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Abstract

Direction of arrival (DOA) estimation is an important research area in array signal processing.

Existing works normally assume the phase information obtained at sensors of the array

are accurate and therefore their performance degrades when the phase information is not

reliable. For such a scenario, a new class of non-coherent DOA estimation methods has been

proposed, where only magnitude information at an array of sensors is required. However,

the phase retrieval based methods always require one or more reference signals to resolve

ambiguity issues and fail to exploit the multi-snapshot information effectively. In this thesis,

to efficiently and effectively exploit multiple snapshots usually available at an array, a fasT

grOup sparsitY Based phAse Retreival (ToyBar) algorithm is proposed to solve the non-

coherent DOA estimation problem. To avoid the use of reference signals, an effective array

structure based on two uniform linear sub-arrays is proposed first for non-coherent DOA

estimation. Unambiguous DOA can be found either by exploiting the non-linear property

of sinusoidal function with the aid of the extra measurements provided by the second array,

or applying the ToyBar algorithm to the whole array directly. Instead of using ULAs,

uniform circular arrays (UCAs) can also be employed to overcome the ambiguities arising

in non-coherent measurements. In addition, an off-grid model involved with a bias vector

is proposed and a two-step method based on this model is further developed. Moreover,

a two-dimensional localization method with an off-grid signal model is proposed for the

non-coherent source localization problem based on distributed sensor arrays, where each

platform employs a UCA. Finally, the non-coherent method has been extended to wideband

signals, where the signal model is formulated with convolutional sparse coding (CSC) in the

time domain directly.
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Chapter 1

Introduction

1.1 Introduction

Antenna arrays have been studied extensively as it can be applied to various areas such as

radar, sonar, radio astronomy, and communications [1–5]. Hydrophone arrays are applied

underwater to localize deep-sea acoustic sources and track marine mammals [6, 7]; ultrasound

arrays are employed in medical imaging, where the quality of images depends on the

performance of the scanner beamformer [8, 9]; airgun arrays are applied for environmental

studies such as marine seismic surveys and underwater acoustic propagation modeling [10].

Specifically, array signal processing involves manipulation of signals impinged on an array

of sensors and it has three main research areas: beamforming, array signal detection, and

direction of arrival (DOA) estimation. For beamforming it refers to steering nulls towards

directions of interference signals and enhancing signal power from interested directions

simultaneously, while array signal detection determines the presence and the number of

impinging signals. DOA estimation, as the name implies, aims at finding arriving angles of

impinging signals. Those obtained DOAs can be used to implement beamforming to enhance

beams toward desired direction(s), or localize target(s) with distributed sensor array networks.

In addition, while applied in wireless communications, DOA based beamforming technique

evidently improves its performance as it is able to increase the channel capacity as well as
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coverage range. Since the DOA information of impinging signals is essential to such areas,

the DOA estimation problem has received considerable attentions in the community.

There are many existing high resolution DOA estimation methods, which can be cat-

egorized into beamforming based methods [11], subspace based methods [12, 13] and

compressive sensing based methods [14, 15]. These methods have shown outstanding perfor-

mances under the assumption that the phase information at the array of sensors is available

and reliable, which requires to know phase response of each sensor precisely in advance.

As a result, the phase difference of received signals between array sensors can be exploited

effectively for DOA estimation. In practice, however, the phase information may not be

reliable due to various reasons and in the extreme scenario, all phase information of received

signals could be lost and only magnitude information is reserved. In this case, the coherence

of received signals among array sensors is destroyed and the performance of these existing

DOA estimation algorithms will degrade significantly.

Under such a scenario, a new class of non-coherent DOA estimation algorithms is

developed in recent years [16–19], where only magnitude information at array sensors is

considered in the formulation. Exploiting non-coherent measurements in the DOA estimation

problem is able to free the system from phase error at sensors; however, those methods

also face some challenges: 1) they cannot jointly use the information provided by multiple

snapshots effectively; 2) the inherent ambiguity issue of non-coherent measurements obtained

by the most popular uniform linear array (ULA) was resolved using a reference signal when

only one unknown source impinges upon the array, and with more unknown signals, more

reference signals are required. However, setting up reference signal(s) in practical operations

is costly and difficult. In this thesis, based on the majorizaion-minimization (MM) technique

and the proximal gradient method, an effective algorithm is developed for non-coherent

DOA estimation with multiple snapshots. The ambiguities associated with non-coherent

measurements of a ULA are resolved by different array structures instead of placing multiple

reference signals. Furthermore, an off-grid signal model for sparsity based non-coherent

DOA estimation is studied. Similar to the DOA estimation problem, a class of algorithms for

target localisation based on distributed multiple sensor arrays is also developed. In addition

2



to the narrowband scenario, the wideband scenario is considered as an extension at a later

stage.

1.2 Original Contributions

The main contributions of the thesis are listed as follows:

1. The non-coherent DOA estimation problem can be regarded as a sparse phase retrieval

problem, and existing phase retrieval algorithms mainly consider a single snapshot. For

multiple snapshots, a group sparsity based phase retrieval algorithm is developed in this

thesis. Based on the idea of phase retrieval via majorizaion-minimization technique

(PRIME), the problem is reformulated as a group Least Absolute Shrinkage and

Selection Operator (LASSO) problem, which can be solved by the proximal gradient

method. Nesterov acceleration is further implemented to increase its convergence

speed. We refer to this algorithm as Fast jOint Group Sparse PhAse Retrieval (ToyBar).

In addition, a new ambiguity called spatial order ambiguity is discussed in detail, which

shows that a solution to avoid this ambiguity is to limit the inter-sensor spacing of the

employed ULAs to be less than a quarter of the signal wavelength.

2. While employing the classic ULA structure for non-coherent DOA estimation of

narrowband signals, at least one reference signal at one end of interested area with

precisely known DOA is required, which is a challenge in practical array operations.

Instead of placing reference signals, two array structures are suggested to tackle the

ambiguities problem. By exploiting the non-linear property of the sinusoidal function,

a dual-array structure is first proposed. On the other hand, it is also proved that the

uniform circular array (UCA) structure is also capable of solving the ambiguities

problem. With these two array structures, no reference signals are required when there

are more than one incident signals; a reference signal is required in the scenario with

only one incident signal, but the DOA of the reference signal can be arbitrary and

unknown. Based on these two array structures, the proposed ToyBar algorithm can be

applied directly without the need of reference signals.
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3. One problem with the sparsity based method is that DOAs of incident signals are

assumed to fall on the discrete grid points, while in practice this is usually not true. To

deal with off-grid signals, a two step off-grid non-coherent DOA estimation methods

with low complexity has been proposed, where the on-grid DOA of incident signals

and its off-grid term are estimated separately. In addition to DOA estimation, the

off-grid non-coherent source localization problem based on distributed sensor arrays is

further studied. The source localization problem is formulated into a group sparsity

based phase retrieval problem by dividing the area into two-dimensional (2-D) grids,

and the non-coherent source localization problem is formulated into a sparsity based

framework, where magnitude-only measurements at all observers can be exploited

jointly. Under such a framework, a 2-D localization method is proposed and an off-grid

source localization signal model is further investigated.

4. For traditional wideband DOA estimation problem, a common approach is applying

discrete Fourier transform (DFT) to those measurements, and decomposing wideband

signals into different frequency bins, where each bin provides a similar model as the

narrowband one, when the number of DFT points is sufficiently large. However, for

the non-coherent scenario, none of those methods can be applied since the magnitude

operation destroys the coherency of signals. In order to estimate DOA of wideband

signals with magnitude only measurements and limited snapshots, we first process the

wideband signals in the time domain directly by employing the idea of convolutional

sparse coding (CSC), based on which the non-coherent wideband DOA estimation

problem can be formulated into a group sparsity based phase retrieval problem and

solved by the proposed ToyBar algorithm.

1.3 Thesis Outline

The outline of the thesis is as follows:

Chapter 2 introduces basic ideas of DOA estimation of both narrowband and wideband

signals. For narrowband signals, traditional DOA estimation methods including beamforming
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based methods, subspaced based methods and compressive sensing based methods are

reviewed. Especially, non-coherent DOA estimation and its ambiguities are discussed. For

wideband signals, the DFT based signal model and existing sparsity based methods are

presented. Some simulations are provided to show theirs performance for both narrowband

and wideband signals.

In Chapter 3, an iterative algorithm based on proximal gradient is proposed for the multi-

snapshot non-coherent DOA estimation problem to efficiently and effectively exploit multiple

snapshots in a joint way. The spatial order ambiguity is discussed in detail. Simulations are

provided to verify the effectiveness of the proposed method in comparison with the state of

art.

In Chapter 4, non-coherent DOA estimation of narrowband signals without the need of

reference signals is studied. A dual-array structure is first presented and two methods to

solve unambiguous DOAs of impinging signals based on the structure are provided. The first

method to solve inherent shift and mirroring ambiguities of non-coherent measurements is to

separately estimate sinusoidal difference of both arrays and find their intersection. Then, a

joint group sparsity based non-coherent DOA estimation method is further described with

this specific array structure. Moreover, non-coherent DOA estimation based on a uniform

circular array is also introduced to tackle the ambiguities issue.

In Chapter 5, a two-step off-grid non-coherent DOA estimation method is proposed: in

the first step, DOAs are approximated with a coarser steering matrix. In the second step, their

off-grid bias is estimated through an iterative process, which has a closed-form solution at

each iteration. Based on the off-grid DOA estimation method, a two step off-grid source

localization problem with magnitude-only measurements based on a distributed sensor array

structure is presented at the end.

In Chapter 6, a wideband signal model under the CSC framework is described, based on

which an l2,1 norm based wideband DOA estimation method with coherent measurements is

presented. It is shown that compared with traditional frequency-domain based method, the

proposed time-domain CSC (TD-CSC) based method has a better performance but with a

5



higher computational complexity. Then, the TD-CSC model is extended to the non-coherent

scenario and its effectiveness are demonstrated by computer simulations.

Finally, in Chapter 7, conclusion are drawn and an outlook on possible future work is

provided.
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Chapter 2

Review of DOA Estimation

2.1 Introduction to Antenna Arrays

In DOA estimation, we estimate the arriving angles of impinging signals in the presence

of noise with the aid of an array of sensors. These sensors are placed at different spatial

positions and the response of an array is related to its geometric structure. There are three

types of array structures in general [20]: linear arrays, planar arrays and volumetric arrays.

Fig. 2.1 provides a example of a uniform linear array (ULA) consisting of M isotropic sensors

with an inter-sensor distance d and one signal is impinging from an angle θ measured from

the broadside of the array.

Fig. 2.1 Structure of a linear array.
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Considering there are K signals emitted from the far field, the array response xm(t) of the

m-th sensor at time t, t ∈ {1, ...,T}, can be expressed as:

xm(t) =
K

∑
k=1

sk(t − τm,k), (2.1)

where τm,k represents the propagation delay between the 0-th and the m-th sensor of the k-th

signal, being a function of incident angle θ , given by

τm,k = m
d sinθk

c
, (2.2)

with c being the signal propagation speed. Normally, signal sk(t) can be expressed in a

complex form [3], as

sk(t) = αk(t)e jωt , (2.3)

where ω is angular frequency of the signals, α(t) is the complex baseband modulating signal.

Then, the k-th signal received at the m-th array is given by

sk(t − τm,k) = α(t − τm,k)e jω(t−τm,k). (2.4)

2.2 Narrowband DOA estimation

2.2.1 Signal Model

Under the narrowband scenario, the bandwidth of the signal is assumed narrow enough and

the modulating signal should remain unchanged (i.e. α(t − τm,k) ≈ α(t)) [3], and (2.1) is

changed to

xm(t) =
K

∑
k=1

αk(t − τm,k)e jω(t−τm,k)

≈ αk(t)e jω(t−τm,k) =
K

∑
k=1

e− jωτm,ksk(t).

(2.5)
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Since we normally work at the baseband, the carrier component e jωt in sk(t) will be ignored

from now on. Substituting (2.2) into (2.5), we have

xm(t) =
K

∑
k=1

sk(t)e− j2πm d
λ

sin(θk), (2.6)

where λ is signal wavelength. With a sampling frequency fs, the array measurements of M

sensors can be written in a discrete form as

x[p] = [x0[p], ...,xM−1[p]]T

= As[p]+n[p],
(2.7)

with n = [n0[p], ...,nM−1[p]] being the noise vector at time index p, (·)T is the matrix

transpose operator, and A is called the steering matrix of the array, given by

A = [a(θk), ...,a(θk)],

a(θk) = [1,e− j2π
d
λ

sin(θk), ...,e− j(M−1)2π
d
λ

sin(θk)]T .
(2.8)

Collecting P snapshots to form X =
[
x[0], ...,x[P−1]

]
, one has

X = AS+N,

N =
[
n[0], ...,n[P−1]].

(2.9)

Fig. 2.2 summarizes different methods for narrowband DOA estimation, and details of each

method are presented in the following sections.

2.2.2 Beamforming based Methods

This class of methods employs a beamformer to scan the whole spatial space and compute

a pseudospectrum[21]. A beamformer is able to attenuate signal powers from uninterested

direction while enhancing signal power from interested direction by exploiting the linear

combination of array output x[p] with a weight vector w. Mathematically, the beamformer

output is given by

9



(a) Beamformer based method. (b) Subspace based method (MUSIC).

(c) Compressive sensing based method. (d) Sparsity based non-coherent method.

Fig. 2.2 Summary of methods for narrowband DOA estimation.

z[p] = wHx[p], (2.10)

where (·)H denotes the Hermitian transpose operator. DOA can be obtained by searching for

the peak of power spectrum P(θ) of the array, given by

P(θ) = wHRxw,

Rx = E{x[p]x[p]H},
(2.11)
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where Rx denotes the covariance matrix of array measurements and E{·} is the expectation

operator. However, since Rx is not available in practice, it is normally estimated by

Rx =
1
P

P−1

∑
p=0

x[p]x[p]H . (2.12)

One early method of this class is the Bartlett method [22], where the weight vector has

a constant value for all its elements and forms a beam with unit magnitude response to

the broadside of the array. Then, by steering the array in every possible direction (i.e.

θ ∈ {−90◦,90◦}), the pseudospectrum can be obtained as a function of θ , denoted as

PBa(θ) = aH(θ)Rxa(θ). (2.13)

Another popular method is the minimum variance distortionless response beamformer

(MVDR), also known as Capon beamformer in the narrowband case [11]. This beamformer

is designed to minimize its total output power while maintaining a unit gain to the interested

direction. The weight of the Capon beamformer is derived by the following optimization

problem

min wHRxw

subject to wHa(θ) = 1.
(2.14)

By using the Lagrange multipliers method, the Langrangian is given by

l(w,η) = wHRxw+η(wha(θ)−1)+η
∗(aHw−1), (2.15)

where (·)∗ is the complex conjugate operator. Differentiating the Langrangian with respect

to wH , we have

∇l(w,η) = Rxw+ηa(θ) = 0. (2.16)

Then, the optimal weight of the beamformer is

w =−ηR−1
x a(θ). (2.17)
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Fig. 2.3 Normalized spectrum of the Bartlett method, with 2 signals, 100 snapshots, 10
sensors, and SNR = 10 dB.
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Fig. 2.4 Normalized spectrum of the Capon method, with 2 signals, 100 snapshots, 10 sensors,
and SNR = 10 dB.
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Since wHa(θ) = 1, it has

−ηaH(θ)R−1
x a(θ) = 1, (2.18)

and the optmal weight is given by

η =
−1

aH(θ)Rxa(θ)
. (2.19)

Substituting (6) into (4), the weight vector is

w =
R−1

x a(θ)
aH(θ)R−1

x a(θ)
. (2.20)

Then, the output power of the Capon beamformer corresponding to direction θ is given by

[2, 3]

PCa(θ) =
1

aH(θ)R−1
x a(θ)

. (2.21)

Figs. 2.3 and 2.4 show the DOA results of the beamforming based methods employing a

ULA shown in Fig. 2.1 with M = 10 sensors, where K = 2 signals arrive from directions

θθθ = [−30◦, 60◦]. However, although the beamforming based methods can identify the DOAs

of incident signals effectively, there resolution is rather limited [21].

2.2.3 Subspace Based Methods

The subspace based methods assume that the signals are uncorrelated with each other, and

apply eigen-decomposition to the covariance matrix Rx to obtain two subspaces: signal

space and noise subspace, which are spanned by different eigen-vectors [3, 13]. The signal

subspace is orthogonal to the noise subspace, and the noise subspace is spanned by the

eigenvectors associated with the smaller eigenvalues while the signal subspace is spanned by

the eigenvectors associated with its larger ones. Under the assumption that signals and noise

are uncorrelated, the covariance matrix Rx can be formulated as

Rx = XXH = ARsAH +Rn

= XXH = ARsAH +σ
2
mIM,

(2.22)
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where Rs and Rn are covariance matrices of signal and noise separately, σm represents noise

power and IM is the M×M identity matrix. Applying eigen-decomposition to Rx, one has

Rx = EMΛΛΛEH
M =

M

∑
m=1

λieieH
i , (2.23)

where ei and λi denote the i-th eigenvector and eigenvalue separately, while EM = [e1, ..,eM]

and λλλ = diag{λ1, ...,λM}, λ1 > ...,λM. diag{·} generates a diagonal matrix from its entries.

Since Rxei = λiei, we have

λiei = (ARsAH +σ
2
mIM)ei,

ARsAHei = (λi −σ
2
m)ei.

(2.24)

While K < M (i.e. the number of impinging signals is less than the number of sensors),

ARsAH is singular with rank K. As a result, there are M−K eigenvalues of ARsA equal to

0. Thus, it satisfies σ2
m = λi when M ≥ i > K. Then, (2.24) can be simplified as

Aei = 0, M ≥ i > K, (2.25)

which implies that noise subspace spanned by the eigenvectors associated with noise are

orthogonal to the signal subspace spanned by the steering vectors of impinging signals.

One most popular subspace method exploiting the orthogonality between the signal

subspace and nosie subspace is the MUltiple SIgnal Classification (MUSIC) method [12].

This method is the most studied subspace based method and there are many variants existing

such as root-MUISC [23], constrained MUSIC [24], and gold-MUSIC [25].

By defining the basis of the noise subspace as EN = [eK+1, ...,eM], this method searches

for the K steering vectors which are most orthogonal to the noise subspace through calcu-

lating the Euclidean distance between the two subspaces as aH(θ)ENEH
N a(θ). The MUSIC

pseudospectrum can be evaluated as a function of θ , given by

PMu(θ) =
1

aH(θ)ENEH
N a(θ)

. (2.26)
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Fig. 2.5 Normalized spectrum of MUSIC, with 2 signals, 100 snapshots, 10 sensors, and
SNR = 10 dB.

An example of DOA spatial spectrum with MUSIC is shown in Fig. 2.5.

2.2.4 Compressive Sensing Based Methods

In the past fifteen years, compressive sensing has been a very active research area, where the

signals are assumed to be sparse in some domain [26]. A signal is said to be sparse if there

is only a few entries of it are nonzero. Since the signals are generally sparse in the spatial

domain, compressive sensing has been applied to DOA estimation problems and studied

extensively [14, 15, 27–30]. Compared to the traditional beamforming based methods

and subspace based methods presented earlier, the compressive sensing based methods

require less number of signal snapshots and the impinging signals are not necessarily to be

uncorrelated with each other [31].

Under the sparsity framework, the angle area of interest, i.e. from −90◦ to 90◦, is

divided into G (G ≫ K) grid points, where there are only K out of G incident signals.

