures, whereas thiols favour the deprotonated form, this is likely

due to the ‘soft’ diffuse nature of the sulfur atom. Phosphorous-containing O-donors also

show a high preference for deprotonation due to resonance. Analysis of functional group

pKa’s suggests that those functional groups with a pKa <∼25 in DMSO are deprotonated

upon complexation whereas those with a pKa >∼25 remain protonated (see reference for

a collection of pKa values).207 A set of deprotonation rules for forced hydrogen removal

was generated based on functional group SMILES strings (Table 4.4).

Table 4.4: SMILES strings and associated functional group for the protonation rules used
for structure generation.

Functional Group SMILES String

Amide O CN
Carboxylic Acid O CO
Aromatic nitrogen n
Amidine N CN
N-amino nN
Phenol Oc
Thiophenol Sc
Thiol SC
N-oxide ON
Aromatic N-oxide On
Sulphonic acid OS
N-Carbene NCN
Phosphonic OP

SMILES strings for commonly deprotonated groups such as N-oxides, sulphonic acids and

carbenes are included to remove any uncertainty due to implicit hydrogen atoms in the

SMILES string or for 3D structures which contain a protonated functional group. This set

of rules dictates automatic deprotonation of the ligand during complex generation using

molSimplify.

4.2.4.2 Complex Generation

Organometallic complexes were generated with the molSimplify Python toolkit as de-

scribed in Section 3.2.5. Intermediate structures, CuLI and CuLNu were generated using
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a copper oxidation state of (I), trigonal planar geometry and spin 1 (4s03d10). Nucleophile

structures were optimised separately using GFN2-xTB and supplied as an .xyz file. Ligands

were supplied using the .mol 3D structure retrieved from the CSD. The smart alignment

method (ligalign) was enabled to minimise steric interactions and the complex was opti-

mised using the universal force field before and after addition. Forced hydrogen removal

was used to deprotonate the amine/amide nucleophile, and automatic removal was applied

to the ligands using SMILES string matching with the deprotonation rules presented in Sec-

tion 4.2.4.1 by modification of the source code (described in Section 3.2.5.1). Only one

bidentate ligand was added to ensure a three-coordinate, trigonal planar geometry. These

structures were used as starting guesses for quantum mechanical geometry optimisation.

In order to automate the generation of transition states TSOA and TSSig, a different strat-

egy was employed. Reference structures, Pip_TSOA_ref , Pip_TSSig_ref , Pyr_TSOA_ref

and Pyr_TSSig_ref generated with TMPHEN were used as the core. The TMPHEN ligand

was substituted with the ligand of interest via ligand replacement (described in Section

3.2.5.2) using the same 3D structure from the CSD. An oxidation state of 0 was used (the

charge on the core) with spin 1. The smart alignment method (ligalign) was enabled to

minimise steric interactions and automatic hydrogen removal was applied to the ligands

using the same deprotonation rules. Complexes were then optimised with the custom

After-Core Constrained method using the Universal Force Field (UFF), where the transi-

tion state ‘core’ is locked and only the ligand is optimised to ensure the transition state

mode is preserved.

4.2.4.3 Tuning the Vetting Procedure

The automatic structure checking criteria, described in Section 3.2.4.1, were tuned to im-

prove the success rate of the automatic identification procedure. Intermediate structures,

CuLI and CuLpip/CuLpyr were confirmed to be at a minimum (zero imaginary frequen-

cies). For transition states the structure was confirmed to have one imaginary frequency. A

cutoff value of -40 cm−1 was used for the imaginary frequency, as any imaginary frequency

between -40 and 0 could be considered to be numerical noise. The C I and Cu C bonds

for TSOA, and the C N bond for TSSig, were checked to be at an intermediary length.

Covalent radii for Cu, N, C and I were used to determine the default bond length.208

145



4.2. Results and Discussion Chapter 4: Application of CatSD

As the C I and Cu C bonds in the oxidative addition transition state are not a proper bond

stretch and possess a bending component the value of S0 had to be tuned. The value of S0

was decreased in increments of 0.05 until there was a decrease in accuracy. 198 transition

states from the ligands_CSD_PIP_set_TSOA were used as a test set.

Table 4.5: Successful identification of a correct transition state with varying values of S0
for 198 ligands in the TSOA_PIP dataset. The ‘Not used’ entry only uses the magnitude of
the imaginary frequency to determine if the transition state is correct.

S0
Correctly Identified

Transition States
Incorrectly Identified

Transition States
Success Rate (%)

Not used 175 23 88.4
0.20 197 1 99.4
0.25 180 18 90.9
0.30 142 56 71.7
0.33 114 84 57.6

The success rates for a range of values of S0 are shown in Table 4.5. The default value,

0.33, is not sufficient for the oxidative addition transition state, successfully identifying

only 57.6% of the transition states correctly. Successful identification of correct transition

states improved by decreasing the value of S0 until a value of 0.20 (99.4%). Decreasing

the value of S0 below 0.20 resulted in a large increase in false positives. Therefore, 0.20

was used as the value of S0 for the vetting of all oxidative addition transition states. As

the C N bond in the sigma metathesis transition state can be considered a proper stretch

along the C N bond the default value of 0.33 was used for S0.
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4.2.4.4 Computational Calculations

Figure 4.11: Overview of the workflow presented in Chapter 3 for the high-throughput
calculation of activation energies.

All structures were optimised using the procedure described in Chapter 3, which is sum-

marised in Figure 4.11. The complexes were generated using molSimplify and pre-

optimised with GFN2-xTB using the TightOpt optimisation criteria. For transition states

the bond lengths and bond angles of the atoms involved in the imaginary frequency were

frozen. The C I, Cu I and Cu C bonds and I Cu C bond angle were frozen for TSOA.

The C N and C I bond lengths and N C I bond angle were frozen for TSSig. Transition

states were optimised with GFN2-xTB with recalculation of the hessian every five optimi-

sation steps. The presence of the correct transition state is verified using the automated

structure validation criteria (Section 3.2.4.1). Single point energies were calculated at

the B97-3c level of theory using the TightSCF SCF convergence criteria and the SlowConv

convergence method. No conformational search was undertaken as component structures

are all taken from 3D X-ray structures (ligands) or optimised minima (nucleophiles). This

allows for a consistent comparison between ligand conformations. DMF was used as the

solvent for all calculations.

The piperidine pre-optimisation calculations with GFN2-xTB were performed in the stan-

dalone xtb 6.3.3 program. For the 2-pyrrolidinone, all GFN2-xTB pre-optimisation calcu-
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lations are performed in ORCA interfaced with xtb 6.3.3 to ensure consistency with the

optimiser used. ORCA interfaced with xtb 6.3.3 is used for all transition state optimisa-

tions for both nucleophiles. Using the same optimiser for both the pre-optimisation and

transition state optimisation ensures that in the starting structure for the transition state

optimisation, the ligand is as close to a minimum as possible within the optimiser. Using

an external optimiser can introduce slight negative frequencies reducing the reliability and

increasing the computational time required to reach the saddle point.

Additives (e.g. base, starting materials and products) were calculated separately. Struc-

tures were optimised at the GFN2-xTB level of theory and single-point energies were cal-

culated at the B97-3c level of theory. DMF was used as the solvent in all cases. Gibbs free

energies were calculated and stored in a database.

4.2.5 Data Analysis

4.2.5.1 Success Rates

Initial structure generation resulted in successful complex generation for 14451 ligands

with only 32 ligands failing for the ligands_CSD_PIP_set dataset. For ligands_CSD_PYR_-

set, correct complexes were generated for 18848 ligands with only 38 ligands failing. The

generation of initial structures had a success rate of 99.7% for both datasets. This demon-

strates the applicability of the catalophore search term for finding suitable candidate ligand

structures which fit around the metal centre for a specific set of substrates.

When the computational workflow was applied to ligands_CSD_PIP_set and ligands_-

CSD_PYR_set, a significant decrease in optimisation success rates were observed for both

stable intermediates and transition states. While these are expected due to the level of

complexity in these ligand candidates, the success rate of finding and optimising TSOA

(33%) was particularly low using ligands_CSD_PIP_set (Table 4.6). However, this result

may simply reflect that many potential ligands are not suitable for the Ullmann-Golberg

reaction, as suggested by the experimental literature, or that oxidative addition is not the

correct mechanism for the majority of ligands or this set of substrates.
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Table 4.6: Structure generation and optimisation (inside bracket) success rates for the
high-throughput calculations for both nucleophiles.

Structure
ligands_lit_set

Bidentate with Pip only
ligands_CSD_Pip_set ligands_CSD_Pyr_set

CuLI 98(93) 99(85) 99(84)
CuLpip/CuLpyr 98(93) 99(77) 99(89)
TSOA 97(88) 99(33) 99(61)
TSSig 99(94) 99(85) 99(83)

The most common cause for intermediate structure failing is the structures having small

imaginary frequencies (-40 < x < 0 cm−1). This could be improved by using tighter con-

vergence criteria, however, as the Tight convergence criteria was already in use, increasing

the criteria to VeryTight is a significant increase in computational time to improve only 7%

of structures. Therefore, these structures were not rerun. Another approach to improving

the success rate is using an iterative optimisation method, whereby if a negative frequency

is identified, the structure is distorted along the imaginary mode and reoptimised. How-

ever, the iterative optimisation method in ORCA is not compatible with GFNx-xTB methods

at the time of development. When this becomes available it should provide increased reli-

ability for non-transition state structures.

The improvement in success rate for the CuLNu intermediate from 77% to 89% is likely

due to the change to using the ORCA optimiser for the optimisation. As frequency calcula-

tions are all calculated in ORCA, it is likely that the difference in optimiser resulted in small

imaginary frequencies in ORCA. 12.8% of all ligands fail for both transition states for the

ligands_CSD_PIP_set. A similar value is observed for ligands_CSD_PYR_set with 11.3%

of ligands failing for both transition states. This suggests that approx. 12% of ligands in

both datasets are unsuitable as ligands in the Ullmann-Goldberg reaction. The oxidative

addition transition state has a much lower success rate than the sigma metathesis transi-

tion state for piperidine with 9663 and 2215 ligands failing respectively for ligands_CSD_-

PIP_set. The increase in TSOA success rate from 33% to 61% for ligands_CSD_PYR_set

suggests that the oxidative addition transition state is more viable with an amide nucle-

ophile compared to an amine. A small percentage of improvement may be attributed to the

change in pre-optimisation from xtb to ORCA however, the introduction of several small

imaginary frequencies is unlikely to cause such a large increase in success rate. The sigma
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metathesis transition state has a much higher success rate than the oxidative addition tran-

sition state across both datasets. This suggests that the sigma metathesis transition state is

a more viable transition state for the Ullmann-Goldberg reaction.

4.2.5.2 Computational Time

Structures were generated on a 2-core laptop in series taking 3.9 days for the generation

of 57,696 structures for ligands_CSD_PIP_set and 5.7 days for the generation of 75244

structures for ligands_CSD_PYR_set. The average time taken to generate one complex is

6 seconds. The use of parallelisation should dramatically speed up structure generation if

available.

The computational time for each calculation was extracted from the output files and con-

verted into a single-core time. The real-world runtime on a high-performance computer

using 4 cores and 1GB of RAM per calculation for ligands_CSD_PIP_set is ∼6 weeks for

14483 ligands. The comparative time for ligands_CSD_PYR_set is ∼4 weeks for 18886

ligands. The breakdown of the time taken per complex for each ligand is shown in Figure

4.12.

(a) ligands_CSD_PIP_set (b) ligands_CSD_PYR_set

Figure 4.12: Breakdown of computational time for each complex in the mechanistic path-
way as a percentage of the total time for all calculations.

Transition state calculations compose the majority of the computational resources required

per ligand, constituting 90.2% of the total computational time for ligands_CSD_PIP_set

and 85.8% of the total computational time for ligands_CSD_PYR_set. The proportion of
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time taken for the TSOA calculation decreases for the ligands_CSD_PYR_set dataset. This

is likely due to the increased success rate of the TSOA calculations. Optimisations that do

not converge to the correct transition state often take much longer due to the increased

number of steps required to move away from the starting structure to an incorrect transition

state, especially with frequent recalculation of the hessian (∼20 minutes per recalculation).

A full breakdown of the single-core computational time for each calculation, as well as the

average time in hours for each ligand, is shown in Table 4.7.

Table 4.7: Breakdown of single-core computational time in hours for each calculation
for all ligands in the ligands_CSD_PIP_set and ligands_CSD_PYR_set datasets. All values
except for the average are reported as the sum for all ligands.

Structure
Single-Core Computational Time (h)

Preoptimisation Optimisation Frequency Energy Total
Average

(per ligand)

ligands_CSD_PIP_set

CuLI - 66 3176 3068 6310 0.44
CuLpip - 169 5058 4839 10067 0.70
TSOA 224 102747 7175 8189 118336 8.20
TSSig 210 30619 7155 7802 45787 3.17

ligands_CSD_PYR_set

CuLI - 1173 4359 4237 9789 0.52
CuLpyr - 1693 6109 5509 13312 0.71
TSOA 1946 67266 8737 9212 87162 4.63
TSSig 2513 30740 8773 10439 52466 2.79

The average time for all calculations per ligand is 12.6h for ligands_CSD_PIP_set and 8.7h

for ligands_CSD_PYR_set. This is a similar time scale to an analogous experimental reac-

tion, not accounting for the synthesis of the starting materials or ligands. All intermediate

structures take less than 1h per ligand with the CuLI complex taking approximately 30

minutes per ligand, with the majority of computational time taken by the frequency and

energy calculations. Frequency and energy calculations scale well to the transition states

taking a similar time scale when accounting for the added number of atoms in the calcu-

lation. The limiting factor in regards to computational time for the transition states is the

transition state optimisation calculation taking 2.9-4.3× longer for TSSig and 7.7-14.3×
longer for TSOA than the frequency calculation. Across both datasets, the TSOA calcu-

lations take longer than TSSig. This is likely due to the potential energy surface being

shallow, taking more optimisation steps to reach the transition state. It could also be due

to the increased failure rate of these calculations.

151



4.2. Results and Discussion Chapter 4: Application of CatSD

Moving from preoptimisation in xtb to ORCA shows a small improvement in the average

computational time for the TSSig transition state from 3.17h to 2.79h per ligand. The total

computational time stays almost the same for the transition state optimisation step but

with ∼4000 more ligands calculated. A significant improvement is seen for TSOA taking

0.65× the computational time for the transition state optimisation step for 1.3× more

ligands. Per ligand, the time taken reduces from 8.2h to 4.6h saving 3.6h per ligand. While

the ORCA optimiser takes almost 6.5× as long for the preoptimisation step (accounting

for the increased number of calculations), the total time saved from the transition state

optimisation is large (66,300h for TSOA, 9,000h for TSSig). This demonstrates that the

ORCA optimiser is superior for providing a better starting structure for the transition state

optimisation, reducing the total number of steps needed to reach the transition state.

4.2.5.3 Activation Energies

The activation energies for all ligands in the ligands_CSD_PIP_set and ligands_CSD_-

PYR_set datasets were calculated automatically for both pathways using Python. Additive

energies were taken from the database of additive energies calculated previously. Each

dataset was filtered to remove ligands with incorrect structures (e.g. incorrect transition

state or non-minimum intermediate) and separated into separate datasets for TSOA and

TSSig. This resulted in four datasets, ligands_CSD_PIP_set_TSOA, ligands_CSD_PYR_-

set_TSOA, ligands_CSD_PIP_set_TSSig and ligands_CSD_PYR_set_TSSig. The activation

energy distributions for each dataset are shown in Figures 4.13 and 4.14. Distributions

were truncated at low and high activation energies for clarity. Full plots are available in

Appendix 4.A.3.
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(a) TSOA

(b) TSSig

Figure 4.13: Distribution of activation energies for both the TSOA and TSSig transition
state for piperidine. Only -20 to 50 kcal mol−1 is shown for TSOA and -10 to 60 kcal mol−1

for TSSig.

The activation energy distributions for ligands_CSD_PIP_set are similar across both tran-

sition states with an average ∆G‡ of ∼18 kcalmol−1, with the majority of ligands lying

between 10 and 30 kcal mol−1. The TSOA transition state has a significant number of

ligands with a ∆G‡ < 0 kcal mol−1. This suggests that the oxidative addition and sigma

metathesis pathways are very close in energy for an amine nucleophile.
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(a) TSOA

(b) TSSig

Figure 4.14: Distribution of activation energies for both the TSOA and TSSig transi-
tion state for 2-pyrrolidinone. Only -20 to 60 kcalmol−1 is shown for TSOA and 0 to
80 kcalmol−1 for TSSig.

Unlike piperidine, the activation energy distributions for ligands_CSD_PYR_set are differ-

ent between transition states. The ligands_CSD_PYR_set_TSOA dataset has an average

∆G‡ of ∼18 kcal mol−1, whereas the ligands_CSD_PYR_set_TSSig datasets has a higher

average ∆G‡ of ∼38 kcalmol−1. This suggests for an amide nucleophile the oxidative ad-

dition pathway is energetically more favourable than the sigma metathesis pathway. As

with piperidine the TSOA transition state has a significant number of ligands with a ∆G‡

< 0 kcalmol−1. Manual inspection of several TSOA transition states with negative ∆G‡

across both nucleophiles identified that in most cases a hydrogen atom was transferred be-

tween the ligand and the nucleophile nitrogen atom or there is hydrogen bonding present
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between ligand and the nucleophile nitrogen atom (Figure 4.17). All negative activation

energy TSOA transition states were analysed to determine how many contained a proto-

nated nucleophile nitrogen atom. The results are shown in Figures 4.15 and 4.16 for

piperidine and 2-pyrrolidinone respectively.

Figure 4.15: Percentage of TSOA structures with a protonated piperidine nitrogen in lig-
ands_CSD_PIP_set_TSOA. Transition states are binned by activation energy.

Figure 4.16: Percentage of TSOA structures with a protonated 2-pyrrolidinone nitrogen
in ligands_CSD_PYR_set_TSOA. Transition states are binned by activation energy.

The majority of structures below 0 kcal mol−1 contain a protonated nucleophile for both

datasets. Lower activation energies contain a higher percentage of protonated structures.

This suggests that protonation of the nucleophile stabilises the oxidative addition step.

However, protonation of the nucleophile inhibits the subsequent reductive elimination step,

meaning these structures could be deemed incorrect as the protonation state of the ligand is

incorrect. The incorrect protonation state results in a transfer of the hydrogen atom from
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the ligand-coordinating atom to the nucleophile nitrogen, whereas in basic solution the

hydrogen would have been deprotonated by the base. There are multiple ligands in both

datasets that have a negative activation energy and contain a deprotonated nucleophile.

(a) Hydrogen Atom Transfer (b) Hydrogen Bonding

Figure 4.17: Structural features resulting in negative calculated activation energies.

4.2.5.4 Validation of Negative Activation Energies

The ligands with negative activation energies were validated by recalculating the activation

energy with a higher-level method. Activation energies were recalculated at the DLPNO-

CCSD(T)/def2-TZVPP level of theory and compared with the B97-3c activation energy for

the ligands_CSD_PIP_set dataset. The results are shown in Figures 4.18 and 4.19.
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The majority of activation energies remain negative with only 28 activation energies hav-

ing positive activation energies at the DLPNO-CCSD(T)/def2-TZVPP level of theory. Of

these 28 structures, the majority contain 5-membered O Cu O coordinating rings or a

4-membered coordination geometry. This suggests that B97-3c is poor at calculating ac-

curate energies for these motifs. This is consistent with the previous observation during

benchmarking where the same structural motifs resulted in poor energies compared to

DLPNO-CCSD(T)/def2-TZVPP (see Section 3.2.7.1). Of the remaining structures, all acti-

vation energies remain negative. This verifies that protonation of the nucleophile or hydro-

gen bonding between the ligand and the nucleophile can stabilise the oxidative addition

transition state. Only 27 ligands with negative activation energies were deemed correct

upon manual inspection.

