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ABSTRACT

Attention is focused on the theoretical principles governing the underlying 

geometry of motifs, border patterns and all-over patterns. The systematic 

classification and construction ot two-dimensional periodic patterns and tilings 

is introduced, with particular relerence to two-colour and higher colour 

counterchange possibilities. An identification is made ot the geometrical 

restraints encountered when introducing systematic interchange ot colour. A 

wide ranging series ot original patterns and tilings is constructed and tully 

illustrated; these designs have been printed in fabric torm and are presented 

in the accompanying exhibition.
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1 INTRODUCTION

In general, textile designers and others concerned with two-dimensional design 

have been aware of the importance ot geometry in the construction of 

repeating patterns. However, the bulk ot literature on the subject has not been 

sufficiently accessible to practitioners, due primarily to the barrier imposed 

by unfamiliar symbols and distant terminology. It seems that the first serious 

attempt to remedy this situation was made by H.J. Woods, a physicist working 

in the Textile Department of the University of Leeds. In the mid-1930s 

Woods published a four-part paper which attempted to de-mystify the 

mathematical rules pertaining to the geometrical structure ot patterns and other 

designs in two dimensions. According to Hann and Thomson [1], W oods’ 

primary objective was to encourage an awareness, among textile designers, ot 

the benefits to be gained from the application of the principles of geometrical 

symmetry to the construction of regular repeating patterns [2]. These 

theoretical principles had been developed by crystallographers in their attempt 

to understand certain three-dimensional phenomena.

In the non-mathematical context, the most influential study ot pattern to be 

published in Europe during the nineteenth century was probably Owen Jones 

T h e  Grammar of Ornament' [3]. which dealt with a wide range of subject 

matter from a number of periods and design styles. Subsequent to its 

publication in French and German, 'The Grammar ot Ornament , as pointed 

out by Durant [4], acted as a stimulus for similar publications, and compendia
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illustrating patterns from various sources have continued to he published up 

to the present day. A range of such studies has been listed by Hann and 

Thomson [5] and a comprehensive review has been provided by Durant [6].

There have been a few occasions in the design literature where an 

identification of the geometrical principles governing pattern construction has 

been evident. Meyer, for example, in 1894, outlined his intentions when he 

stated that his handbook was:

" .. ..based on a system which is synthetic rather 
than analytic and intended more to construct and 
develop......  than to dissect and deduce."[7]

It is worth commenting that Meyer [8] grouped designs according to their 

spatial characteristics into "ribbon-like bands", "enclosed spaces", or 

"unlimited flat patterns", corresponding to border patterns, motits and all-over 

patterns respectively. In addition, Meyer recognised that the foundation ot 

every form of all-over pattern was a,

"...certain division, a subsidiary construction or 
a network." [9]

He thus anticipated the use of the term "nets" (used for example by Woods

[10]) to refer to the grids, or lattices underlying all-over pattern structures, a 

phenomenon explained later in this work. An awareness ot the underlying 

geometrical principles fundamental to the construction ot all-over patterns is



also evident from other non-mathematical sources. Stephenson and Suddards 

[11], for example, in their appraisal of the geometry of Jacquard woven 

patterns, illustrated patterns with constructions based on rectangular, rhombic, 

hexagonal and square lattices. Likewise, Day [12], in 1903, placed much 

emphasis on the geometrical basis of all design and illustrated the construction 

of all-over patterns on square, parallelogram, rhombic and hexagonal type 

lattices. In 1910, Christie [13] gave numerous examples of how all-over 

patterns could be developed by the practitioner.

During the early twentieth century another perspective of pattern analysis and 

classification was evolving: the consideration of patterns by reference to their 

symmetries, a tradition which, as mentioned above, had its origins in the 

scientific study of crystals. Over the past few decades, classification systems 

which w'ere developed from this same source have been used by 

anthropologists and design historians to analyse patterns from different cultural 

settings and historical periods. A review of relevant literature, dealing with 

both the evolution of the basic mathematical thinking on the subject as well 

as the application of the principles of geometrical symmetry to pattern analysis 

in different cultural settings, has been made by Hann and Thomson [14].

Largely absent from the literature have been attempts to present the relevant 

geometrical principles in a way that could prove helpful to designers in the 

construction of patterns. With this consideration in mind the objectives ot this 

thesis are as follows:
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to review the principles of geometrical symmetry, placing an 

emphasis where appropriate on the construction of pattern; 

to take-up the challenge proposed by Woods, and to realise the 

benefits to be gained from the application of the principles of 

geometrical symmetry to the construction of original repeating 

patterns (presented throughout this thesis and displayed in 

printed fabric form in the accompanying exhibition).



2. SYM M ETRY IN PATTERN: BACKGROUND AND TERM INOLOGY

5

2.1 Introduction

Various scholars (such as Shubnikov and Koptsik [15], Coxeter [16], Jeger 

[17], Guggenheimer [18], Yale [19], Gans [20], Ewald [21], Dodge [22], 

Schattschneider [23], Hargittai [24] and Martin [25]) have investigated the 

different ways of systematically repeating a basic discrete design element (or 

motif) in pattern form in one direction (i.e. along a border to produce a 

border pattern) or in two directions (i.e. throughout the plane to produce an 

all-over pattern). Systematic repetition creates the whole design by using one 

or more of the four distinct types of geometrical actions by which a part ot a 

design is repeated regularly without change in the shape or size of each 

individual part. The objective of this chapter is to further examine the 

geometrical operations by which motifs, border patterns and all-over patterns 

may be constructed.

2.2  Symmetry o f  the Plane: The Four Basic Symmetry Operations

The four basic geometrical operations or actions mentioned above are as 

follows:

(i) Translation, or repetition at regular intervals, of a motif or 

figure in a straight line without change ot orientation.

(ii) Rotations, by w'hich a motif or figure is rotated about a fixed 

point so that it undergoes repetition at regular angular intervals.



(iii) Reflection, by which a motif or figure is reflected across a 

straight line (or reflection axis) producing a mirror image 

characteristic of so-called "bilateral symmetry".

(iv) Glide-reflection, by which a motif or figure is repeated using 

a combination of translation and reflection.

These four geometrical actions are called symmetry operations; synonymous 

terms include symmetries (Grunbaum and Shephard [26]), congruence 

transformations (Campbell [27]), or isometries (Schattschneider [28]). 

Relevant schematic illustrations of these four basic geometric operations are 

provided in Figure 2.1. Further explanation is provided below.

2.2 .1  Translation

As stated by Schattschneider:

" A translation of points in the plane shifts all 
points the same distance in the same direction"
[28]

Figure 2.2a shows a series of equal asymmetrical figures. A  vector 

(represented by an arrow) can be introduced to denote the direction of the 

shift. The length of the vector indicates the distance the points are shifted. 

If the whole row of triangular figures is moved through a distance T (the 

minimum translation) along the straight line L, without changing their mutual 

position, so that each triangle coincides with its neighbour, the whole set of 

triangles will assume a new position differing in no other way from the

6



Figure 2.1 The four basic symmetry operations (schematic illustrations).

translation

rotation

ref lect ion

gl ide-ref lect ion

Key:

0 2 - fo ld  rotation 

reflection axis 
glide-ref lect ion axis

Source: Hann, M.A. and Thomson, G .M . 'The Geometry ot Regular 
Repeating Patterns’, Textile Progress Series, vol.22, n o . l ,  the Textile 
Institute, Manchester, 1992, p .5.



original. The straight line (L) is termed a "translation axis". Since 

displacement by a distance T does not introduce any changes, the action may 

be repeated as many times as desired. The displacement of figures may take 

place in the direction denoted by T or alternatively in the reverse direction 

denoted by -T with the same result (as shown in Figure 2.2b). Since it is not 

the actual translation axis L but its orientation in space which is of importance 

for the generation of a pattern, any straight line parallel to L can be taken as 

the translation axis. Whilst a border pattern admits translation horizontally, 

an all-over pattern exhibits translation not only horizontally but also vertically 

and diagonally (as shown in Figure 2.3).

2 .2 .2  Rotation

Rotation occurs through a fixed point called the centre of rotation. Repetition 

therefore occurs at regular angular intervals. As stated by Schattschneider:

" A rotation of points in the plane moves points 
by turning the plane about a tixed point (called 
a centre of rotation)." [28]

A design is said to have n-fold rotational symmetry about a fixed point, when 

a figure (or element) in the plane is repeated by successive rotations through 

an angle of 360 degrees/n about a fixed point, and integral multiples of that 

angle; at each stage of rotation the figure (or element) will coincide with 

itself. The fixed point is the centre ot n-told rotation and n is an integer 

greater than or equal to one, which corresponds to the order of rotation.
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Figure 2.2(a) A series of equal asymmetrical figures, (b) A  periodic border 
pattern which admits translation generated by T or -T.

Figure 2.3 Independent translations T L and T,, successively applied to a motif 
to generate a periodic all-over pattern.



Alter n successive rotations of( 360' n ) degrees the figure (or element) is 

returned to its original position. An illustrative example ot rotational 

transformation is provided by Figure 2.4a. In this case the figure is rotated 

in the plane by a given angle about an axis perpendicular to the plane; the 

intersection of this axis with the plane is called the centre ot rotation. It a 

figure is repeated by successive rotation, through say 60 degrees, a design 

may be generated which exhibits 6-told rotational symmetry (see, tor example 

Figure 2.4b). Geometrically, any design in the plane having a regular circle- 

wise repetition is symmetric under rotation, but only by a certain minimum 

angle and multiples of it. The minimum rotational angle will be equal to 360 

n ) degrees. It can thus be seen that:

n =  1 for rotations of 360 degrees;

n =  2 for rotations of ISO degrees (i.e. two-fold rotation); 

n = 3 for rotations of 120 degrees (i.e. three-fold rotation); 

n =  4 tor rotations of 90 degrees (i.e. four-fold rotation); 

n =  6 for rotations of 60 degrees (i.e. six-fold rotation).

Whilst live-fold rotation (i.e. rotation through 72 degrees) may be present in 

individual figures or motifs, this rotational order is not possible in all-over 

patterns (which may only exhibit one, two, three, tour and six-told rotation). 

This phenomenon has become known as the "crystallographic restriction" (see 

for example Weyl [29], Jaswon [30], Coxeter [31] and Stevens [32]).
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Figure 2.4(a) An illustration of central (or point) symmetry, (b) An example 
of a motif which admits transformation by rotation and exhibits six-lold 
rotational symmetry.

Rotation by angle A

Initial state of motif Image state of motif
( before transformation by rotation ) ( after transformation by rotation

through an angle denoted by A )



With a rotation of 360 degrees (n =  l) ,  each point in the plane is returned to

its original position; this is known as "full rotational symmetry". As stated

by Schattschneider:

"A rotation of 360 degrees (n = l)  sends each 
point in the plane to its original position. This 
isometry has the same effect as leaving each 
point fixed and is called the identity isometry"
[28].

A rotation of 180 degrees (n =  2) is olten relerred to as a 'hall-turn or 

"central symmetry". This order ot rotation is illustrated in Figure 2.5a and 

Fitiure 2.5b. As shown in Figure 2.5a, if a point p is chosen on the motif and 

two-fold rotation about a fixed point is introduced, a unique corresponding 

point p ‘ on the transformed motif is obtained. Where p and p ’ interchange 

positions, when the motif is rotated through 180 degrees about a fixed point, 

such a design is said to have "central symmetry" or "point symmetry". With 

the repeated action of two half-turns, each point in the plane is returned to its 

original position.

A point in the plane might be simultaneously symmetrical under both rotations 

and reflections, if the two types of symmetry operations co-exist. Where this 

is the case, a centre of n-fold rotational symmetry will have n lines ol 

reflection passing through it, mutually separated by hall the minimum 

rotational angle. This phenomenon is illustrated in Figure 2.6. Where an all- 

over pattern does admit rotational symmetry, every centre ol rotation will be 

repeated an infinite number of times in each direction ol displacement at a

12



Figure 2.5(a) Two-fold rotation, with points p and p ’ interchanging position 
after rotation by 180 degrees, (b) An example ot two-fold rotation (or central 
symmetry).

13
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Figure 2.6 Design with three-fold rotational symmetry combined with three 
reflection axes which pass through the three-fold rotation centre.

Three-fold rotational symmetry 
with three reflection axes passing 
through the centre of rotation .

The minimum rotation angle 
denoted by a longer vector 

(120 degree rotation)

Mirrors which Intersect at 
60 degrees .denoted by short 
short vector (180°/ n )

Figure 2.7 An all-over pattern admitting two-fold rotational symmetry. 
Translation vectors (-») indicate the direction ol displacement lor one ol the 
centres of two-fold rotation.



distance equal to the relevant minimum translation distance. By way of 

example. Figure 2.7 illustrates an all-over pattern which admits two-fold 

rotational symmetry. Translation vectors indicate the direction ol 

displacement for one of the centres of two-fold rotation.

2 .2 .3  Reflection

Transformation through reflection can be best imagined by considering the 

action introduced by a mirror with its plane positioned perpendicular to the 

plane of the design. Schattschneider commented:

" A reflection of points in the plane is 
determined by a fixed line, called a mirror line 
or reflection axis; every point not on the line is 
sent to its mirror image with respect to the line 
and every point on the line is left fixed" [33].

From the view point of geometry, an abstract plane has reflection symmetry 

through any reflection line lying in the plane. The symmetry operation which 

sends each point in the plane to its mirror image is knowm as reflection, and 

the mirror line M is termed the reflection axis. This concept is presented in 

illustrative form in Figure 2.8a and Figure 2.8b. In Figure 2.8a each point 

in the plane within the triangle p is reflected across the reflection axis M to 

an equivalent point in the transformed triangle p \  Figure 2.8b shows an 

intuitive example which begins with an arbitrary figure on a piece ot 

transparent paper. On folding the paper along the reflection axis M the 

opposite side of the figure can be traced.

15



Figure 2.8(a) Point p reflected across the reflection axis M to a point p". 
(b) Reflection across a central vertical axis.

16
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( a )

M

(b)



In border patterns a reflection axis can lie along a horizontal line through the 

middle of the border (as in Figure 2.9a and Figure 2.9b) or can occur 

perpendicular to the translation axis of the border (as in Figure 2.9c and 

Figure 2.9d). In the former case there is only one reflection axis and in the 

latter case there will be many reflection axes. With vertical reflection, 

translation will move each vertical reflection line to its equivalent (next but 

one) reflection line, bearing in mind that the border will have two types of 

alternating vertical reflection axes. This is illustrated by Figure 2.9c and 

Figure 2.10.

Where both horizontal and vertical reflection axes are present in a border 

pattern, the point of intersection between each will act as a centre of two-fold 

rotation. In the context of individual motifs which exhibit intersecting 

reflection axes, rotation will also be evident. This latter possibility is 

illustrated in Figure 2.11. Thus assuming n to be an integer greater than 1, 

n intersecting reflection axes will create n-fold rotation.

All-over patterns can also have reflectional symmetry. In this case each 

reflection axis is one of an infinite set of parallel lines (produced by 

translating the lattice unit of the design in two directions across the plane). 

This is illustrated in Figures 2.12a-d. where two-dimensional lattices (a and 

b) each admit more than one reflection axis (indicated by dashed lines). In 

each case rotation is generated. As stated by Washburn and Crowe:

17



Figure 2.9(a) & (b) Border patterns with horizontal reflection, (c) & (d) 
Border patterns with vertical reflection.
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Figure 2.10 Successive vertical reflections of a motif in two alternating 
reflection axes. Two reflections have the same eflect as translating the motil 
the distance of vector T.

r r n m2 mi



Figure 2.11(a) Successive reflections of a motif in alternating reflection axes, 
intersecting at 60 degrees, (b) Successive rotations of a motit through 120 
degrees.

20
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( a)

Generating region, which is bounded 
intersecting reflection axes denoted 
by LI and L2.

(b)
M inimal repeating area ( which consists o f  
two generating regions ) with minimun 
rotation angle denoted by the vector.



Figure 2 . 12(a) & (b) Two-dimensional lattices which admit reflections through 
centres of rotation. (c) & (d) All-over patterns with reflection axes 
intersecting at 90 degrees and 30 degrees respectively.
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"In two-dimensional patterns, the presence of 
tw'o intersecting mirror lines implies the 
presence of a rotation (by an angle which is 
twice the angle of intersection of the two lines) 
about their point of intersection" [34].

Figure 2.12c shows reflection axes intersecting at right angles; two-fold

rotation is thus exhibited. Figure 2.12d shows reflection axes intersecting at

30 degrees; six-fold rotation is thus exhibited.