Correspondingly, an overcomplete steering matrix Ã ∈ CM×G is constructed, with each

column representing a steering vector of a potential incident angle, given by

Ã = [a(θ1), ...,a(θG)]. (2.27)
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Accordingly, the signal vector s[p] is extended to a G×1 sparse vector

s̃[p] = [s1[p], ...,sG[p]]T . (2.28)

Note that, there are only K entries at the corresponding incident angles supposed to be

non-zero. As a result, (2.7) is reformulated as

x[p] = Ãs̃[p]+n[p]. (2.29)

Unlike previous methods, Ã is known in advance. Thus, the DOA estimation problem is

equivalent to finding the support of s̃[p] (i.e. non-zero positions of vector s̃[p]), which can be

solved by the following minimization problem

min ∥s̃∥0

subject to ∥x− Ãs̃[p]∥2
2 ≤ ε,

(2.30)

where ∥ · ∥0 denots the l0 norm of its variable, which enforces sparsity, ∥ · ∥ denotes the l2

norm, and ε is the allowable error bound. Although the l0 norm is non-convex in general

[14], many greedy algorithms have been proposed to solve this problem, such as matching

pursuit (MP)[32] and orthogonal matching pursuit (OMP) [33].

Alternatively, another method to solve the problem is relaxing the l0 norm by the l1 norm,

which makes the problem convex [31]. As a result, the DOA estimation problem under the

sparsity frame work is updated to

min ∥s̃∥1

subject to ∥x− Ãs̃[p]∥2
2 ≤ ε,

(2.31)

where ∥ · ∥1 is the l1 norm.
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The above sparsity based method considers only one snapshot, and for multiple snapshots,

(2.9) is changed to

X = ÃS̃+N,

S̃ = [s̃[1], ..., s̃[P]].
(2.32)

Obviously, signal matrix S̃ is row sparse, with K rows corresponding to real DOAs being non-

zero valued. Therefore, the DOA estimation problem with multiple snapshots is reformulated

into a multiple measurement vector recovery (MMV) problem [34],

min ∥S̃∥2,1

subject to ∥X− ÃS̃∥2
F ≤ ε,

(2.33)

where ∥ · ∥2,1 is the l2,1 norm, which promotes the row sparsity of S̃ by taking the l2 norm

of its row vectors, forming a new column vector, and finally taking the l1 norm of the new

column vector, while ∥ · ∥F represents the Frobenius norm. The positions of non-zero rows

of the reconstructed signal matrix S̃ correspond to estimated DOAs of impinging signals.

With the sparsity based multi-snapshot signal model, an efficient method called l1-SVD

was proposed in [14]. In this method, singular value decomposition (SVD) is applied to X,

X = ULVH . (2.34)

Then, a pesudo measurement matrix Xsvd is constructed as

Xsvd = ULDk = XVDK, (2.35)

where Dk = [IK,0]T , IK is the K ×K identity matrix and 0 is a (P−K)×K all-zero matrix.

Similarly, we can define S̃svd and Nsvd and have

X̃svd = ÃS̃svd +Nsvd. (2.36)
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As result, the dimension of signals to be recovered has been reduced from P to K, and by

enforcing sparsity in the spatial domain, the DOA estimation results can be obtained by

solving the following minimization problem,

min ∥S̃svd∥2,1

subject to ∥Xsvd − ÃS̃svd∥2
F ≤ ε,

(2.37)

On the other hand, another method called sparse representation of array covariance

vectors (SRACV) was proposed in [35], where the measurement covariance matrix Rx

described in (2.22) is reformulated as

Rx = ARsAH

= AL+σ
2
n IM.

(2.38)

Similar to l1-SVD, by employing an over-complete steering matrix Ã and L̃, the DOA would

be estimated by minimizing

min ∥L̃∥2,1

subject to ∥Xsvd − ÃL̃∥2
F ≤ ε.

(2.39)

Both (2.37) and (2.39) can be solved by existing optimisation algorithms or toolboxes, such

as proximal gradient [36] and cvx [37]. A simulation result based on the l1-SVD method

with a grid stepsize 0.5◦ is provided in Fig. 2.6.

2.2.4.1 Grid refinement

Since the estimation results of the proposed method are dependent on the grid size in the

angle domain. A denser grid, i.e. large G, usually leads to a more accurate DOA results, but

with a much higher computational complexity [14]. Therefore, instead of creating a dense

grid initially, a coarse grid is firstly made; based on the initial DOA estimation results, a

denser steering matrix is then built around the estimated locations of incident signals, and the
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Fig. 2.6 Normalized spectrum of the l1-SVD method, with 2 signals, 100 snapshots, 10
sensors, and SNR = 10 dB.

algorithm is employed again to find a more accurate DOA. The process of grid refinement is

as follows,

1) Construct overcomplete steering matrix Ã with a coarse grid θ̃θθ
(1)

= [θ
(1)
1 , ...,θ

(1)
G ],

where the area of interest is limited within {θ
(1)
1 ,θ

(1)
G }.

2) Approximating the rough DOAs of impinging signals by solving (2.28).

3) Obtained a new refined grid θ̃θθ
(2)

around the rough locations estimated with the coarse

grid θ̃θθ
(1)

, and construct another overcomplete steering matrix.

4) Solve (2.28) with the refined steering matrix and obtain refined results.

Fig. 2.7 illustrates the process of grid refinement, where the refined grid is based upon

the intervals around the rough results obtained with a coarse grid used in the previous step.

2.2.5 Non-Coherent DOA Estimation

The above DOA estimation methods implicitly assume that the phase information is available

at the array of sensors and those high resolution methods often rely on this assumption.

However, in real applications, the phase information may not be reliable. Under such a

scenario, each sensor may suffer from independent phase errors and for the noiseless case,
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Fig. 2.7 Illustration of grid refinement.

the array measurement would be changed to

X = EAS, (2.40)

where E is an M×M diagonal matrix with random phase terms, representing the phase errors

at the sensor array. In the presence of phase errors, the performance of those aforementioned

methods will degrade significantly [16, 38, 39].

In order to overcome this challenge, non-coherent DOA estimation has been studied

recently, where only magnitude information is captured at all sensors. The signal model is

changed to

Y = |EAS|+N, (2.41)

where | · | represents element-wise absolute value operator. Since the measurement is magni-

tude only and E is diagonal, we have

|EAS|= |AS|, (2.42)

which indicates that, unlike those traditional methods, phase errors at sensors of an array

have no effect on magnitude-only measurements [16], and hence, in the remaining part of

this thesis, the phase error matrix E is dropped for convenience.

20



For such a non-coherent DOA estimation problem, [16] formulated it into a sparse phase

retrieval form, given by

min ||S̃∥2,0

subject to ∥Y2 −|ÃS̃|2∥2
F < ε.

(2.43)

For the l2,0 norm of a matrix, it takes the l2 norm of its row vectors, then forms a new

column vector, and finally takes the l0 norm of the new column vector. An existing greedy

phase retrieval algorithm named GESPAR [40] is modified to solve it, as proposed in [16].

This algorithm is based on the local search method [41] which updates support of signals

iteratively, and approximates best solution under given support by the damped Gaussian

Newton (DGN) method [42].

The modified GESPAR [16] firstly generates a random support (i.e. K non-zero rows),

and with the support, each column of the objective function (2.43) is reformulated as

min
sk[p]

∥(y2[p]−|AKsk[p]|2∥2
2, (2.44)

where sk ∈ CK × 1 represents the K possible nonzero elements of S̃ and Ak are column

vectors of Ã corresponding to the given support. The problem can be solved via DGN.

However, for P snapshots in total, the method has to be applied to different snapshots

separately. Then, support at each iteration is updated by a swap between support and off-

support. The index of support to be chosen for swap is the entries with the smallest absolute

value, while index of off-support for swap corresponds to largest absolute value of the entries

of ∑
P−1
p=0 ∇(∥y2[p]−|Ãs̃[p]|2∥2

2), where ∇(·) represents gradient of its variable. This process

continues until the iteration number exceed the predetermined maximum number of swaps.

In addition to the sparse phase retrieval method, a frequency estimation formulation is

further proposed [17, 18], where the signal model is reformulated as

y2
m[p] = |

K

∑
k=1

|sk|e jγke− j2π
d
λ

sin(θk)|2,

=
K

∑
k=1

K

∑
k′=1

|sk||sk′|e j(γk−γk′)e− j2πm d
λ
(sin(θk)−sin(θ ′

k)),

(2.45)
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where γk denotes the phase of the k-th signal. It can be observed from (2.45) that there are

K(K −1)/2 harmonic terms, and only sinusoidal difference ∆sin(θ)kk′ = sin(θk)− sin(θ ′
k)

can be estimated. Moreover, its estimation accuracy relies on its frequency resolution,

which requires a large number of measurements. In addition, this method fails to utilize the

information of multiple snapshots jointly to improve its performance.

2.2.6 Inherent Ambiguities

Obviously, reconstructing signals from (2.43) and (2.45) with a ULA suffers from three am-

biguities [16] (i.e. signals with different set of DOAs has the same magnitude measurement),

and two of them would affect the DOA estimation results: one is mirroring and the other is

spatial shift.

For mirroring, it refers to the phenomenon that the conjugated version of the original

sources from the angles [−θ1, · · · ,−θK] will generate a set of measurements with the same

magnitude as the original sources from [θ1, · · · ,θK].

x̌m =
K

∑
k=1

s∗ke− jm2π
d
λ

sin(−θk) = x∗m, (2.46)

where xm is the measurement at the m-th sensor with m = [0, ...,M−1], the time index p has

been dropped for convenience, and the effect of noise has been ignored. Obviously, mirroring

measurement x̌m shares the same magnitude as the original measurement xm.

For the spatial shift ambiguity, it refers to the case that the received array signals are

phase shifted by an unknown amount φ as follows

x̌m = e− jmφ xm =
K

∑
k=1

ske− jm2π
d
λ

sin(θk)e− jmφ . (2.47)

In this case, with the same set of source signals, a set of DOA angles, θ̈k satisfying

sin θ̈k = sinθk +
φλ

2πd
(2.48)
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for all k, would generate the same magnitude-only measurements. One interesting property

of this ambiguity is that, the DOA angle order stays the same, i.e. with sinθ1 < sinθ2 <

· · · < sinθK , we also have sin θ̈1 < sin θ̈2 < · · · < sin θ̈K and this ambiguity will not affect

the relevant sinusoidal distance ∆sθ ,kk′ = (sinθk +
φλ

2πd )− (sinθk′ +
φλ

2πd ), k ̸= k′ due to the

common phase shift involved for all DOA angles.

These two ambiguities can be resolved by placing reference signal(s) at one end of

interest area, as suggested in [16]. For spatial shift ambiguity, a reference signal with a

known DOA forces the spatial shift variable φ to be zero, and thus resolves this ambiguity.

The mirroring ambiguity is caused by the even property of the cosine function (the non-

coherent measurements can be seen as sum of several cosine function), which means both

±m2πd
λ
(sin(θk)− sin(θre f ) are possible solution candidates. The solution can be restricted

to either m2πd
λ
(sin(θk)− sin(θre f ) with a reference signal at lower end or −m2πd

λ
(sin(θk)−

sin(θre f ) with a reference signal at a high end.

A design example for the non-coherent DOA estimation result with M = 20 sensors, is

given in Fig. 2.8 and Fig. 2.9, where the modified GESPAR [16] is applied as estimators. Two

scenarios are considered: 1) K = 1 impinging signal coming from θ = 30◦ and a reference

signal placed at 0◦; 2) K = 2 signals arriving from [30◦,60◦], where the reference signals are

placed at [0◦,10◦].

2.3 Wideband DOA Estimation

2.3.1 Signal Model

Assume that there are K wideband signals sk(t) from directions θk, k = 1,2, ...,K, respectively,

impinging on a ULA of M sensors with an adjacent sensor spacing d. Since α(t−τm,k) ̸=α(t)

dose not hold for wideband signals, the corresponding received signal (2.1) at the m-th sensor

is

xm(t) =
K

∑
k=1

δ (t − τm,θk)∗ sk(t)+nm(t), (2.49)
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Fig. 2.8 Normalized spectrum of the GESPAR, with 1 signal, 5 snapshots, 20 sensors, and
SNR = 15 dB.
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Fig. 2.9 Normalized spectrum of the GESPAR, with 2 signals, 5 snapshots, 20 sensors, and
SNR = 15 dB.
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where nm(t) is noise, c is signal propagation speed, and τm,θk =
md sinθk

c is the time delay of

the k-th signal with DOA θk at the m-th sensor, m ∈ {0, ...,M−1}, with the zeroth sensor

regarded as the reference one.

With a sampling frequency fs, the received signal at the m-th sensor can be expressed in

a discrete convolution form [20], given by

xm[p] =
K

∑
k=1

(
+∞

∑
i=−∞

ai,m,θksk[p− i])+nm[p], (2.50)

where sk[p] represents the p-th snapshot of the k-th source signal, Ts is its sampling period,

and

ai,m,θk = sinc(i− τm,θk/Ts). (2.51)

sinc(·) is the normalized sinc function, defined as

sinc(v) = sin(πv)/(πv) (2.52)

2.3.2 Frequency based method

For such a wideband DOA estimation problem, a common approach is applying an L-point

discrete Fourier transform (DFT) to those measurements, and decomposing wideband signals

into different frequency bins, with each bin containing R = P
L frequency snapshots. Then, the

r-th frequency snapshot of the l-th subband at the m-th sensor after L-point DFT is modelled

as

Xm[l,r] =
L−1

∑
p=0

xm[L(r−1)+ p]e− j 2πl
L p. (2.53)

Denoting X[l,r] = [X0[l,r], ...,XM−1[l,r]]T , the signal model of the l-th subband with R

frequency snapshots can be expressed as

X[l] = [X[l,1], ...,X[l,R]],

= A(l)S[l]+N[l],
(2.54)
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where A(l) = [a(l,θ1), ...,a(l,θK)] is the steering matrix of the l-th subband, with

a(l,θk) = [1,e
− j2π

d
λl

sin(θK), ...,e
− j(M−1)2π

d
λl

sin(θK)]T , (2.55)

where λl is the wavelength corresponding to the l-th subband, and

S[l] = [S[l,0], ...,S[l,R−1]],

S[l,r] = [S1[l,r], ...,SK[l,r]]T ,
(2.56)

represents signals of the l-th subband. Under the subband model (2.54), each subband enjoys

a similar signal model as the narrowband one, and those existing methods can be applied.

In [43], an effective compressive sensing based approach is proposed, where the DOA of

the impinging signals across subbands of interest is estimated simultaneously by introducing

l2,1 norm to different subbands (i.e., the signal of different frequencies share the same spatial

support). Under such a framework, an overcomplete steering matrix Ã(l) at frequency l is

firstly built in a similar manner as in (2.27). Then, a block diagonal matrix Ãb containing

Q, Q ≤ L subband of interested is constructed, expressed as

Ãb = blkdiag{Ã(l0), ..., Ã(lQ−1)}, (2.57)

where blkdiag(·) represents the block diagonal operator. Accordingly, the array measure-

ments including all subbands of interest can be formulated as

Xb = [XT [l0], ...,XT [lQ−1]]
T

= ÃbS̃b +Nb,

S̃b = [S̃T
[0], ..., S̃T

[Q−1]]T .

(2.58)

Finally, the wideband DOA estimation can be obtained by solving the following minimization

problem

min ∥S̃b∥2,1

subject to∥Xb − ÃbS̃b∥2
F .

(2.59)
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Note that, S̃b is a GQ× I signal matrix, and in addition to its row sparsity, each subband also

shares the same spatial sparsity. An example with a ULA of M = 10 sensors is presented in

Fig. 2.10. The DOAs of signals are set as −20◦, and 20◦, and the frequency band of interest

is within normalized frequency [0.5π,π] with I = 100.
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Fig. 2.10 Normalized spectrum of wideband signals, with 2 signals, 100 snapshots, 10
sensors, and SNR = 10 dB.

2.4 Simulations

In this section, the estimation performance of different DOA estimation methods are evaluated

by root mean squared error (RMSE), which is defined as

RMSE =

√√√√ 1
IK

I

∑
i=1

K

∑
k=1

(θ i
k −θ i

e,k)
2, (2.60)

where i refers to the i-th trial while θe,k and θk represent estimated DOA and true DOA of

the k-th impinging signals, separately,

The RMSE results versus different SNR for both coherent and non-coherent methods are

considered in Fig. 2.11, with each point obtained by averaging over 100 independent trials.
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Fig. 2.11 RMSE vs SNR.

0.3 0.4 0.5 0.6 0.7 0.8

Standard deviation of phase error

0.2

0.4

0.6

0.8

1

1.2

R
M

S
E

: 
d
e
g
re

e

MUSIC

GESPAR

Fig. 2.12 RMSE vs phase error.
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The number of sensors M is 20, and DOAs of signals are set as 30◦ and 60◦. The number of

snapshots is 20 and the array is assumed to be fully calibrated (i.e. E = 0). Two reference

signals are placed at 0◦ and 5◦ for the non-coherent method. The inter-sensor spacing d is set

as λ/2, the area of interest is limited within [0◦,90◦], and the grid stepsize for the sparsity

method is 0.1◦. It can be seen that the coherent methods outperform the non-coherent method

consistently, as the coherent method utilizes both magnitude and phase information.

Next, the effect of phase errors on coherent and non-coherent DOA methods are evaluated

and the result is shown in Fig. 2.12, where the figure displays the RMSE results as a function

of the standard deviation of sensor phase errors. The phase error is modelled by a diagonal

matrix E, with its entries following the zero-mean Gaussian distribution with standard

derivation σ . Due to unreliable phase information when the standard deviation of phase

error increases, RMSE of the MUSIC method gets worse than GESPAR which employs

magnitude-only measurements.

0 5 10 15 20

0

0.5

1

1.5

2

2.5

3

3.5

P=32

P=64

Fig. 2.13 RMSE vs SNR of wideband sources.

RMSE performance of the wideband sources versus SNR is shown in Fig. 2.13. The

results are further parameterized by snapshots in time domain. It can be seen that, the

wideband method is sensitive to the number snapshots, especially when the nosie level is

high.
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2.5 Summary

In this chapter, a range of existing methods for DOA estimation of both narrowband and

wideband signals have been presented. For narrowband signals, methods including those

based on beamforming, subspace and compressive sensing are introduced in detail. In the

absence of sensor array phase errors, those methods can provide high resolution results, while

their performance declines when phase error exists, which leads to the study of non-coherent

DOA estimation, where magnitude-only measurements of the received array signals are

available. However, the existing class of non-coherent DOA estimation methods requires

reference signals to resolve the inherent ambiguities issue. For wideband signals, as a classic

approach, DFT is applied to array signals to transform the wideband model into a narrowband

form, and then existing narrowband DOA estimation methods can be applied to find the

DOAs. But it is difficult to extend the DFT based approach to the non-coherent scenario and

convolutional sparse coding will be introduced at a later stage of this thesis to tackle this

problem.
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Chapter 3

A Fast Group Sparsity Based Phase

Retrieval Algorithm for Non-Coherent

DOA Estimation

3.1 Introduction

Compared to existing coherent methods [11–14], the non-coherent methods are unaffected

by phase errors at sensors of arrays, but the spatial shift and mirroring ambiguities associated

with magnitude-only measurements would make the estimated DOA indistinguishable. Those

inherent ambiguities are normally resolved by placing reference signals at one end of

interested area in current literature [16–18]. However, in addition to the spatial shift and

mirroring ambiguities, another new ambiguity called spatial order ambiguity cannot be solved

by reference signals and would affect the DOA results and a solution to avoid this ambiguity

is to limit the inter-sensor spacing of the employed ULAs to be less than a quarter of the

signal wavelength to deal with the normal DOA range of [−90◦,90◦]. This is consistent with

previous observation that with the standard half-wavelength spacing [16, 18], the DOA range

of the signals is limited to either [0,90◦] or [−90◦,0].