Figure 4.19: Comparison of activation energies calculated with B97-3c (orange) and
DLPNO-CCSD(T)/def2-TZVPP (blue) for the TSSig transition state with negative B97-
3c activation energies. GUTZAW was excluded for clarity. (B97-3c = -267.3 kcalmol−1,
DLPNO-CCSD(T) = -251.3 kcal mol−1).

For TSSig three structures, BANVUK, COJMUJ and SINZEW, had incorrect energies at

the B97-3c level of theory. Recalculation at the DLPNO-CCSD(T)/def2-TZVPP level of the-

ory resulted in reasonable positive activation energies of 32.8 kcalmol−1, 9.9 kcal mol−1

and 19.3 kcal mol−1 respectively. Five ligands had calculated activation energies <-1000

kcalmol−1 caused by errors in calculations which were also observed in the DLPNO-

CCSD(T) calculations. All five of these structures were deemed incorrect and therefore

discarded. Ten ligands had a positive activation energy at the DLPNO-CCSD(T)/def2-
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TZVPP level of theory. As with the oxidative addition transition state structures contained

5-membered O Cu O coordinating rings or 4-membered coordination geometry. 16 lig-

ands had negative activation energies. These structures contain unusual coordination ge-

ometry, hydrogen bonding, protonation of the nucleophile or incorrect structures which

were not identified during structure checking.

4.2.6 Experimental Validation

The experimental work presented in this section was performed by our Master’s student

Zeshen Wang (ligand synthesis) and Dr Tom Nicholls (ligand testing) from the Willans

group at the University of Leeds.

To validate the predictions of the computational workflow, 15 ligands were chosen to

test experimentally (Figure 4.20). Ligands were chosen with activation energies <25

kcalmol−1 for both transition states. Ligands were also chosen based on their commercial

availability, if they were not commercially available the ligand must be easily synthesizable.

Ligands L1-L8 were synthesised in-house, with L2-L4 being easily accessible analogues of

L1 with varying electronic properties on the imine aryl group. Ligands L9-L15 are commer-

cially available with L13 and L14 (1,10-phenanthroline and 2-isobutyrylcyclohexanone)

being commonly used literature ligands for comparison.
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Figure 4.20: Structures of the ligands tested experimentally and their CSD identifiers.

All ligands were tested with the same set of reaction conditions as those used in the compu-

tational calculations. Piperidine was used as the amine coupling partner, caesium carbon-

ate as the base, and DMF as the solvent. The aryl halide was changed from iodobenzene

to 4-iodoanisole to enable easier analysis via NMR.
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4.2.6.1 Activation Energies vs Yield

Activation energies were recalculated at 70° to match the experimental conditions. Cal-

culated activation energies for both transition states along with experimental yields are

shown in Table 4.8.

Table 4.8: Experimentally determined yields and calculated activation energies for the
TSOA and TSSig transition states at both 25°C and 70°C.

Ligand
Average

Yield (%)

Calculated
Activation

Energy
TSOA at 25°C
(kcalmol−1)

Calculated
Activation

Energy
TSOA at 70°C
(kcalmol−1)

Calculated
Activation

Energy
TSSig at 25°C
(kcalmol−1)

Calculated
Activation

Energy
TSSig at 70°C
(kcalmol−1)

L1 50 No TS No TS 21.5 23.9

L2 14 No TS No TS 22.2 24.5

L3 78 No TS No TS 22.8 25.2

L4 67 22.5 24.8 22.1 24.6

L5 2 21.3 23.7 14.9 17.3

L6 1 18.6 21.0 17.5 19.9

L7 7 22.4 26.3 13.1 16.9

L8 3 20.5 25.4 12.3 17.2

L9 4 19.9 23.8 13.8 17.7

L10 1 22.5 24.8 22.1 21.3

L11 7 23.8 26.0 20.7 23.0

L12 7 23.0 25.3 19.3 21.7

L13 2 18.9 21.3 17.5 19.9

L14 100 19.9 22.2 15.8 18.1

L15 5 16.5 21.4 11.9 16.8

No trend is observed between calculated activation energies and experimental yield. Lig-

ands with low activation energies, e.g. L6 and L15, have very low yields. Whereas ligands

with high yields, L1-L4 and L14 have comparatively high activation energies. The same

trend is observed across both transition states. Surprisingly L13, a commonly used litera-

ture ligand had a yield of only 2% in these reaction conditions. Ligands L1-L4 show mod-

erate activity, these ligands have not been reported previously as ligands in the Ullmann-

Goldberg reaction. The lack of identifiable oxidative addition transition states, even with

enhanced criteria, suggests that the reaction proceeds via a sigma metathesis pathway for
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this class of ligands. However, radical mechanisms may be possible but were not explored.

Experimental yield suggests that electron-withdrawing substituents on the imine increase

the activity of this class of ligands, with L1, L3 and L4 showing reasonable yields with

electron-withdrawing R groups. Using an electron-donating PhOMe group, L2 shows a

poor yield of only 14%. Successful identification of these ligands verifies that the data-

mining approach is able to identify novel ligands in chemical databases. However, the

interpretation of the output of the computational workflow is still not consistent as the ac-

tivation energy does not correlate to experimental yield. This suggests that other aspects

are contributing to yield apart from activation energy. This is consistent with the literature

where deactivation pathways and ligand stability are key factors in catalyst activity. It may

also be the case that the reaction is proceeding via a radical-based mechanism which was

not explored in this work.

4.2.6.2 Deactivation Pathways

4.2.6.2.1 Disproportionation

2 CuI
DMF

Cu0 + CuII (4.12)

Scheme 20: Disproportionation of copper(I) to copper(0) and copper(II) in DMF.

Copper(I) is known to disproportionate in solution to copper(0) and copper(II) deactivat-

ing the copper in the catalyst (Scheme 20). The Gibbs free energy of disproportionation

was calculated at the B97-3c, TPSSh/def2-TZVP and DLPNO-CCSD(T)/def2-TZVPP levels

of theory with DMF as the solvent using the SMD solvation model. Calculated energies are

shown in Table 4.9.

Table 4.9: Gibbs free energies for the disproportionate of copper(I) to copper(0) and
copper(II) in DMF. Gibbs free energies were calculated at the B97-3c, TPSSh/def2-TZVP
and DLPNO-CCSD(T)/def2-TZVPP levels of theory.

Method ∆G (kcalmol−1)

B97-3c 140
TPSSh/def2-TZVP 119
DLPNO-CCSD(T)/def2-TZVPP 124

All three methods suggest that the disproportionation of copper(I) to copper(0) and cop-
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per(II) in DMF is energetically unfavourable, suggesting that Cu(I) ions are stable in DMF

and are not causing catalyst deactivation. However, this is a crude estimation as only

an implicit solvent model was used which does not model solvent interactions, especially

around ions, correctly. It also does not take into account the conversion of copper(0) from

a solvated ion into a solid, which crashes out of solution.

4.2.6.2.2 Ligand Exchange

Figure 4.21: Equilibrium between the active catalytic species, CuLpip and inactive species,
[CuL2][Cupip2].

The main deactivation pathway, identified by Hartwig, was the equilibrium between the

active catalyst state and a dimeric [CuL2][CuNu2] species.182 The Gibbs free energy for the

equilibrium (Figure 4.21) was calculated for all 15 experimentally tested ligands at the

GFN2-xTB//B97-3c and TPSSh/def2-TZVP levels of theory in DMF. The results are shown

in Table 4.10.

Table 4.10: Gibbs free energy of ligand exchange for the equilibrium between the active
catalytic species, CuLpip and inactive species, [CuL2][Cupip2]. Gibbs free energies are
calculated at the GFN2-xTB//B97-3c and TPSSh/def2-TZVP levels of theory.

Ligand CSD_Refcode
Ligand
Charge

Average
Yield (%)

k (GFN2-xTB//B97-3c)
(kcalmol−1)

k (TPSSh/def2-TZVP)
(kcalmol−1)

L1 CEJVOF −2 50 −7.6 −5.2
L2 - −2 14 −8.0 −0.4
L3 - −2 78 −7.7 2.8
L4 - −2 67 −6.0 −4.9
L5 TOXZOX −1 2 3.6 13.5
L6 ATUNEJ 0 1 −3.9 3.2
L7 BESLOC −1 7 3.6 4.3
L8 UNUWEG −1 3 7.5 3.1
L9 ZZZLWW03 −1 4 4.1 1.0

L10 SRQUAL −1 1 −0.7 5.8
L11 EXIQOS −1 7 −7.3 −6.8
L12 HIHPIY −1 7 1.6 4.6
L13 WOLHOW 0 2 0.1 3.6
L14 L14 −1 100 0.1 7.3
L15 TERRUD −1 5 20.4 −0.5
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There is no clear trend between equilibrium energy and experimental yield for both GFN2-

xTB//B97-3c and TPSSh/def2-TZVP. L1-L4 show negative values of k, which favour the

formation of the inactive species. However, these ligands show good yields compared to

the other ligands tested. EXIQOS has a similar value of k, however only has a 7% yield.

L14, which shows the best yield of all the tested ligands only has a k value of 0.1 and 7.3

kcalmol−1 for B97-3c and TPSSh respectively. Ligands with a similar value of k, L5, L12

and L13, have poor yields in comparison. Ligands with large positive values of k, which

favour the formation of the active catalytic species, also have poor yields experimentally.

Ligand formal charge is also a poor predictor of activity. L1-L4 have a charge of -2 and

show good yields compared to ligands with smaller formal charges. However, the best-

performing ligand, L14, has a formal charge of -1. In comparison to other ligands with a

-1 charge, L14 is an outlier with all other ligands performing poorly.

The poor correlation of calculated vs experimental results suggests that the experimental

activity of ligands in the Ullmann-Goldberg reaction is a complex mixture of several dif-

ferent factors. This is supported by the lack of ligand understanding despite the amount

of literature on mechanistic understanding and deactivation pathways for the reaction.

This demonstrates the importance of mechanistic understanding in the guided design of

homogeneous catalysis. The underlying chemical understanding is required to guide the

targeted identification of new catalytic systems, otherwise, the chance of success is low.

The availability of suitable tools to aid the design and identification of novel ligands and

catalysts is important in streamlining the process of catalyst design.

4.3 Conclusions

CatSD and the developed high-throughput computational workflow were used to identify

and predict the activity of ligands identified from the Cambridge Structural Database. The

Ullmann-Goldberg reaction was used as a test reaction using both an amine and amide

nucleophile. Over 10,000 ligands were identified from the CSD for both nucleophiles. Two

mechanistic pathways, oxidative addition and sigma metathesis were explored. The high-

throughput computational workflow showed excellent performance for the generation of

complexes of interest and good performance for the calculation of transition states and

activation energies. Success rates were limited by the general nature of the search and the
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unknown mechanistic pathway. CSD searches identified ∼ 12% unusable ligands, where

both transition states failed.

Analysis of activation energies shows that for an amine nucleophile, both transition states

are similar in energy. However, for an amide nucleophile, the sigma metathesis pathway

is higher in energy. 15 ligands were identified and tested experimentally. Experimental

validation identified a new class of ligands that have previously not been reported in the

literature and the electronic effects of substituents for these ligands were explored. No di-

rect link between activation energy and experimental yield was found. Disproportionation

and deactivation energies were also explored with no direct link found between equilib-

rium energies and experimental yield.

In conclusion, the activity of ligands in the Ullmann-Goldberg reaction is likely a com-

plex mixture of several different processes, involving mechanistic pathways, dispropor-

tionation and complex deactivation pathways. The understanding of chemical processes is

paramount to successful ligand design for homogeneous catalysis.

4.4 Methodology

4.4.1 Experimental Methodology

All solvents and reagents were purchased from commercial sources. Solvents were HPLC

standard and purchased from Sigma-Aldrich. Chemicals were purchased from Sigma-

Aldrich (Dorset, UK) unless stated otherwise. Petroleum ether 40-60 °C was used unless

stated otherwise. Nuclear Magnetic Resonance (NMR) spectra were recorded for 1H at

400 MHz, 13C at 101 MHz and 19F at 376 MHz on a Bruker Ascend™ 400 spectrometer.

Bruker Ascend™ 400 spectrometer was equipped with a multinuclear inverse probe for one-

dimensional 1H and two-dimensional heteronuclear single quantum coherence (1H 13C

HSQC), heteronuclear multiple bond correlation (1H 13C HMBC), and double quantum

filtered correlation (1H 1H COSY). Chemical shifts (δ) are quoted in ppm downfield of

tetramethylsilane. The coupling constants (J) are quoted in Hz (multiplicities: s singlet,

bs broad singlet, d doublet, t triplet, q quartet and apparent multiplicities are described as

m). Infrared (IR) spectra were recorded using a PerkinElmer Spectrum One FT-IR spec-

trophotometer or Bruker Alpha Platinum AR FTIR. Vibrational frequencies are reported in
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wavenumbers (cm−1). Mass spectra (MS) were recorded on a maXis impact mass spec-

trometer employing electron spray ionization (ESI). All masses quoted are correct to four

decimal places.

The analytical TLC chromatography was carried out using alumina-backed plates coated

with silica gel 60 with a fluorescence indicator (20 x 20 cm, Merck) and visualised under

ultra-violet (UV) radiation, λ= 254nm, and stained with potassium permanganate or ceric

ammonium molybdate (CAM) followed by heating. Flash chromatography was carried out

with silica (Geduran Si 60 with 40-63 µm) and sand.

Solvents were removed under reduced pressure using a Buchi rotary evaporator at 20 mbar,

followed by further drying under high vacuum at 0.5 mmHg. To measure the melting points

2-3mm of the sample was placed in the bottom of the capillary tube and the tube was placed

in the heating block. The ‘melting point’ was measured as the range from the appearance

of the first liquid droplet until the complete melting of the crystals. The measurements

were carried out on a Mettler Toledo melting point system.

4.4.1.1 Ligand Synthesis

Ligand L9-L15 were purchased from commercial sources.

4.4.1.1.1 Preparation of L1

2,3-dihydroxybenzaldehyde (10.00 mmol, 1.38 g) and 4-phenoxyaniline (9.99 mmol, 1.85

g) was added to ethanol (100 mL) and refluxed under nitrogen for 5 h. The solution was

cooled to room temperature and concentrated in vacuo. The product was separated by

filtration, recrystallized in ethanol then dried under vacuum to afford L1 (2.48 g, 81.3%),

as dark red crystals.

δH (400 MHz, CDCl3): 8.63 (1H, s), 7.40 (2H, ddd, J = 2.28, 4.28, 9.87 Hz), 7.32 (2H,

dt, J= 3.19, 8.80 Hz), 7.17 (1H, t, J= 7.4 Hz), 7.11-7.06 (5H, m), 6.98 (1H, dd, J= 1.39,

7.83 Hz), 6.86 (1H, t, J = 7.85 Hz).

δC (101 MHz, CDCl3): 161.27, 156.97, 156.60, 149.35, 145.15, 142.80, 129.91, 123.65,

122.89, 122.41, 119.62, 119.04, 118.52, 117.53. mp 144.5-145.9 °C.
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4.4.1.1.2 Preparation of L2

2,3-dihydroxybenzaldehyde (9.99 mmol, 1.38 g) and p-anisidine (9.98 mmol, 1.23 g) was

added to methanol (60 mL) and refluxed under nitrogen for 3 h. The solution was allowed

to cool to room temperature for 48 h. The product was separated by filtration and dried

under vacuum to afford L2 (2.18 g, 89.9%), as dark red crystals.

δH (400 MHz, CDCl3): 8.63 (1H, s), 7.31 (2H, dt, J = 3.38, 8.95 Hz), 7.05 (1H, dd, J =

1.43, 7.84 Hz), 6.97 (3H, dt, J = 3.35, 8.89 Hz), 6.84 (1H, t, J= 7.86 Hz), 3.87 (3H, s).

δC (101 MHz, CDCl3): 160.14, 159.11, 149.82, 145.31, 140.44, 122.79, 122.29, 118.92,

118.60, 117.28, 114.84, 55.69. mp: 131.4-132.5 °C.

4.4.1.1.3 Preparation of L4

2,3-dihydroxybenzaldehyde (9.99 mmol, 1.38 g) and 4-fluoroaniline (0.95 mL, 10.00

mmol) was added to methanol (60 mL) and refluxed under nitrogen for 5 h. The solu-

tion was allowed to cool to room temperature for 48 h. The product was separated by

filtration and dried under vacuum to afford L3 (2.77 g, 94.1%), as red-orange crystals.

δH (400 MHz, DMSO): 13.03 (1H, s), 9.22 (1H, s), 8.90 (1H, s), 7.46-7.51 (2H, m), 7.32-

7.27 (2H, m), 7.09 (1H, d, J = 7.56 Hz), 6.96 (1H, d, J = 7.32 Hz), 6.82 (1H, t, J = 7.77

Hz).

δC (101 MHz, CDCl3): 163.01, 162.22, 160.53, 148.90, 145.05, 123.01, 122.58, 119.22,

118.49, 117.79, 116.34.

δF (376 MHz, CDCl3): -115.15 (q, J = 3.76 Hz). vmax (neat): 3451, 1658, 1461, 1273.

mp: 107.3-108.5 °C, m/z (HRMS) Found MS+= 232.0757.

4.4.1.1.4 Preparation of L4

2,3-dihydroxybenzaldehyde (9.43 mmol, 1.30 g) and 3,5-bis(trifluoromethyl)aniline (1.47

mL, 9.43 mmol) was added to ethanol (100 mL) and refluxed under nitrogen for 2 h. The

solution was allowed to cool to room temperature and concentrated in vacuo. The product

was recrystallised in chloroform:n-hexane = 3:2, separated by filtration and dried under

vacuum to afford L4 (1.12 g, 33.9%), as dark red crystals.

δH (400 MHz, DMSO d6): 12.20 (1H, s), 9.35 (1H, s), 9.05 (1H, s), 8.13 (2H, s), 7.98

(1H, s), 7.17 (1H, dd, J = 1.29, 7.71 Hz), 7.01 (1H, dd, J = 1.44, 7.82 Hz), 6.83 (1H, t, J

= 7.79 Hz).
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δC (101 MHz, CDCl3): 167.77, 151.10, 149.64, 146.20, 131.84, 127.75, 125.03, 123.45,

122.30, 120.24, 119.9, 119.56.

δF (376 MHz, CDCl3): -61.1. mp 113.7-116.4 °C.

4.4.1.1.5 Preparation of L5

2-methyl-8-quinolinol (10.01 mmol, 1.59 g) and 9-anthracenecarboxaldehyde (10.99

mmol, 2.27 g) was added to a dried 25 mL round bottom flask and purged with nitro-

gen for 10 mins. Acetic anhydride (10 mL) was added and refluxed under nitrogen for 20

h. The solution was cooled to room temperature, poured onto ice water (200 mL), and

stirred overnight. The slurry was filtered and washed with water. The resulting powder

was dissolved in DCM (50 mL), washed with water (2 x 50 mL) and dried with MgSO4.

