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Abstract

Barrett's oesophagus is the only known precursor to oesophagus carcinoma.
Histologically, it is defined as a condition of columnar cells replacing the
standard squamous lining. Those altered cells are prone to cytological and
architectural abnormalities, known as dysplasia. The dysplastic degree
varies from low to high grade and can evolve into invasive carcinoma or
adenocarcinoma. Thus, detecting high-grade and intramucosal carcinoma
during the surveillance of Barrett's oesophagus patients is vital so they can
be treated by surgical resection. Unfortunately, the achieved interobserver
agreement for grading dysplasia among pathologists is only fair to moderate.
Nowadays, grading Barrett's dysplasia is limited to visual examination by
pathologists for glass or virtual slides. This work aims to diagnose different
grades of dysplasia in Barrett's oesophagus, particularly high-grade
dysplasia, from virtual histopathological slides of oesophagus tissue.

In the first approach, virtual slides were analysed at a low
magnification to detect regions of interest and predict the grade of dysplasia
based on the analysis of the virtual slides at 10X magnification. Transfer
learning was employed to partially fine-tune two deep-learning networks
using healthy and Barrett’'s oesophagus tissue. Then, the two networks were
connected. The proposed model achieved 0.57 sensitivity, 0.79 specificity
and moderate agreement with a pathologist.

On the contrary, the second approach processed the slides at a
higher magnification (40X magnification). It adapted novelty detection and
local outlier factor alongside transfer learning to solve the multiple instances
learning problem. It increased the performance of the diagnosis to 0.84
sensitivity and 0.92 specificity, and the interobserver agreement reached a
substantial level.

Finally, the last approach mimics the pathologists’ procedure to
diagnose dysplasia, relying on both magnifications. Thus, their behaviours
during the assessment were analysed. As a result, it was found that
employing a multi-scale approach to detect dysplastic tissue using a low
magnification level (10X magnification) and grade dysplasia at a higher level
(40X magnification). The proposed computer-aided diagnosis system was
built using networks from the first two approaches. It scored 0.90 sensitivity,
0.94 specificity and a substantial agreement with the pathologist and a
moderate agreement with the other expert.
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Chapter 1. Introduction

1.1 An overview

Barrett’'s oesophagus is a medical condition that results from the growth of
abnormal cells in the oesophagus lining, as a columnar lining replaces the
usual squamous lining. The transformation process could evolve into
different forms of dysplasia, which are considered precancerous changes
that could eventually lead to oesophageal cancer. Worldwide, oesophageal
cancer is one of the deadliest types of cancer, with a dismal survival rate
(Delpisheh et al., 2014). That disease could be diagnosed and monitored via
endoscopic sessions with biopsies extraction to be examined histologically
by pathologists. Unfortunately, monitoring and examining different types of
dysplasia are critical and expensive, and many studies showed that
diagnosing dysplasia in Barrett’'s oesophagus suffers from low agreement
among pathologists (Wani et al., 2016) and (Vennalaganti et al., 2017).
Those limitations create a gap in diagnosing and classifying different grades
of dysplasia in Barrett’'s oesophagus that suggests and encourage artificial
intelligence researchers to develop and improve accurate and reliable
computer-aided diagnosis (CAD) to assist in the diagnosing by either
detecting the region of interest where the pathologists should examine or
localising and classifying different grades of dysplasia.

Developing CAD systems to analyse histological images requires learning
models to extract features from virtual tissue slides. The learning
approaches could follow conventional machine-learning or deep-learning
feature engineering methods. The conventional approaches require the
manual design of feature extractors, which involves domain experts. Those
techniques are expensive and introduce cognitive bias. Therefore, deep-
learning approaches are considered alternative feature extractors that do not
need to be handcrafted (Sali et al., 2020). Although those approaches do not
involve domain experts in designing the feature extractors, they still require
them to provide massive and precise annotations from the tissue to train
models in a supervised manner. Unsupervised and weakly supervised
approaches offer a low-cost dataset annotation process to overcome this
obstacle. On the one hand, unsupervised learning does not require a
labelled dataset.
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On the other hand, weakly supervised learning can handle datasets with
multiple labels, inaccurate labels and labels for bags consisting of unlabelled
instances, also known as multiple instances learning (MIL). Furthermore,
transfer learning offers a solution to cases where insufficient dataset sizes
are available to train models. Transfer learning is based on using a trained
model on a massive related or unrelated field problem as an initial model for
a new case. Then, the model is fine-tuned using the dataset of the new
case.

The available dataset for this thesis is composed of whole virtual slides
histological images for biopsies that were extracted from Barrett's
oesophagus patients with different grades of dysplasia. From each whole
virtual slide, different annotations, sometimes overlapped annotations, were
labelled by domain pathologists and the whole virtual slide has the label of
the highest grade of any of its contained annotations. Furthermore, each
annotation contains multiple unlabelled patches. That dataset is a perfect
case that represents the MIL problem, which MIL and deep-learning could
analyse.

MIL deep-learning approaches generally train a model at the instance level,
assuming that each instance in the bag has the bag's label. Usually, at the
prediction phase of the bag, a spatial pooling over the instances is
performed to infer the bag label. To the best of our knowledge, no studies
have been conducted on employing a deep-learning one-class classifier to
cleanse the bags from the instances that do not belong to them. This thesis
will introduce a framework trained in a weakly supervised manner,
particularly MIL, and it employs a one-class classifier to overcome this
challenge. Section 1.3 provides information about the research framework.

This thesis will demonstrate the development of the proposed CAD system
to detect dysplasia in Barrett's oesophagus and grade it into low-grade or
high-grade dysplasia (refer to Chapter 6). Processing and analysing the
WSiIs is accomplished at different magnifications, starting from the lowest
power magnification and increasing the power to perform more analysis that
is complicated. The proposed work starts with tissue detection (background
elimination) and noise reduction at the available thumbnail magnification
(1.25X or 2.5X) for tissue detection and at 5X for noise reduction, as
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discussed in Chapter 3. Then, the magnification power is increased to detect
dysplastic tissue at 10X magnification (refer to Chapter 4). Finally, the
detected dysplastic tissue at 10X will be analysed at higher power
magnification (40X) to discriminate low-grade dysplasia from high-grade
dysplasia (refer to Chapter 5). Figure 1.1 provides an overview diagram that
illustrates the workflow of the CAD system over Chapter 3, Chapter
4, Chapter 5 and Chapter 6.

(Chapter 6)

(Chapter 3) (Chapter 4) (Chapter 5) The
Tissue Tissue Tissue N integrated i
detection Analysis at Analysis at T | o, | High-grade
and noise 10x 40x from dysplasia

reduction

magnification magnification Chapters 3,4

and 5

Output

g

Tissue mask 10X heatmap 40X heatmap CAD heatmap

Figure 1.1 An overview diagram for the work in chapters 3,4,5 and 6

1.2 Research motivation, aim and objectives

Grading dysplasia in Barrett's oesophagus suffers from a suboptimal
interobserver agreement even between expert gastrointestinal pathologists.
There is an intraobserver disagreement when a pathologist assesses a slide
on different occasions. The interobserver and intraobserver disagreements
are attributed to the lack of clearly defined guidelines for the grading
process. Moreover, the dysplastic changes in Barrett's oesophagus are
continuous, with undefined boundaries between each grade and its adjacent
grades. This research is motivated mainly by the previously mentioned facts
and the need for automating the process of analysing the available virtual
pathology slides to save the time and cost of the manual process.

Thus, this research aims to shed light on the grey area where pathologists
disagree by developing a CAD system that detects and grades dysplasia in
Barrett's oesophagus. Furthermore, the developed system should increase
the diagnosing performance for high-grade dysplasia, mainly because it
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needs a surgical intervention to limit cancer progression, knowing that
patients with oesophageal adenocarcinoma are predicted to have a dismal
5-year survival (Vennalaganti et al., 2017).

Therefore, this research aims to aid in measuring the degree of dysplasia in
Barrett’'s oesophagus from the virtual slides using the cytological and
architectural abnormality changes. In addition, this research should help
identify the regions where a pathologist or the developed analyser examines
to pave the way for the whole virtual slide analysis.

1.3 Thesis structure and research framework

The remainder of this thesis is structured as follows: Chapter 2 provides
detailed information about the histological anatomy of the normal
oesophagus and Barrett's oesophagus and the cytological and architectural
abnormalities that occur in each grade of dysplasia in Barrett’'s oesophagus.
Having greater insight into the clinical guidelines in the diagnosing process
would yield valuable information that helps design the CAD system and
understand its performance. Additionally, it discusses the approaches of
other attempts to diagnose this disease and the key papers concerning the
current work, such as the conducted work in the deep-learning architectures
and learning approaches, including weakly supervised learning, transfer
learning and one-class classification.

Based on the reviewed literature and the conducted experiments, the
developmental framework for the proposed CAD system is summarised in
Figure 1.1. The framework shows that diagnosing dysplasia starts with
whole slide pre-processing, including tissue detection, noise reduction, and
patches sampling at low-power magnification. Then, the dysplastic regions
are detected based on the analysis of the whole slide images (WSIs) at a
higher power magnification (10X). After that, another higher-level analysis is
performed at 40X magnification to grade the severity of dysplasia in the
detected regions. Finally, the whole system is run in sequence to produce a
heatmap representing the local-level classification of dysplasia for tissues
within the inputted virtual slide. An inference histogram-based system is
employed to grade the whole tissue.
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Chapter 3 explains the used dataset and provides detailed explanations of
the annotation process and the available ground-truth labels. In addition, it
highlights the dataset challenge. The adopted image pre-processing
algorithms to detect tissues (Foreground) and reduce the noise are also
discussed. It contains the technique followed in sampling patches.

Chapter 4 explains the experiment that attempts to detect regions of interest
by training a unique Convolutional Neural Network (CNN) architecture to
discriminate between the structure of a normal oesophagus and Barrett’s
oesophagus tissues. Moreover, the experiment of extracting features at 10X
magnification and grade dysplasia at the patch-level using them, then the
annotation-level grading inference sub-model that employs the generated
heatmaps to predict the annotation grade are included. Finally, the two
networks are combined to grade the detected regions of interest only to
reduce the computational cost, and the proposed model results are
discussed.

Chapter 5 discusses the weakly supervised problem of MIL that is
introduced by the nature of the histological images. It provides the
implementation to manipulate this issue using a one-class classifier. The
proposed solution can be used in two ways:

e To prepare the training dataset by filtering the non-dysplastic patches
as much as possible from the dysplastic annotations. As a result, the
cleaned training dataset can be used to train the low-level-based
classification network in a supervised manner without worrying about
confusing the classifier.

e Add the proposed solution to the previously mentioned network to
boost performance by filtering the non-dysplastic patches from the
test set.

Chapter 6 analyses the method pathologists follow in diagnosing the disease
to design a consensus diagnosis between the architectural and the
cytological analysis by summarising the clinical guidelines for diagnosing
and grading Barrett’s related dysplasia to design a logical system and also
relying on the assumption that the extracted features at 10X and 40X
magnifications represent architectural and cytological features, respectively.
Furthermore, it analyses their behaviours in the annotations process by
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observing the magnification level of each annotation and its corresponding
label. As a result of the observation, the analysis of WSIs at a 10X
magnification-based classifier was employed as a region of interest detector
to detect dysplasia and to employ the analysis at a 40X magnification-based
classifier as a dysplasia classifier. Lastly, it provides empirical experiments
for different combinations of networks to decide the best performing CAD
system.