Another problem of the phase retrieval based non-coherent DOA estimation is that

the traditional phase retrieval solutions originated from optical imaging, astronomy and
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crystallography [44–47], where unknown signals in those applications contain only one

single snapshot. However, there are normally multiple snapshots at an array of sensors for

DOA estimation. As a result, while applying the phase retrieval approach in non-coherent

DOA estimation, existing phase retrieval algorithms fail to jointly use the information

of multiple snapshots to improve its performance. Although the modified GESPAR [16]

extended GRSPAR [40] for multiple snapshots, it still ineffectively processes different

snapshots independently.

To deal with the multi-snapshot scenario more effectively, an efficient group sparsity based

phase retrieval algorithm based on the phase retrieval via majorizaion-minimization technique

(PRIME) [48] and the proximal gradient method [36] is introduced in this chapter for non-

coherent DOA estimation. The proposed algorithm is able to utilize multiple snapshots

jointly and has a low computational complexity compared to the modified GESPAR. We

refer to this algorithm as fasT grOup sparsitY Based phAse Retrieval (ToyBar) [49].

The remaining part of this chapter is structured as follows: The non-coherent signal

model and its inherent ambiguities are described in Section 3.2. The proposed group sparsity

based phase retrieval algorithm is given in Section 3.3 and simulation results are provided in

Section 3.4. Conclusions are drawn in Section 3.5.

3.2 Non-Coherent Signal Model and Ambiguities

The non-coherent measurements of an ULA is given in (2.41), as

Y = |AS|+N, (3.1)

where A is the steering matrix of the array.

Two ambiguities associate with magnitude-only measurements would affect DOA results

and have been reviewed in Section 2.2.5, which are mirroring and spatial shift. Both mirroring

and spatial shift ambiguities can be removed by placing reference signal at either edge of the

interested range. If there are more than one incident signals, multiple reference signals may

be employed [16].
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However, there is another ambiguity which has not been discussed in literature yet and

we call it “spatial order ambiguity”, as this ambiguity will change the spatial order of the

impinging signals, i.e. with sinθ1 < sinθ2 < · · ·< sinθK , we cannot have sin θ̈1 < sin θ̈2 <

· · · < sin θ̈K . Next, we discuss it in detail and show that this ambiguity can be avoided by

limiting the adjacent sensor spacing to λ/4.

For this new ambiguity problem, we consider the following ambiguous signals x̌m[p] with

the same magnitude as xm[p], where xm[p] denotes the full array measurements of the m-th

sensor at p time index, expressed as

x̌m[p] = e− jmφ
K

∑
k=1

sk[p]e− jm2πbke− jm 2πd
λ

sinθk

=
K

∑
k=1

sk[p]e− jm 2πd
λ

(sinθk+
φλ

2πd +
bkλ

d ),

(3.2)

where bk is an arbitrary integer. To avoid spatial aliasing, normally we assume d = λ/2 [20].

Then, (3.2) becomes

x̌m[p] =
K

∑
k=1

sk[p]e− jm 2πd
λ

(sinθk+
φλ

2πd +2bk). (3.3)

Without the bk term, the maximum value of φλ

2πd which can give a valid shift will be 2, i.e.

shifting a signal from −90◦ to 90◦; if it is larger than 2, the new shifted value will be larger

than 1, which is not valid for sinθ , −90◦ ≤ θ ≤ 90◦. Similarly, the minimum value for φλ

2πd

will be −2 and as a result we would have

−2 ≤ φλ

2πd
≤ 2. (3.4)

Consider the original DOA angles are ordered as sinθ1 < sinθ2 < ... < sinθK and with a

shift by −2 ≤ φλ

2πd < 0, some of the DOA angles, such as sinθks , ks = 1, · · · ,Ks(Ks < K) are

shifted to the left outside of the valid sinusoidal range so that sinθk +
φλ

2πd <−1, for k ≤ Ks,

while for the remaining angles, we still have −1 ≤ sinθk +
φλ

2πd ≤ 1, for Ks < k ≤ K; then,

we can choose bk = 0 for Ks < k ≤ K and bk = 1 for k ≤ Ks. As a result, we would have

−1 ≤ (sinθk +
φλ

2πd +2bk)≤ 1 for k ≤ Ks, which is valid angle values. However, in this case,
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we can see that the order of the new set of angles θ̈k, satisfying sin θ̈k = sinθk +
φλ

2πd +2bk for

all k will be different from the original one, i.e. we will not have sin θ̈1 < sin θ̈2 < · · ·< sin θ̈K

any more and the sinusoidal difference of the original signals has changed. The net result

is that the first Ks signals are shifted to the right side of the valid angle range, while the

remaining signals are shifted to the left.

For example, consider K = 2 signals with θ1 = −30◦, θ2 = 90◦ and φλ

2πd = −2. After

this shift, sin θ̈2 = sinθ2 −2 =−1 and sin θ̈1 = sinθ2 −2 =−2.5. Obviously, θ2 is shifted

to −90◦ and θ̈1 does not exist. However, with half wavelength spacing, b1 can be chosen as

1, which leads to sin θ̈1 = sinθ2 −2+ λ

d =−0.5. As a result, the solution is θ̈2 =−90◦ and

θ̈1 =−30◦. It can be seen that the order of DOA has changed as sin θ̈2 < sin θ̈1 as well as

the sinusoidal difference (from ∆sθ ,21 = 1.5 to ∆s̈θ ,21 = 0.5), but they still share the same

magnitude measurement.

We have a similar conclusion if we consider the shift to the left with 0 < φλ

2πd ≤ 2. This

ambiguity cannot be solved by adding reference signals as the spacing in sine value among

the new set of DOA angles will be different.

However, it can be resolved by reducing inter-sensor spacing d to d ≤ λ

4 . In the limit, we

choose d = λ

4 . Then

x̌m[p] =
K

∑
k=1

sk[p]e− jm 2πd
λ

(sinθk+
φλ

2πd +4bk). (3.5)

With −2 ≤ φλ

2πd ≤ 2, for any value of bk ̸= 0, we always have

|sinθk +
φλ

2πd
+4bk|> 1, (3.6)

which means it is not a valid choice for any physical DOA angle. As a result, we can only

have bk = 0, i.e. we have avoided the spatial order ambiguity. Note here, we have assumed

−2 ≤ φλ

2πd ≤ 2, but φλ

2πd can take any value outside this range; however, if it does take a value

outside this range, it will be reduced to within this range by choosing an appropriate integer

value for bk in 4bk.

Therefore, in order to avoid this ambiguity, d is now chosen to be less than or equal to

λ/4 instead of λ/2 for the normal angle range of interest [−90◦,90◦].
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3.3 The Proposed Algorithm for Non-Coherent DOA Esti-

mation

The joint group sparsity based non-coherent DOA estimation is reviewed in Chapter 2, and

the problem is formulated as

min ∥S̃∥2,0

s.t. ∥Y−|ÃS̃|∥2
F < ε.

(3.7)

Since the l0 norm is noncovex, its relaxed version l1 norm is employed instead [50], and

the resulting estimation problem can be solved by the following unconstrained optimisation

problem

min
S̃

∥|ÃS̃|−Y∥2
F +ρ∥S̃∥2,1, (3.8)

where ρ is the regularization parameter, and the ∥ · ∥2,1 is l2,1 norm, which promotes the row

sparsity of S̃.

Since the phase retrieval problem is a general instance of a non-convex quadratic program,

and therefore it is non-convex [51], which results in the optimization problem NP-hard.

However, this non-convex problem can be replaced by a surrogate convex function via the

majorization-minimization (MM) method. Under the MM framework, a non-increasing

property hold as [48, 52]

f (sq+1)≤ g(sq+1|sq)≤ g(sq|sq) = f (sq), (3.9)

where f (s) is the original function, q indicates the iteration index and g(s|sq) is the majoriza-

tion function satisfying

g(s|sq)≥ f (s), ∀s,

g(sq|sq) = f (sq).
(3.10)

By applying the PRIME technique [48], this phase retrieval problem can be majorized by a

surrogate function. Considering the problem (3.8) with one snapshot and dropping the time
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index p for convenience, we have

min
s̃

∥|Ãs̃|−y∥2
2 +ρ∥s̃∥1. (3.11)

By following the same approach in [48], the above minimization problem (3.11) can be

reformulated as

min
s̃

M

∑
m=1

(|ãms̃|2 −2ym|ãms̃|+ |ym|2)+ρ∥s̃∥1

= min
s̃

M

∑
m=1

(|ãms̃|2 −2ym|ãms̃|)+ρ∥s̃∥1,

(3.12)

where ãm represents the m-th row of the steering matrix Ã, and ym is the m-th component of

y. According to the Cauchy-Schwarz inequality, it has

Re(ãis̃(s̃q)H ãH
i )≤ |ãis̃||ãis̃q|, (3.13)

where Re(·) represents real part of its variable. Thus, (3.12) can be majorized as

min
s̃

M

∑
m=1

(|ãms̃|2 −2|ym|
Re(ãms̃(s̃q)HaH

m)

|ãms̃q|
)+ρ∥s̃∥1, (3.14)

which can be formulated as

min
s̃

∥Ãs̃− cq∥2
2 +ρ∥s̃∥1, with cq = y⊙ e jarg(Ãs̃q), (3.15)

where ⊙ denotes the Hadamard product, s̃q is a known complex vector and arg(·) represents

the phase of its variable applied element-wise.

Thus, applying the same approach described in (3.15) column by column to the objective

function, the original objective function (3.8) is majorized as

min
S̃

∥ÃS̃−Cq∥2
F +ρ∥S̃∥2,1, (3.16)
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where

Cq = Y⊙ e jarg(ÃS̃q
). (3.17)

Since (3.16) is convex, it can be solved by the proximal gradient method [36, 53], which

aims at solving problems in the form of

min
S̃

F(S̃)+G(S̃), (3.18)

where both F(S̃) and G(S̃) are convex and F(S̃) is differentiable. Then, this method iteratively

refines its solution by

S̃q+1
= proxλG(S̃

q −λ∇F(S̃q
)), (3.19)

where λ is the stepsize and ∇F(S̃q
) is the gradient of F(S̃). The proximal operator prox is

defined as

proxλG(S̃) = argmin
Z

(
1

2λ
∥Z− S̃∥2

F +G(Z)). (3.20)

Therefore, substituting the first term of object function (3.8) as F(S̃) and second term as

G(S̃), S̃q+1 can be obtained by solving the following problem

S̃q+1
= argmin

Z
{∥ 1

2λ
∥Z− (S̃q −λ∇F(S̃q

))∥2
F +ρ∥Z∥2,1}. (3.21)

Since G(S̃) = ∥ · ∥2,1 is separable as ∥S̃∥2,1 = ∑
G
i=1 ∥s̃i∥2, where s̃i represents the i-th row of

S̃, the proximal operator can be applied to each row independently as [36], [54]

s̃q+1
i = argmin

zi

{ρ∥zi∥2 +
1

2λ
∥zi − (s̃q

i −λ∇F(s̃q
i ))∥

2
2}, (3.22)

where zi is the i-th row of Z, with

∇F(s̃q
i ) = 2(ÃH

)i(ÃS̃q −Cq), i = 1, · · · ,G, (3.23)
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is the i-th row of ∇F(S̃q
), and (ÃH

)i is the i-th row of ÃH . This is equivalent to applying the

row-wise proximal operator of l2 norm to (3.21), which has an analytical solution as [54]

s̃q+1
i = (s̃q

i −λ∇F(s̃q
i ))max(1− ρλ

∥s̃q
i −λ∇F(s̃q

i )∥2
,0). (3.24)

The positions of non-zero rows of the reconstructed signal matrix S̃q correspond to DOAs of

incident signals.

3.3.1 Convergence Analysis

The non-convex group sparse phase retrieval problem is replaced by a convex surrogate via

the majorization-minimization technique. If the second inequality of (3.9) holds, we have

∥ÃS̃q+1 −Cq+1∥2
F +ρ∥S̃q+1∥2,1 ≤ ∥ÃS̃q −Cq∥2

F +ρ∥S̃q∥2,1, (3.25)

and thus the generated sequence S̃q will at least converge to a stationary point.

Following the convergence analysis of the proximal gradient method in [55], [56], next

we give an analysis of the derived algorithm.

Consider the general model (3.16), F(S) = ∥ÃS̃−Cq∥2
F and G(S̃) = ρ∥S̃∥2,1. The

smallest Lipschitz constant of F(S) is the Hessian of it, which is equal to L = 2λmax(AHA),

where λmax(·) extracts the maximum eigenvalue of its variable. Thus, if λ ≤ 1
L , for any S̃q,

F(S̃q+1
) is upper bounded by [56],

F(S̃q+1
)≤ F(S̃q

)+Re(< ∇F(S̃q
), S̃q+1 − S̃q

>)

+
1

2λ
∥S̃q+1 − S̃q∥2

F ,
(3.26)

where < ·, ·> represents Frobenius inner product and Re(·) represents real part of its variable.

Since the l2,1 norm is also convex, for S̃q, there should be a subgradient V ∈ ∂∥S̃q+1∥2,1,

which satisfies

G(S̃q+1
)≤ G(S̃)−Re(< V, S̃− S̃q+1

>). (3.27)
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Therefore, using (3.26) and (3.27), the upper bound of the objective function (3.16) is given

by

F(S̃q+1
)+G(S̃q+1

)≤ F(S̃q
)+G(S̃q

)−Re(< V, S̃q − S̃q+1
>)

+Re(< ∇F(S̃q
), S̃q − S̃q+1

>)+
1

2λ
∥S̃q+1 − S̃q∥2

F .
(3.28)

The sequence S̃q is generated by the proximal gradient method, which can be written as

S̃q+1
= proxλg(S̃

q −λ∇F(S̃q
))

= argmin
Z

(G(Z)+
1

2λ
∥Z− (S̃q −λ∇F(S̃q

)∥2
F)

= argmin
Z

(G(Z)+F(S̃q
)+< ∇F(S̃q

),Z− S̃q
>

+
1

2λ
∥Z− S̃q∥2

F).

(3.29)

The last equality is obtained by ignoring constant terms unrelated to Z.

With the optimal condition of (3.29), if S̃q+1 exists, its subgradient V ∈ ∂∥S̃q+1∥2,1

should satisfy

V+
1
λ
(S̃q+1 − S̃q

)+∇F(S̃q
) = 0. (3.30)

Thus, by substituting (3.30) into (3.28), one has

F(S̃q
)+G(S̃q

)−F(S̃q+1
)−G(S̃q+1

)≥ 1
2λ

∥S̃q − S̃q+1∥2
F . (3.31)

Therefore, the sequence S̃q produced by the proximal gradient method is guaranteed to

converge with stepsize λ ≤ 1
L .

3.3.2 Acceleration Scheme

Since the group sparse phase retrieval problem is transformed into a convex surrogate

and solved by the proximal gradient method, it can be further accelerated by applying the

Nesterov acceleration [55, 57]. This method does not apply proximal operator to previous
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Table 3.1 Algorithm Summary (ToyBar)

Input: Ã, Y, ρ , λ ,
Output: S̃ (reconstructed signal).
Initialization: Set S̃0 as a random matrix, B0 = S̃0,

β 0 = 1.
General steps: for q=0, ..., Q
1) Calculate Cq = Y⊙ e jarg(ÃBq)

2) Calculate S̃q+1, for i=1,...,G
Gradient:∇F(b̃q

i ) = 2(ÃH
)i(ÃBq −Cq),

Find s̃q+1
i as

s̃q+1
i = (bq

i −λ∇F(bq
i ))max(1− ρλ

∥bq
i −λ∇F(bq

i )∥2
,0),

where bq
i is the i-th row of Bq.

3) Update: β q+1 =
1+
√

1+4(β q)2

2 ,
Bq+1 = S̃q+1

+ β q−1
β q+1 (S̃

q+1 − S̃q
).

S̃q+1 directly, but another point Bq+1 based on S̃q+1 and S̃q expressed as

Bq+1 = S̃q+1
+

β q −1
β q+1 (S̃q+1 − S̃q

), (3.32)

where

β
q+1 =

1+
√

1+4(β q)2

2
. (3.33)

The full algorithm is presented in the above Algorithm Summary, which is referred to as fasT

grOup sparsitY Based phAse Retrieval (ToyBar).

3.3.3 Maximum Number of Resolvable Signals

Traditionally, for a M-sensor ULA, at most K = M−1 impinging signals can be resolved.

However, due to lack of phase information, from the viewpoint of phase retrieval, only less

than M − 1 signals can be constructed with M measurements. In [58], it proves that for

full sparse signals (K = G), at most G = 2M−1 signals can be recovered with the generic

measurement frame A= {am}M
m=1 if both the measurement matrix and signals are real-valued,

where am is the m-th row of A and by generic it means A is an open dense subset of R(C) i.e.
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random Gaussian matrix. For the complex-valued scenario, [59] conjectures that M = 4G−4

generic measurements is required to recover G signals. This conjecture has been proved in

[60] for G = 2b −1,b ≥ 1. For K-sparse signals, 4K −1 (8K −2) generic measurements are

needed for real (complex) scenarios [61].

Since the steering matrix is not generic, the above condition might not hold for the non-

coherent measurements of an array. The authors in [62] show that K2 −K +1 measurements

are required to recover K signals with Fourier magnitude measurements by pointing out that

reconstructing K-sparse signals from its magnitude measurements is the same as recovering

its auto-correlation from its Fourier measurements [62]. As the steering matrix has a similar

structure to the Fourier measurements matrix, similar theorem can be derived.

Theorem 3.3.1. To reconstruct a K-sparse signals s, at least K2 −K +1 measurements are

necessary.

Proof. Defining a vector u as

u =
[
|s|2,s1,K, ...,sK−1,K,s∗K−1,K, ...,s

∗
1,K

]T
, (3.34)

where sk,K = [sks∗k+1,sks∗k+2...,sks∗K] for k = 1, ...,K −1, and |s|2 = ∑
K
k=1 |sk|2.

Then, we can find a matrix D satisfying

|Ãs̃|2 = Du, (3.35)
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with

dT
m =



1

e− jm 2πd
λ

∆sinθθθ 1K

...

e− jm 2πd
λ

∆sinθθθ K−1,K

e jm 2πd
λ

∆sinθθθ K−1,K

...

e jm 2πd
λ

∆sinθθθ 1K


, (3.36)

where ∆sinθθθ k,K = [sinθk − sinθk+1, ...,sinθk − sinθK]. Therefore, recovering s̃ from its

magnitude measurements is equivalent to reconstructing sparse signal u with overcomplete

dictionary D. For an M-element array, it can recover up to K signals, with K satisfying

K2 −K + 1 ≤ M. Note that, the number of signals that can be resolved with magnitude

measurements is still an open question, and the above result is not a tight bound and only

used as a reference.

