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Abstract

This thesis consists of four independent chapters that focus on two increasingly popular

models in the field of econometrics, namely Mixed Data Sampling (MIDAS) models and

spatial econometric models.

Chapter 1 introduces the MIDAS approach to a panel data model. It presents the

asymptotic distributions of the nonlinear least squares (NLS) estimator for the panel-

MIDAS model and the least squares (LS) estimator for the standard LS model based

on predetermined weights. The utility of the panel-MIDAS model is demonstrated by a

Monte Carlo simulation and an empirical application.

Chapter 2 presents an application of the MIDAS model to study the economic policy

uncertainty (EPU) effect on mortality in the US. The results indicate a significant negative

correlation between EPU and mortality. The accompanying analysis reveals that changes

in risky health behaviors are consistent with fluctuations in mortality.

Chapter 3 proposes a spatial quasi-limited information maximum likelihood (SQLIML)

estimation for a cross-sectional spatial lag model (SLM) with additional endogenous

variables X. It derives the asymptotic properties of the SQLIML estimator and compares

them with the spatial two-stage least squares (S2SLS) estimator. It also introduces a test

of the null that X is exogenous in the SLM model. The above theoretical aspects are

explored via a Monte Carlo study and an empirical application.

Chapter 4 presents an application of the spatial econometric model to study the minimum

wage effect on the gender wage gap across income levels in the US. The results reveal that

minimum wage increases in a given state narrow the 10th-60th percentile gender wage

gap in its own state and its neighboring states. However, there is no evidence that the

gender wage gap in the upper tail of the wage distribution is associated with minimum

wages.
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Introduction

This thesis comprises four chapters within the field of econometrics. It mainly focuses

on two econometric models, the Mixed Data Sampling (MIDAS) model and the spatial

econometric model. The first two chapters focus on the MIDAS model, and the last two

chapters focus on the spatial econometric model.

One dilemma faced by researchers is how to deal with mixed-frequency observations

in a regression model. This is often the case for macroeconomic variables. As an

example, Gross Domestic Product (GDP), one of the key indicators of a nation’s economic

status, is measured quarterly in the US and it is released with a significant delay, while

many other variables are available more timely, such as monthly unemployment rate,

daily stock returns. This frequency imbalance presents a significant challenge when

estimating low-frequency variables with high-frequency variables. Several methods have

been proposed to tackle this issue. Among those, the temporally aggregating approach

is the most commonly used, where high-frequency variables are temporally aggregated

to low-frequency variables using a predetermined weighting scheme. However, one can

expect that the temporally aggregating approach will lose high-frequency information

in the high-frequency data if predetermined weights are not properly chosen. Instead,

Ghysels, Santa-Clara, and Valkanov (2004) propose the MIDAS approach, where the

aggregating weights are determined by data, allowing to retain most of the information

in high-frequency variables.
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INTRODUCTION

One attractive feature of the MIDAS model is that it can deal with mixed-frequency

data without a substantial loss of degrees of freedom. It can explain the low-frequency

variable based on the high-frequency variable and its lags. One can expect that there

would be a large number of parameters to be estimated if the number of high-frequency

lags is large. To address this parameter proliferation, in the MIDAS model, a weighting

function that depends on a few parameters is used to capture the weights of lagged high-

frequency observations. Since their introduction by Ghysels, Santa-Clara, and Valkanov

(2004, 2005), the MIDAS approach has been developed theoretically and empirically. The

development in application and extension of the MIDAS model can be found in Ghysels,

Santa-Clara, and Valkanov (2006), Andreou, Ghysels, and Kourtellos (2010, 2011), Guérin

and Marcellino (2013), Bai, Ghysels, and Wright (2013), and Miller (2014), among others.

The rule of thumb that all data are sampled at the same frequency is even more restrictive

when the panel data is used. While the literature on the MIDAS approach is expansive,

relatively little work has been done on the extension of the MIDAS approach to panels.

Chapter 1 contributes to the literature by introducing the MIDAS framework into the

fixed-effects models and random-effects models and making the first attempt to establish

the asymptotic distributions of their nonlinear least squares (NLS) estimators. In

particular, it derives the conditions for the consistency and the asymptotic normality

of the MIDAS-NLS estimator and shows that the least squares (LS) estimator of the

standard LS model based on predetermined weights is inconsistent. In addition, it

proposes a Wald test for the null of flat weights in the panel-MIDAS model. The finite

sample properties of estimators are studied via a Monte Carlo simulation. In comparing

the size of the bias and the efficiency gains, the results show that the MIDAS-NLS

estimator outperforms the LS estimator in the presence of mixed-frequency data. An

empirical application to a model of Okun’s law illustrates the usefulness of the proposed

model. The empirical findings indicate that the estimation accuracy is significantly

improved by the use of the panel-MIDAS model.
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INTRODUCTION

Chapter 2 presents an application of the MIDAS model to the following questions: (i)

How does economic policy uncertainty (EPU) affect mortality? (ii) Does this effect differ

by gender and age? (iii) Could lifestyle changes be the mechanism through which EPU

affects mortality? Using time-series data from 1960-2013 in the US, the analysis suggests

a significant negative correlation between EPU and mortality of all sex and age groups,

with particularly strong pronounced for the old (65-84-year-olds). A 1% point increase in

EPU is significantly associated with a 0.4410% decline in mortality rates of 65-84-year-

olds. It is noteworthy that women are more sensitive to changes in EPU than men, with

a greater elasticity of -0.2821 and a longer-lasting effect of 57 months. To further explore

the mechanisms behind this reduction in mortality when uncertainty increases, microdata

from the Behavioral Risk Factor Surveillance System (BRFSS) are used to examine how

risky health behaviors respond to changes in EPU. Using BRFSS data, we construct

variables: the prevalence rate of current drinkers, the prevalence rate of current smokers,

the prevalence rate of insufficient exercise, and the prevalence rate of overweight and

obesity as indicators of risky health behaviors. The accompanying analysis reveals that

increased EPU is associated with decreased prevalence rates of risky health behaviors,

partly explaining the health improvement during high uncertainty periods.

Another dilemma faced by researchers is how to capture the potential relationships and

interactions between spatial units. It is not possible for traditional econometric models to

deal with these features, as the number of parameters would be greater than the number

of observations. This has motivated the introduction of spatial econometric models

that accommodate co-dependencies across units. In the spatial econometric model, the

information about the dependence between spatial units is incorporated into a spatial

weight matrix. It captures the spatial structure of the data and usually needs to be

specified in advance. In particular, each element of this matrix represents the strength

of the spatial proximity between units. Therefore, due to its ability to model spatial

dependencies at a low cost in terms of degrees of freedom, the spatial econometric model

3



INTRODUCTION

is highly attractive to researchers. Early development in the estimation and application

of the spatial econometric model and its further research directions can be found in

Anselin (1988, 2010), Anselin and Florax (1995), Anselin and Rey (1997), Pinkse and

Slade (2010), among others.

A simple version of the spatial econometric model is known as the spatial lag model

(SLM) introduced by Cliff and Ord (1973, 1981), which augments the linear model

by adding a spatial lag term. Theoretically, the spatial lag term is endogenous, and

several estimation methods have been proposed to address its endogeneity. Among these

estimation methods, the maximum likelihood (ML) (Ord, 1975) is the most widely used.

Notice that all of these estimation methods considered above for the SLM model are only

applicable when the spatial lag variable is the only endogenous variable. In other words,

they fail to address the potential endogeneity of the explanatory variables X. However,

in practice, one may expect that some of the other explanatory variables are endogenous

as well. Therefore, it is necessary to consider a SLM model that allows for additional

endogenous RHS variables X. The main contribution of Chapter 3 is to propose a new

approach to estimating this model.

The model of interest in Chapter 3 is a cross-sectional SLM model with additional

endogenous variables. It presents a spatial quasi-limited information maximum likelihood

(SQLIML) estimation for this model and shows that the SQLIML estimator is consistent

and asymptotically normal under certain conditions. This estimator extends Ord’s (1975)

ML estimator for SLM models and Wooldridge’s (2014) control function estimator for non-

spatial models. In particular, as with the ML estimator, it controls for the endogeneity

of the spatial lag term by using a determinant of a matrix that depends on the spatial

lag parameter and the sample size, and as with the control function estimator, it controls

for the endogeneity of X by adding the reduced form error of X to the SLM model. In

addition, this chapter introduces a regression-based test of the null that X is exogenous

and provides a Monte Carlo study to compare the performance of the spatial two-stage

4



INTRODUCTION

least squares (S2SLS) estimator and the SQLIML estimator. The Monte Carlo simulation

results show that the proposed SQLIML estimator outperforms the S2SLS estimator,

especially for models with strong endogeneity and weak instruments, and indicate the

correct size and good power of the proposed exogeneity test. The usefulness of the

SQLIML estimation is demonstrated by an empirical application to revisit the driving

under the influence (DUI) arrest rate model in US counties by Drukker, Prucha, and

Raciborski (2013). In this literature, a key independent variable is the number of sworn

officers, which is argued to be correlated with the alcohol-related arrest rate, thereby

leading to an additional endogeneity problem. For purposes of comparison, the DUI

arrest rate model is estimated by S2SLS and SQLIML methods. The results suggest that

the sign and significance of the SQLIML estimators are the same as those of the S2SLS

estimators. However, in comparing the variance of estimators and the mean squared error

of models, the SQLIML estimation method provides better estimates than the S2SLS

estimation method.

A major focus of the spatial econometric model is spatial spillover. In the spatial context,

spatial spillover defines that changes in one unit exert impacts on other units. In contrast

to the traditional econometric model that limits spillover to zero, an attractive feature of

the spatial econometric model is that spatial spillover can be accounted for. This has led

to the widespread application of the spatial econometric model in regional science and

urban economics.

Chapter 4 presents an application of the spatial econometric model to examine the effect

of the minimum wage on the gender wage gap with two specific objectives in mind. The

first is to quantify the extent to which minimum wage hikes contribute to changes in

the gender wage gap at different income levels. The second is to assess the spillover

effects of the minimum wage on the gender wage gap of neighboring regions. Measuring

the minimum wage spillover effect is important because it enables an accurate estimate

of the minimum wage effect. If the minimum wage spillover effect does exist, then an

5
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important implication for policy-makers is that the collaboration between adjacent regions

contributes to developing effective minimum wage policies to address wage inequality.

Using US state-level data during 1979-2018, the analysis provides evidence of a spillover

effect of the minimum wage on the gender wage gap. Specifically, own-state minimum

wage increases are expected to narrow the 10th-60th percentile gender wage gap in its

own state and its neighboring states, with particularly strong pronounced for those in

the lower tail of the wage distribution. Consistent with previous studies, this analysis

indicates that the minimum wage is insignificantly associated with the gender wage gap

in the upper tail of the wage distribution.

This thesis is organized as follows. Chapter 1 introduces the panel-MIDAS model and

derives the asymptotic properties and the finite sample properties of its NLS estimator.

Chapter 2 applies the MIDAS model to explore the EPU effects on health status. Chapter

3 proposes the SQLIML estimation for the SLM model with additional endogenous

variables and establishes the consistency and the asymptotic normality of the SQLIML

estimator. Chapter 4 applies the spatial econometric model to measure the size of the

minimum wage effect on gender wage inequality. The last chapter concludes the thesis.

Detailed proofs of Chapters 1 and 3 are presented in Appendices A and B, respectively.

6



Chapter 1

Asymptotic Distributions of Nonlinear

Least Squares Estimators for

Panel-MIDAS Models

1.1 Introduction

A time-series regression model generally requires that all data are sampled at the same

frequency. When a time series regression involves mixed-frequency data, the common

practice is to achieve the same frequency data by temporally aggregating high frequency

to low frequency using a predetermined weighting scheme. However, one may expect that

the inappropriate user-chosen components may lead to incorrect inferences. Marcellino

(1999) points out that empirical properties, such as exogeneity, Granger causality, and

cointegration, depend on temporal aggregation. Other important contributions to the

temporal aggregation effects on estimating and testing include Engle (1969), Tiao (1972),

Wei (1978), Granger (1987), Breitung and Swanson (2002), and Ghysels and Miller (2015).

The limitation of the temporal aggregation approach has motivated the introduction of

the Mixed Data Sampling (MIDAS) approach (Ghysels, Santa-Clara, and Valkanov, 2005,

7



1.1 Introduction

2006).

The MIDAS approach proposes a data-driven method to aggregate high-frequency data

into low-frequency data. It can explain the low-frequency variable by the high-frequency

variable and its lags. The structure of the weighting scheme is data-driven. To reduce the

number of parameters in the MIDAS model, a weighting function of a low-dimensional

vector θ is used to capture the weights of lagged high-frequency variables. Due to its

ability to deal with mixed-frequency data at a relatively low parametric cost, the MIDAS

approach has attracted considerable attention recently. It has been used in a wide range

of applications, particularly in macroeconomics and financial economics (see, Clements

and Galvão, 2008; Ghysels and Wright, 2009; Alessi et al., 2014; Ghysels and Marcellino,

2018; Babii, Ghysels, and Striaukas, 2021). It also has been further extended into various

time series models including the smooth transition MIDAS model (Galvão, 2013), the

Markov-switching MIDAS model (Guérin and Marcellino, 2013), the GARCH-MIDAS

model (Engle, Ghysels, and Sohn, 2013), the ECM-MIDAS model (Götz, Hecq, and

Urbain, 2014), the cointegrated MIDAS model (Miller, 2014), the unrestricted MIDAS

model (Foroni, Marcellino, and Schumacher, 2015), and the mixed-frequency Markov-

switching VAR model (Foroni, Guérin, and Marcellino, 2015).

Nevertheless, studies on the extension of the MIDAS model to panels are rare. Khalaf

et al. (2021) make the first thorough attempt to introduce the MIDAS model into the

dynamic panel framework. In particular, they extend MIDAS to the Arellano-Bond

model and estimate this model using the GMM method. Further, based on the dynamic

panel MIDAS model of Khalaf et al. (2021) and the Markov-switching MIDAS model of

Guérin and Marcellino (2013), Casarin et al. (2018) develop a panel Markov-Switching

unrestricted MIDAS regression that is suitable for analysis with Bayesian methods.

Encouraged by Khalaf et al. (2021), we extend the MIDAS model into the panel data

context with fixed effects and random effects. The parameters of the time series MIDAS

model can be estimated by the nonlinear least squares (NLS) estimation method, and

8



1.1 Introduction

the asymptotic and finite sample properties of its NLS estimator are established in

Andreou, Ghysels, and Kourtellos (2010). Based on the success of Andreou, Ghysels,

and Kourtellos (2010), we decided to take a step forward and explore the performance

of the NLS estimator in the panel-MIDAS model. To the best of my knowledge, this

paper is the first to derive the theoretical properties of the MIDAS-NLS estimator in

panel models. If the MIDAS NLS estimator outperforms the least squares (LS) estimator

of the linear model with a predetermined weighting scheme, its improved power can be

applied to better explain economic activities.

The growing interest in the extension of the MIDAS approach to panels is partly due to the

increased availability of datasets containing observations across a collection of individuals.

There are several reasons why the extension of the MIDAS approach from time series to

panels is interesting. First, the panel data contains more information and more variation

among variables. With more degrees of freedom and more sample variability, the panel-

MIDAS model is expected to have more accurate inferences of model parameters than

the time-series MIDAS model. Second, the asymptotic normality of the MIDAS-NLS

estimator when the lag order of the high-frequency variable is larger than its aggregation

horizon does not hold in the time-series model, but it holds in the panel model. Therefore,

compared to the time series MIDAS model, the panel-MIDAS model allows us to study

the dynamic behavior of the economy with consistent parameter estimation.

The aim of this paper is threefold. First, this paper explores the NLS estimator of the

panel-MIDAS model. It assumes that the Data Generating Process (DGP) is the mixed

data sampling process where the dependent variable is sampled at a low frequency, while

the independent variable is sampled at a high frequency. We shall consider both the fixed-

effects and the random-effects specification of the individual effects and highlight their

differences for estimation and inference. We establish the conditions for the consistency

and the asymptotic normality of the MIDAS-NLS estimator of the fixed-effects and the

random-effects model, where the time dimension, T , horizon aggregation, m, and high-

9



1.1 Introduction

frequency lag order, K, are fixed, and the cross-sectional dimension, N , grows without

bound. Indeed, the MIDAS-NLS estimators are
√
N -consistent.

Second, we compare the performance of the estimators of the panel-MIDAS model and

the standard LS model based on predetermined weights. We borrow the decomposition

for the time series MIDAS regression from Andreou, Ghysels, and Kourtellos (2010) to

decompose the conditional mean into an aggregated term in the LS model and a nonlinear

term, which is the difference between the aggregated term in the MIDAS model and the

aggregated term in the LS model. Using this decomposition, we evaluate the asymptotic

bias of the LS estimator and compare the asymptotic variance of the LS estimator

with the MIDAS-NLS estimator. Besides, we provide several examples of models and

conduct the Monte Carlo simulation with high-frequency data being a MA(1) or an

AR(1) process to assess the asymptotic and finite sample properties of the estimators.

Analytical and numerical results for the bias and the relative efficiency of these two

estimators are derived. Our results show that in the presence of mixed-frequency data, the

standard approach of aggregating equally the high-frequency variable can yield a biased

LS estimator if the high-frequency process is serially correlated. This bias depends on the

level of aggregation horizon, the pattern of true weighting schemes, and the number of

high-frequency lags. In comparing the root mean squared error (RMSE) of MIDAS-NLS

and LS estimators, we uncover that the MIDAS-NLS estimator is more efficient relative

to the LS estimator, particularly for models with an AR(1) process in combination with

a high level of aggregation horizon, a large number of high-frequency lags, and rapid

decaying weights. We illustrate the power of the Wald test for the null of the flat weighting

scheme via the Monte Carlo simulation. The simulation results indicate the good power

of this test.

Third, in an empirical application, we use the panel-MIDAS model to relate annual GDP

growth rates to monthly unemployment rate changes in the Metropolitan Statistical Areas

(MSA) of the US from 2004 to 2020. In comparing the R2 values of the MIDAS model

10



1.2 Panel-MIDAS Model

and the LS model based on equal weights, we find that the use of the panel-MIDAS

model significantly improves estimation accuracy. Our Wald test results reject the null

hypothesis of a flat-weighting scheme for unemployment growth in the MIDAS model.

The rest of this paper is organized as follows. In Section 1.2, we introduce the panel-

MIDAS model. In Section 1.3, we derive the asymptotic properties of the MIDAS-NLS

estimator and propose the Wald test for the flat weighting scheme in both the fixed-effects

model and the random-effects model. In Sections 1.4 and 1.5, we compare the performance

of the MIDAS-NLS estimator and the LS estimator when the high-frequency regressor is

a MA(1) or an AR(1) process. In Section 1.6, we provide an empirical application, and

the last section concludes. The proofs are collected in Appendix A.

1.2 Panel-MIDAS Model

Consider two processes
{
Yit,X

(m)
i,t/m

}
for individuals i = 1, 2, . . . , N , where Yit is a low-

frequency process that is observed at t = 1, 2, . . . , T , X(m)
i,t/m = (X

1(m)
i,t/m, X

2(m)
i,t/m, . . . , X

p(m)
i,t/m)

is a 1× p vector of high-frequency process that is observed m times between t− 1 and t.{
Y i,X

(m)
i

}
are assumed to be independent and identically distributed across i. Following

the idea of the MIDAS approach, we develop the panel-MIDAS model:

Yit = X it(θ)β + αi + εit, (1.2.1)

where αi is the unobservable individual effects which could be either fixed or random,

β = (β1, β2, . . . , βp)
′ is a p-dimensional column vector of parameters, and X it(θ) =

(X1
it(θ

1), X2
it(θ

2), . . . , Xp
it(θ

p)) is a 1× p vector of aggregated high-frequency data with

Xj
it(θ

j) =
K∑
k=1

wk(θ
j)X

j(m)
i,t−(k−1)/m, j = 1, . . . , p,

11



1.2 Panel-MIDAS Model

where K is the maximum lag order of high-frequency variables, which can be shorter or

greater than m1. Xj(m)
i,t−k/m represents the k-th observation of Xj(m)

i that we look into the

past from the most recent observation, wk(θ
j) is the aggregation weighting function that

is parameterized as a function of a low-dimensional vector θj. The weighting function can

have a number of functional forms. Among those, the Beta function and the Exponential

Almon function are the most commonly used. A Beta function with two parameters

θj = (θj1, θ
j
2)

′ is defined as

wk(θ
j) =

f( k
K
, θj1; θ

j
2)

K∑
k=1

f( k
K
, θj1; θ

j
2)

,

where

f(a, θj1; θ
j
2) =

(a)θ
j
1−1(1− a)θ

j
2−1Γ(θj1 + θj2)

Γ(θj1)Γ(θ
j
2)

, Γ(θ) =

∫ ∞

0

e−xxθ−1dx.

An Exponential Almon function with two parameters θj = (θj1, θ
j
2)

′ is defined as

wk(θ
j) =

eθ
j
1k+θj2k

2

K∑
k=1

eθ
j
1k+θj2k

2

, (1.2.2)

where the weights add up to 1 in the sense that
K∑
k=1

wk(θ
j) = 1. In this paper, we focus

on a two-parameter Exponential Almon function. Ghysels, Sinko, and Valkanov (2007)

point out that even though the Exponential Almon polynomial function has only two

parameters, it is still flexible enough to take various weighting shapes. As shown in Figure

1.1, we can obtain the rapid decaying weights and slow decaying weights corresponding

to θ1 = 0, θ2 = −0.2 and θ1 = 0, θ2 = −0.02, respectively. The equal weights can

be developed when θ1 = θ2 = 0. The exponential Almon weights can also produce a

hump shape, which emerges for θ1 = 0.2, θ2 = −0.02. The usage of Exponential Almon

polynomials enables us to fit a large number of lags with only two parameters and obtain

more degrees of freedom.
1For simplicity and without loss of generality, we assume that all high-frequency variables are sampled

at the same frequency and have the same lag orders.
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1.3 Asymptotic Properties of the MIDAS-NLS Estimator

Figure 1.1: Exponential Almon Polynomial Weighting Function

1.3 Asymptotic Properties of the MIDAS-NLS Estimator

The objective of this subsection is to establish the consistency and the asymptotic

normality of the NLS estimator of the panel-MIDAS model, denoted as MIDAS-NLS.

We consider two cases: (i) αi are the fixed effects; (ii) αi are the random effects. Our

asymptotics are based on the case where m, K, and T are fixed, and N → ∞.

1.3.1 Fixed-Effects Model

The cross-section equation in the panel-MIDAS model (1.2.1) is

Y i = X i(θ)β + αilT + εi, (1.3.1)

13
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where Y i = (Yi1, Yi2, . . . , YiT )
′ and εi = (εi1, εi2, . . . , εiT )

′ are T × 1 column vectors. lT is

a T × 1 vector of ones. X i(θ) is a T × p matrix of aggregated variable, defined by

X i(θ)
T×p

=


X1

i1(θ
1) · · · Xp

i1(θ
p)

... . . . ...

X1
iT (θ

1) · · · Xp
iT (θ

p)

 ≡


X i1(θ)

...

X iT (θ)

 = (X1
i (θ

1), . . . ,Xp
i (θ

p)).

First, we consider the panel-MIDAS model with fixed effects (FE). In this case, following

the standard practice, we eliminated αi from the model (1.3.1) by demeaning the

variables, namely,

Ỹ i = X̃ i(θ)β + ε̃i. (1.3.2)

Define HT = IT − lT (l
′
T lT )

−1l′T . The demeaned equation (1.3.2) is obtained by

premultiplying equation (1.3.1) by HT . Specifically, HTY i = Ỹ i, HT lT = 0,

HTX i(θ) = X̃ i(θ), and HTεi = ε̃i.

Define f(X̃ i; δ) = HTf(X i; δ) and f(X i; δ) = X i(θ)β with δ = (β′,θ′)′. Let δ0 =

(β′
0,θ

′
0)

′ be the true parameter vector, where β0 = (β10, β20, . . . , βp0)
′, θ0 = (θ1

0
′, . . . ,θp

0
′)′

with θj
0 = (θj1,0, θ

j
2,0)

′. The equilibrium vector Y i is

Ỹ i = f(X̃ i; δ0) + ε̃i. (1.3.3)

To provide a rigorous analysis of the MIDAS-NLS estimator, basic regularity conditions

are assumed below.

Assumption 1: δ0 is the true value of δ and is an interior point of the parameter space

Θ, where Θ is a compact set.

Assumption 2: E(εit | X(m)
i , αi) = 0 and E(εiε′i | X

(m)
i , αi) = σ2

εIT .

Assumption 3: E(Ỹ i
′
Ỹ i) < ∞ and Esup

δ∈Θ
[f(X̃ i; δ)

′f(X̃ i; δ)] < ∞.
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Assumption 4: E(∂f(X̃i;δ0)
′

∂δ
∂f(X̃i;δ0)

∂δ′
) exists and is non-singular.

Assumption 1 provides a restriction on the parameter space. Assumption 2 is a basic

assumption of errors. Assumption 3 is a sufficient condition for the consistency of the

MIDAS-NLS estimator, ensuring that the uniform law of large numbers (LLN) holds.

Assumption 4 ensures that there is no multicollinearity in the regressors.

The nonlinear least-squares estimator δ̂ is the minimizer of the sum of squared residuals:

Q(δ) =
N∑
i=1

(Ỹ i − f(X̃ i; δ))
′(Ỹ i − f(X̃ i; δ)). (1.3.4)

Let Q0(δ) = E(Q(δ)
N

). The consistency of δ̂ follows from the identifiable uniqueness and

uniform convergence. We need to show that (i) Q0(δ) is uniquely minimized at the true

value δ0, and (ii) 1
N
Q(δ)

p→ Q0(δ) uniformly in δ ∈ Θ.

Theorem 1.1. Under Assumptions 1-3, δ̂ p→ δ0.

Proof. See Appendix A.1.

The asymptotic distribution of the MIDAS-NLS estimator is obtained from the Taylor

series expansion of ∂Q(δ̂)
∂δ

= 0 at δ0. The first-order derivatives of (1.3.4) at δ0 are


1√
N

∂Q(δ0)
∂β

= − 2√
N

N∑
i=1

X̃ i(θ0)
′ε̃i,

1√
N

∂Q(δ0)
∂θ

= − 2√
N

N∑
i=1

∂f(X̃i;δ0)
′

∂θ
ε̃i,
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where ∂f(Xi;δ)
′

∂θ
=


∂f(Xi;δ)

′

∂θ1

...
∂f(Xi;δ)

′

∂θp

 =


∂X1

i (θ
1)′

∂θ1 β1

...
∂Xp

i (θ
p)′

∂θp βp

, with ∂Xj
i (θ

j)′

∂θj =

 ∂Xj
i (θ

j)′

∂θj1

∂Xj
i (θ

j)′

∂θj2

 and

∂Xj
i (θ

j)

∂θj1
=


K∑
k=1

∂wk(θ
j)

∂θj1
X

j(m)
i,1−(k−1)/m

...
K∑
k=1

∂wk(θ
j)

∂θj1
X

j(m)
i,T−(k−1)/m

 ,
∂Xj

i (θ
j)

∂θj2
=


K∑
k=1

∂wk(θ
j)

∂θj2
X

j(m)
i,1−(k−1)/m

...
K∑
k=1

∂wk(θ
j)

∂θj2
X

j(m)
i,T−(k−1)/m

 ,

where for a two-parameter Exponential Almon polynomial function given by the equation

(1.2.2), we have



∂wk(θ
j)

∂θj1
=

eθ
j
1k+θ

j
2k

2
(k

K∑
k=1

eθ
j
1k+θ

j
2k

2
−

K∑
k=1

keθ
j
1k+θ

j
2k

2
)

(
K∑

k=1
eθ

j
1k+θ

j
2k

2
)2

,

∂wk(θ
j)

∂θj2
=

eθ
j
1k+θ

j
2k

2
(k2

K∑
k=1

eθ
j
1k+θ

j
2k

2
−

K∑
k=1

k2eθ
j
1k+θ

j
2k

2
)

(
K∑

k=1
eθ

j
1k+θ

j
2k

2
)2

.

(1.3.5)

The first-order derivatives of (1.3.4) at δ0 appear in linear forms of εi, then we can

apply the central limit theorem to 1√
N

∂Q(δ0)
∂δ

to derive the asymptotic distribution of the

estimator.

Theorem 1.2. Under Assumptions 1-4, the asymptotic normality of the MIDAS

estimator δ̂ is given by

√
N(δ̂ − δ0)

d→ N(0, σ2
ε(E(

∂f(X̃ i; δ0)
′

∂δ

∂f(X̃ i; δ0)

∂δ′ ))−1),

and the asymptotic variance of β̂ is given by

AV ar(β̂) =
σ2
ε

N
(G11(θ0)−G12(θ0)G22(θ0)

−1G12(θ0)
′)−1, (1.3.6)

where G11(θ0) = E(X̃ i(θ0)
′X̃ i(θ0)), G12(θ0) = E(X̃ i(θ0)

′ ∂f(X̃i;δ0)
∂θ′ ), and G22(θ0) =
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E(∂f(X̃i;δ0)
′

∂θ
∂f(X̃i;δ0)

∂θ′ ).

Proof. See Appendix A.2.

1.3.2 Random-Effects Model

If ai is treated as the random effects (RE), then the panel-MIDAS model (1.3.1) can be

written as

Y i = X i(θ)β + ui, (1.3.7)

where ui = αilT + εi. Define the variance-covariance matrix of ui as Ω = E(uiu
′
i). In

this case, premultiplying (1.3.7) by Ω−1/2, the transformed model is

Ỹ i = X̃ i(θ)β + ũi, (1.3.8)

where Ỹ i = Ω−1/2Y i, X̃ i(θ) = Ω−1/2X i(θ), and ũi = Ω−1/2ui. Similarly, define

f(X̃ i; δ) = Ω−1/2f(X i; δ) and f(X i; δ) = X i(θ)β with δ = (β′,θ′)′. Let δ0 = (β′
0,θ

′
0)

′

be the true parameter vector, the equilibrium vector Y i is

Ỹ i = f(X̃ i; δ0) + ũi. (1.3.9)

The main results of this subsection are presented in the following theorem. Before

we proceed, we list some additional assumptions necessary for deriving the asymptotic

distribution of the MIDAS-NLS estimator of the RE model.

Assumption 2’: (a) E(εit | X(m)
i , αi) = 0 and E(εiε′i | X

(m)
i , αi) = σ2

εIN ; (b) E(αi |

X
(m)
i ) = 0 and E(α2

i | X
(m)
i ) = σ2

α.

Assumption 3’: E(Y iΩ
−1Y i) < ∞ and Esup

δ∈Θ
[f(X i; δ)

′Ω−1f(X i; δ)] < ∞.

Assumption 4’: E(∂f(Xi;δ0)
′

∂δ
Ω−1 ∂f(Xi;δ0)

∂δ′
) exists and is non-singular.
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Under Assumption 2’, the variance of uit is σ2
u = σ2

α+σ2
ε and its error covariance matrix is

Ω = σ2
αlT l

′
T +σ2

εIT . Obviously, when σ2
α = 0, there are no individual effects in the model,

the RE model becomes the pooled data model. Given that HT = IT − lT (l
′
T lT )

−1l′T in

the FE model, Ω−1 = 1
σ2
ε
(IT − σ2

α

σ2
ε+Tσ2

α
lT l

′
T ) in the RE model, the RE model becomes the

FE model if T is large or σ2
α is large.

Theorem 1.3. Under Assumptions 1,2’, 3’, and 4’, the MIDAS estimator δ̂ is consistent,

and the asymptotic normality of δ̂ is given by

√
N(δ̂ − δ0)

d→ N(0, (E(
∂f(X i; δ0)

′

∂δ
Ω−1∂f(X i; δ0)

∂δ′ ))−1),

and the asymptotic variance of β̂ is given by

AV ar(β̂) =
(G11(θ0)−G12(θ0)G22(θ0)

−1G12(θ0)
′)−1

N
, (1.3.10)

where G11(θ0) = E(X i(θ0)
′Ω−1X i(θ0)), G12(θ0) = E(X i(θ0)

′Ω−1 ∂f(Xi;δ0)
∂θ′ ), and

G22(θ0) = E(∂f(Xi;δ0)
′

∂θ
Ω−1 ∂f(Xi;δ0)

∂θ′ ).

Proof. See Appendix A.3.

Remark 1.1. The above theorem is derived based on the assumption that the error

covariance matrix Ω is known. However, in practice, Ω depends on two unknown

parameters, namely σ2
α and σ2

ε . To implement the RE procedure, we need to estimate

σ2
α and σ2

ε . Here, we first estimate σ2
u. A consistent estimator of σ2

u is

σ̂2
u =

1

NT − 3p

T∑
t=1

N∑
i=1

û2
it,

where ûit = Yit−X it(θ̂PONLS)β̂PONLS is the MIDAS-NLS residuals from the pooled data
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model, and a consistent estimator of σ2
ε is

σ̂2
ε =

1

N(T − 1)− 3p

T∑
t=1

N∑
i=1

ε̂2it,

where ε̂it is the MIDAS-NLS residuals from the FE model, and consequently, we can form

σ̂2
α = σ̂2

u − σ̂2
ε . Finally, Ω can be estimated by

Ω̂ = σ̂2
αlT l

′
T + σ̂2

εIT . (1.3.11)

Once we obtain Ω̂, we insert Ω̂ into Theorem 1.3 in place of Ω.

1.3.3 Test for the Flat Weighting Scheme

The flat temporal aggregation is the most commonly used in the literature. To justify

the validity of the flat weighting scheme, the objective of this subsection is to discuss how

to test the null hypothesis: H0 : θ0 = 0. This test can take the form of the Wald test.

The Wald test statistic can be written as

W = θ̂
′
[R(V̂ /N)R′]−1θ̂ ∼ χ2

2p, (1.3.12)

where R “picks up” the parameters θ and is a 2p× 3p matrix generated from a 3p× 3p

identity matrix by removing the first p rows. In the FE model,

V̂ = σ̂2
ε(E(

∂f(X̃ i; δ̂)
′

∂δ

∂f(X̃ i; δ̂)

∂δ′ ))−1,

and in the RE model,

V̂ = E(
∂f(X i; δ̂)

′

∂δ
Ω̂

−1∂f(X i; δ̂)

∂δ′ ))−1,
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where σ̂2
ε and Ω̂ are given in Remark 1.1. We reject H0 if W > χ2

2p, and failure to reject

the null hypothesis suggests the validity of the flat weighting scheme.

1.4 Comparison with the LS Model

1.4.1 Asymptotic Properties of the LS Estimator

One traditional method to deal with the mixed-frequency data is to aggregate high-

frequency observations to low frequency using a predetermined weighting scheme π. Then

the regression model (1.2.1) becomes

Yit = X it(π)β
∗ + α∗

i + ε∗it. (1.4.1)

where π = (π1′,π2′, . . . ,πp′)′ with πj = (πj
1, π

j
2, . . . , π

j
m)

′ such that πj
k ≥ 0 and

K∑
k=1

πj
k = 1.

X it(π) = (X1
it(π

1), X2
it(π

2), . . . , Xp
it(π

p)) is a 1 × p vector of aggregated high-frequency

data with

Xj
it(π

j) =
K∑
k=1

πj
kX

j(m)
i,t−(k−1)/m, j = 1, . . . , p.

The model (1.4.1) is a linear LS model where the weighting schemes do not depend on

any unknown parameters.

Suppose that the correct specification is in the MIDAS form (1.2.1), but we mistakenly

estimate the linear LS model (1.4.1). To assess the consequences of this misspecification,

we decompose X it(θ) in (1.2.1) into X it(π) and one nonlinear term, X it(θ
∗), then the

model (1.2.1) becomes

Yit = X it(π)β +X it(θ
∗)β + αi + εit, (1.4.2)
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1.4 Comparison with the LS Model

where X it(θ
∗) = (X1

it(θ
1∗), X2

it(θ
2∗), . . . , Xp

it(θ
p∗)) is a 1× p vector with

Xj
it(θ

j∗) =
K∑
k=1

(wk(θ
j)− πj

k)X
j(m)
i,t−(k−1)/m, j = 1, . . . , p.

Eq.(1.4.2) implies that the LS model yields a nonlinear omitted variable term, X it(θ
∗),

and therefore may lead to a biased and inefficient estimator. The objective of this

subsection is to study the asymptotic bias of the LS estimator of β∗ and derive its

asymptotic variance.

Fixed-Effects Model

If ai is treated as the fixed effects, the demeaned equation of (1.4.2) at δ0 is

Ỹ i = X̃ i(π)β0 + X̃ i(θ
∗
0)β0 + ε̃i. (1.4.3)

where X̃ i(π) = HTX i(π) and X̃ i(θ
∗
0) = HTX i(θ

∗
0). Since the transformed LS model

(1.4.1) can be estimated by OLS: β̂∗ = (X̃(π)′X̃(π))−1X̃(π)′Ỹ , plug (1.4.3) into β̂∗

yields the estimates

β̂∗ = β0 + (X̃(π)′X̃(π))−1(X̃(π)′X̃(θ∗
0))β0 + (X̃(π)′X̃(π))−1X̃(π)′ε̃.

One additional assumption necessary for the asymptotic properties of the LS estimator

is summarized below.

Assumption 5: E(X̃ i(π)
′X̃ i(π)) exists and is non-singular.

Theorem 1.4. Under Assumptions 2 and 5, the asymptotic bias of β̂∗ is given by

ABias(β̂∗;β0) = (E(X̃ i(π)
′X̃ i(π))

−1E(X̃ i(π)
′X̃ i(θ

∗
0))β0, (1.4.4)
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1.4 Comparison with the LS Model

and its asymptotic variance is given by

AV ar(β̂∗) =
σ2
ε

N
(E(X̃ i(π)

′X̃ i(π)))
−1. (1.4.5)

Proof. See Appendix A.4.

Eq.(1.4.4) implies that the asymptotic bias of the LS estimator is directly related to the

correlation between X̃ i(π) and X̃ i(θ
∗
0). It gives us a simple way to determine the sign

of bias. If β0 > 0, X̃ i(π) and X̃ i(θ
∗
0) are positively correlated, the asymptotic bias is

positive. Conversely, if β0 > 0, but X̃ i(π) and X̃ i(θ
∗
0) are negatively correlated, the

asymptotic bias is negative. Besides, the bias formula (1.4.4) suggests that the greater

difference between π and w(θ0) leads to a greater bias. It is easy to show that omitting

X̃ i(θ
∗
0) does not lead to biased estimate of β∗ in two cases: (i) when X̃ i(π) and X̃ i(θ

∗
0)

are orthogonal in the sense that E(X̃ i(π)
′X̃ i(θ

∗
0)) = 0, regardless of the value of the true

weighting scheme θ0; (ii) The true weighting scheme is π in the sense that X̃(θ∗
0) = 0.

Eq.(1.4.5) shows that the asymptotic variance of the LS estimator does not depend on

the omitted variable, implying that its variance stays the same regardless of the values

of β0 and θ0.

By (1.3.6) and (1.4.5), it is difficult to determine whether the MIDAS-NLS estimator or

the LS estimator is more efficient since their asymptotic variance ratio would depend on

the nonlinear function f(X i; δ0) and its derivatives.

Random-Effects Model

Similarly, if ai is treated as the random effects, the demeaned equation of (1.4.2) at δ0 is

Ỹ i = X̃ i(π)β0 + X̃ i(θ
∗
0)β0 + ũi, (1.4.6)

where X̃ i(π) = Ω−1/2X i(π) and X̃ i(θ
∗
0) = Ω−1/2X i(θ

∗
0).
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1.4 Comparison with the LS Model

For the RE model, we impose the following additional regularity condition and the

asymptotic properties of the LS estimator.

Assumption 5’: E(X i(π)
′Ω−1X i(π)) exists and is non-singular.

Theorem 1.5. Under Assumptions 2’ and 5’, the asymptotic bias of β̂∗ is given by

ABias(β̂∗;β0) = E(X i(π)
′Ω−1X i(π)))

−1E(X i(π)
′Ω−1X i(θ

∗
0))β0, (1.4.7)

and its asymptotic variance is given by

AV ar(β̂∗) =
1

N
E(X i(π)

′Ω−1X i(π)))
−1. (1.4.8)

Remark 1.2. The asymptotic bias of the LS estimator in the RE model is consistent with

that in the FE model, suggesting that the LS estimator is biased unless the true weighting

scheme is π or X̃ i(π) and X̃ i(θ
∗
0) are orthogonal. (1.4.7) and (1.4.8) show that the

asymptotic properties of β̂∗ are directly related to the variance-covariance matrix of ui.

The consistent estimator of Ω is given in (1.3.11).

1.4.2 Example

In this subsection, we derive the analytical results for the asymptotic bias of the LS

estimator and the asymptotic variance ratio of the LS and MIDAS-NLS estimators where

the high-frequency regressor {X(m)
i,t } follows a MA(1) process or an AR(1) process. For

simplicity, we consider the case of a single regressor with K = {m, 2m}, the panel-MIDAS

model is given by

Yit = Xit(π)β +Xit(θ
∗)β + αi + εit,

where αi | X(m)
i ∼ IID(0, σ2

α), εit | (X
(m)
i , αi) ∼ IID(0, σ2

ε), Xit(π) =
K∑
j=1

πjx
(m)
i,t−(j−1)/m,

and Xit(θ
∗) =

K∑
j=1

wj(θ
∗)x

(m)
i,t−(j−1)/m with wj(θ

∗) = wj(θ)− πj.
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1.4 Comparison with the LS Model

MA(1) process

Let high-frequency regressor {X(m)
i,t } follows a stationary MA(1) given by X

(m)
i,t = e

(m)
i,t +

ρe
(m)
i,t−1/m, where e

(m)
i,t ∼ IID(0, σ2

e), then Xit(π) and Xit(θ
∗) are given by


Xit(π) = π1e

(m)
i,t +

K−1∑
j=1

(ρπj + πj+1)e
(m)
i,t−j/m + ρπKe

(m)
i,t−K/m,

Xit(θ
∗) = w1(θ

∗)e
(m)
i,t +

K−1∑
j=1

(ρwj(θ
∗) + wj+1(θ

∗))e
(m)
i,t−j/m + ρwK(θ

∗)e
(m)
i,t−K/m.

Proposition 1.1. In the FE model, let high-frequency regressor {X(m)
i,t } follows a MA(1)

process, the asymptotic bias of the LS estimator is given by

ABias(β̂∗; β) = γβ, (1.4.9)

where γ = γ1
γ2

with γ1 = tr(HTE(X i(θ
∗)X i(π)

′)) and γ2 = tr(HTE(X i(π)X i(π)
′)).