The solution was concentrated in vacuo and purified using flash column chromatography

(DCM:pentane = 1:3). The product was recrystallised in DCM and dried under vacuum to

afford L5 (0.74 g, 21.3%) as yellow crystals.

δH (400 MHz, CDCl3): 8.56 (1H, dd, J = 0.6, 16.44 Hz), 8.40 (1H, s), 8.36-8.31 (2H, m),

8.15 (1H, d, J = 8.48 Hz), 8.00-7.96 (2H, m), 7.71 (1H, d, J = 8.48 Hz), 7.46-7.42 (4H,

m), 7.39 (1H, t, J = 7.90 Hz), 7.30 (1H, dd, J = 1.23, 8.27 Hz), 7.19-7.12 (3H, m).

δC (101 MHz, CDCl3): 153.29, 152.21, 138.11, 136.72, 136.69, 131.69, 131.50, 131.07,

129.70, 128.85, 127.75, 127.57, 127.26, 125.90, 125.79, 125.33, 120.62, 117.77, 110.30.

mp 208.3- 208.5 °C.

4.4.1.1.6 Preparation of L6

Acenaphthenequinone (1.00 g, 5.49 mmol) and zinc chloride (2.41 g, 17.71 mmol)

were stirred in glacial acetic acid (10 mL). The solution was heated to 60 °C and 3,5-

dimethylaniline (1.49 mL, 12.63 mmol) was added and the mixture refluxed for 1 h. The

solution was filtered while hot and washed with water and diethyl ether. The BIAN zinc

complex was dissolved in DCM (100 mL) and was added to a separating funnel. Sodium

oxalate (2.59 g, 19.36 mmol) in water (100 mL) was added and shaken for 5 mins. The

organic layer was separated, washed with water (x2), and dried with MgSO4. The slurry

was filtered and evaporated to dryness to yield give the crude product.

δH (400 MHz, CDCl3): 8.18 (1H, d, J = 8.26 Hz), 8.01 (1H, d, J = 7.11 Hz), 7.80-7.74

(3H, m), 7.29 (2H, t, J = 7.57 Hz), 6.82-6.65 (8H, m), 2.28 (12H, s).
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δC (101 MHz, CDCl3): 161.05, 151.94-115.69, 21.54. mp 219.1-221.6 °C.

4.4.1.1.7 Preparation of L7

2-hydroxybenzaldehyde (1.71 mL, 16.4 mmol) was stirred with 1-(3-

aminopropyl)imidazole (1.95 ml, 16.4 mmol) in ethanol (20 mL). The solution was

refluxed for 2 h, cooled to room temperature and concentrated in vacuo. The resulting

solid was washed with petroleum ether (40-60) and dried under vacuum to afford the

crude product.

δH (400 MHz, CDCl3): 13.07 (1H, s), 8.25 (1H, s), 7.39 (1H, s), 7.26 (1H, td, J =

1.74, 5.59 Hz), 7.21-7.15 (1H, m), 7.01 (1H, t, J = 1.03 Hz), 6.91 (1H, d, J = 8.20 Hz),

6.88-6.80 (1H, m), 4.00 (2H, t, J = 6.89 Hz), 3.49 (2H, td, J = 1.14, 5.24 Hz), 2.13 (2H,

p, J = 6.72 Hz).

δC (101 MHz, CDCl3): 166.13, 160.92, 137.14, 132.60, 131.44, 129.84, 118.88, 118.72,

118.57, 117.01, 55.89, 44.32, 31.80. mp 86.9-87.4 °C.

4.4.1.1.8 Preparation of L8

o-vanillin (1.52 g, 10.01 mmol) and aniline (0.91 mL, 10.00 mmol) was dissolved in

methanol (50 mL) and refluxed for 1 h. The solvent was removed under vacuum, 10

drops of petroleum ether (40-60) was added and left to stand overnight. The product was

dried under vacuum to yield the crude product as a yellow powder.

δH (400 MHz, DMSO d6): 13.25 (1H, s), 8.96 (1H, s), 7.51- 7.45 (2H, m), 7.44-7.40

(2H, m), 7.35-7.30 (1H, m), 7.25 (1H, dd, J = 1.48, 7.86 Hz), 7.14 (1H, dd, J = 1.48,

8.05 Hz), 6.92 (1H, t, J = 7.93 Hz), 3.83 (3H, s).

δC (101 MHz, DMSO d6): 164.15, 151.25, 148.39, 148.36, 129.95, 127.46, 124.40,

121.82, 119.67, 119.07, 116.07, 56.35. mp 81.2-81.6 °C.

4.4.1.2 Ligand Testing

In a nitrogen-filled glove box, a stock solution was prepared containing 4-iodoanisole (1.3

mg, 5.56 mmol), piperidine (824 µL, 8.32 mmol), 1,2,4,5-tetramethylbenzene (internal

standard, 187 mg, 1.39 mmol) and DMF (27.8 mL). These stock solutions were transferred

(2.14 mL each) to 12 separate vials which were charged with CuI (8.2 mg, 0.0428 mmol),

Cs2CO3 (208 mg, 0.640 mmol) and ligand (0.0856 mmol). The resulting reaction mixtures
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were taken out of the glove box and heated at 70 °C for 16 h. After this time, the reaction

mixtures were exposed to air, diluted with EtOAc (20 mL), washed with H2O (5 x 5 mL),

dried (Na2SO4), filtered and concentrated under reduced pressure. The resulting residue

was analysed by 1H NMR (CDCl3). Each ligand was tested 2 times and an average yield

taken.

4.A Appendix

4.A.1 Ligand Exchange

(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.1: Ligand exchange mechanisms for ligand L0011 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.
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(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.2: Ligand exchange mechanisms for ligand L0039 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.

(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.3: Ligand exchange mechanisms for ligand L0042 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.
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(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.4: Ligand exchange mechanisms for ligand L0101 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.

(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.5: Ligand exchange mechanisms for ligand L0104 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.
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(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.6: Ligand exchange mechanisms for ligand L0144 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.

(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.7: Ligand exchange mechanisms for ligand L0177 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.
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(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.8: Ligand exchange mechanisms for ligand L0197 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.

(a) GFN2-xTB//B97-3c (b) DLPNO-CCSD(T)/def2-TZVPP

Figure 4.A.9: Ligand exchange mechanisms for ligand L0235 from the ligands_lit_set
calculated at the GFN2-xTB//B97-3c and DLPNO-CCSD(T)/def2-TZVPP levels of theory.
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4.A.2 Literature Ligand Analysis

Figure 4.A.10: Distribution of Cu L bond lengths in ligands_lit_set.

Figure 4.A.11: Distribution of L cu L bond angles in ligand_lit_set
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4.A.3 Activation Energy Analysis

(a) TSOA

(b) TSSig

Figure 4.A.12: Distribution of activation energies for both the TSOA and TSSig transition
states for piperidine. Full range of activation energies.
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(a) TSOA

(b) TSSig

Figure 4.A.13: Distribution of activation energies for both the TSOA and TSSig transition
states for 2-pyrrolidinone. Full range of activation energies.
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4.A.4 Experimental Validation

Table 4.A.1: Individual yields for both experimental tests with each ligand used to take
the average yield.

Ligand Yield 1 (%) Yield 2 (%) Average Yield (%)

L1 50 49 50
L2 12 16 14
L3 88 68 78
L4 78 56 67
L5 2 2 2
L6 1 1 1
L7 7 7 7
L8 3 3 3
L9 3 4 4

L10 0 2 1
L11 6 8 7
L12 7 6 7
L13 2 2 2
L14 101 99 100
L15 6 4 5

4.A.5 Ligand Exchange

Figure 4.A.14: Equilibrium between the active catalytic species, CuLpip and inactive
species, CuL2 and Cupip2.
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Table 4.A.2: Gibbs free energy of ligand exchange for the equilibrium between the active
catalytic species, CuLpip and inactive species, CuL2 and Cupip2. Gibbs free energies are
calculated at the GFN2-xTB//B97-3c level of theory.

Ligand CSD_Refcode Average Yield (%) k1 (kcalmol−1) k2 (kcalmol−1)

L1 CEJVOF 50 32.9 −40.5
L2 DAHLEG_Alt 14 31.7 −39.7
L3 L3 78 32.7 −40.4
L4 HAGXUJ_Alt 67 37.3 −43.3
L5 TOXZOX 2 28.2 −24.6
L6 ATUNEJ 1 −9.3 5.3
L7 BESLOC 7 20.4 −16.7
L8 UNUWEG 3 23.5 −16.0
L9 ZZZLWW03 4 27.5 −23.4

L10 SRQUAL 1 −21.3 20.6
L11 EXIQOS 7 16.4 −23.7
L12 HIHPIY 7 79.0 −77.4
L13 WOLHOW 2 −9.3 9.4
L14 L14 100 −18.4 18.5
L15 TERRUD 5 28.3 −7.9
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Prediction of Activation Energies

5.1 Introduction

5.1.1 Machine Learning Methods

Machine learning is a family of methods for automated data analysis, capable of detect-

ing complex patterns in data and illustrating the intricate connection between descriptors

and desired output. Regression-based machine learning algorithms build a model using

available data and the output is estimated through quantitatively learning from adequate

training samples.

The full range of machine learning methods have been applied to chemical problems. Sim-

ple regression models such as Multiple Linear Regression (MLR) tend to underfit data due

to their simplicity and inability to use non-linear data. MLR models are simple, fast to

train and easy to interpret providing an initial indication of the applicability of machine

learning to a specific application. Partial Least Squares (PLS) can compress the data into

fewer variables so are often used for noisy datasets containing many descriptors.209

Support Vector Machines (SVM) and tree-based models such as Random Forest and Ex-

traTrees are robust and versatile machine learning methods which have been applied to a

range of problems in chemistry.210 Random forests have been shown to perform well on

transition metal complexes for the prediction of spin-splitting, metal-ligand bond lengths

and redox potentials.52

Artificial Neural Networks have recently found wide application in the computational

chemistry community.211 Broader applications have been present recently in materials sci-
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ence, molecular and heterogeneous catalysis.212,213 ANNs are the most commonly used

machine learning model used in transition metal applications and have been used both

with simple regression and in conjunction with molecular graphs to predict complex tran-

sition metal quantum properties, spin-splitting and metal-ligand bond lengths with errors

of 3 kcalmol−1 and 0.02-0.03 Å respectively.51,53 ANNs tend to overfit (fitting the data

too tightly) and require the determination of a suitable set of broadly applicable descrip-

tors that enable the use of ANNs beyond the molecules in the training set (e.g. for larger

molecules and more diverse chemistry). ANNs are extremely adaptable and have shown

to be effective in computational and organic chemistry however, their applicability to tran-

sition metal-based problems is extremely dependent on the development of a suitable de-

scriptor set, especially for open-shell transition metal complexes. ANNs have shown to be

difficult to use for transition metal complexes for the following reasons: (i) the process

of designing the ANN and its architecture is more involved than other machine learning

methods, (ii) overfitting can be a problem, especially in noisy datasets, (iii) they gener-

ally do not perform well for small datasets, (iv) development of a suitable descriptor set

is complex and (v) it is more difficult to create interpretable models, especially for models

where a large number of descriptors are required.
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(a) Support Vector Machine (b) Artificial Neural Network

(c) Tree-based models (d) Gaussian Process Regression

Figure 5.1: Types of regression machine learning models.

Finally, Gaussian Process Regression (GP) is becoming more popular in chemistry, but its

uptake in transition metal-containing applications is low with very few examples avail-

able.214 GP has a similar fitting process to SVM but also provides a prediction distribution

making uncertainties in individual prediction easy to calculate.

In summary, MLR and PLS are non-linear methods which are expected to perform poorly

in transition metal problems. ANN is an extremely powerful method but is difficult to use

due to the requirement for large datasets and requires a carefully developed descriptor

set to be effective. There are very few examples of GP being applied to transition metal

systems, however, this method offers the advantage of error bars and robust fitting. SVM

and tree-based methods are widely applicable methods that should prove effective for this

application.
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5.1.2 Descriptors used in Organometallic Catalysis

Descriptors that work well for organic molecules have proven to be unsuitable for inor-

ganic molecules.51 The electronic properties of transition metal complexes (e.g. spin state

splitting) are incredibly sensitive to the ligand coordinating atom identity which dominates

the ligand field strength.53 More sophisticated descriptors need to be used to effectively

capture transition metal bonding, due to its dependence on coordination environment.215

Bidentate ligands provide a more well-defined coordination environment than monoden-

tate ligands due to occupying two (generally cis) sites on the transition metal centre. De-

spite their frequent use synthetically, the characterisation of bidentate ligands through cal-

culated ligand descriptors is less commonplace than for monodentate ligands. Most avail-

able software for calculating organometallic ligand descriptors only apply to monodentate

ligands.216

5.1.2.1 Steric Descriptors

The simplest type of steric descriptors are bond lengths and bond angles. Both descriptors

can be considered net interaction descriptors as they describe both steric and electronic

properties. Bond lengths are a measure of both the distance between two atoms, (e.g. the

distance of the ligand from the metal centre) and the strength of the bond. Bond angles

describe both the angle occupied by a set of atoms and the amount of distortion present

at an atom. Bond length and angles can be calculated from atomic coordinates and are

usually generated for atoms of interest, e.g. ligand coordinating atoms and transition state

active atoms.

The oldest and most common steric descriptor is the ligand bite angle (∠L M L) which

measures the net interaction with the metal centre, capturing a combination of both steric

and electronic effects.217 Bite angle provides an easily accessible measure of sterics, which

can be easily calculated from a set of atomic coordinates. Cone angle is another steric

descriptor which describes the angle of a cone, originating from the metal centre, which

encompasses the entire ligand. Cone angle was included in Tolman’s 1977 review but has

not been adopted widely for bidentate ligands.34 Allen and coworkers proposed an im-

proved, mathematically rigorous method to determine an exact cone angle (θ °) by solving

for the most acute right circular cone that contains the entire ligand.218 The procedure is
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applicable to any ligand, planar or nonplanar, monodentate or polydentate, bound to any

metal centre in any environment.218

(a) Bite Angle (b) Cone Angle

(c) Sterimol Parameters (d) % Buried Volume219

Figure 5.2: Commonly used steric descriptors for bidentate organometallic ligands.

Buried volume (%VBur), gives a measure of the volume occupied by the ligand in the first

coordination sphere of the metal centre, or in a sphere of radius r.219 Buried volume was

originally created to describe NHC ligands but has since been applied to P and N donor lig-

ands.21,220 The Sterimol parameters were developed by Verloop to describe the steric size

of substituents.221 The Sterimol parameters were originally developed for organic com-

pounds but three of the five parameters, L, B1 and B5, have been applied to organometallic

ligands.221 The metal atom is called atom 1 and the first atom in the substituent is called

atom 2. L can be described as the depth of the substituent. It is defined as the length

of the vector going from atom 1, through atom 2 and ending on the tangent of the vdW

surface. B1 and B5 can be described as the minimum and maximum rotational size of the

substituent. They are defined as the shortest and longest vectors at a tangent from L to

the vdW surface, respectively. Solvent-accessible surface area is a measure of how much

of the area of a molecule is available to the solvent. The atomic SASA can be used as a

measure of the steric availability of an individual atom.
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The He8 descriptor was developed by Purdie et al. to describe the steric bulk of P,P donor

ligands in an octahedral coordination environment.36 He8, is calculated as the interaction

energy between a ligand in its chelating conformation (from zinc complex, [ZnCl2(LL)])

and a rigid wedge of eight helium atoms.

5.1.2.2 Electronic Descriptors

The majority of electronic descriptors used to describe both mono- and bidentate ligands

require the generation of a new complex with a standard set of auxiliary ligands to allow

for standardisation and comparison between ligands. These descriptors measure the CO

bond strength in a standard complex to determine the strength of metal-ligand interaction.

Increasing the number of these descriptors dramatically increases the computational time

required to calculate descriptor sets. For example, Tolman’s electronic parameter (TEP),

and its derivatives (CEP, SEP, LTEP), require a Ni(CO)3L tetrahedral complex to be gen-

erated and then the stretching frequency of the CO bond calculated.34 Other electronic

descriptors found in ligand knowledge bases, such as bond dissociation energy and pro-

ton affinity also require the generation of addition complexes to derive the value. Natural

bonding orbital charges provide a measure of electron density at specific atoms but require

additional software to use. Properties such as the energy of the highest occupied molecu-

lar orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) are much easier to

calculate and can be taken directly from a computational chemistry output file. Population

analysis is an alternative method of determining the electronic properties of specific atoms

in a complex.

Population analysis is the determination of the distribution of electrons in a molecule. It

allows the direct description of chemical properties for any given atom of interest and

can be obtained directly from standard computational output files. Several methods for

performing population analysis have been developed, Mulliken, Löwdin and Mayer.222–224

Each method analyses the SCF wavefunction of a computational chemistry calculation to

generate a large set of molecular and atomic properties. Properties include atomic and

orbital charges, bond orders and bonded valence. Mulliken population analysis is very

sensitive to the basis set used. Electrons are assigned to a single atom based on the basis

functions of the entire molecule. This method has no basis set limit and therefore the exact
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value is dependent on the way the limit is approached, meaning charges are ill-defined

and have no exact value. Swapping basis sets may yield completely different results for

the same compound. Mulliken population analysis also partitions electronegativity in such

a way that charges separations in a molecule can become exaggerated. Löwdin’s approach

avoids the problem of negative populations or populations greater than 2. Löwdin charges

are often closer to chemically intuitive values and are less sensitive to the basis set. In

Mayer’s population analysis, the charges are identical to that of Mulliken’s, however, it

provides much better values for bond orders and bonded valences.

Descriptors based on population analysis have been used previously for the prediction

of C N cross-coupling with palladium.57 Single-atom electronic descriptors derived from

population analysis provide a targeted description of key properties such as charge, elec-

tron density and bond strength for specific atoms of interest, with little to no additional

computational cost. Descriptors can be quickly and easily extracted from computational

output files using Python without the need for additional treatment.

5.2 Results and Discussion

5.2.1 Descriptor Selection and Extraction

In order to describe the properties of the computationally generated transition states a set

of chemically relevant descriptors was designed. The set of descriptors must be obtainable

through the output of the high-throughput computationally workflow, either from the en-

ergy and frequency calculations or calculated from the 3D optimised structures. A good

descriptor set should be cheap to compute, contain as few dimensions as possible and pre-

serve target similarity (i.e. complexes with similar properties should have similar feature

representations). Descriptors were chosen to cover both the steric and electronic properties

of the transition state. Steric descriptors were chosen to describe to steric properties of the

ligand around the copper centre. To ensure completeness steric descriptors were chosen

to ensure that all steric properties were described, including lengths, angles, volume and

area.

Bond lengths and bond angles were calculated straight from the 3D structure output from

the geometry optimisation. Sterimol parameters, Cone Angle (Allen and coworkers’ ex-
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act cone angle), and Solvent Accessible Surface Area (SASA) were calculated using the

morfeus python module.216 The morfeus package calculates properties for monodentate

ligands by default. For bidentate ligands, the structure has to be adjusted to ensure the

calculation correctly describes the ligand. To ensure Cone Angle and Sterimol parameters

(B1, B5 and L) are calculated correctly a dummy hydrogen atom is placed at the midpoint

of the two ligand coordinating atoms. The indexes of the two coordinating atoms, L1 and

L2, define the x y and z planes. For Buried Volume, the substrates were removed from

the complex to ensure that only the Buried Volume of the ligand is calculated. Buried Vol-

umes were calculated at 3.5 Å, 5 Å and 7 Å with hydrogen atoms, excluding the dummy

atom, included. For descriptors describing a change in length or angle, the difference is

taken between the transition state and the CuLI intermediate. An overview of the structure

pre-treatment is shown in Figure 5.3.