3.4 Simulations

In this section, several simulations are provided to show the performance of the proposed

ToyBar with ULA. Without loss of generality, the inter-sensor distance d is λ/4 for avoiding

the spatial ordering ambiguity and two reference signals with DOA {−90◦, −85◦} are

applied for avoiding spatial shift and mirroring ambiguities. The steering matrix is formed

with a grid stepsize of 0.5◦ and performance of the modified GESPAR [16] is compared

with the proposed ToyBar. The maximum iteration number of the modified GESPAR is

set as 64000 in the following simulations, while for the ToyBar, the iteration number is

500, and 30 random initializations are used in order to find the global minimum of the

non-convex problem. The stepsize used in Toybar is set as 1/(2λmax(Ã
HÃ)), where λmax(·)

is the maximum eigenvalue of its variable. Since the modified GESPAR is designed for

magnitude square of the measurements, the data used for GESPAR is (|ÃS̃|+N)2.
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Fig. 3.1 Estimation results by the proposed ToyBar.
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Fig. 3.2 Estimation results by the modified GESPAR.
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The first simulation shows the obtained spatial spectrum of the modified GESPAR and

ToyBar with SNR=15 dB while applying a M = 20 ULA, where the dotted lines are true DOA

and solid lines are estimation results. There are K = 2 incident signals from {−15◦,30◦}.

As shown in Figs. 3.1 and 3.2, both methods have obtained a good estimation of the true

DOAs of incident signals.

To further compare the accuracy of both algorithms, Fig. 3.3 shows the root mean square

error (RMSE) of the DOA estimation results as a function of SNR over 100 trials. It can

be observed that the proposed ToyBar consistently outperforms the modified GESAPR. For

SNR≥ 15, increasing SNR has a rather limited effect on performance.

In Fig. 3.4, results of RMSE versus the number of snapshots of both algorithms are

provided. SNR is fixed at 25 dB but the number of snapshots P is from 20 to 100. Each point

is averaged over 50 trials. Under all snapshot settings, the proposed algorithm has a lower

RMSE than the modified GESPAR.

The fourth simulation studies the RMSE results versus the number of impinging signals

K, as presented in Fig. 3.5, where only the proposed ToyBar is employed with M = 20 and

M = 30 sensors. The SNR is set to 20 dB, P = 40 snapshots are collected and four reference

signals are employed. It can be observed that, the number of signals can be recovered is less

than the coherent scenario with full measurements (K = M−1), but it exceeds the bounds

derived in section 3.3. One possible reason is that the aim of DOA estimation is recovering

the correct support of sparse signals, not exact values of signals. However, the real bound for

support recovery is still an open problem, and should be further investigated.

Finally, to compare the computational complexity of the modified GESPAR and the

proposed ToyBar, the average running time of both algorithms under CPU I5 5200U at

2.2GHz and 4 GB RAM is listed in Table 3.2. It can be seen that a larger number of snapshots

significantly increases the running time of GESPAR and it always requires much longer

running time than the proposed ToyBar. There are two possible reasons. One is that GESPAR

is a greedy algorithm and requires more iterations to achieve a good performance; the other

one is that, it was originally designed for the traditional phase retrieval problem, which

always assumes that the input signal has one snapshot only, and thus its modified version
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for multiple snapshots has to exploit different time samples separately. By contrast, the

proposed algorithm exploits multiple data samples directly through group sparsity, which is

more efficient than the modified GESPAR.

Table 3.2 Running times of different algorithms.

Snapshots Modified GESPAR(s) ToyBar(s)
P=20 950.48 26.10
P=60 2251.32 33.15

P=100 3998.16 39.43

3.5 Conclusions

In this paper, the non-coherent DOA estimation problem has been studied and an efficient

and effective sparse phase retrieval algorithm for multiple snapshots called ToyBar was

proposed. The problem was first formulated as a group sparse phase retrieval problem, which

was then solved by the proximal gradient method after transforming the original non-convex

problem into its convex surrogate via majorization-minimization. Ambiguities associated

with the magnitude-only measurements of ULAs are avoided by applying reference signals

and limiting inter-sensor spacing to λ/4. As demonstrated by simulations, the proposed
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algorithm ToyBar has a better performance in terms of both computational complexity and

estimation accuracy.
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Chapter 4

Non-Coherent DOA Estimation without

Reference Signals by Different Array

Structures

4.1 Introduction

As discussed earlier, non-coherent DOA estimation based on the ULA structure requires

the assistance of one or more reference signals with precisely known DOA in advance to

resolve the ambiguities problem among non-coherent measurements. In [16], the inherent

ambiguity issue was resolved by placing a reference signal at a lower angle when only one

unknown source impinges upon the array and more reference signals are needed when more

unknown impinging signals are present. In order to estimate the DOA of multiple signals

with one reference signal, [17–19] proposed to employ a high gain reference signal (power

of reference signal is 12 dB over than unknown signals). Alternatively, the authors in [17]

also suggested that, with the aid of measurements by another array deployed with a different

orientation to the first array, one reference signal is capable of resolving the ambiguities for

multiple incident signals. By assuming a large gain reference signal, the Cramer-Rao Bound

(CRB) of non-coherent DOA estimation for one unknown incident signal was presented in
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[63, 64]. However, applying reference signal is a challenge in practical array operation and

cannot always be guaranteed [65, 66].

In this chapter, two array structure are suggested to solve the inherent ambiguities

problem. The first is a dual-array structure, which consists of two ULAs with an offset

between them. In essence, it utilizes the non-linear property of the sinusoidal function,

and unique DOA estimation results are guaranteed with two sets of sinusodial differences.

Based on the proposed dual-array structure, two non-coherent DOA estimation methods are

proposed without reference signals. Instead of using ULAs, uniform circular arrays (UCAs)

is then proposed as another solution to overcome the ambiguities arising in non-coherent

measurements, as analysed in detail. With these two array structures, non-coherent DOA

estimation can be resolved without the requirement of reference signals in multiple impinging

sources scenarios; one reference signal is still required in the scenario with only one incident

signal, but the DOA of the reference signal can be arbitrary and unknown.

The remaining part of this chapter is structured as follows. Section 4.2 introduces the

signal model of the dual-array structure and ambiguities followed by two proposed non-

coherent DOA estimation methods and simulation results of the dual-array structure. The

analysis of UCA for non-coherent DOA estimation is displayed in Section 4.3, along with

simulation results. Conclusions are drawn in Sec. 4.4.

4.2 The Dual-Array Structure

4.2.1 Signal Model

The proposed array structure consists of two ULAs with an adjacent sensor spacing d as

shown in Fig. 4.1. The first array is in the horizontal direction while the second has a

known angle θ̌ to the first. The area of interest [−90◦,90◦] is considered with respect to the

broadside of each array. The number of sensors of the first array is M1 while the second is

M2 and one sensor is shared. Thus, there are M1 +M2 −1 sensors in total.

Assume that there are K narrowband signals sk with the same wavelength λ impinging

from directions θk, k = 1,2, ...,K, respectively. The signal model of ULA has been reviewed
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Fig. 4.1 The dual-array structure with a shared sensor.

in Section 2.2, and the signal received by the dual-array structure is then given by

Y1 = |A1S|+N1,

Y2 = |A2S|+N2,
(4.1)

where Y1 and Y2 are measurements at the first and second sub-arrays separately, while N1

and N2 are white Gaussian noise. S is the source signal matirx contains P columns, represents

P collected snapshots, expressed as

s[p] = [s1[p],s2[p], ..,sK[p]]T . (4.2)

A1(θ) and A2(θ) are steering matrices with respect to the first and second arrays separately,

given by

A1 = [a(θ1,1), ...,a(θK,1)],

A2 = [a(θ1,2), ...,a(θK,2)],
(4.3)

with their columns, a1(θk,1) and a2(θk,2), for k = 1, ...,K, being the corresponding steering

vectors, expressed as

a(θk,1) = [1,e− j2π
d
λ

sin(θk,1), ...,e− j(M1−1)2π
d
λ

sin(θk,1)]T ,

a(θk,2) = [1,e− j2π
d
λ
(sin(θk,2), ...,e− j(M2−1)2π

d
λ

sin(θk,2)]T ,
(4.4)
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where θk,1 and θk,2 are arriving angle of the k-th signal with respect to the broadside of the

first and second arrays, respectively.

4.2.2 Non-coherent DOA Estimation with Dual Array

In this sub-section, based on the dual-array structure, two methods for non-coherent DOA

estimation without reference siganls are presented. The first method estimates the set of

ambiguous DOAs relative to each subarray, which also shows that the dual-array structure is

capable of solving the inherent shift and mirroring ambiguities without the aid of reference

signals. Then, a more effective joint group sparsity based DOA estimation method is

proposed.

4.2.2.1 Separate Estimation Method

With the specific array structure, the area to be estimated for the first array θθθ 1 is set as

θθθ 1 ∈ [−90◦+ θ̌ ,90◦], (4.5)

while for the second array, it is

θθθ 2 ∈ [−90◦,90◦− θ̌ ]. (4.6)

This is the common angle range of interest of both arrays, which is then uniformly divided

into G (G ≫ K) grid points. Then, two corresponding overcomplete steering matrices Ã1 and

Ã2 are constructed with each column representing a steering vector of a potential incident

angle

Ã1 = [a(−90◦+ θ̌), ...,a(90◦)],

Ã2 = [a(−90◦), ...,a(90◦− θ̌)].
(4.7)
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Accordingly, the signal vector s[p] is replaced by two G×1 sparse vectors, given by

s̃1[p] = [s1,1[p], · · · ,sG,1[p]]T ,

s̃2[p] = [s1,2[p], · · · ,sG,2[p]]T ,
(4.8)

where only K entries at the corresponding incident angles are supposed to be non-zero. For the

multiple-snapshot case, measurements of both arrays are expressed as Y1 = [y1[0], · · · ,y1[P−

1]] and Y2 = [y2[0], · · · ,y2[P−1]], where P is the number of snapshots. Signal matrices with

respect to the two sub-arrays are defined separately as

S̃1 = [s̃1[0], · · · , s̃1[P−1]],

S̃2 = [s̃2[0], · · · , s̃2[P−1]].
(4.9)

These signals can be reconstructed separately following a sparse phase retrieval minimization

problem,

min
S̃1

∥Y2
1 −|Ã1S̃1|2∥2

F , s.t. ∥S̃1∥2,0 ≤ K,

min
S̃2

∥Y2
2 −|Ã2S̃2|2∥2

F , s.t. ∥S̃2∥2,0 ≤ K,
(4.10)

where K, ∥ · ∥2,0 and ∥ · ∥F represent the number of incident signals, l2,0 norm and Frobenius

norm, respectively.

However, the reconstructed signals suffer from ambiguities as described in Section 2.2.5

and true DOAs cannot be found directly by solving the problem. Instead, only the sinusoidal

difference of all impinging signals of the first sub-array and the second sub-array, defined as

∆sθ ,kk′,1 = sinθk,1 − sinθk′,1

∆sθ ,kk′,2 = sinθk,2 − sinθk′,2.
(4.11)

are estimated. It is noted that, any ambiguity would not affect the sinusoidal distance

∆sθ ,max between the smallest and largest angles of reconstructed signals in the presence of

ambiguities.
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Moreover, by assuming sinθ1 < sinθ2 < · · ·< sinθK , the sinusoidal differences between

smallest and largest DOA of incident signals impinging on the first and second arrays,

∆sθ ,max,1 and ∆sθ ,max,2, have the following relationship with the four real DOA angles θK,1,

θ1,1, θK,2, θ1,2,

∆sθ ,max,1 = sin(θK,1)− sin(θ1,1),

∆sθ ,max,2 = sin(θK,2)− sin(θ1,2).
(4.12)

One condition for the above equations is that angle range of the signals of interest of the first

array should be limited between −90◦+ θ̌ and 90◦. Given θ̌ , we also have

θK,2 = θK,1 − θ̌

θ1.2 = θ1,1 − θ̌ ,
(4.13)

where sinθ1 < sinθ2 < · · ·sinθK . From (4.12) and (4.13), we have

cos(θK,1)− cos(θ1,1) = (∆sθ ,max,1 −
(∆sθ ,max,2)

cosθ̌
)/ tan θ̌ (4.14)

Using trigonometric identities, from (4.12) and (4.14), the sum of the smallest and largest

angles θS = θ1,1 +θK,1 is given by

θS = 2atan
∆sθ ,max,2

cos θ̌
− (∆sθ ,max,1)

(∆sθ ,max,1 tan θ̌)
. (4.15)

The largest angle θK is then derived from (4.12) and (4.15) as

sin(
2θK,1 −θS

2
) =

∆sθ ,max,1

2cos(θS/2)
. (4.16)

By (4.15) and (4.16), we obtain

θK,1 = asin(
∆sθ ,max,1

2cos(θS/2)
)+

θS

2
,

θ1,1 = θS −θK,1.

(4.17)
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However, even with the smallest and largest angles unambiguously known, the remaining

K −2 estimation results still suffer from the mirroring ambiguity, which means ∆sθ ,1k could

represent either sinθk − sinθ1 or sinθK − sinθk.

As a result, with the different sinusoidal distance ∆sθ ,1,k1 between θ1,1 and θk,1,k =

2, ...,K −1, there are two possible solutions: the true DOAs and its mirroring versions, given

by

θk,1 = asin(∆sθ ,1,1k + sin(θ1,1))

θ k,1 = asin(sin(θK,1)−∆sθ ,1,1k)
(4.18)

This mirroring ambiguity can be resolved with the aid of the second array as pointed in

[17]. Use Θ1 to denote the set of all possible solutions

ΘΘΘ1 = [θ2,1,θ 2,1, ...,θK−1,1,θ K−1,1], (4.19)

where θ k,1 is mirroring version of θk,1. Similarly, for the second array, we have

ΘΘΘ2 = [θ2,2,θ 2,2, ...,θK−1,2,θ K−1,2]. (4.20)

Given the known fixed difference angle θ̌ , the intersection of Θ2 − θ̌ and Θ1 will give the

final estimation results.

4.2.2.2 Joint Group Sparsity Based Method

The above result indicates that, the magnitude-only measurements of the dual-array carry

enough information to uniquely identify the DOAs of the impinging signals. Thus, instead

of estimating two sets of sinusoidal differences ∆sθ ,kk′,1 and ∆sθ ,kk′,2 separately and then

working out their true values, an effective joint group sparsity based method is proposed to

find the DOAs directly.

The measurements at the dual-array can be expressed jointly as

Y =
[
YT

1 ,Y
T
2
]T

= |AS|+N,
(4.21)
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with
S =

[
s[0], · · · ,s[P−1]

]
,

N =
[
NT

1 ,N
T
2
]T
,

A =
[
AT

1 ,A
T
2
]
.

(4.22)

Since the first sensor is shared, when forming A and Y, we can choose to remove the

corresponding rows of A2 and Y2.

Consider the sparse steering matrix defined in (4.7), it is obvious that the incident signals

from an arbitrary arriving angle would share the same spatial support of Ã1 and Ã2, although

the DOAs with respect to each of them are different. As a result, for a sparse overcomplete

representation, (4.21) can be expressed as

Y = |ÃS̃|+N, (4.23)

where S̃ =
[
s̃[0], · · · , s̃[P−1]

]
and the measurement matrix Ã is defined as

Ã = [ÃT
1 , Ã

T
2 ]

T . (4.24)

Finally, the joint group sparsity based non-coherent DOA estimation problem can be formu-

lated as follows
min ||S̃∥2,1

s.t. ∥Y2 −|ÃS̃|2∥2
F < ε.

(4.25)

Both problems (4.10) and (4.25) can be solved by the the proposed ToyBar algorithm.

Note that, this proposed method will not work if there is only one incident signal due to lack

of sinusoidal difference information ∆sθ ,kk′ . Therefore, for such a scenario, an additional

signal has to be deployed. However, different from existing methods, DOA of the additional

signal does not need to be known in advance and its DOA will be estimated simultaneously

together with other impinging signals.
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4.2.3 Cramér-Rao Bound

In this section, the Cramér-Rao Bound (CRB) for the non-coherent DOA estimation problem

is derived. Although an approximation expression of CRB for non-cohernet DOA estimation

was derived in [63, 64], a high gain reference signal has to be applied at one end of interested

range, which is not applicable to the signal model in this work. Since the reconstructed signals

are up to a global phase factor, for complex signal s, the Fisher information matrix (FIM)

would be singular [67–69]. Thus, in this work, instead of estimating the phase information

of signals, only phase differences between signals are considered.

From (4.21), the probability density function is expressed as

p(Y;ΦΦΦ) =
P

∏
p

M1+M2−1

∏
m=0

1
2πσ2

m
e(ym[p]−|ams[p]|)2/2σ2

m, (4.26)

where am and ym represent the m-th row of A and Y, separately. From the signal model the

unknown parameter vector of arriving angles, magnitude, phase difference and noise level

can be represented as

ΦΦΦ = [θθθ , |sss[p]|,∆γγγ,σ2]T

θθθ = [θ1, ...,θK],

|sss[p]|= [|s1[p]|, ..., |sK[p]|],

∆∆∆γγγ = [∆γ12,∆γ13, ...,∆γ(K−1)K],

∆γkk′ = γk − γk′,

(4.27)

where γk is the phase of the k-th signals and σ2 is noise power. Since there are K2−K
2 cross

terms in |As[p]|, there are also K2−K
2 entries in ∆∆∆γγγ . For deterministic but unknown AS, the

FIM is defined as

FIM(ΦΦΦ) = E{∂ ln2 p(Y;φφφ)

∂ΦΦΦ∂ΦΦΦ
T } (4.28)
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The {i, j}-th entry of the FIM F is given by [70]

Fi, j =
[

∂ µµµ(ΦΦΦ)

∂Φi

]T
ΓΓΓ
−1(ΦΦΦ)

[
∂ µµµ(ΦΦΦ)

∂Φ j

]
+

1
2

[
ΓΓΓ
−1(βββ )

∂ΓΓΓ
−1(ΦΦΦ)

∂Φi
ΓΓΓ
−1(ΦΦΦ)

∂ΓΓΓ
−1(ΦΦΦ)

∂Φ j

]
,

(4.29)

where IM1+M2−1 is the identity matrix and µµµ(ΦΦΦ) = |AS| and

ΓΓΓ
−1(ΦΦΦ) =

1
σ2

m
IM1+M2−1. (4.30)

Since µµµ(((ΦΦΦ))) is independent with the noise level, we have

F =

F̃ 0

0 0

+

0 0

0 Fσ

 , (4.31)

where the DOA related block is in F̃ and its {i, j}-th entry is expressed as

F̃i, j =
[

∂ µµµ(ΦΦΦ)

∂Φi

]T
ΓΓΓ
−1(ΦΦΦ)

[
∂ µµµ(ΦΦΦ)

∂φφφ jjj

]
, (4.32)

where (·)−1 is the matrix inverse operator. As the FIM is block diagonal, Fσ has no effect on

CRB result of DOAs. Thus, CRB of DOAs can be determined by the inverse of F̃.

