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In this thesis, three main analyses are presented. First, a short study on the re-
jection of background for genuine electrons (from prompt decays) is presented, in
the context of the ATLAS electron reconstruction and identification. As the main
goal of this thesis, a measurement of the Higgs boson mass is presented in the
H → ZZ → 4l± decay channels using Run-2 proton-proton collision data at the
Large Hadron Collider corresponding to an integrated luminosity of 139 fb−1 at 13
TeV centre-of-mass energy collected by the ATLAS detector. The mass is found to
be mH = 124.99 ± 0.18 (stat.) ± 0.04 (syst.) GeV. Also, a combined measurement
with the ATLAS Run-1 data is performed, corresponding to approximately 5 fb−1

at 7 TeV and 20 fb−1 at 8 TeV, where mH = 124.94± 0.17 (stat.)± 0.03 (syst.) GeV.
These results were published and can be found in [1]. Finally, a Monte Carlo simu-
lation study is presented, where BSM contributions from anomalous quartic gauge-
couplings to γγ → 4l± production are investigated. Assuming a Standard Model
only hypothesis, expected upper limits corresponding to a 95% confidence level are
set on effective couplings sensitive to quartic gauge-couplings.
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Introduction

Curiosity, a blessing or a curse? Something we all inherited naturally since the first
human being. From the first time we open our eyes in this fascinating world, we
wonder. Insatiable creatures that never get enough from knowledge. After every an-
swer, there is always another question awaiting, there is always a what, a why or a
how. An endless spiral that knows no limit. While curiosity is manifested in many
contexts, one of the purest and deepest forms is found among the society of universe
explorers, the so-called particle physicists, a.k.a. scientists that crave for scrutiny. No
single detail is taken lightly. A hunt with the absolute goal for a theory of everything.
Every process in this universe is required to be understood, or the search won’t stop!

Over are the times where breakthrough discoveries could be made in university labs,
with an experiment devised by a handful of scientists, using a set of relatively simple
equipment. Since the birth of our non-intuitive understanding of quantum mechan-
ics [2], the theory describing the behaviour of non-relativistic (sub)atomic particles,
our understanding of physics became more complicated, requiring more complex
theories and experimental instruments. Ironically, the size of these experiments is
constantly increasing, while physicists are looking for the smallest, indivisible con-
stituents of the universe, the so-called fundamental elementary particles. Since the dis-
covery of the first subatomic particle in 1897, the electron [4], many other particles
have been discovered thanks to particle physics experiments. In recent decades, high
energy particle physics is the trend, requiring enormous instruments to produce high
energy interactions, which are studied in the hope to probe the architecture of the
universe. These machines accelerate and collide well-known particles to break them
down to even smaller constituents or cause the creation of rare, short-lived particles.

One of these particle colliders is the Large Hadron Collider [3] located at CERN. It has
been a key instrument for many physics measurements. The latest major discovery
was made in 2012, where the last piece of the Standard Model theory [5] (currently our
best understanding for describing the fundamental particles) was discovered, the
so-called Higgs boson [9] [10] [11]. The Standard Model has been very successful for
many years, having predicted many particles and processes that were verified with
astonishing precision. However it is well-known today that it cannot be a theory of
everything. It fails when it comes to answer certain questions, such as the origin of
dark matter [12] or describing gravity on a quantum level. Nevertheless, physicists
have not given up the hunt for physics Beyond the Standard Model. Currently, a
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lot of new physics models are being proposed by theorists and tested on the other
hand by experimentalists. What might be the first crack in the Standard Model is
still to be discovered, but it will surely be a monumental event. One thing is certain,
particle physicists at the LHC are determined to find these fissures in the current
theory until it crumbles to make space for a new theory, bringing us a step closer to
the understanding of this wonderful world.
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Chapter 1

The Standard Model of Elementary
Particles and beyond

In particle physics, one is looking for answers to the deepest questions about our
surroundings. What is the universe made of? What are the fundamental building
blocks? How do these elements interact with each other? These questions are not
new to human beings, and answers have been proposed in all different time eras.
In ancient times, when everything was practically in a natural state, air, water, earth
and fire were thought to be fundamental. After manipulation of different kinds of
substances, such as metals, one started classifying different materials according to
their properties in appearance. What made their building blocks different was un-
known, speculation about their shape and/or size were hanging around, but there
were no indications to prove it. For a long time, human progress in this matter was
relatively slow, until the discovery of the electron [4] in 1897, which accelerated and
caused a cascade of discoveries in the understanding of matter, where the milestone
achievement of the atomic model was formulated. Since then, a lot of breakthrough
findings have been made which gave birth to the Standard Model of Elementary Parti-
cles [5] [6] [7] [8] (SM). The SM is so far our best understanding of the building blocks
of the universe. In a nutshell, it describes the world around us with different kinds
of fields, which are spread in every corner of the universe. Just like a string, in a com-
pletely empty space, these fields are switched off, while vibrations on these fields are
associated to physical particles we can (or not) observe. There are two kinds of fields
associated to two kinds of particles; ones that constitute matter, and others that are
responsible for interactions among the different fields. In the next section, a brief in-
troduction to the SM is given, with a glance on the particle content and the involved
fundamental interactions. Thereafter, an overview of the quantum field theory of
the SM is presented, which is essential to explain the role of the Higgs boson in
the generation of fundamental masses of SM particles. In the third section, the link
to experimental particle physics is discussed, followed by an introduction to some
properties of the Higgs boson. The phenomenology of proton-proton collisions at
the Large Hadron Collider is briefly touched on in the fifth section. Finally, a coup
d’œil at the Effective Field Theory approach is given, providing indirect predictions
of physics beyond the SM.
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1.1 Glimpse of the Standard Model of elementary particles

The SM of elementary particles is an elegant mathematical description of the known1

fundamental particles. According to this theory, there are 12 fundamental types of
building blocks of matter, which are referred to as fermions. These latter particles
can interact with each other through the exchange of, again, particles which act as
force-carriers, called bosons. The main difference between fermions and bosons is
in their intrinsic angular momentum, known as the spin quantum number, where the
former particles have half-integer spin and the latter integer-spin. This difference is
at the origin why fermions make up matter and take up space; the laws of quantum
mechanics do not allow identical fermions to pile up in the same place, while bosons
can.

1.1.1 Fermions

Within fermions and bosons, particles are further classified according to their prop-
erties. In the case of fermions, one distinguishes the quarks and leptons. The common
property they share is that they both can interact through the so-called weak force,
while quarks can also interact through the so-called strong force, which is not the
case for leptons. There are further two types of leptons; electrically charged and
neutral leptons. The charged leptons are electron-like particles that interact on top
of the weak force also with the electromagnetic force. Apart from the electron, there
are two other charged leptons, namely the muon and the tau lepton. The only known
difference in properties between the three types is the mass, where the muon is ap-
proximately 200 times heavier than the electron, while the tau lepton is 3500 times
heavier. The electrically neutral leptons are called neutrinos, and they also exist in
three generations, namely the electron neutrino, muon neutrino and tau neutrino. In
the SM, the mass of particles is a free parameter that has to be determined empiri-
cally. Since neutrinos interact only weakly and have a very small mass, their exact
mass remains unknown to-date, only upper limits on the possible neutrino masses
are available.

On the other hand, quarks feel the three previously stated fundamental forces. There
are 6 flavours of quarks, which all have different masses. Similarly to leptons, quarks
are grouped in three generations. The first generation corresponds to the lightest
pair of quarks, the up and down-quark, which have, apart from the mass difference,
also a different electric charge. In contrast to charged leptons, their charge is frac-
tional, and is respectively +2/3 and -1/3 of the elementary charge (e). The two other
generations can be similarily grouped in a pair as the first generation, with the only
exception that their mass is a few orders of magnitude higher compared to the first
generation quarks. The two up-like quark particles are the charm and the top-quark,
while the down-like quarks are the strange and bottom-quark. Table 1.1 summarises

1proven to exist, directly or indirectly.
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TABLE 1.1: The SM fermions and their properties. Leptons and
quarks are classified in generations according to their mass [5].

Fermions
Leptons Quarks

Particle Charge (e) Mass (GeV) Particle Charge (e) Mass (GeV)

1st gen.
electron (e) -1 0.0005 down-quark (d) -1/3 0.003
e-neutrino (νe) 0 < 10−9 up-quark (u) +2/3 0.003

2nd gen.
muon (µ) -1 0.106 strange-quark (s) -1/3 0.1
µ-neutrino (νµ) 0 < 10−9 charm-quark (c) +2/3 1.3

3rd gen.
tau (τ) -1 1.78 bottom-quark (b) -1/3 4.5
τ-neutrino (ντ) 0 < 10−9 top-quark (t) +2/3 174

the fermions and some of their properties described in the SM. From all these par-
ticles, only the electron, the up and the down-quark make up the ordinary2 matter
in the universe. Different materials are mixtures of different arrangements of these
particles in the form of bound states called atoms. They all have the same structure;
a dense nucleus in the core made of bound states of the up and down-quark called
protons (two up-quarks and one down-quark) and neutrons (two down-quarks and
one up-quark), and a number of electrons surrounding the nucleus.

1.1.2 Bosons

In the SM, the elementary particles interact with each other by mediating a boson.
The theory includes the three interactions mentioned in the previous section, for
which bosons can be associated. The most familiar interaction is the electromagnetic
force3, which is responsible for most of the terrestrial processes. This force is me-
diated by the massless light particles, called photons. Electrically charged particles
repel each other if they are like-charged and attract each other if they are opposite-
charged by exchanging photons. The second force responsible for holding the nu-
cleus together, despite the positively charged protons that would repel each, is the
strong force. As its name suggests, it is the strongest fundamental force in the SM,
which is strong enough to overcome the electromagnetic force in the nucleus while
holding the quarks in the protons and neutrons together. The force mediating parti-
cles for this interaction are massless gluons. Finally, the last interaction is the weak
force, which is less of a force in the commonly used meaning of a force, i.e. pulling
and pushing objects. A familiar application of this interaction is the process of ra-
dioactive decays, such as the beta-decay, where a neutron decays into a proton, an
electron and an electron-neutrino. If one takes a closer look at subatomic level in the
beta-decay, it is a down-quark in the neutron that is turned to an up-quark, which
results in a proton. This flavour change is due to the weak force, which happens by
mediating this time a massive boson. Unlike the other interactions, there are two
types of bosons responsible for the weak interaction, namely the W and the Z-boson,
with the former having an electric charge, while the latter is electrically neutral.

2which is visible to us and is relatively stable over time.
3Forces and interactions are used interchangeably in particle physics.
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TABLE 1.2: The SM force-carrying bosons and their mass. An order of
magnitude of the relative strength of each force is also shown for two
fundamental particles being at a distance of the size of a nucleus [5].

The Standard Model bosons
Boson Associated fundamental interaction Relative strength Mass (GeV)

Gluon g Strong force 1 0
Photon γ Electromagnetic force 10−3 0
W-boson

Weak force 10−8 80.4
Z-boson 91.2

The previously stated bosons are what we conventionally know as force-carriers.
However, there is one last boson in the SM that is somehow different, in the sense
that it does not fit in the picture of a force-carrier, but its presence is essential to ex-
plain the empirical measurements. Before its discovery in 2012, the Higgs boson was
elegantly predicted in the SM. Its existence was crucial, otherwise the SM would not
make sense, i.e. it would be in contradiction with the experimental measurements.
Without the Higgs boson, all SM particles would be massless. Moreover, all parti-
cles would travel at the speed of light and it would not be possible to distinguish the
three generations of fermions from each other, since their difference is manifested
in their mass. To understand how the Higgs boson attributes mass to fermions and
the weak bosons, one has to introduce the concept of a field, which is discussed in
section 1.2. A summary of the SM bosons and their properties can be found in Ta-
ble 1.2. An order of magnitude of the relative strength of each force is also shown
for two fundamental particles being at a distance of the size of a nucleus. It should
be noted that this strength depends on the energy scale and the distance between
particles. Another difference among the forces is that the weak and strong force
are short-range forces, unlike the electromagnetic force which is extended on larger
distances, which is the reason why electromagnetism is dominant in the universe.

1.1.3 Anti-particles

So far, only the flavour of the SM particles has been discussed. In reality, every par-
ticle with some conserved physical charge has a twin particle with the same mass
but with a different charge, called an anti-particle. In the SM, every particle has a set
of conserved quantum numbers, such as the electric charge or the flavour number.
In the case of an electrically charged particle, the anti-particle has the same charge
value but with reversed sign. For example, a negatively charged electron has an
anti-particle, historically called a positron, which has the same mass but has a charge
+|e|. Similarly, the W-boson comes with two possible charges, W+ with a charge +|e|
and W− with -|e|. Up-like quarks have anti-particles with a charge - 2

3 |e| and down-
like quarks with + 1

3 |e|.
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Analogously to the electric charge, which arises from the electromagnetic interac-
tion, the strong force has also an associated charge, called the colour charge4. Since
quarks interact strongly, they do carry the colour charge. There are three colour
charges; red, green and blue. On top of the fractional electric charge, each quark exists
in one of the different colour charges. For example, the blue up-quark has an anti-
blue anti-quark as its anti-particle, that has a an electric charge of - 2

3 |e|. Depending
on the colour charge of the quarks, when a strong interaction takes place, 8 different
types of gluons can be exchanged. These gluons carry a combination of colours and
anti-colours, known as the colour octet, that are mediated by quarks with the corre-
sponding colours and anti-colours.

Finally, neutral bosons (the photon, the Z-boson and the Higgs boson) are their own
anti-particles, while neutrinos have anti-particles with a different lepton number,
which is one of the conserved quantum numbers in the SM. In this thesis, no dis-
tinction is made between particles and anti-particles unless stated, e.g. an electron
would refer to both the negatively and the positively charged electron.

1.1.4 Shortcomings of the Standard Model

Despite the elegance in which the SM describes fermions and bosons, it cannot not
be a theory of everything. As it could be sensed in the previous section, there is one
familiar force missing in the picture of the SM, gravity. This latter force is hard to rec-
oncile with the SM and remains a mystery on quantum level. Similarly to the three
fundamental forces, a hypothetical massless boson is associated to gravity, called the
graviton [13], which is expected to be the force-carrying particle. Even though the ef-
fects of gravity are obvious on macroscopic scales, its impact on quantum level is
negligible. This is the reason why it is so hard to detect gravity experimentally, and
consequently the SM predictions are confirmed with high precision without includ-
ing gravity. Compared to the relative strength of the three other forces (Table 1.2),
gravity would be of the order of 10−37, which is outrageously small.

Gravity is certainly not the only shortcoming of the SM. A priori, in combination
with a theory of gravity (elegantly described as a geometric theory, the so-called
General Relativity [14]), the SM is sufficient to describe the world within the solar
system. However, beyond this scale there are clear hints that the laws of physics are
not complete; a significant fraction of the universe mass seems to be hidden in the
form of an undetectable substance, called dark matter [12]. One of the most direct
pieces of evidence of dark matter is the contradictory orbit velocity distribution of
stars in galaxies. So far, there is no evidence that constituents of this type of mat-
ter can interact with the SM particles. Apart from dark matter, there are other open
questions which are not solved considering only the SM, e.g. the origin of the matter

4The colour is used as a tag, but has nothing to do with the intrinsic meaning of a colour, i.e.
particles having the colour charge are not coloured.
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anti-matter asymmetry in the universe, the relatively large number of free parame-
ters in the SM or the reason behind the very small mass of neutrinos.

1.1.5 Potential beyond the Standard Model theories

While particle physics experimentalists are digging in the available data in the hope
of finding deviations from the SM predictions, which would hint the direction in
which the laws of physics have to be rewritten, theorists have proposed many ideas
that could potentially answer some of the questions beyond the SM. A few famous
theories are; supersymmerty [15], string theory [16], grand unification theory [17] and
extra dimensions [18].

Nevertheless, the SM is believed to be an incomplete theory rather than being wrong
due to the astonishing precision with which many predictions have been confirmed,
e.g. the electron magnetic moment is measured to be in agreement with the SM with
a precision of the order of 10−13 [19]. An important tool that supports this assump-
tion while providing a systematic way of constructing new theories based on the
current SM theory, is the so-called effective field theory (EFT) approach [20]. EFT is a
concept that has been used many times throughout the history of prediction mak-
ing. The basic concept behind this formalism is the assumption that relevance of
physics theories depends on the considered length or energy scale, while effects that
can be prominent at shorter distances or higher energies become irrelevant. For ex-
ample, one does not need special relativity [21] to calculate whether a car breached
the speed limit, the difference between the Lorentz factor and unity would be negli-
gibly small to matter. Or, one does not need the SM to make predictions in chemistry
with a satisfying accuracy. Based on this idea, the SM is assumed to be an effective
theory that is valid at relatively low energy scales, where beyond the SM processes
are diluted at low scales, and therefore cannot be easily observed.

1.2 The Standard Model as a quantum field theory

In the previous section, a general summary of the content of the SM was presented.
However, to emphasise the importance of the Higgs boson, one has to cover the
principles of the SM in a certain level of detail. The following content is inspired
from the following literature [5] [6] [7] [8] [24]. As previously stated, the SM is a
field theory describing the elementary particles and how they interact via three fun-
damental interactions, the weak, the strong and the electromagnetic interaction. To
understand why particles are linked to fields, one has to refer back to quantum me-
chanics, where the wave-particle duality is introduced, implying that matter has a
wave-like nature, for which a wavelength can be associated that is inversely propor-
tional to the momentum, the so-called de Broglie equation. This was verified in the
famous double split experiment [22], where electrons showed clear wave-patterns.
On the other hand, the photoelectric effect experiment [23] revealed the quantum
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nature of light, which together with former experiments suggested that electrons
and photons a fundamentally quite similar. But the question can be asked, what is
more fundamental; the particle or the wave-like nature?

In the SM, describing the elementary particles as waves, which are special config-
urations of a field, is found to be more useful. Among other reasons, the fact that
elementary particles are exact copies of each other, it is somehow more acceptable to
think of a single field stretched in space-time, where ripples of it appear as identical
particles. Another motivation is, the fact that particles can be created and annihi-
lated, which is a process that is easier to picture using the wave-like nature. How-
ever, in order to reconcile the concept of a field with particles, the introduction of
field quantisation is essential, which is achieved by promoting the fields to opera-
tors. In other words, the SM is a quantum field theory (QFT), where the dynamics of
the fields are described. These can be derived from the Standard Model Lagrangian,
which encodes the properties and interactions of the fields. In QFT, the Lagrangian
density is used in order to satisfy the Lorentz invariance of the action (essential for
deriving the equations of motion), defined as,

S =
∫

L d4x with L(t) =
∫

L (φ, ∂µφ)d3x, (1.1)

where the Lagrangian density L is a function of the field φ and its derivatives. An
important feature in the use of the Lagrangian is that one can derive conservation
laws from its symmetry properties, inspired by the famous Noether’s theorem. In gen-
eral, when the true theory is missing, the exploitation of symmetries5 in a systematic
way can be very powerful to derive the characteristics of the theory. In fact, the
SM is constructed from the assumption that it is invariant under specific symmetry
groups from which the fundamental interactions arise. These symmetries are math-
ematically well defined in group theory [30]. In the following sections, the quantum
field theories that provide a description of the fundamental interactions are briefly
discussed.

1.2.1 Gauge invariant theories

Looking back in classical mechanics, the equations of motion of, say, a particle, are
derived from the Euler-Lagrange equation, where the Lagrangian L could be ob-
tained from the kinetic energy T and the potential energy U of the particle as fol-
lows,

L = T −U. (1.2)

A particle is naturally localised in space, therefore the Lagrangian is a function of
its coordinates and their time derivatives. On the other hand, a field occupies a
region in space. In a relativistic field theory, the Lagrangian is expressed in terms

5a set of operations that can be applied to system while leaving it invariant under the operations.
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of fields, and their derivatives in each space-time coordinate (since in a relativistic
theory space and time coordinates are treated on equal footing). In contrary to the
classical case, the Lagrangian density L (from now on referred to as simply the La-
grangian) in QFT has to be somehow invented. One typically starts from a guess,
which is gradually modified to construct a robust theory. Moreover, the Lagrangian
for a specific system is often not unique, one can multiply or add a constant to it
without affecting the derived field equations.

This is the case in quantum electrodynamics (QED), the theory where charged parti-
cles interacting electromagnetically are described. QED is constructed starting from
the so-called Dirac Lagrangian, describing a half-spin particle (fermion) with mass m,

LDirac = iψ̄γµ∂µψ−mψ̄ψ, (1.3)

where ψ is the Dirac spinor (a four-component6 wave-function satisfying the Dirac
equation), γµ the Dirac gamma matrices, and ψ̄ the adjoint Dirac spinor defined as

ψ̄ = ψ†γ0, with ψ†the Hermititian conjugate of ψ.

The first term represents the kinetic term of the fermion field and the last the mass
term. It can be shown that this Lagrangian is invariant under the global phase trans-
formation,

ψ(x) −→ ψ′(x) = eiθψ(x), with θ ∈ R (1.4)

If θ is not a constant in different points of space-time, i.e. θ(x), the Lagrangian is no
longer invariant under these transformations. In other words, the Lagrangian varies
under local phase transformations. A crucial step in this formalism comes when one
requires the Lagrangian to be invariant under such local phase transformations. To
achieve this, the extra term after performing the local transformation has to vanish,

L ′
Dirac = LDirac − ψ̄γµ(∂µθ(x))ψ. (1.5)

The difference between the global and local phase transformations arises from the
calculation of derivatives of the field. To counter this difference, the so-called covari-
ant derivative is introduced,

Dµ = ∂µ + iqAµ, (1.6)

where Aµ is some new vector field transforming as,

Aµ −→ A′µ = Aµ +
1
q

∂µθ(x), (1.7)

to ensure the cancellation of the unwanted term. Substituting ∂µ with Dµ in the
initial Lagrangian restores the desired invariance under local phase transformations.

6Although it has four-components, it is not a four-vector, i.e. it does not transform as one
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This comes with a price, the introduced vector field is consequently coupled to ψ

with a strength q in the updated Dirac Lagrangian,

LDirac = iψ̄γµ∂µψ− qψ̄γµ Aµψ−mψ̄ψ. (1.8)

This vector field is nothing but the electromagnetic field, and the new term describes
the interaction of fermions and photons with a coupling strength q. This is not the
full picture, physically a photon must be able to propagate freely, therefore the La-
grangian must include a free term for Aµ. The Lagrangian for a vector spin-1 field
with mass mA is given by the Proca Lagrangian,

LProca = −
1
4

FµνFµν +
1
2

m2
A Aµ Aµ, (1.9)

where the electromagnetic field strength tensor Fµν = ∂µ Aν − ∂ν Aµ. It should be
noted that the last term in not invariant under local phase transformations. This
is naturally solved, since the photon is found massless, which drops the last term.
Adding the remaining term, which is nothing but the Maxwell Lagrangian for a free
propagating photon, to the updated Dirac Lagrangian eq. 1.8, the QED Lagrangian
reads,

LQED = iψ̄γµ∂µψ− qψ̄γµ Aµψ−mψ̄ψ− 1
4

FµνFµν. (1.10)

Thus, by imposing local phase invariance on the Dirac Lagrangian, initially describ-
ing a free fermion field, one introduces a massless vector field with a specific trans-
formation rule, that could be identified as the massless photon field. Invariance un-
der transformation rules such as eq. 1.7, known as a gauge transformation, is said to be
a gauge invariance, corresponding to a gauge field Aµ. Moreover, the transformation
eq. 1.4 can be generalised in the form,

ψ −→ ψ′ = Uψ, with U†U = 1, (1.11)

where U is a unitary 1×1 matrix. Such matrices are elements of the group U(1), and
therefore symmetries of this kind are referred to as U(1) gauge invariant symmetries.
Thus QED is an abelian7 U(1) gauge theory.

In fact, the local gauge principle requirement is at the heart of the SM formulation. It
serves as the machinery for developing the theory of the interactions and their cou-
plings in a systematic way. Analogously, one can extend the strategy to construct
the weak and the strong interaction Lagrangian, where this time the invariance is
required under respectively SU(2)8 and SU(3) local phase transformations. The
derivation of the Lagrangian can be found in the previously mentioned literature.
For the strong interaction, analogously to QED, quantum chromodynamics (QCD) is
the theory describing quarks interacting strongly with gluons. As opposed to the

7An Abelian group is a group in which the elements commute, as is the case with U = eiθ

8A SU(n) group refers to the collection of unitary n×n matrices with determinant equal to 1.
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single QED electric charge, characterising the coupling strength of charged particles
with the photon, in QCD one counts three charges, the previously mentioned colour
charges. The QCD Lagrangian reads,

LQCD = q̄(iγµ∂µ −m)q− g(q̄γµTjq)G
j

µ −
1
4

Gj
µνGµν

j , (1.12)

where q(x) is the quark field, Tj represent the generators of the SU(3) group given by
3×3 so-called Gell-Mann matrices with j running from 1 to 8, g the coupling strength
of the quarks to the gluon fields G

j
µ, and Gj

µν is the gluon field strength tensor, which
in contrast with the electromagnetic field strength tensor, has an extra term arising
from non-commuting generators. This Lagrangian is as desired invariant under lo-
cal SU(3) gauge transformations and describes quarks in three colours with eight
massless gluon fields.

The local gauge invariance principle works fine as long as the resulting gauge fields
are found to be massless, which is not a problem in the case of QED and QCD with
the massless photon and gluon. However this does not hold in the case of the weak
interaction, where the Z and W-bosons are measured to be massive. More specifi-
cally, if one adds a mass term to the weak interaction Lagrangian, the local invariance
would not be satisfied in a similar way as in the case of the Proca Lagrangian eq. 1.9
, where the last mass term is not invariant under local phase transformations. In
fact, this issue is also apparent in the case of fermions, where the mass term would
violate the weak interaction SU(2) gauge invariance .

It is at this specific point where the importance of the Higgs boson appears. As
mentioned in the last section, the Higgs field is responsible for the generation of the
mass of the elementary particles. This is achieved through a process, called spon-
taneous symmetry breaking, where massless particles interacting with the Higgs field
gain mass.

1.2.2 Spontaneous symmetry breaking

To understand the Higgs mechanism, it is useful to consider the following simple
Lagrangian,

L = T −U , (1.13)

where T and U are the kinetic and potential terms of a real scalar field φ given by,

T =
1
2
(∂µφ)(∂µφ),

U =
1
2

µ2φ2 +
1
4

λφ4.

At first glance, the potential term appears to be composed of a mass and a self-
interaction term. Considering the lowest energy state of φ (vacuum state), λ has to
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be positive in order to ensure a finite minimum potential. Consequently, there are
two cases depending on the value of µ2; either it is positive in which case φmin=0,
or it is negative and thus φmin=±

√
−µ2/λ. Figure 1.1 shows the potential term of

Lagrangian eq. 1.13 as a function of the real scalar field φ.

FIGURE 1.1: The potential term of Lagrangian eq. 1.13 as a function
of the real scalar field φ. (a) shows the case for µ2 > 0, and (b) for µ2 <

0.

In the first case, the interpretation of the mass term holds, while in the second case
the mass would become imaginary. Moreover, in the latter case, since the minimum
potential is not at zero, the expectation value of the field in vacuum is non-zero.
To identify the mass term in this latter case, one has to express the Lagrangian in
terms of a deviation from the vacuum state (=lowest energy state), which describes
the particle states. The perturbation of φ about the non-zero vacuum state can be
written as,

φ(x) = φmin + η(x), with φmin = constant. (1.14)

where the Lagrangian becomes,

L =
1
2
(∂µη)(∂µη)− 1

2
µ2(φmin + η)2 +

1
4

λ(φmin + η)4

or (since µ2=−φ2
min/λ),

L =
1
2
(∂µη)(∂µη)− λφ2

minη2 − λφminη3 − 1
4

λη4 +
1
4

λφ4
min. (1.15)

This is the exact same initial Lagrangian eq. 1.13, but re-expressed in terms of the
deviation 1.14, where this time the mass term is well defined (i.e. m = λφ2

min ∈ R).
The third and fourth terms can be interpreted as self-interaction terms, while the
last term is constant and has no effect on the derived field equations. However there
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is an important difference between eq. 1.13 and eq. 1.15. The initial Lagrangian is
invariant under parity transformations of the field φ, i.e. L (φ) = L (−φ), but in
the re-expressed version eq. 1.15 the symmetry is broken. The laws of physics from
both Lagrangians are still invariant, but as soon as the vacuum state is chosen (here
+|φmin| or -|φmin|), one speaks of spontaneous symmetry breaking9.

The scalar field considered in thipecrts example was real, where the broken sym-
metry was discrete (two possible vacuum states). This can be generalised by consid-
ering a complex field,

φ =
1√
2
(φ1 − iφ2), (1.16)

whereby the Lagrangian eq. 1.13 becomes,

L = (∂µφ)∗(∂µφ)− µ2φ∗φ + λ(φ∗φ)2 (1.17)

or in terms of φ1 and φ2,

L =
1
2
(∂µφ1)(∂

µφ1) +
1
2
(∂µφ2)(∂

µφ2)−
1
2

µ2(φ2
1 + φ2

2)
2 − 1

4
λ(φ2

1 + φ2
2)

2, (1.18)

where the condition λ > 0 is still required to ensure a finite vacuum potential. Fur-
thermore, the Lagrangian has the same QED global U(1) symmetry (eq. 1.4), with
the exception that the fields are scalar fields instead of spinors. Analogously to the
previous example, there are two cases depending on the sign of µ2. Figure 1.2 shows
the potential term of Lagrangian eq. 1.18 as a function of the components of the
complex field φ. In the positive case, the potential has a paraboloid shape, with the
vacuum state at zero, while in the negative case, the potential has a form referred to
as the Mexican hat, with a full circle of minima defined by,

φ2
1 + φ2

2 =
−µ2

λ
= φ2

min. (1.19)

This time the vacuum state can take an infinite number of minima, while break-
ing the U(1) global symmetry. In a similar way to the real scalar field case, the
Lagrangian is re-expressed in terms of a deviation from one of the vacuum states.
Choosing the state along the positive real axis, (φ1, φ2) = (φmin, 0), without loss of
generality (eq. 1.19), one can expand the scalar field as,

φ =
1√
2
(φ1 + iφ2) =

1√
2
(η + φmin + iξ), (1.20)

in which case the Lagrangian 1.18 reads (while substituting µ2 = −λφ2
min),

L =
1
2
(∂µη)(∂µη)− λφ2

minη2 +
1
2
(∂µξ)(∂µξ)−V(η, ξ), (1.21)

9An example of symmetry breaking: in the middle of the ocean no direction is preferred, until a
compass is looked at, which breaks the isotropic symmetry.
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FIGURE 1.2: The potential term of Lagrangian eq. 1.13 as a function
of the complex scalar field φ. (a) shows the case for µ2 > 0, and (B) for

µ2 < 0.

with the interaction term,

V(η, ξ) = λφminη3 +
1
4

λ(η4 + ξ4) + λφminηξ2 + λη2ξ2. (1.22)

Analysing eq. 1.21, respectively, one can identify a kinetic and a mass term for the
field η(x), and a kinetic term for the massless field ξ(x). The former terms constitute
the so-called Klein-Gordon Lagrangian, describing a free spin-0 scalar boson field with
mass m = φmin

√
2λ. Compared to the previous example, where a discrete symme-

try was broken, spontaneously breaking a continuous global symmetry implies the
existence of a massless scalar field ξ(x), which is referred to as the Goldstone field.

1.2.3 The Higgs Mechanism

The last two sections have demonstrated powerful tools on which the SM is based,
and how to formulate the relevant theories to describe the elementary particles and
interactions in a field theory. The importance of the last piece of the SM, the Higgs
field, will be shown in this section.

As mentioned before, the Lagrangian eq. 1.18 is invariant under a global U(1) sym-
metry of the form eq. 1.4, and analogously to the QED case, it is possible to make
it invariant under local gauge transformations while introducing a gauge field, that
is required to be massless. Considering the case where the vacuum state is degener-
ate, the now gauge invariant Lagrangian can be similarly re-expressed as shown in
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section 1.2.2,

L =
1
2
(∂µη)(∂µη)− λφ2

minη2 +
1
2
(∂µξ)(∂µξ)− 1

4
FµνFµν

+
1
2

g2φ2
minBµBµ + gφminBµ(∂

µξ)−V(η, ξ, B). (1.23)

As shown before, the Lagrangian includes a massive Klein-Gordon field η and a
massless Goldstone field ξ, originating from the spontaneous symmetry breaking,
and a gauge field B from the gauge invariance, but this time it is massive! The mar-
riage of gauge invariance and spontaneous symmetry breaking resulted in a gauge
field with a mass term. The interaction terms are grouped in the potential term
V(η, ξ, A). Moreover, before symmetry breaking the gauge field has two degrees of
freedom from the transverse polarisation states, but when it acquired a mass, a third
degree of freedom for the longitudinal polarisation state was acquired in the form of
a Goldstone field ξ. To see this, one can perform the appropriate gauge transforma-
tion to absorb the Goldstone field into the gauge field,

Bµ −→ B′µ = Bµ +
1

gφmin
∂µξ(x), (1.24)

and since the Lagrangian 1.23 is gauge invariant, the derived equations of motion re-
main unchanged. Finally, in this specific gauge transformation eq. 1.23 reads (while
rewriting η(x) = h(x) and φmin = v),

L =
1
2
(∂µh)(∂µh)− λv2h2 − 1

4
FµνFµν +

1
2

g2v2BµBµ + Vint(B, h) (1.25)

with,

Vint(B, h) = g2vBµBµh− 1
2

g2vBµBµh2 − λvh3 − 1
4

λh4

which is the Lagrangian describing the Higgs scalar field h with a mass

mH = v
√

2λ

and a massive gauge field B of mass mB = gv, proportional to the Higgs vacuum
expectation value. The potential term Vint(B, h) includes the interaction terms, where
the first two terms describe the interaction between the Higgs field h and the gauge
field B, while the last two are the Higgs self-interaction terms. It is important to note
that throughout the procedure the Lagrangians were equivalent, i.e. the derived
equations of motion remain the same. By exploiting the symmetries under which
the Lagrangian is invariant, one could extract the actors in the theory.
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1.2.4 Mass acquisition of electroweak bosons

That W bosons are electrically charged is not a coincidence. In fact the electromag-
netic and weak interactions can be unified in a single theory, called the electroweak
theory. This can be formulated with an SU(2)×U(1) gauge group, where the gener-
ators of the SU(2) and the U(1) are known as the weak isospin and hypercharge respec-
tively. There are four corresponding gauge fields involved, namely the weak isospin
fields W1, W2, W3, and the hypercharge field B, which are initially massless fields before
the Higgs mechanism. In the previous section, the mass generation for a gauge field
emerging from a U(1) gauge symmetry was shown. Similarly, in the SM the three
massive weak bosons and the photon are produced while spontaneously breaking
the electroweak SU(2)×U(1) symmetry.

The minimal Higgs model required for generating the mass and the additional lon-
gitudinal degrees of freedom (in the form of Goldstone fields) of the Z and W bosons
is constructed from a two state complex scalar field configuration, referred to as the
weak isospin doublet, given by,

φ =

(
φ0

φ+

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (1.26)

with φ0 a neutral scalar field and φ+ charged such that (φ+)† = φ−, ensuring the
longitudinal degrees of freedom for respectively the Z0, W+ and W− bosons. Con-
sidering Lagrangian 1.17, but this time the fields are doublets (thus φ∗ → φ†), the
same Higgs mechanism procedure described in the previous section can be repeated,
which can be found in this reference . As a result, the physical gauge fields A, W±

and Z corresponding to the electroweak bosons are found to be linear combinations
of the massless boson fields from the local SU(2) × U(1) gauge symmetry before
symmetry breaking,

Aµ = cosθW Bµ + sinθWW(3)
µ with mA = 0, (1.27)

Zµ = −sinθW Bµ + cosθWW(3)
µ with mZ =

1
2

gW

cosθW
v, (1.28)

W±µ =
1√
2
(W(1)

µ ∓ iW(2)
µ ) with mW =

1
2

gWv, (1.29)

where θW is the so-called weak mixing angle, and gW the weak coupling constant. Anal-
ogously to the previous case, the mass of the massive gauge bosons is proportional
to the vacuum expectation value of the Higgs field. In summary, the mass of the SM
weak bosons are generated through the SU(2)×U(1) electroweak symmetry break-
ing, known as the Higgs mechanism. Finally, it can also be shown how fermions
acquire their mass through the Higgs mechanism, where the Higgs-fermion interac-
tion is proportional to the so-called Yukawa coupling [9] [10] [11].
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1.3 Experimental predictions of quantum field theories

In the previous section, discussions about the nature of the interaction terms were
omitted to avoid distraction from the main purpose, which was the demonstration
of mass acquisition in the SM. In fact, these interaction terms are crucial to verify
the credibility of the SM. As previously stated, the Lagrangian formalism is a pow-
erful tool to derive the equations of motion and provides an elegant mathematical
description of the SM in a QFT. For instance, it led to the ability of making predic-
tions such as the existence of the Higgs boson. Moreover, knowing the nature of
SM interactions, it is possible to calculate quantum amplitudes of particle scattering,
from which probabilities of these interactions to occur can be computed. QFT mod-
els such as the SM are often tested by measuring cross sections of particle scatterings,
which are measures of quantum mechanical probability amplitudes of these interac-
tions. These can be predicted from quantum mechanical transition matrix elements
which include a factor of the coupling strength of the interaction vertex in question.
On the other hand, cross sections can be measured from counting scattering events
in collider experiments.

The derivation of cross sections starting from Lagrangians is not trivial; one has
to derive the associated Hamiltonian, which is used to determine the time evolution
operator from initial time ti to final time t f as,

U(t f , ti) = T

[(
−i
∫ ti

t f

Hintdt

)]
, (1.30)

with Hint the interaction Hamiltonian and T the time ordering operator. This latter
can then be used to define the scattering matrix (S-matrix),

S ≡ lim
t→∞

U(t,−t), (1.31)

from which scattering amplitudes encoding the transition rate from the initial to
final state can be calculated as,

Mi→ f = 〈final state|S|initial state〉, (1.32)

with |Mi→ f |2 the probability density of the interaction occurrence. From this quan-
tity, cross section of processes can be derived. The differential cross section of any
given two particle interaction can be expressed as,

dσ =
|Mi→ f |2

Φi
dL (1.33)

with dL a Lorentz invariant phase space element and Φi the incident flux. In reality,
the transition amplitude is usually calculated from a perturbation expansion (if the
coupling strength of the interaction is small enough). The corresponding transition
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matrix element is an infinite sum of terms, where each term can be interpreted as a
specific process, which can be visualised using a pictorial representation, a so-called
Feynman diagram. This depiction of the particle’s interaction describes transitions
between initial and final states. These diagrams are constructed from propagators
for the exchange of virtual particles10 and vertices as interaction points between the
particles.

FIGURE 1.3: Feynman diagram of a simple interaction between two
particles with initial states a and b, exchanging a propagator X, re-
sulting in final states c and d. The Feynman diagram (left) represents

all possible time-orderings of the interaction process.

If two particles, in initial states a and b, interact via the exchange of a propagator X,
which results in two final states c and d, one can summarise the process with a Feyn-
man diagram, Figure 1.3, that represents the time evolution of this process, including
the incoming and outgoing particles and all vertices of interaction. A Feynman dia-
gram is in fact the representation of all possible time-orderings of the interaction. In
general, deriving the transition matrix element of some interaction process from the
first principles of QFT can be inconvenient and time consuming. Luckily, from the
QFT a simple set of rules can be derived that allow to construct the matrix element
for any Feynman diagram, the so-called Feynman rules. Furthermore, these rules al-
low to determine whether a process can exist according to the assumed theory (such
as the SM), i.e. if the Feynman diagram represents a an allowed interaction or not.
For example, in Figure 1.3 the two incoming particles could be negatively charged
electrons, where the Feynman diagram would represent an electron-electron scat-
tering through the exchange of a photon. This process is allowed in the SM, since
electrons carry the electric charge to couple with the photon, which for example
would not hold if the incoming particles were neutrinos.