When K = m,

E(X i(θ
∗)X i(π)

′)kr =

σ2
e [π1w1(θ

∗)+
m−1∑
j=1

(ρπj + πj+1)(ρwj(θ
∗) + wj+1(θ

∗)) + ρ2πmwm(θ
∗)] if r = k

σ2
eρπmw1(θ

∗) if r = k + 1

σ2
eρπ1wm(θ

∗) if r = k − 1

0 otherwise

and
E(X i(π)X i(π)

′)kr =

σ2
e [π

2
1+

m−1∑
j=1

(ρπj + πj+1)
2 + ρ2π2

m] if r = k

σ2
eρπ1πm if r = k + 1 or r = k − 1

0 otherwise
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1.4 Comparison with the LS Model

When K = 2m,

E(X i(θ
∗)X i(π)

′)kr =

σ2
e [π1w1(θ

∗)+
2m−1∑
j=1

(ρπj + πj+1)(ρwj(θ
∗) + wj+1(θ

∗)) + ρ2π2mw2m(θ
∗)] if r = k

σ2
e [w1(θ

∗)(ρπm + πm+1)+
m−1∑
j=1

(ρwj(θ
∗) + wj+1(θ

∗))

×(ρπm+j + πm+j+1) + ρπ2m(ρwm(θ
∗) + wm+1(θ

∗))] if r = k + 1

σ2
e [π1(ρwm(θ

∗) + wm+1(θ
∗))+

m−1∑
j=1

(ρwm+j(θ
∗) + wm+j+1(θ

∗))

×(ρπj + πj+1) + ρw2m(θ
∗)(ρπm + πm+1)] if r = k − 1

σ2
eρπ2mw1(θ

∗) if r = k + 2

σ2
eρπ1w2m(θ

∗) if r = k − 2

0 otherwise

and

E(X i(π)X i(π)
′)kr =

σ2
e [π

2
1+

2m−1∑
j=1

(ρπj + πj+1)
2 + ρ2π2

2m] if r = k

σ2
e [π1(ρπm + πm+1)+

m−1∑
j=1

(ρπj + πj+1)(ρπm+j + πm+j+1)

+ρπ2m(ρπm + πm+1)] if r = k + 1 or r = k − 1

σ2
eρπ1π2m if r = k + 2 or r = k − 2

0 otherwise

By (1.3.6) and (1.4.5), the asymptotic variance ratio of the MIDAS-NLS estimator and

the LS estimator is given by
AV ar(β̂)

AV ar(β̂∗)
= Vβ/Vβ∗ , (1.4.10)
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1.4 Comparison with the LS Model

where Vβ∗ = σ2
ε

N
(tr(HTE(X i(π)X i(π)

′)))−1 and Vβ = σ2
ε

N
(V11 − V 12V

−1
22 V

′
12)

−1 with

V11 = tr(HTE(X i(θ)X i(θ)
′)),

V 12 =

(
tr(HTE(∂f(Xi;δ)

∂θ1
X i(θ)

′)) tr(HTE(∂f(Xi;δ)
∂θ2

X i(θ)
′))

)
,

V 22 =

 tr(HTE(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ1
)) tr(HTE(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ1
))

tr(HTE(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ2
)) tr(HTE(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ2
))

 .

When K = m,

E(X i(θ)X i(θ)
′)kr =

σ2
e [w1(θ)

2+
m−1∑
j=1

(ρwj(θ) + wj+1(θ))
2 + ρ2wm(θ)

2] if r = k

ρwm(θ)w1(θ)σ
2
e if r = k + 1 or r = k − 1

0 otherwise

E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e [w1(θ)

∂w1(θ)
∂θs

+
m−1∑
j=1

(ρwj(θ) + wj+1(θ))(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2wm(θ)
∂wm(θ)

∂θs
]β if r = k

σ2
eρwm(θ)

∂w1(θ)
∂θs

β if r = k + 1

σ2
eρw1(θ)

∂wm(θ)
∂θs

β if r = k − 1

0 otherwise
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and

E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e [

∂w1(θ)
∂θl

∂w1(θ)
∂θs

+
m−1∑
j=1

(ρ
∂wj(θ)

∂θl
+

∂wj+1(θ)

∂θl
)(ρ

∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2 ∂wm(θ)
∂θl

∂wm(θ)
∂θs

]β2 if r = k

σ2
eρ

∂wm(θ)
∂θs

∂w1(θ)
∂θl

β2 if r = k + 1

σ2
eρ

∂wm(θ)
∂θl

∂w1(θ)
∂θs

β2 if r = k − 1

0 otherwise

When K = 2m,

E(X i(θ)X i(θ)
′)kr =

σ2
e [w1(θ)

2+
2m−1∑
j=1

(ρwj(θ) + wj+1(θ))
2 + ρ2w2m(θ)

2] if r = k

σ2
e [w1(θ)(ρwm(θ) + wm+1(θ))+

m−1∑
j=1

(ρwj(θ) + wj+1(θ))

×(ρwm+j(θ) + wm+j+1(θ)) + ρw2m(θ)(ρwm(θ) + wm+1(θ))] if r = k + 1 or r = k − 1

σ2
eρw1(θ)w2m(θ) if r = k + 2 or r = k − 2

0 otherwise
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E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e [w1(θ)

∂w1(θ)
∂θs

+
2m−1∑
j=1

(ρwj(θ) + wj+1(θ))(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2w2m(θ)
∂w2m(θ)

∂θs
]β if r = k

σ2
e [(ρwm(θ) + wm+1(θ))

∂w1(θ)
∂θs

+
m−1∑
j=1

(ρwm+j(θ) + wm+j+1(θ))

×(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
) + ρw2m(θ)(ρ

∂wm(θ)
∂θs

+ ∂wm+1(θ)
∂θs

)]β if r = k + 1

σ2
e [w1(θ)(ρ

∂wm(θ)
∂θs

+ ∂wm+1(θ)
∂θs

)+
m−1∑
j=1

(ρwj(θ) + wj+1(θ))

×(ρ
∂wm+j(θ)

∂θs
+

∂wm+j+1(θ)

∂θs
) + ρ(ρwm(θ) + wm+1(θ))

∂w2m(θ)
∂θs

]β if r = k − 1

σ2
eρw2m(θ)

∂w1(θ)
∂θs

β if r = k + 2

σ2
eρw1(θ)

∂w2m(θ)
∂θs

β if r = k − 2

0 otherwise

and

E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e [

∂w1(θ)
∂θl

∂w1(θ)
∂θs

+
2m−1∑
j=1

(ρ
∂wj(θ)

∂θl
+

∂wj+1(θ)

∂θl
)(ρ

∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2 ∂w2m(θ)
∂θl

∂w2m(θ)
∂θs

]β2 if r = k

σ2
e [(ρ

∂wm(θ)
∂θs

+ ∂wm+1(θ)
∂θs

)∂w1(θ)
∂θl

+
m−1∑
j=1

(ρ
∂wm+j(θ)

∂θs
+

∂wm+j+1(θ)

∂θs
)

×(ρ
∂wj(θ)

∂θl
+

∂wj+1(θ)

∂θl
) + ρ∂w2m(θ)

∂θs
(ρ∂wm(θ)

∂θl
+ ∂wm+1(θ)

∂θl
)]β2 if r = k + 1

σ2
e [

∂w1(θ)
∂θs

(ρ∂wm(θ)
∂θl

+ ∂wm+1(θ)
∂θl

)+
m−1∑
j=1

(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

×(ρ
∂wm+j(θ)

∂θl
+

∂wm+j+1(θ)

∂θl
) + ρ(ρ∂wm(θ)

∂θs
+ ∂wm+1(θ)

∂θs
)∂w2m(θ)

∂θl
]β2 if r = k − 1

σ2
eρ

∂w2m(θ)
∂θs

∂w1(θ)
∂θl

β2 if r = k + 2

σ2
eρ

∂w1(θ)
∂θs

∂w2m(θ)
∂θl

β2 if r = k − 2

0 otherwise
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for all s, l = 1, 2.

Proof. See Appendix A.5.

Proposition 1.2. In the RE model, let high-frequency regressor {X(m)
i,t } follows a MA(1)

process, the asymptotic bias of the LS estimator is given by

ABias(β̂∗; β) = γβ,

where γ = γ1
γ2

with γ1 = tr(Ω−1E(X i(θ
∗)X i(π)

′)) and γ2 = tr(Ω−1E(X i(π)X i(π)
′)).

By (1.3.10) and (1.4.8), the asymptotic variance ratio of the MIDAS-NLS estimator and

the LS estimator is given by
AV ar(β̂)

AV ar(β̂∗)
= Vβ/Vβ∗ ,

where Vβ∗ = 1
N
(tr(Ω−1E(X i(π)X i(π)

′)))−1 and Vβ = 1
N
(V11 − V 12V

−1
22 V

′
12)

−1 with

V11 = tr(Ω−1E(X i(θ)X i(θ)
′)),

V 12 =

(
tr(Ω−1E(∂f(Xi;δ)

∂θ1
X i(θ)

′)) tr(Ω−1E(∂f(Xi;δ)
∂θ2

X i(θ)
′))

)
,

V 22 =

 tr(Ω−1E(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ1
)) tr(Ω−1E(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ1
))

tr(Ω−1E(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ2
)) tr(Ω−1E(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ2
))

 ,

where E(X i(θ)X i(θ)
′), E(∂f(Xi;δ)

∂θs
X i(θ)

′), and E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
) are given in

Proposition 1.1.

Propositions 1.1 and 1.2 show that it is difficult to evaluate the asymptotic bias of

the LS estimator and to determine under what conditions the MIDAS-NLS estimator

is asymptotically more efficient than the LS estimator. To explore how θ, ρ, and K affect

the asymptotic properties of estimators, we plot the figures for (1.4.9) and (1.4.10) as a

function of m. We consider three cases. In the first case, we let ρ = 0.8, K = m, and

consider four values of θ = {(0,−0.2), (0,−0.02), (0,−0.0002), (0, 0)}, which correspond
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1.4 Comparison with the LS Model

to the rapid decaying weights, the slow decaying weights, near-flat weights, and the flat

weights. In the second case, we let θ = (0,−0.2), K = m, and consider four values of

ρ = {0, 0.2, 0.5, 0.8}. In the third case, we let ρ = 0.8, θ = (0,−0.2), and consider two

values of K = {m, 2m}. In these cases, we let β = 2, T = 10, m ranges from 3 to 200,

and we let π be the flat weights in the sense that π = (1/m, 1/m, . . . , 1/m)′.

Figure 1.2 plots the asymptotic bias of the LS estimator when the high-frequency regressor

is a MA(1) process. We first focus on panel (a). As expected, the bias with flat weights

is 0, while the bias with rapid decaying weights is the greatest. The bias with rapid and

slow decaying weights is negative and increases in absolute value as m increases, and

when m becomes large, it approaches a certain negative value. Panel (b) shows that the

LS estimator is unbiased when {X(m)
i,t } follows an i.i.d process (ρ = 0), but it is biased

when {X(m)
i,t } are serially correlated. This bias increases as ρ and m increase. Panel (c)

suggests that the bias when K = m and K = 2m have the same trend, but the bias when

K = 2m is consistently larger than the bias when K = m.

Figure 1.3 explores the role of θ, ρ, and K to the asymptotic variance ratio of MIDAS-NLS

and LS estimators. Panel (a) suggests that in the special case of θ = 0, the variance

ratio of these two estimators stabilizes at 1. For all non-flat weights, the MIDAS-NLS

estimator is asymptotically more efficient than the LS estimator. Their relative efficiency

ratio is smaller for the faster-decaying weights and tends to be smaller as m increases. It

is interesting to note that for the near-flat weighting scheme, the variance ratio is around

1 for m < 100 and then decreases dramatically for m ≥ 100. Panels (b) and (c) show

that the asymptotic variance ratio of estimators is smaller for the case of K = 2m, but

it is not greatly affected by ρ.
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1.4 Comparison with the LS Model

Figure 1.2: The Asymptotic Bias of LS Estimators for Models with a MA(1) Regressor
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1.4 Comparison with the LS Model

Figure 1.3: The Asymptotic Variance Ratio of MIDAS-NLS and LS Estimators for Models
with a MA(1) Regressor

AR(1) process

Let high-frequency regressor {X(m)
i,t } follows a stationary AR(1) given by X

(m)
i,t =

ϕX
(m)
i,t−1/m + e

(m)
i,t , where e

(m)
i,t ∼ IID(0, σ2

e), then Xit(π) and Xit(θ
∗) are given by


Xit(π) =

K∑
j=1

πjϕ
K−jx

(m)
i,t−(K−1)/m+

K−1∑
j=1

j∑
q=1

πqϕ
j−qe

(m)
i,t−(j−1)/m,

Xit(θ
∗) =

K−1∑
j=1

wj(θ
∗)(ϕK−j − 1)x

(m)
i,t−(K−1)/m+

K−1∑
j=1

j∑
q=1

wq(θ
∗)ϕj−qe

(m)
i,t−(j−1)/m.

Proposition 1.3. In the FE model, let high-frequency regressor {X(m)
i,t } follows an AR(1)
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process, the asymptotic bias of the LS estimator is given by

ABias(β̂∗; β) = γβ, (1.4.11)

where γ = γ1
γ2

with γ1 = tr(HTE(X i(θ
∗)X i(π)

′)) and γ2 = tr(HTE(X i(π)X i(π)
′)).

When K = m,

E(X i(θ
∗)X i(π)

′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)[

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)]

+σ2
e

m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)(

j∑
q=1

wq(θ
∗)ϕj−q) if r = k

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)[

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)]ϕm(k−r)

+σ2
e [

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)](

m−1∑
j=1

j∑
q=1

πqϕ
m(k−r)−m+2j−q) if r < k

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)[

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)]ϕm(r−k)

+σ2
e(

m∑
j=1

πjϕ
m−j)(

m−1∑
j=1

j∑
q=1

wq(θ
∗)ϕm(r−k)−m+2j−q) if r > k

and

E(X i(π)X i(π)
′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)2 + σ2

e

m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)2ϕm|r−k| + σ2

e(
m∑
j=1

πjϕ
m−j)(

m−1∑
j=1

j∑
q=1

πqϕ
m|r−k|−m+2j−q) otherwise
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When K = 2m,

E(X i(θ
∗)X i(π)

′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]

+σ2
e

2m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)(

j∑
q=1

wq(θ
∗)ϕj−q) if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕ+ σ2

e

m−1∑
j=1

(
m+j∑
q=1

πqϕ
m+j−q)

×(
j∑

q=1

wq(θ
∗)ϕj−q) + σ2

e(
2m∑
j=1

πjϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ
∗)ϕm+2j−q) if r = k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕ+ σ2

e

m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)

×(
m+j∑
q=1

wq(θ
∗)ϕm+j−q) + σ2

e [
2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)](

m−1∑
j=0

m+j∑
q=1

πqϕ
m+2j−q) if r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕm(r−k)

+σ2
e(

2m∑
j=1

πjϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ
∗)ϕm(r−k)−2m+2j−q) if r > k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕm(k−r)

+σ2
e [

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)](

2m−1∑
j=1

j∑
q=1

πqϕ
m(k−r)−2m+2j−q) if r < k − 1

and

E(X i(π)X i(π)
′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)2 + σ2

e

2m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)2ϕ+ σ2

e

m−1∑
j=1

(
m+j∑
q=1

πqϕ
m+j−q)

×(
j∑

q=1

πqϕ
j−q) + σ2

e(
2m∑
j=1

πjϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

πqϕ
m+2j−q) if r = k + 1 or r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)2ϕm|r−k|

+σ2
e(

2m∑
j=1

πjϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

πqϕ
m|r−k|−2m+2j−q) otherwise
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The asymptotic variance ratio of the MIDAS-NLS estimator and the LS estimator is given

by
AV ar(β̂)

AV ar(β̂∗)
= Vβ/Vβ∗ , (1.4.12)

where Vβ∗ = σ2
ε

N
(tr(HTE(X i(π)X i(π)

′)))−1 and Vβ = σ2
ε

N
(V11 − V 12V

−1
22 V

′
12)

−1 with

V11 = tr(HTE(X i(θ)X i(θ)
′)),

V 12 =

(
tr(HTE(∂f(Xi;δ)

∂θ1
X i(θ)

′)) tr(HTE(∂f(Xi;δ)
∂θ2

X i(θ)
′))

)
,

V 22 =

 tr(HTE(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ1
)) tr(HTE(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ1
))

tr(HTE(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ2
)) tr(HTE(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ2
))

 ,

When K = m,

E(X i(θ)X i(θ)
′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)ϕ
m−j)2 + σ2

e

m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)ϕ
m−j)2ϕm|r−k|

+σ2
e(

m∑
j=1

wj(θ)ϕ
m−j)(

m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m|r−k|−m+2j−q) otherwise

E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m∑
j=1

wj(θ)ϕ
m−j)β

+σ2
e

m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β if r = k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m∑
j=1

wj(θ)ϕ
m−j)ϕm(k−r)β

+σ2
e(

m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m(k−r)−m+2j−q)β if r < k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m∑
j=1

wj(θ)ϕ
m−j)ϕm(r−k)β

+σ2
e(

m∑
j=1

wj(θ)ϕ
m−j)(

m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(r−k)−m+2j−q)β if r > k

35



1.4 Comparison with the LS Model

and
E(∂f(Xi;δ)

∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m∑
j=1

wj(θ)

∂θs
ϕm−j)β2

+σ2
e

m−1∑
j=1

(
j∑

q=1

wq(θ)

∂θl
ϕj−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β2 if r = k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m∑
j=1

wj(θ)

∂θs
ϕm−j)ϕm(k−r)β2

+σ2
e(

m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(k−r)−m+2j−q)β2 if r < k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m∑
j=1

wj(θ)

∂θs
ϕm−j)ϕm(r−k)β2

+σ2
e(

m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m−1∑
j=1

j∑
q=1

wq(θ)

∂θl
ϕm(k−r)−m+2j−q)β2 if r > k

When K = 2m,

E(X i(θ)X i(θ)
′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)ϕ
2m−j)2 + σ2

e

2m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)ϕ
2m−j)2ϕ+ σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)ϕ
m+j−q)

×(
j∑

q=1

wq(θ)ϕ
j−q) + σ2

e(
2m∑
j=1

wj(θ)ϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)ϕ
m+2j−q) if r = k + 1 or r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)ϕ
2m−j)2ϕm|r−k|

+σ2
e(

2m∑
j=1

wj(θ)ϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m|r−k|−2m+2j−q) otherwise
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E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)β

+σ2
e

2m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕβ + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)ϕ
m+j−q)

×(
j∑

q=1

wq(θ)

∂θs
ϕj−q)β + σ2

e(
2m∑
j=1

wj(θ)ϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)

∂θs
ϕm+2j−q)β if r = k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕβ + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)

∂θs
ϕm+j−q)

×(
j∑

q=1

wq(θ)ϕ
j−q)β + σ2

e(
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)ϕ
m+2j−q)β if r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕm(r−k)β

+σ2
e(

2m∑
j=1

wj(θ)ϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(r−k)−2m+2j−q)β if r > k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕm(k−r)β

+σ2
e(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m(k−r)−2m+2j−q)β if r < k − 1
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and

E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)β2

+σ2
e

2m−1∑
j=1

(
j∑

q=1

wq(θ)

∂θl
ϕj−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β2 if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕβ2 + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)

∂θs
ϕm+j−q)

×(
j∑

q=1

wq(θ)

∂θl
ϕj−q)β2 + σ2

e(
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)

∂θl
ϕm+2j−q)β2 if r = k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕβ2 + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)

∂θl
ϕm+j−q)

×(
j∑

q=1

wq(θ)

∂θs
ϕj−q)β2 + σ2

e(
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)

∂θs
ϕm+2j−q)β2 if r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕm(r−k)β2

+σ2
e(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)

∂θl
ϕm(r−k)−2m+2j−q)β2 if r > k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕm(k−r)β2

+σ2
e(

2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(k−r)−2m+2j−q)β2 if r < k − 1

for all s, l = 1, 2.

Proof. See Appendix A.6.

Proposition 1.4. In the RE model, let high-frequency regressor {X(m)
i,t } follows an AR(1)

process, the asymptotic bias of the LS estimator is given by

ABias(β̂∗; β) = γβ,

where γ = γ1
γ2

with γ1 = tr(Ω−1E(X i(θ
∗)X i(π)

′)) and γ2 = tr(Ω−1E(X i(π)X i(π)
′)).

The asymptotic variance ratio of the MIDAS-NLS estimator and the LS estimator is given
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by
AV ar(β̂)

AV ar(β̂∗)
= Vβ/Vβ∗ ,

where Vβ∗ = 1
N
(tr(Ω−1E(X i(π)X i(π)

′)))−1 and Vβ = 1
N
(V11 − V 12V

−1
22 V

′
12)

−1, with

V11 = tr(Ω−1E(X i(θ)X i(θ)
′)),

V 12 =

(
tr(Ω−1E(∂f(Xi;δ)

∂θ1
X i(θ)

′)) tr(Ω−1E(∂f(Xi;δ)
∂θ2

X i(θ)
′))

)
,

V 22 =

 tr(Ω−1E(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ1
)) tr(Ω−1E(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ1
))

tr(Ω−1E(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ2
)) tr(Ω−1E(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ2
))

 ,

where E(X i(θ)X i(θ)
′), E(∂f(Xi;δ)

∂θs
X i(θ)

′), and E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
) are given in

Proposition 1.3.

Again, we plot the figures for (1.4.11) and (1.4.12) to explore the role of θ, ρ,

and K in the asymptotic properties of the estimators. Three cases are considered.

In the first case, we let ϕ = 0.8, K = m, and consider four values of θ =

{(0,−0.2), (0,−0.02), (0,−0.0002), (0, 0)}. In the second case, we let θ = (0,−0.2),

K = m, and consider three values of ϕ = {0.2, 0.5, 0.8}. In the third case, we let

ϕ = 0.8, θ = (0,−0.2), and consider two values of K = {m, 2m}. We let β = 2, T = 10,

m ranges from 3 to 200, and π be the flat weights.

Figures 1.4-1.5 plot the asymptotic bias of the LS estimator and the asymptotic variance

ratio of the MIDAS-NLS and LS estimators when the high-frequency regressor is an

AR(1) process. Figure 1.4 shows that the bias of the LS estimator increases as m and

ϕ increase, and it is the largest for the case of fast decaying weights with K = 2m.

Consistent with Figure 1.2, Figure 1.4 again shows that the LS estimator is unbiased

when the high-frequency regressor is i.i.d. (ϕ=0). Figure 1.5 suggests that the MIDAS-

NLS estimator gains the largest efficiency gain for models with fast decaying weights in

combination with ϕ = 0.2 and K = 2m.
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Figure 1.4: The Asymptotic Bias of LS Estimators for Models with an AR(1) Regressor
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1.5 Finite Sample Properties of MIDAS-NLS and LS Estimators

Figure 1.5: The Asymptotic Variance Ratio of MIDAS-NLS and LS Estimators for Models
with an AR(1) Regressor

1.5 Finite Sample Properties of MIDAS-NLS and LS

Estimators

The objective of the Monte Carlo simulation is to compare the finite sample properties

of the LS estimator and the MIDAS-NLS estimator, as well as to assess the power of

the hypothesis test of a flat weighting scheme. For simplicity, we consider the case of

one high-frequency explanatory variable. The Monte Carlo simulation is based on the

following DGP:

Yit = Xit(θ)β + uit,

uit = αi + εit,
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where Xit(θ) =
K∑
k=1

wk(θ)X
(m)
i,t−(k−1)/m, εit | (X

(m)
i , αi) ∼ NID(0, 0.25). We

set β = 2 and investigate three aggregation horizons m = {12, 60, 120}, which

correspond to the three aggregation schemes: the monthly-to-annual, the weekdaily-

to-quarterly, the weekdaily-to-semiannual, respectively. We consider three values of

θ = {(0,−0.2), (0,−0.02), (0,−0.0002)} and two values of K = {m, 2m}. The various

values of m, θ, and K, respectively, enable us to inspect how the LS estimator and the

MIDAS-NLS estimator behave when the aggregation horizon, the aggregation weighting

scheme, and lag order vary. Two experiments are conducted. In the FE model, the

individual effects are assumed to be correlated with X
(m)
i,t and are given by αi =

√
T

¯
X

(m)
i ,

where ¯
X

(m)
i are the within-group means of X(m)

i,t . In the RE model, αi are uncorrelated

with X
(m)
i,t and are drawn from i.i.d. N(0, 0.25). We consider three different high-

frequency regressors:

• X
(m)
i,t ∼ NID(0, 1).

• X
(m)
i,t = e

(m)
i,t + 0.8e

(m)
i,t−1/m, e(m)

i,t ∼ NID(0, 1).

• X
(m)
i,t = 0.8X

(m)
i,t−1/m + e

(m)
i,t , e(m)

i,t ∼ NID(0, 1).

We consider sample sizes N = {500, 1000} and T = 10. The Monte Carlo experiment

is performed with 1,000 simulations. The estimators considered are (i) LS estimators

with equal weights; (ii) MIDAS-NLS estimators. To assess the performance of these

estimators, we report the following statistics:

• Average bias of MIDAS-NLS and LS estimators: bias(β̂) =

M∑
m=1

(β̂m−β)

M
and

bias(β̂∗) =

M∑
m=1

(β̂∗
m−β)

M
, where M is the number of replications. β̂m and β̂∗

m,

respectively, are the MIDAS-NLS estimator and the LS estimator of β in the mth

repetition;

• Relative efficiency between MIDAS-NLS and LS estimators: RMSE =

MSE(β̂)/MSE(β̂∗), where MSE(β̂) and MSE(β̂∗) are the average MSE of
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the MIDAS-NLS and LS given by MSE(β̂) =

√
M∑

m=1
(β̂m−β)2

M
and MSE(β̂∗) =√

M∑
m=1

(β̂∗
m−β)2

M
, respectively;

• Power of non-flat weighs test: M−1
M∑

m=1

I(W > χ2
0.95,2), where I is the indicator

function.

Tables 1.1-1.2 report the average bias of MIDAS-NLS and LS estimators when the high-

frequency regressor is an i.i.d, a MA(1), and an AR(1) process for the FE model and the

RE model. These results are consistent with the above analytical and numerical results

for the asymptotic bias of the estimators. Specifically, the average bias of the MIDAS-NLS

estimator lies in the vicinity of zero for all cases. Relative to the MIDAS-NLS estimator,

the LS estimator is biased when {X(m)
i,t } follows a MA(1) or an AR(1) process with rapid

and slow decaying weights. This bias tends to be larger with faster-decaying weights, a

higher level of aggregation horizon, and a larger number of K, but it is not greatly affected

by N . In particular, overall, the bias in the MIDAS model with an AR(1) regressor is

more sensitive to changes in K and is greater than that in the MIDAS model with a

MA(1) regressor. When K = m and K = 2m, the largest bias for the case of an AR(1)

regressor is about -0.8 and -0.9, respectively, while the largest bias for the case of a MA(1)

regressor is -0.3 and -0.33, respectively.

Table 1.3 displays the efficiency of the MIDAS-NLS estimator in terms of the LS

estimator, which we calculate as the MSE ratio. The results for the FE model and

for the RE model are quite similar. Two points are noteworthy. First, in line with

Figures 1.3-1.5, our results show that for MIDAS models with rapid and slow decaying

weights, the MIDAS-NLS estimator is relatively more efficient than the LS estimator,

irrespective of the high-frequency regressor. While for MIDAS models with near-flat

weights, the MSE ratio between the estimators appears to stabilize at 1 for all m = 12,

but it is smaller than 1 when m is relatively large (e.g. m = 120), which depends on
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1.6 Application: Okun’s Law

the high-frequency regressor. Second, in all cases, the relative efficiency of the MIDAS-

NLS estimator increases with faster decaying weights and higher values of aggregation

horizons. This efficiency gain is larger in the case of an AR(1) regressor and in the case of

K = 2m. In particular, the MIDAS-NLS estimator enjoys the largest efficiency gain with

the corresponding MSE ratio of about 0.0040 in MIDAS models with an AR(1) regressor

when θ = (0,−0.2), m = 120, K = 2m, and N = 1000.

Table 1.4 reports the power of the hypothesis test for H0 : θ = 0. As can be seen,

the power of the test is greater than 5% for all cases, and it depends on the value of θ.

For near-flat weights, the power increases with m, K, and N . As m becomes large (e.g.

m = 60), the power tends to 1. While for rapid and slow decaying weights, the power is

always 1. Overall, the results indicate the good power of our test for the flat weighting

scheme.

1.6 Application: Okun’s Law

In this section, we demonstrate the use of the proposed panel-MIDAS model with an

Okun’s law (1963) application. In particular, we examine the relationship between GDP

growth rates and unemployment rates in the US metropolitan statistical areas (MSAs).

The panel-MIDAS model with individual effects of Okun’s law is as follows

△GDPi,t = c+ αi + β

K∑
k=1

wk(θ)△U
(12)
i,t−(k−1)/12 + εi,t, (1.6.1)

where △GDPi,t is the log difference of GDP in MSA i at time t. αi are the MSA-specific

effects. △U (12) is the change in the log unemployment rate from the preceding period.

This model is estimated using annual GDP from the Bureau of Economic Analysis and the

monthly unemployment rate from the Federal Reserve Bank of St Louis website (m = 12).

The analysis runs from 2004 to 2020 and covers 367 MSAs. We set K = {12, 24},

corresponding to 1-year and 2-year monthly lags. To identify the best model between the
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Table 1.1: Average Bias of the MIDAS-NLS Estimator on Monte Carlo Simulation

Panel A: Fixed Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12m = 60 m = 120 m = 12 m = 60 m = 120 m = 12 m = 60 m = 120 m = 12 m = 60 m = 120

IID process
Rapid Decaying 0.0004 -0.0001 0.0005 -0.0004 0.0003 0.0006 -0.0001 -0.0005 0.0003 -0.0004 0.0006 -0.0001
Slow Decaying -0.0003 0.0008 0.0007 0.0001 1.22E-05 0.0001 0.0004 0.0001 0.0015 -0.0004 -0.0002 0.0008
Near-Flat 0.0010 -0.0013 -0.0016 0.0018 0.0019 0.0079 -0.0007 0.0002 0.0003 -0.0005 -0.0008 0.0007

MA(1) process
Rapid Decaying 0.0001 -0.0001 0.0001 0.0004 -0.0002 -1.17E-05 0.0004 0.0002 -0.0001 4.01E-05-0.0001 0.0001
Slow Decaying -0.0004 0.0005 -0.0002 0.0002 0.0004 4.45E-05 0.0001 -0.0001 0.0002 0.0002 0.0005 0.0001
Near-Flat 0.0001 0.0007 -0.0005 -0.0014 -0.0002 -0.0008 -0.0003 -0.0002 -0.0001 -0.0004 -0.0004 0.0001

AR(1) process
Rapid Decaying -0.0002 0.0003 -0.0005 0.0003 0.0001 -0.0001 -0.0001 4.60e-05-0.0003 0.0002 0.0001 2.97E-05
Slow Decaying -0.0001 -0.0001 -0.0001 0.0002 -0.0001 0.0001 1.78e-06 0.0002 1.48e-05 0.0001 -3.05E-05-0.0001
Near-Flat -0.0003 -0.0004 0.0010 0.0007 0.0006 0.0005 0.0003 -0.0002 -0.0002 -4.98E-05 0.0003 0.0004

Panel B: Random Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12m = 60 m = 120 m = 12 m = 60 m = 120 m = 12 m = 60 m = 120 m = 12 m = 60 m = 120

IID process
Rapid Decaying 0.0004 -0.0003 0.0002 0.0005 0.0002 0.0006 0.0004 0.0001 0.0005 0.0001 -3.20E-05-0.0002
Slow Decaying 0.0002 0.0002 0.0013 -0.0002 0.0005 0.0006 -0.0006 0.0009 0.0010 0.0004 -0.0013 0.0001
Near-Flat 0.0001 -0.0007 0.0042 0.0025 -0.0008 0.0042 0.0001 -0.0016 -0.0022 -0.0014 -0.0018 0.0002

MA(1) process
Rapid Decaying 0.0004 -0.0003 -0.0001 -0.0002 0.0003 -0.0001 -0.0001 0.0003 0.0001 0.0002 -0.0001 -0.0003
Slow Decaying 0.0008 0.0001 4.38E-05 -0.0009 0.0007 0.0010 -0.0001 -0.0001 0.0004 0.0003 0.0003 0.0003
Near-Flat 0.0006 -0.0008 -0.0017 -0.0001 0.0012 0.0027 0.0003 -0.0003 -0.0003 -0.0001 -0.0004 0.0004

AR(1) process
Rapid Decaying -0.0001 0.0002 -0.0001 -0.0003 -0.0001 0.0001 0.0001 4.47e-05 0.0003 -0.0001 -0.0001 0.0001
Slow Decaying 0.0003 0.0001 0.0003 -0.0001 2.29E-05 0.0001 -0.0001 -9.78e-07-0.0001 0.0001 3.52E-06-0.0003
Near-Flat 0.0001 -0.0009 0.0001 -0.0001 0.0001 0.0001 0.0002 -1.93e-05 0.0002 -1.91E-06-0.0002 -0.0001
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Table 1.2: Average Bias of the LS Estimator on Monte Carlo Simulation

Panel A: Fixed Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12 m = 60 m = 120 m = 12 m = 60m = 120 m = 12 m = 60 m = 120 m = 12 m = 60m = 120

IID process
Rapid Decaying -0.0006 -0.0089 -0.0114 0.0005 0.0123 0.0123 0.0006 -0.0014 -0.0016 -0.0014 0.0083 0.0002
Slow Decaying -0.0007 -0.0008 -0.0023 0.0003 0.0008 0.0072 0.0005 0.0011 0.0034 -0.0016 -0.0027 0.0117
Near-Flat 0.0010 -0.0015 -0.0012 0.0019 0.0017 0.0037 -0.0007 0.0001 0.0009 -0.0005 -0.0010 0.0005

MA(1) process
Rapid Decaying -0.2217 -0.2879 -0.3027 -0.2833 -0.3232 -0.3305 -0.2183 -0.2837 -0.3031 -0.2868 -0.3145 -0.3285
Slow Decaying -0.0096 -0.0755 -0.0857 -0.0541 -0.0956 -0.1025 -0.0090 -0.0729 -0.0834 -0.0538 -0.0937 -0.0995
Near-Flat 0.0004 0.0022 -0.0019 -0.0006 -0.0023 -0.0069 -0.0001 0.0011 -0.0007 0.0004 -0.0007 -0.0053

AR(1) process
Rapid Decaying -0.3113 -0.7604 -0.8126 -0.6474 -0.8994 -0.9219 -0.3108 -0.7610 -0.8092 -0.6484 -0.8972 -0.9266
Slow Decaying -0.0065 -0.4178 -0.4883 -0.2193 -0.5400 -0.5706 -0.0062 -0.4195 -0.4866 -0.2195 -0.5394 -0.5751
Near-Flat 0.0004 0.0092 -0.0010 0.0043 -0.0015 -0.0404 0.0010 0.0093 -0.0018 0.0034 -0.0017 -0.0405

Panel B: Random Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12 m = 60 m = 120 m = 12 m = 60m = 120 m = 12 m = 60 m = 120 m = 12 m = 60m = 120

IID process
Rapid Decaying 0.0010 -0.0067 0.0073 -0.0020 0.0067 0.0062 0.0016 -0.0033 0.0022 0.0007 -0.0046 -0.0007
Slow Decaying 0.0003 -0.0041 -0.0007 0.0008 0.0013 0.0077 -0.0005 0.0011 0.0007 0.0006 -0.0014 -0.0041
Near-Flat 4.48E-05 -0.0008 0.0039 0.0025 -0.0002 0.0069 -0.0001 -0.0017 -0.0028 -0.0014 -0.0021 -0.0015

MA(1) process
Rapid Decaying -0.2166 -0.2864 -0.2856 -0.2808 -0.3180 -0.3201 -0.2178 -0.2891 -0.2915 -0.2781 -0.3140 -0.3273
Slow Decaying -0.0084 -0.0713 -0.0814 -0.0526 -0.0928 -0.0954 -0.0087 -0.0764 -0.0808 -0.0517 -0.0892 -0.0879
Near-Flat 0.0010 0.0001 -0.0007 0.0006 -0.0001 -0.0038 0.0006 0.0010 -0.0011 0.0007 -0.0012 -0.0041

AR(1) process
Rapid Decaying -0.3043 -0.7558 -0.8043 -0.6321 -0.8785 -0.9060 -0.3057 -0.7529 -0.8009 -0.6317 -0.8780 -0.9090
Slow Decaying -0.0057 -0.4192 -0.4834 -0.2139 -0.5257 -0.5659 -0.0062 -0.4162 -0.4850 -0.2140 -0.5282 -0.5599
Near-Flat 0.0008 0.0084 -0.0019 0.0033 -0.0017 -0.0395 0.0008 0.0095 -0.0015 0.0034 -0.0021 -0.0410
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Table 1.3: Relative Efficiency of Estimators (MIDAS-NLS/LS) on Monte Carlo
Simulation

Panel A: Fixed Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12 m = 60m = 120 m = 12m = 60 m = 120 m = 12 m = 60m = 120 m = 12m = 60 m = 120

IID process
Rapid Decaying 0.2370 0.1019 0.0691 0.1713 0.0670 0.0489 0.2449 0.1061 0.0682 0.1597 0.0679 0.0452
Slow Decaying 0.7721 0.3080 0.2049 0.5850 0.2013 0.1368 0.7732 0.2959 0.2112 0.5647 0.2023 0.1327
Near-Flat 0.9998 0.9959 0.9526 0.9986 0.9645 0.7102 1.0013 0.9955 0.9697 0.9996 0.9781 0.7226

MA(1) process
Rapid Decaying 0.0403 0.0296 0.0263 0.0309 0.0255 0.0217 0.0302 0.0226 0.0202 0.0230 0.0191 0.0171
Slow Decaying 0.5781 0.1486 0.1071 0.2444 0.1082 0.0781 0.5242 0.1185 0.1006 0.1881 0.0853 0.0703
Near-Flat 1.0019 0.9810 0.9086 1.0053 0.9479 0.6392 1.0078 0.9795 0.9115 0.9994 0.9621 0.6703

AR(1) process
Rapid Decaying 0.0168 0.0067 0.0065 0.0082 0.0058 0.0054 0.0127 0.0051 0.0045 0.0059 0.0042 0.0040
Slow Decaying 0.4352 0.0168 0.0141 0.0346 0.0129 0.0121 0.4186 0.0115 0.0101 0.0238 0.0091 0.0083
Near-Flat 1.0372 0.7590 0.6878 0.9351 0.8609 0.3249 1.0203 0.6432 0.6452 0.8928 0.8314 0.2633

Panel B: Random Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12 m = 60m = 120 m = 12m = 60 m = 120 m = 12 m = 60m = 120 m = 12m = 60 m = 120

IID process
Rapid Decaying 0.2594 0.1010 0.0700 0.1674 0.0663 0.0450 0.2442 0.1005 0.0687 0.1658 0.0681 0.0479
Slow Decaying 0.7559 0.3175 0.2215 0.5500 0.2056 0.1333 0.7821 0.3026 0.2052 0.5668 0.2155 0.1397
Near-Flat 1.0006 0.9898 0.9398 0.9996 0.9781 0.7431 0.9998 0.9898 0.9565 1.0011 0.9874 0.7456

MA(1) process
Rapid Decaying 0.0432 0.0300 0.0270 0.0331 0.0254 0.0225 0.0305 0.0217 0.0203 0.0239 0.0200 0.0181
Slow Decaying 0.5719 0.1517 0.1124 0.2479 0.1053 0.0837 0.5355 0.1147 0.1015 0.1917 0.0923 0.0749
Near-Flat 1.0045 0.9851 0.9181 0.9992 0.9603 0.6911 1.0087 0.9835 0.9155 0.9985 0.9519 0.6825

AR(1) process
Rapid Decaying 0.0172 0.0067 0.0062 0.0086 0.0061 0.0056 0.0125 0.0048 0.0046 0.0060 0.0042 0.0041
Slow Decaying 0.4368 0.0163 0.0145 0.0338 0.0132 0.0120 0.4228 0.0118 0.0101 0.0234 0.0091 0.0087
Near-Flat 1.0522 0.7940 0.6546 0.9775 0.8431 0.3370 1.0458 0.6525 0.6849 0.9076 0.8194 0.2628
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Table 1.4: Power of the Test H0 : θ = 0

Panel A: Fixed Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12 m = 60m = 120 m = 12m = 60 m = 120 m = 12 m = 60m = 120 m = 12m = 60 m = 120

IID process
Rapid Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Slow Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Near-Flat 0.112 1 1 0.451 1 1 0.176 1 1 0.746 1 1

MA(1) process
Rapid Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Slow Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Near-Flat 0.232 1 1 0.894 1 1 0.358 1 1 0.998 1 1

AR(1) process
Rapid Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Slow Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Near-Flat 0.463 1 1 1 1 1 0.682 1 1 1 1 1

Panel B: Random Effects Model

Weighting Scheme
N = 500 N = 1000

K = m K = 2m K = m K = 2m

m = 12 m = 60m = 120 m = 12m = 60 m = 120 m = 12 m = 60m = 120 m = 12m = 60 m = 120

IID process
Rapid Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Slow Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Near-Flat 0.094 1 1 0.418 1 1 0.159 1 1 0.682 1 1

MA(1) process
Rapid Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Slow Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Near-Flat 0.177 1 1 0.865 1 1 0.322 1 1 0.994 1 1

AR(1) process
Rapid Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Slow Decaying 1 1 1 1 1 1 1 1 1 1 1 1
Near-Flat 0.368 1 1 1 1 1 0.675 1 1 1 1 1
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Table 1.5: Parameter Estimates of the Determinants of GDP Growth

Regressor MIDAS Model LS Model Wald test Relative R2 Hausman test

K = 12 -0.08585*** -0.08837*** 6.6552** 1.0065 1.2157
(0.00319) (0.00222)

K = 24 -0.08278*** -0.10448*** 28.5030*** 1.4252 0.2523
(0.00308) (0.00324)

Note: *** p<0.01, ** p<0.05, * p<0.1. The sample runs from 2004 to 2020 and includes
367 metropolitan statistical areas. Standard errors are reported in parentheses. The
Wald test tests the null of the flat weighting scheme in the MIDAS model. The relative
R2 value is calculated as the R2 ratio between the MIDAS model and the LS model. The
Hausman tests test the null of the random-effects model.

fixed-effects MIDAS model and the random-effects MIDAS model, we perform a Hausman

test. Besides, we also compare the empirical performance of the panel-MIDAS model with

the simple LS model based on the flat weighting scheme.

The estimation results of the model (1.6.1) are presented in Table 1.5. The insignificance

of the Hausman test points to a random-effects MIDAS model for K = 12, 24. In

column 1, we present the estimated unemployment coefficients for the random-effects

MIDAS model, and in column 2, we present the estimated unemployment coefficients

for the standard random-effects model. We also calculate the Wald test statistics of

the flat weighting scheme and the R-squared ratio between the MIDAS model and the

LS model in the next two columns. Our results suggest that unemployment growth is

always significantly and inversely associated with GDP growth, in line with Okun’s law.

However, when using the flat weighting scheme, the unemployment effect on GDP growth

is overestimated by 2.94% and 26.21% for K = 12 and K = 24, respectively. The Wald

test results reject the null hypothesis of the flat weighting scheme in the MIDAS model at

the 1% significance level. Figure 1.6 shows that the polynomial weights of unemployment

growth in the MIDAS model are in fact U-shaped. Besides, the relative R-squared values

indicate that the MIDAS model has a better fit than the LS model, particularly when

K = 24.
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Figure 1.6: Polynomial Weights of Unemployment Growth on GDP Growth

1.7 Discussion

The study of Andreou, Ghysels, and Kourtellos (2010) considered the asymptotic

distributions of the NLS estimator of a time-series MIDAS model. Their work largely

motivated our work in a panel setup. This paper aims to derive the asymptotic properties

of the MIDAS-NLS estimator and the LS estimator in the fixed-effects model and the

random-effects models. We compare the finite sample properties of estimators via the

Monte Carlo simulation. Our results reveal that the LS estimator is inefficient in the

MIDAS model with an i.i.d regressor, and it is biased and inefficient in the MIDAS

model with a MA(1) or an AR(1) regressor. Our empirical application revisits Okun’s

law and confirms the good performance of the panel-MIDAS model.