Denotes |ams|= (sHaH
mams)

1
2 = (sHAms)

1
2 and drop index p for convenience, we have
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∂ |ams|
∂θk

=
1
2
(sHAms)

1
2

∂ (sHAms)
∂θk

=
1
2
(sHAms)−

1
2

(
jm

2πd
λ

cosθks∗kAn(k, :)s

− jm
2πd

λ
cosθksksHAm(:,k)

)
= (sHAms)−

1
2 Im

(
−m

2πd
λ

cosθks∗kAm(k, :)s
)

∂ |ams|
∂ |s|k

=
1
2
(sHAms)−

1
2

∂ (sHAms)
∂ |s|k

=
1
2
(sHAms)−

1
2 (e− jγkAm(k, :)s

+ e jγksHAm(:,k))

= (sHAms)−
1
2 Re

(
e jγksHAm(:,k)

)
∂ |ams|
∂∆γkk′

=
1
2
(sHAms)−

1
2

∂ (sHAms)
∂∆γkk′

=
1
2
(sHAms)−

1
2 (− js∗kAm(k,k′)sk′

+ jsks∗k′Am(k′,k))

= (sHAms)−
1
2 Im

(
sks∗k′Am(k′,k)

)
,

(4.33)

where (·)∗ is the complex conjugate operator, Am(k, :) is the k-th row of Am and Am(:,k) is

the k-th column of Am. Substituting (4.33) into (4.31), the FIM can be obtained as

F̃ =
P

∑
p=1

1
σ2

m
G[p]G[p]H , (4.34)

where

G[p] =


Im

(
diag(s[p]∗)(E⊙A)Hdiag(As[p])

)
ỹ[p]

Re
(

diag(e− jγγγ)AHdiag(As[p])]
)

ỹ[p]

−Im
(

diag{ṡ[p]}Ȧ⊙diag{s̈[p]}Ä
)

ỹ[p]

 , (4.35)
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with
E = [e1, ...eK],

ek = [0,
2πd

λ
cosθk,1, ...,(M1 −1)

2πd
λ

cosθk,1,

2πd
λ

cosθk,2, ...,(M2 −1)
2πd

λ
cosθk,2]

T ,

ỹ[p] = diag{|As[p]|−
1
2},

ṡ =
[ K−1︷ ︸︸ ︷

s1[p], ...,s1[p],

K−2︷ ︸︸ ︷
s2[p]...,s2[p], ...,sK−1[p]

]
,

Ȧ = [

K−1︷ ︸︸ ︷
A(:,1)T , ...,A(:,1)T , ...,A(:,K −1)T ],

s̈ =
[
s∗2[p],s

∗
3[p], ...,s

∗
K[p],s

∗
3[p], ...,s

∗
K[p], ...,s

∗
K[p]

]
,

Ä = [A(:,2)H , ...,A(:,K)H , ...,A(:,K)H ].

(4.36)

The CRB associated with the DOA of signals can be obtained by the diagonal elements of

the inverse FIM F̃.

4.2.4 Grid Refinement

Similar to other compressive sensing based DOA estimation methods, the estimation results

of the proposed methods are dependent on the grid size in the angle domain. A denser

grid usually leads to a more accurate DOA results, but with a much higher computational

complexity,

Therefore, instead of creating a dense grid initially, a coarse grid is firstly made; based

on the DOA results, a denser steering matrix is then built around the estimated locations of

incident signals [14], and the algorithm is employed again to find a more accurate DOA.

4.2.5 Simulations

In this section, performance of the two proposed non-coherent DOA estimation methods

based on the dual-array structure is investigated. Inter-sensor distance d of both arrays is λ/4

in order to avoid spatial order ambiguity. The number of snapshots P collected is set to 20 in

all following simulations. The numbers of sensors of both arrays are set as M1 = M2 = 20
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while angle θ̌ between them are 20◦ unless specified otherwise. No reference signals is

employed, and the proposed ToyBabar is applied and steering matrices of first and second

arrays are formed with a step size of 0.5◦ for both separate estimation and jointly group

sparsity methods.

4.2.5.1 Separate Estimation method

Consider an example that there are K = 3 signals impinging on the array, with incident angles

−30◦,0◦, and 30◦ (relative to the first array). The signal to noise ratio is 20 dB. DOA results

of an single trial have been shown in Table 4.1, which indicates that signals can be identified

correctly without the presence of reference signal with non-coherent measurements.

Table 4.1 DOA estimation result by the separate estimation method

True DOA Average Estimated DOA
−30◦ −29.84◦

0◦ 0.33◦

30◦ 30.18◦

RMSE 0.236◦

In the second set of simulations, the estimation accuracy with respect to input SNR with

different sensor numbers is considered. There are three unknown signals from the same set

of directions as before. The RMSE results are shown in Fig. 4.2. As expected, a higher

SNR has yielded a more accurate result. When SNR≥ 15dB, noise has a limited effect with

RMSEs being smaller than 2◦ when M =20 and tend to zero by increasing the number of

sensors. However, when noise level is equal or higher than 5 dB, noise has a more serious

effect.

For the third set of simulations, with SNR fixed at 20 dB, the RMSE performance with

respect to the DOA separation between adjacent signals is investigated. The number of

sensors of each array is set from 20 to 60. In Fig. 4.3, the RMSE result for K = 2 signals are

provided, with one signal fixed at 45◦ (relative to the first array) and the other located at +h◦

away from it. Each point presented in Fig. 4.3 is again an average over 100 trials. Evidently,

the accuracy improves with a larger separation h◦ and an increasing number of sensors.
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Fig. 4.2 RMSE result versus input SNR with different number of sensors.
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Fig. 4.3 RMSE result versus DOA separation with different number of sensors.
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4.2.5.2 Joint Group Sparsity Based Method

In this section, the joint group sparsity based method is investigated, where K = 3 signals

arriving from −60◦, 0◦, and 30◦ with respect to the first array are considered. The first

simulation compares the estimation result from separate estimation method and jointly group

sparsity based method, which are shown in Table 4.2 , where the input SNR is considered as

15 dB. Clearly, both methods are able to closely identify or correctly locate all 3 incident

angles, but the separate estimation method leads to less accurate estimation results. One

possible reason is that (4.15) is not sensitive to incident angles when they close to ±π

2 and

results in a large calculation error for those angles. On the contrary, as the jointly group

sparsity method further exploits spatial structure of the dual-array, it has smaller estimation

errors. Additionally, a normalised spectrum of the proposed method is presented in Fig. 4.4.

Table 4.2 DOA estimation result by the separate estimation method

True DOA −60◦ 0◦ 30◦

Separate Estimation Method −62.0◦ 0.6◦ 30.4◦

Jointly Group Sparse Method −60.0◦ 0.0◦ 30.5◦

In order to illustrates the performances of separate estimation and jointly group sparse

methods with different SNR, the performances are evaluated by the RMSE results as a

function of SNR and its simulation is presented in Fig. 4.5, with each point obtained by

averaging over 100 trials. Not surprisingly, although both methods acquire more accurate

results with increasing SNR, the jointly group method consistently outperforms the separate

estimation one.

We also examine the performance of both non-coherent and coherent methods in the

presence of sensor phase errors. RMSE results are obtained with an average of 100 trials.

For the coherent method, l1-svd is applied [14]. The SNR is fixed at 20 dB, while the entries

of the phase error matrix E follow the Gaussian distribution with standard deviation σ . As

shown, the proposed non-coherent method is not affected by phase errors, with a steady

performance, while the performance of the coherent method declines as the intensity of phase

errors increases.
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Furthermore, based on the dual-array structure, the performance of ToyBar proposed in

last chapter is further studied and compared with the modified GESPAR [16]. The angle

between the two subarrys is set as θ̌ = 20◦ unless specified otherwise. Accordingly, the area

of interest for the first array is set to [−70◦,90◦] while for the second array it is [−90◦,70◦].

Grid refinement is empolyed in the following comparison, with a step size of 0.5◦ for

initial DOA estimation. After obtaining the initial DOA eastimates θ̂k, the grid refinement

approach is applied, with a new grid with stepsize 0.05◦ is formed around an interval of

θ̂ , which includes 1.5◦ to either side of it. i.e 0.05◦ spacing within [θ̂k − 1.5◦, θ̂k + 1.5◦].

While applied the refine step to GESPAR, the iterations halved as the number of grids

decreased. Results obtained with this refinement step are referred to as “ToyBar-Refined"

and “GESPAR-Refined" in the following.

The SNR is 15 dB and there are K = 3 signals impinging on the array, with incident

angles −30◦,−10◦, and 50◦ (relative to the first array). The number of snapshots is 20 and

the number of sensors is M1 = M2 = 20. Fig. 4.7 provides the result of ToyBar, while Fig.

4.8 is for GESPAR. The dotted lines represent the true incident angles. It can be seen that

all 3 signals have been identified by both GESPAR and the proposed method. However,

64



Table 4.3 Running times versus number of snapshots.

Snapshots 20 60 100
Toybar(s) 57.7 84.6 115.2

ToyBar-Refined(s) 89.2 134.1 181.4
GESPAR(s) 2154.2 6551.4 10816.5

GESPAR-Refined(s) 3384.7 10317.6 17045.5

although GESPAR provides a sharper peak, it requires prior knowledge of the number of

incident signals, while the proposed method does not.

Next, performances of the proposed ToyBar and GESPAR are evaluated with different

SNR values ranging from 5 dB to 25 dB with three signals identical to the first experiment

in terms of the root mean square error (RMSE), and the results are shown in Fig. 4.9, with

each point obtained by averaging over 100 trials. Clearly, both algorithms have achieved

more accurate results with increasing SNR, but the estimation of the proposed ToyBar is

slightly more accurate than GESPAR; besides, the refined step is able to further improve

the performance of both algorithms, but the refined ToyBar also outperforms the refined

GESPAR.

In Fig. 4.10, results of RMSE versus the number of snapshots of both algorithms are

provided. SNR is fixed at 15 dB but the number of snapshots P is from 20 to 100. Each

point is averaged over 100 trials. Under all snapshot settings, the proposed algorithm has a

lower RMSE than the modified GESPAR. In addition, compared to the proposed ToyBar, the

modified GESPAR is less sensitive to snapshots.

To compare the computational complexity of GESPAR and the proposed ToyBar with

the dual-array, the average computation time of both algorithms with different number of

snapshots is listed in Table 4.3, where the average running time of both algorithms are under

CPU I5 5200U at 2.2GHz and 4 GB RAM. It can be seen that an increasing number of

snapshots significantly increases the running time of GESPAR and it always requires much

longer running time than the proposed method. Similarly, the computational complexity of

GESPAR-Refined is also much higher than ToyBar-Refined.

Finally, the performance of the DOA esitmation results under various angles θ̌ between

the two arrays is examined. The RMSE results versus θ̌ is shown in Fig. 4.11. SNR= 15
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Fig. 4.7 Estimation results by the proposed ToyBar.
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Fig. 4.8 Estimation results by the modified GESPAR.
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Fig. 4.10 RMSEs versus number of snapshots.
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dB and other simulation parameters are the same as the first simulation. It can be seen that,

although a larger θ̌ always improves the estimation accuracy. the proposed Toybar has a

better performance than the modified GESPAR. In addition, the refinement step can improve

the performance of the proposed ToyBar and the modified GESPAR significantly when θ̌ is

small. However, since the effective range of estimation is restricted by θ̌ , θ̌ should be chosen

carefully in order to cover more area within [−90◦,90◦].
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Fig. 4.11 RMSE results versus θ̌ for SNR=15dB.

4.3 Non-Coherent DOA Estimation with UCA

4.3.1 Signal Model with UCA

Although the proposed dual-array structure works well, a small area within [−90◦,90◦] has

to be sacrificed. Therefore, in order to deal with the full range [−90◦,90◦], non-coherent

DOA estimation with UCA is investigated. A UCA consists of M sensors with inter-sensor

spacing d is presented in Fig. 4.12, where the radius r of the circular array is given by

r =
Md
2π

. (4.37)
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Accordingly, the steering vector of the k-th signal a(θk), for k = 1, ...,K, is expressed as [71]

a(θk) = [e jξ cos(θk−γ1), ...,e jξ cos(θk−γM)]T , (4.38)

where ξ = 2πr/λ , and γm = 2πm/M, m = 1, ...,M.

Fig. 4.12 A uniform circular array with M sensors and a inter-sensor spacing of d, where a
signal impinges from θ .

Under the sparsity framework, the admissible DOA range is divided into G grid points

with G ≫ N, and an overcomplete steering matrix

Ã = [a(θ1), ...,a(θG)] (4.39)

can be formed with each column representing a potential incident angle. Accordingly, the

signal vector s[p] is extended to a G×1 sparse matrix S̃ ∈ CG×P, where only K rows at the

corresponding incident angles are supposed to be non-zero. The array measurements of UCA

is formulated as

Y = |ÃS̃|+N, (4.40)

where Y =
[
y[0], ...,y[P−1]

]
, and N =

[
n[0]], ...,n[P−1]

]
.
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4.3.2 Ambiguity

Results obtained from non-coherent measurements with uniform linear array (ULA) suffers

from some inherent ambiguities, which would affect the DOA estimation results: mirroring

and spatial shift [44]. Denote the measurement at the m-th sensor of the UCA as

xm =
K

∑
k=1

ske jξ cos(θk−γm), (4.41)

where time index p is dropped. Next, the ambiguities issues with UCA is addressed.

For mirroring ambiguity, it refers to the phenomenon that signals arriving from −θk will

generate the measurements with the same magnitude. With UCA, however, we have

|x̌m|= |
K

∑
k=1

ske jξ cos(−θk−γm)|= |
K

∑
k=1

ske jξ cos(θk+γm)|. (4.42)

Obviously, the magnitude of x̌m is in general different from xm, thus the mirroring ambiguity

in ULAs will not appear in UCAs.

For spatial shift ambiguity, it refers to that the received signals at the array are phased

shifted by a specific amount φm,

x̌m = e jξ φm
K

∑
k=1

ske jξ cos(θk−γm) =
K

∑
k=1

ske jξ cos(θk−θ̌m,k−γm). (4.43)

Although x̌m would share the same magnitude as with xm at the m-th sensor, θ̌m,k for the

corresponding k-th signal at different sensors are different due to the non-linear property of the

cosine function, which implies that, there is no common shift variable φm to simultaneously

keep the same magnitude as xm and same shifted angle θ̌m,k for all M sensors.

Thus, we can conclude that the inherent mirroring and spatial shift ambiguities involved

in ULAs will not appear in UCAs. But there is another ambiguity involved in non-coherent

measurements of UCAs. For the whole range [−π,π], K incident signals s∗ from angle

(θk ±π) would share the same magnitude as xm, expressed as

70



x̌m =
K

∑
k=1

s∗ke jξ cos(θk±π−γm) =
K

∑
k=1

s∗ke− jξ cos(θk−γm) = x∗m. (4.44)

There are two possible solutions to solve this ambiguity. One is to limit the area of interest to

[−90◦,90◦], since for −π/2 ≤ θk ≤ π/2, θk ±π will exceed the limit.

Another one is applying a reference signal at the end of interested area [−π] and assume

no signal come from 0◦ (Generally, define θre f and remove either column of [θre f ±π] as

appropriate from Ã). With this reference signal, either θk −π or θk +π will be out of the

range [−π,π]. In practice, due to influence of noise, a short range of [θk ±π −u,θk ±π +u]

should be removed from the area of interest.

Note that, as mentioned earlier, non-coherent DOA estimation does not work if there

is only one incident signal; and for such a scenario, a reference signal has to be deployed;

however, its DOA does not need to be known in advance.

4.3.3 Simulations

Simulation results are provided to show the performance of the UCA without reference

signals. The area of interest is considered within [−π/2,π/2] with a grid step size 0.5◦ to

avoid ambiguity involved in UCAs. The number of sensors N is set as 19 while the radius

r of UCAs is set as r = Md/2π with d = λ/2, and P = 500 snapshots are collected in all

simulations. ToyBar is applied, its iteration number is 500 and 30 random initializations are

used in order to find the global minimum.

In the simulations, K = 3 signals with DOA −40◦, 0◦ and 30◦ are placed. With input

SNR fixed at 20 dB, the spectrum of the DOA estimation result is shown in Fig. 4.13, where

dotted lines represent true DOAs and solid lines are estimated ones. It can be seen that

unambiguous results has been obtained directly. RMSE results of UCA with different SNR

values ranging from 0 dB to 20 dB are also displayed in Fig. 4.14 , with each point being an

average of 100 trials. The Cramér-Rao bound is also provided, as derived in Section 4.2.3.
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4.4 Summary

Two array structures to remove the spatial shift and mirroring ambiguity for non-coherent

DOA estimation without reference signals have been proposed. The first is a novel dual-array

structure, which exploits the spatial information of both sub-arrays simultaneously, while

the second is the UCA structure. Based on these two array structures, similar joint group

sparsity based phase retrieval problems have been formulated and Toybar or other existing

group sparsity based solutions can be applied to identify the unambiguous DOAs directly.
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Chapter 5

Off-Grid Non-Coherent DOA Estimation

and Source Localization of Narrowband

Signals

In the sparsity based DOA estimation methods, DOAs of incident signals are assumed to

fall on the discrete grid points. In practice, quite often the true DOAs may not lie on the

predefined grid points, which leads to an off-grid problem. One solution to it is applying a

denser grid, which significantly increases the computational complexity. Another solution

is grid refinement [14], which defines a coarse grid at first and then, based on the initial

DOA results, a denser steering matrix is built around the estimated locations of incident

signals. However, computational complexity of this method is still high. Moreover, source

localization is another important problem in sensor array signal processing and it faces a

similar challenge for sparsity based solutions.

Although several off-grid methods has been proposed for coherent DOA estimation

[72–77], off-grid DOA estimation and source localization with non-coherent measurements

has not been addressed yet. In this chapter, off-grid DOA estimation and source localization

problem with magnitude-only measurements is studied, where UCA is employed in order to

be reference-signal free.
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The remaining part is structured as follows. The off-grid non-coherent signal and DOA

estimation method with simulation results is presented in Section 5.1. The off-grid signal

model with distributed sensor arrays for source localization is described in Section 5.2, with a

non-coherent localisation method is proposed, supported by simulation results. Conclusions

are drawn in Section 5.3.

5.1 Off-Grid DOA Estimation

5.1.1 The Developed Algorithm

The non-coherent DOA estimation method has been proposed in the last chapter, where the

DOAs of signals are assumed to be located on the predefined grids. While the signals are off

the grids, we let

θθθ = [θ 1, ...,θ k] (5.1)

denote the true DOAs of K incident signals off the pre-defined grids and θgk represent the

nearest grid point for the k-th signal. Array measurements under the sparsity framework can

be approximated by

X ≈ (Ã+ B̃∆̃∆∆)S̃,

B̃ = [b(θ1), ...,b(θG)],

b(θg) =
∂a(θg)

∂θg
,

∆̃∆∆ = diag(β̃ββ ),

(5.2)

where

βg =

θ̄k −θgk , if g = gk,

0, otherwise.
(5.3)

βg satisfies

−v
2
≤ βg ≤

v
2
, (5.4)
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and v is grid stepsize. As a result, the non-coherent measurements are formulated into

Y ≈ |(Ã+ B̃∆̃∆∆)S̃|+N. (5.5)

The off-grid non-coherent DOA estimation problem can be solved by the following

unconstrained optimisation problem

min
S̃,∆̃∆∆

∥|(Ã+ B̃∆̃∆∆)S̃|−Y∥2
F +ρ∥S̃∥2,1. (5.6)

where the ∥ · ∥2,1 is the l2,1 norm, which enforces row sparsity of S̃. Jointly estimate ∆̃∆∆ and

S̃ from (5.6) is a non-convex optimization problem. In the following, a two-step method is

proposed.

In the first step, ∆̃∆∆ is assumed to be zero, and the corresponding optimization problem is

formulated as

min
S̃

∥|ÃS̃|−Y∥2
F +ρ∥S̃∥2,1, (5.7)

The objective function (5.7) can be solved by existing group sparse phase retrieval

algorithms, such as the proposed ToyBar.