2 .2 .4  Glide-Reflection

Glide-reflection is best considered as a combination oi translation followed by

reflection or vice versa. This action is often illustrated by the continuous

pattern produced by a person 's footprints. Schattschneider observed:

"A glide-reflection. as its name suggests, is a 
transformation of points in the plane which 
combines a translation (glide) and a reflection.
It may be obtained by a reflection followed 
nonstop by a translation which is parallel to the 
mirror line or by a translation followed by a 
reflection in a mirror line parallel to the 
translation vector" [35].

A schematic illustration of a glide-reflection and an example of a pattern 

which admits glide-reflection are provided by Figures 2.13a and 2.13b 

respectively. A single vector, called the "glide vector" or "glide-reflection 

axis", may be used to denote both the reflection axis and the translation vector 

(indicated by a dashed line and denoted by the letter G). It should be apparent 

that if the glide-reflection vector is repeatedly applied to a motit a continuous



Figure 2.13(a) & (b) Glide-reflection along a glide-reflection vector G.
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border pattern will be generated. The translation vector is parallel to the 

glide-reflection axis and the translation distance (T) is twice the distance of the 

glide (G) (see Figure 2.14).

Any figure in the plane which exhibits one or more of the four geometrical 

motions described above is considered to be symmetrical. Patterns are 

deemed to have a particular symmetry if the motion of that symmetry, when 

applied to the pattern as a whole, transforms each motif into another one 

exactly. Patterns may be classified dependent on the symmetries w’hich they 

admit. The collection of symmetry operations exhibited by a pattern is 

referred to as its"symmetry group".

2.3 Symmetry and its Relevant Terminology: Further Considerations

Having explained briefly the four types of geometrical motions (referred to as 

symmetry operations) above, it is necessary to focus further attention on 

relevant concepts in order that a fuller understanding can be obtained of the 

way in which transformation geometry can impose certain restrictions in the 

creation of repeating patterns. Important terms, and accompanying concepts, 

are considered further below.

24
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Figure 2 . 14(a) A schematic illustration of a periodic border pattern generated 
by repeated glide-reflection by vector G or by translation by distance T. (b) 
A  unit of translation comprising a motif in its initial state and in its glide- 
reflected state, (c) Repeated glide-reflection (or translation after one glide- 
reflection) produces the border pattern.

2G = T

(c)



2 .3 .1  Symmetry Operations and Transform ations

As observed by Woods:

"A figure is said to be symmetrical when it is 
possible to find two or more positions in which 
it is exactly super-posible on itself, and the 
movement necessary to bring the tigure trom 
one such equivalent position to another is said to 
be a symmetry operation of the tigure" [36],

The resultant effect following the action ot each of the tour symmetry 

operations may be referred to as a "symmetry transformation It is common 

to think of a transformation as an action that changes a system trom some 

initial state to some other final state. What is alluded to in the geometrical 

context is a transformation that affects only the geometrical properties ot the 

system. Washburn and Crowe commented that symmetry transformation is 

concerned with only one aspect of design: its structure [37]. From the 

viewpoint of geometry, any transformation that does not bring any change ot 

shape, size or content is a symmetry transformation. Figure 2.15 illustrates 

a motif undergoing symmetry transformation from an initial state to what may 

be referred to as an "image state", the latter being indistinguishable from the 

former (other than its position in the plane). There is ot course an inverse 

operation by which a figure is able to transform trom the image state back to 

its initial state and thus its original position; the inverse ot the initial 

transformation is also a symmetry transformation.

26
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Figure 2.15 Symmetry transformation.

Before transformation 

( initial state of motif)

After transformation 

( image state of motif which is 

indistinguishable from the initial state )

Figure 2.16 Consecutive applications of two symmetry operations.

First symmetry operation Second symmetry operation

( rotation of 90 degree ) ( vertical reflection )

state A state B

( indistinguishable 

from state A )

state C

( indistinguishable 

from state B and A )

Combined symmetry operations ( rotation of 90 degree and vertical 
reflection to produce transformation at state C )



As indicated previously, the general term "symmetry" means invariance under 

one or more transformations. The greater the variety of transformations that 

a system is invariant under, the higher the degree of symmetry. Figure 2.16 

illustrates consecutive applications of two symmetry operations, where the first 

symmetry operation transforms the figure from its initial state A to its image 

state B. The second symmetry operation transforms the ligure further trom 

state B to state C. With each transformation the figure is indistinguishable 

from its previous state (other than a change ol position in the plane). This 

phenomenon was recognised by Rosen, who commented:

28

"When it happens that a transformation affects 
a system in such a way that all images are 
indistinguishable from their respective initial 
states, the system is said to be invariant or 
symmetric under the transformation. This 
transformation is then called an invariance 
transformation or symmetry transformation ot 
the system" [38].

2 .3 .2  Symmetry Group

The collection of symmetries that a pattern possesses is called its "symmetry 

group". Schattschneider stated that a symmetry group is:

" . . . .a  collection of all isometries which, when 
applied to the design or tiling, create an image 
which is superimposed exactly on the original so 
that, to the eye, it seems as though no 
transformation has taken place" [39].



From the viewpoint of geometry, the set of all symmetry transformations of 

a system comprises the symmetry group of the system. The term "group" is 

used in the mathematical sense to imply that this set has certain very definite 

properties. As pointed out by Stevens:

"A symmetry group is a collection of symmetry 
opera tions  that toge ther share three 
characteristics: (1) each operation can be 
followed by a second operation to produce a 
third operation, that itself is a member of the 
group; (2) each operation can be undone by 
another operation, that is to say, tor each 
operation there exists an inverse operation and 
(3) the position of the pattern after an operation 
can be the same as before the operation, that is, 
there exists an identical operation which leaves 
the figure unchanged" [40].

As indicated previously, patterns may be classified by their symmetry group; 

if two patterns have the same symmetry group they are thus of the same 

symmetry class. Finite designs (i.e. individual figures or motifs) may exhibit 

rotational and/or reflectional symmetry characteristics. One-dimensional 

designs (more commonly referred to as border patterns, strip patterns or frieze 

patterns) may exhibit combinations of all four symmetry operations; only 

seven distinct classes are possible. Two dimensional patterns (more 

commonly referred to as all-over patterns) admit translations in the horizontal, 

the vertical and the diagonal across the plane; only seventeen classes are 

possible.



Each of the above design types will be introduced and discussed further in 

subsequent chapters. Proofs for the existence of only seven classes of border 

patterns were provided by Grunbaum and Shephard [41]. Proofs tor the 

existence of only seventeen classes of all-over patterns were provided by 

Martin [42]. A full discussion of notation, classification and pattern 

recognition was provided by Schattschneider [43].

2 .3 .3  Figures, M otifs, Patterns and Tilings

Occasionally the term "figure" is used to refer to an element ot a painting, 

sculpture or diagram, but this usage is limited in the geometric context. More 

formally, a figure may be defined as a "superficial space enclosed by lines", 

an "image", an "illustrative drawing" or more precisely, in the context of 

plane patterns, as a motif or fundamental design element used in the 

construction of a pattern which has some torm ot symmetry.

The term motif is best used to refer to individual designs which allow no 

translations or glide-reflections and may only possess rotations about a single 

point and/or reflections across one or more intersecting reflection axes. As 

recognised by Washburn and Crowe [44] such designs are classified either as 

from the cyclic group, denoted by cn, with n-fold rotational symmetry about 

a fixed point, or from the dihedral group, denoted by dn, with n-told 

rotational symmetry about a fixed point combined with reflectional symmetry 

about n distinct reflectional axes. Motifs may of course be used as individual 

components of repeating patterns.
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Patterns are those designs which admit translations in one or more than one 

direction. Washburn and Crowe described patterns as those designs which 

have translation symmetry and stated that,

" ... a pattern must conceptually extend to 
infinity; otherwise it cannot have translational 
symmetry" [45].

A  pattern is therefore a specific type of design generated by the repetition ot 

a motif or motifs in the plane; in addition to translation, patterns may also 

admit one or more of the other three symmetry operations.

A  tiling may be thought of as a mosaic, a tessellated pavement or a jigsaw 

puzzle which w'hen assembled will fit together without gap or overlap. A 

periodic plane tiling may be produced by successive translations in two 

directions of one or more different shaped tiles. From a geometrical 

viewpoint, the fundamental symmetry characteristics of periodic plane tilings 

and periodic all-over patterns are similar. A generating region of a tiling is 

the smallest element w'hich can tile the plane without gap or overlap. In the 

case of a pattern, motifs may be assembled across the plane, using the same 

symmetry operations as a tiling, but may include a background component as 

a constituent part of the design. See for example Figure 2.17a and Figure 

2.17b.
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Figure 2.17(a) Schematic illustration of a pattern (with background).
(b) Schematic illustration of a tiling (with fitting of individual elements 
without gaps or overlaps).
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Patterns or tilings may, as stated above, be categorised by reference to the 

number of directions by which they admit translations. Border patterns admit 

translations in one direction (and its reverse direction) whereas all-over 

patterns admit translations in two directions (as well as their reverse 

directions) so that the motif repeats horizontally, vertically and diagonally 

across the plane. Further classification is possible in each case by reference 

to the inherent symmetry characteristics. An example of a border pattern is 

provided by Figure 2.18 and an example of an all-over pattern by Figure 

2.19.

2.4  Summary

Geometric symmetry is the study of the four symmetry operations (translation, 

rotation, reflection and glide-reflection) and their consequential 

transformations. A geometric transformation is a transformation with respect 

to position in two-dimensional space, and does not introduce changes in size, 

shape or content. Motifs, when symmetrical, may exhibit only rotational 

and/or reflectional characteristics; border patterns, of which there are only 

seven distinct classes, admit translations in one direction (and its reverse 

direction) and possibly one or more of the other three symmetry operations. 

All-over patterns, of which there are only seventeen distinct classes, admit 

translation in two directions (and their reverse directions) and possible 

combinations of one or more of the other symmetry operations. The 

classification of all three categories of designs is based on the consideration 

of their symmetry characteristics only, and is not concerned directly with the

33



abstract shape or content of units themselves. As stated by Washburn and 

Crowe:

"The symmetry motions describe the specific 
configuration of parts for each design. 
Symmetry does not describe the parts, but how 
they are combined and arranged to make a 
pattern. It is concerned with only one aspect of 
design - its structure" [46],



Figure 2.18 One-dimensional pattern (border pattern).
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3. THE CLASSIFICATION AND CONSTRUCTION OF PRIMARY  

MOTIFS

3.1 Introduction

As indicated previously, motits are those designs which, unlike border 

patterns and all-over patterns, do not admit translation or glide-reflection. 

They are more limited in terms of their symmetry characteristics and may 

exhibit rotational and/or reflectional symmetry only. The objective ot this 

chapter is to further examine the symmetry characteristics ot motits and to 

give also suggestions on their construction.

3.2 An Explanation o f the Relevant Notation

In geometrical terms, motits are referred to as point groups and are 

categorised into two broad classes: cn and dn, where n is some integer. 

Motifs from class cn exhibit n-fold rotational symmetry but no other 

symmetry. Dependent upon the symmetry operations present, symmetrical 

motifs are classified as follows:

d l ,  c2, d2. c3, d3, c4, d4, c5, d5, c6, d 6 .............dn, cn + 1 .

Asymmetrical motifs, as the term implies, have no symmetrical characteristics 

and must therefore be rotated through 360 degrees tor all constituent parts to 

coincide with themselves; such motits are classified as c l  motits. Motits trom 

class dn exhibit n-fold rotational symmetry plus n distinct reflection axes. All 

class d l  motifs admit bilateral symmetry only and do not have rotational 

properties. Figure 3.1 illustrates schematically motits trom class cn and dn.
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Figure 3.1 Schematic illustrations of class cn and class dn motifs.
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A further explanation of the geometrical principles governing the structure of 

motifs is provided below.

3.3 Symmetries in Primary M otifs

The term symmetry applied to a motif is commonly interpreted to mean one 

of two characteristics:

(i) Central (or rotational) symmetry;

(ii) Axial (or reflectional) symmetry.

Where a motif has central symmetry, a fundamental design element of the 

motif may be rotated through a given angle about a fixed point (called a centre 

of rotation) and thus come into coincidence with itself. As stated by Woods:

"We say that a figure has symmetry about a 
point, or central symmetry, when it is such that 
a rotation in its own plane about that point 
through a certain angle leaves the figure exactly 
superposible on its original position" [47],

A class cn motif is said to have n-fold rotational symmetry about a fixed 

point: that is to say. an element of the motif is repeated by successive 

rotations through an angle of (360/ n) degrees about a fixed point and integral 

multiples of that angle. As a result the figure is returned to its original 

position after n such turns about the fixed point (i.e. centre of rotation). 

Geometrically, any motif having a regular circlewise repetition is symmetric- 

under rotation, but only by a certain minimum angle and multiples ol it. This
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minimum angle of rotation will be(360/ n ) degrees where n is an integer, 

greater than or equal to one, and corresponding with the order of rotation. 

The corresponding rotation centre is called a centre of n-fold rotational 

symmetry. A circle is an example of a system that is symmetric under 

rotation by any angle about its centre; such a rotational centre is called a 

"centre of full rotational symmetry" (Figure 3 .2 .a).

The other symmetry operation of relevance in the discussion of symmetry in 

motits is, as mentioned above, axial (or reflectional) symmetry, where a 

reflection axis or series of reflection axes pass through the central point of the 

motif. These conditions are illustrated in Figures 3.2.b and c respectively. 

In the latter case the motif is simultaneously symmetrical under both rotations 

and reflections; it can thus be seen in this case that a centre of n-fold 

rotational symmetry w ill have n-reflection axes passing through it, mutually 

separated by half the minimum rotation angle.

From the viewpoint of geometry, all regular polygons exhibit rotational 

symmetry. The equilateral triangle, the square, the pentagram and the 

hexagram have respectively three-fold, four-fold, five-fold and six-fold 

rotational symmetry (Figures 3.3a, b, c and d). Thus, a regular n-sided 

polygon (called a regular n-gon) has n-fold rotational symmetry about its 

centre. In each case the reflection axes pass through the centre of the figure 

and are separated by half the minimum rotation angle. The number of 

reflection axes will be equal to the number of sides. As stated by Woods:
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Figure 3.2(a) Full rotational symmetry, (b) Axial (or reflectional) symmetry 
with one reflection axis, (c) Axial (or reflectional) symmetry with a series of 
reflection axes.

Full rotational symmetry



Figure 3.3(a) Equilateral triangle with three reflection axes, (b) Square with 
four reflection axes, (c) Pentagram with five reflection axes, (d) Hexagram 
with six reflection axes.
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"In general, it is easy to see that a regular 
polygon has the same number of symmetry axes 
as it has sides; if this is even there is an axis 
through each pair of opposite vertices and one 
bisecting each pair of opposite sides; if odd, an 
axis will pass through each vertex and bisect the 
opposite side perpendicularly" [48],

It should be noted that in order to refer unambiguously to the areas occupied

by motifs, each motif is considered inscribed within a circle, with the centre

of the circle indicated by O and where the radius can be as large as desired.

Recognition charts to aid the identification of class cn and class dn motifs are

provided in a subsequent section. Each motif class is further discussed and

illustrated below'.

3.3.1 Symmetry Operations in Class cn Motifs

As mentioned above, any motif exhibiting regular circlewise repetition is 

symmetrical under rotation, but only by a certain minimum angle of rotation 

and multiples of that minimum angle. The smallest element of such a motif 

which can be rotated by an angle ot( 3 6 0 /n ) degrees is know'n as the 

"fundamental unit" of that motif. The number of times that the fundamental 

unit (or generating unit) comes into coincidence with itself corresponds to the 

older of rotation. The area of two-dimensional space occupied by the 

fundamental unit is known as the "fundamental region" (or generating region) 

of the motif. As mentioned previously, asymmetrical motifs exhibit neither 

rotational nor reflectional symmetry, and constituent elements of the motif can 

only come into coincidence following a full rotation of 360 degrees; such a 

motif is classed as c l  (examples are shown in Figure 3.4).
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Figure 3 .4 Asymmetrical motifs (c l)



Class c2 motifs possess only two-fold rotational symmetry and are comprised 

of two fundamental units. Through rotation of 180 degrees, each fundamental 

unit will come into coincidence with its neighbour. With a further 180 degree 

rotation each unit will be placed in its original position. As a result each 

point on each fundamental unit will have its equivalent point in its 

neighbouring unit. Typical examples of motifs exhibiting two-fold rotational 

symmetry are often those held within a parallelogram system, since each 

vertex of the figure will have a geometrically opposite equivalent vertex. 