Finally, Chapter 7 concludes the research work, provides a wrap-up
discussion of the research outcomes, highlights the limitation of the
proposed work, suggests further work to improve the work in the future, and
discusses the possibility of extending it to be used in other related problems
such as grading colon dysplasia.

1.4 Research questions

This research aims to propose a CAD system that aids pathologists in
detecting and grading dysplasia in Barrett's oesophagus. That is achieved
by answering the following research questions:

Question 1: When testing performance for grading dysplasia in Barrett's
oesophagus at 10X magnification, how do a conventional machine learning-
based model proposed by Adam (2015) and a weakly supervised deep-
learning model compare?

Question 2: How effective is employing the deep-learning one-class
classification algorithm in addressing the multiple instances problem in
histological images?

Question 3: How do the analysis and imitation of the pathologists'
behaviours while designing a CAD system in selecting the magnification to
grade levels of dysplasia in Barrett’'s oesophagus affect the performance of
the CAD system?

1.5 Research contributions to current knowledge

The contributions of this thesis can be summarised and presented in
chronological order as follows: Chapter 3 contributes to the field of virtual
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histopathology image pre-processing by providing a tool to pre-process H&E
stained virtual slides. The tool integrated two approaches from other works.
It includes the approach used by Haggerty et al. (2014) to detect the tissue
and reduce noise. Some rules from the work of Adam (2015) and new rules
from our observation were added for artefacts elimination. The tool samples
patches from the detected tissue or the annotations.

Chapter 4 implemented a fork-style model to detect the region of interest
(normal versus Barrett's tissue) and classify them using low-power
magnification. It contributes to the pathology society by implementing a fast
and low-cost, weakly supervised deep-learning model to grade dysplasia.
Another contribution is a novel inference approach for grading the
annotations and slides of dysplasia in Barrett's oesophagus. The inference
approach relies on the histogram of the patch-level prediction. The location
of each patch is taken into consideration as the contribution of the disease
diagnosis varies from the epithelial layer to the lamina propria layer.

Chapter 5 developed a novel solution to tackle Barrett's oesophagus
dataset's weakly supervised MIL problem. This solution contributed to the
deep-learning community by proposing a one-class classifier to fill the gap in
addressing the MIL problem following the object detection approach. This
solution was used mainly to clean the training dataset before training the
supervised network, which analysed the virtual slides based on the
cytological abnormalities. In addition, it can be used to boost the
performance of the low-level-based classification network by detecting the
non-dysplastic patches from the virtual slides.

Chapter 6 contributes to the histopathology community by doing the
following:

e |t provides a logical system to compute the consensus diagnosis
between the prediction of the networks that analyse WSIs at 10X and
40X magnifications.

e |t provides a solution that emulates the pathologists’ behaviours in
detecting the region of interest. The solution uses the 10X
magnification analysis network to detect dysplasia because empirical
experiments showed that classifying dysplasia at that level has high
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precision in grading NFD. Indicates that the system rarely predicts
dysplastic tissue as not dysplasia.

It provides a fully automated CAD that localises different dysplasia
grades in tissues and classifies the slide into one of the three grades
of dysplasia.



Chapter 2. Literature Review

This Chapter presents the main research areas: histopathology, deep-
learning architectures and approaches for learning such architectures, and
the best performance metrics to evaluate the performance of the learnt deep
models in the medical field. Finally, it discusses the one-class classification.
All the discussion in this chapter is held in the light of that were used with
histological images. Besides, it will highlight the limitation of the current
works leading the discussion to possible approaches that will inform the
methodology of this research.

2.1 Histopathology

This section will tackle histology, particularly the virtual slides, the anatomy
of the normal and the abnormal oesophagus, and the pathological criteria for
diagnosing and grading dysplasia in Barrett's oesophagus. Finally, some of
the clinical challenges that increase the difficulty in grading Barrett's
oesophagus dysplasia will be discussed.

2.1.1 Histopathology slides

When a treatment of a patient from disease cannot be provided unless
histology is conducted, histology takes place for further verification to enable
the physician to diagnose by getting adequate tissue from the patient after
the physician has already examined the patient physically, referred to the
patient's history, or conducted the necessary imaging and laboratory
examinations. That is the first stage in histology, where such tissue can be
taken by fine-needle aspiration, needle biopsy, excisional biopsy, or
complete damaged-area removal. Those procedures are arranged in
ascending order according to sensitivity and specificity. The rates increase
since large samples assist in understanding the contextual relationship of a
cell and help pathologists examine different tissue slides. The tissue is
examined closely using a microscopic tool for scaling by a pathologist,
specifying its colour and features. However, large samples are handled by
cutting them into smaller pieces to suit the tissue-holding cassette, i.e. about
10 x 10 x 3 millimetres.
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After the tissue is collected, processing it (chemical and physical
preparation) comes next, the second stage. In this stage, the tissue is first
dipped in a solution preventing cell breakdown and the growth of
microorganisms. This preparation process ranges from a few hours to 24
hours based on the size of the biopsy, as more extensive biopsies require a
longer time. It is imperative to conduct that process for better sectioning and
microscopic morphology. The chemical preparation is followed by the
physical one in which the cellular morphology is retained using different
means, including freeze-drying, microwave, and chemical means. The use of
alcohols and xylene is commonly seen in many labs as the tissue is dried
from the water and the fixing solution using a dehydrator. After that, the
dehydrator is removed to prepare for the next step, which requires infiltrating
the tissue with paraffin. In the last step, the tissue is altered to be firm during
a process that takes time ranging from nine to a few hours, which is the case
in many labs. The process can be accomplished by paraffin that gets heated
in the processor to turn it into a liquid. Then by a vacuum, it infiltrates into
the tissue and turns the processed tissue into a firm object after it cools
down. This process leads to having a smaller sample than the original one.

The third stage is embedding, and in this stage, the previously prepared
tissue is positioned in a mould, covering that tissue with paraffin. After that, it
will be left on top of the cooling surface to harden it. This embedded tissue
will be ready for sectioning since the solidified paraffin wax covers it. It is
crucial to consider the positioning of the tissue when placed over the
cassette since the tissue will be cut based on the holding cassette.

After embedding is completed, sectioning, the fourth stage, comes next. The
tissue will be cut into slices during this stage and then placed on a flat
microscope glass. Like a meat-slicing machine, a microtome is used to slice
the tissue, whether manually, semi-automatically, or automatically. The
manual slicer, for instance, is a microtome with a rotating handler that, when
rotated by the handler, creates a thin tape-like-shaped tissue. Usually, the
tissue is cut at a thickness ranging from three to four micrometres. It is
somewhat difficult to cut the tissue into small slices because it may ruin the
tissue, and it is essential to note that thick slices darken the stain and
conceal the nuclear properties. After cutting the tissue into thin slices, the
slices are placed over around 10°C hot water, avoiding reaching the melting
degree of paraffin to remove any wrinkles caused by the microtome during
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the slicing process. The final step is to put the tissue over the flat
microscope glass (dimensions: 25 x 75 x 1 millimetre).

Staining is the fifth stage, during which staining techniques stain the slices,
and the most common ones are haematoxylin and eosin (H&E). The staining
is of great importance since the tissue will not be visible by merely using the
microscope. When haematoxylin is used for staining, the nucleic acids turn
blue, unlike eosin, which turns the proteins such as cytoplasm and
connective tissue into pink (Gurcan et al., 2009). Those colours will appear
to the eye when a bright-field microscope is used. In most cases, the blue
colour represents cell nuclei, and the cytoplasm, based on its components,
can be represented by either a bright red or purple colour. Since H&E stains
most of the cells' constituents, those stains are still used until this day in
pathology. In addition, they clearly differentiate between cells' constituents
as they have chemical features staining those constituents with colours
located on the opposite ends of the visible spectrum. The differences in
those colours assist in the diagnosis process as they help in spotting tissue
differences. The final step is to cover the sample slide with another smaller
adhesive cover glass to prepare it for microscopic or digital visualisation,
which is the sixth stage.

Recently, pathologists have preferred to turn samples into virtual ones,
making diagnosis easier. Thus, whole-slide scanners are used to facilitate
easier scanning of high quality. When samples are digitised, they become
easier to save in the records, hence easier to recover. With the digital
approach, samples are explored, note-recorded, and shared effectively.
They can be used for different purposes, including education and
discussions. Those samples may be detected efficiently and quantitatively in
the future, whether entirely or partly automatically, to spot any problems in
the tissue. Digital visualisation may take over the typical microscopic
process due to its prominent benefits. Therefore, different companies
worldwide provide such techniques with a spatial resolution of about 0.25 pm
per pixel using an objective lens with a magnification of 40X. Saving the
virtual samples would be better than the glass ones since they do not
occupy physical storage spaces; besides, they are less likely to be
damaged. However, this does not indicate that the concerned organisations
will dispense the glass slides, as they should be kept minimally for ten years.
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2.1.2 Anatomy of the normal oesophagus

The oesophagus links the pharynx to the stomach as a channel with a length
ranging from around 25 to 28 cm in adults, differing from one person to
another depending on age, height, physical condition, and gender. In
contrast, men tend to have a longer oesophagus than women (Ferhatoglu
and Kivileim, 2017). It moves food caudally towards the stomach and stops
any stomach or oesophagus contents retrogression. The oesophagus is
closed at its opposite ends like an empty pipe, with the upper oesophageal
sphincter at the top and the lower oesophageal sphincter at the bottom (see
Figure 2.1) (Fisichella and Patti, 2001). The gastrointestinal tract, which
includes the oesophagus, is of a histologically distinguished structure. Like a
tube with a various-diameter lumen, this tract consists of a four-layer wall;
such layers include the mucosa, submucosa, muscularis propria (externa),
and adventitia (Ferhatoglu and Kivilcim, 2017). Due to the absence of a
serosa layer in the oesophagus, which was substituted with adventitia that
works as a holder for the oesophagus and it binds it to the adjacent tissue
and organs, infections and tumours tend to spread widely and quickly to the
other organs once they start in the oesophagus (Shaheen et al., 2017).
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Figure 2.1 The differences in endoscopies and histologic examinations
between a healthy person and Barrett’'s oesophagus patients

A and D belong to a healthy person, while B and C show salmon-
coloured velvety mucosa appearing over the Z-line in a circumferential
(C) and a tongues-like form (B). E shows the histologic image for how
the histologic image of the biopsies should like if they are taken from
the salmon regions in B and C.

According to (Ferhatoglu and Kivilcim, 2017) and (Peckham et al., 2003), a
healthy oesophagus has the following histologic structure. The lumen wall of
the oesophagus is covered by non-keratinising stratified squamous
epithelium. The epithelium’s basal layer contains columnar cells with a
spherical cell nucleus. Cellular regeneration occurs in the basal layer as new
cells disconnect from the basement membrane (i.e., an extracellular matrix
of thin thickness, splitting the lamina propria from the epithelial layer). Those
cells rise, reshaping and substituting the epithelium’s inside layer. There is a
layer under the epithelium providing vascular support. It consists of
lymphatic capillaries, blood capillaries, and the lamina propria, a loose
connective tissue. Such a supporting layer is vital to the epithelium as it
reaches it by the papillae, the finger-like extensions.
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Regarding histology representations, lamina propria cells of dark colour are
considered lymphoid aggregations. The third layer of the mucosa is
muscularis mucosa which consists of two layers that are thin and smooth
longitudinally shaped muscles that assist in mucosa movement. The second
layer in the oesophagus is the submucosa, characterised by being
prominently vascular. It has loose connective tissue and oesophageal glands
producing mucus that assists in food movement. The third layer is the
muscularis propria, which has different muscles, as it has a skeletal muscle
in the upper part, both a smooth and skeletal one in the centre and a smooth
one in the lower part. Finally, the last external layer in the oesophagus is the
adventitia, which has loose connective tissue covered with the visceral
peritoneum. Such tissue includes blood vessels, lymph, and nerves. The
oesophagus’s layers are illustrated in Figure 2.2, while a transverse section
of the oesophagus is illustrated in Figure 2.3, showing the four layers in
histology representation at low power.