In the second step, in order to estimate the off-grid bias, the PRIME technique [48] is

employed. After applying PRIME column by column to (5.6), its first term can be replaced

by a convex surrogate, and the corresponding objective function is changed to

min
S̃

∥(Ã+ B̃∆̃∆∆)S̃− C̄∥2
F +ρ∥S̃∥2,1, (5.8)

with

C̄ = Y⊙ e jarg((Ã+B̃∆∆∆)S̃e), (5.9)

where S̃e is estimated signals from step one, which is up to a global phase ambiguity.

After that, similar to [77], an iterative algorithm for estimating dictionary bias β̃ββ is

proposed. This method first estimates K non-zero rows of estimated signals S̃e as

S̄SSi
K = (ĀAAi

K)
†C̄, (5.10)
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where (·)† is the pseudo-inverse operator, i ∈ {1, ..., I} is iteration index,

ĀAAi
K = ĀAA(θ i

K) (5.11)

is the steering matrix with K columns corresponding the estimated DOAs θθθ
i = [θ i

1, ...,θ
i
K],

and θ i
K is updated in each iteration. Ā0

K is initialized as K columns of Ã, which corresponds

to DOAs of estimated signals S̃e. As the bias β̃ββ shares same support with S̃e, B̄K is obtained,

which is the sub-matrix of B̃ with corresponding K columns at the support of S̃e. By denoting

∆̄∆∆
i
K = diag(β̄ββ

i
K),

β̄ββ
i
= [β i

1, ...β
i
K]

T ,
(5.12)

as the bias of corresponding DOAs of incident signals, ∆̄∆∆
i
K can be estimated by solving

min
β̄ββ K

∥(ĀK + B̄K∆̄∆∆
i
K)S̄

i
K − C̄∥2

F . (5.13)

Dropping index i for simplicity, (5.13) can be reformulated as [73, 77]

∥(ĀK + B̄K∆̄∆∆K)S̄K − C̄∥2
F

≈ tr
{

S̄H
K ∆̄∆∆B̄H

K B̄K∆̄∆∆S̄K
}
−2Re

{
(C̄− ĀS̄K)

HB̄K∆̄∆∆KS̄K
}

= β̄ββ
T
K
(
B̄H

K B̄K ⊙ (S̄KS̄H
K )

∗)
β̄ββ K

−2Re
{

diag[S̄K(C̄− ĀKS̄K)
HB̄K]β̄ββ K

}
,

(5.14)

where tr(·) and Re(·) represent the trace and real part of its variable, separately. With the

optimal condition of (5.14), β̄ββ
i
K can be obtained by

β̄ββ
i
K = Re{(Di)−1hi}, (5.15)
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where (·)−1 is the inverse operator, and

Di = B̄H
K B̄K ⊙ (S̄i

KS̄i
K)

∗,

hi =
{

diag[S̄i
K(C̄− ĀKS̄i

K)
HB̄K]

}T
.

(5.16)

Since − v
2 ≤ βg ≤ v

2 , for k = 1, ...,K, it has

β
i+1
k =


−v/2, if β i

k < v/2,

v/2 if β i
k > v/2,

β i
k, otherwise.

(5.17)

Note that, the non-coherent DOA estimation results still suffer from the global phase ambigu-

ity, that is

C̄ = Y⊙ e jarg(ÃS̃e) ≈ ArSre jφ ,

S̄K = (ĀAAt
K)

†C̄ ≈ Sre jφ ,
(5.18)

where Sr and Ar represent the real signal and its corresponding real steering matrix, respec-

tively, and φ is a global phase factor. It can be seen that, when substituting (5.18) into (5.15),

the global phase factor cancels, which means that the global phase ambiguity will not affect

bias estimation in this step. With β̄ββ
i
, the steering matrix ĀK is updated as

θθθ
i+1 = θθθ

0 +βββ
i, ĀAAi+1

K = ĀAAK(θ
i+1). (5.19)

where θ 0 is the initial DOAs obtained from the first step, i.e corresponding DOA of the

non-zero rows of S̃SSe. Finally, the output DOA θθθ e is obtained as

θθθ e = θθθ 0 +βββ
I. (5.20)

The full algorithm is summarized in the Table 5.1.
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Table 5.1 Algorithm Summary (Two-Step Off-Grid)

Input: Ã, Y,
Initializtion: β̄ββ

0
K = 000.

Step 1: Estimate S̃e via existing group sparse
phase retrieval algorithms.
Obtain ĀAA0

K and θθθ
0,

Calculate C̄ = Y⊙ e jarg(ÃS̃e).
Step 2: for i=1, ..., I
1) Calculate S̄i

K = (ĀAAi
K)

†C̄.
2) Calculate β̄ββ

i
K = Re{(Di)−1hi} from (5.16),

3) Restrict elements of β̄ββ
i
K within range [− v

2 ,
v
2 ].

4) Calculate θθθ
i+1 = θθθ

0 +βββ
i
K,

Āi+1
K = ĀK(θ

i+1).
Output estimated DOA: θθθ e = θθθ

0 + β̄ββ
I
.

5.1.2 Simulation Results

In this section, simulation results are provided to show the performance of the proposed

off-grid non-coherent DOA estimation method in comparison with the on-grid model, where

results of on-grid model are obtained from the first step of the proposed method. The area of

interest is considered within [−π/2,π/2] to avoid ambiguity involved in UCAs. The number

of sensors N is set as 19 while the radius r of UCAs is set as r = Md/2π with d = λ/2, and

P = 500 snapshots are collected in all simulations. ToyBar is applied in the first step of the

proposed method, its iteration number is 500 and 30 random initializations are used in order

to find the global minimum of the phase retrieval problem, while the iteration number for the

second step is 50.

In the first set of simulations, the steering matrix is formed with a step size of 2◦ and

input SNR is set as 20 dB. DOA estimation results of both on-grid and off-grid model are

compared and shown in Figs. 5.1 and 5.2, where dotted lines represent true DOAs and solid

lines are estimated ones. We can observe that, although both models can identify DOAs more

or less correctly, the off-grid model provides a more accurate result.

In the second set of simulations, RMSE results of the off-grid model and on-grid model

with different SNR values ranging from 0 dB to 20 dB are compared, with each point being
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Fig. 5.1 Results by off-grid model.
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Fig. 5.2 Results by on-grid model.
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Table 5.2 Running times of off-grid and on-grid models.

Stepsize On-grid(s) Off-grid(s)
2◦ 25.54 25.56
1◦ 52.65 52.69

an average of 200 trials. The Cramér-Rao bound is also provided. In all trials, locations of

K = 3 signals are defined as [−40◦+u1,0◦+u2,30◦+u3], where uk is randomly generated

at each run within [−1◦,1◦]. The results are further parameterized by the grid stepsize v.

According to Fig. 5.3, it can be observed that, although a smaller stepsize can improve the

performance of both on-grid and off-grid models, the off-grid model outperforms the on-grid

model even when the on-grid model has a denser grid; moreover, the improvement achieved

by a denser grid for the proposed off-grid method is very small, which means the second step

of the method is working effectively.

Finally, the computational complexity of both on-grid and off-grid models with different

stepsizes is compared in terms of running time, and the results are shown in Table 5.2, based

on a computer with 1.8GHz CPU i7-10510U and 16GB RAM. We can see that a smaller

stepsize significantly increases the computation time, whereas the extra time cost by the

second step of the off-grid model is minimal.
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5.2 Localization with Distributed Sensor Arrays

Many methods have been proposed for source localisation based on sensor arrays, such

as those based on received signal strength (RSS) [78], time of arrival (TOA) [79], time

difference of arrival (TDOA)[80, 81], direct position determination (DPD) [82, 83] and angle

of arriving (AOA) [84, 85].

For AOA based methods, a distributed sensor array structure is employed with multiple

sensor arrays distributed in a two-dimensional (2-D) space, where synchronization among all

distributed sensor arrays is not required. There are normally two steps: the first is applying

existing direction of arrival methods such as those proposed in [12–14] to estimate AOAs at

all distributed sensor arrays, while the second is to find intersections of those estimated AOAs

in order to localize the sources [84, 85]. Recently, in [86, 87], with the distributed array

network, information across all sensor arrays is jointly exploited and the source localization

problem was re-formulated into a sparsity maximization problem, where the area of interest

in a 2-D Cartesian system is divided into grids along the x-axis and y-axis; under such a

framework, a common spatial sparsity support corresponding to all distributed sensor arrays

is enforced, leading to a better estimation performance, which also avoids the possible pairing

and ambiguity problems associated with a two-step AOA based solution.

In this section, based on the same distributed array structure, the non-coherent source

localisation problem is studied and an off-grid algorithm is developed.

5.2.1 Signal Model with Distributed Arrays

Assume that there are K narrowband sources located at Cartesian coordinates Lk(xk,yk),

k = 1,2, ...,K, impinging on D deployed sensor arrays with coordinates Cd(xd,yd), as shown

in Fig. 5.4.

The number of sensors of the d-th sensor array is Md , and the corresponding non-coherent

measurements at the d-th sensor array is expressed as

Zd = |AdSd|+Nd, (5.21)
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Fig. 5.4 Source localization geometry.

with Sd = [s[1], ...,sd[P]]T and sd[p] = [sd,1[p], ...,sd,K[p]]T , where sd,k represents the p-th

snapshot of the k-th signal, Nd is the Md ×P random Gaussian noise vector at the d-th sensor

array, | · |, and [·]T are the element-wise absolute value operator and matrix transpose operator,

separately, and

Ad = [ad(θ1), ...,ad(θK)]
T (5.22)

is the steering matrix with its columns a(θk), k = 1, ...,K, being the corresponding steering

vectors. When employing a uniform circular array [88], ad,k is given by

ad(θk) = [e− j 2πr
λ

cos(θd,k−γ1), ...,e− j 2πr
λ

cos(θd,k−γMd )],

γm = 2πm/Md, m = 1, ...,Md

(5.23)

where λ is wavelength of the signals, r is radius of the circular array, and θd,k denotes the

arriving angle between the k-th source and d-th sensor array, expressed as

θd,k = arctan2(∆yd,k,∆xd,k),

∆yd,k = yLk − yd,

∆xd,k = xLk − xd,

(5.24)

with arctan2(·) being the inverse tangent operator.
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For D distributed arrays, the measurements can be jointly expressed as

Z = |AS|+N, A = blkdiag{A1, ...,AD}, (5.25)

where blkdiag{·} generates a block diagonal matrix from its entries, S = [s[1], ...,s[P]],

s[p] = [s1[p]T , ..,sT
D[p]]

T , and N = [NT
1 , ...,N

T
D]

T .

5.2.2 The Off-Grid Localisation Algorithm

By dividing the admissible area of interest into Gx and Gy grids along the x-axis and y-axis

in the Cartesian coordinate system, separately, the overcomplete steering matrix of the d-th

sensor array can be expressed as

Ãd =[ad(θ11), ...,ad(θ1Gy ,

ad(θgx1), ...,ad(θgxGy),

......

ad(θGx1), ...,ad(θGxGy)]

=[a(θd,1), ...,a(θd,G)],

(5.26)

where θd,g, g = (gx −1)Gx +gy ∈ {1, ...,GxGy} is the angle between location (gx,gy) and

the d − th sensor array, obtained by

θd,g = arctan2(∆yd,gy ,∆xd,gx), (5.27)

where ∆yd,gx = ygx − yd, ∆xd,gy = xgy − xd. Accordingly, the d-th array measurements (5.21)

is changed to

Zd = |ÃdS̃d|+Nd, (5.28)

where S̃d = [s̃d[1], ..., s̃d[P]] is the sparse signals matrix with the corresponding K rows being

non-zero. Accordingly, a (∑D
d=1 Md)×GxGy steering matrix Ã covering all D sensor arrays
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can be constructed and the array measurements are given by

Z = |ÃS̃|+N, Ã = blkdiag{Ã1, ..., ÃD}. (5.29)

Let xxx = [x1, ...,xK] and yyy = [y1, ...,yK] denote the true locations of K sources and xgk and

ygk represent the nearest grid point for the k-th source, and (5.28) can be approximated by

the first order approximation of two variables, given by

Zd ≈ |(Ãd + B̃d,x∆∆∆x + B̃d,y∆∆∆y)S̃d|+Nd, (5.30)

with Bd,x = [bx(θd,1), ...,bx(θd,G)], bx(θd,g)=
∂a(θd,g)

∂xg
, ∆∆∆x = diag(βββ x) and βββ x = [β1,x, ...,βG,x],

where

βg,x =

x̄k − xgx , if g = gk,

0, otherwise.
(5.31)

Similarly, we have B̃d,y = [by(θd,1), ...,by(θd,G)], by(θd,g) =
∂a(θd,g)

∂yg
, ∆∆∆y = diag(βββ y) and

βββ y = [β1,y, ...,βG,y], where

βg,y =

ȳk − xgy , if g = gk,

0, otherwise.
(5.32)

βg,x and βg,y satisfy −vx
2 ≤ βg,x ≤ vx

2 and −vy
2 ≤ βg,y ≤

vy
2 , separately, where vx and vy are

grid stepsizes with respect x-axis and y-axis, respectively.

It is noted that, incident sources from an arbitrary grid point in the Cartesian coordinate

system would share the same spatial support of Ãd , d = 1, ...,D, although the arriving angles

with respect to different arrays are different. Thus, a (∑D
d=1 Md)×GxGy steering matrix

covering all D sensor arrays can be constructed as

Ã = blkdiag{Ã1, ..., ÃD}, (5.33)
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Therefore, the source localization problem can be formulated as a joint group sparsity

based optimization problem, given by

min
S̃,βββ x,βββ y

∥Z−|(Ã+ B̃x∆̃∆∆x + B̃y∆̃∆∆y)S̃|∥2
F +ρ∥S̃∥2,1, (5.34)

where
B̃x = blkdiag{B̃1,x, ..., B̃D,x},

B̃y = blkdiag{B̃1,y, ..., B̃D,y},

∆̃∆∆x = blkdiag{∆∆∆x, ...,∆∆∆x},

∆̃∆∆y = blkdiag{∆∆∆y, ...,∆∆∆y},

(5.35)

with ∥ · ∥2,1 and ∥ · ∥F represent l2,1 norm and Frobenius norm, respectively. The l2,1 norm

∥ · ∥2,1 is defined as

∥S̃∥2,1 :=
G

∑
g=1

∥sg∥2, (5.36)

with sg being the g-th row vector of S̃. In addition to the support shared in the temporal

domain, groups of S̃ also share the same support in spatial domain. As a result, S̃ contains

G = GxGy groups and the g-th group, g ∈ {1, ...,G}, of S̃ is a 1×DP vector, consisting of

g-th row vectors of all S̃d , d ∈ {1, ..,D} in S̃.

First, for the on-grid solution, i.e. the off-grid biases ∆̃∆∆x and ∆̃∆∆y are assumed to be zero,

and the corresponding optimization problem in (5.34) is simplified to

min
S̃

∥Z−|ÃS̃|∥2
F +ρ∥S̃∥2,1. (5.37)

The above formulation has the same form as those considered in group sparsity based phase

retrieval problem for DOA estimation, which can be solved by existing algorithms such as

the modified Gespar [16] and ToyBar [49].

For the general off-grid case, instead of jointly estimate ∆̃∆∆x, ∆̃∆∆y and S̃ in (5.34), this

problem is solved iteratively. In the first step, we employ (5.37) to find the rough grid

locations of targets. In the second step, in order to estimate the off-grid bias, the PRIME
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technique [48] is employed column by column to (5.34), its first term can be replaced by a

convex surrogate, and the corresponding objective function is changed to

min
βββ x,βββ y

∥(Ã+ B̃d,x∆̃∆∆x + B̃d,y∆̃∆∆y)S̃− C̄∥2
F +ρ∥S̃∥2,1, (5.38)

with

C̄ = Z⊙ e jarg(ÃS̃e), (5.39)

where ⊙ is the Hadamard product, arg(·) represents the phase of its variable applied element-

wise, and S̃e is estimated signals from step one, which is susceptible to global phase ambigu-

ity.

After that, an iterative algorithm for estimating dictionary bias β̃ββ is proposed. This

method first estimates K non-zero rows of estimated signals S̃i
K as

S̄SSi
K = (ĀAAi

K)
†C̄, (5.40)

where (·)† is the pseudo-inverse operator, i ∈ {1, ..., I} is iteration index, ĀAAi
K is the steering

matrix with K columns corresponding the estimated source locations, given by

Āi
K = blkdiag{Āi

1,K, ..., Ā
i
D,K},

Āi
d,K = [a(θ i

d,1), ...,a(θ
i
d,K)],

(5.41)

and θ i
d,K is updated with xi and yi obtained from the previous iteration. x0 and y0 is initialized

as K columns of Ãd , which corresponds to locations of estimated sources S̃e. As the

biases β̃ββ x and β̃ββ y share the same support with S̃e, B̄d,x and B̄d,y are obtained, which are

the sub-matrix of B̃d,x and B̃d,y. Similarly, the biases of corresponding source locations

∆̄∆∆
i
K,x = diag(β̄ββ

i
x) = [β i

1,x, ...β
i
K,x]

T and ∆̄∆∆
i
K,y = diag(β̄ββ

i
y) = [β i

1,y, ...β
i
K,y]

T are obtained.

By denoting B̄i
x = blkdiag{Bi

1,x, ...,B
i
D,x}, B̄i

y = blkdiag{Bi
1,y, ...,B

i
D,y},
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∆̄∆∆
i
x = blkdiag{∆̄∆∆

i
K,x, ..., ∆̄∆∆

i
K,x}, and ∆̄∆∆

i
y = blkdiag{∆̄∆∆

i
K,y, ..., ∆̄∆∆

i
K,y}, the off-grid biases can be

estimated by solving

min
β̄ββ x,β̄ββ y

∥(Āi
K + B̄i

x∆̄∆∆
i
x + B̄i

d,y∆̄∆∆
i
y)S̄

i
K − C̄∥2

F . (5.42)

Once the PRIME technique is done, this process updates each off-grid bias β̄ββ x and β̄ββ y in

(5.42) at a time.

Firstly, with β̄ i
y fixed to zero, β̄ i

x is pursued by solving

min
β̄ββ x

∥(Āi
K + B̄i

x∆̄∆∆
i
x)S̄

i
K − C̄d∥2

F . (5.43)

Since Āi
K and B̄i

x are block diagonal, (5.43) can be reformulated as

min
β̄ββ x

D

∑
d=1

∥|(Āi
d,K + B̄i

d,x∆̄∆∆
i
x)S̄

i
d,K − C̄d∥2

F , (5.44)

where Cd and S̄i
d,K are the approximated measurements and estimated signals of the d-th

subarray. Dropping index i for simplicity, (5.44) can be approximated as [88, 77, 73]

D

∑
d=1

∥(Ād,K + B̄d,x∆̄∆∆K)S̄d,K − C̄d∥2
F

≈
D

∑
d=1

{
β̄ββ

T
x
(
B̄H

d,xB̄d,x ⊙ (S̄d,KS̄H
d,K)

∗)
β̄ββ x

−2Re{diag[S̄d,K(C̄d − ĀKS̄d,K)
HB̄d,x]β̄ββ x}

}
,

(5.45)

where tr(·) and Re(·) represent the trace and real part of its variable, separately. While the

optimal condition, β̄ββ
i
x can be obtained by

β̄ββ
i+1
x = Re{(Ji

x)
−1hi},Ji

x =
D

∑
d=1

Ji
d,x, hx =

D

∑
d=1

hi
d,x,

Ji
d,x = (Bi

d,x)
HB̄i

d,x ⊙ (S̄i
d,KS̄i

d,K)
∗,

hi
d,x =

{
diag[S̄i

d,K(C̄d − Āi
d,KS̄i

d,K)
HB̄i

d,x]
}T

.

