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Abstract

Let K be a totally real quadratic field of narrow class number 1. In this thesis,
we investigate congruences between Fourier coefficients of classical modular forms
and then generalise these congruences to Hilbert modular forms of parallel weight
over K. Given an odd prime p, we first prove mod p congruences between Fourier
coefficients of integer weight ordinary Hilbert eigenforms that are at the same level
but whose weights differ by an odd multiple of (p —1). These eigenforms belong
to Hida’s p-adic family of eigenforms. We are then able to lift these congruences to
congruences between Fourier coefficients of half-integer weight ordinary Hilbert
eigenforms that are at the same level but whose weights differ by an odd multiple
of p%l. As an example, we briefly work with the real quadratic field K = Q(+/5) and
see the significance of Fourier coefficients of half-integer weight Hilbert modular
forms and the related congruences.






Acknowledgements

I would like to express my deepest gratitude to my supervisor Prof. Neil Dummigan for deeply investing his
time, knowledge and belief in me for the last four years. I can’t thank Neil enough for his patience especially
at times when I was completely clueless and uncertain about things. Our weekly meetings offered invaluable
insight into problems as well as constructive criticism. I have immensely enjoyed our other conversations
about running and biking adventures as well.

I am also grateful to some people in the Number Theory group who crossed my path and truly enhanced my
journey. I extend my sincere thanks to Ariel Weiss for his valuable advise about mathematics and career in
general and to Maleeha Khawaja for her unwavering moral support in any mathematical challenge that came

up.

This endeavour would have been impossible without the unconditional love and support of my entire family.
Their faith in me never diminished, even at times when I doubted myself. I am highly indebted to my Dad for
all the sacrifices he went through to fund my research and to my Mom who did not miss a single day to pass
on her abundant love to fuel me. A special thanks to my brother who forced me to listen to his mathematical
ideas in school that inspired me to choose advanced mathematics.

I am also grateful to my friends whose conversations and company kept my spirits high.
Lastly, and above all, I cannot even begin to express how thankful I am to my husband for his irrevocable love

and massive support. Despite the time difference and long distance, he was always there to calm me through
my frustrations and helped me recalibrate my life each time when I was about to give up.






"Modular forms are functions on the complex plane that are inordinately symmetric.
They satisfy so many internal symmetries that their mere existence seem like accidents.
But they do exist."—Barry Mazur.
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Introduction

One of the biggest breakthrough’s of the 20™ century in number theory was the proof of the complete Shimura-
Taniyama conjecture (Taylor, Wiles, Breuil, Conrad, Diamond, et al.), now known as the Modularity theorem.
The Modularity theorem asserts that:

Every elliptic curve over Q is modular.

Loosely speaking, if we take the solution set of the equation y? = x> + ax + b where a, b € Q and throw an
additional point in this set, called the point at infinity, what we end up with is an elliptic curve over Q, denoted
E/Q. For each prime p, we associate an arithmetic quantity a,(E) to E/Q. This arithmetic data of a,(E)’s is
stored in an Euler product which determines the L-function L(E,s) of an elliptic curve. The idea of modularity
of elliptic curves involves linking arithmetic data in L(E, s) to some set of bizarre complex functions showing a
lot of symmetry. These complex functions are called modular forms. Vaguely speaking, modular forms are an-
alytic functions that satisfy a certain type of functional equation and a growth condition. A functional equation
is a type of relation which relates the value of a function at one point to another while the growth condition
examines the bounds on the function as the input grows very large. The functional equation of modular forms
relates their values at a complex point z to their values at some linear fractional transformations ‘gig for any
integers a, b, c,d satisfying (ad — bc) = 1. This gives rise to a lot of symmetries! The functional equation of
the modular forms makes them periodic in nature and hence they have a nice Fourier expansion. Their Fourier
coefficients encode interesting arithmetic information and are highly intriguing to number theorists. As we
will see, this thesis is essentially all about these Fourier coefficients and their mod p congruences. There are
two fixed parameters, weight k and level N associated to each modular form which are precisely defined in
Chapter 1 of this thesis.

We can now explain modularity of elliptic curves over Q a bit more precisely. Let E/Q be an elliptic curve
of conductor N;. The conductor is an invariant associated to E/Q that encodes informations about mod p
reductions of E/Q. We say E/Q is modular if there exists a newform® f(z) of weight 2 and level N; with
Fourier coefficients a,(f) such that a,(E) = a,(f) for all primes p. In other words, if we define the L-function
of f(z) using its Fourier coefficients as L(f,s) = Y. a,(f )n™*, then modularity of E/Q implies

L(E,s)=L(f,s) fors e C.

This gives us a functional equation for L(E,s) and extends it to entire complex plane. The functional equation
of L(E,s) relates its values at s with those at (2 —s). The value s = 1 is the only integer point lying on its
critical strip 0 < Re(s) < 2 and is called the critical value of L(E,s). On the other hand s = k/2 which is equal
to 1 in our case is the central critical value of L(f,s). So modularity of E/Q links critical values of L-functions
of elliptic curves with central critical values of L-functions of modular forms. But why do we care about this?

1A "newform" is a special modular form that satisfies some additional properties, as we will see in Chapter 1.
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Well, we will see it in a bit.

A natural question that arises concerning elliptic curves is to describe, and find if possible, all the rational
solutions to an elliptic curve E/Q. We denote this rational solution set by E(Q). The number of independent
rational points of infinite order on E/Q is called the rank(E/Q). It turns out to be a rather hard problem to
find an algorithm to determine the rank(E/Q). The famous conjecture of Birch and Swinnerton-Dyer (BSD)
predicts the formula for the rank(E/Q). More precisely, the weak form of BSD asserts

ord,_;(L(E,s)) = rank(E/Q).

Here ord,_; (L(E,s)) is the order of vanishing of the L(E,s) at s = 1. Using modularity of elliptic curves over
Q, this is equal to ord,_; (L(f,s)) where f(2) is the modular form attached to E and s = 1 is the central critical
value of L(f,s). This is one of the many instances where the central critical values of L-functions of modular
forms hold great importance in number theory.

In 1973, Goro Shimura [Shi73] enriched the theory of half-integer weight modular forms by giving a corre-
spondence which sends modular forms of weight k + % to modular forms of even integer weight 2k where k
is a positive integer. Note that Shimura’s correspondence does not give us an isomorphism. In 1980, Kohnen
[Koh82] discovered that it was possible to impose some conditions on Fourier coefficients of half-integer
weight modular forms and hence obtain an isomorphism via Shimura’s map. Around the same time, Wald-
spurger [Wal81] established a close link between Fourier coefficients of half-integer weight modular forms and
central critical values of L-functions of the twists of the corresponding integer weight modular forms associ-
ated under Shimura’s map. This shifts our attention to the theory of half-integer weight modular forms and
their Fourier coefficients. We explain this a bit further.

Let D be the fundamental discriminant of some quadratic field with an associated quadratic character y, =
(%) Then the twist of modular form f(z) = >, a,(f)q" by xp is given by (f ® xp)(z) = D. xp(n)a,(f)q". The
modular form f(z) attached to E/Q is a newform of weight 2. Then by Kohnen’s isomorphism [Koh82] there
exists a unique form g(z) = Y. b,q" of weight % attached to f(z). Waldspurger’s theorem implies

L(f ® xp,1) = . b,

where x is a constant that is well understood. Moreover, if the choice of the quadratic twist D results in the
sign of the functional equation of L(f ® yp,s) to be positive, then L(f ® yp,s) vanishes at s = 1 to an even
order. In this case, if bjp; = 0, then Waldspurger’s theorem implies that L(f ® yp,s) vanishes at s = 1 to order
at least two. On the other hand, the conjecture of Birch and Swinnerton-Dyer predicts that rank(E}, /Q) in this
case must be at least two. If we can somehow check that the rank(E,/Q) is at least two, then this would
provide evidence in support of the conjecture of Birch and Swinnerton-Dyer. In order to get an overview of
the whole situation, see figure 0.0.1.

The Waldspurger’s theorem can be further combined with congruences between modular forms to provide con-
crete evidence for the Bloch-Kato conjecture. The Tamagawa number conjecture of Bloch and Kato generalises
the BSD conjecture to any arbitrary motive. It describes the behavior at integers of the L-function associated
to a motive over Q by relating it to the order of certain Bloch-Kato Selmer groups. In general, very little is
known about Bloch-Kato Selmer groups. The congruences between modular forms modulo a prime p can help
us to construct non-trivial elements of order p in these Bloch-Kato Selmer groups.

In order to get a flavour of the study of congruences between modular forms, see the work of Neil Dummigan
in [DumO1] where he works over mod 11 congruence between modular form f(z) attached to the elliptic
curve of conductor 11 and the well known discriminant function A(z) to provide evidence in support of the
Bloch-Kato conjecture, see figure 0.0.2.
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Figure 0.0.1.
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Figure 0.0.2. .
Newform, wt. 2, level 11 @ =A mod 11 Newform, wt. 12, level 1
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~ v
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Building up on the aforementioned example of mod 11 congruence by Dummigan, McGraw and Ono [MOO3,
Theorem 2] showed that the congruences between modular forms modulo an odd prime p lift via Kohnen’s
isomorphism to fairly similar mod p congruences between half-integer weight modular forms just with a slight
shift in Fourier coefficients, see figure 0.0.3.

Figure 0.0.3. Given odd prime p.

Newform, wt. 2+(p—1), level 1

Newform, wt. 2, level p a,=A, mod p
Z n—'n \
N 7
f)=2a,q" F(z)=2A.q"
Kohnen’s Iso. Kohnen’s Iso.
v ~
g(2)=2b,q" G(2)=2,B,q"
2 \
Newform, wt. 3, level 4p ) b, =B,, mod p " Newform, wt. %—k% , level 4

McGraw and Ono’s recipe involves use of ingredients like multiplying f (z) in figure 0.0.3 by a suitable Eisen-
stein series to add up the weight 2 — 2+ (p —1) and a level lowering operator called Trace operator to lower
the level p — 1. They then lift to an eigenform F(z) using Deligne and Serre’s lifting lemma and pair it with a
uniqueness assumption to imply F(z) is unique. They then pass on to half-integer weight modular forms via
Kohnen’s map and work in a similar way. We avoid going into details of McGraw and Ono’s approach here but
readers can have a look at [MOO03] for details.

McGraw and Ono’s work as shown in figure 0.0.3 implies
bp| = Bj,p; mod p. €Y

where we choose our fundamental discriminants D such that the sign of the functional equation of L(f ® yp, 1)
is positive.
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The Waldspurger’s Theorem connects the Fourier coefficients bp; and By, p on either side of the congruence
(1) to the central critical L-values of the twisted L-functions of f(z) and F(z) respectively. More precisely,

_ 2 +1Y _ 2
L(f ® xp,1)=x. bIDI and L(F ® Xp(p)> pT) =% -Bip)

where D(p) = (—1)§Dp and x, %’ are well understood constant terms.

We now take two fundamental discriminants D and D, such that sign of the functional equation of both
L(f ® xp,1) and L(f ® xp,,1) is positive due to certain criteria by (%) and (%). Suppose by | Z 0 mod p.
This choice is possible as we can normalise newform g(z) such that there exists a D, for which the Fourier
coefficient byp | # 0 mod p. Then B, | # 0 mod p. Then an immediate implication [Dum01, Corollary 4.2]
of the Waldspurger’s theorem is

L(fexp,1) b

1 2 P 1 2
(D)2 L(f®xp,1) _ b d (D(p))z L(F®xpp), ") B

2 : g2 -
D, Do(p) L(F®1n,) 55)  Bipny

In the case when by, = 0, congruence (1) implies Bj, =0 mod p. Then

(2)% L(F ® 2o 57)
Do L(F®XDo(p)’p_J2rl)

is a rational number divisible by p. If this rational number is non-zero, then the Bloch-Kato conjecture, ap-
plied to these critical values, predicts that some Shafarevich-Tate group for (F ® yp(,))(2) has order divisible
by p, even by p2. As an example of divisibility of some Shafarevich-Tate group for (A ® yp1)(z) by p = 11,
see [DumO1]. Thus, the congruences between Fourier coefficients of half-integer weight modular forms have
strong implications and we are motivated to extend these congruences to half-integer weight Hilbert modular
forms.

Part I of this thesis provides an alternative approach to prove such congruences between modular forms mod-
ulo powers of prime p and also lift to almost similar congruences between modular forms of half-integer weight
with a slight shift in Fourier coefficients. The main aim to do so is to set up a mechanism that can be easily
generalised to Hilbert modular forms of integer and half-integer weight associated to totally real quadratic
fields of narrow class number 1, which is the primary objective of the remaining Part II of this thesis.

Over a century ago, Ludwig Otto Blumenthal took the first initiative to work on sketches of David Hilbert with
the aim of creating a theory of modular functions of several complex variables. These are now called Hilbert
modular forms. In this thesis, we study Hilbert modular forms over totally real quadratic fields of narrow
class number 1 that involve two complex variables. We are motivated to study congruences related to Hilbert
modular forms due to the remarkable progress that has been made in this field in the 21" century. In 2014,
the modularity over any real quadratic field was proved by Freitas, Le Hung and Siksek in [FHS15, Theorem
1]. This means starting with an elliptic curve E/K where K is a totally real quadratic field of narrow class
number 1, we can associate a Hilbert modular form of parallel weight 2 and level ng, an integral ideal equal
to conductor of E/K. Using combined work of Hiraga and Ikeda [HI13] and Ren He-Su [Sul8] on generalisa-
tion of Kohnen’s isomorphism to Hilbert modular forms, we then pass to Hilbert modular forms of half-integer
weight. The Fourier coefficients of these half-integer weight Hilbert modular forms again connect to central
critical values of the L-function of twists of Hilbert modular forms. This is work (2003) of Baruch and Mao
[BMO03] who generalised the Waldspurger’s Theorem to Hilbert modular forms over totally real fields. Quite
recently (2021), Sirolli and Tornaria [ST21] have derived a more explicit formula to compute central critical
values of the L-function of twists of Hilbert modular forms. This provides us a smooth layout to test and give
evidence for the BSD conjecture for elliptic curves over totally real quadratic fields of narrow class number
1. In this thesis, we take a step further and prove congruences between Hilbert modular forms of integer and
half-integer weight. These congruences leave open scope to work in the direction of visualising elements in
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certain Bloch-Kato Selmer groups. In this thesis, we do not include details about this application but rather
use it as our motivation for research.

Part I of this thesis is about congruences related to classical modular forms of integer weight and half-integer
weight.

Chapter 1 contains a brief overview of background classical modular forms of integer weight. It includes basic
definitions, Hecke-theory of modular forms and statements of some classical results involving old/new spaces.
We include details of some further operators that will be seen in the later chapters.

Chapter 2 develops the theory of classical half-integer weight modular forms closely analogous to chapter 1.
We then move on to fundamental theorems of Shimura’s correspondence and Kohnen’s isomorphism. These
connect our congruences between integer weight modular forms to those of half-integer weight modular forms.

Chapter 3 introduces the basic facts about Eisenstein series and the related mod p congruences. These con-
gruences arise from the von-Staudt Clausen congruences involving denominators of Bernoulli numbers. We
then move to generalised Eisenstein series with a character and prove similar congruences using known facts
about generalised Bernoulli numbers.

Chapter 4 introduces the theory of ordinary modular forms. This will be used while proving the main result
where we project our spaces onto their ordinary parts and work within these. The reason to do so is to invoke
Hida’s control theorem about constancy of dimensions of ordinary spaces of modular forms. Next, we go over
p-stabilisation of modular forms to see how we can force a prime p in the level even if p initially does not
divide the level of the space of modular forms. We then develop an analogous theory of ordinary half-integer
weight modular forms and their p-stabilisation. This chapter heavily uses the knowledge of further operators
developed in chapter 1 and 2.

Chapter 5 will present the main results in Part I of our thesis including a uniqueness assumption that is cru-
cial for the main result to follow. We then prove a series of propositions building up to the main congruence
(Theorem 5.2.4) between integer weight modular forms. Given an odd rational prime p, the main congruence
relates Fourier coefficients of modular forms modulo fixed powers of prime p where the modular forms are
of varying even weights, 2k and 2k’ with 2k = 2k’ mod (p — 1). These spaces of modular forms are then
projected to their respective ordinary parts. We consider our spaces on both sides of the congruences to be at
level Np such that they are definitely new at N but could be possibly old at p. This means they could have
been attained using p-stabilisation of ordinary modular forms.

The same thing is then repeated for half-integer weight modular forms that are related to the integer weight
congruence using Kohnen’s map (Theorem 5.3.3). Thus, we lift to congruences between half-integer weight
modular forms modulo same fixed powers of prime p.

Part II of this thesis generalises the congruences related to modular forms to Hilbert modular forms associated
to totally real quadratic field of class number 1.

Chapter 6 introduces notation and terminology required with working with totally real quadratic fields of
narrow class number 1. We then develop significant features of Hilbert modular forms. Here we observe some
fair differences with the classical modular forms. For instance, the Koecher’s principle which makes Hilbert
modular forms automatically holomorphic at the cusps. We introduce theory of Hecke operators and old/new
spaces of Hilbert modular forms and also give statements of well known theorems.

Chapter 7 develops the theory of half-integer weight Hilbert modular forms analogous to chapter 6. Then
we shift our focus on generalisations of fundamental theorems of Shimura’s correspondence and Kohnen’s iso-
morphism to Hilbert modular forms. Generalisation of Kohnen’s isomorphism uses more of a representation
theoretic approach. We refrain from dwelling deep into the background for this and give explanation only as
per requirement of the thesis.
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Chapter 8 gives an overview of Dedekind zeta function and Hecke L-function. We then introduce Hilbert
Eisenstein series and related mod p congruences. We will observe differences in absolute convergence of
Hilbert Eisenstein series and Classical Eisenstein series introduced in chapter 3. We then move to details
about generalised Hilbert Eisenstein series with a character and prove similar mod p congruences for them.

Chapter 9 generalises the theory of ordinary modular forms introduced in chapter 4 to the Hilbert case. We
also state the existing Hida’s control theorem about constancy of dimensions of ordinary spaces of Hilbert
modular forms. We introduce p-stabilised Hilbert modular forms for primes p that do not ramify in our real
quadratic field K. We then work our way examining ordinary Hilbert modular forms of half-integer weight
and their p-stabilisation.

Chapter 10 will present the main results in Part II of our thesis (Theorems 10.2.5 and 10.3.3). After building
the background for Hilbert modular forms from chapter 6 — 9, and setting up a plan in chapter 5 for proving
congruences related to classical modular forms, we are ready to present an analogous proof of congruences
related to Hilbert modular forms modulo powers of prime p. We again use two assumptions here. The first
assumption is quite analogous to the one introduced in Chapter 5 while the other involves divisibility of nu-
merators of generalised Bernoulli numbers. In this chapter, we basically generalise all our results in Chapter 5
for classical modular forms to Hilbert modular forms over totally real quadratic field of narrow class number 1.

Chapter 11 will briefly overview elliptic curves over an arbitrary number field K and the generalisation of
Waldspurger’s theroem to Hilbert modular forms. We then present an example of an elliptic curve over Q(+/5)
to give evidence in the direction of BSD conjecture for elliptic curves over totally real quadratic fields of narrow
class number 1. The main theorems proved in Chapter 10, Theorem 10.2.5 and Theorem 10.3.3, leave scope
to further provide evidence for Bloch-Kato conjecture in future by constructing elements of prime order p in
the Bloch-Kato Selmer group.
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CHAPTER 1

Modular forms of integer weight

1.1 Introduction

Let # = {z € C | Im(z) > 0} denote the upper half plane.
Then the group of matrices

GL;(R):= {}f:(ccl Z) |a,b,c,d€]Rand (ad—bc)>0}

acts on # via mobius transformations, that is

az+b
cz+d’

(r,z) > rz=
We now define the automorphy factor j(y, 2).
Definition 1.1.1 (Automorphy factor). The automorphy factor is a function
j:GLy(R)x # —C suchthat j(y,z)=(cz+d) for y= (‘g 3)
One can observe that for every y;,y, € GL; (R) and for every z € H, we have
JCr1r2,2) = j(r1,722)i(r2,2).

This is called the cocycle relation of the automorphy factor j(y, z).

Let k € Z-,. We can then define an operator called the weight k-slash operator that acts on complex functions
f : o — C defined on the upper half plane.

Definition 1.1.2 (k-slash operator). Let k € Z-,. Let y = (‘j 3) € GL;(R) and f : # — C be a complex
function defined on the upper half-plane. Then define the weight k-slash operator as follows

F@lr = (et )% (cz +d) ™ f (v2).

The cocycle property and the multiplicativity of the determinant implies that if f(z) is a complex function on
¢, then:

F@(r1r2) = F@lr)lirs forall yq, v, € GL;(R)
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That is, for each k, the weight-k slash operator defines an action of GL; (R) on functions on the upper-half
plane .

Let SL,(Z) denote the subgroup of GL; (R) consisting all matrices with integer entries and determinant 1.
This subgroup SL,(Z) is called the modular group.

Let N € Z.,. We will now a define special subgroup of the modular group called the congruence subgroup of
level N.

Definition 1.1.3 (Congruence subgroup). Let N € Z.,. We define the principal congruence subgroup of level N
as

T(N) = ker (SL,(Z) — SL,(Z/NZ))

={(Z’ Z)eSLz(Z){(f:’ Z)z((l) (1)) modN}.

Then a congruence subgroup T is defined as any subgroup of S L,(Z) that contains a principal congruence subgroup
T'(N) for some N.

We now fix our congruence subgroup I' = I;(N) that is defined as

To(N) := {(‘CI Z) €SLy(2) | (‘CI Z) = ((*) :) mod N}.

Before we define modular forms, we will define cusps of congruence subgroups. Let ioo denote the infinity
along the imaginary axis. In general, the points at infinity of the upper half plane s are P}(Q) = QU {ioo}.
The modular group SL,(Z) acts transitively on P!(Q) as follows:

(a b)r_a§+b
c d)'s  ct+d

ar + bs
cr+ds

a b o=l
c dj’ _c'

Thus, there is only one orbit of P!(Q) under the action of the modular group SL,(Z). In general, for a
congruence subgroup T, the number of orbits of P!(Q) under the action of I' may be greater than one.

and

Definition 1.1.4 (Cusps). The orbits of P'(Q) under the action of a congruence group T' are called the cusps of
T.

Note 1.1.5. The number of cusps is always finite [DS05, Lemma 2.4.1]. At level 1, we have only one cusp and
that is at ico.

Definition 1.1.6 (Modular form). Let k,N € Z.,. A modular form of weight k and level N is a function
f : ¢ — C such that

o f(z) is holomorphic on #¢;

o f(2) is invariant under the k-slash action of Ty(N). In other words,
fyz) = (cz + d)*f(z) where y = (Ccl Z) e IL(N);
e f(z2) is holomorphic at all the cusps.
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The space of all modular forms of weight k and level N form a finite dimensional complex vector space [DSO5,
Chapter 3] which is denoted by M (Ty(N)).

Note 1.1.7. We haven'’t precisely explained what holomorphicity at all the cusps means. The fact that f(z) is
holomorphic at the cusp ioco means that |f (z)| remains bounded as Im(z) — oo. The condition that f(z) is
holomorphic at all cusps is then equivalent to f(z)|,y being holomorphic at ico for all y € I;(1). For details,
we refer to [RS11, Section 3.1 and Section 8.1].

The congruence subgroup I,(N) contains the matrix ((1) %) If f(2) € M (IL(N)), f(z) is invariant under the
k-slash action of I,(N). In particular, we have

@[y 1)=f@
or

fz+1)=f(2).

Thus, f(2) is periodic and admits the following Fourier expansion at the cusp at ico,

[ee]

fl®)= Zanq” where q = 2™ q, € C. (1.1

n=0

We also refer to this as the g-expansion of the modular form. This condition of holomorphicity at all the cusps
is equivalent to saying there is no occurence of negative powers of g in the Fourier expansion 1.1 of f(z) at
100.

Definition 1.1.8 (Cusp form). A cusp form f(z) of weight k and level N is a modular form that vanishes at all
cusps. This happens if a, vanishes in the Fourier expansion of f (z)|y for all y € T(1).
The space of all cusp forms of weight k and level N form a subspace of M;(I;,(N)) and is denoted by S;(T,(N)).

The spaces M (T,(N)) and S, (I,(N)) are finite dimensional complex vector spaces [DS05, pg. 4].

Examples of modular forms:

1. The zero function on 52, f(z) = 0 for all z, is a modular form of every weight.
Every constant function on 2, f(z) = ¢ for all z where ¢ € C, is a modular form of weight 0.

2. Eisenstein series: We now give a non-trivial example of a modular form.
Let k > 2 be an even integer. Then we define the Eisenstein series of weight k to be the two-dimensional

analog of the Riemann zeta function {(k) =Y.~ n'%,

1
—— /
Gi(z) := E 4( parn v z € S,
(m,n)

where Y/ means to sum over nonzero integer pairs (m,n) € Z*\{(0,0)}.
Then G (2) is a modular form of weight k, see section 3.1 for further details.

The Fourier expansions of the first few normalised Eisenstein series E;(z) = ggég are:

Ey(2)=1-24)  0,(n)q";

n=1

(o]
EJ2)=1+ 240203(n)q”;
nO:ol
Eo(2)=1-504 ) o5(n)g";
n=1
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Eg(z) =1+ 480207(n)q”;

n=1

Eo(2) =1-264 Y 0g(n)q",

n=1
where o (n) = 3, d*" is the sum of divisors of n and q = e*™*.

Note that E(2) = Z:ZO a,q" is not a cusp form as the Fourier coefficient q, is equal to 1 in each case.

3. Cusp forms: We now look at examples of some cusp forms.

Let

f(Z) =q l—[(l _qn)Z(l _qlln)z where q= eZm’z

n=1

=q—2¢*—¢*+2q* + ¢* +2¢° — 2¢" — 2¢° + 0(¢q"").

Then f(z) is a cusp form of weight 2 and level 11. It’s the modular form attached to the elliptic curve
E/Q of conductor 11 defined by the Weierstrass equation y? + y = x> —x2 — 10x — 20. For more prop-
erties about this cusp form and its related objects, see [LMF22, Classical, Label: 11.a2].

Consider another example of a cusp form defined as:

(o]
Alz)=q] Ja—q"*
n=1
= q—24q> + 252q¢° — 1472q* + 4830¢°
—6048q° —16744q” + 84480q° — 113643q° + 0(q'%)
where q = €2,

Then A(z) is a cusp form of weight 12 and level 1. It’s also called the Discriminant function. For more
properties about this cusp form and its related objects, see [LMF22, Classical, Label: 1.12.a].

1.1.1 Modular forms with a character

Let y : (Z/NZ)* — C* be a Dirichlet character modulo N. Then we say f (z) is a modular form of weight k,
level N and character y mod N if the second condition in definition 1.1.6 is replaced by

F(r2) = 2(d)(cz + d)f () where 1 = (‘C‘ Z) € L,N).

We denote the space of all modular forms of weight k and level N and character y mod N by M, (T,(N), x).

1.2 Hecke operators

Given two congruences subgroups, I} and I, and a fixed element a € GL;(Q), we can define the following
double coset

laly, ={riar, | r1 €T, 2 €L}

These double cosets act via k-slash operator on our space of modular forms M, (T;) and map them to modular
forms in the space M, (T;), see [DS05, Section 5.1]. This action is denoted as |, [T} al},].
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We are interested in the case when I} =T, = I[,(N) and a = ((1, S) where p is a prime. We can then define
linear, commuting endomorphism maps on the complex vector space M, (I,(IN)) and its subspace S;(I,(N))
that act on these spaces via the double coset | [To(N)aIy(N)] . We call these maps Hecke operators, denoted
as T, for each prime p. In this section, we will go over some properties of Hecke operators and their action
on the g-expansions of modular forms in M, ([,(N)). For detailed background on double coset operators and
Hecke operators, refer to [DS05, Chapter 5].

Definition 1.2.1. Let f(z) € Mi(I(N)). Then for each prime p, we define the Hecke operator T, in terms of the
k-slash operator on M (Iy(N)) as follows

p—1
k_ —o S @iB; p|N
—pz! j=0 J
SENT, =P { P f@IB; + f@iBoo PIN

where f3; = ((1) IJj) and Po = (g ?)forj € Z/pZ.

Note 1.2.2. Note that we have a different normalisation here as our k-slash operator is defined in a slightly
different way than in [DS05, Proposition 5.2.1].

The Hecke operators are commutative, that is, T, T, = T, T, for distinct primes p,q [DS05, Proposition 5.2.4].
To define T,, set T; =1 (the identity operator); T, is already defined for primes p. For powers of primes, T,
is defined using recursion formula

Ty = Ty Ty —p* ' Tpro where r > 2

given in [DS05, Section 5.3, pg. 178] and hence is a polynomial with integer coefficients in T,. Finally, we
extend our definition to T, for any integer n € N by using multiplicativity, T,, = [ [, T, where n= I pl.r".

We now state the action of Hecke operators T, on the Fourier coefficients of the modular form f(z) €
M, (T,(N)) [DS05, Proposition 5.2.2].

Proposition 1.2.3 (Hecke operators on g-expansions). Let f(z) € M (I,(N)) with Fourier expansion f(z) =
Z:ZO a,q". Then f(2)[; T, € M(T,(N)) with Fourier expansion f ()| T, = Z;’ZO b,q" such that

b — ] pIN;
" apn+pk_1an/p p+N

Here a,,;, = 0 when n/p is not an integer.

n/p

Definition 1.2.4 (Hecke algebra). The Hecke algebra of weight k and level N acting on M, (I,(N)) is the com-
mutative C-sub-algebra of End(M(T,(N)) generated by Hecke operators T, over all primes p in Z,.
We denote the Hecke algebra of weight k and level N by T\(N).

Definition 1.2.5 (Hecke eigenform). We say f(2) € M(I,(N)) is a Hecke eigenform if it’s a simultaneous
eigenvector all Hecke operators in Ti(N).

Note 1.2.6. We will specify whenever we refer to a Hecke eigenform for all Hecke operators T, for p not
dividing the level N. In general, our definition of a Hecke eigenform refers to f(z) being an eigenvector for
all operators T, for n € N.

Definition 1.2.7 (Normalised eigenform). Let f(2) € S;.(I,(N)) be a Hecke eigenform with the following Fourier
expansion

o0

f@)=Y a.q"

n=1

We say f(z) is normalised if a; = 1.
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1.3 Further operators

In this section, we will introduce more operators on the space M, (I,(N)).

1.3.1 Operator V;

Let f(2) € M (T,(N)). Let d € Z., such that (d,N) = 1. Note that M, (I,(N)) € M (T,(Nd)). Hence, f(z) can
always be viewed as a modular form in M (T;,(Nd)). More formally, define an operator

V1 : Mi(To(N)) — M (To(Nd)) such that f(z) — f (2).

1.3.2 Operator V;

Let f(2) € M (Iy(N)). Let d € Z. such that (d,N) = 1. Define the operator V; on f(z) in terms of k-slash
action as

shvi=ati@) (5 1)=atren(y 3)
=d~2d:f(dz)
= f(dz).
Thus, if f(z) = Z:Zo a,q", then f(2)|,V; = Z:io a,q".
Proposition 1.3.1. Let f(2) € M (I5(N)). Let d € Z. such that (d,N) = 1. Then f(dz) € M([,(Nd)).
Proof. See [DSO05, Ex. 1.2.11]. O

Thus, we have a map

|k Va : Mi(To(N)) = M (To(Nd)) such that f (z) — f(dz).

1.3.3 Operator U,

Let d € Z., and let f(z) € M (T,(N)) with Fourier expansion f(z) = Z:ZO a,q". Define the action of Uy
operator on Fourier coefficients of f(z) in the following way;

[ee]

fEUg = Zadnqn'

n=0
Proposition 1.3.2. Let d € Z., be a divisor of N. Then |,U; maps the space My (Ty(N)) to itself.

Proof. This follows from the observation that the action of U; on the Fourier expansion of a modular form
f(2) in M, (T,(N)) is equivalent to the action of the Hecke operator T; on f(z), see proposition 1.2.3. O

Now let £ be a prime such that £ { N, then again from proposition 1.2.3, we have
F@NUe = F @ Te = 07 f (@i

In this case, we observe that the submodule generated by the action of |, U, operator on f (z) lies in the span of
the set {f (2)| Ty, f (2)1V, } which has at most level N{. We state this as a remark for its use in later chapters.

Remark 1.3.3. If prime £ 4 N and f(2) € M (I,(N)), then f(2)|,U, can have at most level N¥.
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1.4 Old and new spaces

Let M € Z.,. Let £ be an odd rational prime that is co-prime to M. Let f(2) € S (Iy(M)) be a cusp form of
weight k and level M. Now £ is not in the level but using operators |, V; and |V, defined in section 1.3, we
can force £ in our level. Recall that

[V = Si(T(M)) — Si(Ty (ML) such that f(z) — f(2)
and

Ve = Sk(To(M)) — Sy (To(M¢)) such that f (z) — f (€2).
Let N = M{. We can now define the space of £-old forms of S, (T,(N)).

Definition 1.4.1 (£-old forms at level N). We define the space of £-old forms of S;.(Ty(N)), denoted as S ,’i"’ld(F0 (N))
as the subspace of S;.(T,(N)) generated by spanning set {f;(2)| Vi, fo(2)iV,} where fi, fo € Si(To(N/£)).

S UTo(N) = Sp(To(N /)1 Vs @ S(To(N /)1 Vs-
We can now do this for every proper divisor d of N and hence define the space of all old forms at level N.

Definition 1.4.2 (Old subspace). Let N € Z., be an integer. We define the old subspace of S.(Ty(N)) as

SN == P SEM(T(N)).

dIN, d#1

We now define the hyperbolic measure du on .5 to define an inner product on our space Si(I,(N)) [DSO05,
Section 5.4].

du(z) = dxdy wherez =x +iy € 7.
y

2

Definition 1.4.3 (Petersson inner product). Let f,g € Si(I[,(N)). We define the Petersson inner product of f
and g by,

(f.g) :=f f@)g@)y*dulz).
T (N)\s#

where z =x+iy € 2.

Definition 1.4.4 (New subspace). We define the new subspace of Si(Iy(N)) as the orthogonal complement of
the old subspace with respect to the Petersson inner product.

Sp(To(N)) = ST (N))™
Hence, our space of cusp forms at level N has the following direct decomposition.
S(To(N) = Sp" (To(V)) @ SP(To(N))
or

SN = PSP (T(M))] V. (1.2)

Definition 1.4.5 (Newform). A newform f(z) = 221 a,q" € S (IH(N)) is normalised such that a; =1 and
is an eigenform for all Hecke operators T, for n € Z.

We now state one of the main results in this section, see [DS05, Theorem 5.8.2].
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Proposition 1.4.6. The space S} (I5(N)) has an orthogonal basis of newforms.

From equation 1.2 and proposition 1.4.6, it follows that the space of cusp forms S, (I,(N)) has a basis of Hecke
eigenforms that are eigenforms for all Hecke operators T, for n € Z,.

The Fourier coefficients of a newform can be recovered from its Hecke eigenvalues, see same result [DSO05,
Theorem 5.8.2]. More formally, if f(z) € S;*"(I;,(N)) is a newform with Fourier expansion

oo
F@)=>a,q"
n=1
and has Hecke eigenvalues Ay (f) corresponding to action of Hecke operator T, for n € Z.,, then

ATn(f) =a.

We now state a crucial result in this section that forces the Fourier coefficients of newforms to lie in a ring of
integers.

Proposition 1.4.7. Let

[ee]

f2)= a,q" € i (To(N))

n=1

be a newform. Then there exists a fixed number field Ly with ring of integers Oy such that for all n € N, the
Fourier coefficients a, € 0.

Proof. See [Shi94, Theorem 3.52]. O
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CHAPTER 2

Modular forms of half-integer weight

2.1 Introduction

We now shift our attention to modular forms of weight k + %, k € Z, which is a non-integral weight and
lies midway between two integers. It might seem at first that we can easily generalise the definitions and
transformation laws of classical integral modular forms by replacing our weight k by k + % in chapter 1.
Roughly speaking, we expect a half-integer weight modular forms g(z) to satisfy a functional equation of the
type

g(yz) =(cz +d)*ig(z) fory =(22)er

where T' is some congruence subgroup of SL,(Z). However, one needs to be careful as we will see there is
more than one possible choice of the branch of square root involved in the automorphy factor. In order to
eliminate inconsistencies, we must introduce a quadratic character corresponding to some quadratic extension
of Q and shift to a bigger group than just GL; (R) called the metaplectic group. We begin by looking at our
first motivating example of a half-integer weight modular form called the Theta Function and then define
half-integer weight modular forms in a more general way. For details, refer to [Kob93].

Definition 2.1.1 (Jacobi’s Theta function). The Theta function is defined as

0 : ¢ — C such that 9(z)=Zq”2 =1+29+2¢*+2¢° +...

nez

where q = €™,

Proposition 2.1.2. 02(z) is a modular form of weight 1 and level 4 with a Dirichlet character y,,
6%(z) € My(To(4), x4)-

Here y, denotes the unique non-trivial character modulo 4 defined as

(d)—(_—l)— 1 ifd=1 mod4;
AU ="0)T1=1 ifd=3 mod4

The transformation law for 6%(z) is given by

02%(yz) = (%1) (cz+d)0%(z) where y = (2 ) € Ty(4).
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Proof. See [Kob93, Proposition 30, pg. 138]. O

Definition 2.1.3 (Quadratic residue symbol (%) with ¢,d € Z, d # 0). We now introduce a quadratic residue
symbol (%) with ¢c,d € Z, d # 0, as defined in [Shi73, pg. 442] and is characterised by the following properties:

@ (§)=0if(c,d)#1.

(ii) If d is an odd prime, (g) coincides with the ordinary quadratic residue symbol, that is, it is one less than
the number of solutions of x> = ¢ mod d.

(iii) If d > O, the map c — (g) defines a character modulo d.
(iv) Ifc #0, the map d — (%) defines a character modulo a divisor of 4c, whose conductor is the conductor of
Q(vc) over Q.
) (%) =1 or —1 according as ¢ > 0 or ¢ < 0.
oD (5)=1
Note 2.1.4. It should be noted that our notation does not agree with the traditional symbol with the property
(%) = (IC_I) In fact we have

(c) (c) h —1 ifc<0Oandd <0,
—l=n{—=|w =
a)="\q =11 ifc>o0andd>o,

especially

for all positive or negative odd integers d.

Before we state the transformation law for the Theta function, we must note the convention for taking square
roots.

Note 2.1.5 (Convention for taking square roots). We will always take the branch of the square root having
argument in (—m/2, £/2]. For any integer k, we take z5/2 = (y/z)k.

Theorem 2.1.6 (Hecke). The Theta function, denoted 6(2), is a modular form of weight 1/2 and level 4 which
transforms as

0(y2) = j(y,2)0(z) where y = (‘CI Z) ETy(4)

where the automorphy factor j(y,2) involves the quadratic residue symbol (%) with ¢,d € Z, d # 0 defined in
2.1.3, a fourth root of unity which depends on d mod 4 (boxed below), and an explicit branch of the square root

function.
B RN
iro=\(7) (Ve
= e () Vertd
where
. -1\ _ |1 ifd=1 mod4;
€= (7)_{1' ifd=3 mod 4.
forodd d.
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Proof. See, [Kob93, Theorem 4.3, pg. 148]. O
We now introduce the metaplectic Group.

Definition 2.1.7 (Metaplectic Group). Let T = {w € C | |w| = 1} and let & denote the set of all couples (a, ¢ (z))
such that a = (‘; g) € GL; (R) and ¢(2) is a holomorphic function on # such that

$(z)?=t-det(a) Y% (cz +d)

wheret € T.
We define a multiplication law  on & as

(a, ¢ (2)) * (B,¥(2)) := (aP, p(B2)yY(2))
This forms a group (&, ) called the Metaplectic Group of GL; (R), see [Kob93, Proposition 1, pg. 179].

Remark 2.1.8. Note that t € T in Definition 2.1.7 does not depend on g in the sense that it is not a function
of z. In fact, in our case it’s sufficient to restrict T = {£1, +i} to allow square roots of (—71) (cz +d) to define

the four sheeted covering of GL;(Z). In this case, ¢(2)* = (_71) (cz+d)and t = {£1}.
Let &, be the subgroup of & defined as

6, :={(a, ¢ (2)) € 8| det(a) =1}.

Let N be an odd, square-free integer. There are infinitely many ways to lift an element of GL; (R) to its
metaplectic cover & depending on the choice of t € T. We fix the choice of ¢ (z) to establish an isomorphism
between I[,(4N) and a subgroup of &, with integer entries denoted by I;;(4N)

am a* = (a, ()

where

$(z) = (‘71)_1/2 (&) ez +ar.

Here the symbols (%1)_1/2 and (g) have the same meaning as in Theorem 2.1.6.

Remark 2.1.9. When we refer to congruence subgroup of level 4N in the case of half-integer weight modular
forms, we will always mean I,(4N).

Definition 2.1.10 ((k+ %)-slash operator). Let & = (a, ¢(2)) € & where a € GL; (Z) and ¢ (z) is a holomorphic

function on ¢ defined as ¢ (z) := (%1)_1/2 (§)det(a)Y*(cz +d)'/2. For a complex valued function g(z) on the
upper half plane, we define an operator | +1 £ as

8@ 18 = ¢ (2) P Vg(az).

This is the (k + %)—slash operator on half-integer weight modular forms.

Definition 2.1.11 (Half-integer weight modular form). Let k,N € Z.,. A function g : ¢ — C is said to be a
modular form of weight k + % and level 4N if

e g(z) is holomorphic on #;
e g(2) is invariant under the action of |, 1 To(4N) defined in 2.1.10. In other words

2

g(z)|k+%a* =g(2) forall a* €Ty(4N).

o g(2) is holomorphic at all cusps of Ty(4N).
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We denote the space of all half integer weight modular forms of weight k + % and level 4N as M, 41 (f0(4N ).

The congruence subgroup f0(4N ) contains the element (((1) %), 1). If g(z) € M, +%(f0(4N )), then g(z) is in-
variant under the (k + %)-slash action of T,(4N). In particular, we have

¢@lar (o 1)1)=2@

gz +1) = g(2).

Thus, g(z) is periodic and admits the following Fourier expansion (g-expansion) at i 0o,

or

gz)= Z b,q" where q = ¢*™*, b, € C. 2.1
n=0

In the same way as in the integer case (See note 1.1.7), g(z) is holomorphic at the cusp ico of I,(4N) means
that |g(z)| is bounded as Im(z) — oo. This condition is equivalent to saying there is no occurrence of negative
powers of q in the Fourier expansion of g(z) at ioco. For further details about the meaning of holomorphicity
at a cusp, refer to [Shi73, pg. 144] and [Kob93, pgs. 180-182].