In general one can use these diagrams to construct any kind of interactions and
predict its cross section, i.e. the probability for such an interaction to occur. For
instance, if the diagram in Figure 1.3 is rotated by π/2, it would describe an anni-
hilation process, where particle a and c annihilate to create the propagator X, which

10Virtual particles are short-lived mediators of interactions that cannot be detected.
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further decays11 to b and d. Moreover, since the transition matrix element is calcu-
lated from a perturbation expansion, an infinite number of Feynman diagrams can
be drawn for the same initial and final states, where each diagram contributes to the
matrix element. For example, the diagram in Figure 1.3 would have to be extended,
where between the initial and final particles, multiple interactions can occur, result-
ing in more vertices but with same outcome. The lowest order diagram, with the
least number of vertices, is known as the leading order diagram (if no loops of parti-
cles are included also referred to as the tree diagram), while diagrams involving more
vertices are referred to as loop diagrams. In this thesis, tree level diagrams are always
used to demonstrate a process.

Furthermore, the nature of an interaction can be deduced from the Lagrangian of the
theory. In the case of QED, the interaction (second) term in Lagrangian 1.10 involves
two fermion spinors and a photon field, suggesting that QED interactions happen
through three vertices, such as diagram Figure 1.3. Considering the SU(1) Higgs
Lagrangian eq. 1.25, four different interaction terms can be distinguished. Figure 1.4
shows the vertices associated to the interaction terms, the first two represent tri- and
quartic vertices between two massive gauge bosons and two Higgs bosons, and the
last two terms, tri- and quartic self-interaction vertices of the Higgs boson. Also the
coupling strength associated to the interaction vertices is shown, which corresponds
to the coefficient of each interaction term in the Lagrangian.

FIGURE 1.4: The interaction vertices associated to the interaction
terms in the Higgs Lagrangian eq. 1.25. Also the coupling strength

associated to each interaction vertex is shown.

1.4 The Standard Model Higgs boson properties

As mentioned before, the scalar Higgs field is expected to have a non-zero vacuum
expectation value, a consequence of the spontaneous symmetry breaking. The asso-
ciated particle is the Higgs boson, which is a spinless massive particle. According to
the SM electroweak theory, the Higgs boson can interact with all fermions and weak
bosons through three vertices as shown in Figure 1.5. The coupling strength with
each of the vertices is proportional to the mass of the particle. This suggests that

11For each SM particle, if there is a particle with a smaller rest mass, the heavier particle will always
decay to the latter if there exists a valid Feynman diagram for the process in the SM theory.
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the heavier the particle, the stronger the coupling to the Higgs boson, i.e. the more
likely the interaction. Therefore, it is more likely that the production and the decay
of the Higgs boson happens through heavier particles.

FIGURE 1.5: The interaction vertices of the Higgs boson with
fermions and weak bosons. Also the coupling strength associated to

each interaction vertex is shown.

As previously stated, the SM Lagrangian includes free parameters, such as the masses
of the elementary particles and the weak mixing angle, that to the best of knowledge
have to be measured empirically. These parameters are essential in order to test the
SM predictions, which depend on the value of the free parameters. For example,
the Higgs boson production cross section and the rate at which it decays to specific
particles are direct probes to test the SM predictions, but these depend on the value
of the Higgs boson mass. Figure 1.7 (A) shows the relative frequency of Higgs bo-
son decays to different SM particles, the so-called branching ratio, as a function of its
mass.

The Higgs boson was discovered in July 2012 by the ATLAS [31] and CMS [44]
experiments at CERN, and was found to have a mass consistent with 125 GeV. Its
vacuum expectation value is consistent with 246 GeV, which is known from its re-
lation to Fermi constant [26], v = (

√
2GF)

−1/2. Typically, unstable particles have
an intrinsic uncertainty on their mass, a consequence of the Heisenberg uncertainty
principle, which is proportional to the inverse of the particle’s lifetime. This natural
width provides a range of masses at which the particle could be observed. For the
Higgs boson, this width is approximately 4 MeV [83], which is relatively narrow.
Furthermore, the Higgs boson mass value sets the branching ratios for Higgs decays
(vertical line on Figure 1.7 (B)) which can be measured. The initial condition for the
Higgs boson to decay to a pair, is that the sum of the particles mass has to be smaller
than the Higgs boson’s mass itself, i.e. mH > 2mi. The heaviest particle in the SM is
the top quark, and since the Higgs boson is lighter, it cannot decay to it. The second
heaviest fermion is much lighter than the Higgs boson and therefore the H → bb̄
decay channel is allowed, which has a branching ratio of 57.8% being the largest.
Despite the fact a pair of weak bosons is heavier than the Higgs mass, the decay
channels H → WW and H → ZZ are possible, where one of the bosons in the pair
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is virtual off-mass shell12. The respective branching ratios are 21.6% and 2.7%. This
difference appears in the amplitude calculation of the matrix element [87] . Further-
more, despite the fact that the Higgs boson does not couple to massless particles,
the decay modes H → γγ and H → gg can happen indirectly through so-called top
quark and W boson loops. Figure 1.6 shows the Feynman diagrams of interaction
vertices of the Higgs boson with the massless bosons.

FIGURE 1.6: Feynman diagrams of interaction vertices of the Higgs
boson with massless bosons through top quark and W boson loops.
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FIGURE 1.7: Standard Model Higgs boson production cross sections
at the LHC (A) and its branching ratios (B) as a function of the Higgs
boson mass [25]. The Feynman diagrams of the different production

modes are given in decreasing order of cross section in Figure 1.8.

In general, the Feynman diagrams described above can be rotated to form any sce-
nario; in current time-order (from left to right), Figure 1.6 and 1.5 can be interpreted
as decay processes of the Higgs boson. If one rotates the diagrams over π, they
would describe Higgs boson creation processes. In Figure 1.5, one can even rotate
the diagrams over 4/3π to describe a Higgs strahlung process, where a Higgs boson

12Virtual particles do not satisfy the energy-momentum equation E2 = −→p 2 + m2 and therefore their
mass does not correspond to the real mass of particles they represent. Virtual particles are only allowed
as internal propagators in Feynman diagrams
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is radiated by a fermion or a weak vector boson. Using the Feynman rules, one can
predict the likelihood of such processes to happen. Unlike decay scenarios, where
the Higgs boson decays naturally, producing the Higgs boson comes with an extra
challenge, which is providing enough energy for its creation. So far, the Higgs boson
has only been successfully produced and observed with the Large Hadron Collider,
where protons are collided at high energies.

FIGURE 1.8: Feynman diagrams of the dominant Standard Model
Higgs boson production modes in proton-proton collision events.

In the latter experimental setup (discussed in ), the expected Higgs boson production
cross sections are fixed by its mass value. Figure 1.7 (B) shows the Higgs boson pro-
duction cross section of the leading processes as a function of its mass, and Figure
1.8 the Feynman diagrams of these production modes. The first blue curve corre-
sponds to the cross section of a proton collision producing a Higgs boson (pp → H)
through a gluon-gluon fusion (a), which is the most dominant process. The gluons
are radiated from quarks inside the protons, which produce a Higgs boson through
a virtual top quark loop. Since the top quark mass is orders of magnitude higher
than any other quark, which corresponds to a larger coupling to the Higgs boson,
even the contribution of bottom quark loops is negligible in this process. The second
leading process is the vector boson fusion (b), where quarks radiate like weak bosons
that couple directly to the Higgs boson. The cross section of this latter process corre-
sponds to the red curve, denoted by pp → qqH, which is approximately an order of
magnitude lower than the dominant gluon fusion process. The third and fourth are
respectively pp → WH and pp → ZH, which are referred to as vector boson associ-
ated productions (c), where a produced W and a Z boson radiate a Higgs boson. Two
gluons can decay to a pair of top (or bottom) quarks, where the particle and anti-
particle of each pair can fuse to give rise to a Higgs boson (d). These are denoted
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as pp → tt̄H(bb̄H). Finally, in a single top quark production, a Higgs boson can be
radiated by the massive quark (pp→ tH), which is the rarest process of all.

1.5 Proton colliders phenomenology

As discussed in section 1.4, the Higgs boson has been observed so far only in proton-
proton collision events at the LHC. Protons are complex objects that are not simply
bound states of three quarks (uud), but also contain a sea of virtual gluons, which
themselves produce virtual quark and gluon pairs all the time [88]. Since protons
are composed of partons (i.e. quarks and gluons), proton-proton interactions at suf-
ficiently high energies take place between these fundamental particles, which are
quasi unbound, a consequence of the QCD running coupling13 and asymptotic free-
dom14 [89]. In this case, each parton carries a fraction of the proton’s momentum,
and can interact with partons from another proton. In such inelastic collision events,
the protons are broken up, and particles can be created from hard scatter events with
new hadronic bound states emerging from the remaining partons. Figure 1.9 shows
a diagram with an example of a proton-proton collision event showing the different
partons involved in the hard scatter interaction.

UE

HS

FIGURE 1.9: An example diagram of a proton-proton collision event
showing the different partons involved in the hard scatter process

(HS) interaction and the underlying event (UE).

In reality, modelling the distribution of partons inside the proton is very difficult.
These are in fact extracted from data of collider experiments, where the parton dis-
tribution function, fq(x, Q2), is extracted, which represents the probability density to
find a certain type of parton with a momentum fraction x given a four-momentum
transfer squared Q2. As this function is dependent on the energy scale Q of the
operating experiment, Figure 1.10 shows the difference in the parton distribution
functions of the various partons inside a proton at relatively low energy (Q2 = 10

13The dependence of the QCD coupling on the energy scale is referred to as running coupling.
14Parton interactions become asymptotically weaker as the energy scale increases.
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GeV2) versus at high Q (Q2 = 104 GeV2). At a relatively high energy scale, gluons
tend to carry most of the proton’s momentum, while at lower energies quarks dom-
inate.

FIGURE 1.10: The parton distribution function of the various partons
inside a proton at relatively low energy scale (left) and at high energy

(right) [27].

Due to this complex structure of the proton, cross sections of physics processes oc-
curring from high energy proton-proton collisions depend on the inelastic parton
interaction cross section as well as the probability of finding the involved partons
inside a proton,

dσp1 p2→X =
∫

dx1dx2 ∑
q1q2

fq1(x1, Q2)× fq2(x2, Q2)× dσq1q2→X(α, Q2), (1.34)

with X a specific final state, σq1q2→X(α, Q2) the inelastic cross section of the q1q2 → X
process depending on the coupling strength of the interaction α and the energy
scale Q. Proton-proton interactions are predominantly dependent on the QCD cou-
pling αs, which is not small and thus the use of perturbation theory does not hold
(divergent series). Since this last parameter becomes smaller at higher energies,
αs(Q2) → 0 with larger Q2 (asymptotic freedom), dσq1q2→X(α, Q2) can be calculated
perturbatively as,

dσq1q2→X =
∞

∑
m=0

αm+k
s dσ̂q1q2→X

where each higher order term in m can be regarded as a higher order Feynman di-
agram, while k represents the number of strong vertices at m = 0. Typically, the-
oretical predictions of cross sections are presented with the accuracy at which the
computation was performed; e.g. including only the first order corresponds to the
leading order (LO) diagram, while the next-to-leading order (NLO) is followed by the
next-to-next-to-leading order (NNLO), and so on up to NmLO. Figure 1.11 shows a
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summary example of several predicted and measured SM total cross sections of pro-
cesses emerging from proton-proton collision events at relatively high centre-of-mass
energies15,

√
s, which can be expressed as16,

s =

(
2

∑
i=1

Ei

)2

−
(

2

∑
i=1

−→pi

)2

, (1.35)

where Ei is the energy of the i-th particle in the collision, and−→pi its three-momentum
vector. The measurements were performed using the ATLAS detector (discussed
in section 2.4) and are compatible with the theoretical expectations, which were all
calculated at NLO or higher.

FIGURE 1.11: A summary example of several predicted and mea-
sured SM total cross sections in the ATLAS experiment. The theo-

retical expectations were calculated at NLO or higher [28].

15In the centre-of-mass inertial frame, the sum of the three momenta of all particles is equal to 0.
16Assuming the natural units system, where the fundamental constants c = h̄ = 1.
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1.6 The Standard Model Effective Field Theory

As mentioned in section 1.1.5, the SM is most likely an incomplete theory. Unlike
e.g. Supersymmetry, where a well-defined extension is proposed to extend the SM,
a more model independent approach is to consider the SM as a low energy (IR) EFT
of some fundamental theory valid at all energy scales (UV). In this case, the SM is ex-
pected to be a good approximation at relatively low energies (typically up to the TeV
scale, which has been well affirmed so far), while it would break at some higher scale
beyond the electroweak scale Λ� ΛEW . Thus, an EFT approach [20] is based on the
fact that a physical system depends on the energy scale at which it is considered,
whereby it is not necessary to use the most fundamental laws of physics to achieve
satisfying predictions, while it is sufficient to consider an approximate, simplified
theory relevant at the corresponding scale, such as the SM at the electroweak scale.
This approach is especially useful when physics at higher energies is unknown; one
can parametrise the effects of missing higher energy content on observables of the
known low energy theory.

As discussed in the previous sections, from the perturbative approach used in cou-
plings such as αs, calculations beyond the lowest order can lead to divergences,
hence unphysical predictions such as infinite cross sections can occur, while in re-
ality, measurable quantities are found finite. To match empirical measurements,
counter terms are applied to cancel out divergences; the basic idea is to rewrite an
expression that is initially a function of some large scale Λ, in terms of measurable,
renormalised quantities in a given coupling strength at some scale Q2, e.g. ΛEW .
In fact, EFT gives a firm ground to this renormalisation concept, and explains when
renormalisable theories arise. As the SM is a good EFT up the TeV scale, it can be
used as a basis to construct an EFT; if LUV is the Lagrangian of a general UV theory
including the SM field content φSM and some unknown fields φBSM, assuming the
latter consist of heavy particle(s) that cannot be produced at energy scales where the
SM is sufficient to describe physics, one can write an EFT of this UV theory as,

LUV(φSM, φBSM)→ LEFT(φSM) = LSM + ∑
i

giOi(φSM), (1.36)

with Oi a set of local effective operators, and gi their corresponding effective cou-
plings. There are a couple of benefits in the latter expression; the first is the fact that
the SM Lagrangian is contained in the effective Lagrangian, and thus one can repro-
duce SM results. Secondly, the EFT Lagrangian depends only on SM fields such that
BSM effects can be expressed model independently, i.e. no assumptions are made
on the BSM content, as long as it is only relevant larger scales (Λ � ΛEW). A theo-
retical framework that permits the description of effects of potential BSM theories is
the Standard Model Effective Field Theory (SMEFT) framework [29], which relies on
the assumption that new physics must be invariant under gauge symmetries while it
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should be only relevant at high energy scales (Λ � ΛEW). With these assumptions,
one can write the effective Lagrangian eq. 1.36 as a parametrisation of every possi-
ble operator from the existing SM fields at each order in Λ characterising the energy
scale at which the new physics is expected to be relevant. These higher dimensional
operators Oi, higher than the dimension four SM operators (d > 4), encode effects of
BSM physics at scale Λ as,

LEFT = LSM +
∞

∑
d=5

∑
i

c(d)i

Λd−4
i

O
(d)
i , (1.37)

where the higher order operators are suppressed by powers of 1/Λ of the new
physics scale, and ci are the operator associated coupling constants, the so-called
Wilson coefficients containing information about UV physics above the Λ scale. In
principle, any BSM theory can be matched to the EFT, upon the condition that new
fields decouple for Λ → ∞. The higher the order of the operator, the smaller its
contribution at lower energy regimes as the suppression increases with powers of
1/Λ. Consequently, the infinite sum can be truncated to obtain results with a given
accuracy, as the aim is to compare experimental measurements which have finite
precision. The procedure of determining the relevant and redundant operators is
referred to as power counting. Having the adequate truncated sum, one can deter-
mine the Wilson coefficients to search for new physics; typically an observable has
to be defined, with a process sensitive to new couplings that would modify the SM
expected results. Any deviation from zero of these coefficients would indicate BSM
physics. In this thesis, a preliminary study is presented where BSM contributions
from anomalous quartic gauge-couplings to the γγ → 4l± process are investigated
in the framework of the SMEFT.
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Chapter 2

The Large Hadron Collider and the
ATLAS experiment at CERN

2.1 European Council for Nuclear Research (CERN)

The European Council for Nuclear Research (or Conseil Européen pour la Recherche
Nucléaire in French) is an international organisation with particle physics research as
its main goal. The research physics programme is focussed on fundamental ques-
tions about the structure of our universe. This includes the SM of particle physics
and beyond, as well as Dark Matter experiments, but also exotic isotope and cosmic
ray experiments. It is located around the borders of France and Switzerland, near
the worldwide centre for diplomacy, Geneva city. It currently has the world’s largest
laboratory in particle physics, with its main experiment, the Large Hadron Collider.

FIGURE 2.1: Bird’s-eye view of the CERN (Conseil Européen pour la
Recherche Nucléaire) Meyrin site between the French-Swiss border.



30 Chapter 2. The Large Hadron Collider and the ATLAS experiment at CERN

It has been a key centre for discoveries in particle physics, such as the discovery
of the Z and W boson, and most recently the Higgs boson. Apart from physics,
it was also the birthplace for many cutting edge technologies and inventions, such
as the World Wide Web or touch screen technology. All this success has been the
achievement of a large international collaboration, from different countries all over
the world.

2.2 The Large Hadron Collider

Somewhere between France and Switzerland, one of the most incredible machines
ever built by human beings can be found 175 meters underground. The Large
Hadron Collider (LHC) [3] is the largest and most powerful particle accelerator in
the world.1 Initially, the main reason for building such a gigantic machine was to
discover the last piece of the Standard Model, the Higgs boson, which was success-
fully achieved back in 2012. However, the physics programme of the LHC is not
limited to this last discovery. As mentioned before, the SM is clearly not the end
story. Many proposed theories supporting the extension of the SM predict new par-
ticles that could solve open questions about the universe around us.

FIGURE 2.2: The Large Hadron Collider ring in the 175 meters under-
ground tunnel between the French-Swiss border [33].

2.2.1 High energy particle accelerators

In general, the strategy for the hunt of new particles has been the same since the dis-
covery of unstable particles from cosmic rays [86]. They could not be found in nature

1There are plans to build larger accelerators which would collide particles at a higher energies, e.g.
the future circular collider [85].
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due to their very short life time before decaying to stable particles, such as electrons.
Some of these particles could be detected in bubble chamber experiments [34]; a sort of
vessel filled with a hot transparent gas, where charged particles could leave tracks
after ionising the gas molecules. Using a magnetic field, physicists could bend the
particle trajectories and observe tracks with different properties than those coming
from protons and electrons. For example, they could observe a negatively charged
particle that would bend much less than the electron, suggesting its mass was heav-
ier. These electron-like particles were the well-known muons, which are approxi-
mately 200 times heavier than electrons.

Since then, many other particles were discovered, including mesons2. Physicists
quickly understood that the fundamental ingredient for producing particles was en-
ergy. Using cosmic rays to study properties of these unstable particles was not very
efficient. The source of the interaction is unknown, collision events occur randomly,
findings could not be reproduced; one had to find a way to produce these particles
in a lab. This is how particle accelerators came to life; the basic idea was to accel-
erate charged particles in an electric field to gain momentum before colliding them
into a target or another beam coming from the opposite direction. This would re-
lease energy that could possibly generate new particles. From the famous equation,
E = mc2, the higher the energy of the colliding particles, the more likely the produc-
tion of heavier particles, including rare undiscovered particles.

Throughout the 20th century, the search for new particles was driven by increases
in collision energy. The reason for this ambition is the fact that, it is more likely that
new particles are heavy, as particles within accessible energies should have been
observed already. Moreover, the mass of the produced particle(s) has to be smaller
than or equal to the centre-of-mass energy

√
s of the colliding initial particles. Since

then, many novel techniques and designs have resulted in different types of acceler-
ators, with each upgrade producing a more efficient particle acceleration, permitting
higher centre-of-mass energies. Figure 2.3 shows the evolution of the centre-of-mass
energy of particle accelerators since the late 60s. The acceleration of particles in lin-
ear colliders is limited due to the difficulty of increasing and maintaining the electric
field permitting the increase in energy of particles. At present, circular accelerators
are the most successful, where energy is gained while the particles go through the
same electric field in each loop. This necessitates the control of the beam in a cir-
cular trajectory using a magnetic field. However, this can also limit the acceleration
of charged particles, which radiate when they are bent in a magnetic field, via so-
called synchrotron radiation [36], and thus a limit is reached where the loss of energy
due to radiation stagnates the gain. From Larmor’s formula [37], the energy loss per

2bound states of quarks, with an equal number of quarks and anti-quarks.
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orders of magnitude
increase of energy over
the past 40 years to

I explore the fine
structure of matter

I to discover/produce
heavier particles

more lepton colliders
than hadron colliders

M. Bai (Forschungszentrum, Juelich) Colliding Beams BND School, Sept, 2015 4 / 43FIGURE 2.3: Progress in time of the collision centre-mass-energy of
particle accelerators throughout the last century [35].

revolution in a circular accelerator is proportional to,

δE ∼ 1
R

(
E
m

)4

, (2.1)

where E is the energy of the charged particle, m its mass and R the radius of the
accelerator. The higher the bending curvature, the more a charged particle radiates.
Therefore larger circular accelerators (larger R) benefit from a smaller energy loss
due to radiation. Also the lighter the particle, the more it radiates. This is the rea-
son why hadron colliders perform better than electron colliders. Traditional particle
accelerators were designed to fire charged particles to materials at rest, the so called
fixed-target experiments. From conservation of momentum, the produced particles
are created with a notable kinetic energy, which is wasted, i.e. does not contribute to
the potential energy for particle creation. From equation 1.35, if a proton of 7 TeV3

is collided into a proton at rest, the resulting centre-of-mass energy would be 115
GeV, which is not sufficient to produce an on-mass shell Higgs boson. On the other
hand, one can achieve significantly higher centre-of-mass energies when colliding
two beams of protons with the same energy, for which the collision happens in the
centre-of-mass frame. In this case, the yield in centre-of-mass energy is 14 TeV, which
is 2 orders of magnitude higher.

3In particle physics, energy is often given in Electronvolts (eV), which corresponds to the kinetic
energy of an electron accelerated in a electric potential difference of 1 Volt.
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2.2.2 The LHC as a proton collider

The design of the LHC was based, among other reasons, on the previously men-
tioned factors in order to maximise the centre-of-mass energy. It is a circular accel-
erator of 27 km in circumference, permitting the acceleration of two parallel pro-
ton4 beams up to 7 TeV, travelling in opposite directions, before colliding them at
specific collision points, where large detectors are built to record the high energy
proton-proton interaction events. It is currently at the energy frontier, delivering a
centre-of-mass energy of 13 TeV.

2.2.2.1 The LHC injection chain

Even though the LHC is praised for its performance, it is not the only accelerator
used to reach the energy frontier. Figure 2.4 shows the series of accelerators that
the protons have to go through before being injected in the LHC. It all starts from
an ordinary bottle of hydrogen, where the molecules are dissociated to extract the
negatively charged hydrogen atoms. The first acceleration happens in the linear
particle accelerator, LINAC, where ions reach an energy of 160 MeV. The next boost
occurs in the Proton Synchrotron Booster (PSB), where the electrons are kicked from
the nucleus, leaving only protons in the loop, which get further accelerated to 1.4
GeV. Next, the protons are injected to the Proton Synchrotron (PS) where a gain of 26
GeV is achieved and the particles are grouped in bunches of 1.2 meters, separated by
7 meters from each other. Lastly, the protons reach an energy of 450 GeV in the Super
Proton Synchrotron (SPS), before being injected into the LHC. Here protons are first
injected into one ring, then in the opposite direction in the other ring, where they are
finally accelerated to 7 TeV. In each beam, there are 2800 bunches, each containing
approximately 100 billion protons. At this point, the protons are travelling at up
to 99.999999% of the speed of light, with a revolution frequency of 11245 loops per
second. This corresponds to 30 million crossings per second.

2.2.2.2 The LHC components

To achieve this high energy, the LHC is based on the same physics concepts as all
circular accelerators. An electric field to accelerate the protons, and a magnetic field
to control their trajectory. The components that make up the LHC are mainly cylin-
drical dipole magnets, which are essential to keep the beam trajectory inside the
ring, and metallic chambers containing an electromagnetic field, known as radiofre-
quency cavities, where the protons are accelerated.

Figure 2.5 shows the cross section of an LHC dipole with the different components.
There are 1232 of them. Each dipole is 15 m long, and weighs 35 tons. Inside these
massive cylinders, two tubes with a diameter of a few centimetres are placed in

4It is sometimes used with ions, such as lead nuclei for different physics purposes, but most of the
time with protons.
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FIGURE 2.4: The injection chain of the accelerated protons before their
way to the Large Hadron Collider [38].

parallel, where the two opposite direction proton beams circulate. To ensure the
curvature of the beams, the tubes are placed in a high magnetic field generated by a
current in cables around the beam pipes. This magnetic field is increased gradually
while the protons are accelerated. The faster they travel, the higher the magnetic
field is required to keep the beam inside the pipes. A maximum magnetic field of
8 Tesla’s is reached when the protons reach the maximal acceleration energy of 7
TeV. To generate a magnetic field of this magnitude, a current of 12000 amperes is
needed, which no ordinary cable can tolerate before melting. Therefore, supercon-
ducting5 cables with almost no electric resistance are used, which are cooled to 2
degrees above the absolute zero. In order to prevent the accelerated protons inter-
acting with molecules from the air, the tubes are placed under a vacuum, reaching a
low pressure of 10−11 mbar, 10000 billion times lower than atmospheric pressure.

The maximum energy of 7 TeV is obtained after 10 million loops (approximately
20 minutes after their injection) through the superconducting radiofrequency cavi-
ties, where each cavity delivers 2 million Volts. There are 16 of them in total, 8 per
beam. Inside these cavities, a longitudinal oscillating electric field at a frequency of
400 Megahertz ensures that when the protons arrive, the field is pointing in the same
direction, hence they will be accelerated. Another important function of the cavities
is to keep the bunches compact; after reaching the desired energy, a proton with the
ideal arrival time in the bunch will not be accelerated, while those arriving earlier or
later will be respectively decelerated and accelerated, resulting in a compact bunch.
This is not the only attempt to keep the bunches confined, different configurations
of magnets are used on top of the dipoles, such as quadruple magnets, to focus the
beams and prevent the dispersion of the bunches. Finally, at the interaction points,

5made of a mixture of niobium and titanium
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FIGURE 2.5: The LHC dipole magnet and its components. Inside the
dipoles, a magnetic field is produced to bend and keep the protons

inside the ring [39].

the diameter of bunches is reduced to 16 microns using specific focussing magnets.

2.2.2.3 The LHC parameters

Keeping the bunches tight and compact is very important to maximise the chances
of collision events. On average, there are 20 collision events per bunch crossing with
nominal beam currents at the LHC. This can be characterised with the instantaneous
luminosity, L, which is a measure of the number of collision events per unit time per
area. Using the beam parameters, L can be expressed by,

L =
n1n2 fr

4πσxσy
, (2.2)

with fr the revolution rate, n1 and n2 the number of protons per bunch in the first

and second beam, and σx and σy the transverse beam profile along the horizontal and
vertical direction. To get an order of magnitude of L, one can approximate equation
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2.2 with,

L ∼ n2

tSe f f
, (2.3)

where n is the number of protons per bunch (assuming equivalent beams), t the
bunch-spacing in time and Se f f the effective transverse area of the bunch. For the
LHC, the values of these parameters are

n ∼ 1.15× 1011protons,

Se f f ∼ 4π(16× 10−4)2 cm2,

t ∼ 25× 10−9s,

which results in,

L ∼ 1034 s−1cm−2,

i.e. the LHC can produce 1034 collision events per second and per cm2. Table
2.1 shows some basic parameters of the LHC. Typically, collider experiments op-
erate during well specified periods of time, referred to as runs, where the collision
events are recorded by detectors around the interaction point. Figure 2.6 (a) shows
the cumulative integrated luminosity delivered over time by the LHC, and the one
recorded by the ATLAS detector (discussed in section 2.4) during the second run of√

s = 13 TeV proton-proton collision data-taking between 2015 and 2018, and Figure
2.6 (b) shows the latter as a function of the mean number of interactions per bunch
crossing (µ) during this last run. The µ corresponds to the mean of the Poisson distri-
bution of the number of interactions per crossing calculated for each proton bunch.

TABLE 2.1: The basic nominal parameters of the Large Hadron Col-
lider [40].
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FIGURE 2.6: (a) The cumulative integrated luminosity delivered by
the LHC, and the one recorded by the ATLAS detector (discussed in
section 2.4) during the second run of

√
s = 13 TeV proton-proton colli-

sion data-taking between 2015 and 2018, while (b) shows the latter as
a function of the mean number of interactions per bunch crossing (µ)
during this last run [41]. . The µ corresponds to the mean of the Pois-
son distribution of the number of interactions per crossing calculated

for each proton bunch.

2.3 High energy particle physics experiments

In general, most physical measurements are characterised by a fluctuating nature,
which is impossible to predict with an absolute accuracy. Quantities with this prop-
erty are said to be random variables that according to a probability distribution can
take different values with different likelihoods. A consequence is the fact that re-
peated measurements, in the exact same experimental conditions, lead to different
values. Results from these measurements are affected by this randomness, which
is characterised by the so-called statistical uncertainty, that allows to make a proba-
bilistic statement about where the true value of the desired quantity is likely to be
found.

2.3.1 Measurements in high energy physics experiments

In fact, experimental particle physics is even strongly connected to statistics through
quantum mechanics, where kinematic quantities are not uniquely defined such as in
classical mechanics, but rather determined on the basis of their probability distribution
function (PDF). The PDF f (x) of a random variable x governs the distribution of a
sample of N repeated measurements. These measurements are typically presented
in a histogram divided into bins with a certain width, where each bin contains the
frequency of measurements lying within the interval defined by the bin. In fact, a
histogram can be interpreted as an approximation of the PDF, where increasing N
while reducing the bin width improves the resemblance to f (x), as N → ∞.
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In collider experiments such as the LHC, one is typically interested in the cross sec-
tion6 of a certain process, e.g. p + p → X, which is a measure of the probability for
this process to occur. It is defined as an effective area which is given by,

σp+p→X =
NX

L , with L =
∫

L(t)dt, (2.4)

where NX is the number of events corresponding to the process p + p → X and L
is the integrated luminosity, both of which can be measured. The latter quantity is
an essential parameter; it quantifies the performance of the accelerator, but it is also
important for predicting the number of expected events of a specific process.

Moreover, the centre-of-mass energy and the integrated luminosity are essential to
make predictions for whether a certain process can be observed in an experiment.
First of all, the cross section depends on the centre-of-mass energy of the collision
events. Figure 2.7 shows as an example the SM Higgs boson production cross sec-
tion, for the different production modes, as a function of the centre-of-mass energy,
assuming a Higgs boson mass of 125 GeV. Clearly, in this case the cross section of
producing a Higgs boson increases with the centre-of-mass energy. If the delivered
centre-of-mass energy is known, one can predict the number of expected events
given the corresponding cross section of the process and the integrated luminosity.
In this case, the longer the data taking of an experiment, the larger the integrated lu-
minosity and thus the larger the number of expected events, which yields in a more
precise measurement.

Extending the data-taking runs (an expensive initiative) is unfortunately not the
only challenge to get hands on rare events. Producing the events is half the job, the
other challenge is to capture and successfully identify the rare particles, for which
detectors are needed. As mentioned before, once the desired energy is achieved, the
collision events take place at specific interaction points. There are four points on the
LHC where the proton bunches are collided. In each of these interaction points, large
detectors are built in order to record the collision events. These experiments were
built and maintained by independent collaborations, and these are namely CMS [44],
LHCb [45], ALICE [46] and the ATLAS collaboration [31]. Figure 2.8 shows the lo-
cation of the different experiments on the interaction points of the LHC. They have
different physics programs, with the exception of CMS and ATLAS, which have a lot
of similarities in physics analyses. An example is the interest of both experiments
in hunting for the Higgs boson, which they discovered independently back in 2012,
putting more confidence in the discovery.

6Cross section in particle physics is used to quantify the area of hitting a target, unlike the meaning
of the word as a slice.
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FIGURE 2.7: The Standard Model Higgs boson production cross sec-
tions as a function of the centre-of-mass energy in proton-proton col-

lision events [25].

2.3.2 High energy particle physics data analysis

After running a collider experiment, a certain type of data about the collision events
is collected. Typically, this information is stored as a sequence of numbers corre-
sponding to the responses of the detector components. This data structure is then
processed to be translated to familiar quantities, such as momentum, charge or an-
gular variables. At this stage, each event is characterised by a set of reconstructed
objects (to be identified as particles later on) with certain values of the measured
quantities. As mentioned before, one is typically interested in studying a specific
process. Therefore, out of the available data, one is interested in specific events with
certain properties, such as the multiplicity of certain physics objects, that charac-
terises the process in question. In this case, an event selection is defined to discrimi-
nate wanted from unwanted events. The resulting sample after the event selection
is said to have candidate events.

Commonly, a theoretical prediction about the process is aimed to be tested, such
as the cross section of a SM predicted process. It is therefore important to have an
estimate of what the data would look like in case the theoretical hypothesis is true
and in the opposite scenario. In particle physics, Monte Carlo simulated events [47]
are at the heart of the data analysis, where simulation samples reflect the results one
would obtain given the assumed theory. First of all, the current understanding of



40 Chapter 2. The Large Hadron Collider and the ATLAS experiment at CERN

FIGURE 2.8: The Large Hadron Collider and the location of the dif-
ferent experiments on the interaction points [43].

the physics laws is simulated, e.g. the rate of the Higgs production in proton-proton
interactions (Figure 1.7) given the experimental setup, but also the appearance of
the process in detector language, i.e. the real detector response to the process. More-
over, two categories of quantities can be studied, the true variables, which are the
exact simulated properties, and reconstructed variables reflecting the measured for-
mer quantities from simulated detector response, which can be directly compared to
empirical data. In particular, different subatomic processes can yield events with the
same final states. In the measured data, the event selection is often not sufficient to
distinguish between the different types of events, i.e. there is no way to identify the
origin of the individual events. Therefore, simulated events of different subatomic
processes are very useful; one can predict the contribution of the different processes
and compare it to the measured data.

In the case where a specific process is desired to be measured, two categories of sim-
ulated samples are needed; signal event samples of the wanted process and background
event samples of processes with the same signal signature. Typically, background
event samples contain the processes that have been measured and understood be-
fore. After comparing the predictions (signal + background) to the measured data,
three scenarios can occur; the data is consistent with the background-only hypoth-
esis, and therefore signal process can be rejected. In case the data is consistent with
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the signal+background hypothesis, one can claim to have measured the signal pro-
cess successfully. Finally, the data can be found to be in disagreement with both
the signal+background hypothesis and the background only hypothesis, in which
case the predictions are cast into doubt; either the background estimation has to be
revised, or a new signal model is needed.

2.4 The ATLAS experiment

The ATLAS detector is as mentioned one of the large detectors at the LHC. It is build
around one of the LHC’s interaction points, where bunch-crossings take place. The
proton-proton (and the heavy ion) collision events are recorded with the purpose of
reconstructing and identifying inelastic subatomic processes7. It has been designed
in order to meet the requirements in precision measurements at the level of the LHC
high interaction rates, high radiation and large numbers of produced particles. The
ATLAS experiment has a promising physics potential, mainly focussed on verify-
ing the SM predictions and searching for physics beyond it. The ATLAS detector is
cylinder-shaped, 44 m long and 25 m in diameter with a weight of no less than 7000
tons. Similar to an onion, the multi-purpose detector is made of different layers of
sub-detectors. These are assembled such that the information from each part can be
combined to reconstruct a full picture of the collision events. It has currently the
largest superconducting magnet system in the world, consisting of a solenoid, a bar-
rel toroid and two end-cap toroids, which is used to bend the trajectory of charged
particles in order to determine their momenta. The ATLAS detection system can
be divided into four main parts; the Inner Detector, the Electromagnetic Calorimeter,
the Hadronic Calorimeter and the Muon Spectrometer. Figure 2.9 shows the scheme
of the ATLAS detector and its different sub-detectors. Each part is discussed in the
following sections after introducing the coordinate system used in ATLAS.

2.4.1 The ATLAS coordinate system

In order to describe the particles originating from the proton-proton interactions us-
ing the ATLAS detector, a right-handed coordinate system is used. The interaction
point is taken as the origin, where in Cartesian coordinates (x, y, z), the z-axis lies
along the beam direction, the x-axis points toward the centre of the LHC ring and
the y-axis toward the sky. The xy-plane is then the transverse plane of the ATLAS
detector, cutting it perpendicularly to the beam direction, in cylindrical coordinates
(z, r, φ) it is spanned by φ the azimuthal angle and r the radius. The ATLAS detector
includes almost the full azimuthal coverage in detection capacity, and a large por-
tion in the polar angle. The latter is characterised by the pseudorapidity, which is a

7In contrast to soft interactions, where the initial protons are not broken-up, inelastic scatterings are
at the heart of new particle creation.
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FIGURE 2.9: A schematic picture of the ATLAS detector showing its
different layers of sub-detectors and components [31].

measure for describing the angle relative to the beam axis,

η = −ln(tan(θ/2)), (2.5)

with the polar angle θ defined as the angle from the positive z-axis. This quantity
is particularly important to describe high energy particles from proton-proton inter-
actions. Since the interactions happen between partons inside the protons, which
carry an unknown fraction of the proton’s momentum, collision events do not nec-
essarily occur in the centre-of-mass frame of the lab frame. Therefore particles can
be boosted along the z-axis. For this reason, the rapidity is used, which can be ex-
pressed as a function of the energy and the momentum component along the beam
axis,

y =
1
2

ln
[

E + pz

E− pz

]
(2.6)

However, it is not Lorentz invariant, but differences of this quantity are. In the ultra-
relativistic limit, the rapidity is equivalent to the pseudorapidity, which is easier to
measure. Figure 2.10 shows different values of η for different polar angles. Along the
transverse plane, η = 0, while it rapidly goes to infinity the closer to the beam axis.
The same applies for the 90◦ < θ < 180◦ region, but this time η picks up a minus sign.
Furthermore, since proton-proton collisions are in fact parton-parton interactions, a
significant unknown fraction of the beam energy is lost down the beam pipe. There-
fore, an important quantity that is useful to characterise such hard inelastic processes
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is the transverse momentum,

pT =
√

p2
x + p2

y, with |p| = pTcosh η. (2.7)

Partons before the interaction move along the beam axis with a negligible momen-
tum component in the transverse direction, and thus the net transverse momentum
can be constrained to zero. When a hard collision takes place, the outgoing parti-
cles will have a significant momentum off the beam line, i.e. a significant transverse
momentum, which are the events of interest. Similarly, the transverse energy can be
defined as,

ET =
√

m2 + p2
T, (2.8)

with m the invariant mass. In the case where m� pT, ET ≈ pT.

FIGURE 2.10: A schematic diagram showing different values of the
pseudorapidity η with the corresponding polar angle θ values.