Figure 5.3: Treatment of the 3D structure of each complex for calculation of steric descrip-
tors. Sterimol (blue) and % Buried Volume (green).

Electronic descriptors were chosen to model the electronic properties of the key atoms;

the copper centre, ligand coordinating atoms, nucleophile nitrogen and the carbon and

iodine atoms in the aryl halide. Several electronic properties were encapsulated in these

descriptors; atomic and orbital charges, electron population, bond strength, valence and

the potential energy surface. All descriptors were extracted from the energy and frequency

output files from ORCA using a customised version of the cclib library to add functionality

for the extraction of HOMO and LUMO energies, Mayer’s bond order, Mayer’s bonded va-

lence, Mulliken atomic population, Löwdin atomic charges and Löwdin orbital charges.225

A full list of descriptors is shown in Table 5.1.
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Table 5.1: Full list of descriptors and their source. Entries highlighted in red and blue
are for TSOA and TSSig only respectively. Descriptors 25-31 are extracted for the Cu,
nucleophile N, ligand coordinating atom 1 (L1), ligand coordinating atom 2 (L2) and the
iodobenzene C and I atoms. For 2-pyrrolidinone the amide C and O atoms are also included
for the TSSig transition state.

No. Descriptor Source Description

1 Bite_Angle Python Ligand bite angle (°)

2 D_Bite_Angle Python Change in bite angle from the Cu-I interme-
diate to the transition state (°)

3 Cone_Angle Python Ligand cone angle (°)

4 Sterimol_B1 Python Smallest distance perpendicular to the Cu-
dummy vector to the edge of the ligand (Å)

5 Sterimol_B5 Python Largest distance perpendicular to the Cu-
dummy vector to the edge of the ligand (Å)

6 Sterimol_L Python Distance along the Cu-dummy vector to the
edge of the ligand (Å)

7 PC_Buried_Volume_3-5Å Python Percentage buried volume at a 3.5 Å radius
(%)

8 PC_Buried_Volume_5Å Python Percentage buried volume at a 5 Å radius
(%)

9 PC_Buried_Volume_7Å Python Percentage buried volume at a 7 Å radius
(%)

10 SASA Python Solvent Accessible Surface Area (Å2)

11 HOMO_Energy ORCA Energy of the HOMO (eV)

12 LUMO_Energy ORCA Energy of the LUMO (eV)

13 Cu-Lx Python Bond distance between Cu and ligand atom
x (Å)

14 D_Cu-Lx Python Change in bond distance between Cu and
ligand atom x between the CuLI intermedi-
ate and transition state (Å)

15 Cu-I Python Cu-I bond distance (Å)

16 Cu-C Python Cu-C bond distance (Å)

17 Cu-N Python Cu-N bond distance (Å)

18 C-I Python C-I bond distance (Å)

19 I-C-Cu Python I-C-Cu bond angle (°)

20 N-Cu-I Python N-Cu-I bond angle (°)

21 Cu-I-C Python Cu-I-C bond angle (°)

22 I-C-N Python I-C-N bond angle (°)

23 C-N-Cu Python C-N-Cu bond angle (°)

24 C-Cu-I Python C-Cu-I bond angle (°)

25 Löwdin_Charge ORCA Löwdin atomic charge of the atom

26 Bonded_Valence ORCA Number of bonds formed by the atom

27 Atomic_Population ORCA Number of electrons localised on the atom

28 Bond_Order ORCA Number of bonds between two atoms

29 Orbital_Charge_s ORCA Orbital charge of the s orbital

30 Orbital_Charge_p and sub-
shells

ORCA Orbital charge of the p orbital and its sub-
shells

31 Orbital_Charge_d and sub-
shells

ORCA Orbital charge of the d orbital and its sub-
shells

32 Img_Freq ORCA Magnitude of the imaginary frequency
(cm−1)
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Where an atomic property (e.g. atomic population) is stated the property is extracted

for atoms, Cu, ligand coordinating atom 1 (L1), ligand coordinating atom 2 (L2), the

nucleophile nitrogen atom and the carbon and iodine atom in the C-I bond in the aryl

halide. For the sigma metathesis transition state (TSSig) these values were also extracted

for the amide carbon and oxygen atom in the 2-pyrrolidinone nucleophile. All descriptors

were extracted from the transition state structure except the D_* descriptors which are

the difference between the transition state and the CuLI complex. This resulted in four

datasets, ligands_CSD_PIP_set_TSOA, ligands_CSD_PIP_set_TSSig, ligands_CSD_PYR_-

set_TSOA, ligands_CSD_PYR_set_TSSig containing 78, 91, 128 and 130 descriptors and

1683, 3708, 3990 and 5798 ligands respectively.

5.2.2 Correlations Between Descriptors and Activation Energies

Previous computational studies on Pd-catalysed reactions have shown the dependence of

∆G‡ on the electronic properties of the ligand and its bite angle.226,227 Thus, an analysis

of the properties of the calculated transition states and their relationship to the calculated

∆G‡ in the Ullmann-Goldberg reaction was performed. These properties are: HOMO and

LUMO energies of the transition state, cone angle and bite angle of the ligands, % of the

buried volume of the ligand around the copper centre, Löwdin charge on Cu and N atoms,

Cu Ph/Cu N bond length, and atomic population on Cu in the transition state (Figure

5.4a). These properties were selected to represent the steric and electronic properties of

the catalytic centre in the transition state, which should significantly influence its stability

and the calculated ∆G‡. Particular attention was given to the steric descriptors, given the

shorter Cu C/N/O bonds compared to those of palladium. A full breakdown of R2 values

between each descriptor and the activation energy is available in Appendix 5.A.1.
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(a) ligands_CSD_PIP_set_TSOA

(b) ligands_CSD_PYR_set_TSOA

(c) ligands_CSD_PIP_set_TSSig
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(d) ligands_CSD_PYR_set_TSSig

Figure 5.4: Correlation of commonly used steric and electronic descriptors with activation
energy for all four datasets.

Surprisingly, no clear relationship is observed with any of the four sets of calculated tran-

sition states (ligands_CSD_Pyr_set_TSOA, ligands_CSD_Pyr_set_TSSig, ligands_CSD_-

Pip_set_TSOA, and ligands_CSD_Pyr_set_TSSig). All properties of both the transition

states and the starting intermediates have little to no impact on ∆G‡. This highlights the

unique nature of Cu(I) d10 catalytic centre, which is less sensitive to ligand field geometry

and electronic properties of the ligand.

As no straightforward correlation was found between the calculated∆G‡ and the electronic

and steric properties of the transition states of the Ullmann-Goldberg reaction, machine

learning was leveraged to probe for more complex relationships between them. While

this approach still requires the calculation of the transition states and will not speed up

the prediction of ∆G‡, its outcomes may improve our understanding of factors which are

important in designing ligands/catalysts for the Ullmann-Goldberg reaction.

5.2.3 Initial Models

5.2.3.1 Data Trimming

All four datasets have an uneven distribution of activation energies with the majority at

∼20 kcalmol−1. This will result in poor predictions in the resulting machine learning mod-

els due to data bias. To reduce the effect of data bias each dataset was flattened to produce

a smoother distribution of activation energies. Activation energies were split into bins of 1
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kcalmol−1 and randomly samples for a maximum of 100, 200, 250 and 300 entries for the

ligands_CSD_PIP_set_TSOA, ligands_CSD_PYR_set_TSOA, ligands_CSD_PIP_set_TSSig

and ligands_CSD_PYR_set_TSSig datasets respectively. If a bin has less than the maximum

number of entries, all entries were kept. Figure 5.5 shows the distribution of data before

and after trimming for the ligands_CSD_PIP_set_TSOA dataset. The resulting datasets

were taken forward to generate the machine-learning models.

Figure 5.5: Distribution of activation energies before (left) and after (right) trimming for
the ligands_CSD_PIP_set_TSOA dataset.

5.2.3.2 Principal Component Analysis and Linear Regression

Descriptor space was analysed with Principal Component Analysis using the

decomposition.PCA() method in the scikit-learn Python module and examining

the correlation between every descriptor pair using the pandas corr() attribute. PCA

allows a visual representation of the potential predictive power of 50-60% of the data

by plotting the first two principal components. PCA can also be used to find how many

descriptors are required to describe a certain amount of variance in the dataset via a scree

plot. It should be noted that PCA is not statistically robust, making analyses sensitive to

outlier observations.228
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Figure 5.6: Plots of the first two principal components encompassing ∼ 40% of the vari-
ance in the data for the four datasets.

The principal component analysis for the first two principal components for all four datasets

is shown in Figure 5.6. The PCA plots show that there is no obvious relationship between

the descriptors and activation energy. This is consistent with the observation that there

was no obvious correlation between individual descriptors and activation energy. For lig-

ands_CSD_PIP_set_TSOA a cluster is observed with a high principal component 1 which

has lower activation energies, however, low activation energies are also observed at lower

values of principal component 1. This suggests that the correlation between descriptors

and activation energy is much more complex and requires a more complex multivariate

approach to try and determine the correlation between the structural and electronic prop-

erties of the transition states and their respective activation energies.
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(a) ligands_CSD_PIP_set_TSOA (b) ligands_CSD_PYR_set_TSOA

(c) ligands_CSD_PIP_set_TSSig (d) ligands_CSD_PYR_set_TSSig

Figure 5.7: Scree plots for the four datasets.

The Scree plot can be used to determine whether there are a large number of correlated

or redundant descriptors in the dataset. The scree plots show that after 40 components,

most of the variance in the dataset has been described. For ligands_CSD_PYR_set_TSSig

the variance is described in approximately 50 descriptors. This indicates that over half of

the descriptors are not necessary.
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(a) ligands_CSD_PIP_set_TSOA (b) ligands_CSD_PYR_set_TSOA

(c) ligands_CSD_PIP_set_TSSig (d) ligands_CSD_PYR_set_TSSig

Figure 5.8: Q2 plots for the four datasets using 10-fold cross-validation.

The predictability of the dataset can also be assessed using a Q2 plot using the pcaMethods

library in R.229 Q2 calculates the ability of 90% of the data to predict the other 10% us-

ing 10-fold cross-validation. The higher the Q2 value, the more consistency is in the data.

The amount of variance accounted for is plotted for increasing numbers of components

and shown in Figure 5.8. The Q2 plots show that the TSOA datasets are slightly more

consistent, by 0.05, and may therefore lead to better predictions. For ligands_CSD_PIP_-

set_TSOA, ligands_CSD_PYR_set_TSOA and ligands_CSD_PIP_set_TSSig only 8 compo-

nents are needed to make an effective prediction. For ligands_CSD_PYR_set_TSSig 14

components are required. This also demonstrates that there are a lot of redundant de-

scriptors in the datasets. Interestingly for all datasets the Q2 value decreases after the peak

in the optimum number of components. This suggests that there are only a small num-

ber of descriptors that are responsible for the prediction and multiple descriptors that are

negatively affecting the predictions and need to be identified and removed. In order to

determine which descriptors can be removed, preliminary machine learning models were
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generated and the importance of the descriptors was determined.

5.2.3.3 Choice of Machine Learning Methods

Eight machine learning methods were chosen with varying complexity, ranging from simple

Multiple Linear Regression to more advanced Neural Networks. The eight initial methods

chosen were Multiple Linear Regression (MLP), Gaussian Process (GP), Artificial Neural

Network (ANN), Partial Least Squares (PLS), Support Vector Machine (SVM), Random

Forest (RF), ExtraTrees (ET) and Bagging (Bag). Artificial Neural Networks use one hidden

layer due to the size of the dataset and to reduce computational time. Parameters were

optimised for all models except MLR (see Section 5.4.2).

5.2.3.4 Metrics & Validation

The coefficient of determination (R2) and root mean squared error (RMSE) were used to

assess the models. Two new metrics were created for evaluation to compare predicted val-

ues against the computationally calculated activation energies: % of predictions within± 4

kcalmol−1 and within ± 2 kcal mol−1 (% within 4.0 and % within 2.0). The former reflects

the maximum accuracy of the model as 4 kcal mol−1 is the average error of the energies

generated from the computational workflow against DLPNO-CCSD(T)/def2-TZVPP ener-

gies (see Section 3.2.7). The latter is the percentage within half the error of the underlying

data.

Models were assessed with explicit training and test sets. The training and test sets were

created by grouping the activation energies into bins of 1 kcal mol−1 and randomly splitting

each bin in an 80:20 split to form the training and test sets respectively.

5.2.3.5 Descriptor Correlations

Analysis of the correlation between descriptors is a key phase in pre-processing machine

learning datasets. If two descriptors are highly correlated it is indicative of a causal re-

lationship. Therefore the two descriptors describe the same property and one of the two

descriptors can be removed. It is important to note however that correlation does not equal

causation and the nature of each descriptor must also be considered. A high correlation

between bond order and bond length is highly likely to be describing the same property of
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the complex, whereas a high correlation between an electronic descriptor and a steric de-

scriptor is not likely describing the same property. Trimming highly correlated descriptors

decreases the noise within the resultant models as well as decreases the training time due

to a lower number of features to fit.

Figure 5.9: Correlation plot between all the descriptors in the ligands_CSD_PIP_set_-
TSOA dataset after trimming.

For descriptors with a correlation>0.9 and describing similar fundamental properties, one

of the two descriptors was removed from the dataset. An example descriptor correlation

plot using R2 for ligands_CSD_PIP_set_TSOA is shown in Figure 5.9. The analysis for

the other three datasets is almost identical. Common descriptors that are highly corre-

lated across all four datasets are bond lengths and bond angles, bond length and bond

order, Löwdin charge and orbital charge, atomic population and orbital charge and orbital
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charges between orbitals and subshells (e.g. d and dx y). Descriptors highlighted in red

(R2 > 0.9, Table 5.2) were removed from the dataset.

Table 5.2: Correlation of descriptors for the ligands_CSD_PIP_set_TSOA dataset where
R2 > 0.9. Descriptors highlighted in red were removed.

Descriptor 1 Descriptor 2 R2

Cu-C (Å) Cu-I-C (°) 0.92
C-I (Å) C-Cu-I (°) 0.97
Löwdin Charge (C) Orbital Charge C(p) 0.98
Löwdin Charge (I) Orbital Charge I(p) 0.98
Atomic Population (L1) Orbital Charge L1(s) 0.98
Atomic Population (L1) Orbital Charge L1(p) 0.98
Atomic Population (L2) Orbital Charge L2(s) 0.97
Atomic Population (L2) Orbital Charge L2(p) 0.97
Orbital Charge L1(s) Orbital Charge L1(p) 0.97
Orbital Charge L1(p) Orbital Charge L1(pz) 0.91
Orbital Charge L1(d) Orbital Charge L1(dxz) 0.94
Orbital Charge L1(d) Orbital Charge L1(dx y) 0.90
Orbital Charge L1(dx y) Orbital Charge L1(dx2−y2) 0.91
Orbital Charge L2(s) Orbital Charge L2(p) 0.96
Orbital Charge L2(d) Orbital Charge L2(dxz) 0.94
Orbital Charge L2(d) Orbital Charge L2(dx y) 0.91
Orbital Charge L2(d) Orbital Charge L2(dx2−y2) 0.91
Orbital Charge L2(dx y) Orbital Charge L2(dx2−y2) 0.92

Removal of highly correlated descriptors resulted in a set of 75 descriptors for ligands_-

CSD_PIP_set_TSOA, 90 descriptors for ligands_CSD_PIP_set_TSSig, 111 descriptors for

ligands_CSD_PYR_set_TSOA and 121 descriptors for ligands_CSD_Pyr_set_TSSig. These

datasets were used to generate the initial machine-learning models.

5.2.3.6 Initial Predictions

Models were assessed using explicit training and test sets. The test sets were created

by randomly removing data (evenly across the activation energy distribution) from the

datasets. The remaining data comprises the training sets. The distribution of data for the

four datasets is shown in Table 5.3. The ligands_CSD_PIP_set_TSOA dataset has a sig-

nificantly lower number of data points due to the low success rate of the TSOA transition

state with the piperidine nucleophile.
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Table 5.3: Size of the dataset (N), training set (T) and test set (S) used for the initial
predictions.

Dataset N T S

ligands_CSD_PIP_set_TSOA 1963 1570 393
ligands_CSD_PYR_set_TSOA 5095 4076 1019
ligands_CSD_PIP_set_TSSig 4161 3328 833
ligands_CSD_PYR_set_TSSig 6628 5302 1326

For all datasets, the ExtraTrees method performed the best (Figure 5.4). Tree-based meth-

ods (RF and Bagging) as well as SVM gave comparable results with linear methods (MLR

and PLS) as well as neural networks (ANN) and Gaussian Process (GP) gave significantly

poorer results. Initial models for the piperidine nucleophile (ligands_CSD_PIP_set_TSOA

and ligands_CSD_PIP_set_TSSig) have poor R2 values<0.5 but have reasonably good val-

ues of % within 4.0 (75.5-77.9). The opposite is true for the 2-pyrrolidinone nucleophile,

R2 values are acceptable at ∼0.65, but % within 4.0 is lower at 66.1-68.5. RMSE across

all datasets, however, is quite poor with values much higher than the calculated error in

the dataset (3.9 kcal mol−1). It is also observed that increasing the number of data points

generally improves the RMSE. ligands_CSD_PIP_set_TSOA with a significantly lower num-

ber of data points (∼2000) has much poorer RMSE at 7.90 compared to the other three

datasets (5.52-6.32). Full results with all machine learning methods for all datasets are

shown in Appendix 5.A.4.

Table 5.4: Metrics of the best machine learning methods for each dataset using explicit
training and test sets. The best method is defined as the method which produced the
majority of best metrics. At least three out of four metrics were the best for the methods
displayed.

Dataset Best Method R2 RMSE % within 4.0 % within 2.0

ligands_CSD_PIP_set_TSOA ET 0.49 7.90 75.5 54.0
ligands_CSD_PYR_set_TSOA ET 0.65 6.32 66.1 45.8
ligands_CSD_PIP_set_TSSig ET 0.39 5.93 77.9 59.9
ligands_CSD_PYR_set_TSSig ET 0.63 5.52 68.5 46.1

The predicted vs calculated activation energies were plotted to visualise the models. The

data is shown in Figure 5.10 for ExtraTrees only.
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(a) ligands_CSD_PIP_set_TSOA (b) ligands_CSD_PYR_set_TSOA

(c) ligands_CSD_PIP_set_TSSig (d) ligands_CSD_PYR_set_TSSig

Figure 5.10: Calculated activation energies vs predicted activation energies for all four
datasets using the ExtraTrees model.

Visualisation of the models shows that around the mean (∼20 kcalmol−1) predictions are

generally very good, with the majority of data points within±4.0 kcalmol−1. However, pre-

dictions are much poorer at low and high activation energies. Predictions at<10 kcal mol−1

and >35 kcal mol−1 (>55 kcal mol−1 for ligands_CSD_PYR_set_TSSig) are generally very

poor. Predictions at activation energies >40 kcalmol−1 have errors >8 kcalmol−1. This is

likely due to the lack of training data in these ranges (see Section 5.2.3.1 and Appendix

5.A.2).