Examples are shown in Figures 3.5a. b and c. In each case the generating 

area is half the area of the motif. In Figure 3.5c, one ot the two birds has 

been shaded: two-colour counterchange has thus been introduced. Such motits 

and patterns will be discussed fully in a later chapter.

Class c3 motifs exhibit three-fold rotational symmetry, with rotations ot 120 

degrees, 240 degrees and 360 degrees bringing the fundamental units ot the 

motif into coincidence. Examples are shown in Figure 3.6.

Figure 3.7 shows examples of motifs from class c4, each ot which has a 

minimum angle of rotation of 90 degrees. These motits are theretore 

characterised by the presence of rotations through 90 degrees, 180 degrees, 

270 degrees and 360 degrees.
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Figure 3.5 Class c2 motifs
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Figure 3.7 Class c4 motifs



Class c5 motifs have a minimum rotational angle of 72 degrees, and when 

rotated progressively by this amount fundamental elements will come into 

coincidence with themselves five times. Two examples are shown in Figure 

3.8.

Six-fold rotation characterises c6 motifs, examples of which are shown in 

Figure 3.9. During a complete rotation of 360 degrees the fundamental 

element of the motif will coincide with itself six times (since the minimum 

angle of rotation is 60 degrees). The fundamental region (indicated in Figure 

3.9c) is one-sixth of the motif’s total area.

By way of further illustration. Figure 3.10 is presented as an aid to 

recognition of motifs from class c l  to class c6. Class cn motits are infinite 

in number and extend to the limiting case ot a circle (which, theoretically, has 

a rotational centre of infinite order).
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Figure 3.8 Class c5 motifs
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Figure 3.10 Recognition chart for class cn motifs

Class cn M otifs Symmetry Schematic 
Group Illustrations

c 1

c2

c3

c4

c5

Generating
Region(shaded)



3 .3 .2  Symmetry Operations in Class dn M otifs.

Certain motifs may be simultaneously symmetrical under both rotational and 

reflectional symmetry operations. Where this is the case, then n-fold 

rotational symmetry is combined with n-reflection axes (passing through the 

centre of the motif) mutually separated by half the minimum angle of rotation. 

Such motifs are classified as class dn motifs. The first motit ot the class (i.e. 

d l ) ,  however, has no rotational properties (other than through 360 degrees), 

but instead has a single reflection axis passing through its centre; this 

symmetrical characteristic is often referred to as "one directional bilateral 

symmetry". Each motif of this type has two generating units, each a mirror 

image of the other. Examples are shown in Figure 3.11.

Class d2 motifs, examples of which are shown in Figure 3.12, have bilateral 

symmetry around both their horizontal and their vertical axes. Each motit has 

two reflection axes, intersecting at 90 degrees. The fundamental region is one 

quarter of the total area. The motif may also be produced by rotating a 

bilaterally symmetrical unit (i.e. one half of the motif) through 180 degrees.

Class d3 motifs, examples of which are shown in Figure 3.13 are 

characterised by the presence of three intersecting reflection axes which 

produce bilaterally symmetrical units spaced at 120 degrees (Figure 3.13c). 

The fundamental region is, as a result, one-sixth of a circle. This class of 

motifs may simultaneously be produced by rotations of a bilaterally 

symmetrical unit through 120 degrees, 240 degrees and 360 degrees.
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Figure 3.12 Class d2 motifs
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Figure 3 .13  Class d3 motifs



Class d4 motifs, illustrated in Figure 3.14 are characterised by the presence 

of four-fold rotational symmetry together with four intersecting reflection axes 

(which pass through the centre of four-fold rotation and are intersected at an 

angle of 45 degrees). The fundamental region is one-eighth of the total motit 

area (see Figure 3.14c), and, when reflected, will produce a bilaterally 

symmetrical unit which may be rotated in 90 degree stages to produce the 

whole motif.

Class d5 motifs, illustrated by Figure 3.15, are characterised by the presence 

of five reflection axes and five-fold rotational symmetry. The tundamental 

region, which is one-tenth ol the total motif area (see Figure j .15c), may be 

reflected to produce a bilaterally symmetrical unit (Figure 3.15b) which when 

rotated five times produces the tull motif.

Six intersecting reflection axes, combined with six-fold rotational symmetry, 

characterises d6 motifs. An example is shown in Figure 3.16. The 

fundamental region is one twellth ot the m otii’s area (Figure 3.16c). Motifs 

from this class may also be produced by rotations of a bilaterally symmetrical 

unit (e.g. Figure 3.15b) through 60 degrees, 120 degrees, 180 degrees, 240 

degrees. 300 degrees and 360 degrees.

By way of further illustration. Figure 3.17 is provided as an aid to recognition 

of motifs from classes d l to d6.
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Figure 3.14(a) Class d4 motif, (b) Bilaterally symmetrical unit, 
(c) Fundamental unit.
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Figure 3.15(a) Class d5 motif, (b) Bilaterally symmetrical unit, 
(c) Fundamental unit.
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Figure 3.16(a) Class d6 motif, (b) Bilaterally symmetrical unit, 
(c) Fundamental unit.
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Class dn M otifs Symmetry Schematic Generating
Group Illustrations Region (shaded)

Figure 3 .17  Recognition chart for class dn motifs
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As stated above, a motif from class cn may be produced by circlewise 

repetition of a fundamental unit. The area occupied by the fundamental unit 

is known as the "fundamental region". In the construction of a class c5 motif, 

for example, it is convenient to start with a circular sector or wedge denoted 

by OPQ with an angle of 72 degrees (Figure 3.18a). Under five-fold 

rotational symmetry this wedge will produce the whole circle. If the centre 

point O is joined to P using an arbitrary line or series of lines, the image line 

can be constructed joining O to Q (Figure 3.18b). The area OPSR will be 

equal to the area OQTU. Under five-fold rotation of the fundamental unit, a 

class c5 motif will be created (Figure 3.18c).

An equivalent procedure may also be used in the production of other motifs 

from class cn. By way of further example Figure 3.18d shows a class c3 

motif with alternative fundamental units shown in Figures 3.18e and f. 

Although different in structure, the two units have the same area and under 

rotations through 120 degrees, 240 degrees and 360 degrees the full motif will 

be produced in each case.

As explained previously, certain motifs might be simultaneously symmetric 

under both rotational and reflectional symmetry; such motifs are classed as dn 

motifs. Motifs from this class may be produced by rotating a bilaterally 

symmetrical unit (which consists of two generating units) about a centre of n- 

told rotation. Alternatively the motif may be created by repeated reflections
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Figure 3 . 18(a) A circular wedge OPQ. (b) Construction of areas OPSR and 
OQTU. (c) Five-fold rotation of fundamental unit of c5 motif, (d) Class c3 
motif, (e) Fundamental unit, (f) An alternative fundamental unit.

( c )

/

(e)

(d)

V /

( f )



ot the generating unit in reflection axes which intersect at 180 degrees/n. In 

the construction of a motif from class d3, for example, we can consider a 

circular wedge denoted by OPQ, with lines OP and OQ forming an angle of 

60 degrees (Figure 3.19a). A fundamental unit can be constructed by joining 

P and Q using an arbitrary line (Figure 3.19b). The fundamental unit can 

then be reflected and rotated three times or alternatively undergo successive 

reflections using the intersecting reflection axes (Figure 3.19c).

3.4 Summary

It has been shown that motifs may be classified into one of two general classes 

dependent upon the symmetry operations used in their construction. Class cn 

motifs, of an order higher than c l ,  exhibit rotational characteristics only, and 

class dn motifs, of an order higher than d l ,  exhibit combinations of rotation 

and reflection. By way of illustrative summary, class cn and class dn motifs 

are further illustrated in Figure 3.20.
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Figure 3.19(a) A wedge shape OPQ. (b) P and Q joined by an arbitrary line,
(c) Class d3 motif.
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Figure 3 .20  Class cn and class dn motifs.
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4 THE CLASSIFICATION AND CONSTRUCTION OF PRIMARY 

PERIODIC BORDER PATTERNS AND TILINGS

4.1 Introduction

In this chapter attention is focused on the symmetry characteristics of border 

patterns. These were defined by Schattschneider as designs,

" ........  enclosed between two parallel lines (the
edges of the border), that is, enclosed in a strip 
of finite width and infinite length, and having 
centreline L w'hich is equidistant trom the 
edges." [49]

Using combinations of the four symmetry operations, and ignoring interchange 

of colour, only seven distinct classes of border patterns or tilings are possible. 

Subsequent to directing attention to various terminology and accompanymg 

notation, each of the seven classes are described and illustrated below. In 

addition, an explanation is presented of basic construction techniques for 

tilinus from each ot the seven classes.

4.2 Terminology and Notation for Primary Periodic Border Patterns

As indicated previously, periodic border patterns are those patterns which 

admit translations along a single axis which is parallel to the sides of the 

border; conceptually the pattern is considered to extend to infinity. 

Geometrically, therefore, any system that has infinite regular repetition in one 

direction is symmetric under translations in that direction, but only under
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translation by a certain minimum displacement interval and its multiples. 

Figure 4.1 shows examples of border patterns which are generated by 

translation (T) in one direction . The reverse operation (i.e. -T) will, of 

course, have the same result. Theoretically, both patterns extend to infinity.

It should be obvious, however, that no real system is infinite. No real border 

pattern can thus be extended to infinity under translation. If however a finite 

border pattern can be imagined as being part of an infinite system, and it the 

minimum distance of translation is much smaller than the border s total 

length, then the implications of the termination of the border at either end can 

be ignored.

The minimum unit that is translated may be called the translation unit . This 

is the minimum area of the pattern w'hich when successively repeated by 

translations produces the border pattern or tiling.

The "fundamental region", variously referred to as the "fundamental domain", 

the "generating region" or "asymmetric region , is the smallest region ot the 

pattern which when acted upon by any relevant symmetry operations may then 

be translated to produce the border pattern. As observed by Schattschneider, 

a generating region ot a periodic pattern is the smallest region which when 

acted upon by the relevant set of symmetry operations will produce the whole 

pattern [50]. From the viewpoint of geometric symmetry an infinite variety 

of outlines of generating regions may be possible but the area ot each will be 

the same.

67



Figure 4.1 (a) and (b) Examples of border patterns which are generated by 
Translation T in one direction or by translation -T in the opposite direction.



From the viewpoint of symmetry (and ignoring interchange ot colour) there 

exists only seven distinct classes of border patterns. Such patterns may be 

referred to as "primary border patterns" indicating that interchange ot colour 

is either absent or ignored. The term "counterchange pattern" is used to reter 

to patterns in which colour interchange does occur. The relevant 

mathematical proof which determines the existence ot only seven classes ot 

primary border patterns can be found in Grunbaum and Shephard [51].

A range of different notation has been used by various authors, but the more 

commonly accepted notation (which is also used in this study) has been that 

of the International Crystallographic Union [52]. This notation, which is in 

the four-svmbol form of pxyz, concisely summarises the relevant symmetry 

operations present in all types ot border patterns. The seven border types are 

as follows:

p i l l ,  p l a l , p m l l ,  p l m l ,  p i  12, pma2, pmm2.

Washburn and Crowe [53] summarised the use ot the notation as follows. 

The first symbol (p) prefaces all seven classes of border patterns and tilings. 

Symbols in the second, third and fourth positions indicate the presence of 

vertical reflection, horizontal reflection or glide-reflection, and halt turns 

respectively. More precisely, x is assigned a symbol which specifies a 

geometrical characteristic in the direction which is perpendicular to the 

longitudinal axis of the border; y is assigned a symbol which specifies a
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geometrical characteristic through the central axis, parallel to the sides of the 

border; z corresponds to the presence or absence of two-fold rotation. Two­

fold rotation is the only order of rotation which is applicable in the context of 

border patterns, only this rotational order ensures that the sides of the border 

remain correctly orientated after transformation. The notation system may 

therefore be explained as follows:

x =  m if there exists a vertical reflection axis (perpendicular to

the longitudinal axis of the border);

1 otherwise (no vertical reflection axis present);

y =  m if there exists a longitudinal reflection axis (parallel to

the sides of the border):

a if there exists a longitudinal glide-reflection axis

(parallel to the sides of the border);

otherwise (no reflection or glide-reflection along the

longitudinal axis ol the border);

z =  2 if there exists a half-turn (two-fold rotation centres

which lie on the longitudinal axis of the border);

1 otherwise.



Schematic illustrations for each of the seven primary border pattern classes are 

provided in Figure 4.2. The symmetry characteristics of each are further 

described below.

4.3.1 Translational Symmetry in Class p i l l  Border Patterns and Tilings

From the viewpoint of symmetry, this is the most elementary ot the border 

patterns, since the only operation that the pattern possesses is translation. 

Figure 4.3a shows an asymmetrical motit (ot class c l )  repeated at regular 

intervals along the longitudinal axis by translation distance T. Translation in 

the reverse direction does, ot course, have the same result. The translation 

unit and the fundamental region (i.e. the generating region) in this border 

pattern class only, have the same area. Examples ot this border pattern class 

are provided in Figures 4.3b, c and d.

It was explained previously that patterns and tilings are subject to the same 

geometrical operations. As a general rule, border patterns will contain a 

repeated motif together with accompanying background space, whereas border 

tilings will show a division ol the plane (within the confines of the edges ot 

the border) without gap or overlap.
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Figure 4.2. Schematic illustration of the seven primary classes of border 
patterns

P1 1 1

p 1 a 1

pm 1 1
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Figure 4.3 (a) Schematic illustration of class p i l l  border pattern showing 
translation by T  or -T. (b), (c) and (d) Further examples of border patterns 
from class p i l l .



The construction of a border tiling of class p i l l  is by the repetition of a 

single tile under translation along a central axis. The generating region is a 

tile of minimal area which when repeated successively by translation fills out 

the whole border. In the construction of the single tile for such a border it is 

necessary to ensure that the left side of each tile has the same boundary shape 

as its right side in order to ensure that translation can occur without gaps or 

overlaps. Figure 4.4a illustrates the first stage ot construction where any 

rectangle or parallelogram (in this case denoted by ABCD) may be taken. 

Point A is joined to B by a line or continuous series ot lines. The translation 

unit of the tile is then produced by joining D to C with the same line or 

continuous series of lines as that which joins A to B. The line joining point 

A to point B will thus meet with the line joining D to C without gaps or 

overlaps. The tile is completed by joining A to D and B to C with any simple 

line or series of lines held within the imaginary border edges. Repeated 

translation will thus create the border tiling shown in Figure 4.4b. Two 

further examples are shown in Figures 4.4c and d; each may be produced 

following the procedure above. It should be noted that in each case the tilings 

illustrated are such that the boundary lines joining A to D and B to C allow 

further translation in a second direction; this however is not an essential 

feature of border patterns.

4.3.2 Glide-reflectional Symmetry in Class p la l  Border Patterns and 

Tilings

Glide-reflection, as explained previously, is a combination of translation 

followed by a reflection in a line parallel to the translation axis of the border.
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Figure 4.4 (a) First stage of construction of a border tiling unit, (b) Repeated 
translation to produce border tiling p i l l ,  (c) and (d) Further examples of 
border tilings from class p i l l .

( c )

( d )



In the illustrations which follow, glide-reflection is indicated by a dashed line 

accompanied by the letter G. A schematic illustration of a p la l  border 

pattern is shown in Figure 4.5a. Figures 4 .5b, c and d show further 

examples. In each case class c l  motifs come into coincidence through glide- 

reflection along the length of the border. As indicated in Figures 4.5b and c 

the glide distance is half the translation distance. The generating region, 

which is the smallest fundamental element of the pattern, is half the area of 

the unit of translation.

A border tiling of class p l a l  exhibits the same symmetry characteristics as a 

border pattern, but is produced as a division of the plane (between the two 

edges ot the border) without gap or overlap. In this case also it is necessary 

during construction to ensure that the left side of the translation unit has the 

same boundary shape as its right side. The stages of construction are 

illustrated in Figures 4.6a. b and c and Figures 4.6d. e and f. Beginning with 

a rectangle ABCD. with a glide reflection axis passing through the centre 

trom side AB to side CD, join point A to point B with any non-intersectiny 

line or series of lines. The boundary line A  to B is then translated the 

distance of G and turned over (or reflected) so that the orientation of boundary 

line CD is the reverse (in the vertical sense) of boundary line AB. B is then 

joined to C and A to D using an arbitrary line or series of lines. The 

generating tile has thus been produced. The portion of the tile above the 

glide-reflection axis can be reflected below and translated along the glide-
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Figure 4.5(a) Schematic illustration of a p l a l  border pattern, (b) and (c) 
Border pattern showing translation distance twice glide distance, (d) Further 
example of class p l a l  border pattern.