2.4.2 The ATLAS particle detection

From SM precision measurements to all kinds of BSM searches, it is important to
stress that in general all one can measure from the different subatomic processes
are the measurable decay products, such as electrons and muons. Collider experi-
ments are often compared to crime scenes, where the suspects are often unknown,
but based on traces they left, one can use these to reconstruct the scene in the hope
of identifying the actors. Likewise, an exact picture of collision events is impossible
to obtain; most of the SM particles decay (or get confined in the case of quarks) al-
most instantaneously after their creation, but also not all particles can interact with
the detector in order to leave tracks of their passage. Consequently, events have to
be reconstructed only based on the few particles that can interact with the different
sub-detectors.

The ATLAS detector operates around the very intense environment close to the in-
teraction point, where hundreds of billions of particles are scattered and created per
second. In general, the particles detected in ATLAS are; electrons, photons, muons
and hadrons, including baryons such as protons and neutrons, but also mesons such
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FIGURE 2.11: A visualisation of the different particle paths through
the different layers of the ATLAS detector [31].

as pions and kaons. Figure 2.11 shows a visualisation of the interaction of the dif-
ferent particles with the several detector layers. The journey of emerging particles
starts by passing through the Inner Detector, where only charged particles leave
tracks, these are electrons, muons and charged hadrons. The next crossing is in the
EM calorimeter, where this time also photons interact. Almost all electrons and pho-
tons are stopped by the EM calorimeter, while muons and some hadrons can make
it to the next sub-detector. On top of charged hadrons, in the Hadronic calorimeter
also neutral hadrons such as neutrons are detected. Finally, only muons survive the
previous layers to reach the last sub-detector, the Muon Spectrometer, where they
also leave tracks. In the next sections, the different detection mechanisms of the
different sub-detectors are discussed.

2.4.3 The Inner Detector

The first part of the ATLAS detector that is the closest to the interaction point is the
Inner Detector (ID). It has a cylindrical shape with a diameter of 2.1 m and a length of
6 m, covering the |η| < 2.5 region. It is itself composed of three sub-detectors, namely
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a pixel detector, a semiconductor tracker and a transition radiation tracker. Figure 2.12
shows a schematic picture of the ID and its different parts. The pixel detector is made
of four consecutive layers of semi-conducting pixel components, providing tracks
of charged particles from which trajectories are reconstructed with high precision.
It is very close to the interaction point, with a separation of only a few centimetres,
enabling precise reconstruction of vertices. In ordinary words, it acts as a camera
observing individual charged particles, with a minimal interaction avoiding inter-
ference with their initial trajectory. The semiconductor tracker has roughly the same

FIGURE 2.12: The innermost sub-detector of the ATLAS, the Inner
Detector (ID), which is composed of three parts; a pixel detector, a

semiconductor tracker and a transition radiation tracker [31].

function as the pixel detector. It has long, narrow silicon microstrips, which has the
advantage of measuring charged particles over a large area. There are 4088 modules
distributed over 4 cylindrical layers. The transition radiation tracker is the outermost
part of the ID and is complementary to the silicon-based tracking devices, which en-
ables radially extended track reconstruction up to |η| = 2.0. It is made of drift tubes
of 4 mm in diameter and 144 cm in length. The straws are filled with a Xenon and
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Argon gas mixture, which is ionised when charged particles traverse the medium be-
tween the straws. Wires in the straws conduct the electric charge produced during
the ionisation as signal, which allows the determination of the particle’s path. Table
2.2 shows the basic parameters of the ID and its components. Finally, the whole ID is
contained within a superconducting solenoid, providing a magnetic field of 2 Teslas
along the beam axis, which enables momentum measurements of charged particles
bent along the transverse plane and their arrangement.

TABLE 2.2: The dimensions of the ID and its three components [31].

2.4.4 The Calorimeters

The basic principle of calorimeters is to measure the total energy of a particle by
stopping it while absorbing its kinetic energy. They are made of materials with high
density, such as lead (Pb), that act as absorbers. In the ATLAS detector, there are
two kinds of calorimeters; the Electromagnetic (EM) Calorimeter and the Hadronic
Calorimeter. Both detectors include the full azimuthal coverage. Figure 2.13 shows
an overview of the different components of the calorimeters in the ATLAS detector.

2.4.4.1 The Electromagnetic Calorimeter

The EM Calorimeter is designed to measure the energy of electromagnetically inter-
acting particles, such as electrons and photons. It is composed of a barrel component
covering a pseudorapidity range of |η| < 1.47 and two end-cap components with 1.37
< |η| < 3.2. It has an accordion shaped structure consisting of lead and steel particle
absorbers. Figure 2.14 shows a scheme of a slice of the EM Calorimeter. Between the
parallel accordion shaped layers, cooled liquid argon (LAr) surrounds three copper
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FIGURE 2.13: The Electromagnetic and Hadronic Calorimeters of the
ATLAS detector designed to measure the energy of respectively elec-

tromagnetically interacting and hadronic particles [31].

layers. When a photon or an electron enters the EM Calorimeter, it interacts with the
absorber, producing a shower of lower energy electrons and photons. A characteris-
tic property of EM shower development is given by the so-called material’s radiation
length X0, which is a measure for the length scale associated with the energy loss rate,
described as the mean distance over which a charged particle looses 1/e of its initial
energy due to radiation. Figure 2.15 shows X0 as a function of |η|, the so-called ma-
terial budget, characterising the amount of material a particle traverses through the
various layers of the EM calorimeter. The secondary particles in the shower ionise
the LAr, producing more negatively charged electrons. These electrons are attracted
by an electric field to the copper layers, which act as electrodes used to conduct the
signal. By collecting the charge produced by the shower, it is possible to deduce the
total energy of the primary particle.

2.4.4.2 The Hadronic Calorimeter

The Hadronic Calorimeter on the other hand is designed to measure the energy of
hadrons, such as protons, neutrons or pions. There are three parts, a barrel tile
calorimeter covering |η| < 1.7, two end-cap components 1.5 < |η| < 3.2 and two
forward calorimeters 3.1 < |η| < 4.9. The tile calorimeter is composed of arrays of
steel and scintillator sheets, while the other parts are LAr based. Hadrons passing
through the steel of the tile calorimeter interact with the iron nuclei, causing the pro-
duction of showers of secondary particles, which results in a cascade. As opposed
to the EM calorimeter, the shape of hadronic shower is due to strong interactions.
The amount of material in the Hadronic Calorimeter is characterised by the inter-
action length λ, defined as the mean distance a hadron traverses whereby 1/e of its



48 Chapter 2. The Large Hadron Collider and the ATLAS experiment at CERN48 Chapter 2. The Large Hadron Collider and the ATLAS experiment at CERN

FIGURE 2.14: The Electromagnetic Calorimeter of the ATLAS detec-
tor designed to measure the energy of electromagnetically interacting

particles [31].

FIGURE 2.15: The radiation length X0 as a function of |h|, the so-
called material budget, characterising the amount of material a parti-

cle traverses through the various layers of the EM calorimeter [31].

|h|, the so-called material budget, characterising the amount of material a hadron
traverses through the Hadronic Calorimeter and Figure 2.17 shows a picture (A) and
a diagram of a single module (B) of the Hadronic Tile Calorimeter. When these lat-
ter particles penetrate the scintillators, photons are radiated. The light intensity is
then measured to determine the energy of the original particle. Finally, the main
parameters of the calorimeter system are summarised in Table 2.3.

FIGURE 2.14: The Electromagnetic Calorimeter of the ATLAS detec-
tor designed to measure the energy of electromagnetically interacting

particles [31].

FIGURE 2.15: The radiation length X0 as a function of |η|, the so-
called material budget, characterising the amount of material a parti-

cle traverses through the various layers of the EM calorimeter [31].

initial energy is lost. Figure 2.16 shows the interaction length λ as a function of |η|,
the so-called material budget, characterising the amount of material a hadron tra-
verses through the Hadronic Calorimeter and Figure 2.17 shows a picture (A) and
a diagram of a single module (B) of the Hadronic Tile Calorimeter. When these lat-
ter particles penetrate the scintillators, photons are radiated. The light intensity is
then measured to determine the energy of the original particle. Finally, the main
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parameters of the calorimeter system are summarised in Table 2.3.

FIGURE 2.16: The interaction length λ as a function of |η|, the
so-called material budget, characterising the amount of material a

hadron traverses through the Hadronic Calorimeter [31].

(A) (B)

FIGURE 2.17: A picture of Hadronic Tile Calorimeter with the full
azimuthal coverage (A) and a diagram of one single module of this

last calorimeter (B) [31].
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TABLE 2.3: The basic parameters of the calorimeter system [31].
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Table 1.3: Main parameters of the calorimeter system.
Barrel End-cap

EM calorimeter
Number of layers and |h | coverage

Presampler 1 |h | < 1.52 1 1.5 < |h | < 1.8
Calorimeter 3 |h | < 1.35 2 1.375 < |h | < 1.5

2 1.35 < |h | < 1.475 3 1.5 < |h | < 2.5
2 2.5 < |h | < 3.2

Granularity Dh ⇥Df versus |h |
Presampler 0.025⇥0.1 |h | < 1.52 0.025⇥0.1 1.5 < |h | < 1.8

Calorimeter 1st layer 0.025/8⇥0.1 |h | < 1.40 0.050⇥0.1 1.375 < |h | < 1.425
0.025⇥0.025 1.40 < |h | < 1.475 0.025⇥0.1 1.425 < |h | < 1.5

0.025/8⇥0.1 1.5 < |h | < 1.8
0.025/6⇥0.1 1.8 < |h | < 2.0
0.025/4⇥0.1 2.0 < |h | < 2.4
0.025⇥0.1 2.4 < |h | < 2.5
0.1⇥0.1 2.5 < |h | < 3.2

Calorimeter 2nd layer 0.025⇥0.025 |h | < 1.40 0.050⇥0.025 1.375 < |h | < 1.425
0.075⇥0.025 1.40 < |h | < 1.475 0.025⇥0.025 1.425 < |h | < 2.5

0.1⇥0.1 2.5 < |h | < 3.2
Calorimeter 3rd layer 0.050⇥0.025 |h | < 1.35 0.050⇥0.025 1.5 < |h | < 2.5

Number of readout channels
Presampler 7808 1536 (both sides)
Calorimeter 101760 62208 (both sides)

LAr hadronic end-cap
|h | coverage 1.5 < |h | < 3.2

Number of layers 4
Granularity Dh ⇥Df 0.1⇥0.1 1.5 < |h | < 2.5

0.2⇥0.2 2.5 < |h | < 3.2
Readout channels 5632 (both sides)

LAr forward calorimeter
|h | coverage 3.1 < |h | < 4.9

Number of layers 3
Granularity Dx⇥Dy (cm) FCal1: 3.0⇥2.6 3.15 < |h | < 4.30

FCal1: ⇠ four times finer 3.10 < |h | < 3.15,
4.30 < |h | < 4.83

FCal2: 3.3⇥4.2 3.24 < |h | < 4.50
FCal2: ⇠ four times finer 3.20 < |h | < 3.24,

4.50 < |h | < 4.81
FCal3: 5.4⇥4.7 3.32 < |h | < 4.60
FCal3: ⇠ four times finer 3.29 < |h | < 3.32,

4.60 < |h | < 4.75
Readout channels 3524 (both sides)

Scintillator tile calorimeter
Barrel Extended barrel

|h | coverage |h | < 1.0 0.8 < |h | < 1.7
Number of layers 3 3

Granularity Dh ⇥Df 0.1⇥0.1 0.1⇥0.1
Last layer 0.2⇥0.1 0.2⇥0.1

Readout channels 5760 4092 (both sides)

lead thickness in the absorber plates has been optimised as a function of h in terms of EM calorime-
ter performance in energy resolution. Over the region devoted to precision physics (|h | < 2.5), the
EM calorimeter is segmented in three sections in depth. For the end-cap inner wheel, the calorime-
ter is segmented in two sections in depth and has a coarser lateral granularity than for the rest of
the acceptance.

– 9 –
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2.4.5 The Muon Spectrometer

Almost all SM particles produced in the proton-proton collision are stopped in the
calorimeters, except muons and neutrinos. Neutrinos are simply not detected di-
rectly in ATLAS, while muons leave tracks in the ID and the calorimeters. Compared
to electrons, muons are heavier which makes them less radiative as they interact
electromagnetically, and they also lose less energy in interactions with the detectors.
Therefore the muons can be detected in the outermost part of the ATLAS detector,
called the Muon Spectrometer. It consists of three layers of chambers with tubes filled
with a gas mixture of Argon and CO2, covering a range of |η| < 2.7. The detection
mechanism is similar to the TRT, where muons entering the straws ionise the gas and
an electric current is measured through a wire inside the tubes. This enables the de-
termination of the muon’s path bent by the magnetic field, and hence its momentum.
Figure 2.18 shows a schematic representation of the ATLAS Muon Spectrometer and
its different components, along with the series of eight coils constituting the toroid
magnet system, used to measure the momentum of muons. Figure 2.19 (A) shows a
picture of the endcap chambers and (B) a simulation of how muons passing through
the chambers leave tracks that are used to reconstruct the trajectory. Finally, Table
2.4 shows the basic parameters of the latter sub-detector.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Toroid magnet 

Solenoid magnet 

FIGURE 2.18: The Muon Spectrometer of the ATLAS detector de-
signed to detect muons, along with the series of eight coils consti-
tuting the toroid magnet system, used to measure the momentum of

muons. [48].

2.4.6 Primary vertex reconstruction in ATLAS

As opposed to fixed target experiments, where the interaction point of collision
events is at the target, protons at the LHC can interact anywhere in the interaction
region, where bunch crossings take place. Therefore, it is important to reconstruct
the primary vertex of the individual collision events. In ATLAS, vertex reconstruc-
tion starts from collecting reconstructed charged particles paths using the ID, called
tracks, which are using for finding and fitting the position of vertices. For the vertex
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(A) (B)

FIGURE 2.19: A picture of the endcap chambers of the ATLAS Muon
Spectrometer (A) and a simulation of muons passing through the
chambers leave tracks that are used to reconstruct the trajectory (B)

[48].

TABLE 2.4: The basic parameters of the Muon Spectrometer [31].

reconstruction, tracks are required to have pT > 0.4 GeV and |η| < 2.5. Tracks with
|η| < 1.65 must have at least 9 silicon hits, otherwise at least 11 hits are required. No
pixel holes8 are permitted, while at most one SCT hole is allowed. The procedure

8A hole is an expected hit based on the reconstructed trajectory that was not measured.
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of reconstructing a vertex starts from selecting a seed position to fit the best vertex
given the selected tracks. In this iterative process, tracks that are less compatible are
down-weighed after each step to recompute the vertex position. Once the position of
the vertex is determined, incompatible tracks are removed, which are used for other
vertices. A minimum of two tracks per vertex are required. This process is repeated
until no remaining tracks are found in the event. The vertices are then given as a set
of three dimensional positions, with an associated covariance matrix containing the
uncertainties.

2.4.7 The ATLAS Trigger system

As mentioned before, the LHC provides an instantaneous luminosity of 1034 s−1cm−2,
corresponding to a collision rate of 40 MHz. This represents an extraordinarily large
amount of data if every event is recorded, which is not possible due to limitations
in computing and data storage capacities. Also, not all events are equally inter-
esting for the purpose of physics analyses, only a small fraction has characteristics
that might lead to promising results. For this reason, the ATLAS Trigger and Data
Acquisition system [42] is set in place for recording and managing an efficient and
optimal data-taking, which ensures high quality information to be studied. In order
to filter and reduce the data-taking rate, a trigger system is used to identify and se-
lect at high pace collision events that should be recorded for offline physics analyses.

The ATLAS trigger system can be decomposed in two-stages; a hardware-based sys-
tem, the Level-1 (L1), and a software-based system, the High-Level Trigger (HLT).
After every stage, the rate at which data is recorded is reduced, keeping only promis-
ing events in the loop. The L1 trigger is at the front line and relies on reduced-
granularity information from the calorimeters and the MS to trigger. It reduces the
rate of accepting collision events from an input rate of up to 40 MHz to a max-
imum of 100 kHZ. The L1 trigger is itself composed of two subsystems, namely
the L1Calo and the L1Muon triggers, where the former processes inputs from the
calorimeters, while the latter from the MS. Additionally, the L1 topological trigger
(L1Topo) uses both sub-detectors to perform topology-based selections, typically on
kinematic variables of particle candidates9. Events passing the L1 trigger are then
stored temporarily along with their full detector response data. Finally, it is up to
the HLT trigger to decide whether an event should be permanently stored for offline
physics analyses. The software-based trigger reduces the event rate to an average
of 1 kHz, where events are processes by reconstructing objects such as leptons and
hadronic jets only to the extent required by the executed trigger algorithms. The AT-
LAS trigger system has been operating successfully, allowing the collection of bal-
anced dataset for various offline physics analyses as well as for detector calibration
and monitoring studies.

9At this stage, the particle identity is unknown, they are simply called objects to be identified.
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2.4.8 The ATLAS collaboration

The ATLAS experiment has gathered more than 3000 physicists, from over 175 in-
stitutions (mainly universities) in 38 countries. It is not only a foundation for pure
particle physics, but also for very challenging engineering and advanced computing
research. This successful collaboration has played a key role in particle physics for
many years, with the latest Higgs boson discovery in 2012, and is looking forward
to more achievements and discoveries toward BSM physics.

FIGURE 2.20: View of the ATLAS detector during its installation. The
enormous size of the detector can be seen from the ATLAS member

standing inside the toroid magnets [31].
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Chapter 3

Background rejection study for
electron reconstruction and
identification using

√
s = 13 TeV

proton-proton collision events
recorded by the ATLAS detector

As mentioned before, all one can measure from the various subatomic processes are
the decay products in the final state. For instance, the golden decay channel, one of the
predicted and observed decay modes of the Higgs boson, H → ZZ∗ → 4l (with l
either an electron or a muon), is completely determined from the four charged lep-
tons in the final state. Therefore, it is crucial to identify the measurable decay prod-
ucts with high precision in order to reconstruct rare events accurately. Very often,
cross sections of interesting processes such as the Higgs production are relatively
low, hence operating at high energies and instantaneous luminosities is important
to increase the probability of observing these events. However, there is a significant
challenge that comes with this enhancement, which is the presence of all kinds of
processes and interactions of less interest. These act as background for the desired
signal signatures, and are inevitable and almost impossible to discard by means of
an event selection. Therefore, identifying and understanding these backgrounds is
crucial to make reliable predictions of interesting processes. In this chapter, a back-
ground rejection study for electron reconstruction and identification in the ATLAS
experiment is presented. In the next section, electron reconstruction using the AT-
LAS detector is briefly introduced. Not all reconstructed electron candidates are gen-
uine, prompt electrons, i.e. electrons from signal processes such as the Higgs boson
decay. Therefore, identification techniques for electron candidates after reconstruc-
tion are required to discriminate fake from genuine electrons. These are discussed
in the second section. Finally, in the last sections, a background rejection study is
presented in the context of electron reconstruction. This technical project was fulfilled
in order to qualify for the ATLAS authorship, which is obtained by making a substantial
contribution to the ATLAS performance tasks.
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3.1 Electron reconstruction

As mentioned before, electrons are very important for a wide range of analyses as
decay products. Therefore measuring them with high precision is crucial. However,
it is not an easy task in a dense environment near the high energy interactions at
the LHC. For the reconstruction of electrons in ATLAS, measurements from the ID
and the EM calorimeter are used. Having tracks from the former sub-detector and
energy deposits in the latter, one can check if at least one track in the ID is matched
to a cluster in the EM calorimeter, subject to electron reconstruction requirements. In
summary, the reconstruction of electrons is based on three characteristic signatures;
the shape of energy clusters in the EM calorimeter, identified tracks in the ID and
tracks closely matched to energy clusters. Reconstructed objects passing the electron
reconstruction criteria are referred to as electron candidates. Figure 3.1 illustrates the
path of a genuine electron going through the different parts of the ID and the EM
calorimeter. A detailed description of the electron reconstruction in ATLAS can be
found in [50].

FIGURE 3.1: An illustration showing the path of a prompt electron
going through the different parts of the ID and the EM Calorimeter in

the ATLAS detector [49].

3.1.1 Electron topological clusters reconstruction

For the electron reconstruction, the first step is to reconstruct the energy deposits
in the EM calorimeter, where so-called topological clusters are formed. These are ob-
tained from a seed, which is a calorimeter cell with a significance |ξEM

cell | > 4, defined
as,

ξEM
cell =

EEM
cell

σEM
noise

, (3.1)
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with EEM
cell the cell energy at EM scale and σEM

noise the expected noise. Neighbouring
cells with significance |ξEM

cell | ≥ 2 are collected and added to the primary seed. Each
added cell is then considered as a seed cell in the next iteration, where the neigh-
bours are collected cluster. In the case where two clusters share a cell, these are
merged. After all cells with |ξEM

cell | ≥ 2 have been collected, the remaining neigh-
bouring cells with |ξEM

cell | > 0 are also added to the cluster. Finally, the topological
clusters are subjected to selection criteria, reducing signal interference from back-
ground interactions, referred to as pile-up1. For the electron reconstruction perfor-
mance studies, a Monte Carlo simulation sample of single-electron events are used.
Figure 3.2 shows the cluster reconstruction efficiency as a function the generator ET

of the simulated electron. Only electron candidates in the central calorimeters, cov-
ering the pseudorapidity range |η| < 2.5, are considered. The efficiency is calculated
from the ratio of the number of reconstructed clusters and the number of produced
electrons. Clearly, the higher the electron ET, the higher the reconstruction efficiency,
which has a turn-on effect around 5 GeV.

FIGURE 3.2: The reconstruction efficiency of cluster, track, both
cluster-track combined and the final reconstructed electron candi-
date, as a function of the generator ET of the simulated electron (ob-
tained from a simulated single-electron sample) [50]. Only electron
candidates in the central calorimeters, covering the pseudorapidity

range |η| < 2.5, are considered.

3.1.2 Track reconstruction

The following step is the reconstruction of potential electron tracks. Tracks from
charged particles are reconstructed from hits in the ID. There are three steps in
the procedure of track reconstruction; pattern recognition, ambiguity resolution and
TRT extension. A pattern recognition algorithm [109] is used to identify track can-
didates, while taking into account the energy loss due to bremsstrahlung from the

1The high LHC luminosity comes with a considerable amount of background to interesting physics
events known as pile-up.
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particle interaction with the ID materials. Only identified tracks with pT > 0.4 GeV
are considered, and these are fitted using the ATLAS Global χ2 Track Fitter [110].
The next step is the ambiguity resolution, where tracks sharing hits are resolved to
minimise the ambiguity. Each track is attributed a score based on the quality of the
fit. A selection criteria based on kinematic cuts, the total number of hits and the
shared hits of the tracks is applied. Finally, tracks passing the latter selection are
then used as input in order to find sets of compatible TRT measurements for the
track extension. Figure 3.2 shows the track reconstruction efficiency as a function
the generator ET of the simulated electrons. Similarly to the cluster reconstruction,
a turn-on reconstruction efficiency is measured, with this time a lower threshold of
around 1 GeV.

3.1.3 Track-cluster matching

As mentioned before, an electron candidate is reconstructed from an EM cluster
matched to an ID track. This is done by extrapolating the track using the measured
track momentum to match the energy cluster. To improve the matching quality,
a rescaling of the momentum can be performed to account for significant energy
losses due to bremsstrahlung. The requirement for a track to be matched to a cluster
should satisfy,

|ηcluster − ηtrack| < 0.05,

−0.10 < q× (φcluster − φtrack) < 0.05,

with q the track measured charge. In case several tracks point to the same cluster, the
one with the highest ranking score is chosen, where the latter is based on criteria in-
cluding the number and origin of the track hits and the angular separation between
the track and cluster, defined as,

∆R =
√

∆η2 + ∆φ2. (3.2)

Figure 3.2 shows the electron reconstruction efficiency, including the track-to-cluster
matching, as a function the generator ET of the simulated electron. Also the recon-
struction efficiency of tracks matched to clusters using a Gaussian-sum-filter fitting
algorithm [111] is shown, which is used for tracks with silicon hits loosely matched
to clusters. The electron reconstruction efficiency is optimal above approximately 5
GeV.

3.2 Electron identification

As many kinds of particles are created in collision events at the LHC, and not only
electrons interact with the detector. Other particles, such as hadrons produced in
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hadronic jets2, from all kinds of processes can leave tracks in the ID and energy
deposits in the EM calorimeter. These background processes can lead to the recon-
struction of objects that mimic an electron signature in the detector. Therefore ro-
bust electron identification techniques are required to discriminate fakes from signal
prompt electrons. Reconstructed electron candidates passing the electron identifi-
cation criteria are referred to as identified electrons. A detailed description of the
electron identification in ATLAS can be found in [50].

3.2.1 Main background sources for prompt electrons

Electron identification techniques are typically developed in MC simulation stud-
ies where background processes generating fake electrons are investigated. Using
MC events, background objects passing the electron reconstruction can be identi-
fied using generator level information. In this study, simulation samples are used
corresponding to all generic 2→2 processes in proton-proton collisions at

√
s = 13

TeV [50], with pile-up conditions corresponding to those in the 2017 data taking
period. These were generated using PYTHIA8 [74] with the A14 set of tuned param-
eters. Analysing the samples, three main background categories contributing to fake
electrons are distinguished, namely:

• Non-isolated3 electrons from heavy-flavour decays (i.e. decays from hadrons
containing heavy quarks, namely charm or bottom quarks)

• Background electrons from photon conversions, which result in electron pair
production after interaction with detector components

• Misidentified hadrons (jets) from light-flavour quarks

After removing signal electrons from the abundant production of Z boson, W boson
or J/ψ decays, the fraction of the three background sources is plotted as a function
of the reconstructed electron pT and η in Figure 3.3. Only electron candidates with
pT > 17 GeV and within the central region of the ATLAS detector (|η| ≤ 2.47) are
considered. The distinction between the different sources of background is obtained
from generator-level information. Clearly, light-flavour hadrons are the most domi-
nant source of background. Electrons from photon conversions represent the second
largest source, while heavy-flavour decays account for less than 1% of the total back-
ground. The composition of the different sources is relatively constant across the pT

spectrum, while photon conversions increase with higher |η| values. This last ef-
fect is due to the increasing travel length in the detector as |η| increases. The more
material a photon can interact with, the higher the probability for an electron pair
production. Figure 3.4 shows the amount of ID material in the yz-plane. A particle

2Jets are collimated streams of particles from the hadronisation of high energy quarks and gluons
(consequence of QCD confinement), which are reconstructed in the EM and the Hadronic calorimeters.

3The isolation requirement is based on the sum of the energy deposits around an object within a ∆R
cone. Prompt leptons are in general isolated.
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FIGURE 3.3: The fraction of the three background sources w.r.t. the
total background as a function of pT and η in MC simulation samples
of all generic 2→ 2 processes in proton-proton collisions at

√
s = 13

TeV [50].

with η = 1.5 clearly travels through more material in the sub-detector than one with
η = 1.0.

FIGURE 3.4: The travel length of particles through the different parts
of the detector as a function of η [31]. Clearly, particles with higher

values of η travel through more material in the detector.

3.2.2 Electron identification discriminating variables

In order to discriminate between prompt electrons and the three previously men-
tioned backgrounds, a set of discriminating variables are defined. These quantities
are classified depending on the sub-detector in which they are measured. Table 3.1
shows the electron identification discriminating variables used in ATLAS; the first
column indicates the associated sub-detector, while the second and third column
the definition of the quantities. In MC simulation studies, the different variables are
typically designed to maximise the discrimination between prompt electrons and
the three types of backgrounds. As a consequence, the rejection power of each vari-
able on the three background types is different. In the fourth column of Table 3.1,
the targeted background type is given per variable.
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TABLE 3.1: List of discriminating variables used in the electron identi-
fication. The first three columns indicate the type and definition of the
quantities, while the fourth column shows the type of targeted back-
ground, with LF, γ and HF standing, respectively, for light-flavour
hadrons, background electrons from photon conversions and non-
isolated electrons from heavy-flavour decays. The usage of variables
in the identification menus is indicated in the last column, where ’LH’

indicates the likelihood method and ’C’ a direct cut [50].
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3.2.3 Electron identification efficiency and rejection power

In order to maximise the rejection of fake electrons, while identifying prompt elec-
trons with high efficiency, an optimal identification selection is required. Before ap-
plying any discrimination, the collection of reconstructed electron candidates con-
tains a number of prompt electrons, S0 and a number of fake electrons, B0. After
application of the identification requirements, the collection is reduced to Sid (≤ S0)
and Bid (≤ B0). The efficiency for identifying prompt electrons and the rejection of
fake electrons can be defined respectively as,

εid =
Sid

S0
, (3.3)

Rid =
B0

Bid
. (3.4)

An ideal identification selection would yield εid = 1 and 1/Rid = 0. In reality,
the two quantities are anti-correlated; the higher the identification efficiency, the
lower the rejection power and vice versa. It is therefore necessary to compromise,
in some cases a high identification efficiency is required, while in others the rejec-
tion power is more important. For this reason, three identification working points
are defined in ATLAS, namely the loose, medium and tight menus. The identification
criteria are designed such that electrons passing the tight requirements are a subset
of those passing the medium one, and medium electrons a subset of loose electrons.
The tighter the working point, the lower εid and the higher Rid. Figure 3.5 shows
the electron identification efficiency as a function of the electron ET and η in data
collected in 2015-2017 corresponding to an integrated luminosity of 81 inverse fem-
tobarns4 (fb−1). For this measurement, Z → e−e+ events were selected in data and
MC for electrons with ET > 15 GeV, and J/ψ5→ e−e+ for ET < 15 GeV electrons.
The former process is generated using the generator POWHEG [65], while the latter
is obtained from PYTHIA8 [74] with the A14 set of tuned parameters. These latter
processes are measured with high precision, and are often considered as standard
reference candles for calibration measurements. For prompt signal electrons, the ef-
ficiencies are typically optimised to be 93%, 88% and 80% respectively for the loose,
medium and tight menus, for an electron at ET = 40 GeV. As expected, the tighter the
identification menu, the lower the signal efficiency of selecting prompt electrons. In
the ET spectrum, the efficiency tends to increase with higher ET values. This is due
to a large amount of background in the low ET range, which results in a less efficient
electron identification. Finally, the η spectrum is relatively constant, with a small
decrease in efficiency toward higher |η| values, especially around |η| = 1.5. The
latter effect is due to the transition gap between the barrel and endcap of the EM

4The inverse femtobarn is a measure for the number of events per femtobarn, which is a unit of area
equivalent to 10−28m2. Barns are convenient to use for the small cross sections in particle physics.

5 J/ψ is meson composed of a charm quark and anti-quark with a significant leptonic branching
ratio.
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FIGURE 3.5: The electron identification efficiency as a function of the
electron ET and η in data collected in 2015-2017 corresponding to an
integrated luminosity of 81 fb−1 compared to MC. For this measure-
ment, Z → e−e+ events were selected in data and MC for electrons

with ET > 15 GeV, and J/ψ→ ee for ET < 15 GeV electrons [50].

calorimeter (|η| ∈ [1.37, 1.52]), which is known as the crack region.

3.2.4 The likelihood discriminant identification method

For the discrimination between signal and background electrons, typically a set of
discriminating variables are used, where differences in the signal and background
PDFs are exploited. For the electron identification, these studies are first conducted
in MC samples, using signal samples including prompt electrons and background
samples enriched in fake electrons. From differences in the PDFs, cut values on the
latter variables are defined to discriminate between fake and prompt electrons.

Figure 3.6 (A) shows an example, where the background and signal MC distribu-
tion is plotted for some identification variable X. Clearly, the two distributions are
well separated. In this case, applying an optimal cut-based selection results in a high
εid and Rid. A reconstructed electron having an X value smaller than the cut value is
rejected, while one with an equal or higher value passes the selection. However, this
approach is not always the most efficient method, for example in the case where the
two distributions have a significant overlap. Figure 3.6 (B) shows an example where
background and signal have a large overlapping region. In this case, applying a cut-
based selection would result in either a large signal efficiency loss if the cut is tight,
or a small background rejection if the cut is loose.

A more advanced method of discriminating is the likelihood (LH) discriminant ap-
proach, which is currently the method used for the identification of electrons in AT-
LAS. It consists of building a likelihood calculated from the product of various PDF’s
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FIGURE 3.6: Example of a signal and background distribution with
well seperated PDFs (A) and overlapping PDFs (B).

from the discriminating variables listed in Table 3.1. A separate likelihood is formed
for signal and background as follows,

LS(B)(~x) =
n

∏
i=1

PS(B),i(xi), (3.5)

where LS and LB are, respectively, the signal and background likelihood, ~x repre-
sents the set of discriminating variable, and PS,i(xi) and PB,i(xi) the value of the
signal and background PDF at value xi. These PDFs are typically extracted from
data measurements, where the so-called Tag and Probe method [49] is used to select
signal electrons from Z → e−e+ decays, while reconstructed electron candidates
failing to pass the selection criteria are used for the background likelihood construc-
tion. The likelihood approach consists of defining a discriminant variable for each
reconstructed electron. Given the signal and background likelihood value of the
reconstructed electron, the discriminant is constructed as follows,

dL =
LS

LS + LB
. (3.6)

This last is defined such that its value peaks at unity for genuine electrons and at
zero for fake electrons. The value of this quantity for a corresponding reconstructed
electron determines whether it passes the electron identification or not. The last
column of Table 3.1 shows which identification variable is used in the likelihood,
"LH" indicates that the PDF of the quantity is used in the likelihood while "C" means
a direct cut on the variable is used.
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3.3 Rejection power of the electron identification menus

As mentioned before, there are three main background sources for prompt signal
electrons, namely light-flavour hadrons, background electrons from photon conver-
sions and non-isolated electrons from heavy-flavour decays. In this section, an MC
study is presented, where the rejection of the three background sources is investi-
gated using the different identification menus.

3.3.1 Identification efficiency for background categories

As shown in Figure 3.3, it is possible to classify the different types of background
sources, i.e. for every reconstructed electron, one can consult the identity and the
origin of interaction of the particle. Using equation 3.3, the efficiency of the three
previously mentioned background sources passing the electron identification menus
can be calculated. After excluding signal electrons from Z, W and J/ψ decays, the
identification is applied on the enriched background sample used in Figure 3.3. Fig-
ure 3.7 shows the inclusive background (i.e. combining the three background cate-
gories) identification efficiency as a function of η and pT for the three identification
menus. From equation 3.4, the inverse of this background identification efficiency
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FIGURE 3.7: The inclusive background identification efficiency as a
function of η and pT for the different identification menus.

can be interpreted as the rejection. However, it is more convenient to compare effi-
ciency curves rather than rejections. Therefore, the former is always used for com-
parisons in this study, while both terms are used interchangeably in the discussion.
The lower the efficiency, the higher the rejection. As expected, the tighter the identi-
fication menu, the larger the rejection (i.e. lower the identification efficiency). From
the pT spectrum, one can conclude that the rejection power of the identification is
higher toward higher pT values. This was expected from the low identification effi-
ciency of low pT signal electrons, where the abundance in background complicates
the discrimination between prompt and fake electrons. The rejection in terms of η is
relatively constant for the medium and tight menus, while the loose menu shows a
slight decrease in rejection toward higher η values. The crack region is as expected
low in rejection, similarly to the low signal efficiency in Figure 3.5.
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Figure 3.8 shows a comparison of the rejection of the three different background
sources for the medium menu. Clearly, light-flavour hadrons are rejected the best.
This is due to the fact that the identification menus were initially designed to re-
ject mostly hadrons by exploiting the large discriminating power of shower shape
variables between electrons and hadrons, namely EM calorimeter related quantities.
This can be seen in the fourth column of Table 3.1, where almost all variables im-
pact the light-flavour background. Furthermore, non-isolated electrons from heavy-
flavour decays are better rejected at higher pT values, while the rejection for photon
conversions and light-flavour hadrons is relatively constant. In the η spectrum, the
rejection is overall relatively constant, with a slightly better rejection of light-flavour
hadrons in the central detector region (around η = 0)
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FIGURE 3.8: The background identification efficiency for the medium
identification-menu of the various background sources as a function

of η and pT .

Results are summarised in Table 3.2, where the inclusive efficiency for all cases is
calculated with equation 3.3. Also the background composition relative to the total
background after identification is shown.

TABLE 3.2: Summary table of background identification efficiency for
the different identification menus per background source. Also the

fraction of the background sources after identification is shown.

The second column shows the efficiency of the total background after each identifi-
cation menu, which as expected decreases with more stringent identification menus.
The third column shows the variation in background composition after each menu.
Finally, the identification efficiency for the individual background sources is given.
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The rejection of light-flavour hadrons is as expected the highest compared to the
other background processes.

3.3.2 Background rejection in Z → e−e+ events

As mentioned before, the Z → e−e+ process is one of the standard reference candles
when it comes to calibration and performance studies. In this section, the same pre-
vious rejection measurements are reproduced using this time a Z → e−e+ MC signal
sample (the same sample used for the signal efficiency Figure 3.5). The fractions of
the three background sources relative to the total background are compared in Fig-
ure 3.9, where the top plots correspond to the enriched background MC sample, and
the bottom plots to Z → e−e+ MC. The background composition as a function of
η and pT is relatively similar, with light-flavour hadrons in high abundance in both
samples.
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3.3.2 Background rejection in Z ! e�e+ events

As mentioned before, the Z ! e�e+ process is one of the standard reference candles
when it comes to calibration and performance studies. In this section, the same pre-
vious rejection measurements are reproduced using this time a Z ! e�e+ MC signal
sample (the same sample used for the signal efficiency Figure 3.5). The fractions of
the three background sources relative to the total background are compared in Fig-
ure 3.9, where the top plots correspond to the enriched background MC sample, and
the bottom plots to Z ! e�e+ MC. The background composition as a function of
h and pT is relatively similar, with light-flavour hadrons in high abundance in both
samples.
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FIGURE 3.9: The fraction of the three background sources relative
to the total background as function of pT and h. The two top plots
correspond to the background enriched sample, while the other two

plots on the bottom correspond to the Z ! e�e+ sample.

Comparing the inclusive background identification efficiency in the two samples
(Figure 3.10), it is clear that the rejection is overall higher in the Z ! e�e+ sample.
The h distributions are relatively similar in shape, however the efficiency curves are
more stable over the pT spectrum for Z ! e�e+, especially for the loose identifica-
tion menu. Finally, the total identification efficiency for all background categories is
shown on Table 3.3. Also the identification efficiency of signal electrons from prompt
decays of J/y, the Z and W boson are included. The results can be compared to those
on Table 3.2. In general, the overall rejection in Z ! e�e+ is slightly higher in all
backgrounds. Also the fractions of the three background sources with respect to the
total background after each identification menu are presented in Table 3.4. There are
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FIGURE 3.9: The fraction of the three background sources relative
to the total background as function of pT and η. The two top plots
correspond to the background enriched sample, while the other two

plots on the bottom correspond to the Z → e−e+ sample.

Comparing the inclusive background identification efficiency in the two samples
(Figure 3.10), it is clear that the rejection is overall higher in the Z → e−e+ sample.
The η distributions are relatively similar in shape, however the efficiency curves are
more stable over the pT spectrum for Z → e−e+, especially for the loose identifica-
tion menu. Finally, the total identification efficiency for all background categories is
shown on Table 3.3. Also the identification efficiency of signal electrons from prompt
decays of J/ψ, the Z and W boson are included. The results can be compared to those
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FIGURE 3.10: The inclusive background identification efficiency as a
function of h and pT for the three different identification menus. The
top plots correspond to the background enriched sample, while the

bottom plots correspond to the Z ! e�e+ sample.

no significant differences in the background composition between the two samples
after each identification menu.