The outliers over all models were examined and were defined as a prediction with an er-

ror >6 kcal mol−1 (1.5× RMSE). Structures at low activation energies often possess less

common chemistry such as a hydrogen bond between the ligand and the nucleophile N

or O atoms. Such chemistries are present in low quantities in the training sets and are
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not accounted for in the descriptor set. The poor description and lack of suitable training

data containing the same chemistry is the most likely cause for the poor predictions. The

poor predictions at higher activation energies were initially thought to be due to the lack

of data in this range of activation energies, however, upon inspection of the structures, this

was not the case. In most cases, the structures of the transition states for these outliers

were incorrect and not picked up during the structure screening process during calcula-

tion. High activation energy outlier structures either had incorrect coordination, binding

in a monodentate manner instead of a bidentate manner, incorrect structure of the ligand

or unusual binding mode such as a 4-membered ring which is under-represented in the

training data.

(a) Monodentate Binding
(b) Reaction between the ligand and the nucle-
ophile

(c) Four-membered ring coordination (d) Poor complex structure

Figure 5.11: Examples of common structural issues in outliers.

All models accurately predict incorrect structures as outliers and can be used as an effective

way of identifying incorrect structures within the datasets without the need to manually

examine each structure individually. This demonstrates that machine learning can be used

201



5.2. Results and Discussion Chapter 5: Machine Learning Prediction

to identify incorrect structures that are not picked up during the high-throughput calcula-

tion workflow. For large datasets containing >1000 structures, a manual examination is

extremely time-consuming, therefore, being able to automatically identify incorrect struc-

tures is extremely valuable. All outliers at activation energies>40 were manually inspected

and incorrect structures were removed. To remove structures with one ligand coordinating

atom dissociated all entries were removed with a Cu L1 or Cu L2 bond order of 0. The

resulting data sets were used to optimise the models.

5.2.4 Parameter Optimization

All parameters were optimised, using the Optuna Python module, to maximise the Coef-

ficient of Determination (R2).230 Only R2 is maximised, therefore other metrics may be

worse with an optimised parameter set. It is also important to note that the parameters

are only optimised on the training set and therefore, may perform worse on the test set.

In general, optimised parameters should give better predictions ensuring that the range of

values of each parameter explored is within a suitable range. For all datasets and mod-

els, R2 increased when optimised parameters were used. The optimised parameters were

retained for use in evaluating each model on an explicit training and test set. 10-fold cross-

validation was used to ensure all data points were used at least once during optimisation.

5.2.4.1 Gaussian Process

The kernel (also called the ‘covariance function’) is a crucial part of a Gaussian Process

model. The kernel encodes the assumptions on the function being learned by defining the

similarity of two data points combined with the assumption that similar data points should

have similar target values. Only the stationary kernels Matern, Radial Basis Function (RBF)

and RationalQuadratic were tested. The RationalQuadratic kernel was the best-performing

kernel for all datasets.

5.2.4.2 Artificial Neural Network

Due to the small size of the datasets (1600-5800 ligands), all artificial neural networks

were limited to a single layer in this section. While the number of data points is within an

acceptable amount for simple Deep Neural Networks the accuracy of neural network-based

models was assessed first with a single-layer artificial neural network. The number of nodes
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in the single hidden layer n_estimators was optimised to maximize the value of R2 at the

lowest computational cost (increasing the number of nodes also increases the time taken

to train the model). At a low number of nodes, n_estimators <100 the models improve

as the number of nodes increases. Several networks in this range also fail to optimise

entirely. After 400 nodes the metrics become worse due to over-fitting as seen in Figure

5.12. After optimization across all four datasets, the value of n_estimators was set to

400, 800, 800 and 700 for the ligands_CSD_PIP_set_TSOA, ligands_CSD_PYR_set_TSOA,

ligands_CSD_PIP_set_TSSig and ligands_CSD_PYR_set_TSSig datasets respectively. Full

results with all metrics across the four datasets are shown in Appendix 5.A.

Figure 5.12: The effect of changing the number of nodes in a single hidden layer on the
RMSE during training on the performance of the ligands_CSD_PIP_set_TSSig test set.

5.2.4.3 Support Vector Machine

SVM has several parameters which must be carefully optimised to give the best fit. The ‘ker-

nel’ (the function used to transform non-linearity to linearity); ‘c’ (the penalty parameter

on the error term); ‘epsilon’ (which specifies the limits whereby no penalty is associated

in the training loss function) and ‘gamma’ (the kernel coefficient). The optimised SVM

parameters for each dataset are shown in Table 5.5.
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Table 5.5: Optimised values of c, epsilon and gamma for the four datasets.

Dataset c epsilon gamma

ligands_CSD_PIP_set_TSOA 1328 1e-10 0.0009
ligands_CSD_PYR_set_TSOA 78 2.64 0.008
ligands_CSD_PIP_set_TSSig 175 0.03 0.004
ligands_CSD_PYR_set_TSSig 566 0.0003 0.0006

5.2.4.4 Partial Least Squares

The partial least square method implemented in scikit-learn is ‘ready to go’ in its default

implementation. PLS reduces the number of dimensions of the datasets, which is good

for models using many redundant descriptors. The only parameter that needs to be opti-

mised is the number of components (n_components), which is the number of predictors

to keep after the reduction of the number of descriptors. n_components equals 13, 12,

37 and 99 for ligands_CSD_PIP_set_TSOA, ligands_CSD_PYR_set_TSOA, ligands_CSD_-

PIP_set_TSSig and ligands_CSD_PYR_set_TSSig datasets respectively.

5.2.4.5 Tree Methods

Tree methods are often ‘ready to go’ in their default implementation. The only param-

eter which needs to be optimised is the number of trees n_estimators. In most cases

increasing the number of trees leads to better predictions.231 To prevent overfitting and to

reduce the computational time, the number of trees was varied between 1 and 5000. This

is shown in Figure 5.13 for ExtraTrees optimization on the ligands_CSD_PIP_set_TSSig

dataset, where the change in RMSE after 100 trees is negligible. Due to the similarity

between Random Forest and the ExtraTrees and Bagging methods, the same trend was

seen for all models across the four datasets. For the initial models 200, 600, 400 and 300

trees were the standard values for the ligands_CSD_PIP_set_TSOA, ligands_CSD_PYR_-

set_TSOA, ligands_CSD_PIP_set_TSSig and ligands_CSD_PYR_set_TSSig datasets respec-

tively for all tree models.
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Figure 5.13: The effect of changing the number of trees on the RMSE during training on
the performance of the ligands_CSD_PIP_set_TSSig test set.

5.2.4.6 Models with Optimised Hyperparameters

Optimisation of hyperparameters as well as the removal of outliers shows a large improve-

ment in model performance. ExtraTrees remained the best-performing model for all four

datasets. All metrics improve across all four datasets. R2 values improve by 0.1 for the PIP

datasets with a slight improvement for the PYR datasets (0.02-0.03). RMSE values also

show a large improvement (0.5-2.65), especially for ligands_CSD_PIP_set_TSOA with an

improvement of 2.65 kcal mol−1. % within 4.0 and 2.0 also showed improvements of ap-

proximately 5% for all datasets. The removal of outliers with incorrect structures is likely

the most important factor in the substantial improvement in the models. Removal of out-

liers with errors >8 kcalmol−1 is expected to improve all metrics by a large margin. The

effect of the optimisation of hyperparameters was found to be 0.01-0.05 kcal mol−1 across

all models, when compared to the same data without the outliers removed.

Table 5.6: Metrics of the ExtraTrees models with optimised hyperparameters for all four
datasets with outliers removed.

Dataset Best Method R2 RMSE % within 4.0 % within 2.0

ligands_CSD_PIP_set_TSOA ET 0.59 5.25 80.2 55.3
ligands_CSD_PYR_set_TSOA ET 0.68 5.13 71.2 50.1
ligands_CSD_PIP_set_TSSig ET 0.48 4.33 82.6 62.9
ligands_CSD_PYR_set_TSSig ET 0.65 5.02 71.6 47.7
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Visualisation of the models (Figure 5.14) shows that distribution of the predicted activa-

tion energies is much improved over the initial models with the large majority of data lying

in the ±4 kcal mol−1 boundaries. There are fewer extreme outliers across all datasets. All

high activation energy outliers were removed for both TSOA datasets. This demonstrates

the ability of the models to identify incorrect structures. For all models, activation energies

at <10 kcal mol−1 were worse across all datasets and high activation energy outliers for

the TSSig datasets. Predictions at activation energies >40/55 kcalmol−1 still have large

errors, but correct structures, and can now be attributed to the lack of suitable training

data in these activation energy ranges.

(a) ligands_CSD_PIP_set_TSOA (b) ligands_CSD_PYR_set_TSOA

(c) ligands_CSD_PIP_set_TSSig (d) ligands_CSD_PYR_set_TSSig

Figure 5.14: Calculated activation energies vs predicted activation energies for all four
datasets using the ExtraTrees model with optimised hyperparameters.

To further improve the models the importance of each descriptor was calculated in order

to determine the number of redundant descriptors, as well as any descriptors negatively
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impacting predictions.

5.2.5 Feature Importance

Having optimised the parameters, further model improvements can be achieved by opti-

mising the number of descriptors used in the models. From the PCA analysis (Section

5.2.3.2) it was observed that a large number of descriptors were not required to give de-

scribe most of the variance in the dataset. It was also observed that several descriptors

may be negatively affecting the predictions.

Tree-based models provide a measure of descriptor importance based on the mean decrease

in impunity (MDI). Impunity is quantified by the splitting criteria of the decision trees.

This method, however, can give high importance to features that may not be predictive

for unseen data if the model is overfitting. Impunity-based importances are also strongly

biased, and favour numerical features over binary or categorical features. Permutation

importance is an alternative importance method that avoids this issue as it can be calculated

on unseen data and does not exhibit descriptor-type bias. To assess the importance of

each descriptor on the models scikit-learn’s permutation_importance() was used for

the ExtraTrees method.

Permutation importance is a model inspection technique that can be used for non-linear

estimators (e.g. trees, neural networks) with tabular data. The permutation descriptor im-

portance is defined as the decrease in the model score when a single descriptor is randomly

shuffled. Shuffling the descriptor breaks the relationship between the descriptor and the

output variable, thus the model score is indicative of how much the model depends on the

feature. Permutation importance is not reflective of the intrinsic predictive power of the

descriptor by itself but how important it is for a particular model.

Permutation importance can be calculated on either the training set or the test set. Descrip-

tors that are important on the training set but not on the test set may cause the model to

overfit. Whereas using a test set makes it possible to highlight which descriptors contribute

the most to the generalisation power of the model. Permutation importance was calculated

for the test sets of all four datasets for the ExtraTrees models. Descriptor importance was

scored based on the coefficient of determination (R2), negative mean absolute percentage

error and negative mean squared error. Importance’s are reported as the mean decrease
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in the scoring function ± the standard deviation over 50 repeats. The random state was

kept constant to ensure the same data was used for each scoring method and for compari-

son across models. As highly correlated descriptors were removed previously, issues with

highly correlated features providing the same information during shuffling, reducing the

importance of both features, should not be present.

Permutation importance was calculated for all descriptors to determine their importance

in the prediction. Descriptors with a mean − 2 ∗ std > 0 were retained. To generate

a consistent descriptor set the retained descriptors were combined for the same transi-

tion state. For the PYR datasets additional descriptors were added to describe the amide.

This resulted in trimmed descriptor sets containing 20 for ligands_CSD_PIP_set_TSOA, 24

for ligands_CSD_PYR_set_TSOA, 36 for ligands_CSD_PIP_set_TSSig and 41 for ligands_-

CSD_PYR_set_TSSig descriptors.

5.2.6 Improved Models with Trimmed Descriptors

Models were rebuilt using the trimmed descriptor sets for all eight machine-learning mod-

els. Hyperparameters were optimised using the Optuna python package to fine-tune the

hyperparameters.230 The best performing models for each dataset are shown in Figure 5.7.

Table 5.7: Metrics of the best-performing models with optimised hyperparameters for all
four datasets with the optimised descriptor sets.

Dataset Best Method R2 RMSE % within 4.0 % within 2.0

ligands_CSD_PIP_set_TSOA ET 0.66 4.81 79.6 58.6
ligands_CSD_PYR_set_TSOA ET 0.71 4.86 71.3 51.2
ligands_CSD_PIP_set_TSSig ET 0.48 4.33 81.5 62.6
ligands_CSD_PYR_set_TSSig ET 0.66 4.95 70.6 47.5

Metrics for ligands_CSD_PYR_set_TSOA, ligands_CSD_PIP_set_TSSig and ligands_CSD_-

PYR_set_TSSig are mostly unchanged with slight improvements in R2 (0.01-0.02) and

RMSE (0-0.27). Therefore, a large number of descriptors in these datasets were redundant

and not contributing to the predicting power of the models. For ligands_CSD_PIP_set_-

TSOA, metrics improve by a significant margin with R2 and RMSE improving from 0.59

and 5.25 to 0.66 and 4.81 respectively. This suggests that one or more descriptors were

negatively affecting the predictions in this dataset. Removal of descriptors across all four

datasets resulted in smaller datasets and improved metrics. These smaller descriptor sets
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mean that fewer descriptors need to be calculated along with reduced time to build the

models for the same predictive power.

5.2.7 Important Ligand Properties

Permutation importance was used on the optimised ExtraTrees models with the trimmed

descriptor sets to identify the most important ligand properties driving the prediction of

the activation energy. The top five descriptors for each transition state and nucleophile are

shown in Table 5.8.

Table 5.8: Top five most important descriptors, by the reduction in R2 for the ExtraTrees
model for each dataset.

ligands_CSD_PIP_set_TSOA ligands_CSD_PYR_set_TSOA

No. Descriptor Reduction in R2 Descriptor Reduction in R2

1 HOMO_Energy 0.240 ± 0.022 HOMO_Energy 1.032 ± 0.068
2 Bonded_Valence_I 0.235 ± 0.039 Orbital_Charge_I_d 0.232 ± 0.020
3 Orbital_Charge_I_d 0.187 ± 0.018 Orbital_Charge_Cu_s 0.137 ± 0.010
4 Löwdin_Charge_C 0.135 ± 0.010 Atomic_Population_L2 0.123 ± 0.011
5 Orbital_Charge_Cu_d 0.131 ± 0.025 Orbital_Charge_Cu_d 0.098 ± 0.012

ligands_CSD_PIP_set_TSSig ligands_CSD_PYR_set_TSSig

No. Descriptor Reduction in R2 Descriptor Reduction in R2

1 Bite_Angle 0.070 ± 0.009 HOMO_Energy 0.220 ± 0.016
2 Atomic_Population_Cu 0.058 ± 0.012 Atomic_Population_Cu 0.074 ± 0.007
3 LUMO_Energy 0.047 ± 0.006 Amide_C-O 0.038 ± 0.005
4 C-N-Cu 0.037 ± 0.009 LUMO_Energy 0.021 ± 0.004
5 Orbital_Charge_I_s 0.035 ± 0.011 Bond_Order_Cu-N 0.020 ± 0.003

For every dataset except ligands_CSD_PIP_set_TSSig, the HOMO energy is the most im-

portant property. Bite angle is the most important property for the ligands_CSD_PIP_set_-

TSSig dataset, however, the reduction in R2 is small (0.070). The difference between the

most important descriptors is small, therefore, for ligands_CSD_PIP_set_TSSig there is a

more complex mixture of properties dictating the activation energy for the sigma metathe-

sis transition state with an amine nucleophile. Important descriptors for the oxidation

addition transition state (TSOA) are the HOMO energy, orbital charge on the copper d

orbital and the orbital charge on the iodine d orbital. This suggests that the ligand’s ability

to influence the electron-withdrawing or donating ability of the copper centre, through the

copper d orbital, to the iodine atom during oxidative addition is an important factor in the

activation energy of the reaction. Comparing nucleophiles, piperidine has higher impor-
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tance for the bonded valence of the iodine atom and the charge on the aryl carbon atom,

whereas, for 2-pyrrolidinone the charge on the copper s orbital and atomic population on

the ligand coordinating atoms are important properties. The presence of the amide in the

nucleophile may prefer ligands that are able to modulate the electron density of the copper

s orbital through the ligand coordinating atoms. The difference in electron density at the

copper centre may promote the oxidation addition of the aryl halide when an amide is

bound to the copper. For piperidine, no such importance is seen in favour of descriptors lo-

calised on the aryl halide. The importance of the bonded valence of iodine and the charge

on the aryl carbon atom suggests that for piperidine the progress of the C I bond break at

the transition state is key in predicting the activation energy. This suggests that ligands that

influence the position of the transition state in the C I bond-breaking process are impor-

tant for amine nucleophiles. The difference in bonding to copper between an amine and

amide may be the cause for this deviation in ligand requirements in the oxidative addition

transition state.

For the sigma metathesis transition state, the atomic population at the copper centre and

LUMO energy are present in both nucleophiles, suggesting that the ligand’s ability to mod-

ulate the electron density at the copper centre is important in this transition state. The

amide C O bond length and Cu N bond order are also important properties of the amide

nucleophile. This implies that the ability of the copper to bond to and weaken the amide

bond in the nucleophile is an important factor. A ligand that modulates the electron den-

sity at the copper centre, weakening the amide bond may prove to be a more effective

ligand. For piperidine, no such trend is observed. Like in the oxidative addition the im-

portant descriptors suggest that the activation energy for amine nucleophiles is dictated by

the addition of the aryl halide rather than the activation of the nucleophile.

While these feature importance’s do not provide a direct trend between property and ac-

tivation energy, they do provide an insight into the processes that may be taking place.

This provides a starting hypothesis that can be further explored either computationally or

experimentally.
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5.2.8 Transition State Independent Descriptors

The ability to predict the activation energy of a ligand directly from the active catalytic

state, without the need to calculate the transition state would be ideal. Calculation of the

transition state is the most time-consuming process in the computational workflow. Being

able to remove this step and predict the activation energy directly from the active catalytic

state, will both reduce the total amount of computing resources required to screen ligands

and reduce the total time required to generate a prediction. While complete removal of

transition state calculations is not possible, due to them being required to calculate the

activation energies needed to train the models, it can reduce the number of total calcula-

tions required by a significant amount. Especially if a model is built using a set amount of

training data and then used purely as a predictive tool.

To build these models a set of transition state independent descriptors was created using

descriptors taken from the active catalytic state (CuLNu), which is a stable intermediate.

The same descriptor set was used as a base and the descriptors relating to the transition

state (e.g. aryl halide) were removed. The remaining descriptors were calculated from the

CuLNu complex. Descriptors for individual atoms were extracted for the Cu, nucleophile

N, ligand coordinating atom 1 (L1) and ligand coordinating atom 2 (L2) atoms. For 2-

pyrrolidinone descriptors were also extracted for the amide C and O atoms. A full list of

transition state independent descriptors is shown in Table 5.9.
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Table 5.9: Full list of descriptors for the TS independent descriptor sets and their source.
Descriptors are calculated from the CuLNu active catalytic state. Descriptors 14-20 were
extracted for the Cu, nucleophile N, ligand coordinating atom 1 (L1) and ligand coordi-
nating atom 2 (L2) atoms.