Definition 2.1.12 (Half-integer weight cusp form). A half-integer weight cusp form g(z) of weight k + % and
level 4N is a half-integer weight modular form that vanishes at all cusps of Ty(4N). This happens if b, (the 0%
Fourier coefficient) vanishes in the Fourier expansion of g(z) at each cusp of T(4N).

The space of all half-integer weight cusp forms of weight k + % and level 4N forms a subspace of M, 1 (To(4N))

and is denoted by Sk+% (To(4N)).

The spaces M, +%(f‘do(4N )) and S, +%(f0(4N )) are finite dimensional complex vector spaces. The explicit di-
mension formulas for these spaces can be found in [CO77].

2.1.1 Half-integer weight modular forms with a character

Let yy be a Dirchlet character modulo N and we will assume that y, is quadratic. We now define
L 4xn(—1)
Xan =\ 7 7 JAN:

We say that g(z) is a half-integer weight modular form of weight k + %, level 4N and charcter y,y if the second
condition of definition 2.1.11 is replaced by

g(z)|k+%a*:X4N(d)g(Z) forall a€T,(4N).

Note 2.1.13. For simplicity, we will denote y4y by x.

We denote the space of all half-integer weight modular forms of weight k + %, level 4N and character y by
My, 1 (Ty(4N), 7).

2.2 Hecke operators

As in the case of integer weight modular forms, there are Hecke operators which act on spaces of half-integer
weight modular forms.

Let p be a prime. In this case, we are interested in the double coset is (Ty(4N) & Ty(4N)) where £ = (( ;z ),p/?).
We can then define linear, commuting endomorphism maps on the complex vector space M, 1 (IH(4N)) and its
subspace S, +1 (Io(IN)) via the operator |, +1 [To(4N) &€ TH(4N)]. For details on Hecke operators on half-integer
weight modular forms, refer to [Kob93] and [Shi73].

36



CHAPTER 2. MODULAR FORMS OF HALF-INTEGER WEIGHT

Definition 2.2.1. Let g(z) € M, +1 (To(4N), x). Then for each prime p, we define the Hecke operator Ty in terms
of (k+ %)-slash operator on Mk+% (f0(4N), x) as follows

p>—1 p—1
D 8@y +2(0) Y8 @es1 B + A (PHEEir e ifpAN
_ k=3 ] j=0 j=1
g(z)|k+% pz—P p2—1
> 8@y ifpIN
j=0

where

(6 o)
-1 )52
(5 90)

Note 2.2.2. Here y is a Dirichlet character modulo 4N and we assume it is always quadratic in our case, see
section 2.1.1.

)) where &, =1 or i depending on p =1 or 3 mod 4;

The Hecke operators are commutative, that is, T,,a T2 = T2 T} for distinct primes p, q. See proof of [Shi73,
Proposition 1.6]. In order to define T,;. for any n € Z, set T; = 1 (identity operator); T,. is already defined
for primes p. For powers of squares of prime, define T, using recursion formula [Pur14, Section 4]. Finally,
we extend our definition to T,. for any n € Z, by using mutiplicativity, T,» = [ [; TPiZVi where n = pl.v L
Remark 2.2.3. We have only defined Hecke operators for squares of integers n € Z.,. This is because for
the double coset operator | ! [[L(4N) & TH(4N)] where & = (((1) 2), pY/ 4) acts as zero operator on the spaces
Mk+%(I‘0(4N), x), see [Shi73, pg. 450].

We now state the action of Hecke operator T,. on the Fourier coefficients of the half-integer weight modular
form g(z) € Mk+% (To(4N), y) which is result by Shimura, see [Shi73, Theorem 1.7].

Proposition 2.2.4 (Hecke operators on g-expansion). Let g(z) € M, +%(ﬁ)(4N ), x) with Fourier expansion
g(z) = Z;Zo b,q". Then g(2)[;Ty: € Mk+%(f0(4N),x) with Fourier expansion g(z)|i 1T, = Z:zo c,q" such
that
o {bpzn + 1" (p)p* (?,)bn + 17 (p)p* by PN
n— .
byen ifp[N.

where y*(e) = (%)k x (o).
Here b,;,» = 0 when n/p? is not an integer

The fact that g(z)|k+% T, lies in Mk+%(fo(4N), %) follows from [Shi73, pg. 450].

Definition 2.2.5 (Hecke algebra). The Hecke algebra of weight k + %, level 4N and character y acting on
M, +%(f0(4N ), x) is the commutative C-subalgebra of End(M, +%(f0(4N ), x)) generated by the Hecke operators
Ty for all primes p € Zq. ~

We denote the Hecke Algebra of weight k + %, level 4N and character y by T, +1 (4N, x).

Definition 2.2.6 (Hecke eigenform). We say g(z) € M, ! (To(4N), x) is a Hecke eigenform of half-integer weight
if it’s a simultaneous eigenvector for all Hecke operators in 1~I‘k +1 (4N, x).

Note 2.2.7. We will specify whenever we refer to a Hecke eigenform for all Hecke operators T,. for p not
dividing the level. In general, our definition of a Hecke eigenform refers to g(z) being an eigenvector for all
operators T,. for n € Z.,.
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2.3 Further operators

In this section, we will introduce some operators on the space M, +1 (To(4N), ) that will often show up later
in this thesis.

2.3.1 Operator V;

Letg(z) € Mk+%(f0(4N), ). Letd € Z., such that (d,N) = 1. Note that Mk+%(f0(4N), x)C Mk+%(f0(4Nd), 2).
Hence, any half-integer weight modular form g(z) € M, 41 (To(4N), ) can always be viewed as a half-integer
weight form in M, ! (To(4Nd), ). More formally, define an operator

|k+%V1 : Mk+%(f0(4N),x) — Mk+%(f0(4Nd),)() such that g(z) — g(2).

2.3.2 Operator V;

Let g(2) € Mk+%(f0(4N),x). Let d € Z. such that (d,N) = 1. Define the action of operator V; on g(z) in

terms of the (k + %)—action in the following way,

_ (k1) d 0 _1
gV = e@ly ((§ 1))

=4~ 4% g(dz)

= g(dz).
Thus, if g(z) = Z:zo bnq", then g(2)li,1Vy = Z::io b,q".
Proposition 2.3.1. Let g(z) € Mk+%(f0(4N), x)- Letd € Z.ysuch that (d,N) = 1. Then g(dz) € Mk+%(f0(4Nd), 1)
where x'(#) = x(#)(£).
Proof. See [Shi73, Proposition 1.3]. O

Thus, we have a map

k2 Va * My 1 (To(4N), 1) = M1 (To(4Nd), ') such that g(z) — g(dz).

2.3.3 Operator U,

Letd € Z. and let g(z) € Mk+%(fo(4N), x) with Fourier expansion g(z) = Z:io b,q". Define the action of
operator U, on the Fourier coefficients of g(z) in the following way,

oo
8@ 1Ug = D bgug".
n=0

Proposition 2.3.2. Letd € Z., be adivisor of N. Then |k+% Uq maps the space My 1 (To(4N), x) to M1 (To(4N), ¥
where y'() = x(*)(2).

Proof. [Shi73, Proposition 1.5] O
Let g(z) € Mk+%(f0(4N), x). Suppose { be a prime such that £ t N. Then g(z)lk% U, can have at most level
4N{. This can be observed by viewing g(z) € Mk+%(fo(4N),x) as g(z)l1Vy € Mk+%(f0(4N€),x). Using

2

proposition 1.3.2, we get (g(z)|k+%V1) |k+% U, € Mk+%(fo(4N€),x’) where y’ where y’(e) = y(e) (%)
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Again, let g(2) € Mk+%(f0(4N), x)- Suppose { is a prime such that £ { N. Then g(z)|k+% U2 can have at most
level 4N{. This can be again observed by viewing g(z) € My (To(4N), ) as g(z)|k+% Vi C M (To(4N0), x).
Using proposition 2.2.4, we get (g(z)lk%vl) |k+% Up € Mk+%(fo(4N€), 1)

Remark 2.3.3. We now make two remarks that will be useful later.

1. Ifprime £ { N and g(z) € Mk+% (f0(4N), %), then g(z)|k+% U, can have at most level 4N{ and the character
of g(z)|k+% U, changes to y’ where y'(e) = (o) (%)

2. If prime £ t N and g(z) € Mk+%(f0(4N),x), then g(Z)|k+%Uez can have at most level 4N{ while the
character of g(z)|, +1Up remains same as y.

2.4 Shimura’s correspondence

In 1973, Goro Shimura developed a beautiful connection between half-integer weight modular forms of weight
k+1/2 and integer weight modular forms of even weight 2k where k € Z . This connection is known as the
Shimura’s correspondence [Shi73, Main Theorem, pg. 458].

Theorem 2.4.1 (Shimura’s correspondence). Let k,N € Z., and let y be a Dirichlet character modulo 4N. Sup-
pose, we are given a non-zero half-integer weight modular form g(z) € Si44 /2(f0(4N ), x) which is an eigenform
for the T, operator over all primes p with corresponding eigenvalue Asz (g)ecC

Then there exists an even integer weight modular form f (z) € My (To(N"), x2) of weight 2k, level N’ dividing 4N
and character y? such that f (z) is an eigenform for the T, operator for all primes p with corresponding eigenvalue
ATP (f) € C and for each p satisfies

A, (F) =g, ().

Remark 2.4.2. Note that for k > 2, f(z) will be a cusp form.

Figure 2.4.3.
8(2) € St/ (T (4N, 1) @i, 1 Ty = Ar,(5)
Shimura’s correspondence ATPZ (g )=Arp(f)
3 ~
f(z) € My (T,(N), x*) f@Ix Ty =21, (f)

In other words, if Shi( ) denotes the Shimura’s map from Sk+1/2(f0(4N), 2) = My (To(N), x2), then for each
prime p ¢ N

Shi(g(2)ls1 Ty ) = Shi(g(2))|5i T,

For explicit relation between L-functions of g(z) and f (z) as originally stated in Shimura’s Theorem, refer to
[Shi73, Main Theorem, pg. 458].

Remark 2.4.4. We make a few remarks here that have been taken from taken from [Kob93, pg. 213].
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1. Shimura proved that the level of N’ in Theorem 2.4.1 divides 4N. In 1975, Niwa [Niw75] showed one
could always take N’ as 2N but other choices are also possible.

2. When we refer to the image of a single eigenform g(z) under the Shimura’s map, we shall always mean
normalised eigenform f(z) in Theorem 2.4.1. But if we have a fixed basis g;(z) of eigenforms with
Shi(g;(z)) = f;(z) for each i, then we can extend the Shimura’s map by linearity as Shi(}_; a;g;(z)) =
> a;fi(z) which is not necessarily a normalised eigenform.

3. The Shimura’s map is not necessarily a one to one map. This mean we could land on the same f (2)
starting with two distinct g(2)’s in Sy,1/5(I(4N)), x) using Theorem 2.4.1.

2.5 Kohnen’s isomorphism

Kohnen defined suitable subspaces of cusp forms of half-integer weight modular forms under which Shimura’s

correspondence gives an isomorphism with the corresponding space of newforms of integer weight. To begin

with, we define the a subspace of space of half-integer weight cusp forms by imposing some conditions on the

vanishing of Fourier coefficients. We call this subspace Kohnen’s plus space and denote it by S;:r; (To(4N), x).
2

Definition 2.5.1 (Kohnen’s plus space). The Kohnen’s plus space of S, +1 ([L(4N), x) is defined as

S;+%(1%(4N),x) = {g(z) = Z b,q" € Sk+%(1%(4N),x) | b, = 0 unless (—1)*n = 1 or 0 mod 4}

n=1
where q = €™,
Note here y = (%) xn and € = yn(—1) where yy is a primitive Dirichlet character modulo N which is assumed
to be a quadratic character unless specified otherwise.

We now define the old and new subspaces of half-integer weight modular forms inside the Kohnen’s plus space.

In order to define half-integer weight oldforms, Kohnen used half-integer weight cusp form in S;:rl (I%(4N ) x)

and acted on them by U,, operator for all primes £ } N. Recall that U, operator replaces the n Fourier coef-
ficient of a half-integer weight modular form by (£2n)™ coefficient. Kohnen makes the choice of U;. operator
over V, as the action of U, operator commutes with the Shimura’s map.

Note 2.5.2. For simplicity, we will often avoid writing the character y and take it to be trivial but all the
definitions can be stated for a space with a non-trivial character as well.

We next define the old and new subspaces of the Kohnen’s plus space.
Definition 2.5.3 (Old space of the Kohnen’s plus space).
52 (FoaN) = D (81, (@M + 5, (Ml Uy )
MIN
M<N

Definition 2.5.4 (New space of the Kohnen’s plus space). The new space of half-integer weight cusp forms in
the plus space is defined as the orthogonal complement of the old space defined in 2.5.3.

L
new v _ old (v
Seen BN = (524 () )
As such, the Kohnen’s plus space decomposes into old and new subspaces.

Sp,1 (O(4N) = 825 (Th(4N)) @ S 713 (T (4N).

We will now state our main results in this section by Kohnen which gives an isomorphism between eigenforms
in Sl'(‘frvi (To(4N)) and integer weight eigenforms in S7" (T (N)). For details and proofs, refer to [Koh82, Section
2

5, Theorem 2].
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Theorem 2.5.5. Let N > 0 be an odd, square-free integer.

@ 87 (L(4N)) = @ amw S; (To(4M)) s 1 Uge-
k+3 dM>1 k+3 2

(ii) Thespace S Ziwl (I (4N)) has an orthogonal basis of common eigenforms for all operators T, for primep { N,
3
uniquely determined up to scalar multiplication with non-zero complex numbers. These are also eigenforms
for the T,.(= U,:) operators for prime p | N with eigenvalue prL.

(i) If g(z) € S:iwl (To(4N)) is an eigenform for the T, operator for all primes p with eigenvalue lsz(g), then
there exists an eigenform f(z) € S5 (Io(N)) for the T, operator for all primes p, uniquely determined up
to multiplication with a non-zero complex number, which satisfies f (2)|ox T, = Asz (2)f (2).
The same happens if we work the other way round, starting with an integer weight eigenform in the new
space and passing on to half-integer weight eigenform in the new space.

Remark 2.5.6. From Theorem 1.4.7, if f(2) = Z::Zl a,q" € S5 (IH(N)) is normalised such that a; = 1, then

there exists a fixed number field L, such that for each n, a, € 0;, where 0; is the ring of integers of L;.

Recall that we refer to such forms as newforms of integer weight. Let g(z) = Z:Zl b,q" € S;;YL (T(4N))

be a half-integer weight eigenform that corresponds to f(z) via Kohnen’s isomorphism. It could be possible
that b; = 0, and we cannot normalise g(z) at all by dividing every Fourier coefficient by b,. If b; # 0, then
we try to normalise g(z) such that b; = 1. However, this normalisation does not guarantee that the Fourier
coefficients of g(z) are algebraic integers. But there exists a normalisation of eigenform g(z) such that its
Fourier coefficient’s lie in the same ring of integers &; as it’s corresponding integer weight eigenform f (z), see
[Ste94, Proposition 2.3.1]. We refer to such normalised half-integer weight eigenforms as Kohnen newforms.

Definition 2.5.7 (Kohnen Newforms). Let g(z) € S (I(4N)) be an eigenform and the newform f(z) €
2

Soe"(To(N)) be its image under Kohnen’s isomorphism. We refer to g(z) as a Kohnen newform if its Fourier
coefficients are algebraic integers in the same ring of integers that contains Fourier coefficients of newform f(z).
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Eisenstein series and related congruences

3.1 Classical Eisenstein Series

Let k > 2 be an even integer. For z € 5, define the series G,(2) as,

/ 1

where the summation runs over pairs of integers (m,n) # (0, 0).
Proposition 3.1.1. G,(z) € M, (T,(1)).
Proof. See [Kob93, III1.2, Proposition 5, pg. 110]. O

Note 3.1.2. We have chosen k to be an even integer strictly greater than two. This is because for k = 2, G,(2)
fails to converge absolutely and hence is not a modular form, see [Kob93, II1.2, pg. 112].

Next, we give the Fourier expansion of G,(z).

Proposition 3.1.3. Let k > 2 be an even integer and let z € 5. Then the modular form defined in 3.1 has the
following Fourier expansion

Gi(z) = 2¢(k) (1 - ZB—k Z ok_l(n)q”) where q = €™,
k h=1

Here (k) = Z:Z 1 nik is the Riemann-zeta function, By is the k'™ Bernoulli number — which is a rational number

defined by the generating function

xk

Bkﬁ

X

ex—1

NgE

P
Il

0

and oy is the (k — 1) divisor sum of n defined as

Orq(n) = Z dk1,

d|n

Proof. See [Kob93, III.2, Proposition 6, pgs. 110-111]. O
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Definition 3.1.4 (Normalised Eisenstein Series). The normalised Eisenstein series E;(z) is obtained by dividing
G (2) by the constant 2Z(k), that is,

2k — :
E(z)=1- 3 Z 0_1(n)q" where q = e*™=.
n=1

Remark 3.1.5. It is clear from Definition 3.1.4 that E;(z) has rational Fourier coefficients.

3.2 Eisenstein series modulo p

Let p be an odd rational prime. We will now define a new series &,(z) as follows.

H(2) = {Ep—l(z)_P(p_l)Ep—l(PZ) if p>5;

&
7\ Ey(2) — 3E,(32) ifp=3.

We will now state [Ste07, Theorem 5.8, pg. 86] that implies &,(z) € M,,_;(To(p)). This is originally proved by
Miyake in [Miy89, Chapter 71].

Theorem 3.2.1. Let k > 4 be an even integer and let be t be a positive integer. Then the power series E;(tz)
defines an element of M, (I (t)). Moreover, in the case of k = 2, E,(2) — tE,(t2) is a modular form in M, (Ty(t)).

Thus, it follows from Theorem 3.2.1 that for p > 5, &,(2) is a modular form in M,,_,(I;,(p)) and for the case
p =3, &5(2) is a modular form in M,(T},(3)).

We next try to prove a congruence modulo p satisfied by &,(z). In order to do so, we will need the von-Staudt-
Clausen theorem about the denominators of Bernoulli numbers. This theorem was first proved Karl von Staudt
[Sta40] and also by Thomas Clausen [Cla40] independently in 1840.

Theorem 3.2.2 (von-Staudt-Clausen). Let n € N. Then
1
But 2, o
(¢-Dj2n 1
is an integer. In particular, the denominator of B, is exactly the product of primes q for which (q — 1)|2n.

Now since p is an odd prime, p — 1 is even. It follows from Theorem 3.2.2 that

denominator B,_; = l_[ q
q prime
(g—DI(p—-1)

is divisible by p. In other words,
B;jl =0mod p (3.2)

Lemma 3.2.3. Let p be an odd prime and &,(z) € M,,_1(I(p)) be the modular defined as

_ JE, 1) —pPVE, 1 (pz) ifp=5;
é{;(Z) B {Ez(z)_3E2(3z) ifp=3.

Then

&,(z) =1 mod p.
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Proof. We first observe that the Fourier coefficients of &,(z) are p-integral. In other words, the Fourier coeffi-
cients of &,(z) lie in Z,), where Z,y = {(x/y) € Q| x,y € Z and p { y}. From definition 3.1.4, the Fourier
expansion of E,_;(z) is

E, 1(z)=1+2(p— 1)B;1 Z o, 5(n)q" where q = o2z
n=1

Now Theorem 3.2.2 holds true only if B;_ll is p-integral. Thus, we get that the Fourier coefficients of E,_;(z)
lie in Z,) for p > 5.
Also, note that the Eisenstein series E,(z) is given by the following Fourier expansion

E,(2)=1— 242 o,(n)q".

n=1

Hence, it is easy to see that the Fourier coefficients of E,(z) also lie in Z).
Together, we can conclude using the definition of &,(z) that its Fourier coefficients lie in Z,).

Now we show &),(z) = 1 mod p. The von-Staudt Clausen Theorem 3.2.2 states that
-1 —
B ,=0 mod p.
Using this fact in the Fourier expansion of E,,_,(z) in Definition 3.1.4, it follows,
E, 1(z)=1mod p
Hence, we get

&,(2) = E,_1(z) mod p
=1 mod p.

Corollary 3.2.4. Let p be an odd prime and &,(z) € M,,_;(To(p)) be the modular defined as

p

_ JE, 1 (2)—p®VE, (pz) ifp=5;
5= {Ez(z)—BEz(az) ifp=3

Let j € Zq be a fixed integer. Then
i ‘
6,(2)P =1 mod p’.
Proof. If j =0, then result directly follows from lemma 3.2.3. So assume j € Z. .

Again using lemma 3.2.3, we have &,(z) =1 mod p. We can thus write &,(z) = 1+ 2 p where & is a power
series in ¢ whose coefficients are rational numbers and are integral at p. This implies

&GP =1+2p).
Using Binomial theorem, we can write
Y
g =2 (% )@t

k=0
J

=1+ i (I:)(Wp)k.

k=1
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Let k = r.p' where i is a non-negative integer and r is a positive integer such that p  r.

Let v, be the standard p-adic valuation on Q: For any integer x, define v,(x) as the the highest exponent of

p in the prime factorisation of x. For an arbitrary rational number f, define v, (f) =v,(x)—v,(y). Then an
immediate consequence of Kummer’s Theorem [Kum52] is the fact that

()0
Yp ((rp;i)(gp)rpl) =(G—i)+rp-.

v, ((prj)(@p)’) =j+r

which implies

If i =0, then

>j+1. (3.3)
If i # 0, then
w((7)@er ) =G-0+rp
>(j—i)+p".

Next, using induction, it is easy to see that p' > i for any positive integer i. Hence, for i # 0, we have

(j+pi—i)>jor
pJ rpt .
Vp (k)(g’p) Pl>j+1. (3.4

From 3.3 and 3.4, it follows that p/*! divides every binomial coefficient in the sum Zi;l (‘: )(@p)-.
Thus, we conclude

é‘;(z)pj =1 mod p/™.

3.3 Generalised Eisenstein Series

Letk, N € Z.,. Let y : (Z/NZ)* — C* be a non-trivial primitive Dirichlet character. We now introduce a
new series Gy, (z) with a character y, called the generalised Eisenstein series.

/
Gr,(2) == Z ¥ (n)(mNz +n)~* (3.5)
(m,n)
where Z/ indicates that the sum is taken over all ordered pairs of integers excluding (0, 0).

Proposition 3.3.1. G ,(2) € M(TH(N), ).
Proof. For proof, see [Miy89, Chapter 7]. O
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Note 3.3.2. In the definition above, k is allowed to be any positive integer including k = 1 and k = 2, see
[Miy89, Section 7.2]. This is allowed as long as character y is non-trivial. In general, Gy ,(2) is always a
modular form in M (T;(N), ¥ ) unless both k = 2 and character y is trivial.

Next, we give the Fourier expansion of Gy , (2).

Proposition 3.3.3. The modular form defined in 3.5 has the Fourier expansion

e X(=DN (=2nv/=1)F ( =By,
G )= 2N ) - ( 2k )( kazak lx(n)q) (3.6)

where g(y) is the Gauss sum given by Z?’:l 2 (j)e2r /N, By, is the kth generalised Bernoulli number, that is a
rational number defined by the generating function

and o4, is the (k— 1)™ generalised divisor sum defined as Ok, (M) = de x(d)d*.
Proof. See [Hid93, pgs. 127-28]. O

Definition 3.3.4 (Normalised generalised Eisenstein series). We define the normalised generalised Eisenstein
series as

[ opk 2 EDN (227 =DF (=Biy \ |
Ek”‘(z)'_[N o) (k=1 (Zk )] Ger(®)
—1——Zoku(n)q
kl n=1
where q = €™,

Remark 3.3.5. It is clear from Definition 3.3.4 that E; ,(z) has rational Fourier coefficients.

3.4 Generalised Eisenstein series modulo p

Let p be an odd rational prime. Let y, = (1) be the Kronecker symbol which is clearly non-trivial. We then

define &, 5 (2) to be the generalised Eisenstein series of weight 2=, level p and character Xp- More precisely,
&) =Ems, ().

We next try to prove a congruence modulo p satisfied by @Zp(z). In order to do so, we will need an analogue

of von-Staudt-Clausen Theorem 3.2 for generalised Bernoulli numbers. This is stated in [Ste07, Theorem 5.7]
and identifies the denominator of generalised Bernoulli numbers.

Theorem 3.4.1. Let p be an odd rational prime and y, = (5) be the Krocnecker symbol. Then

(Bﬁ,xp)il =0 mod p.

We omit details here but for proof, see [Car59a] and [Car59b].
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Lemma 3.4.2. Let p be an odd rational prime and y, = (;) be the Kronecker symbol. Let éi(z) € M% (To(p), 2p)
be the modular form defined as

& (&)=Era , (2)
Then
(;@;(Z) =1 mod p.

Proof. From the definition 3.3.4, the Fourier expansion of E,,_, (:)(z) is
2°\p
-1 oo
Ep, (:)(2) =1+(p—-1) (Bp—l -)) Diops(ng";  g=e*E
2\p 2 °\p n=1 2

Note that Theorem 3.4.1 holds true and this means that the Fourier coefficients of E, ,
2

’(ﬁ)(Z) must lie in Z).
Thus, we can use the definition of %(42) to conclude that its Fourier coefficients lie in Z).

From Theorem 3.4.1, we have

(Bp_—l )_1 =0 mod p.

3 2 Xp

Using this fact in the Fourier expansion of E ety (2) in definition 3.3.4, it follows
Ap

E;%l’xp(z) =1mod p
or

6,(2) =1 mod p.
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CHAPTER 4

Ordinary modular forms and p-stabilisation

4.1 Introduction
Let k € Z., and let N € Z, be an odd, square-free integer. Also, let p be an odd rational prime.

Let f(2) € S5 (I5(N)) be a newform. Then by Theorem 1.4.7, the Fourier coefficients of f(z) lie in a ring
of integers 0y of some fixed number field L. Let g(z) € Szfrvi(ﬁ;(4N )) be the image of f(z) under Kohnen’s
isomorphism that is normalised such that its Fourier coefﬁcienis lie in the same ring of integers as that of f(z),

that is its corresponding integer weight newform under Kohnen’s map. This normalisation exists, see remark
2.5.6. Now, let us take a big enough number field L/Q containing number fields L for all newforms f(z) in

Sy (L (N)).

Let 0, be the ring of integers of L. In general, any prime ideal p of 0} determines a valuation v, of L, up to a
scalar.

Definition 4.1.1 (p-adic valuation). For x € 0, we define the p-adic valuation v,(x) = n where n is the highest
integer such that x € p". For any a = § € L, we define v,(a) = v,,(x) — v, (¥).

Remark 4.1.2. If the prime ideal p lies above p, then it extends the p-adic valuation. It is possible to normalise
the valuation v, differently by choosing any integer t € N and defining v,(x) = 7. If we choose t = 1, then
the valuation is normalised to have values in Z. However, this does not guarantee that its restriction to Q will
have image in Z. For this reason, we now fix prime ideal p above p throught out this chapter and normalise
v, suitably so that v,(p) = v,(p) = 1, where v, is the standard p-adic valuation on Q. This normalisation is
achieved by taking t = e, where e, is the ramification index of p in factorisation of pg; .

For a power series f(2) = Zzl a,q", we define
v, (f (2)) := inf(v, (a,)).

Let FP be a finite extension of Q, containing L that extends v, to v,. Let 0, be its corresponding ring of

integers. We can then embed L — QTP or embed L — C. It therefore makes sense to view Fourier coefficients
p-adically embedded in &, .

Let Sox(IH(N); 6,) be the @;-submodule of S, (IH(N); L) containing cusp forms in S, (Iy(N); L) that have
Fourier coefficients in ¢;. Now define

Sok(Lo(N); Gy ) := Soi(Io(N); 0,) ®, Op» -
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Let T, (N; 0;) be the commutative ¢, -subalgebra of the End(S,,(I,(N); L) generated by T,, where m € Z.,.
Define

Tok(N; Opp) := T (N; 0,) ®, Ops.

Similarly, let S, ! (To(4N); 6,) be the @, -submodule of Sk ! (To(4N); L) containing cusp forms in S ket (To(4N); L)
that have Fourier coefficients in &;. Now define

Ske1(To(4N); Gy ) = Sp, 1 (To(4N); 6,) @, O -

Let Tk +%(4N ; 0;) be the commutative ¢;-subalgebra of the End(S, +%(f0(4N ); L)) generated by T,,. where
m € Z.,,. Define

Tk+%(4N; Opy) = TNI‘k+%(4N; 0,)®, Oy .

4.2 Ordinary modular forms of integer weight

Let f(2) € Sy (Iy(N); 0,) be a cusp form. We intend to define an idempotent element in Ty (N; Opy ).
Definition 4.2.1 (p-ordinary projector). Let p be an odd rational prime. Then define the p-adic limit

. !
e:= lim T™.
n—oo P

The limit e € T, (N; O, ) exists and e satisfies e> = e [Hid93, Lemma 1, pg. 201 ].

Note 4.2.2. Note that for p | N, T, = U, and we can alternatively write e = lim,,_, o, U;!.

We will now define p-ordinary cusp forms.

Definition 4.2.3 (Ordinary modular forms). Let f(z) € Sy (Io(N); 0;) be a cusp form. Then f(z) is p-ordinary
if

f@)lake = f(2).

The image of Sy (Ty(N); @,,) under the ordinary projection by |4e is called the space of ordinary cusp forms. We

denote the subspace of ordinary cusp forms in Sq(Iy(N); @) by Sgid(FO(N ); Oy).

We now make a few observations about p-ordinary projection of eigenforms in Sy (I5(N); ;). Let f(z) €
Sok(Io(N); ;) be a T, eigenform and let its corresponding eigenvalue in &, be ATP (f). Then we have

f@) A (Ol =15

f@lare = {o if [Ag, (P, < 1.

Thus, the T, eigenform f(z) is said to be p-ordinary if its T, eigenvalue JLTP (f) is a p-adic unit for the fixed
prime ideal p C 0} lying above p.

4.3 Control Theorem

We consider the level of cuspidal space to be N as before. Let p be an odd prime such that p | N but p? } N.
Suppose our cuspidal space S, (I5(N), x; ;) has a fixed Dirichlet character y mod N and let ¢;[y] contain
all values of y. We now state the Hida’s Theorem of constancy of p-ordinary rank. For this, we first need to
introduce the Teichmiiller character.
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Definition 4.3.1 (Teichmiiller character). The Teichmiiller character is a homomorphism between multiplicative
groups

w:(Z/pZ) —Z;
such that
e w(x) is a unique (p — 1)™ root of unity in Zy;
e w(x) = x mod p.

Theorem 4.3.2. Let N € Z., and let p be an odd rational prime such that p | N but p?> } N. Let w be the
Teichmiiller character defined in 4.3.1. Then the rank of (S;Zd(FO(N ), yw 2k 0,1 x])) is constant.

This theorem is proved and originally stated by Hida in [Hid93, Theorem 3, pg.215].

Note 4.3.3. We have taken our weight to be an even integer 2k so that we can later have a smooth transition
to half-integer weight modular forms of weight k + % under Kohnen’s map. However, the original theorem is
valid for all integer weight strictly greater than 1.

We can choose y to be a suitable power of the Teichmiiller map «w and obtain the following corollary to
Theorem 4.3.2.

Corollary 4.3.4. Let p be an odd rational prime and let k, k' € Zq such that 2k = 2k’ mod (p —1). Let N be a
positive integer such that p | N but p? } N. Then

rank (S$4(TH(N); 6,)) = rank (S$ATH(N); 6,)).

4.4 p-stabilisation of modular forms of integer weight

Let k € Z.,. Let N be an odd, positive and square-free integer. Let p be an odd prime that is co-prime to N.
Let

F@)=>"a,q" € SE"(T)(N); ;)

n=1

be a newform. Even though p does not divide the level N of f (z), it is possible to force p in the level by passing
to a p-oldform.

Note that f(z) is a newform and hence is an eigenvector for the T, operator. Let the eigenvalue of f(z) for
the T, operator be denoted by ATP (f). Then

f@IxT, = A1, (f)f (2). 4.1

Let V; and V), be operators defined in section 1.3 that map the space Sy (I5(N); 6 ) to Sy (Iy(Np); 6, ) and act
as

lxVi:f(2) = f(z) and [xV,:f(z)— f(p2).

From Theorem 1.2.3, T, acts on f(z) as follows

fF@IaT, = f @)U, + p** ' f (p2).

Using 4.1 and rearranging the terms, we can write

F@U, = A7 (F)f () —p* ' f (p2) (4.2)
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or

f(z)|2kUp = ATp(f)(f(z)|zl<v1)_PZk_l(f(Z)|2kVp)-

Next, we act 4.2 by U, again and get

f(Z)|2kU3 = )LTP(f)f(ZNZkUp _sz_lf(PZNkup
= A, (F)F @)k U, = p* £ (2).

This relation rewrites as

F@Nak (U2 = A7 (F)U, +p* 1) =0.

Thus U, satisfies the quadratic polynomial x%— ATP (f)x + p*~! on the two-dimensional subspace spanned

by {f (2), f ()|« U, } that has level at most Np, see remark 1.3.3. We may factor this quadratic polynomial as
(x —a,)(x — B,) where a, and 8, are algebraic integers satisfying a, + 3, = ATP (f) and a,p, = pZ1,

We now define two U, eigenforms in S;’,‘(Old(FO(N p); 0;,) below:

fo @ = fF@Ix(Uy—B,) suchthat £, @lxU, = apf, (2)
and

f5,@) = f@lok(Uy — ) suchthat  fy @lakU, = By fy, 2.
We call fap (2) and fﬁp (2), the p-stabilised forms at level Np associated to the newform f (z) at level N.

Remark 4.4.1. Now if f(z) € S;;™ °d(y(N); 6,) is p-ordinary, then its T, eigenvalue must be a p-adic unit,

where p is the fixed prime ideal above p. In other words, MTp (f)l, = 1. We can therefore choose a, to be a

p-adic unit. This then fixes a unique ordinary p-stabilised form fap (z) e Sgid(Fo(N p); 0,) with U, eigenvalue
being a,, a p-adic unit.

4.5 Ordinary modular forms of half-integer weight

Let g(z) € S, 41 (1:0(4N ); ;) be a half-integer weight cusp form visualised to lie in S +1 (ﬁ)(4N ); Oz). We intend
to define an idempotent in T} +1(4N; O ).

Definition 4.5.1 (p-ordinary projector). Let p be an odd rational prime. Then for each prime p, define the p-adic
limit

~ . 1
e:= lim T%
n—oo P

The limit e € TH% (4N; Op,) exists and € satisfies € =€ [Hid93, Lemma 1, pg. 201 ].

Note 4.5.2. Note that for p | N, T, = U,

We will now define p-ordinary cusp forms of half-integer weight.

» and we can alternatively write € = lim,,_, . U;zl.

Definition 4.5.3. Let g(z) € S, +%(I’B(4N ); 0;) be a half-integer weight cusp form. Then g(z) is said to be
p-ordinary if

HONCENIO)

The image of S, +%(IN'0(4N ); ;) under the ordinary projection by | +%'€ is called the space of half-integer weight
ordinary cusp forms. We denote the space of half-integer weight ordinary cusp forms in S, +%(1:O(4N ); 0,) by
s, (Fo(4N); 6,).
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Let g(2) € Sk+%(1:0(4N); 0,) be a T,. eigenform for some prime p | N (resp. p { N). Let JLTPZ(g) denote the
Hecke-eigenvalue of g(z) under the action of T,. operator, that is,

8@y 1 Tpe = A1, (g)g(2).
Then we have

oo (8O @) =1
ST 0 i A (ol < 1.

Thus, T,. eigenform g(z) for all primes p | N (resp. p t N) is said to be p-ordinary if its T}. eigenvalue ATPZ (2)
is a p-adic unit for the fixed prime ideal p C 0, lying above p.

4.6 p-stabilisation of modular forms of half-integer weight
Let k € Z.. Let N be an odd, positive and square-free integer. Let p be an odd prime that is co-prime to N.

Let
g(=) = b,q" € S (T (4N); 0,)
n=1

be a Kohnen newform. Even though p does not divide the level 4N of g(2), it is possible to force p in the level
by passing to an oldform of half-integer weight.

Note that g(z) is a newform of half-integer weight and hence is an eigenvector for the T,. operator for p { N.
Let the eigenvalue of g(z) for the T,. operator be denoted by ATPZ (2).

8@y 1 Tpe = A7, ()8(2). (4.3)

Let V; be a map from space Sk+1(f0(4N); L) to Sk+1(f0(4Np); L) and let V. and V(:) be maps defined from
2 2 P
the space Sk+%(f0(4N); L) to Sk+%(f0(4Np2); L) given by

a3 Vi1 8@ = 8@, ey Ve 8@ - 8(p2) and ey Ve i 8() = g2)(2)
respectively.
Note 4.6.1. V; and V,, have been defined explicitly before in section 6.3. Here g(:)(z) = Z:Zl ( g) b,q" is the
P
twist of g(z) by the Legendre symbol (;—)) The level of g(:)(z) is irrelevant to our result as we will see next
P
that it’s killed under the action of the U,. operator. So we skip the details regarding the level of g(:)(z).
P

From Theorem 2.2.4, T, operator acts on the Fourier coefficients of g(z) as follows,

—1\k
8@ 1 Tpe = 8@k 1 Upz + (?) P +p* e (p%).

Using equation 4.3 and rearranging the terms, we can write

2
p

RN
8@y 3 Upr = A1, (8)g(2) — (71) P g ) —p" g(p%2) (4.4)

or

g(z)|k+% p2 = )'sz (&) (g(z)|k+%V1) - (_?l)kpkl (g(2)|k+%v(§)) —pZk-1 (g(z)|k+%vpz).
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Next we act 4.4 by U, again and get

—1\k B
£y U = (8@ U= (- ) P lg(e) sy Upa—p

2 g(p?) gy 1 Upe-

From the definition of the Legendre symbol, (%) =0. Thus,

0 2
pn n
8(3) @l U :g(T)bﬁ"q

=0.

Hence, we conclude g(:)(z) lies in the kernel of U,,.. It follows,

8@)s1 UZ = Ar,(8)8(@)li 1 Upe — p* g 2).
This relation rewrites as
8@ (U2 =27, ()U;e +p* ) =0.

Thus, U, satisfies the quadratic polynomial x?— AT,,z (g)x + p*~! on the two dimensional space spanned by

{g(=), g(2)|, +1 1,2} that has level at most 4N p, see remark 2.3.3. We may factor this quadratic polynomial as

(x —a,)(x — B,) where a, and 3, are algebraic integers satisfying a, + 3, = Asz(g) and a,f3, = p2L,

We now define two U,,. eigenforms at level 4Np,

gap(z) = g(z)lk-;_%(UpZ _ﬁp) such that gaP(Z)|k+% p? = apgap(z)

and
8p,(2) == g2 1 (U —a,)  suchthat  gp (2)|,1Up2 = B85, (2).

We call 8a, () and 8p, (2), the p-stabilised forms at level 4N p associated to the half-integer weight newform
g(2) at level 4N.

Remark 4.6.2. Now if g(z) € S:i"; °rd(T,(4N); 6,) is p-ordinary, then its T, eigenvalue must be a p-adic unit,

where p is the fixed prime ideal above p. In other words, Msz (g)l, = 1. We can therefore choose a, to be a p-

adic unit. This then fixes a unique ordinary p-stabilised form 8a, (z) e Sziidl (To(4Np); 0,) with U, eigenvalue
2

being a,, a p-adic unit.
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CHAPTER D

Congruences related to modular forms of integer & half-integer weight

5.1 Notation

Let k € Z., and let N be a positive, odd, square-free integer. Fix an odd rational prime p that is coprime to N.

Let M be a positive integer such that M | Np. Let f(z) € S;7"(I,(M)) be a newform. Then by Theorem 1.4.7,
. . . . . . oo . .
for any normalised integer weight eigenform, in particular for f(z) =, ~, a,q", there exists a fixed number

field L with ring of integers & such that for each n € Z., a, € 0;.

Let g(z) € SZ?Y (I(4M)) be a Kohnen newform associated to f (z) via Kohnen’s isomorphism that is normalised
2

in a way that its Fourier coefficients lie in the same ring of integers as that of f(z), see remark 2.5.6. More
oo

precisely, if g(z) = >, ~, b,q", then for each n € Z.,, b, € 0;.

Let j € Z., be a fixed integer and define k' := k + @. Now let us take a big enough number field L/Q
containing number fields Ly and L & for all newforms f and .7 in S5 (T,(M)) and S;;)"(T,(M)) respectively
over all divisors M of Np.

Let 0}, be the ring of integers of L. We now fix a prime ideal p above p such that the p-adic valuation v, is
normalised suitably so that v,(p) = v,(p) = 1, where v, is the standard p-adic valuation on Q. This normali-
sation is achieved by defining for any x € 0, v,(x) = n/e, where n is the highest integer such that x € p" and
e, is the ramification index of p in factorisation of p@; . This normalisation guarantees that v, when restricted
to Q will have image in Z.

For a power series f(z) = Z:Zl a,q", we define

v, (f (2)) = inf(v,(ay,)).

Denote the set of p-integral elements in L by ¢, that is

X
ﬁ(p)z{;|x’yeﬁu}’¢lﬂ}-

Let F? be a finite extension of Q, containing L that extends the valuation v, to v,. Let O, be its correspond-
ing ring of integers. We can then embed L — QTP or embed L — C. It therefore makes sense to view Fourier
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coefficients p-adically embedded in &, .

Let So1(Ty(M); 0,) be the ¢, submodule of S, (T;(M); L) containing all cusp forms in S, (I, (M); L) that have
Fourier coefficients in 0;. Now define

Sok(Lo(M); Opy ) := Sor(To(M); 0,) ®4, Os -

Similarly, let S, +1 (Iy(4M); @;) be the 6, submodule of S k1 (To(4M); L) containing all half-integer weight cusp
forms in S, ! (To(4M); L) that have Fourier coefficients in @;. Also, define

Sk+%(ﬁ)(4M)§ Opy) := Sk+%(f'o(4M)§ 0,) ®g, Op:.

Let T, (M; 0;) be the commutative &, -subalgebra of the End(S,;(I,(M); L)) generated by T, over all primes
{. Define

TZk(M; ﬁFp) = Tzk(M, ﬁL) ®ﬁL ﬁFp.

Similarly, let ']NI‘k +1 (4M; 0;) be the commutative g, -subalgebra of the End(S, +1 (Ty(4M); L)) generated by Ty
over all primes £. Define

Ty 1 (4M; Gp,) =Ty, 1L(4M; 6,) ®, Opy.

5.2 Congruences related to modular forms- Integer weight case

In this section, we prove a series of results to establish a mod p congruence between Fourier coefficients of
integer weight N-new eigenforms with varying weights. Before we do that, we briefly set up the key ingredi-
ents required in this section.

From equation 1.2, we have the following decomposition of complex vector spaces of cusp forms,

Su(To(Np);L)= P SI(To(M); L)l Vs (5.1)
M|Np
dINpM~!

where d runs over all positive divisors of NpM ™.