TABLE 3.3: Summary table for the background identification effi-
ciency for the different identification menus per background source.
Also the signal identification efficiency is shown in the second col-

umn.

TABLE 3.4: The composition of the background sources after each
identification menu.
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FIGURE 3.10: The inclusive background identification efficiency as a
function of η and pT for the three different identification menus. The
top plots correspond to the background enriched sample, while the

bottom plots correspond to the Z → e−e+ sample.

on Table 3.2. In general, the overall rejection in Z → e−e+ is slightly higher in all
backgrounds. Also the fractions of the three background sources with respect to the
total background after each identification menu are presented in Table 3.4. There are
no significant differences in the background composition between the two samples
after each identification menu.

TABLE 3.3: Summary table for the background identification effi-
ciency for the different identification menus per background source.
Also the signal identification efficiency is shown in the second col-

umn.

3.3.3 Rejection comparison with 2012 published results

Similar rejection measurements have been performed using 2012 data, collected dur-
ing the first run of the LHC at

√
s = 8 TeV. Results were published in the following
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TABLE 3.4: The composition of the background sources after each
identification menu.

paper [51]. Having results of the identification rejection of the three main back-
ground sources from the previous section, numbers are compared to the published
ones (top Table 3.5). It should be noted that only reconstructed electrons within
ET ∈ [20, 50] GeV were used for the 2012 results, the numbers from this study were
also recalculated for this ET range to enable the comparison (bottom Table 3.5).

TABLE 3.5: Comparison of background rejection results between 2012
published results (top table) [51] and numbers calculated in this study
(bottom table). The first column of numbers represents the identi-
fication efficiency of the inclusive background after each ID menu,
the second column the composition of each background sources with
respect to the total background, and the last column shows the effi-

ciency numbers per background source.

TOTAL EFFICIENCIES FOR SIGNAL AND BACKGROUND FOR EACH 
ID-MENU: COMPARISON WITH 2012 DATA BASED OFFICIAL RESULTS

¡ Comparison with 2012 data 
based official results

¡ Only reconstructed electrons 
with 20 GeV < ET < 50 GeV 
considered

¡ Higher rejection on top 
of/relative to reconstruction for 
total background in 2012

¡ The reconstruction has changed 
significantly since Run 1

¡ Difficult to judge total rejection

13

Run 1 based (2012)

Run 2 based

arXiv:1612.01456

Comparing both results, the identification efficiency of background is in general
higher in this study, i.e. the rejection is lower. The efficiency for the inclusive back-
ground is approximately a factor of 1.5 lower in the 2012 results. Also, the relative
background composition of the three background sources is different after each ID
menu. For example, the light-flavour background is more rejected compared to re-
sults from this study, but has a lower fraction in the background composition. In fact,
it is difficult to judge the background rejection in both cases since the latter is calcu-
lated relative to the electron reconstruction, while the electron reconstruction rejec-
tion of background (or the efficiency of reconstructing fake electrons) is unknown in
the latter cases. In fact, the electron reconstruction was updated in Run-2 (2015-2018)
compared to Run-1 (2010-2013), which resulted in a different background rejection



70 Chapter 3. Background rejection for electron reconstruction and identification

of the electron reconstruction. As a consequence, it is not possible to make a quan-
titative comparison without the latter rejection in both cases. One would need to
calculate these numbers relative to the electron reconstruction rejection in order to
make a meaningful comparison. Although the latter numbers do not exist for the
2012 results, in the next part of this study, the background rejection in the context of
the electron reconstruction is calculated and discussed.

3.4 Electron reconstruction efficiency for background fake elec-
trons

As previously stated, not only genuine electrons from prompt decays are recon-
structed as electrons. Therefore, the electron identification is designed to discrim-
inate between signal and fake electrons after reconstruction. The three previously
mentioned identification operating points (loose, medium and tight) are in reality
optimised to reach specific benchmark efficiencies, which are difficult to obtain due
to the mismodelling of calorimeter shower shape quantities in MC. It is in fact a
complex task to target specific background signatures. Therefore, a preferable way
of optimising these identification menus can be achieved based on the rejection of
background processes. In this study, a background rejection study for the electron
reconstruction is presented. In this study, only statistical uncertainties are consid-
ered.

3.4.1 Background rejection for the electron reconstruction

As mentioned in section 3.1, the reconstruction of electron candidates relies on the
ID for the identification of charged-particle tracks, and the EM calorimeter for the
localised clusters of energy deposits. Electrons undergo bremsstrahlung radiation,
whereby they lose energy while traversing the different parts of the detector. Pho-
tons from this radiation cause electron-positron pair production, which are usually
emitted in a collimated fashion along with the primary electron. This characteris-
tic signature is exploited in the electron reconstruction algorithm [50], which takes
into account the shape of the energy clusters in the EM calorimeter and their close
matching with tracks from the ID.

For the rejection of background sources in the context of the electron reconstruc-
tion, hadronic jets are considered as the main background, as they can leave tracks
in the ID and energy deposits in the EM calorimeter. Hadronic jets are extensively
produced at the LHC, and are by far the most dominant source of fake electrons, as
shown in the previous section. Therefore, the electron reconstruction rejection mea-
surement is calculated in multi-jet events, where the fraction of jets reconstructed as
electrons is studied. Moreover, the efficiency of reconstructing jets as electrons will
be calculated, in MC as well as in data of proton-proton collision events at

√
s = 13
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TeV, corresponding to the data taking year of 2017.

For the electron identification rejection measurement, MC generator information
was used to distinguish between the different background sources. In order to
perform the measurements in data, one can only rely on reconstructed quantities.
Therefore, it is important to use a process that is easy to trigger, high in abundance
and is measured with high precision. A process that satisfies these requirements is
the standard reference candle Z → e−e+. The latter process has the advantage of
having a characteristic signature with a low background, and is in high abundance
given its high cross section at

√
s = 13 TeV. Also, the fact that Z boson production at

the LHC is associated with hadronic jets, referred to as Z+jets, multi-jet events are
reconstructed which are crucial for this study.

3.4.1.1 Jet reconstruction

Hadronic jets originate from the hadronisation process of partons resulting in colli-
mated streams of particles that interact with the ID and the calorimeters. Jets in this
study are reconstructed from topological clusters using an algorithm known as the
anti-kT [113], which proceeds sequentially by reconstructing jets in a regular, cone-
like geometry based on the QCD splitting of partons. The anti-kT reconstruction is
performed for a specific value of the anti-kT distance parameter, R, that specifies the
nominal radius of the reconstructed jets. A jet radius of 0.4 is used for all jets men-
tioned in this thesis. Moreover, four-momentum measurements of jets include cor-
rections for the non-compensating response of calorimeters, energy losses in crack
regions, pile-up contributions and signal losses due to noise effects. Jets originating
from pile-up are rejected using an algorithm discriminating based on the fraction of
tracks from jets originating from the primary vertex. In the case of pile-up jets in the
forward region, having a pT < 50 GeV and corresponding to |η| > 2.5 where there
is no ID coverage, the rejection is performed using an algorithm that discriminates
based on missing transverse momentum. More details on jet reconstruction can be
found in [84].

3.4.1.2 Jet and fake electron selection for the rejection measurement

In the context of the electron reconstruction background rejection, one is interested
in the number of rejected jets per fake reconstructed electron. The inverse of this
number, Rjets, is equivalent to the efficiency of reconstructing a fake electron from a
jet,

εjets→ f akes =
1

Rjets
. (3.7)

For this rejection measurement, only fake electrons that overlap with reconstructed
jets are considered. This overlap is quantified by measuring the spacial angular
separation between the fake reconstructed electron and the jet, which is given by ∆R



72 Chapter 3. Background rejection for electron reconstruction and identification

defined in eq. 3.2. The efficiency of jets being reconstructed as fake electrons can
then be calculated as,

εjets→ f akes =
Njets→ f akes

Njets
, (3.8)

where Njets→ f akes represents the number of jets that are close to a fake reconstructed
electron, within ∆R( f ake, jet) < 0.4, and Njets the number of jets in the event. In
the case where two fake electrons are within ∆R( f ake, jet) < 0.4 of the same jet, the
closest is always selected. Double counting of fake electrons that are close to two
different jets is also avoided.

3.4.1.3 Z+jets event selection for the rejection measurement

As mentioned before, the rejection measurement for the electron reconstruction is
performed in Z+jets events, a so-called Drell-Yan process, where a quark and an anti-
quark annihilate to create a Z boson. The latter decays to a pair of electrons with a
branching ratio of approximately 3.4% [112]. At the LHC, this process is associated
with partons from the hard scatter which become hadronic jets. Figure 3.11 shows
an example of the Z → e−e+ Drell-Yan process in this latter case.

FIGURE 3.11: An example of the Z → e−e+ Drell-Yan process in
association with the parton remnants of the protons which become

hadronic jets.

The best way of selecting these events is by exploiting the characteristic signature
of the electronic Z boson decay, where two opposite charged electrons are produced.
Prompt genuine electrons from the Z decays can be identified by requiring per event
the following requirements (the so-called Z boson mass window):

• at least two reconstructed electrons per event,

• the pair is required to be opposite-charged,

• both reconstructed electrons are required to pass the medium identification
menu,
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• both reconstructed electrons are required to pass the track isolation require-
ment,

• the invariant mass of the electron pair is required to be within mee ∈ [81.18, 101.18]
GeV (Z boson resonance).

For the track isolation requirement, a track based isolation variable is defined as,

∆track
iso =

∑ pT,i

pT,el
, (3.9)

with the numerator representing the scalar pT sum of tracks around the electron
within a cone of ∆R = 0.2, and the denominator the pT of the electron. The track
isolation requirement for prompt electrons is ∆track

iso < 0.15. Per event, the pair of elec-
trons satisfying the Z mass window requirements that is the closest to mZ = 91.18
GeV, is tagged as the Z electron pair. Although events are selected by requiring the
pair of Z electrons, these are removed for the rejection measurement. Since one is
only interested in jets being reconstructed as fake electrons, all jets are included in
the selection, except those close to the Z prompt electrons (∆R(e, jet) < 0.4). All other
reconstructed electrons in the corresponding events are considered as fake electrons.
This relies on the assumption that background processes to Z+jets have a negligible
contribution around the Z boson resonance in data. For example, ZW di-boson pro-
duction can lead to a signal contamination, where a third prompt electron coming
from the W boson (W → eν) would be considered as a fake electron. Finally, only
reconstructed electrons in the central detector region with |η| < 2.47 and pT > 30 GeV
are selected for the rejection measurement.

Figure 3.12 shows the invariant mass distribution of the two selected Z electrons
in Z+jets MC and in 2017 data, where the bottom ratio plot reflects the data/MC
agreement6. The modelling around the Z mass peak is relatively good, with some
discrepancy toward the tails of the distribution. There are two reasons for the latter
effect. The first is the fact that the MC does not include all calibration scale factors,
which are for the purpose of this study irrelevant (i.e. the goal is not to measure the
Z peak with high precision). The second reason is the contribution of background
processes in data, mainly from top-quark pair and di-boson production, which in-
clude at least two prompt electrons in the final state. These are expected to be more
prominent toward the tails, as the Z boson contribution falls off away from the res-
onance. Nevertheless, for the selected invariant mass window the contamination
is negligible. Finally, the importance of selecting the Z electrons is only to ensure
prompt electrons are selected and removed equivalently in data and MC to perform
the rejection measurement on jets.

6The ratio of the number of events gives the percentage difference between data and MC, the further
from unity the worse the agreement.
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pile-up.

3.4.1.4 Jet and fake electron kinematic distributions

Figure 3.13 shows respectively the pT (A) and η distribution (B) of all jets in the se-
lected Z → e−e+ events (except those within ∆R(e, jet) < 0.4, which are removed),
and jets associated with fake reconstructed electrons. Also the fake electron pT and
η distributions are shown for comparison. On the η spectrum, the all-jets distribu-
tion has two peaks around |η| = 1.3, corresponding to the crack region of the EM
calorimeter. For the fake electrons and their associated jets, the η distributions are
very close. This is a consequence of the ∆R matching, which ensures the proximity
of jets and the associated fake electrons. Also, the peaks in the crack region do not
show up in these last two distributions, which is related to the low efficiency of re-
constructing electrons around the crack region.
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FIGURE 3.13: The pT (A) and η (B) distribution of jets and fake elec-
trons in Z+jets MC events. The red plots represent the jet pT and η
distributions of all jets in the events (except those within ∆R(e, jet)
< 0.4), while the green distributions shows the same quantities for
jets close to fake reconstructed electrons, and the blue curves for fake

electrons .

On the other hand, the pT distributions of fake electrons and their associated jets
do not look similar at all. First of all, the electron pT and jet pT are not reconstructed
in the same way, and therefore their calibration is different, but most importantly, the
energy of an electron is reconstructed using the EM calorimeter, while a jet is recon-
structed from the EM and Hadronic calorimeter. Therefore, if a jet is reconstructed
as an electron, only the EM calorimeter part of the jet is taken into account. As a
consequence, the reconstructed energy of a fake electron is lower than the energy of
the associated jet. Furthermore, the jet pT distribution on Figure 3.13 (A) is shifted
toward higher pT values compared to the electron pT distribution, which follows the
expectation. Also, after applying a pT cut at 30 GeV for both fake electrons and jets,
the fact that jets matched to fakes are in low abundance close to the cut suggests that
there are no fake electrons to be associated with, since they would have a lower pT

than 30 GeV, whereas the distribution of all jets clearly peaks at low pT values.

The correlation between fake electrons and the associated jets can be further inves-
tigated with the two-dimensional scatter plot Figure 3.14, where the jet pT versus
electron pT are plotted. The electron pT shows a strong dependence on the jet pT,
where the electron pT is always lower than its associated jet pT. It is also impor-
tant to note that the correspondence between the jet pT and the electron pT; for a
given jet pT, there is a range of associated electron pT values. This would suggest
that jets are reconstructed with different possible fractions of their energy deposits.
Investigating further the relationship between the jet and the fake electron pT, Fig-
ure 3.15 shows the distribution of the relative difference between jet and electron pT,
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calculated as,

∆rel.
pT

=
pjet

T − p f ake
T

pjet
T

. (3.10)

The resulting distribution resembles approximately a Gaussian, with a mean of 0.5875
± 0.0002, representing the most likely fraction, and a standard deviation of 0.1304
± 0.0003. In summary, observations from Figures 3.13 - 3.15 are consistent with the
expectations that the selected jets are indeed reconstructed as fake electrons, which
are essential for the rejection measurement.
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FIGURE 3.14: The two-dimensional scatter plot of the jet pT versus
the associated fake electron pT in Z+jets MC events.
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3.4.2 Reconstruction efficiency of jets as electrons in Z+jets MC

Finally, having the η and pT distributions of all jets, reconstructed fake electrons and
their associated jets (Figure 3.13 (A) and (B)), the reconstruction efficiency of jets
as electrons in terms of jet pT (electron pT) can be calculated by dividing the green
(blue) distribution by the red one. Figure 3.16 (A) and (B) show the efficiency, re-
spectively, in terms of η and pT bins. In the η spectrum, the efficiency is relatively
constant at around 2-3%. On the other hand, the pT spectrum has a turn-on efficiency
curve, where the higher the jet pT, the higher the efficiency of being reconstructed as
a fake electron. This was expected from Figure 3.13 (A), where low pT jets matched
to fakes were in low abundance around the 30 GeV cut. Equivalently, this implies
that the electron reconstruction rejection is higher in the low pT region.

Analogously, the reconstruction efficiency in terms of the electron pT is also cal-
culated. Figure 3.17 (A) and (B) represent, respectively, the efficiency in terms of
electron pT and η. The η curve is very similar to the jet η efficiency as expected from
the similarity in Figure 3.13 (B), which is constant at around 2-3%. The electron pT

spectrum is different, the turn-on effect is less distinct. However, the efficiency (re-
jection) is similarly higher (lower) for higher pT values. Finally, the total efficiency in
Z+jets MC (with pile-up conditions corresponding to those in the 2017 data taking
period) is found to be, εjets→ f akes = 2.797 ± 0.002 %, which corresponds to a rejection
of Rjets = 35.76 ± 0.03 (statistical uncertainty only).
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FIGURE 3.16: The efficiency of jets reconstructed as fake electrons in
terms of jet pT (A) and jet η (B). Only the statistical uncertainties are

presented which are negligible.

3.4.3 Reconstruction efficiency of jets as electrons in 2017 data

After estimating the efficiency/rejection in Z+jets MC events, the next step is to per-
form the same measurements in data. As mentioned before, data corresponding to
the 2017 data-taking year is used in this study. Similarly, the same event selection
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FIGURE 3.17: The efficiency of jets reconstructed as fake electrons in
terms of electron pT (A) and η (B). Only the statistical uncertainties

are presented which are negligible.

and efficiency calculation are performed as described in section 3.4.1.2 and 3.4.1.3.
The overall efficiency and rejection in 2017 data are respectively εjets→ f akes = 5.461 ±
0.007 % and Rjets = 18.31 ± 0.02. This result is almost a factor of two higher (lower)
than expected in MC. Comparing the results in jet pT and η bins (Figure 3.20 and
3.21), data and MC are in disagreement on both spectra, with data having a higher
(lower) efficiency (rejection) than in MC.
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FIGURE 3.18: MC/data comparison of the efficiency of reconstructing
jets as fake electrons in jet pT bins.

In the jet η spectrum, the discrepancy between data and MC is constant, with the
exception of the crack regions, where peaks appear in the ratio plot. In the pT spec-
trum, the ratio plot is not constant. The disagreement is larger in the lower pT region.
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FIGURE 3.19: MC/data comparison of the efficiency of reconstructing
jets as fake electrons in jet η bins.

This large discrepancy is not yet understood, but it can raise the question about dif-
ferences in efficiency of selecting prompt electrons in data and MC. Appendix A.2
contains a study where the rejection in the Z → e−e+ event selection based on re-
construction quantities (section 3.4.1.3) is compared to the rejection in a generator-
level based (exact) event selection. The measurements are found to be compatible,
therefore the event selection is probably not at the origin of the discrepancy. As men-
tioned in section 3.4.1.3, prompt electron contamination from di-boson events could
be suspected, with ZW production being the most prominent, where three prompt
electrons can be produced (Z → e−e+ and W± → e±ν). The two Z electrons are
removed for the efficiency calculation, but the third prompt electron from the W
is then tagged as a fake electron. This case was investigated using a ZW di-boson
MC (generated with POWHEG [65]). The signal contamination yield of prompt elec-
trons tagged as fakes is determined using generator information. After normalising
the yield of events to the data luminosity, the number of prompt electrons expected
from ZW di-boson process in data was found to be 2231.4 ± 3.8 events. This is less
than 0.3% of the total number of fake tagged electrons in data. Subtracting this num-
ber from data and recalculating the efficiency and rejection, no significant difference
is observed. Therefore, one can conclude that the ZW di-boson process is negligible
and cannot be at the origin of the data-MC disagreement.

Similarly, the measurements are also performed in terms of electron η and pT. For
the η spectrum, similar conclusions to the jet η case can be made. The electron pT ef-
ficiency comparison is slightly better than in jet pT. The ratio plot is in general flatter,
with a better agreement in the low pT region. Furthermore, the two-dimensional
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FIGURE 3.20: Data/MC comparison of the efficiency of reconstruct-
ing jets as fake electrons in electron pT bins.
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FIGURE 3.21: Data/MC comparison of the efficiency of reconstruct-
ing jets as fake electrons in electron η bins.



3.4. Electron reconstruction efficiency for background fake electrons 81

plot with jet pT versus electron pT in data is shown (Figure 3.22). Comparing it to
Figure 3.14 for Z+jets MC, the assumption on the jet pT always higher than the as-
sociated electron pT is not observed in data. The low pT region shows significantly
more events with jet pT smaller than the associated fake electron pT, which could
be at the origin of the discrepancy in the low pT region between data and MC. An
attempt to improve the agreement by adding a veto on jets with a pT smaller than
the associated fake electron pT was applied, but only a slight improvement in the
low pT region was observed.
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ciated fake electron pT in data events.
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3.5 Summary & conclusion of the analysis

As mentioned in section 3.1, electrons are reconstructed from matching tracks in the
ID with energy deposits in the EM calorimeter. As many other charged particles can
interact with the latter sub-detectors, not all reconstructed electrons are genuine elec-
trons from prompt decays. In the first part of this study, the background for signal
electrons was investigated in background enriched MC samples. Background elec-
trons were classified into three categories using MC generator information, namely
light-flavour hadrons, photon conversions and non-isolated electrons from heavy-
flavour decays. The efficiency of identifying these background sources as genuine
electrons was calculated and compared in the background enriched MC and Z+jets
MC. Efficiencies were also calculated in η and pT bins. Results were compared for
each identification working point (loose, medium and tight), which were found to
be different in the background enriched MC and Z+jets MC, with an overall higher
rejection in Z+jets MC. In general, the light-flavour background was found to be the
most rejected background. Photon conversions were the second, while the heavy-
flavour background was the least rejected. Finally, Run-1 efficiency numbers pub-
lished in 2012 [51] were reproduced for comparison. The background efficiency was
overall higher in this study, with a factor 1.5 difference in the inclusive background
measurement. However, conclusions on the latter comparison were difficult to make
since the efficiencies were calculated relative to the electron reconstruction, which is
different in Run-1 and Run-2. Therefore, the electron reconstruction background re-
jection in both cases is necessary for a meaningful comparison.

In the second part of the study, the electron reconstruction background rejection
was investigated. In the context of the electron reconstruction, jets were considered
as the main background, as they leave tracks in the ID and energy deposits in the
EM calorimeter. The reconstruction efficiency (inverse of the rejection) was defined
as the ratio of jets overlapping with fake electrons over the total number of jets in
the events. The background rejection was calculated in Z+jets MC as well as in 2017
data. The overall rejection is found to be 35.76 ± 0.03 for Z+jets MC and 18.31 ±
0.02 in data, which is almost a factor of two in difference. Results were also pre-
sented and compared in η and pT bins, where the disagreement is found larger in
the low pT region. This mismodelling has been further investigated. Prompt elec-
tron contamination from other processes in data was suspected to be at the origin of
the discrepancy. As the ZW di-boson process was expected to have the largest con-
tribution, a MC estimation was performed to investigate signal contamination from
the latter process. The yield was found to be negligible, suggesting the observed
difference is not related to the signal electrons. Furthermore, modelling of multi-jet
processes in event generators is a difficult task [92], and is therefore expected to be
the reason behind the mismodelling. Finally, in this study only statistical uncertain-
ties were considered, whereas systematics are necessary for a final conclusion.
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Chapter 4

Measurement of the Higgs boson
mass in the H → ZZ → 4` decay
channel using

√
s = 13 TeV

proton-proton collision events
recorded by the ATLAS detector

4.1 Overview of the Higgs boson mass measurements

As mentioned in section 1.4, the Higgs boson mass is a free parameter in the SM
which has to be empirically measured. Its value is crucial in order to determine the
Higgs boson production cross section and the branching ratios of its decay modes.
As shown in Figure 1.7, once the mass mH is known, the SM takes it as an input in
order to predict the latter quantities, which is a direct verification of the theory. The
Higgs boson was successfully observed by the ATLAS and CMS collaborations in
2012. The discovery was achieved using a part of Run-1 LHC proton-proton colli-
sion events at

√
s = 7 TeV for the 2011 dataset and

√
s = 8 TeV for the 2012 dataset.

In the case of the ATLAS experiment, these datasets corresponded to an integrated
luminosity of respectively 4.8 fb−1 and 5.8 fb−1, while CMS collected 5.1 fb−1 and
5.3 fb−1. As the Higgs boson was measured for the first time, the ATLAS collabora-
tion reported a mass measurement of 126.0± 0.6 GeV [52] (statistical and systematic
uncertainties included), while the CMS collaboration reported 125.3 ± 0.6 GeV [53].
Initially, the search for the Higgs boson was performed using five of its decay modes,
namely H → WW → l±νl±ν, H → bb̄, H → ττ, H → ZZ → 4l± and H → γγ,
where the most significant excesses were found in the last two decay modes. Using
these H → ZZ → 4l± and H → γγ decay modes, a combined analysis conducted
by both ATLAS and CMS (using the full Run-1 data, approximately 5 fb−1 at 7 TeV
and 20 fb−1 at 8 TeV) yielded a mass measurement of 125.09 ± 0.24 GeV [54]. Figure
4.1 shows a summary of the Run-1 Higgs boson mass measurements from CMS and
ATLAS in the H → ZZ → 4l± and H → γγ decay modes including the combined
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analysis measurements.

FIGURE 4.1: Summary of the Run-1 Higgs boson mass measurements
from CMS and ATLAS in the H → ZZ → 4l± H → γγ decay modes

including the combined analysis measurements [54].

As mentioned before, during the second run of the LHC (2015-2018), the operat-
ing centre-of-mass energy corresponded to 13 TeV. Using a fraction of the Run-2
dataset corresponding to the 2015-2016 period of data-taking, the ATLAS collab-
oration released a mass measurement of 124.86 ± 0.27 GeV [56], combining the
H → ZZ → 4l± and H → γγ decay modes. As a result of a larger Higgs boson
production cross section at 13 TeV and a larger dataset with 36.1 fb−1, this measure-
ment is more precise than the combined Run-1 measured value, with a reduction of
140 MeV in the total uncertainty. Combining Run-1 and Run-2, the resulting mass
corresponds to 124.97 ± 0.24 GeV [56], gaining an extra 30 MeV relative to the 36.1
fb−1 measurement. Figure 4.2 shows a summary of all the Higgs boson mass mea-
surements in ATLAS with the H → ZZ → 4l± and H → γγ decay modes including
results using a fraction of the Run-2 datasets and the combined analysis measure-
ments.

In this thesis, a measurement of the Higgs boson mass in the H → ZZ → 4l± de-
cay mode is performed, using the Run-2 data (2015-2018) of proton-proton collision
events corresponding to 139 fb−1 of recorded data by the ATLAS detector. Also the
combined measurement using the Run-1 and Run-2 datasets is presented. These
results are published and can be found in [1].

4.2 The H → ZZ∗ → 4` golden decay channel

Many factors can affect the ability of measuring the Higgs boson mass with pre-
cision, including the branching ratio of the decay channels, the reconstructed final
state objects resolution, the selection efficiency of signal events or the background
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FIGURE 4.2: Summary of the Higgs boson mass measurements from
ATLAS in the H → ZZ → 4l± and H → γγ decay modes includ-
ing results using a fraction of the Run-2 datasets and the combined

analysis measurements [55].

estimation. As mentioned in section 1.4, the Higgs boson can decay in many ways.
Figure 1.7 (B) shows the branching ratios of the different decay modes. The H → bb̄
decay is by far the most prominent, with a branching ratio of 57.8% for mH = 125
GeV. However, it is not an easy task to identify its events in the overwhelming QCD
production of multi-jets at the LHC; the search requires a high identification effi-
ciency of bottom quark jets, and a high rejection of light-flavour jets, which is dif-
ficult to obtain. This fact makes the H → bb̄ decay channel not ideal for the mass
measurement. The second largest branching ratio is from H → WW, where each W
boson decays to a charged lepton and its associated neutrino. In general, electrons
and muons are reconstructed and identified with high efficiency using the ATLAS
detector. This is not the case with τ leptons, where their very short lifetime prevents
them from traversing the detector (i.e. they decay inside the beam pipe). Also, their
overwhelming branching ratio to hadronic final states (65%) causes a high probabil-
ity of misidentification. Therefore, τ leptons are used in dedicated analysis and are
not considered1 in a leptonic final state searches of e.g. H → WW and H → ZZ
decays. Although the H → WW → l±νl±ν decay mode benefits from a significant
branching ratio (BR(H → WW) = 21.6% and BR(H → WW → l±νl±ν) = 5.4% for
mH = 125 GeV), involving well reconstructed electrons and muons, the remaining
neutrinos are undetected. These are indirectly measured, as mentioned in section
2.4.1, since partons inside the protons have a negligible transverse momentum as
they travel in the beam pipe, and so the total momentum in the transverse direction
can be constrained to be zero before collision. From the conservation of momentum

1However, their decay to electrons and muons is taken into account.
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law, any imbalance in the total transverse momentum after collision can be associ-
ated to missing undetected particle(s), such as neutrinos. This indirect measurement
of neutrinos in the H → WW → l±νl±ν decay search, using the so-called missing
transverse energy, results in a poor mass resolution. The next leading decay modes in
decreasing order of branching ratio are H → gg, H → ττ and H → cc̄, which are
also for the same previously stated reasons not ideal for the mass measurement.

FIGURE 4.3: Feynman diagram of the H → ZZ → 4l± golden decay
channel through a gluon-gluon fusion Higgs production as an exam-

ple.

One of the best ways to measure the mass of the Higgs boson with high precision
is through the H → ZZ → 4l± decay channel, a.k.a the golden decay channel. It is
fully reconstructed from the four charged leptons originating from the intermediate
two Z boson decays. Figure 4.3 shows the Feynman diagram of the the golden chan-
nels through a gluon-fusion Higgs boson production. Given the high efficiency in
reconstruction and identification of the decay products, these decay channels pro-
vide a clean final state signature. The Higgs boson mass, mH, is measured from
the invariant mass of these four leptons, m4l , which is reconstructed with an excel-
lent resolution, typically 1-2%. Even though its branching ratio is relatively small,
BR(H → ZZ) = 2.7% and BR(H → ZZ → 4l±) = 0.0124% for mH = 125 GeV, it ben-
efits from a high signal over background ratio. In this decay mode, there are three
golden final states from the intermediate Z boson decay channels; the two bosons
can both decay to a pair of opposite charged muons resulting in a four muon final
state (H → ZZ → 4µ), or both can decay to a pair of opposite charged electrons
and this would yield a four electron final state (H → ZZ → 4e). Finally, one Z
boson can decay to a pair of electrons, while the second boson to a pair of muons
(H → ZZ → 2e2µ).

4.3 Signal and background MC simulation events

As mentioned in section 2.3.2, it is impossible to identify the type and origin of in-
dividual events in data. Therefore, it is important to study all sources leading to
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the desired signal signature. In the case of the search for the H → ZZ → 4l± de-
cay channels, many processes can lead to four charged leptons production in the
final state. The signal processes are those including the H → ZZ → 4l± decays,
while other processes producing four reconstructed charged leptons are considered
as background.

4.3.1 MC simulation of H → ZZ → 4l± events

Starting with the signal events, Figure 1.8 shows the leading processes for the Higgs
boson production which contribute to the four lepton final state. Each of these pro-
cesses is simulated using MC generators, providing samples of the generator and
reconstruction properties of the events. As mentioned in section 1.3, apart from
the leading order diagram contribution, there is an infinite number of higher order
processes including more vertices that result in the same final state. The leading or-
der process represents the most important contribution, contributions of the higher
order diagrams provide successive corrections to the total contribution. In this anal-
ysis, MC samples are provided with different levels of accuracy.

A complete description of MC generated simulation events can be found in [57, 58].
The SM Higgs Boson samples for the gluon-gluon fusion (ggH) process are produced
at NLO accuracy in the strong coupling constant αs using the POWHEG NNLOPS
generator [59–69], with the PDF4LHC (NNLO) set of parton distribution functions
(PDFs) [61]. Higgs boson production via vector-boson fusion (VBF), in association
with a vector boson (VH) or in association with a top-quark pair (t̄tH) is given
at NLO precision with the POWHEG NNLOPS MC generator [59–69], with the
PDF4LHC NLO set. The gg → ZH process is also simulated with the POWHEG
MC generator, but only at LO accuracy. The production in association with a top
quark (tH) and a bottom-quark pair (b̄bH) is simulated at NLO accuracy using the
MADGRAPH5_AMC@NLO generator [70,71] with the NNPDF30 PDF set [72]. The
PYTHIA8 generator [74] is used for the H → ZZ → 4l± decay as well as for parton
showering, hadronisation, and simulation of the underlying event. The Higgs bo-
son production via the ggH, VBF and VH processes is simulated with different mass
points, ranging between mH = 123 and 127 GeV. The generation of different mass
points is essential for modelling the signal m4l distribution as a function of mH in
a model independent way, i.e. without assuming the exact Higgs mass. The least
contributing processes tH and t̄tH, or b̄bH, are simulated assuming mH = 125 GeV.
These samples are normalised to cross-sections obtained from the most recent pre-
dictions provided by the LHC Higgs Working Group [75].
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4.3.2 Background processes to H → ZZ → 4l± decay channels

There are a few other processes which can lead to the same final state as the signal
events. The most prominent background for the H → ZZ → 4l± decay is the QCD-
induced ZZ di-boson production. This process has the exact same topology and de-
cay channels as the signal process, and is therefore often referred to as the irreducible
background, i.e. it can not be distinguished and discriminated from signal events by
means of a trivial event selection. Figure 4.4 shows the Feynman diagrams of lead-
ing ZZ di-boson production through qq̄ annihilation and gg fusion, with qq̄ → ZZ
the most dominant process. These processes are estimated using an MC simulation
generated from SHERPA V2.2.2 [76–79] at NLO precision, with qq̄ → ZZ including
electroweak corrections at NLO precision. Furthermore, very rare productions of
triple vector bosons, namely ZZZ, WWZ and WZZ (or in short VVV), can also lead
to four or more prompt leptons from these vector boson decays. Figure 4.5 shows
the Feynman diagrams of such triple vector boson production. Their contribution is
also estimated from MC simulation samples, also generated using SHERPA [76–79]
at NLO accuracy. Similarly, top quark pair production associated with a Z boson in
an all leptonic final state can lead to the same signal signature. Figure 4.6 shows the
Feynman diagrams of tt̄ + Z production through qq̄ and gg interactions. This last
process is simulated using MADGRAPH5_AMC@NLO [70, 71] and PYTHIA8 [74].

The second category of background is composed of processes that do not neces-
sarily contain only prompt leptons. As discussed in section 3.2 in the case electrons
(which is also true for muons), the reconstruction and identification of leptons is
not infallible against the various background sources for non-prompt and misiden-
tified leptons. In section 3.4, it was shown that on top of Z boson prompt electrons,

FIGURE 4.4: Feynman diagrams of ZZ di-boson production through
qq̄ annihilation and gg fusion. The u-channels are included since par-

ticles in the final state are identical.
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hadronic jets from the Z+jets production could also be misidentified as electrons.
In combination with the prompt Z electrons, these events can also appear as four
lepton final states. Similarly, tt̄ and WZ di-boson production can lead to the same
effect. This category is referred to as the reducible background. Z+jets MC samples
are simulated with SHERPA [76–79] at NLO for a number of jets njets ∈ [0, 2] and at
LO for njets ∈ [3, 4] per event. tt̄ and WZ di-boson production are simulated using
POWHEG-BOX_V2 [63–65].

Finally, the ATLAS detector response is simulated by the GEANT4 framework [80]
and reconstructed in the same way as collision data. Additional proton-proton in-
teractions in the same and nearby bunch crossings are included in the simulation
to take into account the pile-up contribution. These events are generated using the
PYTHIA8 generator [74] and the NNPDF2.3LO PDF set [81].

4.4 Selection and categorisation of Higgs boson candidate
events

As explained in section 2.3.2, among all recorded events, one has to select those
having the characteristics corresponding to the topology of the desired signal pro-
cess to be measured. For the selection of H → ZZ → 4l± events, requirements on

FIGURE 4.5: Feynman diagrams of triple vector boson production
through qq̄ interactions, including diagrams with triple and quartic

vertices.

FIGURE 4.6: Feynman diagrams of tt̄ + Z production through qq̄ and
gg interactions.
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the reconstructed physics objects (electrons, muons and hadronic jets) and the event
properties are discussed in next sub-sections.

4.4.1 Vertex requirements

The first requirement on event-level concerns the reconstruction of vertices; only
those reconstructed from ID tracks with pT > 0.4 GeV are considered. Events must
have at least one vertex with at least three associated tracks. The vertex with the
highest sum of the track pT squared (∑ p2

T) is chosen as the primary vertex. In the
H → ZZ → 4l± decay, the four leptons are required to appear from the primary
vertex as they are expected to emerge from the interaction point (The Higgs and
Z boson decay almost instantaneously after creation, τH ∼ 10−22 s and τZ ∼ 10−25

s [83]). Therefore, their tracks are required to be within a distance of |z0 · sin(θ)| < 0.5
mm from the primary vertex, with z0 the longitudinal impact parameter. In the
case of tracks from muons, an additional cut on the transverse impact parameter is
applied (d0 < 1 mm) to maximise the rejection of cosmic backgrounds. Figure 4.7
shows a scheme visualising the definitions of the impact parameters.

FIGURE 4.7: Scheme showing the definition of the longitudinal and
transverse impact parameters, z0 and d0 of a reconstructed track [115].

4.4.2 Electron requirements

The electron reconstruction and identification requirements are analogous to those
described in sections 3.1 and 3.2. For this specific analysis, the loose identification
menu is used, which in combination with the track hit requirements results in a total
efficiency of reconstruction and identification of approximately 95%. On top of the
conditions already discussed, electrons are required to have ET > 7 GeV, |η| < 2.47
and an impact parameter significance |d0/σd0 | < 5.
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4.4.3 Muon requirements

Muon reconstruction in ATLAS is performed using the Muon Spectrometer (MS)
and the ID. Measurements from these sub-detectors are then combined in order
to find muon tracks suitable to be used as physics objects. The reconstruction of
muons within the ID scope (|η| < 2.7) are mainly reconstructed from a global fit of
tracks from both sub-detectors. These are referred to as combined muons. The MS in
the central region (|η| < 0.1) lacks in coverage due to cabling and services for the
ID and the calorimeters. In this region, muons are identified by matching an ID
track to segments of tracks in the MS or energy deposits in the calorimeters corre-
sponding to a minimal ionisation, as muons have a small energy loss in calorimeters.
The former muons are referred to as segment-tagged muons, and the latter calorimeter-
tagged muons. Consequently, kinematics of these muons are fully determined from
ID tracks. Finally, beyond the ID coverage (2.5 < |η| < 2.7), muons can be recon-
structed from MS tracks having hits in all MS layers (stand-alone muons), and if any,
combined with tracklets2 in the ID (silicon-associated forward muons). A fully detailed
description of the muon reconstruction and identification can be found in [82]. For
the H → ZZ → 4l± analysis, combined muons are favoured while allowing at most
one muon from the other types per event. Every muon is required to pass the loose
identification and have a pT > 5 GeV, except for calorimeter-tagged muons which are
required to have a pT > 15 GeV and |η| < 0.1. Also, an impact parameter significance
|d0/σd0 | < 3 is required to reject heavy-flavour decays.

4.4.4 Hadronic jet requirements

Although jets are not part of the selected physics objects for the mass measurement,
they represent a significant background for electrons as discussed in section 3.4.
Therefore, the overlap of these objects with electrons and muons are considered (see
next section). Following the definition from section 3.4.1.1, jets are required to pass
the pile-up rejection and must have a pT > 30 GeV and |η| < 4.5.

4.4.5 Overlap removal requirements

Jets reconstructed according to section 3.4.1.1, electrons and muons can be recon-
structed from same tracks and/or energy deposits. It is therefore necessary to make
a decision to solve the ambiguity. In the case where muons and electrons are recon-
structed from the same ID tracks, the electron is always rejected, except in the case of
calorimeter-tagged muons, where these are rejected instead. Jets overlapping within
∆R < 0.2 of an electron or ∆R < 0.1 of a muon are removed.