There remains an interesting challenge to be addressed. One main limitation of the

proposed panel-MIDAS model is that it relies on the assumption that all individuals in

a variable share the same weighting scheme. Our proposed MIDAS-NLS estimation is

no longer applicable if the weighting scheme differs across individuals. Further work is

required to develop a more general model by including an individual-specific weighting

scheme. This remains a topic of ongoing research.
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Chapter 2

The Effect of Economic Policy

Uncertainty on Health Status

2.1 Introduction

Can economic policy uncertainty affect mortality? How long does this effect last? In

this paper, we approach these main questions by studying the role of economic policy

uncertainty in the variations in mortality rates. It is well recognized that one aim

of implementing economic policies is to maintain and improve citizens’ health status.

However, the implementation of policies is often fraught with uncertainty about economic

consequences. Evidence has shown that such policy-related uncertainty could in turn

lead to increased suicide rates (Antonakakis and Gupta, 2017; Vandoros, Avendano, and

Kawachi, 2019; Vandoros and Kawachi, 2021). Although economic policy uncertainty has

received attention in the literature on suicide, no study, to my knowledge, has explored the

impact of economic policy uncertainty on mortality, let alone gender and age differences

in this effect.

In this paper, we fill this gap in the literature by examining the impact of economic policy
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uncertainty on sex- and age-specific mortality in the US. This analysis uses the historical

index of economic policy uncertainty (EPU) to proxy the uncertainty over the scope and

direction of future economic policy. Using time-series data from 1960 to 2013 in the US,

we uncover a negative relationship between EPU and mortality rates of all sex and age

groups. In particular, women are more sensitive to changes in EPU than men, with a

greater elasticity of -0.2821 and a longer-lasting effect of 57 months. In comparing the

magnitude of the EPU coefficient on mortality, we find that individuals aged 65-84 are

the most sensitive to changes in EPU, while those aged 55-64 are the least sensitive to

changes in EPU. A 1% point increase in EPU is predicted to decrease the mortality of

65-84-year-olds by 0.4410%, but the same growth in EPU is predicted to decrease the

mortality of 55-64-year-olds by 0.1558%.

Previous studies of the relationship between economic conditions and health have shown

that changes in health behaviors could be a driver of procyclical fluctuations in mortality

(Ruhm, 1995, 2000). Motivated by this finding, we explore whether changes in health

behaviors could also act as channels through which EPU affects mortality. Using the

Behavioral Risk Factor Surveillance System (BRFSS) data for 1987-2013, our results

reveal that individuals are more likely to follow a healthy lifestyle during high uncertainty

periods. Specifically, as uncertainty mounts, individuals are more likely to reduce tobacco

consumption, tend to exercise, and be in a healthy weight range.

This paper introduces the MIDAS model to identify the EPU effect on health outcomes

and health behaviors. The model used in previous studies on macroeconomics and health

is mostly limited to the case where variables are sampled at the same frequency, such as

the fixed-effect model (Ruhm, 2000, 2015, 2016), the error correlation model (Laporte,

2004), and the VAR model (Nicolini, 2007). However, our data set comprises data at

three different frequencies (monthly, quarterly, and annual). To make full use of high-

frequency data, we use the MIDAS model (Ghysels, Santa-Clara, and Valkanov, 2004),

which estimates a regression combining data with different frequencies, to conduct our
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analysis. Given that EPU may take a long time to affect mortality and health behaviors,

another attractive feature of the MIDAS model is its ability to allow us to consider the

long-term effects of EPU on health outcomes by controlling for several years’ lagged terms

of monthly EPU.

The rest of this paper is organized as follows. Section 2.2 summarizes the previous

literature, and Section 2.3 introduces the data employed in this paper. Section 2.4

provides a conceptual model of the potential association between EPU and health. We

then introduce the empirical methodology and present the estimation results in Sections

2.5 and 2.6. In Section 2.7, we run the robustness analysis, and the last section concludes.

2.2 Literature Review

Studies addressing the issue of the impact of macroeconomic conditions on health have

received significant attention since Brenner’s (1973, 1975, 1979, 1987, 2005) path-breaking

work. Using aggregate time-series data, Brenner uncovers the counter-cyclical pattern of

mortality. However, Brenner’s studies have been widely criticized by other scholars who

fail to replicate his results in other countries and periods (Marshall and Funch, 1979;

Forbes and McGregor, 1984; Wagstaff, 1985; Laporte, 2004). Contrary to Brenner’s

results, Ruhm (2000) finds the opposite. Using a panel data model, he uncovers that

an increase in the unemployment rate is associated with a decline in the total mortality

rate of approximately 0.5% over the period 1972–1991 in the US. His following research

also confirms the procyclicality of the total mortality rate (Ruhm, 2015, 2016; Heutel

and Ruhm, 2016). Much subsequent research also confirms Ruhm’s findings for other

countries (Neumayer, 2004; Granados, 2005; Gerdtham and Ruhm, 2006; Tapia Granados

and Ionides, 2017).

Apart from the association between economic conditions and health status, a growing

number of studies have been conducted focusing on how health status responds to
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economic uncertainty. For example, Ferrie et al. (2005) investigate the role of uncertainty

about job security on health among British white-collar civil servants. They suggest that

self-reported job insecurity is a predictor of poor self-rated health and minor psychiatric

morbidity. Similarly, using longitudinal data, Burgard, Brand, and House (2009) find

that persistent perceived job insecurity is significantly and substantively associated with

poorer self-rated health in the American’s Changing Lives (ACL) and Midlife in the

United States (MIDUS) samples, and it is a predictor of depressive symptoms among

ACL samples. Antonakakis and Gupta (2017), to my knowledge, is the first study to

explore the relationship between policy-related uncertainty and suicide mortality. Using

data from 1950 to 2013 in the US, they find that economic policy uncertainty increases

male suicide mortality in the youngest and oldest segments. Studies using a short-run

analysis come to a similar conclusion suggesting a positive association between economic

policy uncertainty and suicide in the US (Vandoros and Kawachi, 2021) and the UK

(Vandoros, Avendano, and Kawachi, 2019).

From an economic perspective, uncertainty is closely related to the inability to assess the

economy’s current state and unpredictable future economic outlook. Higher uncertainty

matters because it has a long-range impact on consumers and companies in many

aspects. For example, in times of high uncertainty, consumers may reduce spending

until uncertainty has declined and increase precautionary savings (Carroll, 1997; Bloom,

2014). Similarly, high uncertainty gives companies an incentive to postpone or cancel their

investment and hiring decisions (Dixit, 1994; Leahy and Whited, 1996) since reversing

investment and decisions is costly. Therefore, they prefer to wait until uncertainty falls

and new information becomes available.

Recent studies suggest that economic policy uncertainty is counter-cyclical - rises in

recessions and declines in booms. At the onset of an economic recession, policy-makers

try to respond. They may implement some new policies that have not been tested, which

may cause higher uncertainty since economic agents might be uncertain about whether
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these policies could work. For example, Baker, Bloom, and Davis (2012) find that the

US EPU index rises with the implementation of the Troubled Asset Relief Program

(TARP), which was a new program created in 2008 to address the subprime mortgage

crisis. Using data from January 1985 to October 2013, Bloom (2014) also confirms the

countercyclicality of the US EPU index - rising by 51% in recessions.

2.3 Data

The nation’s health status is difficult to measure directly. Following previous studies

(Behrman and Deolalikar, 1988; Ruhm, 2000; Brainerd, 2001; Stuckler et al., 2009, 2011;

Nordentoft et al., 2013; Breuer, 2015; Case and Deaton, 2015), we use mortality rates as

an indicator of health status.

Annual mortality data are collected from the Centers for Disease Control and Prevention

(CDC), which contains age-adjusted total mortality rate, age-adjusted sex-specific

mortality rate, and crude death rate counts in each specific stratum of age and sex per

100,000 inhabitants. Using the CDC mortality data, we construct dependent variables:

age-adjusted total mortality rate, age-adjusted sex-specific mortality rates, and crude

death rates of four age groups: 15-24, 25-54, 55-64, and 65-84-year-olds for 1960-2013.

The EPU index has been examined to be a good indicator to capture the perceived

uncertainty about economic policy (Pástor and Veronesi, 2013). Recent studies for the

US market also demonstrate that EPU (i) predicts future recessions (Karnizova and Li,

2014); (ii) affects asset prices (Brogaard and Detzel, 2015; Da, Engelberg, and Gao,

2015); and (iii) affects corporate investment (Kang, Lee, and Ratti, 2014; Wang, Chen,

and Huang, 2014; Gulen and Ion, 2016). This paper uses the historical EPU index to

proxy the economic policy uncertainty.

The US historical EPU index is constructed by Baker, Bloom, and Davis (2016) based on

newspaper coverage frequency and is sampled at a monthly frequency. The measurement

55



2.4 Conceptual Model

of US historical EPU is based on the information contained in leading US newspapers.

There are two overlapping sets of newspapers employed to construct this index. From

1900 to 1984, the set is comprised of six newspapers: the Wall Street Journal, the New

York Times, the Washington Post, the Chicago Tribune, the LA Times, and the Boston

Globe. From 1985 onwards, the set is expanded to cover four additional newspapers: USA

Today, the Miami Herald, the Dallas Morning Tribune, and the San Francisco Chronicle.

To build the index, Baker, Bloom, and Davis rely on archives for these newspapers to

search for the terms related to economic and policy uncertainty. These data can be

collected from www.policyuncertainty.com.

Our analysis also experimented with including the quarterly personal consumption

expenditures for services in health care (PCEHC), quarterly GDP growth rate, annual

divorce rate, and annual fertility rate as control variables. Data on PCEHC and GDP

growth rate are obtained from the Federal Reserve Economic Data (FRED), data on the

divorce rate are obtained from the CDC, and data on the fertility rate are obtained from

the World Bank. The sample period is from 1960 to 2013. Summary statistics for these

data are presented in Table 2.1.

2.4 Conceptual Model

Figure 2.1 gives a first indication of the association between EPU and total mortality rates

in the US from 1960 to 2013 using national annual data. Given that EPU is likely to take

many years to have an effect on health outcomes, we examine both the contemporaneous

and long-term effects of EPU on mortality by controlling for 1-year lagged, 4-year lagged,

and 8-year lagged terms of monthly EPU.

In the top of Figure 2.1, the annual EPU is created by averaging the 1-year lagged

monthly EPU; in the middle of Figure 2.1, the annual EPU is created by averaging the

4-year lagged monthly EPU; and in the bottom of Figure 2.1, the annual EPU is created
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Table 2.1: Summary Statistics for Selected Variables

Variables Mean Std. Dev.

EPU 122.989 48.334
PCEHC 43.773 32.013
GDP growth rate 6.728 4.117
Divorce rate 4.002 0.915
Fertility rate 2.158 0.482
Type of Mortality Rate (per 100,000)
Total 1006.576 189.905
Sex-specific
Male 1258.076 249.001
Female 816.391 143.268
Age-specific
15-24-year-olds 98.041 17.984
25-54-year-olds 289.268 63.322
55-64-year-olds 1267.764 300.211
65-84-year-olds 4099.930 722.634

by averaging the 8-year lagged monthly EPU. All variables have been detrended with a

linear trend and standardized to have a mean of zero and a standard deviation of one. As

can be seen, the figure suggests an inverse relationship between EPU and total mortality

rates. A regression of standardized detrended mortality on 1 year’s, 4 years’, and 8 years’

worth of lagged monthly EPU yields the EPU coefficient of -0.5098 with a robust standard

error of 0.1191 (p=0.000), -0.6982 with a robust standard error of 0.1135 (p=0.000), and

-0.8349 with a robust standard error of 0.0713 (p=0.000), respectively. As can be seen,

the relationship between EPU and mortality becomes stronger as the number of lagged

EPU increases.

The aim of this section is to explore how risky health behaviors respond to changes in

EPU. As shown in Figure 2.2, there are four channels through which EPU affects health

behaviors and health outcomes, which are detailed below.

Decreased Household Spending The first mechanism is that increased uncertainty

induces households to increase precautionary savings, which itself may affect
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Figure 2.1: Detrended and Standardized EPU and Total Mortality Rates, 1960-2013

Figure 2.2: Flow Chart Mechanisms
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householder’s consumption decisions related to drinking, smoking, and food expenditure.

For example, as budgets tighten, increased uncertainty would be associated with reduced

alcohol and tobacco use. To slash food spending, individuals would also be more likely

to cook at home instead of eating out. The British Nutrition Foundation suggests that

homemade meals tend to have lower levels of fat, saturated fat, added sugars, and higher

levels of fruit and vegetables compared with meals made outside of the home, indicating

that increased uncertainty might reduce the prevalence of overweight and obesity due to

lower intake of dietary fat and sugar.

However, on the other hand, decreased household spending might be associated with a

decline in both the quantity and quality of food consumption. Assuming health-related

foods are normal goods, consumers might reduce their spending on such goods on a

tighter budget. Hence, in this mechanism, the effect of economic policy uncertainty on

health is not clear.

Increased Leisure Time Economic policy uncertainty is associated with lower levels

of activeness of economic activities (Bloom, 2014; Handley and Limao, 2015), leading to

reduced business time and increased leisure time for workers. When leisure time increases,

individuals would have more time for health-promoting activities (i.e., exercise) and more

time to invest in medical care. As a result, the lifestyle would be more healthy during

periods of heightened uncertainty, thereby enhancing health.

Increased Psychological Pressure Since increased economic policy uncertainty

induces firms to reduce hiring decisions, higher uncertainty may lead to greater

psychological pressure on workers who are directly involved in the labor market due

to worsening employment positions, which may increase the use of alcohol and tobacco.

As suggested by Cooper et al. (1992), stress-producing life situations exacerbate the

consumption of alcohol. Hence, from this point, higher uncertainty might damage health.
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Figure 2.3: Detrended and Standardized EPU and Unemployment, 1960-2013

Increased Unemployment As mentioned, high uncertainty may boost unemployment

since companies would postpone or cancel their hiring decisions when uncertainty

increases. Figure 2.3 suggesting the positive association between EPU and

unemployment1 provides additional evidence for this finding. Plus, previous studies have

demonstrated that individuals tend to have a healthier lifestyle during economic bad

times (Ruhm, 1995, 2000, 2005; Dehejia and Lleras-Muney, 2004). Therefore, we may

conclude that the increase in EPU can lead to a reduction in mortality through increased

unemployment and a healthier lifestyle.

2.5 Empirical Framework

2.5.1 MIDAS Model

It is a rule of thumb that, in traditional regression models, the combination of dependent

and independent variables with different frequencies is not allowed. When faced with

mixed-frequency data, one typical strategy is to achieve the same frequency series by

temporally aggregating high frequency to low frequency. For instance, to investigate the
1A regression of standardized detrended unemployment on EPU yields the EPU coefficient of 0.4023

with a robust standard error of 0.0377 (p=0.000).
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relationship between annual suicide rates and monthly EPU, Antonakakis and Gupta

(2017) create annual EPU by averaging monthly EPU. However, in this process, it will

lose high-frequency information due to the loss of high-frequency data. A second strategy

is to temporally interpolate low frequency to high frequency. However, the selection of

appropriate interpolation methods is difficult. In practice, different interpolation methods

can produce different values of high-frequency points. The use of an inappropriate method

can result in distorted resulting high-frequency information.

To make the best use of high-frequency information, Ghysels, Santa-Clara, and Valkanov

(2004) propose the MIDAS approach, which allows running a regression combining

time series data sampled at different frequencies. Consider two time series {Yt, t =

0, 1, 2, . . . , T} and {X(m)
t , t = 0, 1/m, 2/m, . . . , T − 1/m, T}, which are available at low

and high frequency, respectively. Suppose that Yt is available at a low frequency (say,

annual), called the reference interval, then the number m in superscript on X
(m)
t denotes

the times Xt (say, monthly or m = 12) is sampled in this reference interval. In other

words, the left-hand side observation Yt can be projected onto a history-lagged observation

X
(m)
t−k/m, where X

(m)
t−k/m represents the k-th high-frequency observation X we look into the

past from the end-of-period observation. For example, in an annual/monthly example, if

k = 6, X(12)
t−6/12 denotes June’s X-value at time t. Notation by the help of this example is

provided below the table.

Notation t = 2013, m = 12

Yt Y2013 Xt X2013,Dec

/ / Xt−1/12 X2013,Nov

/ /
...

...

/ / Xt−11/12 X2013,Jan

Yt−1 Y2012 Xt−1 X2012,Dec

Theoretically, the basic idea behind the MIDAS model is to temporally aggregate high-

frequency variables into low-frequency variables. The simple MIDAS model is presented
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as follows:

Yt = α + βW (L1/m, θ)X
(m)
t + εt, (2.5.1)

where

W (L1/m, θ) =
K∑
k=1

w(k; θ)L(k−1)/m,

where w(k; θ) is the lagged coefficient parameterized as a function of low-dimensional

vector θ. L1/m is a lag operator such that Lk/mX
(m)
t = X

(m)
t−k/m. K denotes the maximum

lag order of high-frequency observation and can be shorter or greater than m. εt is the

error term.

In the specification (2.5.1), the number of the lags of X(m)
t is possibly large. For example,

if the annual sampling frequency data Yt is affected by 3 years’ worth of lagged monthly

X
(m)
t ’s, 3× 12 (K = 36) lagged coefficients need to be estimated. A solution to address

this parameter proliferation is to use a known function w(k; θ) to capture the weights of

lagged variables so that the slope coefficient βi would capture all effects of X(m)
t ’s on Yt.

Next, we discuss two parameterizations of w(k; θ) with only two parameters θ = [θ1; θ2].

The first one is known as the “Exponential Almon Lag” defined as

w(k; θ) =
eθ1k+θ2k2

K∑
k=1

eθ1k+θ2k2

. (2.5.2)

The second one is known as the “Beta Lag” defined as

w(k; θ) =
f( k

K
, θ1; θ2)

K∑
k=1

f( k
K
, θ1; θ2)

, (2.5.3)

where

f(a, θ1; θ2) =
(a)θ1−1(1− a)θ2−1Γ(θ1 + θ2)

Γ(θ1)Γ(θ2)
, Γ(θ) =

∫ ∞

0

e−xxθ−1dx.

In specifications (2.5.2) and (2.5.3), weights add up to 1, i.e.
K∑
k=1

w(k; θ) = 1. The
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usage of the polynomial functions enables us to fit a large number of lags with only two

parameters and obtain more degrees of freedom. Ghysels, Santa-Clara, and Valkanov

(2004) point out that even though the Exponential Almon polynomial function and the

Beta polynomial function depend on only two parameters, they are still flexible enough

to take various weighting shapes (Figure 2.4). In the remainder of this paper, we use the

MIDAS model with Beta lag polynomials to conduct our analysis.

Figure 2.4: Weighting Functions for Exponential Almon Polynomials and Beta
Polynomials

2.5.2 Estimation of EPU Effects on Health Status

Using the MIDAS model, our baseline equation to capture the effect of EPU on mortality

rates is organized as follows:

Mt = α1 + α2

Km∑
k=1

w(k; θm)E
(12)
t−(k−1)/12 + α3

Kq∑
k=1

w(k; θq1)P
(4)
t−(k−1)/4

+α4

Kq∑
k=1

w(k; θq2)Growth
(4)
t−(k−1)/4 + α5Divt + α6Fert + εt,

(2.5.4)

where M is the log mortality rate, E(12) is the log EPU, P (4) is the log PCEHC, Growth(4)

is the GDP growth rate, Div is the divorce rate, and Fer is the fertility rate. The data

set is comprised of three different frequency data shown below the table.
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Frequency Variable

Annual Mortality rates, Divorce rate, Fertility rate

Quarterly PCEHC (m = 4), GDP growth rate (m = 4)

Monthly EPU (m = 12)

In the model (2.5.4), Km refers to the lag order of EPU, and Kq refers to the lag

order of PCEHC and GDP growth rates. To make our work easier to undertake, we

let PCEHC and GDP growth rates have the same lag orders, and we restrict our analysis

to the number of Km and Kq ranging from 12-96 and 4-32, respectively. The optimal

lag determination is based on the Akaike Information Criterion (AIC). Besides, the

computation is conducted by Matlab2. To compare the estimation results of the MIDAS

model and the simple OLS model, we convert monthly and quarterly data to their annual

averages with the same lag horizon as the MIDAS.

2.5.3 Estimation of EPU Effects on Risky Health Behaviors

We next use US microdata to explore the EPU effects on risky health behaviors. This

accompanying analysis aims to show that changes in individual lifestyles are consistent

with fluctuations in mortality and covers the period 1987-2013. Microdata are obtained

from the Behavioral Risk Factor Surveillance System (BRFSS), which is conducted by the

Centers for Disease Control and Prevention (CDC). The BRFSS collects data annually

about US adults’ information on health-related risk behaviors, preventive health practices,

and chronic health conditions.

The outcomes studied include the following: alcohol and cigarette use, physical activity,

and Body Mass Index (BMI). Alcohol consumption is analyzed using a dummy variable

indicating whether or not respondents are current drinkers. In our analysis, respondents

who reported having consumed at least one alcoholic beverage within the past 30 days are
2We gratefully acknowledge the help of Eric Ghysels who provided his MATLAB code for MIDAS

models. See Eric Ghysels’ homepage at http://eghysels.web.unc.edu/ for links.
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Table 2.2: Summary Statistics of Risky Heath Behaviors

Variables Mean Std. Dev. Variables Mean Std. Dev. Variables Mean Std. Dev.

Current Drinker Physical Inactivity Overweight or Obese
Both sexes 0.5285 0.0169 Both sexes 0.2715 0.0307 Both sexes 0.5503 0.0718
Male 0.6094 0.0190 Male 0.2488 0.0321 Male 0.6334 0.0643
Female 0.4532 0.0183 Female 0.2927 0.0294 Female 0.4694 0.0778
Current Smoker Overweight Obese
Both sexes 0.2124 0.0261 Both sexes 0.3549 0.0158 Both sexes 0.1953 0.0587
Male 0.2348 0.0241 Male 0.4356 0.0127 Male 0.1976 0.0617
Female 0.1915 0.0289 Female 0.2764 0.0229 Female 0.1930 0.0558

defined as current drinkers. Following the BRFSS measure of smoking status, we create a

dummy variable indicating whether or not respondents are current smokers based on their

responses to the questions: “Have you smoked at least 100 cigarettes in your entire life?”

and “Do you now smoke cigarettes every day, some days, or not at all?”. Respondents who

answered “yes” to the first question and “every day or some days” to the second question

are defined as current smokers. The BRFSS survey includes one core question related to

physical activity: “During the past month, other than your regular job, did you participate

in any physical activities or exercises such as running, calisthenics, golf, gardening, or

walking for exercise?”. We create a dummy variable to estimate self-reported physical

inactivity that is defined as responding “no” to this question. Based on the BMI data,

dummy variables indicating whether respondents are overweight or obese are created.

Overweight is defined as a BMI of 25.00 to 29.9, and obesity is defined as a BMI of 30.0

to 99.8. Respondents with missing, don’t know and refused answers are excluded from

the analysis.

Using these dummy variables, we construct dependent variables in each sex grouping

(male, female, or pooled) for 1987-2013, weighting individual observations by their BRFSS

design weight: the prevalence of current drinkers, the prevalence of current smokers,

the prevalence of physical inactivity, the prevalence of overweight, the prevalence of

overweight or obesity, and the prevalence of obesity. Summary statistics of risky health

behaviors are reported in Table 2.2.
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The MIDAS model to study the EPU effects on risky health behaviors is organized as

follows:

HBt = α1 + α2

Km∑
k=1

w(k; θm)E
(12)
t−(k−1)/12 + α3

Kq∑
k=1

w(k; θq1)P
(4)
t−(k−1)/4

+α4

Kq∑
k=1

w(k; θq2)Growth
(4)
t−(k−1)/4 + α5Divt + α6Fert + εt,

(2.5.5)

where HB refers to the log risky health behaviors, other notations are the same as those

described in the model (2.5.4). Again, we let PCEHC and GDP growth rates have the

same lag orders, and we restrict the number of Km and Kq changing from 12-96 and 4-32,

respectively. The optimal lag determination is based on the AIC.

2.6 Empirical Results

2.6.1 Unit Root Test

Theoretically, one of the assumptions in a time series regression is that variables are

stationary. Otherwise, it may lead to a so-called spurious regression. Newbold and

Granger (1974) point out that two non-stationary variables are spuriously related owing

to the fact that they are both trended. In this case, estimators and test statistics may be

misleading. Therefore, it is necessary to test whether a series is stationary or not before

estimation. This objective can be attained by the augmented Dickey-Fuller (ADF) unit

root test - if a time series possesses a unit root, the series is not stationary.

The common solution to deal with the non-stationary series is to difference the series

until stationarity is achieved. However, in the process, long-run information might be

discarded, and only the short-run model is estimated. A real breakthrough came with

the concept of cointegration, a term introduced by Engle and Granger (1987). Consider

two independent I(1) variables, Yt and Xt. If there exists a certain value β such that

Yt−βXt is stationary. Then we say Yt and Xt are cointegrated with cointegrating vector
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Table 2.3: ADF Unit Root Test Statistic on Variables in the Model (2.5.4)

Variables At Level First Difference Orders of Integration

EPU -1.7063 -10.6600*** I(1)
PCEHC -1.2713 -2.8164* I(1)
GDP growth rate -1.6902 -6.3731*** I(1)
Divorce rate -3.0662** I(0)
Fertility Rate -4.5432*** I(0)
Type of Mortality
Total -0.3538 -8.6387*** I(1)
Sex-specific
Male 0.8759 -8.2760*** I(1)
Female -1.2121 -8.4210*** I(1)
Age-specific
15-24-year-olds 1.0961 -5.1715*** I(1)
25-54-year-olds -1.0821 -3.5189** I(1)
55-64-year-olds -0.5944 -3.4410** I(1)
65-84-year-olds 0.0865 -2.6049* I(1)

Note: *** p<0.01, ** p<0.05, * p<0.1. The ADF test tests the null of a unit root. All
test regressions contain a constant term. A time series is said to be integrated of order
d, denoted I(d), if its d-th difference is stationary.

(1,−β)′. If the data are cointegrated, then we can estimate a model using the level of

the data. The cointegrating regression enables us to capture the long-run equilibrating

relationship between variables. One of the most popular tests for cointegration based on

a single equation is the EG residual-based ADF test (Engle and Granger, 1987). This

test first obtains the residuals from the regression and then uses the ADF test to examine

whether the residuals are stationary. If the residuals are stationary, then the variables

are cointegrated.

Since mortality rates, EPU, PCEHC, and GDP growth rate in the model (2.5.4) are

non-stationary in levels (Table 2.3), it is necessary to test the presence of unit root on

their residuals to ensure that there is no spurious regression.
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2.6.2 Total Mortality Rates

Column 1 of Table 2.4 summarizes estimation results of models where total mortality

rates are dependent variables. The simple OLS model, in column 1a, suggests the inverse

association between total mortality rates and EPU. Specifically, a 1% point increase in

EPU is significantly associated with a 0.2666% decrease in total mortality rates. The

Engle-Granger residual-based ADF test also finds strong evidence of linear cointegration,

implying that there is a long-run relationship between EPU and total mortality. As

expected, the increase in PCEHC reduces total mortality rates, while the increase in

divorce rates increases total mortality rates. A 1% point increase in PCEHC is predicted

to reduce the total mortality rate by 0.1095%, while the same growth in divorce rates is

predicted to increase the total mortality rate by 0.2327%. However, there is no evidence

that the GDP growth rate and the fertility rate are significantly associated with total

mortality rates.

In column 1b, we present estimation results using the MIDAS model where a sufficient

number of lagged values of EPU is included in the model. Consistent with the results

of the simple OLS model, EPU is negatively correlated with total mortality rates. The

use of the MIDAS model witnesses the decreased EPU effect on total mortality rates.

In the OLS model, a 1% point increase in EPU reduces predicted mortality by 0.2666%;

this decreases to 0.2568% when using the MIDAS model. Among other control variables,

when using the MIDAS model, we see an increase in the estimated PCEHC effect, the

attenuation of the estimated divorce effect, and a statistical significance of the GDP

growth rate coefficient. The optimal lag order of EPU is 57, suggesting that the effect

of EPU on mortality can last for over 4 years. The R2 values suggest that the MIDAS

model has a better fit than the simple OLS model.
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Table 2.4: Parameter Estimates of the Determinants of Total and Sex-specific Mortality

Variables (1) Total (2) Male (3) Female

(a) (b) (a) (b) (a) (b)

EPU -0.2666*** -0.2568*** -0.2264*** -0.1860*** -0.2819*** -0.2821***
PCEHC -0.1095*** -0.1138*** -0.1713*** -0.1726*** -0.0722*** -0.0717***
GDP growth -0.0077 -0.0102** -0.0158** -0.0139** -0.0055 -0.0034
Divorce 0.2327*** 0.2235*** 0.3595*** 0.3151*** 0.1381*** 0.1628***
Fertility 0.0178 0.0259 -0.0040 0.0176 0.0162 0.0288

Km 57 33 57
Kq 32 25 31
R2 0.9824 0.9864 0.9760 0.9809 0.9828 0.9858
EG test 0.0018*** 0.0001*** 0.0019*** 0.0008*** 0.0005*** 0.0001***

Note: *** p<0.01, ** p<0.05, * p<0.1. Dependent variables are log age-adjusted total mortality
rates and sex-specific mortality rates. Log EPU, log PCEHC, GDP growth rate, log divorce rate,
and fertility rate are independent variables. Column (a) reports the estimation results of simple
OLS models based on the flat weighting scheme but with the same lag horizon as the MIDAS,
and column (b) reports the estimation results of MIDAS models (2.5.4). Km is the lag order of
EPU ranging from 12-96, and Kq is the lag order of PCEHC and GDP growth rate ranging from
4-32. The p-value of the Engle-Granger (EG) residual-based ADF test indicates that estimation
results are not spurious.

2.6.3 Sex-specific Mortality Rates

Next, we examine whether men and women respond differently to changes in economic

policy uncertainty. Columns 2-3 of Table 2.4 reports the results of this analysis using two

different models. The first (column a) is the simple OLS model, and the second (column

b) is the MIDAS model. The EG test results indicate a long-run relationship between

EPU and sex-specific mortality rates in these two models.

In the simple OLS model (column a), we observe a greater EPU effect for women than

men. A 1% point increase in EPU predicted a 0.2264% reduction in male mortality rates

and a 0.2819% reduction in female mortality rates. An increase in PCEHC is significantly

associated with a decline in mortality, with the greatest impact on men. A 1% point

increase in PCEHC is predicted to reduce the mortality rate of males by 0.1713%, which

compares to a decrease of 0.0722% for females. A one-point increase in GDP growth

rate is estimated to reduce male mortality by 1.58%, but it is insignificantly associated
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with female mortality. The result related to divorce rates is in line with previous studies

indicating that men are more vulnerable to the adverse effects of divorce (Shor et al.,

2012; Antonakakis and Gupta, 2017). Consistent with the results for total mortality

above, fertility rates do not have a significant effect on mortality.

In the MIDAS model (column b), based on the magnitude of the EPU coefficients and

the persistence of the EPU impact, our results suggest that women are more sensitive

to changes in EPU than men. Specifically, the elasticity for female mortality is -0.2821,

which is 1.5 times as large for male mortality (-0.1860), and the optimal lag order of

EPU for female mortality is 57, which is 2 years more than that for male mortality.

Among other control variables, when using the MIDAS model, we see a slight change in

the estimated PCEHC effect on mortality, the attenuation of the estimated GDP growth

effect and divorce effect on male mortality, and the increase in the estimated divorce

effect on female mortality.

2.6.4 Age-specific Morality Rates

Table 2.5 reports information on age-specific mortality of four age groups: 15-24, 25-54,

55-64, and 65-84-year-olds. In the simple OLS model (column a), EPU is negatively

correlated with mortality rates of all age groups, with the greatest impact for individuals

aged 65-84-year-olds. A 1% point increase in EPU is expected to decrease the mortality

rate of 65-84-year-olds by 0.4589%, which compares to decreases of 0.4156%, 0.3628%,

and 0.1227% for 15-24, 25-54, and 55-64-years-olds. PCEHC has the expected effect on

mortality, with higher PCEHC being associated with lower mortality of all age groups,

although the association is not significant for the mortality of 15-24-year-olds. A one-

point increase in GDP growth is predicted to reduce the mortality of 25-64-year-olds

by 2.0%-3.0%. The divorce rate is positively correlated with mortality rates of 15-24

and 55-84-year-olds. This conclusion is in line with previous literature indicating that

divorce is accompanied by a wide range of poor health outcomes (Burgoa et al., 1998;
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Sbarra, Law, and Portley, 2011; Antonakakis and Gupta, 2017). Interestingly, divorce

is found to have no significant effect on mortality rates of prime-working-age individuals

(25-54-year-olds). The possible explanation can be summarized as follows. People of

those ages have the highest participation rate in the labor force, whereby they are most

likely to end up not getting enough time for themselves and suffer much more work-related

stress, being divorced helps them escape from responsibilities that come with marriage

and give them more time for themselves in socializing and relaxing, thereby contributing

to health improvement. When the health improvements resulting from divorce are offset

by the health deterioration caused by divorce, one may expect an insignificant effect

of divorce on mortality. The results related to the fertility rate also suggest that an

increase in the fertility rate is significantly associated with a decline in mortality rates

of 25-54-year-olds. This finding supports the existing literature suggesting that parity is

the protection against several diseases (see, Vecchia and Franceschi, 1991; Erlandsson et

al., 2002).

Our results in the MIDAS model (column b) suggest that the EPU effect on mortality lasts

the longest for 15-54-year-olds, with a lag order of 93, while the EPU effect on mortality

is greatest for 65-84-year-olds, with an elasticity of -0.4410. Besides, using the MIDAS

model increases the significance of the (negative) PCEHC coefficient on mortality rates

of 15-24-year-olds. Again, the EG residual-based ADF test results uncover the long-run

relationship between mortality and EPU, and the higher value of R2 suggests that the

usage of the MIDAS model significantly improves estimation accuracy.

2.6.5 Risky Health Behaviors

Table 2.6 reports the marginal effects of EPU on risky health behaviors. These findings

are consistent with the conceptual model in Section 2.4 and possibly explain the health

improvements that accompany economic uncertainty.

There is no statistically significant relationship between EPU and the prevalence of
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Table 2.5: Parameter Estimates of the Determinants of Age-specific Mortality

Variables 15-24 Year Olds 25-54 Year Olds

(a) (b) (a) (b)

EPU -0.4156*** -0.3812*** -0.3628*** -0.2300***
PCEHC -0.0599 -0.0771** -0.1279*** -0.1436***
GDP growth 0.0003 -0.0059* -0.0281*** -0.0238***
Divorce 0.6014*** 0.5939*** 0.0007 -0.0317
Fertility 0.0176 0.0320 -0.1544*** -0.0711**

Km 93 93
Kq 17 29
R2 0.9283 0.9421 0.9722 0.9756
EG test 0.0000*** 0.0000*** 0.0001*** 0.0008***

Variables 55-64 Year Olds 65-84-Year-Olds

(a) (b) (a) (b)

EPU -0.1227** -0.1558*** -0.4589*** -0.4410***
PCEHC -0.2485*** -0.2416*** -0.0346* -0.0379**
GDP growth -0.0230*** -0.0282*** -0.0020 -0.0021
Divorce 0.3754*** 0.3508*** 0.4007*** 0.4302***
Fertility 0.0247 0.0156 0.0228 0.0453

Km 32 57
Kq 31 15
R2 0.9807 0.9870 0.9717 0.9767
EG test 0.0230** 0.0019*** 0.0000*** 0.0002***

Note: *** p<0.01, ** p<0.05, * p<0.1. Dependent variables are log age-specific mortality
rates. Log EPU, log PCEHC, GDP growth rate, log divorce rate and fertility rate are
independent variables. Column (a) reports the estimation results of simple OLS models
based on the flat weighting scheme but with the same lag horizon as the MIDAS, and
column (b) reports the estimation results of MIDAS models (2.5.4). Km is the lag order
of EPU ranging from 12-96, and Kq is the lag order of PCEHC and GDP growth rate
ranging from 4-32. The p-value of the Engle-Granger residual-based ADF test indicates
that estimation results are not spurious.

72



2.7 Robustness Check

current drinkers at the 10% significance level. According to Figure 2.2, this may imply

that the decrease in alcohol consumption due to reduced household expenditures may

be offset by the increase in alcohol consumption caused by increased work-related stress,

leading to no significant effect of EPU on the prevalence of current drinkers.

The EPU coefficients are negative for the prevalence of current smokers. A 1% point

increase in EPU is significantly associated with a 0.7727% and 0.7886% decrease in the

prevalence of current smokers for males and females. A possible explanation is that

as uncertainty mounts, individuals may curtail their spending on tobacco consumption

to increase precautionary savings. Since tobacco use is the leading risk for preventable

death in the US and causes about one-fifth of deaths each year, decreased current smoker

prevalence is likely to indicate better health.

Overweight and obesity together are the second leading cause of preventable death in

the US. Thus, death rates might decrease in times of high uncertainty periods because

individuals are more likely to be in the healthy weight range. Specifically, a 1% point

increase in EPU is predicted to reduce the prevalence of overweight by 0.2213%, the

prevalence of overweight or obesity by 0.3560%, and the prevalence of obesity by 0.4288%.

The prevalence rate of overweight and obesity may decrease since people are likely to

engage in physical activities. A 1% point increase in EPU lowers the expected prevalence

of physical inactivity by a statistically significant 0.4290%, 0.4375%, and 0.4527% for both

sexes, males, and females, respectively. According to the conceptual model, this may be

due to increased leisure time, making it possible to undertake more health-producing

activities.

2.7 Robustness Check

In this section, we conduct additional robustness checks on our results in Table 2.4.

Since the weighting function is a key in the MIDAS model, the choice of it may affect
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Table 2.6: EPU Coefficients on Risky Health Behaviors

Gender Current Drinker Current Smoker Physical Inactivity

Both sexes 0.0634 -0.7625*** -0.4290***
Male 0.0369 -0.7727*** -0.4375***
Female 0.1349* -0.7886*** -0.4527***

Gender Overweight Overweight or Obesity Obesity

Both sexes -0.2213*** -0.3560*** -0.4288***
Male -0.1700*** -0.3364*** -0.5993***
Female -0.3766*** -0.2989*** -0.4756**

Note: *** p<0.01, ** p<0.05, * p<0.1. Dependent variables are the log prevalence of risky
health behaviors. Log EPU, log PCEHC, GDP growth rate, log divorce rate, and fertility rate
are independent variables. The lag order of EPU ranges from 12-96, and the lag order of PCEHC
and GDP growth rate ranges from 4-32.

our estimation results. We, therefore, explore whether our estimation results are robust

to the choice of the weighting function. To this end, we re-estimate the model (2.5.4)

using the MIDAS approach with Exponential Almon lag polynomials. The results of this

analysis, presented in Table 2.7A, again confirm that EPU is inversely associated with

mortality rates. However, when using the Exponential Almon lag polynomials, the EPU

coefficient on male mortality rates increases, and men and women respond similarly to

changes in EPU.

Second, there is a possibility that the relationship between mortality and economic

uncertainty is driven by reverse causation. Given that the decline in mortality promotes

economic growth (Kalemli-Ozcan, 2002), one may expect a decrease in economic policy

uncertainty that is associated with economic upturns when mortality declines. To deal

with this potential endogeneity problem, we re-estimate the model (2.5.4) by using lagged

explanatory variables:

Mt = α1 + α2

Km∑
k=1

w(k; θm)E
(12)
t−1−(k−1)/12 + α3

Kq∑
k=1

w(k; θq1)P
(4)
t−1−(k−1)/4

+α4

Kq∑
k=1

w(k; θq2)Growth
(4)
t−1−(k−1)/4 + α5Divt−1 + α6Fert−1 + εt,

(2.7.1)

where Mt is the log sex-specific mortality rate, E(12)
t−1 , P (4)

t−1, Growth
(4)
t−1, Divt−1 and Fert−1
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Table 2.7: Robustness Check to Specification Changes

Panel A: Exponential Almon Polynomials

Determinants Total Male Female

EPU -0.2235*** -0.2982*** -0.3050***
PCEHC -0.1437*** -0.1232*** -0.0674***
GDP growth -0.0195*** -0.0072*** -0.0064**
Divorce 0.2610*** 0.3212*** 0.1860***
Fertility 0.0106 0.0061 0.0270

Panel B: Lagged Explanatory Variables

Determinants Total Male Female

EPU_1 -0.2817*** -0.1940*** -0.3107***
PCEHC_1 -0.1139*** -0.1589*** -0.0696***
GDP growth_1 -0.0120*** -0.0110* -0.0075**
Divorce_1 0.1989*** 0.2998*** 0.1851***
Fertility_1 -0.0045 0.0400 0.0213

Note: *** p<0.01, ** p<0.05, * p<0.1. Dependent variables are log total and sex-specific
mortality rates. The lag order of EPU ranges from 12-96, and the lag order of PCEHC
and GDP growth rate ranges from 4-32.

are the one-year lag of log EPU, one-year lag of log PCEHC, one-year lag of the GDP

growth rate, one-year lag of log divorce rate, and one-year lag of fertility rate. The

estimation results of the model (2.7.1), presented in Table 2.7B, provide qualitatively

similar effects of EPU on mortality rates, with coefficients of -0.2817, -0.1940, and -0.3107

for both sexes, males, and females, respectively. The results related to other controlled

factors of mortality are broadly in line with those in Table 2.4. This analysis suggests

that our baseline results remain largely robust to this specification change.

2.8 Conclusion

This paper uses time-series data for 1960-2013 to study the EPU effects on sex-specific

and age-specific mortality rates using the MIDAS model. Our analysis uncovers a

significant negative correlation between EPU and mortality rates of all sex and age groups.

This relationship is strongest for the old (65-84-year-olds), with an EPU elasticity of -
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0.4410. Our accompanying analysis suggests that the reason health improves during high

uncertainty periods is that individuals are more likely to engage in a healthy lifestyle.

The R2 values indicate that using the MIDAS model significantly improves the estimation

accuracy.

This paper makes contributions to three strands of the literature. First, this study is

expected to have an influential effect on the methodology investigating the relationship

between health outcomes and macroeconomic conditions. More accurate results can

be obtained via the MIDAS model since variables with several different frequencies

are allowed to be taken, making the best use of high-frequency information. To my

knowledge, this study is the first to use the MIDAS model to analyze the effect of EPU

on health status and individual health behaviors. Second, although the literature on the

relationship between business cycles and health outcomes is expansive, literature on the

impact of economic policy uncertainty on health status is rare. This paper contributes

to the study of sex- and age-specificities in the impact of EPU on mortality. Third, this

paper contributes to the literature by exploring health behaviors as the channels through

which EPU affects mortality.