(5.46)
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where (·)−1 is the inverse operator. While the off-grid bias with respect to x-axis is fixed, the

off-grid bias of the y-axis βββ y can be obtained by

min
β̄ββ y

D

∑
d=1

∥(Āi
d,K + B̄i

d,x∆̄∆∆
i
x + B̄i

d,y∆̄∆∆
i
y)S̄

i
d,K − C̄d∥2

F . (5.47)

Similarly, we have

β̄ββ
i
y = Re{(Ji

y)
−1hi

y},Ji
y =

D

∑
d=1

Ji
d,y, hi

y =
D

∑
d=1

hi
d,y,

Ji
d,y = (Bi

d,y)
HB̄i

d,y ⊙ (S̄i
d,KS̄i

d,K)
∗,

hi
d,y =

{
diag[S̄i

d,K(C̄d − (Āi
d,K +Bi+1

d,x ∆̄∆∆
i+1
x )S̄i

d,K)
HB̄i

d,y]
}T

.

(5.48)

Note that, the non-coherent DOA estimation results still suffer from the global phase ambigu-

ity, that is

C̄ = Z⊙ e jarg(ÃS̃e) ≈ ArSre jφ ,

S̄K = (ĀAAi
K)

†C̄ ≈ Sre jφ ,
(5.49)

where Sr and Ar represent the real signal and its corresponding real steering matrix, respec-

tively, and φ is a global phase factor. It can be seen that, when substituting (5.49) into (5.46)

and (5.48), the global phase factor cancels, which means that the global phase ambiguity will

not affect bias estimation in this step.

With β̄ββ
i
x and β̄ββ

i
y, the steering matrix Ad,K is updated as

xi+1
d,k = xi

d,k +β
i
k,x, yi+1

d,k = yi
d,k +β

i
k,y, (5.50)

where βk,x and βk,y represent the bias of the k-th source, x0
d,k and y0

d,k are the initial locations

obtained from the first step, i.e corresponding locations of S̃SSe. Finally, the estimated locations

of the k-th source can be obtained after I iterations.

The full algorithm is summarized in the Algorithm Summary table.
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Algorithm Summary (Two-Step Off-Grid)
Input: Ã, Z,
Initializtion: β̄ββ

0
x = 000, β̄ββ

0
y = 000.

Step 1: Estimate S̃e via existing group sparse
phase retrieval algorithms.
Obtain ĀAA0

K , x0 and y0.
Calculate C̄ = Z⊙ e jarg(ÃS̃e).

Step 2: for i=1, ..., I
1) Calculate S̄i

K = (ĀAAi
K)

†C̄.
2) Calculate β̄ββ

i
x = Re{(Ji

x)
−1hi} from (5.46),

3) Restrict elements of β̄ββ
i
x within range [−vx

2 ,
vx
2 ].

4) Calculate β̄ββ
i
y = Re{(Ji

y)
−1hi} from (5.48),

5) Restrict elements of β̄ββ
i
y within range [−vy

2 ,
vy
2 ].

6) Calculate xi+1 = xxxi +βββ
i
x, yi+1 = yyyi +βββ

i
y,

7) Āi+1
d,K = ĀK(θθθ

i+1
d ).

Output localization results: xi, yi.

5.2.3 Grid refinement

Instead of off-grid methods, the estimation results can be updated by refining the grid size,

where a coarse grid is firstly made; based on the localization results, a denser steering matrix

is then built around the estimated locations of incident sources, and the algorithm is employed

again to find a more accurate result.

5.2.4 Cramér-Rao Bound

In this part, we derive the Cramér-Rao bound (CRB).

From (5.25), the probability density function is expressed as

p(Z;ΦΦΦ) =
P

∏
p=1

M

∏
m=1

1
2πσ2 e(zm[p]−|ams[p]|)2/2σ2

, (5.51)

where M = ∑
D
d=1 Md , am is the m-th row of A, zm[p] represent the m-th entry of Z at the p-th

snapshot.
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Since the reconstructed signals are up to a global phase factor, for complex signal s,

the Fisher information matrix (FIM) would be singular [67]. Thus, similar to [49], instead

of estimating the phase information of signals, only phase differences between signals

are considered. Assuming the noise level at all distributed sensor arrays are identical, the

unknown parameter vector of arriving angles, magnitude, phase difference and noise level

can be represented as

ΦΦΦ = [LLLT
x ,LLL

T
y , |sss[p]|,∆∆∆γγγ[p],σ2]T

LLLx = [x1, ...,xK]
T , LLLy = [y1, ...,yK]

T ,

|sss[p]|= [|sssT
1 [p]|, ..., |sssT

D[p]|]T ,

∆∆∆γγγ[p] = [∆∆∆γγγ
T
1 [p], ...,∆∆∆γγγ

T
D[p]]

T ,

∆∆∆γγγd[p] = [∆γ12,d[p],∆γ13,d[p], ...,∆γ(K−1)K,d[p]]
T ,

(5.52)

where ∆∆∆γγγddd[p] contains (K2 −K)/2 entries, ∆γkk′,d[p] = γk,d[p]− γk′,d[p], γk,d[p] is the phase

of the k-th signals of the d-th sensor array at the p-th snapshot and σ2 is noise power.

For deterministic model, the Fisher Information Matrix (FIM) F is defined as

F = E{∂ ln2 p(Z;ΦΦΦ)

∂ΦΦΦ∂ΦΦΦ
T } (5.53)

The {i, j}-th entry of the FIM F is given by [70]

Fi, j =
[

∂ µµµ(ΦΦΦ)

∂Φi

]T
ΓΓΓ
−1(ΦΦΦ)

[
∂ µµµ(ΦΦΦ)

∂Φ j

]
+

1
2

[
ΓΓΓ
−1(βββ )

∂ΓΓΓ
−1(ΦΦΦ)

∂Φi
ΓΓΓ
−1(ΦΦΦ)

∂ΓΓΓ
−1(ΦΦΦ)

∂Φ j

]
,

(5.54)

where ΓΓΓ
−1(ΦΦΦ) = 1

σ2 IM, IM is the identity matrix, (·)−1 is the matrix inverse operator, and

µµµ(ΦΦΦ) = |AS|. Since µµµ(((ΦΦΦ))) is independent with the noise level, we have

F =

F̃ 000

000 000

+

000 000

000 Fσ

 , (5.55)
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As the FIM is block diagonal, Fσ has no effect on the Cramér-Rao bound (CRB) result

of DOAs. Thus, CRB of DOAs can be determined by the inverse of F̃. Computing the

derivatives of µµµ(ΦΦΦ) with respect to ΦΦΦ, we have

D =
∂ µµµ(ΦΦΦ)

∂ΦΦΦ
T = [G,H,∆∆∆,000], (5.56)

Denotes |ams| = (sHaH
mams)

1
2 = (sHAms)

1
2 and drop index p for convenience, the first

block of C is
G = [GT

1,x, ...,G
T
D,x,G

T
1,y, ...,G

T
D,y]

T ,

Gd,x = [gT
d,1,x, ...,g

T
d,Md ,x]

T ,

Gd,y = [gT
d,1,y, ...,g

T
d,Md ,y]

T ,

gd,m,x = [
∂ |am,dsd|

∂x1
, ...,

∂ |am,dsd|
∂xK

],

gd,m,y = [
∂ |am,dsd|

∂y1
, ...,

∂ |am,dsd|
∂yK

],

(5.57)

with
∂ |am,dsd|

∂xk
= αd,kIm

(
ξ sin(θd,k − γm)s∗d,kAm,d(k, :)s

)
,

αd,k = (sHAm,ds)−
1
2

−∆yd,k

∆x2
d,k +∆y2

d,k
,ξ = 2πr/λ ,

∂ |am,dsd|
∂yk

= βd,kIm
(

ξ sin(θd,k − γm)s∗d,kAm,d(k, :)s
)
,

βd,k = (sHAm,ds)−
1
2

∆xd,k

∆x2
d,k +∆y2

d,k
,

(5.58)

where (·)∗ is the complex conjugate operator, Am,d(k, :) is the k-th row of Am,d and Am,d(:,k)

is the k-th column of Am,d . The second block is expressed by

H =
∂ |As|
∂ |sT |

= blkdiag{H1, ...,HD},

HT
d = Re

(
diag(e− jγγγd)AH

d diag(Adsd)]
)

z̃d,

z̃d = diag{|Adsd|}−
1
2 .

(5.59)

Then, the third block is given by
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∆∆∆ =
∂ |As|

∂ |∆γγγT |
= blkdiag{∆∆∆1, ...,∆∆∆D},

∆∆∆
T
d =−Im

(
diag{ṡd}Ȧd ⊙diag{s̈d}Äd

)
z̃d,

ṡd =
[ K−1︷ ︸︸ ︷

sd,1, ...,sd,1,

K−2︷ ︸︸ ︷
sd,2...,sd,2, ...,sd,K−1

]
,

Ȧd = [

K−1︷ ︸︸ ︷
A(:,1)T

d , ...,A(:,1)T
d , ...,A(:,K −1)T

d ],

s̈ =
[
s∗d,2, ...,s

∗
d,K,s

∗
d,3, ...,s

∗
d,K, ...,s

∗
d,K

]
,

Ä = [A(:,2)H
d , ...,A(:,K)H

d , ...,A(:,K)H
d ],

(5.60)

where ⊙ stands for the Hadamard product.

Then, F̃ can be given by

F̃ =
P

∑
p=1

1
σ2 D[p]HD[p]. (5.61)

The CRB associated with locations of signals can be obtained by the inverse FIM F̃.

5.2.5 Simulation Results

In this section, simulation results are provided to show the performance of the proposed on-

grid and off-grid non-coherent source localization methods in comparison with the existing

sparsity based on-grid method with coherent measurements [86]. For on-grid methods, when

grid refinement is employed, it is referred to as the refinement method, while for the off-grid

method, the iteration number for the second step is 20. ToyBar is applied in the non-coherent

scenario, and the number of iterations before stop is set to 300, with 30 random initialisations

used in order to find the global minimum of the phase retrieval problem.

The area of interest is set as [−20,20]m (metres) along both x-axis and y-axis. In the

initial step for both on-grid and off-grid methods, 2m is used as the stepsize for constructing

the overcomplete steering matrix Ã. In the refinement step, a new grid with stepsize 0.2m

is formed around a distance of 1m to either side of the estimated location from the initial

step. There are D = 4 distributed sensor arrays placed at C1 = (10,40)m, C2 = (30,10)m,

C3 = (−80,90)m and C4 = (−20,40)m, while the off-grid locations for K = 2 sources are
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L1 = (−10.5,−9.5)m and L2 = (0.5,12.5)m. The number of sensors at each distributed

sensor array Md is set as 20, while the radius r of the UCAs is set as r = Md
λ

2
2π

, and P = 100

snapshots are collected unless specified otherwise.

For the first set of simulations, the signal to noise ratio (SNR) is 20 dB. The spatial

spectrum of the proposed non-coherent localization results as shown in Fig. 5.5 provides the

result of the on-grid step, while Fig. 5.6 is for the extra off-grid step. It can be seen that the

two sources have been identified successfully, but the off-grid step significantly increases the

accuracy.

Next, performances of the three methods are evaluated with different SNR values ranging

from 0 dB to 20 dB in terms of the root mean square error (RMSE) in the absence of phase

error. The results are shown in Fig. 5.7, with each point obtained by averaging over 100 trials.

It can be observed that, although all methods achieve more accurate results with increasing

SNR, the method with full coherent measurements consistently outperforms those with

magnitude-only measurements, especially when the noise level is high. This is not surprising

since only magnitude information is used in the non-coherent scenario with magnitude-only

measurements. In addition, under the non-coherent scenario, the proposed off-grid method

has a better performance than the grid-refinement method and the one-step on-grid method.

Then, we examine the performance of both non-coherent and coherent methods in the

presence of sensor phase errors. The array measurements with phase error is modelled as

Zd = |EdAdSd|+Nd, where Ed is an Md ×Md diagonal matrix with each entry being unit

complex variable with a random phase term generated independently from the Gaussian

distribution with standard derivation σ , representing the phase errors at the d-th array. RMSE

results are obtained with an average of 100 trials and the SNR is fixed at 20 dB. As shown

in the Fig. 5.8, the proposed non-coherent method is not affected by phase errors, with a

steady performance, while the performance of the coherent method declines as the intensity

of phase errors increases.

To evaluate the performance for different number of snapshots, the RMSE results of

off-grid non-coherent method and coherent refinement method with phase error σ = 0 and

σ = 0.2 is presented in Fig. 5.9. The SNR is set to be 20 dB, while the number of snapshots
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Fig. 5.5 Results by off-grid model.

Fig. 5.6 Results by on-grid model.
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Fig. 5.7 RMSEs versus SNRs.

ranges from 100 to 200. Clearly, a larger number of snapshots yield more accurate results

and the coherent method consistently outperforms the non-coherent one in the absence of

phase errors. However, in the presence of phase errors, the coherent method suffers from a

much larger RMSE.

Finally, the computational complexity of both on-grid and off-grid models with non-

coherent measurements is compared in terms of running time, and the results are shown in

Table 1, based on a computer with 4.2GHz CPU i7-7700K and 16GB RAM. We can see

that although the computational time of off-grid method is higher than the on-grid method,

the computational time cost by the second step of the off-grid model is minimal, especially

compared with the refinement method.

Table 5.3 Running time of different non-coherent methods.

Snapshots On-grid (s) Off-grid (s) Refinement (s)
100 226.11 226.22 395.84
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5.3 Summary

In this chapter, non-coherent DOA estimation and source localization of off-grid signals has

been studied and an efficient two-step approach was proposed. In the first step, dictionary

bias is assumed to be zero and the off-grid problem is considered as a normal group sparse

phase retrieval problem, while in the second step, dictionary bias is estimated through an

iterative process. Simulation results indicates that, for the same grid, the proposed off-grid

non-coherent estimation method has given more accurate results than the on-grid model with

very marginal extra time consumption. In addition, although the off-grid model with a larger

stepsize requires less CPU time than the on-grid model with a smaller stepszie, the DOA

estimation accuracy of the off-grid model is still better than the on-grid one. Unlike those

existing AOA based methods, phase error at sensor arrays has no effect on the proposed

non-coherent one, which means that phase calibration is no longer required. Simulation

results shows that the proposed method outperforms the traditional method in terms of RMSE

when the phase error occurs at the sensors, but at a cost of worse performance in the absence

of phase errors.
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Chapter 6

Non-Coherent DOA Estimation of

Wideband Signals

For the narrowband case, some methods have been proposed based on the uniform linear array

(ULA) [16–19, 89], dual array [49] or uniform circular arrays [88], where the key issue is to

overcome the inherent ambiguities problem associated with magnitude-only measurements.

Moreover, some general algorithms have also been proposed to exploit the multiple snapshots

available in the array measurement, such as the modified GESPAR [16] and the ToyBar[49].

However, to our best knowledge, the wideband case has not been studied yet when

only magnitude information of the received signals is available at the array. For wideband

signals, those narrowband methods developed for DOA estimation cannot be applied directly,

since the array output for wideband signals is obtained through a convolution process

[20, 90]. For such a wideband DOA estimation problem, a common approach is applying

discrete Fourier transform (DFT) to those measurements, and decomposing wideband signals

into different frequency bins, where each bin provides a similar model as the narrowband

one, when the number of DFT points is sufficiently large [91]. Under such a framework,

many subspace based methods for wideband DOA estimation have been proposed, such as

incoherent subspace method (ISM) [92, 93], coherent subspace method (CSM) [94], and

test of orthogonality of projected subspaces (TOPS) [95]. Additionally, compressive sensing

(CS) has been exploited for narrowband DOA estimation as the signal is sparse in the spatial
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domain [14, 31, 35]. These CS based algorithms can be extended to wideband by applying it

to each frequency bin separately. As the spatial support of incident signals over all frequency

bins is identical, joint group sparsity has been introduced for the wideband signal model [43],

which performs more effectively.

This DFT based approach only works for the traditional scenario when full measurements

of the received array signals are available, and when only the magnitude information is

available, we will not be able to apply the DFT operation to decompose the signals into

different frequency bands, and therefore the DFT based approach will not work for the

magnitude-only case. In this chapter, based on the idea of convolutional sparse coding

(CSC) [96–98], a novel wideband signal model is first proposed for direct time-domain (TD)

DOA estimation, and a group sparsity based minimization problem is formulated [99]. The

traditional DFT based subspace methods, which require the number of DFT points to be

large enough, will not work properly with a limited number of temporal snapshots; on the

contrary, the propsoed TD-CSC wideband DOA estimation method still works effectively

for a small number of snapshots. Based on the TD-CSC based wideband signal model, a

non-coherent wideband DOA estimation method is further proposed in this chapter.

The remaining part is structured as follows. The wideband signal moldel with the CSC

framework is described in Sec. 6.1. The proposed wideband DOA estimation method and its

CRB are presented in Sec. 6.2 and simulation results are provided in Sec. 6.3. Conclusions

are drawn in Sec. 6.4.

6.1 Wideband Signal Model in the Time Domain

With a sampling frequency fs, the received wideband signal at the m-th sensor is given in

(2.50). If d = λmin/2, where λmin is the wavelength corresponding to the maximum frequency

of the signal and we sample the signal at the Nyquist rate, i.e. the sampling period Ts =
λmin
2c ,

the delay between the m-th sensor and the 0-th sensor is

τm,θk

Ts
= msinθk, ai,m,θk = sinc(i−msinθk), (6.1)
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For convenience of modelling in the following steps, the infinite impulse response in

(2.50) is truncated to the range from −I to I, where I is a large enough number. Then, (2.50)

can be approximated with a small error, as

xm[p]≈
K

∑
k=1

(
I

∑
i=−I

ai,m,θksk[p− i])+nm[p]. (6.2)

Considering P snapshots for the received signal xm[p], p ∈ {0, ...,P−1}, the required

snapshots range of source signal sk[p] for xm[0] is −I < p< I, while for xm[P−1], the required

snapshots range of source signal sk[p] is P−1− I < p < P−1+ I. As a result, to calculate

all values of xm[p] for all 0 ≤ p ≤ P−1, the required range of sk[p] is −I < p < P−1+ I,

and the total number of required different snapshots for sk[p] is P+2I.

Therefore, constructing source signal vectors

sk = [sk[−I], ...,sk[P−1+ I]]T , (6.3)

and the measurements vector at the m-th sensor xm

xm = [xm[0], ...,xm[P−1]]T , (6.4)

which can be written in a convolutional sparse coding (CSC) form [96–98], as

xm =
K

∑
k=1

Cm,θksk +nm, (6.5)

where Cm,θk is a P× (P+2I) banded and circulant matrix, given by

Cm,θk =


aI,m,θk · · · a−I,m,θk · · · 0

. . . . . . ...

0 · · · aI,m,θk · · · a−I,m,θk

 (6.6)

and nm = [nm[0], ...,nm[P−1]]T is the noise vector at the m-th sensor.