Serosa:
Areolar connective tissue
Epithelium

Glands in submucosa

Mucosa:
Muscularis mucosae
Lamina propria
Epitheliu

Muscularis:

ircular muscle
Longitudinal muscle

Duct of gland
outside tract

Submucosa

Glands in mucosa
Glands in mucosa

Figure 2.2 Oesophagus four layers (mucosa, submucosa, muscularis
propria, and adventitia)



-15 -

— N
f’soo um 4

M s h
";’ ’ {'Submucou

¢ RS (qmcou
B "z «5

é \.. Lumen I!) Musculuk
;c,. -, B propria

& 50 W
= ¥ - (4) Adventitia

Figure 2.3 A transverse section histology image of the oesophagus with its
four different layers at 500 pm power (Peckham et al., 2003)

As the concerned subject in this study, the first layer mentioned earlier in the
oesophagus, the mucosa, consists of squamous cells like those in the skin
or mouth. The colour of the normal squamous mucosal surface seems
whitish-pink, unlike the gastric mucosa, containing columnar cells, as its
colour ranges from salmon-pink to red. Figure 2.1 demonstrates where the
Z-line is located in a typical case. The Z-line (also known as the
squamocolumnar junction) is the line that separates and marks the meeting
point of the oesophagus squamous mucosa and the gastric columnar
mucosa (Ferhatoglu and Kivilcim, 2017).

2.1.3 Barrett’s oesophagus

Globally, Barrett’'s Oesophagus is defined differently. Moreover, there is a
conflict over differences in the stances regarding the necessity of intestinal
metaplasia identification. Intestinal metaplasia can be identified with
histological means once goblet cells appear in the gastric mucosa. As stated
in the American College of Gastroenterology's guidelines, Barrett's
Oesophagus is defined as a case in which the distal oesophagus shows
changes that appear to be columnar using endoscopy, confirmed by the
presence of intestinal metaplasia in the taken biopsy. Such a definition is
approved as well by the American Gastroenterological Association.

On the other hand, the British and Japanese gastroenterologists do not see
the need for the goblet cells' exploration using histological means, as the
British Society of Gastroenterology states that Barrett's Oesophagus is the
metaplastic columnar mucosa which can be explored using endoscopy (i.e.,
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above the gastroesophageal junction by =1 cm). A biopsy can support such
detection to decide whether it is metaplastic or not. However, histology is not
necessary to recognise goblet cells, whether the gastric-type mucosa
involves intestinal metaplasia or not (Grin and Streutker, 2014). The British
Society of Gastroenterology's definition is endorsed in several studies (Kelty
et al., 2007), (Gatenby et al., 2008) and (Liu et al., 2009)) as they indicate
that metaplastic columnar epithelium that does not involve goblet cells could
involve molecular abnormalities being somehow similar or the same to the
ones in cases of goblet cells (Naini et al., 2016).

Previously, Barrett's oesophagus used to be deemed as a congenital
abnormality. However, now it is believed that Barrett's oesophagus is a
resisting effect of chronic acid exposure from reflux esophagitis
(Gastroesophageal reflux disease (GERD)). The regurgitation of gastric
contents to the oesophagus is known as Gastroesophageal reflux. Cases of
acute GERD could result in erosions or ulcers, even though GERD rarely
causes oesophagitis. Moreover, in healthy cases, ordinary squamous
mucosa cells are regenerated to heal the effects of erosions. Nevertheless,
in the case of Barrett's oesophagus patients, their cells are replaced with
mucus-producing columnar cells. It is important to note that GRED is not the
main reason behind that, as the severity of bile reflux could be another
reason. However, it is a means of adaptation to the changes in an acidic
environment (Basu and de Caestecker, 2002).

At the beginning of the smooth-surfaced healthy squamous cells’
transformation (Figure 2.1 (D) and Figure 2.4 (a)) into the villiform-like
metaplastic columnar cells (Figure 2.1 (E) and Figure 2.4 (b)), mucus-
producing goblets and glands are generated in the oesophagus tissue,
particularly in the epithelial layer. After that, such generation of goblets and
glands occurs in the lamina propria, resulting in the change of cells and
nuclei’s size, shape and different cytological features. Those changes have
different references depending on how acute they are (Naini et al., 2016).
The different types are Barrett’'s Oesophagus, “indefinite for dysplasia”, “low-
grade dysplasia” (LGD), “high-grade dysplasia” (HGD), and intramucosal
carcinoma (IMC).
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(b)

Figure 2.4 (a) Squamous cells in healthy oesophagus epithelium, and (b)
columnar cells in Barrett's oesophagus epithelium

Barrett's oesophagus can be diagnosed with endoscopy when a salmon-
coloured velvety mucosa appears over the Z-line in either circumferential or
tongues-like form. Such a diagnosis should be confirmed with histological
means that detect metaplastic mucosa in the lower oesophagus (Garud et
al., 2010). Figure 2.1 shows endoscopies for a healthy person and Barrett’s
oesophagus patients and their corresponding histology microscopies.

2.1.4 Dysplasia in Barrett’s oesophagus

Cancers in Barrett’'s oesophagus patients go through different phases of
genetic and epigenetic changes in nature. Such changes result in activating
oncogenes, silencing tumour suppressor genes, and freeing cells from the
controls of healthy growth. Before an individual’s cells turn cancerous, the
DNA strange alterations could affect the oesophagus histologically, and the
effect has ranging levels of severeness. That is known as dysplasia by
pathologists. The first type is LGD, in which some alterations appear in
several cells, yet they are not of great seriousness as such a problem could
disappear; nevertheless, it could worsen over time. The second type is HGD,
in which cells go through profound changes that could lead to cancers;
therefore, treatment must be given to fight those cells (Shaheen and Richter,
2009).

Dysplasia is the neoplastic epithelium that grows and groups under the
gland’s basement membrane (Rice et al., 2005). Abnormal changes in
dysplasia conditions are considered the second phase that follows
metaplasia and precedes carcinoma. Dysplasia has to be diagnosed
regularly by taking a biopsy from the patient for endoscopic use.
Histologically, diagnosing dysplasia requires checking for abnormalities on
both the architectural and cytological levels. Checking for architectural
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abnormalities requires the consideration of glandular distortion and
crowding, the possibility of papillary extensions in the gland lumen, and
finally, the mucosal surface’s villiform configuration.

On the other hand, nuclear changes should be considered when checking
for cytological abnormalities. Such changes could be that the nuclear or
nucleoli get more extensive and change in shape, resulting in an increased
nuclear to cytoplasmic ratio and hyperchromatism and an increase in
abnormal mitoses. The majority of pathologists believe it is better to consider
the mucosal surface to confirm the diagnosis of dysplasia. Dysplasia has
different ranging grades specified depending on the severity of changes in a
case (Flejou, 2005).

Dysplasia can evolve into an invasive carcinoma when it spreads from the
mucosa to the submucosa or even deeper. When abnormalities occur in a
gland or lymph, it will be referred to as adenocarcinoma, which rarely
appears in Barrett’'s oesophagus cases (Haggitt, 1994). Dysplasia in the
gastrointestinal tract or Barrett's oesophagus cases can be categorised
according to two different classification systems used globally: the
inflammatory bowel disease (IBD) and the Vienna classification (Odze,
2006). The first classification, IBD, which is more prevalent in the United
States, has three different results which are negative for dysplasia, positive
for dysplasia (PFD) (either being of HGD or LGD), and indefinite to dysplasia
(whether being dysplastic or inflammatory) (Riddell et al., 1983). The second
classification system, the Vienna classification, is applied in several
European countries besides many far Eastern ones, yet this system is not
popular in the United States (Odze, 2006). Both systems are somehow alike;
however, the Vienna one replaces the term “low/high-grade dysplasia” with
“non-invasive low/high-grade neoplasia”. Moreover, the second classification
expands its non-invasive high-grade neoplasia to include three subclasses
when tissue invasion is observed cytological or architectural: “high-grade
adenomal/dysplasia”, “non-invasive carcinoma” and “suspicious for invasive
carcinoma”. This system has a fifth category which is “invasive neoplasia”
that includes IMC, submucosal carcinoma or beyond (Schlemper et al.,
2000) (Table 2.1 for the category of the two classifications).
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Table 2.1 Comparison of different classification systems of Barrett's associated dysplasia

Severity
degree @ (b) ©) () ©)
1-NFD (Barrett’s only) Negative Category 1: Negative for neoplasia/ dysplasia
NFD NFD NFD - - — :
2-Atypia, probably negative Indefinite: 1-probably negative
for dysplasia ( probably inflammatory)
Category 2: Indefinite for neoplasia/dysplasia
3-Atypia, probably positive Indefinite: 2-probably positive
for dysplasia ( probably dysplastic)
LGD LGD
i L Category 3: Non-invasive low grade neoplasia (low grade
4-LGD Positive: LGD adenoma/ dysplasia)
Category 4 Non-invasive high-grade neoplasia:
1-High-grade adenoma/dysplasia
dysplasia Category 4 Non-invasive high-grade neoplasia:
HGD 5-HGD
2-Non-invasive carcinoma (carcinoma in situ)
HGD B
Positive: Category 4 Non-invasive high-grade neoplasia:
HGD 3-Suspicion of invasive carcinoma
Category 5 Invasive neoplasia:
6-IMC 9o P
1-IMC
Cancer
Not available Not available Not avall_able Category 5 Invasive neoplasia: 2-Submucosal carcinoma
(adenocarcinoma) or beyond

(a) Modified classification (two groups), (b) Modified classification (three groups), (c) The available classification for the thesis
dataset classified by Pathologists, (d) IBD study group and (e) Vienna Classification of Dysplasia
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Being one of the types of cancer, carcinoma is a condition in which cancer
affects the cells in the skin or the tissue lining organs. Those cancerous cells
may divide and increase in number out of control and possibly spread to
different places in an individual’s body. Therefore, carcinoma is classified
according to the spread of cells. The first classification is Non-invasive
carcinoma (also known as carcinoma in situ), and it applies to cases when
cancerous cells remain in the same place of their formation without
spreading to other places in the body (e.g., remaining in the epithelial layer
when they start in Barrett's oesophagus). The second classification is the
IMC, and it applies to cases in which carcinoma penetrates the basement
membrane of the glands into the lamina propria. Nevertheless, it does not
affect the muscularis mucosa or the submucosa. However, the third
classification applies when the submucosa is affected, which is submucosal
carcinoma (i.e., invasive carcinoma). Finally, when those cells spread to the
lymph nodes and glands in the lamina propria or submucosa, IMC and
“submucosal adenocarcinoma” are used for classification. Figure 2.5 shows
the invasion of different types of carcinoma. (Washington, 2010) and (Odze,
2006).