Several policy implications can be generated from our results. First, since we expect that

the decline in EPU leads to a greater increase in the mortality rate of 65-84-year-olds,

interventions to reduce mortality should be directed more towards this age group when

economic policy uncertainty declines. Second, since increased economic policy uncertainty

is associated with decreased tobacco consumption, decreased prevalence of overweight and

obesity, and increased suicide mortality, then an important implication for policymakers

and hospitals is that when uncertainty increases, they should pay more attention to how

to improve citizens’ mental health and how to decrease mortality from suicide rather than

from tobacco, overweight, and obesity. Last, our results uncover that women are more

sensitive to changes in EPU than men and that individuals aged 65-84 respond more

heavily to changes in EPU than those of working age, suggesting that the direct effect of

76



2.8 Conclusion

labor market participation can not fully explain this pattern.
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Chapter 3

The Spatial Quasi-Limited Information

Maximum Likelihood Estimation for

Spatial Lag Models with Additional

Endogenous Variables

3.1 Introduction

Spatial econometrics is a subset of econometrics that is concerned with spatial effects

(Anselin, 1988; Anselin, Le Gallo, and Jayet, 2006; LeSage and Pace, 2009). Spatial

effects occur when the geographical closeness of observations affects the correlation

between observations. Originally, most of the work in spatial econometrics was inspired

by empirical economic problems caused by spatial dependence in cross-sectional and

panel data (Cliff and Ord, 1973; Paelinck and Klaassen, 1979; Upton and Fingleton,

1985; Anselin and Florax, 1995; Anselin and Bera, 1998). In spatial econometrics, the

information about the dependence between spatial units is incorporated into the spatial

weight matrix. It captures the spatial structure of the data and usually needs to be
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specified in advance.

Spatial dependence can be introduced in the dependent variable, leading to a so-called

spatial lag model (SLM). Over the past few decades, the SLM model has flourished, and

the estimation of the SLM model has received a great deal of attention. Since the spatial

lag variable, Wy, is endogenous to the model, the method of ordinary least-squares (OLS)

is no longer applicable. The main consequence of applying OLS is that the estimators

of the parameters will be biased and inconsistent. Several methods to estimate the SLM

model are available in the literature. One method that has been widely used is the

maximum likelihood (ML), which was first derived by Ord (1975). The conditions for

the consistency and the asymptotic normality of the ML estimator are established by Lee

(2002, 2004). Other alternative methods have been considered including the instrumental

variables (IV) (Anselin, 1988), the generalized method of moments (GMM) (Kelejian and

Prucha, 1998, 1999), the quasi-maximum likelihood (Lee, 2004), and the Bayesian Markov

Chain Monte Carlo method (Bayesian MCMC) (LeSage, 1997; LeSage and Pace, 2009).

All of the above estimators for the SLM model are derived and their asymptotic properties

are established under the assumption of exogeneity of the regressors X. However, this

assumption may not always be fulfilled. Conversely, in the context of many empirical

applications, the simultaneous presence of spatial lag and additional endogenous variables

is a common occurrence. The concern is that if the endogeneity of the regressors

is ignored, one may draw false conclusions about the spatial effects. This additional

endogeneity problem may derive from the measurement errors of the variables, omitted

variables, or simultaneity between the dependent and explanatory variables. For example,

Anselin and Lozano-Gracia (2008) study the effect of improved air quality on house

prices, where air quality variables are obtained using the interpolated air pollution

measures. Anselin and Lozano-Gracia argue that these measures may lead to the “error

in variable” problem, thereby leading to an additional endogeneity problem in the SLM

model. Similarly, Dall’Erba and Le Gallo (2008) use spatial econometric methods to
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assess the impact of structural funds on the convergence process of European regions.

In their study, the Hausman test results demonstrate the presence of the endogeneity of

structural funds in the SLM model.

The estimation of the SLM model that allows for endogenous predictors has been

theoretically motivated. Several estimation methods are considered. Among those, the

spatial two-stage least squares (S2SLS) estimation is the most commonly used. The

asymptotic distribution of this estimator when the number of instruments grows with the

sample size is derived by Liu and Lee (2013). Based on instrumental variables (IV) and

GMM, Fingleton and Le Gallo (2008) and Drukker, Egger, and Prucha (2013) consider,

respectively, the feasible generalized spatial two-stage least squares (FGS2SLS) estimator

and the two-step GMM/IV estimator to account for additional endogenous variables in

the spatial dependence model. In a recent paper, Liu and Saraiva (2015) propose a new set

of quadratic moment conditions for the GMM estimator and suggest that their proposed

estimator is more efficient than other IV-based estimators in the literature. Besides,

Kelejian and Prucha (2004) point out that the SLM model with additional endogenous

variables can also be viewed as an equation in a system of simultaneous equations. They

introduce the generalized spatial two-stage least squares (GS2SLS) estimation and the

generalized spatial three-stage least squares (GS3SLS) estimation for the limited and full

information estimation of the system, respectively. Moreover, instead of the IV-based

estimation, Liu (2012) proposes the limited information maximum likelihood (LIML)

estimation in the presence of many IVs, where the estimator is estimated based on the

joint normality of the errors in the SLM model and the reduced form equations. He shows

that the LIML estimator is only consistent when the number of IVs increases at a slower

rate than the sample size.

In this paper, we propose a new spatial quasi-limited information maximum likelihood

(SQLIML) estimation for a SLM with additional endogenous variables X. This method

extends Ord’s (1975) ML estimator and Wooldridge’s (2014) control function estimator to
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account for the spatial lag and additional endogenous variables in a model. In particular,

it goes beyond Ord (1975) by allowing additional endogenous variables in the SLM and

goes beyond Wooldridge (2014) by allowing the presence of spatial lag in a model. One

key assumption of our proposed SQLIML estimator is that the reduced form of additional

endogenous variables has additive errors that depend on the errors in the SLM model. As

with the control function approach of Wooldridge (2014), these additive errors are added

to the SLM model to control for the endogeneity of X.

One main difference between Liu’s (2012) LIML estimation and the proposed SQLIML

estimation is that Liu’s LIML estimation is based on the original SLM model, while

the proposed SQLIML estimation is based on the modified SLM model produced by

adding reduced form errors under the joint normality of errors in this modified SLM

model and the reduced form equations. Our proposed SQLIML estimation has some

decisive advantages over Liu’s (2012) LIML estimation. First, the proposed SQLIML

estimation addresses the endogeneity problem by adding reduced form errors as regressors.

Theoretically, the significance of coefficients of these reduced form errors indicates the

endogeneity of X. Our proposed SQLIML estimation therefore can give a regression-based

exogeneity test of X. Second, the proposed SQLIML estimator is computationally simpler

than Liu’s (2012) LIML estimator. In Liu (2012), the concentrated log-likelihood function

contains the log difference of the terms that depend on the errors and the hat matrix

for exogenous variables, as well as the log-determinant of the product of matrices that

depend on the spatial dependence parameter and the number of endogenous variables.

This would complicate its computation considerably.

Moreover, we establish the consistency and asymptotic normality of the SQLIML

estimator. We compare the finite sample properties of the S2SLS estimator and the

SQLIML estimator via the Monte Carlo simulation for models with different values of

instrument strength, degrees of endogeneity, and different numbers of instruments. In

comparing the bias and root mean squared error (RMSE) of the SQLIML and S2SLS
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estimators, we find that the proposed SQLIML estimator has a better performance than

the S2SLS estimator in models with strong endogeneity and weak instruments. Besides,

the simulation results indicate the correct size and good power of the proposed exogeneity

tests.

Lastly, in an empirical application, we revisit the driving under the influence (DUI)

arrest rate model of Drukker, Prucha, and Raciborski (2013), where the alcohol-related

arrest rate is the dependent variable and the number of sworn officers is treated as an

endogenous explanatory variable. Following Drukker et al. (2013), we use a dummy

variable that takes on 1 if a county government faces an election, as an instrument. We

then compare the mean squared error (MSE) of models estimated via the S2SLS and

SQLIML approaches, as well as the standard errors of their corresponding estimators

of the endogenous variable and the spatial lag term. Consistent with the Monte Carlo

simulation, our results show that the SQLIML estimator is relatively more efficient than

the S2SLS estimator. The MSE values indicate that the use of SQLIML estimation

significantly improves estimation accuracy.

The rest of this paper is organized as follows. In Section 3.2, we introduce the SLM

with additional endogenous variables, together with the SQLIML estimation method

that is used. In Section 3.3, we derive the conditions for the consistency and the

asymptotic normality of the SQLIML estimator. In Section 3.4, we conduct the Monte

Carlo simulations to assess the finite sample properties of the S2SLS estimator and the

SQLIML estimator, and we summarize the Monte Carlo simulation results. In Section

3.5, we provide an empirical application, and the last section concludes. The proofs are

collected in Appendix B.
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3.2 The Model

3.2.1 The Model and Endogenous Regressors

Consider a cross-sectional spatial lag model (SLM) with additional endogenous regressors,

X1:

y = ρWy +X1β1 +X2β2 + u, (3.2.1)

where y = (y1, y2, . . . , yN)
′ and u = (u1, u2, . . . , uN)

′ are N × 1 column vectors, and {ui}

are independent and identically distributed with mean 0 and variance σ2
u for all i. W

is a N × N spatial weights matrix with zero diagonal elements. Let X ≡ (X1,X2) be

a N × K matrix of variables, where X1 is a N × K1 matrix of stochastic endogenous

regressors, X2 is a N ×K2 matrix of exogenous regressors, defined by

X1
N×K1

=


X1

11 · · · XK1
11

... . . . ...

X1
1N · · · XK1

1N

 ≡ (X1
1, . . . ,X

K1
1 )

and

X2
N×K2

=


X1

21 · · · XK1
21

... . . . ...

X1
2N · · · XK1

2N

 ≡ (X1
2, . . . ,X

K2
2 ).

Define A(ρ) = IN −ρW , where IN is an identity matrix of size N . The regression model

(3.2.1) becomes

y = A(ρ)−1(X1β1 +X2β2 + u). (3.2.2)

To deal with endogeneity of X1, we need to find the N × L1 matrix of instrumental

variables, denoted Z1, where L1 ≥ K1. Let Z ≡ (Z1,X2) be a N × (L1 +K2) matrix of
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constant variables,

Z
N×L

=


Z1

1 · · · ZL
1

... . . . ...

Z1
N · · · ZL

N

 ≡ (Z1, . . . ,ZL1︸ ︷︷ ︸,
Z1

ZL1+1, . . . ,ZL︸ ︷︷ ︸
X2

),

where L = L1 +K2. Z satisfies the following condition.

Assumption 1: The linear reduced form equation of X1 with Z is:

X1 = Zδ + v,

E(v) = 0,
(3.2.3)

where δ is a L × K1 matrix of parameters, v is a N × K1 matrix of errors,

defined by

δ
L×K1

=


δ11 · · · δK1

1

... . . . ...

δ1L · · · δK1
L

 ≡ (δ1, . . . , δK1)

and

v
N×K1

=


v11 · · · vK1

1

... . . . ...

v1N · · · vK1
N

 ≡


v1

...

vN

 ≡ (v1, . . . ,vK1).

Under Assumption 1, the endogeneity of X1 is fully reflected in E(v′u) since by (3.2.3)

we have

E(X ′
1u) = δ′Z ′E(u) + E(v′u) = E(v′u), (3.2.4)

which implies that the endogeneity of X1 occurs if and only if u and v are correlated.

The following assumption states the association between u and v.

Assumption 2: Assume the following:
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(a) A linear projection of u on v:

u = vλ+ e,

E(e | v) = 0,
(3.2.5)

where λ = (λ1, λ2, . . . , λK1)
′ is a K1 × 1 vector of parameters with

λ = [E(v′v)]−1E(v′u). (3.2.6)

(b) (ei,vi)
′ are i.i.d. cross i with zero mean and finite variance:

(ei,vi)
′ ∼ IID


 0

0

 ,

 σ2
e 0

0 Σ


 ,

where Σ = E(v′
ivi) is a K1 × K1 variance-covariance matrix of vi and is

symmetric, defined by

Σ
K1×K1

=



σ2
v1 ∗ · · · ∗

σv2v1 σ2
v2 · · · ∗

...
... . . . ...

σvK1v1 σvK1v2 · · · σ2
vK1


.

Under Assumptions 1-2, e is uncorrelated with X1 and v. By equations (3.2.4) and

(3.2.6), it is straightforward to show that λ captures the severity of endogeneity of X1.

In particular, when λ = 0, X1 is exogenous because E(v′u) = 0. Hence, a t-test of

H0 : λ = 0 is a test of the null that X1 is exogenous.

Plugging (3.2.5) into equation (3.2.2), we have

y = A(ρ)−1(X1β1 +X2β2 + vλ+ e),

X1 = Zδ + v,
(3.2.7)
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where the reduced form error, v, is now the regressor in the model of y. As just noted,

the new error term, e, is uncorrelated with X1 and v, implying that that adding v as a

regressor addresses the endogeneity of X1.

3.2.2 Spatial Quasi-Limited Information Maximum Likelihood

Estimation

Denote θ = (σ2
e , vech(Σ)′,β′

1,β
′
2,λ

′, vec(δ)′, ρ)′, where vec(δ) = (δ11, . . . , δ
1
L, . . . , δ

K1
1 , . . . , δK1

L )′

and vech(Σ) = (σ2
v1, . . . , σK1v1, σ

2
v2 . . . , σK1v2, . . . , σ

2
vK1

)′. Let e(ϕ) = A(ρ)y−M (δ)α and

v(δ) = X1 − Zδ with ϕ = (α′, vec(δ)′, ρ)′, α = (β′
1,β

′
2,λ

′)′, M (δ) = (X1,X2,v(δ)),

and v(δ) = (v1(δ)
′, . . . ,vN(δ)

′)′. The log-likelihood function of (3.2.7), as if the errors

are normally distributed, is

lnL(θ) = −N(K1 + 1)

2
ln(2π)−N

2
lnσ2

e−
N

2
ln |Σ|−e(ϕ)′e(ϕ)

2σ2
e

−
N∑
i=1

vi(δ)Σ
−1vi(δ)

′

2
+ln |A(ρ)| ,

(3.2.8)

where ln |A(ρ)| stands for the natural logs of the absolute value of the determinant of

A(ρ). If the errors are truly normal, the log-likelihood function (3.2.8) is the exact one and

the estimators from it are the spatial limited information maximum likelihood (SLIML)

estimators. If the errors are not really normal, but their elements are i.i.d., (3.2.8)

is a quasi-likelihood function and the estimators from it are the spatial quasi-limited

information maximum likelihood (SQLIML) estimators.

The first order conditions of (3.2.8) are



∂lnL(θ)
∂σ2

e
= − N

2σ2
e
+ e(ϕ)′e(ϕ)

2σ4
e

,

∂lnL(θ)

∂Σ−1 = −N
2
Σ+ 1

2
v(δ)′v(δ),

∂lnL(θ)
∂α

= M(δ)′e(ϕ)
σ2
e

,

∂lnL(θ)
∂δ

= −Z′e(ϕ)
σ2
e

λ′ +Z ′vΣ−1,

∂lnL(θ)
∂ρ

= 1
σ2
e
(Wy)′e(ϕ)− tr(WA(ρ)−1).

(3.2.9)
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As the equation ∂lnL(θ)
∂ρ

= 0 is highly nonlinear, solving for ρ is difficult. Computationally

and analytically, we work with the concentrated log-likelihood function of ρ. Given ρ, see

Appendix B.1, the estimators of σ2
e , Σ, α, and δ are given by



σ̂2
e(ρ) = 1

N
y′A(ρ)′ĤA(ρ)y

Σ̂ = 1
N
X ′

1PX1

α̂(ρ) = (M (δ̂)′M (δ̂))−1M (δ̂)′A(ρ)y

δ̂ = (Z ′Z)−1Z ′X1,

(3.2.10)

where Ĥ = IN−M (δ̂)(M(δ̂)′M(δ̂))−1M (δ̂)′, M (δ̂) = (X1,X2,PX1), and P = IN−

Z(Z ′Z)−1Z ′. Plugging σ̂2
e(ρ), Σ̂, α̂(ρ), and δ̂ into (3.2.8), we obtain the concentrated

log-likelihood function of ρ:

lnL(ρ) = −N(K1 + 1)

2
(ln(2π) + 1)− N

2
lnσ̂2

e(ρ)−
N

2
ln

∣∣∣Σ̂∣∣∣+ ln |A(ρ)| .

The estimator ρ̂ is obtained from a numerical optimization of the concentrated log-

likelihood function. Following Elhorst (2014), ρ lies between 1/wmax and 1/wmin, where

wmin and wmax are the minimum and maximum eigenvalues of W . Once we obtain ρ̂, we

can obtain σ̂2
e and α̂.

It is noteworthy that δ̂ and Σ̂ are the ML estimators for the reduced form equation

of X1 given by (3.2.3) and do not depend on the value of ρ. Hence, estimating θ can

be considered as a two-step procedure: (1) Estimate δ and Σ by ML estimation of the

reduced form equation of X1. Obtain the residuals v̂ given by v̂ = X1 −Zδ̂. (2) Using

v̂ in place of v, estimate σ2
e , β, λ, and ρ by ML estimation of the model (3.2.7).
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3.3 Asymptotic Properties of SQLIML Estimators

In this section, we focus on the asymptotic properties of the SQLIML estimator. In

particular, we establish that the SQLIML estimator is consistent and asymptotically

normal.

3.3.1 Assumptions

Let θ0 = (σ2
e0, vech(Σ0)

′,β′
10,β

′
20,λ

′
0, vec(δ0)

′, ρ0)
′ be the true parameter vector, where

λ0 = (λ10, λ20, . . . , λK10)
′, δ0 = (δ1

0, . . . , δ
K1
0 ). Let ϕ0 = (α′

0, vec(δ0)
′, ρ0)

′ with α0 =

(β′
10,β

′
20,λ

′
0)

′, the true models for y and X1 are

y = A(ρ0)
−1(M(δ0)α0 + e0),

X1 = Zδ0 + v0,
(3.3.1)

where e0 ≡ e(ϕ0) and v0 ≡ v(δ0) = (v1
0, . . . ,v

K1
0 ) =


v10

...

vN0

. Define G(ρ) =

WA(ρ)−1 and let G ≡ G(ρ0) be its true value. Note that A(ρ0)
−1 = IN + ρ0G. It

immediately follows from (3.3.1) that

y = M(δ0)α0 + ρ0GM (δ0)α0 +A(ρ0)
−1e0. (3.3.2)

We extend the conditions given by Lee (2004), who derives the asymptotic properties

of the QML estimator for the SLM model, to study the consistency and the asymptotic

normality of the SQLIML estimator given by (3.2.10).

Assumption 3: The moment of the errors E(|ei0|4+ε) < ∞ for some ε > 0, and

E(|vji0|4+γj) < ∞ for some γj > 0 for all i = 1, . . . , N and j = 1, . . . , K1.

Assumption 4: The true value ρ0 is an interior point of the parameter space Λ, where
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Λ is a compact set.

Assumption 5: The elements of Z are uniformly bounded for all N . The lim
N→∞

1
N
(Z ′Z)

exists and is non-singular.

Assumption 6: plim
N→∞

M(δ0)′M(δ0)
N

exists and is non-singular.

Assumption 7: lim
N→∞

1
N
[E(J ′

1J1)−E(J ′
1M (δ0))(E[M(δ0)

′M (δ0)])
−1E(M (δ0)

′J1)] > 0

for all ρ ̸= ρ0, where J1 = A(ρ)A(ρ0)
−1M (δ0)α0.

Assumption 8: A(ρ0) is non-singular.

Assumption 9: {W } and {A(ρ0)
−1} are uniformly bounded in both row and column

sums for all N .

Assumption 10: {A(ρ)−1} is uniformly bounded in either row or column sums,

uniformly in ρ ∈ Λ.

Assumption 11: Assume that the spatial weight matrix satisfies:

(a) The elements wij of W are at most of order (1/hN) uniformly in all i, j,

where the rate sequence hN can be bounded or divergent.

(b) The rate hN/N → 0 as N → ∞.

Assumption 3 is a basic assumption of errors in the spatial econometrics literature.

Since the computation of the asymptotic distribution of the estimators involves quadratic

forms of errors, the existence of the fourth-order moment of errors is required to ensure

the finite variance of its quadratic forms. Assumption 4 provides a restriction on the

parameter space. The compactness of the parameter space is vital when we work with

the concentrated log-likelihood function ρ.

Assumptions 5-6 ensure that there is no multicollinearity in the regressors and are

sufficient conditions to assure that θ0 is identified. Assumption 7 is an identification

condition for ρ and σ2
e . A similar assumption appears in Li (2017). Under Assumption
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8, the SLM model has the reduced form given by (3.3.1), and so the conditional variance

of the true value y exists:

V ar(y | X1,Z) = σ2
e0A(ρ0)

−1A(ρ0)
−1′.

Note that for a spatial weight matrix W that is not row-standardized, if wmin < 0 and

wmax > 0, then a sufficient condition for the non-singularity of A(ρ) is that 1/wmin <

ρ < 1/wmax, where wmin and wmax are the minimum and maximum eigenvalues of W .

For a spatial weight matrix W that is row-standardized, a sufficient condition for the

non-singularity of A(ρ) is that −1 < ρ < 1.

With Assumption 9, the conditional variance of y is bounded as N → ∞. The uniform

boundedness of W is a sufficient condition to produce asymptotic results of consistent

estimators (Kelejian and Prucha, 1998; Kapoor, Kelejian, and Prucha, 2007). The

uniform boundedness of A(ρ)−1 at ρ0 implies that A(ρ)−1 is uniformly bounded in

both row and column sums in the neighborhood of ρ0. Recall that G(ρ) = WA(ρ)−1,

Assumption 9 implies that G is uniformly bounded in both row and column sums in the

neighborhood of ρ0.

Assumption 10 addresses the nonlinearity of ln |A(ρ)|. Lee (2002, 2004) shows that if

W is row-standardized, Λ can be considered as a closed subset of (−1, 1); if W is not

row-standardized, Λ can be a closed subset of (−1/ | wmin |, 1/wmax).

Assumption 11 states that the rate at which wij increases as N increases can be bounded

or divergent, but excludes cases where wij diverges to infinity at a rate equal to or

faster than the rate of the sample size N because the SQLIML (SLIML) estimators

are inconsistent for those cases. This assumption covers the spatial weight matrices

whose elements can be negative and those that might not be row-standardized, and it

ensures that the spatial correlation can be limited to a manageable degree. The most

commonly used spatial weight matrix in the literature is the contiguity-based spatial
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weight matrix, where wij = 1 if units i and j have a contiguous border, and that is

row-normalized subsequently. Assumption 11 is satisfied when each unit has a limited

number of neighbors even when the total number of units increases to infinity because

hN is bounded. This particular case rules out cases where each unit has infinitely many

neighbors. For example, if all units are assumed to be neighbors of each other. In this

case, all off-diagonal elements of W is wij = 1/(N − 1), and therefore hN = (N − 1) and

hN/N → 1 as N → ∞. With Assumption 9, Assumption 11 implies that the elements

Gij of G have O(1/hN) uniformly in all i, j.

3.3.2 Consistency and Asymptotic Normality

Let Q(ρ) = maxσ2
e ,Σ,α,δE(lnL(θ)). As in Lee (2004), maximize E(lnL(θ)) with respect

to σ2
e , Σ, α, and δ, we get the following solutions

δ∗ = E(δ̂) = E(δ0 + (Z ′Z)−1Z ′v0) = δ0,

Σ∗ =
1

N
E((X1 −Zδ∗)′(X1 −Zδ∗)) = Σ0,

α∗(ρ) = (E[M (δ∗)′M(δ∗)])−1E(M (δ∗)′A(ρ)y)

= (E[M (δ0)
′M(δ0)])

−1E(M (δ0)
′A(ρ)A(ρ0)

−1M (δ0)α0),

and

σ∗2
e (ρ) = 1

N
E([A(ρ)y −M (δ∗)α∗(ρ)]′[A(ρ)y −M(δ∗)α∗(ρ)])

= 1
N
E[(J1 + J2 −M(δ0)(E[M (δ0)

′M(δ0)])
−1E(M (δ0)

′J1))
′

×(J1 + J2 −M (δ0)(E[M(δ0)
′M (δ0)])

−1E(M(δ0)
′J1))]

= 1
N
[E(J ′

1J1)− E(J ′
1M (δ0))(E[M (δ0)

′M(δ0)])
−1E(M (δ0)

′J1)

+σ2
e0tr(A(ρ0)

−1′A(ρ)′A(ρ)A(ρ0)
−1)],
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where J2 = A(ρ)A(ρ0)
−1e0. Substitute Σ∗ and σ∗2

e (ρ) into concentrated log-likelihood

function, we have

Q(ρ) = −N(K1 + 1)

2
(ln(2π) + 1)− N

2
lnσ∗2

e (ρ)− N

2
ln |Σ0|+ ln |A(ρ)| .

To demonstrate that the SQLIML estimator θ̂ is consistent, we need to show that

(i) 1
N
lnL(ρ)

p→ 1
N
Q(ρ) uniformly in ρ ∈ Λ, and (ii) 1

N
Q(ρ) is uniquely maximized at

the true value ρ0 (White, 1996). The next theorem states the consistency of the SQLIML

estimator.

Theorem 3.1. Under Assumptions 1-11, θ̂ given in (3.2.10) is a consistent estimator

of θ0.

Proof. See Appendix B.2.

The asymptotic distribution of the SQLIML estimator is obtained from the Taylor series

expansion of ∂lnL(θ̂)
∂θ

= 0 at θ0. The first-order derivatives of the log-likelihood function

at θ0 are



1√
N

∂lnL(θ0)
∂σ2

e
= 1

2σ4
e0

√
N
(e′

0e0 −Nσ2
e0)

1√
N

∂lnL(θ0)

∂Σ−1 = 1
2
√
N
(v′

0v0 −NΣ0)

1√
N

∂lnL(θ0)
∂β1

= 1
σ2
e0

√
N
X ′

1e0

1√
N

∂lnL(θ0)
∂β2

= 1
σ2
e0

√
N
X ′

2e0

1√
N

∂lnL(θ0)
∂λ

= 1
σ2
e0

√
N
v′
0e0

1√
N

∂lnL(θ)
∂δ

= − Z′e0
σ2
e0

√
N
λ′

0 +
Z′v0Σ

−1
0√

N

1√
N

∂lnL(θ0)
∂ρ

= 1
σ2
e0

√
N
(GM (δ0)α0)

′e0 +
1

σ2
e0

√
N
(e′

0Ge0 − σ2
e0tr(G))

Following Assumptions 3 and 7, v0 and e0 have finite fourth moments, and Z is uniformly

bounded. Hence, a central limit theorem can be applied to 1√
N

∂lnL(θ0)
∂θ

. For the case {hN}
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being a bounded process, we can use the central limit theorem for linear-quadratic forms

introduced in Kelejian and Prucha (2001). For the case {hN} being a divergent process,

we can use the Kolmogorov central limit theorem to 1√
N

∂lnL(θ0)
∂θ

. The variance matrix of

1√
N

∂lnL(θ0)
∂θ

is

V ar( 1√
N

∂lnL(θ0)
∂θ

) =


−E( 1

N
∂2lnL(θ0)
∂θ∂θ′ ), if (ei,vi) are normally distributed

−E( 1
N

∂2lnL(θ0)
∂θ∂θ′ ) +Ωθ,N , if (ei,vi) are i.i.d

where

Ωθ,N = E(
1

N

∂lnL(θ0)

∂θ

∂lnL(θ0)

∂θ′ ) + E(
1

N

∂2lnL(θ0)

∂θ∂θ′ ).

Given the above results and assumptions, the next theorem states that the SQLIML

estimator (3.2.10) is
√
N -consistent and follows the asymptotic normal distribution.

Theorem 3.2. Under Assumptions 1-11, if (ei,vi) are normal distributed, the

asymptotically normality of θ̂ = (σ̂2
e , vech(Σ̂)′, β̂1

′
, β̂2

′
, λ̂

′
, vec(δ̂)′, ρ̂)′ is

√
N(θ̂ − θ0)

d→ N(0,Σ−1
θ ),
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where Σθ = − lim
N→∞

E( 1
N

∂2lnL(θ0)
∂θ∂θ′ ) and is given by

−E( 1
N

∂2lnL(θ0)
∂θ∂θ′ ) =

1
2σ4

e0
0 0 0 0 0

∗ D′(Σ−1
0 ⊗Σ−1

0 )D

2
0 0 0 0

∗ ∗ δ′0Z
′Zδ0+NΣ0

Nσ2
e0

δ′0Z
′X2

Nσ2
e0

Σ0

σ2
e0

−λ′
0⊗(δ′0Z

′Z)

Nσ2
e0

∗ ∗ ∗ X′
2X2

Nσ2
e0

0 −λ′
0⊗(X′

2Z)

Nσ2
e0

∗ ∗ ∗ ∗ Σ0

σ2
e0

0

∗ ∗ ∗ ∗ ∗ (λ0λ
′
0)⊗(Z′Z)

Nσ2
e0

+
Σ−1

0 ⊗(Z′Z)

N

∗ ∗ ∗ ∗ ∗ ∗
1

Nσ2
e0
tr(G)

0

(Zδ0)′G(Zδ0β10+X2β20)+tr(G)Σ0(β10+λ0)

Nσ2
e0

X′
2G(Zδ0β10+X2β20)

Nσ2
e0

tr(G)Σ0(β10+λ0)

Nσ2
e0

−λ0⊗(Z′G(Zδ0β10+X2β20))

Nσ2
e0

(Zδ0β10+X2β20)
′G′G(Zδ0β10+X2β20)+(β10+λ0)′tr(G

′G)Σ0(β10+λ0)

Nσ2
e0

+ 1
N
tr(GG+G′G)



,

where ⊗ is the Kronecker product. D is the duplication matrix of Σ, defined in Magnus

and Neudecker (2019).

Proof. See Appendix B.3.

Theorems 3.1-3.2 are valid for both bounded and divergent {hN}. For the case {hN}
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being a divergent process, the matrix Σθ becomes

Σθ =

1
2σ4

e0
0 0 0 0 0 0

∗ D′(Σ−1
0 ⊗Σ−1

0 )D

2
0 0 0 0 0

∗ ∗ δ′
0Z

′Zδ0+NΣ0

Nσ2
e0

δ′
0Z

′X2

Nσ2
e0

Σ0

σ2
e0

−λ′
0⊗(δ′

0Z
′Z)

Nσ2
e0

(Zδ0)
′G(Zδ0β10+X2β20)

Nσ2
e0

∗ ∗ ∗ X′
2X2

Nσ2
e0

0 −λ′
0⊗(X′

2Z)

Nσ2
e0

X′
2G(Zδ0β10+X2β20)

Nσ2
e0

∗ ∗ ∗ ∗ Σ0

σ2
e0

0 0

∗ ∗ ∗ ∗ ∗ (λ0λ
′
0)⊗(Z′Z)

Nσ2
e0

+
Σ−1

0 ⊗(Z′Z)

N
−λ0⊗(Z′G(Zδ0β10+X2β20))

Nσ2
e0

∗ ∗ ∗ ∗ ∗ ∗ (Zδ0β10+X2β20)
′G′G(Zδ0β10+X2β20)

Nσ2
e0



.

When {hN} is divergent, the SLIML’s σ̂2
e and λ̂ are asymptotically independent of ρ̂

because lim
N→∞

hN = ∞ and Gij = O(1/hN), and consequently, lim
N→∞

1
N
tr(G) = 0. Whereas

σ̂2
e and λ̂ are asymptotically dependent on ρ̂ when {hN} is bounded because lim

N→∞
1
N
tr(G)

may not be zero.

Remark 3.1. Theorem 3.2 only provides the asymptotic distribution of the SLIML

estimator. When the errors v1
0,v

2
0, . . .v

K1
0 are pairwise correlated, the asymptotic

variance of the SQLIML is difficult to obtain because terms E( 1
N

∂lnL(θ0)
∂vech(Σ)

∂lnL(θ0)
∂vech(Σ)′

) and

E( 1
N

∂lnL(θ0)
∂vech(Σ)

∂lnL(θ0)
∂vec(δ)′ ), respectively, contain the expectation of vec(v′

0v0)vec(v′
0v0)

′ and

vec(v′
0v0)vec(v0)

′.

Next, we consider the special case that the errors v1,v2, . . .vK1 are pairwise uncorrelated,

then the variance-covariance matrix of vi becomes

Σ =



σ2
v1

σ2
v2

. . .

σ2
vK1


,

where Σ is a diagonal matrix with σvij = 0. In this case, λj = E(vj ′u)/E(vj ′vj) for

all j in (3.2.5). Plus, because E(Xj
1
′u) = E(vju), the significance test on λ̂j can be

used to test for endogeneity of Xj
1. Denote θ = (σ2

e ,σ
2
v
′,β′

1,β
′
2,λ

′, vec(δ)′, ρ)′, where
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σ2
v = (σ2

v1, σ
2
v2, . . . , σ

2
vK1

)′. From (3.2.10), it is straightforward to get that



σ̂2
e(ρ) = 1

N
y′A(ρ)′ĤA(ρ)y

σ̂2
vj = 1

N
Xj

1
′PXj

1, j = 1, . . . , K1

α̂(ρ) = (M(δ̂)′M(δ̂))−1M (δ̂)′A(ρ)y

δ̂ = (Z ′Z)−1Z ′X1

(3.3.3)

and

ρ̂ = argmax
ρ

(−N(K1 + 1)

2
(ln(2π) + 1)− N

2
lnσ̂2

e(ρ)−
K1∑
j=1

N

2
lnσ̂2

vj + ln |IN − ρW |).

Theorem 3.3. Under Assumptions 1-11, in the event that the errors v1
0,v

2
0, . . .v

K1
0 are

pairwise uncorrelated, asymptotically normality of θ̂ is

√
N(θ̂ − θ0)

d→ N(0,Σ−1
θ +Σ−1

θ ΩθΣ
−1
θ ).

If (ei,vi) are normal distributed, then

√
N(θ̂ − θ0)

d→ N(0,Σ−1
θ ),

96



3.3 Asymptotic Properties of SQLIML Estimators

where Σθ = − lim
N→∞

E( 1
N

∂2lnL(θ0)
∂θ∂θ′ ), Ωθ = lim

N→∞
Ωθ,N given by

−E( 1
N

∂2lnL(θ0)
∂θ∂θ′ ) =

1
2σ4

e0
0 0 0 0 0

∗ Σ−1
0 Σ−1

0

2
0 0 0 0

∗ ∗ δ′0Z
′Zδ0+NΣ0

Nσ2
e0

δ′0Z
′X2

Nσ2
e0

Σ0

σ2
e0

−λ′
0⊗(δ′0Z

′Z)

Nσ2
e0

∗ ∗ ∗ X′
2X2

Nσ2
e0

0 −λ′
0⊗(X′

2Z)

Nσ2
e0

∗ ∗ ∗ ∗ Σ0

σ2
e0

0

∗ ∗ ∗ ∗ ∗ (λ0λ
′
0)⊗(Z′Z)

Nσ2
e0

+
Σ−1

0 ⊗(Z′Z)

N

∗ ∗ ∗ ∗ ∗ ∗
1

Nσ2
e0
tr(G)

0

(Zδ0)′G(Zδ0β10+X2β20)+tr(G)Σ0(β10+λ0)

Nσ2
e0

X′
2G(Zδ0β10+X2β20)

Nσ2
e0

tr(G)Σ0(β10+λ0)

Nσ2
e0

−λ0⊗(Z′G(Zδ0β10+X2β20))

Nσ2
e0

(Zδ0β10+X2β20)
′G′G(Zδ0β10+X2β20)+(β10+λ0)′tr(G

′G)Σ0(β10+λ0)

Nσ2
e0

+ 1
N
tr(GG+G′G)


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and

Ωθ,N =

µ4
e0−3σ4

e0

4σ8
e0

0
µ3
e0

2Nσ6
e0
l
′

NZδ0
µ3
e0

2Nσ6
e0
l
′

NX2 0

∗ diag(µ
4
v10−3σ4

v10

4σ8
v10

, . . . ,
µ4
vK10

−3σ4
vK10

4σ8
vK10

) 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

−µ3
e0λ

′
0⊗(l

′
NZ)

2Nσ6
e0

1
2Nσ6

e0
[µ3

e0l
′

N(GZδ0β10 +GX2β20) + (µ4
e0 − 3σ4

e0)tr(G)]

diag(ζv0)⊗l
′
NZ

2N
0

0
µ3
e0

Nσ4
e0

N∑
i=1

Gii(δ
′
0Z

′)i

0
µ3
e0

Nσ4
e0

N∑
i=1

Gii(X
′
2)i

0 0

0 − µ3
e0

Nσ4
e0
λ0⊗

N∑
i=1

Gii(Z
′)i

∗ 2µ3
e0

Nσ4
e0

N∑
i=1

Gii((GZδ0β10 +GX2β20)
′)i +

(µ4
e0−3σ4

e0)

Nσ4
e0

N∑
i=1

G2
ii



,

where µm
vj0 = E[(vji0)m], µm

e0 = E[(ei0)m], m = 2, 3, 4 represent the second, third, fourth

moments of {vji0} and {ei0}. lN is an N-vector of ones, diag(a) ≡


a1

. . .

aN

 is a

diagonal matrix with the elements of vector a. (A)i is the ith column of A, Gij is the

(i,j)th element of G, ζv0 = (ζv10, . . . , ζvK10) with ζvj0 = µ3
vj0/σ

6
vj0.

Proof. See Appendix B.4.
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For the case {hN} being a divergent process, the matrices Σθ and Ωθ become

Σθ =

1
2σ4

e0
0 0 0 0 0 0

∗ Σ−1
0 Σ−1

0

2 0 0 0 0 0

∗ ∗ δ′
0Z

′Zδ0+NΣ0

Nσ2
e0

δ′
0Z

′X2

Nσ2
e0

Σ0

σ2
e0

−λ′
0⊗(δ′

0Z
′Z)

Nσ2
e0

(Zδ0)
′G(Zδ0β10+X2β20)

Nσ2
e0

∗ ∗ ∗ X′
2X2

Nσ2
e0

0 −λ′
0⊗(X′

2Z)

Nσ2
e0

X′
2G(Zδ0β10+X2β20)

Nσ2
e0

∗ ∗ ∗ ∗ Σ0

σ2
e0

0 0

∗ ∗ ∗ ∗ ∗ (λ0λ
′
0)⊗(Z′Z)

Nσ2
e0

+
Σ−1

0 ⊗(Z′Z)
N −λ0⊗(Z′G(Zδ0β10+X2β20))

Nσ2
e0

∗ ∗ ∗ ∗ ∗ ∗ (Zδ0β10+X2β20)
′G′G(Zδ0β10+X2β20)
Nσ2

e0


and

Ωθ =

µ4
e0−3σ4

e0

4σ8
e0

0
µ3
e0l

′
NZδ0

2Nσ6
e0

µ3
e0l

′
NX2

2Nσ6
e0

0 −µ3
e0λ

′
0⊗l

′
NZ

2Nσ6
e0

µ3
e0l

′
N (GZδ0β10+GX2β20)

2Nσ6
e0

∗ diag(µ
4
v1−3σ4

v10

4σ8
v10

, . . . ,
µ4
vK1

−3σ4
vK10

4σ8
vK10

) 0 0 0
diag(ζv0)⊗l

′
NZ

2N 0

∗ ∗ 0 0 0 0 0

∗ ∗ ∗ 0 0 0 0

∗ ∗ ∗ ∗ 0 0 0

∗ ∗ ∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗ ∗ 0



.

3.4 Finite Sample Properties of Estimators

The objective of the Monte Carlo simulation is twofold. First, we compare the finite

sample properties of the spatial 2SLS (S2SLS) estimators and the proposed SQLIML

estimators. Second, we assess the size and power of the test for the exogeneity of X, that

is H0 : λ = 0.

3.4.1 S2SLS Estimator

We next review the S2SLS estimation approach. The S2SLS estimation is a

straightforward method for estimating the SLM with additional endogenous variables.

Instruments are needed for the spatial lag and additional endogenous variables. For the

spatial lag, several studies suggest the selection of optimal instruments based on the
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reduced form of the model specification (Kelejian and Prucha, 1998, 1999; Lee, 2003;

Anselin, Le Gallo, and Jayet, 2006). However, when additional endogenous variables are

included in the model, the system determining y is not completely specified, and one can

not obtain optimal instruments for the spatial lag.

To obtain a full systems specification, the instruments for additional endogenous variables

are needed. Using traditional notations, we rewrite (3.2.1) as

y = ρWy +X1β1 +X2β2 + u

= Bγ + u,

with B = (Wy,X1,X2) and γ = (ρ,β′
1,β

′
2)

′. In the S2SLS estimates, suppose that

the endogenous variables X1 are determined by a set of exogenous variables Z given in

(3.2.3), the instrument matrix Q for B is

Q = (Z,WZ,W 2Z, . . .),

where Q is a N × q matrix, with q ≥ 1 +K, and Q consists of the exogenous variables

and multiple orders of their spatial lags. In general, the spatial lag order is set to 2.

Therefore, the instrument matrix Q is

Q = (Z,WZ,W 2Z).

With the instrument matrix, the S2SLS estimator is

γ̂S2SLS = [B′Q(Q′Q)−1Q′B]−1B′Q(Q′Q)−1Q′y,

and its asymptotic variance matrix is

AsyV ar(γ̂S2SLS) = σ̂2
u[B

′Q(Q′Q)−1Q′B]−1,
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where σ̂2
u = (y −Bγ̂S2SLS)

′(y −Bγ̂S2SLS)/(N − 1−K).

3.4.2 Monte Carlo Simulation

For simplicity, we consider the case of a single endogenous regressor X, the Monte Carlo

simulation is based on the following DGP

y = (IN − ρW )−1(Xβ + u), (3.4.1)

where ρ = 0.5 and β = 1. W is a row-standardized spatial weight matrix based on 10-

nearest neighbors, where wi,i−5 = . . . = wi,i−1 = wi,i+1 = . . . wi,i+5 = 1/10 for i = 1, . . . , N

(wrap around to the end or the start of the row if the index lies outside the matrix

boundaries), and 0 otherwise. We generate the reduced form equation of X and a linear

projection of u as follows:

X = Zδ + v,

u = λv + e,
(3.4.2)

where e and v are generated from independent t-distributions with υ degrees of freedom,

Z is a N × L matrix of instruments for X, δ = clL. We use a normal distribution

for the instruments, and we set υ = 5, c = {0.3, 0.5, 0.8}, L = {1, 4, 8, 16}, and

λ = {0.1, 0.5, 1, 1.5}. The various values of c and λ enable us to inspect how the

SQLIML estimator behaves when the strength of instruments varies and when the degree

of endogeneity of X varies, respectively. Besides, the various value of L allows us to

consider the case of just-identified models and over-identified models.

We consider sample sizes N = {500, 1000}. The Monte Carlo experiment was performed

with 1,000 simulations. To assess the performance of SQLIML and S2SLS estimators, we

report the following statistics in Tables 3.1-3.5:

• Average bias of SQLIML and S2SLS estimators of β: bias(β̂) =

M∑
m=1

(β̂m−β)

M
, where

M is the number of replications and β̂m is the estimated value of β in the mth
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repetition;

• Average bias of SQLIML and S2SLS estimators of ρ: bias(ρ̂) =

M∑
m=1

(ρ̂m−ρ)

M
, where

M is the number of replications and ρ̂m is the estimated value of ρ in the mth

repetition;

• Relative efficiency between SQLIML and S2SLS estimators of β: RE(β̂) =

RMSE(β̂SQLIML)/RMSE(β̂S2SLS), where RMSE(β̂) is the RMSE given by

RMSE(β̂) =

√
M∑

m=1
(β̂m−β)2

M
;

• Relative efficiency between SQLIML and S2SLS estimators of ρ: RE(ρ̂) =

RMSE(ρ̂SQLIML)/RMSE(ρ̂S2SLS), where RMSE(ρ̂) is the RMSE given by

RMSE(ρ̂) =

√
M∑

m=1
(ρ̂m−ρ)2

M
;

• Power of exogeneity test: M−1
M∑

m=1

I(
∣∣∣ λ̂m

std(λ̂m)

∣∣∣ > t0.975), where I is the indicator

function.