Remark 5.2.1. We can replace the V; operator in the above definition by the U; operator for d not dividing
the level. Recall that the U, operator replaces every n™ Fourier coefficient for n € Z. , in the q expansion of a
cusp form with the (dn)™ Fourier coefficient. See remark 1.3.3 and [Koh82, pg. 68].

We now give the explicit definition of the space of N-new forms at level Np.
Sy (To(Np); L) = Spe(To(Np); L) @ (Spe (To(N); L) |2 U, ) @ S (To(N); L). (5.2)

Let I denote a finite index set such that | I | = dim(SiVI;“eW(FO(N p); L)). Recall from Proposition 1.4.6 that the
newspace has an orthogonal basis of newforms with Fourier coefficients in @;. This can be applied to each
newspace in the direct sum in 5.2. Hence, we can take a basis {f" (2)};¢; C Si’“ew(I‘o(N p); 0;) to be a basis of
the space Sé"k'“ew(FO(N p); L) consisting of N-new Hecke eigenforms for all Hecke operators T, over all primes
¢ (including T, b= Up).

Note 5.2.2. We have used the superscript N on the top of the cusp form f(z) in order to clarify that the cusp
form is new at level N.

Let us consider the p-ordinary projection operator e = lim,,_, o, U;!’ defined in 4.2.1. We apply this projection
operator on each element in our basis { fiN ()} as follows

(Y @laxelier = (Y 2y U {0}

(To(Np); L)) and { fiN (z)};n:”1 include p-stabilised U, eigenforms obtained from new-

N-new, ord
2k

forms in decomposition 5.2. Hence, the set { fl.N (2)}

Here my = dim(S
my N-new, ord
i=1 & Sax

ordinary eigenforms that form a basis for Slzvk'“ew’ (T (Np); L).

(TL(Np); 0,,) consists of my distinct N-new
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5.2.1 Main assumption

We now state the main assumption that is a key ingredient in building the proof of the main theorem in this
chapter. Note that by Hecke eigenforms in assumption 1, we mean eigenforms for all Hecke operators T, for
all primes £.

Assumption 1. Let

- ) -d .
U@ € SN (ry(p); ;)
be a basis of eigenforms for Si"mord(I‘o(N p); L) consisting of N-new eigenforms with 0, -integral Fourier coef-
ficients and scaled in a way such that every element in the basis has at least one Fourier coefficient that is not
divisible by p.

Let N’ € Z, be a divisor of N and let

FN'(z) € sy (T (N'p); 6,)

also be an eigenform with 0} -integral Fourier coefficients.
Suppose for all primes £ 4 Np,
g, (F) = Aq, (Y)Y mod p
where Ar,( fl.N ) and Aq,(f Ny denote the Hecke-eigenvalues of fiN (2) and N (2) for T, operator respectively. Then
fV'(z) = afN(z) for some a € 0.

Remark 5.2.3. In our thesis, we are mostly working with one dimensional new spaces of cusp forms, so our
assumption 1 holds trivially. However, generally it’s quite difficult to argue why one can always find forms for
which assumption 1 holds. As such, assumption 1 might appear quite strong to the reader and not amenable
to computation as the dimension of the spaces of cusp forms increases. However, there are conjectures for
spaces of cusp forms of weight 2 and prime level p that increase the likelihood of existence of newforms for
which assumption 1 will be true. In [CS04], Calegari and Stein conjecture that for any prime p, there are
no mod p congruences between two distinct newforms in S,(I(p); Op») but there are almost always many
such congruences with newforms in spaces with weight greater than 2. They also show that the only prime
p < 50923 for which there is a congruence between two weight 2 newforms is p = 389. In theory, congruences
between newforms arise in two ways: from the failure of the Hecke ring T, (p; OF» ) to be integrally closed or
from ramification in the coefficient fields of the newforms. So, the conjecture of Calegari and Stein asserts that
the Hecke algebra T,(p; O, ) is integrally closed. In [AR11], Ahlgre and Rouse extend the work of Calegari
and Stein and work with weights 4 and 6. Thus, in the light of these conjectures which have been tested for
considerably many primes p, we expect to find N-new ordinary forms that should satisfy assumption 1. With
this expectation, we will also make a similar assumption 2 when we move to congruences between Hilbert
modular forms in Chapter 10. The task to find explicit examples where we illustrate how this assumption
is tested remains a part of future research work and cannot be included in the current thesis due to time
constraints.

5.2.2 Main Theorem

We now state our main result. Again, note that by Hecke eigenforms in Theorem 5.2.4, we mean eigenforms
for all Hecke operators T, for all primes /.

Theorem 5.2.4 (Main Theorem). Let my = dim (S;Vk'"ew’ ord(L (N p); L)) and let

{FN ()M C shm (T (Np); 6;)
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be a basis for Sévk'"ew’ °rd(T,(Np); L) consisting of of N-new ordinary eigenforms with 0, -integral Fourier coefficients
and scaled in a way such that every element in the basis has at least one Fourier coefficient that is not divisible by
p- ,

Let j € Z,, be a fixed integer and define k' := k + ‘@. Suppose assumption 1 holds for the basis {fl.N (z)};":’vl.
Then for each integer i such that 1 < i < my, there exists an N-new ordinary eigenform

FV(2) € ST T (N p); Gy,

unique up to scalar multiplication in €, such that we have the following congruence of Fourier coefficients:

N (z) = 5§V (z) mod p’*.

Figure 5.2.5.
-new, ord = mod p/*! (Fourier coefficients) _new; ord
fV € 53" U(Ty(Np); ;) > Y € Sy TN p); G)
N-new, ordinary, eigenform of weight 2k N-new, ordinary, eigenform of weight 2k’

Remark 5.2.6. We note that Theorem 5.2.4 also holds true for all weights k' = k + t(pz;l) where t is a positive

integer.

In order to give a nice structure to the proof of Theorem 5.2.4, we break it down into a series of propositions
which when combined will eventually imply the result.

Proposition 5.2.7. Let
f(z) €Sy (To(Np); ;)

be a cusp form with 0, -integral Fourier coefficients.
Let j € Z be a fixed integer and define k' := k + w. Then there exists a cusp form

F(z) € So(Lo(Np); Oy)
such that we have the following congruence of Fourier coefficients:

f(2) = F(z) mod p’*.

Figure 5.2.8.

= mod p’*! (Fourier coefficients)

f €Sx(To(Np); ;) > F € Sy (To(Np); Gpyy)

| |

Cusp form of weight 2k Cusp form of weight 2k’
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Proof. Define

F(z):=f(2)&, ()

where &,(z) € M,_1(I,(p)) is defined in terms of Eisenstein series E,_,(z) as

E, 1(z2)—p’'E, 1(pz) ifp=>5;
gp(z) — { p p

E5(2) —3E,(32) ifp=3.

Recall that &,(z) has p-integral Fourier coefficients (see proof of Lemma 3.2.3) and note that it’s given that

the Fourier coefficients of f(z) lie in @;. This implies that the Fourier coefficients of F(z) lie in . Further
by corollary 3.2.4, we have

&,(z)" =1 mod p/*.
Hence, we conclude,
f(2) = F(2) mod p/*.
O

We next try to show that the action of Hecke operators | T, for primes ¢ on f(z) mod p/*! is the same as the
action of Hecke operators |, T, on F(z) mod p/*! where f(z) and F(z) are defined in proposition 5.2.7.

Corollary 5.2.9. Let f(z) € Sy (To(Np); 0,) and F(2) € Sy (Io(Np); €y,)) be cusp forms as defined in proposi-
tion 5.2.7 such that

f(z) = F(z) mod p’*.
Then we have
F @k Ty = F(2)| 0 Ty mod p’**
for all primes {£.
Proof. Let f(z) = Z:Zl a,q" and F(z) = erilAnq” be the Fourier expansions of f(z) and F(z) defined in
proposition 5.2.7. Then we have

a, =A, mod p/™L. (5.3)

Case 1: { {Np.

From proposition 1.2.3, we can write for all prime £ { Np,

[ee]

F(2)|ow Ty = Z(Azn +0 74,00 5.4

n=1

From 5.3 and 5.4, we have

P -1
+ 2

oo
F(2)lop Ty = Z(% + fz(k )_1an/e)qn mod p/*!
=1
floo ]
= (@ + 07 ((7) a,)g" mod p/*1.
n=1

Now by Fermat’s Little Theorem, we have ¢! = 1 mod p. Then by a similar argument as in the proof of
corollary 3.2.4, it follows (Zp_l)p] =1 mod p/L.
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Thus,
oo
F(2)|op T, = Z(a[n + €2k_1an/,;)q" mod p/*!
n=1
= f(2)| T, mod p’**.
Case 2: [ | Np.

Now, for all primes £ | Np, we can write

oo oo
F@InT =D a,q" and  F(@)lypTe= > Ang" (5.5)
n=1 n=1

From equations 5.3 and 5.5, it follows
a,, = A, mod p/*?
or
f(@)lo Ty = F(2)]5 T, mod p/*.
([

We next show that if we are given that f(z) in proposition 5.2.7 is an ordinary cusp form of weight 2k, then
F(2) in proposition 5.2.7 is also an ordinary cusp form of weight 2k’.

Proposition 5.2.10. Let
() € S34T(Np); 6,)

be an ordinary cusp form with 0, -integral Fourier coefficients.
Let j € Z be a fixed integer and define k' := k + w. Then there exists an ordinary cusp form

F°(z) € S3(To(Np); 0)
such that we have the following congruence of Fourier coefficients:
f(2) = F°(z) mod p’*!.
Moreover,
F@o Ty = F(2)| 0 Ty mod p’*!

for all primes ¢.

Figure 5.2.11.

= mod p’”rl (Fourier coefficients)

f €SI (T,(Np); 6,) » F° € SS(TH(NDP); O)

| !

ord. cusp form of weight 2k ord. cusp form of weight 2k’
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Proof. Define
F°(z) :=F(2)lye

where e = lim,_, o, U;! is the p-ordinary projector and F(z) € Sy (To(Np); Gy,)) is the cusp of weight form
obtained in proposition 5.2.7.
Note e is an idempotent, that is e? = e. This implies

F°(2)|oe = F(Z)|2k/e2
=F(2)|oe
=F°(2).

Hence F°(z) is ordinary at p and lies in S;’;{‘,i(l“o(Np); Opy)-

Next, we use corollary 5.2.9 and write
F°(2) = F(2)|ywe
= f(2)loke mod p’*!
Since f(z) is given to be ordinary, then f(z)|ye = f(2). So, we can write
F°(2) = f(2) mod p/™.
Then the mod p’*! equivalence of Hecke action follows directly from corollary 5.2.9. O

We next show that if we are given that f (z) in proposition 5.2.10 is an N-new ordinary eigenform of weight 2k
for which assumption 1 holds true, then there exists .%#(z), a unique ordinary eigenform of weight 2k’ (unique
up to scalar multiplication in ;) which satisfies a mod p congruence of Hecke-eigenvalues with f(z) for all
Hecke operators T, over all primes £ { Np.

Proposition 5.2.12. Let my = dim (Slzvk'”ew’ ord(r, (Np); L)) and let

{FN )M C sy (T, (Np); 6,)

be a basis for Sl\;{'"ew’ °rd(T,(Np); L) consisting of N-new ordinary eigenforms with 0, -integral Fourier coefficients
and let each f;"(z) be scaled in a way such that it has at least one Fourier coefficient that is not divisible by p.
Also, assume that assumption 1 holds true for the basis { fiN (z)}f;”l.

Let j € Z be a fixed integer and define k' := k + @. Then for each i such that 1 < i < my, there exists an
ordinary eigenform

F(z) € S3(T(Np); 6,)
that is unique up to scalar multiplication in 0;, and for all primes £ } Np satisfies the congruence

fo(fiN) = A, (F;) mod p.

Figure 5.2.13.

R d = mod p (Hecke eigenvalues)
FY € Sy U Ty(Np); 6,) > F; € Sy (TL(NP); 0;)
N-new ord. eigenform of weight 2k ord. eigenform of weight 2k’
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Proof. For simplicity, let us fix the integer i, say i = 1. Then by proposition 5.2.10, for an ordinary cusp form

@) e S;\Jk-new, (L, (Np); 6,), there exists an ordinary cusp form F;(z) € S3N(T,(Np); Gpy) such that

£ (z) =F;(z) mod p/*'.
Just as in equation 5.1, the space S,/ (I[,(Np); L) also decomposes as

So(LNp);L)= B SIV(Ty(M); L)lo Uy (5.6)
M|Np
dINpM™!

where d runs over positive divisors of NpM ™.

For each M, we have an orthogonal basis of newforms for S;7(I,(M); L), see Proposition 1.4.6. These new-

forms have Fourier coefficients in ¢;. Let S be a finite index set with cardinality equal to dim(S,;. (I,(Np); L).
Thus, we can take a basis {.7,(2)};es € Sor (To(Np); 0,) with 0, -integral Fourier coefficients for So;., (Ty(Np); L)
that consists of eigenforms for Hecke-operators T, for all primes ¢ (including T, = U,).

Then we can write F(z) € Sgi‘,j(FO(N P); O) as a linear combination of this basis of eigenforms:

Fl(z)= Z a,%,(z) where a, € L. (5.7)

SES
We next apply the p-ordinary projector e, = lim,_,, U[’,” on either side on equation 5.7.

Fy(2) =Y aZ(2)|e

SES

=0, (Z,(@)le)

s€S
t
= a,.7,(2)
s=1

where t = dim(Sg{f(Fo(N p); L)) and {.Z(2)};_, are p-stabilised U, eigenforms obtained from newforms in

decomposition 5.6.

Claim: We claim that there exists an integer s such that 1 <s < t, say s = 1, such that for all primes ¢ { Np,
we have

Ar,(f;) = A7,(F,) mod p.

We assume the contrary and try to reach a contradiction.

Suppose for every integer s such that 1 <s < ¢, there exists some prime ¢; such that

(4Np and  pt(Ar (F)— A7, (F). (5.8)

(Tgs —Arg, (?s)) on either side. We will see that this
product operator Kills every term in the sum on the right hand side of this equation.

Now let us operate equation 5.7 by the operator |2k, ]_[st

e n(res—aTés@):(zasz(z)) [1(7. -, (%)
2k s=1 s=1 2k’ s=1
=(Zas<%(z)) (10, = 20, (D) [ [ (10, = 21, (50)
s=1 2k’ s=2
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t

[ 1(r, = 2:,(70)

= (Z o (Z,(@law Ty, ) — Ar, (%)Zasﬂs(z))
s=1

s=1 2k s=2
t t t
= Dl ()@ - ai, (%)&:(«z)) [ 1(1. =20, (20)
s=1 s=1 2k’ s=2
t t
- ( o, (Ar, (F) = A, (57)) ﬁ}(z)) [ 1(7. =20, (7).
s=1 2k’ s=2
t t
=> [ [ (A1, (F) 21, (%)) Zi2).
s=1 w=1
=0. (5.9

Now replacing F;(z) modulo p’™ by fN(2), we see that the same product operator |2k, ]_[st=1 (Tgs —Ar, (ﬁs))
modulo p’™! does not act as a zero operator on F7(2).

t t
F@)| [1(1 - 27, (7)) =) Zkl_[(T“ — A7, (#,)) mod p/*!
! s=1 s=1
t
=fN@)| (1, =25, (ZD] (T, — Ar, (£))) mod p/*!
2k s=1

5;2

= (AN @aTe, = Ar, (TN ()

t

[ 1(7, = A2, (£)) mod p'*!

2k s=1
S#2

t

l_[ (TIZS o AT[ (%)) mod pj+1
2k i;; s

= (A, FN &) = 2, (FF ()

t (T, — A7, (#)) mod p**

2k s=2

=[ (22, 7= 25, (7)) £¥(z) mod p/*.
s=1

= (Ar, )= A1, (7)) £ ()

First note that le (2) modulo p is non-zero. This is because we are a suitable scaling under which at least one
Fourier coefficient of le (2) is not divisible by p. Also, assumption 5.8 implies p does not divide the product

]_[St=1 (AT[S - Ar, (3})). Thus, we conclude

t

[ (7 =27, (7)) #0modp. (5.10)

2k’ s=1

F(2)

From 5.9 and 5.10, we have reached a contradiction. Hence, our assumption 5.8 is false. Therefore, there
exists an integer s such that 1 <s <t (say s = 1) for which for all primes £ { Np,

Ag, (") = Ag,(F1) mod p.

We can repeat the above proof for every i such that 2 < i < my. Therefore, for each 1 <i < my, there exists
an integer s; where 1 <s; < t such that for all primes £ } Np, we have

A, (fY) = A4,(Z,) mod p. (5.11)

Uniqueness: Lets, = 2. Then .%,(z) is the ordinary eigenform that satisfies the congruence 5.11 with f,"(2).
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Suppose .%,(z) is distinct from .%#;(2), that is, there does not exist any 9 € 0, for which .%,(z) = 8B.%,(z)
but if possible, let .%,(z) also satisfy the following congruence with le (2):

A1, (f1) = Ag,(F,) mod p.
Then it follows

A, (fy) = Aq,(f,") mod p.

m

Then by assumption 1, f,'(z) = 6, (z) for some ¥ € @;. This is not possible as the set {f"(z)};
N-new,ord
2%

_ forms

a basis of N-new ordinary eigenforms for the space S
elements.

(TL(Np); 0,,) and hence consists of my distinct

Hence, for each 1 <i <my, # (z) € Sglr(‘,j(I‘O(N p); 0;,) is the unique ordinary eigenform up to scalar multipli-

cation in @) which satisfies congruence 5.11 with fl.N (2). For simplicity, we choose s; = i. O

Proposition 5.2.12 gives us a set of ordinary eigenforms {f’/’}(z)}ﬂl in Sgi‘,i(FO(N p); 0,.), with each element in

the set being unique up to scalar multiplication in &; such that for all primes £ { Np

Ag,(FY) = A7,(F) mod p.

We next want to show that the elements in the set {.Z;(z)}/
SN -new, ord

2k’

are N-new and forms a basis for the space
(T(Np); L) . For this, we use induction.

Proposition 5.2.14. Let my = dim (S;{'”ew’ ord(r,(Np); L)) and let
{FN @) Sy (T, (Np); 6;)

be a basis for SIZV,;"QW’ ord(L,(Np); L) consisting of N-new ordinary eigenforms with @, -integral Fourier coefficients

and let each fl.N (2) be scaled in a way such that it has at least one Fourier coefficient that is not divisible by p.
Also, assume that assumption 1 holds true for the basis { fl.N (z)}:ﬂ’l.

Let j € Z be a fixed integer and define k’ := k + w. Then there exists a set of N-new ordinary eigenforms

{ZN @) C ST (T, (Np); 6,)

with 0, -integral Fourier coefficients such that it forms a basis for the space S;\Tk',“ ew. ord( 1 (N p); L) and for all primes
{ { Np satisfies the congruence

Ar,(F) = Ag (FY) mod p.

Figure 5.2.15.

=mod p (Hecke eigenval
fiN c S;Vk-nevv, Ol’d(l—-O (Np); ﬁL) mod p (Hecke eigenvalues) ) le c SJZVk‘II'leVV, Ord(l—.o (Np); ﬁL)
N-new ord. eigenform of weight 2k N-new ord. eigenform of weight 2k’

Proof. We will use induction on the level to prove this proposition.
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e Base Step: Let N =1.

Let {f,!(2)}}2, € Szll'(new’ord(l“o(p); 0,) be a basis of S;,'{nev"’ord(f‘o(p); L) consisting of 1-new ordinary eigen-
forms where m; = dim (S;I‘{new’ord(f‘o(p); L). Then using proposition 5.2.12, we have a set of ordinary
eigenforms {.7. il(z)}f«'zl1 C Sglr{‘,i(f‘o(p); 0,) with each element unique up to scalar multiplication in &
such that for all primes £ } p,

Aa,(f1) = A, (F1) mod p.
Now observe that every form in S, (I (p)) is trivially 1-new. So, Sy (IH(p)) = S;I;?ew(Fo(p)). In partic-
ular,

{ZL N € S (To(p); ) = Sy (T (p); ).

Next, we want to show dim S;{{‘?(Fo(p); L) = m;. Since 2k’ = 2k mod p — 1. Then we can apply Hida’s

Control Theorem, see corollary 4.3.4, and get

dim (S5 (Ty(p); L)) = dim (S5 (Ty(p); L)) (5.12)
=my.

Thus, the set {9’1.1 (z)};n:l1 contains m; distinct elements which form a basis of ordinary eigenforms for

the space S3(T,(p); L).

e Induction Hypothesis: Let us assume that proposition 5.2.14 holds for every integer N’ € Z., such that
N’|N but N’ #N.

e Induction Step: We are given that {fN(2)}}™| C Sévk'new’ °d(T,(Np); 6,) is a basis of N-new ordinary eigen-

forms for the space S;V,;new’ord(FO(N p); L) where my = dim (szvlgnew’ °d(Ty(Np); L)). Then by proposition
5.2.12, we have a set of ordinary eigenforms, say {ﬁiN (z)}:nzN1 C Sglr{‘,i(FO(N p); 0,) with each element
unique up to scalar multiplication in &; such that for all primes ¢ { Np, we have

Ar,(fN) = A,(Z)) mod p.

Note 5.2.16. Note that we have made an abuse of notation by writing the superscript N for each element
in the set {fiN (z)}?zvl of ordinary eigenforms above. However, it hasn’t yet been shown that the elements
are N-new but that’s our goal. We make this abuse of notation to distinguish that this set is the nominated
set that we need.

As before, let N’ € Z., such that N’ | N but N’ # N. For simplicity, let us consider i = 1. Suppose there
exists an N’-new eigenform .Z" (z) € Slz\g([new’ °rd(T,(Np); 6,) for some proper divisor N’ of N such that
for all primes £ } Np, we have

Ag,(FN) = Ag,(FY)
and

Ar,(FY) = A7,(FV) mod p. (5.13)

However, induction hypothesis implies that .ZV (z) is a unique form up to scalar multiplication in o,
that satisfies the congruence 5.13 with an N’-new ordinary eigenform fV'(z) € Si'“eword(f‘o(N p); O,).
That is, for all primes, £ } Np, we have

Az, (FN) =27, () mod p. (5.14)
From congruences 5.13 and 5.14, we get for all primes £  Np, we have

Az, (V)= A7, (FY) mod p
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which is contradiction to our assumption 1. Thus, ﬁf’ (2) must be N-new.

Now we want to show that dim(S]ZVk',nev"’ord(l"o(N p); L))= my. From induction hypothesis,
dim(Sy, """ (To(N'p); L)) = dim(Sy, """ (Ty(N'p); L)) (5.15)

Since 2k’ = 2k mod p — 1, then by Hida’s Control Theorem, see corollary 4.3.4, we have

dim(S5 (T (N p); L)) = dim (S (T (N p); L)). (5.16)

Let 0y(n) denote the divisor function that counts the number of positive divisors of an integer n € Z.,.
Using equations 5.15 and 5.16, we get

dim(Sy," " (o (N p); L))

2k’

= dim(ng(,i(Fo(Np); L))— Z O'O(NN/—l) dim(S;Vk,/'new,ord(l—.O(N/p); L)
N’'|N
N’;léN

= dim(S5(NPY; L)) — D, op(NN'™) dim(Sy, ™ (o(N'p); L))
N'|N
N’;léN

. N-new,ord
= dim(S,, (To(Np); L))
= mN.

Hence {#"(2)}, is a basis of N-new ordinary eigenforms for the space Slzvk'? eword( (Np); L).

5.2.3 Proof of Main Theorem

We now give the proof of the main Theorem 5.2.4.

Figure 5.2.17.

= mod p’*! (Fourier coefficients)

F e sy (T (N p); 6,) > FN € Sy (L(Np); 0,)

| !

N-new ord. eigenform of wt. 2k N-new ord. eigenform of wt. 2k’

Proof. For simplicity, let us fix an integer i such that 1 <i < my, say i = 1.

By proposition 5.2.12, for N-new ordinary eigenform f,¥(z) € Slzvlgnew’ (L, (Np); 6,), there exists an ordinary
ord

cusp form in F(z) € S7;7(IH(Np); €,,)) such that we have the following congruence of Fourier coefficients
N — o j+1
' (2) = F{(z) mod p’*.

Let t = dim(Sgi‘?(FO(Np);L)) and {ysN(z)}st=1 C S;,r(‘,j(FO(Np); 0,) be a basis for Sglr(‘,i(FO(Np); L) consisting of

ordinary eigenforms.

Note 5.2.18. We have a slight abuse of notation when we write the superscript N for each ordinary eigenform
in the set {7, N (2)}!_,. These ordinary eigenforms are not necessarily N-new but include the set of N-new
ordinary eigenforms as well. Note that t > my.
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So, we can write F;(z) as a linear combination of elements of the basis {JN (=)}
t
Fy(z)= Z a, FN(z) where {a,}!_, C L
s=1

By proposition 5.2.14, for N-new ordinary eigenform f"(z) € SN rleword(FO(N p); 0;), there exists an N-new
(Ty(Np); 0,), say F. f’ (2), unique up to scalar multiplication in @, such that

N-new, ord
ordinary eigenform in S,

for all primes £  Np, we have
Ar, (f) = A7, (#) mod p. (5.17)

This uniqueness implies that for every integer s such that 2 <s < t but s # 1, there exists some prime ¢, { Np
such that

pt(Ar, =27, (F))).

So, we have

t

o] [(Ar, B =20, (21)).

s=2

In other words,

1
- € G- (5.18)
M, (Ar, Y= 2g (7))
Define
1 t
(2):= F>(2) T, — A, (LQSN) . (5.19)
L (e =2 (7)) T e i (T =2,02)

Claim: We claim that §) (z) = 8.7 (z) for some % € 0, and §} () = f"(z) mod p’**.

We will first show that §) (z) = 8.7} () for some B € 0.

t

[ (1. =27, (7))

2k’ s=2

= (Zt: asegsN(z))

F{(2)

t

[ (1. =2, (7))

2k’ s=2

a fN(z))‘ (1, =21, )] (7, = Ar, (Z]))
2k’ s=3
l_[ (Tes - ATIS ("JZSN))
2k’ s=3

[ (1. =27, (#))

Za (ZY @i Tp,) = A, (ﬁ”)Za fN(z))

(Za Ay, (PI)FN (@)~ Za A, (fN)ﬁJN(z))

2k’ s=3
t
[ [(7,—27,7M).
s=1 2k’ s=3
t t

o[ [(Ar, (FM) =21 (F2)) FV (@)
s=1 w=2

Da AT[Z(fsN)—Anz(ﬁf))ﬁ?(z))
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=, 7} (2) l—[ (ATzW (F)— Ar, (july))

w=2

or
o t aN
Fy @)l [T, (Te, = Ar, (Z1))

FYET s (Ar, (PN =2 (ZD))

We want to show that a; € ¢,).

Note that F;(2)]y ]_[stzz(Tgs — Ag, (Z1)) has Fourier coefficients in @,). This is because A, (#¥) € 0, and
the Hecke-algebra Ty (Np; G,)) S End(Sor (To(Np); Gyy))-

Next, ﬁf (2) is unique up to scalar multiplication in @; and we can scale it in a way such that at least one of
its Fourier coefficient is not divisible by p. Thus, p +.Z," (2).

Now, suppose there exists some w such that 2 < w < t for which p | (AT[ (f’ilN) — A, (f’iﬁ)), then

o1 (A, (FN)=Ag, (F) + 2, (FN) = g, (FD)).

Since p | (A, (FN)— Ar,, ( f1)) by congruence 5.17, it follows,

ol (A, P =21, (Z1)).
This is a contradiction to 5.18. Thus,
t
o] [(Ar, (FM) = 2s (7). (5.20)
w=2

We can hence conclude a, € 4.

We thus have

1
[T, (A, B = A, (F1)
(A (FN) =2y (FY
=alrlwt_z( r (M) =g, ( W))%N(z)
[T, (Ar, F) = 2, (F))
=%9{V(z)

@)=

Fr@)| [ [(1 =20, ()
) k' s=2

2

where the fact that a; € 0,,) along with 5.18 implies

[T, (2, (1) =2g, (F)))
B=o—r € Op)-
[T, (A, ) = 24, (F))

We will now show 3% (z) = fV(z) mod p/**.

In order to do so, we will again look at action of I_Ltzz(Tes —Ar, (Z))) on F}(z) modulo p’*!.

t

l_[ (Tes - ATts (dﬂisN)) = le(Z)

2k’ s=2

t

l_[(Tls —Ar, (gZSN)) mod p/*!

2k s=2

Fi(2)
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We see how one of the terms out the product l_lst:z(TgS —Ar, (F))) acts on f¥(2) to observe the pattern.

t

[1(1, =27, (7) = 1)

2k’ s=2

Fi(z)

t
Ty, = A, (ZN] (1, =27, (£))) mod p*
2k s=3

t

[ [(7 =27, (#Y)) mod p*!
2k =3 ‘ ’

= (A @NaTy, =21, (FOF )
(A, M) = Ar, (N ()
(

t

l_[ (Tes — A1, (LOZSN)) mod p/*!

2k s=3

= (A2, ) =21, (F)) £ (2)

t

=[T(A1, M) =24, (F)) £¥(2) mod p'*. (5.21)

s=2

ﬁ (Tls —Ar, (ZN)) mod p/*!
2k s=3 )

Using definition 5.19 and 5.21, we get
V(=) = f¥(z) mod p/*. (5.22)

Thus, we have shown that for each integer i such that 1 <i < my, there exists an N-new ordinary eigenform

V(=) e Slzvk',“ew’ (L (Np); Op)) with p-integral Fourier coefficients such that we have the following congru-

ence of Fourier coefficients:
3V(z) = £ () mod p/*. (5.23)

N-new, ord

Uniqueness: Let 35 (z) € S,

(To(Np); G,)) be the N-new ordinary eigenform that satisfies congruence
5.23 with £, (2).

Suppose there does not exist any %’ € ) for which §} (z) = B’.Z] (2) but if possible, let F) (2) also satisfy
the congruence

V() = £V () mod p/*'.
Then we can write
f5' () = f{(2) mod p’**
which implies for all primes £,
(A7, (£ = A7, (f,)) £¥ (2) = 0 mod p/**.

Since, p ¢ le () due to our choice of scaling, we have p | (AT[ ( sz )—Ar,( sz )). This is a contradiction to the
assumption 1. Thus, 311\’ (2) is the unique N-new ordinary eigenform up to scalar multiplication in ¢, that
satisfies the congruence 5.23 with fl.N (2).

5.3 Congruences related to modular forms-Half-integer weight case

From Theorem 2.5.5 (i), we have the following direct decomposition of the Kohnen plus space,

¢ (AN L) = D SI(T(4M); L)1 Uge
2 MINp 2
d|INpM~!
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where d runs over all divisors of NpM ™!,
We now give the explicit definition of the space of half-integer weight 4N-new forms at level 4N p.

Serr e (o(aNp); L) == 8;2% (T (4Np); L) @ (S;;j“; (To(4N); L)l 1 pz) @ 535" (To(4N); L), (5.24)

From the definition of N-new forms of integer weight at level Np in 5.2 and the definition of 4N-new forms
of half-integer weight at level 4Np in 5.24, we obtain the following relationship.

Figure 5.3.1.
Sy (fo(4Np); L) @ Spet (fo(4N); 1) lis 1 Up2 @ Spet (T(4N); 1)
Kohnen’s Iso. Kohnen’s Iso. Kohnen’s Iso.
SSEW(FO(NP)QL) ) S;EW(FO(N)QL) |2kUp ) S;EW(FO(NP)§L)

Using Kohnen’s isomorphism along with the fact that |, +1Up2 operator in half-integer weight case corre-
sponds to |, U, operator in the integer weight case, we conclude that the spaces S:f ew([ (4N p); L) and
2

Slz\znew(Fo(N p); L) are isomorphic as Hecke modules and so are there respective ordinary projections.

Figure 5.3.2.
Serre(fo(4Np); 1) s 1 limn oo Uy = S (T (4N); L)
Iso. Iso.
SNeW(Lo(Np); L) pelimy 0 U = She (T (Np); L)
Let

(& @) 87 (T (4Np); 0)

i=1 —
4N-new, ord

k+3
0, -integral Fourier coefficients (see remark 2.5.6) that is obtained from the basis

(N} € Sy (T (Np); 0,)

be a basis for S (I,(4Np); L) consisting of 4N-new ordinary eigenforms of half-integer weight with

for Slzvk‘new’ (T, (Np); L) consisting of N-new ordinary eigenforms of integer weight with &, -integral Fourier
coefficients via the isomorphism in figure 5.3.1.

5.3.1 Main Theorem

We now state our main result about congruences between half-integer weight eigenforms of varying weights.
Note that by Hecke eigenforms in Theorem 5.3.3, we mean eigenforms for all Hecke operators T,. for all prime

L.
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Theorem 5.3.3 (Main Theorem). Let my = dim (S4N'"ew’ rd(F (4N p); L)) and let

1
k+1

(& @D € 85T (TN p); 0)

i=1 —

(To(4Np); L) consisting of 4N-new ordinary half-integer weight eigenforms with 0;-

. N-new, ord
be a basis for S:Jrl”ew or

integral Fourier coefficients that is obtained from the basis
-new, ord
{FN @YD < Sy (T (Np); ;)

for Slzvk'”em ord(L (Np); L) consisting of N-new ordinary eigenforms of integer weight with 0, -integral Fourier co-

efficients via the isomorphism in figure 5.3.1. For each i where 1 < i < my, let glN () and fl.N (2) be scaled in a
way such that they have at least one Fourier coefficient in the q expansion that is not divisible by p.

Let j € Z. be a fixed integer and define k' = k+ 1@. Suppose assumption 1 holds true for the basis {fiN (z)}?ivl.
Then for each integer i such that 1 < i < my, there exists a 4N-new ordinary half-integer weight eigenform

&Y (2) €SI (4ND); Gy)
2
unique up to scalar multiplication in €, such that we have the following congruence of Fourier coefficients:

g (2) =)' @)y, Uy mod p*.

Figure 5.3.4.
. ~ = mod p/*! (Shifted |U,) . ~
gl € s (T (4Np); 0,) —— &) e ST IR (4ND); )
2 2
) . 1 . . , 1
4N-new ord. eigenform of weight k + 2 4N -new ord. eigenform of weight k" + 3

Remark 5.3.5. We note that Theorem 5.3.3 also holds true for all weights k' = k + t(l’Z;l) where t is an odd
positive integer.

In order to give a nice structure to the proof of Theorem 5.3.3, we break it down into a series of propositions
which when combined will eventually imply the result.

Proposition 5.3.6. Let
g(2) € Sy, 1 (T(4Np); 6,)

be a cusp form of half-integer weight with 0, -integral Fourier coefficients.
Let j € Z be a fixed integer and define k' = k + @. Then there exists a cusp form of half-integer weight

G(2) € Sp,1 (To(4ND); G)
such that we have the following congruence of Fourier coefficients:

8(@)i+1U, = G(z) mod p’th
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Figure 5.3.7.

(Shifted |U,) = mod p/*!

g €S;,1(To(4Np); 6,)

!

1 1
Cusp form of weight k + 5 Cusp form of weight k' + >

> G €5, 1(T(4ND); 6

Before we give the proof of proposition 5.3.6, we will state a prerequisite lemma given in [Kob93, Proposition
3, pg. 183].

Lemma 5.3.8. Let p be an odd rational prime. Then

o (o (2) - (o0 (2) 7 (1)

Proof of proposition 5.3.6.

Define
G(z) = (82,1 U, ) & (42)

where %(42) eEM =) (F0(4p), (11))) is defined to be the generalised Eisenstein series E e ’(f’)(4z), see section
3.4.

It’s given that the Fourier coefficients of g(z) lie in &;. From proposition 2.3.2, we note that the action of U,
on g(z) €S, 1 (To(4Np); 6,) twists the character of this space by (1;’), that is,

8@ LU, € Sy 1 (To(4ND), (8); 01). (5.25)

Recall that gop(z) has p-integral Fourier coefficients (see proof of lemma 3.4.2). Also, by the lemma 5.3.8, we
have

s = -1 (p—l)/Z (AN
&p(42) € Mozt (To(4p), (3F) (3):Z¢) (5.26)
It’s clear from 5.25 and 5.26 that

G() € S (To(@Np), ()7 (2)(2); ).

Since quadratic reciprocity implies (—71)(17 _1)/2(5)@) =1, it follows

G(z) € Sp11 (To(4ND); Gy )-
Further by lemma 3.4.2, we have
50;,(42) =1 mod p.
Now, using a similar argument as in the proof of corollary 3.2.4, we deduce that
63(42)1”' =1 mod p.
Hence, we conclude,

§@)lis1U, = G(z) mod p/*™.
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We next show that the action of Hecke operators | +1 Ty for all primes £ on g(z)|, +1 U, mod p’™is the same as

the action of the Hecke operators |, +1 T2 for all primes £ on G(z) mod p’™! where g(z) and G(z) are defined
as in proposition 5.3.6.

Corollary 5.3.9. Let g(z) € Sk+%(fh5(4Np); 0,) and G(z) € Sk,+%(1:é(4Np); Oy) be a cusp forms of half-integer
weight as in proposition 5.3.6 such that

8(2)li41 U, = G(z) mod p/L.
Then we have

(6@)r3Up) ey T = 6@l Tre mod p™?
for all primes {£.

Proof. Let g(z) = Z:zl b,q" and G(z) = Zzl B,q" be the Fourier expansions of g(z) and G(z) defined in
proposition 5.3.6. Then we have

b,, =B, mod p/*'. (5.27)

Case 1: { {4Np.

From proposition 2.2.4, we can write for all primes ¢ { 4Np,

oo k’
/. _1 /.
6@esiTa= . (Bgzn s (7) (%)Bn + o2 1Bn¢_z) q". (5.28)
n=1
From 5.27 and 5.28, we have
— —1\¥ n
G(Z)|k1+% ng = Z (bpfzn + (7) @k -t (Z) bprl + sz -t bpnfz) qn mod pl+1. (529)
n=1

The term inside the summand on the right hand side of the congruence 5.29 can be rewritten as

P -1

bezpn+(_71)k+ 2 ek+@_1(%)bP“HZ(H@)_lme
R -1 \P’ 2rn j
b ()T Y (] (o e
1\ i (=1 e " P\ (pn 2k—1 (p(p—1)"’
=blzpn+(7) ¢ ((7) 0% ) (Z)(T)bpnw () i (5.30)

-0 o \P
= (-1)

We now look at the terms (K(P’l))pj and ((_Tl) { T)

Since £ is an integer, by Fermat’s Little Theorem, we have £~! =1 mod p. Then using a similar argument as
in the proof of corollary 3.2.4, we get

(Ep_l)pj =1 mod p’*. (5.31)

Again since £ is an integer, by Euler’s Criterion, we have ¢ T = (f,) mod p. Then it follows,

-1 = @1 (P -1 = \/p
(7) e (z)f(g) (;)(z) mod p

=1 mod p.
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Again, using a similar argument as in the proof of corollary 3.2.4, we get

N g
()" @) =amr

Po-1 .
(_71) 5 (%) =1 mod p/*!. (5.32)

Using 5.31 and 5.32 together in 5.30, we get

0 k
1 .
G(Z)lkq-% Tp = Z (bpezn + (7) (k1 (I%) b,, + (21 bpngz) q" mod p’*!

n=1

or

= (g(z)lk%Up) ler1 Te2 mod p/*1.

Case 2: { | 4Np.

Again using proposition 2.2.4, we can write for all primes £ | 4Np,

(o] oo
(8@ks1Up ) b1 T = D bgapeq”  and Gy 1 Tz = ¥ Bang” (5.33)
n=1

n=1
From 5.27 and 5.33, it follows,
bp(gzn) = B(gzn) mod pj+1
which implies

(g(z)|k+%Up) le+1 Te2 = G(2) |41 T2 mod p’tL

2

O

We will next try to replace the half-integer weight cusp form G(z) defined in proposition 5.3.6 by an ordinary
half-integer weight cusp form of the same half-integer weight k' + %, provided that we now take g(z) to be
ordinary.

Proposition 5.3.10. Let
g(z) € 57, (T (4Np); 0,)
be an ordinary cusp form of half-integer weight with 0, -integral Fourier coefficients.

Let j € Z be a fixed integer and define k' = k + @. Then there exists an ordinary cusp form of half-integer
weight

G°(z) € 51, (To(4Np); ;)
such that we have the following congruence of Fourier coefficients:
¢l Up = G°(2) mod pi*,
Moreover,
(8(2)|k+% Up) ler1 Tz = G°(2)ljos 1 T2 mod p/t

for all primes {.
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Figure 5.3.11.

. (Shifted |U,) = mod p/*! o — cord (7
g €5, (Fy(4Np); 0,) 7 67 Sy (o(NP; )

K+3

1 1
Ord. cusp form of weight k + 5 Ord. cusp form of weight k' + 5

Proof. Define
G°(2) := G(z)lk/+%'c7.

where ¢ is the p-ordinary projection operator defined in section 4.5 and G(z) € S, +%(f0(4N P); O)) is the
half-integer weight cusp form defined in proposition 5.3.6.

Now ¢ is an idempotent operator, that is, €2 = ¢. This implies
G (@118 = Gy 1@
= G(z)lkur%E
= G°(2).
Hence G°(z) is ordinary at p and lies in SZfil (To(4Np); Opy)-
2

Claim: We now claim that G°(z) = g(z)|k+% U, mod pitL.

It is given that g(z) is ordinary at p. So, g(2)|, +%E = g(z). Also, note that U,. acts in the same way on
g(2) as U;. Then by Corollary 5.3.9, we can write

j+1

G(Z)|k'+%’éE (g(z)|k+%Up)|k+
= (g(z)|k+%Up) lis nlir(r)lo U;ZI mod p/*!

= (8&)les2Up) iy lim U2 mod pi*?

n!)+1

%E mod p

= g(#)ls 1 lim U§( mod p/*!
= (8@lry lim U2 |30, mod p'*
= (5@les Jim U2) s U, mod p'*
= (g(z)lk%'é) lg+2Up mod p/tt
= g(2)|s1 U, mod p/L

Thus, we have shown that

G°(2) = g(z)|k+%U mod p/*t.

The equivalence of action of Hecke operators modulo p/*! now follows in the same way as in corollary 5.3.9.
U
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We next show that if we are given that the ordinary half-integer weight cusp form g(z) € S Ordl (IL(4Np); @;)

in proposition 5.3.10 is a 4N-new ordinary eigenform that is obtained from the N-new ordmary eigenform

of integer weight, say fN(z) € SN new. ord( 1+ (N'p); 6,) via the isomorphism in figure 5.3.1, then there exists

Y(2) € S;{’fj . (I,(4Np); 6,), a unique 4N-new ordinary eigenform of half-integer weight (unique up to scalar
2

multiplication in &, ) which satisfies a mod p congruence of Hecke eigenvalues with g(z) for all Hecke operators
T,» over all primes £ } 4N p.