The American Joint Committee on Cancer (AJCC)

Case 1 Case 2 Case 3 Case 4
GX G1 G2 G383 GX G1 G2 G838 GX G1 G2 G3 GX G1 G2 G8
Epithelium 0
1.Mucosa: Lamina Propria IA 1A B IB 1B 1B 1B 1B A 1A 1A 1IA VA IVA IVA IVA

Muscularis Mucosa IA-.IA 1B B 1B 1B 1B 1B A 1A 1A 1IIA IVA [IVA IVA IVA

2.Submucosa B 1B 1B 1B 1B 1B 1B 1B A 1A IIA HA IVA VA IVA IVA
1B 1B 1B MA A 1A TIIA

3.Muscularis Propria or B or or - - - - or or or or IVA  IVA IVA IVA
A A 1A ms ms Mg e
A 1A 1A 1A

4.Adventitia or or or or - - - - s B 1B 1B IVA VA IVA IVA
B 1B 1B 1B

Adjacent Tissues - - - - B mB HB 1B IVA IVA IVA VA

Distal Lymph Nodes and/or

Distal Organs - - - - IvB IvB IVB VB VB IVB VB VB VB IVB IVB IVB

Figure 2.5 Chart summarises the staging manual for cancer by the
American joint committee

GX:. The grade cannot be assessed (because of incomplete
information), G1: Grade 1, G2: Grade 2 and G3: Grade 3. Case 1:
cancer has not spread to nearby lymph nodes or distant sites. Case 2:
cancer has spread to nearby lymph nodes but has not spread to distant
sites. Case 3: cancer has spread to more than one nearby lymph node
but has not spread to distant sites. Case 4: cancer has spread to
nearby lymph nodes and distant sites.
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Nowadays, only expert pathologists can classify Barrett's oesophagus
dysplasia by examining glass slides with a microscope or virtual ones via
computers. It is important to note that the Vienna classification’s dysplasia
categories are used for Barrett's oesophagus conditions. However,
subjectivity sometimes affects the interpretation of the criteria set, and thus
notable intraobserver and interobserver variability happens when dysplasia
is graded. Usually, and since the categories of dysplasia range,
controversies arise over some definitions, for example, LGD and "indefinite
for dysplasia”, LGD and HGD, and HGD and IMC. However, controversies
are less common over definitions of terms at different ends of the grading
scale. For instance: “Negative for dysplasia® (NFD) and HGD (Grin and
Streutker, 2014). Both classification systems, IBD and the Vienna ones,
have a low-level interobserver agreement, which means that two different
observers have different interpretations of the same case (Odze, 2006).

On the other hand, intraobserver disagreement refers to a case in which the
same observer provides different interpretations when examining the same
case at two different times. Fleiss kappa statistic measures observations’
agreement (Salomao et al, 2018). Most cases of interobserver
disagreement occur in cases of epithelial lesions as confusing features
appear, whether for reactive lesions (where abnormal alterations occur due
to repair effect) or LGD. The same abnormal changes in response to injury
could affect the healthy tissue in these two cases. Nevertheless, both
systems have high agreement among observers over clinically relevant high-
grade lesions and carcinoma (Odze, 2006) (Eleftheriadis et al., 2014)

2.1.5 Virtual slides

Visual microscopic inspection of tissue specimens from patients can be
achieved using digital pathology images (e.g. WSIs) taken when microscope
glass slides are scanned. Such images assist in conducting healthcare-
related research and diagnosing patients (Wang et al., 2012). It is vital to
have those images in high resolution and excellent colour depth to prepare
them for research and diagnostic purposes. An image resolution is
measured by microns per pixel; however, an image's colour depth is
measured by the number of bits per pixel, identifying the number of various
colours in the image. When a WSI is scanned with a magnification of X40,
such an image will have almost a 0.25 pm per pixel resolution and a colour
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depth of 24 bits; therefore, one mm? area of the slide will have information of
384 million bits, and this in return will lead to having a 48 MB file taking into
consideration that data were not addressed to be managed efficiently yet.
Once the whole slide or more of the one z-plane is scanned, the size will
increase, leading to difficulty in storing such data and having an obstacle
with its bandwidth. This challenge shall be addressed to ensure that a user
has a smooth experience (Zarella et al., 2018).

A WSI’s size often reaches up to 1 GB, and when digital technologies for
collaboration are used, downloading such a significant amount of data might
not be allowed. The memory loading of that kind of data to view it might
hinder. This matter was addressed by identifying how the field of view
prominently relates to the image scale. In cases of large fields of view,
computer screens limit the level of resolution; thus, it is not necessary to
have a high-level resolution. However, only a small part of the field of view
appears on the screen when tissue is inspected with strong magnification;
therefore, the whole image is not necessarily loaded. Such restrictions when
inspecting an image give a chance to enable a better image viewing
experience for users (Zarella et al., 2018).

Usually, WSIs are sorted in an image pyramid representation that provides
different resolution versions of that image that are arranged as a set of tiles.
This technique facilitates how different resolutions are retrieved. The image
at the bottom (i.e., the baseline one) is the image with the highest resolution
version. When scanned for diagnostic purposes, WSIs get to be large as
they often have 100,000x100,000 pixel sizes (Wang et al., 2012). It is
illustrated in Figure 2.6 that when Aperio Scanscope whole slide scanner is
used to scan a sample by a magnification of X40, it provides the same
image at different resolutions, gradually decreasing to X10, X2.5, and X1.25.
This scanner also provides a thumbnail image in which the whole sample is
represented in a frame of 1 megapixel (Zarella et al., 2018). A window of two
dimensions is provided by such a structure in which the area of interest is
illustrated, for example, a tumour, a pseudopalisade and a distinguished
nucleus (Wang et al., 2012). In most cases, the captured images are stored
in one file even though it is unnecessary (Zarella et al., 2018).
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Figure 2.6 (A) the pyramid structure of a virtual pathology slide, (B) different
zoom level representations for the same part of virtual pathology tissue

It is, to some extent, difficult to display those images using the standard tools
in which a user can expand the compression of images file into RAM or
swap. However, when “OpenSlide” is used, which is a “C” library, WSiIs that
are formatted in various ways can be explored easily with the friendly
interface of “OpenSlide”. “OpenSlide” provides an interactive experience
during navigation (OpenSlide, 2013).

2.1.6 Pathology of different degrees of dysplasia

Histologically, there are two kinds of irregularities on which the degree of
dysplasia is based, which are cytological and architectural abnormalities.
The degree of irregularities determines whether Barrett's Oesophagus
Dysplasia is low or high (Haggitt, 1994). The cytological and architectural
changes’ criteria are briefly demonstrated in Table 2.2. In Table 2.3, the
degree of changes according to experts in pathology is illustrated (Flejou,
2005), (Haggitt, 1994), (Montgomery, 2005), (Odze, 2006) and (Spechler,
2002) specifying the difference in the degree of changes among different
dysplasia stages.
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Table 2.2 Cytological and architectural abnormalities in Barrett's
oesophagus associated dysplasia

Barretts’s
oesophagus
. Normal NHD 7 pgrs(i)tki)\?eb If)cl)r
Condition probably : HGD IMC
oesophagus NED dysplasia or
LGD
Cytological
Increqse . - - + ++ +++
nuclei/cytoplasm ratio
Loss of polarity - - +/- ++ +++
Mitosis - +/- + ++ ++
Atypical mitosis - - +/- + ++
FuII—Fhick_ness nuclei i ) i + -
stratification
Hyperchromasia - - +/- ++ +++
Multiple nucleoli - - +/- +/- +
Large irregular nuclei - - - +/- ++
Irregula_r n_uclei contour i ) + i et
and variation of size
Irregular cell size and i ) - + -
shape
Necrosis/desmoplasia - - - - +/-
Cell maturity ++ + +/- - -
Glandular = + ++ +++ +++
Loss of_mucin i ) + i et
production
Architectural
Villiform change - + + ++ ++
Crypt
budding/branching + * *
Crowded (back-to- i ) " + r

back) crypts
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Irregular crypt shapes - +/- ++ +++
Crypts breach i ) i i +
muscularis mucosa

Crowded glands - - +/- + ++
Intraluminal ++ + + ++
papilla/ridges

Lamina propria . ++ + ) _
between glands

Existence of infiltration - - - - +/-

-: absent, +/-: might be present, +, ++ and +++: always present with
different degrees.
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Table 2.3 Explanation of the cytological and architectural changes of each grade in dysplasia

Histology

NFD

Architectural features

Cytological features

preserved crypt architecture

Preserved or relatively preserved
cytological features:

1-basally located nuclear
2-regular

3-mature

4-oval or round shape

LGD

Relatively preserved crypt

architecture

The cytoplasm is generally mucin depleted

Changes in the cytological features:

1-Nuclear enlargement and elongation

2-hyperchromasia

3-irregular nuclear contours and a dense chromatin pattern either with
or without multiple, small inconspicuous nucleol

4-Increased N/C ratio

5-Nuclear stratification limited to the basal half of cell cytoplasm
6-Preserved or only mild loss of nuclear polarity

7-Increased mitoses, usually limited to crypts

8-Few, if any, atypical mitoses limited to crypts
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Changes in the crypt architecture:
Irregular size and shape of crypts,

.| A higher degree of changes in the
4 | cytological features:

1-Nuclear enlargement

,‘ 2-Full-thickness nuclear stratification
1| 3-Mild to marked nuclear

pleomorphism

! | 4-Irregular nuclear contours with

HGD i . multiple, large nucleoli
crowded crypts, and intraluminal . .
budding or cribriform 5—Pr_om|nent loss of _nucl'ear polarity
|| 6-Mitoses on the epithelium surface
| | 7-Increased number of atypical
¥ | mitoses
|| 8-little or no mucin cap or visible
cytoplasm at the most luminal aspect
of the cell
A higher degree of changes in the The highest degree of changes in
crypt architecture: | | the cytological features:
Irregular size and shape of crypts, 1-contain cells that are more
crowded crypts, intraluminal budding epithelioid or cuboidal-shaped
IMC or cribriform, and the crypts may 2-high N/C ratio

show little or no intervening lamina
propria

prominent back-to-back gland
pattern

3-round or oval highly irregular-
shaped nuclei
4-an open chromatin pattern and

1| prominent nucleoli




-28-

2.1.6.1 Negative for dysplasia (NFD) in Barrett’s oesophagus
(metaplasia)

The term NFD is given as a diagnosis for cases in which metaplastic
columnar epithelium appears in ordinary and regenerative cases. When
conducting histology on Barrett's Oesophagus cases that do not show
inflammation, a flat mucosal surface is seen, and sometimes a villiform
surface can be recognised. Moreover, according to the British Society of
Gastroenterology, the epithelial layer could include columnar cells and
goblet cells could appear. Goblet cells contain acid mucin; such mucin
positively stains with Alcian blue. The columnar cells in the middle of goblet
cells could be similar to normal gastric foveolar (Haggitt, 1994). The nuclear
is of an oval or round figure with a basal location, being regular and mature
(Odze, 2006).

Sometimes, epithelial regenerative abnormalities could be acute, especially
in the mucosa next to the neo-squamocolumnar junction, or it may be so
when there is an active inflammation or ulceration. In such cases, a deficient
degree of cytological abnormalities might affect the newly generated
epithelium. These changes include a slight increase in the nuclei/cytoplasm
ratio, an increase in typical mitoses, hyperchromatic, slight loss of polarity,
and pleomorphism. However, the nuclear stratification is retained with nuclei
having standard size but prominent nucleoli (Odze, 2006). The tissue in NFD
is expected to keep the regular architectural features of their crypts. Still, a
considerable degree of crypt budding, branching, and distortion is accepted
in inflamed areas (Odze, 2006).