Panels A-B of Tables 3.1-3.4 display the average bias of SQLIML and S2SLS estimators,

and panels C display the corresponding efficiency of SQLIML in terms of S2SLS, which

we calculate as the RMSE ratio. We first focus on the estimator of β. Overall, it is

evident the SQLIML estimator has a noticeably lower bias and enjoys a larger efficiency

gain than the S2SLS estimator, especially for models with weak instruments and strong

endogeneity. Turning to the estimator of ρ. The results for the S2SLS estimator are

encouraging. Two points are noteworthy. First, compared to the SQLIML estimator, the

S2SLS estimator is biased, implying that the S2SLS estimation may fail to correct for

the bias of ρ. This finding supports Lee (2004), suggesting that the IV-based approach

to estimating ρ is not applicable if all the spatial regressors are irrelevant. Besides, for

all cases, the RMSE ratio values indicate that the SQLIML estimator is much more

efficient than the S2SLS estimator. Second, in general, we find that compared to the

S2SLS estimator, the performance of the SQLIML estimator improves in terms of bias
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Table 3.1: Results on Monte Carlo Simulation with 1 Instrument

Panel A: Average Bias of β̂SQLIML and ρ̂SQLIML

β̂SQLIML ρ̂SQLIML

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 -0.0025 -0.0040 -0.0026 -0.0018 0.0009 0.0004 -0.0066 -0.0070 -0.0076 0.0001 -0.0017 -0.0015
λ = 0.5 -0.0220 -0.0088 -0.0033 -0.0095 0.0055 -0.0070 -0.0058 -0.0053 -0.0021 -0.0020 -0.0016 -0.0021
λ = 1 -0.0335 -0.0165 -0.0045 -0.0163 -0.0050 -0.0016 -0.0026 -0.0041 -0.0043 -0.0023 -0.0017 -0.0011
λ = 1.5 -0.0565 -0.0160 -0.0055 -0.0344 -0.0130 0.0005 -0.0008 -0.0035 -0.0032 -0.0012 -0.0011 -0.0019

Panel B: Average Bias of β̂S2SLS and ρ̂S2SLS

β̂S2SLS ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 -0.0157 -0.0097 -0.0052 -0.0080 -0.0033 -0.0014 0.0449 0.0120 -0.0404 0.0374 -0.0237 -0.0122
λ = 0.5 -0.0192 -0.0103 -0.0066 -0.0109 0.0006 -0.0085 0.1318 0.0447 -0.0141 0.0519 -0.0211 -0.0227
λ = 1 -0.0149 -0.0190 -0.0084 -0.0028 -0.0076 -0.0040 0.2014 0.0459 -0.0121 0.0888 0.0242 -0.0220
λ = 1.5 0.0148 -0.0087 -0.0087 -0.0297 -0.0161 -0.0024 0.3448 0.1265 0.0135 0.0785 0.0380 -0.0175

Panel C: Relative Efficiency of β̂SQLIML/β̂S2SLS and ρ̂SQLIML/ρ̂S2SLS

β̂SQLIML/β̂S2SLS ρ̂SQLIML/ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 0.6780 0.9713 0.9748 0.9531 0.9770 0.9907 0.0321 0.1402 0.2491 0.0744 0.1653 0.2822
λ = 0.5 0.9127 0.8276 0.9700 0.9367 0.9606 0.9761 0.0554 0.0542 0.1917 0.0637 0.1257 0.2044
λ = 1 0.9642 0.9009 0.9479 0.9185 0.8492 0.9825 0.0405 0.0480 0.1106 0.0117 0.0349 0.1349
λ = 1.5 0.6487 0.8910 0.9422 0.6981 0.9321 0.9796 0.0140 0.0363 0.0807 0.0114 0.0438 0.0847

and RMSE values as λ increases and as c decreases. In summary, our results show that

the proposed SQLIML estimator outperforms the S2SLS estimator, especially for models

with strong endogeneity and weak instruments.

Table 3.5 displays the size and power of the exogeneity test with a significance level of

5%. As can be seen, for all cases, the empirical sizes are very close to the nominal value

of 5%. Turning now to the power results, we find that X is detected as endogenous even

when λ is small. In particular, the power of this test increases as c, λ, N , and L increase.

Overall, our results indicate the correct size and good power of our exogeneity test.
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Table 3.2: Results on Monte Carlo Simulation with 4 Instrument

Panel A: Average Bias of β̂SQLIML and ρ̂SQLIML

β̂SQLIML ρ̂SQLIML

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 -0.0067 -0.0004 -0.0003 0.0019 -0.0017 0.0016 -0.0021 -0.0039 -0.0041 -0.0019 -0.0014 -0.0025
λ = 0.5 0.0089 0.0052 0.0019 0.0048 0.0040 0.0015 -0.0040 -0.0043 -0.0049 -0.0028 -0.0016 -0.0008
λ = 1 0.0276 0.0046 0.0019 0.0107 0.0039 0.0027 -0.0053 -0.0041 -0.0022 -0.0005 -0.0014 -0.0016
λ = 1.5 0.0312 0.0096 0.0036 0.0143 0.0053 0.0029 -0.0049 -0.0011 -0.0011 0.0002 -0.0001 -0.0009

Panel B: Average Bias of β̂S2SLS and ρ̂S2SLS

β̂S2SLS ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 -0.0162 -0.0043 -0.0022 -0.0030 -0.0042 0.0007 0.1186 0.0515 0.0199 0.0679 0.0302 0.0096
λ = 0.5 0.0165 0.0082 0.0021 0.0074 0.0041 0.0016 0.1552 0.0661 0.0320 0.0959 0.0419 0.0158
λ = 1 0.0594 0.0131 0.0049 0.0244 0.0081 0.0033 0.1880 0.1115 0.0520 0.1355 0.0664 0.0283
λ = 1.5 0.0787 0.0242 0.0075 0.0374 0.0111 0.0045 0.2381 0.1562 0.0810 0.1862 0.0975 0.0421

Panel C: Relative Efficiency of β̂SQLIML/β̂S2SLS and ρ̂SQLIML/ρ̂S2SLS

β̂SQLIML/β̂S2SLS ρ̂SQLIML/ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 0.9922 1.0023 0.9872 1.0009 0.9925 0.9872 0.2651 0.3906 0.5447 0.2408 0.4098 0.5688
λ = 0.5 0.9859 0.9949 0.9843 0.9604 0.9880 0.9839 0.2007 0.3272 0.4788 0.2019 0.3213 0.4648
λ = 1 0.9286 0.9844 0.9796 0.9782 0.9706 0.9877 0.1532 0.2227 0.3273 0.1411 0.2232 0.3337
λ = 1.5 0.9457 0.9864 0.9947 0.9634 0.9797 0.9835 0.1168 0.1481 0.2197 0.0898 0.1391 0.2320
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Table 3.3: Results on Monte Carlo Simulation with 8 Instruments

Panel A: Average Bias of β̂SQLIML and ρ̂SQLIML

β̂SQLIML ρ̂SQLIML

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 0.0025 -0.0023 0.0003 0.0010 0.0003 0.0002 -0.0068 -0.0052 -0.0035 -0.0026 -0.0026 -0.0013
λ = 0.5 0.0154 0.0059 0.0010 0.0099 0.0025 0.0008 -0.0067 -0.0035 -0.0026 -0.0020 -0.0014 -0.0002
λ = 1 0.0264 0.0111 0.0024 0.0159 0.0065 0.0019 -0.0046 -0.0023 -0.0021 -0.0008 -0.0014 -0.0012
λ = 1.5 0.0401 0.0141 0.0055 0.0225 0.0086 0.0054 -0.0030 -0.0018 -0.0014 -0.0027 -0.0024 -0.0005

Panel B: Average Bias of β̂S2SLS and ρ̂S2SLS

β̂S2SLS ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 -0.0060 -0.0059 -0.0016 -0.0044 -0.0020 -0.0006 0.1249 0.0612 0.0281 0.0774 0.0331 0.0138
λ = 0.5 0.0248 0.0089 0.0018 0.0130 0.0037 0.0012 0.1465 0.0817 0.0395 0.1033 0.0475 0.0216
λ = 1 0.0571 0.0212 0.0053 0.0289 0.0106 0.0033 0.1940 0.1212 0.0641 0.1456 0.0749 0.0314
λ = 1.5 0.0913 0.0301 0.0106 0.0443 0.0145 0.0073 0.2369 0.1641 0.0904 0.1937 0.1132 0.0508

Panel C: Relative Efficiency of β̂SQLIML/β̂S2SLS and ρ̂SQLIML/ρ̂S2SLS

β̂SQLIML/β̂S2SLS ρ̂SQLIML/ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 0.9899 0.9918 0.9914 0.9814 0.9945 0.9992 0.2974 0.4850 0.6771 0.3181 0.5270 0.6831
λ = 0.5 0.9539 0.9703 0.9916 0.9598 0.9874 0.9896 0.2509 0.3601 0.5258 0.2327 0.3862 0.5596
λ = 1 0.8900 0.9456 0.9802 0.9248 0.9681 0.9876 0.1775 0.2241 0.3596 0.1437 0.2423 0.3995
λ = 1.5 0.8520 0.9421 0.9723 0.9103 0.9563 0.9769 0.1279 0.1630 0.2461 0.1056 0.1616 0.2572
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Table 3.4: Results on Monte Carlo Simulation with 16 Instruments

Panel A: Average Bias of β̂SQLIML and ρ̂SQLIML

β̂SQLIML ρ̂SQLIML

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 0.0014 2.14E-05 0.0003 0.0020 0.0007 0.0012 -0.0044 -0.0042 -0.0034 -0.0015 -0.0013 -0.0020
λ = 0.5 0.0149 0.0069 0.0030 0.0089 0.0023 0.0003 -0.0045 -0.0022 -0.0021 -0.0020 -0.0016 -0.0008
λ = 1 0.0308 0.0123 0.0050 0.0158 0.0068 0.0019 -0.0023 -0.0020 -0.0008 -0.0012 -0.0018 -0.0011
λ = 1.5 0.0479 0.0175 0.0085 0.0226 0.0077 0.0031 -0.0012 -0.0010 -0.0014 -0.0011 -0.0009 -0.0014

Panel B: Average Bias of β̂S2SLS and ρ̂S2SLS

β̂S2SLS ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 -0.0081 -0.0036 -0.0012 -0.0036 -0.0015 0.0004 0.1249 0.0629 0.0267 0.0823 0.0346 0.0135
λ = 0.5 0.0246 0.0101 0.0043 0.0133 0.0037 0.0008 0.1528 0.0874 0.0416 0.1077 0.0519 0.0231
λ = 1 0.0616 0.0225 0.0085 0.0312 0.0114 0.0036 0.1970 0.1241 0.0673 0.1506 0.0767 0.0368
λ = 1.5 0.0965 0.0338 0.0146 0.0459 0.0149 0.0054 0.2358 0.1681 0.0928 0.1956 0.1137 0.0556

Panel C: Relative Efficiency of β̂SQLIML/β̂S2SLS and ρ̂SQLIML/ρ̂S2SLS

β̂SQLIML/β̂S2SLS ρ̂SQLIML/ρ̂S2SLS

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

λ = 0.1 0.9953 0.9906 0.9973 0.9880 0.9901 1.0017 0.3123 0.4901 0.6905 0.3096 0.5270 0.7547
λ = 0.5 0.9294 0.9598 0.9740 0.9746 0.9901 0.9850 0.2423 0.3478 0.5088 0.2451 0.4016 0.5649
λ = 1 0.7940 0.9009 0.9544 0.8725 0.9398 0.9813 0.1753 0.2393 0.3465 0.1558 0.2471 0.3844
λ = 1.5 0.7498 0.8675 0.9340 0.8390 0.9285 0.9624 0.1306 0.1664 0.2389 0.1041 0.1588 0.2596
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Table 3.5: Size and Power of Exogeneity Test

N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

L = 1
λ = 0 0.041 0.044 0.042 0.031 0.043 0.046
λ = 0.1 0.073 0.148 0.251 0.103 0.228 0.374
λ = 0.5 0.645 0.960 0.999 0.929 0.998 1
λ = 1 0.994 1 1 1 1 1
λ = 1.5 1 1 1 1 1 1

L = 4
λ = 0 0.049 0.053 0.036 0.046 0.046 0.052
λ = 0.1 0.188 0.338 0.439 0.278 0.492 0.629
λ = 0.5 0.989 0.999 1 1 1 1
λ = 1 1 1 1 1 1 1
λ = 1.5 1 1 1 1 1 1

L = 8
λ = 0 0.046 0.053 0.052 0.042 0.048 0.047
λ = 0.1 0.276 0.414 0.491 0.412 0.581 0.695
λ = 0.5 1 1 1 1 1 1
λ = 1 1 1 1 1 1 1
λ = 1.5 1 1 1 1 1 1

L = 16
λ = 0 0.045 0.050 0.049 0.054 0.044 0.056
λ = 0.1 0.364 0.475 0.530 0.548 0.669 0.741
λ = 0.5 0.998 1 1 1 1 1
λ = 1 1 1 1 1 1 1
λ = 1.5 1 1 1 1 1 1

3.5 Application: A Spatial Lag Model of DUI Arrest

Rates

In this section, we revisit the SLM model of DUI arrest rates by Drukker, Prucha, and

Raciborski (2013), which studies the impact of alcohol prohibition in a county on the DUI

arrest rates, to demonstrate the use of the proposed SQLIML estimation. In particular,

we apply the SQLIML procedure to re-estimate the DUI arrest model. The model is

organized as follows

dui = ρW × dui+β0+β1×nondui+β2× dry+β3× vehicles+β4× police+u, (3.5.1)

where dui is the alcohol-related arrest rate per 100,000 daily vehicle miles traveled

(DVMT), nondui is the nonalcohol-related arrest rate per 100,000 DVMT, dry is the

dummy variable for a county that prohibits alcohol sales within its borders, vehicles is
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the number of registered vehicles per 1,000 residents, and police is the number of sworn

officers per 100,000 DVMT. W is the contiguity-based spatial weighting matrix for the

U.S. counties. The data used covers 1,422 US counties in 2008 and can be found at

http://www.stata-press.com/data/r15/dui_southern.dta.

Drukker, Prucha, and Raciborski (2013) treat police as endogenous since the size of the

police force may be a function of the DUI arrest rate. To deal with the endogeneity

of police, Drukker, Prucha, and Raciborski (2013) use the variable election, which is a

dummy variable equal to 1 if a county government faces an election and 0 otherwise, as

the instrument, and apply the S2SLS procedure for estimating the DUI arrest model.

In Table 3.6, we provide S2SLS and SQLIML estimates of the DUI arrest model, as well as

their corresponding MSE values. Our interests are the coefficients of the spatial lag term

and police. In both S2SLS and SQLIML results, the estimate of ρ is significantly positive,

suggesting that the alcohol-related arrest rate in a county directly affects the alcohol-

related arrest rate in its neighboring counties. As expected, the police coefficient indicates

that the increase in the proportionate number of sworn officers leads to a reduction in

the arrest rate. Consistent with Drukker, Prucha, and Raciborski (2013), all independent

variables are significant with the exception of nondui.

Importantly, the standard errors of the coefficients on the spatial lag term and the police

variable estimated via the SQLIML procedure are smaller than those estimated via the

S2SLS procedure. These results are consistent with the Monte Carlo simulation results,

suggesting that the SQLIML coefficients on the spatial lag term and the endogenous

regressors enjoy larger efficiency gains. Additionally, the significance of λ validates the

strong endogeneity of the police variable. The MSE values indicate that the use of

SQLIML estimation improves the estimation accuracy.
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Table 3.6: Estimation Results on the DUI Arrest Model

S2SLS Estimates SQLIML Estimates

coef std err coef std err

police -1.3233*** 0.1211 -1.5138*** 0.0198
nondui -0.0019 0.0027 -0.0024 0.0035
vehicles 0.0919*** 0.0048 0.1007*** 0.0011
dry 0.4832*** 0.0800 0.4477*** 0.1206
constant 9.2390*** 1.1334 14.1083*** 0.2404
W × dui 0.3909*** 0.0205 0.2150*** 0.0035

λ 1.2581*** 0.0097
MSE 0.7981 0.2630

Note: *** p<0.01, ** p<0.05, * p<0.1. Dependent variables are alcohol-related arrest rates
per 100,000 DVMT. police is the number of sworn officers per 100,000 DVMT, nondui is the
nonalcohol-related arrest rate per 100,000 DVMT, vehicles is the number of registered vehicles
per 1,000 residents, dry is the dummy variable for a county that prohibits alcohol sales within its
border. W is the contiguity-based spatial weighting matrix for the U.S. counties (N = 1, 422).
The variable election is an instrument for the endogenous variable police, where election is a
dummy variable equal to 1 if a county government faces an election and 0 otherwise. λ captures
the severity of endogeneity of police.

3.6 Discussion

The aim of this paper is to introduce the SQLIML estimation of a model including the

spatial lag and additional endogenous variables. We derive the asymptotic properties

of the SQLIML estimator and discuss its finite sample properties via a Monte Carlo

simulation. The Monte Carlo simulation results indicate that the SQLIML estimator

performs better than the S2SLS estimator, especially for models with strong endogeneity

and weak instruments. We demonstrate the usefulness of our proposed estimation in

an application to revisit the DUI arrest rate model of Drukker, Prucha, and Raciborski

(2013).

There are several attractive features of the SQLIML estimation with respect to the

S2SLS estimation. First, one main drawback of the S2SLS estimation method is that

the instruments for the spatial lag variable are required. In the S2SLS procedure, the

optimal instrument matrix for the spatial lag variable consists of the spatial lags of all
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exogenous variables in the model, but the S2SLS estimation may break down when all

the spatial regressors are really irrelevant. Instead of applying the IV approach, we rely

on the ML estimation procedure to deal with the endogeneity caused by the spatial lag

variable by computing the log-determinant of the Jacobian matrix in the log-likelihood

function. Second, our proposed SQLIML estimation provides a test of exogeneity of X1.

However, there is a limitation of the SQLIML estimation. The SQLIML estimation relies

on the assumption that there must be a linear relationship between the reduced form

errors of X1 and the errors in the SLM model. If this assumption is not satisfied, see

Tables B.1-B.3, our proposed SQLIML estimator may be inefficient and the proposed

exogeneity test may suffer from size distortion.
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Chapter 4

The Spatial Effect of the Minimum

Wage on the Gender Wage Gap

4.1 Introduction

Alleviation of the gender wage gap holds significance for government authorities and

policymakers. Past decades have witnessed great efforts to close the gender wage gap

in the U.S., yet it still prevails. Recent U.S. Census Bureau data shows that the 2018

female-to-male earnings ratio among full-time and year-round workers was 0.816 in the

U.S., which increased 34.4% from 0.607 in 1960 (Figure 4.1).

Evidence has shown that minimum wage policy can be an instrument to narrow the

gender wage gap, as it can compress the lower tail of the wage distribution (Dinardo,

Fortin, and Lemieux, 1996; Blau and Kahn, 2003). Given the over-representation of

women in low-wage occupations and sectors, minimum wages are thus expected to have

the largest impact on the gender wage gap at bottom of the wage distribution. However,

the size of the minimum wage effect on the gender wage gap at different income levels

is poorly understood. In this paper, we contribute to the literature by quantifying the
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extent to which minimum wage hikes affect the gender wage gap across income levels.

Another contribution of this study concerns the methodology. One limitation of models

applied in previous studies on minimum wages and gender wage gaps is that they fail to

consider the potential spatial dependence in data, such as the fixed-effect model (Blau and

Kahn, 1997, 2003) and the difference-in-difference model (Robinson, 2005). However, it is

commonly observed that geographical units are not independent but spatially dependent.

As stated by Tobler (1970), “everything is related to everything else, but near things are

more related than distant things” (Tobler’s First Law of Geography). It is important to

consider spatial correlation when analyzing observations relating to regions. Failure to

capture the potential spatial correlation can lead to biased and inconsistent estimation

results. To address this issue, we use the spatial econometric model that accommodates

spatial dependence to conduct our analysis.

The second research question of this study concerns the spillover effect of the minimum

wage on the gender wage gap in the U.S. states, which can be answered with the spatial

econometric model. Investigating spillover effects is crucial in assessing the impact of the

minimum wage policy and is fundamental to understanding the jurisdictional interactions

on minimum wages. However, surprisingly, so far, no study has tackled this issue. By

answering this question, our study contributes to the literature by filling this gap. If

minimum wage spillover effects do exist, then the implication is that local governments

should facilitate ties in implementing minimum wage policy to create better ways to

reduce inequality.

There are several reasons that one state’s minimum wage might affect the gender wage gap

of its neighboring states. First, low-wage workers might be attracted to commute across

state borders to neighboring states that have higher minimum wages (Johnson, 2014).

This implies that low-wage workers in one state can benefit from a higher minimum

wage in its neighbors, which in turn contributes to the narrowing of the gender wage

gap in that state. The second mechanism is through inter-jurisdictional competition
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on minimum wages. States are clearly concerned about how their minimum wage rates

compare with those of their neighbors. It is likely due to the fear of driving away workers

to neighboring states that have higher minimum wages. The competition for workers

may force states to increase their minimum wages in response to higher minimum wages

in neighboring states. Another reason state minimum wages move in reaction to changes

in other states is that voters may judge incumbent behavior relative to the behavior of

neighboring politicians. It is known as the “yardstick competition” (Besley and Case,

1995). Currently, every state in the US directly elects local legislators and governors,

and voters evaluate their incumbents based on performance comparison with neighboring

states. If labor standards are an important part of performance evaluation, incumbents

would be motivated to compete on minimum wages.

The main objective of this paper is to quantify the extent to which the gender wage gap

at different income levels responds to in-state and out-of-state minimum wage changes.

Using state-level data from 1979 to 2018, our analysis uncovers the presence of the

spillover effect of the minimum wage on neighboring states. In particular, an increase in

the minimum wage in a given state contributes to closing the 10th-60th income percentile

gender wage gap in its own state and its neighboring states, with the greatest impact on

low-income workers. Specifically, a 1% point increase in the minimum wage is expected to

reduce the 10th percentile gender wage gap by 0.00246 units, with a decrease of 0.00151

units in its own state and a decrease of 0.00095 units in its neighboring states. This finding

supports the existing literature suggesting that low-income women can benefit the most

from minimum wage increases. However, our results reveal that the minimum wage is

insignificantly related to the gender wage gap in the upper tail of the wage distribution.

The rest of this paper is organized as follows. In Sections 4.2 and 4.3, we summarize the

previous literature and introduce the minimum wage policy in the US. In Section 4.4, the

data on gender wage gaps and minimum wages are introduced. In Section 4.5, we discuss

the spatial model selection approach, present empirical results, present empirical results,
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Figure 4.1: Female-to-Male Earnings Ratio of Full-Time and Year-Round Workers in the
U.S., 1960-2018
Source: U.S. Census Bureau, Current Population Survey.

and perform the dynamic analysis. In Section 4.6, we conduct the robustness check, and

the last section concludes.

4.2 Literature Review

Recent studies have demonstrated that closing gender wage gaps can bring economic

benefits (Schober and Winter-Ebmer, 2011; Cavalcanti and Tavares, 2016). The fact that

gender wage gap suppresses women’s lifetime wage, leading to higher poverty rates among

women. Hartmann, Hayes, and Clark (2014) summarize the analysis of the 2010-2012

Current Population Survey Annual Social and Economic Supplement and briefly explain

how gender pay equality can reduce poverty and enhance the U.S. economy. They find

that increasing women’s wages to match men’s wages can drastically cut the poverty rate

for all working women, working single mothers, and single women from 8.1% to 3.9%,

28.7% to 15%, and 11% to 4.6%, respectively. Besides, the U.S. economy would produce

an additional income of $447.6 billion if women receive equal pay; this represents 2.9% of

the 2012 U.S. GDP. It can be explained by the fact that earnings inequality for women

leads to the misallocation of human capital and causes women to work at less productive
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firms than they otherwise would, thereby hindering economic growth.

Much research has attempted to explore the factors that contribute to gender wage

inequality. First, discrimination may explain why women are paid less than men (Cain,

1986; Altonji and Blank, 1999; Hallward-Driemeier, Rijkers, and Waxman, 2017). A 2017

Pew Research Center survey finds that women (42%) in the U.S. are roughly twice as

likely as men (22%) to say they have suffered gender discrimination at work and about

25% of working women said they had been paid less than a man who was doing the

same job, but only 5% of working men reported having a similar experience (Parker

and Funk, 2017). Second, women’s concentration in low-paid occupations may play a

role in shaping the gender wage gap (Gunderson, 1975; England, 1992; Korkeamäki and

Kyyrä, 2006). The U.S. Bureau of Labor Statistics reports that among workers paid at

hourly rates in 2019, about 3% of women with a wage at or below the federal minimum

wage compared with 1% of men (BLS, 2020). Third, labor-force attachment and human

capital (schooling and work experience) may be important factors contributing to the

gender wage gap (Mincer and Polachek, 1974; Goldin, 2014; Blau and Kahn, 2017). Blau

and Kahn (2017) point out that due to family responsibilities, women are expected to

experience shorter and discontinuous working lives, and thus have a lower motivation to

invest in on-the-job training than men. As a result, the smaller human-capital investments

and reduced labor-force experience will lower women’s wages.

There are a number of studies suggesting that the minimum wage policy is an effective

tool to reduce the wage differential between men and women. For example, Blau and

Kahn (1997) indicate that the sharp decline in the real value of the federal minimum

wage is an institutional factor explaining the widening gender wage gap among low-skill

workers in the U.S. from 1979-1988. A follow-up analysis (Blau and Kahn, 2003) for 22

countries from 1985-1994 uncovers an inverse association between the gender wage gap

and the “bite” of the minimum wage - the minimum wage level relative to the average

wage. Similarly, Angel-Urdinola (2008) runs the set of simulations and finds that the
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introduction of a minimum wage in Macedonia decreases the gender wage gap from 15%

to 23%.

Evidence also shows that minimum wage effects on the gender wage gap vary across

the wage distribution. For instance, Robinson (2005), using the difference-in-difference

estimation, finds that the National Minimum Wage (NMW) impact on the gender wage

gap in British is greatest for workers paid below the NMW. Hallward-Driemeier, Rijkers,

and Waxman (2017) use manufacturing firm-level census data from 1995 to 2006 to

examine the minimum wage role in gender wage gaps among production workers in

Indonesia. They uncover that the minimum wage effects on the gender wage gap are

highly associated with educational attainment and wage distribution. In particular,

minimum wage increases are correlated to exacerbated gender wage gaps among the

least-educated workers.

4.3 Minimum Wage Policy in the U.S.

The U.S. federal minimum wage was first introduced in 1938, and since then, it was

increased several times by Congress. Figure 4.2 shows the nominal and real value of the

federal minimum wage in the U.S. from 1979 to 2018. As can be seen, the U.S. has

witnessed a continuous increase in the nominal value of the federal minimum wage. In

1979, the U.S. federal minimum wage was set at $2.90 per hour, and in 2018, it was

raised to $7.25 per hour. The real minimum wage increased in jumps when the nominal

minimum wage was increased; however, it decreased over time as it was adjusted for

inflation. Although the nominal minimum wage was at a historical high in 2018, the

2018 real minimum wage ($7.25) is about 38.3% lower than the 1979 real minimum wage

($10.03) when adjusted for 2018 inflation. The real value of the federal minimum wage

got its highest point in 1979 and fell to its lowest point in 2007 during the whole sample

years.
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Figure 4.2: Real and Nominal Value of the Federal Minimum Wage in the U.S., 1979-2018

There is a federal minimum wage for all states in the U.S., but each state is free to set its

own minimum wage. One aim of the minimum wage is to improve the living standards

of workers at the lower tail of the wage distribution. Since the U.S. living standards vary

across states, the U.S. does not set one minimum wage applicable to all states. Instead,

many states set their own minimum wages. By 1979, 41 out of 50 states had set their

own minimum wage, and by 2018, that number had risen to 45.

State minimum wages can be higher than, equal to, or lower than the federal minimum

wage. When states have no minimum wage law or a minimum wage lower than the

federal minimum wage, the employee is entitled to the federal minimum wage. When

states have a minimum wage higher than the federal one, the employee is entitled to the

state minimum wage. States increase their minimum wages automatically based on the

local cost of living or due to approved state legislation or citizen ballot initiatives. There

is an apparent increase in the number of states with minimum wages higher than the

federal minimum wage between 1979 and 2018 (Figure 4.2). By 1979, only 2 out of 50

states with minimum wages higher than the federal minimum wage, and by 2018, that
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Figure 4.3: Spatial Distribution of the State Minimum Wage in 2018

number had risen to 29.

Figure 4.3 illustrates the spatial distribution of the state minimum wage in 2018

(excluding Alaska and Hawaii). The figure shows that the level of the minimum wage

varies considerably between states. In 2018, the state minimum wage was highest in

Washington ($11.5 per hour), Massachusetts ($11 per hour), and California ($11 per

hour), and it was lowest in Georgia ($5.15 per hour) and Wyoming ($5.15 per hour).

4.4 Data and Descriptive Statistics

4.4.1 Gender wage Gap

Data on U.S. household earnings from 1979 to 2018 is collected from the Current

Population Survey Merged Outgoing Rotation Group (CPS MORG), which contains

individual data on hours worked, earnings, and some demographic information on sex,

age, schooling, marital status, etc. We define hourly wages as reported hourly wages

for those who are paid by the hour and weekly earnings divided by hours worked in the

prior week for those who are not. Following the study of Autor, Manning, and Smith

(2016), we exclude self-employed individuals, regardless of whether their businesses are
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Figure 4.4: Average Hourly Wages for Men and Women and the Average Gender Wage
Gap for Selected Income Percentiles, U.S., 1979-2018

incorporated, and exclude those with earnings imputed by the BLS, and we multiply

top-coded weekly earnings by 1.5. Using these microdata, we calculate the 10th, 20th,

30th, 40th, 50th, 60th, 70th, 80th, and 90th percentiles of state wage distributions by sex

using the CPS sampling weight multiplied by weekly hours worked, and then calculate

their corresponding gender wage gaps in the 48 contiguous states from 1979-2018. Table

4.1 reports summary statistics for this data. We categorize the 10th, 20th, and 30th

percentiles as low-income percentiles, the 40th, 50th, and 60th percentiles as middle-

income percentiles, and the 70th, 80th, and 90th percentiles as high-income percentiles.

Figure 4.4 plots U.S. average hourly wages for men and women by income percentile,

as well as the average gender wage gap from 1979 to 2018. As expected, women are

paid less than peer men at every income level, and women at different income levels

experience differing gaps in pay. On average, the gender wage gap is largest among

high-paid workers and lowest among low-paid workers. Specifically, over the period 1979

to 2018, the gender wage gap is largest at the 90th income percentile, where women make

only around $0.7636 for every dollar a peer man makes, while it is smallest at the 10th

percentile, where women make only around $0.8910 for every dollar a peer man makes.
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Figure 4.5: Gender Wage Gap for Selected Income Percentiles, U.S., 1979-2018

But how does the gender wage gap vary over time? To answer this question, we plot the

gender wage gap by income percentile in the U.S. from 1979 to 2018 (Figure 4.5). Here

we see that the gender wage gap decreased gradually at all selected percentiles from 1979

to 2018. The largest reduction occurred at the 90th percentile, where the gender wage

gap fell 53.7% to 0.158. The 60th percentile is next, with a 51.0% decrease to 0.171. The

smallest reduction occurred at the 10th percentile, with a 3.2% decrease to 0.091.

4.4.2 Effective Minimum Wage

The U.S. federal minimum wage was flat at $7.25 per hour from 2010-2018 (Figure 4.2).

However, since the wage levels and consumer price index varies in the 2010s, this minimum

wage rate of $7.25 should have heterogeneous effects during this period. Similarly, since

the cost of living varies across states and the same rate of the minimum wage may also

have different effects on states that differ in terms of labor productivity, prices, or wage

levels, a direct comparison of absolute levels of the minimum wage is not meaningful.

In this paper, following Lee’s (1999) study, we use the effective minimum wage as a

proxy for the bindingness of the minimum wage. The effective minimum wage is defined

to be the log difference between the median hourly wage and the applicable federal or
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Figure 4.6: Real Value of the Federal Minimum Wage and the Effective Minimum Wage,
U.S., 1979-2018

state minimum wage. Autor, Manning, and Smith (2016) suggest that, in this setup, a

more binding minimum wage is a minimum wage that is closer to the median wage, and

it potentially affects a larger number of employees, while a less binding minimum wage

is a minimum wage that is a long way from the median wage and its impact therefore

potentially low. Figure 4.6 shows the real value of the federal minimum wage (2018

dollars) and the effective minimum wage in the U.S. from 1979 to 2018. As can be seen,

the real minimum wage shares quite a similar trend with the effective minimum wage.

Data on minimum wages are collected from the U.S. Department of Labor. Demographic

data are collected from the Centers for Disease Control and Prevention (CDC). The

sample includes the 48 contiguous states from 1979 to 2018. Summary statistics for this

data are presented in Table 4.1.
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Table 4.1: Summary Statistics

Mean Std. Dev.

Gender Wage Gap
p(10) 0.113 0.050
p(20) 0.166 0.060
p(30) 0.195 0.065
p(40) 0.214 0.069
p(50) 0.226 0.073
p(60) 0.233 0.074
p(70) 0.235 0.073
p(80) 0.232 0.071
p(90) 0.235 0.074
State Effective Minimum Wage -0.821 0.157
State Unemployment Rate (%) 5.873 2.085
State Population Shares
15-44 years old 0.436 0.034
45-64 years old 0.223 0.037
65-84 years old 0.115 0.017
Female 0.510 0.007
White 0.854 0.094

4.5 Empirical Framework

4.5.1 Testing for Spatial Dependence in the Gender Wage Gap

Recent studies focusing on the spatial distribution of the gender wage gap have

demonstrated that the gender wage gap may be spatially autocorrelated. For example,

using the Local Indication of Spatial Association (LISA) analysis, Manesh et al. (2020)

find that the gender wage gap in construction-related occupations in the U.S. is spatially

autocorrelated at local levels.

The gender wage gap may be spatially autocorrelated due to geographic reasons. There

are several ways in which geography affects the gender wage gap. For example, Wiseman

and Dutta (2016) uncover that the median gender wage gap in the U.S. is significantly

higher in states with greater belief and belonging, as religiosity is often associated with

more traditional views about gender roles. McCall (1988, 2001) finds that regions in the
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U.S. specializing in high-tech services and high-tech manufacturing experienced a widen

average gender wage gap than low-tech ones.

In this subsection, we perform Moran’s I test to verify the global spatial autocorrelation in

the gender wage gap each year. This test was first introduced by Moran (1950). Moran’s I

statistic measures the correlation coefficient for the relationship between the gender wage

gap in a state and the gender wage gap in its surrounding states. To conduct this test, we

first need to construct a spatial weight matrix W to measure state neighborliness. The

Moran’s I statistic is defined as

I =
n∑

i

∑
j wij

∑
i

∑
j wij(Gi − Ḡ)(Gj − Ḡ)∑

i(Gi − Ḡ)2
,

where n is the number of states (i.e., n = 48), wij is the (i,j)th element of W , Gi

is the gender wage gap in state i, and Ḡ is the average gender wage gap for the 48

states. Moran’s I has an expected value and standard deviation under the normality

assumption. Based on this assumption, Moran’s I values can be transformed to z-scores

and the corresponding p-values can be calculated. The significance of Moran’s I values

indicates that the data is spatially autocorrelated.

In this paper, we use the queen contiguity-based spatial weight matrix, which is defined

by wij = 1 if states i and j have a common vertex and wij = 0 otherwise, for our analysis.

The Moran’s I statistic results on the gender wage gap are presented in Table 4.2. Our

results indicate a positive spatial autocorrelation in the 10th-70th percentile gender wage

gap in most sample years and indicate a non-negligible significant spatial autocorrelation

in the 80th and 90th percentile gender wage gap in a few sample years among U.S. states.

Because so many periods have significant autocorrelation, it is necessary to use a spatial

econometric model in the following analysis.
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Table 4.2: Global Moran’s I Statistic of the Gender Wage Gap for Selected Income
Percentiles

Year p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

1979 0.310*** 0.434*** 0.444*** 0.380*** 0.388*** 0.305*** 0.233*** 0.135* -0.042
1980 0.228*** 0.280*** 0.299*** 0.374*** 0.313*** 0.277*** 0.149** 0.025 -0.017
1981 0.203** 0.210*** 0.245*** 0.248*** 0.268*** 0.219*** 0.175** 0.035 -0.168*
1982 0.277*** 0.226*** 0.260*** 0.248*** 0.343*** 0.274*** 0.250*** 0.054 -0.079
1983 0.380*** 0.217*** 0.431*** 0.364*** 0.245*** 0.098 -0.030 0.017 -0.006
1984 0.349*** 0.226*** 0.247*** 0.184** 0.258*** 0.127* -0.012 -0.058 -0.099
1985 0.059 0.082 0.152** 0.281*** 0.293*** 0.259*** 0.155** -0.046 -0.122
1986 0.161** 0.093 0.108* 0.174** 0.178** 0.169** 0.241*** 0.044 -0.031
1987 0.335*** 0.103* 0.110* 0.077 -0.023 0.120* 0.013 -0.093 -0.006
1988 -0.022 -0.045 -0.003 -0.066 -0.038 -0.021 -0.141 -0.179* 0.025
1989 0.054 0.145** 0.216*** 0.138* -0.047 -0.026 -0.018 0.022 0.109*
1990 0.130* 0.227*** 0.247*** 0.274*** 0.244*** 0.063 0.019 -0.021 -0.221**
1991 0.291*** 0.314*** 0.185** 0.214*** 0.157** 0.102 0.044 -0.082 -0.076
1992 0.210*** 0.114* 0.091 0.171** 0.097 0.061 0.118* 0.044 -0.016
1993 0.079 0.070 0.116* 0.144** 0.051 0.030 0.139* 0.118* 0.044
1994 0.095 0.086 0.119* 0.202** 0.186** 0.099 0.097 0.192** 0.122*
1995 0.270*** 0.190** 0.281*** 0.186** 0.196** 0.157** 0.202** 0.138** 0.117*
1996 0.196** 0.123* 0.232*** 0.208*** 0.224*** 0.130* 0.103 0.085 -0.021
1997 0.252*** 0.310*** 0.267*** 0.204*** 0.266*** 0.312*** 0.186** 0.107* -0.063
1998 0.096 0.065 0.030 0.075 0.146** 0.089 0.115* -0.071 -0.206**
1999 0.127* 0.061 0.162** 0.086 0.058 0.190** 0.238*** 0.147** -0.020
2000 0.166** 0.028 0.019 -0.014 0.068 0.066 -0.013 -0.085 -0.232**
2001 0.023 0.124* -0.031 0.090 0.109* 0.173** 0.022 -0.112 -0.219**
2002 0.113* 0.030 0.076 -0.062 -0.058 0.055 -0.080 -0.072 -0.144
2003 0.098 0.039 -0.028 -0.130 -0.033 -0.041 -0.142 -0.215** -0.113
2004 0.146** -0.079 0.087 -0.080 -0.075 -0.041 -0.098 -0.198** -0.013
2005 0.145** -0.002 0.011 0.047 0.094 -0.012 0.015 -0.052 0.128*
2006 0.209*** 0.074 -0.031 -0.040 -0.086 -0.096 -0.122 -0.123 -0.036
2007 0.040 0.034 -0.078 -0.136 -0.108 -0.149* -0.088 -0.108 -0.007
2008 0.032 -0.032 -0.020 -0.014 -0.055 -0.104 -0.003 -0.025 0.090
2009 -0.208** 0.010 -0.116 -0.089 -0.067 -0.032 -0.038 0.024 0.010
2010 0.119* 0.140** -0.076 -0.024 -0.003 0.012 0.038 -0.073 0.072
2011 -0.022 0.047 -0.102 0.031 -0.054 -0.123 -0.088 -0.052 0.123*
2012 -0.080 -0.019 0.043 -0.042 -0.085 -0.025 -0.030 0.069 0.128*
2013 0.100 0.050 0.077 0.002 -0.146* -0.034 -0.111 -0.007 0.177**
2014 0.073 0.238*** -0.047 0.044 0.018 0.038 0.025 0.127* 0.170**
2015 0.170** -0.052 0.054 0.088 0.071 -0.005 0.067 0.038 0.083
2016 0.131* 0.024 0.041 -0.026 -0.090 -0.107 -0.166* -0.097 0.111*
2017 0.136* 0.014 0.083 -0.001 -0.026 0.014 0.104 0.003 0.035
2018 0.020 0.024 0.085 0.006 -0.082 0.075 0.168** 0.221*** 0.379***

Note: *** p<0.01, ** p<0.05, * p<0.1. Moran’s I measures overall spatial autocorrelation in the gender
wage gap. We use the queen contiguity-based spatial weight matrix to conduct this analysis.
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4.5.2 Empirical Model

Spatial Model Selection

Spatial econometrics can be used to cope with spatial effects. One can distinguish between

two spatial effects, i.e. spatial dependence and spatial heterogeneity (Anselin, 1988).

As suggested by Elhorst (2014), three different types of spatial models can be used to

estimate the dependence between the observations, namely, the spatial lag model (SLM),

the spatial error model (SEM), and the spatial Durbin model (SDM). Variables related

to location, distance, and arrangement are treated in the spatial econometric model.

This paper starts by considering a SDM model to conduct our analysis. The SDM model is

characterized by the hypothesis that the variation of the dependent variable for one agent

can be explained by its neighboring dependent variables and its neighboring explanatory

variables:

Gst(p) = αs(p) + γt(p) + δ(p)
48∑
j=1

wsj ×Gjt(p) + β1(p)[MWst − w50
st ] + β2(p)Ust + β3(p)Xst

+θ1(p)
48∑
j=1

wsj × [MWjt − w50
jt ] + θ2(p)

48∑
j=1

wsj × Ujt + θ3(p)
48∑
j=1

wsj ×Xjt + ust(p),

(4.5.1)

where Gst(p) denotes the gender wage gap at percentile p in state s at time t, MWst−w50
st

is the effective minimum wage, where MWst is the log minimum wage, and w50
st is the

log median hourly wage for that state-year. State-specific fixed effects are represented

by αs; time-period fixed effects are represented by γt. X is a vector of demographic

characteristics controlling for the share of the state population who were female, white,

and aged 15-44, 45-64, and 65-84 years old. To control for much of the economic

fluctuations, we also add the state-level log unemployment rate, Ust, as a control. The

model (4.5.1) is estimated by first transforming the model variables to remove two-

way fixed effects, and then using the maximum likelihood method on these transformed

variables.

The model (4.5.1) also controls for a spatially lagged dependent variable, W × G, and
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spatially lagged explanatory variables, W × [MW −w50], W ×X, and W ×U . Through

spatially lagged dependent variables, the level of the gender wage gap of a particular

state is jointly determined with that of neighboring states (Anselin, Le Gallo, and Jayet,

2006). Through spatially lagged explanatory variables, the level of the gender wage gap

of a particular state depends on the explanatory variables of its neighboring states.