Note that by Hecke eigenforms in proposition 5.3.12, we mean eigenforms for all Hecke operators T;. for all
primes /.

Proposition 5.3.12. Let my = dim (S:f;"ew’ ord(F (4Np); L)) and let
2

{g) ()} € sHe (T (4N p); 0;)

S4N new, ord

be a basis for (To(4Np); L) consisting of 4N-new ordinary eigenforms of half-integer weight with 0, -

integral Fourier coejﬁaents that is obtained from the basis
(Y@ € Sy (T (Np); 6,) (5.34)

for Slzvk'“ew’ °rd(T.(Np); L) consisting of N-new ordinary eigenforms of integer weight with @, -integral Fourier co-
efficients via the isomorphism given in figure 5.3.1. For each i where 1 <i < my, let glN () and fiN (z) be scaled
in a way such that they have at least one Fourier coefficient in the q expansion that is not divisible by p. Suppose
assumption 1 holds true for the basis { fl.N (z)}:'iv1

Let j € Z- be a fixed integer and define k' = k + @. Then for each integer i such that 1 < i < my, there
exists a 4N-new ordinary eigenform form of half-integer weight

97" (z) € 51, (To(4Np); 0,)
unique up to scalar multiplication in 0;, such that for all primes £ { 4N p, we have

A1, (&) = Ag, (%) mod p.

Figure 5.3.13.

Hecke eigenvalues = mod p

g € s e (T (4Np); 0,) > 9N €SI T (4Np); 0,)
2

| !

1 1
4N-new ord. eigenform of weight k + 3 4N-new ord. eigenform of weight k’ + 3

Proof. From the isomorphism given in figure 5.3.1, for all primes ¢ { 4N p, we have
Ag,(f) = A, (€] (5.35)

Then by proposition 5.2.12 and proposition 5.2.14, there exists a basis {Z (2)}[, C shrew o1 (Np); 6,)

2k
of N-new ordinary eigenforms for the space szvk,n eword(1 (Np); L) such that each element in the basis is unique

up to scalar multiplication in &; and for all primes £  Np satisfies

A1, (fN) = Ag,(Z]) mod p (5.36)
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4N -new
k'+3
(To(Np); L) and these spaces have isomorphic ordinary projections. We can hence take

In a similar way as in figure 5.3.1, we conclude that the space S ([(4Np); L) is mapped isomorphically

N-new

onto SZk,

{GN (2)} € sH1ew (T (4Np); ;)

k'+3
to be a basis of 4N-new ordinary eigenforms of half-integer weight obtained from the basis

{FV()™ € Sy (T, (Np); 0,)

of N-new ordinary eigenforms of integer weight for S;Vk',n eword(p (Np); L).

Then for all primes £ t 4Np, we have
A (FN) = 2, (4. (5.37)
Hence, it follows from 5.35, 5.36 and 5.37 that

A1, (8)) = A, (%) mod p. (5.38)

Uniqueness: Let 4 (z), 4, (z) € S:ﬁ'?ew’ °d(T,(4Np); 6,) be two 4N -new ordinary eigenforms of half-integer

weight in the basis {%N (Z)}?;Nr Then using congruence 5.38, they satisfy the respective congruences,
A1, (81) = A1,(4)') mod p

and
A, (€)= Ay, (@) mod p

4N-new, ord

K+l (To(4Np); @,) are 4N-new ordinary eigenforms of half-integer weight in the

where g¥(2), g)(z) €S

basis {g ()} 7).
Suppose there does not exist any 8 € ¢ such that &, (z) = 8%, (z) but for all primes £ { 4Np, ¥} (z) also
satisfies the following congruence

Ar, (e = Miz(%N) mod p.

Then, using equation 5.35, we have Ay, (f{¥) = Ar,(g}) where f¥(z) € Sglk'“ew’ d(L,(Np); 6,) is an N-new

ordinary eigenform in the basis {f;"(2)};2,. Similarly, from equation 5.37, we have Ar,(#,') = A, (¥"). It
then follows:
A, () = A, (&)
= ATlZ(%ZN) mod p
= Ar,(Z,') mod p.
= Ar,(f;') mod p.

This is a contradiction to our assumption 1 as le (z) and fZN (z) are two distinct basis elements. Hence %11" (2)
is unique up to scalar multiplication in &; . O

5.3.2 Proof of Main Theorem

We now give the proof of the main Theorem 5.3.3. Before we do that, we will prove the following lemma
which will be required to complete the proof of our Main Theorem.
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Lemma 5.3.14. Let
8(2) € Si,.1(To(4Np); 6,)

be a half-integer weight cusp form. Then for all primes £ t 4N p, the action of U, and Tj. on g(z) is commutative,
that is,

(g(z)|k+f p)k ! Ty = (g(z)|k+%le)k+% UP'

Proof. Let g(z) =Y.~ b,q". Then

g@s1Up = D byuq" €S, (To(aNp), (£); 0,).

n=1

Then

(g(z)|k+ |k+1TZ (Z bp )|k+1T€2

n=1

3 (b 27O F) 6 b+ 2" €N byn )"

=1

=

where y*(e) = (_Tl)k x(e) and in our case (o) =(2).

Thus,

—1)* pn _ _ N
bp£2n+(7) (T)Zk 1bpén+£2k 1bpn/€2)q

. —1\/n
= Z (bzzn + (— (—)ek—l bin +€2k—1bn/¢z)q") U,
n=1 ¢ ¢ k+3
= (8@ls1Tee ) lis 1 Uj.-
([
We will now give the proof the main theorem 5.3.3 of this section.
Figure 5.3.15.
3 ~ = mod p/*! (Shifted |U,)
g e SN f (4N p); ;) e &Y eSO (4Np): )
2
. . 1 . . , 1
4N-new ord. eigenform of weight k + 3 4N-new ord. eigenform of weight k" + N
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Proof of Theorem 5.3.3. For simplicity, let us fix the integer i such that 1 <i <my, say i = 1.

4N-new,ord
k+3
(To(4Np); Gy,) such that we have the following congruence

By proposition 5.3.10, for a 4N-new ordinary eigenform g’l\’ (z)es (To(4Np); 6,), there exists an ordi-

ord

nary half-integer weight cusp form G(z) € Skl+%

of Fourier coefficients:

gf[(z)l,ﬁ% , = G5(z) mod p/**.
Lett = dim(Szfil (To(4Np); L)) and {E{N (=)}, < SZfil (To(4Np); 6,) be a basis of SZfil (To(4Np); L) consist-
2 2 2
ing of ordinary half-integer weight eigenforms.
Note 5.3.16. We have made a slight abuse of notation here when we wrote the superscript N for each element

in the set {%SN (2)}._,- These ordinary half-integer weight eigenforms are not necessarily 4N-new but include
the set of 4N-new ordinary half-integer weight eigenforms as well. Note that t > my,.

So, we can write G7(z) as a linear combination of elements of the basis {%SN (=)},

Gi(z) = > B, (z) where {B,}‘_, L.

s=1

By proposition 5.3.12, for a 4N-new ordinary eigenform g\ (z) € S:f;neword(fo(4N p); 0,), there exists a 4N -
2
:ﬁ'?e""’ (T, (4Np); 6,), say %N (z), unique up to scalar mul-

tiplication by elements in &, such that for all primes £ { 4Np, we have

new ordinary half-integer weight eigenform in S

A1, (8)) = A, (4)) mod p. (5.39)

This uniqueness implies that for every integer s such that 2 < s < t but s # 1, there exists some prime £, } 4Np
such that

pt (A, @)= 2r, ().

So, we have
t
ot (2, (81021, 9. (5.40)
s=2
In other words,
1
3 € G- (5.41)
[T (P, (€)= 2, ()
Define
Ay Z(gzlv - t
&Y (z):= . 2 - G;(2) 1 ]_[ (Tez — ,1% (%SN)). (5.42)
| R EPREOEP PN C0) I R

Claim 1: &Y (z) = Ay, (&N) 169N (2) for some €6 € 0.

Note 5.3.17. The eigenvalue AUPZ (gf’ yle Oy~ This follows from the fact that gf’ (2) is an ordinary eigenform
of half-integer weight and hence its Uj,. eigenvalue A, (g)) is a p-adic unit, that is p tu, (gM.
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Now we want to show that in definition 5.42, G(2)|,, +1 n;zz(ng — Ale (?fsN )) has Fourier coefficients in 0.

t

[ (7 = 20,09

K+3 s=2

= (Z /w;v(z))
1

Gi(2)

t

[1(7e—27,")

K+3 s=2

(1=, )) l_[ (12-2 (%N))

[ (7 =2r,21)

k’+ s=3

me (%”)%N(Z)—Zﬁslm AL )
2 s=1 2

[(7s=2r,4)

+1%
+35 s=

T1(200)

=(>p ATIZ(%N)—ATIZ(%V))%N(z))
= 2 2

|
Z_t: ]j[(/sz ) =2, (@) 9 (2).

A (z)]‘!(xn‘% COEYINCA) (5.43)
) _

@l T (Te — 20, 0)
ST, ey (P, A= 2r, @)

We want to show that f8; € G,,).

Note that G{(2)li.1 l_[st=2(Tgsz — AT@ (¢4N)) has Fourier coefficients in @,). This is because AT[SZ (¥N)e 0, and
the Hecke-algebra Tyys (4Np; G) S End(Sk,+% (To(4Np); Gy)))-
4N-new, ord

K+3
therefore assume it is scaled in a way such that at least one of it’s Fourier coefficient is not divisible by p.

Now, suppose there exists some w such that 2 < w < t for which p | ()'le (@N)— AT[2 (@N )), then

Next, we are given that &} (z) € S (To(4Np); @;) is unique up to scalar multiplication in &;. We can

p1 (A1, @)= A, (1) + A, (1) =20, (1)),

Since p | (A7, (@) — Ar, (g¥)) by 5.39, it follows,

o1 (A, (&)= 27, @1)).

This is a contradiction to uniqueness of 541’\’ (2) in 5.40. Thus,

o[ T (A, @) =20, ). (5.44)
w=2
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We can hence conclude
B1 € G- (5.45)

We thus have

t

AUPZ (g i\’ )
[T, (A8l =2, ()
[Tims (2r, @) =2, (1))

T (Rr, (89 = 2, (9M)
= Ay, (&) 69N =)

Y () =

G:(2)

(16—, 9)

K+1 s=2

= AUPz (giv)_lﬂl %N(Z)

where 5.41, and 5.45 together imply
l_[\fv=2 ()’T[ﬁ/ (glN) - A‘T[a/ (guly))

T (R (@)~ 2, )

b6 = ﬂ (S 0(’3)

Claim 2: 8 (2)].,1U, = g}'(z) mod p/*".

We will now again look at action of l_[stzz(Tlg —2r, (¥M)) on G;(z) modulo p/**.

t
G; () T T(7e=20,) mod p

k+5 s=2

l_[ (Teg - XT[SZ (gsN)) = (gi"(z)|k+% Up)

K+3 s=2

We see how one of the terms out the product ]_[stzz(Tesz —)LT[SZ (@ N)) acts on g’lv @) 11U, to observe the pattern.

1 l_[ (12— 21,,9M)

k+5 s=2

QNN

t
., T Ang @] (T =27, (47 mod 7
t

[1(7e = 2r,@") mod p*

k+3 =3

[T (7~ 25, 9)) mod

k+% s=3

Ay (1) 8 @lies Uy = A, (4 ¥ i3 Uy )

&y UpTe =2, (4 &Y @iy Uy )
2

(8 @y Ty = 21,4 Y @3 Uy)

t
[1(7e: =27, 4) mod pi*

k+3 s=3

t

TT(7e = 2r,@) mod pi=?

k+3 s=3

I

(AT@ (e — AT[% @y )) ( &V @l Up)

t

=[1(2r. &)= 21,) (¥ @i U, ) mod p*. (5.46)

s=2

Using 5.42 and 5.46, we get

&Y (z) = lupz(gllv)_lgllv(zﬂ“%Up mod p/*1. (5.47)
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We now act on both sides in the congruence 5.47 by U, operator and get

BY (@1 21Up =2y, (87 )78} (@) US mod p/*!
A‘U Z(gl ) IA‘U Z(gl )gl (Z) mod pj+1
= gV(z) mod p/*'. (5.48)

4N-new, ord
K+3
all operators T;» over all prlmes ¢ such that it satisfies congruence of the type 5.48 with g, N(2):

Uniqueness: Let (‘SN (z)es (To(4Np); Oy) be a 4N-new ordinary half-integer weight eigenform for

&Y 2 @s2Up = g (z) mod p’*!

Suppose there does not exist any 9 € ¢,y such that 05’2\’ 2)=92 0511\’ (2) but 05’2\’ (z) also satisfies congruence 5.48
with g} N(2):

®y (@)1 1Up = g7 (2) mod p/*.
It the follows
gV (z) = g)'(z) mod p/*!
which implies
&1 (Z)|k+1 Ty = IZV(Z)|1</+%TZ2 mod PjH-
So, we have for all primes £,
R, (8)g) (2) = A, (¢1)gY () mod p7*.
We can then write
A1, (f3)85 (2) = Ar,(f])g) (2) mod p/**
which implies

(A7, (£ =27, (1) g7 (2) = 0 mod p7**.

Now p { g; N(2) due to choice of scaling of g N(2). So we get for all primes £ 4 Np, p | (Ar, (f2 )—Arg, (f1 )). This
is a contradiction to assumption 1 as f¥(z) and f," (z) are distinct basis elements. Thus, & (z) is the unique
4N-new half-integer weight ordinary eigenform up to scalar multiplication in ¢, that satisﬁes the congruence
5.48 with g’l\](z). O
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CHAPTER O

Hilbert modular forms of integer weight

6.1 Introduction

Let K/Q be a totally real number field. By a totally real number field, we mean that for every embedding
of K in C, the image lies inside R. In this thesis, we consider K to be a real quadratic number field. Let
0;:K — R, i = 1,2 be the two real embeddings of K in R. For any £ € K, we let 0;(§) =&;, i =1, 2.

We recall some preliminary definitions and use [BHZ08] as our reference.

Let O be the ring of integers of K. A fractional ideal of & is a finitely generated 0y submodule of K. Fractional
ideals form a group under ideal multiplication with 0 as the identity element. The inverse of a fractional
ideal f CK is

f1={x€K|xfc ).

For the quadratic field K, we have the formula § ! = ﬁf)f’ where §’ is the conjugate of f and N(f) is the ideal
norm defined as the lattice index [ : f] € Q.

Two fractional ideals f and g are said to be equivalent if there exists r € K such that f = rg. The group of these
equivalence classes is a finite abelian group called the ideal class group of K and is denoted by CI(K) . We will
next define the narrow ideal class group.

Definition 6.1.1 (Totally positive element). An element & € K is called totally positive if §; > 0 for i = 1,2. We
often denote an element & is totally positive by writing & > 0.

Definition 6.1.2 (Narrow ideal class group). Two fractional ideals f and g are said to be equivalent in the narrow
sense if there exists r € K with r > 0 such that f = rg. The group of these equivalence classes is called the narrow
ideal class group of K and is denoted by CI*(K).

The (narrow) class number of K is the order of the (narrow) ideal class group. It measures how far &y is from
being a principal ideal domain. From now onwards, we assume that K has narrow class number 1, this means
every ideal is generated by a single element.

Definition 6.1.3 (Inverse different ideal). The dual of Oy is a fractional ideal that is the set of all elements in K
with integral trace. It’s called the Inverse Different and is denoted by 0™ ".

L= ﬁKY ={xeK| Tr(x0) C Z}.
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We fix 57! to be a generator of .
Definition 6.1.4 (Different ideal). The Different ideal 0 is an integral ideal of K defined as
v={xe€K|x0 co}.

For any integral ideal m in &, the ideal norm N(m) = #(0g/m). Next, we briefly recall the factorisation of
ideals in quadratic field K. If p is a rational prime, then the ideal (p) generated by p in K has one of the
following three factorisations.

Inert: (p) = p where p in a prime ideal in ¢ and N(p) = p2.
Split: (p) = p;p, where p;, p, are prime ideals in 0y and N(p;) = N(p,) = p.

Ramified: (p) = p? where p is a prime ideal in ¢ and N(p) = p.

6.1.1 Hilbert modular forms

Let

GL;(K) = {y € GL,(K) | dety €K such that dety > 0}.
There is a natural embedding of GL] (K) in (GL;r (]R))z:

GLI(K) = (GL} (R))” with y = ((Cl Z) = (rLr2) = ((2 Zi) ’ (Cclzz ZED

Let 2 denote two copies of the complex upper half plane. Throughout our thesis, we will use z = (z;,2,) as
a standard variable on 2. The group GL;(K) acts on #¢? via fractional linear transformations,

(a b) s (alzl +b; ayz,+ sz
c d)- N €124 + dl ’ CoZoy + dz )

Let y =(9%) € GL}(K), then y .z € #* [BHZ08, Lemma 1.2, p. 107].

Let k € Z., and let f : #2 — C be a complex function. Then we can define the k-slash operator on f(z).

Definition 6.1.5 (k-slash operator). Let k € Z. Let y € GL;(K) and let f : #2 — C be a complex function.
Then we define the k-slash operator as follows

F@)ly =dety*? [ [ ez +d) ™ f(r2)

i=1,2

where y = (‘Cl Z) € GL}(K), z = (21,2,) € #? and Ny q is the field norm.

Let
SLy(K) = {y € GL;(K) | dety =1}.

In general, a subgroup I' of SL,(K) is called a congruence subgroup if it is commensurable with SL,(K), that
is, [N SL,(K) is of finite index in T as well as in SL,(K).

Let n C O be an integral ideal, then the congruence subgroup I'[207!,271on] of SL,(K) of level n is defined
as

(207,27 on] = {y = ((Cl 3) €SL,(K)|a,d€ b, be2d}, ce 2_1011} .
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Note 6.1.6. For simplicity, we will denote I'[207%,2 on] by T,.
The group SL,(K) also acts on P!(K) = K U {oo} by

Bocg+d  catdp’

a b a_a%+b_aa+b[3’
c d

Note that this action is transitive by observing (¢ 5).00 = 2.

Definition 6.1.7 (Cusps). Let I be a congruence subgroup of SL,(K). Then the T-classes of P*(K) are called the
cusps of T.

Definition 6.1.8 (Hilbert modular form). Let k € Z., and let n C O be an integral ideal of K. A Hilbert
modular form of parallel weight k and level n is defined as a holomorphic function f : #* — C such that

f@ly=f(z) foralyeT,.

The space of all Hilbert modular forms of parallel weight k and level n forms a finite dimensional complex vector
space [BHZ08, pg.118-119 ] which is denoted by M,(T,).

Remark 6.1.9. In contrast to the classical modular forms, a holomorphic Hilbert modular form is automatically
holomorphic at all the cusps including infinity. This is due to Gétzky-Koecher principle [BHZ08, Theorem 1.20,

pg. 114].

As in the case of classical modular forms, Hilbert modular forms also admit a Fourier expansion. In order to
give the Fourier expansion, we observe periodicity of a Hilbert modular form. The congruence subgroup I},
contains elements of the form ((1) i ) where u € 207L. If f(2) €T, then f(z) is invariant under the action of
T, that is,

@l (o 4)=F@
or

fl+up)=f(2).
Thus, f(2) is periodic and admits the following Fourier expansion
f(Z) — Z ageZm‘Tr(%z)
ge((5-1")"u{o}

or

f(Z) — Z aEeZNiTr(%z)‘

Eegiu{o}
where Tr(%z) =32z + %zz and a; € C.

Our Fourier expansion is indexed in this way due to our choice of congruence subgroup which is similar to
that of N. Sirolli in [Sirl4, pg. 28].

Definition 6.1.10 (Hilbert cusp form). A Hilbert cusp form f(z) of weight k and level n is a Hilbert modular
form that vanishes at all the cusps. This happens if a, vanishes in the Fourier expansion of f (z)|,y for all y € I(y).
The space of all Hilbert cusp forms of weight k and level n forms a subspace of M(T,,) and is denoted by Si(T,).
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6.1.2 Hilbert modular form with a character

We now introduce Hilbert modular form with an associated Hecke character v of K. We denote the adelization
of K by K, and the ideles by K. A Hecke character of K is a character of K, which is trivial on K* and takes
values in the unit circle.

For any place v, let v,, denote the restriction of 9 to K,. Let ¢, = || »in ¥ denote the finite part of ¢ of
conductor n C G and let Yo, = [ [,co ¥, denote its infinity type. By conductor of 1, we always mean the
conductor of its finite part. Throughout this text, by a Hecke character, we mean a finite order Hecke character,
that is, our infinity type is trivial.

We can now say that f(z) is a Hilbert modular form of parallel weight k, level n and character v if defining
property of Hilbert modular forms in 6.1.8 is replaced by

F @y =u(a,)f () where y = (?Y Z

Y

Y) €T, (6.1)

Y

We denote the space of all Hilbert modular forms of parallel weight k, level n and character ¢ by M, (T, ).

6.2 Hecke operators

We now introduce theory of Hecke operators for Hilbert modular forms analogous to that developed for classi-
cal modular forms. The Hecke operators in this case are indexed by ideals rather than by integers. For details
about Hecke operators, one can refer to Shimura’s paper [Shi81] as well as [Ozal7, Section 2.4].

Definition 6.2.1. Let f(z) € My (T,). Let p C Oy be a prime ideal generated by g > 0. Then for each p, we define
the Hecke operator T, in terms of the k-slash operator on M(T,) as follows

ZaeﬁK/pf(z)lkYa ifpln;

— |
T, =Np) {zaeﬁk,pf(z)lkya+f(z)|kroo ifpin

-1
where v, = ((1) 25@ a) and Yoo = (g cl))for a € O /p.

The Hecke operators are commutative, that is, T, T, = T, T,, where p, q are distinct prime ideals in g;. This
can be shown as in the case of classical modular forms as in [DS05, Proposition 5.2.4, pg. 173]. It involves
applying Hecke action on Fourier coefficients twice and observing that the argument is symmetric in p and q.

To define T, for any integral ideal m C &, set T(;y = T, as the identity operator; T, is already defined
for prime ideals in 0. For powers of primes ideals, T, is defined using recursion formula

Ty = Tyra T, —N(p)* ' T2 where r > 2

given in [Ozal7, pgs. 19-20] and hence is a polynomial with integer coefficients in T,. Finally, we extend our
definition to T,, for any integral ideal m C 6 by using multiplicativity, T,, = [ |, Tp:i where m =[], p:".
We now state the action of Hecke operator T, on the Fourier coefficients of the modular form f (z) € M,(T,,),

see [Ozal7, Remark 2.4.6].

Proposition 6.2.2 (Hecke operator on Fourier expansions). Let p be a prime ideal in Oy generated by o > 0.
Let f (2) € M (T,)) with Fourier expansion

f(Z) — Z ageZTciTr(gz).

gegfu{o}
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Then f(2), T, € My(T,,) with Fourier expansion
i Tr éz
F@KT,= > bee?m()
Eeofu{o}
such that
b, = apg lf@ | n;
¢ ae +N(p)lag,+  ifpin.
Here ag, =0 when Ep ' ¢& 0.

The fact that f (2)[, T, € M(T,,) follows from [Ozal7, Proposition 2.4.2]. The Fourier expansion of f (z)|; T,
can be obtained by a direct computation once we have proved the following lemma.

Lemma 6.2.3. Let & € 0 U{0} and let p C Ok be a prime ideal generated by p > 0. Then

Z ezmrr(%) _ {N(K)) fels;

w000 0 otherwise.

Proof. We will divide our proof into two cases.

Case 1: Let us first assume that p | £. Then (§/p) € 0. Also, a € 0. Recall that the inverse different
ideal is defined as

Yl={xeK|Tr(yx)€Z VYyedo}

£57a

Since 57! is the generator of 72, it implies Tr( ) must be an integer. It follows that

—1
2mi Tr( & a)
e ¢ J=1.

Thus, we have

Z ezmTr(@:a) = N(p)

a€(bx/p0k)

where N(p) = |0y /0 Ok

Case 2: Now let us assume that p } £. Then (§67!/p) ¢ 0. This is because if (§571/p) € 07}, then
(&§/g) € O and that contradicts our assumption.

Now since, (§/¢) ¢ O, then there exists an algebraic integer y € 0 such that Tr(gi;ly) ¢ Z. This

BN VLt et .
implies e”” r( © ) # 1. We can then write

—1
27'riTr( £ a )
e 0

—1
2niTr( & (aty) ,(a”) )
e ©

a€(bg/p 0x) a€(bg/p 0x)
. 71& - —1
_ eZmTr( 55@ )e2mTr( 56@ Y)
a&(Gx/p O)
_ eZm'Tr( 55:7) eZm’Tr(%)
a€(/pb)
or
(£ a g5y
( Z eZmTr( B )) ) (1 _ eZmTr( - )) —0.
a&(0¢/p O)
. 27iTr el omiTe( & le
Since e (=) # 1, We 8et Xoc (o, /o0 € (=) = 0.
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O

Definition 6.2.4 (Hecke algebra). The Hecke algebra of weight k and level n acting on M, (T,) is the commutative
C-subalgebra of End(M;(T,)) generated by Hecke operators T, over all prime ideals p in 0.
We will denote the Hecke algebra of weight k and level n by T;(n).

Definition 6.2.5 (Hilbert Hecke eigenform). We say f(z) € M, (T,) is a Hilbert Hecke eigenform if it is a
simultaneous eigenvector for all Hecke operators in T (n).

Note 6.2.6. We will specify whenever we refer to a Hecke eigenform for all Hecke operators T, for p not
dividing the level n. In general, our definition of a Hecke eigenform refers to f (z) being an eigenvector for all
operators T,, over all integral ideals m in 0.

Definition 6.2.7 (Normalised Hilbert eigenform). Let f(2) € Si(T,) be a Hilbert Hecke eigenform with the
following Fourier expansion

f(Z) — Z agezm‘ Tr(%z).

seogf

We say f(z) is normalised if ag;y = 1.

6.3 Further operators

In this section, we will introduce more operators on M (T},).

6.3.1 Operator V,,

Let f(2) € M;(T,). Let m C O be an integral ideal such that m is coprime to level n. Note that M;(T,) C
M, (T,,)- Hence, f(z) can always be viewed as a modular form in M, (T,,,). More formally, define an operator

Vi = Mi(T,) = Mi(T,y) such that f(2) — £ (2).

6.3.2 Operator V,,

Let f(z) € Mi(T,). Let m C O be an integral ideal such that m is coprime to level n. Let .#, ./ € 0 be
totally positive generators of ideals m and n respectively. Define the operator V,, on f(z) in terms of k-slash
action as

F@hvn =N (G S

= N(AY IN(AH): f (M 7)
= f(M2)
Thus, if f(2) = deﬁ; ageMiTr(%Z)’ then f(2)|,V,, = Z&ﬁf aEeZTEiTr(%.//{z).

Proposition 6.3.1. Let f(z) € M(T,). Let m C Ok be an integral ideal that is co-prime to our level n. Let
M, N € OF be totally positive generators of ideals m and n respectively. Then f(.#z) € My(Tyy)-

Proof. This can be observed by showing f (.# z) is invariant under k-slash action by any arbitrary element in

| I

Tow ={( 5. %) € SLy(K)|a,d € G, ce2.4d " and d € 27 "0} .
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Then

sl e a)=(veortsel (s D ge 3)

=N(A4) 3 f(2), (f{//(cl //d/b)

vt (2 L))

c
Now f(z) € M (T,). So, for (‘C‘ "/d”’) €T, we have f(2)|, (‘C‘ "{fb) = f(2). It follows
sl ge a)=Neois@l (g Y)

= N(AY :N(H): f (M)
= f(M3).

Thus, we have a map

|ka : Mk(rn) - Mk(an) such that f(Z) = f(%Z)

6.3.3 Operator U,

Let m C 0 be an integral ideal and let f(z) € M(T,) with Fourier expansion f(z) = . £eop ageZ“iTr(gz)_ Let

M, N € OF be totally positive generators of ideals m and n respectively. Define the U,, operator on the
Fourier coefficients of f(z) in the following way,

F@WU = a2 (),
=
Proposition 6.3.2. Let m C 0y be an integral ideal such that m | n. Then |, U,, takes M (T,) to itself
Proof. This follows from proposition 6.2.2 once we observe in the case m | n, we have U, = T,. O
Now let [ C 0 be a prime ideal such that [} n, then again from proposition 6.2.2, we have
F@U = f @I T =N f @)LV

In this case, we observe that the submodule generated by the action of |, U, operator on f(z) lies in the span
of the set {f (2)| T, f ()|, V,} which has at most level nl. We state this as a remark for its use in later chapters.

Remark 6.3.3. If [{n and f(2) € M (T},), then f(2)|, U, € Mi(T,,0).

6.4 Old and New spaces

Let m C 0 be an integral ideal. Let p C & be a prime ideal generated by g > 0 such that it is co-prime to m.
Consider a cusp form f(z) € Si(T,,) such that the level is not divisible by the prime p. However, it is possible
to raise the level by using operators [, V(;) and |, V,, defined in section 6.3. Recall that

likVi1y @ Sk(Tiw) = Sk(Tyy) such that f(2) — f(2);
and
IKVp : Si(T) = 8T, ) stich that £(z) — £ (pz).

Let n = mp. We can now define the space of p-old Hilbert cusp forms of Si(T,,).
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Definition 6.4.1 (p-old forms at level n). We define the space of p-old forms of Si(T,,), denoted as S;'Old(Fn) as
the subspace of Sy(T,) generated by {f1(2)|x V1), f2(2)|kV, } where f1, f5 € Si(Typ-1)-
SETL) = Sk(Tap-) Vi) © Se(Tup-)liVp-

We can now do this for every ideal b C &, b # (1) that divides n and hence define the space of all Hilbert old
forms at level n.

Definition 6.4.2 (Hilbert old subspace). Let n C 0k be an integral ideal. We define the Hilbert old subspace of
Sk(Fn) as

SHT) = D (SeTa)iViay ® STl Vi) -
bn,b#(1)

We now define the hyperbolic measure du on .72 to define an inner product on our space S;(T,) [Shi81, pg.
651].
dx;dy; dx,dy . .
du(z) = %% where z = (x; +iy;, X, +iy,) € H#7.
1 2

Definition 6.4.3 (Petersson inner product). Let f, g € Si(T,,). We define the Petersson inner product of f and g
by,

(f.g) :=f F@)g@)(ry2)dulz)
T, \72

where z = (X1 + 1Yy, Xy +1iYy,) € 2.

Definition 6.4.4 (Hilbert new subspace). We define the Hilbert new subspace of Si(T,) as the orthogonal com-
plement of the Hilbert old subspace with respect to the Petersson inner product,

Sp(L) == S,‘jld(l"n)L.
Hence, our space of Hilbert cusp forms at level n has the following direct decomposition.
Sk(rn) = S]zlew(rn) ® S]?ld(rn)
or

ST)= P STV (6.2)

m|n

bC Oy, blnm™

Definition 6.4.5 (Hilbert newform). A Hilbert newform f(z) = de o age*™ 7(32) g Spew(T,) is normalised
such that ay = 1 and is an eigenform for all Hecke operators T,, over all integral ideals in 0.

We now state one of the main results in this section which follows from [Shi81, Proposition 2.4]. Also, see
[SW93, pg. 7] for further explanation on the same.

Proposition 6.4.6. The space S;"(T,,) has an orthogonal basis of Hilbert newforms.

From equation 6.2 and proposition 6.4.6, it follows that the space of Hilbert cusp forms S (I,) has a basis of
Hilbert eigenforms that are eigenforms for all Hecke operators T,, over all integral ideals m in 0.

Similar to the classical case, the Fourier coefficients of a Hilbert newform can be retained from its Hecke eigen-
values, see [Shi81, Section 2]. More formally, if f(z) € Si(T,) is a Hilbert newform with Fourier expansion

f(Z)Z Z ageZm‘ Tr(%z)‘

seof
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and has Hecke eigenvalues A;_(f) corresponding to action of Hecke operator T,, over integral ideals m in &,
then

Ar (F)=a, (6.3)

where .# is a totally positive generator of integral ideal m.

We now state a crucial result in this section that forces the Fourier coefficients of Hilbert newforms to lie
in a ring of integers. It immediately follows from the following proposition.

Proposition 6.4.7. Let f(z) € Si(T,,) be a Hilbert eigenform such that

f@ITn =21, () f(2)
for all integral ideals m in Oy. Then the Hecke eigenvalues Ar_(f) are algebraic integers.
Proof. See [Shi81, Proposition 2.2]. O

Corollary 6.4.8. Let f(z) € Si(T,,) be a Hilbert newform with Fourier expansion

f(z)= Z agezm Tr(gz)‘

seof

Then there exists some fixed number field Ly with ring of integers O such that for all £ € 0¢, the Fourier
coefficients a; € ;.

Proof. See equation 6.3 combined with proposition 6.4.7. O
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Hilbert modular forms of half-integer weight

7.1 Introduction

We now shift our attention to Hilbert modular forms of parallel weight k + %, k € Z., which lies midway
between two integers. We will closely follow chapter 2 to build up the theory of half-integer weight Hilbert
modular forms. For more details, refer to [Shi87]. We begin by looking at our first motivating example of a
half-integer Hilbert weight modular form called the Hecke Theta Function which generalises the Jacobi Theta
function over number fields. Refer to section 6.1 to refresh the background notation.

Definition 7.1.1 (Hecke Theta function). The Hecke Theta function is defined as

e &
© : #? — C such that ©(z) = Z & (%)

geoy
here z = (21,2,) € 52 and Tr( 52) = Sz, + %23, given two totally positive real embeddi d '
where z = (21,2, and Tr| %2 | = 521 + 32, given two totally positive real embeddings &, and &, of & in
]RZ
We now set some notation to state the transformation law of the Hecke-Theta function.

Let Dy be the absolute discriminant of totally real quadratic field K.

Lety = (¢ 4 ) € Tyy Where Ty =T[2071,27104].

e For a # 0, define

-1 R
e(a) :=( sgn(a))% 27'D? Z o2mi Tr(—j2a/4)
je(6/26¢)

where sgn denotes the sign function and sgn(a) € {(+1,+1)}. Note that (i sgn(a))% is meant in the
multi-index notation.

e Let s be the number of negative embeddings of a. Then define

E(a) :=1".
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Next, we introduce a generalised quadratic symbol for the totally real quadratic field K with narrow class
number 1.

Definition 7.1.2 (Quadratic symbol (3)2 over K). For a prime ideal p C Oy and a € O, we define a quadratic
symbol (%)2 by

1 if ais a square in (O /p)*
a . . . *
(—) =1{—1 ifaisnotasquarein (O¢/p)" .
/2 0 ifaep

We extend it by multiplicativity to all nonzero ideals of Oy . For 0 # 3 € Oy, write (%)2 = (ﬁ)z'

We now give the transformation law of Hecke Theta function. For details and proof of these results, refer to
[Gar90, pg.142-143].

Proposition 7.1.3. The Hecke Theta function is a Hilbert modular form of weight % and level 40y with a certain
Hecke character and transforms as,

-1
o(yz) = e(a,)é(a,) (za—cy) N(c,z+d,)0(2).
2

Y

Also, we have ©2(z) is a Hilbert modular form of weight 1 and level 40, with a Hecke character 1 that is defined
modulo 40y satisfying

©(r2) = (a, )N (¢, +d,) ©*(z)

where N(c,z +d,) =[], (cyizi + d),l,) and (a,) = £(a,)?é(a,)* = sgn(a,)’ (;—:)2

Note 7.1.4 (Convention for taking square roots). The convention for taking square roots remains same as fixed
in chapter 2. We shall always take the branch of the square root having argument in (—7/2, t/2].

We now introduce the metaplectic Group of GL; (K).
Definition 7.1.5 (Metaplectic Group of GL;(K)). Let T = {z € C | |z| = 1} and let &K denote all couples
(at, ®(2)) such that o = (i’j ZZ) € GL(K) and ®(z) is a holomorphic function on 2 defined as
d(z)? =t -N(det(a))*l/zN(caz +d,) where t € T.
We define a multiplication law * on &K as
(a,2(2)) » (B, ¥(2)) := (aff, 2(S2)¥(2)).
This forms a group (&%, x) called the Metaplectic Group of GL;(K).

Note 7.1.6. In order to verify (&X,*) is a group, use multiplicativity of norm and follow proof of [Kob93,
Proposition 1, pg. 179]

Let ®Il< be the subgroup of &X defined as
&% 1= {(a, ®(2)) € &"| N(det(a)) = 1}.

Let n C O be a square-free integral ideal of odd norm. There are infinitely many ways to lift an element of
GL;(K) to its metaplectic group &* depending on the choice of t € T. We fix our choice of &(z) to establish

an isomorphism between Iy, and a subgroup of QSIf denoted by ﬁm,

a— o =(a,®(2))
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where

-1

®(z) = e(a,)é(a,) ( Tacy ) N(det(a)) *N(cuz +d, )" (7.1)
Y J2

-1
2 S
a4y

Here the symbols &(a, ), £(a,) and ( ) have the same meaning as in Theorem 7.1.3.
2

Remark 7.1.7. When we refer to congruence subgroup of level 4n in the case of half-integer weight Hilbert
modular forms, we will always mean I},,.

Definition 7.1.8 ((k+ 3)-slash operator). Let a* = (a, ®(z)) € 8X where a € GLI(R?) and &(z) is holomorphic

function on 2 defined as ®(z) := s(ay)é(ay)(%cy )ZN(det(a))_1/4N(caz +d,)"2. For a complex valued

a4y

function g(z) on 2, we define an operator |k+%a* as
8@l 10" = d(z) Vg (az). (7.2)

This is the (k + %)-slash action in the case of half-integer weight Hilbert modular forms.

Definition 7.1.9 (Half-integer weight Hilbert modular form). Let k € Z. and let 4n C Oy be an integral ideal
in K. A half-integer weight Hilbert modular form of parallel weight k + % and level 4n is defined as a holomorphic
function g : #* — C such that

8@ 1" =g(z) forala e Ty

We denote the space of all half-integer weight Hilbert modular forms of parallel weight k + % and level 4n by
Mk+% (F4n)-

Remark 7.1.10. Similar to the case of integer weight Hilbert modular forms, g(z) is automatically holomorphic
at all the cusps including infinity. This is again due to Gétzky-Koecher principle [BHZ08, Theorem 1.20, pg.
114].

From [Shi87, Proposition 3.1], g(z) admits the following Fourier expansion corresponding to ideal g

g(z) — Z bé,ﬁK eZﬂ:i Tr(%z) (73)

Eeofu{o}

where Tr( %z) = %zl + %222 and b; , € C.
Further, if b is a fractional ideal in K generated by 23,then the Fourier coefficients satisfy the following property

b@zg’ﬁk == N(e@)k bg,b
forall Ze€K".
Note 7.1.11. For simplicity, we will write b, instead of bg 5 wherever possible.

Definition 7.1.12 (Half-integer weight Hilbert cusp form). A half-integer weight Hilbert cusp-form g(z) of
weight k + % and level 4n is a half-integer weight Hilbert modular form that vanishes at all the cusps of Iy,. This
happens if by (the 0™ Fourier coefficient) vanishes in the Fourier expansion of g(z) at each cusp of Ty,.

The space of all half-integer weight Hilbert cusp forms of weight k + % and level 4N forms a subspace of M, +1 (f4n)

and is denoted by Sy, (Tyn)-
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7.1.1 Half-integer weight Hilbert modular forms with a character

Given a square-free integral ideal n C 0 of odd norm, let 1, be a finite order Hecke character of K of
conductor n defined in section 6.1. We fix v, to be the generalised quadratic character in K which will be
given in terms of the quadratic residue symbol defined in 7.1.2. We now define

Yan = (M)an-

We say that g(z) is a half-integer weight Hilbert modular form of weight k + %, level 4n and character v, if
the invariance condition in definition 7.1.9 is replaced by

Ay

g(z)|k+%a* =Y,.(a,) g(z) forall a" = ((Ca ZZ) ,<I>(z)) € Em.

Note 7.1.13. For simplicity, we will denote 14, by 1.

We denote the space of all half-integer weight Hilbert modular forms of weight k + %, level 4n and character

1.0 by Mk+% (f4n’ 11[))

7.2 Hecke operators

We will now define Hecke operators acting on spaces of half-integer weight Hilbert modular forms. For details
about Hecke operators on half-integer weight Hilbert modular forms, one can refer to Shimura’s Paper [ Shi87,
Section 5].

Definition 7.2.1. Let g(z) € Mk+%(f4n,1/;). Let p C Ok be a prime ideal generated by g > 0. Then for each
prime ideal p, we define the Hecke operator T, in terms of (k + %)—slash operator on M1 (ﬁm, ) as follows

ST os@h e Y. g@IE +eDg@lat iFptn

_ _3 he(6, /92 0¢) he(6 [ O¢)*
g1 Tye = N(p) 29 o () \ . ;
e * g@)lr;, ifpln
he(6x /92 0k)
1 267'h e 257'h e 0
where yh—(o 02 ),/5}1—(0 0 ) anda—(o @)

The explicit metaplectic lifts of vy, Py and a can be found in [Shi87, Proposition 5.3].
Note 7.2.2. Here v is the finite order Hecke character modulo 4n which in our case has been assumed to be
given in terms of generalised quadratic residue symbols, see 7.1.1.

The Hecke operators are commutative, that is, T,,.T,> = T2 T,,» where p and q are distinct prime ideals in 0,
see [Shi87, Proposition 5.2]. In contrast to the classical case, Shimura in [Shi87] extends the definition of
Hecke operators only to square free integral ideals m in 0 via mutiplicativity, that is, T,» = [ [, T,> where

m=l_[ipi-

We now state the action of Hecke operator T, on the Fourier coefficients of the half-integer weight Hilbert
modular form g(z) € M, 1 (ﬁm, ) which is a result by Shimura, see [Shi87, Proposition 5.3].

Proposition 7.2.3 (Hecke operators on Fourier expansions). Let p be a prime ideal in 0y generated by p > 0.
Let g(z) € /! (T4n, Y) with Fourier expansion

g(Z) — Z b§e2ni Tr(%z)‘

ceof
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Then g(z)|k+% p2 € Mk+% (ﬁm, 1) with Fourier expansion
. éz
g(z)|k+% p2 = Z cgezm T(52)
ceof
such that
boee + 9" (©IN(E) 7 (£), be + 9" (@2 IN(p)* Tbgy  ifphn;

Yoolp)es = {bng Foln

. _1nk

where (o) = (31), (o).

Here bg,» = 0 when p*} &.

The fact that g(z)|k+% T, € Mk+%(f4n, ) follows from [Shi87, pg. 787].

Note 7.2.4. Since we have taken our infinity type v, to be trivial in section 7.1.1, we can ignore it in the
above formula in definition 7.2.3.

Definition 7.2.5 (Hecke algebra). The Hecke algebra of weight k + %, level 4n and Hecke character 1) acting on

M, +%(f4n, ) is the commutative C-subalgebra of End(Mk +%(f4“,1,b)) generated by the Hecke operators T, for
all square-free integral ideals m in 0.
We denote the Hecke algebra of weight k + %, level 4n and character 1 by T, +1 (4n, ).