( a)

( b ) 2G = T
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Figure 4.6(a), (b) and (c) Stages in the construction of a p l a l  border tiling,
(d), (e) and (f) A further example of construction of a p l a l  border tiling.

(a

( c  )

( b )

c
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reflection axis, and the portion of the tile below the axis can be reflected 

upwards and translated along the axis. A tull translation unit has thus been 

produced.

An alternative method of construction is to take rectangle ABCD (Figure 4.6d) 

having centre point O and points P and Q as midpoints ot sides AD and AB 

respectively. A glide vector can be added trom point Q to O. Point P can be 

joined to point B and glide-reflected the same distance as OQ to produce the 

line connecting C to P. Points B and C are then joined by an arbitrary line 

or series of lines. The generating tile has thus been produced, and relevant 

sections can be glide-reflected above and below the axis to produce the tull 

translation unit shown in Figure 4.6e. Several translations ot the unit are 

shown in Figure 4.6f.

4.3.3 Axial Symmetry of Class pm 11 Border Patterns and Tilings

Class pm 11 periodic border patterns, which are shown schematically in Figure 

4.7a, are characterised by the presence of translation combined w'ith 

reflections across two alternating vertical reflection axes (shown in Figure 

4.7b) each perpendicular to the central axis of the border. The generating unit 

is half the area of the translation unit. Further examples are shown in Figures 

4.7c and d.
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Figure 4.7(a) Schematic illustration of a p m l l  border pattern, (b) Two 
alternating reflection axes m l  and m2, (c) and (d) Examples of p m l l  border 
patterns.

(a)
r r n m2 rrn

(b)

(d)



In the construction of a p m l l  border tiling, take rectangle ABCD (Figure 

4.8a). Since the generating region is bounded by two alternating reflection 

axes (perpendicular to the central axis of the border) the left and right hand 

sides of each tile must necessarily consist ot straight lines. That is, AB and 

CD are lines positioned on the reflection axes. A tile is completed by joining 

lines B to C and A to D with a non-intersecting line or series ot lines (Figure 

4.8a). The translation unit is twice the area of the generating tile (show'n in 

Figure 4.8b). Relevant examples are shown in Figures 4.8c and d.

4.3.4 Axial Symmetry of Class p lm l Border Patterns and Tilings

Class p lm l  border patterns have reflection in a longitudinal axis through the 

centre line of the border (shown schematically in Figure 4.9a). The 

generating unit is half the area ol the translation unit (Figure 4.9b).

In the construction of a class p lm l  border tiling, take rectangle ABCD and, 

as shown in Figure 4. l()a, draw a central reflection line (EF). Lines joining 

A to B and C to D must have the same boundary line. In addition lines A to 

E and E to B must be a reflection ot each other as must lines C to F and F to 

D. The tile is completed by joining points B to C with a non-intersecting line 

or series of lines; the resultant shape must then be reflected in the line joining 

A to D. The total unit can then be translated as shown in Figure 4.10b. A 

further example of a p lm l  border tiling is given in Figure 4.10c.
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Figure 4.8(a), (h) and (c) Stages in the construction of a class p m l l  border
tiling, (d) A  further example o f  a p m l l  border tiling.

( a ) ( b )
c

I  y D

( c )

A a  A _----- A------ A------A------ /V
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Figure 4.9(a) Schematic illustration of class p lm l  border pattern, (b) Class 
p l m l  border pattern with generating region shaded, (c) and (d) Further 
examples of class p lm l  border patterns.
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Figure 4 .10(a) and (b) Stages in the construction o f  a class p lm l  border
tiling, (c) Further examples o f  class p lm l  border tilings.

( a)

(b)

( c  )



4.3.5 Two-fold Rotational Symmetry of Class p i 12 Border Patterns and 

Tilings

Class p i  12 periodic border patterns exhibit two-fold rotational symmetry. As 

shown schematically in Figure 4.11a, these patterns are characterised by 

successive translations of motifs with two-fold centres of rotation (c2 motits). 

A  second two-fold rotation centre is thus generated which alternates with the 

first two-fold rotation centre. The generating region is halt the area ot the 

translation unit. Figure 4.11b shows the translation unit of the border pattern 

in Figure 4.11c. A  further example is shown in Figure 4. l id .

In the construction of a border tiling trom this class, take rectangle ABCD 

(Figure 4.12a) with mid-point P of side AB and centrepoint O of the rectangle 

itself. Point B is joined to D by a line or series ot lines passing through point 

O. Point A is joined to B with a line or series of non-intersecting lines 

passing through point P. The tile is completed by joining A to D with a line 

or series of lines. Following rotation through 180 degrees, the completed 

translation unit is shown in Figure 4.12b. The tull tiling (Figure 4.12c) can 

either be completed through successive translation ot this unit or by successive 

two-fold rotation. A further example is shown in Figure 4.12d.
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Figure 4.11(a) Schematic illustration of a class p i 12 border pattern, (b) A 
translation unit showing two-fold rotation, (c) and (d) Examples of class 
p i  12 border patterns.

(a)

(c)

(d)
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Figure 4.12(a), (h) and (c) Stages in the construction of a class p i  12 border 
tiling, (d) Further example of a class p i 12 border tiling.



4.3.6 Reflected Two-fold Rotational Symmetry o f Class pma2 Border 

Patterns and Tilings

Class pma2 border patterns, which are showrn schematically in Figure 4.13a, 

contain all four symmetry operations. Stevens [54] observed that border 

patterns from this class may be generated using one ot tour procedures: by 

successive reflection of a class c2 motif; by successive translation ot two 

alternate class c2 motifs; by successive two-fold rotation ol a class d l  motit, 

by successive glide-reflection ot a class d l motit. The translation unit consists 

of a generating unit which is reflected, rotated and reflected again. The 

generating unit is one quarter the area ot the translation unit (indicated in 

Figure 4.13b). Further examples are shown in Figures 4 .1 jc  and d.

In the construction of a border tiling trom this class, begin with a rectangle 

ABCD (Figure 4.14a) having points EFG and H as midpoints of sides AB, 

BC, CD and DA respectively. The line connecting points H and F is a 

reflection axis. Point A  is joined to point B by a non-intersecting line or 

series of lines passing through the two-told rotational centre at midpoint E. 

The line joining H to F acts as a reflection axis. Join B to F by a line or 

series of lines. A generating tile has thus been created. Through reflection 

and two-fold rotation, the translation unit can be produced (Figure 4.14b). 

The completed tiling is shown in Figure 4 . 14c and a further example is shown 

in Figure 4 . 14d.
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Figure 4.13(a) Schematic illustration of a class pma2 border pattern, (b) 
Illustration showing that the generating region is one quarter of the area of 
translation, (c) and (d) Examples of class pma2 border patterns.
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Figure 4.14(a), (b) and (c) Stages in the construction o f  a class pma2 border
tiling, (d) Further example o f  a class pma2 border tiling.

( c )



4.3.7 Central-axial Symmetry of Class pmm2 Border Patterns and 

Tilings

Class pmm2 border patterns (Figure 4.15a) have a horizontal reflection axis 

which is intersected at regular points by two alternating perpendicular 

reflection axes. Two-fold rotation centres are thus established in the 

intersection points of the axes. The generating unit is one quarter the area ot 

the translation unit. Relevant examples are shown in Figures 4.15b, c and d.

In the construction of a border tiling trom this class, take rectangle ABCD 

(Figure 4.16a). Since the generating unit is bounded by three reflection axes 

(two perpendicular and one horizontal) the left and right sides of the tile and 

the bottom edge must be a wedge with a straight line (i.e. sides AB, CD and 

DA). The tile is completed by joining point B to point C by a line or series 

of lines. Under horizontal and vertical reflections the translation unit may be 

created (Figure 4.16b). The completed tiling is shown by Figure 4.16c. A 

further example is provided by Figure 4.16d.

4.4 Summary

The symmetry operations of translation, rotation, reflection and glide- 

reflection may be combined to produce a total of seven (and only seven) 

primary classes of periodic border patterns or tilings. Border tilings from 

each class may be produced by first constructing the generating unit, as 

described under each of the relevant sections above. Further descriptions of 

the seven classes of border patterns were provided by Woods [55], Crowe
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[56], Budden [57] Cadwell [58], Coxeter [59], Stevens [60], and Hann and 

Thomson [61]. By way of summary, recognition charts for each class of 

periodic border pattern and tiling are provided by Figures 4.17 and 4.18 

respectively. The flow-diagram in Figure 4.19, which was reproduced from 

Hann and Thomson [62], is a convenient aid to the identification of a border 

pattern or tiling's specific symmetry class.
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Figure 4 . 15(a) Schematic illustration of a class pmm2 border pattern, (b), (c) 
and (d) Examples of class pmm2 border patterns.

( a)

>--------——<

( b )

( d )
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Figure 4 .16(a), (b) and (c) Stages in the construction o f  a class pmm2 border
tiling, (d) A  further example of a class pmm2 border tiling.

( a ) (b)

( c )

( d )



Symmetry Translation Generating Border pattern
Class unit region
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Figure 4 .17  Recognition chart for the seven classes of border pattern.

P1 1 1

p 1 a

pm 1

1/2 T

1/2 T

p1 12

pma2

1/2 T

1/2 T

1/4 T

pmm2 1/4 T
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Figure 4 .18  Recognition chart for the seven classes o f  border tilings.

Symmetry Class Translation unit with
generating regions ( shaded )

Border tiling

P1 1 1

p 1 a 1

pm 11 ■ED Cq
p l m l

p 1 12

pma2

pm m 2



Figure 4.19 Flow-diagram to aid the identification of a border pattern or 
tiling’s symmetry class.



5 THE CLASSIFICATION AND CONSTRUCTION OF PRIMARY 

ALL-OVER PATTERNS AND PERIODIC PLANE TILINGS

98

5.1 Introduction

As mentioned previously patterns may be grouped according to the number of 

directions in which they admit translations. It should be apparent from the 

previous chapter that translational symmetry acts on border patterns or tilings 

in one direction only. With all-over patterns translation is not confined to a 

single direction but rather it extends to two independent non-parallel 

directions. Schattschneider commented:

"... given a periodic border design generated by 
a translation T l ,  if we take a second translation 
T2 whose vector is not parallel to T l  and 
repeatedly apply T2 and T l  to the border, then 
a ’wallpaper' pattern is created in which the 
motif repeats regularly in two directions, and the 
design extends throughout the plane. Such a 
design is called a two-dimensional (or planar) 
periodic design, generated by T l  and -T l and 
T2 ..."[63]

In addition to exhibiting translation in two independent directions, one or more 

than one of the other three symmetry operations may be used in the 

construction of all-over patterns. Figure 5_. 1 shows a two dimensional surface 

filled with a series of equilateral triangles. There are several ways by which 

the equilateral triangle can come into coincidence with itself. If moved by a 

translation distance denoted by vector AB or vector AC, the triangle will come
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Figure 5.1 Possible symmetry operations in a two-dimensional surface.



into coincidence with itself. If the tiling is rotated through 60 degrees about 

point O, it is mapped onto itsell by six-lold rotation. Likewise, il reflected 

across reflection axes AB or BC or CA the design can also be generated.

All-over patterns may thus be considered as those patterns in which a motit 

(or motifs) is translated in two independent non-parallel directions across the 

plane. When combined with one or more ot the other symmetry operations 

a total of seventeen (and only seventeen) classes of all-over pattern classes are 

possible. Proof for the existence of only seventeen distinct all-over pattern 

classes was provided by Schwarzenberger [64], Martin [65], Weyl [66], 

Coxeter [67] and Jaswon [68],

With the above considerations in mind the objective ot this chapter is to 

present an explanation of the geometrical principles governing the 

classification and construction ot all-over patterns and tilings.

5.2 An Explanation of the Relevant Notation

In addition to combinations of the four symmetry operations, a further 

structural element is present in all-over patterns and tilings: a tramework ot 

corresponding points which forms a regular lattice. Choosing any arbitrary 

point in a motif, an infinite set of images of that point will be obtained 

following translation. These corresponding points will be located at identical 

positions on motifs and will thus form a regular lattice ot points. The
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construction of a plane lattice (or plane net) was described by Woods as

101

follows:

"Start with a chain of points with interval a in 
some straight line, and ... make each of these 
points a point of another chain, of interval b, 
making an angle 0 ,  say, with the first chain, we 
thus obtain an array of points which is such that 
any translation equal to a multiple of a in the 
direction of the first chain, or to a multiple of b 
in the direction of others, moves the tigure into 
an equivalent position. Such an array is called 
a net of points." [69]

An illustrative example is provided by Figure 5.2. When translated in 

direction T l  arbitrary point PI will thus produce a linear row of equidistant 

points P l ( i ) ,  P2 (i) ,  P 3 (i)  etc. If each point in this row is translated in the 

direction of T2 a two-dimensional plane lattice ot points can thus be produced.

The lattice points of a given pattern may be connected to produce lattice units 

(generally referred to as unit cells) of the same shape, size and content. As 

indicated by Figure 5.3, various unit cells may be produced from a given 

lattice structure dependent on how the points in the lattice are joined. In each 

of the illustrations shown in Figure 5.3, translation of the unit cell in two 

independent non-parallel directions will produce the tull lattice structure.
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Figure 5 .2  Construction o f  a two-dimensional lattice.

Tl



Figure 5.3 Different types of unit cell from the same lattice types.
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There are five distinct lattice types: parallelogram, rectangular, rhombic, 

square and hexagonal (the unit cell associated with this latter lattice type is a 

rhombus consisting of two equilateral triangles). The five lattice types (kndwn 

as Bravais lattices) together with their corresponding unit cells are shown in 

Figure 5.4. It can be seen that the rhombic lattice unit, unlike the other 

lattice units, is centred and has a diamond shaped cell held within a rectangle 

(denoted by dashed lines) so that reflection axes can be positioned at right 

angles to the sides of the enlarged cell, which holds one lull repeating unit 

(within the diamond shaped cell) and a quarter of a repeating unit at each ot 

the enlarged cell corners.

Figure 5.5 shows schematic illustrations of unit cells tor each of the seventeen 

all-over pattern classes, together with an indication ot the relevant symmetry 

operations characteristic of each. Associated with each class is the widely 

accepted notation of the International Crystallographic Union. A shortened 

form of the notation (in brackets) is also provided in Figure 5.5. Table 5.1 

lists the unit cell type conventionally associated with each ot the seventeen

pattern classes.

The notation for each of the seventeen all-over pattern classes consists of tour 

symbols pxyz or cxyz, which identity the conventionally chosen unit cell, the 

highest order of rotation and other fundamental symmetries. The first symbol 

of the four symbol notation, either a letter p or a letter c, indicates whether 

the lattice cell is primitive or centred. Primitive cells which are
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Figure 5 .4  The five lattice types.

Source: Derived from D. Schattschneider, The Plane Symmetry
Groups: Their Recognition and Notation’, American 
Mathematical Monthly, vo l.85, 1978, pp437-450.
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Figure 5.5 Schematic illustrations of unit cells for each of the seventeen 
classes of all-over patterns.
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Table 5.1 Lattice Types for the Seventeen Classes of All-over Patterns.

Full International Notation 

Pi
p lm l  
p lg l  
c lm l  
p211 
p2mm 
p2mg 
p2gg 
c2mm  
P3
p3ml
p31m
p4
p4mm 
p4gm 
p6 • 
p6mm

Lattice Type

parallelogram
rectangular

'rectangular
rhombic
parallelogram
rectangular
rectangular
rectangular
rhombic
hexagonal
hexagonal
hexagonal
square
square
square
hexagonal
hexagonal



present in fifteen of the seventeen all-over pattern classes, contain the 

minimum area of the pattern which may be used to generate the full pattern 

using translational symmetry only. In the remaining two all-over pattern  ̂

classes, the lattice cell is of the rhombic variety and is centred; each of these 

two all-over pattern classes is therefore prefaced with the letter c.

The second symbol x of the four symbol notation denotes the highest order ot 

rotation in the pattern. As pointed out by Schattschneider [70] only rotations 

of orders two (180 degrees), three (120 degrees), four (90 degrees), or six (60 

degrees) may generate all-over patterns. Centres ot five-fold, seven-told or 

higher orders of rotation are geometrically not admissible in the context of all- 

over patterns. This restriction, which is often referred to as the 

"crystallographic restriction", is discussed further by Stevens [71]. Where no 

rotation is present in an all-over pattern, x equals 1.

The third symbol y denotes a symmetry axis normal to the x-axis ot the cell 

(i.e. at right angles to the left side of the cell). The letter m (tor mirror) 

indicates an axis of reflection. The letter g (for glide) indicates the presence 

of a glide-reflection axis, and 1 indicates that no reflections or glide- 

reflections are normal to the x-axis.