2A shorter form of a track.
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4.4.6 Trigger requirements

As mentioned in section 2.4.7, not all events are worth analysing. Therefore a set of
triggers are configured to select events with potential interesting physics features.
In this analysis, a set of lepton triggers are defined in order to preselect H → ZZ →
4l± event candidates, namely single-lepton, di-lepton and tri-lepton triggers. These
triggers have a pT threshold which is variable through the different periods of data-
taking; the threshold increases with the years and peak luminosity. Table B.1-B.4 in
Appendix B summarises the used triggers and their corresponding thresholds given
the lepton type and the year of data-taking. In the case where more than one trigger
is listed, the or-statement is intended. The higher threshold triggers complement
the lower ones while having a looser lepton selection criteria. In MC studies using
signal samples at mH = 125 GeV, a combined efficiency of these triggers is found to
be approximately 98%, 99%, 97%, and 99% for respectively the 4µ, 2µ2e, 2e2µ, and
4e final states.

4.4.7 Quadruplet selection

Having the physics objects passing the previous requirements, the next step is to
form a so-called lepton quadruplet. First of all, leptons are required to originate from
one common vertex; the ID tracks are used in a vertex fit [57], where the value of the
goodness of fit χ2/Ndo f is required to be smaller than 5 for the 4µ channel, and 9 for
channels including electrons to take into account the inferior resolution of electron
tracks. Per event, two pairs of the same lepton flavour are required, with each pair
having a positive and a negatively charged lepton. As mentioned in section 1.4, if the
produced Higgs boson is on-mass shell (assuming mH = 125 GeV), typically one of
the Z bosons from the H → ZZ decay is off-mass shell to satisfy mH > 2mi, with mi

the mass of the identical particles it decays to. This fact implies that leptons from the
two Z bosons (the on-shell and off-shell) have different properties; those produced
from the on-shell Z boson decay are expected to have a higher momentum than those
from the off-shell decay. For this reason, the four leptons are classified according
to their pT. The three consecutive leading leptons in pT are required respectively
to have pT,1 > 20 GeV, pT,2 > 15 GeV and pT,3 > 10 GeV. The same lepton flavour
opposite charge sign (SFOS) pair with the closest invariant mass to that of the Z
boson, mZ = 91.1876 GeV, is tagged as the leading lepton pair from the on-shell Z
boson. Its invariant mass is required to lie within m12 ∈ [50, 106] GeV to ensure
the leptons originate from the Z boson decay. The second pair is referred to as the
sub-leading lepton pair, which is more likely to originate from the off-shell Z∗ boson3.
Its invariant mass m34 is required to be within mmin < m34 < 115 GeV, where mmin =

12GeV for m4l < 140 GeV, raising linearly to 50 GeV for m4l = 190 GeV and remaining
mmin = 50GeV for m4l > 190 GeV. This discrimination based on the invariant mass
of the lepton pair distinguishes between the 2e2µ and 2µ2e final states, where the

3The star "*" is used to indicate a virtual off-mass shell particle.
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first mentioned pair represents the leading one. In the case of the 4e and 4µ, an
additional cut is defined on the alternative pairs (i.e. SFOS pairs formed otherwise
than previously described) of 5 GeV on their invariant mass, to reject leptonic decays
from J/ψ (mJ/ψ = 3.0969 GeV). Furthermore, the angular separation ∆R between two
lepton pairs should be higher than 0.1 if the two pairs are of the same lepton flavour,
and 0.2 in the other case. As mentioned in section 3.2.1, leptons from prompt decays
are characterised with a high isolation. A track based isolation variable was defined
for electrons in eq. 3.9, which is also valid for muons but with a different cone size
∆R = 0.3. Similarly, a calorimeter based isolation quantity can be defined as,

∆calo
iso =

∑ ET,i

ET,lep
, (4.1)

with the numerator representing the scalar ET sum of calorimeter deposits around
the lepton within a cone of ∆R = 0.2 for electrons and 0.3 for muons, and the denom-
inator the ET of the lepton. For electrons, ∆track

iso < 0.15 and ∆calo
iso < 0.20 are required,

while for muons ∆track
iso < 0.15 and ∆calo

iso < 0.30.

4.4.8 Quadruplets ambiguity solving

Events can contain more than one quadruplet satisfying the above requirements.
For instance, in the VH production mode, the vector boson (Z or W) can decay to
prompt electron(s) on top of those coming from the H → ZZ → 4l± decay. This can
also be the case for the tt̄H production mode. Therefore, it is likely that a lepton not
associated to the Higgs boson decay can be selected in the quadruplet. In the case
where these are found within a channel, the quadruplets with the closest invariant
mass of the leading and sub-leading pair to mZ are favoured. From MC studies, the
efficiency of selecting signal events is not equivalent among the four decay channels.
For 4e, 4µ, 2e2µ and 2µ2e, the signal efficiency calculated similarly to eq. 3.3 is found
to be respectively 31%, 21%, 17% and 16%. If multiple decay channels are found with
quadruplets passing the criteria in the same event, the quadruplet with the highest
efficiency is chosen. In this last case, if an additional lepton, satisfying the above
object selection, is found, all quadruplet combinations are reconsidered. Following
a method based on the matrix-element, where a generator is used to calculated this
value for all combinations, the quadruplet with the highest matrix-element value is
selected. MADGRAPH5_AMC@NLO [70,71] is used for the computation, where the
value is calculated with LO accuracy. This method was studied and was found to
increase the probability of selecting the correct quadruplet. Finally, the full H →
ZZ → 4l± event selection is summarised in Table 4.1.
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TABLE 4.1: Summary of the event selection requirements discussed
in section 4.4. The leading and sub-leading lepton pairs are denoted

as m12 and m34 respectively.

Physics Objects
ELECTRONS

Loose Likelihood quality electrons with hit in innermost layer, ET > 7 GeV and |η| < 2.47
Interaction point constraint: |z0 · sin θ| < 0.5 mm (if ID track is available)

MUONS

Loose identification with pT > 5 GeV and |η| < 2.7
Calo-tagged muons with pT > 15 GeV and |η| < 0.1, segment-tagged muons with |η| < 0.1

Stand-alone and silicon-associated forward restricted to the 2.5 < |η| < 2.7 region
Combined, stand-alone (with ID hits if available) and segment-tagged muons with pT > 5 GeV

Interaction point constraint: |d0| < 1 mm and |z0 · sin θ| < 0.5 mm (if ID track is available)
JETS

anti-kT jets with bad-loose identification, pT > 30 GeV and |η| < 4.5
OVERLAP REMOVAL

Jets within ∆R < 0.2 of an electron or ∆R < 0.1 of a muon are removed
VERTEX

At least one collision vertex with at least two associated track
PRIMARY VERTEX

Vertex with the largest pT sum
Event Selection

QUADRUPLET - Require at least one quadruplet of leptons consisting of two pairs of same-flavour
SELECTION opposite-charge leptons fulfilling the following requirements:

- pT thresholds for three leading leptons in the quadruplet: 20, 15 and 10 GeV
- Maximum one calo-tagged or stand-alone muon or silicon-associated forward per quadruplet
- Leading di-lepton mass requirement: 50 < m12 < 106 GeV
- Sub-leading di-lepton mass requirement: mthreshold < m34 < 115 GeV
- ∆R(`, `′) > 0.10 for all leptons in the quadruplet
- Remove quadruplet if alternative same-flavour opposite-charge
di-lepton gives m`` < 5 GeV
- Keep all quadruplets passing the above selection

ISOLATION - Contribution from the other leptons of the quadruplet is subtracted
- Loose isolation working point for all leptons

IMPACT - Apply impact parameter significance cut to all leptons of the quadruplet
PARAMETER - For electrons: d0/σd0 < 5
SIGNIFICANCE - For muons: d0/σd0 < 3
BEST - If more than one quadruplet has been selected, choose the quadruplet
QUADRUPLET with the highest Higgs decay ME according to channel: 4µ, 2e2µ, 2µ2e and 4e
VERTEX - Require a common vertex for the leptons:
SELECTION - χ2/ndof < 5 for 4µ and < 9 for others decay channels
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4.5 Background estimation for H → ZZ → 4l± events

From eq. 2.4, the number of expected events from a specific process, given the asso-
ciated integrated luminosity of the dataset, can be estimated using the predicted (or
previously measured) cross section of this process. Typically, MC simulated events
are generated with a larger number of events compared to data, which has the ad-
vantage of reducing the statistical uncertainty. Consequently, a normalisation factor
is calculated to be applied to the MC number of simulated events to scale it to the
data luminosity, i.e. to obtain the number of expected events of this process in the
corresponding dataset. This normalisation factor is given by,

ωlumi =
L · σi · εs · A

Ni
(4.2)

with Ni and σi the number of simulated events and the cross section of the process,
A the expected kinematic acceptance of the signal, and εs the signal efficiency ac-
counting for the rate of signal events passing the final selection. In general, searches
consisting of a prediction which is compared to measured data are performed as a
blinded analyses, i.e. the data is not revealed before the estimation is finalised. This
is to avoid experimentalist bias, whereby the estimation is biased with prejudice
following from prior knowledge on the data measurement. However, it is not nec-
essary to blind all the data, for instance, one can unblind parts of the data where no
measurements are performed, e.g. in kinematic regions where the data has been al-
ready analysed in previous measurements. These regions are often characterised by
the absence of the signal process and are referred to as control regions (CRs). They are
obtained by altering the signal event selection and/or object requirements, making
them orthogonal to the signal region (SR) where the signal is expected to be measured.
CRs can be very useful for extracting normalisation and extrapolation factors to be
used in the SR, but also to perform closure tests and checks to validate assumptions.

4.5.1 Irreducible background estimation

As discussed in section 4.3.2, the irreducible background contains at least four prompt
electrons from vector boson decays, which can be well estimated using MC. All irre-
ducible background sources are fully estimated and normalised according to eq. 4.2,
except the dominant ZZ background, where the normalisation is obtained from scal-
ing MC to data in mass ranges where no signal is expected, namely for events with
quadruplets having m4l < 115 GeV and m4l > 130 GeV. These mass regions are re-
ferred to as the side-band CRs which are dominated by the ZZ continuum background.
This approach has the benefit of being independent of theoretical uncertainties of the
ZZ background cross section and systematic uncertainties on the luminosity.
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4.5.2 Reducible background estimation

For the reducible background, MC predictions are less reliable due to the presence
of fake and non-isolated reconstructed leptons, which are in fact difficult to simulate
with accuracy. Consequently, the agreement between the measured data and MC
is relatively poor, as was the case for the background rejection study in section 3.4.
Therefore, data-driven methods are exploited in order to extract the contribution
of these backgrounds. In the case of the reducible background, CRs are defined in
order to estimate the contribution of the various background sources to electrons and
muons, which is then extrapolated to the SR using transfer factors. The estimation
of non-pompt and fake reconstructed electrons and muons is treated separately in
dedicated CRs.

4.5.2.1 Muon background estimation

In the case of muons, heavy-flavour decays including non-prompt muons are the
main source of background, in contrast with electrons. There are four CRs defined
by modifying the signal selection 4.4, with each CR enriched in a specific back-
ground source. A heavy-flavour background enhanced CR is obtained by inverting
the d0-significance requirement on at least one of the sub-leading leptons without
the isolation cut, and by removing the vertex requirement on the quadruplet. This
CR is dominated by leptons from heavy-flavour decays that are displaced and non-
isolated. The second CR is enriched in tt̄, which is obtained by altering the SFOS
requirement to opposite charged different flavour leading lepton pair (eµ + ll), as
each top quark can decay to any lepton flavour independently from the other. Con-
sequently, the CR is free from leading Z boson SFOS pairs, and is dominated by tt̄
leptons. Analogously to the previous CR, the vertex requirement is dropped, and
the d0-significance and isolation cuts are not applied on the sub-leading pair. The
third CR is constructed to enhance the light-flavour background, where the stan-
dard selection is applied, except the isolation requirement on the sub-leading pair is
altered. Finally a last CR is defined where all backgrounds have a significant con-
tribution. In this CR, the sub-leading pair is required to have same charged leptons,
with no isolation or d0-significance requirements. The CRs are respectively referred
to as inverted-d0 CR, eµ + ll CR, inverted-isolation CR and the same-sign CR.

The estimation of background muons is obtained from a global fit method used
across the CRs to fit data with MC templates, where the estimated contribution of
the various backgrounds is fitted using analytic functions in the invariant mass spec-
trum of the leading lepton pair, m12. From this method the normalisation of each
background component is obtained from data, which can be extrapolated to the SR.
In the following paper [57], a detailed study on the background estimation for the
H → ZZ → 4l± analysis is presented. This thesis is based on the same event selec-
tion and background estimation. Figure 4.8 shows the m12 distributions for data and
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MC simulated events for different processes for the CRs used in the fit; (a) shows the
inverted-d0 CR, (b) inverted-isolation CR, (c) eµ + ll CR, and (d) the same-sign CR.
The different CRs show clearly the enhancement in the various background com-
ponents and the necessity for a data-driven procedure to correct for the observed
mismodelling.

4.5.2.2 Electron background estimation

The same electron backgrounds discussed in section 3.1 and 3.2 are relevant for the
electron background estimation in the H → ZZ → 4l± analysis. These are mainly
misidentified light-flavour jets, which is the most dominant background for prompt
electrons, followed by photon conversions and non-prompt electrons from heavy-
flavour decays. The latter background is small enough to be estimated from MC.
Using the number of hits in the innermost layers of the pixel detector in the ID, npixel ,
the light-flavour background can be discriminated from conversions background, as
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FIGURE 4.8: The data/MC m12 distributions for different processes in
the four control regions (defined in section 4.5.2.1) used in the simul-

taneous fit.



98 Chapter 4. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

photons often traverse the pixel detector before decaying to produce a pair of elec-
trons, which are not detected by the innermost layers of the ID (npixel = 0). Similarly
to the muon background case, the electron background estimation is extracted from
a background enriched CR, referred to as the 3l + X CR. This CR is constructed by
relaxing the selection and identification requirements on the sub-leading pair lepton
with the lowest pT value (X). Only those requirements related to the track and d0-
significance are kept. Also, by requiring that this lepton has the same charge sign as
its associated lepton, the veto of signal events is guaranteed. More than one quadru-
plet is accepted in this CR, even those sharing the same leading pair. Although this
last requirement suppresses the ZZ background, about 10% remains in the 3l + X
CR, which is due to the fact that prompt electrons from ZZ can be missed in the
quadruplet selection and end up replaced by a fake electron.

A second CR is defined to complement the 3l + X CR, which is relatively limited
in number of events. The Z + X CR is obtained by selecting per event a pair of
SFOS leptons satisfying the same requirements imposed on the leading pair of the
quadruplets (excluding tri-lepton and e-µ trigger requirements). In addition, a third
reconstructed electron X is selected having the same properties of the X electron
from the 3l + X CR. Moreover, this X electron is required to be separated from the
Z-pair with ∆R > 0.1. This three lepton CR has the advantage of having an abundant
sample of events. The distribution of npixel for events falling in the 3l + X CR is fit-
ted to templates which characterise the light-flavour and photon conversions back-
ground in order to extract the yield of each component. As the 3l + X CR is reduced
in statistics, the Z + X CR is used to extract the these templates from MC, which are

(A) (B)

FIGURE 4.9: Distribution of npixel in the Z + X CR for data and MC
before correction (A) and the fit results in the npixel distribution for
the 3l + X CR (B). f represents the light-flavour, γ photons and q

heavy-flavour background, while e stands for signal Z electrons.
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corrected to match data. Using an unfolding tool, referred to as the sPlot method [57],
the contribution of the light-flavour and photon conversions background in the fit to
npixel to the data distribution is determined in terms of X electron pT and the number
of associated reconstructed jets. Furthermore, the efficiency of a background object
to pass the signal electron selections is needed to extrapolate the fitted background
yields in the 3l + X CR to the SR. These efficiencies are also extracted from the Z + X
CR, which are estimated as a function of the X pT and the jet multiplicity in the cor-
responding event. Figure 4.9 (A) shows the distribution of npixel in the Z + X CR
for data and MC before correction. The contribution of the different background
sources is shown in log-scale, with the light-flavour and photon conversions being
the dominant backgrounds. Figure 4.9 (B) shows the fit results in the npixel distribu-
tion for the 3l + X CR. The final estimation of each background in the SR is obtained
separately for the two components with the simple function,

NSR = ∑
i

si ∑
j

εij · Nij, (4.3)

where the index i runs over pT bins and j over jet multiplicity bins, εij the efficiency
for a given background component in the latter bins, s the corresponding pT scale
factor from the MC templates and Nij the weighted sum of number of events for each
background component in the 3l + X CR derived from the sPlot method. More details
on the methodology can be found in [57]. A short comparison study on the estimated
reducible background electrons using two different MC generators is presented in
Appendix B.2, with the purpose of testing the dependency on MC generators using
different methods of simulating physics processes.

4.6 Techniques to improve the precision of the Higgs mass
measurement

As previously mentioned, the observable used to determine the Higgs boson mass
is the reconstructed four lepton invariant mass. It is therefore important to measure
this quantity with high precision in order to increase the accuracy of the Higgs boson
mass measurement. To improve the resolution of the reconstructed leptons, a few
techniques are considered, which directly affect the uncertainty on the Higgs boson
mass.

4.6.1 Final state radiation inclusion

Within the four lepton production from the intermediate Z boson pair of the Higgs
boson decay, photons can be radiated by the charged leptons. This effect is referred
to as final-state radiation (FSR). This photon would then carry a fraction of the lepton’s
momentum. Consequently, if the photon has a significant fraction, the invariant
mass calculated from only the final state leptons would be underestimated, which
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would degrade the resolution and cause the m4l distribution to be shifted with re-
spect to the true mH distribution. Therefore, including these photons can improve
the lepton resolution, hence the precision of the mass measurement. In ATLAS, pho-
tons are reconstructed in a very similar way to electrons, where their EM calorimeter
energy cluster is either matched to a conversion vertex (converted photons) or not in
the absence of any associated track or vertex (unconverted photons). More details
about the photon reconstruction and identification can be found in [50].

In H → ZZ → 4l± analysis, a recovery algorithm [57] is used to include the FSR
photons with the quadruplet leptons. There are two types; collinear and distant FSR
photons. The former photons are found close to the lepton within ∆R < 0.15, while
the latter photons are found outside this angular separation. Per event, collinear FSR
photons are only considered for muons from the leading lepton pair, since the elec-
tron reconstruction includes already such photons in the electron energy clusters. In
the case of distant FSR photons, candidates are considered in all cases; for electrons
and muons from leading and sub-leading lepton pairs. At most one FSR photon
is included per quadruplet, where collinear photons are favoured. If two collinear
FSR photons are measured, the one with the highest ET is selected. If only distant
FSR photons are reconstructed, one is included only if the leading lepton pair has an
invariant mass m12 < 81 GeV and m4l > 190 GeV. Also, tighter photon identification
requirements are imposed in this case. Similar to collinear photons, the highest in ET

is always preferred. Furthermore, the threshold at which an FSR photon is consid-
ered is ET > 1.5 GeV for collinear photons, and ET > 10 GeV for distant ones. In both
cases, if the associated invariant mass pair is larger than 100 GeV, the FSR photon is
not included.
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FIGURE 4.10: The m4l signal MC distribtion before and after FSR cor-
rection. The comparison includes only events with identified FSR

photons.
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Figure 4.10 shows the distributions of Higgs signal MC before and after including
the FSR photons. Only events including FSR leptons were selected for this compari-
son. From MC studies, about 4% of the total expected events in the signal region are
affected by FSR. From the comparison, as expected before the FSR inclusion the m4l

distribution is smeared and shifted toward lower mass values from underestimat-
ing m4l , while after FSR inclusion, the distribution is sharper and centred around the
nominal mass value (mH = 125 GeV). The FSR inclusion contributes up to 2% to the
improvement on the Higgs mass measurement uncertainty.

4.6.2 Machine-learning based signal-background discrimination

As mentioned in section 4.2, the golden decay channels are characterised by a large
signal over background ratio. This advantage can be accentuated using machine-
learning techniques to further discriminate signal from the irreducible ZZ∗ back-
ground, which is initially difficult to distinguish from signal events using a trivial
event selection. Similarly to the likelihood discriminant for the electron identifica-
tion (section 3.2.4), a signal-background discriminant D4l is calculated by training a
deep feed-forward neural network to classify signal- and background-like events based
on kinematic variables associated to the quadruplet, in addition to a discriminant
built from the ratio of the matrix elements of the Higgs decay MHZZ and the irre-
ducible ZZ background MZZ∗ defined as,

KZZ∗ = ln
( |MHZZ|2
|MZZ∗ |2

)
, (4.4)

with the matrix element values calculated using the MADGRAPH5_AMC@NLO
[70, 71] at LO accuracy. This discriminant increases the signal-background sepa-
ration. TENSORFLOW [94] and KERAS [93] are used for the deep learning. Lepton-
based kinematic variables used in the training include the FSR recovery described
in the previous section. Moreover, the training is performed separately for the same
(4e and 4µ) and opposite flavour pairs (2µ2e and 2e2µ) decay channels. Figure 4.11
shows the signal and background distributions of variables used in the training for
the same and different flavour pairs. The transverse momentum and the pseudora-
pidity of the four-lepton system, p4l

T and η4l , are compared for signal and ZZ back-
ground events, along with the KZZ∗ discriminant. The ggH, VBF and VH signal
samples and the qqZZ, ggZZ and electroweak ZZ background samples are used
for this comparison. To reduce dependency on mH, signal events are taken from
samples with different simulated mass points, as described in section 4.3.1. Figure
4.12 shows the distribution of the D4l discriminant which provides a score on how
likely a quadruplet originates from a Higgs or a background decay process. Also,
the associated receiver operating characteristic (ROC) curve is shown in Figure 4.13,
demonstrating background rejection versus signal efficiency. Based on MC studies,
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using the neural network score as an additional discrimination between signal and
background improves the precision of the mH measurement with up to 2%.
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FIGURE 4.11: The input training variables for the same-flavour (4µ
and 4e) and different-flavour (2µ2e and 2e2µ) D4l training. The dis-
tribution of the corresponding variables in the training and testing

samples are shown.
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and 2e2µ) final states. The distributions in training and testing sam-

ples are shown.
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104 Chapter 4. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

4.6.3 The leading lepton pair invariant mass constraint fit

As stated before, in the H → ZZ∗ decay, typically one of the Z bosons is on-mass
shell while the other is off-mass shell. Consequently, the pair of leptons produced
from this on-shell Z boson are more likely to have higher momenta compared to the
off-shell pair, and their invariant mass is expected to be closer to mZ. In fact, knowl-
edge about the characteristics of the Z boson can be used to improve the resolution
of the measured leptons, which has a direct impact on the uncertainty of the m4l

measurement.

The Z boson was very well measured by Large Electron-Positron Collider (LEP) [101]
before the LHC was build, which was also known as the Z boson factory. As men-
tioned in section 1.4, unlike the Higgs boson, the Z boson has a significant natural
width. Consequently, m4l is limited by the Z boson’s intrinsic parameters. Its mass
and width were measured in the di-lepton decay channels at LEP to be mZ = 91.1876
GeV and ΓZ = 2.4952 GeV, with uncertainties of the order 10−3 GeV [102]. These
measurements determine the mass distribution of the Z boson, which follows a Rel-
ativistic Breit-Wigner (BW) [103] centred at mZ with width ΓZ, also known as the Z
lineshape. Invariant mass values around the peak are associated to an on-mass shell
Z boson production, while toward the tails to an off-mass shell production. From
this PDF, one can obtain a prediction of the masses at which Z bosons are produced
in di-lepton events, which can be used to constrain the resolution of these leptons.
For the H → ZZ → 4l± mass measurement, this constraint is performed in a kine-
matic fit on the leading lepton pair, which is expected to originate from an on-shell
production.

The exact mass of a generated Z boson decaying to a pair of leptons can be writ-
ten as,

(mgen
l1l2

)2 = (pgen
l1

+ pgen
l2

)2, (4.5)

with pgen
l1

and pgen
l1

the four-momenta of the associated leptons. mgen
l1l2

can be inter-
preted as a random variable distributed as,

mgen
l1l2
∼ BW(mZ, ΓZ). (4.6)

Considering the reconstructed quantities, the lepton momenta resolution has to be
taken in account, and thus the reconstructed invariant mass mreco

l1l2
is not simply dis-

tributed as the Z lineshape. Figure 4.14 shows the mgen
l1l2

versus mreco
l1l2

distribution of
the leading lepton pair from a ggH MC simulation of a Higgs boson H → ZZ → 4l±

decay. It is clear that the mreco
l1l2

distribution is smeared compared to mgen
l1l2

, which is ex-
pected from reconstruction resolution effects. Using the Z lineshape governing mgen

l1l2
,

one can reduce these resolution effects by maximising the following likelihood,

P(mgen
l1l2
|mreco

l1l2 , σmreco
l1 l2

). (4.7)



4.6. Techniques to improve the precision of the Higgs mass measurement 105

In other words, given the reconstructed invariant mass and its resolution, the aim
is to find the most likely true mass mconstrained

l1l2
which maximises the likelihood eq.

4.7. Thus, mconstrained
l1l2

is the best estimate of mgen
l1l2

. Using Bayes theorem of conditional
probabilities, it can be shown that the likelihood eq. 4.7 is proportional to,

P(mgen
l1l2
|mreco

l1l2 , σmreco
l1 l2

) ∼ P(mreco
l1l2 |m

gen
l1l2

, σmreco
l1 l2

) · P(mgen
l1l2

), (4.8)

where,
P(mgen

l1l2
) = BW(mgen

l1l2
|mZ, ΓZ). (4.9)

Although the fit is intended to improve the resolution of the invariant mass of the
leading lepton pair, a kinematic constraint is applied on the momenta of the leptons,
which is equivalent given eq. 4.5. Constraining the momenta instead of the invariant
mass has the advantage of indirectly constraining mreco

l1l2
as well as mreco

4l , with the lat-
ter quantity being the objective for improving the Higgs boson mass measurement.
Per leading lepton pair, the algorithm takes as input the momenta and the associated
uncertainties, performs a kinematic fit assuming a Gaussian distributed resolution
for the momenta uncertainties, then returns the corrected momenta which corre-
spond to the most likely true Z mass mconstrained

l1l2
. This procedure is referred to as the

Z mass constraint (ZMC). Figure 4.14 shows a comparison between the constrained
invariant mass of the leading lepton pair mconstrained

l1l2
and the unconstrained invariant

mass munconstrained
l1l2

(=mreco
l1l2

) in the di-muon channel as an example. The former dis-
tribution is significantly narrower than the latter, a consequence of the ZMC which
moves mreco

l1l2
closer to the Z peak. It should be noted that mconstrained

l1l2
is not distributed

as a BW, since it is significantly dependent on the reconstructed kinematics and their
uncertainties. This is in fact not an issue, since the aim is not to measure the Z boson
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mass distribution, the ZMC is only used as a tool to improve the momentum resolu-
tion of leptons and consequently the mass resolution of the Higgs boson while using
known properties of the intermediate Z boson resonance.
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mass distribution, the ZMC is only used as a tool to improve the momentum resolu-
tion of leptons and consequently the mass resolution of the Higgs boson while using
known properties of the intermediate Z boson resonance.
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FIGURE 4.15: The impact of recovering additional FSR and applying
the ZMC in addition to FSR recovery is shown for the 4µ (top left), 4e
(top right), 2µ2e (bottom left), and 2e2µ (bottom right) final states.

Figure 4.15 shows the impact of the ZMC on m4l across the four decay channels.
The ZMC is always applied after including FSR correction, if any. Therefore, three
versions of m4l are compared, showing the improvement in the resolution after each
correction which is translated as a reduction in the distribution width. In the follow-
ing sections, unless otherwise stated, m4l refers to mconstrained

4l including the FSR and
ZMC correction.

4.7 Data/MC disagreement after ZMC

Among all attempts to improve the Higgs boson mass resolution, the ZMC method
has the most significant impact, with up to 19% reduction on the m4l uncertainty.
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FIGURE 4.15: The impact of recovering additional FSR and applying
the ZMC in addition to FSR recovery is shown for the 4µ (top left), 4e

(top right), 2µ2e (bottom left), and 2e2µ (bottom right) final states.

Figure 4.15 shows the impact of the ZMC on m4l across the four decay channels.
The ZMC is always applied after including FSR correction, if any. Therefore, three
versions of m4l are compared, showing the improvement in the resolution after each
correction which is translated as a reduction in the distribution width. In the follow-
ing sections, unless otherwise stated, m4l refers to mconstrained

4l including the FSR and
ZMC correction.
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4.7 Data/MC disagreement after ZMC

Among all attempts to improve the Higgs boson mass resolution, the ZMC method
has the most significant impact, with up to 19% reduction on the m4l uncertainty.
However, using the Run-2 data (139 fb−1) for preliminary results, a significant dis-
agreement was observed between the data and MC distributions of the leading lep-
ton pair invariant mass after applying the ZMC. Moreover, this mismodelling was
only found in decay channels involving muons in the leading pair, i.e. 4µ and 2µ2e.
Using the Z + X CR (defined in section 4.5.2.2), which is initially used to estimate
the fake electrons background using the X electron, the kinematics of the leading
lepton pair are investigated. As mentioned before, the Z + X CR has the advantage
of having an abundant sample of events, with over 2×107 events.

4.7.1 Origin of the data/MC disagreement after ZMC

Figure 4.16 and 4.17 show the invariant mass of the leading lepton pair in data and
MC before (A) and after (B) the constraint, for respectively di-electron and di-muon
events. Only statistical uncertainties are considered, which are negligible given the
large number of events. In the case of leading electron pairs, a good agreement is
observed, before and after the constraint. This is clearly not the case for the leading
muons, where after the constraint the agreement between data and MC shows a sig-
nificant discrepancy. In other words, the ZMC is not operating equivalently in data
and MC for di-muon events.
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FIGURE 4.16: The invariant mass spectrum of the leading electron
pair before (left) and after (right) the Z-mass constraint

A first attempt to understand the reason behind this disagreement is done by com-
paring distributions of input variables to the ZMC in data and MC. Before the ZMC,



108 Chapter 4. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

80 82 84 86 88 90 92 94 96 98 100
0

200

400

600

800

1000

3
10×

Z + jets

ttbar

WZ diboson

Run 2 data

ATLAS experiment
Run 2 data

1
 = 13 TeV, 139 fbs

) + e CRµµ→Z(
 = 385.392χ

80 82 84 86 88 90 92 94 96 98 100

 unconstrained (GeV)µµm

0.8

0.9

1

1.1

1.2

ra
ti
o

(A)

80 82 84 86 88 90 92 94 96 98 100
0

500

1000

1500

2000

2500

3000

3500

3
10×

Z + jets

ttbar

WZ diboson

Run 2 data

ATLAS experiment
Run 2 data

1
 = 13 TeV, 139 fbs

) + e CRµµ→Z(
 = 2935.22χ

80 82 84 86 88 90 92 94 96 98 100

 constrained (GeV)µµm

0.8

0.9

1

1.1

1.2

ra
ti
o

(B)

FIGURE 4.17: The invariant mass spectrum of the leading muon pair
before (left) and after (right) the Z-mass constraint

the invariant mass depends only on the kinematics of the leading muons,

munconstrained
µ1µ2

=
√

2pT,1 pT,2(cosh(η1 − η2)− cos(φ1 − φ2)), (4.10)

while mconstr.
µ1µ2

is obtained from the ZMC kinematic fit, where the lepton uncertainties
are also inputs. As mentioned in section 4.4.3, muons are reconstructed by fitting
tracks from hits in the MS and/or the ID. Figure 4.7 can be visualised as a recon-
structed muon track. Also, the different reconstructed parameters are indicated.
The output parameters from the track fit are namely d0, z0, φ, θ, q/p and their asso-
ciated uncertainties, with the last parameter being the charge over momentum ratio
(definition of the other parameters can be found in the sections 2.4.1 and 4.4.1). The
uncertainties of these parameters are given by the following covariance matrix,

Cov(d0, z0, φ, θ, q/p) =




σ2
d0

σd0 σz0 σd0 σφ σd0 σθ σd0 σq/p

σz0 σd0 σ2
z0

σz0 σφ σz0 σθ σz0 σq/p

σφσd0 σφσz0 σ2
φ σφσθ σφσq/p

σθσd0 σθσz0 σθσφ σ2
θ σθσq/p

σq/pσd0 σq/pσz0 σq/pσφ σq/pσθ σ2
q/p




(4.11)

Since before applying the ZMC, the munconstr.
µ1µ2

distributions in data and MC, which
are calculated from only the kinematic variables (eq. 4.10), were in good agreement,
this suggests that the disagreement in mconstr.

µ1µ2
after the ZMC application must come

from the additional parameters used in the fit, i.e. the covariance matrix elements. In
the ZMC, since the kinematic fit is applied on the lepton momenta, σq/p represents
the most important parameter for the constraint. Figure 4.18 shows the data/MC
comparison of this latter parameter of the covariance matrix for each lepton of the
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leading muon pair, where the two distributions are clearly incompatible. In Ap-
pendix B.3, Figures B.1 - B.2 show the same comparison of the other covariance ma-
trix elements, where the same conclusion is valid.

FIGURE 4.18: The σ2
q/p distributions of the leading (left) and sub-

leading (right) muon in data and MC.

4.7.2 Track momentum uncertainty correction strategy

Similarly to track parameters, modelling track uncertainties in simulation is a diffi-
cult task. Therefore, it has to be corrected using data PDFs. As previously described
in the case of electrons, muons in ATLAS are used in many physics analyses. For
this reason, dedicated performance studies are performed for the reconstruction,
calibration and identification of these physics objects. Muons included in this analy-
sis have been calibrated in these muon performance studies to match data in events
of the standard candles Z → µ−µ+ for muons with pT > 10 GeV and J/ψ → µ−µ+

for muons with 5 < pT < 20 GeV. However, this calibration is not propagated to the
covariance matrix including the muon uncertainties, which are clearly mismodelled
as shown in Figures B.1-B.2. In the case of electrons, since the energy is measured in
the EM calorimeter, the electron covariance matrix is not derived from the electron-
track. Therefore, the energy resolution is used as the equivalent of σq/p in muons
to perform the ZMC. As opposed to σq/p, the electron energy resolution is well cor-
rected to match data along with the energy scale [50]. This can be seen in Figure
4.19, were the data and MC distribution are in good agreement, and so there is no
mismodelling after performing the ZMC (Figure 4.16 (B)). It is therefore necessary
to derive corrections in the case of the muon σq/p, which is crucial for the data/MC
agreement of the mconstr.

µ1µ2
spectrum calculated from the ZMC.

Typically, different parts of the ATLAS detector have different responses due to
many factors, e.g. differences in the alignment and/or the quality of components.
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Therefore, a correction of σq/p in simulation to match data has to be performed per
detector region, to avoid averaging the response of the different parts of the sub-
detectors. For this reason, bins in η and φ are defined such that the bin edges are
in line with the muon chamber boundaries of the MS, which are typically divided
into sectors. Figure 4.20 shows a scheme of the ATLAS MS detector in the x− y and
z− y plane. In the transverse plane, the different muon chambers defining the MS
azimuthal sectors are shown (A). In the z− y plane, the muon chambers are shown
for the barrel (|η| < 1.05) and the endcap (1.05 < |η| < 2.7) regions, with the former
shown in green, and the latter shown in blue. In these MS sectors, the σq/p distribu-
tion is investigated in order to perform the correction per sector.

Furthermore, the track momentum uncertainty of muons with different momenta
can vary significantly. Therefore, to minimise this dependency the correction is per-
formed on the relative σq/p, i.e. σq/p divided by q/p ( = σrel.

q/p). This is necessary to
avoid momentum biases; e.g. a muon with pT = 30 GeV in MC should not be cor-
rected as a muon with pT = 90 GeV in data. However, σq/p is not linearly dependent
on q/p. Consequently, σrel.

q/p retains a small dependency on the momentum. There-
fore, additional pT bins are defined where the momentum dependence is relatively
constant over the σrel.

q/p spectrum. Finally the correction is performed using only com-
bined muons (muons obtained from a global refit of the ID and MS tracks), which
outnumber other types of muons by far in this analysis, since combined muons
are always favoured and at most only one from the other types is accepted in the
quadruplet selection (section 4.4). In summary, the correction of the track momen-
tum uncertainty is performed separately in bins of pT, η and φ. The bin boundaries
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FIGURE 4.19: The leading electrons resolution distribution in data
and MC.
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are defined as follows:

pT = {10, 25, 35, 40, 45, 50, 60, 100, 300} GeV, (4.12)

|η| = {0, 0.4, 0.8, 1.05, 1.15, 1.25, 1.5, 1.7, 2.0, 2.1, 2.3, 2.5, 2.6}. (4.13)

In the barrel region, |η| < 1.05, the large sector boundaries are:

(−0.180 + k× 0.785 < φ < 0.180 + k× 0.785) ∨ (φ > 2.960∧ φ < −2.960), (4.14)

for k an integer within [-3, 3]4, and the small sector boundaries are:

0.180 + k× 0.785 < φ < 0.605 + k× 0.785, (4.15)

for k ∈ [-4, 3]. In the endcap region, 1.05 < |η| < 2.7, the large sector boundaries are:

(−0.131 + k× 0.784 < φ < 0.131 + k× 0.784) ∨ (φ > 3.011∧ φ < −3.011), (4.16)

for k ∈ [-3, 3], and the small sector boundaries are:

0.131 + k× 0.784 < φ < 0.655 + k× 0.784, (4.17)

for k ∈ [-4, 3]. In total, 3024 pT × η × φ bins are defined for the σrel.
q/p correction.

Figure 4.21 and 4.22 show the data/MC comparison of the σrel.
q/p distributions of the

4The symbols ∧ and ∨ denote respectively the logic operators AND and OR.

FIGURE 4.20: The ATLAS MS detector in the x − y and z− y plane.
In the transverse plane, the different muon chambers defining the
MS azimuthal sectors are shown (A). In the longitudinal plane,
the chambers are shown for the barrel (|η| < 1.05) and the endcap
(1.05 < |η| < 2.7) regions, with the former shown in green, and the

latter shown in blue.
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FIGURE 4.21: Data/MC relative σq/p distributions of the leading
muon pair in the Z + X CR for specific η, φ, pT bins in the barrel

region.
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FIGURE 4.22: Data/MC relative σq/p distributions of the leading
muon pair in the Z + X CR for specific η, φ, pT bins in the endcap

region.
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leading muons in different η, φ and pT bins. Figure 4.21 shows an example of a
specific bin in η and φ in the barrel region for different pT bins, while Figure 4.22
shows an example in the endcap region. The MC distributions are clearly mismod-
elled in all bins compared to data. Moreover, the σrel.

q/p appears to be underestimated
in simulation, which can be seen from the shift compared to data. Comparing the
σrel.

q/p distribution in the barrel and endcap region, the former is characterised with a
single-peak distribution, while the latter has a multi-peak structure. This has been
checked for all pT × η × φ bins, where the same characteristics are observed for the
barrel and endcap region bins. This difference in distribution shape has been inves-
tigated in muon performance studies, where the geometry of the MS in the endcap
region is found to be at the origin of the multi-peak structure. However, this effect is
not related to the MC mismodelling, which appears to be constant in all bins of the
barrel and the endcap regions.

Figures 4.23 and 4.24 show the σrel.
q/p distribution of the leading muons as a func-

tion of pT for examples in bins of the barrel and the endcap regions. Per definition,
the pT bins were optimised such that the σrel.

q/p is constant over these bins, while tak-
ing into account the number of events in data to avoid large statistical uncertainties
on the distributions. Furthermore, additional checks on the origin of the mismod-
elling are performed. One of the generic suspects is often the effect of pile-up events.
Typically, the average number of interactions per bunch crossing, <µ>, is indicates
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FIGURE 4.23: The σrel.
q/p distribution of the leading muons as a function

of pT in an example bin of the barrel.
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the number of pile-up events. Figure 4.25 and 4.26 show the σrel.
q/p distribution of the

leading muons as a function of <µ> in data and MC, for the same η × φ bins shown
in Figures 4.23 and 4.24 respectively. The distribution is relatively constant, showing
no correlation. Figure 4.28 shows a comparison of the data/MC σrel.

q/p agreement for
different bins of <µ>, for the same regions shown in Figures 4.23 and 4.24. The bot-
tom ratio plots show the data/MC disagreement of the σrel.

q/p in bins of <µ>, where
the mismodelling appears to be constant in the different <µ> bins, from which one
can conclude that it is not pile-up related.