No. Descriptor Source Description

1 Bite_Angle Python Ligand bite angle (°)

2 Cone_Angle Python Ligand cone angle (°)

3 Sterimol_B1 Python Smallest distance perpendicular to the Cu-
dummy vector to the edge of the ligand (Å)

4 Sterimol_B5 Python Largest distance perpendicular to the Cu-
dummy vector to the edge of the ligand (Å)

5 Sterimol_L Python Distance along the Cu-dummy vector to the
edge of the ligand (Å)

6 PC_Buried_Volume_3-5Å Python Percentage buried volume at a 3.5 Å radius
(%)

7 PC_Buried_Volume_5Å Python Percentage buried volume at a 5 Å radius
(%)

8 PC_Buried_Volume_7Å Python Percentage buried volume at a 7 Å radius
(%)

9 SASA Python Solvent Accessible Surface Area (Å2)

10 HOMO_Energy ORCA Energy of the HOMO (eV)

11 LUMO_Energy ORCA Energy of the LUMO (eV)

12 Cu-Lx Python Bond distance between Cu and ligand atom
x (Å)

13 Cu-N Python Cu-N bond distance (Å)

14 Löwdin_Charge ORCA Löwdin atomic charge of the atom

15 Bonded_Valence ORCA Number of bonds formed by the atom

16 Atomic_Population ORCA Number of electrons localised on the atom

17 Bond_Order ORCA Number of bonds between two atoms

18 Orbital_Charge_s ORCA Orbital charge of the s orbital

19 Orbital_Charge_p and sub-
shells

ORCA Orbital charge of the p orbital and its sub-
shells

20 Orbital_Charge_d and sub-
shells

ORCA Orbital charge of the d orbital and its sub-
shells

Descriptors were automatically extracted using Python, resulting in four datasets, ligands_-

CSD_PIP_set_TSOA_NoTS, ligands_CSD_PIP_set_TSSig_NoTS, ligands_CSD_PYR_set_-

TSOA_NoTS and ligands_CSD_PYR_set_TSSig_NoTS containing 67 descriptors and 1683,

3708, 3990 and 5798 ligands respectively.

5.2.8.1 Initial Models

Machine learning models were built for the eight machine learning methods using the

transition state independent descriptor sets. Models were assessed using an explicit train-
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ing and test set. Highly correlated descriptors were removed and the data was split into

training and test sets using the same ligands in each set as the transition state dependent

models. The best-performing models for each dataset are shown in Table 5.10.

Table 5.10: Metrics of the best-performing models with all four datasets with descriptors
excluding the transition states.

Dataset Best Method R2 RMSE % within 4.0 % within 2.0

ligands_CSD_PIP_set_TSOA_NoTS SVM 0.32 6.56 79.6 55.3
ligands_CSD_PYR_set_TSOA_NoTS SVM 0.67 5.16 68.1 42.6
ligands_CSD_PIP_set_TSSig_NoTS SVM 0.57 3.74 83.7 61.4
ligands_CSD_PYR_set_TSSig_NoTS ET 0.66 4.83 75.8 51.0

The best models use the SVM and ET methods. Metrics using transition state indepen-

dent descriptors are similar to the transition state dependant descriptor set. Metrics for

ligands_CSD_PYR_set_TSOA_NoTS are almost identical to ligands_CSD_PYR_set_TSOA.

The ligands_CSD_PIP_set_TSOA_NoTS performs worse using the transition state indepen-

dent descriptor set with a decrease in R2 from 0.59 to 0.32 and increase in RMSE from 5.25

to 6.56. Both TSSig datasets perform better with transition state independent descriptors

with an improvement in all four metrics. For ligands_CSD_PIP_set_TSSig_NoTS the RMSE

is within the average error in the calculated activation energies (3.9 kcal mol−1). Initial

models showed that it is possible to predict activation energies with a similar accuracy

without using the transition state structure.

5.2.8.2 Descriptor Optimization

Permutation importance was used to identify and remove redundant and low-importance

descriptors in all four datasets. Descriptors with a mean − 2 ∗ std > 0 were retained

resulting in descriptors sets containing 10, 27, 14 and 17 descriptors for ligands_CSD_-

PIP_set_TSOA_NoTS, ligands_CSD_PIP_set_TSSig_NoTS, ligands_CSD_PYR_set_TSOA_-

NoTS and ligands_CSD_PYR_set_TSSig_NoTS respectively. Machine learning models were

rebuilt and the best-performing models for each dataset are shown in Table 5.11.
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Table 5.11: Metrics of the best performing models, using a trimmed descriptor set, for all
four datasets with descriptors excluding the transition states.

Dataset Best Method R2 RMSE % within 4.0 % within 2.0

ligands_CSD_PIP_set_TSOA_NoTS ET 0.29 6.95 76.3 49.2
ligands_CSD_PYR_set_TSOA_NoTS ET 0.69 4.97 66.4 41.2
ligands_CSD_PIP_set_TSSig_NoTS SVM 0.56 3.78 82.8 58.2
ligands_CSD_PYR_set_TSSig_NoTS ET 0.64 4.98 75.8 49.8

ExtraTrees becomes the best-performing model for the TSOA datasets. All metrics become

slightly worse across all datasets except for ligands_CSD_PYR_set_TSOA_NoTS which

shows a slight improvement in R2 (0.67 to 0.69) and RMSE (5.16 to 4.97). For the tran-

sition state independent descriptor sets the small change in metrics suggests that there

are no descriptors in the original set negatively affecting predictions. The reduction in

descriptors by 40-57 only shows a small decrease in accuracy. The additional time taken

to calculate the extra descriptors along with the increased time to build the models only

results in a small increase in accuracy. While a smaller descriptor set is less accurate it is

computationally less expensive.

214



Chapter 5: Machine Learning Prediction 5.2. Results and Discussion

(a) ligands_CSD_PIP_set_TSOA_NoTS (b) ligands_CSD_PYR_set_TSOA_NoTS

(c) ligands_CSD_PIP_set_TSSig_NoTS (d) ligands_CSD_PYR_set_TSSig_NoTS

Figure 5.15: Calculated activation energies vs predicted activation energies for all four
TS-independent datasets using the best performing model with trimmed descriptors and
optimised hyperparameters.

The transition state calculations are the most time-consuming calculations. The use of

transition states independent descriptors reduces the total computational time by 44,140

single core hours of computational time for ligands_CSD_PIP_set and 48,324 single core

hours for ligands_CSD_PYR_set. This results in a potential decrease of 90% (TSOA: 67%,

TSSig: 23%) and 84% (TSOA: 53%, TSSig: 31%) of the total computational time for the

ligands_CSD_PIP_set and ligands_CSD_PYR_set respectively. The dramatic reduction in

computational time not only saves on both the raw time and computational infrastructure

required but also energy costs. The energy required to run the computers for sustained

lengths of time, as well as the CO2 produced, must also be considered for the sustainable

use of these approaches. Eliminating as many calculations as possible is advantageous

from both an infrastructure and sustainability perspective as well as making them widely
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accessible to the chemical community.

5.2.8.3 Important Descriptors

The importance of individual descriptors on the best-performing models for each dataset

was calculated using permutation important to identify potentially important ligand prop-

erties for the active catalytic state (CuLNu). The top five most important descriptors for

each dataset are shown in Table 5.12.

Table 5.12: Top five most important descriptors, by the reduction in R2 of the ExtraTrees
model for each TS independent dataset.

ligands_CSD_PIP_set_TSOA_NoTS ligands_CSD_PYR_set_TSOA_NoTS

No. Descriptor Reduction in R2 Descriptor Reduction in R2

1 Orbital_Charge_Cu_s 0.199 ± 0.042 Orbital_Charge_Cu_s 0.098 ± 0.008
2 Löwdin_Charge_Cu 0.041 ± 0.015 Bond_Order_Cu-N 0.075 ± 0.009
3 Orbital_Charge_Cu_p 0.013 ± 0.006 Löwdin_Charge_N 0.042 ± 0.004
4 Bite_Angle 0.011 ± 0.005 Atomic_Population_N 0.040 ± 0.005
5 Orbital_Charge_L2_dxz 0.008 ± 0.003 Cone_Angle 0.039 ± 0.013

ligands_CSD_PIP_set_TSSig_NoTS ligands_CSD_PYR_set_TSSig_NoTS

No. Descriptor Reduction in R2 Descriptor Reduction in R2

1 Bond_Order_Cu-N 0.136 ± 0.024 Orbital_Charge_Cu(s) 0.185 ± 0.013
2 Cone_Angle 0.033 ± 0.006 Atomic_Population_N 0.096 ± 0.011
3 LUMO_Energy 0.021 ± 0.008 Bond_Order_Cu-N 0.043 ± 0.004
4 PC_Buried_Volume_3-5A 0.018 ± 0.003 HOMO_Energy 0.032 ± 0.004
5 PC_Buried_Volume_5A 0.011 ± 0.003 LUMO_Energy 0.030 ± 0.005

For every dataset except ligands_CSD_PIP_set_TSSig_NoTS, the charge on the copper s

orbital is the most important property. The copper-nitrogen bond order is the most impor-

tant property for the ligands_CSD_PIP_set_TSSig dataset. The most important descriptor

for the oxidative addition transition state (TSOA) is the orbital charge on the copper s

orbital. The lack of this descriptor in the ligands_CSD_PIP_set_TSSig_NoTS dataset sug-

gests that the ability of the ligand to modulate the charge on the copper s orbital favours

the oxidative addition transition state, with the impact of the descriptor in ligands_CSD_-

PYR_set_TSSig_NoTS relating to the amide nucleophile. The remaining descriptors are

different between nucleophiles, for piperidine the descriptors describe the charge on the

copper centre, whereas for 2-pyrrolidinone the descriptors describe the electronics at the

amide nitrogen. This suggests that for the amine nucleophile, the ligand’s ability to mod-

ulate the charge on the copper is important in aiding the oxidative addition of the aryl
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halide. The lack of amine nitrogen descriptors implies that the interaction between the

copper and nucleophile is less important. For the amide, however, the ligand’s ability to

aid the electron donating/withdrawing ability of the copper, enabling the modulation of

the electron density at the amide nitrogen is important.

For the sigma metathesis transition state, the strength of the Cu N bond is the most impor-

tant descriptor. A similar trend is seen for nucleophiles for the sigma metathesis transition

state (TSSig). The ligand’s ability to impact the electron density at the amide nitrogen is a

key factor for high activity. However, for the amine, while the strength of the Cu N bond

is the most important descriptor, sterics are also shown to be important with three out of

five of the descriptors describing the steric bulk of the ligand around the copper centre,

albeit with relatively low importance (<0.033).

The trend in important features is consistent between the transition state dependent and

transition state independent models. The oxidative addition transition state is dependent

on the ligand’s ability to modulate the electron density at the copper centre, aiding the

oxidative addition of the aryl halide. The sigma metathesis transition state is dependent

on the ligand’s ability to affect the strength of the Cu N bond. A similar trend is also seen

for the different nucleophiles. For piperidine, there is no direct impact of the ligand on

the electronics of the nucleophile. Whereas for the amide the ligand’s ability to influence

the electronics of the amide nitrogen and the amide bond is an important determinant for

activity.

5.2.9 Effect of DFT Functional on Descriptors

The ability of the transition state independent descriptor sets to provide predictions similar

to those of the transition state dependent descriptor sets means that the calculation of the

transition states is not required for a good prediction of activity. As the transition states no

longer need to be calculated the freed-up computational time could be used to generate

more accurate descriptors using a higher level of theory. As seen previously electronic

descriptors are more important than steric descriptors, comprising the majority of the top 5

descriptors across all datasets. To improve the electronic descriptors, several DFT methods

were chosen, with differing types and amounts of HF exchange (Table 5.13). r2SCAN-3c is

a new improved 3c method which is better for the calculation of molecular properties,120
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PBE0 is a standard functional commonly used for transition metal complexes125 and TPSS

and TPSSh have shown to be excellent at predicting the properties of 1st-row transition

metal complexes.124

Table 5.13: DFT methods used for benchmarking the electronic descriptors. The increase
in computational time is in comparison to B97-3c for 50 ligands.

Method Type HF Exchange (%) Increase in Computational Time

B97-3c Composite GGA 0 0
r2SCAN-3c Composite meta-GGA 0 1.5-2×
PBE0 Hybrid-GGA 20 6-8×
TPSS meta-GGA 0 2-6×
TPSSh Hybrid-meta-GGA 10 6-8×

The correlation of each descriptor was calculated with respect to the value calculated at

the DLNPO-CCSD(T)/def2-TZVPP level of theory. DLPNO-CCSD(T) is a pure wavefunc-

tion method and therefore is not influenced by experimental data, therefore, obtained

electronic descriptor values are the best values possible with currently available methods.

PBE0, TPSS and TPSSh calculations use the def2-TZVP basis set with D4 dispersion correc-

tion. Electronic descriptors were calculated for 50 randomly selected ligands. All ligands

were present in all four datasets and span the full range of activation energies. The result-

ing correlations are shown in Table 5.14.
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B97-3c shows a poor correlation for the Löwdin charge on copper as well as all d orbitals.

All other methods correlate well with DLPNO-CCSD(T)/def2-TZVPP for orbital charges

except copper the copper d orbitals, descriptors localised on the ligand coordinating atoms,

the LUMO energy and bond orders. For Löwdin charges, descriptors localised on copper

and the nucleophile nitrogen, as well as copper d orbitals, correlate with the amount of HF

exchange in the functional. A higher percentage of HF exchange has a better correlation

with DLPNO-CCSD(T)/def2-TZVPP. This suggests that a large amount of HF exchange is

required to correctly describe the bonding between the copper centre and the nucleophile

nitrogen atom. All other descriptors can be sufficiently described without the inclusion of

HF exchange.

5.2.9.1 Effect of DFT Functional on Predicted Activation Energies

Electronic descriptors are calculated from the energy calculation in the workflow therefore,

as the calculation needs to be redone for each method, activation energies can also be cal-

culated for these methods. The activation energies for the same 50 ligands were compared

with DLPNO-CCSD(T)/def2-TZVPP calculated values. Root mean squared errors were cal-

culated for both the raw values and values scaled to DLPNO-CCSD(T)/def2-TZVPP using

the equation of the line.

Table 5.15: Correlation of activation energies between B97-3c and 4 other DFT meth-
ods and DLPNO-CCSD(T) for 50 ligands. RMSE_Actual is the RMSE of the raw value
of the activation energy compared to DLPNO-CCSD(T)/def2-TZVPP. RMSE_Scaled is the
RMSE of the scaled activation energy using the equation of the line to convert to a DLPNO-
CCSD(T)/def2-TZVPP energy.

TSOA Activation Energy TSSig Activation Energy

R2 RMSE_Actual RMSE_Scaled R2 RMSE_Actual RMSE_Scaled

B97-3c 0.91 5.97 3.78 0.87 8.96 3.46
r2SCAN-3c 0.90 8.87 4.07 0.90 7.20 3.05
PBE0 0.96 4.67 2.54 0.97 4.34 1.65
TPSS 0.88 10.01 4.30 0.88 8.87 3.33
TPSSh 0.92 8.40 3.67 0.93 7.14 2.57

All methods correlate reasonably well with DLPNO-CCSD(T)/def2-TZVPP, with R2 >0.87.

RMSE decreases with an increasing percentage of HF exchange in the functional. Surpris-

ingly B97-3c correlates very well for TSOA compared with the other high HF exchange

methods. Errors are higher for TSOA across all functionals. PBE0 is the best-performing
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functional, out of the selected functionals, for the calculation of activation energies. De-

scriptors calculated at the PBE0/def2-TZVP level of theory provide the most accurate elec-

tronic descriptors and activation energies for the same computational cost of the transition

state calculations they are replacing.

5.2.9.2 Transition State Independent Models

Activation energies and electronic descriptors were recalculated for the structures in the

machine-learning datasets at the TPSS/def2-TZVP and PBE0/def2-TZVP levels of theory,

using D4 dispersion correction, to generate four *_TPSS and four *_PBE0 datasets respec-

tively. TPSS was chosen as a middle ground between accuracy and computational time and

PBE0 was chosen as the most accurate method within the computational time constraints.

Machine learning models were built using the same eight machine learning methods. Mod-

els used the same explicit training and test sets, using the same ligands in each set. The

best-performing models for each dataset are summarised in Table 5.16 and Table 5.17.

Table 5.16: Metrics of the best performing models, with TS independent descriptors, for
all four datasets with descriptors and activation energies calculated at the PBE0/def2-TZVP
level of theory.

Dataset Best Method R2 RMSE % within 4.0 % within 2.0

ligands_CSD_PIP_set_TSOA_NoTS_PBE0 SVM 0.40 6.11 82.3 58.6
ligands_CSD_PYR_set_TSOA_NoTS_PBE0 SVM 0.71 4.59 72.6 47.3
ligands_CSD_PIP_set_TSSig_NoTS_PBE0 SVM 0.69 3.78 84.6 62.0
ligands_CSD_PYR_set_TSSig_NoTS_PBE0 ET 0.68 4.66 78.0 54.7

In general, DFT descriptors gave better predictions, especially for the ligands_CSD_PYR_-

set_TSOA_NoTS_PBE0 dataset with an improvement in RMSE of 0.5 kcalmol−1. Perfor-

mance metrics were uniformly improved across both DFT methods.

Table 5.17: Metrics of the best performing models, with TS independent descriptors, for
all four datasets with descriptors and activation energies calculated at the TPSS/def2-TZVP
level of theory.

Dataset Best Method R2 RMSE % within 4.0 % within 2.0

ligands_CSD_PIP_set_TSOA_NoTS_TPSS ET 0.34 6.03 80.5 58.0
ligands_CSD_PYR_set_TSOA_NoTS_TPSS SVM 0.69 4.27 75.4 52.3
ligands_CSD_PIP_set_TSSig_NoTS_TPSS ET 0.62 3.46 87.8 67.8
ligands_CSD_PYR_set_TSSig_NoTS_TPSS ET 0.70 4.09 80.4 55.6

Surprisingly, the TPSS models performed better than PBE0 with better RMSE metrics across
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all four datasets. The ligands_CSD_PIP_set_TSSig_NoTS_TPSS dataset is well within the

error of the calculated activation energies (3.9 kcalmol−1). All datasets have at least 75%

of the predictions within 4 kcal mol−1. DFT can be used to provide more accurate predic-

tions at the cost of increased computational time and resources to both generate the initial

model and descriptors.

(a) ligands_CSD_PIP_set_TSOA_NoTS_TPSS (b) ligands_CSD_PYR_set_TSOA_NoTS_TPSS

(c) ligands_CSD_PIP_set_TSSig_NoTS_TPSS (d) ligands_CSD_PYR_set_TSSig_NoTS_TPSS

Figure 5.16: TPSS/def2-TZVP calculated activation energies vs predicted activation en-
ergies for all four TS-independent datasets using the best performing model. Descriptors
were calculated at the TPSS/def2-TZVP level of theory.

5.3 Conclusions

In conclusion, machine learning models were built and tested using eight machine learning

methods. The models proved effective at identifying incorrect structures that are not picked

up during structure validation in the high-throughput computational workflow as they

appear as significant outliers in the models.
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Models were analysed with the following conclusions: tree-based methods (RF, ET and

Bagging) and SVM are superior for the prediction of activation energies; linear methods

and neural networks perform poorly across all datasets, and under-represented interac-

tions such as hydrogen bonding and poorly described with the descriptor set and lead to

increased error. Smaller datasets lead to poorer metrics with near-identical descriptor sets

due to the lack of data required to sufficiently train the models.

Analysis of descriptor importance can provide insight into the underlying chemistry of more

complex, less understood mechanisms providing possible routes for further exploration of

ligand properties and their effect on activity.

Transition state structures are not required to produce accurate machine-learning models.