The fourth symbol z indicates the presence of a symmetry axis at angle a  to 

the x axis, with a  dependent on x, the highest order ot rotation. The angle 

a  equals 60 degrees for x equals 3 or 6; a  equals 45 degrees tor x equals 4,
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(x equals 180 degrees for x equals 1 or 2. The letter m indicates that the 

relevant symmetry axis is an axis of reflection. The absence of a symbol in 

the third and fourth positions indicates that the pattern admits no reflections , 

or glide-reflections. Schematic illustrations for each of the seventeen classes 

of primary all-over patterns, together with the relevant notation are provided 

in Figure 5.6. Each pattern class is further described and illustrated below, 

under headings relating to orders of rotation. As mentioned previously, all- 

over tilings (sometimes referred to as periodic plane tilings) are governed by 

the same symmetry rules as patterns. The construction ot a tiling in each 

class is explained and illustrated.

5.3 The Classification and Construction of All-over Patterns and 

Tilings Without Rotational Symmetry

5.3.1 Class pi patterns and tilings

From the viewpoint of geometrical symmetry, class p i  all-over patterns are 

the most straightforward in terms of analysis, classification and construction. 

The unit cell conventionally chosen is of the parallelogram lattice type, and 

the pattern does not exhibit reflections or glide reflections. In view of the fact 

that the highest order of rotation is one (i.e. the pattern must be rotated 

through 360 degrees for individual elements to coincide with themselves) the 

pattern is considered to have no rotational properties. The unit cell and the 

fundamental region are of equivalent area and the pattern is generally 

generated by translations of a c l  motif in two independent non-parallel
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Figure 5.6 Schematic illustrations for each of the seventeen classes of all-over 
patterns.
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directions. Relevant illustrations are shown in Figure 5.7. Figure 5.8a shows 

the conventionally chosen unit cell (a parallelogram), Figure 5.8b shows a 

schematic illustration of the pattern class, Figure 5.8c shows a notional , 

translational unit and Figure 5.8e shows a p i  all-over pattern comprised ot a 

fish shape and a bird shape. Unit cells are constructed by choosing tour 

corresponding points in the pattern; two ditterent unit cells are indicated in 

Figure 5.8e each containing the necessary elements to generate the whole 

pattern through translation in two independent non-parallel directions. Figure 

5.8d shows four different generating regions for the pattern, each of the same

area.

In the construction of a p i  tiling take a parallelogram or rectangular lattice 

type unit cell such as ABCD (Figure 5.9a). Join point A to point B with a 

non-intersecting line or series of lines as shown. Connect point A to point D, 

again using a non-intersecting line or series ot lines as shown. Translate the 

line or lines joining A and B along the vector, denoted by T l ,  to position DC, 

and translate the line or lines joining A to D in the direction of the vector 

denoted by T2 to position BC. The generating unit is thus complete and can 

be translated in two independent directions to complete the pattern (Figure 

5.9b).

I l l
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Figure 5 .7  Class p i  all-over patterns.



Figure 5.8 Lattice unit, schematic illustration and translation units for class 
p i all-over patterns.
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Figure 5 .9a and b The construction of a p i  periodic plane tiling.
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5.3.2 Class p lg l  (pg) patterns and tilings

Class p lg l  all-over patterns are generally generated by two parallel glide- 

reflections of a c l  motif. The corners of the unit cell (which is a rectangular 

lattice type cell) tall on glide-reflection axes. The highest rotational order is 

one and the tundamental region is halt the area of the unit cell. Examples ot 

class p l g l  all-over patterns are show-n in Figure 5.10. Schematic illustrations 

of the lattice type and the pattern class are shown in Figures 5.11a and b 

respectively. Figures 5.11c and d show translation units, in each case the 

translation vector is twice the length ot the glide vector.

In the construction of a p lg l  tiling, take two adjoining rectangles ABCD and 

CDEF, having M and N as mid-points of sides AB and CD respectively 

(Fiuure 5 . 12a). Join point A to B and point B to C with non-intersecting lines 

as shown. Join AD with a boundary line identical to the line joining B to C. 

The constructed unit can then be translated by distance G and reflected across 

the two-way (glide) reflection line MNO, with all elements above reflecting 

downward and all lower elements reflecting upward. The point A will thus 

have its image at C, the point B its image at D, the point C its image at F and 

the point D its image at E. The translation unit (which is twice the area of the 

generating unit) is thus complete and when translated in two independent non­

parallel directions will produce the tiling shown (in diminished torm) in 

Figure 5.12c. A further example of p l g l  tiling construction is shown in 

Figure 5.12b where boundary lines AE and EF are constructed. The line 

joining A to E is translated by distance T l  to produce
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Figure 5.10 Class p l g l  primary all-over patterns.
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Figure 5.11 Lattice unit, schematic illustration and translation units for p lg l
all-over patterns.
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Figure 5.12 The construction of p l g l  periodic plane tilings.



a boundary line connecting D to F. The unit so far constructed is translated 

by distance G (between points M and N) and then two-way (glide) reflected 

in line NO thus producing a unit which when translated in two independent 

directions will produce the tiling shown in Figure 5.12d.

5.3 .3  Class p lm l  (pm) patterns and tilings

Class p lm l  all-over patterns are characterised by two alternating and parallel 

reflection axes and have rectangular lattice units. The unit cell corners tall 

on reflection axes and the pattern is thus generated by two parallel reflections 

and subsequent translation in two independent non-parallel directions. In the 

case of this pattern class the fundamental region is halt the area of the unit 

cell and is bounded on opposite sides by reflection axes. An example from 

this pattern class is shown in Figure 5.13. The unit cell (with double lines 

indicating the position of reflection axes) and a schematic illustration ot the 

pattern class are shown in Figures 5.14a and b respectively. Figure 5.14c 

shows a translation unit with reflection axes m l and m2, and Figure 5.14d 

shows the unit translated to produce the pattern.

To construct a p l m l  tiling, take rectangle ABCD with mid-points E and F to 

sides BC and AD respectively (Figure 5.15a). Join B to E with a non­

intersecting line as shown, and reflect this line to produce boundary line EC. 

Join A to F and F to D in imitation of boundary lines BE and EC respectively.

119



120

Figure 5.13 A class p lm l  primary all-over pattern.
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Figure 5.14 Lattice unit, schematic illustration and translation unit for a p lm l
all-over pattern.
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Figure 5.15 The construction of a p lm l  periodic plane tiling.

A
T 2

(a)

D

Ti

(b|



The translation unit is thus complete and can be used to produce the pattern 

shown in Figure 5.15b.

5.3 .4  Class c lm l  (cm) patterns and tilings

Class c l m l  all-over patterns are characterised by a unit cell of the rhombic 

lattice type which, as mentioned previously, contains a diamond-shaped cell 

held within a larger rectangle. The pattern is generated by a reflection, at 

riti,ht angles to the enlarged cell, and by a parallel glide-reflection. Reflection 

axes therefore alternate with glide-reflection axes. The enlarged cell contains 

two repeatinti units, comprised ot quarter units at each ot the tn la rg td  cell 

corners and one tull repeating unit within the diamond shape. An example 

from this pattern class is provided by Figure 5.16.

Fiuures 5 . 17a and b show the rhombic lattice unit and a schematic illustration 

of the pattern class. Figure 5.17c shows the enlarged unit cell ol a pattern 

with two repeating units: one tull repeating unit within the diamond shape 

and quarter units at each of the enlarged cell corners. Alternating reflection 

axes (denoted by the letter m) and glide-reflection axes (denoted by the letter 

g) are also shown. Figure 5 .17d shows a section of the pattern.

In the construction of a c l m l  tiling, take a diamond shaped cell ABCD held 

within a larger rectangle (Figure 5.18a). Join points A and B with a non­

intersecting line as shown. This boundary shape is then reflected to join B to
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Figure 5.17 Lattice unit, schematic illustration and translation unit for a c l m l
all-over pattern.
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Figure 5.18 The construction of a c l m l  periodic plane tiling.
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C. Using identical curves A is joined to D and D to C. The enlarged unit 

cell may be translated in two non-parallel independent directions to produce 

the pattern shown in Figure 5.18b.

5.4 The Classification and Construction o f  All-over Patterns and 

Tilings With Two-fold Rotational Symmetry

Two-fold rotational symmetry combined with other symmetry operations is 

evident in a total of five all-over pattern classes: p211, p2gg, p2mg, p_mm 

and c2mm. Each class is examined briefly below.

5.4.1 Class p211 (p2) patterns and tilings

Class p 2 11 all-over patterns contain repetitions ot tour ditterent two-fold 

rotation centres, with each similar rotation centre having the same orientation. 

A parallelogram lattice type forms the unit cell which has corners on similar 

two-fold rotational centres and is twice the area of the generating unit (or 

fundamental region). Further two-fold rotational centres are located in the 

centre of the unit cell and on each of its sides. An example of a pattern from 

this pattern class is provided in Figure 5.19. The unit cell and a schematic 

illustration of the pattern class are shown in Figures 5.20a and b respectively. 

Figure 5.20c shows the primitive cell of a p211 pattern together with 

constituent centres of two-fold rotation and directions of translation.
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Figure 5.19 A class p211 primary all-over pattern.
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Figure 5.20 Lattice unit, schematic illustration and translation unit for a p211
all-over pattern.

(b)
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In the construction of a p211 tiling, take a parallelogram (or rectangle) lattice 

unit with two-fold rotational points shown in either Figure 5.21a or Figure , 

5.21c. In each case join B to C with a line or series ot lines which have two­

fold rotational symmetry around the two-told rotational centre midway 

between B and C. An identical boundary line joins A to D in each 

illustration. Subsequently join point A  to the two-told rotational centre located 

at mid-point along side AB. This line then undergoes two-fold rotation thus 

connecting to point B. An identical boundary line joins D to C in each case. 

Each unit cell can then be translated in two independent non-parallel directions 

to produce the tilings shown in Figures 5 . 2 1 b  and d.

5.4.2 Class p2gg (pgg) patterns and tilings

Class P2gg patterns contain glide-reflection axes which intersect at right angles 

within a rectangular lattice cell. The fundamental region is one quarter of the 

area of the unit cell, and the highest order of rotation is two. An example 

from this pattern class is shown in Figure 5.22. The appropriate lattice cell 

unit and a schematic illustration of the pattern are shown in Figures 5.23a and 

b respectively. Figure 5.23c indicates the relative position of glide-reflection 

axes and points of two-lold rotation in a section of the pattern shown in 

(diminished) form in Figure 5.23d.
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Figure 5.21 The construction of a p211 periodic plane tiling.
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Figure 5.22 A  class p2gg primary all-over pattern.
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Figure 5.23 Lattice unit, schematic illustration and translation unit for a p
all-over pattern.
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In the construction of a P2gg tiling take the unit cell shown in Figure 5.24a. 

Divide the cell in four by joining the mid-points on opposite sides thus . 

producing four generating regions. Join A to B and B to C with arbitrary 

lines as shown. These constructions are repeated by means of existing 

symmetries so that boundary line CD is a glide-reflection of boundary line 

AB. and AD is a glide-reflection of BC. The generating tile is thus produced, 

and the unit cell can be readily constructed using further existing symmetries. 

The unit cell is subsequently translated in two independent non-parallel 

directions to produce the full tiling shown in Figure 5.24b. A variant of the 

p2gg pattern shown in Figure 5.23d is shown in Figure 5.24c.

5.4 .3  Class p2mg (pmg) patterns and tilings

Class p2mg all-over patterns have two parallel reflection axes which alternate 

with each other and intersect at right angles with parallel glide-reflection axes. 

The highest order of rotation is two-fold and all centres of rotation art on 

glide-reflection axes. Reflection axes pass between centres of rotation. The 

area of the generating unit is one quarter of the unit cell area. Examples from 

this pattern class are provided in Figure 5.25. The unit cell and the pattern 

are shown schematically in Figures 5.26a and b respectively. Translation 

units are shown in Figures 5.26c and d. Figure 5.26e shows a section ot a 

pattern (generated from the unit cell illustrated in Figure 5.26d) with relevant 

symbols to indicate reflection, glide reflection and two-fold rotation.
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Figure 5.24 The construction of a p2gg periodic plane tiling.
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Figure 5.25 Class p2mg primary all-over patterns.
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Figure 5.26 Lattice unit
all-over patterns.
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In the construction of a p2mg tiling, take lattice unit ABCD (Figure 5.27a) 

with other points marked E to K. Join point H to points E, F and I as 

indicated. Using existing symmetries point J can be connected to points F, G 

and K as shown, and ultimately the full lattice unit can be constructed using 

existing symmetries. Figure 5.27b shows the fully translated tiling (in 

diminished form). Figure 5.27c illustrates a P2mg tiling derived from a 

pattern shown previously.

5.4 .4  Class p2mm (pmm) patterns and tilings

Class p2mm all-over patterns have rectangular lattice type unit cells. The 

generating region (or f u n d a m e n ta l  uni t )  is one quarter of the unit cell area. 

The highest order of rotation is w o  and the pattern is generated by reflection 

in four sides of a rectangle- Tw o types of horizontal reflection axes alternate 

with each other, as do two types of vertical reflection axes. Two-fold 

rotational points are present at each of the reflection axes intersections. The 

unit cell is constructed by joining four rotational centres of the same 

orientation. Examples of p2mm patterns are shown in Figure 5.28. The 

relevant lattice unit and a schematic illustration of the pattern are shown in 

Figures 5.29a and b respectively. Figures 5.29c and d show translation units 

of two p2mm patterns. When translated in two independent non-parallel 

directions the pattern is generated.
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Figure 5.27 The construction of a p2mg periodic plane tiling.
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Figure 5.28 Class p2mm primary all-over patterns.
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Figure 5.29 Lattice unit, schematic illustration and translation units for p2mm
all-over patterns. A generating region used in the construction of a p2mm

pattern or tiling.



The construction of a p2mm tiling is straightforward and requires the 

construction of a generating region which is one quarter of the unit cell area 

and bounded by reflection axes with two-fold rotation centres at each corner. 

The tiling is generated by simple translation in two independent non-parallel 

directions (Figure 5.29e).

5.4.5 Class c2mm (cmm) patterns and tilings

Several symmetry characteristics are exhibited by class c2mm all-over 

patterns. A centred cell, whose corners and centre tall on two-told rotational 

centres, is used to generate the pattern. Parallel reflection and glide-reflection 

axes alternate with each other in both vertical and horizontal directions. Two­

fold rotation centres are present at both glide-reflection axes intersections and 

reflection axes intersections. An example from this pattern class is shown in 

Figure 5.30.

Although the diamond shaped primitive cell can be used in the generation of 

a c2mm pattern, convention dictates that the chosen minimal repeating area 

of the pattern is of the enlarged rectangular lattice type as shown in Figure 

5.31a. This enlarged cell, as explained previously, holds one full repeating 

unit (within the diamond shaped cell) and a quarter ol a repeating unit at each 

of the enlarged cell corners. A schematic illustration of the pattern is shown 

in Figure 5.31b. Figure 5.31c shows a translation unit of a class c2mm all- 

over pattern. Figure 5.31d shows a class c2mm tiling with the relative 

positions of symmetry elements indicated.
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Figure 5.30 A class c2mm primary all-over pattern.
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Figure 5.31 Lattice unit, schematic illustration and a translation unit for a
c2mm all-over pattern.



In the construction of a class c2mm periodic tiling, take rectangle ABCD with 

mid-points EFGH and join point E to point F allowing for two-fold rotation 

at point I. Join points A to B, B to C, C to D, D to A, F to H and E to G 

as shown. The inner sections of the tiling are complete by reflection of the 

boundary line EF in existing axes. The completed tiling is shown in Figure 

5.32b.

5.5 The Classification and Construction o f  All-over Patterns and 

Tilings With Three-fold Rotational Symmetry

5.5.1 Class p3 patterns and tilings

Class p3 all-over patterns have an hexagonal lattice type unit cell and a highest 

order of rotation of 3. Three distinct three-fold rotational centres are present. 

The area of the fundamental region is one third of the unit cell area. An 

example of a pattern from this class is shown in Figure 5.33. The lattice unit 

and a schematic illustration of this pattern class are shown in Figures 5.34a 

and b respectively. The translation unit of the pattern (with example shown 

in Figure 5.34c) can be translated in the direction of vectors T l  and T2 to 

produce the pattern shown in Figure 5.34d. Alternatively the pattern may be 

generated under translation using the hexagonal lattice unit. Figure 5.34e 

shows the alternative translation unit which is three times the area ot the 

primitive unit cell.
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Figure 5.32 The construction of a c2mm periodic plane tiling.