Finally, for the same pT × η× φ bins shown in Figure 4.21 and 4.22, the σrel.
q/p is inves-

tigated in data and MC samples for muon performance studies. These samples have
been used to derive the final Run-2 precision calibration and the selection criteria
are designed to cover a large range in phase space that includes most of the probed
ATLAS analyses (i.e. not specific to the H → ZZ → 4l± analysis). Since the Z+jets
process has the largest number of simulated muons and is by far the most domi-
nant process in the analysis region of interest, di-muon events are used for data and
Z+jets MC. Figures 4.29 and 4.30 show the data/MC σrel.

q/p distributions of the lead-
ing muon pair in Z+jets di-muon events for the same barrel and endcap regions as
shown in Figure 4.21 and 4.22. The same mismodelling in σrel.

q/p is observed in the
samples, confirming claims that the σrel.

q/p disagreement is not limited to the samples
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FIGURE 4.24: The σrel.
q/p distribution of the leading muons as a function

of pT in an example bin of the endcap.



116 Chapter 4. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (data)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (data)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

0

50

100

150

200

250

300

350

400

450

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (data)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

0

50

100

150

200

250

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (data)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (MC)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (MC)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

0

200

400

600

800

1000

1200

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (MC)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70 80
> µ <

0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

q
/p

σ
 r

e
l.
 

Leading muons in Z+X CR (MC)

 = [1.39, 1.75]φ

 = [0.8, 1.05]η

FIGURE 4.25: The σrel.
q/p distribution of the leading muons as a function

of <µ> in data (top four) and MC (bottom four), for the same regions
in Figure 4.23.
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FIGURE 4.26: The σrel.
q/p distribution of the leading muons as a function

of <µ> in data (top four) and MC (bottom four), for the same regions
in Figure 4.24.
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FIGURE 4.27: Comparison of the σrel.
q/p agreement of the leading

muons for different bins of <µ>, for the same regions in Figure 4.23.
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FIGURE 4.28: Comparison of the σrel.
q/p agreement of the leading

muons for different bins of <µ>, for the same regions in Figure 4.24.
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and the selection criteria of this analysis. To make this correction analysis indepen-
dent (i.e. not only dedicated to the H → ZZ → 4l± analysis), the described data and
MC samples of Z → µ−µ+ events are used for the correction of the σrel.

q/p. It should be
noted that the di-muon event selection in these samples is different from the leading
lepton pair selection in the H → ZZ → 4l± event selection. Since no third lepton is
required, the latter samples are more inclusive containing a larger number of events.
The full di-muon event selection can be found in [82].

4.7.3 Correction for the muon track momentum uncertainty

As mentioned in the previous section, to solve the data/MC disagreement in the in-
variant mass of the leading muon pair after ZMC application, the aim is to derive
corrections to the σrel.

q/p in the previously defined pT × η × φ bins to model the data
as closely as possible. In general, corrections to simulation can be divided into two
types, event-level and bias-corrections. In the former, typically event weights (often
referred to as scale factors) are derived to be applied on the MC number of events to
scale it to data. In the case of bias-corrections, the quantity used (or the estimator) is
targeted for the correction. Typically, the bias is estimated first to correct the quan-
tity by subtracting the bias from the initial estimate.

In the case of σrel.
q/p, the mismodelling in Figures 4.21 and 4.22 suggests a bias in the

MC estimator on lepton-level. As mentioned in section 4.6.3, the ZMC is an event
based kinematic constraint, where the reconstructed invariant mass of the leading
muons mreco

l1l2
is replaced by an estimate of the most likely true mass mconstrained

l1l2
, ac-

cording to BW(mZ, ΓZ). The fact that before the ZMC the invariant mass of the lead-
ing muons is in agreement, suggests that the muon momenta are not constrained
equivalently in data and MC due to the difference in uncertainties; a muon in MC
with pT = 30 GeV has on average a smaller uncertainty than a muon in data with the
same pT, and consequently the constraint fit output in both cases will be different.
In order to obtain equivalent results, the σq/p bias has to be estimated to correct MC
to match data. In the next section, the bias correction methods are investigated.

4.7.3.1 Parametric bias correction methods

Bias-correction techniques can vary depending on the application and the form of
the distortion between data and MC. In the case of the σrel.

q/p comparison, Figures
4.21 and 4.22 show MC distributions shifted toward lower values compared to the
data distributions. Therefore, in the first instance one could consider a linear scaling,
where σrel.

q/p MC is corrected for the mean bias of the distributions, i.e. by shifting
every initial σrel.

q/p MC value by,

σrel.
q/p −→ σrel. corr.

q/p MC = σrel.
q/p + µ̂data − µ̂MC, (4.18)
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FIGURE 4.29: Data/MC σrel.
q/p distributions of the muon pair in Z+jets

di-muon events for the same barrel region shown in Figure 4.21.
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FIGURE 4.30: Data/MC σrel.
q/p distributions of the muon pair in Z+jets

di-muon events for the same endcap region shown in Figure 4.22.
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with µ̂data and µ̂MC the mean values of the data and MC distributions. Linear scaling
is a simple correction method that is effective if the bias is only on the mean. An ex-
ample is shown in Figure 4.31, where two histograms (normalised to the same area)
of some random, normally distributed variable X ∼ N (µ, σ) are plotted. Initially,
the red and black distributions have different mean values. After applying a linear
scaling correction on the red histogram, the resulting green distribution fits the black
PDF well. This method works well as long as the shape parameters of both distribu-
tions are similar.

In the case where both parameters, mean and variance, are different, a linear scaling
correction is no longer enough to obtain an agreement in both distributions. Figure
4.32 shows a case where on top of a shift in the mean value, the red histogram has a
smaller variance compared to the black distribution. For symmetric histograms close
to normal distributions, as in Figure 4.32, the variance scaling correction method can
be applied, where the variance of the distribution can be adjusted in order to fit the
target shape. Following the same notation from eq. 4.18, variance scaling can be
achieved by,

σrel.
q/p −→ σrel. corr.

q/p MC =
σdata

σMC
· (σrel.

q/p − µ̂MC) + µ̂MC, (4.19)

with σ2
data and σ2

MC the variance in data and MC. Figure 4.32 shows the resulting
green distribution after correcting the red histogram with a linear followed by a
variance scaling method.

So far, the PDFs were assumed to be more or less similarly distributed, which in
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FIGURE 4.31: Two distributions of a random, normally distributed
variable X ∼ N (µ, σ) with different mean parameters (left). Using
linear scaling, the red distribution is corrected to match the black his-

togram, which is given by the green distribution (right).



124 Chapter 4. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

reality is often not the case. Another method that is less dependent on the shape pa-
rameters is the smearing correction method, where the MC is convolved with a normal
distribution,

f (σrel.
q/p) −→ f (σrel. corr.

q/p MC ) = f (σrel.
q/p) ∗ G(µ, σ). (4.20)

The idea behind this method is to add noise to the initial MC value to obtain the
corrected histogram. Using a random generator, a randomly generated value from a
normal distribution centred around the initial MC value is used as the corrected MC
value. The mean and width of the associated normal distribution are fitted to obtain
the optimal parameters that maximise the data/MC agreement. This is typically
achieved by optimising for the χ2 value of the fit, which provides a measure for the
compatibility of both distributions. As a result, the corrected MC will be smeared
with the Gaussian noise, and if necessary shifted to match the data distribution. Fig-
ure 4.33 shows an example, where two slightly different non-symmetric PDFs are
compared. The red distribution is shifted and smeared (and smoothed using a Ker-
nel Density Estimation method for removing fluctuations) to fit the black histogram.
As long as the PDFs are not significantly different, this technique is efficient. How-
ever, it is limited to the case where the MC is narrowly distributed compared to data,
which is typically the case when the latter does not include the same resolution ef-
fects.

4.7.3.2 Quantile mapping correction for σrel.
q/p

For the σrel.
q/p correction, the previously mentioned bias-correction methods have been

considered. However, it turned out that none of the above methods were sufficient
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FIGURE 4.32: Two distributions of a random, normally distributed
variable X ∼ N (µ, σ) with different mean and variance parameters
(left). Using linear scaling in combination with variance scaling, the
red distribution is corrected to match the black histogram, which is

given by the green distribution (right).
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to tackle the disagreement in all pT × η × φ bins. As shown in Figures 4.21 and 4.22,
MC appears to be shifted compared to data. As a first attempt, the linear scaling
method would be a reasonable choice. Figure 4.34 shows the initial σrel.

q/p MC distri-
bution before (left) and after (right) the linear scaling correction compared to data in
a barrel region pT × η× φ bin. As mentioned before, bins from the latter region have
single-peak distributions, often compared to a single-sided Crystal Ball distribution.
In this case, the linear scaling method is sufficient to achieve a decent agreement.
This can be judged quantitatively from the reduction of the χ2 value before and af-
ter the correction. The remaining mismodelling can be removed using the smearing
method; in fact, the PDFs shown in Figure 4.33 are taken from the σrel.

q/p distributions
in data and MC from a barrel region bin, where the agreement after smearing is rel-
atively good. However, this is no longer enough when it comes to the multi-peak
distributions in the endcap region. Figure 4.35 shows an example before (left) and
after (right) the linear scaling correction, this time in an endcap region pT × η × φ

bin. Clearly, after the linear scaling correction, the agreement remains relatively
poor. Analogously, the variance scaling and the smearing method fail in most of the
endcap region bins due to the complex shaped of the distributions.

Moreover, there are 3024 pT × η × φ bins to correct, which is challenging to control,
especially when the disagreement is not uniform over all bins. In the previously dis-
cussed correction methods, requirements on the shape parameters of the PDFs had
to be satisfied in order for the correction to be effective. Such methods are referred
to as parametric correction methods, where the bias is determined from the shape pa-
rameters of the PDFs. Considering the particularity of the σrel.

q/p correction task, the
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FIGURE 4.33: Two distributions of a random distributed variable X
with slightly different mean and shape parameters (left). The red dis-
tribution is first smeared with a fitted smearing factor to match the

black histogram, which is given by the green distribution (right).
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FIGURE 4.34: The initial σrel.
q/p MC distribution before (left) and after

(right) the linear scaling correction compared to data in a barrel region
bin.
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FIGURE 4.35: The initial σrel.
q/p MC distribution before (left) and after

(right) linear scaling correction compared to data in endcap region
bin.
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solution is found in a non-parametric correction method, namely in a bias correction
method referred to as quantile mapping (QM). This method has the advantage of be-
ing completely independent of the shape parameters of the PDFs. Therefore, it can
be used to correct any MC distribution to any data PDF, regardless of the compat-
ibility of both PDFs. The basic idea behind this method is to match the empirical
cumulative distribution function (ECDF) of MC to the one in data at every point of the
σrel.

q/p spectrum,
FMC(σ

rel.
q/p MC) = Fdata(σ

rel.
q/p data), (4.21)

with FMC and Fdata the ECDFs of MC and data given by,

FMC(σ
rel. max
q/p MC) =

∫ σrel. max
q/p MC

0
fMC(σ

rel.
q/p) · dσrel.

q/p, (4.22)

Fdata(σ
rel. max
q/p data) =

∫ σrel. max
q/p data

0
fdata(σ

rel.
q/p) · dσrel.

q/p. (4.23)

If the ECDFs are equivalent, so will be the PDFs. In this case, the initial σrel.
q/p MC

value is replaced by,

σrel.
q/p MC −→ σrel. corr.

q/p MC = F−1
data(FMC(σ

rel.
q/p MC)), (4.24)

where this is achieved by projecting the initial σrel.
q/p MC to its corresponding corrected

value via quantile correspondence. Figure 4.36 shows the connection between a PDF
and its corresponding CDF and quantile distribution. The aim of the QM method
is to determine for each σrel.

q/p in MC, the data σrel.
q/p value having the same quantile,

which is assigned as the corrected σrel.
q/p value. In other words, for a given σrel.

q/p in
MC defining a probability FMC(σ

rel.
q/p), one is after the σrel.

q/p value in data that returns
the same probability area. In fact, this is exactly what is desired for the ZMC fit;
for each MC muon with certain kinematic parameters, one is interested in the most
likely σq/p uncertainty of a muon in data with the same kinematic parameters. As a
consequence, muons from MC and data will have their momenta constrained equiv-
alently, resulting in a similar invariant mass spectrum of the leading muon pair post
ZMC.

In practice, a projection correction map is constructed using a set of pre-defined
quantiles. Per pT × η × φ bin, a map is derived, which can be used to extract the
corrected σrel.

q/p value, given the initial σrel.
q/p value. Figure 4.37 show the different steps

of the QM correction. The first plot shows the initial σrel.
q/p distribution in data and

MC Figure 4.37 (a). From these PDFs, the corresponding ECDFs are calculated and
are plotted in Figure 4.37 (b). Similar to the disagreement between the PDFs, the
ECDFs are also different in data and MC. This difference is exploited to construct
the correction map; for a given MC σrel.

q/p value, the FMC(σ
rel.
q/p) value is read from the

y-axis. Drawing a horizontal line on this ECDF value, the corresponding data σrel.
q/p

value (= F−1
data(FMC(σ

rel.
q/p MC))) is extracted. Repeating this procedure for the set of
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pre-defined quantiles, one can construct a σrel.
q/p MC vs. σrel. corr.

q/p MC map (Figure 4.37 (c)).
After performance studies taking in account the computational efficiency (keeping
the size of the pre-defined quantiles manageable for 3024 bins), while maximising
the correction efficiency and reducing the uncertainties on the corrected σrel.

q/p output,
the optimal choice was found to be a set of quantiles from 0 to 1 with a resolu-
tion of 0.0025 (i.e. 400 uniformly distributed quantiles). Between values from the
pre-defined quantiles, a linear interpolation is used to determine the corrected σrel.

q/p.
Smoother interpolation methods have been tested, but no additional gain was ob-
served compared to the linear interpolation.

Furthermore, the correction map in Figure 4.37 (c) obtained from the non-parametric
QM method encodes the form of the mismodelling. If the σrel.

q/p PDFs in data and MC
were equivalent, this curve would be a straight line with a slope equal to one with
an intercept at the origin, i.e. the linear function σrel.

q/p = σrel. corr.
q/p . If the mismodelling

was only a shift, this would correspond to a straight line with a non-zero intercept, in
which case the linear scaling method would be sufficient as a correction. In general,
one could fit this curve encoding the mismodelling with any compatible function
ζ to determine its parameters, such that the correction on σrel.

q/p can be performed
analytically,

σrel.
q/p −→ σrel. corr.

q/p MC = ζ(σrel.
q/p). (4.25)

This has the advantage of reducing the correction to a few parameters, rather than
the 400 pre-defined quantiles. This has been tested through the different pT × η × φ

bins using high order polynomials to fit curves of correction maps derived from the
QM method. Successful results were observed in some bins (mainly in the barrel re-
gion), however, this was not the case in bins where the mismodelling is too complex
to be fitted (typically in the endcap region). Figure 4.38 shows an example where
the correction using polynomials is successful (A) and another where the modelling
is not optimal (B). To avoid compromising correction performance, maps with 400
pre-defined quantiles are kept as the nominal choice.
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FIGURE 4.36: An example showing the connection between a CDF
and its corresponding PDF through a quantile corresponding to the

value a of some random variable X.
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Finally, the latter map can be then used to correct the MC distribution, which is
shown on Figure 4.37 (d). Clearly, the agreement is spot on after the QM correction,
even with a complex shaped distribution, which was purposely chosen to illustrate
the performance of the QM method. The agreement is similar across all 3024 bins, a
consequence of the non-parametric correction method, where no prior assumptions
on the shape parameters of the distributions are necessary to perform the correction.

As mentioned in section 4.7.2, the correction maps are derived in the inclusive cali-
bration samples containing Z → µ−µ+ events, which are then applied on muons se-
lected in this analysis. Figures 4.39 and 4.40 show the σrel.

q/p distribution in Z → µ−µ+

data and MC events after QM correction for the same barrel and endcap regions
shown in Figures 4.21 and 4.22. Similarly to Figure 4.37 (d), the agreement is recov-
ered in all bins, for the barrel region as well as the endcap region.

Having the correction maps derived from the inclusive calibration samples contain-
ing Z → µ−µ+ events, these can be applied to the leading muons in the Z + X
CR. Figure 4.41 and 4.42 show the σrel.

q/p distribution in di-muon Z + X data and MC
events after using the previously derived correction maps for the same barrel and
endcap regions shown in Figures 4.21 and 4.22. In general, the agreement is recov-
ered, which can be seen from the reduction in the χ2 value compared to Figures 4.21
and 4.22. The agreement from Figures 4.39 and 4.40 is better due to the fact that
the correction maps were derived from the same samples. Other reasons behind the
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FIGURE 4.38: The σrel.
q/p data/MC distributions after correction us-

ing polynomials, fitted to the corresponding correction maps derived
from the QM correction. (A) shows an example in the barrel region

while (B) in the endcap region.
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differences in agreement lie in the different di-muon event selection in the calibra-
tion and the Z + X CR samples. As mentioned before, the calibration samples are
more inclusive and have tighter selection criteria on Z muons, while the Z + X CR
is not constructed for the purpose of measuring the Z peak with precision. Another
reason is the difference in generator used to simulate the di-muon events, where the
Z → µ−µ+ calibration samples are simulated from POWHEG [63] and the Z + X
samples from SHERPA [76]. A study has been performed, where the correction maps
were derived from the Z + X CR. In Appendix B.4, these are compared to the previ-
ously derived correction maps from the calibration samples, and are found compat-
ible within the uncertainties. In fact, both sets of correction maps were used for the
ZMC kinematic fit, and no significant difference was observed in the resulting MC
distributions of the leading muon invariant mass.
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FIGURE 4.39: Data/MC σrel.
q/p distributions of the muon pair in Z+jets

di-muon events after QM correction for the same barrel region shown
in Figure 4.21.
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FIGURE 4.40: Data/MC σrel.
q/p distributions of the muon pair in Z+jets

di-muon events after QM correction for the same endcap region
shown in Figure 4.22.
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FIGURE 4.41: Data/MC σrel.
q/p distributions of the leading muon pair in

the Z + X CR after the quantile mapping corrections for same barrel
region in Figure 4.21
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FIGURE 4.42: Data/MC σrel.
q/p distributions of the leading muon pair in

the Z + X CR after the quantile mapping corrections for same endcap
region in Figure 4.22
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4.7.3.3 Impact of the track momentum uncertainty after the ZMC

As mentioned in section 4.7.3, the aim is to solve the disagreement in the leading
muon invariant mass after the ZMC, which was suspected to originate from a mis-
modelling of the muon σq/p in MC. The strategy to solve this issue was to correct the
muon σq/p in MC to match data, such that the ZMC constrains muons in MC and in
data equivalently. In the previous section, corrections for the muon σrel.

q/p in bins of
pT, η and φ were derived using a QM correction method. The correction is given in
a format such that the initial MC σrel.

q/p value is taken as input and the corrected value
is output from the correction maps. As mentioned before, the ZMC takes as input
the kinematic variables of the lepton pair and their corresponding uncertainties. For
muons, the latter quantities are given by the covariance matrix of the reconstructed
muon track. Using the correction maps, all elements of the covariance matrix (eq.
4.11) containing σq/p have to be corrected.

Per muon, before the ZMC fit is applied, the following procedure is performed:

• The initial σq/p value of the muon is retrieved from the covariance matrix in
addition to the q/p value in order to calculate σrel.

q/p from their ratio.

• From the kinematic values of the muon, the corresponding pT × η × φ bin is
determined to retrieve the adequate correction map.

• Using the correction map, the calculated initial σrel.
q/p value is input to extract

the corresponding corrected σrel.
q/p value.

• Finally, the corrected σq/p value is calculated by multiplying the corrected σrel.
q/p

value by the initial q/p value of the corresponding muon, which is then used
to replace the initial σq/p in the covariance matrix.

With the updated covariance matrices of the MC muons, mconstr.
µ1µ2

is recalculated. Fig-
ure 4.43 show the data and MC mconstr.

µ1µ2
distributions before (A) and after (B) the σq/p

correction. The agreement is significantly improved after the correction as expected,
which can be seen from the reduction in the χ2 value before and after correction.
However, there is a small remaining mismodelling around mconstr.

µ1µ2
∈ [92, 96] GeV,

which has been investigated by performing a few checks.

As mentioned in the previous section, correction maps derived from the Z + X CR
were applied to investigate differences with the calibration samples, but also to test
if this small disagreement was σq/p related. Deriving these maps from Z + X CR
results in a spot on correction with not the slightest disagreement in the σq/p spectra,
exactly as in Figures 4.39 and 4.40. After recalculating mconstr.

µ1µ2
with these correction

maps, the difference in agreement in the mconstr.
µ1µ2

∈ [92, 96] GeV region was less than
1%, suggesting that the disagreement is not due to the σq/p. Although the other
elements in the muon covariance matrix were expected to have no significant im-
pact on the ZMC, these were also corrected and used to recalculate mconstr.

µ1µ2
. Not the
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slightest difference was observed as expected. Since the issue was not related to the
muon covariance matrices, the remaining suspects are the kinematic variables of the
muons. Although using these latter quantities resulted in a decent unconstrained in-
variant mass munconstr.

µ1µ2
agreement (Figure 4.17 (A)), there is an effect to be considered.

As previously mentioned, the unconstrained invariant mass munconstr.
µ1µ2

depends only
on the lepton η, φ and pT as shown in eq. 4.10. From Figure 4.17 (A), the agree-
ment is relatively good, slightly worse toward the tails, but remains relatively small.
Compared to the unconstrained invariant mass munconstr.

µ1µ2
, the mconstr.

µ1µ2
distribution is

narrower around mZ, a consequence of the ZMC which, as discussed in section 4.6.3,
aims to pull the invariant mass of the on-mass shell Z leptons closer to mZ. In fact,
a scatter plot can be constructed to map the munconstr.

µ1µ2
of each lepton pair to its cor-

responding mconstr.
µ1µ2

after the ZMC. Figure 4.44 shows the two-dimensional munconstr.
µ1µ2

versus mconstr.
µ1µ2

distribution. As expected, the ZMC moves events from the left and
right side of the peak around toward mZ. By compressing events from the smeared
munconstr.

µ1µ2
to the narrow mconstr.

µ1µ2
distribution, the small discrepancies in the former

build up around the Z peak of the latter distribution, and as a result are less negli-
gible. To verify this effect, one can derive scale factors from the munconstr.

µ1µ2
data/MC

ratio plot on Figure 4.17 that make the data/MC munconstr.
µ1µ2

agreement perfect, then
apply these scale factors to the mconstr.

µ1µ2
spectrum, which removes the propagated dis-

crepancies from munconstr.
µ1µ2

to the mconstr.
µ1µ2

distribution. Figure 4.45 shows the mconstr.
µ1µ2

of
the leading muons including the σq/p correction on the left plot, and on the right plot
including the σq/p correction as well as the scale factors derived from the munconstr.

µ1µ2

spectrum. Clearly, the agreement is significantly improved after the application of
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FIGURE 4.43: The invariant mass spectrum of the leading muon pair
after the ZMC, before (A) and after (B) correcting the MC σq/p to

match data.
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FIGURE 4.44: Two-dimensional scatter plot of the unconstrained in-
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of the leading muon pair in data.

the scale factors, reducing the χ2 value by more than a factor of 2.
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FIGURE 4.45: The left plot shows the constrained invariant mass of
the leading muons including the σq/p correction and the right plot
including the σq/p correction as well as the scale factors derived from

the unconstrained spectrum discussed in section 4.7.3.3.

The previously derived scale factors are in fact only used to investigate the origin
of the remaining small discrepancy in the agreement between data and MC after the
σq/p correction. After identification of the mismodelling source, the calibration of
the muons is updated, which improves the correction on their kinematic variables.
Figure 4.46 shows the resulting mconstr.

µ1µ2
agreement after the latest calibration. Simi-

larly to Figure 4.45, the agreement is recovered, which is 15% better than even the
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result from the scale factors.
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FIGURE 4.46: The constrained invariant mass of the leading muon
pair after σq/p correction using an updated calibration of the muons

with an improved correction on their kinematic variables.

Finally, in order to make a conclusion on the data/MC agreement, systematic un-
certainties are required. As mentioned before, only statistical uncertainties have
been presented so far, which are negligible in the invariant mass spectra. System-
atic uncertainties on the invariant mass are obtained from propagation of the sys-
tematic uncertainties on the lepton kinematic quantities. For the purpose of this
study, where the Z + X CR is used only to address the ZMC issue observed in the
leading muon events, the systematic uncertainties can be approximated. From the
(unconstrained5) invariant mass measurement of the Z muons in the Z → µ−µ+ cal-
ibration samples, a systematic uncertainty of 0.2% is measured for the mean of the
distribution, and 3% on the width [82]. Using these values and the two-dimensional
MC map between the munconstr.

µ1µ2
and mconstr.

µ1µ2
(similar to Figure 4.44), one can calculate

an estimate of the systematic uncertainties in the mconstr.
µ1µ2

distribution by projecting
those from the munconstr.

µ1µ2
spectrum through the two-dimensional map. In practice,

five munconstr.
µ1µ2

distributions are constructed,

munconstrained
µ1µ2

(µ, σ), (4.26)

munconstrained
µ1µ2

(µ + 0.2%, σ), (4.27)

5The ZMC is only used in H → ZZ → 4l± analysis and never on the calibration samples.
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munconstrained
µ1µ2

(µ− 0.2%, σ). (4.28)

munconstrained
µ1µ2

(µ, σ + 3%), (4.29)

munconstrained
µ1µ2

(µ, σ− 3%). (4.30)

The first distribution is the nominal one from Figure 4.17. The second and third dis-
tributions are obtained by shifting the nominal distribution respectively with +0.2%
and -0.2% of the mean value. The fourth distribution is constructed by smearing the
nominal PDF (as described in 4.7.3.1) to reach a width larger by 3%. For the fifth dis-
tribution, since it is impossible to narrow a histogram using a random generator (i.e.
as opposed to smearing6), uncertainties on the width are assumed to be symmetric,
such that,

∆width,up = |Nnominal − Nsmeared|, (4.31)

∆width,down = −|Nnominal − Nsmeared|, (4.32)

with N the number of events per bin and thus in each bin of the fifth distribution,

Nwidth,up = Nnominal + (Nnominal − Nsmeared). (4.33)

Figure 4.47 shows the nominal munconstr.
µ1µ2

distribution and its derived variations from
the systematic uncertainties on the mean (A) and the width (B). The last four his-
tograms can be combined to determine the total variations on the number of events
per bin i of the munconstr.

µ1µ2
distribution compared to the nominal case, defining the

total systematic uncertainties,

∆total,up
i = |Nmax

i − Nnominal
i |, (4.34)

∆total,down
i = −|Nnominal

i − Nmin
i |, (4.35)

with Nmax
i and Nmin

i the number of events from the variation that yields in, respec-
tively, the highest and lowest event count in a given bin. In the same way, five
two-dimensional munconstr.

µ1µ2
versus mconstr.

µ1µ2
distributions are constructed. The number

of events in two-dimensional bin (i, j), with i the munconstr.
µ1µ2

bin and j the mconstr.
µ1µ2

bin,
is given by Nij. In this case, the uncertainties are given by,

∆total,up
ij = |Nmax

ij − Nnominal
ij |, (4.36)

∆total,down
ij = −|Nnominal

ij − Nmin
ij |, (4.37)

Summing over j yields back ∆total,up
i and ∆total,down

i of the one-dimensional i-th bin
of munconstr.

µ1µ2
distribution. Similarly, summing over i yields the uncertainties on the

one-dimensional mconstr.
µ1µ2

distribution. As a result, the desired systematic uncertain-
ties in the data/MC ratio of the mconstr.

µ1µ2
distribution can be determined, which is

6If the PDF was approximately Gaussian, variance scaling could be used to narrow the width
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FIGURE 4.47: The five munconstr.
µ1µ2

distributions obtained from varia-
tions according to the systematic uncertainties on the mean (A) and

width (B) of the munconstr.
µ1µ2

distribution.

shown in Figure 4.48. The uncertainties are smoothed using a smoothing algo-
rithm [104] through the bins, which is represented by the envelope around the ra-
tio plot. Considering these propagated systematic uncertainties, the agreement is
clearly restored. The lower mass region appears to have larger uncertainties. This
can be understood from Figure 4.44, showing the number of events moving from
munconstr.

µ1µ2
to mconstr.

µ1µ2
; one can observe a clear asymmetry between the < 91 and > 91

GeV region in the distribution. In fact, the munconstr.
µ1µ2

distribution itself is asymmet-
ric, having a larger width in the < 91 GeV region compared to the opposite side.
Consequently, after smearing for the width uncertainty, both regions have different
variations, leading to larger ones on the left side of the peak.
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of the leading
muons after σq/p correction including the approximated systematic

uncertainties.
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4.7.3.4 Impact of the track momentum uncertainty in the signal region

As mentioned before, the purpose of ZMC is to improve the resolution of the mea-
sured leptons, which has a direct impact on the width of the m4l distribution, hence
the precision of the Higgs boson mass measurement. In the previous sections, the
Z + X CR was used to understand and rectify the mismodelling in the di-muon
invariant mass spectrum after applying the ZMC, which was mainly caused by a
mismodelling in the muon track momentum uncertainties. After solving the dis-
agreement by deriving corrections on the latter quantity, the following step consists
of studying the impact of the σq/p corrections in the SR, where the Higgs boson mass
is measured. In fact, the uncertainty on the main observable of this analysis, σm4l is
calculated from the propagation of the four lepton uncertainties. Therefore, the σq/p

correction is not only a solution to the ZMC matter, but also an indirect correction of
the estimated σm4l .

In the following, a comparison is presented where the MC distribution of kinematic
variables related to the quadruplets (selected according to section 4.4) is shown be-
fore and after the σq/p correction. This comparison is performed using MC samples
of the Higgs boson signal and the irreducible ZZ background, while each decay
channel is analysed individually. The 4e channel is left out, since no muons are in-
volved, hence no changes are expected. Figures 4.49 - 4.54 show the comparison in
the four lepton invariant mass mconstrained

4l (A), the mconstrained
4l uncertainty σm4l (B), the

leading lepton invariant mass mconstrained
12 (C) and the sub-leading lepton invariant

mass m34 (D).

From the ratio agreement plot between the distributions before and after σq/p correc-
tion, it is clear that the most prominent changes are in the σm4l distributions, as σq/p is
directly propagated to the m4l uncertainty. As expected, changes are more significant
in the 4µ channel compared to the 2µ2e and 2e2µ cases, since in the former channel
all leptons are affected by the σq/p correction. Moreover, after the σq/p correction, the
means of the σm4l distributions appear to have a positive shift compared to the ini-
tial distributions, suggesting that the uncertainties were underestimated before the
correction. This is indeed expected, since the mismodelled MC σq/p distributions
were shifted toward lower values compared to data in all pT × η × φ bins. Another
difference lies in the leading lepton invariant mass, where the distributions after the
σq/p correction of the 4µ and 2µ2e channels have a narrower peak compared to the
initial distributions. This is also expected from the disagreement in leading muon
pair invariant mass after the ZMC (Figure 4.17), where the data peak was narrower
than the initial MC distribution before σq/p correction. It should be noted that for
the 2e2µ channel, no changes are observed since the leading lepton pair consists of
electrons, and the ZMC is only applied to the leading pair. This is confirmed in the
sub-leading lepton invariant mass m34 spectra. In all decay channels, before and af-
ter σq/p correction, the m34 distributions remain unchanged. Finally, the mconstrained

4l
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spectra show small changes which originate from the constrained momenta of the
leading pair after ZMC, namely an overall small positive shift of a few MeV and a
slightly narrower width with a difference < 1 MeV in the Higgs boson signal MC.
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FIGURE 4.50: ZZ background MC kinematic distributions in the 4µ
signal region before and after applying the sq/p correction.
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FIGURE 4.49: ZZ background MC kinematic distributions in the 4µ
signal region before and after applying the σq/p correction.
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FIGURE 4.51: Higgs MC kinematic distributions in the 4µ signal re-
gion before and after applying the sq/p correction.
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FIGURE 4.50: Higgs MC kinematic distributions in the 4µ signal re-
gion before and after applying the σq/p correction.
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FIGURE 4.52: ZZ background MC kinematic distributions in the 2µ2e
signal region before and after applying the sq/p correction.
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FIGURE 4.51: ZZ background MC kinematic distributions in the 2µ2e
signal region before and after applying the σq/p correction.
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FIGURE 4.53: Higgs MC kinematic distributions in the 2µ2e signal
region before and after applying the sq/p correction.
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FIGURE 4.52: Higgs MC kinematic distributions in the 2µ2e signal
region before and after applying the σq/p correction.
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FIGURE 4.54: ZZ background MC kinematic distributions in the 2e2µ
signal region before and after applying the sq/p correction.
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FIGURE 4.53: ZZ background MC kinematic distributions in the 2e2µ
signal region before and after applying the σq/p correction.
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FIGURE 4.55: Higgs MC kinematic distributions in the 2e2µ signal
region before and after applying the sq/p correction.
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FIGURE 4.54: Higgs MC kinematic distributions in the 2e2µ signal
region before and after applying the σq/p correction.
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4.8 Signal and background model

As mentioned in section 1.4, the real mass distribution of the Higgs boson is ex-
pected to follow a narrow relativistic BW lineshape with a width of 4 MeV. On the
other hand, the signal observable m4l is distributed as the convolution of the theoret-
ical lineshape with the detector response from the associated reconstructed leptons.
In fact, this signal lineshape is entirely governed by the detector response, since this
is more than 2 orders of magnitude larger compared to the natural Higgs boson
width.

In order to describe the m4l lineshape, an analytic model is fitted to the signal and
background MC using an unbinned maximum likelihood fit. For this fit, the follow-
ing likelihood is constructed,

L(mH |m4l , D4l , σ4l) = ∏
i

Pi(m4l , D4l , σ4l |mH), (4.38)

with i running over the data events. Such a fit will determine the optimal mH value
that maximises the likelihood, given the measured m4l , D4l and σ4l parameters. In
practice, this three-dimensional PDF can be simplified with a set of assumptions,
while writing it as the product of conditional7 PDFs, which clarifies the assumptions
made. Moreover, a likelihood is written for signal and background separately to take
into account their differences. Both likelihoods are then combined with a Poisson
likelihood to build the extended likelihood [105], to take into account the Poisson
distributed number of observed events used in the mH measurement.

4.8.1 The signal and background likelihood

In the case of the signal likelihood, the three-dimensional PDF in eq. 4.38 can be
factorised as follows,

Ps(m4l , D4l , σ4l |mH) = Ps(m4l |D4l , σ4l , mH) · Ps(D4l |σ4l , mH) · Ps(σ4l |mH). (4.39)

As mentioned in section 4.6.2, the discriminant D4l is obtained by training a neural
network with signal and background kinematic variables and the KZZ∗ discriminant.
Since the training does not directly depend on the m4l uncertainty, Ps(D4l |σ4l , mH)

can be reduced to Ps(D4l |mH). Also, the σ4l dependence on mH is found to be negli-
gible across the different mass points, thus Ps(σ4l |mH) ≈ Ps(σ4l).

The same PDF can be written in the case of the background model, with the same
assumptions,

Pb(m4l , D4l , σ4l) = Pb(m4l |D4l , σ4l) · Pb(D4l) · Pb(σ4l), (4.40)

7P(A,B) = P(A|B)·P(B)
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where this time the dependence on mH is not included. In fact, from MC studies
Ps(σ4l) and Pb(σ4l) are found to be relatively equivalent. For this reason, both PDFs
can be excluded from the signal and background terms of the likelihood. Finally, for
background, m4l and D4l are assumed to have a negligible dependence on σ4l , such
that Pb(m4l , D4l , σ4l) ≈ Pb(m4l , D4l).

4.8.2 The signal and background m4l models

4.8.2.1 Background model

The Pb(m4l , D4l) PDF for background is obtained from smoothing the individual
background distributions in MC using the ROONKEYSPDF algorithm [104]. The
smoothed PDFs are derived in each decay channel separately. As mentioned in sec-
tion 4.3.2, the main background source in the SR comes from the irreducible ZZ
continuum. Its shape distribution is extracted from MC, while its normalisation is
obtained from data in the unblinded side band CR. For the very rare VVV and ttZ
processes with a tiny contributions, shape and normalisation are taken from MC.
In the case of the reducible background, each background is first weighted to its
data-driven estimate (described in section 4.3.2) before the smoothing. Figures 4.55
and 4.56 show, for the dominant qq → ZZ process in each final state channel, the
PDF projected to the D4l dimension (Pb(m4l , D4l)→ Pb(D4l)), and the m4l dimension
(Pb(m4l , D4l)→ Pb(m4l)), respectively.

4.8.2.2 Signal model

For the signal model, an analytic function is used to describe Ps(m4l |D4l , σ4l , mH),
namely a double-sided Crystal Ball (DCB) function [106], whose parameters are de-
rived by simultaneously fitting the m4l distribution in MC for the different simulated
mass points. A DCB function has a normally distributed core while the tails follow
a power-law,

Ps(m4l |D4l , σ4l , mH) = PDCB(m4l |µDCB, σDCB, αhigh, αlow, nhigh, nlow) (4.41)

= N ×





exp
(
− (x−µDCB)

2

2σ2
DCB

)
, for αlow ≤ (x−µDCB)

σDCB
≤ αhigh

Alow × (Blow − (x−µDCB)
σDCB

)−nlow , for (x−µDCB)
σDCB

< αlow

Ahi × (Bhi − (x−µDCB)
σDCB

)−nhigh , for (x−µDCB)
σDCB

> αhigh





,

where N is a normalisation constant and,

Alow =
nlow

|αlow|
× exp

(
− |αlow|2

2

)
,
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FIGURE 4.56: MC and the smoothed PDF distributions of the domi-
nant qq ! ZZ process projected to the D4l dimension, in the 4µ, 2µ2e,

4e, and 2e2µ final states.
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The mean of the DCB µ is parametrised as a linear function of mH, which conse-
quently is replaced by the linear coefficients in the DCB function. This choice is mo-
tivated from MC studies, Figure 4.58 shows µ as a function of mH from fitting a DCB
function to MC distributions with different mass points. Clearly, a linear depen-
dence is observed across the four decay channels. Moreover, the intercept of this lin-
ear function is also found to linearly dependent on the D4l , such that µ = f (mH, D4l).
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FIGURE 4.55: MC and the smoothed PDF distributions of the domi-
nant qq→ ZZ process projected to the D4l dimension, in the 4µ, 2µ2e,

4e, and 2e2µ final states.
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The mean of the DCB µ is parametrised as a linear function of mH, which conse-
quently is replaced by the linear coefficients in the DCB function. This choice is
motivated from MC studies. Figure 4.57 shows µ as a function of mH from fit-
ting a DCB function to MC distributions with different mass points. Clearly, a lin-
ear dependence is observed across the four decay channels. Moreover, the inter-
cept of this linear function is also found to be linearly dependent on D4l , such that
µDCB = f (mH, D4l).
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FIGURE 4.57: MC and the smoothed PDF distributions of the domi-
nant qq ! ZZ process projected to the m4l dimension, in the 4µ, 2µ2e,

4e, and 2e2µ final states.