One advantage of the SDM is that it can obtain consistent estimators, even if the true

data-generating process is an SLM or an SEM (Elhorst, 2014). The SLM model involves

dependence in the dependent variable (W ×G), and the SEM model involves dependence

in the disturbances (W × ε). Define θ = (θ1, θ2, θ3)
′ and β = (β1, β2, β3)

′. First, when

θ = 0, it leads to the SLM model:

Gst = αs + γt + δ
48∑
j=1

wsj ×Gjt + β1[MWst − w50
st ] + β2Ust + β3Xst + ust. (4.5.2)

Second, when θ = −δβ, the model (4.5.1) can be written as

Gst = αs + γt + δ
48∑
j=1

wsj{Gjt − β1[MWjt − w50
jt ]− β2Ujt − β3Xjt}

+β1[MWst − w50
st ] + β2Ust + β3Xst + ust,

(4.5.3)

by noting εjt = Gjt − β1[MWjt − w50
jt ]− β2Ujt − β3Xjt, it leads to the SEM model:

Gst = αs + γt + β1[MWst − w50
st ] + β2Ust + β3Xst + εst

εst = δ
48∑
j=1

wsj × εjt + ust.
(4.5.4)

Next, we use the spatial model selection approach suggested by Elhorst (2014) to select

a spatial econometric model. Our strategy is first to run the non-spatial model, then

apply the classical and robust Lagrange Multiplier (LM) tests to choose an appropriate

model among the SLM, the SEM, and the non-spatial model. Another important issue

in determining an appropriate model is to explore whether the model needs to control for
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the state or time-period fixed effects. To achieve that, we perform the likelihood ratio

(LR) tests to test the null of jointly insignificant state fixed effects or jointly insignificant

time-period fixed effects1.

To test for spatial interaction effects in a panel data model, Anselin, Le Gallo, and

Jayet (2006) proposed classical LM tests to test the null of no spatially lagged dependent

variables (LM-lag) and the null of no spatially autocorrelated error terms (LM-error).

Elhorst (2010) also developed the robust counterparts of these LM tests, i.e. robust

LM-lag and robust LM-error. In principle, if LM-lag rejects the null, but LM-error can

not reject the null, then the SLM model is adopted. Similarly, if LM-error rejects the

null, but LM-lag can not reject the null, then the SEM model is adopted.

The diagnostic test results are reported in Table 4.3. According to these results, the

LR test results point to models with state and time-period fixed effects for all income

percentiles. Given that state and time-period fixed effects are included, robust LM tests

reject the hypothesis of no spatially lagged dependent variables and the hypothesis of

no spatially autocorrelated error terms for all percentiles. Up to this point, the test

results indicate that the spatial model is more appropriate to describe our data than the

non-spatial model.

However, Elhorst (2014) suggests that if a non-spatial model is rejected in favor of the

SLM model or the SEM model based on the (robust) LM tests, one needs to consider

the SDM model. Using the SDM estimation results, one can test the null of H0 : θ = 0

and H0 : θ + δβ = 0. As discussed above, the first one tests whether the SDM can be

simplified to the SLM, and the second one tests whether the SDM can be simplified to the

SEM. If both hypotheses are rejected, then the SDM can better describe the data. If the

first hypothesis is accepted, then the SLM can better describe the data, given that the

(robust) LM tests also pointed to the SLM. If the second hypothesis is accepted, then the
1I want to thank Paul Elhorst, who shared his MATLAB code for the classical LM tests, the robust

LM tests, and the LR tests. The code can be obtained from https://spatial-panels.com/software/.
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Table 4.3: Diagnostic Tests of Models with State and Time-period Fixed Effects

Determinants p(10) p(20) p(30) p(40) p(50)

LM-Lag 13.6159*** 17.0100*** 14.1597*** 18.8755*** 15.4439***
Robust LM-Lag 46.2718*** 43.0232*** 32.6234*** 13.7812*** 18.6308***
LM-Error 2.2572 6.0011** 6.0574** 12.8533*** 9.8368***
Robust LM-Error 34.9131*** 32.0143*** 24.5211*** 7.7590*** 13.0237***

LR-test state FE 487.0060*** 925.2422*** 1259.1807*** 1537.8268*** 1565.2948***
LR-test time FE 116.7499*** 466.1513*** 685.0177*** 856.0976*** 892.3441***

Determinants p(60) p(70) p(80) p(90)

LM-Lag 3.9117** 1.0768 2.3277 0.0012
Robust LM-Lag 14.4347*** 5.2463** 24.7227*** 16.0267***
LM-Error 2.2223 1.7445 5.1412** 0.7088
Robust LM-Error 12.7452*** 5.9141** 27.5363*** 16.7342***

LR-test state FE 1494.7087*** 1086.1469*** 804.1226*** 528.9726***
LR-test time FE 881.3777*** 683.0363*** 552.0589*** 484.5458***

Note: *** p<0.01, ** p<0.05, * p<0.1. The (robust) LM-lag tests test the null of no spatial lag
dependence in the model. The (robust) LM-error tests test the null of no spatial error dependence
in the model. The LR tests test the null that state-specific fixed effects or time-period fixed
effects are jointly insignificant.

SEM can better describe the data, given that the (robust) LM tests also pointed to the

SEM. These tests can take the form of the Wald test, and the test results are presented

in Table 4.4. As can be observed, the null hypothesis that the SDM can be simplified to

the SLM and the null hypothesis that the SDM can be simplified to the SEM are both

rejected for all percentiles. Therefore, we can conclude that the SDM model (4.5.1) can

best describe our data.

Direct and Spillover Effects

One logical consequence of the SDM is that a change in an explanatory variable in a

given region might affect the dependent variable in all other regions since the model

includes dependent and explanatory variables of other regions (LeSage and Pace, 2009).

The simple SDM model is organized as follows:

Yt = α + γtlN + δWYt +Xtβ +WXtθ + ut,
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where α = (α1, . . . , αN)
′ is the vector of spatial specific effects, γt is the time-period

specific effects, and lN is a N × 1 vector of ones. The reduced form of this SDM model

can be defined by:

Yt = (IN − δW )−1(α + γtlN +Xtβ +WXtθ + ut),

where IN is a N × N identity matrix. Then, the derivatives of Y with respect to X at

time t are:

[
∂E(Y )

∂X1

· · · ∂E(Y )

∂XN

]
t

=


∂E(Y1)
∂X1

· · · ∂E(Y1)
∂XN

...
...

...
∂E(YN )
∂X1

· · · ∂E(YN )
∂XN

 = (IN − δW )−1(βIN + θW ) = S(W ).

It follows that the impact of a change in the explanatory variable of a given region j

on the expected value of region i is given by S(W )ij. This result implies that changes

in a characteristic of one region will potentially affect all other regions’ outcomes. This

type of effect is known as the indirect effect. Similarly, the impact of a change in an

explanatory variable of a given region i on the dependent variable of the same region is

given by S(W )ii. This type of effect is known as the direct effect.

Since the marginal effect of a change in the explanatory variable appears different for

all regions, LeSage and Pace (2009) introduce the following scalar summary measures

of impacts. The average direct effect, obtained as the mean of diagonal elements of

S(W ), summarizes the impact of a change in the explanatory variable of a given region

on the dependent variable of the same region. The average indirect effect, obtained as

the mean row sum of off-diagonal elements S(W ), summarizes the impact of a change in

an explanatory variable of a given region on the dependent variable of all other regions.

The average total effect, defined as the sum of the average direct effect and the average

indirect effect, summarizes the impact of a change in an explanatory variable of a given
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region on the dependent variable of all regions.

4.5.3 Estimation Results

Table 4.4 summarizes the results estimated from the model (4.5.1) for all selected income

percentiles. As can be seen, the coefficients on spatially lagged dependent, W × G,

are significantly positive for the 20th-50th percentiles, suggesting that the gender wage

gap of one state is strongly affected by the gender wage gap of its neighboring states.

Paradoxically, we find that the 80th percentile gender wage gap is negatively spatially

autocorrelated.

In Table 4.5, we summarize the marginal effect of the effective minimum wage on the

gender wage gap for all selected percentiles. We start by considering the total effects.

As expected, we find that the minimum wage increase narrows the gender wage gap in

the lower tail and middle of the wage distribution. In particular, the minimum wage

effect is greater for low-income workers than for middle-income workers. A 1% point

increase in the minimum wage will result in 0.00246, 0.00224, and 0.00187 units decline

in the gender wage gap at the 10th, 20th, and 30th percentiles, which compares to

decreases of 0.00149, 0.00146, and 0.00090 units for the gender wage gap at the 40th,

50th, and 60th percentiles. Since increasing the minimum wage allows for the possibility

of increasing wages of workers at the lower tail of the wage distribution, where women are

disproportionately represented, low-paid women can benefit the most from the increase

in the minimum wage. As a result, a higher minimum wage lowers the gender wage gap.

However, there is no evidence showing that the minimum wage affects the gender wage

gap in the upper tail of the wage distribution.

The direct and indirect effects suggest that a higher own-state minimum wage narrows the

gender wage gap at the 10th-60th percentiles in its own state and its neighboring states.

A 1% point increase in the own-state minimum wage is predicted to reduce the 10th-60th

percentile gender wage gaps in its own state and its neighboring states by 0.00151-0.00033
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Table 4.4: Estimation Results of the Spatial Durbin Model

Determinants p(10) p(20) p(30) p(40) p(50)
EMW -0.151*** -0.117*** -0.100*** -0.100*** -0.076***
unemployment rate -0.031*** -0.025*** -0.020*** -0.016*** -0.014**
15-44 years old 0.803*** 0.364* 0.350** 0.641*** 0.590***
45-64 years old 0.786*** 0.749*** 0.577*** 0.726*** 0.797***
65-84 years old -0.169 -0.925*** -0.815*** -0.262 -0.232
female 2.635*** 4.087*** 4.079*** 2.735*** 1.974***
white 0.460*** 0.172* 0.037 -0.028 -0.135*
W
EMW -0.089*** -0.093*** -0.074*** -0.033* -0.055***
unemployment rate 0.006 0.016 0.015 0.012 0.025**
15-44 years old 0.391 0.818*** 0.201 -0.191 -0.022
45-64 years old -0.538* 0.208 -0.184 -0.457* -0.488**
65-84 years old -1.382*** -0.939** -1.157*** -1.340*** -0.858**
female 5.250*** 3.183*** 3.077*** 3.260*** 2.984***
white 0.722*** 0.350** 0.451*** 0.362*** 0.469***
W ×G 0.028 0.065** 0.071** 0.104*** 0.100***

Wald test spatial lag 64.09*** 55.74*** 45.54*** 32.29*** 47.93***
Wald test spatial error 73.99*** 65.50*** 52.74*** 37.51*** 52.79***

Determinants p(60) p(70) p(80) p(90)
EMW -0.032*** -0.012 0.009 0.009
unemployment rate -0.004 0.004 0.006 0.009
15-44 years old 0.465*** 0.335** 0.261 0.704***
45-64 years old 0.686*** 0.629*** 0.114 -0.403*
65-84 years old -0.118 -0.284 -0.221 0.242
female 1.547** 1.431** 1.600** 0.627
white -0.175** -0.273*** -0.096 0.506***
W
EMW -0.054*** -0.009 0.019 -0.033
unemployment rate 0.005 -0.005 -0.023** -0.030**
15-44 years old -0.040 0.280 0.134 -0.705**
45-64 years old -0.629*** -0.527** -0.540* -0.567*
65-84 years old -0.736** -0.294 -0.378 -1.719***
female 3.384*** 3.964*** 4.702*** 5.619***
white 0.592*** 0.590*** 0.567*** 1.012***
W ×G 0.052 -0.039 -0.071** -0.037

Wald test spatial lag 47.90*** 41.90*** 46.74*** 47.76***
Wald test spatial error 49.30*** 41.05*** 43.48*** 46.63***

Note: *** p<0.01, ** p<0.05, * p<0.1. Dependent variables are the gender wage gap at
all selected income percentiles. EMW is the effective minimum wage. W is the queen
contiguity-based spatial weight matrix. The Wald tests test whether the SDM can be
simplified to the SLM or the SEM. All models control for state-specific fixed effects and
time-period fixed effects.
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Table 4.5: Marginal Effects of the Effective Minimum Wage on the Gender Wage Gap

Determinants p(10) p(20) p(30) p(40) p(50)

Direct effect of EMW -0.151*** -0.119*** -0.102*** -0.101*** -0.078***
Indirect effect of EMW -0.095*** -0.106*** -0.086*** -0.048** -0.068***
Total effect of EMW -0.246*** -0.224*** -0.187*** -0.149*** -0.146***

Determinants p(60) p(70) p(80) p(90)

Direct effect of EMW -0.033*** -0.012 0.009 0.009
Indirect effect of EMW -0.058*** -0.008 0.017 -0.033
Total effect of EMW -0.090*** -0.020 0.026 -0.024

Note: *** p<0.01, ** p<0.05, * p<0.1. The table presents the marginal effects of the
effective minimum wage on the gender wage gap for all selected income percentiles.

and 0.00106-0.00048 units, respectively2. Our indirect results reveal that the effect of a

state minimum wage can extend beyond its borders. The reasons why a state minimum

wage might affect the gender wage gap of its neighbors are discussed in the Introduction

section.

4.5.4 Dynamic Effects

The minimum wage has been assumed to have only a contemporaneous effect on the

gender wage gap up to this point. However, we may expect that the minimum wage hikes

in one state may take some time to have a noticeable effect on the gender wage gap in

neighboring states. In other words, the minimum wage spillover effect may not occur

instantaneously but is spread over future time periods. To provide information on the

dynamic effects of the minimum wage, the model (4.5.1) is estimated with the inclusion

of two-year lags of the effective minimum wage3.

Table 4.6 summarizes the cumulative effect of the effective minimum wage on the gender
2Notice that the negative spillover effect is larger than the negative direct effect at the 60th percentile.

Since the indirect effect measures the impact of a change in an independent variable of a given region on
the dependent variable of all neighboring regions, it is plausible that the average indirect effect is higher
than the average direct effect when the parameter of spatial interaction is high (LeSage and Fischer,
2008).

3A two-year lag is chosen because the cumulative spillover effects of the minimum wage on the gender
wage gap are insignificant for all income percentiles when three years of the lagged effective minimum
wage are included.
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Table 4.6: Cumulative Effects of the Effective Minimum Wage on the Gender Wage Gap

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Time t
Direct effect of EMW -0.134*** -0.119*** -0.123*** -0.109*** -0.085*** -0.016 -0.002 0.002 0.017
Indirect effect of EMW -0.086** -0.034 0.003 0.053 -0.007 -0.015 0.019 0.048 0.040
Total effect of EMW -0.220*** -0.152*** -0.120*** -0.056 -0.092*** -0.031 0.017 0.050 0.057

Time t+ 1
Direct effect of EMW -0.134*** -0.100*** -0.059*** -0.061*** -0.062*** -0.018 -0.003 -0.004 -0.013
Indirect effect of EMW -0.069* -0.059 -0.045 0.023 0.012 -0.011 0.029 0.052 0.040
Total effect of EMW -0.203*** -0.159*** -0.104*** -0.038 -0.050 -0.029 0.026 0.048 0.027

Time t+ 2
Direct effect of EMW -0.145*** -0.104*** -0.083*** -0.084*** -0.061*** -0.033** -0.013 0.020 0.025
Indirect effect of EMW -0.089*** -0.120*** -0.110*** -0.082*** -0.102*** -0.067*** -0.018 -0.005 -0.081***
Total effect of EMW -0.234*** -0.224*** -0.193*** -0.166*** -0.163*** -0.100*** -0.031 0.015 -0.056**

Note: *** p<0.01, ** p<0.05, * p<0.1. The table presents the cumulative effects of the effective minimum wage on the
gender wage gap for all selected income percentiles.

wage gap for all income percentiles. As expected, the cumulative total effect of the

minimum wage over 2 years suggests that the minimum wage reduces the gender wage

gap in the lower tail and middle of the wage distribution, with the greatest impact on

the lower tail inequality. Three main findings deserve mention. First, compared to

the results in the static model (Table 4.5), the indirect effect of the minimum wage

only occurs simultaneously for the 10th percentile, while the minimum wage has no

immediate effect for the 60th percentile. The contemporaneous direct effect of the

minimum wage is a reduction of 0.00134-0.00085 units in the gender wage gap at the

10th-50th percentile. Second, overall, the estimated cumulative direct effect for the 10th-

50th percentile decreases over the next year and then increases to a reduction in the

gender wage gap of 0.00145-0.00061 units. Lastly, focusing on the cumulative effect of the

minimum wage over 2 years, we find that the estimated indirect effect for the 20th-50th

percentile and the estimated effect for the 60th percentile become significant, suggesting

that it may take 2 years for the minimum wage to affect the 20th-60th percentile gender

wage gap of neighboring states. Perhaps more importantly, there is a significant spillover

effect of the minimum wage on the gender wage gap at the 90th percentile.
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4.6 Robustness Check

4.6.1 Robustness to Model Specification

In this section, we conduct additional robustness checks on our results obtained from the

model (4.5.1). One potential concern with the data is that measurement error in the

median wage may bias our estimates. Given that the median wage is used to construct

the effective minimum wage and is collected from the CPS MORG. If the reported wage

involves some measurement error, the effective minimum wage may be endogenous. To

deal with this potential endogeneity problem, we re-estimate the model (4.5.1) using the

one-year lag of independent variables:

Gst = αs + γt + δ
48∑
j=1

wsj ×Gjt + β1[MWst−1 − w50
st−1] + β2Ust−1 + β3Xst−1

+θ1
48∑
j=1

wsj × [MWjt−1 − w50
jt−1] + θ2

48∑
j=1

wsj × Ujt−1 + θ3
48∑
j=1

wsj ×Xjt−1 + ust,

(4.6.1)

where MWst−1 − w50
st−1 is the one-year lag of the effective minimum wage, Ust−1 is the

one-year lag of the log unemployment rate, and Xst−1 is the one-year lag of other control

variables.

Previous studies also suggest that the minimum wage has a significant effect on

unemployment (Adie, 1973; Mincer, 1976; Brown, Gilroy, and Kohen, 1982). Since a

higher minimum wage increases the labor costs of employers, one might expect that

the increase in the minimum wage leads to increased unemployment. Using data from

January 1954 to December 1965, Adie (1973) suggests that a 10 percent increase in the

federal real minimum wage is predicted to increase the unemployment rate for all teens

by 3.62 percent of the prevailing rate. Given that the unemployment rate might be

correlated with the effective minimum wage, resulting in the problem of multicollinearity,
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Table 4.7: Robustness to Specification Changes

Panel A: Lagged Independent Variables

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.117*** -0.081*** -0.053*** -0.057*** -0.048*** -0.029*** -0.011 0.013 0.010
Indirect effect of EMW -0.084*** -0.109*** -0.114*** -0.086*** -0.085*** -0.060*** -0.010 0.006 -0.052**
Total effect of EMW -0.201*** -0.189*** -0.167*** -0.143*** -0.133*** -0.089*** -0.021 0.018 -0.043*

Panel B: Excluding Unemployment Rate

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.150*** -0.118*** -0.102*** -0.101*** -0.078*** -0.033*** -0.012 0.010 0.010
Indirect effect of EMW -0.094*** -0.105*** -0.086*** -0.048** -0.069*** -0.058*** -0.008 0.018 -0.031
Total effect of EMW -0.244*** -0.224*** -0.187*** -0.149*** -0.147*** -0.091*** -0.020 0.028 -0.021

Note: *** p<0.01, ** p<0.05, * p<0.1. This table reports the estimation results resulting from models (4.6.1) and (4.6.2),
respectively. W is the queen contiguity-based spatial weight matrix. All models control for state-specific fixed effects and
time-period fixed effects.

we re-estimate the model (4.5.1) excluding the unemployment rate:

Gst = αs + γt + δ
48∑
j=1

wsj ×Gjt + β1[MWst − w50
st ] + β2Xst

+θ1
48∑
j=1

wsj × [MWjt − w50
jt ] + θ2

48∑
j=1

wsj ×Xjt + ust,
(4.6.2)

where all notations are the same as described in the model (4.5.1).

The results based on models (4.6.1) and (4.6.2), presented in Table 4.7, are broadly in

line with those obtained from the model (4.5.1). Specifically, when using the lagged

independent variables, the total effects of the minimum wage on the 10th-60th percentile

gender wage gap are slightly smaller than those in our baseline model, and the spillover

effect on the 90th percentile gender wage gap becomes significant. When excluding the

unemployment rate, the magnitude, significance, and sign of estimated coefficients are

quite similar to that of baseline results. This analysis shows that our baseline empirical

results are robust to these specification changes.

4.6.2 Robustness to Sample Changes

Given that minimum wage spillover effects on neighboring states might be driven by

a subset of states, we re-estimate the model (4.5.1) by excluding states that have

no minimum wages from 1979-2018 (Alabama, Louisiana, Mississippi, South Carolina,
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Table 4.8: Robustness to Sample Changes

Panel A: Excluding States with No Minimum Wages

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.147*** -0.109*** -0.093*** -0.087*** -0.069*** -0.023** -0.005 0.010 0.012
Indirect effect of EMW -0.085*** -0.098*** -0.078*** -0.047** -0.062*** -0.062*** -0.021 0.002 -0.042*
Total effect of EMW -0.231*** -0.207*** -0.171*** -0.134*** -0.130*** -0.084*** -0.026 0.012 -0.030

Panel B: Excluding 3 States with the Highest Minimum Wages

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.153*** -0.127*** -0.101*** -0.100*** -0.077*** -0.037*** -0.013 0.012 0.010
Indirect effect of EMW -0.111*** -0.129*** -0.114*** -0.069*** -0.079*** -0.067*** -0.024 0.003 -0.036
Total effect of EMW -0.264*** -0.255*** -0.216*** -0.168*** -0.156*** -0.104*** -0.037** 0.016 -0.026

Panel C: Excluding 3 States with the Lowest Minimum Wages

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.146*** -0.116*** -0.101*** -0.100*** -0.076*** -0.029*** -0.011 0.011 0.016
Indirect effect of EMW -0.071*** -0.099*** -0.078*** -0.048** -0.072*** -0.065*** -0.014 0.014 -0.023
Total effect of EMW -0.217*** -0.215*** -0.179*** -0.148*** -0.148*** -0.094*** -0.026 0.025 -0.007

Note: *** p<0.01, ** p<0.05, * p<0.1. Panels A-C report the estimation results from the model (4.5.1) after excluding
some states. All models control for state-specific fixed effects and time-period fixed effects.

Tennessee), or 3 states that have the lowest average minimum wages from 1979-2018

(Georgia, Kansas, Wyoming), or 3 states that have the highest average minimum wages

from 1979-2018 (Connecticut, Massachusetts, Oregon). The magnitude of the results of

this analysis is slightly different from the magnitude of our baseline results, but these

results again indicate that the minimum wage has a significant direct and spillover effect

on the 10th-60th percentile gender wage gap (Table 4.8). This analysis suggests that our

results are robust to excluding some particular states.

4.6.3 Robustness to Alternative Spatial Weight Matrices

One weakness of the spatial econometric model is that the spatial weight matrix W needs

to be specified in advance. However, the economic theory based on the application of

spatial econometrics usually does not say much about the specification of W . Therefore,

as another robustness check, we explore whether the estimation results are robust to the

choice of W . To this end, following the mechanisms for the minimum wage spillovers, we

re-estimate the model (4.5.1) with various spatial weight matrices.

Considering that the state gender wage gap might be influenced by the minimum wage
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of neighboring states, we use two alternative matrices based on the geographic distance

to validate our baseline results. The first one is the K-nearest neighbor spatial weight

matrix and the second one is the threshold distance spatial weight matrix. The former

matrix is defined by wij = 1 if the centroid of state j is one of the K-nearest centroids

to state i, and wij = 0 otherwise. We set the value of K as 6 and 7. The latter one is

defined by wij = 1 if 0 < dij ≤ 8.5, where dij is the Euclidean distance between states i

and j, and wij = 0 otherwise.

However, the weight matrix based on geographic distance is rather rough, since it does not

consider physical geographic barriers (rivers, mountains, and forests) that may influence

the interaction between states. To address this concern, we construct a spatial weight

matrix based on the commuting rate, where the weight is calculated by wij = cij, cij is

the share of workers in state i commuting to state j in 20184.

The next weight matrix we propose focuses on the economic distance between

states. Economic distance might also be of great importance in shaping the spatial

interdependence of the minimum wage, as voters may judge the performance of incumbent

politicians by comparing it with other politicians in those states that have similar

economic development levels. Here, we use the real GDP as an indicator of economic

performance. The spatial weight based on GDP is calculated by wij = 1
|RGDPi−RGDPj | ,

where RGDPi is the log real GDP in state i in 2018.

Lastly, we construct a new matrix to capture both geographic and economic structures

by taking the Hadamard product of the queen contiguity-based spatial weight matrix and

the GDP-based spatial weight matrix. Note that all spatial weight matrices used in this

section are row-normalized.

The results of this analysis, presented in Table 4.9, suggest similar effects of the minimum

wage on the gender wage gap compared to those using the contiguity-based spatial weight
4The commuting rate data are collected from 2018 1-Year American Community Survey.
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Table 4.9: Robustness to Alternative Weight Matrices

Panel A: 6 Nearest Neighbors

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.161*** -0.130*** -0.111*** -0.103*** -0.086*** -0.037*** -0.017 0.006 0.002
Indirect effect of EMW -0.096*** -0.116*** -0.071*** -0.045* -0.053** -0.062*** -0.009 0.016 -0.030
Total effect of EMW -0.258*** -0.246*** -0.182*** -0.148*** -0.139*** -0.100*** -0.025 0.022 -0.028

Panel B: 7 Nearest Neighbors

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.154*** -0.123*** -0.105*** -0.100*** -0.082*** -0.036*** -0.017 0.005 0.006
Indirect effect of EMW -0.110*** -0.130*** -0.083*** -0.049** -0.056** -0.057*** -0.003 0.020 -0.032
Total effect of EMW -0.264*** -0.253*** -0.188*** -0.149*** -0.137*** -0.092*** -0.020 0.025 -0.026

Panel C: Distance-Band Weights

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.158*** -0.130*** -0.107*** -0.100*** -0.083*** -0.038*** -0.019 0.002 0.001
Indirect effect of EMW -0.122*** -0.118*** -0.083*** -0.047*** -0.055** -0.049** 0.004 0.040 -0.008
Total effect of EMW -0.281*** -0.248*** -0.191*** -0.147*** -0.137*** -0.087*** -0.015 0.043* -0.007

Panel D: Commuting-Based Weights

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.149*** -0.124*** -0.105*** -0.098*** -0.078*** -0.034*** -0.011 0.013 0.001
Indirect effect of EMW -0.098*** -0.095*** -0.075*** -0.050*** -0.061*** -0.048*** -0.002 0.004 -0.018
Total effect of EMW -0.247*** -0.219*** -0.180*** -0.148*** -0.139*** -0.081*** -0.014 0.017 -0.017

Panel E: Economic Distance Weights

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.168*** -0.142*** -0.120*** -0.108*** -0.094*** -0.046*** -0.016 0.012 0.006
Indirect effect of EMW -0.074*** -0.085*** -0.088*** -0.076*** -0.078*** -0.067*** -0.050** -0.021 -0.002
Total effect of EMW -0.242*** -0.228*** -0.208*** -0.184*** -0.171*** -0.113*** -0.066** -0.009 0.004

Panel F: Geographic and Economic Distance Weights

Determinants p(10) p(20) p(30) p(40) p(50) p(60) p(70) p(80) p(90)

Direct effect of EMW -0.158*** -0.121*** -0.101*** -0.094*** -0.076*** -0.031*** -0.006 0.012 0.001
Indirect effect of EMW -0.045** -0.076*** -0.076*** -0.062*** -0.074*** -0.065*** -0.038** -0.007 -0.007
Total effect of EMW -0.203*** -0.198*** -0.177*** -0.156*** -0.150*** -0.096*** -0.044*** 0.005 -0.006

Note: *** p<0.01, ** p<0.05, * p<0.1. This table reports the estimation results of the model (4.5.1) using different
types of weight matrices. Spatial weights are all row standardized. All models control for state-specific fixed effects and
time-period fixed effects.

matrix reported in Table 4.5, implying that our results are robust to the choice of spatial

weight matrices.

4.7 Conclusion

Although the research on the minimum wage and the gender wage gap is expansive,

there has been little research on the minimum wage spillover effects and the extent to

which the minimum wage affects workers of different income levels. This study extends
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the literature by using the spatial econometric model to account for the minimum wage

effect on the gender wage gap at different income percentiles.

We adopted the diagnostic test based on the approach proposed by Elhorst (2014) to

choose the appropriate model. We find that the SDM model with two-way fixed effects

best describes data for all selected income percentiles. Our results show that the minimum

wage hikes not only contribute to the narrowing of the gender pay gap in the state itself

but also in its neighboring states, with a significant effect among the 10th-60th income

percentiles. However, we find no evidence that the gender wage gap in the upper tail of

the wage distribution is associated with the minimum wage.

Several implications can be generated from this study. First, the minimum wage policy is

shown to be an effective tool to reduce the gender wage gap in the lower tail and middle

of the wage distribution. Second, the presence of the minimum wage spillover effect

suggests that the implementation of the minimum wage policy should take a systematic

perspective by taking into account both the direct effect and the indirect effect generated

by neighboring regions.

Moreover, many aspects are affecting the gender wage gap that leaves for future study.

Future studies can also focus on the spillover effect of the minimum wage on employment

and unemployment and the asymmetric effect of the minimum wage on the gender wage

gap.
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Conclusion and Future Research

This thesis consists of four independent chapters within the field of econometrics. The

significance of this thesis is mainly related to two models, the MIDAS model and the

spatial econometric model. Chapters 1 and 3 mainly contribute to the field of estimation

theory, as they both extend the existing models and establish the asymptotic distributions

of their corresponding estimators. To the best of my knowledge, Chapter 2 is the first to

capture the sex- and age-specificities in the EPU effect on health status using the MIDAS

model, and Chapter 4 is the first to capture the minimum wage spillover effects on the

gender wage gap using the spatial econometric model.

Chapters 1 and 2 focus on the MIDAS model that involves data sampled at different

frequencies. Chapter 1 extends the traditional MIDAS model to cover the case of panel

data and compares the proposed panel-MIDAS model with the traditional LS model based

on predetermined weights. It also derives the asymptotic properties and finite sample

properties of the NLS estimator for the panel-MIDAS model and the LS estimator for

the LS model. The results reveal that in terms of the bias and variance of estimators, the

MIDAS-NLS estimator outperforms the LS estimator in presence of the mixed-frequency

data. Chapter 2 presents an application of the MIDAS model to study the EPU effect on

mortality and risky health behaviors. The results reveal that EPU is inversely associated

with mortality rates and suggest that the decline in risky health behaviors during high

uncertainty periods can possibly explain this relationship.
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Chapters 3 and 4 focus on the spatial econometric model. Chapter 3 extends the

traditional SLM model by allowing for the additional endogenous RHS variables. It

proposes a new SQLIML estimation approach for this model and establishes the

asymptotic distributions of its corresponding estimator. The finite sample properties

of the SQLIML estimator and the S2SLS estimator are studied via a Monte Carlo

simulation. The results show that the SQLIML estimator outperforms the S2SLS

estimator, especially for models with strong endogeneity and weak instruments. Chapter

4 presents an application of the spatial econometric model to capture the spillover effects

of the minimum wage on gender wage inequality. The empirical results show that the

own-state minimum wage increases will narrow the 10th-60th percentile gender wage gap

not only in their own state but to a limited extent also in their neighboring states.

There are several directions for future research to extend the current work. The first

research direction is to introduce the MIDAS approach into a spatial panel model. As

mentioned earlier, an attractive feature of the MIDAS model is that it can make the best

use of the high-frequency information in high-frequency variables to explain low-frequency

variables without a large loss of degrees of freedom. Therefore, the combination of the

spatial panel model and the MIDAS model is expected to deal with the mixed-frequency

data in the spatial panel model at a relatively low parametric cost and is expected to

yield more accurate inferences. However, such a topic is still an unexplored area.

The second compelling direction is to extend the proposed SQLIML estimation method in

Chapter 3 to more general forms of the SLM model. The current approach is built upon

the cross-sectional SLM model with additional endogenous variables. Future research

can focus on the extensions of the SQLIML estimation method to control for additional

endogeneity in the panel SLM model, the SLM model with spatially autocorrelated errors,

or the SDM model. These remain topics of ongoing research.

The third future direction is to apply the proposed SQLIML estimation method to reassess

the minimum wage effect on gender wage inequality in Chapter 4. In Chapter 4, the state
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effective minimum wage is constructed using the state median wage, which is collected

from the CPS MORG. However, the CPS MORG data may be subject to measurement

errors. If the measurement error in the median wage is correlated with the fluctuation

in the gender wage gap, one can expect the existence of the endogeneity problem in the

baseline model. Future work can focus on addressing this potential endogeneity problem.
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Appendix A

Appendix to Chapter 1

A.1 Proof of Theorem 1.1

Recall that

Q(δ) =
N∑
i=1

(Ỹ i − f(X̃ i; δ))
′(Ỹ i − f(X̃ i; δ)).

Define Q0(δ) = E(Q(δ)
N

), we have

Q0(δ) = E(Ỹ i − f(X̃ i; δ))
′(Ỹ i − f(X̃ i; δ))

= E(ε̃i + f(X̃ i; δ0)− f(X̃ i; δ))
′(ε̃i + f(X̃ i; δ0)− f(X̃ i; δ))

= E(ε̃i′ε̃i)+
T∑
t=1

E[(f(X̃ it; δ0)− f(X̃ it; δ))
2].

Uniquely Identifiable

To demonstrate the consistency of δ̂, we need to show that Q0(δ) is uniquely minimized

at the true value δ0. Consider

f(X̃ it; δ0)− f(X̃ it; δ) = X̃ it(θ0)β0 − X̃ it(θ)β.

clearly, for all δ ̸= δ0 in Θ, f(X̃ it; δ0) ̸=f(X̃ it; δ). Since f(X̃ i; δ) is the function of X(m)
i ,
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f(X̃ i; δ) is the random variable. f(X̃ it; δ0)̸=f(X̃ it; δ) means (f(X̃ it; δ0)−f(X̃ it; δ))
2 >

0 with positive probability, implying that E[(f(X̃ it; δ0)−f(X̃ it; δ))
2] > 0. Therefore, we

have

Q0(δ) > E(ε̃i′ε̃i) for all δ ̸= δ0 in Θ

and

Q0(δ) = E(ε̃i′ε̃i) if δ=δ0.

This implies that Q0(δ) is uniquely minimized at the true value δ0. Hence, the identifiable

uniqueness must hold.

Uniform Convergence

By Assumption 3,

Esup
δ∈Θ

[(Ỹ i − f(X̃ i; δ))
′(Ỹ i − f(X̃ i; δ))] ≤ 2E(Ỹ i

′
Ỹ i) + 2Esup

δ∈Θ
[f(X̃ i; δ)

′f(X̃ i; δ)] < ∞,

then the uniform law of large numbers (LLN) gives 1
N
Q(δ)

p→ Q0(δ) uniformly in δ ∈ Θ.

It follows
0 ≤ Q0(δ̂)−Q0(δ0)

= Q0(δ̂)−Q0(δ0) +
Q(δ̂)
N

− Q(δ̂)
N

= Q0(δ̂)− Q(δ̂)
N

+ Q(δ̂)
N

−Q0(δ0)

≤ | Q0(δ̂)− Q(δ̂)
N

| + | Q(δ0)
N

−Q0(δ0) |

≤ 2sup
δ∈Θ

| Q0(δ)− Q(δ)
N

| p→ 0,

where the inequality follows by triangle inequality and by noting Q(δ̂)
N

≤ Q(δ0)
N

. It implies

that δ̂
p→ δ0.
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A.2 Proof of Theorem 1.2

Given that the first order condition of Q(δ) satisfies ∂Q(δ̂)
∂δ

= 0. By the mean value

theorem, we have that

0 =
∂Q(δ̂)

∂δ
=

∂Q(δ0)

∂δ
+

∂2Q(δ1)

∂δ∂δ′ (δ̂ − δ0),

where δ1 is a point between δ̂ and δ0. Then inverting yields

√
N(δ̂ − δ0) = −(

1

N

∂2Q(δ1)

∂δ∂δ′ )−1 1√
N

∂Q(δ0)

∂δ
.

Next, we need to prove that (i) 1√
N

∂Q(δ0)
∂δ

is asymptotically normal, and (ii) 1
N

∂2Q(δ1)
∂δ∂δ′

converges in probability to a non-singular matrix. We start by focusing on (i):

1√
N

∂Q(δ0)

∂δ
= − 2√

N

N∑
i=1

∂f(X̃ i; δ0)
′

∂δ
ε̃i.

By the law of iterated expectations, we have

E(∂f(X̃i;δ0)
′

∂δ
ε̃iε̃i

′ ∂f(X̃i;δ0)
∂δ′

) = E(E(∂f(X̃i;δ0)
′

∂δ
εiε

′
i
∂f(X̃i;δ0)

∂δ′
| X̃ i(θ0)))

= E(∂f(X̃i;δ0)
′

∂δ
E(εiε′i | X̃ i(θ0))

∂f(X̃i;δ0)
∂δ′

)

= σ2
εE(

∂f(X̃i;δ0)
′

∂δ
∂f(X̃i;δ0)

∂δ′
),

here we use the fact that ∂f(X̃i;δ)
′

∂δ
ε̃i =

∂f(Xi;δ)
′

∂δ
H ′

THTεi =
∂f(Xi;δ)

′

∂δ
H ′

Tεi =
∂f(X̃i;δ)

′

∂δ
εi.

Then, by the central limit theorem (CLT), we have

1√
N

∂Q(δ0)

∂δ

d→ N(0, 4σ2
εE(

∂f(X̃ i; δ0)
′

∂δ

∂f(X̃ i; δ0)

∂δ′ )).

Consider (ii):
1√
N

∂Q(δ0)

∂δ
= − 2√

N

N∑
i=1

∂f(X̃ i; δ0)
′

∂δ
ε̃i.
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1
N

∂2Q(δ1)
∂δ∂δ′

= − 2
N

N∑
i=1

(∂
2f(X̃i;δ1)

′

∂δ∂δ′
(Ỹ i − f(X̃ i; δ1))− ∂f(X̃i;δ1)

′

∂δ
∂f(X̃i;δ1)

∂δ′
)

= G1 − 2
N

N∑
i=1

∂2f(X̃i;δ1)
′

∂δ∂δ′
(Ỹ i − f(X̃ i; δ0) + f(X̃ i; δ0)− f(X̃ i; δ1))

= G1 − 2
N

N∑
i=1

∂2f(X̃i;δ1)
′

∂δ∂δ′
ε̃i − 2

N

N∑
i=1

∂2f(X̃i;δ1)
′

∂δ∂δ′
(f(X̃ i; δ0)− f(X̃ i; δ1))

= G1 −G2 −G3,

where G1 = 2
N

N∑
i=1

∂f(X̃i;δ1)
′

∂δ
∂f(X̃i;δ1)

∂δ′
, G2 = 2

N

N∑
i=1

∂2f(X̃i;δ1)
′

∂δ∂δ′
ε̃i, and G3 = 2

N

N∑
i=1

∂2f(X̃i;δ1)
′

∂δ∂δ′
(f(X̃ i; δ0) − f(X̃ i; δ1)). It is straightforward to show that δ1

p→ δ0. Since

δ1 lies between δ̂ and δ0, then δ1 can be represented as δ1 = λδ̂+ (1− λ)δ0, ∃λ ∈ (0, 1).

Since δ̂
p→ δ0, we have for any δ > 0

P(| δ1 − δ0 |> δ) = P(| λδ̂ + (1− λ)δ0 − δ0 |> δ)

= λP(| δ̂ − δ0 |> δ) → 0,

which implies δ1
p→ δ0. Then by the LLN and the continuous mapping theorem (CMT),

we have

G1
p→ 2E(

∂f(X̃ i; δ1)
′

∂δ

∂f(X̃ i; δ1)

∂δ′ )
p→ 2E(

∂f(X̃ i; δ0)
′

∂δ

∂f(X̃ i; δ0)

∂δ′ ),

G2
p→ E(

∂2f(X̃ i; δ1)
′

∂δ∂δ′ ε̃i) = 0,

and

G3
p→ 2

N

N∑
i=1

∂2f(X̃ i; δ1)
′

∂δ∂δ′ (f(X̃ i; δ0)− f(X̃ i; δ0)) = 0.

It follows that

−(
1

N

∂2Q(δ1)

∂δ∂δ′ )−1 p→ −(2E(
∂f(X̃ i; δ0)

′

∂δ

∂f(X̃ i; δ0)

∂δ′ ))−1.
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Finally, by Slutsky’s theorem, we have

√
N(δ̂ − δ0)

d→ N(0, σ2
ε(E(

∂f(X̃ i; δ0)
′

∂δ

∂f(X̃ i; δ0)

∂δ′ ))−1).

It is straightforward to show that

(E(∂f(X̃i;δ0)
′

∂δ
∂f(X̃i;δ0)

∂δ′
))−1 = (E(

 ∂f(X̃i;δ0)
′

∂β

∂f(X̃i;δ0)
′

∂θ

(
∂f(X̃i;δ0)

∂β′
∂f(X̃i;δ0)

∂θ′

)
))−1

=

 E(∂f(X̃i;δ0)
′

∂β
∂f(X̃i;δ0)

∂β′ ) E(∂f(X̃i;δ0)
′

∂β
∂f(X̃i;δ0)

∂θ′ )

E(∂f(X̃i;δ0)
′

∂θ
∂f(X̃i;δ0)

∂β′ ) E(∂f(X̃i;δ0)
′

∂θ
∂f(X̃i;δ0)

∂θ′ )


−1

=

 E(X̃ i(θ0)
′X̃ i(θ0)) E(X̃ i(θ0)

′ ∂f(X̃i;δ0)
∂θ′ )

E(∂f(X̃i;δ0)
′

∂θ
X̃ i(θ0)) E(∂f(X̃i;δ0)

′

∂θ
∂f(X̃i;δ0)

∂θ′ )


−1

=

 G11(θ0) G12(θ0)

G12(θ0)
′ G22(θ0)


−1

=

 A11 A12

A21 A22

 ,

where G11(θ0) = E(X̃ i(θ0)
′X̃ i(θ0)), G12(θ0) = E(X̃ i(θ0)

′ ∂f(X̃i;δ0)
∂θ′ ), and G22(θ0) =

E(∂f(X̃i;δ0)
′

∂θ
∂f(X̃i;δ0)

∂θ′ ). Given that A11 = (G11(θ0) − G12(θ0)G22(θ0)
−1G12(θ0)

′)−1, the

asymptotic variance of β̂ is given by AV ar(β̂) = σ2
ε

N
A11.

A.3 Proof of Theorem 1.3

Given that
√
N(δ̂ − δ0) = −(

1

N

∂2Q(δ1)

∂δ∂δ′ )−1 1√
N

∂Q(δ0)

∂δ
,

where δ1 is a point between δ̂ and δ0. Again, we need to prove that (i) 1√
N

∂Q(δ0)
∂δ

is asymptotically normal, and (ii) 1
N

∂2Q(δ1)
∂δ∂δ′

converges in probability to a non-singular
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matrix. For (i), we have

1√
N

∂Q(δ0)

∂δ
= − 2√

N

N∑
i=1

∂f(X̃ i; δ0)
′

∂δ
ũi.