(b)



Figure 5.33 A class p3 primary all-over pattern.
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Figure 5.34 Lattice unit, schematic illustration and translation units for a p3
all-over pattern.
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In the construction of a class p3 periodic tiling using the primitive unit cell, 

join centres of three-lold rotation as shown in Figure 5.35a. Boundary lines 

AB, BC, CD and DA are identical, as are boundary lines AE, BE and ED, 

and BF, CF and DF. A generating region is thus created within boundary 

lines BE. ED. DF and FB (shown in Figure 5.35b). The fully translated 

pattern is shown in Figure 5.35c (in diminished form).

5.5 .2  Class p3ml patterns and tilings

Class p3m l all-over patterns have an hexagonal lattice type unit cell and a 

highest order of rotation of 3. The pattern class combines three-fold rotational 

centres with reflection axes. Each three-fold rotational centre is positioned at 

the intersection of reflection axes. A reflection axis is positioned along the 

longest diagonal of the unit cell. The generating region (or lundamental unit) 

is one-sixth the area of the unit cell. An example is shown in Figure 5.36.

The lattice unit and a schematic illustration of the pattern class are shown in 

Figures 5.37a and b respectively. Translation units, which may be either the 

shape of the primitive cell or hexagonal shape (shown to slightly different 

scale in Figures 5.37c and d respectively). Each type of translation unit will 

contain a total of six generating units (Figure 5.37e).
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Figure 5.35 The construction of a p3 periodic plane tiling.
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Figure 5.36 A class p3m l primary all-over pattern.
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Figure 5.37 Lattice unit, schematic illustration and translation units for a
p3m l all-over pattern.

(b)



A class p3m l periodic plane tiling of the simplest form can be produced by 

joining all points of three-fold rotation in the unit cell as shown in Figure 

5.38a. The generating region is one-sixth the total unit cell area (shown in 

Figure 5.38a). When the translation unit (Figure 5.38b) is translated in two 

independent directions the simple tiling shown in Figure 5.38c is produced.

5.5 .3  Class p31m patterns and tilings

Class p31m all-over patterns have an hexagonal lattice type unit cell and a 

highest order of rotation of three. A  reflection axis is positioned along the 

shortest diagonal of the unit cell and on each side of the unit cell. Not all 

three-fold rotational centres are on reflection axes. The fundamental region 

is one-sixth of the unit cell area. An example of a pattern from this class is 

shown in Figure 5.39. The unit cell and a schematic illustration of the pattern 

is shown in Figures 5.40a and b respectively. A unit cell of a p31m pattern 

is shown in Figure 5.40c. When translated in two independent non-parallel 

directions the pattern is produced. The generating region (shaded area in 

Figure 5.40d) is one-sixth of the area of the unit cell. The pattern may also 

be obtained by translation of an enlarged hexagonal shaped translation unit 

(which consists of three primitive cells). This is indicated in Figure 5.40e.

In the construction of a p31m periodic plane tiling take an hexagonal 

(equilateral triangles) lattice unit (Figure 5.41a). Three-fold rotational points 

are positioned at the angles and in the middle of each equilateral triangle. A 

reflection axis is positioned along the shortest diagonal of the unit cell as well
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Figure 5.38 The construction of a p3m l periodic plane tiling.
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Figure 5.39 A class p31m primary all-over pattern.
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Figure 5.40 Lattice unit, schematic illustration and translation units for a
p31m all-over pattern.





as on each side of the unit cell. Join the centre of the triangle to one of its 

three vertices with an arbitrary line or series of lines as shown. Using three­

fold rotation and reflection the unit cell can be readily generated (Figure 

5.41b). By translation in two independent non-parallel directions the periodic 

tiling may be generated (Figure 5.41c).

5.6 The Classification and Construction o f  All-over Patterns and 

Tilings With Four-fold Rotational Symmetry

5.6.1 Class p4 patterns and tilings

Class p4 all-over patterns have a square lattice type unit cell, no reflection 

axes and a highest order of rotation of four. Two-fold and four-fold rotational 

centres alternate in both horizontal and vertical directions. Centres of four­

fold rotation are positioned at the centre and at each corner of the unit cell. 

A centre of two-fold rotation is positioned on each side of the unit cell. An 

example of a p4 pattern is provided by Figure 5.42. The unit cell of the 

pattern is based on a square shaped lattice as shown in Figure 5.43a. A 

schematic illustration of the pattern class is given in Figure 5.43b. A  unit cell 

of the pattern shown in Figure 5.42 is given in Figure 5.43c.

In the construction of a p4 periodic plane tiling take a square unit cell, as 

shown in Figure 5.44a, and join any centre of four-fold rotation to a centre 

of two-fold rotation using an arbitrary line or series of lines. Using existing 

symmetries the unit cell can be readily generated.
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Figure 5.42 A class p4 primary all-over pattern.
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Figure 5.43 Lattice unit, schematic illustration and translation unit for a p4
all-over pattern.



Figure 5.44 The construction of a p4 periodic plane tiling.
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The generating region in the example given has been shaded (Figure 5.44a). 

Following translation of the unit cell the tiling can be generated (examples 

given in Figures 5.44b and c).

5 .6 .2  Class p4gm (p4g) patterns and tilings

Class p4gm patterns have a square lattice type unit cell and a highest order of 

rotation of four. Each corner of the unit cell is on a four-fold centre of 

rotation. Reflection axes intersect at right angles on two-fold centres of 

rotation positioned at the centre of each side of the unit cell. In this case the 

fundamental region is one-eighth the area of the unit cell. An example from 

this pattern class is shown in Figure 5.45. The unit cell of the pattern is 

shown in Figure 5.46a and a schematic illustration of the pattern is shown in 

Figure 5.46b. The generating region of the pattern is one-eighth the area of 

the unit cell (Figure 5.46c). A translation unit of a pattern derived from that 

shown in Figure 5.45 is shown in Figure 5.46d.

In the construction of a periodic plane tiling from class p4gm take a square 

shaped lattice unit and join a four-fold rotational centre (as shown) to a two­

fold rotational centre with an arbitrary line or series of lines. Joint two 

centres of two-fold rotation as shown. The generating region (Figure 5.47b), 

from which the full tiling may be produced by translation (Figure 5.47c), is 

thus complete.
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Figure 5.45 A class p4gm primary all-over pattern.
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Figure 5.46 Lattice unit, schematic illustration and translation unit for a p4gm
all-over pattern.
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Figure 5.47 The construction of a p4gm periodic plane tiling.
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5.6 .3  Class p4mm (p4m) patterns and tilings

Class p4mm all-over patterns have a square lattice type unit cell, are generated 

by reflection in the sides of an isosceles triangle and the highest order of 

rotation is four. An example of a pattern trom this class is provided by 

Figure 5.48. The conventionally chosen unit cell is illustrated in Figure 

5.49a. Four-fold centres of rotation are positioned at each corner and in the 

centre of the unit cell. Two-fold centres are present at the mid-point of each 

of the four sides. Each side acts as a reflection axis, and two further 

reflection axes are diagonally placed within the cell itself. A schematic 

illustration of a p4mm pattern is shown in Figure 5.49b. The generating 

region is one-eighth of the unit cell area (Figure 5.49c). A unit cell of the 

pattern shown in Figure 5.48 is provided by Figure 5.49d.

In the construction of a simplistic p4mm periodic plane tiling, the rotation 

points can be connected as shown in Figure 5.5()a (with a generating region 

shaded) to produced a translation unit shown in Figure 5.50b. The simple 

tiling shown in Figure 5.50c is resultant from translation of the unit in two 

independent non-parallel directions.
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Figure 5.48 A  class p4mm primary all-over pattern.
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Figure 5.49 Lattice unit, schematic illustration, generating unit and translation
for a p4mm all-over pattern.
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Figure 5.50 The construction of a p4mm periodic plane tiling

(a)



5.7.1 Class p6 patterns and tilings

Class p6 all-over patterns have a hexagonal lattice type unit cell, with corners 

falling on six-fold rotational centres. Three-told rotational centres and two­

fold rotational centres are also present. All the six-told rotational points have 

the same orientation; the three-told rotational points have two ditlerent 

orientations; the two-told rotational points have three ditlerent orientations. 

The fundamental region is one-sixth of the unit cell area. An example trom 

this pattern class is given in Figure 5.51. The hexagonal lattice type unit cell 

is shown in Figure 5.52a and a schematic illustration of the pattern class is 

given in Figure 5.52b. The generating region for the pattern shown 

previously is illustrated by Figure 5.52c and the translation unit is illustrated 

in Figure 5.52d. The pattern may also be produced by repeated translations 

of an hexagonal shaped unit (shown in Figure 5.52e).

In the construction of a periodic plane tiling trom this class, take the unit cell 

shape (shown in Finure 5.53a) and join one six-told rotational centre to a two­

fold rotational centre with an arbitrary line. From this two-fold rotational 

centre place a similar line connecting with another six-fold rotational centre. 

One side of one of the equilateral triangles is thus complete. Using existing 

symmetries repeat this line on each of the other two sides. From the three­

fold rotational centre in the middle of the same equilateral triangle construct

170

5.7 The Classification and Construction of All-over Patterns and

Tilings With Six-fold Rotational Symmetry



171

Figure 5.51 A class p6 primary all-over pattern.
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Figure 5.52 Lattice unit, schematic illustration, generating region and 
translation units for a p6 all-over pattern.



Figure 5.53 The construction of a p6 periodic plane tiling.
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three similar lines to connect with each of the boundary lines associated with 

each side of the chosen equilateral triangle. The resultant generating region 

is shown shaded in Figure 5.53a and the translation unit is given in Figure 

5.53b. The fully translated tiling is shown in Figure 5.53c. A  further 

translation unit and translated tiling are given in Figure 5.53d.

5.7 .2  Class p6mm (p6m) all-over patterns and tilings

Class p6mm all-over patterns are generated by a combination ot reflections 

and rotations. Six-fold centres of rotation are present at each corner of the 

unit cell, which is of the hexagonal lattice type. Reflection axes connect each 

corner with the other three corners. In addition each side is bisected by a 

reflection axis. Three-fold and two-fold rotational centres are also present and 

located on intersections of reflection axes. The generating region is one 

twelfth the area of the unit cell. An example ot a pattern trom this class is 

given in Figure 5 .54. An example of the conventionally chosen unit cell is 

given in Figure 5 .55a  and a schematic illustration of the pattern is given in 

Figure 5 .55b . The symmetry operations present in the pattern, together with 

an indication of the relative position of the generating region is given in 

Figure 5 .55c. Alternative translation units for the pattern shown previously 

are given in Figures 5 . 55d and e.
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Figure 5.54 A  class p6mm primary all-over pattern
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Figure 5 .55  Lattice unit, schematic illustration, generating region and 
translation units for a p6mm all-over pattern.



In the construction of a periodic plane tiling of class p6mm, take an hexagonal 

type unit cell (as shown in Figures 5 .56a  and b) and connect all angles to 

opposite angles and to opposite sides as shown. When translated in two 

independent non-parallel directions the tiling shown in Figure 5.56c can be 

produced.

5.8 Summary

Primary all-over patterns and tilings may be classified into seventeen classes 

dependent upon the symmetry operations used in their construction. By way 

of illustrative summary. Figure 5.57 provides a recognition chart tor each of 

the seventeen all-over pattern classes. Periodic plane tilings exhibit the same 

symmetry characteristics as all-over patterns and are classified accordingly. 

A recognition chart for each of these seventeen classes ol tilings is provided 

in Figure 5.58. A flow-diagram to aid the identification of a pattern's 

symmetry class is provided in Figure 5.59.
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Figure 5.56 The construction of a p6mm periodic plane tiling.
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Figure 5.57 (cont.) The Recognition Chart for The Seventeen Classes of
Primary All-Over Patterns.
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Figure 5.57 (cont.) The Recognition Chart for The Seventeen Classes of 
Primary All-Over Patterns.
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Figure 5.57 (cont.) The Recognition Chart for The Seventeen Classes of
Primary All-Over Patterns.
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Figure 5.57 (cont.) The Recognition Chart for The Seventeen Classes of
Primary All-Over Patterns.
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Figure 5.58 The Recognition Chart for The Seventeen Classes of Primary
Periodic Plane Tilings
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Figure 5.58 (cont) The Recognition Chart for The Seventeen Classes of
Primary Periodic Plane Tilings
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Figure 5.58 (cont) The Recognition Chart for The Seventeen Classes of
Primary Periodic Plane Tilings
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Figure 5.58 (cont) The Recognition Chart for The Seventeen Classes of
Primary Periodic Plane Tilings
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Figure 5.58 (cont) The Recognition Chart for The Seventeen Classes of
Primary Periodic Plane Tilings
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Figure 5.59 A  flow diagram to aid the identification of an all-over pattern’s 
symmetry class.

yt i  no
1 Jp2mm c2mm

Source: Hann, M .A. and Thomson, G .,  ’The Geometry of Regular
Repeating Patterns’ Textile Progress Series, vo l.22, n o . l ,  The 
Textile Institute, Manchester, 1992, p .49.



6 COLOUR C O UNTERCH ANG E DESIGNS: CLASSIFICATION  

AND CONSTRUCTION  

6.1 Introduction

The emphasis in explanations and discussion, so far, has been on symmetry 

operations which do not involve colour change, i.e. colour has been preserved 

following each symmetry operation. It may however by the case that, 

following certain symmetry operations, colours are systematically changed in 

a continuous way. Such designs are termed "counterchange designs" (Christie 

[72], Woods [73] and Gombrich [74]). Examples of two-colour 

counterchange patterns are given in Figures 6.1 and 6.2. In each case colour 

is systematically changed across all reflection axes (ABC and D in Figure 6.1 

and A, B and C in Figure 6.2). In each of these counterchange examples, 

reflections thus reverse (or interchange) colours, and rotations preserve 

colours.

An array of mathematical literature is available on the subject of colour 

symmetry; Schwarzenberger [75], for example, lists over 100 research papers 

or other works related to the subject. Historically, the most important works 

on colour symmetry in patterns have been produced by Woods [76], Senechal 

[77], Loeb [78], Lockwood and Macmillan [79], Grunbaum and Shephard 

[80], Schattschneider [81], Washburn and Crowe [82] and Wieting [83].
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Figure 6.1 An example of a two-colour counterchange all-over pattern.
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Fiuure 6.2 An example of a two-colour counterchange all-over pattern.

B



The objective of this chapter is to describe and illustrate the principles of 

colour counterchange applied to motifs, border patterns and all-over patterns 

(as well as tilings). The notation used for two-colour counterchange designs 

is derived from Washburn and Crowe [84] and Schattschneider [85]. Where 

reference is made to three-colour counterchange designs the straightforward 

notation of Grunbaum and Shephard [86] is used.

6.2 C olour Counterchange M otifs

As pointed out by Washburn and Crowe [87], there is only one way to colour 

systematically a cn motif with two colours, and that is to alternate the colours 

around the design. Such a colouring is only possible where n (the order of 

rotation) is an even number. A prime ( ’) can be introduced into the standard 

notation to denote colour change when the corresponding symmetry operation 

is performed. Schematic illustrations of counterchange cn motifs are shown 

in Figure 6.3. Examples of c 2 \  c4 ’ and c6 ’ motifs are shown in Figures 

6.4a, b and c respectively. It can therefore be seen that class cn motits may 

be perfectly coloured with two colours where n is a multiple of 2 (i.e. n 

equals 2 or 4 or 6 or 8 etc). Where n is an odd number it is therefore not 

possible to systematically introduce two-colour interchange. Where more than 

two colours are available further possibilities may arise. Where the number 

of colours is 3 (i.e. K = 3 )  and the order of rotation is a multiple of 3 the 

corresponding motifs may be perfectly coloured. Where Kequals 4, perfect 

colouring can be introduced into c4, c8, c l2  (etc) motifs. Where K equals 5 

perfect colouring can be introduced into c5, clO, c l5  (etc) motits.
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Figure 6.3 Counterchange on’ motifs.
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Figure 6.4 Examples of c 2 \  c4 ’ and c6 motifs.



Where k equals 6, perfect colouring can be introduced into c6, c l2 ,  c l8  (etc) 

motifs. Figure 6.5 provides schematic illustrations of perfectly coloured cn 

motifs, from class c2 to class c6.

In the case of dn motifs (which admit n-fold rotational symmetry combined 

with n reflection axes) there are, as recognised by Washburn and Crowe [88], 

two possibilities to systematically introduced two-colour interchange. Where 

n is an odd number, only one type of colouring is possible, in this case all 

reflection operations reverse the colours and all rotation operations preserve 

the colours. Relevant schematic illustrations are provided by Figure 6.6. 