2.1.6.2 Indefinite for dysplasia

According to Grin and Streutker (2014), the term “indefinite for dysplasia” is
not considered a degree as much as an indication that the biopsy diagnosis
is extremely difficult. That is due to either technical factors like crush
artefact, poor orientation and small biopsies or a severe inflammation that
results in cytological changes in the epithelial layer that confuse the observer
with LGD. Also, cases where changes similar to dysplasia are limited to the
crypts’ bases with the mature surface, are categorised (Odze, 2006).
Generally, this category is a provisional diagnosis and not a type of
dysplasia. Patients diagnosed with it are recommended to contact their clinic
to plan further biopsy examination (Naini et al., 2016).
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2.1.6.3 Low-grade dysplasia (LGD)

LGD is the most common type in Barrett's oesophagus patients (Grin and
Streutker, 2014). LGD cytological changes include: nuclear enlargement, as
a nucleus may reach two to three times and three to four times the size of
lymphocytes at the surface and the crypts, respectively, nuclei have one or
multiple small nucleoli, stratification with a possible slight loss in polarity (the
nucleus has a perpendicular orientation to the basement membrane) but
generally the nuclear polarity is preserved, nuclei accumulate upon the
mucosa surface leading to a loss in the surface maturation; still the
maturation is preserved in deep crypts, nuclei hyperchromasia, nuclei
irregular contour, and nuclei elongation (Naini et al., 2016) (Odze, 2006).
Besides, the number of typical and atypical mitosis is increased at the crypts
of the epithelium, the cytoplasm has a lower supply of mucin, and the goblet
cells rarely appear. The architectural features are retained at the surface but
might show some abnormalities in the crypts, such as crowded crypts with
visible lamina propria separating the affected crypts. However, complex
budding or angulation crypts are not expected to be witnessed in LGD
tissues. In other words, a low degree of nuclear abnormalities affects the
surface and increases at the crypts, where the dysplasia starts, with minor
changes in the architectural features (Naini et al., 2016).

2.1.6.4 High-grade dysplasia (HGD)

In HGD, the cytological abnormalities degree increases significantly, and
they are not limited to the base of the crypts. These abnormalities spread to
the epithelium surface with larger round nuclei that contain multiple
prominent nucleoli. Both surface and crypts lose their nuclear polarity and
have nuclear pleomorphism. In addition, more mitoses that are atypical
appear. The cytoplasm disappears at cells close to the lumen, leaving the
epithelium with no mucin cap because of nuclei stratification to the
cytoplasm surface. Cytological changes are coupled with significant
architectural abnormalities such as crowded (back-to-back) crypts, lack of
lamina propria separation between the crypts, dilated glands, intraluminal
budding, and villiform surface configuration. In cases where tissues have
any architectural abnormalities and a lower degree of cytological
abnormalities, they are considered HGD (Naini et al., 2016). In many cases,
the cytological abnormalities are adequate in diagnosing HGD.
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2.1.6.5 Intramucosal carcinoma (IMC)

When the dysplastic changes invade the epithelium's basement membrane
and start to develop in the lamina propria or muscularis mucosa, invasive
adenocarcinoma is diagnosed. Figure 2.5 shows different degrees of IMC.
IMC patients should be treated more aggressively than HGD patients
undergoing oesophageal resection. Thus, discriminating between the two
categories is clinically crucial in deciding on further treatments. However,
some clinics manage non-adenomatous dysplasia, similar to HGD. IMC has
the highest degree of dysplastic abnormalities on a cytological and
architectural basis, and the abnormalities are not limited to the epithelial
layer but deeper layers (Odze, 2008).

2.1.6.6 Summary

Tissues that are diagnosed with NFD retain both cytological and
architectural features. In some cases of regenerating epithelium, some
cytological abnormalities may occur. Still, they never reach dysplastic
features, which are nuclear pleomorphism, loss of cell polarity, a significant
increase in nuclei to cytoplasm ratio, loss of surface maturation, and low
mucin in the cytoplasm (Odze, 2006).

Also, to differentiate LGD from HGD, the latter category has some features
that cannot be found in LGD, like full-thickness nuclear stratification, loss of
cell polarity at the epithelium surface and higher crypts, atypical mitoses, or
the architectural abnormalities that were discussed in the previous section
(Odze, 2006).

Finally, to distinguish between HGD and IMC, when abnormalities are
confined in the epithelial layer and not spread to any further layers, it is
HGD; otherwise, it is diagnosed with IMC.

2.1.7 Clinical challenges

According to Haggitt (1994), there are many limitations in the systems of
grading dysplasia in Barrett's oesophagus. These limitations are:

e Western and Eastern pathologists tend to have their unique criteria
for grading dysplasia. In grading dysplasia for Barrett’s oesophagus,
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pathologists worldwide disagree on the criteria. For example, in
distinguishing HGD from IMC, Japanese pathologists focus on
cytological abnormalities to detect carcinoma. In contrast, western
pathologists are content with invasion into the lamina propria to
diagnose IMC (Naini et al., 2016).

e Some pathologists depend on morphological features that are not
scientifically approved. For instance, in grading IMC, Western
pathologists rely on dysplastic abnormalities to invade the lamina
propria but not reach the muscularis mucosa. Those criteria have not
been approved yet for lamina propria invasion (Naini et al., 2016).

e The effect of inflammation in non-dysplastic tissue that mimics
dysplasia abnormalities

e Interobserver and intraobserver disagreement in diagnosing dysplasia

e Difficulties in diagnosing cases between LGD and HGD, and cases
between HGD and IMC

2.1.7.1 Intraobserver and interobserver variation in diagnoses

Grading dysplasia in Barrett's oesophagus is based on cytological and
architectural abnormalities that follow a continuous spectrum from normal to
low and high degrees of abnormalities. Thus, it suffers from a high
intraobserver and interobserver disagreement due to the absence of sharp
definitions of the boundaries that separate each category from the following
higher category or the previous lower category. The highest level of
disagreement occurs in the indefinite dysplasia versus LGD interface, even
amongst experienced gastrointestinal pathologists, as most NFD cases are
over-diagnosed (Odze, 2006). While at the higher end of the spectrum (at
HGD versus IMC), the disagreement is at the lowest, as some HGD
diagnoses are often downgraded after expert review (Naini et al., 2016).
Fortunately, this agreement is concerning the most because the results of
these diagnoses help in the decision of oesophagus resection (Haggitt,
1994).

In general, a study focused on finding the interobserver agreement for
grading different grades of dysplasia among experienced gastrointestinal
pathologists concluded that the agreement was moderate (Coco et al.,
2011). Also, Bhat et al. (2011) conducted a study on eight experts to
distinguish NFD from “indefinite for dysplasia” and LGD, and they found that



-32-

they have 40% disagreement. Moreover, (Odze, 2006) found that expert
pathologists reached a “fair” agreement when they tried to detect LGD and a
“slight” agreement for detecting “indefinite dysplasia”.

2.1.7.2 Costs of misclassifying dysplasia in Barrett's oesophagus

Oesophageal cancer is the sixth deadliest cancer worldwide, with less than
10% of patients who can survive for five years (Delpisheh et al., 2014).
Downgrading the diagnosis of those patients increases the risk of developing
adenocarcinoma and may lead to disqualifying them from life-sustaining
treatment. For instance, downgrading a patient's diagnosis with LGD will
increase the risk of progressing adenocarcinoma five times higher than the
precautions for the mistaken NFD (Bird-Lieberman et al.,, 2012). Also,
downgrading HGD will prevent the patient from having a necessary near-
future mucosal resection to eliminate pre-cancerous tissue before it
develops into cancer (Spechler, 2007). However, upgrading NFD to LGD will
add a burden to the healthcare system as LGD is the worst grade when it
comes to cost. LGD can be confirmed only by two gastrointestinal
pathologists, and the diagnosed patient is offered surveillance every six
months. Whereas upgrading LGD to HGD will lead to unnecessary surgical
intervention (Vladimirov et al., 2013). Figure 2.7 provides the recommended
treatment plan for patients with Barrett's oesophagus by the Practice
Parameters Committee of the American College of Gastroenterology.

1-Anti-reflux therapy No Enod i
2-Repeat endoscopy and biopsies esolved? T e
every 3 months

No

k.,

1-Anti-reflux therapy
LGD — 2-Repeat endoscopy and biopsies esolved?
every 6 months

Endoscopy
+

Biopsy

Patient

NFD

After 1 year
Then every 3 years

$]9S 9AIINIBSUOD T 10} ‘Sap

After 3 years

Figure 2.7 Recommended treatment plan for the patients with Barrett's
oesophagus by the Practice Parameters Committee of the American
College of Gastroenterology
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2.1.8 Colour normalisation

Colour variations could be introduced to histological images during the
biopsies' preparation, staining, and digitalisation. For instance, the variation
of stain concentration, the different staining times, the pH of the solutions,
and the use of different scanners (Tosta et al., 2019). This colour variation
imposes obstacles to the process of analysing histological images. Thus,
stain normalisation algorithms have been developed to overcome this issue.
Employing colour normalisation techniques is covered by important studies
in the literature. Generally, Shaban et al. (2019) classified those approaches
under three classes: colour matching, stain-separation, and pure learning-
based approaches. The colour matching based methods focused on
matching the colour spectrum of a processed histological image to a target
template image. For example, Reinhard et al. (2001) aligned the colour
distribution of an image to a reference using a linear transformation.
According to Shaban et al. (2019), the disadvantage of such methods is that
one transformation is used for all the images regardless of the contribution of
each stain dye to the concluding colour. The second class of methods is the
stain-separation methods that separately apply normalisation on staining
channels. For instance, Khan et al. (2014) proposed a nonlinear approach: a
stain matrix estimator that employs a colour classifier to classify each pixel in
the image to the related stain component. Finally, the pure learning-based
approaches offer solutions considering it as a style-transfer problem.
Shaban et al. (2019) introduced the StainGAN model based on Generative
Adversarial Networks and was trained end-to-end. That solution does not
require a reference template slide that usually is picked by an expert.

2.2 Related works in diagnosing dysplasia in Barrett’s
oesophagus

This section discusses related works that use machine learning and deep-
learning approaches to diagnose or detect dysplasia in Barrett's
oesophagus. Although comprehensive literature in this field is available, it
was mainly focused on the endoscopic and volumetric laser endomicroscopy
images. Relying on the outcomes of our search using “Web of Science” and
“‘Google Scholar’ using the keywords “deeplearning”, “deep learning”,
"machine learning”, “Barrett’'s oesophagus”, “Barrett’'s oesophagus”, and
“histology”, there were five related works. (Adam et al., 2011) and (Adam et
al., 2012) were conducted by a previous PhD. researcher at the University of
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Leeds uses an unsupervised machine learning approach on the same
dataset used in this research to classify whole virtual slides into the three-tier
dysplasia grades. Their approach randomly sampled images across the
whole virtual slides, converted them into grey-scale images, and calculated
their grey-level co-occurrency matrices (GLCM) (Haralick et al., 1973). After
that, GLCM features, namely contrast, energy, correlation and homogeneity,
were calculated in four directions for each patch within the sampled image.
Then, the calculated features were clustered using k-means into five
clusters. Based on the clustering results, cluster coded images (CCl), known
as heatmaps, were generated for the images and the spatial relationships for
the texture features were calculated using cluster co-occurency matrices
(CCM), in a way similar to GLCM, to produce a prediction for the image
using random forest and decision tree classifiers. Their approach achieved a
77.8% accuracy and a 0.54 Kappa Value (KV).