Since ũi is uncorrelated with X̃ i(θ), then the law of iterated expectations gives

E(∂f(X̃i;δ0)
′

∂δ
ũi) = 0 and

E(∂f(X̃i;δ0)
′

∂δ
ũiũi

′ ∂f(X̃i;δ0)
∂δ′

) = E(∂f(Xi;δ0)
′

∂δ
Ω−1E(uiu

′
i | X i(θ0))Ω

−1 ∂f(Xi;δ0)
∂δ′

)

= E(∂f(Xi;δ0)
′

∂δ
Ω−1 ∂f(Xi;δ0)

∂δ′
).

Then, by the CLT, we have

1√
N

∂Q(δ0)

∂δ

d→ N(0, 4E(
∂f(X i; δ0)

′

∂δ
Ω−1∂f(X i; δ0)

∂δ′ )).

For (ii)

1
N

∂2Q(δ1)
∂δ∂δ′

= − 2
N

N∑
i=1

(∂
2f(X̃i;δ1)

′

∂δ∂δ′
(Ỹ i − f(X̃ i; δ1))− ∂f(X̃i;δ1)

′

∂δ′
∂f(X̃i;δ1)

∂δ
)

= G1 −G2 −G3,

where G1 = 2
N

N∑
i=1

∂f(X̃i;δ1)
′

∂δ
∂f(X̃i;δ1)

∂δ′
, G2 = 2

N

N∑
i=1

∂2f(X̃i;δ1)
′

∂δ∂δ′
ũi, and G3 = 2

N

N∑
i=1

∂2f(X̃i;δ1)
′

∂δ∂δ′
(f(X̃ i; δ0)− f(X̃ i; δ1)). Since δ̂

p→ δ0, δ1 lies between δ̂ and δ0, then δ1
p→ δ0.

Then, by the LLN and the CMT, we have

−(
1

N

∂2Q(δ1)

∂δ∂δ′ )−1 p→ −(2E(
∂f(X i; δ0)

′

∂δ
Ω−1∂f(X i; δ0)

∂δ′ ))−1.

Finally, by Slutsky’s theorem, we have

√
N(δ̂ − δ0)

d→ N(0, (E(
∂f(X i; δ0)

′

∂δ
Ω−1∂f(X i; δ0)

∂δ′ ))−1).
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Again, it is straightforward to show that

(E(∂f(Xi;δ0)
′

∂δ
Ω−1 ∂f(Xi;δ0)

∂δ′
))−1=

E(X i(θ0)
′Ω−1X i(θ0)) E(X i(θ0)

′Ω−1 ∂f(Xi;δ0)
∂θ′ )

E(∂f(Xi;δ0)
′

∂θ
Ω−1X i(θ0))E(∂f(Xi;δ0)

′

∂θ
Ω−1 ∂f(Xi;δ0)

∂θ′ )


−1

=

G11(θ0) G12(θ0)

G12(θ0)
′ G22(θ0)


−1

=

A11A12

A21A22

 ,

where A11 = (G11(θ0)−G12(θ0)G22(θ0)
−1G12(θ0)

′)−1. Thus, AV ar(β̂) = A11

N
.

A.4 Proof of Theorem 1.4

Recall that

β̂∗ = β0 + (X̃(π)′X̃(π))−1(X̃(π)′X̃(θ∗
0))β0 + (X̃(π)′X̃(π))−1X̃(π)′ε̃.

The LLN and the CMT give

(

N∑
i=1

X̃ i(π)
′X̃ i(π)

N
)−1 p→ (E(X̃ i(π)

′X̃ i(π)))
−1,

N∑
i=1

X̃ i(π)
′X̃ i(θ

∗
0)

N

p→ E(X̃ i(π)
′X̃ i(θ

∗
0)),

and
N∑
i=1

X̃ i(π)
′ε̃i

N

p→ E(X̃ i(π)
′ε̃i) = 0.
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Applying these results, we have

ABias(β̂∗;β0) = (E(X̃ i(π)
′X̃ i(π))

−1E(X̃ i(π)
′X̃ i(θ

∗
0))β0.

Besides, the CLT gives

1√
N

N∑
i=1

X̃ i(π)
′ε̃i

d→ N(0, σ2
εE(X̃ i(π)

′X̃ i(π))),

here we use the fact that

E(X̃ i(π)
′ε̃iε̃i

′X̃ i(π)) = E(X̃ i(π)
′εiε

′
iX̃ i(π)) = σ2

εE(X̃ i(π)
′X̃ i(π)),

since X̃ i(π)
′ε̃i = X i(π)H

′
THTεi = X i(π)H

′
Tεi = X̃ i(π)

′εi. Then the Slutsky’s

theorem gives AV ar(β̂∗) = σ2
ε

N
(E(X̃ i(π)

′X̃ i(π)))
−1.

A.5 Proof of Proposition 1.1

Here, we only focus on the FE model. (i) We start by computing the asymptotic bias

and the asymptotic variance of the LS estimator. Recall that, when K = m,


Xit(π) = π1e

(m)
i,t +

m−1∑
j=1

(ρπj + πj+1)e
(m)
i,t−j/m + ρπme

(m)
i,t−1,

Xit(θ
∗) = w1(θ

∗)e
(m)
i,t +

m−1∑
j=1

(ρwj(θ
∗) + wj+1(θ

∗))e
(m)
i,t−j/m + ρwm(θ

∗)e
(m)
i,t−1,

By (1.4.4), to obtain the asymptotic bias of the LS estimator, we need to compute

E(X i(π)
′HTX i(π)) and E(X i(π)

′HTX i(θ
∗)). By the property of the trace and

expectation operators, we have

E(X i(π)
′HTX i(π)) = tr(HTE(X i(π)X i(π)

′)),

E(X i(π)
′HTX i(θ

∗)) = tr(HTE(X i(θ
∗)X i(π)

′)),
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where E(X i(π)X i(π)
′) and E(X i(θ

∗)X i(π)
′) are given by

E(X i(π)X i(π)
′)kr =

σ2
e [π

2
1+

m−1∑
j=1

(ρπj + πj+1)
2 + ρ2π2

m] if r = k

ρπ1πmσ
2
e if r = k + 1 or r = k − 1

0 otherwise

and

E(X i(θ
∗)X i(π)

′)kr =

σ2
e [π1w1(θ

∗)+
m−1∑
j=1

(ρπj + πj+1)(ρwj(θ
∗) + wj+1(θ

∗)) + ρ2πmwm(θ
∗)] if r = k

σ2
eρπmw1(θ

∗) if r = k + 1

σ2
eρπ1wm(θ

∗) if r = k − 1

0 otherwise

Using the above results, we can obtain the asymptotic bias and the asymptotic variance

of the LS estimator.

Similarly, when K = 2m,

Xit(π) = π1e
(m)
i,t +

m−1∑
j=1

(ρπj + πj+1)e
(m)
i,t−j/m + (ρπm + πm+1)e

(m)
i,t−1

+
m−1∑
j=1

(ρπm+j + πm+j+1)e
(m)
i,t−1−j/m + ρπ2me

(m)
i,t−2,

Xit(θ
∗) = w1(θ

∗)e
(m)
i,t +

m−1∑
j=1

(ρwj(θ
∗) + wj+1(θ

∗))e
(m)
i,t−j/m + (ρwm(θ

∗) + wm+1(θ
∗))e

(m)
i,t−1

+
m−1∑
j=1

(ρwm+j(θ
∗) + wm+j+1(θ

∗))e
(m)
i,t−1−j/m + ρw2m(θ

∗)e
(m)
i,t−2,
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then we have

E(X i(π)X i(π)
′)kr =

σ2
e [π

2
1+

2m−1∑
j=1

(ρπj + πj+1)
2 + ρ2π2

2m] if r = k

σ2
e [π1(ρπm + πm+1)+

m−1∑
j=1

(ρπj + πj+1)(ρπm+j + πm+j+1)

+ρπ2m(ρπm + πm+1)] if r = k + 1 or r = k − 1

σ2
eρπ1π2m if r = k + 2 or r = k − 2

0 otherwise

and

E(X i(θ
∗)X i(π)

′)kr =

σ2
e [π1w1(θ

∗)+
2m−1∑
j=1

(ρπj + πj+1)(ρwj(θ
∗) + wj+1(θ

∗)) + ρ2π2mw2m(θ
∗)] if r = k

σ2
e [w1(θ

∗)(ρπm + πm+1)+
m−1∑
j=1

(ρwj(θ
∗) + wj+1(θ

∗))

×(ρπm+j + πm+j+1) + ρπ2m(ρwm(θ
∗) + wm+1(θ

∗))] if r = k + 1

σ2
e [π1(ρwm(θ

∗) + wm+1(θ
∗))+

m−1∑
j=1

(ρwm+j(θ
∗) + wm+j+1(θ

∗))

×(ρπj + πj+1) + ρw2m(θ
∗)(ρπm + πm+1)] if r = k − 1

σ2
eρπ2mw1(θ

∗) if r = k + 2

σ2
eρπ1w2m(θ

∗) if r = k − 2

0 otherwise

(ii) By (1.3.6), we then compute the asymptotic variance of the MIDAS-NLS estimator.

Again, we have

E(X i(θ)
′HTX i(θ)) = tr(HTE(X i(θ)X i(θ)

′)).
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Using the same way, it follows that

E(X i(θ)
′HT

∂f(Xi;δ)
∂θ′ ) =

(
tr(HTE(∂f(Xi;δ)

∂θ1
X i(θ)

′)) tr(HTE(∂f(Xi;δ)
∂θ2

X i(θ)
′))

)

where

E(X i(θ)X i(θ)
′)kr =

σ2
e [w1(θ)

2+
m−1∑
j=1

(ρwj(θ) + wj+1(θ))
2 + ρ2wm(θ)

2] if r = k

ρwm(θ)w1(θ)σ
2
e if r = k + 1 or r = k − 1

0 otherwise

E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e [w1(θ)

∂w1(θ)
∂θs

+
m−1∑
j=1

(ρwj(θ) + wj+1(θ))(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2wm(θ)
∂wm(θ)

∂θs
]β if r = k

σ2
eρwm(θ)

∂w1(θ)
∂θs

β if r = k + 1

σ2
eρw1(θ)

∂wm(θ)
∂θs

β if r = k − 1

0 otherwise

Besides, we have

E(
∂f(X i; δ)

′

∂θ

′

HT
∂f(X i; δ)

∂θ′ ) =

 tr(HTE(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ1
)) tr(HTE(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ1
))

tr(HTE(∂f(Xi;δ)
∂θ1

∂f(Xi;δ)
′

∂θ2
)) tr(HTE(∂f(Xi;δ)

∂θ2

∂f(Xi;δ)
′

∂θ2
))

 ,
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where

E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e [

∂w1(θ)
∂θl

∂w1(θ)
∂θs

+
m−1∑
j=1

(ρ
∂wj(θ)

∂θl
+

∂wj+1(θ)

∂θl
)(ρ

∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2 ∂wm(θ)
∂θl

∂wm(θ)
∂θs

]β2 if r = k

σ2
eρ

∂wm(θ)
∂θs

∂w1(θ)
∂θl

β2 if r = k + 1

σ2
eρ

∂wm(θ)
∂θl

∂w1(θ)
∂θs

β2 if r = k − 1

0 otherwise

Similarly, when K = 2m, we have

E(X i(θ)X i(θ)
′)kr =

σ2
e [w1(θ)

2+
2m−1∑
j=1

(ρwj(θ) + wj+1(θ))
2 + ρ2w2m(θ)

2] if r = k

σ2
e [w1(θ)(ρwm(θ) + wm+1(θ))+

m−1∑
j=1

(ρwj(θ) + wj+1(θ))

×(ρwm+j(θ) + wm+j+1(θ)) + ρw2m(θ)(ρwm(θ) + wm+1(θ))] if r = k + 1 or r = k − 1

σ2
eρw1(θ)w2m(θ) if r = k + 2 or r = k − 2

0 otherwise
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E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e [w1(θ)

∂w1(θ)
∂θs

+
2m−1∑
j=1

(ρwj(θ) + wj+1(θ))(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2w2m(θ)
∂w2m(θ)

∂θs
]β if r = k

σ2
e [(ρwm(θ) + wm+1(θ))

∂w1(θ)
∂θs

+
m−1∑
j=1

(ρwm+j(θ) + wm+j+1(θ))

×(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
) + ρw2m(θ)(ρ

∂wm(θ)
∂θs

+ ∂wm+1(θ)
∂θs

)]β if r = k + 1

σ2
e [w1(θ)(ρ

∂wm(θ)
∂θs

+ ∂wm+1(θ)
∂θs

)+
m−1∑
j=1

(ρwj(θ) + wj+1(θ))

×(ρ
∂wm+j(θ)

∂θs
+

∂wm+j+1(θ)

∂θs
) + ρ(ρwm(θ) + wm+1(θ))

∂w2m(θ)
∂θs

]β if r = k − 1

σ2
eρw2m(θ)

∂w1(θ)
∂θs

β if r = k + 2

σ2
eρw1(θ)

∂w2m(θ)
∂θs

β if r = k − 2

0 otherwise

and

E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e [

∂w1(θ)
∂θl

∂w1(θ)
∂θs

+
2m−1∑
j=1

(ρ
∂wj(θ)

∂θl
+

∂wj+1(θ)

∂θl
)(ρ

∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

+ρ2 ∂w2m(θ)
∂θl

∂w2m(θ)
∂θs

]β2 if r = k

σ2
e [(ρ

∂wm(θ)
∂θs

+ ∂wm+1(θ)
∂θs

)∂w1(θ)
∂θl

+
m−1∑
j=1

(ρ
∂wm+j(θ)

∂θs
+

∂wm+j+1(θ)

∂θs
)

×(ρ
∂wj(θ)

∂θl
+

∂wj+1(θ)

∂θl
) + ρ∂w2m(θ)

∂θs
(ρ∂wm(θ)

∂θl
+ ∂wm+1(θ)

∂θl
)]β2 if r = k + 1

σ2
e [

∂w1(θ)
∂θs

(ρ∂wm(θ)
∂θl

+ ∂wm+1(θ)
∂θl

)+
m−1∑
j=1

(ρ
∂wj(θ)

∂θs
+

∂wj+1(θ)

∂θs
)

×(ρ
∂wm+j(θ)

∂θl
+

∂wm+j+1(θ)

∂θl
) + ρ(ρ∂wm(θ)

∂θs
+ ∂wm+1(θ)

∂θs
)∂w2m(θ)

∂θl
]β2 if r = k − 1

σ2
eρ

∂w2m(θ)
∂θs

∂w1(θ)
∂θl

β2 if r = k + 2

σ2
eρ

∂w1(θ)
∂θs

∂w2m(θ)
∂θl

β2 if r = k − 2

0 otherwise
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for all s, l = 1, 2.

A.6 Proof of Proposition 1.3

First, we compute the mean and variance of x(m)
it . Since {x(m)

it } follows a stationary AR(1)

process, then it follows that

E(x(m)
it ) = ϕE(x(m)

i,t−1/m) + E(e(m)
it ) =⇒ E(x(m)

it ) = 0

and

V ar(x
(m)
it ) = ϕ2V ar(x

(m)
i,t−1/m) + V ar(e

(m)
it ) =⇒ V ar(x

(m)
it ) =

σ2
e

1− ϕ2
.

Next, since the high frequency regressor x
(m)
i,t−(j−1)/m can be expressed as a form of

x
(m)
i,t−(m−1)/m, where m > j,

x
(m)
i,t−(j−1)/m = ϕK−jx

(m)
i,t−(K−1)/m+

K−j−1∑
q=0

ϕqe
(m)
i,t−(q+j−1)/m,

then the simple average term and nonlinear term can be expressed as

Xit(π) =
K−1∑
j=1

πjx
(m)
i,t−(j−1)/m + πKx

(m)
i,t−(K−1)/m

=
K∑
j=1

πjϕ
K−jx

(m)
i,t−(K−1)/m+

K−1∑
j=1

j∑
q=1

πqϕ
j−qe

(m)
i,t−(j−1)/m

and

Xit(θ
∗) =

K−1∑
j=1

wj(θ
∗)x

(m)
i,t−(j−1)/m + wK(θ

∗)x
(m)
i,t−(K−1)/m

=
K−1∑
j=1

wj(θ
∗)(ϕK−j − 1)x

(m)
i,t−(K−1)/m+

K−1∑
j=1

j∑
q=1

wq(θ
∗)ϕj−qe

(m)
i,t−(j−1)/m.

(i) To obtain the asymptotic bias and the asymptotic variance of the LS estimator, we

need to compute E(X i(π)X i(π)
′) and E(X i(θ

∗)X i(π)
′). It is straightforward to get
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that for t > s

x
(m)
i,t−(K−1)/m = ϕm(t−s)x

(m)
i,s−(K−1)/m+

m(t−s)−1∑
q=0

ϕqe
(m)
i,t−(q+K−1)/m.

When K = m,

x
(m)
i,t−(m−1)/m = ϕm(t−s)x

(m)
i,s−(m−1)/m+

m(t−s)−m∑
q=0

ϕqe
(m)
i,t−(q+m−1)/m+

m−1∑
q=1

ϕm(t−s)−m+qe
(m)
i,s−(q−1)/m,

and therefore

Xit(π) =
m∑
j=1

πjϕ
m−j(ϕm(t−s)x

(m)
i,s−(m−1)/m+

m(t−s)−m∑
q=0

ϕqe
(m)
i,t−(q+m−1)/m

+
m−1∑
q=1

ϕm(t−s)−m+qe
(m)
i,s−(q−1)/m)+

m−1∑
j=1

j∑
q=1

πqϕ
j−qe

(m)
i,t−(j−1)/m,

Xit(θ
∗) =

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)(ϕm(t−s)x

(m)
i,s−(m−1)/m+

m(t−s)−m∑
q=0

ϕqe
(m)
i,t−(q+m−1)/m

+
m−1∑
q=1

ϕm(t−s)−m+qe
(m)
i,s−(q−1)/m)+

m−1∑
j=1

j∑
q=1

wq(θ
∗)ϕj−qe

(m)
i,t−(j−1)/m.

Then, we have

E(X i(π)X i(π)
′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)2 + σ2

e

m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)2ϕm|r−k| + σ2

e(
m∑
j=1

πjϕ
m−j)(

m−1∑
j=1

j∑
q=1

πqϕ
m|r−k|−m+2j−q) otherwise
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and
E(X i(θ

∗)X i(π)
′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)[

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)]

+σ2
e

m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)(

j∑
q=1

wq(θ
∗)ϕj−q) if r = k

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)[

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)]ϕm(k−r)

+σ2
e [

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)](

m−1∑
j=1

j∑
q=1

πqϕ
m(k−r)−m+2j−q) if r < k

σ2
e

1−ϕ2 (
m∑
j=1

πjϕ
m−j)[

m−1∑
j=1

wj(θ
∗)(ϕm−j − 1)]ϕm(r−k)

+σ2
e(

m∑
j=1

πjϕ
m−j)(

m−1∑
j=1

j∑
q=1

wq(θ
∗)ϕm(r−k)−m+2j−q) if r > k

When K = 2m, for t = s+ 1,

Xit(π) =
2m∑
j=1

πjϕ
3m−jx

(m)
i,s−(2m−1)/m + (

m∑
j=1

+
2m−1∑
j=m+1

)
j∑

q=1

πqϕ
j−qe

(m)
i,t−(j−1)/m

+
2m∑
j=1

πjϕ
2m−j

m−1∑
q=0

ϕqe
(m)
i,t−(q+2m−1)/m,

Xis(π) =
2m∑
j=1

πjϕ
2m−jx

(m)
i,s−(2m−1)/m + (

m−1∑
j=1

+
2m−1∑
j=m

)

j∑
q=1

πqϕ
j−qe

(m)
i,s−(j−1)/m,

Xit(θ
∗) =

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)ϕmx

(m)
i,s−(2m−1)/m + (

m∑
j=1

+
2m−1∑
j=m+1

)
j∑

q=1

wq(θ
∗)ϕj−qe

(m)
i,t−(j−1)/m

+
2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)

m−1∑
q=0

ϕqe
(m)
i,t−(q+2m−1)/m,

Xis(θ
∗) =

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)x

(m)
i,s−(2m−1)/m + (

m−1∑
j=1

+
2m−1∑
j=m

)

j∑
q=1

wq(θ
∗)ϕj−qe

(m)
i,s−(j−1)/m.

For t > s+ 1,

Xit(π) =
2m∑
j=1

πjϕ
2m−j(ϕm(t−s)x

(m)
i,s−(2m−1)/m+

m(t−s)−2m∑
q=0

ϕqe
(m)
i,t−(q+2m−1)/m

+
2m−1∑
q=1

ϕm(t−s)−2m+qe
(m)
i,s−(q−1)/m)+

2m−1∑
j=1

j∑
q=1

πqϕ
j−qe

(m)
i,t−(j−1)/m,
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Xit(θ
∗) =

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)(ϕm(t−s)x

(m)
i,s−(2m−1)/m+

m(t−s)−2m∑
q=0

ϕqe
(m)
i,t−(q+2m−1)/m

+
2m−1∑
q=1

ϕm(t−s)−2m+qe
(m)
i,s−(q−1)/m)+

2m−1∑
j=1

j∑
q=1

wq(θ
∗)ϕj−qe

(m)
i,t−(j−1)/m.

Then, we have

E(X i(π)X i(π)
′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)2 + σ2

e

2m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)2ϕ+ σ2

e

m−1∑
j=1

(
m+j∑
q=1

πqϕ
m+j−q)

×(
j∑

q=1

πqϕ
j−q) + σ2

e(
2m∑
j=1

πjϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

πqϕ
m+2j−q) if r = k + 1 or r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)2ϕm|r−k|

+σ2
e(

2m∑
j=1

πjϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

πqϕ
m|r−k|−2m+2j−q) otherwise

159



A.6 Proof of Proposition 1.3

and

E(X i(θ
∗)X i(π)

′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]

+σ2
e

2m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)(

j∑
q=1

wq(θ
∗)ϕj−q) if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕ+ σ2

e

m−1∑
j=1

(
m+j∑
q=1

πqϕ
m+j−q)

×(
j∑

q=1

wq(θ
∗)ϕj−q) + σ2

e(
2m∑
j=1

πjϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ
∗)ϕm+2j−q) if r = k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕ+ σ2

e

m−1∑
j=1

(
j∑

q=1

πqϕ
j−q)

×(
m+j∑
q=1

wq(θ
∗)ϕm+j−q) + σ2

e [
2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)](

m−1∑
j=0

m+j∑
q=1

πqϕ
m+2j−q) if r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕm(r−k)

+σ2
e(

2m∑
j=1

πjϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ
∗)ϕm(r−k)−2m+2j−q) if r > k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

πjϕ
2m−j)[

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)]ϕm(k−r)

+σ2
e [

2m−1∑
j=1

wj(θ
∗)(ϕ2m−j − 1)](

2m−1∑
j=1

j∑
q=1

πqϕ
m(k−r)−2m+2j−q) if r < k − 1

(ii) Then we compute the asymptotic variance of the MIDAS-NLS estimator. When

K = m,

E(X i(θ)X i(θ)
′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)ϕ
m−j)2 + σ2

e

m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)ϕ
m−j)2ϕm|r−k|

+σ2
e(

m∑
j=1

wj(θ)ϕ
m−j)(

m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m|r−k|−m+2j−q) otherwise
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E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m∑
j=1

wj(θ)ϕ
m−j)β

+σ2
e

m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β if r = k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m∑
j=1

wj(θ)ϕ
m−j)ϕm(k−r)β

+σ2
e(

m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m(k−r)−m+2j−q)β if r < k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m∑
j=1

wj(θ)ϕ
m−j)ϕm(r−k)β

+σ2
e(

m∑
j=1

wj(θ)ϕ
m−j)(

m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(r−k)−m+2j−q)β if r > k

and
E(∂f(Xi;δ)

∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m∑
j=1

wj(θ)

∂θs
ϕm−j)β2

+σ2
e

m−1∑
j=1

(
j∑

q=1

wq(θ)

∂θl
ϕj−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β2 if r = k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m∑
j=1

wj(θ)

∂θs
ϕm−j)ϕm(k−r)β2

+σ2
e(

m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(k−r)−m+2j−q)β2 if r < k

σ2
e

1−ϕ2 (
m∑
j=1

wj(θ)

∂θl
ϕm−j)(

m∑
j=1

wj(θ)

∂θs
ϕm−j)ϕm(r−k)β2

+σ2
e(

m∑
j=1

wj(θ)

∂θs
ϕm−j)(

m−1∑
j=1

j∑
q=1

wq(θ)

∂θl
ϕm(k−r)−m+2j−q)β2 if r > k
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When K = 2m,

E(X i(θ)X i(θ)
′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)ϕ
2m−j)2 + σ2

e

2m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)2 if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)ϕ
2m−j)2ϕ+ σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)ϕ
m+j−q)

×(
j∑

q=1

wq(θ)ϕ
j−q) + σ2

e(
2m∑
j=1

wj(θ)ϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)ϕ
m+2j−q) if r = k + 1 or r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)ϕ
2m−j)2ϕm|r−k|

+σ2
e(

2m∑
j=1

wj(θ)ϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m|r−k|−2m+2j−q) otherwise

E(∂f(Xi;δ)
∂θs

X i(θ)
′)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)β

+σ2
e

2m−1∑
j=1

(
j∑

q=1

wq(θ)ϕ
j−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕβ + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)ϕ
m+j−q)

×(
j∑

q=1

wq(θ)

∂θs
ϕj−q)β + σ2

e(
2m∑
j=1

wj(θ)ϕ
2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)

∂θs
ϕm+2j−q)β if r = k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕβ + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)

∂θs
ϕm+j−q)

×(
j∑

q=1

wq(θ)ϕ
j−q)β + σ2

e(
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)ϕ
m+2j−q)β if r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕm(r−k)β

+σ2
e(

2m∑
j=1

wj(θ)ϕ
2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(r−k)−2m+2j−q)β if r > k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m∑
j=1

wj(θ)ϕ
2m−j)ϕm(k−r)β

+σ2
e(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)ϕ
m(k−r)−2m+2j−q)β if r < k − 1
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and

E(∂f(Xi;δ)
∂θl

∂f(Xi;δ)
′

∂θs
)kr =

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)β2

+σ2
e

2m−1∑
j=1

(
j∑

q=1

wq(θ)

∂θl
ϕj−q)(

j∑
q=1

wq(θ)

∂θs
ϕj−q)β2 if r = k

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕβ2 + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)

∂θs
ϕm+j−q)

×(
j∑

q=1

wq(θ)

∂θl
ϕj−q)β2 + σ2

e(
2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)

∂θl
ϕm+2j−q)β2 if r = k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕβ2 + σ2

e

m−1∑
j=1

(
m+j∑
q=1

wq(θ)

∂θl
ϕm+j−q)

×(
j∑

q=1

wq(θ)

∂θs
ϕj−q)β2 + σ2

e(
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

m−1∑
j=0

m+j∑
q=1

wq(θ)

∂θs
ϕm+2j−q)β2 if r = k − 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕm(r−k)β2

+σ2
e(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)

∂θl
ϕm(r−k)−2m+2j−q)β2 if r > k + 1

σ2
e

1−ϕ2 (
2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m∑
j=1

wj(θ)

∂θs
ϕ2m−j)ϕm(k−r)β2

+σ2
e(

2m∑
j=1

wj(θ)

∂θl
ϕ2m−j)(

2m−1∑
j=1

j∑
q=1

wq(θ)

∂θs
ϕm(k−r)−2m+2j−q)β2 if r < k − 1

for all s, l = 1, 2.
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Appendix B

Appendix to Chapter 3

B.1 Deriving SQLIML Estimators

Given δ and ρ, the estimators are


σ̂2
e(δ, ρ) = 1

N
[A(ρ)y −M (δ)α̂(δ, ρ)]′[A(ρ)y −M(δ)α̂(δ, ρ)],

Σ̂ = 1
N
(X1 −Zδ)′(X1 −Zδ),

α̂(δ, ρ) = (M(δ)′M(δ))−1M (δ)′A(ρ)y.

(B.1.1)

Recall that Z = (Z1,X2), with Z1 = (Z1, . . . ,ZL1). Equation ∂lnL(θ̂)
∂α

= 0, therefore,

implies that 
δ11 · · · δ1L1

... . . . ...

δK1
1 · · · δK1

L1




Z1′ê

...

ZL1 ′ê

 = 0K1×1. (B.1.2)

To obtain the solution for δ̂, we consider two cases.

Case 1. When the model (3.2.1) is just-identified (L1 = K1), the above linear system

(B.1.2) has a unique solution that is Z ′
1ê = 0. Plus X ′

2ê = 0, we have Z ′ê = 0.
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B.1 Deriving SQLIML Estimators

Consequently, ∂lnL(θ̂)
∂δ

= 0 implies that Z ′vΣ−1 = 0, which can be written as


zv11 · · · zv1K1

... . . . ...

zvL1 · · · zvLK1




Π11 · · · Π1K1

... . . . ...

ΠK11 · · · ΠK1K1

 = 0L×K1 ,

where zvij is the (i,j)th element of Z ′v and Πij is the (i,j)th element of Σ−1. It is

straightforward to get a linear system of homogeneous equations



Π11zv11 + · · ·+ΠK11zv1K1 = 0,

Π12zv11 + · · ·+ΠK12zv1K1 = 0,

...

Π1K1zv11 + · · ·+ΠK1K1zv1K1 = 0.

Since rank(Σ−1) = K1, zv11 = · · · = zv1K1 = 0 is a unique solution to this system.

Similarly, we have Z ′v = 0 and so

δ̂ = (Z ′Z)−1Z ′X1.

Eventually, combined with (B.1.1), the estimators of σ2
e , Σ, α, and δ are unique given

by 

σ̂2
e(ρ) = 1

N
y′A(ρ)′ĤA(ρ)y

Σ̂ = 1
N
X ′

1PX1

α̂(ρ) = (M (δ̂)′M (δ̂))−1M (δ̂)′A(ρ)y

δ̂ = (Z ′Z)−1Z ′X1,

(B.1.3)

where Ĥ = IN − M (δ̂)(M(δ̂)′M (δ̂))−1M (δ̂)′, M (δ̂) = (X1,X2,PX1), and P =

IN −Z(Z ′Z)−1Z ′.
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B.2 Proof of Theorem 3.1

Case 2. When the model (3.2.1) is over-identified (L1 > K1), the linear system (B.1.2)

has at least one solution that is Z ′
1ê = 0. Hence, θ̂ given by (B.1.3) is one estimator of

θ, but it is not unique.

B.2 Proof of Theorem 3.1

The way to demonstrate the consistency of θ̂ follows from the uniform convergence

and identifiable uniqueness (White (1996, Theorem 3.4)). Recall that Q(ρ) =

maxσ2
e ,Σ,α,δE(lnL(θ)), which is given by

Q(ρ) = −N(K1 + 1)

2
(ln(2π) + 1)− N

2
lnσ∗2

e (ρ)− N

2
ln |Σ0|+ ln |A(ρ)| .

Uniform Convergence

We begin by showing that supρ∈Λ
∣∣ 1
N
lnL(ρ)− 1

N
Q(ρ)

∣∣ = op(1), where

1

N
lnL(ρ)− 1

N
Q(ρ) = −1

2
(lnσ̂2

e(ρ)− lnσ∗2
e (ρ))− 1

2
(ln

∣∣∣Σ̂∣∣∣− ln |Σ0|).

First, it is easy to show that

δ̂ = (Z ′Z)−1Z ′X1 = δ0 + (
Z ′Z

N
)−1(

Z ′v0

N
) = δ0 + op(1),

and therefore

Σ̂ = 1
N
[X1 −Zδ0 +Z(δ0 − δ̂)]′[X1 −Zδ0 +Z(δ0 − δ̂)]

= 1
N
[v′

0v0 + 2(δ0 − δ̂)′(Z ′v0) + (δ0 − δ̂)′(Z ′Z)(δ0 − δ̂)]

= Σ0 + op(1),

then by the continuous mapping theorem (CMT), we have ln
∣∣∣Σ̂∣∣∣− ln |Σ0| = op(1).
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B.2 Proof of Theorem 3.1

We then show that σ̂2
e(ρ)− σ∗2

e (ρ) = op(1) uniformly on Λ. Recall that

σ̂2
e(ρ) = 1

N
[A(ρ)y −M(δ̂)α̂(ρ)]′[A(ρ)y −M (δ̂)α̂(ρ)]

= 1
N
[J1 + J2 −M (δ̂)(M (δ̂)′M(δ̂))−1M(δ̂)′(J1 + J2)]

′

×[J1 + J2 −M (δ̂)(M(δ̂)′M(δ̂))−1M (δ̂)′(J1 + J2)]

and

σ∗2
e (ρ) = 1

N
[E(J ′

1J1)− E(J ′
1M (δ0))(E[M (δ0)

′M(δ0)])
−1E(M (δ0)

′J1)

+σ2
e0tr(A(ρ0)

−1′A(ρ)′A(ρ)A(ρ0)
−1)],

where J1 = A(ρ)A(ρ0)
−1M(δ0)α0 and J2 = A(ρ)A(ρ0)

−1e0. By δ̂ − δ0 = op(1), the

CMT gives M (δ̂)−M (δ0) = op(1). It follows that

σ̂2
e(ρ) = 1

N
[J1 + J2 −M (δ0)(M (δ0)

′M(δ0))
−1M (δ0)

′(J1 + J2)]
′

×[J1 + J2 −M (δ0)(M (δ0)
′M(δ0))

−1M (δ0)
′(J1 + J2)] + op(1)

= 1
N
[J ′

1J1 − (J ′
1M(δ0))(M(δ0)

′M (δ0))
−1(M (δ0)

′J1)

+J ′
2J2 + 2J ′

1J2 − 2J ′
1M (δ0)(M (δ0)

′M(δ0))
−1M (δ0)

′J2

−(J ′
2M(δ0))(M(δ0)

′M (δ0))
−1(M (δ0)

′J2)] + op(1)

= σ∗2
e (ρ) + op(1).

Finally, with the above results, the uniform convergence follows.

Uniquely Identifiable

Second, we need to show that θ0 is uniquely identifiable. We have

1

N
[Q(ρ)−Q(ρ0)] =

1

N
[Qp(ρ)−Qp(ρ0)]−

1

2
(lnσ∗2

e (ρ)− lnσ2
e(ρ)),

where σ2
e(ρ) = 1

N
σ2
e0tr(A(ρ0)

−1′A(ρ)′A(ρ)A(ρ0)
−1) and Qp(ρ) = −N

2
(ln(2π) + 1) −

N
2
lnσ2

e(ρ) + ln |A(ρ)| . We can describe Qp(ρ) = maxσ2
e
E(lnLp(ρ, σ

2
e)), where lnLp(ρ, σ

2
e)

is the log-likelihood function of a SLM model y = ρ0Wy + e0, e0 ∼ NID(0, σ2
e0IN). By
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Jensen’s inequality, we have Qp(ρ) − Qp(ρ0) ≤ 0 for all ρ. Besides, Assumption 7 that

ensures lnσ∗2
e (ρ)− lnσ2

e(ρ) > 0. Hence, the identifiable uniqueness holds.

We have shown that 1
N
lnL(ρ) − 1

N
Q(ρ) converges in probability to zero uniformly on

ρ ∈ Λ and the identifiable uniqueness holds. Consequently, the consistency of ρ̂, and

thus, θ̂ follows.

B.3 Proof of Theorem 3.2

Given that ∂lnL(θ̂)
∂θ

= 0. Then, by the mean value theorem, we have that

0 =
∂lnL(θ̂)

∂θ
=

∂lnL(θ0)

∂θ
+

∂2lnL(θ1)

∂θ∂θ′ (θ̂ − θ0),

where θ1 is a point between θ̂ and θ0, therefore

√
N(θ̂ − θ0) = −(

1

N

∂2lnL(θ1)

∂θ∂θ′ )−1 1√
N

∂lnL(θ0)

∂θ
.

(i) First, we show that 1
N

∂2lnL(θ1)
∂θ∂θ′ − 1

N
∂2lnL(θ0)
∂θ∂θ′

p→ 0. The second-order derivatives of

lnL(θ) in (3.2.8), which are assumed to exist and be continuous in the neighborhood of

θ0, are as follows. For parameter σ2
e ,

∂2lnL(θ)
∂σ2

e∂σ
2
e

= N
2σ4

e
− e(ϕ)′e(ϕ)

σ6
e

,

∂2lnL(θ)
∂σ2

e∂vech(Σ)′
= 0,

∂2lnL(θ)
∂σ2

e∂β
′
1

= −e(ϕ)′X1

σ4
e

,

∂2lnL(θ)
∂σ2

e∂β
′
2

= −e(ϕ)′X2

σ4
e

,

∂2lnL(θ)
∂σ2

e∂λ
′ = −e(ϕ)′v(δ)

σ4
e

,

∂2lnL(θ)
∂σ2

e∂vec(δ)′ = vec(Z
′e(ϕ)λ′

σ4
e

)′,

∂2lnL(θ)
∂σ2

e∂ρ
= −e(ϕ)′Wy

σ4
e

.
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For parameter Σ,

∂2lnL(θ)
∂vech(Σ)∂vech(Σ)′

= D′[Σ−1 ⊗ (N
2
Σ−1 −Σ−1v(δ)′v(δ)Σ−1)]D,

∂2lnL(θ)
∂vech(Σ)∂β′

1
= 0,

∂2lnL(θ)
∂vech(Σ)∂β′

2
= 0,

∂2lnL(θ)
∂vech(Σ)∂λ′ = 0,

∂2lnL(θ)
∂vech(Σ)vec(δ)′ = −D′(Σ−1 ⊗ (Σ−1v(δ)′Z)),

∂2lnL(θ)
∂vech(Σ)∂ρ

= 0,

where D is the duplication matrix of Σ. For parameter β1,

∂2lnL(θ)
∂β1∂β

′
1

= −X′
1X1

σ2
e

,

∂2lnL(θ)
∂β1∂β

′
2

= −X′
1X2

σ2
e

,

∂2lnL(θ)
∂β1∂λ

′ = −X′
1v(δ)

σ2
e

,

∂2lnL(θ)
∂β1∂vec(δ)′ =

λ′⊗(X′
1Z)

σ2
e

,

∂2lnL(θ)
∂β1∂ρ

= −X′
1Wy

σ2
e

.

For parameter β2,
∂2lnL(θ)
∂β2∂β

′
2

= −X′
2X2

σ2
e

,

∂2lnL(θ)
∂β2∂λ

′ = −X′
2v(δ)

σ2
e

,

∂2lnL(θ)
∂β2∂vec(δ)′ =

λ′⊗(X′
2Z)

σ2
e

,

∂2lnL(θ)
∂β2∂ρ

= −X′
2Wy

σ2
e

.

For parameter λ,
∂2lnL(θ)
∂λ∂λ′ = −v(δ)′v(δ)

σ2
e

,

∂2lnL(θ)
∂λ∂vec(δ)′ =

λ′⊗(v(δ)′Z)−IK1
⊗(e(ϕ)′Z)

σ2
e

,

∂2lnL(θ)
∂λ∂ρ

= −v(δ)′Wy
σ2
e

,
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where IK1 is a K1 ×K1 identity matrix. For parameter δ,

∂2lnL(θ)
∂vec(δ)∂vec(δ)′ = − (λλ′)⊗(Z′Z)

σ2
e

−Σ−1 ⊗ (Z ′Z),

∂2lnL(θ)
∂vec(δ)∂ρ = λ⊗(Z′Wy)

σ2
e

.

For parameter ρ,

∂2lnL(θ)
∂ρ∂ρ

= −y′W ′Wy
σ2
e

− tr(G2(ρ)).

We now show that the convergence of the difference between each of the above second-

order derivatives at θ1 and their counterparts at θ0 to zero in probability. Denote

θ1 = (σ2
e1, vech(Σ1)

′,β′
11,β

′
21,λ

′
1, vec(δ1)

′, ρ1)
′, where λ1 = (λ11, λ21, . . . , λK11)

′, δ1 =

(δ1
1, . . . , δ

K1
1 ). Let ϕ1 = (α′

1, δ
′
1, ρ1)

′, X ≡ (X1,X2), and β = (β′
1,β

′
2)

′ with α1 =

(β′
11,β

′
21,λ

′
1)

′. We have v(δ1) = v0 +Z(δ0 − δ1) and

e(ϕ1) = e0+(ρ0− ρ1)Wy+X(β0−β1)+X1(λ0−λ1)−Zδ0(λ0−λ1)−Z(δ0−δ1)λ1.