Definition 7.2.6 (Hecke eigenform). We say g(z) € M, +%(f4n,1p) is a Hilbert Hecke eigenform of half-integer

weight if it’s a simultaneous eigenvector for all Hecke operators in Tk +1 (4n, ).

Note 7.2.7. We will specify whenever we refer to a Hecke eigenform for all Hecke operators T,. for p not
dividing the level 4n. In general, our definition of a Hecke eigenform refers to g(z) € M, +1 (T4n,7)) being an
eigenvector for all Hecke operators T,,. over all square-free integral ideals m in 0.

7.3 Further operators

We now introduce some more operators acting on M, +1 (Tgns ).

7.3.1 Operator V(;

Let g(z) € M, +%(ﬁm,¢). Let m C O be an integral ideal such that m is co-prime to level n. Note that
Mk+§ (Em P) C M, +1 (ﬁnm, ). Hence, g(z) can always be viewed as a half-integer Hilbert modular form in

M1 (Tynms ). More formally, define an operator

e 1V * Mis 1 (Tans 1) = Myey 1 Ty, ) such that g(z) = g(2).

7.3.2 Operator V,

Let g(z) € M, +%(f4n, 1)). Let m C Ok be an integral ideal such that m is co-prime to level n. Let /%, .4 € O

be totally positive generators of ideals m and n respectively. Define the operator V,, on g(z) in terms of
(k + %)-slash action as

8@y Vo =N gy () 7)oM)

(2k+1) (2k+1)

=N(#) + N(#) + g(M=z)
= g(MA32).
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Thus, if g(z) = deﬁg bee*™ (52) | then 8@y 1 Ve = deﬁg cce?™ (5.45)

Proposition 7.3.1. Let g(z) € Mk+%(f4n,1p). Let m C O be an integral ideal such that m is co-prime to level
n. Let #, N € OF be totally positive generators of ideals m and n respectively. Then g(.#z) € M, ! (Tanms ¥

where ' () = (o) (£),.
Proof. See [Shi87, Proposition 3.2]. O

Thus, we have a map

et Vin * M1 (T, ) = My 1 (T, 97) such that g(z) — g(42).

7.3.3 Operator U,

Letm C Ok be an integral ideal and let g(z) € M, ! (T4, %) with Fourier expansion g(z) = > ceo b Eezm' Te(52)
Let ./, ./ € 0y be totally positive generators of ideals m and n respectively. Define the operator U,, on the
Fourier coefficients of g(z) in the following way:

i Tel £
g(Z)|k+%Um = Z b%£62anr(2 )

seof

We next want to show how the action of U,, operator on M, +%(ﬁm,¢) affects the character of this space.

This has been already proved for Hilbert modular forms of weight % in [AS08, Lemma 4.3 and 4.4]. We now
use the same proof to generalise these results for any half-integral weight k + %, including more details and
explanation wherever possible.

Lemma 7.3.2. Let g(z) € Mk+%(f4n,1,b) and let m C O be an integral ideal such that m | n. Let A4, N € OF
be totally positive generators of ideals m and n respectively. Set h(z) = g(.#'z). Then

o7 =9a) (2 1o
Y

2

for any y* = (v, ®,(2)) where

Here T[207' .4/, 27044 1 = T4y -

Proof. Let M* = (M,N(.///)}T) where M = (1 JO//)
We define y’' := MyM ™. Then
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Thus, Y’ € I,. So, we can lift y’ to y"* € T, using ®..(2) defined in 7.1, that is,

-1

% PR 1
®,.(z) = ¢(a,)é(a,) B N(AMc,z+d,)z. (7.4)
2

Y

Also, it is given that y* € ﬁm.

Next, we evaluate ®),(2)®,(2)®-1(2).

e
((

(MyM™N(2)i @, (M 2N () %)
(MyM™, 8 (7))

0 /()//),N(///)%)(y,fby(z))((cl) /;_1),,\,( //{)_%)
(1) /O/l),N(///)%)(yM—l,cpy(M—lz)N(///)_%)

Il

where

-1

& (M) = e(a,)éla,) ( 79) N(4c s +d,)} (7.5)
2

ay

Thus, we can conclude from 7.4 and 7.5 that for any y € T, ,,

e M ox—l1x _(1 0
(MyM )—(I,(ay)z)(MyM ) where I (0 1).

We can now rewrite the above expression for the value of y* below

Y* :M—l* (1,(%) )(MYM—I)*M*-
Ay /3

Now we act h(z) by y* € ﬁn,m and we will see the required change in the character.

W@l 1y = h@)|g M (I(Q%) )(MyMl)*M*
2

Y

= N(%)%(2k+1)h(M_1z)|k+% (1, (a%) )(MyM‘l)*M*
2

Y

= N(///)%(z"“)h(///ZNH% (1, (a%) )(MYM‘l)*M*
2

Y

=N o (1,(5) Jorar e
2

y

= N()7@+D (%) YP(a,)g(@) 1 M”
2

ay

= N(A)FP+DN ()5 2kD) (%) P(a,)g (4 'z)
2

ay
=(4) (e, h(z).
Ay /o
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Since a,, = a,, we have

M .~
h(z)|k+%y*=(a—) Y(a,) h(z) forany y" € Ty .
v /2

O

Proposition 7.3.3. Let m C Oy be an integral ideal such that m divides the level n. Let ./#, N € O] be totally
positive generators of ideals m and n respectively. Then the action of operator U,, maps the space M, +%(f4n,1,b)

to Mk+% (Em, ¢ (4)2)

Proof. For a fixed a € (0 /m), consider the matrix

1 22671\ (1 0)(1 205

0 M “\o0 Zz)\o 1 ’
Let M* := (M,N(.#)#) where M = (3.9)and B’ := (B,,1) where B, = (} 2207 ).
Note that M* ¢ T, but B, e Ly

Let h(z) = g(.#'z) where g(z) € Mk+%(f4n, ). Then
_ 1(2Kk+1) 10 L
h(z) =N(A)+ 8E@)ks1| | o Y SN(A)*
which implies

* 1 1 2a67! 1
h(z)|k+%Ba:N(///)4(2k+1)g(z)|k+%((0 O;// ),N(//l)").

Let y € I,,. Then

Alw

> (senea((5 5 ) vent)) i

=N 7575 >0 Rl 1By

ac€0g /m

=N D h@) 1By (7.6)

acly/m

(8@l Un ) lsy7™ =)

We now try to observe how B),y* acts on h(z) = g( A 12).
Since B,, v €I}, then B,y € I},.

Now let us look at the set
{F4n,mBa1, CinmBays TanmBays -+ F4n,mBan} where n = |0, /m|.

Then the right coset decomposition of Iy, , in Iy, using B, is given by

n
F4n = U l—‘4n,mBotl-'
i=1

Now for a fixed a € (0 /m), since B,y € T}, it must belong to one these cosets {Ty, ,B,, }1—, for some fixed i,
that is, B,y = v,B,, where y; € I, ,. However, as we vary a, different choices of a for B, will give different
choices of such cosets with varying i’s. Now since all v, y;, By, B, € I4,, we have

(Boy) = (riBy)" ifandonlyif By =7y]B.
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Replacing B)y* in equation 7.6 by y7B, and then using lemma 7.3.2, we get

(8@l Un) sy =N D h@ 7,8,

i=1

=N(#)W(a,) > h()|, 1B,
i=1

where ¥(e) =1 (o) (4)2

It follows

(6@ 1Un )17 = NCA) NV D90, ) S gy (5 20 )nvat)
i=1

=N(///)1N(///)‘1>(2k“)‘ll(ah)N(///)}'(Zk“)Zg(
i=1

= \D(ayi)g(z)|k+% Un-
Since v; = BayB;_l, we can compare entries on either side and it easily follows that

a, =a, mod 4n.

It hence follows that

(8@ Un) e 7" = (@, )8@)es 1 Un
~4@)( ) s@lis U
T 7/2

. . . =~ H
Since, y € I, was arbitrary, we can say that the action of U,,, operator on M, +1 (T4n,4) adds a character (T)z
to the space. O

Let g(z) € Mk+%(f4n,1,b). Suppose | C 0y is a prime ideal such that [ { n. Then g(z)|k+% U, can have at most
level 4nl. This can be observed by viewing g(z) € My (Tynsp) as g(z)|k+% Vay € My (T4nr> ¢). Using propo-
sition 7.3.3, we get (g(2)li 1 Vir) ) lks2 U € Micy 1 Ty, ¥) where B(o) = p(0) (£),.
Again, let g(z) € M, +%(f4n,1,b). Suppose [ C g is a prime ideal such that [} n. Then g(z)|, +1Up can have at
most level 4nl. This can again be observed by viewing g(z) € Mk+%(l“4n,1/)) as g(z)|k+%V(1) € Mk+%(l"4n[,1,b).
Using proposition 7.2.3, we have (g(z)|k+% V(l)) |k+% Up € My, 1 (Tants ).
Remark 7.3.4. We now make two remarks that will be useful later.

1. If prime ideal [ C 0 such that [{n and g(z) € Mk+%(f4n,1,b), then g(z)|k+% U, can have at most level 4nl

and the character of g(z)|k+% U, changes to ¥ where ¥(e) = 1))(e) (%)

2. If prime ideal [ C ¢ such that [} n and g(z) € Mk+%(f4n,1,b), then g(z)|k+%U12 can have at most level
4nl and the character of g(z)|, +1Ue remains same as .

7.4 Generalisation of Shimura’s correspondence to Hilbert modular
forms

In section 2.4, we introduced Shimura’s correspondence which is a Hecke-Linear map between half-integer
weight modular forms and integer weight modular form. In this section, we will state the generalisation of
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the same results to Hilbert modular forms which is again work of Shimura and follows from [Shi87, Theorem
6.1 and Theorem 6.2].

Theorem 7.4.1 (Shimura’s correspondence for Hilbert modular forms).

Let k € Z- and let n C Oy be an integral ideal. Let 1) be a finite order Hecke character modulo 4n which in our
case is quadratic in the sense of being given in terms of generalised quadratic residue symbol, see section 7.1.1.
Suppose we are given a non-zero half integer weight Hilbert eigenform g(z) € S, +1 (T4n» ) for all Hecke operators
T,2 over all prime ideals p C O with corresponding eigenvalues Asz (g) €C, that is,

g(z)k+% b2 = )\sz(g)g(z) for all prime ideals p.

Then there exists an integer weight Hilbert modular newform f (z) € My (Iy,,y?) for all Hecke operators T, over
all prime ideals p C Oy with corresponding eigenvalues )LTP (f) €C, that is,

f@ak Ty =Ar,(f)f () for all prime ideals p.

such that
Ar (€)= Az, (F).

Note 7.4.2. Since v is fixed as a quadratic symbol for us, we conclude 1) is trivial character.

Figure 7.4.3.
8(2) € Sk /2 (Tans ) g1 Ty = Az, ()
Shimura’s corresp. Hilbert case Asz (8)=2r, (f)
~+ >
f(2) € My (T, %) f@ox Ty = A1, ()

7.5 Generalisation of Kohnen’s Isomorphism to Hilbert modular forms

Let K be a real quadratic real field with narrow class number 1 and let n C 0 be a square-free integral ideal
of odd norm. Let K, denote the adelization of K. The strong approximation theorem enables us to view
Hilbert modular forms of integer weight as automorphic forms on PGL,(K,). Similarly, let Mp,(K,) be the
metaplectic double cover of PGL,(K,). Again, Hilbert modular forms of half-integer weight are automorphic
forms on Mp,(K,). We will now use the passage of automorphic representations associated to automorphic
forms to connect spaces of integer weight Hilbert modular forms with half-integer weight Hilbert modular
forms which will then enable us to generalise Kohnen’s isomorphism to Hilbert case. We begin by providing an
outline of this approach, see figure 7.5.1 and we then closely follow [Sul8] for definitions and details.

Let A3, (n) be the space of automorphic cusp forms of weight 2k and level n where n C & is an integral ideal.
For a finite place v associated to prime ideal p in &, define

(T,), == {(Ccl Z) € PGLy(K,)|a,d € 0y, b e 20;1 and ¢ € 2710, n, such that ad — bc = 1} .
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Each eigenform f € A%*P(n) has an associated irreducible representation p’ .
g 2k p P

Eigenform f € A7 P (n) «— p/ = l—[ p! ®pl.
v<oo

Here p{ is the local representation of PGL,(K, ) at a finite place v and pf: is the product of irreducible repre-
sentation at the archimedean places.

Figure 7.5.1.
HILBERT CUSP FORMS OF WT. 2k HILBERT CUSP FORMS OF WT. k + %
SZk(Fn) Sk+% (F4n)
Strong approximation Strong approximation
AUTOMORPHIC FORMS OVER PGL,(K,) AUTOMORPHIC FORMS OVER Mp,(K,)
cusp
AP (n) A1 n)
Automorphic representation Automorphic representation
of each eigenform f , of each eigenform g
) Waldspurger’s results .
IRREDUCIBLE REPRESENTATION < 7 IRREDUCIBLE REPRESENTATION
P’ =[T <00 PI®P] =] | co0 T3 @75
~
STEINBERG REPRESENTATION STEINBERG REPRESENTATION
{pf 1vin} {r§ | vin}

~

fe Ag;;W(n) y Kohnen'’s isomorphism for Hilbert modular forms y g e S+,ﬂfw(f4n)

We can have the following three cases.

Case 1: v |nand p{ is steinberg.
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In this case, (T,), is Iwahori® at the finite places v | n and we have a unique fixed vector under right
action of (I},),. The associated representation p{ is referred to as steinberg representation. We then say
that f(z) lies in the new space.

Case 2: v|n and p/ is spherical.

In this case, (T,,), is Iwahori at the finite places v | n and we have a fixed vector under right action of (T},),
but it need not be unique. The associated representation p{ is referred to as spherical representation.
We then say that f (z) lies in the old space.

Case 3: v}n and p/ is spherical.
In this case, (T},), is maximal compact at the finite places v { n and we have a unique fixed vector under
right action of (I},),. This is called the spherical vector.

We are interested in Case 1. We will denote the new space of automorphic forms by A%;" (n).

Eigenform f € A3"(n) «— p{ is steinberg at the finite places v | n.

Before we move to the right hand side of figure 7.5.1 about Hilbert modular forms of half-integer weight, we
go over a few definitions.

Let Mp,(K,) be the metaplectic double cover of GL; (K, ). Then half-integer Hilbert cusp forms in S, 41 (Tan)
are essentially automorphic forms over Mp,(K, ).

Definition 7.5.2 (Generalised Kohnen plus space). We define the Kohnen plus space S;+1(F4n) as the subspace

of S, 1 (T, that contains half-integer weight Hilbert cusp forms whose E™ coefficient vanishes unless (—1)K& =
O mod 4.

~ ~ i £
S;+%(F4n) =48€ Sk+%(r4n) | g(z)= Z bgezm 7(5)
seof
(-1)*E=0mod 4

From [Sul8, pg.170], the generalised Kohnen plus space decomposes into old and new subspaces as in the
classical case of half-integer weight modular forms, that is,

Sp01 () = S (M) @ S7, (Tan) (7.7)

where the definitions old subspace and the new subspace of the generalised Kohnen plus space are defined by
Ren-He Su in [Sul8] as follows.

Definition 7.5.3 (Old subspace of the generalised Kohnen plus space). The old space of the generalised Kohnen
plus space is defined as

old (T — T T
52 (Fon) 1= Z| (573 Eon) + 57, Fodlisy U1 )-

m#n

Definition 7.5.4 (New subspace of generalised Kohnen plus space).
The new subspace of generalised Kohnen plus space is defined as the orthogonal complement of the old space defined
in 7.5.3.

- - 1
50 (o) = (8,24 ()

Iwahori subgroup:= It is a subgroup of a reductive algebraic subgroup over a non-archimedean local field that is analogous to the
Borel subgroup of an algebraic group. For GL,(R), the Borel subgroup is given by the set of upper triangular matrices.
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Using definition 7.5.3 and decomposition 7.7, we have the following decomposition for the generalised Kohnen
plus space

S:+%(F4n) = €Bmln ®me—1n S,r:j_g (F4m)|k+% sz' (7.8)

where b runs over integral ideal in 0 that divide m™!n.

We now state a result by Hiraga and Ikeda [HI13] about the new subspace of generalised Kohnen plus space
being generated by a basis of eigenforms. The version of our statement appears in Re-He Su’s short article [Su,
Theorem 3(ii) ].

Theorem 7.5.5. The space generalised Kohnen plus space S;:rl (f4n) has a basis consisting of Hilbert Hecke eigen-

forms of half-integer weight over C.

Next, we want to introduce the concept of newforms for half-integer weight Hilbert modular forms. We note
that each Hecke eigenform g € S;:rl (T4,) has an associated irreducible representation ¢ of Mp,(K,) which
3

we can write as a product of local representations.

: + (T —
Eigenform g € SH%(R}“) — né = l_[ né ®ns

v<oo

where 7$ is a local irreducible representations of Mp,(K,) at a finite place v and 7$ is the irreducible repre-
sentation at the archimedean places.

Definition 7.5.6 (Kohnen newform). A Hecke eigenform g € Sl:rl(ﬂn) is called a Kohnen newform if for any
2

inite place v|n, the local irreducible representation 8 of Mp,(K,) is equivalent to a steinberg representation.
p D v DalK, q g rep

For further details about the representation theoretic method of defining S Zfﬁ (ﬁm), refer to [Sul8].

The main link between irreducible representations 7, of Mp,(K,) with irreducible cuspidal automorphic
representation py of PGLy(K,) is given by the Waldspurger’s results in [GL18].

7y of Mp,(Ky) «— py of PGLy(Ky).
We can now state our main result by Ren-He, Su [Sul8, Theorem 1.3].

Theorem 7.5.7 (Generalisation of thnen’s isomorphism to Hilbert modular forms). There exists a Hecke
isomorphism between the spaces SZfr“i (T4n) and A% (n).
2

For level n = (1), this theorem was initially proved by Hiraga and Ikeda, see [HI13].
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CHAPTER 8

Hilbert Eisenstein series and related congruences

Let K be a totally real quadratic field with narrow class number 1 and let &y be its ring of integers. Given
discriminant D of K, let y|, be the associated quadratic character of K given by the Kronecker symbol (%)
Let D;l C K and 0g C 0k be the inverse different and the different ideal respectively. Let 6 € 0y be a totally
positive generator of 0. Let g7 denote the group of units in K, that is 0; = {£ € 0x | N(&) € {£1}}.

8.1 Dedekind zeta function and some formulae

We briefly overview the Dedekind zeta function and its related functional equation that will be essential to
introduce Hilbert Eisenstein series in section 8.2.

Definition 8.1.1. We define the Dedekind zeta function of K for complex numbers s with real part R(s) > 1 as

Li(s) =D N(n)™.

nCoy

Here the sum is taken over all non-gero integral ideals n C Oy and N(n) = [0 : n] denotes the absolute norm of
n

We now state a few facts about the completed Dedekind zeta function and associated functional equation. For
details, refer to [Neu99, Chapter VIL.5].

The Dedekind zeta function {x(s) has a meromorphic continuation to the full complex plane given by the
completed zeta function Ag(s),

Ax(s) = D72 —Sr( ) Z(s) 8.1)
where I'(s) is the Gamma function. It satisfies the functional equation
AK(S) :AK(l_S). (8.2)

Let k > 2 be an even integer. Using 8.1 and 8.2, we can write

D¥?x —kr( ) Lk (k) = DU—R/2p=(- k)r( ) Ce(1—k)
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r(%9)
r(s)

We now try to further simplify the terms on the right hand side of equation 8.3. In order to do this, we give
the factorisation of (1 — k).

2
x (k) =D“2"<n2k‘1( ) Ck(1—K) (8.3)

Proposition 8.1.2. Let K be a totally real quadratic field of narrow class number 1. Let D be the discriminant of
K and let y, be the associated quadratic character of K given by the Kronecker symbol (%) Let k > 2 be an even
integer. Then the Dedekind zeta function of K factors as

Ck(1—=k)=2¢(1—k)L(1—k, xp).

Here
)=y
n=1

is the Riemann Zeta function defined over complex variable s for which R(s) > 1 and
5 2(n)
Ls, )= ,—

is the Dirichlet L function defined over complex variable s for which R(s) > 1 and has Dirichlet character .
Proof. See [Was97, Theorem 4.3] and [LR10, Theorem 7]. O
We now relate {(1— k) with Bernoulli numbers and L (1 —k, y,) with generalised Bernoulli numbers.

Proposition 8.1.3. Let K be a totally real quadratic field of narrow class number 1. Let D be the discriminant of
K and let yp, be the associated quadratic character of K given by the Kronecker symbol (?) Let k > 2 be an even

integer. Also, let By, By, denote the k" Bernoulli and the k™ generalised Bernoulli numbers respectively. Then,
we have

k. xp
L=k zp) =——7*.

Proof. See [Was97, Theorem 4.2] and [LR10, Theorem 3]. O

From propositions 8.1.2 and 8.1.3, we have

B.B
(e(1—K) = % cQ. (8.4)

r(5)
r(3)
Since, k > 2 is an even integer, k/2 is also an integer.

We now quote a formula from [0ld09, Section 43:4, pg. 437] satisfied by the Gamma function for any integer
n, in particular for n = k/2,

2
Now, we simplify the other factor ( ) in equation 8.3.

F(l n)—wforneNu{O} (8.5)

2 )7 (@n—-1)N
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where !! denotes multiple factorial and from [Old09, Section 2:13:4, pg. 25], its relation with normal factorial

1S

(2n+1)!

2n+ D! =
(2n ) 2nn!

Also, it is well known that
I'n)=(n—1)!forneN

Using formulae 8.5 and 8.7, we can write
r()Y _(rG-n)Y’
NOWERSIO
B (_1)n2nﬁ 2 1 2
_( (2n—1)1 ) ((n—l)!)

_ (=1)"2n /2t 2
“\@m-D+ -z ) -

Using identity 8.6 for (n— 1), we can write (2(n—1) + 1)!!(n—1)!2"! = (2(n— 1) + 1)!. Then

r(z) 2_((—1)"22"‘1ﬁ)2
( r(5) ) ~\@r-1+1)!
B ((_1)n22n—1ﬁ)2
2n—1)!
(_1)k/22k—1ﬁ 2
:( (k—1)! )
B (—1)k2%
4(k—1)12
2%
= —DE

k even.

We use 8.4 and 8.8 to simplify equation 8.3.

Ltk = DV 20 BB,

k-1 k2
3 Dl/z_k(zn)ZkBkBk’xD
o 4(k—1)12k2

8.2 Hilbert Eisenstein Series

(8.6)

8.7

(8.8)

(8.9

Definition 8.2.1 (Hilbert Eisenstein Series). Let k > 2 be an even integer. We define the Hilbert Eisenstein Series

Gi(2) as

Gi(z) == Z ‘N(xz+y)™*

(x,y)

where the summation Z/ runs over representatives (x,y) € ((2_15ﬁK x O¢)—{(0, 0)}) /0%.
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Note 8.2.2. Note that the representatives (x, y) in Definition 8.2.1 run over ((2_15ﬁK x 0x)—{(0, O)}) ze
in contrast to ((0x x Ox)—{(0,0)})/0; in [Gar90]. We have an additional term 2716 which is due to the
choice our congruence subgroup of level 1 defined as I[20!,2710] in contrast to congruence group SL,(0)
as in [Gar90]. However, there are references which explicitly consider Eisenstein series in the form as in our
definition 8.2.1 and even more broadly, see [vdG88, pg. 19].

Proposition 8.2.3. Let k > 2 be an even integer. Then Gy(z) € My(T(y)).
Proof. See [Gar90, Section 1.5]. O

Remark 8.2.4. We can also define Hilbert Eisenstein series for weight k = 2 by analytic continuation using
Hecke-Trick. Hence, it turns out that Hilbert Eisenstein series of weight k = 2 is holomorphic, see [BHZ08,
Remark 1.36, pg.121]. Thus, Hilbert Eisenstein series G,(z) € My(I{y)).

Next, we give the Fourier expansion of G (z) at infinity. We will work out some steps explicitly in the proof so
that it’s easy to follow the proof of Fourier expansion of Generalised Hilbert Eisenstein series in section 8.5.

Proposition 8.2.5. Let k > 2 be an even integer. Let D be the discriminant of the number field K. Then Gi(z)
has the following Fourier expansion at infinity

(2mi)%*

Gk(Z) = CK(k) + mDé_k Eezﬁ; O-k_l(g)eZ‘lti Tr(%z)'

where

Lelk)= "> Nmy™

nCoy

is the Dedekind zeta function of K at k and o,_1(&) is the (k — 1) divisor sum of norm of all integral ideals
dividing (&) given by

ora(@) = D N
vCoy

v'I(8)

Proof. Using Definition 8.10, we can write

Gi(z) = Z ‘N(xz+y)*

(x,y)

where the summation Z/ runs over representatives (x,y) € ((2’15@( x O¢)—{(0, 0)}) /0¢

Now we split the sum further into two sums, one with x = 0 and other with x # 0.

Gz)= D NG+ D] > NGez+y)™

Yeo x€27160¢ \ yegiu{o}
x=0
=+ Y. > N(xz+y)™ (8.10)

xe 271607 \ yegiu{o}

where (k) is the Dedekind zeta function, see definition 8.1.1.
We now use the formula [vdG88, pg. 19] obtained using Poisson summation formula in [SW71, pg. 252] that
is given below,

-2k

Z N(xz+y)™* = %D%—k Z N(AE )k o2 A=)
yeogiu{o} (k—1)! Aco!
xA >0
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Then the formula for G, (z) above in 8.10 simplifies to

( 7-“)2}( k—1 27:1 Tr(xAz)
Gu(@) = (k) + 5 —752P KT DI N@8)
x€27160¢ rev!
XA >0
(27’[1)2k — i Tr(xAz
=40+ 550 S > N(xlxAs)kTe2r ),

x€27150¢ xA€2710f

For simplicity, let v = xA. Then

2k
Gk(Z) Zk(k)-‘r ((kznll))'z Z Z N(x_lvé)k 1,27 Tr(vz)
x€27160¢ ve2-lof
2k
= (k) + ((kzml))'z Z Z N((2x5™ 1)1 y)k—1g2m TH02),

ve2lo} 2x6-1e F
Again, for simplicity, put r = 2x5~!. Then

G (2) = (k) + MD%—k Z Z N(2r_1 1))k—lezm Tr(vz)

—1)12
(k—1)! ve2lofre oF

Let £ =2v. Then

G(z) = {i(k) + ((kzml))'zp——k ST Ny,
Eegireof

Let rr’ = £ where r’ > 0 generates the integral ideal v'. Then v’ | (§). Hence, it follows,

N2k )
Gk(z) — Z:k(k) + ﬂD%_k Z Z N(t/)k_l eZTL’i Tr(%z)

(k—1)e2 Eeol | veof
v|(&)
— (27“) ——k 2mi Tr( 32
= 5+ Gyt 2 (@)
geof
where
ora(@)= D N
r’gﬁ;
v|(&)
is the (k — 1)™ divisor sum of norm of all integral ideals dividing (&). O

Definition 8.2.6 (Normalised Hilbert Eisenstein Series). The normalised Hilbert Eisenstein series is defined as

Ex(2) := {x(k) ' Gy ()
where {(s) is the Dedekind zeta function of K.

Then E;(z) has the following Fourier expansion at infinity

E(@)=1+C D, 0y 1(§)e?™™5) (8.11)

1=
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where
(2m)2kp1/2k
T G — 1)
We next want to show that E;(z) has rational coefficients. The coefficients of E;(z) involve two terms, C; and
0_1(&), defined in Theorem 8.12. Here o_; (&) is just a sum of norms of integral ideals and is thus rational by

definition. So, we now show that the other term C; is rational as well. For this, we will use formula obtained
in equation 8.9 which implies

Dl/z_k(ZTE)Zk BkBk,)(D

== e

where By and By, denote the k™ Bernoulli and generalised Bernoulli number respectively.
Then the value of the constant in our coefficient C; in the Fourier expansion of the normalised Hilbert Eisen-
stein series given in 8.11, simplifies to

_ (2ﬁ)2kD1/2_k 1

C.= )
T =12 (k)
_ (2m)*D1/*k 4(k —1)1%k?
(k—1)2 " DY2k(2m)*BBy
(2k)*
BBy,

Hence, we can say that the Fourier expansion of E;(z) is given by

2
@) =1+ 220 3 oy, (£)e () (312)

kPk,xp ggﬁ;

where the Fourier coefficients of E;(z) lie in Q.

8.3 Hilbert Eisenstein series modulo p

Let k > 2 be an even integer. In the previous section, we obtained the following Fourier expansion of nor-
malised Hilbert Eisenstein series Ey(z) € M (T(y)) at level 1,

k)? &
E(z)=1— B(ZB ) Z Oha (£)e2M(5),

kPk,xp geo;

Let p be an odd rational prime that is unramified in K. We now define a series &,(z) as follows,

p—1
&y(2) :=E,_1(2) —N(p0x) = E,_1(p2).

Since E,_(2), E,_1(pz) € M,_(I(), this implies &,(z) € M,,_;(I{;)).

We will next try to prove a congruence modulo p satisfies by &,(z) that will be an essential lemma required to

prove the main theorem in chapter 10.

Lemma 8.3.1. Let K be a totally real quadratic field of narrow class number 1. Let D be the discriminant of K
and let y, be the associated quadratic character of K given by the Kronecker symbol (?) Let p be an odd rational

prime that is unramified in K. Also, let B,_;, B,_; , denote the (p— 1)t Bernoulli and the (p —1)™" generalised
Bernoulli number respectively and suppose that p B, . Then we have

6,(2) =1 mod p.
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Proof. From equation 8.12, the Fourier expansion of E,_;(z) is

41 e
Eya(2) = 144(p—17B)L m—— > 0, 5()* (%),
p—Lxp geqy

Then using von-Staudt Clausen theorem 3.2.2 and the assumption p { B, ; ,, considered in our hypothesis,
we get that the Fourier coefficients of E,_;(z) lie in Z,. Then it’s clear from the definition of &,(z) that its
Fourier coefficients lie in Z,). Further combining these facts with Fourier expansion of E,_;(z) obtained, we
get the congruence

E, 1(z)=1mod p
and
E, 1(pz) =1 mod p.
It follows

£,(z) = E,1(2) —N(pG)' E,_,(p2)

= E,1(2)—p*F E,_1(pz) mod p
=E,4(z) mod p

=1 mod p.

8.4 Hecke L-function and some formulae

We briefly overview the Hecke L-function and its related functional equation that will be essential to introduce
Generalised Hilbert Eisenstein series in section 8.5.

Let p be a rational prime such that is unramified in K. Let v be a fixed Hecke character of K defined as
Y = Zp © Ngjg- (8.13)

Here y, = (é) denotes the Kronecker symbol and Ny, denotes the absolute norm.

Definition 8.4.1. We define the Hecke L-function of K for complex numbers s with real part 3(s) > 1 and Hecke
character v as

Li(s, )= D p(mN ().

nCoxg

Here the sum is taken over all non-zero integral ideals n C Ox and N (n) = [0 : n] denotes the absolute norm of
n

We now state a few facts about the completed Hecke L-function and associated functional equation that has
been taken from [Zam16, Section 2].

The Hecke L-function admits an analytic continuation on the full complex plane and is given by the completed
Hecke L-function Ag(s,)),

Ax(s,9) = (D N(pG))? (n3T(5))" Le(s, ) (8.14)
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where I' is the Gamma function and r; denotes the number of real embeddings of K.
It satisfies the following functional equation

Ag(s,9) = w(P)A(1—s,977). (8.15)
Here w() € C is the root number and |w(v)| = 1. It satisfies the following relation
W) = TYIN(pGy)? (8.16)

where

W= > Y )

j€(O /po)

is a Gauss Sum.

Let k € Z.,. Using equation 8.15, we can write
Ag(k, ™) = w(yp™ A (1 =k, ).
Then from 8.14, it follows
D NEG): (71 (5))" Lk, y ™) = w@ D N(pa)'* (27 T(355))" L@~k ).

This simplifies to

1 1 _k)\2
Lk, ) = w0 Na) ™ (2 ) e —ow)

k
2

Using relation 8.16, we get

1 1 1 _k)\2
Lk, ™) = (Vo o) DN o a2 () ko).
We now use the formula 8.8 to get

(zn)zk

Lk ™) = (DI N o)™ e

Le(1—k,1). (8.17)

We now try to further simplify the term on the right hand side of equation 8.17. In order to this, we give
factorisation of Ly (1 —k,).

We have the following bi-quadratic diagram of field extensions with their respective characters.

Figure 8.4.2.
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Now the bi-quadratic extension K’ = Q (\/ (—1)§ D, «/5) is an abelian extenstion of Q. For abelian exten-

sions over Q, there is a factorisation of the Dedekind zeta function into a product of Dirichlet L-functions for
character of the Galois group viewed as a quotient group of some (Z/mZ)* where the abelian extension is
inside the m™ cyclotomic field (Kronecker-Weber theorem), see [Ovel4, pg. 301] for further explanation.

Thus, for K’/Q, we have

Li(8)=Lqls) X L(s, %) X L(s,2p) X L(s, xp2p)- (8.18)
Also, we have in general
Cio(s) = Lk(s) x Ly (S:Xp ONK/Q)
={q(s) xL(s,xp) x Lk (s,xPONK/Q) . (8.19)

From 8.18 and 8.19, we get

L (1=K, 1,0 Ngjq) = L(1 =k, 1) L (1K, xp2p)-
Using proposition 8.1.3, we get

B ,xka,xpr

k
Ly (1—k, x, 0 Ngjo) = = (8.20)

8.5 Generalised Hilbert Eisenstein Series

We now introduce a new series Gy ,,(z) with the character 1) called the generalised Hilbert Eisenstein series

Giy(2) == > Y7 (y)N(xpz +y) ™ (8.21)
(x.y)

where the summation Z/ runs over representatives (x, y) € ((2_15 Oy % ﬁK) —{(o, 0)}) /0¢ and p is a rational
odd prime that is unramified in K.

Note 8.5.1. The character ¢ = x,, o Ny remains the same as fixed in the previous section.

We next want to show that the series Gy ,,(2) is a Hilbert modular form of weight k, level (p) and character

4. Before that, we state a lemma that gives equivalence of two characters [LemO0O0, Proposition 4.2(iii) ].

Lemma 8.5.2. Let K/Q be a totally real quadratic field of narrow class number 1 with ring of integers 0. Let p
be an odd rational prime and let a € 0. Then we have

)
N()

where ( ﬁ)ZK denotes the power residue symbol defined in 7.1.2 while (T)Q denotes the normal Kronecker

symbol with N(a) being the Normy q of a.

Remark 8.5.3. Now we can write 1) = (1%) also as ¢ = ( : )ZK. For simplicity, we will often denote

PO
(P;’K )2,1( by (117)2

Proposition 8.5.4. Gy ;,(2) € My(T(,y, Y).
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Proof. In order to prove Gy ,,(z) a Hilbert modular form in M;(T{,),), we need to show it satisfies the fol-
lowing two conditions.

Condition 1: The series Gy ,(2) is invariant under the action of T).

Lety = (aY Z:) €Iy This means a,,d, € G, b, €(25") and ¢, € (27'6p).

z+b, -k
Gy (rz)= D Y 1(J')N(xp( v, )+y)

()

= Z YN (xpla,z + b,) + y(c,z + dy))_kN(ch +d,)

(x.y)
=N(c,z+d, )k(xzy:) P~ 1(J’)N((XP y)(ccl z::-_s ))
—N(c,z+d, )k(xzyj) Y (YN ((xp y)( ZI) G))_k
= N(e,z +d,)* (%:)’w—l(y)N ((xpaT +yc,,xpb, +yd,) G))_k (8.22)

Let x' = l%(xpay +yc,)and y’ = xpb, + yd,. Then (x’,y') € ((2_150K x 0¢)—{(0, O)}) /0%

(8.23)
We can now write Y1 (y’) = (%);l = (ypi);l = (%);l (%);l. In other words,
(%),¥7 0=y (8.24)

Also, we know that N(a,d, —c,b,) =1, that is, (adrp%b*) = 1. This implies (a*%)z =1lor

a d
(l) =(l) . (8.25)
pP 2 p 2
Using 8.24 and 8.25 can now further simplify 8.22 and write

A
Gug(2) =N(ez+ ) D Y oW (p(}))

(x".y")
r —k
=1 (a,)N(c,z + d),)k Z Y ()N (x'pz +y’)
(x",y")

=(a,)N(c,z+ dy)kaﬂ/J (2).
Condition 2: The series Gy () is uniformly convergent for z in compact subsets of 2 for all k € 7.,
Since 1) is non-trivial in our case, the series Gy ,,(z) is uniformly convergent for z in compact subsets of 72
for all k € Z. . This follows from [Gar90, Section 4.7]. The only case it wouldn’t converge is when ¢ is trivial

and K = Q with k = 2.

Thus, we conclude that Gy ,(2) € My (I,), ¥), see [Gar90, Section 1.5]. O
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Next, we give the Fourier expansion of Gy ,(z) at infinity. In order to do this, we will need the following
lemma.

Lemma 8.5.5. Let k € Z., and let p be an odd rational prime. Let 9~ * be the inverse different ideal of K and let
571 be its generator: Let 1) = Xp © N /q be the Hecke character defined in 8.13. Then for A € 7!, we have

> v e M) =y (as)ew
j€(Ox/pox)
where
,L.(w—l) — Z 1)[)—1(]-)627Ii Tr(é&’l)
j€(Ox /p6¢)
is a Gauss sum.

Proof.

Z ¢—1(]-)ezmTr(A§)= Z (]) ezmn(%a*l)

JeGc /PO je@cpoy P72

We now consider two cases, A6 ¢ (p) and A6 € (p).

Now if A6 ¢ (p), then A8j € (6x/p0Ox)”. Thus, j —» A& and we have

aN—1 . -\ —1 .
Z (i) eZm'Tr(%é’l) — Z (@) (E) e2rri Tr(%é’l)
PJa p P Ja

je(ox/Ipoc) 26je(6c/p6ic) 2

(2, ., ()

2 je(o¢ /)

=p(A&) (Y.

Now if A5 € (p), then A5jp~! € 0. Then by definition of inverse different ideal, Tr(A5jp~167!) € Z.

This implies
s (i)(—)z > (4).
jetocrpoy P72 jetoctpoy P22
. 1) —
We claim that the sum 3. 4 /0,y (5)2 =0.

Let S = 3 icca /vy (IJ—;)Z. Since ( 5)2 finite order non-trivial character, there exists a € (0 /p0y)” such that

(%)2 # 1. Then we have
( ) (2)
jeto/pay P72 P72

S (E)
e /poy P
—s.

©n
~
TR
~—
[

I
T~

2

It follows that S ((%)2 - 1) =0 or S = 0. In other words, we can say that S =(A5)t(y!) as (%5)2 =0.
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Thus, we have shown
STy (erm M) = () r(y ).
j€(bx/pok)

O

Proposition 8.5.6. Let k € Z,, and let p be an odd rational prime that is unramified in K. Let ¢ = x, © Ng/q
be the Hecke character defined in 8.13. Then Gy ,(2) has the following Fourier expansion at infinity,

=\ 2k . -
Gk,1/;(Z) =Lg (k, d)_l) +N(pﬁK)_k%D i_kf(qp_l) Z ak_1,¢(§)82anr(%z)
) geo;

where D is the discriminant of K,

L (k™) = D>y (N ™

nCoy

is the Hecke L-function defined in 8.4.1,

O y(E) = D Y ING )
o

v(8)
is the (k — 1)™ generalised divisor sum of twisted norm of integral ideals dividing (&) and
= > e )
j€(0 /PO
is a Gauss sum.

Proof. Using definition 8.21, we can write

Gry(@)= > YT (YIN(xpz +y) ™

(x,y)

where the summation Z/ runs over representatives (x, y) € ((2_15 Oy % ﬁK) —{(o, O)}) /0F.

Now we split the sum further into two sums, one with x = 0 and other with x # 0.

Gp@) = D ¢ OING) ™+ D D> YN yIN(xpz+y)7F
YEO; xe€27160¢ yeggu{o}
x=0

=Ly ™+ > > YT (yINGpz+y)

x€27160¢ yeou{0}

where Li(k,%™!) is the Hecke L-function, see definition 8.4.1.

Now let y = y'p + j where j € (¢ /p0)". Then

Gy@=Lekp™+ > > > ¢TGN (xpz+yp+ )

x€ 271607 y'€g U{0} je(b¢/pbc)’

— Loy D +Npa ™ ST ST ST N ((xz+4)+y) "

x€ 271667 y'eou{0} je(0; /poy)”
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=Lk ) +NGa) ™ S ST ()| D N((=+i)+y) | G20

x€ 271607 je(ox/pk) y'€ggu{0}

We will use the formula [vdG88, pg. 19] given below

Z N ((XZ + ;?) +y/)k = %D“k Z N(Aﬁ)k 1, 2mi Tr(A(xz+ ))

y'€equ{o} eo!
xl>>0

where x # 0. This formula is obtained using Poisson summation formula, see [SW71, pg. 252].

Then formula for Gy ,(2) in equation 8.26 above simplifies to

_ (2mi)* i Te(A(xz
Ly ™) +NGa G D S 3 ) ) Nasy e k)
x€ 271607 je(0x/pbk)’ Aco!
xA>0
_ . (2mi —1p:, 27 Tr( AL mi Tr(Axz
Lk ENGaI D ST TINGer Y e T e,
x€2-1667 A/elg;é IS(79179)

Using lemma 8.5.5, Gy, (2) further simplifies to

LK(k,Q/)_l)-i-N(pﬁK)_k((kzﬂ:ll))'zD__k ™ Z Z w(AS)N(7L6)k 1,27 Tr(Axz)
x€27150¢ ﬁig(l)
2k
:LK(k,Q,b_l)+N(pﬁK)_k%D%_kf(¢_l) Z Z w(x—lxk(g)N(x—lxla)k—leZniTr(lxz).

x€ 271607 xA€2710¢

For simplicity, let v = Ax. Then our formula for G, ,,(z) rewrites as

- —k (27-”) E*k k—1 2mi Tr(vz)
Le(l ™)+ N(pG) ™ 55 D3 rw 1)XGZZIM+VGZZW1¢J(»« VEIN(x 1 v5) e
R U ID WD M R (AR R )

ve2-10f 267 1xe O
For simplicity, let 7 = 26~ 'x. Then our formula for Gy (2) is given by

L (2mi)*

Li(k,2 ™) +N(pox)~ k-2

D%—k,r(,”b—l) Z Z w(zr—l v)N(Zr_l v)k—le2ni Tr(vz)‘

+ +
2veq; re o}

Let £ =2v. Then

Gropl5) = Ll ) 4 N(pa)* ZEL Dike(yp) D1 DT Y(rTION(rIE) e M),

12
(k 1) Eeof re gf

Now rr/ = &. Then ' | (§) where v’ C 0. Hence, it follows,

Gk’w(z) = LK(k’Qp_l)+N(pﬁK)_kMD%—kT(¢—l) Z Z w(r’)N(r’)k_l o2 Tr(52)

— 12
(k 1) geof \ Yo
vI(&)
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or
_ _ _k (2ni)2k 1k — niTr(§z
Gy (2) = Lk ¥ ™) +N(p O™ 35504 5 (¢ 1)5 Oy () )
where
T g(E)= D Y IN( )
v'c o
v|(8)
is the twisted (k — 1)™ divisor sum of norm of integral ideals dividing (&). O

Definition 8.5.7 (Normalised generalised Hilbert Eisenstein series). The normalised generalised Hilbert Eisen-
stein series is defined as

Epy(z) = Gy (2)

1
Lg(k,y~1)
where Ly (k,v~ 1) is the Hecke L-function.

Then E; ,(z) has the following Fourier expansion at infinity

Ery(2)=1+C Z Tp1,p(E)e*™ e(3%) (8.27)

seof
where
- 1 (2mi)%
©7 Ly, (k—1)12
We next want to show that Ej. () has rational coefficients. The coefficients of E ,,(z) involves two main Cj
and 0y (&), see equation 8.27 above. Here o;_; (&) is the sum of norms of integral ideals along with a
twist by v which takes values in {—1,0,1}. Thus, the sum o;_, (&) takes rational values. So, we now need

to show that the other term C, is rational as well. For this, we will first use the functional equation of Hecke
L-function given in equation 8.17, that is,

D *N(pG) ().