Where n is an even number , halt of the reflections reverse colours and hall 

preserve colours, and rotations by one nth ol 360 degrees reverse colours. 

Relevant schematic illustrations are provided in Figure 6.7.

To systematically colour a dn motif with three or more colours, the number 

of colours involved (denoted by K) must be a lactor of the number ol 

fundamental units within the motif. Where n equals 3, 6, 9 etc (in d6, d l2 ,  

d 18 etc motifs) it is possible to perfectly colour with three colours. Where n 

equals 4, 8, 12 etc (in d8, d l6 ,  d24 etc motifs) it is possible to perfectly 

colour with four colours. These conditions are shown schematically in Figure

6.8 and illustrated further in Figure 6.9.
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Figure 6.5 Illustrations of perfectly coloured class cn motifs (trom class c2 to 
class c6).

Symmetry
class

Number o f
colours involved 
in colouring 
(denoted by K)

Examples of perfectly coloured class cn motifs 
( From class c2 to class c6 )

C2 K=2

C3 K=3

C4 K=2or 4

C5 K=5

C6 K=2or3or6
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Figure 6.6 Counterchange d ’n motifs (n =  odd numbers).
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Figure 6.7 Counterchange d ’n and dn' motifs (n =  even numbers).
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Figure 6.8 Illustrations of perfectly coloured class dn motifs.

Symmetry Number o f colours 
class involved in colouring

( denoted by K )

Examples of perfectly coloured 
class dn motifs

(13 K=2 or 3

4
(14 K=2 or 4

A

d 6

(18

K = 2 o r  3

K=2 or 4

(19 K=2 or 3



Figure 6.9 The systematic colouring of class dn motifs with three colours 
(n =  three, n =  six and n =  nine)



6.3 C olour Counterchange Border Patterns

As stated previously, using combinations ot the tour symmetry ope rations and 

ignoring interchange of colour only seven distinct classes ot border patterns 

are possible. For the sake of clarity, these seven classes may be referred to 

as the seven primary border pattern classes. By introducing colour 

interchange on these primary structures, a total of seventeen classes ot two- 

colour counterchange border patterns are possible. The notation used in the 

classification of these designs is a modification ot the pxyz notation used in 

the classification of the seven primary border pattern classes. This is the 

internationally accepted notation proposed by Belov [89], A prime ( ’) is 

generally associated with one of the symbols, it the corresponding symmetry 

operation interchanges colours. Washburn and Crowe explained the 

determination of the notation as follows:
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"The first symbol is p it no translation reverses 
the two colours; it is p ’ it some translation does 
reverse the colours. The second symbol, x, is 
1 if there is no vertical reflection consistent with 
colour [symmetry operations consistent with 
colour are those which preserve colour], m if 
there is a vertical reflection which preserves 
colour; m ’ otherwise (i.e. it all vertical 
reflections reverse the colours). The third 
symbol, y, is 1 if there is no horizontal 
reflection; m if there is a horizontal reflection 
which reverses colours (except in two cases 
beginning with p ’, in which two cases y is a); a 
if there is no horizontal reflection, but the 
shortest glide-reflection reverses colours; and is 
a otherwise. The fourth symbol, z, is 1 it there 
is no half-turn consistent with colour; 2 if there 
are half-turns which preserve colour; T 
otherwise (i.e. if all half-turns reverse colours)." 
[90]



Schematic illustrations of the seventeen counterchange border possibilities are 

shown in Figure 6.10 in association with the seven primary classes and the 

appropriate notation for each category. Figure 6.11 is further illustrative and 

shows examples from each primary and each counterchange class.

When three colours are involved in the colouring a total ot seven possibilities 

are evident. Although there is no universally accepted notation lor three- 

colour border patterns, the notation used by Grunbaum and Shephard [91] 

would appear to be the most appropriate; in each of the seven classes a 

number 3 is placed in square brackets after the primary class notation. The 

seven possibilities are illustrated in Figure 6.12.

6.4  Two-colour Counterchange All-over Patterns

As stated previously, only seventeen distinct classes ot all-over patterns may 

be produced using combinations of the four symmetry operations. For the 

sake of clarity these seventeen classes may be referred to as the seventeen 

primary all-over pattern classes. However, by introducing colour interchange 

on these primary structures, a total of forty-six classes of two-colour 

counterchange all-over patterns are possible. As pointed out by Washburn and 

Crowe [92], although there is no universally accepted international notation 

for the forty-six patterns, the notation proposed by Belov and Tarkhova [93]
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Figure 6.10 Schematic illustrations of the seventeen two-colour counterchange
border patterns.
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Figure 6.11 The seven primary and seventeen two-colour counterchange
border patterns.
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Figure 6.11 The seven primary and seventeen two-colour counterchange 
border patterns (continued).

206

W f
pma2

pm'aZ

3
pmaT

pm'a'2

s m

9 £ 6 £
pm'm'2

pmm2 pm,m2'

5 p'ma2

pmm'2'

r  > iini^fc r 1

p'mm2



207

Figure 6.12 Examples of the seven three-colour counterchange patterns.
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appears to be the most widely used. The notation is an adaptation of that used 

to classify primary all-over patterns, but is slightly more complex. Washburn 

and Crowe explained the situation as follows:
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"As a general rule (not without several 
exceptions!) a prime ( ’) attached to a symbol 
indicates a colour change when the 
corresponding operation is performed. It a 
translation makes the colour change, the p ot the 
symbol is changed to pb’ when the translation is 
along the edge of the primitive cell or to p 
when the translation is along a diagonal ot the 
primitive cell. (However, when p is changed to 
pb’ or pc’ in this way, no other symbol has a 
prime attached.) When all the mirror reflections 
in one direction reverse the colours then the 
corresponding m becomes m ';  when all the 
glide-reflections in one direction reverse the 
colours then the corresponding g becomes g . 

[94]

Schematic illustrations of all forty-six two-colour counterchange all-over 

patterns are provtded in Figure 6.13. Each of the forty-six classes are

described and illustrated further below.

6.4.1 Two-colour counterchange all-over patterns with no rotational 

characteristics

As stated previously, a total of four primary all-over pattern classes lack 

rotational characteristics. These are classes p i ,  p l g l ,  p l m l  and c l m l .  By 

introducing colour interchange on these four primary structures, a total of 

eleven classes of two-colour counterchange all-over patterns are obtained. 

Each is further described and illustrated below.
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Figure 6.13 Schematic illustrations of the forty-six two-colour counterchange
all-over patterns.
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Figure 6.13 Schematic illustrations of the forty-six two-colour counterchange
all-over patterns (continued).
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Figure 6.13 Schematic illustrations of the forty-six two-colour counterchange
all-over patterns (continued).
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In the case of a p i  pattern, there is only one way to introduce systematic 

colouring. In this case reversal of colour occurs as the pattern undergoes 

translation horizontally, vertically or diagonally depending on the orientation 

of the pattern. The pattern is thus designated the notation pb’l .  An example 

is provided in Figure 6.14.

There are two distinct ways of systematically colouring a class p lg l  pattern. 

These two counterchange classes are designated the notation pg and pb lg. 

Examples of each are shown in Figures 6.15 and 6.16 respectively. In the 

former case horizontal rows ot tish alternate direction, with fish in each 

horizontal row being the same colour. Colour is therefore reversed along 

vertical glide-reflection axes. In the latter case (Figure 6.16) colour reversals 

occur along alternating glide-reflection axes.

In the case of class p l m l  patterns, there are five distinct ways of introducing 

systematic colouring. The notations of these live types are: ph m, pb lm , pm , 

ph’g and c ’m. Relevant illustrations are shown in Figures 6.17, 6.18, 6.19, 

6.20 and 6.21 respectively. In class pb’m patterns (Figure 6.17) the units in 

each horizontal row are the same colour. Colour reversal therefore occurs 

through vertical translation. In class pb’ lm  patterns (Figure 6.18) colours are 

preserved through vertical translation but reversed across alternating reflection 

axes. In class p m ’ patterns (Figure 6.19) colour is preserved through 

translation but reversed across all reflection axes.
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Figure 6.14 A class pb’l  two-colour counterchange all-over pattern.
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Figure 6.15 A class pg ’ two-colour counterchange all-over pattern.
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Figure 6.16 A class pb’lg  two-colour counterchange all-over pattern.
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Figure 6.17 A  class pb’m two-colour counterchange all-over pattern.
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Figure 6.18 A class pb’lm  two-colour counterchange all-over pattern.
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Figure 6.19 A class p m ’ two-colour counterchange all-over pattern.
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Figure 6.20 A  class pb’g two-colour counterchange all-over pattern.



220

Figure 6.21 A class c ’m two-colour counterchange all-over pattern.



As shown in Figure 6.20, in class pb’g the colours reverse across all reflection 

axes as well as by translation. In the case of class c m patterns, colours are 

reversed across alternate reflection axes and by translation in both the 

horizontal and the vertical (Figure 6.21).

On the primary structure of a class c l m l  pattern a total ot three colouring 

possibilities are evident. These are designated notations ot pc g. pc m and 

c m ’. Examples of each class are provided in Figures 6.22, 6.23 and 6.24 

respectively. In class pc’g patterns (Figure 6.22) reversal ot colour occurs 

across reflection axes but not along the glide-reflection axes. In class pc m 

patterns (Figure 6.23) colour is preserved across reflection axes but reversed 

along glide-reflection axes. In class cm patterns (Figure 6.24) colour 

reversals occur across reflection axes as well as along glide-reflection axes.

6 .4 .2  Two-colour counterchange all-over patterns with two-fold rotation

Primary all-over pattern classes with two-fold rotation include classes p _ l l ,  

p2gg, p2mg, p2mm and c2mm. By introducing colour interchange on these 

primary structures a total of nineteen two-colour counterchange pattern classes 

are possible.

There are two distinct ways of colouring a class p211 pattern. These are 

designated the notations p2' and ph'2 and are shown in Figures 6.25 and 6.26 

respectively. With class p2 ’ patterns (Figure 6.25) colour reversal occurs 

around all centres ot two-told rotation.
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Figure 6.22 A class pc’g two-colour counterchange all-over pattern.



Figure 6.23 A class pc’m two-colour counterchange all-over pattern.
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Figure 6.24 A class cm ’ two-colour counterchange all-over pattern.
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Figure 6.25 A class p 2 ’ two-colour counterchange all-over pattern.
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Figure 6.26 A class pb’2 two-colour counterchange all-over pattern.
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With class pb’2 patterns colour is reversed around alternate centres ol two-fold 

rotation (Figure 6.26).

Two distinct counterchange possibilities are evident on systematically 

colouring a class p2gg primary all-over pattern; these are designated the 

notations p g 'g ’ and pgg’ (Figures 6.27 and 6.28 respectively). In the former 

case reversal of colour occurs along the glide-reflection axes running both 

horizontally and vertically. In the latter case (Figure 6.28) colour reversal 

occurs along glide-reflection axes running in one direction (vertical in the 

example shown). Colour is preserved along the other glide-reflection axes 

(horizontal in the example shown). Reversal ot colour also occurs around all 

centres of two-lold rotation.

Five distinct counterchange classes may be derived trom class p2mg primary 

structures. These are designated the notations pb'gg. p m g \  pm g . pb mg and 

p m ’g. Class pb'gg counterchange patterns reverse colours across all reflection 

axes, around alternate centres of rotation and along alternating glide-reflection 

axes (Figure 6.29). In class pm g’ counterchange patterns, as shown in Figure 

6.30, colour is reversed around all centres of two-fold rotation and along all 

glide-reflection axes. Class p m ’g ’ patterns (Figure 6.31) exhibit reversal ot 

colour across all reflection axes and along glide-reflection axes. Colour is 

preserved around all centres of two-fold rotation. As shown in Figure 6.32, 

class pb’mg counterchange patterns show alternating rows of each colour.
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Figure 6.27 A class p g ’g ’ two-colour counterchange all-over pattern.
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Figure 6.28 A class pgg' two-colour counterchange all-over pattern.
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Figure 6.29 A  class pb’gg two-colour counterchange all-over pattern.
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Figure 6.30 A class pmg' two-colour counterchange all-over pattern.
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Figure 6.31 A class p m ’g ’ two-colour counterchange all-over pattern.
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Figure 6.32 A class pb’mg two-colour counterchange all-over pattern.



Horizontal translations (in the example shown) preserve colours, as do vertical 

reflections. Colour reversal occurs through vertical translation and in 

alternating horizontal rows of centres ot two-fold rotation. Class pm g 

counterchange patterns (Figure 6.33) exhibit reversal of colour across all 

reflection axes and around all centres of two-told rotation. Colour is 

preserved along the glide-reflection axes.

Five distinct classes of counterchange patterns are evident on systematically 

colouring a p2mm primary structure. These tive classes are designated the 

notations: c ’mm, pb’mm. pm m '. pb’gm and pm m (illustrated in Figures 

6.34, 6.35, 6.36, 6.37 and 6.38 respectively). In class c ’mm counterchange 

all-over patterns (Figure 6.34) colours alternate as on a chess board. Reversal 

of colour therefore occurs across alternating reflection axes and around 

alternating centres of two-fold rotation. As illustrated in Figure 6.35, class 

pb’mm counterchange all-over patterns reverse colour across alternating 

reflection axes in one direction (horizontal in the example shown). Reversal 

of colour, therefore, only occurs around centres of two-fold rotation, 

positioned on these alternating axes. Class pm m ’ two-colour counterchange 

all-over patterns (Figure 6.36) have colour reversing across only one of the 

two sets of perpendicular reflection axes (vertical in the example given). 

Colour reversal also occurs around all centres of two-told rotation. Class 

pb’gm counterchange all-over patterns show reversal of colour across all 

reflection axes in one direction (vertical in the example shown in Figure 6.37)
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Figure 6.33 A class p m ’g two-colour counterchange all-over pattern.
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Figure 6.34 A class c ’mm two-colour counterchange all-over pattern.
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Figure 6.35 A class pb’mm two-colour counterchange all-over pattern.
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Figure 6.36 A  class pm m ’ two-colour counterchange all-over pattern.
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Figure 6.37 A  class pb’gm two-colour counterchange all-over pattern.
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Figure 6.38 A class p m 'm ’ tw o-colour counterchange all-over pattern.



and across alternating reflection axes in the other direction (horizontal in the 

example shown). Colours are preserved around centres of two-fold rotation 

lying on these latter axes, and are reversed around the others. In pm ’m ’ 

patterns colours are reversed across all reflection axes and are preserved 

around all centres of two-fold rotation (examples are shown in Figure 6.38).

There are five distinct classes of two-colour counterchange patterns which may 

be derived from a class cmm primary structure. These are designated the 

notations pc’mm, pc'mg. pc’gg. cm m and cmm (Figures 6.39. 6.40, 6.41. 

6.42 and 6.43 respectively). In p /m m  two-colour counterchange all-over 

patterns offset rows alternate colour so that no reversal of colours occurs 

across reflection axes. Rather, reversal of colour occurs along glide-reflection 

axes and at the centres of two-fold rotation positioned at the intersection of 

glide-reflection axes (Figure 6.39). With class p /m g  counterchange all-over 

patterns reversal of colour occurs across only one set ot the perpendicular 

reflection axes (horizontal in the example shown in Figure 6.40) and across 

the glide-reflection axes perpendicular to that set. Reversal of colour also 

occurs around centres of two-fold rotation positioned at the intersection ot 

reflection axes. Class p / g g  counterchange all-over patterns exhibit reversal 

of colour across reflection axes and about centres of two-fold rotation 

positioned at the intersections of glide-reflection axes (Figure 6.41). As 

shown in Figure 6.42 reversal of colour in class cm ’m ’ counterchange all-over 

patterns occurs across all reflection axes and along all glide-reflection axes. 

Colour is preserved around all centres of two-fold rotation.
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Figure 6.39 A  class pc’mm two-colour counterchange all-over pattern.



Figure 6.40 A  class pc’mg two-colour counterchange all-over pattern.
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Figure 6.41 A class pc'gg  two-colour counterchange all-over pattern.
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Figure 6.42 A class cm ’m ’ tw o-colour counterchange all-over pattern.



In class cm m ’ counterchange all-over patterns (Figure 6.43) there are reversals 

of colour across one of the two sets of perpendicular reflection axes 

(horizontal in the example given) and along the glide-reflection axes with the

same direction.