Under Assumptions 5-6 and 9, y′W ′X
N

= Op(1),
X′

1X1

N
= Op(1), Z′X1

N
= Op(1), and

Z′Z
N

= O(1). For parameter σ2
e , we have

1
N (∂

2lnL(θ1)
∂σ2

e∂σ
2
e

− ∂2lnL(θ0)
∂σ2

e∂σ
2
e
)

= 1
2(

1
σ4
e1

− 1
σ4
e0
) + ( 1

σ6
e0

− 1
σ6
e1
)
e′0e0
N − 2(ρ0 − ρ1)

y′W ′e0
Nσ6

e1
− 2(β0 − β1)

′X′e0
Nσ6

e1
− 2(λ0 − λ1)

′X′
1e0

Nσ6
e1

+2(λ0 − λ1)
′δ′0

Z′e0
Nσ6

e1
+ 2λ′

1(δ0 − δ1)
′ Z′e0
Nσ6

e1
− (ρ0 − ρ1)

2 y′W ′Wy
Nσ6

e1
− 2(ρ0 − ρ1)(β0 − β1)

′X′Wy
Nσ6

e1

−2(ρ0 − ρ1)(λ0 − λ1)
′X′

1Wy

Nσ6
e1

+ 2(ρ0 − ρ1)(λ0 − λ1)
′δ′0

Z′Wy
Nσ6

e1
+ 2(ρ0 − ρ1)λ

′
1(δ0 − δ1)

′Z′Wy
Nσ6

e1

−(β0 − β1)
′X′X
Nσ6

e1
(β0 − β1)− 2(λ0 − λ1)

′X′
1X

Nσ6
e1
(β0 − β1) + 2(λ0 − λ1)

′δ′0
Z′X
Nσ6

e1
(β0 − β1)

+2λ′
1(δ0 − δ1)

′ Z′X
Nσ6

e1
(β0 − β1)− (λ0 − λ1)

′X′
1X1

Nσ6
e1

(λ0 − λ1) + 2(λ0 − λ1)
′δ′0

Z′X1

Nσ6
e1
(λ0 − λ1)

+2λ′
1(δ0 − δ1)

′Z′X1

Nσ6
e1
(λ0 − λ1)− (λ0 − λ1)

′δ′0
Z′Z
Nσ6

e1
δ0(λ0 − λ1)

+2λ′
1(δ0 − δ1)

′ Z′Z
Nσ6

e1
δ0(λ0 − λ1)− λ′

1(δ0 − δ1)
′ Z′Z
Nσ6

e1
(δ0 − δ1)λ1 = op(1),

1
N (∂

2lnL(θ1)
∂σ2

e∂β
′ − ∂2lnL(θ0)

∂σ2
e∂β

′ ) = ( 1
σ4
e0

− 1
σ4
e1
)
e′0X
N − (ρ0 − ρ1)

y′W ′X
Nσ4

e1
− (β0 − β1)

′X′X
Nσ4

e1

−(λ0 − λ1)
′X′

1X

Nσ4
e1

+ (λ0 − λ1)
′δ′0

Z′X
Nσ4

e1
+ λ′

1(δ0 − δ1)
′ Z′X
Nσ4

e1
= op(1),
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1
N (∂

2lnL(θ1)
∂σ2

e∂λ
′ − ∂2lnL(θ0)

∂σ2
e∂λ

′ )

= ( 1
σ4
e0

− 1
σ4
e1
)
e′0v0

N − (ρ0 − ρ1)
y′W ′v0

Nσ4
e1

− (β0 − β1)
′X′v0

Nσ4
e1

− (λ0 − λ1)
′X′

1v0

Nσ4
e1

+ (λ0 − λ1)
′δ′0

Z′v0

Nσ4
e1

+λ′
1(δ0 − δ1)

′ Z′v0

Nσ4
e1

− e′0Z

Nσ4
e1
(δ0 − δ1)− (ρ0 − ρ1)

y′W ′Z
Nσ4

e1
(δ0 − δ1)− (β0 − β1)

′ X′Z
Nσ4

e1
(δ0 − δ1)

−(λ0 − λ1)
′X′

1Z

Nσ4
e1
(δ0 − δ1) + (λ0 − λ1)

′δ′0
Z′Z
Nσ4

e1
(δ0 − δ1) + λ′

1(δ0 − δ1)
′ Z′Z
Nσ4

e1
(δ0 − δ1) = op(1),

1
N ( ∂2lnL(θ1)

∂σ2
e∂vec(δ)′ −

∂2lnL(θ0)
∂σ2

e∂vec(δ)′ ) = vec[( 1
σ4
e1

− 1
σ4
e0
)
Z′e0λ

′
0

N − Z′e0
Nσ4

e1
(λ0 − λ1)

′ + (ρ0 − ρ1)
Z′Wy
Nσ4

e1
λ1

+ Z′X
Nσ4

e1
(β0 − β1)λ

′
1 +

Z′X1

Nσ4
e1
(λ0 − λ1)λ

′
1 − Z′Z

Nσ4
e1
δ0(λ0 − λ1)λ

′
1

− Z′Z
Nσ4

e1
(δ0 − δ1)λ1λ

′
1] = op(1),

1
N (∂

2lnL(θ1)
∂σ2

e∂ρ
− ∂2lnL(θ0)

∂σ2
e∂ρ

) = ( 1
σ4
e0

− 1
σ4
e1
)
e′0Wy

N − (ρ0 − ρ1)
y′W ′Wy

Nσ4
e1

− (β0 − β1)
′X′Wy
Nσ4

e1

−(λ0 − λ1)
′X′

1Wy

Nσ4
e1

+ (λ0 − λ1)
′δ′0

Z′Wy
Nσ4

e1
+ λ′

1(δ0 − δ1)
′Z′Wy
Nσ4

e1

= op(1),

here we use the fact that θ1
p→ θ0. Because σ2

e1 lies between σ̂2
e and σ2

e0, σ2
e1 can be

represented as σ2
e1 = λσ̂2

e + (1 − λ)σ2
e0, ∃λ ∈ (0, 1). We have shown that σ̂2

e

p→ σ2
e0, then

we have for any δ > 0

P(| σ2
e1 − σ2

e0 |> δ) = P(| λσ̂2
e + (1− λ)σ2

e0 − σ2
e0 |> δ)

= λP(| σ̂2
e − σ2

e0 |> δ) → 0,

which implies that σ2
e1

p→ σ2
e0. Using the same way, we have θ1

p→ θ0. Similarly, for

parameter Σ,

1
N
( ∂2lnL(θ1)
∂vech(Σ)∂vech(Σ)′

− ∂2lnL(θ0)
∂vech(Σ)∂vech(Σ)′

)

= 1
2
D′(Σ−1

1 ⊗Σ−1
1 −Σ−1

0 ⊗Σ−1
0 )D −D′[(Σ−1

1 ⊗ (Σ−1
1

v′
0v0

N
Σ−1

1 )−Σ−1
0 ⊗ (Σ−1

0
v′
0v0

N
Σ−1

0 ))

+Σ−1
1 ⊗ (Σ−1

1
v′
0Z

N
(δ0 − δ1)Σ

−1
1 ) +Σ−1

1 ⊗ (Σ−1
1 (δ0 − δ1)

′Z′v0

N
Σ−1

1 )

+Σ−1
1 ⊗ (Σ−1

1 (δ0 − δ1)
′Z′Z

N
(δ0 − δ1)Σ

−1
1 )]D = op(1),

1
N
( ∂2lnL(θ1)
∂vech(Σ)vec(δ)′ −

∂2lnL(θ0)
∂vech(Σ)vec(δ)′ )

= −D′[(Σ−1
1 ⊗ (Σ−1

1
v′
0Z

N
)−Σ−1

0 ⊗ (Σ−1
0

v′
0Z

N
)) +Σ−1

1 ⊗ (Σ−1
1 (δ0 − δ1)

′Z′Z
N

) = op(1).
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For parameter β1,

1
N
(∂

2lnL(θ1)
∂β1∂β

′
1

− ∂2lnL(θ0)
∂β1∂β

′
1
) = ( 1

σ2
e0
− 1

σ2
e1
)
X′

1X1

N
= op(1),

1
N
(∂

2lnL(θ1)
∂β1∂β

′
2

− ∂2lnL(θ0)
∂β1∂β

′
2
) = ( 1

σ2
e0
− 1

σ2
e1
)
X′

1X2

N
= op(1),

1
N
(∂

2lnL(θ1)
∂β1∂λ

′ − ∂2lnL(θ0)
∂β1∂λ

′ ) = ( 1
σ2
e0
− 1

σ2
e1
)
X′

1v0

N
− X′

1Z

Nσ2
e1
(δ0 − δ1) = op(1),

1
N
( ∂2lnL(θ1)
∂β1∂vec(δ)′ −

∂2lnL(θ0)
∂β1∂∂vec(δ)′ ) = ( 1

σ2
e1
− 1

σ2
e0
)
λ′
0⊗(X′

1Z)

N
− (λ0−λ1)′⊗(X′

1Z)

Nσ2
e1

= op(1),

1
N
(∂

2lnL(θ1)
∂β1∂ρ

− ∂2lnL(θ0)
∂β1∂ρ

) = ( 1
σ2
e0
− 1

σ2
e1
)
X′

1Wy

N
= op(1).

For parameter β2,

1
N
(∂

2lnL(θ1)
∂β2∂β

′
2

− ∂2lnL(θ0)
∂β2∂β

′
2
) = ( 1

σ2
e0
− 1

σ2
e1
)
X′

2X2

N
= op(1),

1
N
(∂

2lnL(θ1)
∂β2∂λ

′ − ∂2lnL(θ0)
∂β2∂λ

′ ) = ( 1
σ2
e0
− 1

σ2
e1
)
X′

2v0

N
− X′

2Z

Nσ2
e1
(δ0 − δ1) = op(1),

1
N
( ∂2lnL(θ1)
∂β2∂vec(δ)′ −

∂2lnL(θ0)
∂β2∂vec(δ)′ ) = ( 1

σ2
e1
− 1

σ2
e0
)
λ′
0⊗(X′

2Z)

N
− (λ0−λ1)′⊗(X′

2Z)

Nσ2
e1

= op(1),

1
N
(∂

2lnL(θ1)
∂β2∂ρ

− ∂2lnL(θ0)
∂β2∂ρ

) = ( 1
σ2
e0
− 1

σ2
e1
)
X′

2Wy

N
= op(1).

For parameter λ,

1
N
(∂

2lnL(θ1)
∂λ∂λ′ − ∂2lnL(θ0)

∂λ∂λ′ )=( 1
σ2
e0
− 1

σ2
e1
)
v′
0v0

N
− (δ0 − δ1)

′ Z′v0

Nσ2
e1
− v′

0Z

Nσ2
e1
(δ0 − δ1)

−(δ0 − δ1)
′ Z′Z
Nσ2

e1
(δ0 − δ1) = op(1),

1
N
( ∂2lnL(θ1)
∂λ∂vec(δ)′ −

∂2lnL(θ0)
∂λ∂vec(δ)′ )=( 1

σ2
e1
− 1

σ2
e0
)
λ′
0⊗(v′

0Z)

N
− (λ0 − λ1)

′ ⊗ v′
0Z

Nσ2
e1
+ λ′

1 ⊗
(δ0−δ1)′Z

′Z
Nσ2

e1

+( 1
σ2
e0
− 1

σ2
e1
)IK1 ⊗

e′0Z

N
− (ρ0 − ρ1)IK1 ⊗ y′W ′Z

Nσ2
e1

−IK1 ⊗ ((β0 − β1)
′ X′Z
Nσ2

e1
)− IK1 ⊗ ((λ0 − λ1)

′X′
1Z

Nσ2
e1
)

+IK1 ⊗ ((λ0 − λ1)
′δ′

0
Z′Z
Nσ2

e1
) + IK1 ⊗ (λ′

1(δ0 − δ1)
′ Z′Z
Nσ2

e1
) = op(1),

1
N
(∂

2lnL(θ1)
∂λ∂ρ

− ∂2lnL(θ0)
∂λ∂ρ

)=( 1
σ2
e0
− 1

σ2
e1
)
v′
0Wy

N
− (δ0 − δ1)

′Z′Wy
Nσ2

e1
= op(1).

For parameter δ,

1
N
( ∂2lnL(θ1)
∂vec(δ)∂vec(δ)′ −

∂2lnL(θ0)
∂vec(δ)∂vec(δ)′ ) = ( 1

σ2
e0
− 1

σ2
e1
) (λ0λ

′
0)⊗(Z′Z)

N
− (λ1λ

′
1−λ0λ

′
0)⊗(Z′Z)

Nσ2
e1

−(Σ−1
1 −Σ−1

0 )⊗ Z′Z
N

= op(1),

1
N
(∂

2lnL(θ1)
∂vec(δ)∂ρ − ∂2lnL(θ0)

∂vec(δ)∂ρ ) = ( 1
σ2
e1
− 1

σ2
e0
)λ0⊗(Z′Wy)

N
− (λ0−λ1)⊗(Z′Wy)

Nσ2
e1

= op(1).
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For parameter ρ,

1
N

∂2lnL(θ1)
∂ρ∂ρ

− 1
N

∂2lnL(θ0)
∂ρ∂ρ

= ( 1
σ2
e0
− 1

σ2
e1
)y

′W ′Wy
N

− tr(G2(ρ1))−tr(G2(ρ0))
N

= op(1),

here we use the mean value theorem that tr(G2(ρ1))−tr(G2(ρ0)) = 2tr(G3(ρ2))(ρ1−ρ0) =

op(1), where ρ2 is a point between ρ1 and ρ0, and we use the fact that tr(G3(ρ2)) = O( N
hN

)

and y′W ′Wy = Op(
N
hN

). Under Assumption 9, G(ρ) is uniformly bounded in both row

and column sums in the neighborhood of ρ0. Thus, tr(G3(ρ2)) = O( N
hN

) (Lemma A.8 in

Lee (2004)). Therefore, we can conclude that the differences between the second-order

derivatives of ∂2lnL(θ)
∂θ∂θ′ at θ1 and those at θ0 in probability to zero.

(ii) We show that 1
N
[∂

2lnL(θ0)
∂θ∂θ′ − 1

N
E(∂

2lnL(θ0)
∂θ∂θ′ )]

p→ 0. The expectation of ∂2lnL(θ0)
∂θ∂θ′ for each

parameter at θ0 are as follows. For parameter σ2
e ,

E(∂
2lnL(θ0)
∂σ2

e∂σ
2
e
) = − N

2σ4
e0
,

E(∂
2lnL(θ0)
∂σ2

e∂β
′
1
) = 0,

E(∂
2lnL(θ0)
∂σ2

e∂β
′
2
) = 0,

E(∂
2lnL(θ0)
∂σ2

e∂λ
′ ) = 0,

E( ∂2lnL(θ0)
∂σ2

e∂vec(δ)′ ) = 0,

E(∂
2lnL(θ0)
∂σ2

e∂ρ
) = − 1

σ4
e0
E(e′

0G(M(δ0)α0 + e0)) = − 1
σ4
e0
E(e′

0Ge0) = − 1
σ2
e0
tr(G).

For parameter Σ,

E( ∂2lnL(θ0)
∂vech(Σ)∂vech(Σ)′

) = −N
2
D′(Σ−1

0 ⊗Σ−1
0 )D,

E( ∂2lnL(θ0)
∂vech(Σ)∂δ′

) = 0.
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For parameter β1,

E(∂
2lnL(θ0)
∂β1∂β

′
1
) = − 1

σ2
e0
E[(Zδ0 + v0)

′(Zδ0 + v0)] = − 1
σ2
e0
(δ′

0Z
′Zδ0 +NΣ0),

E(∂
2lnL(θ0)
∂β1∂β

′
2
) = − 1

σ2
e0
E[(Zδ0 + v0)

′X2] = − 1
σ2
e0
δ′
0Z

′X2,

E(∂
2lnL(θ0)
∂β1∂λ

′ ) = − 1
σ2
e0
E[(Zδ0 + v0)

′v0] = − N
σ2
e0
Σ0,

E( ∂2lnL(θ0)
∂β1∂vec(δ)′ ) = 1

σ2
e0
λ′

0 ⊗ E[(Zδ0 + v0)
′Z] = 1

σ2
e0
λ′

0 ⊗ (δ′
0Z

′Z),

E(∂
2lnL(θ0)
∂β1∂ρ

) = − 1
σ2
e0
E[(Zδ0 + v0)

′G((Zδ0 + v0)β10 +X2β20 + v0λ0 + e0)]

= − 1
σ2
e0
(Zδ0)

′G(Zδ0β10 +X2β20)− 1
σ2
e0
E(v′

0Gv0)(β10 + λ0)

= − 1
σ2
e0
[(Zδ0)

′G(Zδ0β10 +X2β20) + tr(G)Σ0(β10 + λ0)].

For parameter β2,

E(∂
2lnL(θ0)
∂β2∂β

′
2
) = −X′

2X2

σ2
e0

,

E(∂
2lnL(θ0)
∂β2∂λ

′ ) = 0,

E( ∂2lnL(θ0)
∂β2∂∂vec(δ)′ ) = 1

σ2
e0
λ′

0 ⊗ (X ′
2Z),

E(∂
2lnL(θ0)
∂β2∂ρ

) = − 1
σ2
e0
E[X ′

2G((Zδ0 + v0)β10 +X2β20 + v0λ0 + e0)]

= − 1
σ2
e0
X ′

2G(Zδ0β10 +X2β20).

For parameter λ,

E(∂
2lnL(θ0)
∂λ∂λ′ ) = − N

σ2
e0
Σ0,

E( ∂2lnL(θ0)
∂λ∂vec(δ)′ ) = 0,

E(∂
2lnL(θ0)
∂λ∂ρ

) = − 1
σ2
e0
E[v′

0G((Zδ0 + v0)β10 +X2β20 + v0λ0 + e0)]

= − 1
σ2
e0
E(v′

0Gv0)(β10 + λ0) = − 1
σ2
e0
tr(G)Σ0(β10 + λ0).

For parameter δ,

E( ∂2lnL(θ0)
∂vec(δ)∂vec(δ)′ ) = − 1′

σ2
e0
(λ0λ

′
0)⊗ (Z ′Z)−Σ−1

0 ⊗ (Z ′Z),

E(∂
2lnL(θ0)

∂vec(δ)∂ρ ) = 1
σ2
e0
λ0 ⊗ E[Z ′G((Zδ0 + v0)β10 +X2β20 + v0λ0 + e0)]

= 1
σ2
e0
λ0 ⊗ (Z ′G(Zδ0β10 +X2β20)).
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For parameter ρ, we have

E(y′W ′Wy)

= E[((Zδ0 + v0)β10 +X2β20 + v0λ0 + e0)
′G′G((Zδ0 + v0)β10 +X2β20 + v0λ0 + e0)]

= E[(Zδ0β10 +X2β20)
′G′G(Zδ0β10 +X2β20) + (β10 + λ0)

′v′
0G

′Gv0(β10 + λ0) + e′0G
′Ge0]

= (Zδ0β10 +X2β20)
′G′G(Zδ0β10 +X2β20) + (β10 + λ0)

′tr(G′G)Σ0(β10 + λ0) + σ2
e0tr(G

′G),

and hence,

E(∂
2lnL(θ0)
∂ρ∂ρ

) = − 1
σ2
e0
(Zδ0β10 +X2β20)

′G′G(Zδ0β10 +X2β20)

− 1
σ2
e0
(β10 + λ0)

′tr(G′G)Σ0(β10 + λ0)− tr(GG+G′G).

Now, we show that the convergence of the difference between 1
N

∂2lnL(θ)
∂θ∂θ′ and 1

N
E(∂

2lnL(θ)
∂θ∂θ′ )

at θ0 to zero in probability. By Lemma A.10 in Lee (2004), we have 1
N
v′
0Ge0 = op(1),

1
N
Z ′Ge0 = op(1), 1

N
Z ′Gv0 = op(1), 1

N
Z ′G′Gv0 = op(1), 1

N
Z ′G′Ge0 = op(1), and
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1
N
v′
0G

′Ge0 = op(1). It follows that

e′0Wy

N
= 1

N
[e′

0G(Zδ0β10 +X2β20 + v0(β10 + λ0) + e0)] =
1
N
e′
0Ge0 + op(1),

X′
1Wy

N
= 1

N
[(Zδ0 + v0)

′G(Zδ0β10 +X2β20 + v0(β10 + λ0) + e0)]

= 1
N
[(Zδ0)

′G(Zδ0β10 +X2β20) + δ′
0(Z

′Gv0)(β10 + λ0) + δ′
0(Z

′Ge0)

+(v′
0GZ)δ0β10 + (v′

0GX2)β20 + v′
0Gv0(β10 + λ0) + v′

0Ge0]

= 1
N
[(Zδ0)

′G(Zδ0β10 +X2β20) + v′
0Gv0(β10 + λ0)] + op(1),

X′
2Wy

N
= 1

N
[X ′

2G(Zδ0β10 +X2β20 + v0(β10 + λ0) + e0)]

= 1
N
X ′

2G(Zδ0β10 +X2β20) + op(1),

Z′Wy
N

= 1
N
[Z ′G(Zδ0β10 +X2β20 + v0(β10 + λ0) + e0)]

= 1
N
Z ′G(Zδ0β10 +X2β20) + op(1),

v′
0Wy

N
= 1

N
[v′

0G(Zδ0β10 +X2β20 + v0(β10 + λ0) + e0)]

= 1
N
v′
0Gv0(β10 + λ0) + op(1),

y′W ′Wy
N

= 1
N
[(Zδ0β10 +X2β20 + v0(β10 + λ0) + e0)

′G′

×G(Zδ0β10 +X2β20 + v0(β10 + λ0) + e0)]

= 1
N
[(Zδ0β10 +X2β20)

′G′G(Zδ0β10 +X2β20)

+(β10 + λ0)
′v′

0G
′Gv0(β10 + λ0) + e′

0G
′Ge0] + op(1),

where by Lemmas A.8 and A.11 in Lee (2004), E(e′
0Ge0) = σ2

e0tr(G), E(e′
0G

′Ge0) =

σ2
e0tr(G

′G), and

var( 1
N
e′
0Ge0) = (

µ4
e0−3σ4

e0

N2 )
N∑
i=1

G2
ii +

σ4
e0

N2 [tr(GG′) + tr(GG)] = O( 1
NhN

),

var( 1
N
e′
0G

′Ge0) = (
µ4
e0−3σ4

e0

N2 )
N∑
i=1

(G′G)2ii +
2σ4

e0

N2 tr(GG′GG′) = O( 1
NhN

).

Given that

E(v′
0Gv0) = E


v1
0
′Gv1

0 · · · v1
0
′GvK1

0

... . . . ...

vK1
0

′Gv1
0 · · · vK1

0
′GvK1

0

 = tr(G)Σ0,
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where E(vj
0
′Gvj

0) = σ2
vj0tr(G), E(vi

0
′Gvj

0) = σvij0tr(G), and for the second moment

E[(vi
0
′Gvj

0)
2] = E[(

N∑
l=1

N∑
k=1

Gklv
i
k0v

j
l0)

2] = E(
N∑

n=1

N∑
m=1

N∑
l=1

N∑
k=1

GnmGklv
i
n0v

j
m0v

i
k0v

j
l0).

If i = j

E[(vi
0
′Gvi

0)
2]

= µ4
vn0

N∑
n=1

G2
nn + E(vin0vin0vik0vik0)(

N∑
n=1

N∑
k ̸=n

GnnGkk+
N∑

n=1

N∑
m ̸=n

GnmGmn+
N∑

n=1

N∑
m̸=n

G2
nm)

= (µ4
vi0 − 3σ4

vi0)
N∑

n=1

G2
nn + σ4

vi0[tr(G)tr(G) + tr(GG) + tr(GG′)],

if i ̸= j

E[(vi
0
′Gvj

0)
2]

=
N∑

n=1

G2
nnE(vin0v

j
n0v

i
n0v

j
n0) + E(vin0v

j
n0v

i
k0v

j
k0)(

N∑
n=1

N∑
k ̸=n

GnnGkk +GnmGmn

N∑
n=1

N∑
m̸=n

G2
nm)

= (
σ2
vij0

σ4
vi0

µ4
vi0 + σ2

vi0σ
2
vj0 − 4σ2

vij0)
N∑

n=1

G2
nn + σ2

vij0[tr(G)tr(G) + tr(GG) + tr(GG′)].

Therefore, var( 1
N
vi
0
′Gvj

0) = O( 1
NhN

) for all i and j. Similarly, E(v′
0G

′Gv0) = tr(G′G)Σ0

and var( 1
N
vi
0
′G′Gvj

0) = O( 1
NhN

) for all i and j.

Besides, we have

X′
1X1

N
= 1

N
[(Zδ0 + v0)

′(Zδ0 + v0)] =
1
N
(δ′

0Z
′Zδ0 + v′

0v0) + op(1),

X′
1X2

N
= 1

N
(Zδ0 + v0)

′X2 =
1
N
δ′
0Z

′X2 + op(1),

X′
1v0

N
= 1

N
(Zδ0 + v0)

′v0 =
1
N
v′
0v0 + op(1),

λ′
0⊗(X′

1Z)

N
= 1

N
λ′

0 ⊗ ((Zδ0 + v0)
′Z) = 1

N
λ′

0 ⊗ (δ′
0Z

′Z) + op(1).

By the law of large numbers, we have e′0e0
N

p→ σ2
e0,

e′0X

N

p→ 0,
e′0v0

N

p→ 0, Z′e0
N

p→ 0,
v′
0v0

N

p→

Σ0,
v′
0Z

N

p→ 0. Therefore, with the above results,

1

N
[
∂2lnL(θ0)

∂θ∂θ′ − E(
∂2lnL(θ0)

∂θ∂θ′ )]
p→ 0,
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and at θ0 = (σ2
e0, vech(Σ0)

′,β′
10,β

′
20,λ

′
0, vec(δ0)

′, ρ0)
′

E( 1
N

∂2lnL(θ0)
∂θ∂θ′ ) =

− 1
2σ4

e0
0 0 0 0 0

∗ −D′(Σ−1
0 ⊗Σ−1

0 )D

2
0 0 0 0

∗ ∗ −δ′0Z
′Zδ0+NΣ0

Nσ2
e0

−δ′0Z
′X2

Nσ2
e0

−Σ0

σ2
e0

λ′
0⊗(δ′0Z

′Z)

Nσ2
e0

∗ ∗ ∗ −X′
2X2

Nσ2
e0

0
λ′
0⊗(X′

2Z)

Nσ2
e0

∗ ∗ ∗ ∗ −Σ0

σ2
e0

0

∗ ∗ ∗ ∗ ∗ − (λ0λ
′
0)⊗(Z′Z)

Nσ2
e0

− Σ−1
0 ⊗(Z′Z)

N

∗ ∗ ∗ ∗ ∗ ∗

− 1
Nσ2

e0
tr(G)

0

− (Zδ0)′G(Zδ0β10+X2β20)+tr(G)Σ0(β10+λ0)

Nσ2
e0

−X′
2G(Zδ0β10+X2β20)

Nσ2
e0

− tr(G)Σ0(β10+λ0)

Nσ2
e0

λ0⊗(Z′G(Zδ0β10+X2β20))

Nσ2
e0

− (Zδ0β10+X2β20)
′G′G(Zδ0β10+X2β20)+(β10+λ0)′tr(G

′G)Σ0(β10+λ0)

Nσ2
e0

− 1
N
tr(GG+G′G)



.
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The Central Limit Theorem for linear-quadratic forms in Kelejian and Prucha (2001)

gives
1√
N

∂lnL(θ0)

∂θ

d→ N(0,Σθ +Ωθ),

where Σθ = − lim
N→∞

E( 1
N

∂2lnL(θ0)
∂θ∂θ′ ), Ωθ = lim

N→∞
Ωθ,N . Given that

Ωθ,N = E(
1

N

∂lnL(θ0)

∂θ

∂lnL(θ0)

∂θ′ ) + E(
1

N

∂2lnL(θ0)

∂θ∂θ′ ).
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If the errors v1
0,v

2
0, . . .v

K1
0 are pairwise uncorrelated, the log-likelihood function of (3.2.8)

becomes

lnL(θ) = −N(K1 + 1)

2
ln(2π)− N

2
lnσ2

e−
K1∑
j=1

N

2
lnσ2

vj −
e(ϕ)′e(ϕ)

2σ2
e

−
K1∑
j=1

vj(δj)′vj(δj)

2σ2
vj

+ ln |A(ρ)| ,

where vj(δj) = Xj
1 −Zδj. The first order conditions of the log-likelihood function with

respect to θ become



∂lnL(θ0)
∂σ2

e
= 1

2σ4
e0
(e′

0e0 −Nσ2
e0)

∂lnL(θ0)

∂σ2
vj

= 1
2σ4

vj0
(vj

0
′vj

0 −Nσ2
vj0), j = 1, . . . , K1

∂lnL(θ0)
∂β1

= 1
σ2
e0
X ′

1e0

∂lnL(θ0)
∂β2

= 1
σ2
e0
X ′

2e0

∂lnL(θ0)
∂λ

= 1
σ2
e0
v′
0e0

∂lnL(θ0)

∂δj
= −λj0Z

′e0
σ2
e0

+
Z′vj

0

σ2
vj0

, j = 1, . . . , K1

∂lnL(θ0)
∂ρ

= 1
σ2
e0
(GM(δ0)α0)

′e0 +
1

σ2
e0
(e′

0Ge0 − σ2
e0tr(G))

The expectation of 1
N

∂lnL(θ0)
∂θ

∂lnL(θ0)
∂θ′ are as follows. For parameter σ2

e ,

E( 1
N

∂lnL(θ0)
∂σ2

e

∂lnL(θ0)
∂σ2

e
) = 1

4Nσ8
e0
[E(e′

0e0e
′
0e0)− 2Nσ2

e0E(e′
0e0) +N2σ4

e0]

= 1
4Nσ8

e0
[V ar(e′

0e0) + E(e′
0e0)

2 −N2σ4
e0] =

µ4
e0−3σ4

e0

4σ8
e0

+ 1
2σ4

e0
,

E( 1
N

∂lnL(θ0)
∂σ2

e

∂lnL(θ0)

∂σ2
vj

) = 0,

E( 1
N

∂lnL(θ0)
∂σ2

e

∂lnL(θ0)
∂β′

1
) = 1

2Nσ6
e0
E[(e′

0e0 −Nσ2
e0)e

′
0(Zδ0 + v0)]

= 1
2Nσ6

e0
E(e′

0e0e
′
0)Zδ0 =

µ3
e0

2Nσ6
e0
l
′

NZδ0,

E( 1
N

∂lnL(θ0)
∂σ2

e

∂lnL(θ0)
∂β′

2
) = 1

2Nσ6
e0
E[(e′

0e0 −Nσ2
e0)e

′
0X2] =

µ3
e0

2Nσ6
e0
l
′

NX2,

E( 1
N

∂lnL(θ0)
∂σ2

e

∂lnL(θ0)
∂λ′ ) = 1

2Nσ6
e0
E[(e′

0e0 −Nσ2
e0)e

′
0v0] = 0,

E( 1
N

∂lnL(θ0)
∂σ2

e

∂lnL(θ0)

∂δj ′
) = − λj0

2Nσ6
e0
E[(e′

0e0 −Nσ2
e0)e

′
0Z] = −λj0µ

3
e0

2Nσ6
e0
l
′

NZ,
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E( 1
N

∂lnL(θ0)
∂σ2

e

∂lnL(θ0)
∂ρ

)

= 1
2Nσ6

e0
E[(e′

0e0 −Nσ2
e0)e

′
0(GZδ0β10 +GX2β20 +Gv0(β10 + λ0) +Ge0)]

= 1
2Nσ6

e0
E[e′

0e0e
′
0(GZδ0β10 +GX2β20) + e′

0e0e
′
0Ge0 −Nσ2

e0e
′
0Ge0]

= 1
2Nσ6

e0
[µ3

e0l
′

N(GZδ0β10 +GX2β20) + (µ4
e0 + (N − 1)σ4

e0)tr(G)−Nσ4
e0tr(G)].

For parameter σ2
vj,

E( 1
N

∂lnL(θ0)

∂σ2
vj

∂lnL(θ0)

∂σ2
vi

) =
µ4
vj0−3σ4

vj0

4σ8
vj0

+ 1
2σ4

vj0
, if j = i; 0 otherwise,

E( 1
N

∂lnL(θ0)

∂σ2
vj

∂lnL(θ0)
∂β′

1
) = 0,

E( 1
N

∂lnL(θ0)

∂σ2
vj

∂lnL(θ0)
∂β′

2
) = 0,

E( 1
N

∂lnL(θ0)

∂σ2
vj

∂lnL(θ0)
∂λ′ ) = 0,

E( 1
N

∂lnL(θ0)

∂σ2
vj

∂lnL(θ0)

∂δi′
) = 1

2Nσ6
vj0

E(vj
0
′vj

0v
j
0
′Z) =

µ3
vj0

2Nσ6
vj0

l
′

NZ, if j = i; 0 otherwise,

E( 1
N

∂lnL(θ0)

∂σ2
vj

∂lnL(θ0)
∂ρ

) = 0.

For parameter β1,

E( 1
N

∂lnL(θ0)
∂β1

∂lnL(θ0)
∂β′

1
) = 1

Nσ4
e0
E[(Zδ0 + v0)

′e0e
′
0(Zδ0 + v0)] =

δ′0Z
′Zδ0+NΣ0

Nσ2
e0

,

E( 1
N

∂lnL(θ0)
∂β1

∂lnL(θ0)
∂β′

2
) = 1

Nσ4
e0
E(δ′

0Z
′e0e

′
0X2) =

δ′0Z
′X2

Nσ2
e0

,

E( 1
N

∂lnL(θ0)
∂β1

∂lnL(θ0)
∂λ′ ) = 1

Nσ4
e0
E(v′

0e0e
′
0v0) =

Σ0

σ2
e0
,

E( 1
N

∂lnL(θ0)
∂β1

∂lnL(θ0)

∂δj ′
) = − λj0

Nσ4
e0
E(δ′

0Z
′e0e

′
0Z) = − λj0

Nσ2
e0
δ′
0Z

′Z,

E( 1
N

∂lnL(θ0)
∂β1

∂lnL(θ0)
∂ρ

)

= 1
Nσ4

e0
E[(Zδ0 + v0)

′e0e
′
0(GZδ0β10 +GX2β20 +Gv0(β10 + λ0) +Ge0)]

= 1
Nσ4

e0
E[δ′

0Z
′e0e

′
0(GZδ0β10 +GX2β20 +Ge0) + v′

0e0e
′
0Gv0(β10 + λ0)]

= 1
Nσ4

e0
[σ2

e0δ
′
0Z

′(GZδ0β10 +GX2β20) + µ3
e0

N∑
i=1

Gii(δ
′
0Z

′)i + tr(G)σ2
e0Σ0(β10 + λ0)],
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where (δ′
0Z

′)i is the ith column of δ′
0Z

′ and Gij is the (i,j)th element of G. For parameter

β2,

E( 1
N

∂lnL(θ0)
∂β2

∂lnL(θ0)
∂β′

2
) = 1

Nσ2
e0
X ′

2X2,

E( 1
N

∂lnL(θ0)
∂β2

∂lnL(θ0)
∂λ′ ) = 0,

E( 1
N

∂lnL(θ0)
∂β2

∂lnL(θ0)

∂δj ′
) = − λj0

Nσ2
e0
X ′

2Z,

E( 1
N

∂lnL(θ0)
∂β2

∂lnL(θ0)
∂ρ

) = 1
Nσ4

e0
E[X ′

2e0e
′
0(GZδ0β10 +GX2β20 +Gv0(β10 + λ0) +Ge0)]

= 1
Nσ4

e0
E[X ′

2e0e
′
0(GZδ0β10 +GX2β20) +X ′

2e0e
′
0Ge0)

= 1
Nσ4

e0
[σ2

e0X
′
2(GZδ0β10 +GX2β20) + µ3

e0

N∑
i=1

Gii(X
′
2)i].

For parameter λ,

E( 1
N

∂lnL(θ0)
∂λ

∂lnL(θ0)
∂λ′ ) = Σ0

σ2
e0
,

E( 1
N

∂lnL(θ0)
∂λ

∂lnL(θ0)

∂δj ′
) = 0,

E( 1
N

∂lnL(θ0)
∂λ

∂lnL(θ0)
∂ρ

) = 1
Nσ2

e0
tr(G)Σ0(β10 + λ0).

For parameter δ,

E( 1
N

∂lnL(θ0)

∂δj
∂lnL(θ0)

∂δi′
) =

λ2
j0Z

′Z

Nσ2
e0

+ Z′Z
Nσ2
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For parameter ρ,

E( 1
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= 1
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Consequently, at θ0 = (σ2
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where ζv0 = (ζv10, . . . , ζvK10) with ζvj0 = µ3
vj0/σ

6
vj0. Importantly, if (ei,vi) are normal

distributed, µ3
e0 = µ3

vj0 = 0, µ4
e0 = 3σ4

e0, and µ4
vj0 = 3σ4

vj0, and hence Ωθ,N = 0.

B.5 Supplementary Materials: Tables

In this supplement, we provide Monte Carlo results for the case where ui is given by

ui = λvi + 0.5(v2i − 5/3) + ei (B.5.1)

and other DGPs are the same as those in Tables 3.1-3.5. In this setup, Assumption

2, which requires a linear relationship between u and v, is not satisfied. To assess the

consequences of violating this linearity assumption, we report the following statistics in

Tables B.1-B.3:

• Average bias of β̂SQLIML_nonlinear and ρ̂SQLIML_nonlinear, where β̂SQLIML_nonlinear

and ρ̂SQLIML_nonlinear are the SQLIML estimators of β and ρ in models where u is

given by (B.5.1);

• Relative efficiency of β: RE(β̂) = RMSE(β̂SQLIML)/RMSE(β̂SQLIML_nonlinear),

where β̂SQLIML is the SQLIML estimator of β in models where u is given by (3.4.2);

• Relative efficiency of ρ: RE(ρ̂) = RMSE(ρ̂SQLIML)/RMSE(ρ̂SQLIML_nonlinear),

where ρ̂SQLIML is the SQLIML estimator of ρ in models where u is given by (3.4.2);

• Size and Power of exogeneity test, H0 : λ = 0, in models where u is given by (B.5.1).
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Table B.1: Bias of SQLIML Estimates in Models Violating the Linearity Assumption

Average Bias of β̂SQLIML_nonlinear Average Bias of ρ̂SQLIML_nonlinear

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

L = 1
λ = 0.1 0.0001 0.0014 0.0003 -0.0126 -0.0058 0.0031 -0.0084 -0.0083 -0.0050 -0.0022 -0.0033 -0.0027
λ = 0.5 -0.0201 0.0058 0.0006 -0.0225 -0.0135 -0.0056 -0.0061 -0.0026 -0.0045 -0.0025 -0.0034 -0.0022
λ = 1 -0.0259 -0.0158 -0.0006 -0.0229 -0.0143 0.0014 -0.0041 -0.0044 -0.0051 -0.0031 -0.0010 -0.0031
λ = 1.5 -0.0981 -0.0345 -0.0107 -0.0388 -0.0144 0.0009 -0.0060 -0.0046 -0.0044 -0.0032 -0.0034 -0.0012

L = 4
λ = 0.1 0.0104 0.0054 0.0031 0.0010 -0.0020 0.0003 -0.0048 -0.0047 -0.0044 -0.0017 -0.0023 -0.0031
λ = 0.5 0.0106 0.0010 0.0050 0.0175 0.0093 0.0054 -0.0069 -0.0047 -0.0059 -0.0022 -0.0027 -0.0021
λ = 1 0.0197 0.0078 0.0034 0.0228 0.0114 0.0063 -0.0038 -0.0043 -0.0048 -0.0025 -0.0023 -0.0019
λ = 1.5 0.0296 0.0056 0.0010 0.0280 0.0107 0.0055 -0.0046 -0.0037 -0.0035 -0.0020 2.45E-05 2.89E-05

L = 8
λ = 0.1 0.0051 -0.0017 -0.0031 0.0040 0.0019 0.0014 -0.0056 -0.0051 -0.0073 -0.0025 -0.0026 -0.0023
λ = 0.5 0.0061 0.0043 0.0014 0.0016 0.0056 0.0009 -0.0076 -0.0036 -0.0026 -0.0039 -0.0007 -0.0021
λ = 1 0.0272 0.0100 0.0039 0.0122 0.0042 0.0015 -0.0035 -0.0032 -0.0025 -0.0029 -0.0027 -0.0020
λ = 1.5 0.0418 0.0157 0.0034 0.0254 0.0052 0.0024 -0.0031 -0.0026 -0.0025 -0.0015 -0.0024 -0.0014

L = 16
λ = 0.1 0.0019 0.0012 0.0009 0.0008 0.0011 -0.0003 -0.0054 -0.0074 -0.0058 -0.0054 -0.0019 -0.0011
λ = 0.5 0.0188 0.0069 0.0029 0.0030 0.0047 0.0023 -0.0034 -0.0026 -0.0053 -0.0017 -0.0040 -0.0040
λ = 1 0.0336 0.0128 0.0038 0.0186 0.0075 0.0041 -0.0057 -0.0057 -0.0036 -0.0031 -0.0033 -0.0014
λ = 1.5 0.0458 0.0177 0.0069 0.0199 0.0089 0.0041 -0.0046 -0.0022 -0.0020 -0.0027 -0.0020 -0.0014

Table B.2: Relative Efficiency of SQLIML Estimates in Models Meeting and Violating
the Linearity Assumption

Relative Efficiency of β̂SQLIML/β̂SQLIML_nonlinear Relative Efficiency of ρ̂SQLIML/ρ̂SQLIML_nonlinear

N = 500 N = 1000 N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

L = 1
λ = 0.1 0.5197 0.5215 0.5093 0.3952 0.3874 0.5073 0.9063 0.9016 0.9263 0.9307 0.9031 0.9210
λ = 0.5 0.5350 0.5924 0.5273 0.4549 0.4494 0.5333 0.8685 0.8347 0.8554 0.8309 0.8160 0.8213
λ = 1 0.6793 0.6381 0.6081 0.6568 0.6439 0.6360 0.8169 0.8254 0.7798 0.7865 0.7525 0.7364
λ = 1.5 0.7344 0.7369 0.7164 0.7405 0.6420 0.7232 0.7288 0.7387 0.8009 0.7412 0.7515 0.7379

L = 4
λ = 0.1 0.5081 0.5072 0.5071 0.5313 0.5176 0.5296 0.8679 0.8477 0.8150 0.8917 0.8783 0.8099
λ = 0.5 0.5321 0.5553 0.5682 0.4826 0.4828 0.4834 0.8241 0.8226 0.8156 0.8282 0.7972 0.7609
λ = 1 0.6277 0.6310 0.6345 0.5772 0.5784 0.5795 0.7766 0.7706 0.7498 0.7567 0.7441 0.7178
λ = 1.5 0.6516 0.7442 0.7457 0.6741 0.7262 0.7279 0.7291 0.6912 0.6748 0.7137 0.6970 0.6840

L = 8
λ = 0.1 0.4799 0.5121 0.5007 0.4626 0.4600 0.4838 0.8890 0.8603 0.7535 0.8916 0.8482 0.7608
λ = 0.5 0.5798 0.5308 0.5358 0.5300 0.5635 0.5635 0.8273 0.8174 0.7712 0.8083 0.8040 0.7365
λ = 1 0.6199 0.6204 0.6224 0.6495 0.6493 0.6505 0.7902 0.7717 0.7407 0.7777 0.7452 0.7111
λ = 1.5 0.7125 0.7099 0.6920 0.7424 0.7563 0.7542 0.7569 0.7477 0.6975 0.7337 0.7015 0.6672

L = 16
λ = 0.1 0.4968 0.4846 0.5244 0.4091 0.4928 0.4844 0.8679 0.7376 0.7257 0.8592 0.7733 0.7282
λ = 0.5 0.5146 0.5255 0.5695 0.5803 0.5350 0.5368 0.8093 0.7762 0.7147 0.8375 0.7156 0.6664
λ = 1 0.6891 0.6721 0.6413 0.6275 0.6236 0.6396 0.7494 0.7357 0.6847 0.7123 0.6879 0.7007
λ = 1.5 0.7584 0.7509 0.7465 0.7804 0.7585 0.7269 0.7310 0.6740 0.6484 0.6928 0.6698 0.6573
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Table B.3: Size and Power of Exogeneity Test in Models Violating the Linearity
Assumption

N = 500 N = 1000

c = 0.3 c = 0.5 c = 0.8 c = 0.3 c = 0.5 c = 0.8

L = 1
λ = 0 0.107 0.248 0.376 0.134 0.277 0.399
λ = 0.1 0.109 0.255 0.371 0.157 0.296 0.450
λ = 0.5 0.325 0.605 0.789 0.523 0.789 0.893
λ = 1 0.728 0.912 0.957 0.894 0.968 0.973
λ = 1.5 0.937 0.979 0.989 0.976 0.986 0.990

L = 4
λ = 0 0.274 0.412 0.504 0.314 0.480 0.558
λ = 0.1 0.302 0.441 0.535 0.339 0.508 0.572
λ = 0.5 0.681 0.796 0.871 0.793 0.888 0.917
λ = 1 0.936 0.958 0.971 0.966 0.981 0.985
λ = 1.5 0.984 0.992 0.993 0.986 0.990 0.994

L = 8
λ = 0 0.375 0.487 0.523 0.434 0.552 0.562
λ = 0.1 0.384 0.508 0.566 0.449 0.571 0.614
λ = 0.5 0.791 0.865 0.897 0.901 0.930 0.945
λ = 1 0.961 0.971 0.979 0.979 0.981 0.982
λ = 1.5 0.988 0.995 0.992 0.993 0.999 0.997

L = 16
λ = 0 0.439 0.536 0.569 0.507 0.591 0.581
λ = 0.1 0.463 0.526 0.593 0.517 0.597 0.643
λ = 0.5 0.850 0.894 0.892 0.908 0.947 0.951
λ = 1 0.970 0.979 0.984 0.989 0.991 0.992
λ = 1.5 0.995 0.994 0.995 0.997 0.999 0.996
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