101



Furthermore, (6.5) can be reformulated in a more compact form as

xm = Cms+nm, (6.7)

where
s = [sT

1 , ...,s
T
K]

T ,

Cm = [Cm,θ1 , ...,Cm,θK ].
(6.8)

6.2 Time Domain Based Wideband DOA Estimation

6.2.1 Coherent DOA Estimation of Wideband Signals

Unlike those traditional CSC model, the signal vector sk in DOA estimation is not sparse in

the time-domain, and correspondingly, s is not sparse either. However, the signals are indeed

sparse in the spatial domain, i.e., they only come from a rather limited number different

directions [31]. Based on this spatial sparsity concept, to construct a spatially sparse source

vector, we divide the whole admissible DOA range into G grid points with G ≫ K, and for

each direction θg, g ∈ {1,2, ...G}, we can construct the corresponding matrix Cm,θg , and

form an overcomplete matrix

C̃m = [Cm,θ1 , ...,Cm,θG]. (6.9)

Then, the signal vector s is extended to its corresponding G(P+2I)×1 sparse vector

s̃ = [sT
1 , ...,s

T
G]

T , (6.10)

where only K groups out of its G groups corresponding to the true incident angles are

supposed to be non-zero. Finally, the array output at the m-th sensor is given by

xm = C̃ms̃+nm. (6.11)
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For M sensors in total, we have

x = [xT
0 , ...,x

T
M−1]

T = C̃s̃+n,

C̃ = [C̃T
0 , ..., C̃

T
M−1]

T ,

n = [nT
0 , ...,n

T
M−1]

T .

(6.12)

Now, since signal s̃ is sparse, the wideband time-domain based DOA estimation problem

can be formulated as a LASSO problem [100],

min
s̃

∥C̃s̃−x|22 + γ∥s̃∥1, (6.13)

where ∥ · ∥1 represents l1 norm of its variables to enforce its sparsity and γ is the penalty

term.

In addition, the signals s̃ has a group sparsity structure, where all the entries within a

group are all zeros if there is no signal coming from that direction. Thus, the DOA estimation

problem can be further formulated as a group LASSO problem [54], represented by the l2,1

norm, given by

min
s̃

∥C̃s̃−x∥2
2 + γ∥s̃∥2,1, (6.14)

and the l2,1 norm ∥ · ∥2,1 is defined as

∥s̃∥2,1 :=
G

∑
g=1

∥sg∥2, (6.15)

where sg has been defined in (6.10).

Thus, the wideband DOA estimation problem can be formulated as

min
s̃

γ

G

∑
g=1

∥sg∥2 +∥C̃s̃−x∥2
2, (6.16)

This problem is convex and can be solved by convex optimization methods directly, such

as the FISTA algorithm, which is an accelerated version of the proximal gradient method
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[36, 55, 101, 102]. A summary of FISTA can be found in the following Algorithm Summary

part.

Table 6.1 Algorithm Summary (FISTA)

Input: C̃, x, ρ , λ ,
Output: s̃ (reconstructed signal).
Initialization: Set s̃0 as a zero vector, b̃0

= s̃0.
β 0 = 1. Defining G groups of s̃,

General steps: for q=0, ..., Q
1) Calculate gradient as

Gradient: f (b̃) = ∇F(b̃q
) = 2C̃H

(C̃b̃q −x),
2)For i = 1, ...,G,

Find s̃q+1
i as

s̃q+1
i = (bq

i −λ f (bq
i ))max(1− ρλ

∥bq
i −λ∇ f (bq

i )∥2
,0),

where si is subvector of s̃ indexed by i.

3) Update: β q+1 =
1+
√

1+4(β q)2

2 .
bq+1 = s̃q+1 + β q−1

β q+1 (s̃q+1 − s̃q).

6.2.2 Cramér-Rao Bound

Based on the new model, the CRB for time-domain wideband DOA estimation is derived.

From (6.12), the probability density function is expressed as

p(x;ΦΦΦ) =
MP−1

∏
n=0

1
2πσ2 e(xn−Cnsn)

2/2σ2
, (6.17)

where Cn and xn represent the n-th row of C and x, separately. The unknown parameter

vector of arriving angles, magnitude, phase difference and noise level can be represented as

ΦΦΦ = [θ1, ...,θK,sssT ,σ2]. (6.18)

For deterministic but unknown Cs, the Fisher information matrix (FIM) F is defined as

F(ΦΦΦ) = E{∂ ln2 p(x;ΦΦΦ)

∂ΦΦΦ∂ΦΦΦ
T }. (6.19)
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The {i, j}-th entry of F is given by [70]

Fi, j =
[

∂ µµµ(ΦΦΦ)

∂Φi

]T
ΓΓΓ
−1(ΦΦΦ)

[
∂ µµµ(ΦΦΦ)

∂Φ j

]
+

1
2

[
ΓΓΓ
−1(βββ )

∂ΓΓΓ
−1(ΦΦΦ)

∂Φi
ΓΓΓ
−1(ΦΦΦ)

∂ΓΓΓ
−1(ΦΦΦ)

∂Φ j

]
,

(6.20)

where ΓΓΓ
−1(ΦΦΦ) = 1

σ2 IMP, IMP is the identity matrix, (·)−1 is the matrix inverse operator, and

µµµ(ΦΦΦ) = Cs. Since µµµ(((ΦΦΦ))) is independent of the noise level, we have

F =

F̃ 000

000 000

+

000 000

000 Fσ

 , (6.21)

where the DOA related block is in F̃ and its {i, j}-th entry is expressed as

F̃i, j =
[

∂ µµµ(ΦΦΦ)

∂Φi

]T
ΓΓΓ
−1(ΦΦΦ)

[
∂ µµµ(ΦΦΦ)

∂ΦΦΦ jjj

]
, (6.22)

with (·)−1 being the matrix inverse operator. As the FIM is block diagonal, Fσ has no effect

on the CRB result of DOAs. Thus, CRB of DOAs can be determined by the inverse of F̃.

Computing the derivatives of µµµ(ΦΦΦ) with respect to ΦΦΦ, we have

D =
∂ µµµ(ΦΦΦ)

∂ΦΦΦ
= [G,∆,000],

G = [cθ1s1, ...,cθksK], cθK =
∂Cθk

∂θk
,

∂ sinc(i−msinθk)

∂θk
=

msin(π(i−msinθk))cosθk

π(i−msinθk)2

− mcos(π(i−msinθk))cosθk

i−msinθk
,

Cθk = [CT
0,θk

, ...,CT
M−1,θk

]T ,

∆ =
∂ µµµ(ΦΦΦ)

∂ s
= C.

(6.23)

Then, F̃ can be given by
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F̃ =
1

σ2 DHD, (6.24)

The CRB associated with the DOA of signals can be obtained by the diagonal elements

of the inverse F̃. However, in the proposed signal model, it is assumed that I >> P and

K(P+ 2I) > MP, which leads to a singular and uninvertible FIM [103]. Thus, CRB is

approximated by the Moore–Penrose pseudoinverse of FIM instead of its inverse [104].

6.2.3 Non-Coherent DOA Estimation of Wideband Signal

The wideband signal model under CSC framework has been shown in Section 6.1. For

non-coherent measurements, we have

y = |C̃s̃|+n, (6.25)

where C̃ and s̃ have been defined in (6.12). Similar to (6.14), the non-coherent wideband

DOA estimation problem can be formulated as an l2,1 norm based phase retrieval problem,

given by

min
s̃

∥|C̃s̃|−y∥2
2 + γ∥s̃∥2,1, (6.26)

which can be solved by the proposed ToyBar, which is derived based on the PRIME [48] and

proximal gradient methods [36], as introduced in Chapter 3.

6.3 Simulations

6.3.1 Coherent Wideband DOA Estimation

In this section, performance of the proposed time-domain CSC based method (TD-CSC) is

studied and compared with the traditional frequency-domain method in [43] for wideband

DOA estimation. A ULA of M = 7 sensors is used with d = λmin/2 and sampling frequency

Ts = λmin/(2c). The steering matrix is formed based on a step size of 0.5◦, and the truncated

convolution filter for generating wideband signals has a value of I = 100. The normalized
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frequency of wideband signals ranges from 0.5π to π , and for the traditional method, P-

point DFT is applied and the normalized frequency range of impinging signals covers the

frequency bin range of U = [P/4+1,P/2−1] (the same settings as in [43]). Note that with

P time-domain snapshots and a P-point DFT, for the traditional method, there is only one

data sample for each frequency bin. Both methods are run with FISTA [55]. The FISTA

setting for both the proposed and the traditional methods are the same, with the number

of iterations fixed at R = 300, and stepsize set as 1/(2λmax(C̃
HC̃)), where λmax(·) is the

maximum eigenvalue of its variable and C̃ represents the overcomplete dictionary of sparse

signals.

First, performances of the two methods are evaluated with different SNR values ranging

from 0 dB to 20 dB in terms of the RMSE. P = 32 temporal measurements are collected, with

two signals located at −10◦ and 10◦ with equal signal power, and the value I to construct

time-domain steering matrix C in the algorithm is set as 50. The results are shown in Fig. 6.1,

with each point obtained by averaging over 100 trials. It can be observed that, although both

methods have achieved more accurate results with increasing SNR, the proposed method

consistently outperforms the traditional one.

Next, the impact of the number of snapshots P is considered. The SNR is fixed at 20 dB

while the number of snapshots ranges from 8 to 112. As shown in Fig. 6.2, the performance

of the proposed time-domain method is acceptable even with only 8 snapshots, while the

traditional frequency-domain method leads to a rather high RMSE initially. Moreover,

increasing the number of snapshots can enhance the estimation performance of both methods,

and with around 90 snapshots, the traditional method has outperformed the proposed one a

little.

Now we examine the case with only 8 snapshots in a bit more detail. An example of

estimated spatial spectrum in one run is given in Figs. (6.3) and (6.4), which show that

although the proposed method maintains some error with only 8 snapshots, the traditional

method has effectively failed. Note that the spacing between the two sources is 20 degrees,

while the RMSE has been about 11 degrees for each source according to the figures.

107



0 5 10 15 20

SNR: dB

0

1

2

3

4

5

6

7

8

R
M

S
E

: 
d

e
g

re
e

Proposed method

Traditional method

CRB

Fig. 6.1 RMSE vs. SNR.
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Fig. 6.2 RMSE vs. snapshots.
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Fig. 6.3 The proposed method.
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Fig. 6.4 The traditional method.
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Table 6.2 Running time of the proposed method and the traditional method.

Computational time (sec)
Snapshots The proposed method The traditional method

112 53.52 19.35
64 25.36 4.66
16 4.64 0.64

Number of parameters to be estimated
The proposed method The traditional method

G(2I+P) GU

Since wideband DOA estimation in both proposed time-domain based and traditional

frequency-domain based methods are formulated into a sparsity framework, the FISTA

can be applied to both methods, which only requires simple matrix operations. Under the

general sparse setting, their complexity depends on the number of parameters involved in

the formulation. Thus, for M sensor measurements, the complexity for the proposed method

is O(MG(2I +P)), while for the traditional method is O(MGU). Since U depends on the

number of available frequency bins, it contains at most P different bins. As a result, the

proposed method is more complex than the traditional method. As listed in Table 1, the

number of parameters to be estimated for the proposed method is much more than that for

the traditional method since U ≈ P/4 in this set of simulations. The running time of the

proposed method is much longer. In addition, it is clear that the number of parameters to be

estimated for the time-domain method is not only related to the number of snapshots, but

also the value of I to construct the circulant matrix C.

The performance of the proposed method with respect to the value of I for constructing

C in the solution is presented in Fig. 6.5. All settings are the same as in the first simulation

except for I and SNR is 20 dB. As shown, although the RMSE decreases with the value of I,

the effect of I on RMSE can be ignored for a value larger than about 80.

Finally, we examine whether the proposed method can deal with the underdetermined

case or not. In the first set of simulations, a ULA of M = 4 sensors is employed where the

number of incident signals is K = 4 and K = 5, separately, and the results are shown in Figs.

6.6 and 6.7 with P = 64 snapshots. It can be seen that with a ULA, the proposed method
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cannot solve the underdetermined problem, which is consistent with our understanding about

the degrees of freedom of a ULA. For underdetermined estimation, sparse array structures

are normally employed by exploiting the co-array concept [31]. Thus, in the second set of

simulations, we employ a minimum redundancy array (MRA) with M = 4 sensors and their

positions are given by (0,1,4,6) [5]. The results are shown in Figs. 6.8 and 6.9 with P = 64

snapshots. It can be seen that although there are only 4 sensors, the proposed method can

identify all the five sources successfully. This is an interesting result, as no co-array operation

is employed in the process, which is different from the frequency-domain method in [31].

6.3.2 Non-Coherent Wideband DOA Estimation

In this section, performance of the proposed time-domain CSC based method with magnitude-

only measurements is studied and compared with full measurements as proposed in [99]

for wideband DOA estimation. A ULA of M = 30 sensors is used with d = λmin/2 and

sampling frequency Ts = λmin/(2c), while the number of snapshots is P = 64. A grid

refinement approach is employed and the steering matrix is formed based on a step size

of 3◦ for the initial step and 0.3◦ for the refinement step, and the value I to construct the

time-domain steering matrix C in the algorithm is set as 50. The truncated convolution filter

for generating wideband signals has a value of I = 50. For ToyBar settings for the proposed
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Fig. 6.6 Four incident signals with M = 4 sensors ULA.
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Fig. 6.7 Five incident signals with M = 4 sensors ULA.
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Fig. 6.8 Four incident signals with M = 4 sensors MRA.
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Fig. 6.9 Five incident signals with M = 4 sensors MRA.
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method, the number of iterations is fixed at R = 300, and stepsize is set as 1/(2λmax(C̃
HC̃)),

where λmax(·) is the maximum eigenvalue of its variable and C̃ represents the overcomplete

dictionary of sparse signals.

For the first set of simulations, the SNR is 20 dB and there are K = 2 signals impinging

on the array, with incident angles −30◦, and 42◦. The spectrum of estimation results is shown

in Figs. 6.10 and 6.11, where the dotted lines represents the true incident angles. It can be

seen that all 2 signals have been identified by both methods.
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Fig. 6.10 Results with magnitude-only measurements.
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Fig. 6.11 Results with full measurements.
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Next, performances of the two methods are evaluated with different SNR values ranging

from 5 dB to 25 dB in terms of the RMSE. P = 64 temporal measurements are collected,

with two signals located at −30◦ and 42◦. The results are shown in Fig. 6.12, with each

point obtained by averaging over 100 trials. It can be observed that, although both methods

have achieved more accurate results with increasing SNR, the traditional coherent solution

consistently outperforms the proposed one.

Finally, performances of the two methods with different snapshots are measured, while

SNR is fixed at 25 dB and the results are shown in Fig. 6.13. According to the figure, it

can be seen that although the performance of the non-coherent method increase significantly

with the increasing number of snapshots, the gap between both method is still large, since

the non-coherent method use only magnitude information.

6.4 Summary

A wideband DOA estimation method with both coherent and non-coherent measurements

based on time-domain formulation has been proposed. The wideband DOA estimation

problem was formulated in a CSC form, and l2,1 norm is employed to enforce spatial sparsity.

Unlike those existing frequency-domain based methods, no additional Fourier transform

operation is needed by the proposed method, which means that even a small number of

temporal snapshots are sufficient for DOA estimation.
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Chapter 7

Conclusion and Future Plan

7.1 Conclusion

Non-coherent DOA estimation works effectively in the presence of phase errors while

maintaining a good estimation accuracy. The problem was formulated as sparse phase

retrieval problem, which traditionally only considers a single snapshot. For the non-coherent

DOA estimation problem, multiple snapshots are normally available and the existing sparse

phase retrieval algorithms fail to exploit multiple snapshots simultaneously. To solve this

problem, a new algorithm named ToyBar was proposed, where the problem is transformed

into its convex surrogate via the majorization-minimization technique, which can be solved

by the well-known proximal gradient method. In addition to the well known mirroring and

spatial shift ambiguity, a new ambiguity called spatial order ambiguity was also identified

based on a detailed analysis. This ambiguity cannot be avoided by employing reference

signals and one solution is to limit the inter-senor spacing d of ULAs to be less then λ/4 for

a normal DOA range [−90◦,90◦].

Another issue of the non-coherent methods is the requirement of reference signals with

precisely known DOAs to resolve inherent ambiguities. To deal with this challenge, two

array structures were suggested. The first is a specific dual-array structure, which exploits

spatial sparsity and formulates the non-coherent DOA estimation problem into an joint group

sparsity based phase retrieval problem. The second array structure is the uniform circular
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array, which can be applied to solve the ambiguity issue associated with the non-coherent

problem directly as analysed. Simulations demonstrate that no reference signal is required

while there are more than two impinging signals with these two array structures.

Since one disadvantage of the sparsity based method is the DOAs of signals are assumed

to lie on the pre-defiend grids, which cannot be guaranteed in practice, the non-coherent

DOA estimation of off-grid signals was then investigated and an efficient two-step off-grid

method was presented. In the first step, dictionary bias is assumed to be zero and the off-grid

problem is considered as a normal group sparse phase retrieval problem, while in the second

step, dictionary bias is estimated through an iterative process. Through comparison, the

proposed off-grid non-coherent DOA estimation method has provided more accurate results

than the on-grid model with very marginal extra time consumption. This off-grid concept has

also been extended to the non-coherent source localization problem, where the problem is

formulated into a joint sparse phase retrieval form with distributed sensor arrays, and the l2,1

norm is employed to enforce spatial sparsity.

Although the non-coherent DOA estimation problem has been studied by some re-

searchers in recent years, the wideband non-coherent DOA estimation problem has not

been addressed yet. Traditionally, DFT is applied to sensor measurements to transform the

received wideband signals into narrowband signals with different frequencies. However, for

non-coherent measurements, DFT cannot be applied to make such a transformation. In order

to solve the wideband non-coherent DOA estimation problem, a time-domain wideband

DOA estimation method based on CSC was proposed first, where no DFT operation is

required. Then, the signal model was extended to the non-coherent scenario. As demon-

strated by computer simulations, that the proposed time-domain method has outperformed

the frequency-domain based one when the number of snapshots is limited, and the CSC

based wideband method can be extended to non-coherent measurements effectively.
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7.2 Future Work

In our research, non-coherent DOA estimation is formulated as a multi-snapshot sparse phase

retrieval problem. Alhough the proposed ToyBar is more efficient than existing methods,

its computational complexity is still high. It the future, low complexity version of the

proposed ToyBar might be developed. In addition to improving the existing method, other

low complexity methods might also be studied (i.e. atomic norm). Besides, compared to

traditional coherent DOA estimation methods, the number of sensors required in non-coherent

scenario is higher. Sparse arrays may be considered to increases the number of degrees of

freedom.

For non-coherent wideband DOA estimation, the ambiguities issue should be further

analysed mathematically although simulation results have indicated that no ambiguities

appear in the wideband scenario. In addition, the off-grid approach for narrowband methods

cannot be extended to the wideband case directly, and further research on off-grid wideband

model is needed to achieve a better performance.

However, while testing the performance of proposed DOA estimation methods via

simulations, the radiation pattern of sensors are assumed to be ideal, which is impractical in

practice due to mutual coupling, circuit errors or other issues. Therefore, in order to examine

its performance in real world scenarios, EM CST simulations can be involved to calculate

more practical array responses in the future, or robust methods need to be developed to tackle

possible model errors. In addition, since the thesis assumes there is no multi-path effect, the

non-coherent DOA estimation with multi-path effect can be another topic of future research.
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