Kandemir et al. (2014) and Kandemir et al. (2015) proposed a weakly
supervised machine learning model to solve the MIL problem in Barrett's
oesophagus H&E stained images. They aimed to detect cancer in those
images by tiling the biopsy and generating a feature vector for each tile. The
set of nature vectors is considered instances in the whole slide bag. They
employed the mi-Graph proposed by Zhou et al. (2009) to predict the label of
the whole slide. They managed to achieve an accuracy of 87% and a 0.93
AUC at the bag-level and an 82% accuracy and a 0.89 AUC at the patch-
level.

The previously mentioned studies proposed conventional machine learning
approaches to develop the CAD system. Unlike Tomita et al. (2019), who
proposed a weakly supervised deep-learning approach to classify tissues
into “healthy oesophagus”, “negative for dysplasia Barrett's oesophagus”,
“positive for dysplasia Barrett’'s oesophagus”, and “adenocarcinoma”. Their
model processes biopsies in two stages. In the first stage, they divided each
whole virtual image into r X ¢ grid. Then, they fed the grid cells into a CNN
to produce feature representations assembled to build a grid-based feature
representation with the size of r X ¢ X k, where k is the length of the learnt
vector representation. In the second stage, they applied 3D convolution with
k x d x d sized kernel to generate r X ¢ size attention map «a that every row
and column represents the weight value (the importance) of the
corresponding grid cell. Finally, they computed the whole-slide global feature
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vector using the dot product of the output of the first and second stages. The
whole-slide global feature vector trains a fully connected layer and Softmax
to predict the whole slide label. That approach is considered as MIL pooling
on scores, and it achieved a 0.49 recall, a 0.93 specificity and an 87%
accuracy in predicting negative and positive for dysplasia.

2.3 Performance metrics for medical tasks

Selecting the evaluation criteria is an essential step in evaluating the
performance of any CAD system. Generally, the confusion matrix is
calculated for assessing any classifier, which counts the classifier prediction
against the actual classes. For this matrix, the error rates for each class are
driven. True positive (TP) and true negative (TN) are the number of correctly
predicted positive instances and negative instances, respectively. The false
positive (FP) and false negative (FN) are the number of negative instances
that are mislabelled as positive and the number of positive instances that are
mislabelled as negative, respectively. Other metrics such as accuracy,
precision, recall, fall-out, specificity, and F1-score can be calculated using
the driven error rates, as shown in Table 2.4.

Table 2.4 Summary of the performance metrics and their corresponding

equations
Metric Equation Description
TP+ TN It represents the percentage of
Accuracy TP+TN+FP+FN |instances that are predicted
correctly.
It describes the ability of the
classifier to classify instances
correctly under a class as opposed
Precision L 4 _ _ PP
TP + FP to all instances which were
correctly or incorrectly labelled with
the same class.
Recall, . :
o It describes the rate of instances
sensitivity or TP N N
. S classified correctly as positive
true positive TP+ FN
rate amongst all of the same class.
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Specificity or It is the percentage of real negative
: TN . .
true negative S instances that are predicted as
FP+TN .
rate negative.
Recall X Precisi : :

2 X eca reCl,Sllon It is the weighted average of recall

F1-score Recall + Precision -
and precision.

Fall-out or FP It is the percentage of negative
false positive FPJrT N instances that are misclassified as
rate 1 — specificity positive.

Finally, descriptive statistics were used to evaluate the agreements between
the proposed models and the pathologists, which are the Cohen kappa
coefficient (KV) (Cohen, 1960), and the weighted Cohen kappa Coefficient
(weighted KV) (Cohen, 1968). For computing KV, the first step is to find the
confusion matrix of any two observers, as shown in Table 2.5. Then,
calculate the observed agreement P, and the expected agreement P,, which
is the agreement that occurs by chance, as shown in Equation 2.1 and
Equation 2.2 with reference to labels provided in Table 2.5. Finally, KV is
computed using Equation 2.3. KV is a robust statistic to measure the
agreement that avoids the agreement by chance; however, it relies on the
nominal categories and not the ordinal categories. For instance, in grading
cancer into normal, low-grade and high-grade classes, KV will decrease the
agreement score by a similar amount whether the two observers predict low
and high grades or normal and high grades. In contrast, the weighted kappa
computes the disagreement concerning the degree of a disagreement using
a predefined table of weights. The strength of the agreement is categorised
based on the KV score into “poor agreement” if it is less than zero or “slight
agreement”’, “fair agreement”’, “moderate agreement’, “substantial
agreement”, or “almost perfect agreement” if it falls in the following intervals
[0.00-0.20], [0.21-0.40], [0.41-0.60], [0.61-0.80] or [0.81-1.00], respectively.
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Table 2.5 Showing the confusion matrix for observerl against obserever2

Observer 1
N Normal Abnormal total
% Normal TP FN rm!
é Abnormal FP TN rm?
total cm! cm? n

TP and TN show the agreement between the observers, and FP and
FN show their disagreement. n is the number of observed samples.

Equation 2.1
TP+TN
P, =—-
n
Equation 2.2
p _ (em! xrm!') + (cm? x rm?)
e nxn
Equation 2.3
Po _Pe
KV =
1-P,

2.4 Deep-learning and its biological inspiration

Deep-learning is considered one of the machine learning approaches, which
employs neural networks in the architecture of non-linear and multiple
layers. Learning distinct features from raw input data rather than designing
detectors to extract them, which human experts accomplish, is the crucial
feature of deep-learning. Moreover, the techniques used in learning the
representation from raw data can detect its hierarchical representation as to
the abstraction level increases (Xu et al.,, 2015). By way of illustration,
learning the hierarchical representation in text recognition is represented by
learning the words, clauses, sentences, and story.

According to (Deng and Yu, 2014), deep networks can be divided into three
groups: the discriminative networks (supervised networks), the generative
networks (unsupervised networks), and deep hybrid networks. This
categorisation is based on the purpose of usage, such as generating
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features, recognising objects, or classifying patterns. Discriminative
networks are the deep networks utilised in supervised learning, where the
input data are always labelled. This type of network is used for classification
tasks. While generative networks are set to capture high-level features from
the input data when there is a lack of information regarding the target class
labels. The last type is the deep hybrid networks which almost always refer
to the results of generative networks in discrimination. More details are
provided in Chapter 2.

The biological feature of an organism to behave based on its perception of
the environment was the inspiration for deep-learning. Between the action
and perception, the collected information is processed. The nervous cells
generate electrical signals in animals and humans to manipulate the
collected information. On average, the human brain contains billions of nerve
cells, of which each is connected to about 10,000 other neurons (Garrett,
2014).

The nervous cell consists of dendrites, cell body, axon, and synapses (see
Figure 2.8). The dendrites are lengthy appendices that connect the cell with
other cells to receive signals from them. Typically, signals travel from the cell
body through the axon, causing action potential until it reaches the axon
terminals. Other cells' dendrites receive these signals through a special
connection or gap known as a synapse. When the post-synaptic cell
receives the action potentials, it is either encouraged to fire action or
prevented from firing an action. These cells are known as Excitatory
synapses and inhibitory synapses, respectively (Garrett, 2014). The
synapses are strengthened between two neurons if one of them repeatedly
encourages the other to fire an action potential. That is a sign of the constant
development of the nervous system. It is believed that the activity-dependent
synaptic plasticity constitutes the underlying mechanism for learning (Hebb,
1952).

Figure 2.8 A nervous cell
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For example, the visual systems manifest the high ability and the high speed
of the neural network. The experiment of Hubel and Wiesel demonstrates
that. In 1959, they experimented on the vision system of a cat. They
stimulated the receptive fields of the cells by presenting patterns, and they
recorded activities of the primary visual cortex's cells. As a result, they found
three types of cells: simple, complex, and hyper-complex. Simple cells fire
mainly to edges and gratings of particular orientation as they have excitatory
and inhibitory regions, which are well arranged in their almost rectangular
receptive field. Similar to these cells are the complex cells; however, they
are not sensitive to the position of the pattern as they have wider receptive
fields than the simple cells. Also, some of them are fired by motion. Finally,
the hyper-complex cells have the same features as the complex ones plus
the sensitivity of the length of the stimuli; thus, they allow the perception of
corners. These cells work dependently on each other so that the simple cells
are connected to the complex cells, providing them with their inputs (Hubel
and Wiesel, 1959).

2.5 Deep-learning architectures

This section briefly describes the most commonly employed deep-learning
architecture in the computer vision field. Besides, it discusses the obstacles
developers faced in their attempts to increase the architecture size and the
proposed solution to overcome them. Finally, it overviews the used
architecture in this research.

2.5.1 Convolutional Neural Network (CNN)

CNN is a multi-layer perceptron feed-forward neural network introduced to
the computer vision community by LeCun et al. (1998). CNN adapts a
successive feature extraction technique that learns the simple features from
an input image in the earlier stages. Then, the complexity of learned features
is increased in further stages. It consists of one or multiple stages of layers
and a one-dimensional output layer. Each stage is a feature extractor and
contains two to three two-dimensional layers. The first layer is the
convolutional layer. It takes advantage of the main feature of images,
which is the similarity of the corresponding statistics of different regions in
the same image. It uses the concept of weight sharing to limit the number of
neurones. The input of this layer could be the original image in the first stage
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or the output of the other stages in the later stages (Abdel-Hamid et al.,
2012). Each convolutional layer contains a filter bank, and each filter
(weight) within the bank is a 2D array. The model learns filters through the
processes of the forwards-propagation of the input and the back-propagation
of the model's prediction error. The two strategies update those filters in the
training phase until the model reaches convergence. In addition, each filter
connects an input with a corresponding feature map by convolving the filter
and the 2D input. During convolving the 2D filter and the input, the filter
slides over each pixel or most of them, which can be specified by setting the
stride parameter. The stride can be defined as the overlap pixels while
applying the convolution operation. The convolution operation is achieved by
summing the results from multiplying a filter’'s values by the corresponding
pixels in the input. If the input image is an RGB image, then each filter will
have three channels to convolve each image channel. Then the results of
the three convolutional operations are accumulated, and a bias is added to
the result. The convolution layer function is provided in Equation 2.4.

Equation 2.4
y=a(x*W +b)

Where « is the activation function, x is the input, y is the outputted
representation feature, W is the weight set, b is the bias and * denotes the
2D convolution.

The second layer is the activation function layer, which gives the CNN two
preferred properties. The nonlinear capabilities of the network and the
production of zero-mean inputs for the next layers. The “Sigmoid” function is
one of the most used functions with deep-learning architectures. This
function transforms the real number to fit in the range [0,1]. As a result,
every large negative number will be 0 and 1 for any large positive number.
However, this function has two drawbacks: the activated neurones at 0 or 1
will not receive any signals because their gradients calculations will be
almost zero when the network back-propagates the error and outputs a non-
zero-centred output. That might introduce zigzag dynamics in updating the
parameters when fed into the higher layers. The “Tanh” function could be
used alternatively to overcome the second issue as its output range is [-1,1]
(LeCun et al., 2012).
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Recently, Rectified Linear Unit (ReLU) usage with deep-learning
architectures increased. It behaves much better than the previously
mentioned functions because it is cheaper, faster to compute, and increases
the stochastic gradient descent speed convergence. This function outputs 0
if the input is negative or zero, or it outputs a number equal to the input
number if it is a positive number. Only, it guarantees that it does not saturate
for positive values because it rectifies most of its input to be a positive
number. Unfortunately, its main disadvantage is that during the training, the
flowing of large gradients may update the layer's parameters in a way that
has negative numbers for the weighted sum of the input that will output O.
That will not allow any input to be activated later (Zeiler and Fergus, 2014).
This problem is known as the vanishing gradient problem. To overcome this
issue, Clevert et al. (2015) proposed a new activation function called the
exponential linear unit (ELU) that behaves similar to ReLUs in the case of
positive inputs. However, it saturates to the negative inputs as it has
negative values, which pushes the mean of the activation to be close to
zero. As a result, it decreases the learning time in deep neural networks and
results in higher accuracies in classification tasks. ELU can be calculated
using Equation 2.5.