Ll ™) = s DN o)+ =2 (- k)
kK, = DOk 2(k—1)12 K >Y)-
Further formula 8.20 gives factorisation of Hecke L-function Lg(1—k, %) as (By, 2Br,10 /k?). Recall that here

Y = x, © Ng/o while y, = (1:)) and yp =(2).

This implies

(2m)%k Bk,xka,xpr
22(k —1)12 k2 )

Le(k, ™) = vy DTN (pG) ™
Then the term C; simplifies to

2k)?
Ck = ( ) .
Bk,xka,xpr

This implies that C; is rational as Bernoulli numbers and generalised Bernoulli numbers are rational.

Hence, we can say that the Fourier expansion of E; ,(2) is given by

(k) S 0y g (E)e2 () (8.28)

Ek’w(z) =1+
Bk,xka,xpxn teay

where the Fourier coefficients of Ej ,,(z) take rational values.
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8.6 Generalised Hilbert Eisenstein series modulo p

Let p be an odd rational prime that is unramified in K. Let ¢ = y, o Ng/q be the Hecke character which is

clearly non-trivial. We then define éi(z), the generalised Hilbert Eisenstein series of weight p%l, level (p) and
character ¢. That is,

gop(z) = E%’w(z).

We next try to prove a congruence modulo p satisfied by éi(z).

Lemma 8.6.1. Let K be a totally real quadratic field of narrow class number 1. Let D be the discriminant of K

and let y, be the associated quadratic character of K given by the Kronecker symbol (%) Let p be an odd rational

prime that is unramified in K. Let y, = (;) be the Krocnecker symbol and let Bp%l Y and Bp%l v denote the
Xp sXpXD

(p—1/ 2)h generalised Bernoulli numbers with character y, and y, xp respectively and suppose that p t B by

For, 4 = yx, o Ngq, let gp(z) € Mpa (Tipy, W) be the modular form defined as

pXD'

&) =Er1 ().
Then
cgi,(z) =1 mod p.

Proof. From Theorem 3.4.1, we have p | B;},  and we have been given that p | By . Combining these
T z XpXo

X
2Ap
facts with the Fourier expansion of Ep-1 w(z) obtained in equation 8.28, it follows that

ol

Ep%l’xp(z) =1 mod p
or

gp(z) =1 mod p.
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CHAPTER 9

Ordinary Hilbert modular forms and p-stabilisation

9.1 Introduction

Let k € Z.. Let K be a totally real quadratic field with narrow class number 1 and let & be it’s ring of inte-
gers. Let n be a square-free integral ideal of odd norm in . Let p be an odd rational prime that is unramified
in K, that is, its unramified in K. Let v,, be the valuation determined by the prime ideal p above p that extends
the standard valuation v, on Q. Since p does not ramify in K, the ramification index of p in p is e, = 1. Thus
if we normalise v, such that for x € 6, v,(x) =n/e, where x € p" and e, = 1, then the image of both v, and

v, lies in Z as the ramification index of p in p is 1.

Let f(2) € Sy(T,) be a Hilbert newform. Then by [Shi81, Section 2, pg. 650], the Fourier coefficients of
f(2) lie in a ring of integers &y of a fixed number field L;. Let g(z) € S +%(f4n) be the image of f(z) under
Kohnen’s isomorphism. Then by [Shi87, Lemma 8.8] and [Shi87, Proposition 8.9], the Fourier coefficients
of g(z) are algebraic numbers. Further, we will see from Theorem 10.1.1 in chapter 10 that there exists a
normalisation that would make these Fourier coefficients lie in a ring of integers &, of a fixed number field L,.
Now, let us take a big enough number field L/K containing number fields L, and L, for all Hilbert newforms
f(2) € Soi(T,) and their associated Hilbert newforms of half-integer weight g(z) respectively.

Let 0, be the ring of integers of L. We now fix a prime ideal ‘p C @, above p such that the valuation vy
determined by B is normalised as: For x € 0y, vy;(x) = % where x € P" and ey, is the ramification index of

B in the factorisation of pg; . In other words, we have vy (p) = v,(p) = 1.

For a power series f (z) = deﬁ; agezmTr(gz), we define

v,(f () = inf(v, (a5)).

Let F¥ be a finite extension of Q, containing L that extends v, to vy. Let Opy be its corresponding ring of

integers. We can then embed L — QTP or embed L — C. It therefore makes sense to view the Fourier coeffi-
cients of f(z) P-adically embedded in Opy.

Let So (T, 0) be the 0, -submodule of S, (T},; L) containing Hilbert cusp forms in Sy (T}; L) that have Fourier
coefficients in ;. Now define

Sok(Ty; Opx ) := Soi(Ly; O,) ® g, O
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Let Ty, (n; 6,) be the commutative @, -subalgebra of the End(S,; (T, ; L)) generated by T,, where m runs over
all integral ideals in 0. Define

Tor(n; Opn ) := Tor(n; 0,) ® 4, Opx-

Similarly, let S, +%(F4n ; 0;) be the ¢;-submodule of S, +%(f4n ; L) containing half-integer weight Hilbert cusp
forms in S, +1 (ﬁn; L) that have Fourier coefficients in &;. Now define

Sk+% (f4n§ Opy ) := Sk+%(F4n; o) ®g, Op»-

Let T, +1 (4n; 0;) be the commutative ¢ -subalgebra of the End(S, +1 (T4n; L)) generated by T,.> where m runs
over all square-free integral ideals in ;. Define

Tk+%(4n; ﬁpqs) = Tk+%(4n; ﬁL) ®ﬁL 0[:\13 .

9.2 Ordinary Hilbert modular forms of integer weight

Let f(2) € Syi(T,; ;) be a Hilbert cusp form. We intend to define an idempotent element in Ty (n; Opx ).

Definition 9.2.1 (p-ordinary projector). Let p be an odd rational prime. Then for each prime ideal p C Oy lying
above p, define the B-adic limit

¢, := lim T,
n—oo

The limit ¢, € Ty (n; Gp ) exists and e, satisfies ¢ = ¢, [Hid93, Lemma 1, pg. 201].

Note 9.2.2. Note that for p [ n, T, = U, and we can alternatively write ¢, = lim,_,, Ug!.
We will now define p-ordinary Hilbert cuspforms.

Definition 9.2.3 (p-ordinary Hilbert cusp form). Let f(2) € Sy (T,; 6;) be a Hilbert cusp form. Then f(z) is
p-ordinary if

f@)lake, = £ (2).

Further; we say that f (z) is p-ordinary if f(z) is p-ordinary for every prime ideal p C Oy lying above p. In other
words, f(z) is p-ordinary if

F@lx [] & =r.

p prime
pl(p)

The image of Sy (T,y; 0,) under the ordinary projection by |o [ [ prime ¢, is called the space of ordinary Hilbert
pl(p)
cusp forms. We denote the subspace of ordinary Hilbert cusp forms in So(T,,; 0},) by ngd(f‘n ;0.

We now make a few observations about p-ordinary projection of Hilbert eigenforms in S, (T,,; 0;). Let f(z) €
Sok(Ty; 0) be a T, eigenform for each prime ideal p C Ok lying above p. Let ATp (f) denote the Hecke-
eigenvalue of the f(z) under the action of T, operator, that is,

F@lakTy = Ar, (F)f @).
Then we have

fG&) A (Fly = 1;
0 WA (Fly <l

Thus, T, eigenform f (z) is said to be p-ordinary if its T, eigenvalue )\Tp (f) is a PB-adic unit for the fixed prime
ideal 3 € ¢, lying above p.

f(Z)|2k9p = {
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9.3 Control Theorem

We now consider our level of the Hilbert cuspidal space to be n. Let p C & be a prime ideal above p such that
p | n but p? } n. Suppose our Hilbert cuspidal space has a fixed finite order Hecke character v and let @, [v]
contain all values of v. We will now formally state the generalisation of Theorem 4.3.4 for Hilbert modular
forms. The statement of this Theorem can be found in [Ozal7, Theorem 3.5.1, pg. 26] and involves theory
of A-adic Hilbert modular forms. For background refer to [Ozal7, Chapter 3].

Theorem 9.3.1. Let k € Z,. Let n be a square-free integral ideal of odd norm in Oy. Let p be an odd rational
prime that is unramified in K and let p C Oy be a prime ideal above p such that p | n but p> { n. Let w be the
Teichmiiller character defined in 4.3.1. Then the rank of Sg;d(l“n, Yw! =2 g, [4]) is constant.

This theorem was actually proved and originally stated by Hida in [Hid91, Theorem 3.4] for Hecke-algebras
but can be translated using duality between the aforementioned Hecke algebra and the space of ordinary
A-adic cusp forms [Hid91, Theorem 5.6].

Note 9.3.2. We have taken our weight to be an even integer 2k so that we can later have a smooth transition to
half-integer weight Hilbert modular forms of parallel weight k + % under generalised Kohnen’s map in Hilbert
case stated in Theorem 7.5.7. However, Theorem 9.3.1 is valid for all integer weights strictly greater than 1.

We can choose 1 to be a suitable power of the Teichmiiller map «w and obtain the following corollary to
Theorem 9.3.1.

Corollary 9.3.3. Let p be an odd rational prime that is unramified in K and let k,k’ € Z. such that 2k =
2k’ mod (p—1). Let n be a square-free integral ideal of odd norm in 0y and p C Oy be a prime ideal above p such
that p | n but p? {n. Then

rank (Sgid(I‘n; ﬁL)) = rank (Sgiﬁl(I‘n; ﬁL)).

9.4 p-stabilisation of Hilbert modular forms of integer weight

We now develop an analogous theory of p-stabilised form as in the integer case, see section 4.4.

Let K be a totally real quadratic field with narrow class number 1 and let & be its corresponding ring of
integers. Let k € Z., and let n be a square-free integral ideal of odd norm in 0. Let p be an odd rational
prime that is unramified in K and let the ideal p gy be co-prime to n.

9.4.1 pisinertin K

Let

f@ = aze* G esiv(r,; 0)

teof

be a Hilbert newform. Since p is inert in K, (p) = p is a prime ideal in ;. Even though prime p does not
divide the level n, we can force p in the level by passing to a p-old Hilbert modular form.

Note that f(z) is a newform and hence is an eigenvector for the T, operator for p t n. Let the eigenvalue of
f (2) for the T, operator be denoted by Ay (f). Then

f@ax Ty = Ar, (F)f (2). (9.1

Let V() and V], be maps defined in section 6.3 that maps the space Sy (T};; ;) to Sy (I',,,; @) and are given by

p’
lkVay : f(2) = f(2)  and |5V, : f(2) = f(p2).
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From Theorem 6.2.2, T,, acts on f(z) as follows

f@)ok Ty = f (@)U, + N(p)* 7 £ (p2).

Using 9.1 and rearranging the terms, we can write

F@akU, = A, (F)f (2) = N(P)* 7' £ (p2) 9.2)

or
@)U, = Ar, (S @2 Viy)) =N ()7 (F (@)l Vy)-
Next, we act 9.2 by U, again and get
F@IUE = Ag, (F)f @)Uy =N ()7 £ (p2) |2 U,
= A1, (F)f (DU, =N ()£ (2).
This relation rewrites as
F@ak(UZ = Ar, (FIU, + N(pY* 1) =0.

Thus U, satisfies the quadratic polynomial x?— ATP (f)x + N(p)*~! on the two-dimensional space spanned

by {f (2), f ()21 U,} that has level at most np, see remark 6.3.3. We may factor this quadratic polynomial as
(x —a,)(x — B,) where a,, and 3, are algebraic integers satisfying a,, + 8, = ATp (f) and a, B, = N(p)*1.

We now define two U,, eigenforms in S;’,'{Old(l“mg ; 0,) below:

fap (z):= f(z)|2k(Up _ﬁp) such that fozp (Z)|2kUp = apfap ()

and

f3, &) = £ ()14 (U, — a,) such that f5 (@)U, = By fs, (2).

We call fap (z) and fﬁp (2), the Hilbert p-stabilised forms at level np associated to the Hilbert newform f(z) at
level n.

Remark 9.4.1. Now if f (z) € S, °Md(r,; ,) is p-ordinary, then its T, eigenvalue must be a PB-adic unit, where

B C 0, is the fixed prime ideal above p. In other words, MTp (f)ly = 1. We can therefore choose a,, to be
a P-adic unit. This then fixes a unique oridnary p-stabilised form fa, (z) € Sgrd(f‘n ; 0p) with U, eigenvalue

k \np>
being a,, a PB-adic unit.
9.4.2 pissplitinK

Let

f@) = Y a9 e siev(r,; )

segf

be a Hilbert newform. Since p splits in K, (p) = p,p, where p; and p, are prime ideals in ;. Even though
(p) does not divide the level n, we can force (p) in the level by passing to a (p)-old Hilbert modular form.

Note that f(z) is a newform and hence is an eigenvector for the T, operator for p; {n. Let the eigenvalue of
f(2) for the T, operator be denoted by ATPI (f). Then

F@aTy, = Ar, (F)f @). 9.3)
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Let p; € G, be a totally positive generator of p;. Let V(7 and V,, be maps defined from the space Sy (T,; ;)
to Sy (T, ; O;) that are given by

1py s
lxVay : f(2) = f(z)  and |3V, : f(2) = f(p12).

From Theorem 6.2.2, T, acts on f(z) as follows,

F@aiTy, = f @)Uy, +N(p)* ' f(912).
Using 9.3 and rearranging the terms, we can write

F@aUp, = Az, (If () —N(p1)* ' f(912) 9.4)
or

F@laUy, = Ar, (A @laViay) = N> (f @)oYy, )-
Next, we act 9.4 by U, again and get

FE@NU2 = Ar, (F)f @Iy, —N(p ) (0:12)liUy,

=Ar, (F)f @lokUy, —N(p1)? 1 (2).

This relation rewrites as

F@I(U2 = Ar, (F)U,, +N(py)* ) =o0.

Thus U, satisfies the quadratic polynomial x2— ATpl (f)x +N(p,)* ! on the two-dimensional space spanned

{f(2), f (2)|2x Uy, } that has level at most np;, see remark 6.3.3. We may factor this quadratic polynomial as
(x —ap, )(x — B,,) where a, and f3, are algebraic integers satisfying a,, + B, = lTpl(f) and a, B, =

N(p,)* .
We now define two U, eigenforms at level np,,

fuy, @) = F @)Uy, By, such that £, @Ik, = ap, o, @) 9.5)
and

fs,, ) = F @)Uy, — a,) such that fs, (2)laiUy, = By, fs, (2).

We call f%1 (2) and f/3p1 (2), Hilbert p,-stabilised forms at level np; associated to the Hilbert newform f(z) at
level n.

Again, f(z) is a newform and hence an eigenvector for T, operator for p, t n. Let the eigenvalue of f(z) for
the T, operator be denoted by ATPZ (f). We now apply T,,, operator on f%1 (2).

fapl (z)|2kTp2 :f(z)|2k(Up1 _ﬁpl)sz
:f(z)|2kUp1 sz _ﬁplf(Z)IZksz'

Since U, and T,, commute, we can write

fay, @k Ty, = (f ok Ty, ) Uy, — By, (f (@)1 Ty, )
= (f(z)|2kTp2) |2k (Up, — By,)
= Ar,, (F)f (&)U, = By,)
= Ar,, (f)fa, (2). (9.6)
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Thus fapl (z) is a T, eigenform.

Let p, € G be a totally positive generator of p,. Let V(’l) and V;,, be maps defined from the space Sy (T, ; 7;)
t0 Soi(Tap,p,5 O1) given by
172

Viy 1 f(2) = f(z) and V,, : f(2) = f(p22).

From Theorem 6.2.2, T, acts on f, (z) as follows
P1

Fay, @akTy, = fay, @iy, + N(p2)* ' fo, (032).
Using 9.6 and rearranging the terms, we can write

Fay, @laUy, = Ag, (Ffa, (&)= N(92)* 7S, (929) ©.7)
or

Fay, @y, = Az, (F)(fa,, @aVy)) — N(92)* 7 (fu,, @)aiVp, ) -

Next, we act 9.7 by U,,, again and get

Fay @lkU2 = Ag (F)fa, @Iy, = N(92)* o, (052)kUp,
= Ar, (Ffa, @)Uy, —N(02)* ', (2).
This relation rewrites as
fap1 (Z)|2k(U§2 - A‘sz(f)Upz +N(py)* ) =0.
Thus U,,, satisfies the quadratic polynomial x? —)LTpl (f)x +N(p,)*! on the two-dimensional space spanned
by { f%l (=), fapl (2)21U,, } that has level at most np;p,, see remark 6.3.3. We may factor this quadratic poly-
nomial as (x — a,, )(x — B,,) where a, and f3,, are algebraic integers satisfying a,, + f8,, = Asz (f) and

a,, By, = N(py)* 1.
We now define four U, eigenforms at level np;p, = n(p):
Fay 0y, @) = o, @Iy, —By,)  suchthat  f, o @laly, = Gy fu o () 9.8)
fay o, @) = fup @lUy, —a,)  suchthat f, 5 @laUy, = By fu, 5, (3
foy 0, @) = Fp, @laUy,— ) suchthat i o @l = ap fy, o @)
f6,,.8,,(2) = fp, @ar(Up, —@,,)  suchthat  fg 5 (2)|oU,, = By, fp, g, (2)-

Using 9.8, we can write

P]’ﬂpz

.)Cot',l,oz'J2 (z)|2kUp1 = fapl (Z)|2k(Up2 - ﬂpz)Upl
Since, U, and U,, commute, it follows
futpl,czp2 (Z)|2kUp1 = fccpl (Z)lkupl(Upz - ﬁpz)
= A'Tpl (f)fapl (:Z)|2k(U|J2 _ﬂpz)
=1, Py, (2)-

This implies fa.,l,a,,z(z) is also a U, eigenform. Similarly, f“pl:ﬁpz (2), fﬁpl,apz(z) and fﬁvl»ﬁpz(z) are also U,
eigenforms.

’apz

We call fapl,am(z)’ fapl,ﬁpz(z)’ fﬁpl,apz(z) and fﬁpl’ﬁpz(z)’ the Hilbert p-stabilised forms at level np;p, = n(p)
associated to the Hilbert newform f (z) at level n.
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Remark 9.4.2. Now if f(z) € Sy, °d(T,; @,) is p-ordinary, then its T,, and T, eigenvalue must be 93;-adic

and P,-adic units, where 3, and ‘B, are fixed prime ideals above p; and p, respectively. In other words,
MTPI P, = Msz (f)lss, = 1. We can therefore choose a,, and a,,, to be a ;-adic and f,-adic units respec-

p
tively. This then fixes a unique ordinary p-stabilised form fapl,apz(z) € S;’Izd(l"m,lp2 ; 0,) with U, eigenvalue

being a, , a P;-adic unit and U,,, eigenvalue being a,, , a F,-adic unit.

9.5 Ordinary Hilbert modular forms of half-integer weight
Let g(z) € S, 1 (T,,; 0,) be a half-integer weight Hilbert cusp form. We intend to define an idempotent element
iIl :]Fk-i-% (4“; ﬁp‘;j ).

Definition 9.5.1 (p-ordinary projector). Let p be an odd rational prime. Then for each prime ideal p C Ok lying
above p, define the B-adic limit

5T oe— 1; n!
¢, ;= lim sz.

n—oo

The limit e, € ’TH% (4n; Opx ) exists and ¢, satisfies Ezp ='¢, [Hid93, Lemma 1, pg. 201].
Note 9.5.2. Note that for p | n, T, = U2 and we can alternatively write ¢, :=lim,,_, o, U;‘Z'
We will now define p-ordinary Hilbert cusp forms of half-integer weight.

Definition 9.5.3 (p-ordinary Hilbert cusp form of half-integer weight). Let g(z) € S, +1 (Tyn; Gy,) be a Hilbert
cusp form of half-integer weight. Then g(z) is p-ordinary if

8@y 17, = g(2).

Further; we say that g(z) is p-ordinary if g(2) is p-ordinary for every prime ideal p C Oy lying above p. In other
words, g(z) is p-ordinary if

g@lyr || % =20
p prime

pl(p)

The image of S, +1 (Em; 0,) under the ordinary projection by ¢, is called the space of ordinary Hilbert cusp forms of
half-integer weight. We denote the subspace of ordinary Hilbert cusp forms of half-integer weight in S, +1 (ﬁm; o)
by S, (Ty; 6,)-

k+ 3

We now make a few observations about p-ordinary projection of Hilbert eigenforms of half-integer weight in
Sk+%(1—‘4n; 0L)

Let g(2) € Sk+%(f4n; 0,) be a T,. eigenform for each prime ideal p C g lying above p. Let )LTg (g) denote the
Hecke-eigenvalue of the g(z) under the action of T,. operator, that is,

8@k 1 Tye = Ag,, (8)8(2)-
Then we have

S CORE T ENOESE
ST o A (lp < 1.

Thus, T,. eigenform g(z) is said to be p-ordinary if its T,. eigenvalue JLsz (g) is a P-adic unit for the fixed
prime ideal 3 C 0, lying above p.
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9.6 p stabilisation of Hilbert modular forms of half-integer weight

Let K be a totally real quadratic field with narrow class number 1 and let & be its corresponding ring of
integers. Let k € Z., and let n be a square-free integral ideal of odd norm in 0. Let p be an odd rational
prime such that the ideal generated by p in 0y is co-prime to n. We assume that p is unramified in K.

9.6.1 pisinertin K
Let
g@) = Y bee? () e sme (T, 1 4,)
ceof :

be a Hilbert newform of half-integer weight. Since p is inert in K, (p) = p is a prime ideal in 0. Even though
p does not divide the level 4n of g(z), we can force p in the level by passing to a p-old Hilbert modular form
of half-integer weight.

Note that g(z) is a newform of half-integer weight and hence is an eigenvector for the T,. operator for p { n.
Let the eigenvalue of g(z) for the T,. operator be denoted by 7LTP2 (9):

8@k 1 Ty = A7, (8)g(2)- (9.9)

Let V(;) be a map from the space S, +%(f4n ;0.) t0 S +%(f4np; 0,), and let V., V(;)2 be maps defined from the
space Sy, 1 (Ty; 0,) to Sitl (ﬁmpz; 0,) given by

o1V £6E) = 8E), lyVye 18~ 8(%) and [, V]) 18() = 5() (@)

respectively.
Note 9.6.1. Here g(%)z(z) = Dlceay (%)2 bgeznm(%)z is the twist of g(z) by the quadratic symbol (%)2. The
level of g(:) (2) is irrelevant to our result as we will see next that it’s killed under the action of the U,,. operator.

PJ2
From Theorem 7.2.3, T,. acts on g(z) as follows,

—1\k
8@y 1 Tye = 8@y, Uy +(;) N(p)Y g2y @) +N(PI*g(p%).
2 2

Using equation 9.9 and rearranging the terms, we can write

b
p

_ k
£l Up = Ar, () = = ) NG g ()=N G 50%) 9.10)
P 2

or

—1\k
8@ 1Up2 =lrpz(g)(g(z)|k+%v(1))—(?)2N(P)k_l (g(z)|k+%V(é)z)—N(p)2k_1 (g(z)|k+%vp2).

Next we act 9.10 by U,. again and get
—1)\*
£l U3 = A (8@l U = (- ) NOIg) ey Uy ~NGP eGPy Uy

From the definition 7.1.2 of the quadratic symbol, we have (‘lﬁ)z =0 as p%£ € (p). Thus,

p
2
p g i Tr| )z
(z) @i Uy = 2, (7) e
geqy 2
=0.
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Hence, we conclude g(:)(z) lies in the kernel of U,. It follows,
P

8@k 1 UL = A1, (€8s 1 Upe = N () g (2).
This relation rewrites as
g@)is 1 (U —Ar,()Ue + N(p)* 1) =0.

Thus, U,,. satisfies the quadratic polynomial x? —Asz (g)x +N(p)?~! on the two dimensional space spanned
by {g(z), g(2)I 1 p2} that has level at most 4np, see remark 7.3.4. We may factor this quadratic polynomial
as (x —a,)(x —B,) where a,, and 3, are algebraic integers satisfying a,, + 3, = ATP (g)and a,fB, = N(p)?1.

We now define two U, eigenforms at level 4np:

gap (Z) = g(z)|k+%(Up2 _ﬂp) SUCh that ga'J (z)|k+% p2 = a]:uga'J (Z)

and

8p, (2):= g(z)|k+%(Upz —a,,) such that 8p, (z)|k+% p2 = ﬂpgﬁp (2).

We call 8a, () and 8p, (2), the Hilbert p-stabilised forms at level 4np associated to the half-integer weight
Hilbert newform g(z) at level 4n.

Remark 9.6.2. Now if g(z) € S:i"; (T, .; 6,) is p-ordinary, then it’s T,2 eigenvalue must be the fixed 9-adic
2

unit, where B is a prime ideal above p. In other words, Msz(g)lYJS = 1. We can therefore choose a, to be a

ord

B-adic unit. This then fixes a unique oridnary p-stabilised form 8a, (2) e Sk+l (ﬁmp; 0,) with U, eigenvalue

being a,,, a PB-adic unit.

9.6.2 pissplitinK
Let
g(z) — Z bgezmTr(%z) c SZ:V; (’1:4“; ﬁL)
seof

be a Hilbert newform of half-integer weight. Since p is split in K, (p) = p,p, where p; and p, are prime ideals
in 0. Even though (p) does not divide the level 4n of g(z), we can force (p) in the level by passing to a
(p)-old Hilbert modular form of half-integer weight.

Note that g(z) is a newform of half-integer weight and hence is an eigenvector for the T,z operator. Let
the eigenvalue of g(z) for the T2 operator be denoted by A , (2):
151

g(z)|k+%Tpf =ATP%(g)g(z). (9.11)

Let p; € 0 be atotally positive generator of p;. Let V(;) be a map from the space S, 41 (T4n; 6,) 10S,, 41 (ﬁmm ;00),

91

and let V2, V( ), be maps defined from the space S, +1 (Tyn; 0,) tO Skrl (ﬁmp% ; 0p) given by

Vi 8E) = 8@, Vi 18 = g(03)  and 3 Ve) 186 = () (@)

2 01

respectively.
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From Theorem 7.2.3, T,» acts on g(2) as follows,

—1\k 8 3
(@)1 T2 =g(2)lk+%Up§+(p—) N(p) g ) @) +N ()" g(p2).
172 172

Using equation 9.11 and rearranging the terms, we can write

Sl U = 20, @50~ (22 ) Mo g 2) @-NGo* (o) ©12)

or

—1\k
g(z)|k+1U2_xT 2(g)(g(z)|k+;11(1)) (P_)zN(pl)kl (8(2)|k+%v(é)2) N(p)zk 1(g(z)|k+1Vz)

1

Next we act 9.12 by U, again and get
—1)\k
g(z)lk.;.%Uiz = A‘sz(g)g(z)lk+%Up% - (p_) N(@1)k_1g(%) (z)|k+%Up§ —N(pl)Zk_lg(pfz)lkJr%Up%.
1 1 172 01/2

From the definition 7.1.2 of the quadratic symbol, we have (p g) =0as p; 2t € (p,). Thus,

2

Y g iTr($)2

g(@;)(z)|k+§up% = § : (;) bpféeznTr(Z)
! 2

ceof ©1
=0.

Hence, we conclude g(;

01

)(z) lies in the kernel of Up. It follows,

8@y Uy = Ar, :(8)8@ s Uy —N(p1)*'g(2).
This relation rewrites as
8@y (U3 = r (&)U +N(p1)* 1) = 0.

Thus, U, satisfies the quadratic polynomial x2—Ar ,(g)x+N(p;)*! on the two dimensional space spanned
P1

by {g(2), g()l +%Up§} that has level at most 4np,, see remark 7.3.4. We may factor this quadratic poly-
nomial as (x — a, )(x — B, ) where a, and f3, are algebraic integers satisfying a, + f, = ATpl(g) and

a, By, = N(p,)* 1.
We now define two Uy eigenforms at level 4np;:

%a, (2) = 8@ s (U — By, such that g, @Iy, 1 Uy =y, 84, (=)
and

88, (2) := g(=)|ax (U2 — a,, ) such that 88, (2)|oxUp2 = By, 8p,, (2).

We call 8a,, (2) and gp,, (2), the Hilbert p,-stabilised forms at level 4np, associated to the half-integer weight
Hilbert newform g(z) at level 4n.
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Again, g(z) is a newform of half-integer weight and hence an eigenvector for T, 2 operator for p, t 4n. Let
the eigenvalue of g(z) for the T, 2 operator be denoted by )LT 2 (g). We now apply T 2 Operator on g, (z)

Za,, i1 Ty = 8@)es1 Uz — B, )Ty
= 8@t 1 Uy T2 — By, 8(2)liy 1 T2
Since Uy and T,2 commute, we can write
ay, @lir2 Toz = (8@Ns 1 Ty2 ) e 1 Uy — By, (8@)es 1 T2
= (8@ls2 Ty2 ) bes2 (U2 — By,
= A1, (8)8(2)(Up: = By,)
=21, (8)8aq,, (2)- (9.13)

Thus 8a,, (z)isa T2 eigenform.

Let p, € OF be a totally positive generator of p,. Let V(/1) be a map from the space S, +%(f4npl;0L) to

Sk+§(f4np1p2§ 0,), and let V, 2, V(L) be maps defined from the space Sk+§(f4np1§ 0,) to Sk+§(f4np1p§; 0,) given
by 272
3V 8E) = 8@ gV 8(2) = 8(032) and ey Vo 18@) > g(ey ()
272 272

respectively.

From Theorem 7.2.3, T2 acts on 8a,, (2) as follows,

—1 g k—1 2k—1 2
8, Oy Ty = 20, @l U+ (51 N5, (1) @+ N o2 ga,, (032,

Using equation 9.13 and rearranging the terms, we can write

8y, s Uyz = A, (92, (2) = (pi) N g, (2 )= NP g, (032) 9.14)

or

—1)\k 5 5
ga (Z)|k+1U 2 _AT 2(g)gap (Z)|k+ (1) (_) N(@Z)k 1gap (Z)|k+lv(;) _N(pZ)Zk 1gap (Z)|k+lvp§-
pz 2 1 2 02 Jo 1 2

Next we act 9.14 by U,z again and get

—1\k 5 3
apl(z)|k+%U§§ :A‘Tp%(g)gapl(z)llﬁ-%l]p%_(E)ZN(pZ)k 1gapl,(é)2(z)|k+%Up§_N(@Z)Zk lgapl(P§Z)|k+%U

From the definition 7.1.2 of the quadratic symbol, we have (M )2 =0as p%& € ().

Hence, as before, we conclude g( )(z) lies in the kernel of U, 2. It follows,

92
@l U2 = A1 (88, @i Uy = N(92)* g4, 2).
This relation rewrites as

ap, (Z)|k+% (Ué - AT,,@ (g)Up§ + N(PQ)Zk_l) =0.
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Thus, Uy satisfies the quadratic polynomial x2 —ATPZ (g)x+N(p,)**! on the two dimensional space spanned
2

by {gapl(z), gapl(z)l K +%Up§} that has level at most 4np;p,, see remark 7.3.4. We may factor this quadratic
polynomial as (x — a,,)(x — f3,,) where a,, and f3,, are algebraic integers satisfying a,,, + 8,, = AT” (g) and

apzﬁpz = N(pz)zk_1~

We now define four Uy eigenforms at level 4np;p, = 4n(p):

8ay,, .ay,, (z) = 8a,, (Z)|k+%(Up§ - ﬁpz) such that 8a,, .ay,, (Z)lk-{-% Up% = 0p,8a,, .a,, (2); (9.15)
8a,, By, (2):= 8a,, (z)|k+%(Up§ - apz) such that 8a,,.By, (Z)|k+% Up% = ﬁngocpl,/}p2 (2);
8PByy oty (2):= 8By, (z)|k+%(Up% - ﬁpz) such that 8By, (Z)|k+% UP% - angﬂm’“nz(z);
gﬁwﬁpz(z) = 8p,, (z)|k+%(Up§ —a,,) such that gﬁplyﬁpz(z)l,&% Uy = ﬂp2gﬂp1’ﬂpz(z)'
Using 9.15, we can write

gatpl,ozp2 (z)|k+% Up% = gapl (Z)|k+%(Up§ - ﬁpz)Upf-

Since Up% and Up% commute, it follows

gap1 (Z)|k+%Up% zgapl(z)|k+%Upf(Upg_ﬁpz)
= hr()2e,, @y Uy =)
1

= ATp% (g)gapl,apz (Z)

%py

This implies gapl,apz(z) is also a Uy eigenform. Similarly, 8a, by, (=), 86, oy, (z) and gﬂpl)ﬂpz(z) are also Uy
eigenforms.

We call gapl,apz(z), gapl’ﬂpz(z), gﬁpl’apz(z) and gﬂpl,ﬁpz(z), the Hilbert p-stabilised half-integer weight forms
at level 4np;p, = 4n(p) associated to the Hilbert half-integer weight newform g(z) at level 4n.

Remark 9.6.3. Now if g(z) € S:i"i Ord(ﬁm ; 0;) is p-ordinary, then it’s Ty and T2 eigenvalue must be 9, -adic
2

and B,-adic units, where 3, and ‘B, are fixed prime ideals above p, and p, respectively. In other words,
A7, (&ly, =127 ,(g)ly, = 1. We can therefore choose a,,, and a,, to be a B;-adic and B,-adic units respec-
51 P

. . . . . 1. d = . . .
tively. This then fixes a unique ordinary p-stabilised form gapl,apz(z) € S;(Zi%(nnplpz’ 0,) with Uy eigenvalue
being a,, , a P;-adic unit and Uy eigenvalue being a,, , a B,-adic unit.
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cHAPTER 10

Congruences related to Hilbert modular forms

10.1 Background and Notation

Let K be a totally real quadratic field with narrow class number 1 and let gy be its corresponding ring of
integers. Let D be the discriminant of K and let y,, be the associated quadratic character of K given by the
Kronecker symbol (?) Let k € Z., and let n be a square-free integral ideal of odd norm in ;. Let p be an
odd rational prime such that the ideal generated by p in & is co-prime to n. We assume that p is unramified in
K, that is, it's not ramified in K. Let v, be the valuation determined by the prime ideal p above p that extends
the standard valuation v, on Q. Since p does not ramify in K, the ramification index of p in p is e, = 1. Thus
if we normalise v, such that for x € 6, v,(x) =n/e, where x € p" and e, = 1, then the image of both v, and
v, lies in Z. For simplicity, we will denote n(p) by np where (p) = p&.

Let m C O be an integral ideal such that m | n. From now on, to make notation simple, we let ¢ = ™ (3),
Let f(2) = deﬁ; agq§ in S7;."(T,,) be a Hilbert newform. Then by [Shi81, Section 2, pg. 650], for any nor-
malised integer weight Hilbert eigenform, in particular f (z), there exists a fixed number number field L, with
ring of integers Oy such that for each £ € Of,a: € O;.

Let g(z) € S;‘i“{ (ﬁm) be a Hilbert newform of half-integer weight associated to f(z) under Kohnen’s isomor-
2

phism for Hilbert modular forms. Then Shimura in [Shi87, Lemma 8.8] and [Shi87, Proposition 8.9] showed
that the Fourier coefficients of any half-integer weight Hilbert eigenform are algebraic numbers in a fixed
number field. In particular for g(z), let this fixed number field be L,. We now want to show that there exists
a normalisation of g(z) such that its Fourier coefficients are algebraic integers in 0, -the ring of integers of L,.
We intend to prove this by generalising the result [SS77, Lemma 8, Section 5] by Serre and Stark for classical
modular forms of half-integer weight to Hilbert modular forms of half-integer weight. For weight %, this has
been shown by S. Achimescu and A. Saha in [AS08, Corollary 1.1, pg.7].

Theorem 10.1.1. If g(z) = deﬁ; bge®™ 7(52) e S:fr”%’ (Tym, %) and the Fourier coefficient’s are algebraic num-

bers, then these have bounded denominators. In other words, there exists a non-zero algebraic integer 9 such that
Db is an algebraic integer for all £ € of.

Proof. We closely imitate the steps in the proof of [SS77, Lemma 8, Section 5] for classical half-integer weight
modular forms. We will use the familiar device of multiplying by a fixed form g,(z). Choose

go(x) = @(2)3(2k+1) € Mk (f@)) (10.1)
=
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where ©(z) is the Hecke Theta function defined in 7.1.1.

Note 10.1.2. The reason to choose such a power of ©(z) is to get rid of any characters involved in the space
and also so that we land on to an integer weight space on multiplication by g(z).

Observe that the map g(z) — g,(2)g(z) = ©°*D(z)g(z) sends the space of half-integer weight Hilbert
cuspforms S, 1 (T4, 4) into the space of integer weight Hilbert cusp forms So2k+1)(Tm> ¥). Now, the Fourier
coefficients of g,(z) are algebraic integers and that of g(z) are algebraic numbers which implies that the
Fourier coefficients of the product g,(z)g(z) are also algebraic numbers. From the remark following Theorem
1 of [Shi75, pg. 711], every integer weight Hilbert modular form whose Fourier coefficients are algebraic
numbers has bounded denominators. In other words, there exists an algebraic integer ¢ such that the Fourier
coefficients of 6 g,(2)g(z) are algebraic integers.

Now the main observation we make is that dividing by g,(z) does not increase denominators as Fourier coef-
ficients of (g,(2))™! are also algebraic integers. Suppose

go(2) = Z a,q" and (go(z)) ' = Z b,q"
neogu{o} neogu{o}

where we already know a, = 1.

Then we have

2@ = > aa" || D by

negu{o} negiu{o}
_ n
= Z tnd
neggu{0}
where

cy = Z agb, ;.

Eeggu{o}
(n—&)egiu{o}

Since go(2)(go(2))~! = 1, it implies

1= Z Z agb,_; q"

neogu{o} Eegiu{o}
(n—8)eggu{o}

= Z agb, + Z azb, - |q"
neog u{0} tegy

(n—&)eqgiu{o}
\ g€ =>Tr(n—&)<Tr(n)

= Z aobnq”+z Z azb,_; q"

neog u{0} neog 1=
(n—&)egg u{o}
Ee0=>Tr(n—&)<Tr(n)
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Note that & € g implies Tr(n — &) < Tr(n). We will now show that b, is an algebraic integer for any
n e (ﬁ; U {0}). We will do so by using induction on Tr(n).

Let Tr(n)=0. Then

1= Z ayb,q"

negiu{o}

Then,

b 1 forn=0;
a =
"1 1o forne o;.

Since ay = 1, this implies b, = 1 and for n € ﬁ; , we have b, = 0. Thus, in the case when Tr(n)=0, b, is an
algebraic integer for all n € (6 U {0}).

Next, we assume that b,_; is an algebraic integer whenever Tr(n — &) < Tr(n). Then, we can write

D byg== %0(1— > ( > agbn_g)q"). (10.2)

neggu{o} negE geogf
(n—&)egg u{o}
gegy =>Tr(n—8)<Tr(n)

We note that a, = 1, a; is an algebraic integer for all £ € ;" because gy(z) is a power of ©(z) which has
integer Fourier coefficients and b, _ is also an algebraic integer for all £ € 0¢ by induction hypothesis. Thus,

by comparing either side of equation 10.2, we conclude that b, is an algebraic integer for all n € (0; U {O}).
This shows that the Fourier coefficients of (g,(2))™" are also algebraic integers.

Then it immediately follows that the Fourier coefficients of % g(z) are algebraic integers. d

So, by Theorem 10.1.1, there exists a normalisation of g(z) € S™" (Em) such that its Fourier coefficients are
k+1

algebraic integers in G, the ring of integers of its fixed number field L,.

Let j € Z be a fixed integer and define k' := k + @. Now, let us take a big enough number field L/K

containing number fields L;, Lz, L, and Ly for all newforms in f(2), #(z) in S5."(I,), S50 (Ty) and their

new (Etm)’ SZfr’l (f4m) respectively over all
2

associated Hilbert newforms g(z),¥(z) of half-integer weight in S o
3

divsiors m | np.

Let 0, be the ring of integers of L. We now fix a prime ideal ‘B C &, above p such that the valuation vy
determined by B is normalised as: For x € 0, vy;(x) = % where x € " and ey, is the ramification index of

B in the factorisation of pg; . In other words, we have vy (p) = v,(p) = 1.

Denote the set of ‘P-integral elements in L by Oy, that is
x
ﬁ(m): ;|X,yeﬁL,J’¢m .

For a power series f(z) = deﬁ; agq‘f, we define

v, (f (2)) := inf(v,(a,)).

Let F¥ be a finite extension of Q, containing L that extends v, to vy. Let Opy be its corresponding ring of

integers. We can then embed L — QTP or embed L — C. It therefore makes sense to view the Fourier coeffi-
cients of f(z) P-adically embedded in Opy.
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Let Sox(Tyy; O1,) be the 6, -submodule of S, (T, ; L) containing Hilbert cusp forms in S, (T}, ; L) that have Fourier
coefficients in ;. Now define

Sok(Tn; Opx ) := Soi (L3 L) ® g, Op.

Similarly, let S, 41 (Tym; 0,) be the 0, -submodule of Sisl (Tym; L) containing half-integer weight Hilbert cusp
forms in S, +1 (f4m; L) that have Fourier coefficients in @;. Similarly, define

Sk+%(F4m; Opy) = Sk+%(i:4m; 0,) ®g, O -

Let Ty (m; ;) be the commutative ¢} -subalgebra of the End(S,;(T},,; L)) generated by T, where [ runs over all
prime ideals in 0. Define

Tor(m; Ops ) := Tor(m; O1) ®, Op .