Models not including descriptors derived from the transition state can provide equal if not

better predictions of activation energies. The lack of need for a transition state structure

allows for the computational budget to be used elsewhere. DFT-derived electronic descrip-

tors further improved models with prediction errors close to the errors in the dataset.

5.4 Methodology

Example machine learning models, an hyperparameter optimisation script, an example

feature importance script and datasets can be found at https://github.com/MarcS18/

Thesis_ESI.

5.4.1 Machine Learning Overview

Eight machine learning models were employed; Multiple Linear Regression (MLR), Gaus-

sian Process Regression (GP), Artificial Neural Networks (ANN), Support Vector Machine

(SVM), Partial Least Squares (PLS), Random Forest (RF), ExtraTrees (ET) and Bagging

(Bag). Default parameters were used with the following exceptions: for GP only the

Matern. RBF and RationalQuadratic kernel were used; for ANN, n_nodes (number of

nodes in the hidden layers) was optimised with the number of hidden layers varied; for

SVM the radial basis function (RBF) kernel was used with C, epsilon and gamma being

optimised; for PLS, n_components (number of components to retain after dimension re-

duction) was optimised; and for RF, ET and Bag, n_estimators (number of trees) and

max_depth was optimised. Machine learning was performed in Python 3 with the scikit-
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learn module. Prior to machine learning, all descriptors were scaled between 0 and 1

using scikit-learn’s StandardScaler() method. The modules and parameters used in this

chapter are summarised in Table 5.18.

Table 5.18: The scikit-learn methods and parameters used in this chapter.

Method scikit-learn method Parameters

MLR linear_model.LinearRegression() Default

GP gaussian_process.GaussianProcessRegressor() kernel optimised

ANN neural_network.MLPRegressor() n_estimators
optimised

SVM svm.SVR() kernel=rbf,
C, epsilon and
gamma optimised

PLS cross_decomposition.PLSRegression() n_components
optimised

RF ensemble.RandomForestRegressor() n_estimators
and max_depth

optimised

ET ensemble.ExtraTreesRegressor() n_estimators
and max_depth

optimised

Bag ensemble.BaggingRegressor() n_estimators
optimised

5.4.2 Parameter Optimization

Parameters for all models were optimised using the Optuna python package.230 All methods

used the same seed to ensure repeatability between runs. All parameters of interest were

optimised within a specified range using the study.optimise() function with the method

set to optimise to a maximum for the coefficient of determination (R2). Note that only the

Coefficient of Determination is minimised and based entirely on optimizing the parameters

for the training data, thus can be worse on the new test data. If the best values for the

coefficient of determination were obtained close to the boundary of the range of tested

values for a specific parameter the range was expanded and the optimisation was rerun.

The optimised parameters were retained for use in future models.
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5.4.2.1 Linear Regression

For linear regression as no parameters need to be optimised the coefficient of determination

was taken from 1 trial of the optimiser.

5.4.2.2 Gaussian Process

Three kernels are tested for Gaussian Process models: Matern, RBF and RationalQuadratic.

Kernels were tested over k trials where k is the number of K-Folds used. The best kernel

was saved for later models.

5.4.2.3 Partial Least Squares (PLS)

For partial least squares the number of components, n_components, was varied between

1 and the maximum number of features (N f ), retaining the best value over N f trials.

5.4.2.4 Support Vector Machine (SVM)

Parameters C, epsilon and gamma were optimised over 50 trials, retaining the best value.

C was varied from 1×10−6 to 1×104, epsilon from 1×10−10 to 1×102 and gamma from

1× 10−4 to 1× 103 in log scale.

5.4.2.5 Random Forest (RF), ExtraTrees (ET) and Bagging (Bag)

The number of trees (n_estimators) was varied between 10 and 1000 over 50 trials,

with 10-fold cross-validation of the training set. For RandomForest and ExtraTrees, the

maximum depth of the tree (max_depth) was varied between 2-100 with the best values

retained.

5.4.2.6 Artificial Neural Network (ANN)

For ANN, two hidden layers were used. The number of nodes in this layer (n_estimators)

was varied between 10 and 1000 over 50 trials, with a maximum number of 800 iterations

for convergence, and the best value retained.

225



5.4. Methodology Chapter 5: Machine Learning Prediction

5.4.3 Machine Learning Model Evaluation and Metrics

5.4.3.1 Creating training and test sets

Datasets were split into training and test sets by binning the data in intervals of 1

kcalmol−1. A proportional amount of data was taken from each bin to form a training

set (∼80% of the data) and a test set (∼20% of the data). Each model was trained on the

same training set and tested on the same unseen test set.

5.4.3.2 K-fold Cross validation

Performance metrics are obtained by splitting the data into k groups using the scikit-learn’s

KFolds method ensuring the dataset was shuffled before splitting. Each group is used as a

test set and the remaining k− 1 groups are used as the training set. After each group, the

performance metrics are stored and the model is discarded. K-fold cross-validation was

used due to the small nature of the dataset ensuring efficient use of the data. Every data

point is used at least once in the test set, avoiding chance bias possible in a static train/test

split. All stated uses of K-fold cross-validation use 10 folds.

5.4.3.3 Metrics

The following metrics were used to evaluate how well the predictions compare to the

calculated values of ∆G‡. Pearson’s R2 is a measure of correlation. Root Mean Square

Error (RMSE) is a measure of the error associated between each prediction and actual

value. These are defined in Equation 5.1 and Equation 5.2 respectively.

R2 =

 ∑
(xpred − x)(ypred − y)q∑

(xpred − x)2 −∑(ypred − y)2

!2

(5.1)

RMSE =

√√√1
n

n∑
i=1

( ŷi − yi)2 (5.2)

where x and y are the mean values of x and y . xpred and ypred are the predicted values of

x and y . n is the number of values and ŷi is the predicted value and yi is the actual value.

In addition, %± 4.0 kcalmol−1 and %± 2.0 kcalmol−1, the percentage of values within the

error and half the error of the computational values were also used as metrics.
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5.4.3.4 Prediction Analysis

The correlation between descriptors was calculated using the pandas module corr() func-

tion in Python and plotted as a matrix coloured to R2. Outliers were defined as having a pre-

diction error of ±1.5× the RMSE. The scikit learn permutation_importance() method

was used to determine the weighting of each descriptor for the RandomForest and Extra-

Trees models. Descriptors were scored using the R2, neg_mean_abolsulte_percentage_er-

ror and neg_mean_squared_error metrics. Descriptors were retained with an importance

of:

mean− 2 ∗ std > 0 (5.3)

Importances are shown as mean±std.

5.A Appendix

5.A.1 Descriptor vs Activation Energy Correlations

Table 5.A.1: Correlation (R2) between each descriptor and activation energy for every de-
scriptor in the ligands_CSD_PIP_set_TSOA, ligands_CSD_PYR_set_TSOA, ligands_CSD_-
PIP_set_TSSig and ligands_CSD_PYR_set_TSSig datasets.

Descriptor

R2

TSOA_PIP TSOA_PYR TSSig_PIP TSSig_PYR

Bite Angle −0.03 −0.02 −0.29 −0.10

Change in Bite Angle −0.03 0.11 −0.06 0.06

Cone Angle 0.11 0.23 −0.22 −0.02

Sterimol B1 0.02 −0.01 0.00 −0.06

Sterimol B5 −0.05 0.03 −0.11 −0.01

Sterimol L −0.09 −0.13 0.05 −0.11

PC_Buried_Volume_3-5A 0.16 0.26 −0.17 0.07

PC_Buried_Volume_5A 0.12 0.21 −0.18 0.03

PC_Buried_Volume_7A 0.04 0.09 −0.16 −0.03

SASA −0.06 −0.05 −0.09 −0.09

HOMO Energy 0.29 0.29 0.05 0.47

LUMO Energy 0.17 0.24 0.10 0.46

Cu-L1 −0.05 0.05 0.11 0.03

Cu-L2 −0.03 0.07 0.07 0.04

D_Cu-L1 0.05 −0.08 0.08 −0.04

D_Cu-L2 0.00 −0.14 0.03 −0.02

Cu-I 0.13 0.25 −0.24 0.17
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Continuation of Table 5.A.1

Descriptor TSOA_PIP TSOA_PYR TSSig_PIP TSSig_PYR

Cu-N - - −0.21 0.19

Cu-C 0.32 0.16 −0.27 0.38

Cu-O - - - −0.04

C-I −0.29 −0.18 0.12 −0.18

Amide C-O - - - 0.27

Amide C-N - - - −0.32

N-Cu-I - - 0.27 −0.23

Cu-I-C 0.35 0.15 0.07 0.33

I-C-N - - −0.23 0.04

C-N-Cu - - −0.29 −0.05

I-C-Cu 0.14 0.20 - -

C-Cu-I −0.31 −0.21 - -

Amide O-C-N - - - 0.29

Löwdin Charge (Cu) −0.14 −0.14 −0.07 −0.05

Löwdin Charge (N) - - 0.00 −0.28

Löwdin Charge (C) −0.29 −0.20 0.05 −0.32

Löwdin Charge (I) 0.30 0.17 0.10 0.03

Löwdin Charge (L1) 0.07 0.03 −0.01 −0.14

Löwdin Charge (L2) 0.09 0.02 −0.04 −0.16

Löwdin Charge (Amide C) - - - −0.18

Löwdin Charge (Amide O) - - - −0.28

Bonded Valence (Cu) −0.11 −0.03 0.12 0.00

Bonded Valence (N) - - 0.14 −0.29

Bonded Valence (C) 0.01 0.03 −0.06 0.23

Bonded Valence (I) 0.33 0.14 0.24 0.01

Bonded Valence (L1) 0.07 0.07 −0.04 −0.09

Bonded Valence (L2) 0.10 0.06 −0.06 −0.1

Bonded Valence (Amide C) - - - 0.06

Bonded Valence (Amide O) - - - −0.14

Atomic Population (Cu) −0.11 0.07 0.37 0.38

Atomic Population (N) - - −0.10 −0.20

Atomic Population (C) 0.16 0.16 0.11 −0.12

Atomic Population (I) −0.19 0.05 −0.04 0.10

Atomic Population (L1) −0.05 −0.03 −0.01 0.04

Atomic Population (L2) −0.07 −0.08 0.05 0.05

Atomic Population (Amide C) - - - −0.05

Atomic Population (Amide O) - - - 0.13

Bond Order (Cu-I) −0.28 −0.27 0.27 −0.03

Bond Order (Cu-C) −0.34 −0.15 0.03 0.06

Bond Order (C-I) 0.25 0.21 −0.20 0.21

Bond Order (Cu-N) - - 0.05 −0.30

Bond Order (Cu-L1) 0.04 0.06 −0.07 0.02

Bond Order (Cu-L2) 0.05 0.00 −0.01 0.00

Bond Order (Amide C-O) - - - −0.16

Bond Order (Amide C-N) - - - 0.23

Orbital Charge C(s) 0.31 0.10 0.13 0.11

Orbital Charge C(p) 0.26 0.20 −0.06 0.28

Orbital Charge C(pz) 0.04 0.17 −0.05 −0.02

Orbital Charge C(px) −0.02 0.13 0.03 −0.11
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Continuation of Table 5.A.1

Descriptor TSOA_PIP TSOA_PYR TSSig_PIP TSSig_PYR

Orbital Charge C(py) 0.12 −0.08 −0.03 0.17

Orbital Charge N(s) - - −0.17 0.13

Orbital Charge N(p) - - 0.03 0.21

Orbital Charge N(pz) - - 0.06 0.16

Orbital Charge N(px) - - −0.06 0.04

Orbital Charge N(py) - - 0.01 −0.17

Orbital Charge I(s) −0.39 −0.25 −0.23 −0.26

Orbital Charge I(p) −0.33 −0.20 −0.17 −0.06

Orbital Charge I(pz) −0.14 0.11 0.02 0.11

Orbital Charge I(px) −0.15 −0.11 −0.08 −0.13

Orbital Charge I(py) 0.03 −0.13 −0.03 −0.02

Orbital Charge I(d) 0.48 0.33 0.21 0.40

Orbital Charge I(dxz) 0.23 0.06 0.06 0.09

Orbital Charge I(dyz) 0.16 0.21 0.08 0.06

Orbital Charge I(dxy) 0.20 0.19 0.17 0.25

Orbital Charge I(dz2) 0.25 0.10 0.01 0.06

Orbital Charge I(dx2y2) 0.04 0.26 0.10 0.32

Orbital Charge Cu(s) 0.11 0.00 0.01 0.00

Orbital Charge Cu(p) −0.08 −0.02 0.05 −0.11

Orbital Charge Cu(pz) −0.01 −0.22 0.18 −0.20

Orbital Charge Cu(px) −0.15 −0.07 −0.09 0.06

Orbital Charge Cu(py) 0.01 0.25 −0.02 −0.02

Orbital Charge Cu(d) 0.27 0.24 0.05 0.19

Orbital Charge Cu(dxz) 0.16 0.04 0.05 0.11

Orbital Charge Cu(dyz) 0.04 0.06 −0.08 0.31

Orbital Charge Cu(dxy) −0.03 −0.11 −0.03 0.05

Orbital Charge Cu(dz2) 0.04 0.18 0.09 −0.22

Orbital Charge Cu(dx2y2) 0.05 0.06 0.10 −0.16

Orbital Charge L1(s) −0.03 −0.02 0.00 0.04

Orbital Charge L1(p) −0.03 0.00 −0.02 0.06

Orbital Charge L1(pz) −0.01 0.05 0.00 0.13

Orbital Charge L1(px) 0.03 0.02 −0.07 0.01

Orbital Charge L1(py) −0.09 −0.06 0.05 0.05

Orbital Charge L1(d) −0.09 −0.08 −0.02 0.01

Orbital Charge L1(dxz) −0.11 −0.06 0.05 0.11

Orbital Charge L1(dyz) −0.05 0.00 −0.08 0.02

Orbital Charge L1(dxy) −0.08 −0.12 −0.03 −0.04

Orbital Charge L1(dz2) −0.10 −0.01 0.00 0.08

Orbital Charge L1(dx2y2) −0.08 −0.11 −0.01 −0.05

Orbital Charge L2(s) −0.05 −0.05 0.06 0.05

Orbital Charge L2(p) −0.06 −0.04 0.04 0.08

Orbital Charge L2(pz) −0.04 0.01 0.04 0.14

Orbital Charge L2(px) 0.01 −0.04 −0.02 0.03

Orbital Charge L2(py) −0.10 −0.07 0.12 0.05

Orbital Charge L2(d) −0.08 −0.09 0.00 −0.01

Orbital Charge L2(dxz) −0.09 −0.08 0.08 0.07

Orbital Charge L2(dyz) −0.06 −0.04 −0.07 −0.01

Orbital Charge L2(dxy) −0.08 −0.11 −0.01 −0.06

Orbital Charge L2(dz2) −0.08 −0.06 0.03 0.06
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Continuation of Table 5.A.1

Descriptor TSOA_PIP TSOA_PYR TSSig_PIP TSSig_PYR

Orbital Charge L2(dx2y2) −0.07 −0.10 0.00 −0.06

Orbital Charge Amide C(s) - - - −0.23

Orbital Charge Amide C(p) - - - 0.34

Orbital Charge Amide C(pz) - - - −0.11

Orbital Charge Amide C(px) - - - −0.03

Orbital Charge Amide C(py) - - - 0.16

Orbital Charge Amide O(s) - - - −0.10

Orbital Charge Amide O(p) - - - 0.27

Orbital Charge Amide O(pz) - - - 0.12

Orbital Charge Amide O(px) - - - −0.14

Orbital Charge Amide O(py) - - - 0.19

Magnitude of the Imaginary Frequency 0.00 0.16 0.02 0.33

5.A.2 Activation Energy Distributions

(a) Before Trimming (b) After Trimming

Figure 5.A.1: Activation Energy distributions before and after trimming for the ligands_-
CSD_PIP_set_TSOA dataset.

(a) Before Trimming (b) After Trimming

Figure 5.A.2: Activation Energy distributions before and after trimming for the ligands_-
CSD_PYR_set_TSOA dataset.
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(a) Before Trimming (b) After Trimming

Figure 5.A.3: Activation Energy distributions before and after trimming for the ligands_-
CSD_PIP_set_TSSig dataset.

(a) Before Trimming (b) After Trimming

Figure 5.A.4: Activation Energy distributions before and after trimming for the ligands_-
CSD_PYR_set_TSSig dataset.

5.A.3 Machine Learning Models

For all graphs, T is the amount of training data and S is the amount of test data. Red lines

are parity, +3.9 kcal mol−1 and −3.9 kcal mol−1. Eight machine learning models were

tested, MLR = Multiple Linear Regression, GPR = Gaussian Process Regression, ANN =

Artificial Neural Network, SVM = Support Vector Machine, PLS = Partial Least Squares,

RF = Random Forest, ExtraTrees and Bagging.
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5.A.4 Initial Models

Figure 5.A.5: Initial machine learning models for the ligands_CSD_PIP_set_TSOA dataset.

232



Chapter 5: Machine Learning Prediction 5.A. Appendix

Figure 5.A.6: Initial machine learning models for the ligands_CSD_PYR_set_TSOA
dataset.
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Figure 5.A.7: Initial machine learning models for the ligands_CSD_PI_set_TSSig dataset.
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Figure 5.A.8: Initial machine learning models for the ligands_CSD_PYR_set_TSSig
dataset.
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Table 5.A.2: Initial machine learning metrics for the ligands_CSD_PIP_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.39 8.64 58.8 32.5
GPR 0.25 9.70 72.9 49.9
ANN 0.45 8.55 61.4 40.9
SVM 0.33 9.14 74.4 55.0
PLS 0.44 8.31 60.1 35.3
RF 0.43 8.44 74.2 53.2
ExtraTrees 0.49 7.90 75.5 54.0
Bagging 0.41 8.56 73.2 52.9

Table 5.A.3: Initial machine learning metrics for the ligands_CSD_PYR_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.37 8.71 43.6 24.8
GPR 0.51 7.48 63.7 44.1
ANN 0.52 7.99 57.0 34.7
SVM 0.55 7.18 64.0 42.6
PLS 0.34 8.92 43.6 24.0
RF 0.60 6.76 64.6 42.9
ExtraTrees 0.65 6.32 66.1 45.8
Bagging 0.61 6.72 64.3 43.8

Table 5.A.4: Initial machine learning metrics for the ligands_CSD_PIP_set_TSSig dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.28 6.39 67.7 42.1
GPR 0.21 6.89 77.2 55.6
ANN 0.36 6.23 73.2 49.9
SVM 0.31 6.28 80.4 62.2
PLS 0.26 6.47 70.1 44.8
RF 0.39 5.92 77.3 57.3
ExtraTrees 0.39 5.93 77.9 59.9
Bagging 0.39 5.92 77.3 57.3

Table 5.A.5: Initial machine learning metrics for the ligands_CSD_PYR_set_TSSig dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.53 6.24 56.1 28.1
GPR 0.35 7.86 62.1 40.0
ANN 0.52 6.51 63.2 38.9
SVM 0.59 5.80 67.3 46.8
PLS 0.50 6.47 55.3 28.4
RF 0.63 5.57 67.3 44.0
ExtraTrees 0.63 5.52 68.5 46.1
Bagging 0.62 5.58 67.3 44.5
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5.A.5 Models with Trimmed Descriptors

Figure 5.A.9: Machine learning models with trimmed descriptors for the ligands_CSD_-
PIP_set_TSOA dataset.
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Figure 5.A.10: Machine learning models with trimmed descriptors for the ligands_CSD_-
PYR_set_TSOA dataset.