Equation 2.5
ale* —1) ,x <0

f(x):{x , x=0

Where x is the input and a is a stochastic variable sampled from a uniform
distribution at training time. It is fixed to the expectation value of the
distribution at the test time.

Moreover, it is optional to add a pooling layer, also known as a sampling
operation. The pooling layer exploits the stationary property of images and
aggregates statistics of features over regions of the image. The most
common methods are mean-pooling and max-pooling, as they choose the
mean features and winning features, respectively (Havaei et al., 2017).

Training deep neural network architectures is accomplished by the forward-
propagation and back-propagation strategies. The forward-propagation is
the process of feeding input data toward successive layers of the neural
network to be processed by the convolutional, activation and pooling layers
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until it reaches the classifier, which is usually a Softmax layer (see section 0
for more description). An error is computed for the classifier prediction by an
objective function that will be discussed later. In contrast, the back-
propagation decreases the error by computing the objective function's partial
derivatives (gradients) concerning the network’s parameters. The computed
gradients update the network’s parameter following the chain rule (LeCun et
al., 1998). The learning process from the error involves different
terminologies and techniques such as objective function, optimiser and
learning rate.

In auto-encoders cases, the objective function calculates the model error
from predicting the input's class or regenerating it, considering the ground-
truth class of the input or the original input. The objective function is applied
to all instances in the training dataset. In training the model, the goal is to
reduce the sum of the resulting error. The cross-entropy error and
categorical cross-entropy are the most common objective functions to train
deep neural networks. The cross-entropy is discussed later in
section 5.3.1.1, and it is used with binary tasks, while the categorical cross-
entropy is used in multi-class tasks, as discussed later in section 4.3.1.

Optimising a model is the process of finding the optimal solution for a
problem using one of the optimisation methods. Stochastic gradient
descent (Robbins and Monro, 1951) is the most common algorithm to
optimise deep-learning architectures. It is an iterative algorithm that aims to
minimise the objective function and update the model’s parameters in each
iteration by subtracting the calculated gradients of the cost function with
respect to the multiplication of the weights by the learning rate. In general,
the previous gradients are not considered in updating the parameters, which
may slow the learning process. Also, using the stochastic gradient descent
optimiser to train a very large deep neural network can slow the training.
Employing alternative algorithms can speed the learning for such networks.
The most popular fast optimisers are momentum optimisation, the adaptive
gradient algorithm (AdaGrad), root mean square propagation (RMSprop),
and finally, adaptive moment estimation (Adam).

Contrary to the stochastic gradient descent, the stochastic gradient descent
with momentum (Polyak, 1964) uses gradients as an acceleration rather
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than a speed. This optimiser keeps the calculated gradients of each iteration
in the momentum vector, and then it updates the weights by subtracting the
momentum vector. Another disadvantage of the stochastic gradient descent
algorithm is the inability of the early detection of the direction to the global
optimum because it goes very fast along the steepest slope. Then, the pace
slows down when the bottom of the valley is reached. This problem is
addressed by the AdaGrad algorithm (Duchi et al., 2011), as it tends to head
down toward the steepest slope. It also keeps the gradient vector scaled
down. AdaGrad does not converge to the global optimum even though it
detects its direction early. The RMSprop algorithm converges to the best
solution by keeping track of the gradients from the latest iterations. RMSprop
is an unpublished work; however, it is proposed by Hinton et al. (2012).
Adam optimiser (Kingma and Ba, 2014) is an algorithm that combines the
advantages of momentum and RMSProp algorithms. It uses the momentum
vector and the tracked gradients from the most recent iterations to update
the network parameters.

The learning rate represents the size of a step at each training iteration,
while the optimisation algorithm seeks the minimum value of a loss function.
Finding the ideal learning rate is a complex task. For instance, if a very small
number is assigned to the learning rate, then training the model will
converge after a long time. While if it is set to a very high value, then training
the model will diverge. Also, a slightly high learning rate may show progress
toward reaching the optimum initially, but after that, it will fluctuate around it
without settling down (Géron, 2017). A good learning rate can be found
empirically by running the experiments several times using different values
for the learning rate; then comparing the learning curves. The corresponding
learning rate for the curve that decreases faster and converges should be
selected. Generally, fine-tuning models require a very small learning rate
value.

Optimisation functions have different methods to update the parameters
based on the amount of computed data in each iteration. The first method is
batch optimisation, which updates the parameter set in each iteration after
computing the gradients for the whole training set concerning the cost
function. Batch optimisation costs time and memory capacity. Also, it is not
used with huge datasets as they cannot be fit in memory, and it is hard to
update the dataset while training the model (online) (Géron, 2017). In
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contrast, the stochastic optimisation that updates the model's parameters
after each training instance makes updating the dataset online possible.
Although this technique is fast in training, it suffers from the redundancy of
information and convergence complexity (Géron, 2017). The mini-batch
optimisation has the advantages of the previous methods. It overcomes the
previous issues by dividing the dataset into small batches and updating the
parameters once each mini-batch is trained (Géron, 2017).

2.5.2 “We need to go deeper!”

CNNs have achieved state-of-the-art performance in object classification,
segmentation and detection tasks. For instance, they proved that by always
being the winning architecture in the ILSVRC challenge (Russakovsky et al.,
2015). The difference between the proposed architectures in the competition
is their depth and width, as the performance is increased by increasing the
network size. However, by increasing the width and depth, the computational
cost increases dramatically, and by adding more layers, the performance
starts to degrade due to the vanishing gradient issue.

Szegedy et al. (2015) proposed a solution to increase the network width and
keep costs low. Their model managed to capture the optimal local sparse
construction and detect its pattern in an input image by convolving different
sizes of filters (1X1, 3X3 and 5X5) to the input. The output of those filters
was then concatenated into an output vector that will be the input for the
next layer in the model. Additionally, the output of a pooling operator (max-
pooling with stride 2) on the input was appended to the output vector to
benefit from the effect of the pooling operation. Additionally, dimension
reductions and projections were applied before expensive filters and
following the pooling layer to reduce the computational cost. The expensive
filters are the ones with 3X3 and 5X5 pixel-sized. The best dimension
reduction method that preserves the spatial sparsity representation and
compresses the signals is achieved by applying 1X1 convolutions
accompanied by rectified linear activation. The inception block structure is
illustrated in Figure 2.9. The proposed model was named GoogleNet (also
known as inception V1), and it won the ILSVRC 2014 competition with
6.67% top-5 error only.
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Figure 2.9 A building inception block in GoogleNet (inception V1)

Furthermore, He et al. (2016) proposed another solution to increase the
depth of the network without imposing the vanishing gradient problem.
Before their proposed model, the conventional CNNs reached 30 layers in
maximum before they fell into the vanishing gradient problem. He et al.
(2016) proposed a deep residual network that is eight times deeper than
VGG-16 (Simonyan and Zisserman, 2014), has better performance and yet
has far lower complexity. Their architecture relies on the concept of adding
more layers to increase the network's ability to discriminate different
categories as the deep neural networks integrate variant levels of features
starting from low-level features in the first part of the network, medium-level
features in the middle part, and high-level features at the end. For example,
layers in the first part of the network detect features like edges and corners
and the activated map almost looks similar to the input image.

In contrast, the last layers detect higher-level features, and the outputted
activation map is abstract and looks less or nothing like the related input.
The concept of the residual network is to introduce a shortcut connection
between the residual block’s input and output, as shown in Figure 2.10, to
allow the uncontrolled flow of the gradient. For adding the two layers, their
dimensions should have the same size; thus, a zero-padding technique is
used to adjust the output size. The mathematical representation of the
residual block is the output of the block is y = F(x) + x, where x is the input
to the block, and F(x) = (W; x a(W;_q * x + b;_1) + b;), in which W;_,, W;, b;_4
and b; are the weights and biases for the first and second convolutional
layers within the residual block, and o denotes the ReLU activation function.
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The proposed residual network won first place in the ILSVRC 2015
competition.

Weight Layer

F(X) relu

v

Weight Layer

X
identity

F(X)+X l relu

Figure 2.10 A residual building block in ResNet architecture

Szegedy et al. (2017) proposed an architecture known as “Inception-
ResNet-v2” that utilises the inception and the residual networks, as
illustrated in Figure 2.12. The model scored the best performance in 2018.
Figure 2.11 shows the evolution of different CNN architectures and how
introducing the previously mentioned techniques has increased the
performance and decreased the computation burden.
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Figure 2.11 A comparison between different famous CNN architectures

This figure compares the number of layers and parameters and the
performance of AlexNet (Krizhevsky et al., 2012), VGG-16, GoogleNet,
ResNet-152 and Inception-ResNet-v2 networks. It shows that 19 layers
of conventional CNN (VGG-16) occupy the highest memory space. By
introducing the residual and inception networks, the memory usage
was dramatically reduced while the performance was increased.
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Figure 2.12 lllustration for the Inception-ResNet-V2 architecture (Szegedy et al., 2017)
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2.6 Learning approaches of deep-learning architectures

This section aims to provide background information about the different
learning schemes applied in histopathology for the deep-learning. That
includes supervised, unsupervised, weakly supervised, and transfer
learning. Also, it discusses some related works in the related field and
defines a potential area where this research could investigate.

2.6.1 Supervised learning

In tasks where a training set T has n number of samples x; with their labels
yi (T ={(x1,y1), ., (x;,¥)}=1). The goal is to learn a function f:x — y that
during the inference time can predict the label y given the unseen test
sample x. Figure 2.14 shows the training dataset nature of the supervised
tasks. One of the first uses of CNN in histological images following the
supervised learning was proposed by Malon et al. (2008) for the mitotic
count in breast cancer, epithelial layers detection in the stomach, and signet
ring cells detection. In histological image analysing, according to Srinidhi et
al. (2019), supervised learning involves three tasks: classification, regression
and segmentation models. The classification models can be trained to locally
classify patches within the whole slide to detect objects, such as nuclei,
mitosis or glands, or identify diseased regions. One limitation of the
supervised classification at the local level is the unavailability of the ground-
truth labels for the patches within the whole slide due to the high cost of the
annotation process. Therefore, applications of such models are limited to
problems where exhaustively labelled data is available, such as the provided
dataset by International Conference on Pattern Recognition 2012 (ICPR
2012) (Roux et al., 2013), CAMELYON (Litjlens et al., 2018) and Breast
Cancer Histology Images (BACH) (Aresta et al., 2019) challenges;
otherwise, the weakly supervised learning is applicable (will be discussed in
section 2.6.3). Usually, in real-world histologically tasks, the local-level
classification utilises MIL.

(Ciregsan et al., 2013) and (Wang et al., 2014) are related work in the local-
level classification, which trained different architectures of CNNs in a
supervised manner to detect mitosis in breast cancer using the ICPR 2012
dataset. The first work is the winning approach in the ICPR 2012 competition
that used deep CNN with max-pooling layers to extract high-level features
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from H&E stained breast tissues to detect mitosis. After learning the
features, they were fed into the Softmax classifier to predict the presence of
a mitotic nucleus in each region. Wang et al. (2014) aimed to increase the
robustness of the previous system by mixing hand-designed features with
CNN learned features.