Similarly, let T, +1 (4m; ;) be the commutative &; -subalgebra of the End(S,, +1 (Tym; L)) generated by T;; where
[ runs over all prime ideals in ;. Define

’]NI‘H% (4m; Ops) = TH% (4m; 0,) ®g, Opx -

10.2 Congruences related to Hilbert modular form-Integer weight case

In this section, we prove a series of results to establish a mod p congruence between Fourier coefficients of
integer weight n-new Hilbert eigenforms with varying weights. Before we do that, we briefly set up the key
ingredients in this section.

From equation 6.2, we have the following decomposition of complex vector spaces of Hilbert cusp forms:

So(Tup; L) = €D SE(Ts Ll Vs (10.3)

m|np

blnpm™!

where b runs over all integral ideals in 0 that divide npm™.

Remark 10.2.1. We can replace the V,, operator in the above definition by the U, operator for b not dividing
the level, see remark 6.3.3. Recall that U, is the operator which replaces every £™ Fourier coefficient for
e 0; with the (BE&)™ Fourier coefficient where 2 > 0 is a totally positive generator of b.

We will now write down the space of n-new Hilbert cusp forms at level np explicitly.

Soe M (Taps L) = S5 (Tp; L) @ S5 (L5 L) |k Uy ® Sy (T3 L) (10.4)

Let I denote a finite index set such that | I | = dim(S;,"*"(T,,,; L)). Recall from Theorem 6.4.6 that the Hilbert
newspace has an orthogonal basis of newforms with Fourier coefficients in &;. This can be applied to each
newspace in the direct sum in 10.4. Hence, we can take {f;"(2)};; € S5;"°"(T,,; 0;) to be a basis of the space
S5 "(T,p; L) consisting of n-new Hilbert Hecke-eigenforms for all Hecke operators T, where [ is a prime ideal
in g (including T, = U, for each p | p).

Note 10.2.2. We have used the superscript n on top of the Hilbert cusp form f(z) in order to clarify that the

cusp form is new at level n.

Lete, = I_[p ¢, be the p-ordinary projector operator where the product runs over prime ideals p C 0 above
P, see section 9.2. We apply this projection operator on each element in our basis {f,"(2)}¢; as follows:

{f"@laxep bier = (£ ()12, U {0}

e ord(l"np; L)) and the set {f"(2)}!", includes p-stabilised U, Hilbert eigenforms obtained

from newforms in decomposition 10.4. Hence, the set {f,*(2)}\", C S;."*" °rd(an; 0,) consists of m,, distinct

n-new ordinary Hilbert eigenforms that form a basis for the ordinary space S;,;“ew’ord(l“np; L).

Here m, = dim(S
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10.2.1 Main assumptions

We will now give two main assumptions that form a key ingredient in building the proof of the main result in
this chapter.

Assumption 2. Let

{fr @)} € Syl (T, 5 6,)

be a basis of Hilbert eigenforms for S;,;“ew’ord(f‘np ; L) consisting of n-new Hilbert eigenforms with 0, -integral Fourier

coefficients and scaled in a way such that every element in the basis has at least one Fourier coefficient that is not
divisible by 3 where 3 | p is fixed.

Let v C Oy be an integral ideal such that v’ | n and let

(=) € S5 Ty 0,)

also be a Hilbert eigenform with O} -integral Fourier coefficients. Suppose for all prime ideal | C Oy such that
(4np,

Ar,(F") = Ag, (f™) mod B
where A (f;") and A (f " denote the Hecke eigenvalues of f*(z) and f “(2) for T, operator respectively. Then
f“/(z) = af;"(z) for some a € 0.
Remark 10.2.3. See remark 5.2.3 about the seriousness of assumption 2.

Assumption 3. Let D be the discriminant of K and let yp, be the associated quadratic character of K given by
the Kronecker symbol (%) Let p be an odd rational prime and x, = (5) be the Kronecker symbol. Then we will

assume that p B and p By o where B By are generalised Bernoulli numbers.
2 2Ap

p—1,2p p=Lxp’> Z 5=y, xp

Remark 10.2.4. It would be certainly better if assumption 3 could be actually proved as it always turns out

to be true when we look at various examples. However, in the example over Q(+/5) in Chapter 11, we have
explicitly tested this assumption and shown that it can be easily verified in examples using SAGE.

10.2.2 Main Theorem

We will now state our main result. Again, note that by Hilbert Hecke eigenforms in Theorem 10.2.5, we mean
Hilbert eigenforms for all Hecke operators T for all prime ideals [ in .

Theorem 10.2.5 (Main Theorem). Let m, = dim(S,;"" ord(l“np; L)) and let

{fi“(z)}g C Sgl;new’ord(rnp; g;)

be a basis for S;,'("ew’ord(f‘np; L) consisting of n-new ordinary Hilbert eigenforms with 0, -integral Fourier coefficients
scaled in a way such that every element in the basis has at least one Fourier coefficient that is not divisible by ‘3.

Suppose assumption 2 holds for the basis { fi“(z)}?;“l and also assume that p t B where yp is given by the
Kronecker symbol (%) (Assumption 2 and 3 hold).

Let j € Z be a fixed integer and define k' := k + 1@. Then for each integer i such that 1 < i < m,, there
exists an n-new ordinary Hilbert eigenform

p—Lxp

-new,ord .
Sr(z) € S;kr/lew o (an: 0(‘;3)):

unique up to scalar multiplication in sy such that we have the following congruence of Fourier coefficients:

f'@) = §}(z) mod pi*.
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Figure 10.2.6.

n-new, ord = mod p/*! (Fourier coefficients) grenew, ord
fn € S ( np> ) > yin 2k’ ( np> 0’(‘)3))
n-new ord. Hilbert eigenform of wt. 2k n-new ord. Hilbert eigenform of wt. 2k’

Remark 10.2.7. We note that Theorem 10.2.5 also holds true for all weights k’ = k+t 5~ (p ) where t is a positive
integer.

We will now prove a series of propositions that will be required to prove Theorem 10.2.5. We start by proving
a mod p congruence between Fourier coefficients of integer weight Hilbert cusp forms of varying weights in
proposition 10.2.8.

Proposition 10.2.8. Let

f(Z) € SZk( npa )

be a Hilbert cusp form with Oy -integral Fourier coefficients.
Let j € Zs be a fixed integer and define k' := k + @. Assume that p t B, ,, where x, is given by the
Kronecker symbol (%) (Assumption 3 holds). Then there exists a Hilbert cusp form

F(Z) € SZk’( np> ﬁ(‘p))
such that we have the following congruence of Fourier coefficients:

f(2) = F(z) mod p’*.

Figure 10.2.9.

= mod p/*! (Fourier coefficients)

f € SZk( np> ) > F € Szk'( np> ﬁ(‘l?))
Hilbert cusp form of weight 2k Hilbert cusp form of weight 2k’

Proof. Define
F(z) = f(2)6,(2)"

where &,(z) € M,,_;(T,) is defined in terms of Hilbert Eisenstein series E,_;(z) as

é"(z) =K, —1(z)— N(PﬁK) 7 1(PZ)

From equation 8.12, the Fourier expansion of E,_;(z) is

Z O.p_z(g)eZm' Tr(%)‘

E, 1(z)=1+4(p—1)’B,,
p—Lxp ceoy
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Then using Theorem 3.2.2 and the fact that p  B,_; , , we get that the Fourier coefficients of E,_,(z) lie in
Z(y)- Then it’s clear from the definition of &,(z) that its Fourier coefficients lie in Z,). Also, note that it’s given
that Fourier coefficients of f(z) lie in ;. This implies that the Fourier coefficients of F(z) lie in Oy.

Next we can apply lemma 8.3.1 and get that &,(z) =1 mod p. Then working in the same way as in the proof
of corollary 3.2.4, we have

é‘;,(z)Pj =1 mod p’™.
Hence, we conclude,
f(2) = F(2) mod p/*.
O

We next try to show that the mod p action of Hecke operators |, T; on f(2) is the same as the action of the
the mod p action Hecke operators |, T, on F(z) for all prime ideals [ C 0 where f(z) and F(z) are defined
as in proposition 10.2.8.

Corollary 10.2.10. Let f(z) € S (T,
sition 10.2.8 such that

0,) and F(2) € Sy (Typ; ) be Hilbert cusp forms as defined in propo-

p> p>

f(2) = F(2) mod p’™
Then we have
f @)k Ty = F(2)| Ty mod p’*!
for all prime ideals [ in O.

Proof. Let f(z) = deﬁ; a5q5 and F(z) = deﬁ; qug be the Fourier expansions of f(z) and F(z) defined in
proposition 10.2.8, where g = ¢2#™(52). Then we have

Ag = ag mod p’*'. (10.5)
Case 1: [{np
From proposition 6.2.2, we can write for all prime ideals [ C 0k, [} np,

F(2)lop T = Z (Ayg + N(-ﬁf)Zkl_lAg/_g)CJIg (10.6)
1=

where £ > 0 is a totally positive generator of .

From 10.5 and 10.6, we have

J (1) .
2(k+P 5 j+1

F(2)| T, = Z (agg +N(¥) )_lag/_g)q5 mod p

seogf

y .
= Z (agg +N(g)*1 (N(f)p_l)p ag/g)q5 mod p/*.
Eeof

Since N(%) is an integer, by Fermat’s Little Theorem, we have N(£ =1 =1 mod p. Then by a similar argu-
ment as in the proof of corollary 3.2.4, it follows (N(£)*~*) " =1 mod p/L.
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Thus,
F(2)|o T = Z (a.% +N($)2k—1a5/g) ezﬂm(%z) mod p/*!
ceof
= f(2)|ox T, mod PjH-
Case 2: [|np

Now for all prime ideals [ C 0, [ | np, we can write

@) T = Z aygqg and  F(2)|y T = Z Azgqg- (10.7)

ceof ceof
From equation 10.5 and equation 10.7, it follows
Agyg = aye mod p/*!
or
F(2)|ow T; = f (2)|o Ty mod p/*'.
O

We next show that if we are given that f(z) in proposition 10.2.8 is an ordinary Hilbert cusp form of weight
2k, then F(z) in proposition 10.2.8 is also an ordinary Hilbert cusp form of weight 2k’.

Proposition 10.2.11. Let
f(2) €S5(Ty; 01)

be an ordinary Hilbert cusp form with 0, -integral Fourier coefficients.
Let j € Zsq be a fixed integer and define k' = k + @. Assume that p t B,_;
Kronecker symbol (?) (Assumption 3 holds). Then there exists an ordinary Hilbert cusp form

where y, is given by the

F°(2) € STH(Typ; Opy)
such that we have the following congruence of Fourier coefficients:
f(2) = F°(z) mod p’**.
Moreover,
f @)k Ty = F°(2)|op T, mod p'*!

for all prime ideals [ in O.

Figure 10.2.12.

= mod p/*! (Fourier coefficients)

f €854(Tp; 1) > F° € S50(Top3 Oy)
Ord. Hilbert cusp form of weight 2k Ord. Hilbert cusp form of weight 2k’
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Proof. Define
F°(z) :== F(2)lopep

where ¢, is the p-ordinary projection operator defined in section 9.2 and F(2) € Sy (T},,; Oy) is the Hilbert
cusp forrn obtained in proposition 10.2.8.
Now ¢, is an idempotent operator, that is, eﬁ = ¢,,. This implies
FO(Z)|2k’ep = F(Z)|2k'e}2j
=F(2)lox p
=F°(2).

ord

Hence F°(z) is ordinary at p and lies in S35(T,,,; Op))-

Next, we use corollary 10.2.10 and write
F°(2) = F(2)laxre,
= £ )|k, mod pi*.
Since f(z) is given to be ordinary, then f(z)|y¢, = f(2). So, we can write
F°(2) = f(z) mod p/*!.
Then the mod p’*! equivalence of Hecke action follows directly from corollary 10.2.10. O

We next show that if we are given that f(z) in proposition 10.2.11 is an n-new Hilbert eigenform of weight
2k for which assumption 2 holds true, then there exists % (z), a unique ordinary Hilbert eigenform of weight
2k’ (unique up to scalar multiplication in &;) which satisfies a mod 3 congruence of Hecke eigenvalues with
f (2) for all Hecke operators T; for all prime ideals [ C G, [{np.

Proposition 10.2.13. Let m, = dim (S,;"" ord (T T,p; L)) and let

{fin(z)}imznl cs nneword( np’ )

be a basis for S;;"" ord(, T,p; L) consisting of n-new ordinary Hilbert eigenforms with 0 -integral Fourier coefficients
and let each fl (z) be scaled in a way such that it has at least one Fourier coefficient that is not divisible by ‘.

Also, assume that assumption 2 holds true for the basis { fl.“(z)};i"l
Let j € Z be a fixed integer and define k' := k + @. Assume that p { B,_;

Kronecker symbol (%) (Assumption 3 holds). Then for each i such that 1 < i < m,, there exists an ordinary
Hilbert eigenform

where yp is given by the

c%(z)esgg np’ )

that is unique up to scalar multiplication in 0, and for all prime ideals | C Oy, [} np satisfies the congruence

Ar, (") = Ar (F;) mod B.

Figure 10.2.14.

fn c Sn new, ord( np’ ) = mod P (Hecke eigenvalues) s F G Sglr:,i( o )
n-new ord. Hilbert eigenform of weight 2k Ord. Hilbert eigenform of weight 2k’
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Proof. For simplicity, let us fix the integer i, say i = 1. Then by proposition 10.2.11, for an ordinary Hilbert

cusp form f*(z) € S;;"" °rd(1"np; 0,), there exists an ordinary Hilbert cusp form F;(z) € S34(T,,; Osp) such
that

2k’ p>

(z) = F;(z) mod p/*'.

Just as in equation 10.3, the space Sy (T,,,; L) decomposes as

S (Top; L) = €D S35 (T Llawe Uy (10.8)

m|np
blnpm™!

where b C 0, runs over all integral ideals that divide npm™!.

For each m, we have an orthogonal basis of Hilbert newforms for S77(T,,; L), see Theorem 6.4.6. These Hilbert

newforms have Fourier coefficients in &, . Let S be a finite index set with cardinality equal to dim (Sy (T}, L)).

Thus, we can take a basis {.7(2)};es C Sox(Tp; 0,) with 0, -integral Fourier coefficients for Sy (T,,; L) that

consists of Hilbert eigenforms for all Hecke operators T for all prime ideals [ C 0k (including T, = U,, for each

plp).

Then we can write F(z) € Sg]r{‘,i(an; Ogyp)) as a linear combination of this basis of Hilbert eigenforms:

Fl(z)= Z a,%,(z) where a, € L. (10.9)

sES

We next apply the p-ordinary projection operator ¢, defined in section 9.2 on either side in equation 10.9.

Fy(@)lawey = (Z asZ(Z)) oty

SES

=> o, (Z(@)le,)

seS

=>a,.7,(z) (10.10)
s=1

where t = dim (Sg,r(‘,j(l“np; L)) and the set {.%(2)}._, includes p-stabilised U,, Hilbert eigenforms for each prime
ideal p | p obtained from Hilbert newforms in decomposition 10.8 .

Claim: We claim that there exists an integer s such that 1 < s < t, say s = 1, such that for all prime ideals
[ C Ok, l{np, we have

A7 (f") = Ar, (%) mod P.

We assume the contrary and try to reach a contradiction.
Suppose for every integer s such that 1 <s < t, there exists some prime ideal [, C & such that

Ltmp) and P (Ar, ()= s, (7). (10.1)

s=
this product operator kills every term in the sum on the right hand side of this equation.

Now let us operate equation 10.10 by the operator |, [ ] 1 (T[ —Ar, (ﬁs)) on either side. We will see that

t

[1(r, =20, (70)= (Z asgzs(z))
s=1

2k’ s=1

t

[ (1. =2, (5)

2k’ s=1

Fi(2)
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t

= (Z aﬂ:(z)) ’ (1=, ) [(1, 20, (5)

s=2

(Za (Z(@awe Ty) = Ar, ul)Za 7, (z))

2

t

[ (1, —2:,(2))

2k s=2

= (Za Ar, (F)F(2)— Z aAr (F)F, (z)) (T, =27, ()
2k" s=2

= (Z s (Ar, (T2, (%))%(z)) [ 1(1. =2 (7))

s=1 2k’ s=2
=> ] [(Ar, (F) 21, (7)) Zi(2)
s=1 w=1
=0. (10.12)

Now replacing F;(z) by f;'(z) modulo p’*!, we see that the same product operator Hstzl (Trs —Ar, (?s))
modulo p’*! does not act as a zero operator on F7(2).

F@)| [ (1 =20, (20) = =) 1_[ (T, = A7, () mod p/*!
2k’ s=1 2k s=
=G| (T, =, (Jz))l—[( —Ar, (%)) mod p/*!

5#2

= (£ @I, = A1, (F)f(2)

t

[ 1(7. =21, (%)) mod p**

2k s=1
S#2

t

l_[ (Tls —Ar, (9})) mod p/*!

2k s=1
S#2

ﬁ( T, —Ar, () mod p/*!
%t

= (Ar, UM = Ar, (FDFN(2))

= (A, (F) =P, (%))f{‘(z)

=[ 12, 5 = A1, (7)) £(z) mod p7*.
s=1

First note that f"(z) modulo P is non-zero. This is because we are given a suitable scaling under which at
least one Fourier coefficient of f"(z) is not divisible by ‘B. Also, assumption 10.11 implies B does not divide

the product ]_[st=1 (AT[ (f)—Ar, (ﬁs)). Thus, we conclude

t

[ [(1.—2r () #0 mod p. (10.13)

2k’ s=1

F(z)

From 10.12 and 10.13, we have reached a contradiction. Hence, our assumption 10.11 is false. Therefore,
there exists an integer s such that 1 <s <t (say s = 1) for which for all prime ideals [ C &, [{np,

}LT, (fln) = AT,(‘%ss) mod ‘13

We can repeat the above proof for every i such that 2 <i < m,,. Therefore, for each 1 <i < m,, there exists
an integer s; where 1 <s; < t such that for all prime ideals [ C 0y, [} np, we have

At (f") = Ar () mod B. (10.14)
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Uniqueness: Lets, = 2. Then .%,(z) is the ordinary Hilbert eigenform that satisfies the congruence 10.14
with f,'(z).

Suppose .%,(z) is distinct from .%;(z), that is, there does not exist any 8 € 0, for which .%,(z) = 8.%,(z)
but if possible, let .%,(z) also satisfy the following congruence with f,"(2):

Ar, (M= AT[(yz) mod ‘B.
Then it follows
ATl (fln) = ATl (fzn) mod m

Then by assumption 2, f,'(z) = % f,"(z) for some ¢ € ;. This is not possible as the set {f," (z)} " forms a

basis of n-new ordinary Hilbert eigenforms for the space S5,

elements.

(T,p; 01,) and hence consists of m, distinct

Hence, for each 1 < i < m,, 7 (2) € Sglr(‘,j wp; O1) is the unique ordinary Hilbert eigenform up to scalar

multiplication in &} which satisfies congruence 10.14 with f."(z). For simplicity, we choose s; = i. O

Proposition 10.2.13 gives us a set of ordinary Hilbert eigenforms {.%; (z)} | in Sglr(‘,j wps O1,), with each element

in the set being unique up to scalar multiplication in &}, such that for all prlme ideals [ C @ such that [{np,
we have

Ar(f") = Ar,(F;) mod *B.

We next want to show that the elements in the set {ffi(z)}i"l are n-new and forms a basis for the space
n new,ord

Sop (Typs L). For this, we will use induction.

Proposition 10.2.15. Let m, = dim (S,,"" ord (T T, L)) and let

{fin(z)}:n:nl csS nneword( np: )

be a basis for S, ord (T T,p; L) consisting of n-new ordinary Hilbert eigenforms with @ -integral Fourier coefficients
and let each fl (z) be scaled in a way such that it has at least one Fourier coefficient that is not divisible by ‘.

Also, assume that assumption 2 holds true for the basis { fl.“(z)};":“1
Let j € Z be a fixed integer and define k' := k + w. Assume that p t B, 4,
Kronecker symbol (%) (Assumption 3 holds). Then there exists a set of n-new ordinary Hilbert eigenforms

where yp, is given by the

(Zr@) € ST, 5 0,)

n-new,ord

with 0, integral Fourier coefficients such that it forms a basis for the space S,,,

ideals |t np satisfies the congruence

(Top; L) and for all prime

A, (FM) = A, (F) mod .

Figure 10.2.16.

d = mod ‘B (Hecke eigenvalues) d
fn c St‘l new, or ( np’ ) ) yin ;k?ew Or ( np’ )
n-new ord. Hilbert eigenform of weight 2k n-new ord. Hilbert eigenform of weight 2k’
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Proof. We will use induction on the level to prove this proposition.

e Base Step: Let n=(1), thatis n = &.

Let { fi(l)(z)}?l:(lf C S;()'new’ord(l"p; L) be a basis of Sg}{)'new’ord(f‘p; L) consisting of (1)-new ordinary Hilbert
eigenforms where m;) = dim (Sg?'“ew’(’rd(l‘p ;0,.)). Then using proposition 10.2.13, we have a set of

ordinary Hilbert eigenforms {ﬁ‘i(l)(z)}yfl) C Sgi‘,i(l“p ; 0,) with each element unique up to scalar multipli-

cation in @ such that for all prime ideals [ C &, such that [} (p), we have

Ar, (F) = g (Z) mod .

(1)-new

Now observe that every form in S, (T},) is trivially (1)-new. So, Sy/(T,) =S,

(T,). In particular,

1 1)-new,ord
{(ZENL € sgeTy; 0,) = Sy (T, 0,).

Next, we want to show dim Sgi‘}(f‘p; L) = m,. Since 2k’ = 2k mod p — 1. Then we can apply Hida’s

Control Theorem, see corollary 9.3.3, and get
dim(Sg(T,; L)) = dim(S$A(T,; L)) (10.15)
= m(l).
The set {ﬁi(l)(z)}flll) contains m(;) distinct elements, the set {ﬁi(l)(z)};zll) forms a basis of ordinary

Hilbert eigenforms for the space Sglr{‘,i(f‘p; L).

e Induction Hypothesis: Let us assume that proposition 10.2.15 holds for every ideal n’ C @y such that
n |nbutn’ #n.

e Induction Step: We are given that {f"(z)}- C S;,;new’ord(f‘np ;0;) is a basis of n-new ordinary Hilbert
eigenforms for the space S;,;“ew’ord(f'np ;L) where m, = dim (S;,;new’ord(l"up ;L)). Then by proposition

10.2.13, we have a set of ordinary Hilbert eigenforms {fi“(z)}?;“l C S;}(‘,j(f‘np ; 0,) with each element

unique up to scalar multiplication in @, such that for all prime ideals [ C G, [{np, we have

ATl (fin) = AT[(<g\in) mod m

Note 10.2.17. Note that we have made an abuse of notation by writing the superscript n for each element
in the set {#" (z)}:';‘l of ordinary Hilbert eigenforms above. However, it hasn’t been shown yet that the
elements are n-new but that is our goal. We make this abuse of notation to distinguish that this set is
the nominated set that we need.

Let n’ C 0y be an integral ideal such that n’ | n but n’ # n. For simplicity, let us consider i = 1. Suppose
there exists an w’-new Hilbert eigenform .Z" (z) € Sy ord

such that for all prime ideals [ C &, [{np, we have

(Typ; 0,) for some proper divisor n’ of n

A (F¥)=2Ar (FD)
and
Ar, () = A7, (F™) mod P. (10.16)

However, induction hypothesis implies that .Z™ (z) is a unique form up to scalar multiplication in @; that

satisfies the congruence 10.16 with an n’-new Hilbert ordinary eigenform f" (z) € S;,;'“ew’ord(l“np; o).
That is, for all prime ideals [ C &, [} (n’p), we have

Ar,(f*)=Ag () mod . (10.17)

146



CHAPTER 10. CONGRUENCES RELATED TO HILBERT MODULAR FORMS

From congruences 10.16 and 10.17, for all prime ideals [ C &, [} (np), we have

Ar,(f*) = Ag (f) mod P

which is contradiction to our assumption 2. Thus, .%*(z) must be n-new.

Now we want to show that dim(S;‘;ew’(’rd( wps L))=m,,. From induction hypothesis,
dim(S5" " (T p; L)) = dim(Sh, " (T, 5 L)). (10.18)

Since 2k’ = 2k mod p — 1, then by Hida’s Control Theorem, see corollary 9.3.3, we have
dim(SS(T,,; L)) = dim(S34(T,, 5 L)) (10.19)

Let 0(1) = D m integrat N(m) . Using equations 10.18 and 10.19, we get

m|n

dim(S ™" (T, 3 L)

2k’

= dim(Sg(Top; L)) — Y arp(nn’™) dim(Sp. (T, L))
n'In
/#n

= dim(SZ (T3 L)) — Y oo(nn'™) dim(Sgy, " (T, p5 L))
n’|n
n'#n

— dll’Il(Sn neword( np’L))

=m,.

n-new,ord( np : )

Hence {Q’i“(z)}?;“l is a basis of n-new Hilbert ordinary eigenforms for the space S,,,

10.2.3 Proof of the Main Theorem

We now give the proof of the main Theorem 10.2.5

Figure 10.2.18.

= mod p/*! (Fourier coefficients)

-new, ord d
€S Ty 0) TS Ty O)

! |

n-new ord. Hilbert eigenform of wt. 2k n-new ord. Hilbert eigenform of wt. 2k’

Proof. For simplicity, let us fix an integer i such that 1 <i <m,, sayi=1.

By proposition 10.2.13, for f'(z) € S;,"™ s I,,,0.), there exists an ordinary Hilbert cusp form F;(z) €

SoH(T, wp» Ocy) such that we have the following congruence of Fourier coefficients:

f{(z) = F;(z) mod p/*'.

;L)) and {F(2)}._ c soM(T,

ord
or (Tnp; @) be a basis for S

— d; ord
Let t = dim(S o (Lnps

- ‘ 2k (Tnp
Hilbert eigenforms.

; L) consisting of ordinary
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Note 10.2.19. We have a slight abuse of notation when we write the superscript n for each ordinary Hilbert
eigenform in the set {.#"(2)}!_,. These ordinary Hilbert elgenforms are not necessarily n-new but include the
set of n-new ordinary Hilbert eigenforms as well. Note that t > m,,

So, we can write F;(z) as a linear combination of elements of the basis {.#"(2)}!_,
t
Fi(z) =Y a.7"(z) where {a,}_, C
s=1

By proposition 10.2.15, for n-new ordinary Hilbert eigenform f,"(z) € S, neword( T,,; 0,), there exists an n-new

ordinary Hilbert eigenform in S}, ord(T. L,,; 0,), say .Z'(2), unique up to scalar multiplication in &;, such that

for all prime ideals [ C 0y, [} np, we have
Ar (f") = Ar, (F]) mod P. (10.20)

This uniqueness implies that for every integer s such that 2 < s < t but s # 1, there exists some prime ideal
[, C Ok, I $np such that

Bt (A, =27, (FD).
So, we have

t

B4 [(Ar, F =21 (FD).

s=2

In other words,

1
" S ﬁ(q;;). (10.21)
T, (Ar, ) = Ag, (F0)
Define
1 t
F) = — Fo(z) T, — A (F1)). (10.22)
S L (A =2 () zkg( )

Claim: We claim that §}(z) = 8.7 '(z) for some 8B € (s and §}(z) = f,*(2) mod p/*'.

We will first show that §7(z) = B.%]'(z) for some B € ).

t

[ [(1. =2 (7M)

2k’ s=2

= (Z asﬂ;‘(z))

Fi(2)

t

[ (=2 (7))

2k s=2

t

>a, m(z))‘ (1, =2, Z)] [ (1= 21, (7))
s=3

[ (1. =2 (7M)

2k’ s=3
t

[ [(7. -2 (7™)
2k’ s=3
t

[ (1. =2 (2D).

2k’ s=3

D> (T T,) —Ar, (f")Zaﬁ“(z))

DA, (FIFE) - Za A, (f“)ﬁ“(z))

gt
>
>
(3

o (Ar (FM) =27 (FD)) f"(z))
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t t

=> @] (A, (ZD =21, (D) 722D,

s=1 w=2
:
= a7 @[ | (A, (P =21, (7))
w=2
or
Fy(@)low [Ty (T[s —Ar, (ysn))
Z@T ey (Ar, (FD) =2, (1))

We want to show that a; € G-

Note that F}(2)| l_[stzz(T[S — ATIS (")) has Fourier coefficients in ;). This is because ATIS (#) € 0, and
the Hecke-algebra Ty (np; iry) S End(Soi (L5 Oyy))-

Next, .#'(z) is unique up to scalar multiplication in ¢; and we can scale it in a way such that at least one of
its Fourier coefficient is not divisible by . Thus, B {.7]'(2).

Now, suppose there exists some w such that 2 < w < t for which ‘B | (ATI (F1)—Ar, (ﬂv‘v‘)), then
B (A, (= Ag )+ Az ()= Ar (FD)).
Since P | (A7, (F1')— A, (fi")) by congruence 10.20, it follows,

Bl (Ar, F =27 (FD)).

This is a contradiction to 10.21 . Thus,
t
B+ [(Ar, (FD = 2r (FD)). (10.23)
w=2

We can hence conclude a; € G-
We thus have

t

[ (=2 (7))

2k’ s=2

1
F2(z)
[T, (A, F =2 (7))
‘o Ap (D) =Ap (FT
—a HW:Z( Tzw( 1) Trw( w))yln(z)
T, (A, (F) = 2r (F0)
= BF(2)

31(z) =

where the fact that a; € ;) along with 10.21 implies

[Ty (Ar, (FD) =21, (FD)
B=0o t € ﬁ(‘ﬁ)‘
T, (A, (F) = 2r (FD)

We will now show §%(z) = f"(z) mod p/*™.

In order to do so, we will again look at action of ]_[stzz(T[s — A, (F")) on F;(z) modulo p’L.

t

[1(r. -2, (#)= £

2k’ s=2

ﬁ (T[s —Ar, (fs“)) mod p/*?

2k s=2

Fi(2)
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We see how one of the terms out the product l_[s;z(Trs —Ar, (F)) acts on f{'(z) to observe the pattern.

t

[1(r. 2, (#0) =)

2k’ s=2

F(2)

t
(1, = A, (ZID] [ (T, = A7, (7)) mod p/*!
2k s=3

t
[ (1 —2r, (Z) mod p/*!
2k s=3 ’

= (A @uTy, — A1, (FDf))
(A, (FMFE) = Ar (T3 (2))
(

t

[ (1 —2r, (Z) mod p/*?

2k s=3

t

Ar, (f1) — 17,2(92"))1‘.1‘1(2) (T[s —Ar, (5@‘)) mod p/*!
2k s=3
=[ T(As, FM) = A0, (F)) £(2) mod p/*1. (10.24)

s=2

Using definition 10.22 and 10.24, we get
§2(z) = f'(z) mod p/*1. (10.25)

Thus, we have shown that for each integer i such that 1 < i < m,, there exists an n-new ordinary Hilbert
eigenform §!'(z) € S,,)" Ord(an ; Osp)) with B-integral Fourier coefficients for fixed prime ideal g | p for each
p | p such that we have the following congruence of Fourier coefficients:

3'(z) = f"(z) mod p/*'. (10.26)

Uniqueness: Let 3} () € Sy, " ord (.

ence 10.26 with f,'(z).

p> Osp)) be the n-new ordinary Hilbert eigenform that satisfies congru-

Suppose there does not exist any 2’ € ) for which §5(z) = 8’.7,'(z) but if possible, let §7(z) also satisfy
the congruence

§3(2) = f'(z) mod p/*".
Then we can write
f3'(2) = f"(z) mod p’*!
which implies for all prime ideals [ C &,
(A1, (30 = A7, (£)) f1'(2) = 0 mod p/*.
Since, P 4 le (2) due to our choice of scaling, we have 3 | (ATI () —2Ar( fz“)). This is a contradiction to the

assumption 2. Thus, §7'(z) is the unique n-new ordinary eigenform up to scalar multiplication in @y that
satisfies the congruence 5.23 with f"(z).

150



CHAPTER 10. CONGRUENCES RELATED TO HILBERT MODULAR FORMS

10.3 Congruences related to Hilbert modular forms-Half-integer weight
case

From formula 7.8, we have the following direct decomposition of the Kohnen plus space for Hilbert modular
forms of half-integer weight:

sk++%(’f4np; L) = ®yjnp Dpjm-tnp Sne‘”(F4m, L4 1 Up
where b runs over all integral ideals in & that divide m™np.

We now give the explicit definition of the space of 4n-new half-integer weight Hilbert cups forms at level 4np.
S4n new(r4np: ) Snew (1—‘4np: L) @ (Snew (F4n3 L)|k+1 U(P)Z) SIleW (F4n’ L) (1027)
From the definition of n-new Hilbert modular forms of integer weight at level np in 10.4 and the definition of

4n-new Hilbert modular forms of half-integer weight at level 4np in 10.27, we obtain the following relation-
ship.

Figure 10.3.1.

Snew(l—-4np) @ Snew (F4n) |k+% U(p)2 @ Snew(l—-4n)
Generalised Generalised Generalised
Kohnen’s Iso. Kohnen’s Iso. Kohnen’s Iso.

S3E(T,) O s U O s

Using generalised Kohnen’s isomorphism for Hilbert modular forms in section 7.5 along with the fact that
i +1 1 U,y operator in Hilbert half-integer weight case corresponds to |5, U(,) operator in the Hilbert integer

welght case, we conclude that the spaces S :J': ;ew(l“%P) and §7,"*"(T,,) are isomorphic and so are there respective

ordinary projections.

Figure 10.3.2.

S4n neW(F4np) X l_[ (Hmn—»oo ng') — S:: new, Ord(r4np)
k+3 pl(p)
fso- Iso.
S;I;new( p) l_[(hrnn_)oo UIT) — ﬁ new ord( p)
2k pl(p)

Let

n -new, ord (‘= |
{gln(z)}znzl s SZ:;eW . (F4np: ﬁL)
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4n- new ord .
be a basis for S, "’ (F4np’

the basis

L) consisting of 4n-new ordinary Hilbert eigenforms of half-integer weight from

{fr @)} € sy (T, 5 0,)

for $5."" ord(r, I,,; L) consisting of n-new ordinary Hilbert eigenforms of integer weight with integral Fourier
coefficients via the isomorphism in figure 10.3.1.

10.3.1 Main Theorem

We now state our main result about congruences between half-integer weight Hilbert eigenforms of varying
weights. Note that by Hecke eigenforms in Theorem 10.3.3, we mean eigenforms for all Hecke operators T
for all prime ideals [ C 0.

Theorem 10.3.3 (Main Theorem). Let m,, dlm(S4'1 pew Ord(1‘4np; L)) and let

{glu(z)}l 1 C 4n new ord(l—.4np, 0L)

be a basis for S::'few’ Ord(ﬁmp ; L) consisting of 4n-new ordinary Hilbert eigenforms of half-integer weight with
2

0, -integral Fourier coefficients that is obtained from the basis
(@Y €Sy T (Tp; 01)

for S ord(r T,p; L) consisting of n-new ordinary Hilbert eigenforms of integer weight with 0-integral Fourier
coefﬁaents via the isomorphism in figure 10.3.1. For each i where 1 <i < m,, let g['(z) and f,"(2) be scaled in a
way such they have at least one Fourier coefficient that is not divisible by 8. Suppose assumption 2 holds for the
basis {f," (z)} , and also assume that p Jpr - where x, and x, are given by the Kronecker symbols ( ) and
P

( ;) respectlvely. (Assumption 2 and 3 hold).

Let j € Zsq be a fixed integer and define k' := k + @. Then there for each i such that 1 < i < m,, there exists
a 4n-new ordinary Hilbert eigenform form of half-integer weight

4n-new, ord (W,
O1(=) € 51 Ty Oy

unique up to scalar multiplication in sy such that we have the following congruence of Fourier coefficients:

g'(z)= Qsi(z)|k/+% Upy mod pt.

Figure 10.3.4.

= mod p/*! (Shifted |U,))

8 € ST (Tanps 1) > 7 €SI M Ty Ogy)
2 2
. . . 1 . . . ;01
4n-new ord. Hilbert eigenform of weight k + > 4n-new ord. Hilbert eigenform of weight k’ + 3

Remark 10.3.5. We note that Theorem 10.3.3 also holds true for all weights k' = k + t@ where ¢ is an odd
positive integer.
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In order to give an organised and clear proof of Theorem 10.3.3, we will prove a series of propositions which
when combined will eventually imply the result.

Proposition 10.3.6. Let
g(z) € Sk+% (f4np; ﬁL)
be a Hilbert cusp form of half-integer weight with 0O} -integral Fourier coefficients. Assume that p +B% vop, Where
Ap

xp and x, are given by the Kronecker symbols (%) and ( p%) respectively. (Assumption 3 holds).

Let j € Zs be a fixed integer and define k' := k + ‘@. Then there exists a Hilbert cusp form of half-integer
weight

G(2) € St (Tanp; Op))
such that we have the following congruence of Fourier coefficients:

82|41 Ugp) = G(z) mod p’L

Figure 10.3.7.

(Shifted |Ug,)) = mod p/*?

8 Esk+%(F4np;ﬁL) > G ESk’+%(’f‘l4nP;0(m))
Hilbert cusp form of weight k + % Hilbert cusp form of weight k’ +

Before we give the proof of proposition 10.3.6, we will state and prove two prerequisite lemmas, one of
which is a generalisation of lemma 5.3.8 to Hilbert modular forms while the other lemma gives us quadratic
reciprocity for the quadratic symbol introduced in definition 7.1.2.

Lemma 10.3.8. Let p be an odd rational prime. Then

Proof. Lety = (‘Cl: Z:) € Iyp.
Let f(z)eM =} (I‘4p, (}%)2) Then f () is invariant under the action of y, that is

a
@Iy =) s, (10.28)
2 P /s
Now let ¥ € ﬁp. Then by equation 7.2, the (%)-slash action of ¥ on f(2) is

f@leaT =27 £ (r2)

(sgn(a) [ [, z+d )) f(rz)

2i=1,2
_p1

(sgn(ay)( )) i f(z)l?y (10.29)
2
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where

f@leay =] [z +d,)"7 fra).

i=1,2

Note that (sgn(o) (_71)2)_172;1 = (sgn(O) (_71)2)¥ Then using equations 10.28 and 10.29, we get

rlar=(2) (e 2) ) re.
2 r/2

Thus, f(2) € My (’F}p, (sn(+) (3),) (5)2)- i

Lemma 10.3.9. Let p be an odd rational prime. Then

(8),(2),~(we(2),) "

Proof. Let a € Ok such that a =1 mod 2 and let a be co-prime to p. Then by [Lem, Theorem 12.14], for any
two algebraic integers a, p = 1 mod 2 such that they are co-prime, we have

BE-r o (Do
where

g sgn(@)—1 sgn(p)—1  sgn(a;)—1 sgn(p)—1
2 ) 2 2 ) 2 ’

a—1
rom(Eteo1),
2 2

_sgn(a;)—1 + sgn(a,)—1
B 2 2

We will first use the formula in 10.30 to compute (%)2 (%)2.

We note that sgn(p) = 1. This implies S = 0. Next, % € Z which implies T = % Tr (%52).

Thus, we conclude
(2)(p) -
a/2\p

p—1
Next, we use the formula in 10.30 to compute (sgn(a)( ) ) 2
We note that sgn(a,), sgn(a,) take values +1. Thus, we have the following possibilities,

(sgn(a) (_;1)2)_ — (sgn(@) -1V (") T

p—1
sgn(aq)-1 sgn(a )1 a—1 2
= (sen(a)sgnan)(—1) “# =+ =H (-yn()
where

Sx"(al) 1 Sgn(a )-1 L. 1(_1)0 if Sgn(al) = Sgn(aZ) = 1;
sgﬂ(a1)Sgl’l(O£2)( 1) e ( 1)(_1)(_1)72 if sgn(al) — Sgn(az) — _1,
(DM if sgn(a;) = —sgn(a,) =1
=1.
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It follows

P

Hence, we have shown that (3)2 (%)2 = (sgn(a) (_—1)2) T for any a in 0y that is odd and co-prime to p. O

a a

Proof of proposition 10.3.6.
Define
G(z) = (8()ls2 Uy ) 65 (42)"

where %(42;) eEM =) (F4p, (%)2) is defined to be the generalised Hilbert Eisenstein series E =) ,(5)2(42:), see
section 8.6.

Claim 1: We claim that G(z) € S, +1 (ﬂnp 5 Op))-
From equation 8.28, the Fourier expansion of E (2) () is
2 °\p/y

-1 1 . 3
Epi () @) =1+(p—12(Bu () ———— > 000 (£)e TG,
2 ’(P)z ( 2 ’(P)) B¥,(;)(%) % 2 ’(P)z

Then using Theorem 3.4.1 and the fact that p { By— we get that the Fourier coefficients of E, () (2)
2 2 9

SXpXp’ P

lie in Z,). Then it’s clear from the definition of g‘;,(z) that its Fourier coefficients lie in Z,). Also, note that

it’s given that Fourier coefficients of g(z) lie in ¢; which implies that g(z)|, 1Ugp) also has Fourier coefficients
in @y as action by |, +1U(p) operator on g(2z) picks shifted Fourier coefficients of g(z). This implies that the
Fourier coefficients of G(z) lie in Oy.

Next, we note that the action of U,y on g(z) € S +1 (ﬁmp; 0,) twists the character of this space by (‘.—’)2 (see
section 7.3.3),

= (P
8@y 1Ugp) € Sy 2 (an, (—)2 ; ﬁL)- (10.31)

Also, by the lemma 10.3.8, we have

p—1

5 (42) € Mo (ﬁp, (sgn(O) (—71)2)* G)Z;z(p)). (10.32)

It is clear from 10.31 and 10.32 that

p—1

6@) = (8@l yUin) @) €5y, (ﬁnp, (semo(5).) " (). (B),: ﬁ(sm) -

Since lemma 10.3.9 implies that (sgn(-)(%l)z)% (5)2 (%)2 =1, we have

G(z) e SM% (ﬁnp; 0’(*13))'

Claim 2: g(z)|k+% Up) = G(z) mod p*
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From lemma 8.6.1, we have
6,(4z) =1 mod p.

Then by a similar argument as in the proof of corollary 3.2.4, we get

@ L j+1

6,(42)" =1 mod p’*.
Hence, we conclude,

8@+ 1Ugpy = G(2) mod p/L.
d

We next try to show that the action of Hecke operators |, 11Tk for prime ideals [ C O on (g(z)| kel U(p)) mod

p’*! is the same as the action of the Hecke operators |, +1Tez on G(2) mod p/*! where g(z) and G(z) are
defined as in proposition 10.3.6.