Also, the width of the DCB, sDCB, is parametrised as a function of s4l , which re-
flects the per-event resolution. As the detector response varies per event, e.g. from
in the different channels, since electrons and muons are not reconstructed with the
same precision, not all quadruplets are measured with the same resolution. In fact,
sDCB(s4l) is analytically difficult to estimate, therefore, a quantile regression neural net-
work (QRNN) is used to predict the per-event resolution. The same tools described
for the D4l discriminant are used for the training, namely KERAS [91] and TENSOR-
FLOW [92]. The input variables are the individual lepton kinematics as well as the
constrained pT,4l and its uncertainties. The QRNN is trained such that the resolution
on m4l in MC, |mconstr.

4l � mgen
4l |, is targeted. Figure 4.59 shows the observed and pre-

dicted by the QRNN sDCB distribution using the side-band CRs. These are defined
within 105 < m4l < 115 GeV and 130 < m4l < 160 GeV, which as mentioned before
are enriched in the irreducible ZZ background events and have a negligible signal
contribution. Clearly, the data/MC comparison shows a good agreement.
Figure 4.60 shows for each final state, the first PDF of the signal likelihood eq. 4.39,
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FIGURE 4.56: MC and the smoothed PDF distributions of the domi-
nant qq→ ZZ process projected to the m4l dimension, in the 4µ, 2µ2e,

4e, and 2e2µ final states.

Also, the width of the DCB, σDCB, is parametrised as a function of σ4l , which re-
flects the per-event resolution. As the detector response varies per event, e.g. from
the different channels, since electrons and muons are not reconstructed with the
same precision, not all quadruplets are measured with the same resolution. In fact,
σDCB(σ4l) is analytically difficult to estimate, therefore, a quantile regression neural net-
work (QRNN) is used to predict the per-event resolution. The same tools described
for the D4l discriminant are used for the training, namely KERAS [93] and TENSOR-
FLOW [94]. The input variables are the individual lepton kinematics as well as the
constrained pT,4l and its uncertainties. The QRNN is trained such that the resolu-
tion on m4l in MC, |mconstr.

4l −mgen
4l |, is targeted. Figure 4.58 shows the observed σDCB

distribution and that predicted by the QRNN using the side-band CRs. These are
defined within 105 < m4l < 115 GeV and 130 < m4l < 160 GeV, which as mentioned
before are enriched in the irreducible ZZ background events and have a negligible
signal contribution. Clearly, the data/MC comparison shows a good agreement.
Figure 4.59 shows for each final state, the first PDF of the signal likelihood eq. 4.39,
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FIGURE 4.58: Fitted µ vs mH from fitting a DCB model to MC mass
points for the 4µ (top left), 4e (top right), 2µ2e (bottom left), and 2e2µ
(bottom right) final states. There is a strong linear relationship, how-

ever the slope is not exactly 1 in each case.
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FIGURE 4.59: The observed and predicted by the QRNN sDCB dis-
tribution using the side-band CRs, corresponding to 105 < m4l < 115

GeV and 130 < m4l < 160 GeV.
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ever, the slope is not exactly 1 in each case.
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FIGURE 4.58: The observed σDCB distribution and that predicted by
the QRNN using the side-band CRs, corresponding to 105 < m4l < 115

GeV and 130 < m4l < 160 GeV.
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Ps(m4l |D4l , σ4l , mH) , described by a DCB eq. 4.41, with its mean µDCB and width
σDCB parametrised as a function of D4l , σ4l and mH. Both distributions are nor-
malised to unity for the comparison. Across all channels, the fitted DCB appears to
match the signal MC closely. The second PDF, Ps(D4l |mH), is obtained by morphing
signal templates through interpolation from the ggH, VBF and VH MC at differ-
ent mass points. Figure 4.60 shows in each final state the original and interpolated
Ps(D4l |mH) PDFs for the different mass points. Furthermore, the normalisation for
the signal model is obtained from the likelihood fit, where it is taken as freely float-
ing parameter in each decay channel.
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Figure 4.60 shows for each final state, the first PDF of the signal likelihood eq. 4.39,
Ps(m4l |D4l , s4l , mH) , described by a DCB eq. 4.41, with its mean µDCB and width
sDCB parametrised as a function of D4l , s4l and mH. Both distributions are nor-
malised to unity for the comparison. Across all channels, the fitted DCB appears to
match the signal MC closely. The second PDF, Ps(D4l |mH), is obtained by morphing
signal templates through interpolation from the ggH, VBF and VH MC at differ-
ent mass points. Figure 4.61 shows in each final state the original and interpolated
Ps(D4l |mH) PDFs for the different mass points. Furthermore, the normalisation for
the signal model is obtained from the likelihood fit, where it is taken as free floating
parameter in each decay channel.
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FIGURE 4.60: The Ps(m4l |D4l , s, mH) signal model described by a
DCB, with its mean and width parametrised as a function of D4l , s4l
and mH , 4µ (top left), 4e (top right), 2µ2e (bottom left), and 2e2µ (bot-

tom right) final states. Both distributions are normalised to unity.

FIGURE 4.59: The Ps(m4l |D4l , σ, mH) signal model described by a
DCB, with its mean and width parametrised as a function of D4l , σ4l
and mH , 4µ (top left), 4e (top right), 2µ2e (bottom left), and 2e2µ (bot-

tom right) final states. Both distributions are normalised to unity.
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4.9 Systematic uncertainties for the mass measurement

On top of the statistical uncertainties governed by the size of the data, all relevant
theoretical and experimental systematic uncertainties are taken in account, which
originate from choices and assumptions made for the measurement, which reflect
the limitations of the strategy. Typical sources of systematics are from theoretical as-
sumptions in MC, reconstruction and calibration of physics objects, data-driven and
prediction methods to adjust shape variables, but also models used to describe sig-
nal and background distributions. For the likelihood model, two systematic sources
can be distinguished; a category impacting the expected number of events, and an-
other affecting the shape of the signal and background PDFs.

In this analysis, normalisation systematics have a negligible impact on the measure-
ment, since the parameter of interest is the mass of the Higgs boson, as opposed
to a cross section measurement. These are included in the model where the sys-
tematics on the normalisation weights of each MC number of events are varied up
and down by one σsys in each decay channel. Similarly, two models are obtained
from varying the shape systematics of the MC distributions. In the case of the sig-
nal PDF Ps(m4l |D4l , σ4l , mH), the nominal DCB is refitted to the varied signal MC
distributions, allowing the mean and the width of the DCB to float, while the other
parameters are fixed to their nominal values. For Ps(D4l |mH) in the signal likeli-
hood and the background PDF Pb(m4l , D4l), all systematics affecting the shape are
included and taken into account in the morphing procedure of the PDFs.

The main sources of systematics in this analysis come from those of the leptons.
Systematic uncertainties associated to the muon momentum scale and resolution are
taken into account [82], which originate from the calibration of their tracks. These af-
fect the shape of the signal and background models. Figure 4.61 shows the impact of
the muon momentum scale on the m4l and D4l distribution for signal and ZZ back-
ground including all channels. For the signal m4l distribution, the difference in the
mean is of the order of 11-16 MeV, while changes in the flat background distribution
are negligible. Changes on the D4l distributions of both signal and background are
negligible. Analogously, the electron energy scale and resolution systematic uncer-
tainties are also taken in account [50], which are mainly from the calibration of EM
energy clusters and correction to the data resolution. Figure 4.62 shows the impact
of this on the m4l and D4l distributions for signal and ZZ background including all
channels. Similarly to muon systematics, the background distributions are negligi-
ble, while a shift of 22 MeV in the signal m4l mean is observed.

Other experimental sources of systematic uncertainties originating from the inte-
grated luminosity recorded by ATLAS [41], pile-up reweighing [41], and the lepton
reconstruction, identification and isolation efficiencies [82] [50] are also considered,
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FIGURE 4.62: The impact of the muon momentum scale on the m4l
and D4l distributions for signal and ZZ background including all

channels.

however, these are found to have a limited effect overall, with a negligible impact
on the signal model. Typically, theoretical uncertainties affect predominantly the
normalisation and expected yield of the different MC processes. Given the accu-
racy at which the cross section of each process in MC is calculated (mentioned in
section 4.3.2), an uncertainty is attributed to account for the next leading order not
included in the calculation. In this analysis, theoretical uncertainties have a slightly
larger impact on the D4l than the m4l distribution. Furthermore, additional theoret-
ical uncertainties are assigned to the dominant qq̄ ! ZZ MC. These are obtained
from comparing different generators, where their difference is taken as a systematic
variation. Table 4.2 shows the leading sources of systematic uncertainties and their
impact on the uncertainty of the mass measurement.
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FIGURE 4.61: The impact of the muon momentum scale systemat-
ics on the m4l and D4l distributions for signal and ZZ background
including all channels. The ratio plots show the deviation from the

nominal distributions after varying the systematics with ±1σ.

however, these are found to have a limited effect overall, with a negligible impact
on the signal model. Typically, theoretical uncertainties affect predominantly the
normalisation and expected yield of the different MC processes. Given the accu-
racy at which the cross section of each process in MC is calculated (mentioned in
section 4.3.2), an uncertainty is attributed to account for the next leading order not
included in the calculation. In this analysis, theoretical uncertainties have a slightly
larger impact on the D4l than the m4l distribution. Furthermore, additional theoret-
ical uncertainties are assigned to the dominant qq̄ → ZZ MC. These are obtained
from comparing different generators, where their difference is taken as a systematic
variation. Table 4.2 shows the leading sources of systematic uncertainties and their
impact on the uncertainty of the mass measurement.
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FIGURE 4.63: The impact of the electron energy scale on the m4l and
D4l distributions for signal and ZZ background including all chan-

nels.

Systematic Uncertainty Impact (MeV)
Muon momentum scale 28

Electron energy scale 19
Theoretical 14

TABLE 4.2: Impact of the leading systematic uncertainties on the mass
measurement.
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TABLE 4.2: Impact of the leading systematic uncertainties on the mass
measurement.

Systematic Uncertainty Impact (MeV)
Muon momentum scale 28

Electron energy scale 19
Theoretical 14
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4.10 Measurement of the Higgs boson mass

4.10.1 Data and MC comparisons in the signal region

After performing the same event selection in data, Table 4.3 shows the number of
observed events in data compared to the expected MC events for the previously
discussed processes. The observed results are overall in agreement with the expec-
tations. Figure 4.63 shows the all channel inclusive measured m4l distribution in
data compared to the expected distributions from MC simulation for signal, ZZ∗,
and tXX and VVV, and the data-driven estimated Z+jets and tt̄. The uncertainty
band includes the statistical and systematic uncertainties on the expectation. Figure
4.64 shows the same comparison in the four individual decay channels. In Appendix
B.5, D4l and σ4l distributions in data are shown compared to those from MC.

TABLE 4.3: The expected contribution of the different processes and
observed number of events in the SR for m4l ∈ [105, 160] GeV range.

Final Higgs qqZZ ggZZ Reducible tXX
Total Observed

state (mH = 125 GeV) background VVV

4µ 81± 5 119± 6 5.1± 3.3 7.4± 0.5 3.4± 0.4 215± 9 217
2e2µ 56.0± 3.3 80± 4 3.4± 2.2 8.8± 0.6 2.40± 0.22 151± 6 169
2µ2e 43.1± 3.1 61± 4 2.9± 1.8 9.3± 1.6 2.27± 0.29 119± 6 115
4e 38.9± 2.9 53± 5 2.7± 1.7 7.5± 1.0 2.11± 0.25 104± 6 103
Total 219± 13 313± 19 14± 9 33.5± 2.9 10.2± 1.0 589± 25 604

4.10.2 The Higgs boson mass fit

As mentioned in section 4.8, the extended likelihood is used to perform the mea-
surement of mH. Given the observed number of events in each decay channel, the
nuisance parameters describing the shape and normalisation systematic uncertain-
ties and the previously described PDFs for the signal and background likelihoods,
the extended likelihood used for the Higgs boson mass mH fit is constructed as,

L (mH |x, θ) = ∏
c

Pois
(

Nobs
c |Nexp

c (mH, µc, θ)
)
×

{
events

∏
i

µc · Nexp
S,c (mH, θ) PS,c(m4l |D, σ, mH, θ) · Ps,c(D|mH, θ) +

bkgs

∑
c

Nexp
B,c (θ) PB,c (m4l , D|θ) }, (4.42)

with Nobs
c the number of observed events in decay channel c, θ represents the nui-

sance parameters for the systematic uncertainties, Nexp
s,c and Nexp

b,c the expected num-
ber of events in signal and background in decay channel c, which is given by the
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FIGURE 4.63: The measured m4l distribution in data (black points) is
shown compared to the expectation, taken from MC simulation for
signal, ZZ∗, and tXX and VVV, and from the data-driven estimate
for Z+jets and tt̄. The uncertainty band includes the statistical and

systematic uncertainties on the expectation [1].

sum of the number of events in each of the individual processes,

Nexp
c (mH, µc, θ) = µc · Nexp

S,c (mH, θ) +
bkgs

∑
b

Nexp
b,c (θ), (4.43)

with bkgs denoting all background processes and µc the signal strength in the corre-
sponding decay channel. The best estimate of the Higgs boson mass can be fitted by
maximising the following profile likelihood ratio,

λ(mH) =
L
(
mH, ˆ̂θ(mH)

)

L
(
m̂H, θ̂

) . (4.44)

where ˆ̂θ represents the values of θ that maximises L for a given fixed value of mH, re-
ferred to as the conditional maximum-likelihood estimator of θ. On the other hand,
m̂H and θ̂ are the estimates of the parameters mH and θ that maximise the likeli-
hood unconditionally. Equivalently, for convenience the test statistic q(λ) = −2lnλ

is used instead to find the best estimate of mH that minimises this function. The ex-
traction of the mH estimate is obtained from a simultaneous profile likelihood fit in
the four decay channels in the m4l spectrum, corresponding to a range from 105 to
160 GeV. In each of these fits, the mH, the signal and background normalisation, and
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FIGURE 4.64: The measured m4l distribution in data is shown com-
pared to the expectation for each final state channel, taken from MC
simulation for signal, ZZ∗, and tXX and VVV, and from the data-
driven estimate for Z+jets and tt̄. The uncertainty band includes the

statistical and systematic uncertainties on the expectation [1].

the nuisance parameters associated to the systematics are free parameters.

4.10.3 The Higgs boson mass results

Finally, after performing a simultaneous maximum-likelihood fit in the four H →
ZZ → 4l± final states in the m4l ∈ [105, 160] GeV range, the resulting mH estimate
reads,

mH = 124.99± 0.18 (stat.)± 0.04 (syst.) GeV, (4.45)

where the estimation of the statistical uncertainty is obtained by constraining the
nuisance parameters to their best-values, while keeping the other parameters uncon-
strained. Given the total uncertainty, an upper bound on the systematic uncertainty
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FIGURE 4.65: The m4l data distribution from all decay channels com-
bined (black points) along with the fit result (red curve). The back-
ground component of the fit result is shown separately with the red-

shaded area [1].

is calculated by subtracting the statistical uncertainty as follows,

σmH
sys =

√
(σmH

total)
2 − (σmH

stat)
2. (4.46)

The total uncertainty measured is found to be 0.19 GeV, and is dominated by the
statistical uncertainty. Figure 4.65 shows the m4l data distribution from all decay
channels combined, along with the resulting fitted curve. The background contri-
bution from the fit result is also shown separately with the red-shaded area. The
fitted normalisation factors are all found compatible with predictions from the SM.
Furthermore, mH is also fitted in the individual final states. The latter comparison
for the individual decay channels is shown in Figure 4.66, where a relatively good
agreement is observed despite the low number of events. Figure 4.67 (A) shows
the profile likelihood functions of each decay channel along with the combined-fit
profile likelihood. The horizontal dashed line indicates the location of the 1-σ un-
certainty. The fit results obtained in each final state are shown in Figure 4.67 (B)
together with the combined result. The total statistical and systematic uncertainty
is also given for each measurement, where channels are ordered in decreasing un-
certainty. The vertical dashed line indicates the combined result, with the grey band
corresponding to its total uncertainty. The fit results on the mH value from the in-
dividual decay channels are all found to be in agreement and consistent with the
combined results.
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FIGURE 4.66: The m4l data distribution in each decay channel (black
points) along with the fit results (red curve). The background compo-
nent of the fit result is shown separately with the red-shaded area [1].

4.10.4 Run-1 & Run-2 combined results of the Higgs boson mass

Having the measured Higgs boson mass using the Run-2 dataset at 139 fb−1 eq. 4.11,
and the previously measured Higgs boson mass using the Run-1 dataset at 25 fb−1

in the same final states, a combined measurement is performed to obtain a more pre-
cise result. Systematic uncertainties in the two measurements are assumed to be un-
correlated, given differences in the centre-of-mass energy of the datasets, improved
techniques of estimation and theoretical predictions for the Run-2 measurement.
The combined Higgs boson mass result is measured to be,

mH = 124.94± 0.17 (stat.)± 0.03 (syst.) GeV, (4.47)

where a reduction of 10 MeV is observed in both the systematic and statistical un-
certainties. The value is consistent with all measurements across the four decay
channels and the inclusive measurement shown in Figure 4.67 (B). The observed
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FIGURE 4.67: (A) The negative log-likelihood function for the fit in
each final state, and the combined-measurement (black). The solid
curves include the systematic uncertainties, in contrast to the dashed
curves. The horizontal dashed line indicates the location of the 1-
σ uncertainty. (B) The fitted mH results obtained in each final state
together with the combined result. The vertical dashed line indicates

the combined result, and the grey band its total uncertainty [1].

negative log-likelihood function for the Run-1, Run-2 and combined measurement
is shown in Figure 4.68.
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4.11 Summary & Conclusion

As demonstrated in section 1.2.4, the introduction of the Higgs field is crucial to
explain the mass acquisition of the massive Standard Model particles. This could
be explained through the Higgs mechanism with spontaneous symmetry breaking,
from which the existence of a massive scalar boson is predicted, a.k.a. the Higgs bo-
son. The discovery of the latter boson in 2012 by the ATLAS and CMS collaborations
has been a key step in the understanding of the electroweak symmetry breaking,
and another firm confirmation of the Standard Model theory. As mentioned in sec-
tion 1.4, the Higgs boson mass is one of the free parameters of the theory, which to
the best of available knowledge has to be measured empirically. Furthermore, it is
an essential parameter to predict its production cross sections and decay branching
ratios to Standard Model particles.

In this thesis, a measurement of the mass of the Higgs boson, mH, is presented us-
ing proton-proton collision data from the Large Hadron Collider at a centre-of-mass
energy of

√
s = 13 TeV recorded by the ATLAS detector. The dataset corresponds to

the 2015-2018 period of data-taking, and has an integrated luminosity of 139 fb−1.
The mass measurement was performed in the H → ZZ → 4l± final states, a.k.a the
golden decay channels, including muons and/or electrons. As mentioned in section
4.2, despite the relatively low branching ratio, the H → ZZ → 4l± decay channels
are excellent for the mass measurement, due to the high signal over background
ratio and the fully reconstructed final states. In ATLAS, electrons and muons are
reconstructed and identified with high efficiency and precision, resulting in a good
mass resolution and a clean signal signature from these latter final states.

The Higgs boson mass measurement was performed using an unbinned maximum
likelihood fit on the invariant mass of the four reconstructed leptons m4l , passing the
event and object selection 4.4. The signal m4l distribution was analytically modelled
using a double-sided Crystal Ball function, within the range m4l ∈ [105, 160] GeV. On
top of an efficient event selection of Higgs boson candidates and an optimal back-
ground estimation, techniques to reduce the uncertainty on mH were exploited, with
the kinematic Z-mass constraint fit providing the largest gain of up to 19% in the re-
duction of the mH uncertainty, followed by the final state radiation recovery, the use
of neural networks for an additional discrimination between signal and background
events, and a event-based estimation of the uncertainty on mH.

For this measurement, a number of challenges were encountered, namely the under-
estimation of the mH uncertainty and the disagreement between data and simulation
in the di-muon invariant mass spectrum after the Z-mass constraint fit. After inves-
tigation, the uncertainties of the muon track parameters were found mismodelled in
simulation compared to data, which were at the origin of the latter contradictions.



166 Chapter 4. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

Moreover, the most prominent impact was found to originate from the muon track
momentum uncertainties σq/p, since the latter quantity is directly propagated for the
estimation of the mH uncertainty and is crucial for the Z-mass constraint fit. The
calibration of these quantities was found to be a difficult task due to the complex ge-
ometry of the Muon Spectrometer, which disabled the use of trivial correction meth-
ods. This was finally solved by developing a non-parametric bias-correction method
based on quantile mapping. After the calibration of the muon track momentum un-
certainties, the constrained di-muon invariant mass was restored and the estimation
of the mH uncertainty was improved, which was initially underestimated.

Finally, the Higgs boson mass using the ATLAS Run-2 dataset in the H → ZZ → 4l±

was measured to be,

mH = 124.99± 0.18 (stat.)± 0.04 (syst.) GeV,

with on top of this result, a combined measurement using the the ATLAS Run-1 and
Run-2 datasets being performed, resulting in the best measurement of the Higgs
boson mass performed by the ATLAS experiment,

mH = 124.94± 0.17 (stat.)± 0.03 (syst.) GeV.

Both measurements are consistent with all previously measured values, summarised
in section 4.1. These results were published and can be found in [1]. Furthermore,
the latest measurement of the Higgs boson cross section times the branching ratio for
the H → ZZ → 4l± decays was found to be 1.34± 0.12 pb [108], which is consistent
with the Standard Model predicted value of 1.33 ± 0.08 pb [25], assuming mH =
125 GeV. As the latter assumption is consistent with the mass measurements in this
thesis, both results provide a confirmation of the Standard Model prediction.
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Chapter 5

Study of Effective Field Theory
operators modifying electroweak
quartic gauge couplings in γγ→ 4`
events using

√
s = 13 TeV

proton-proton collision events
recorded by the ATLAS detector

5.1 Introduction to photon-induced physics at the LHC

The Standard Model electroweak sector is rich in phenomenology of gauge-boson
interactions. Many of these predicted processes have been observed, however, a
number are still undiscovered. These are often rare processes which are difficult to
produce in the current experimental facilities. Among others, photon-induced pro-
cesses, where two initial photons interact with each other, are extremely rare due
to their small cross section in combination with the associated experimental chal-
lenges. Since there are no efficient ways to produce beams of photons with a high
enough energy (the most powerful current lasers typically produce photons at the
MeV scale) to probe the electroweak scale, such processes can be only measured
in lepton and hadron colliders, in events where the accelerated charged particles
emit high energy photons. Using the Equivalent Photon Approximation [90], where
the Lorentz contracted electromagnetic field of an ultrarelativistic charged particle
is approximated by photons moving in parallel with the latter particle, it is possi-
ble to predict the cross section of photon-induced processes using charged particle
colliders such as the LHC. In the SM, di-photon vertices are not allowed in QED in-
teractions, and thus photons do not interact directly. Nevertheless, the interaction
can happen indirectly, e.g. through a virtual fermion loop.
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There is one electroweak interaction where photons do interact directly. Recently,
the observation of photon-induced production of a W boson pair, γγ → WW, was
reported [99], using 139 fb−1 of LHC proton-proton collision data taken at

√
s = 13

TeV recorded by the ATLAS experiment during the years 2015-2018. The measure-
ment was performed in the leptonic channels of the W bosons, WW → eνµν, where
only events with an electron and a muon of opposite electric charge were selected
(the same lepton-flavour channels are dominated by the γγ → l+l− process). To
suppress the quark and gluon-induced WW production, which is by far the most
dominant process for the latter production, the measurement is performed by se-
lecting events where the interaction vertex is free from additional charged particle
tracks. Within a fiducial volume corresponding to the acceptance of the ATLAS de-
tector and the analysis event selection, the cross section was measured to be 3.13 ±
0.31 (stat.) ± 0.28 (syst.) fb. This value was found to be in agreement with the SM
prediction.

FIGURE 5.1: The leading order Feynman diagrams of the γγ → WW
process through triple and quartic self-interactions.

In fact, photon-induced processes offer a unique way to probe the electroweak sector.
For instance, the γγ → WW process involves triple and quartic self-interactions of
the electroweak bosons at leading order, and is a direct test of the electroweak gauge
structure of the SM. Figure 5.1 shows the Feynman diagrams of the γγ → WW
process through triple and quartic self-interactions. Such processes are sensitive to
anomalous gauge-boson interactions, which can serve as a basis for interpretations
of BSM trilinear and quartic gauge couplings. After a successful measurement of
the γγ → WW process, one can explore other photon-induced processes sensitive
to anomalous gauge-boson interactions, or putting a stronger affirmation on the SM
predictions. In this chapter, a MC simulation study based on Run 2 data is presented,
where possible BSM contributions from the photon-induced four lepton production
(discussed in the next section) are investigated in the context of the SMEFT.

5.2 The photon-induced four-lepton production.

Another possible photon-induced process is the production of four leptons, γγ →
4l±, with the same final state signature as the H → ZZ → 4l± process discussed
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in the previous chapter . It is tempting to think that the four leptons would origi-
nate from a pair of Z/γ∗ bosons, however, neutral gauge boson self-interaction cou-
plings are not predicted in the SM. Figure 5.2 shows Feynman diagrams of the SM
photon-induced four lepton production through QED vertices. In BSM scenarios,
there could be additional diagrams where the production proceeds through neutral
gauge couplings. Therefore, measuring the γγ → 4l± process, can serve as a di-
rect test of the SM. Figure 5.3 shows possible tree-level BSM contributions to the
γγ→ 4l± process through triple and quartic neutral gauge-boson vertices. The grey
circles represent anomalous gauge couplings in which new heavy particles can con-
tribute in the interaction. In the next section, the strategy for measuring the photon-
induced γγ→ 4l± process is briefly discussed.

FIGURE 5.2: The tree-level Feynman diagram of the SM photon-
induced four lepton production process.

FIGURE 5.3: Feynman diagrams of possible BSM triple and quar-
tic neutral gauge-boson interactions involved in the photon-induced

four lepton production.

5.2.1 Event selection of the γγ→ 4l± process.

In general, the γγ → 4l± event selection follows the exact same strategy used in
the γγ → WW analysis [99]. The main differences are in the lepton kinematic re-
quirements and the vertex calculation, which is based on four leptons instead of two.
Moreover, the four lepton quadruplet selection is very similar to the H → ZZ → 4l±
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analysis (described in section 4.4). Similarly, the final state particles considered are
electrons and muons. There are three decay channels corresponding to the com-
bination of all the SFOS leptons, defining the quadruplet. Four-lepton events are
triggered by a list of di-, and tri-lepton triggers, which can found in Appendix B.
Both leptons are required to pass the loose identification criteria and the isolation
requirements discussed in section 4.4. Given the rarity of the process, a very low
pT-threshold is used, muons and electrons are preselected if their pT exceeds, re-
spectively, 3 GeV and 4.5 GeV. For the η range considered, electrons are selected
within |η| < 2.47 and muons within |η| < 2.7.

The major difference with the H → ZZ → 4l± analysis is the so-called exclusivity
requirement, where events are required to have no additional reconstructed charged
particle tracks in addition to those from the four leptons in vicinity of the quadru-
plet vertex. Moreover, using the primary vertex selection from section 1.4 results in
a significant loss of events. Therefore, the definition of the vertex is customised such
that only tracks associated to reconstructed leptons are used, while selecting only
vertices associated to the latter tracks. The weighted average position of the leptons
is calculated as,

z4l
vtx =

zl1sin2θ1 + zl2sin2θ2 + zl3sin2θ3 + zl4sin2θ4

sin2θ1 + sin2θ2 + sin2θ3 + sin2θ4
(5.1)

with θ the angle between the lepton and the beam axis. The sinθ is used as an approx-
imation of the z resolution of the lepton. After an MC study, an optimal window size
of ∆z = ±1 mm, centred at z4l

vtx is chosen where zero additional tracks are required.

Candidate events from the γγ → 4l± process are identified by the presence of at
least four leptons passing the preselection described above. Events are then selected
if at least two SFOS pairs can be formed given the preselected leptons. If there are
more than two pairs, the pair with an invariant mass closest to the Z-boson mass are
chosen. Consequently, the closest pair to the Z mass is tagged as the leading pair,
and the second the subleading pair. In order to veto J/ψ events, the invariant mass
of all possible SFOS pairs is required to have mll > 5 GeV. Given the two SFOS pairs,
a quadruplet is formed. Analogously to the H → ZZ → 4l± analysis, there are four
possible quadruplets when discriminating the pairs based on their invariant mass,
namely 4e, 4µ, 2e2µ and 2µ2e. In addition to the previous kinematic cuts, the leading
lepton in pT in the leading pair is required to have a pT > 15 GeV, and the second
leading lepton in pT (not necessarily from the leading pair) pT > 10 GeV.

Background processes to the γγ → 4l± process are the same as those of the H →
ZZ → 4l± process, where the latter is also a background process to the former. In
contrast with the H → ZZ → 4l± measurement, the irreducible and reducible back-
ground contributions are all estimated from the MC simulation. Figure 5.4 shows the
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distribution of the number of reconstructed tracks excluding those from the quadru-
plet, ntrk, within a ±1mm range around the vertex, in data and MC. The ntrk = 0
bin is the SR for γγ → 4l± measurement and is therefore blinded. Analogously
to the H → ZZ → 4l± measurement, the ZZ continuum is by far the most domi-
nant process, while other background sources have very small contributions. Good
agreement between data and MC is observed in the ntrk > 0 bins. From the SR in-
cluding all final states, 8.9 ± 3.0 (statistical uncertainties only) SM signal events are
expected from MC, and 8.2 ± 2.9 background events. Figure 5.5 shows the invariant
masses of the quadruplet m4l and the leading pair m01 in the ntrk > 0 CR for data
and MC. Despite a very low number of events, the agreement is relatively stable,
reflecting a relatively good background modelling. Figures 5.6 and 5.7 show, re-
spectively, the MC distribution of the same kinematic variables (and the sub-leading
pair invariant mass) and the pT distributions of the four individual leptons in the
SR. In general, one can conclude that the photon-induced signal has a non-resonant
behaviour, which follows the background distribution closely. From the individual
pT distributions of the four leptons, it is clear that keeping the pT threshold low
has the benefit of increasing the signal acceptance. Finally, the measurement of the
γγ→ 4l± process is still a work in progress, with as its main goal the optimisation of
the event selection and the increase of the signal over background ratio. Therefore,
data events in the SR remain blinded for the rest of this chapter.

FIGURE 5.4: The number of reconstructed track distribution, ntrk, in
data and MC. The ntrk = 0 is the SR and is therefore blinded. Good

agreement between data and MC is observed in the ntrk > 0 bins.
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FIGURE 5.7: The signal and background MC pT distribution of the
individual leptons in the ntrk = 0 SR.
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5.3 Effective Field Theory study of anomalous quartic gauge-
couplings using the γγ→ 4l± process.

In this MC simulation study, BSM contributions from anomalous quartic gauge-
couplings to the γγ → 4l± production are investigated in the framework of the
Standard Model Effective Field Theory (SMEFT). As mentioned in section 1.5, one
can write the effective Lagrangian parametrising in higher dimension operators Oi

(d > 4) effects of some unknown BSM physics at mass scale Λ characterising the
energy scale at which the new physics is expected to be relevant,

LEFT = LSM +
∞

∑
d=5

∑
i

c(d)i

Λd−4
i

O
(d)
i , (5.2)

where BSM effects are encoded in the expansion of 1/Λ, and a Wilson coefficient ci

is associated to each operator. Odd dimension operators involve couplings that do
not preserve the lepton and baryon number conservation. Therefore, in this study
these operators are neglected. Consequently, the leading terms in the SMEFT after
the SM Lagrangian have operators of dimension 6 (and of the order O(Λ−2)),

L ′
EFT = LSM + ∑

i

c(6)i
Λ2 O

(6)
i + ∑

j

c(8)j

Λ4 O
(8)
j + ... , (5.3)

while the associated cross section contribution of each term can be expressed as,

σ′EFT = σSM + ∑
i

(
c(6)i
Λ2 a(6×SM)

i + h.c.

)
+ ∑

ij

c(6)i c(6)∗j

Λ4 b(6×6)
ij

+∑
i

(
c(8)i
Λ4 a(8×SM)

i + h.c.

)
+ ∑

ij

c(8)i c(8)∗j

Λ8 b(8×8)
ij + ... , (5.4)

with the first and third sum including terms with contributions from the interfer-
ence between SM and higher dimension BSM operators, while pure BSM terms are
included in the second and the fourth sum. The former and the latter terms are, re-
spectively, linear and quadratic in the Wilson coefficients. Moreover, in this study
one is only interested in operators affecting quartic vertices without interference
from di- and triple gauge couplings. The lowest dimension operators satisfying this
condition are of dimension 8 and of the order O(Λ−4) in the expansion. These op-
erators are relevant to interactions including the Higgs boson and the gauge bosons
at tree level, and conserve charge-conjugation and parity. Based on the number of
gauge boson field strength tensors the operators contain, these are classified into
three groups, namely M-, T- and S-operators. The expression of all operators (18
in total) in terms of the gauge bosons field strength tensors and/or the covariant
derivatives of the Higgs field can be found in Appendix C.1. Since photons do not
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couple directly to the Higgs boson and S-operators contain only covariant deriva-
tives of the Higgs field, the γγ→ 4l± process is not sensitive to this class of operators
which are therefore omitted in this study. Table 5.1 shows the different operators,
and which of the different quartic electroweak gauge-boson vertices they affect. For
example, ZZAA refers to a quartic vertex including the interaction of two Z bosons
and two photons, represented with A. Comparing the two classes, the T-operators
appear to be sensitive to more neutral gauge-boson vertices. It should be noted that
the T8 and T9 exclusively affect neutral gauge-boson vertices, to which the γγ→ 4l±

topology is the most sensitive.

TABLE 5.1: The different EFT dimension 8 operators and which of the
different quartic EW gauge-boson vertices they impact. A represents

a photon

WWWW WWZZ ZZZZ WWAZ WWAA ZZZA ZZAA ZAAA AAAA
S0, S1, S2 X X X - - - - - -

M0, M1 , M7 X X X X X X X - -
M2, M3, M4, M5 - X X X X X X - -

T0, T1, T2 X X X X X X X X X
T5, T6, T7 - X X X X X X X X

T8, T9 - - X - - X X X X

Following this classification, while taking into account the sensitivity of the γγ →
4l± process, eq. 5.3 can be written as a function of the relevant M- and T-operators1,

L γγ→4l±
EFT = LSM +

7

∑
i=0,i 6=6

fMi

Λ4 OMi +
9

∑
j=0,j 6=3,4

fTj

Λ4 OTj . (5.5)

The total EFT cross section can be then expressed as a linear combination of the SM
cross section, the linear BSM-SM interference terms and quadratic BSM terms,

σ
γγ→4l±
EFT = σSM + ∑

i

c(8)i
Λ4 ai + ∑

ij

c(8)i c(8)j

Λ8 bij, (5.6)

where ci the Wilson coefficients corresponding to the M- or T-operators, which are
assumed to be real. In the SMEFT, the Wilson coefficients as well as the new physics
energy scale Λ are both free parameters that have to be determined. Therefore, in
the next sections the value of the ci/Λ4 ratio is considered as one fit parameter. In
this analysis, the contribution to each operator is investigated separately without
interference, i.e. one coefficient is considered at a time while terms with i 6= j in
eq. 5.6 are set to zero. In this case, the total EFT cross section is simplified to the
computation of the SM, the linear and quadratic term of a specific operator. Using
the generator MADGRAPH5_AMC@NLO [70, 71], one can compute for the γγ →
4l± process the linear and quadratic terms separately of the total cross section for a
given value of ci/Λ4, from which the coefficients ai and bii can be derived from the
generator to determine the quadratic function σEFT(ci/Λ4). Moreover the derivation

1The Wilson coefficient ci of a specific operator is always denoted with foperator.
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of these coefficients can be found in Appendix C.2. The coefficients ai and bii for all
M- and T-operators calculated for the 2e2µ final state can be found in Table C.2.
For the BSM contribution, the EFT model used to generate the linear and quadratic
contributions can be found in [100]. As an example, Figure C.2 shows the value of
linear and quadratic terms of the effective cross section (eq. 5.6) as a function of
fT8/Λ4.

5.3.1 Expected exclusion limits on the Wilson coefficients.

In general, searches for new phenomena can lead to two scenarios: a discovery,
where the SM only hypothesis is falsified by the disagreement with data, and there-
fore some new physics has to be taken in account to explain the difference; or, if the
data is found to agree with the SM predictions, one can use this result for exclusion
limits. This information can serve as a roadmap for theorists and experimentalists to
avoid in their new physics searches regions (e.g. in some phase space) that have al-
ready been explored and excluded. These results are typically quantified with upper
and lower exclusion limits. For example, an upper exclusion limit can be interpreted
as; If new unknown physics affects the considered topology, the resulting rate must
be below the estimated exclusion limit for the given phase space (e.g. the centre-of-
mass energy).

Given the total effective cross section σEFT(ci/Λ4), one can estimate exclusion limits
on the various dimension-8 operators. This can be achieved by predicting the SM
signal and background yield for the γγ→ 4l± process. Given the uncertainties, one
can estimate the maximum number of BSM yield that would still be compatible with
an SM only hypothesis. Considering eq. 4.2 relating the number of expected events,
Nexp, to the cross section σBSM(ci/Λ4), given a value of ci/Λ4,

Nexp = σ(ci/Λ4)LAε, (5.7)

one can derive expected exclusion limits on the ci/Λ4 values given Nexp that would
be still consistent with SM only hypothesis. From this estimation, the most sensitive
operators to the γγ → 4l± process can be identified. Combining eq. 5.6 and eq. 5.7,
ci/Λ4 is related to the number of expected BSM events NBSM as,

ci/Λ4 =
−ai ±

√
a2

i + 4biiNBSM/LAε

2bii
. (5.8)

In this study, MC samples with reconstructed events for the BSM contribution are
lacking. As a consequence, the event selection efficiencies ε cannot be measured,
only MC samples with generator level information are used as input. In combination
with the calculated BSM cross sections using MADGRAPH5_AMC@NLO [70, 71],
generator-level events are simulated using PYTHIA8 [74]. Assuming an equivalent
reconstruction of SM and BSM events, the event selection efficiencies ε are taken
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from SM to approximate the expected number of reconstructed BSM events. Based
on this assumption and the predicted number of SM events, expected exclusion lim-
its on the ci/Λ4 values are estimated using a profile likelihood fit. The likelihood is
built from the Poisson PDFs of the expected BSM signal and events predicted in the
SM2 events, and instead of the observed number of data events, the total estimated
SM yield is input. The following likelihood is constructed for each operator,

L(NSM|ci/Λ4) = Pois(NSM|NSM + NBSM(ci/Λ4)), (5.9)

where no systematic uncertainties are taken into account. The exclusion limits on
the ci/Λ4 value are obtained using the so-called p-value, which represents the prob-
ability of measuring a result that is of equal or greater incompatibility with the BSM
hypothesis. A conventional p-value of 0.05 is used in BSM searches to exclude the
signal hypothesis which corresponds to a statistical significance level of 95%. Re-
sults for the ci/Λ4 expected limits of each operator, corresponding to the latter con-
fidence level, are shown in Figure 5.8, where the negative log-likelihood scan of the
profile likelihood test statistic is plotted as a function of ci/Λ4. The first (lowest) and
second horizontal lines indicate the exclusion limits at, respectively, 68% and 95%
confidence level. Table 5.2 summarises the values for each operator. Comparing the
exclusion limits of the two classes, the T-operators are clearly the best constrained
using the γγ → 4l± process. This is expected from Table 5.1, where the T-operators
modify more neutral gauge-bosons couplings, to which the γγ → 4l± topology is
the most sensitive. Furthermore, considering the order of magnitude of the exclu-
sion limits, and the corresponding ai and bii coefficients in eq. 5.6 in Table C.2, one
can conclude that the BSM contribution to the effective cross section is completely
dominated by the quadratic terms, where the contribution from the linear terms is
negligible.