238



Chapter 5: Machine Learning Prediction 5.A. Appendix

Figure 5.A.11: Machine learning models with trimmed descriptors for the ligands_CSD_-
PI_set_TSSig dataset.
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Figure 5.A.12: Machine learning models with trimmed descriptors for the ligands_CSD_-
PYR_set_TSSig dataset.
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Table 5.A.6: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PIP_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.49 5.85 59.5 30.6
GPR 0.57 5.65 73.9 46.5
ANN 0.54 5.96 66.7 42.6
SVM 0.57 5.28 76.9 49.8
PLS 0.49 5.85 60.4 28.8
RF 0.61 5.09 76.0 55.0
ExtraTrees 0.66 4.78 79.0 57.4
Bagging 0.62 5.02 75.7 55.0

Table 5.A.7: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PYR_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.44 6.81 50.6 26.8
GPR 0.68 5.17 68.0 46.6
ANN 0.61 5.98 60.4 38.3
SVM 0.64 5.39 66.4 42.3
PLS 0.44 6.81 50.8 28.1
RF 0.69 5.06 70.2 48.6
ExtraTrees 0.67 5.16 70.4 50.5
Bagging 0.68 5.08 69.9 48.3

Table 5.A.8: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PIP_set_TSSig dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.32 4.97 73.7 45.3
GPR 0.45 4.49 79.7 58.6
ANN 0.39 5.09 76.7 53.8
SVM 0.45 4.53 84.7 64.2
PLS 0.32 4.97 73.7 45.3
RF 0.46 4.41 81.0 60.0
ExtraTrees 0.48 4.33 81.1 62.7
Bagging 0.46 4.41 79.7 60.8
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Table 5.A.9: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PYR_set_TSSig dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.48 6.16 55.9 28.1
GPR 0.60 5.39 66.3 42.5
ANN 0.60 5.54 64.3 41.0
SVM 0.58 5.52 65.1 42.3
PLS 0.48 6.16 55.9 28.1
RF 0.65 5.00 70.3 46.9
ExtraTrees 0.66 4.97 70.9 47.5
Bagging 0.66 4.97 70.1 46.9
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5.A.6 Models with Optimised Hyperparameters

Figure 5.A.13: Machine learning models with trimmed descriptors and optimised hyper-
parameters for the ligands_CSD_PIP_set_TSOA dataset.
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Figure 5.A.14: Machine learning models with trimmed descriptors and optimised hyper-
parameters for the ligands_CSD_PYR_set_TSOA dataset.
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Figure 5.A.15: Machine learning models with trimmed descriptors and optimised hyper-
parameters for the ligands_CSD_PI_set_TSSig dataset.
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Figure 5.A.16: Machine learning models with trimmed descriptors and optimised hyper-
parameters for the ligands_CSD_PYR_set_TSSig dataset.
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Table 5.A.10: Machine learning metrics with trimmed descriptors and optimised hyperpa-
rameters for the ligands_CSD_PIP_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.49 5.85 59.5 30.6
GPR 0.57 5.65 73.9 46.5
ANN 0.43 6.54 61.6 37.2
SVM 0.64 4.81 78.7 52.3
PLS 0.49 5.86 60.1 29.7
RF 0.62 5.01 75.7 53.2
ExtraTrees 0.66 4.81 79.6 58.6
Bagging 0.63 5.00 76.6 53.5

Table 5.A.11: Machine learning metrics with trimmed descriptors and optimised hyperpa-
rameters for the ligands_CSD_PYR_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.44 6.81 50.6 26.8
GPR 0.68 5.17 68.0 46.6
ANN 0.64 5.63 66.1 41.7
SVM 0.68 5.09 71.7 51.4
PLS 0.44 6.77 51.2 29.0
RF 0.69 5.06 70.2 48.4
ExtraTrees 0.71 4.86 71.3 51.2
Bagging 0.68 5.10 70.2 48.5

Table 5.A.12: Machine learning metrics with trimmed descriptors and optimised hyperpa-
rameters for the ligands_CSD_PIP_set_TSSig dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.32 4.97 73.7 45.3
GPR 0.45 4.49 79.7 58.6
ANN 0.41 4.95 78.1 56.8
SVM 0.47 4.41 84.7 66.7
PLS 0.32 4.98 73.8 46.8
RF 0.46 4.44 80.7 61.0
ExtraTrees 0.48 4.33 81.5 62.6
Bagging 0.47 4.39 81.0 61.0
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Table 5.A.13: Machine learning metrics with trimmed descriptors and optimised hyperpa-
rameters for the ligands_CSD_PYR_set_TSSig dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.48 6.16 55.9 28.1
GPR 0.60 5.39 66.3 42.5
ANN 0.55 5.89 65.2 36.9
SVM 0.64 5.10 71.0 48.2
PLS 0.48 6.17 55.8 27.9
RF 0.65 4.99 70.6 47.9
ExtraTrees 0.66 4.95 70.6 47.5
Bagging 0.66 4.97 70.8 47.2
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5.A.7 TS Independent Models

5.A.7.1 Models with all descriptors

Figure 5.A.17: Initial machine learning models for the ligands_CSD_PIP_set_TSOA_NoTS
dataset.
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Figure 5.A.18: Initial machine learning models for the ligands_CSD_PYR_set_TSOA_-
NoTS dataset.
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Figure 5.A.19: Initial machine learning models for the ligands_CSD_PI_set_TSSig_NoTS
dataset.
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Figure 5.A.20: Initial machine learning models for the ligands_CSD_PYR_set_TSSig_-
NoTS dataset.
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Table 5.A.14: Initial machine learning metrics for the ligands_CSD_PIP_set_TSOA_NoTS
dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.22 7.24 66.7 40.2
GPR 0.15 8.07 64.3 41.1
ANN 0.08 10.59 46.5 26.7
SVM 0.35 6.56 79.6 55.3
PLS 0.23 7.13 65.2 39.0
RF 0.28 7.01 73.0 45.6
ExtraTrees 0.32 6.81 76.0 51.4
Bagging 0.28 6.96 73.6 45.6

Table 5.A.15: Initial machine learning metrics for the ligands_CSD_PYR_set_TSOA_NoTS
dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.59 5.86 54.8 28.5
GPR 0.55 6.17 62.6 37.4
ANN 0.53 6.98 55.1 32.4
SVM 0.67 5.16 68.1 42.6
PLS 0.56 6.03 54.2 30.5
RF 0.66 5.36 67.1 41.4
ExtraTrees 0.68 5.18 67.7 43.2
Bagging 0.65 5.40 66.8 42.3

Table 5.A.16: Initial machine learning metrics for the ligands_CSD_PIP_set_TSSig_NoTS
dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.53 3.97 79.8 53.2
GPR 0.48 4.14 78.8 55.4
ANN 0.43 4.74 74.5 47.2
SVM 0.57 3.74 83.7 61.4
PLS 0.54 3.87 79.0 52.4
RF 0.50 4.16 83.3 56.6
ExtraTrees 0.54 3.94 82.6 57.7
Bagging 0.50 4.16 83.1 57.7
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Table 5.A.17: Initial machine learning metrics for the ligands_CSD_PYR_set_TSSig_NoTS
dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.57 5.45 66.5 37.2
GPR 0.47 6.65 64.0 41.3
ANN 0.51 6.31 61.3 36.5
SVM 0.66 4.94 75.6 52.0
PLS 0.56 5.54 68.1 38.5
RF 0.62 5.12 73.2 49.3
ExtraTrees 0.66 4.83 75.8 51.0
Bagging 0.62 5.14 73.4 49.1
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5.A.7.2 Models with trimmed descriptors

Figure 5.A.21: Machine learning models with trimmed descriptors for the ligands_CSD_-
PIP_set_TSOA_NoTS dataset.
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Figure 5.A.22: Machine learning models with trimmed descriptors for the ligands_CSD_-
PYR_set_TSOA_NoTS dataset.
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Figure 5.A.23: Machine learning models with trimmed descriptors for the ligands_CSD_-
PI_set_TSSig_NoTS dataset.
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Figure 5.A.24: Machine learning models with trimmed descriptors for the ligands_CSD_-
PYR_set_TSSig_NoTS dataset.
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Table 5.A.18: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PIP_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.22 7.22 65.8 40.2
GPR 0.19 8.03 58.3 39.3
ANN 0.33 6.73 68.5 41.1
SVM 0.24 7.07 75.1 47.7
PLS 0.22 7.22 65.8 40.2
RF 0.28 6.99 71.2 46.2
ExtraTrees 0.29 6.95 76.3 49.2
Bagging 0.28 6.95 72.1 48.0

Table 5.A.19: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PYR_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.55 5.98 52.3 30.0
GPR 0.52 6.46 58.2 36.5
ANN 0.52 6.80 55.1 32.5
SVM 0.65 5.23 66.3 42.1
PLS 0.55 5.95 52.1 29.6
RF 0.66 5.24 66.0 39.9
ExtraTrees 0.69 4.97 66.3 41.2
Bagging 0.66 5.25 65.3 41.3

Table 5.A.20: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PIP_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.50 4.04 77.3 50.7
GPR 0.35 4.84 74.7 49.3
ANN 0.51 4.18 80.1 48.7
SVM 0.56 3.78 82.8 58.2
PLS 0.50 4.04 77.2 51.3
RF 0.53 4.00 82.0 57.7
ExtraTrees 0.56 3.87 83.0 56.6
Bagging 0.53 3.98 82.4 56.9
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Table 5.A.21: Machine learning metrics with trimmed descriptors for the ligands_CSD_-
PYR_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.55 5.56 65.7 37.5
GPR 0.40 7.92 62.2 43.0
ANN 0.57 5.59 71.2 45.1
SVM 0.62 5.21 73.5 50.6
PLS 0.54 5.65 66.2 36.3
RF 0.62 5.16 74.4 51.4
ExtraTrees 0.64 4.98 75.8 49.8
Bagging 0.62 5.16 73.8 50.8
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5.A.8 DFT Models

5.A.8.1 TS Independent Models

5.A.8.1.1 PBE0

Figure 5.A.25: Machine learning models using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PIP_set_TSOA_NoTS dataset.
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Figure 5.A.26: Machine learning models using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PYR_set_TSOA_NoTS dataset.
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Figure 5.A.27: Machine learning models using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PI_set_TSSig_NoTS dataset.
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Figure 5.A.28: Machine learning models using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PYR_set_TSSig_NoTS dataset.
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Figure 5.A.29: Machine learning models using an expanded descriptor set calculated using
PBE0/def2-TZVP for the ligands_CSD_PYR_set_TSOA_NoTS dataset.
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Figure 5.A.30: Machine learning models using and expanded descriptor set calculated
using PBE0/def2-TZVP for the ligands_CSD_PYR_set_TSSig_NoTS dataset.
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Table 5.A.22: Machine learning metrics using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PIP_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.30 6.63 71.8 40.8
GPR 0.34 6.48 71.8 45.6
ANN 0.13 9.62 47.4 21.9
SVM 0.40 6.11 82.3 58.6
PLS 0.32 6.51 73.0 42.9
RF 0.32 6.62 77.2 54.7
ExtraTrees 0.38 6.28 77.8 55.0
Bagging 0.30 6.84 77.5 54.7

Table 5.A.23: Machine learning metrics using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PYR_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.62 5.35 59.6 29.5
GPR 0.66 5.03 67.3 40.4
ANN 0.62 5.90 62.5 34.3
SVM 0.71 4.59 72.6 47.3
PLS 0.61 5.43 57.2 32.7
RF 0.67 5.00 71.7 46.3
ExtraTrees 0.71 4.68 72.9 46.3
Bagging 0.68 4.97 71.7 45.6

Table 5.A.24: Machine learning metrics using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PIP_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.65 3.99 76.1 50.5
GPR 0.71 3.66 81.8 59.5
ANN 0.60 4.58 76.0 51.9
SVM 0.69 3.78 84.6 62.0
PLS 0.63 4.12 77.2 49.9
RF 0.69 3.80 84.4 61.3
ExtraTrees 0.69 3.79 84.4 63.0
Bagging 0.69 3.83 84.4 61.0
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Table 5.A.25: Machine learning metrics using descriptors calculated using PBE0/def2-
TZVP for the ligands_CSD_PYR_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.60 5.16 72.5 41.6
GPR 0.62 5.03 74.7 46.9
ANN 0.51 6.11 66.2 39.4
SVM 0.68 4.72 79.3 56.5
PLS 0.61 5.12 73.8 42.1
RF 0.65 4.85 77.9 55.3
ExtraTrees 0.68 4.66 78.0 54.7
Bagging 0.65 4.88 77.3 54.9

Table 5.A.26: Machine learning metrics using an expanded descriptor set calculated using
PBE0/def2-TZVP for the ligands_CSD_PYR_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.64 5.25 61.4 31.6
GPR 0.67 4.97 66.6 38.5
ANN 0.60 6.44 58.3 32.5
SVM 0.72 4.53 72.9 49.2
PLS 0.62 5.36 58.3 29.7
RF 0.68 4.94 72.5 47.2
ExtraTrees 0.73 4.56 73.5 48.4
Bagging 0.69 4.85 72.2 47.6

Table 5.A.27: Machine learning metrics using an expanded descriptor set calculated using
PBE0/def2-TZVP for the ligands_CSD_PYR_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.62 5.04 74.5 40.1
GPR 0.64 4.90 76.1 47.8
ANN 0.56 5.81 68.7 42.1
SVM 0.70 4.58 80.7 58.7
PLS 0.62 5.03 73.5 42.9
RF 0.67 4.70 78.4 56.6
ExtraTrees 0.70 4.51 79.1 57.4
Bagging 0.68 4.66 78.7 56.7
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5.A.8.1.2 TPSS

Figure 5.A.31: Machine learning models using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PIP_set_TSOA_NoTS dataset.
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Figure 5.A.32: Machine learning models using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PYR_set_TSOA_NoTS dataset.
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Figure 5.A.33: Machine learning models using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PI_set_TSSig_NoTS dataset.
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Figure 5.A.34: Machine learning models using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PYR_set_TSSig_NoTS dataset.
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Table 5.A.28: Machine learning metrics using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PIP_set_TSOA dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.22 6.54 74.5 40.8
GPR 0.27 6.36 70.9 45.3
ANN 0.10 9.31 51.7 33.3
SVM 0.33 6.07 82.3 62.2
PLS 0.24 6.44 73.9 44.4
RF 0.29 6.26 77.8 55.6
ExtraTrees 0.34 6.03 80.5 58.0
Bagging 0.29 6.23 77.5 56.8

Table 5.A.29: Machine learning metrics using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PYR_set_TSOA_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.59 5.01 64.1 34.4
GPR 0.64 4.69 69.6 45.1
ANN 0.53 6.05 63.0 39.1
SVM 0.69 4.27 75.4 52.3
PLS 0.58 5.09 62.3 34.6
RF 0.63 4.84 74.3 50.8
ExtraTrees 0.68 4.42 74.8 51.5
Bagging 0.63 4.81 74.2 50.8

Table 5.A.30: Machine learning metrics using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PIP_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.61 3.45 83.1 56.9
GPR 0.63 3.38 84.9 64.1
ANN 0.51 4.15 79.4 55.0
SVM 0.60 3.53 87.1 67.8
PLS 0.56 3.68 83.4 57.6
RF 0.59 3.58 88.1 67.5
ExtraTrees 0.62 3.46 87.8 67.8
Bagging 0.60 3.57 88.1 66.1
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Table 5.A.31: Machine learning metrics using descriptors calculated using TPSS/def2-
TZVP for the ligands_CSD_PYR_set_TSSig_NoTS dataset.

Model R2 RMSE % within 4.0 % within 2.0

MLR 0.58 4.83 72.6 41.9
GPR 0.63 4.53 77.2 50.3
ANN 0.54 5.28 66.7 41.2
SVM 0.69 4.19 80.8 56.7
PLS 0.58 4.83 73.0 45.4
RF 0.65 4.39 78.7 54.8
ExtraTrees 0.70 4.09 80.4 55.6
Bagging 0.65 4.39 78.8 54.4
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Conclusions and Future Work

In conclusion, this work identified the need for a high-throughput computational method

for the identification and prediction of ligand and catalyst activity for organometallic catal-

ysis. Especially for the identification of novel ligands for base metal-catalysed reactions.

The copper-catalysed Ullmann-Goldberg reaction was chosen as a test reaction to both

develop and test the new methodology.

A new high-throughput computational methodology was developed to rapidly predict acti-

vation energies for a large number of ligands. Literature ligands for the Ullmann-Goldberg

reaction were mined from the Reaxys database and used to test the viability of the work-

flow. Organometallic complexes of interest can be automatically generated and used to

calculate the activation energy of the reaction of interest. The workflow predicts activa-

tion energies within 3.9 kcal mol−1 when compared to high-level coupled cluster methods,

within the same time scale as a similar high-throughput experimental screen.

To enable the computational discovery of ligands for organometallic catalysis a new struc-

tural database, CatSD, was created to enable searching the Cambridge Structural Database

via the CCDC’s CrossMiner software. Ligands can be identified using a 3D structural query,

called a catalophore, to define key structural features and search the CSD for similar

molecules. The features included in CSD-CrossMiner were expanded to provide a fea-

ture set suitable for catalysis. A new set of coordinating atom features was developed to

enable the definition of the coordinating environment of the metal. Currently, this method

can only be applied to organic structures in the CSD. Further development could include

expanding the applicability to organometallic structures in the CSD as well as generat-

ing databases of commercially available organometallic ligands to allow for computational

screening in process chemistry and ligand selection.

CatSD was used to identify >10,000 ligands from the CSD for the Ullmann-Goldberg re-
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action. The activation energies for each ligand were tested using the developed workflow

and several were chosen and tested experimentally. No conclusive trend was observed

between activation energy and experimental yield. The deactivation pathways of these

ligands were also explored again showing no conclusive trend between deactivation en-

ergy and experimental yield. We conclude that the reaction yield is not solely determined

by ligand properties and is a combination of both ligand properties, deactivation pathways

and more complex mechanistic aspects. This is supported by the literature which is still

undecided on the full reaction mechanism for the Ullmann-Goldberg reaction as well as

the lack of understanding of ligand properties and their effect on reactivity.

Machine learning was used to identify key ligand properties affecting the activation energy

and predict activation energies without the need to calculate the transition state structure.

Eight machine-learning models were tested on the four datasets generated from the high-

throughput screening. A set of descriptors was developed to describe both the steric and

electronic properties of the complexes using only the output of the workflow. ExtraTrees-

based models were found to be the best at predicting activation energies with RMSEs ap-

proaching or surpassing the error of the calculated activation energies (3.9 kcal mol−1).

The machine learning models are an effective secondary tool for the identification of in-

correct structures via the identification of outliers.

It was also demonstrated that descriptor sets excluding the transition states are able to

predict the activation energies with similar accuracy. While transition states still need to

be calculated to generate the models, predictions for new ligands are possible without the

need to calculate transition state structures, reducing computational costs significantly.

Follow-up work to this project may include expanding CatSD to apply to organometallic

structures within the CSD, creation of new databases containing commercially available

ligands for process screening, expansion to open-shell complexes or converting the work-

flow presented in this workflow into a suite of software to make it readily accessible to the

wider chemical community. We hope the methodologies presented in this work will pro-

vide a basis for the uptake and development of computational screening for organometallic

catalysis. The tools presented are applicable to a large range of chemical applications from

ligand discovery, process development and exploration of mechanistic pathways both in-

dustrially and in research.
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