Corollary 10.3.10. Let g(z) € Skel (ﬂnp; 0,) and G(z) € g(z) € Sist (ﬁnp; Ocyp)) be half-integer weight Hilbert
cusp forms defined in proposition 10.3.6 such that

8()is1Ugp) = G(z) mod p’L.
Then we have
(8@l 1U)) s Te = Gl 1 T mod p'*l
for all prime ideals | C O.

Proof. For simplicity, set ¢ = e27™(32). Let g(z) = deﬁ; b:q® and G(z) = deﬁg Bgq® be the Fourier
expansions of g(z) and G(z) are defined in proposition 10.3.6. then we have

b,e =B mod p’*'. (10.33)
Case 1: [{4np

Recall that

= p
|k+%U(p) :g(z) - g(Z)|k+% Up) € Sk+% (F‘mp’( )2 ; 0L)'

From proposition 7.2.3, for all prime ideals [ C g, [}4np, we have

(=N € .
G(Z)lk,+%T‘2= Z (3225 +N($)k 1(;)2 (E)ng +N($)2k 1B§gz)q€ (1034)
seof
where & > 0 is a totally positive generator of [.
From 10.34 and 10.33, we have
—1 ¥ k-1 E 2k'—1 I3 j+1
Gy 1 Tpe = > by + - ). N 2 ) bpe + N(2)* by ¢ mod pf (10.35)
2 2

seogf

The term inside the summand on the right hand side of the congruence 10.35 can be rewritten as

J(p— Ple-1Y\_
N(fﬁ)"*%*l(é)2 bye + (2 T

1 )k“j(i'“
<

bgng + (E )
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-1
k=3 @-1)

=D gy: + (% . N (N(z)—

P
<
=b +(__1)kN(_g)k—1 (__1)@_21)]\[(_(5)@71 ’ (ﬂ) (p_ﬁ) b +N($)2k—1(N($)(p—1))ij .
£%p& % 5 K% 2 ¥\ ¥ 2 23 pE¥
(10.36)

—
/‘\
—
N [
N

é)z bpe + N L (NP VY bpego

We now look at the terms (N(,Sf)("*l))pj and (( 1) o N( )(p U)

Since N(%) is an integer, by Fermat’s Little Theorem, we have N(£)P™' = 1 mod p. It then follows from a
similar argument as in the proof of the corollary 3.2.4 that

Also, note that N(%¢) is an integer. So, by Euler’s Criterion, we have N(¥) z =

(NP1 =1 mod pi*. (10.37)

(r—1) _ (N(g)

b )modp

Also, by the lemma 8.5.2, we have (N('(g)) = (g) . Then it follows,

p P Ja

(r—1) (—1)
2

L=(3) (5,8, m

=1 mod p.

Hence, we have

or

-1
2

—_]. p(p 1) P — i1
(g)g N(2) (g)z_lmodpl. (10.38)

Using 10.37 and 10.38 together in 10.36, we get

—1)\k B 3 A
61 Te= (bﬂzg+(§)2(%)zzv(z)k 1 (%)2 b, +N(2)% 1bpwz)q€ mod p/*!

1=

= (8@l 1Ugp) Iks2 T mod p7*1.

Case 2: [| 4np

Again using proposition 7.2.3, we can write for all prime ideals [ C &, [| 4np,

(g(z)lm%U(p))IH%T[z = Z bgngqg and G(z)lk,+%T[z = Z Bgzgq‘f. (10.39)

seof Eeogf

From 10.39 and 10.33, it follows,

or

bp(gzg) = B(gzg) mod pj+1

(g(Z)|k+l U(p)) |k+l T[2 = G(Z)|k/+1 T[2 mod p)+l.
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We will next try to replace the Hilbert modular form of half-integer weight G(z) defined in proposition 10.3.6
by an ordinary Hilbert modular form of the same half-integer weight k’ + %, provided we now take g(z) in
proposition 10.3.6 to be ordinary.

Proposition 10.3.11. Let
8() €877, (T3 01)

be an ordinary Hilbert cusp form of half-integer weight with O, -integral Fourier coefficients. Assume that p }

B - where xp, and y,, are given by the Kronecker symbols (%) and (5) respectively. (Assumption 3 holds).
»Ap

Let j € Zs be a fixed integer and define k' := k + @. Then there exists an ordinary Hilbert cusp form of
half-integer weight

G°(2) € Sy (T Ooy)
such that we have the following congruence of Fourier coefficients:
g(z)|k+%U(p) = G°(2) mod p’™.
Moreover,

(g(z)|k+%U(p)) i+ 1 Te = G°(2)]go42 Te mod p’tt

2

for all prime ideals [ C 0.

Figure 10.3.12.

Shifted |Ug,)= mod p/*!

d (¢ . d (7 .
g S SZ:_% (F4ﬂp’ ﬁL) ) Ge S;()/r_'_% (F4t‘lp7 ﬁ(m))

! !

Ord. Hilbert cusp form of weight k + % Ord. Hilbert cusp form of weight k' + %

Proof. In section 9.5, we defined the p-ordinary projection operator ¢, = ]_[p?p where p C 0 is a prime ideal
above the rational prime p.

Now define
G°(z) := G(z)lkur%?p.

where G(z) is defined in proposition 10.3.6.

. . A/z _ . . .
Now ¢, is an idempotent operator, that is, ¢, =¢, This implies

- ~2
G°(z)|k,+%ep = G(Z)|k,+%ep

= G(@)|1 17,

=G°(2).
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Hence G°(2) is ordinary at p and lies in S°/ . (I“4np, Orp))-
Claim: We now claim that G°(z) = g(z)IkJr 1U(,) mod pitL.

It is given that g(z) is ordinary at p. So, g(2)I; +%?p = g(z). Also, note that U,y acts in the same way on
g(2) as (U(p))z. Then by corollary 10.3.10, we can write

G(z)lk'+%h€p = (g(z)|k+% U(P)) |k+%h€p mod pj'*'1
= (8(2)|k+% U(p)) lier 1 l_[?p mod p/*!
P

= (g(z)|k+%U(p)) |k+% l_[nll)l'glo ngl mod pj+1
p

= (8@lks 1 Ug) by Jim, (ﬁ U:z’) mod p/*!
p

= (g(z)|k+% U(p)) |k+% nlim U("p!)2 mod pj+1

=g(2)ls2 hm UZ(n')Jrl mod p/*!

(g(z)|k+— lim U(p) )|k+1U(p) mod p/*!

(g(z)|k+1 lim U(p)z) li1Ugpy mod pit!

= (8@l 2%,) s 1 Ugyy mod p7*!
= g(2)lis1Ugpy mod p’*.
Thus, we have shown that
G°(2) = g(2)l41 Uy mod p’*.
J*1 now follows in the same way as in corollary 10.3.10.
O

The equivalence of action of Hecke operators modulo p

Our next task is to show that if we are given that the ordinary Hilbert half-integer weight cusp form g(z) €
S"rd1 (F4np, 0,) in proposition 10.3.11 is a 4n-new eigenform that is obtained from the n-new ordinary eigen-
4n-new, ord
K+3
4n-new ordinary Hilbert eigenform of half-integer weight k' + 5 (unique up to scalar multiplication in ;)
which satisfies a mod P congruence of Hecke eigenvalues with g(z) for all Hecke operators T}. over all prime
ideals [ C 0.

n-new, ord(

form of integer weight, say f"(z) € S, ; 0,), then there exists 4¥(z) €S (F4np, 0,), a unique

np:

Note that by Hecke eigenforms in proposition 10.3.13, we mean eigenforms for all Hecke operators T} for all
prime ideals [ C 0.

Proposition 10.3.13. Let m, = dlm(S4“ news Ord(l“4np ;L)) and let
{gn(z)} n C S4l‘l new, Ord([‘4np; ﬁL)

be a basis for 54“ e ord(I‘4np; L) consisting of 4n-new ordinary Hilbert eigenforms of half-integer weight with

O, -integral Fourler coefficients that is obtained from the basis

{fr @)} € spre (T, 5 6,)
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for S5 ord(r. I, L) consisting of n-new ordinary Hilbert eigenforms of integer weight with 0y-integral Fourier
coefficients via the isomorphism in figure 10.3.1. For each i where 1 <i < m,, let g['(z) and f;"(2) be scaled in a
way such they have at least one Fourier coefficient that is not divisible by 3. Suppose assumption 2 holds for the
basis { fi“(z)}?;“1 and also assume that p J{B% Aot where yp and y, are given by the Kronecker symbols ( ) and

( 5) respectively. (Assumption 2 and 3 hold).

Let j € Zs be a fixed integer and define k' := k + I@. Then for each i such that 1 < i < m,, there exists a
4n-new ordinary Hilbert eigenform form of half-integer weight

G =) €50 " Tanps 1)

unique up to scalar multiplication in 0, such that for all prime ideals | C O, |+ 4np, we have

Ar,(87) = Ag,(4) mod B.

Figure 10.3.14.

n 4n-new; ord /= | Hecke eigenvalues = mod P
gi € Sk+l (F4np’ ﬁL)
2

> Gr e s"rd1 (Tanp; O1)

! l

1
4n-new ord. Hilbert eigenform of weight k + > 4n-new ord. Hilbert eigenform of weight k' +

Proof. From the isomorphism given in figure 10.3.1, for all prime ideals [} 4np, we have

Ar (f") = Ar,(8]). (10.40)
Then by proposition 10.2.13 and proposition 10.2.15, there exists a basis {Z" ()} € Sy ord(y T,p; 0,) of
n-new ordinary Hilbert eigenforms for the space S, od(r I,,; L) such that each element in the basis is unique

up to scalar multiplication in &, and for all prime ideals [ C G, [} np satisfies
A (f") = Ar, (F) mod P (10.41)

In a similar way as before in figure 10.3.1, we conclude that the space S:," I}e""(l“4np) is mapped isomorphically

onto §,7°"(T,,) and these spaces have isomorphic ordinary projections. We can hence take
(G N €S0 " (T 01)

to be a basis of 4n-new ordinary Hilbert eigenforms of half-integer weight obtained from the basis

(PN €850 ™ (T3 01)

2k’
of n-new ordinary eigenforms of integer weight for S, od(r T,p; L). Then for all prime ideals [ C &, [{4np,
we have
Ar (F) = A, (9]). (10.42)
Hence, it follows from 10.40, 10.41 and 10.42 that
A, (@) = Ay, (47) mod . (10.43)
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4n-new, ord
K+1
integer weight in the basis {¢" (z)}:":“l. Then using congruence 10.43, they satisfy the respective congruences,

Uniqueness: Let ¥'(z), ¥,'(z) € S (ﬁnp; 0,) be two 4n-new ordinary Hilbert eigenforms of half-

A, (&) = Ar, (%)) mod B
and

Ar,(85) = A7, (%) mod

n n 4n-new, ord
where g1'(2), g5(2) € s %new or
basis {g!"(2)} .

Suppose there does not exist any % € 0, such that 4'(z) = %B%)'(z) but for all primes [ { 4np, 4,'(z) also

satisfies the following congruence:

(ﬂnp ; 0p) are 4n-new ordinary Hilbert eigenforms of half-integer weight in the

Ar,(&7) = Ar,(¥,') mod B.

Then, using equation 10.40, we have Ay, (") = Ar,, (g]) where f}'(z) € S;,™" °rd(l“np ; 0,) is an n-new ordinary
Hilbert eigenform in the basis { ﬁ“(z)}:’;“l. Similarly, from equation 10.42, we have A, (%)) = Ar,(94,)). It
then follows:

AT[ (fln) = AT[z (8;1

= A'le (¢4,') mod B

= Ar (#,)) mod B

= A (f,') mod .
This is a contradiction to our assumption 2 as f"(z) and f,'(z) are two distinct basis elements. Hence ¥/"(2)
is unique up to scalar multiplication in ;. O

10.3.2 Proof of main Theorem

We are now ready to give the proof of the main theorem 10.3.3. Before we do that, we will prove the following
lemma which will be required to complete it’s proof.

Lemma 10.3.15. Let
g(Z) € Sk+%(f4np; 0L)

be a Hilbert cusp form of half-integer weight. Then for all prime ideals | C O, the action of U,y and T on g(z)
is commutative, that is,

(g(Z)|k+% U(P))k+% T[z = (g(Z)|k+% T[Z)IH—% U(p)
Note 10.3.16. For [ | 4np, lemma 10.3.15 follows trivially, hence, we will assume [} 4np.

Proof. For simplicity, let e27 T(5%) = g%,

Let g(z) = deﬁg bzq°. Then

= p

L .
Eeof
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Let £ > 0 be a totally positive generator of [. Then

(g(z)|k+%U(p))|k+%Tl2= priqg |k+%T12

1=
= 3 (bune + 9@ 5 ) NI b+ ¥ (LN by )
ceof

where v*(e) = (%l)gw(O) and in our case (o) = (%)2,

Thus,
1\ p 3 k-1 2k—1 £
(e@hrstip)lenTe= 3 (bene +( Z ), (2), (), N bare + NP e Jo
teof
—1\k 3 3
= Z (bp225+(§)2(1;_§ 2N($)k lbpgg +N(g)2k 1bp§/5gz)q€
seof
-1 g 3 k—1 2k—1 13
= Z bgzg'ﬁ' ? E N(¥) b_gg'i‘N(g) bg/gz q 1U(p)
teqt 2 2 k+3

(8@l 1 Te) s 1 Uy,

We will now give the proof the main theorem 10.3.3 of this section.

Proof of Theorem 10.3.3. For simplicity, let us fix the integer i such that 1 <i <m,, sayi = 1.
4n-new,ord
k+3

an ordinary half-integer weight Hilbert cusp form Gj(z) € Sl‘:fi% (Canps Ory) such that we have the following

By proposition 10.3.11, for a 4n-new ordinary Hilbert eigenform gj'(z) € S (ﬁmp ; 0p), there exists

congruence of Fourier coefficients:

81 (@i 1Ugp) = Gy(z) mod p/L.

Lett = dim(Sl‘:fi% (ﬁmp; L)) and {4"(2)}_, € S:fi% (ﬁnp; 0,) be a basis for Sl‘:fi% (ﬁnp; L) consisting of ordinary
half-integer weight Hilbert eigenforms.

Note 10.3.17. We have a slight abuse of notation when we wrote the superscript n for each element in the set
{4 (2)}._,- These ordinary half-integer weight Hilbert eigenforms are not necessarily 4n-new but include the
set of 4n-new ordinary half-integer weight Hilbert eigenforms as well. Note that t > m,,.

So, we can write G;(z) as a linear combination of elements of the basis {#"(2)}{_,.
t
Gi(z) = > B,%"(z) where {B}‘_, C L.
s=1

By proposition 10.3.13, for a 4n-new half-integer weight Hilbert eigenform g}'(z) € S::'few’ord(ﬂnp; 0;), there
2
exists a 4n-new ordinary half-integer weight Hilbert eigenform in S:}:’}ew’ Ord(1“4“1,; 0y), say 4,*(2), unique up
2

to scalar multiplication by elements in @, such that for all prime ideals [ C G, [} 4np, we have

Ar,(81) = Az, (9)') mod . (10.44)
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This uniqueness implies that for every integer s such that 2 < s < ¢ but s # 1, there exists some prime ideal
[, C Ok, I 4np such that

Pt (2, (1) = A, @)

So, we have
t
P (21, &0 20, @) (10.45)
s=2
In other words,
1
€ G- (10.46)
I, (A, (@D — A, (90)
Define
AU@)Z (8{1)_1 ¢
61(z) 1= — Go(z) (T[Sz A, (54;)) : (10.47)
[T (Ara @D = Ar, @) et sm2 :

Claim 1: &(z) = AU(p)z(g{‘)_lfé%l“(z) for some € € Oy,

Note 10.3.18. The eigenvalue JLU( . ( gil)_1 € Oy This follows from the fact that g}'(z) is an ordinary Hilbert
eigenform of half-integer weight and hence its U,y eigenvalue 7LU( - (g7) is a P-adic unit for the fixed prime
ideal B C @, lying above p, that is, ‘13+AU(p)2 (g])-

Next we want to show that G(2),/ +1 Hstzz(Tlf — AT[Sz (¢.")) in definition 10.47 has Fourier coefficients in G-
t
[1(7e—2r,@m)
K+3 s=2 :
t t
= (Z ﬁs%:(z)) [1(7e=2r,m)
s=1 k’+% s=2 :
t t
Zﬁs%:(z)) (re=20, ) [](7 =21, 000)

s=3
Zﬁs(%ﬂ(znk, 1Tg)— ATZ%“)Z/M"(z))

Gy(2)

t

[1(7e-2r,9m)

k’+2 s=3

(Te=2r,7)

l

+3 s=

l_[(T[g —AT@(%;‘)).

=3

Zﬁsxu(%n)sﬁ“(z) Zﬁsxu(%u)%"(z))

(Zﬂs (Ary @)= 20, (%) )g*‘(z))
B 1 (A, @ =21, @) 9@,
s=1 w=2

B[ (3, @21, @) (10.48)
w=2

~

or
o t n
G @y T (T =2, (1)
A | (AT% COETS (54;;))
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We want to show that f8; € Op.

Note that G ()l +1 l_[st=2(Tl_3 — AT[Sz (¢")) has Fourier coefficients in Gy. This is because AT@ @) € o
and the Hecke-algebra T, +%(4np ; Ospy) © End(Sy, +%(1“4,11,; Op)))-
4n-new, ord

K+3
therefore assume it is scaled in a way that it has at least one Fourier coefficient that is not divisible by B.

Next, we are given that ¥'(z) € S (ﬁmp ; 0;) is unique up to scalar multiplication in &;. We can

Now, suppose there exists some w such that 2 < w < t for which B | (ATIZ “@n— ATIZ (%‘})), then

B (Ar, @)= Ar, (1) + 2, (81— 20, (4)).

Since P | (lle @ - AT,z (g7)) by 10.44, it follows,

P (Ar, (@) =21, @)

This is a contradiction to uniqueness of ¢'(z) in 10.44 . Thus,

Pt l_[ (ATI‘ZV @)~ 2Ar, (%;;)) ) (10.49)
w=2

We can hence conclude
B1 € Oy (10.50)

From equations 10.47 and 10.48, we can write

t

Ay, (817
[T, (A, (8D = A1, 90)
[T (20, @) 21, (4)
I, (A, (@D = A, (90)
= o (@ CH(2)

where we know by 10.46 and 10.50 that

[T (A, ()= 2, ()
[Tz, (A, (81 =20, (90))

Claim 2: &}(2)l,1U(,) = g7'(z) mod p/tL

&)(z) = Gi(2)

(Te=2r, 1)

K+3 s=2

= AU(P)Z (g{l)_lﬂl G5 (2)

We will again look at action of l_[s[=z(Tl§ — Ar,(4") on Gj(2) modulo pitL.

ﬁ(T@ AACH)

K+3 s=2

Gi(2)

Il

t
O ‘ 1 (T[sz ~Ar, (gsn)) mod p/*!
k 1 s

+3 s=2
We see how one of the terms out the product l_[st=z(Tl3 —AT[? (4")) acts on g7(2)l, 11U to observe the pattern.
t

[1(7e—r,4m)

K+3 s=2

Gi(2)
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t
2@y Up) | Te =2, @] ] (Te =20, (47) mod pi*?
K+ 2 =3 " :

t

[1(7e =27, @M) mod pi*

k+1 5=3

(a1
( 1@ 1 Uy T — )\T[% (4,) 87 (@)l U(p))

t
&1 @1 TeUp) — Az, (4) g{l(z)lk+%U(p)) 1 (Txg —lrlz(%“)) mod p/*!
2 k+3 s=3 s

t

TT(re=21,m) mod p*1

k+3 s=3

= (31, (8D 81 Uy — 21, ) 81Dy U

t

l_[ (T[SZ - )LT[SZ (gs“)) mod p/*!

ki s=3
2

=[T(2r, (D =20, (€@ lisy Upy) mod pi*.

s=2

= (2, (&) = 21,9 (83 Vi)

Using 10.47 and 10.51, we get

61(z) = JLU(P)Z (g{‘)_lg;‘(z)|k+% U,y mod p’L

We now act on both sides in the congruence 10.52 by U,y operator and get

1@l U = Ay, ())& @)l 1 U, mod pi*?

= v, (1) Ay, (81)g1(z) mod p

j+1

= g7(z) mod p/*.

4n-new, ord

Uniqueness: Let &7(z) € Sk/ !

(10.51)

(10.52)

(10.53)

(ﬂnp; Oy)) be a 4n-new ordinary half-integer weight Hilbert eigenform

for all operators T} over all prlme ideals [ C g such that it satisfies congruence of the type 10.53 with g;(z):

@g(z)|k,+% Uy = g5 (2) mod p/tt

Suppose there does not exist any 9 € Oy such that &7(z) = 267(z) but Qﬁlz\’ (2) also satisfies congruence

10.53 with g}'(2):
Qi'z‘(z)lk,+%U(P) = g?'(z) mod p’*.
It the follows
g1(z) = g5(2) mod p’**
which implies
g;‘(z)|k+% T = g;(z)|k+% T mod p/*'.
So, we have for all prime ideal [ C &,
Ar,(85)85(2) = A, (g})g} (2) mod p/*.

We can then write

A1, (f)g5(2) = Ar, (f)g} (2) mod p/*!
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which implies

(Ar, ()= A7, (f)) g1(2) = 0 mod p’*.

Now ‘B { g7'(z) due to choice of scaling of g;'(z). So we get for all prime ideals [t 4np, B | (A1, (f,")— A, (fi"))-
This is a contradiction to assumption 2 as f,"(z) and f,'(z) are distinct basis elements. Thus, &7(z) is the
unique 4n-new half-integer weight ordinary Hilbert eigenform up to scalar multiplication in Gy that satisfies
the congruence 10.53 with g'(2). O
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Applications

In this chapter, we will briefly recall elliptic curves over number fields and the associated L-function. We
avoid going into details wherever possible and the reader might find useful to refer to [Sil09] for detailed
background. Our main purpose is to work over an example of an elliptic curve E over the number field
Q(+/5) and set-up the framework for applying our main Theorems 10.2.5 and 10.3.3 to the Hilbert newform
associated to E.

11.1 Elliptic curve E over an arbitrary number field K

Every elliptic E over a number field K can be defined using a Weierstrass equation given by
E/K : y*+ayxy +asy = x>+ a,x? + ayx +ag
where a;,a,,a3,a4,a6 €K.

Let E(K) denote the set of K-rational points. Then E(K) forms an abelian group under addition law defined
explicitly in [Sil09, Section I11.2]. The Mordell-Weil Theorem tell us that E(K) has the following form

E(K)ZEKK),y ®Z'.

Here E(K),,, is the torsion subgroup of E(K) and is finite while r is the rank of E(K) and is a non-negative in-
teger. The proof of Mordell-Weil Theorem can be found in [Sil09, Chapter VIII]. For a given elliptic curve E/K,
it is relatively easy to determine the torsion subgroup while the rank turns out to be quite hard to compute.

For every elliptic curve E/K, we can define the associated L-series in terms of an Euler product given by

[T L@,

p prime

pCOg
where N(p) denotes the norm of p.
For each p, the local Euler factors L,(T) depends on the the reduction type of E at p. L,(T) can be visualised
as a power series in T and we use its linear coefficients to define the Fourier coefficients a, of the L-function
of E/K. Then we can find the complete set of Fourier coefficients a, for ideals n C 0y using recursion and
multiplicativity, see [Sil09, C.16, pg. 449-450].
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Let L(E/K,s) =, a,N(n)~ be the L-function associated to E/K. We define

nCoy
A(E/K,s) := (Norm(ng)D2)2((27)I(s)) K L(E, s)

where n; denotes the conductor of E/K and Dy denotes the discriminant of K.
The Hasse-Weil conjectures predicts that A(E/K,s) is analytically continuous on the entire complex plane and
satisfies the functional equation

AE/K,s) =wgx.AME/K,2—5), (11.1)

where wg i € {1} is the global root number of E/K and determines the sign of the functional equation.
Using Modularity of real quadratic fields [FHS15, Theorem 1], this conjecture has been proved for real
quadratic fields.

We now state the weak form of conjecture of Birch and Swinnerton-Dyer (BSD) for elliptic curve E/K.

Conjecture 11.1.1 (Weak form of BSD for E/K). Let E/K be an elliptic curve over number field K. Then
L(E/K,s) has analytic continuation to C and satisfies

ord,—,(L(E/K,s)) = rank(E/K)

where ord,_;(L(E/K,s)) is the order of vanishing of the L-function L(E/K,s) ats = 1.

11.2 Waldspurger’s Theorem - Generalisation

Let K be a totally real quadratic field of narrow class number 1 introduced in section 6.1. As usual, let
k € Z., and n C G be a square-free integral ideal of odd norm. Let g(z) = deﬁ; bgqg be a half-integer

weight Hilbert modular form of weight k + % and level 4n and let f(z) = D, tear agqg be a Hilbert newform
of weight 2k, level n and trivial character associated to g(z) via Shimura’s correspondence. Let D € K* and
let Y, = (%)2 be the quadratic residue symbol defined in 7.1.2. Then the twist of f(z) by v, is given by

(f @ Yp)(=) = Xrepr ¥n(£)azq®.

In 2003, the Waldspurger’s Theorem was generalised to Hilbert modular forms over totally real fields by Baruch
and Mao [BMO03] who showed that the square of by, the D™ Fourier coefficient of g(z) is proportional to
the central value L(f ® Y, k). In 2020, Sirolli and Tornaria [ST21] gave a more explicit formula by which
L(f ® Yp, k) is expressed explicitly as the product of |by|? with some elementary factors. This allows us to
compute the central L-values L(f ® ¢ p,k) explicitly. Before we can formally state this explicit formula as
applicable to our case, we first need to introduce some notation.

We will first give the formula for the sign €, of functional equation of the L(f ® vp,s).

Let X, = {v : v|n}Uais the set of all finite places dividing the level n combined with the set of all infinite
places a of K. For each place v, w{ denotes the Atkin-Lehner eigenvalue of f (z) at v. These are the eigenvalues
of f(z) under action of Atkin-Lehner operators.

Definition 11.2.1 (Atkin-Lehner operator for Hilbert modular forms).
Let , A > 0 be the generators of the prime ideal p and the integral ideal n respectively. Suppose p | n but p? f n.
Let f(2) € Syk(T,). Then we define the action of Atkin-Lehner operator W,, on f (z) in terms of k-slash action as

( pb 25_1a)

-1

g \ 278N P

where a, b € Oy such that p?b— N a = p.

Note that W,, depends only on o and not on the choice of algebraic integers a and b.

f@uW, := f(2)
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Proposition 11.2.2. sz acts an involution on Sy (T,).

Proof. This easily follows from observing that sz can be rewritten as p M where p is equivalent to the scalar
matrix(gg)andMan. O

Remark 11.2.3. Thus, the Atkin-Lehner eigenvalues of f(z) take values +1.

We next fix some quantities at the archimedean places as in [ST21].

Atkin-Lehner eigenvalue of f(z) at co: Wfoo = (-1
Valuation of n at infinity: val,(n) =1.
Quadratic residue symbol v, at infinity: ,(00) = sgn(D).

Then the sign €, of the functional equation of L(f ® 1p,s) is given by

e = [ [ wiwpy.

vex,

For square-free n, val,(n) = 1. Thus,

e =[ [ wiwov). (11.2)

VEYL,
We can now state the generalised Waldspurger’s Theorem for Hilbert modular forms [ST21, Theorem A].

Theorem 11.2.4 (Waldspurger’s Theorem for Hilbert modular forms). Assume €, = 1. Let n C O be a square-
free integral ideal of odd norm. Then for every D € K* that satisfies \p(v) = w{ for every v | n, there exists a
non-zero Hilbert modular form g(z) = . tear bgqg of weight k + % and level 4n whose Fourier coefficients are
effectively computable and satisfy

|bpl®
D2 (g, g)
where w(n, D) denotes the number of prime ideals dividing both n and conductor of K(vD)/K, ¢y is the constant
explicitly given in [ST21, Equation 6.10], {f,f) and (g, g) denote the Petersson inner products.

L(f ®p,k) = 2°0"Pes (£, f)

11.3 Examples over Q(+/5)

Let us now fix K = Q(+/5). Let a be the generator of K with minimal polynomial x? — x — 1.

Consider an elliptic curve E/Q(+/5) defined by the Weierstrass equation
E: y’+xy+ay=x>+(a+1)x*>+ax. (11.3)

The conductor of E is the prime ideal p in 0 where p is generated by (5a — 2) and has conductor norm 31.

Remark 11.3.1. We note using SAGE [S*] that the prime p = 31 does not divide the generalised Bernoulli
numbers Bso (%) and Bis(5)(#) and hence the assumption 3 holds true for our example.

Let n € Z, and y be a Dirichlet character of conductor N. Then we can write the generalised Bernoulli
number B, , in terms of Bernoulli numbers as

N
B,, = Z x(a)z (Z)Bna"*"N k-l (11.4)
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We write the code for formula 11.4 in SAGE and compute the required generalised Bernoulli numbers B3o,(§)
and Bls,(i)(ﬁ) explicitly to see if they are prime 31 divides each of them. For example, see the input and
output for B, () below.

INPUT

a=var('a’)

list(a) =[binomial(30,k) * bernoulli(k) % a"(30—k)*5"(k—1) for k in range(0,30)]
innersum(a) = [sum(list(a))]

list = [kronecker(5,a) * innersum(a) for a in range(1,5)]
generalisedBernoulli=sum(list)

print (generalisedBernoulli)

OUTPUT

(1252792519982873734870069598004/5)

Recall that E is modular if there exists a Hilbert cuspidal eigenform f(z) over K of parallel weight 2 with
K-rational Hecke-eigenvalues such that Hasse-Weil L-function of E is equal to the L-function of f (z). In 2014,
the modularity over any real quadratic field was proved by Freitas, Le Hung and Siksek in [FHS15, Theorem
1].

Theorem 11.3.2 (Modularity of Elliptic curves over real quadratic fields). Let E be an elliptic curve over a real
quadratic field K. Then E is modular.

In particular, the elliptic curve E over Q(+/5) given in 11.3 is modular. Then we have a Hilbert newform
f(2) € S,(T,) of parallel weight 2 and level p = (5a — 2) attached to E such that

L(E,s) = L(f,s).

By using generalised Kohnen’s isomorphism (section 7.5), there exists a half-integer weight Hilbert newform
g(z) € S5°"(Ty,) that is unique up to scalar multiplication such that
2

A, (F) = A, ()

where A7 (f) is the Hecke-eigenvalue of f(z)|,T, and Ar, (g) is the Hecke-eigenvalue of g(z)I%le over all
prime ideals [ C Oy ).

Now the generalisation of Waldspurger’s theorem (section 11.2) links the central critical values of twists of
f (2) with Fourier coefficients of g(z). We want to use this link and so, we start by choosing an element D € K*
to twist f — f ® ¢, where Y, = (%)2 takes values in {—1,0,+1}. Our choice of twist is not random but is
rather based on making the sign €, of the functional equation of L(f ® 1) p,s) positive in a specific way. This
would then imply that the order of vanishing of L(f ® 1,,s) is even at s = 1. This can be observed using the
functional equation for the completed L-function of (f ® 1;,)(z) which is:

Af ®Yp,s)=(+1) . A(f ®Yp,2—5). (11.5)

Using Taylor series around s = 1, we can write,

A(f®¢D,2—s)=A(f®¢D,1)+A/(f®l—!¢D’1)(1—s)+A//(f+;’blj’1)(1—s)2+W(l—s)3+m
=A(f®1l)p, 1)_A/(.f ®1;¢D: 1)(5—1)+ A//(f ile: 1)(8_1)2_A///(f f!lpD: 1)(5_1)3+

(11.6)
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and
Af ®p,s) = A(f @ p, 1)+ %(s— 1+ %(s— 12+ W(s— 1 +...
' ’ ' (11.7)
From 11.5, 11.6 and 11.7, it follows that
- Azn_l(f ®¢D’1) 2n—1 __
2, —(2n—1)! (s—1) =0.
Hence, we have
N o AP(f @), 1) .
A(f®wn,s)—A(f®wD,1)+; — G (11.8)

It is now easy to see from 11.8 that €, = +1 implies that the order of vanishing of L(f ®p,s) is even ats = 1.
We now look deeper into what criteria do we need for D so that the sign of the functional equation of L(f ®

Yp,s) is positive. Let D € K* be totally negative and co-prime to our level n of f(z) which in our case is the
prime ideal p = (5a — 2). Now from formula 11.2

ey = [wiwo(v)
VEL,
= W);W{)o‘/)D(P)'ll’D(OO)
From the L-functions and modular forms database (LMFDB) [LMF22], we find w{, =1 for p = (5a —2).
Also, D is totally negative implies sgn(D) = —1 or ¢ ,(00) = —1.
Finally, note that weight of f(z) is 2 which implies k = 1 and hence Wfoo =-1.

It then follows
D!
€= 1.(—1).(—) .(=1)
/2

-(5),

So, in order to make the sign of the functional equation of L(f ® vp,s) positive, D must satisfy (%)2 =+1.
We can then apply the Waldspurger’s theorem.

Suppose g(z) =D, feot bgqg. Then Waldspurger’s theorem asserts that
QV5)

L(f ®Yp,1)=x.b3

where * is a well known constant term, see section 11.2. Now provided (%)2 = +1 such that €; = +1, then
bp = 0 implies that L(f ® ¢yp,s) vanishes to order at least two at s = 1.

We now check some values of D € K* which satisfy the our criteria.

D=19a—62, N(D)=5 x 261

Using SAGE, we first check that D is totally negative.
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INPUT

K.<a>=NumberField(x?—x—1)
D=19xa—62
sign(D);

OUTPUT

-1

Next, we check that the quadratic residue of ( 1(23:2)2 )2 =+1.

INPUT

K.<a>=NumberField(x?—x—1)
D=19xa—62
N=K.ideal(5xa—2)
D.residue_symbol(N,?2)

OUTPUT

1

We repeat the same steps for:

D=-5a—46, N(D)=11 x 211

D=16a—67, N(D)=29 x 109

D=-16a—59, N(D)=11 x 379

D=—11a—63, N(D) =19 x 239

We find that in each case, D is totally negative and satisfies the condition ((5:%2)) +1.

2_

We now want to know if the Fourier coefficients bjg,_¢s D_sq—46> P16a—67> D—16a—59> D—114—63 Of the half-integer

weight Hilbert newform g(z) vanish or not. We can confirm these do vanish from the data available in [ST]

where the Fourier coefficients of the unique half-integer weight Hilbert newform g(z) € S§*(Tys,—2)) have
2

been computed by Nicolds Sirolli and Gonzalo Tornaria.

We now consider the corresponding twists of elliptic curve E which are given by

E190-62/Q(V5) : y? = x® +(=77a—234)x? + (53040a — 47880)x + (523920a — 2126960);
E_sq_46/Q(V5) : y% = x®+(—229a — 250)x? + (63024a + 11640)x + (—2748656a — 2181616);
E160_67/Q(V5) @ y% = x® +(—124a — 271)x? + (68568a — 45312)x + (—59312a — 2814640);
E_160-50/Q(V5) : ¥ = x% + (—380a — 359)x? + (141144a + 51456)x + (—11135536a — 7606064);
E_110-63/Q(V5) : y? = x%+ (—351a —359)x? + (134328a + 36168)x + (—9396208a — 6892080).

Here our main interest lies in the order r of vanishing of the L(Ep,s) at s = 1 which is given by

lin}(s—l)rL(ED,s)
S—
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we often denote r by ord,_;(L(Ep,s)).

It follows that ord,_; (L(Ep,s)) is at least 2. Now the conjecture of Birch and Swinnerton-Dyer predicts that
ord,_,(L(Ep,s)) = rank(Ep).

We evaluate the ranks of E19,_g2, E—sq—a6> F16a—67> F—16a—59> E—114—63 defined over Q(+/5) and show its rank

is at least 2 which would then provide evidence in support of the conjecture of Birch and Swinnerton-Dyer.
Using SAGE, we are able to show that these rank are exactly equal to 2.

rank(E,g, 6,/Q(V5))

Using SAGE, we compute the lower and upper bounds for rank(E;¢,_¢,/Q(+/5)) and points of infinite or-
der on E;9,_g2-

INPUT

K.<a>=NumberField(x?—x—1)
E=EllipticCurve(X,[1,a+1,a,a,0])
G=E.quadratic_twist(19xa—62)
G.rank_bounds()

G=gens()

OUTPUT

(2,2)
[(176%a+8:172xa+1768:1)]

rank(E_s, 46/Q(v/5))

OUTPUT

(2,2)
[(212%a+32:732xa+20:1),(156/5%a+ 1576/5: 21084/25 % a—57012/25 : 1)]

rank(E;q,_7/Q(v5))

OUTPUT

(2,2)
[(176a—12:604a—1420:1)]

rank(E_;6,_s9/Q(V/5))

OUTPUT

(2,2)
[(296a + 144 : 1292a + 1448 : 1)]
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rank(E_;1,63/Q(+/5))

OUTPUT

(2,2)
[(151a+452: —1507a—4090 : 1)]

We hence conclude that the ranks of E19q_62, E—sq—46> E16a—67> E—16a—30> E—11a—63 defined over Q(+/5) are all
equal to 2 which is in line with the BSD conjecture.

11.3.1 Lower bound for D

So far, we have found five examples of totally negative D € K* which satisfy the condition

D
(m)z = W{Sa—2) and bD =0. (119)

In each of the five cases, we saw that the rank(Ep) = 2. We now want to know how many D € K* satisfy
condition 11.9 and have even rank(Ej) = 2. We will now show that based on an assumption, it is possible to
show that there are infinitely many such D’s.

Definition 11.3.3. Let x = (x1, x,) denote a 2-tuple of positive real numbers. Then
(i) We write |x| for the product x,x5. This is call the size of x.
(ii) We define
S(x) := { squarefree D € 0y : |o;(D)| < x; for i = 1,2 and rank(Ep) > 2, even}

where o;(D) denotes the real embeddings of D in R%. We denote the cardinality of &(x) by S, (X).

We next state the parity conjecture which is a consequence of a quite strong assumption involving the finiteness
of the Tate-Shafarevich group.

Conjecture 11.3.4 (Parity conjecture).
Sign of the functional equation of L(Ep,s) = (—1)"*Eb),

We now state a result that gives a lower bound for .#; (x). This is a theorem by E Gouvea [Gou93, Theorem
1] for elliptic curves over any number field and is a generalisation of the theorem by E GouVea and B. Mazur
[GM91, Theorem 2] for elliptic curves over Q. We will state it only for the case when the number field is
taken to be a totally real quadratic field. However, the original theorem as stated in [Gou93] holds true for
any number field.

Theorem 11.3.5. Let x = (xq, x,) denote a 2-tuple of positive real numbers. Let E be an elliptic curve over K for
which the parity conjecture 11.3.4 holds. Then, for every € > 0, there exists a positive constant C such that

S, (X) > C |x|27°
Theorem 11.3.5 implies that as the size of x becomes large, so will . (x). This means we have infinity many

squarefree D € Ok for which rank(Ej) > 2 and even, provided the parity conjecture holds for Ej,.

Remark 11.3.6. We note that .%; (x) counts the values of D and not the twists of Ep,. This means we may we
counting isomorphic twists more than once. However, Gotivea in [Gou93, pg. 111] shows that if the lower
bound of .} (x) grows large with x, then it implies that the number of twists of Ej, will also grow infinitely
large.
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We now make note of two points.

(1) In Theorem 11.3.5, we have assumed the parity conjecture and we are counting D’s for which rank(E)
is even. This is the equivalent to saying that the sign of the functional equation of L(Ep,s) (denoted €)
must is +1. For twists Ej, of elliptic curve E/Q(+/5) defined in 11.3 where D is totally negative, this is
equivalent to saying that all D’s satisfy the condition

(amm), =

(2) In Theorem 11.3.5, we are counting D’s for which rank(E) > 2 and even. Now if by, # 0, then Wald-
spurger’s theorem implies L(f ® Y'p,1) # 0. This means that ord,_;L(Ep,s) = 0. In this case, we can
apply theorem [PRS11, Theorem 3.3] which essentially asserts BSD holds for certain elliptic curves over
a totally real number field K. This theorem is due to Gross-Zagier [Gro86] and Kolyvagin [Kol89] for
elliptic curves over QQ and is generalised to elliptic curves over totally real number fields K under certain
conditions by Zhang [Zha01]. These conditions are satisfied if E/K is modular and also if the conductor
of E/K is not a square, both of which are true in the case of the twists of elliptic curve over real quadratic
field Q(+/5) defined in 11.3. More formally, we can state this theorem for K = Q(+/5) as:

Theorem 11.3.7. Let E be an elliptic curve over K. If we assume ord,_;L(E,s) < 1, then rank(E) =
ord,_; L(E,s).

This implies rank(Ep) = 0. This is a contradiction to the given condition. Hence, b, = 0.
Thus, we can restate Theorem 11.3.5 for the elliptic curve over real quadratic field Q(+/5) defined in 11.3 as:

Theorem 11.3.8. Let E/K be the elliptic curve over real quadratic field Q(+/5) defined in 11.3 for which the
parity conjecture 11.3.4 holds. Then there are infinitely many twists E;, /K of E/K by square-free D € Oy which
satisfy each of the following conditions:

D —
D (525), = We o
In this case, it’s same as saying that the sign of the functional equation of L(Ep,s) (denoted €;) is +1.

(2) Rank(Ep) > 2.
(3) bD =0.

Remark 11.3.9. Let E be an elliptic curve over any real quadratic field K of square-free conductor n C & of
odd norm. Let E,/K be a twist of E/K by a square-free D € ;. Theorem 11.3.5 by Gouvea holds only for
those D for which the e; = +1 while those square-free D may not satisfy the stronger condition analogous to
(1) in Theorem 11.3.8 for every prime ideal p | n. Thus, Theorem 11.3.8 can hold true for any elliptic curve
over any real quadratic field for which the parity conjecture holds as long as the conductor n = p. This is
because (%)2 = M/;: for the unique p is equivalent to saying that the sign of the functional equation of L(Ep,s)
(denoted €¢) is +1.

11.3.2 Work in progress

The final task now remains is to apply our main Theorem 10.2.5 to our example over Q(+/5) and the lift
the congruence to half-integer weight Hilbert modular forms using Theorem 10.3.3 which shows that some
Shafarevich-Tate group of the twisted Hilbert modular form in the higher weight has order divisible by 31 in
the same way as discussed in the Introduction of this thesis for elliptic curves over Q. This work is currently
in progress and cannot be included in the thesis given the time constraints. This requires more work than just
applying the theorem, like defining motives over real quadratic fields. Moreover, there are many ways the work
in this thesis can be improved. For instance, assumption 3 about numerators of generalised Bernoulli numbers
could potentially be proved and that would remove one of the assumptions in our main result. Nevertheless, I
believe that the work in this thesis has achieved its goal in theory and also laid very clear direction for future
research and its applications.
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