2The SM γγ→ 4l± process is also considered as background to the BSM signal.
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FIGURE 5.8: The negative log-likelihood scan of the profile likelihood
test statistic as function of ci/L4. The first (lowest) and second hori-
zontal line indicates the exclusion limits at, respectively, 68% and 95%

confidence level.
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TABLE 5.2: Expected lower and upper limits on ci/Λ4 values of the
various EFT operators corresponding to those shown in Figure 5.8.

Exclusion limits on ci/Λ4 (TeV−4)
fM0/Λ4 [ -96 , 95.5 ]
fM1/Λ4 [ -370 , 374 ]
fM2/Λ4 [ -15 , 14.5 ]
fM3/Λ4 [ -57 , 57.0 ]
fM4/Λ4 [ -53 , 52.7 ]
fM5/Λ4 [ -100 , 103 ]
fM7/Λ4 [ -750, 747 ]
fT0/Λ4 [ -8.1, 8.04 ]
fT1/Λ4 [ -8.1 , 8.06 ]
fT2/Λ4 [ -17 , 16.9 ]
fT5/Λ4 [ -3.9 , 3.91 ]
fT6/Λ4 [ -6 , 6.03 ]
fT7/Λ4 [ -16 , 16.4 ]
fT8/Λ4 [ -1.3 , 1.28 ]
fT9/Λ4 [ -2.7 , 2.67 ]



180 Chapter 5. EFT study of operator modifying EW quartic vertices in γγ→ 4`

5.3.2 Comparison of kinematic distributions between Standard Model
and effective operators

Results from Table 5.2 were computed using the overall number of expected events.
However, binning these events as a function of some quantity can improve the sig-
nal sensitivity. Similarly to section 3.2.4, differences in distributions of discriminat-
ing kinematic variables between SM and BSM can be used to improve exclusion
limits. Therefore, potential discriminating variables are studied in SM and BSM dis-
tributions. First, kinematic variables of the leptons, namely pT, η and φ, are com-
pared between the SM and BSM contributions from a specific operator. Figures 5.9
and 5.10 show a comparison of these latter quantities for each of the four leptons
at generator-level, for the SM γγ → 4l± and the corresponding BSM contribution
from the M0 and T0 operators as an example. The latter distributions are normalised
to correspond to an integral of 6.7 events, corresponding to the maximum number
of BSM events that would still be compatible with an SM only hypotheses, while
the SM signal distribution is normalised 8.9 events (the expected number of events
from reconstructed events). From Figures 5.9 and 5.10, the pT distribution of leptons
from BSM events is stretched over a larger spectrum while SM events are limited to
approximately 200 GeV leptons. Also leptons from BSM events tend to have more
forward leptons with high |η| values, whereas SM leptons are slightly more central
with small |η| values. In the |φ| spectrum, SM and BSM are relatively similar and
isotropically distributed. Moreover, a comparison in the latter quantities of all opera-
tors in the two classes are compared in Figure 5.11. The M-operators are represented
in blue histograms and the T-operators in red. The distributions are normalised to
the same integral value for the shape comparison. In general, the M-operators show
clear peaks in the forward region with high |η| values, while the T-operators show a
relatively flatter η distribution falling toward the extrema. The pT distributions are
also clearly different in both operators. In the M-operators, the distribution is more
shifted toward higher values, and falls off more rapidly compared to the T-operators,
which also differ in the shape of the spectra. The φ distributions are similar overall.
Furthermore, variables of the four-lepton system are also compared, which are de-
fined as,

• cosθ∗12, a variable sensitive to the polarisation of the decaying particle, with θ∗12

the angle between the negatively charged lepton in the leading di-lepton rest
frame, and the leading lepton pair in the lab frame,

• similarly, cosθ∗34 , with θ∗34 the angle between the negative lepton in the sub-
leading dilepton rest frame, and the sub-leading lepton pair in the lab frame,

• |∆φl1,l2|, the difference in the azimuthal angle between the leading and sub-
leading lepton (in pT) of the quadruplet,

• |∆yZ1,Z2|, the absolute rapidity difference between the leading and subleading
pair,
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• mZ1, the invariant mass of the leading lepton pair in the quadruplet (closest to
the Z mass),

• mZ2, the invariant mass of the subleading lepton pair in the quadruplet,

• m4l , the invariant mass of the quadruplet.

Figures 5.12 - 5.13 show the generator-level kinematic distributions of the latter vari-
ables, for the SM and BSM photon-induced signal, for the M0 and T0 operators as an
example. Following the discussion in section 3.2.4, angular variables appear to have
different shapes comparing SM and BSM distributions, however, they do overlap
for most of the spectra. On the other hand, SM and BSM distributions of invari-
ant mass variables mZ1, mZ2 and m4l show a high discriminating power, where the
overlap between SM and BSM PDFs is minimal. Moreover, a resonant behaviour
is observed in BSM distributions of the di-lepton invariant mass spectra, which en-
hances the signal over background ratio. This latter effect is expected to improve
the constraint on the ci/Λ4 values; the larger the signal over background ratio, the
higher the statistical power to reject the BSM contribution assuming a measurement
in agreement with the SM predictions. Moreover, the comparison of all operators in
the M- and T-operators is also shown in Figure 5.14 for the latter variables. From
this comparison, the distribution of angular variables is more or less similar, except
for the |∆yZ1,Z2| distributions which are different in both classes of operators, with
the M-operators having an obvious second peak at higher values. In the di-lepton
invariant masses, T-operators appear to have larger tails in their distributions, while
M-operators have a more pronounced peak around the Z mass. The m4l spectrum is
also different, the T-operators show a more smeared distribution with a shifted peak
at higher values compared to the M-operators.
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FIGURE 5.9: A comparison of the kinematic distributions for each of
the four leptons at generator-level, for the SM gg ! 4l± and the

corresponding BSM contribution from the M0 operator.
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FIGURE 5.10: A comparison of the kinematic distributions for each
of the four leptons at generator-level, for the SM gg ! 4l± and the

corresponding BSM contribution from the T0 operator.
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FIGURE 5.10: A comparison of the kinematic distributions for each
of the four leptons at generator-level, for the SM γγ → 4l± and the

corresponding BSM contribution from the T0 operator.
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FIGURE 5.11: A comparison of the kinematic distributions for each of
the four leptons at generator-level in all M- and T-operators.
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FIGURE 5.12: A comparison of the distributions of four-lepton kine-
matic variables at generator-level, for the SM gg ! 4l± and the cor-

responding BSM contribution from the M0 operator.
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FIGURE 5.12: A comparison of the distributions of four-lepton kine-
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FIGURE 5.13: A comparison of the distributions of four-lepton kine-
matic variables at generator-level, for the SM gg ! 4l± and the cor-

responding BSM contribution from the T0 operator.
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FIGURE 5.14: A comparison of the distributions of four-lepton kine-
matic variables at generator-level in all M- and T-operators.
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FIGURE 5.14: A comparison of the distributions of four-lepton kine-
matic variables at generator-level in all M- and T-operators.
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5.3.3 Exclusion limits on EFT operators using kinematic distributions

After the SM and BSM comparison of the various kinematic PDFs, the most promis-
ing variables in terms of discriminating power are mZ2 and m4l , which are chosen for
the estimation of the ci/Λ4 exclusion limits. In section 5.3.1, the Poisson likelihood
was constructed from the overall number of expected events for the SM and BSM
contribution. Using the differential distributions in mZ2 and m4l , a binned Poisson
likelihood is used, where the number of events in each bin are Poisson distributed,
thus,

L(NSM|ci/Λ4) = ∏
k

Pois(NSM
k |NSM

k + NBSM
k (ci/Λ4)), (5.10)

with the index k running over the bins of the mZ2 or m4l histogram. Similarly to
section 5.3.1, expected exclusion limits are obtained assuming an SM only hypothe-
sis, where the number of events per bin are obtained from MC of SM reconstructed
events. Due to the lack of BSM MC at reconstruction-level, the number of events per
bin are approximated by,

NBSM,reco
k = NBSM,gen

k × NSM,reco
k

NSM,gen
k

, (5.11)

assuming equivalent efficiency for reconstructed SM and BSM events. Given the
previously estimated low SM number of events, NSM = 17.1± 5.9, using the number
of bins shown in Figures 5.12 - 5.13 would result in a negligible number of events
per bin, leading to large statistical uncertainties. Therefore, the binning is reduced to
have a reasonable number of events per bin in the mZ2 and m4l distributions. Exclu-
sion limits calculated in section 5.3.1 can be regarded as results from a single binned
histogram.

As an example, the mZ2 distribution is divided into two bins, i.e. mZ2 = [0, 100,
200] GeV. For the same p-value used in the exclusion limits shown in Figure 5.8,
the results for the ci/Λ4 value of each operator, corresponding to a 95% confidence
level are shown in Figure 5.15 using the mZ2 spectrum. Compared to the exclusion
limits calculated in Figure 5.8, equivalent to those calculated from a single binned
histogram, results from the two-bins histograms show clearly improved exclusion
limits as expected.
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FIGURE 5.16: The negative log-likelihood scan of the profile likeli-
hood test statistic as function of ci/L4. The first (lowest) and second
horizontal line indicates the exclusion limits at, respectively, 68% and

95% confidence level.
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5.3.4 Bin optimisation for exclusion limits estimation

In the previous section, kinematic distributions with a significant discriminating
power between SM and BSM events were selected that can be used to improve the
constraint on ci/Λ4 values. An example was shown using the mZ2 spectrum in a
binned likelihood to calculate the exclusion limits, where the limits compared to
results obtained in section 5.3.1 were clearly more stringent. In fact, the binning cho-
sen in the latter example was arbitrary, where the spectrum was simply divided into
two equal-sized bins. In order to improve the exclusion limits even further, one can
optimise the binning such that the discriminating power is maximised. For exam-
ple, in the case of the mZ2 distribution (Figure 5.14), it is trivial to see that opting for
two bins is not the optimal choice to exploit the resonant peak at the Z mass value.
Therefore, there are two important parameters to tweak, namely the number of bins
and the bin boundaries, in order to find the optimal configuration which maximises
the constraint of ci/Λ4 values. However, as mentioned in the previous section, it is
important to keep a threshold of number of events per bin, to avoid large statistical
uncertainties. In the two-bins case, Figure 5.16 shows the bin content of the mZ2 (left
plot) and m4l (right plot) bins, as a function of the bin boundary choice, i.e.,

mZ2 = [0, i, 200] GeV,

m4l = [0, i, 1200] GeV,

with i the bin boundary. Also, the statistical uncertainties per bin and the one-event
threshold are shown. The blue-shaded area corresponds to the case where at least
one event is found per bin. Figure 5.17 shows the upper3 exclusion limits for the M0

and T0 operators estimated using the mZ2 and m4l distributions in the two-bins case,
as a function of the bin boundary choice. The yellow horizontal line corresponds
to the best exclusion limit from all two-bins configurations, while the green line for
the best exclusion limit given at least one event per bin. As expected, varying the
bin boundaries has clearly an impact on the estimated exclusion limits. Comparing
the mZ2 (left) and m4l results, the latter shows tighter exclusion limits, however, as
discussed before, the mZ2 case necessitates more than two bins to exploit the reso-
nant behaviour in the BSM case. Having the optimal binning for each spectrum and
operator corresponding to the best exclusion limits in Figure 5.17, a further attempt
to improve the constraint is to consider three-bins spectra, while repeating the pre-
viously mentioned steps. Figure 5.18 shows the upper exclusion limit estimated for
the mZ2 (left plot) and m4l (right plot) distribution in the three-bins case, as a func-
tion of the second bin boundary choice, while fixing the first bin boundary to the
one corresponding to the best exclusion limits in the two-bins case. The top and bot-
tom plots correspond respectively to the M0 and T0 operators. As expected, the mZ2

results improved after adding a third bin around the Z peak, while in the case of the

3In this study, the difference in absolute value of the lower and upper exclusion limits are negligible
across all operators.



5.3. EFT study of operator sensitive to EW quartic vertices in γγ→ 4` 191

m4l , a third bin has no effect. In summary, the latter variable in the two-bins case,
taking in account at least the one event per bin, provides the best exclusion limits,
which are shown in Figure 5.19 and summarised in Table 5.3.
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FIGURE 5.16: The m4l (left) and mZ2 (right) bin content distribution
in the two-bins case as a function of the bin boundary choice. In the

blue-shaded area each bin has at least one event.
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FIGURE 5.17: The upper exclusion limits estimated from the m4l (left)
and mZ2 (right) two-bins distribution, as a function of the bin bound-
ary choice. The top and bottom plots correspond respectively to the
M0 and T0 operators. The yellow horizontal line corresponds to the
best exclusion limit from all two-bins configuration, while the green

line for the best exclusion limit given at least one event per bin.
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FIGURE 5.19: The positive upper exclusion limit estimated for the
mZ2 (left) and m4l (right) distribution in the three-bins case, as a func-
tion of the second bin boundary choice, while fixing the first bin
boundary to the one corresponding to the best exclusion limits in the
two-bins case. The top and bottom plots correspond respectively to

the M0 and T0 operators.
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FIGURE 5.18: The positive upper exclusion limit estimated for the m4l
(left) and mZ2 (right) distribution in the three-bins case, as a function
of the second bin boundary choice, while fixing the first bin boundary
to the one corresponding to the best exclusion limits in the two-bins
case. The top and bottom plots correspond respectively to the M0 and

T0 operators.
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FIGURE 5.20: The negative log-likelihood scan of the profile likeli-
hood test statistic as function of ci/L4. The first (lowest) and second
horizontal line indicates the exclusion limits at, respectively, 68% and

95% confidence level.
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TABLE 5.3: Expected lower and upper limits on ci/Λ4 values of the
various EFT operators corresponding to those shown in Figure 5.19.

Exclusion limits on ci/Λ4 (TeV−4)
fM0/Λ4 [ -41 , 40.6 ]
fM1/Λ4 [ -160 , 159 ]
fM2/Λ4 [ -6.2 , 6.19 ]
fM3/Λ4 [ -24 , 24.2 ]
fM4/Λ4 [ -22 , 22.4 ]
fM5/Λ4 [ -44 , 43.9 ]
fM7/Λ4 [ -320, 318 ]
fT0/Λ4 [ -3.4, 3.42 ]
fT1/Λ4 [ -3.4, 3.42 ]
fT2/Λ4 [ -7.2 , 7.18 ]
fT5/Λ4 [ -1.7 , 1.66 ]
fT6/Λ4 [ -2.6 , 2.57 ]
fT7/Λ4 [ -7, 6.98 ]
fT8/Λ4 [ -0.55, 0.545]
fT9/Λ4 [ -1.1 , 1.14 ]
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5.3.5 Unitarity conserving exclusion limits

As mentioned in section 1.6, an effective field theory is constructed on the basis that
the relevance of some unknown physics is at much larger energies than the consid-
ered scale, such that higher dimension operators are suppressed by factors of 1/Λ.
In the case where the probed energy scale is large enough such that these latter oper-
ators are not suppressed, their corresponding couplings become significant and the
additional content of the UV theory can no longer be neglected. In fact, this can lead
to the violation of the quantum mechanical unitarity. As a consequence, the prob-
abilities associated to interactions are no longer conserved, leading to unphysical
predictions. An example is found in the SM, where the cross section of producing
a pair of W-bosons from an e−e+ annihilation is found to increase with the centre-
of-mass energy without a limit, and consequently violates unitarity at some energy
scale. This issue was successfully solved by introducing the neutral gauge Z boson,
where the latter cross section converges asymptotically at high energies [5]. Analo-
gously, one expects the existence of some BSM particle(s) that would fix the unitarity
when considered in the EFT predictions.

At the LHC, the energy scale at which physics processes are probed can reach the
TeV scale, where BSM effects could be manifested. Since the total BSM contribution
leads to an increase in the cross section of the γγ → 4l± process, one has to deter-
mine constraints on the ci/Λ4 values below which unitarity is conserved given the
probed energy scale

√
ŝ. For the γγ → 4l± process, the m4l variable is used as the

probed characteristic scattering energy scale. The procedure for obtaining these con-
strained limits is achieved by applying a cut-off on the integrated m4l spectrum for
the BSM contribution on generator-level, i.e. all events above the m4l cut-off are not
considered. On the other hand, unitarity bounds on the ci/Λ4 values are calculated
by evaluating the maximum centre-of-mass energy allowed by unitarity, which is
obtained from [91]. Therefore, limits are compared to the unitarity bound as a func-
tion of the centre-of-mass energy, where the limits at each

√
ŝ are calculated with a

cut-off on m4l =
√

ŝ. Figures 5.20 and 5.21 show in red the unitarity bound curve
of M- and T-operators as a function of

√
ŝ, while the black dots correspond to the

expected exclusion limits given a cut-off at
√

ŝ. Values of ci/Λ4 above the unitarity
bound curve, at a given

√
ŝ value, violate unitarity. From the results in all opera-

tors, it is clear that exclusion limits at low cut-off values violate unitarity, while in
some operators (mainly M-operators) limits in small parts of the high mass range
are found below the unitarity bound. As limits in the low

√
ŝ range exceed the uni-

tarity bounds, it is not sufficient to guarantee the validity of the EFT. Consequently,
with the expected data it is not possible, yet, to obtain limits on ci/Λ4 within the
boundaries of the unitarity requirement, and hence within the validity of the EFT.
This is mainly due to the relatively low number of expected events that would be
compatible with the SM given the cut-off values.
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FIGURE 5.20: A comparison of the unitarity bound of M-operators as
a function of

√
ŝ, and the expected exclusion limits given a cut-off at√

ŝ. Values of ci/Λ4 above the unitarity bound curve, at a given
√

ŝ
value, violate unitarity.
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FIGURE 5.21: A comparison of the unitarity bound of T-operators as
a function of

√
ŝ, and the expected exclusion limits given a cut-off at√

ŝ. Values of ci/Λ4 above the unitarity bound curve, at a given
√

ŝ
value, violate unitarity.
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5.4 Summary & conclusion

As mentioned in section 5.1, the Standard Model electroweak sector is abundant
in phenomenology of boson interaction processes, where many have been experi-
mentally confirmed, while a number still remain unobserved. As the SM is more
likely to be an effective theory, expected to be a good approximation at low energy
scales (typically at ΛEW) of some fundamental UV theory valid at all scales, probing
further the electroweak sector can lead to the first fissure of the SM, where any devi-
ation from its predictions would constitute a smoking gun for new BSM physics. In
section 5.3, the search for the γγ→ 4l± process was introduced, where its Feynman
diagram in the SM were shown in Figure 5.2. This process can provide sensitivity
to BSM anomalous quartic neutral gauge-boson vertices, where possible BSM pro-
cesses were shown in Figure 5.3. As discussed in section 1.6, a model independent
approach for capturing the low-energy impact of new physics is formulated in the
Standard Model Effective Field Theory framework. In this formalism, an extension
of the SM is realised by constructing an effective Lagrangian as a series of a complete
set of higher dimensional operators, preserving the SM gauge invariance in which
new physics contributions are encoded. Terms of such operators are proportional to
Wilson coefficients ci suppressed by inverse powers of a typical mass scale Λ of the
new physics extension (eq. 5.2).

In this chapter, an EFT study was presented in the context of the search for the γγ→
4l± process, where BSM contributions from anomalous quartic gauge-couplings were
investigated. Following the theoretical framework presented in [91], only operators
preserving lepton number conservation, and affecting only quartic vertices without
interference from di- and triple gauge couplings, were considered. The lowest order
relevant operators are of dimension 8, corresponding to a set of 15 operators, which
can be distinguished in two classes, namely M and T-operators, where their differ-
ence is manifested in the number of gauge boson field strength tensors they contain.
The contribution of each operator was investigated separately, without the interfer-
ence of others BSM operators. From the effective Lagrangian eq. 5.3, the associated
effective cross section eq. 5.6 is derived, which is expressed as a linear combination
of the SM cross section, an SM-BSM interference term linearly proportional to ci/Λ4,
and a pure BSM term quadratic in ci/Λ4. In the SMEFT, these quantities are free
parameters that have to be measured empirically. Assuming an SM only hypothesis.
the aim was to estimate expected exclusion limits on the ci/Λ4 values. Using eq.
5.8 relating ci/Λ4 and the number of expected SM events, a first estimate of upper
exclusion limits (Table 5.2) on the ci/Λ4 of each operator, corresponding to a statisti-
cal significance level of 95%, were calculated using a profile likelihood fit, assuming
Poisson distributed number of expected events. In this preliminary study, only sta-
tistical uncertainties were taken into account. In general, comparing the exclusion
limits of the two classes, T-operators are the best constrained, which as expected
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were the most sensitive to neutral quartic gauge-boson couplings.

In an attempt to improve the previously mentioned exclusion limits by exploiting
differential distributions with the aim to maximise the BSM signal over the SM back-
ground ratio, potential discriminating variables were studied. After investigation of
various SM and BSM kinematic distributions, the m4l and mZ2 spectra were found
to have the largest discriminating power. Consequently, expected exclusion limits
corresponding to 95% confidence level were calculated using a binned Poisson like-
lihood fit in bins of the latter quantities. Compared to the first estimates, results
using the mZ2 distribution shown in Figure 5.15 were significantly improved. In
a second attempt to improve the results by optimising the binning of the m4l and
mZ2 distributions used in the binned likelihood fit, exclusion limits were calculated
for different configurations. The best configuration maximising the exclusion limits
was found using the m4l distribution. From these results shown in Table 5.3, the T8

and T9 operators were clearly the best constrained, which was expected since they
exclusively modify neutral quartic gauge-boson couplings (Table 5.1). The latter
expected exclusion limits can be compared to those published by the CMS collabo-
ration [114], where a similar study was performed using the leptonic final states of
ZZ electroweak production in association with two jets. In this measurement, limits
on five T-operators are reported, namely,

−0.37 < fT0 /Λ4 < 0.35,

−0.49 < fT1 /Λ4 < 0.49,

−0.98 < fT2 /Λ4 < 0.98,

−0.68 < fT8 /Λ4 < 0.68,

−1.46 < fT9 /Λ4 < 1.46.

Compared to results in Table 5.3, the three first limits are better constrained in the
latter study, while the T8 and T9 expected limits in this thesis are more stringent. Fi-
nally, as mentioned in section 5.3.5, the validity of an EFT is limited to a scale where
the new physics is sufficiently suppressed, while beyond a certain threshold where
the new physics content is no longer suppressed, quantum mechanical unitarity can
be violated, leading to unphysical predictions. Therefore, in section 5.3.5 exclusion
limits on ci/Λ4 were recalculated given a cut-off on the m4l spectrum of the BSM MC
at generator-level, where the latter variable characterises the probed energy scale.
Finally, in Figures 5.20 and 5.21 the constrained limits on, respectively, the M- and
T-operators were compared to theoretical unitarity bounds [91] on the ci/Λ4 val-
ues corresponding to the maximum centre-of-mass energy below which unitarity is
conserved. From these results, one concludes that, given the expected number of
γγ → 4l± SM events, it is not possible to obtain limits on the ci/Λ4 values within
the boundaries of the unitarity requirement, and hence within the validity of the
effective field theory.
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Appendix A

Electron reconstruction and
identification rejection study

A.1 Background rejection in Z → e−e+ events per category
per identification menu

Investigating the individual identification efficiencies of the various backgrounds
(Figures A.1, A.2 and A.3), this difference is mainly coming from photon conver-
sions (Figure A.1) and light-flavour background rejections (Figure A.2), which have
different shapes in the pT spectrum. Moreover, the rejection in both spectra tends
to decrease after ∼50 GeV in the Z → e−e+ case. This effect is not yet understood.
In the case of the heavy-flavour background, the pT an η distributions are relatively
similar for both samples (Figure A.3).

Furthermore, The identification efficiency curves for the medium identification menu
(Figure A.4) are showing fairly similar shapes and rejections, with a slightly higher
light-flavour rejection below ∼40 GeV for the Z → e−e+ sample.

A.2 Closure test: generator-level vs. reconstruction-based se-
lection

Having the efficiency/rejection results in Z(ee)+jets MC, one can verify the back-
ground purity in the results using generator truth information of the simulated
events. This can be achieved by performing a closure test, where the rejection mea-
surements will be calculated using this time truth level event selection. Since it is
possible in MC to retrieve details of the simulated events, one can use the type and
origin of the reconstructed electrons to polarise between the prompt and the back-
ground fake electrons.

The closure test will be performed by replacing, in the Z mass window selection, the
ID and track isolation requirements with truth type and origin of the reconstructed
electrons, i.e. the Z electrons are well known, and so is the event selection of Z+jets
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Background e�ciencies as a function of pT and ⌘

- The ID e�ciencies for background electrons from photon
conversions
- The shape is relatively di↵erent in the pT distribution (< 50 GeV)
- The rejection tends to increase after 50 GeV
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Kamal Saoucha Background rejection study for electron identificationFIGURE A.1: The photon conversions background identification ef-
ficiency as a function of η and pT for the different ID-menus. The
two top plots correspond to the background enriched sample, while
the other two plots on the bottom correspond to the Z → e− + e+

sample.

events and the removal of the Z prompt electrons in the efficiency calculation. Figure
A.5 and A.6 show a comparison of the efficiencies in jet pT and η, Figure A.7 and A.8
in electron pT and η, calculated with the truth based and the ID and track isolation
based Z electrons selection.

In the jet and electron η spectrum (Figure A.6 and A.8), the agreement is relatively
good, given only statistical uncertainties, with a very small deviation for higher η

values. As for the pT spectra (Figure A.5 and A.7), the agreement is different in both
cases. For the jet pT comparison, the agreement is bad around 40-60 GeV, which is
not the case in electron pT. The red distribution in jet pT has a higher efficiency in
this specific region, which is with high probability where Z electrons would belong.
Therefore, this might suggest a signal contamination in the efficiency calculation us-
ing the medium ID and the track isolation. Furthermore, the efficiency in jet pT in
the low pT region falls off much lower than in electron pT (approximately a factor
of 103 difference), which might justify why the effect is negligible in the electron pT

agreement.



A.2. Closure test: generator-level vs. reconstruction-based selection 203

9/21

Background e�ciencies as a function of pT and ⌘

- The ID e�ciencies for hadrons from LF decays
- The pT shape in JF17 and Zee looks completely di↵erent
- A maximum around 50 GeV in the Zee Loose LF e�ciency.
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Kamal Saoucha Background rejection study for electron identificationFIGURE A.2: The light-flavour background identification efficiency
as a function of η and pT for the different ID-menus. The two top
plots correspond to the background enriched sample, while the other

two plots on the bottom correspond to the Z → e− + e+ sample.

Since the events are MC generated, one can also investigate in the truth informa-
tion of the ID and track isolation selected events. In Figure A.9 and A.10, the type
versus the origin of respectively the fake reconstructed electrons and the prompt Z
electrons are plotted. From both plots, it is clear that the background is not negligi-
ble. In the fake electrons plot, signal contamination from Z prompt electrons repre-
sents approximately 4% of the total fake electrons collection, which is not negligible.
Also the selection of Z electrons has background, but jets represent a tiny contri-
bution (approximately 0.4 %). Finally, the overall efficiency and rejection based on
truth event selection is respectively εreco bkg = 2.730 ± 0.002 % and Rreco bkg = 36.62
± 0.03. Given only statistical uncertainties, these results are relatively close to those
calculated in section 3.4.2.
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Background e�ciencies as a function of pT and ⌘

- The ID e�ciencies for non-isolated electrons from HL decays
- Behaviour in the pT and ⌘ distribution is relatively similar for
both JF17 and Zee
- Rejection increases with pT , while relatively flat in ⌘
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two plots on the bottom correspond to the Z → e− + e+ sample.
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bins. The blue distribution corresponds to the efficiency calculated
based on truth information while the red distribution is based on the
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FIGURE A.7: The reconstruction efficiency of jets as electrons in elec-
tron pT bins. The blue distribution corresponds to the efficiency cal-
culated based on truth information while the red distribution is based

on the ID and track isolation.
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trons using the ID and track isolation in the Z mass window selection.
Not all fake electrons are displayed in the plot, only significant con-
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tion. Not all fake electrons are displayed in the plot, only significant
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Appendix B

Measurement of the Higgs boson
mass in H → ZZ∗ → 4`

B.1 Single, di- and tri-lepton triggers

TABLE B.1: Summary of the 2015 triggers used for the H → ZZ →
4l± event candidates and the corresponding pT thresholds given the
lepton type. In the case where more than one trigger is listed, the

or-statement is intended.

TABLE B.2: Summary of the 2016 triggers used for the H → ZZ →
4l± event candidates and the corresponding pT thresholds given the
lepton type. In the case where more than one trigger is listed, the

or-statement is intended.



210 Appendix B. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

TABLE B.3: Summary of the 2017 triggers used for the H → ZZ →
4l± event candidates and the corresponding pT thresholds given the
lepton type. In the case where more than one trigger is listed, the

or-statement is intended.

TABLE B.4: Summary of the 2018 triggers used for the H → ZZ →
4l± event candidates and the corresponding pT thresholds given the
lepton type. In the case where more than one trigger is listed, the

or-statement is intended.

B.2 Generator comparison study of electron reducible back-
ground in Z+jets events

In this section, a comparison of the estimated reducible background electrons using
two different MC generators is studied. The goal is to test the dependency on gen-
erators, which have different methods of simulating the physics processes though
the ATLAS detector. The generators are SHERPA, which is the nominal choice, and
MADGRAPH is the alternative option. A comparison is performed using one of the
most prominent background sources for fake electrons, Z bosons production in as-
sociation with jets. Simulation samples of this process contain two genuine prompt
electrons from the Z boson decay, and fake reconstructed electrons from different
background sources, mainly those listed in section 3.2. Using these samples, a MC
generator background classification is performed between Z+jets SHERPA and Z+jets
MADGRAPH MC. Figure B.5 shows a comparison of the electron type obtained from
generator-level information between Z+jets SHERPA and Z+jets MADGRAPH MC.
In the Z + X CR, MADGRAPH has about 10% more heavy-flavour background and
photon conversions than SHERPA. Also, a factor of 2 difference in isolated electrons
but their contribution is very low.
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TABLE B.5: Electron type classification comparison between Z+jets
Sherpa vs Z+jets Madgraph

As discussed in section 4.5.2.2, for estimating the light-flavour and photon conver-
sions background, a fit is performed in the 3l + X CR. The fit is on the expected
number of pixel hits in the innermost layers of the ID. The templates of the back-
grounds are taken from both MC samples in the Z + X CR. Using an unfolding tool,
referred to as the sPlot method, the light-flavour and photon conversions background
is determined in terms of electron pT and the number of associated reconstructed
jets. Transfer factors, which are the efficiencies of the background passing the anal-
ysis selections, are also calculated for both backgrounds in the Z + X CR, which are
corrected to match data using scale factors. The final step is the extrapolation of
the backgrounds contribution to the SR, using the transfer factors, which calculated
from the Z + X CR.

Figure B.6 shows the ratio between SHERPA and MADGRAPH of the fit yields, trans-
fer factors and scale factors as a function of the number of jets per event and electron
pT, within the 3l + X CR. The plots on the left side correspond to the photon conver-
sions background, and the light-flavour jets on right side. Regarding the fit yields,
the agreement is overall relatively good. This is expected from the similar templates
in both event samples. The transfer factors are clearly different in both generators.
The difference is mainly expected from different ways of simulating the energy dis-
tribution around reconstructed object, which results in a different calibration for the
isolation requirements. The last two bottom plots show the ratio of the scale factors
used to correct MC to data. From the difference in the transfer factors, it is no sur-
prise that the scale factors are also different.
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TABLE B.6: Fit yield, transfer factors and scale factors ratio between
SHERPA and MADGRAPH as a function of the number of jets per event
and electron pT within the 3l + X CR. The plots on the left side cor-
respond to the photon conversions background, and the light-flavour

jets on right side.

Finally, using both generators the fit results for the different electron background
sources in the SR are compared in Table B.7. For the light-flavour and photon con-
versions background, the results are within the total uncertainties (statistical and
systematic). For the heavy-flavour background the results are also in agreement,
However, MADGRAPH has a large total uncertainty, which is mainly statistical dom-
inated due to a small number of simulated events in the SR.
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FIGURE B.1: The leading leptons covariance matrix elements distri-
bution in data and MC.



214 Appendix B. Measurement of the Higgs boson mass in H → ZZ∗ → 4`

FIGURE B.2: The leading leptons covariance matrix elements distri-
bution in data and MC.
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Fit results in SR using Z+jets
Type of background Light-flavour jets Misidentified photons Heavy-flavour jets
SR yield in Sherpa 15.05±0.54(stat.)±2.37(sys.) 4.25±0.70(stat.)±0.85(sys.) 12.14±3.66 (stats.+sys.)

SR yield in MadGraph 10.41±0.36(stat.)±3.20(sys.) 6.96±1.14(stat.)±1.40(sys.) 22.65±11.77 (stats.+sys.)

TABLE B.7: Comparison of the fit results using SHERPA and MAD-
GRAPH for the different electron background sources in the SR.

B.3 Data/MC comparison of the muon covariant matrix ele-
ment

B.4 QM correction maps derived from the Z + X CR

In Figure B.3, a comparison is shown between the QM correction maps (discussed in
section 4.7.3.2) derived from the inclusive calibration samples containing Z → µ−µ+

events and maps from di-muon events from the Z + X CR. The curves are overall
relatively in good agreement.

B.5 Additional data and MC comparisons in the signal re-
gion
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FIGURE B.3: A comparison is shown between the QM correction
maps (discussed in section 4.7.3.2) derived from the inclusive calibra-
tion samples containing Z → µ−µ+ events and maps from di-muon

events from the Z + X CR.
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FIGURE B.4: The pre-fit inclusive D4l distribution for each of the de-
cay channels.
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FIGURE B.5: The pre-fit inclusive σ4l distribution for each of the decay
channels.
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Appendix C

EFT study of operator sensitive to
EW quartic vertices in γγ→ 4`

C.1 Definition of the dimension 8 relevant to quartic gauge
couplings

Following the notation in this reference [paper], there are three classes of dimension
8 operators that affect electroweak quartic couplings. Figure C.1 shows the different
dimension 8 EFT operators that leads to BSM neutral gauge-boson quartic interac-
tions. The first class of operators, the M-operators, contains two covariant deriva-
tives of the Higgs field, and two field strength tensors. The T-operators have four
covariant derivatives of the Higgs field, and the S-operators have four field strength
tensors. Table 5.1 shows the different operators, and which of the different quartic
electroweak gauge-boson vertices they affect.

FIGURE C.1: The dimension 8 operators that leads to BSM EW gauge-
boson quartic interactions.
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EFT operators Quadratic term (pb) Linear term (pb)
M0 0.91 ± 0.0032 -2.17× 10−6 ± 6.17×10−8

M1 0.060 ± 0.00017 -1.42×10−5 ± 4.05×10−7

M2 39.19 ± 0.14 9.92×10−7 ± 7.49×10−8

M3 1.19×10−5 ± 3.28×10−8 6.50×10−6 ± 4.91×10−7

M4 2.99 ± 0.010 4.11×10−6 ± 4.06×10−7

M5 0.79 ± 0.0022 3.59×10−6 ± 2.71×10−7

M7 0.015 ± 4.15×10−5 -5.74×10−7 ± 1.36×10−8

T0 129.6 ± 0.26 0.00015 ± 1.75×10−6

T1 129.6 ± 0.26 0.00015 ± 1.75×10−6

T2 29.74 ± 0.083 0.00011 ± 3.03×10−6

T5 612.9 ± 0.97 0.00024 ± 1.11×10−5

T6 321.5 ± 0.86 4.37 × 10−5 ± 4.45×10−6

T7 51.33 ± 0.11 8.43× 10−5 ± 3.00× 10−6

T8 8179 ± 15.79 0.0010 ± 2.40×10−5

T9 1887 ± 3.73 0.00082 ± 3.88×10−5

TABLE C.1: The values of the linear and quadratic terms of the effec-
tive cross section (eq. 5.6) in the 2e2µ final state channel, where each

ci/Λ = 10−8 GeV−4, while the others are set to zero.

C.2 Cross section of the SM and BSM γγ→ 4l± process

Using MADGRAPH5_AMC@NLO [70, 71], one can generate the γγ → 4l± process
in the SM and BSM scenario, while calculating the corresponding cross sections. In
the case of BSM, the EFT model [100] is used, where the value ci/Λ4 of the different
operators can be set to calculate the BSM contribution to the process. From eq. 5.6,
the last two terms form the total contribution from the dimension-8 operators listed
in Table 5.1. These terms can be separately computed given a value of ci/Λ4. Table
C.1 shows the values of the linear and quadratic terms of the effective cross section
(eq. 5.6) in the 2e2µ final state channel as an example, where each ci/Λ = 10−8

GeV−4, while the others are set to zero. It should be noted that for this ci/Λ4 value
the quadratic term is orders of magnitude higher, while the linear contribution is
for some operators negative, since the latter represents an interference term between
the SM and the BSM operators, which can lead to constructive or destructive inter-
ference. From these generated values using MADGRAPH5_AMC@NLO [70,71], one
can predict the value of the linear and quadratic terms given any ci/Λ4 value by de-
termining the proportionality constants ai and bii in eq. 5.6. These are listed in Table
C.2 for each M- and T-operator in the 2e2µ final state. Figure C.2 shows in blue dots
the cross section values generated using MADGRAPH5_AMC@NLO [70, 71] for dif-
ferent values of cT8/Λ4, while the red curve corresponds to the function determined
from the fitted ai and bii coefficients. The agreement is clearly spot on. The same
closure test is performed for the other operators and final states, where the same
closure is observed. The proportionality constants ai and bii can be used to estimate
the quadratic and linear terms of the effective cross section for any ci/Λ4, value.
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Linear coefficient (pb/GeV−4) Quadratic coefficient pb/GeV−8

M0 -211+/-8 (9.088+/-0.026)e+15
M1 114.1+/-2.4 (5.967+/-0.024)e+14
M2 (-1.39+/-0.05)e+03 (3.909+/-0.011)e+17
M3 748+/-16 (2.566+/-0.010)e+16
M4 383+/-15 (2.980+/-0.009)e+16
M5 413+/-9 (7.826+/-0.031)e+15
M7 -57.0+/-1.2 (1.492+/-0.006)e+14
T0 (1.467+/-0.009)e+04 (1.1370+/-0.0021)e+18
T1 (1.467+/-0.009)e+04 (1.1370+/-0.0021)e+18
T2 (1.096+/-0.007)e+04 (2.614+/-0.005)e+17
T5 (2.400+/-0.028)e+04 (5.440+/-0.011)e+18
T6 (2.67+/-0.22)e+03 (2.906+/-0.008)e+18
T7 (7.33+/-0.12)e+03 (4.705+/-0.013)e+17
T8 (1.019+/-0.010)e+05 (7.499+/-0.022)e+19
T9 (2.106+/-0.018)e+14 (1.730+/-0.005)e+19

TABLE C.2: The fitted ai and bii coefficients (from eq. 5.6) for each M-
and T-operator in the 2e2µ final state.
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FIGURE C.2: The quadratic (A) and linear (B) term value (from eq.
5.6) as a function of cT8/Λ4. The values in blue dots were gener-
ated using MADGRAPH5_AMC@NLO [70, 71] for different values of
cT8/Λ4, and the red curve corresponds the function determined from

the fitted ai and bii coefficients.
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