6.4.3 Two-colour counterchange all-over patterns with three-fold rotation

As stated previously, primary all-over patterns with a highest order ot rotation 

of three include classes p3, p3m l and p31m. Class p3 all-over patterns 

cannot be systematically coloured to produce a two-colour counterchange 

pattern. With classes P3m l and P31m, systematic colouring involving 

reflection is however possible; relevant notations are p3m and p31m

respectively.

With a class p3m ’ two-colour counterchange all-over pattern, colour reversal 

occurs across all reflection axes and across all glide-reflection axes (Figure 

6.44). Likewise in the case of class p31m ’ patterns (Figure 6.45) reversal of 

colour occurs across all reflection axes and across all glide-reflection axes.

6 .4 .4  Two-colour counterchange all-over patterns with four-fold rotation

As stated previously classes p4, p4gm and P4mm each exhibit four-fold 

rotation. By introducing colour interchange on these primary structures a total 

of ten two-colour counterchange all-over pattern classes are possible. Each 

are described and illustrated below.
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Figure 6.43 A  class cm m ’ two-colour counterchange all-over pattern.
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Figure 6.44 A  class p3m ’ tw o-colour counterchange all-over pattern.
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Figure 6.45 A  class p31m ’ two-colour counterchange all-over pattern.



There are two distinct ways of systematically colouring a class p4 all-over 

pattern; relevant notations are pc’4 and p4’ (Figures 6.46 and 6.47 

respectively). In class pc’4 patterns reversal of colour is evident around each 

two-fold centre of rotation and around alternating rows ol four-fold rotation 

(Figure 6.46). With a p4 ’ two-colour counterchange all-over pattern reversal 

of colour is evident on each 90 degree rotation around all centres of four-fold 

rotation. Colour is preserved around centres of two-told rotation (Figure

6.47).

Three distinct two-colour counterchange classes may be derived lrom p4gm 

primary all-over patterns. Relevant notations are p4g m , p4 g m and p4 gm 

(Figures 6.48, 6.49 and 6.50 respectively). With class p4g m ’ patterns colour 

reversal is evident along all glide-reflection axes and across all reflection axes. 

Colour is preserved around all centres of two-fold and four-fold rotation 

(Figure 6.48). Class p 4 'g ’m two-colour counterchange patterns exhibit 

reversal of colour around centres of four-fold rotation but not centres of two­

fold rotation. Reversal of colour also occurs along glide-reflection axes which 

pass between the centres of four-fold rotation (at a diagonal to the reflection 

axes) but not along the glide-reflection axes which pass through the centres of 

four-fold rotation (Figure 6.49). Class P4 ’g m ’ patterns exhibit reversal of 

colour around centres of four-fold rotation but not around centres of two-fold 

rotation. Reversals of colour are also evident along the glide-reflection axes 

passing through centres of four-fold rotation, and across reflection axes

(Figure 6.50).
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Figure 6.46 A class pc’4 two-colour counterchange all-over pattern.
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Figure 6.47 A  class p 4 ’ two-colour counterchange all-over pattern.
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Figure 6.48 A  class p4g’m ’ tw o-colour counterchange all-over pattern.



Figure 6.49 A class p4 ’g ’m two-colour counterchange all-over pattern.
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Figure 6.50 A class p4 ’g m ’ tw o-colour counterchange all-over pattern.



There are five distinct ways of systematically colouring a class p4mm primary 

all-over pattern; the corresponding notations are p 4 ’m m ’, pc’4gm, p4 'm 'm , 

pc’4mm and p4m ’nv (Figures 6.51, 6.52, 6.53, 6.54 and 6.55 respectively). 

Class p 4 ’m m ’ patterns exhibit reversal of colour along all glide-reflection 

axes, across reflection axes parallel to glide-reflection axes and around all 

centres of four-fold rotation (Figure 6.51). Class pc 4gm counterchange all- 

over patterns exhibit reversal of colour across reflection axes parallel to glide- 

reflection axes and across halt the reflection axes in the other two directions. 

Colour is also reversed around all centres of two-fold rotation and around halt 

the centres of four-fold rotation (Figure 6.52). In class p4 m m, colour 

reversal is evident in reflection axes in two oi the four directions and around 

all centres of four-fold rotation. Colour is preserved across the glide- 

reflection axes and around centres of two-fold rotation (Figure 6.53). In 

p . '4m m  two-colour counterchange all-over patterns, colour reversal occurs 

across reflection axes running vertically and horizontally between the square 

unit cells, but not across reflection axes running through the squares. 

Reversal of colour also occurs along the diagonal glide-reflection axes, around 

alternating centres of four-fold rotation and around all centres of two-fold 

rotation (Figure 6.54). Class p4m 'm ' two-colour counterchange all-over 

patterns exhibit colour reversal across reflection axes in all tour directions and 

along all glide-reflection axes. Colour is preserved in all two-fold and four­

fold centres of rotation (Figure 6.55).
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Figure 6.51 A  class p 4 ’m m ’ two-colour counterchange all-over pattern.
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Figure 6.52 A  class pc’4gm tw o-colour counterchange all-over pattern.



Figure 6.53 A class p 4 'm ’m two-colour counterchange all-over pattern.
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Figure 6.54 A class pc’4mm two-colour counterchange all-over pattern.





6.4 .5  Two-colour counterchange all-over patterns with six-fold rotation

There is only one way to systematically colour a p6 primary all-over pattern 

and that is to alternate the colour around the centres of six-told rotation. An 

example of this pattern type, with notation p6 , is given in Figure 6.56.

Class p6mm primary all-over patterns may be systematically coloured in three 

distinct ways. Relevant notations are pb mm , p6 m m and p6m m (Figures 

6.57, 6.58 and 6.59 respectively). In class p6 'm m ' two-colour counterchange 

all-over patterns, colour is reversed around all centres ot two-told rotation and 

in reflection axes passing through opposite sides ot the hexagonal shaped unit 

cell (Figure 6.57). Class p6 ’m 'm  patterns (Figure 6.58) show colour reversal 

around all centres of two-fold rotation and in reflection axes passing through 

opposite angles of the hexagonal shaped unit cell. Class p6m m patterns 

(Figure 6.59) exhibit colour reversal across all reflection axes. Colour is 

preserved in centres ot rotation.

6.5 Multi-Coloured Counterchange Patterns

Having introduced the principles of two-colour counterchange patterns and 

tilings above, the intention below is to focus turther discussion and description 

on patterns coloured in a systematic way with three or more colours.

When three colours are involved in the systematic colouring ot the seventeen 

primary all-over pattern (or tiling) classes, a total ot twenty-three three-colour 

classes are possible.
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Figure 6.56 A class p 6 ’ tw o-colour counterchange all-over pattern.



Figure 6.57 A class p 6 ’m m ’ two-colour counterchange all-over pattern.
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Figure 6.58 A class p6 ’m ’m tw o-colour counterchange all-over pattern.
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Figure 6.59 A class p6m ’m ’ tw o-colour counterchange all-over pattern.



The general principles outlined above in the systematic colouring of two- 

colour counterchange patterns (or tilings) are applicable with three colour and 

higher colour counterchange patterns. That is, the colours must be 

systematically changed in a continuous way with respect to the relevant 

symmetry operations, and each symmetry operation must induce a permutation 

of the colours in the coloured pattern or tiling.

When three or more colours are involved in the colouring, the motifs (in 

patterns) or tiles (in tilings) are each coloured with a single colour; the letter 

K is used to refer to the number of colours available. Such a K-colourmg is 

called perfect (or compatible) if each symmetry operation ot the uncoloured 

(primary) pattern or tiling structure induces a permutation of the K colours. 

Schattschneider explained the characteristics of a perfectly coloured tiling with

more than two colours as tollows:

" ........  all tiles having the same colour (tor
instance, red) are transformed by the symmetry 
of the tiling to tiles having the same colour (tor 
instance, blue). Although a different symmetry 
may send the red tiles to tiles of a different 
colour, say green, no symmetry ot the 
uncoloured tiling may m ix’ colours, sending 
some red tiles to blue and other red tiles to

green." [95]

Figure 6.60a shows a three-colour periodic tiling in which colours have been 

systematically interchanged in a continuous way following the corresponding 

symmetry operations.

267



268

Figure 6 60(a) A three-colour periodic tiling in which colours have been 
systematically interchanged, (b) An illustration of three-colour counterch fc 

around a point of three-fold rotation.



No single reflection operation transform s one colour to both of the others in 

any portion of the tiling. That is, each reflection operation leaves one colour 

invariant (or unchanged) and interchanges the o ther two. Along vertical 

reflection axis A , the reflection operation changes black tiles to white tiles (or 

white tiles to black tiles) whilst leaving the grey unchanged. Along vertical 

reflection axis B. the reflection operation changes grey tiles to black tiles (or 

black tiles to grey tiles) and leaves white tiles unchanged. Along diagonal 

reflection axis C , the reflection operation changes white tiles to grey tiles (or 

grey tiles to white tiles) whilst leaving the black tiles unchanged. Thus with 

respect to the reflectional sym m etry  of this tiling, the colouring is compatible 

with the sym m etry  operation. That is. in such a tiling, every reflection axis 

either m oves one colour onto the same colour (i.e. the colour is preserved) or 

is interchanged with one o f  the o ther colours (i.e. the colour is reversed)

systematically in a continuous way.

W ith respect to the rotational sym m etry  of the tiling shown in Figure 6.60a, 

it can be seen that colours are also interchanged. By way of further 

illustration, Figure 6 .60b  shows that colours are interchanged around a centre 

of three-fold rotation in such a way that rotational operations transform one 

colour to each of the others systematically. In the diagram (Figure 6 .60b) 

three-fold rotation (denoted by the small central triangle) transform s all white 

tiles to black tiles, all b lack tiles to grey tiles and all grey tiles to white tiles 

systematically and in a continuous way.
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Figures 6.61b, c and d illustrate four-colour counterchange on the primary 

border tiling of class pma2 (shown in Figure 6.61a, with vertical reflection 

denoted by lines R and two-fold or half-turn rotation denoted by points H). 

The tiling is coloured in such a way that colours are systematically changed 

or unchanged following the corresponding symmetry operation. A prime ( ’) 

is introduced to denote colour change with reflection (i.e. R ) or with hall-turn 

rotation (i.e. H '). Thus in Figure 6.61b all the reflections interchange colours 

and all the half-turns leave colours unchanged (i.e. R 'H). In Figure 6.61c all 

the half-turns interchange colours and all the reflections leave colours 

unchanged (i.e. R H ) .  In Figure 6.61 d all the colours arc systematically 

interchanged in a continuous way, following all the reflections as well as all 

the half-turns (i.e. R ’H').

Figure 6.62 illustrates another multi-coloured counterchange possibility (where 

K = 5 ) .  A  total of three ways of colouring the tiling are possible (RH , R H 

and R ’H ’ in Figures 6.62a, b and c respectively).

In the context of all-over tilings, Figure 6.63 shows a four-colour 

counterchange tiling on a p i  primary structure.

6.6 Summary

By introducing interchange of colour into the seven primary border pattern 

classes a total of seventeen two-colour, seven three-colour, nineteen tour- 

colour, seven five-colour, seventeen six-colour, seven seven-colour and
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Figure 6.61 Four-colour counterchange on a primary border tiling of class 
pma2. (b), (c) and (d) show colouring possibilities of R 'H , RH' and R H 
respectively.

(a)
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Figure 6.62 Five-colour counterchange on a primary horde r ̂ n& of 
pma2. (a), (b) and (c) show colouring possibilities ot RH , R H and

respectively



Figure 6.63 An example of a four-colour counlerchange tiling on a pi 

primary structure.
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nineteen eight-colour counterchange possibilities unfold. A total ot torty-six 

classes of two-colour counterchange, twenty-three classes ol three-colour 

counterchange and ninety-six classes of four-colour counterchange all-over 

patterns or tilings are possible. By way of summary, Tables 6.1 and 6.2 

enumerate some of colour possibilities for border patterns and all-over 

patterns. Examples of all forty-six classes of two-colour counterchange all- 

over patterns are provided in Figure 6.64. Examples for each of the twenty- 

three three-colour counterchange all-over patterns are provided in Figure 6.65.
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Table 6.1 The enumeration of colour symmetry classes tor border patterns and 

tilings (for K =  1 to 8).

275

Number of colours 
( denoted by K ) K=1 K=2 K=3 K=4 K=5 K=6 K=7 K=8

C lassp lll 1 1 1 1 1 1 1 1

Classplal 1 1 1 1 1 1 1 1

Class pml 1 1 2 1 2 1 2 1 2

Class plm l 1 3 1 3 1 3 1 3

Classpll2 1 2 1 2 1 2 1 2

Class pma2 1 3 1 3 1 3 1 3

Class pm m2 1 5 1 7 1 5 1 7

Total number of 7 17 7 19 7 17 7 19

colour classes
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Table 6 .2 The enumeration of colour symmetry classes for all-over patterns 

(for K =  1 to 4).

Number of colour 
( denoted by K) K=1 K=2 K=3 K=4

Class pi all-over pattern 1 1 1 2

Class p lg l all-over pattern 1 2 2 4

Class plm l all-over pattern 1 5 2 10

Class clm l all-over pattern 1 3 2 7

Class p211 all-over pattern 1 2 1 3

Class pgg all-over pattern 1 2 1 4

Class p2mg all-over pattern 1 5 2 11

Class p2mm all-over pattern 1 5 1 13

Class c2mm all-over pattern 1 5 1 11

Class p3 all-over pattern 1 0 2 1

Class p3m 1 all-over pattern 1 1 2 1

Class p31m all-over pattern 1 1 2 1

Class p4 all-over pattern 1 2 0 5

Class p4gm all-over pattern 1 3 0 7

Class p4mm all-over pattern 1 5 0 13

Class p6 all-over pattern 1 1 2 1

Class p6mm all-over pattern 1 3

t  m  A C

2 2

Total number of 
colour cl assess



277

Figure 6.64 Exam ples of all forty-six classes of two-colour counterchange all-

over patterns.



Figure 6.64 Examples of all forty-six classes of two-colour counterchange all- 
over patterns (continued).
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Figure 6.64 Examples of all forty-six classes of two-colour counterchange all- 
over patterns (continued).



Figure 6.64 Exam ples of all forty-six classes of two-colour counterchange all-
over patterns (continued).



Figure 6.64 Examples of all forty- 
over patterns (continued).
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Figure 6.64 Examples o f all forty-six classes of two-colour counterchange all-
over patterns (continued).
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Figure 6.64 Examples of all forty-six classes of two-colour counterchange all-
over patterns (continued).
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Figure 6.64 Examples o f all forty-six classes of two-colour counterchange all-
over patterns (continued).

cmm

cm’m’
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Figure 6.64 Examples o f all forty-six classes of two-colour counterchange all-
over patterns (continued).

p 4 ’g’m



p4mm
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Figure 6.64 Examples of all forty-six classes of two-colour counterchange all-
over patterns (continued).

pAm’m’

p6mm



Figure 6.64 Examples of all forty-six classes of two-colour counterchange all- 
over patterns (continued).
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Figure 6.65 Examples of all twenty-three classes of three-colour
counterchange all-over patterns.

pg[3]l P8(3]2

pm[3]i pm(3]2
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Figure 6.65 Exam ples of all twenty-three classes of three-colour
counterchange all-over patterns (continued).
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Figure 6.65 Examples of all twenty-three classes of three-colour
counterchange all-over patterns (continued).
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Figure 6.65 Examples of all twenty-three classes of three-colour 
counterchange all-over patterns (continued).



7 IN CONCLUSION

This thesis has focused primarily on the presentation of a mathematically 

based classification system for regular repeating patterns and periodic tilings. 

By way of original contribution, an emphasis has been placed, where 

appropriate, on pattern/tiling construction. Principles relating to colour 

counterchange in patterns and tilings have been introduced and applied to the 

classification and construction of an extensive range of original designs (a 

selection of which is presented in printed fabric form in the accompanying 

exhibition). Explanations of concepts and procedures of analysis have played 

a major part in the thesis. The thesis has emphasised the benefit firstly, of 

understanding in geometrical terms how a pattern "works" and secondly, how 

to create original designs using the power of mathematics (a strong non- 

mathematical motive for acquiring an understanding ot the basic theory).

Although this thesis does not present illustrative examples for each of the four- 

colour and higher-colour counterchange patterns/tilings, the description ot the 

technique to create a perfect two-colour or three-colour pattern/tiling should 

make this a relatively easy exercise.

This thesis, as it stands, would appear to be suitable for use as a framework 

for the teaching of the principles of pattern construction to undergraduate 

design students. There appears to be a lack of awareness of the potential 

benefits of an understanding of these principles within the context of computer 

aided design; this is an obvious area for further development and application.
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