Moreover, the classification models can be trained to classify the whole slide
based on globally patches classes. Wang et al. (2016) proposed a system to
identify cancer metastases from WSIs of breast sentinel lymph nodes. They
participated in the “CAMELYON” Grand Challenge 2016 competition and
won the competition. Their system is composed of a deep convolutional
neural network trained using millions of batches following the supervised
learning approach. The trained deep CNN is locally classified patches into
cancer or normal. Then the detected tumour patches were aggregated to
produce the tumour probability heatmaps. Then, geometrical and
morphological features were extracted from the heatmaps to be used later
by a predictor (random forest classifier) for the slide-based classification and
tumour localisation. The performance accuracy of the proposed deep-
learning predictor has become near the human level.

On the other hand, regression models are used in detecting objects or
localising them. It regresses the probability of each pixel in the image being
the centre of an object (Srinidhi et al., 2019). Sirinukunwattana et al. (2016)
proposed a regression model to detect nuclei using a spatially constrained
CNN that calculates the probability of a pixel being the centre of a nucleus.
Then, a spatial constraint is applied to the pixels with high probabilities to
locate them in the nearest centre of nuclei. A neighbouring ensemble
predictor works alongside CNN to increase the accuracy of the classifier.
Also, Chen et al. (2016) proposed a deep regression network composed of a
downsampling part that extracts the high-level information from the virtual
stained slide and an upsampling part that generates a heatmap for the slide
with the scores of each pixel. That model was used with the ICPR 2012
dataset. They utilised transfer learning to overcome the high cost of needing
a huge labelled dataset as most of the works in the supervised learning
combine that approach with the transfer learning technique (will be
discussed in section 2.6.4).
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Supervised learning involves segmentation models used to separate
different layers of tissue as a prerequisite for extracting useful features. For
instance, Galal and Sanchez-Freire (2018) proposed a Candy Cane system
that consists of a fully convolutional “Densenet” architecture to segment the
whole slides in the “BACH” dataset. That model is based on the auto-
encoder architecture with downsampling and upsampling parts and skipped
connections between them to save the low-level features. The proposed
model was applied to the provided dataset by the “BACH” challenge to
generate pixel-wise labels for each virtual slide. Each pixel was predicted as
normal tissue, benign lesion, in situ carcinoma or invasive carcinoma.

Furthermore, deep CNN was used to recognise epithelial and stromal
compartments to detect breast cancer (Xu et al.,, 2016). The proposed
system generates small patches from the histological images, using a
superpixel method to atomic segment regions and the square window
method to resize the patches into fixed-size patches. Then, it uses the
extracted patches as input to the deep CNN to learn features. Table 2.6
summarises some of the related works in supervised learning.

Table 2.6 A summary of the related works that employ supervised learning
in the field of histology

Paper

Application

Task

Approach

(Ciresan et al., 2013)

Mitosis detection
in breast cancer

Local-level
classification

Pixel-based CNN

(Wang et al., 2014)

Mitosis detection
in breast cancer

Local-level
classification

CNN and handcrafted
features

Detection of Local-level
(Wang et al., 2016) | breast cancer and global- | CNN based patch classifier
’ ’ level and random forest classifier

metastases

classification

(Sirinukunwattana et

Nuclei detection

spatially constrained CNN

al., 2016) in colon cancer Regression and a neighbouring ensemble
predictor
(Chen et al., 2016) Mitosis detection Auto-encoder scheme of a
Regression downsampled path and
upsampled path
(Galal and Sanchez- | Pixel-wise DenseNet following the auto
Freire, 2018) classification for | Segmentation | encode scheme
breast cancer.
(Xu et al., 2016) Breast and deep CNN
colorectal cancers | Segmentation

segmentation
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2.6.2 Unsupervised learning

Unsupervised learning aims to find the underlying representation of the data
in the absence of ground-truth labels, which might be ambiguous due to the
possible infinite representation (Srinidhi et al., 2019). Employing an
algorithm, such as auto-encoders, to reduce the mapping dimensionality of
the dataset will solve that issue, as illustrated in Figure 2.13. Auto-encoders
are the most famous and successful unsupervised deep-learning algorithms.
In computer vision, the auto-encoder architecture contains encoder and
decoder networks. The encoder part aims to build an encoding function to
extract the distinct features from pixel intensities. In contrast, the decoder
part can remodel the original pixel intensities using the learnt features (Deng
and Yu, 2014).

Figure 2.13 An overview of the unsupervised convolutional auto-encoder
model

An optimal learned stacked auto-encoder should be able to find
underlying representations (the layer in red) for the data in a way that
samples from the same class cluster in the same group.

Moreover, they are a powerful tool in image segmentation. Table 2.7 shows
many works employed in tissue and nuclei segmentation that need
dimension reduction for the dataset followed by aggregation. Zhang et al.
(2015) employed a layer of sparse auto-encoder combined with the Softmax
classifier to extract high-level representation and detect basal-cell carcinoma
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cancer in the histology field. Also, layers of auto-encoders were employed to
construct a nuclei detector that takes high-resolution histological images of
breast tissues (Xu et al., 2015). A sparse auto-encoder was used by Hou et
al. (2019) to detect and segment nuclei in breast cancer.

Table 2.7 A summary of the unsupervised related works in the field of

histology
Paper Application Approach
(Zhang et al., 2015) Basal-cell carcinoma cancer detection Sparse auto-encoder
(Xu et al., 2015) Nuclei detection in breast cancer Sparse auto-encoders

Breast cancer nuclei detection and

(Hou et al., 2019) .
segmentation

Sparse auto-encoders

(Hu et al., 2018) Bone cancer ceII—IeveI_cIaSS|f|cat|o_n and GAN
counting and nuclei segmentation

H&E stained image generation and

(Quiros et al., 2019) feature extraction

GAN

Generative Adversarial Networks (GAN) are needed in more complicated
unsupervised tasks such as classifications. Goodfellow et al. (2014)
introduced GAN to the deep-learning community. GAN is an unsupervised
approach that aims to learn the underlying structure. Its structure relies on
two components: generator and discriminator modules that run in an
adversarial way. The generator part takes random numbers, such as noise
from Gaussian distribution, and uses a stacked deconvolution network to
build a non-real image. In contrast, the discriminator is a CNN trained using
both the generated images (fake images) and real images to classify the test
images into real or fake.

The training phase aims to learn a generator that produces real-like images
and learn a discriminator that can distinguish between real and fake images.
When the model can discriminate the real from fake, it indicates that the
mutual information was maximised. As a result, the latent representation can
be used for the classification task. Hu et al. (2018) proposed a GAN-based
model for cell-level classification, counting, and nuclei segmentation. Quiros
et al. (2019) adopted a GAN-based model to generate high-resolution H&E
stained images and extract features that translate tissue feature
transformations.
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Although some attempts were made to apply the unsupervised deep-
learning in histopathology, this approach is not common in that field and
needs to be investigated more, as such approach will reduce the annotation
burden on the pathologists and cut the high cost of such a process

2.6.3 Weakly supervised learning

As discussed in section 2.6.1, the supervised learning approach is the best
to train predictive models when a huge, accurately labelled dataset is
available. Most of the real-world tasks suffer from insufficient labels, such as
tasks in the medical field or tasks that a limited sensitivity data collectors
collected the data. Labelling such datasets can be tedious and extremely
expensive because expert annotators should be involved in the labelling
process. Those tasks pave the way for weakly supervised learning, which is
recommended in those cases. According to Zhou (2018), weakly supervised
learning can be categorised into three main categories based on the levels
of the fed information: incomplete supervision, inaccurate supervision and
inexact supervision, as illustrated in Figure 2.14. Incomplete supervision is
the case where part of the data is labelled, and the labels of the remaining
data are not given. The most common form of that category is the semi-
supervised classification. Inaccurate supervision is the case of tasks with
labels that may suffer from error. In this category, the data labels might not
be the ground truth. An example of that category is the crowd annotations,
where a group of non-experts people provides labels in an attempt to reduce
the cost of the annotation resulting in unsure ground truth for the data.

Another example is the candidate labelling system, where more than one
label is assigned to an instance, and the task of a classifier is to find the
correct label from the provided set. The last category is inexact supervision,
where labels of the task are provided in a way that is not as precise as
aimed. For instance, the coarse-grained labels are provided in a task but not
the aimed fine-grained labels. Multiple instance learning (MIL) is a famous
scenario of inexact supervision as the label of a bag is known while the
labels of the instances in the contained bag are not. This problem was first
addressed by Keeler et al. (1991), while the MIL term was first coined by
Dietterich et al. (1997). Also, it is the most common problem in the field of
histological images annotations.
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Figure 2.14 lllustrations for the scenarios of supervised, unsupervised and
the different weakly supervised tasks

In this figure, circles denote instances, while squares denote bags of
instances. “X” and “Y” are well-known labels, “?” is an unknown label
and “X?” and “Y?” are noisy labels.

MIL is described as a task ability to learn a function (f) from the training data
D ={(Xy,Y1),..., X, YD)} where any i*",i € {1,...,n} training data (X;) is
consists of a different number (m) of instances X; = {xi,lﬂ----xi,m}i to predict
the label (Y) for input test data (X) whereY € {0,1}. The label Y; for the
training bag is known; however, the set of labels {)’i,p---'yl',m} are unknown.
Y is negative when all the labels of its instances are negative and positive
otherwise. Mathematically, the function is described as f: X ~ Y where:
Y:{O, if Vyi\'/vhereie{l,..,m}, y; =0
1, otherwise

Multiple medical applications of the MIL approach were reviewed by Quellec
et al. (2017). Also, several works investigated the usage of MIL for the H&E
stained virtual glasses. This section focuses on the papers that adopted
deep-learning models trained using H&E stained histological images with the
annotation-level labels to perform a specific task such as classification,
localisation, or segmentation of the whole virtual slide. In this thesis, the
most relevant weakly-supervised approach is the inexact supervision and,
more precisely, MIL scenario due to the nature of the histological images.
The exhausted pixel-level annotations for these images are costly and rarely
available. Instead, coarsely-annotated image-level labels are affordable.
Many kinds of research for weakly supervised classification, localisation and
segmentation using deep-learning approaches were proposed to alleviate
that issue.
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A survey was conducted by Rony et al. (2019) to apply weakly supervised
learning in histological images classification and localisation. They found the
research grouped into two primary approaches depending on the following
topology: (1) bottom-up approach and (2) top-down approach. The
difference between the approaches is the direction of passing the
information, as the first approach uses forward passing while backward
passing is used for the second one. All the related works in this literature
follow the first approach. Furthermore, they recategorised the first approach
into two methods: (1) the spatial pooling method that relies on the spatial
pooling of the activations or the scores, and (2) the object detection method.
Most of the deep, weakly supervised learning research in the histopathology
field focuses on the spatial pooling method.

Moreover, Cheplygina et al. (2019) categorised MIL approaches into three
categories based on the targeted task. The first category is the global
detection task that aims to identify a pattern at the image level, such as
learning a model to predict the image-level label. The second one is the local
detection task, which aims to identify a pattern at the patch-level or the pixel-
level, for instance, learning a model to predict the label of each patch or pixel
in the bag and generate a visual heatmap for the histological image. The
final category is the global and local detection task which aims to accomplish
the tasks of the previous two categories, such as learning a model to detect
if the histological image has cancer and locate it. Figure 2.15 illustrates the
different categorisation schemes of MIL approaches.
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Figure 2.15 A tree diagram for the different categorisation schemes of MIL
approaches

Following the categorising system by Rony et al. (2019), most works have a
bottom-up topology. They were implemented based on the spatial pooling of
the activation, as the authors assumed the s