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Abstract

This thesis is concerned with cognitive concepts related to melodic preferences, and

attempts to capture quantifiable elements of what makes melodies sound pleasing to

listeners, through the use of statistical properties and analysis of listener preferences. By

using both empirical findings and drawing from literature, these elements were subsequently

used as a basis for the development of software that generates musical sequences. The

thesis included two studies investigating the perception of melodies, where the concept of a

Uniformity Principle (a preference of listeners for melodies with distributionally uniform

pitches), and the relation between working memory and liking were examined. Further, a

study was conducted with the aim of understanding the usefulness and quality of the

software we developed, showing positive results in both of those dimensions.
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1. Introduction

Music is an art form that can be remarkably hard to define. If we use the notion of sound, a

composition such as 4’33” by John Cage, which is a piece consisting of 4’33” minutes of

silence, shows that we would still miss something important. This important element is the

view of music as a sequence of time spaces or “time buckets” (Taruskin, 2009) that could

contain any amount of sound and any amount of silence in it. Therefore, in the most minimal

sense, music is a temporal structure. And being an art form, it is a structure that conveys

aesthetic appeal.

This PhD project is an exploration of this aesthetic appeal, through the lens of

analysing musical structures with the use of quantitative music cognition. In simpler words, it

is an attempt to capture quantifiable elements of what makes melodies sound pleasing to

listeners, through the use of statistical concepts and analysis of listener preferences. By

using both new insights and drawing from literature, these elements are subsequently used

as a basis for the development of a software that generates MIDI musical segments. MIDI

stands for “Musical Instrument Digital Interface” protocol (Smith & Wood, 1981). In the

modern music making environment of Digital Audio Workstations (DAWs), music

composition practices involve the writing of music in a virtual piano roll in the form of MIDI

information. The software that was developed as part of this project is a Virtual Studio

Technology (VST) plugin that can be embedded into DAWs and act as a compositional aid

tool for music makers.

My motivation for starting this project dates back to the days of high school. Between

the daily high traffic on my way to school, and my love for the excellent songwriting of bands

like System Of A Down, I had ample time to contemplate the beauty of very simple yet

emotionally powerful repeating melodies that drove many of these songs. Particularly, I was

interested in the idea that some melodies were “better” than others, in some kind of objective
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way. The simplicity of melodies found in popular music arrangements offered a framework

with few variables, which could therefore be studied extensively and systematically, offering

a possibility to examine this idea. The project is a direct continuation of my curiosity on the

topic, supplied with my knowledge of statistics through my BSc studies, and of music

cognition in postgraduate studies. Furthermore, as a university student I was driven to work

on projects that could have a direct impact on “real life” environments. I was particularly

fascinated by the thought of helping people of all skill levels to create music, by using music

cognition research to develop an automated music generation tool.

1.1 State of the VST market and our contribution

In the current VST market there are a number of different approaches to software

development that lead to distinct categories of products. Specifically, there is a sector

concerned with the digital recreation of analog audio equipment, forefronted by companies

such as Acustica Audio, Arturia and Brainworx. These companies use digital signal

processing techniques to recreate the circuits and sound manipulation behaviour of

equipment such as equalisers, compressors, guitar amplifiers and analog synthesisers.

Another direction in music software development has to do with the recreation of real life,

non-electronic instruments and sounds in the DAW environment, primarily led by Native

Instruments, Spectrasonics and Output. The main technique used in this approach is

sampling, which refers to recording sounds and arranging the recordings in a way that a

musician could play the recorded instrument “inside the box”. Finally, a third section in the

plugin market corresponds to software that uses the digital domain to make tools that could

not be possibly implemented in the analog domain, and ones that are not recreating any

particular hardware device, usually with functions not frequently seen in hardware

equivalents. Examples of this approach include vocal pitch correction tools (e.g. Antares
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Auto-Tune and Celemony Melodyne), machine learning-based audio extraction software

from iZotope and Steinberg, music generation software by companies such as Mixed In Key,

and tools oriented towards mixing, such as VolumeShaper by Cableguys, and Pro-Q 3

equaliser by FabFilter.

The importance of pursuing this project, in addition to personal motivation, is

established in the untapped potential that is to be found at the intersection of music software

development and academic research on the aesthetic quality of sound. Especially in the

category of novel VST plugins which do not aim to replicate a hardware module,

programmers could potentially gain a significant benefit from the application of knowledge

that exists in the academic realm about how listeners perceive musicality and emotion in

musical material. Our project demonstrates the development of this type of study and the

use of existing ones, for the purpose of creating a novel VST plugin that is further examined

for usability and usefulness by a group of testers. Being a music generator, the plugin

belongs to a subcategory of products that is underdeveloped and not widely used in the

music production process yet. With this work we aim to contribute in this subcategory and

highlight the benefits of our approach in music software creation. At the time of writing, this

software is under further development for a release as a product with the VST company

[Redacted text]

The deep and decisive interest of this company in our software underscores the contribution

that our project can potentially have in the connection between music cognition research and

music software development.
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1.2 Research aims

This concept of using music cognition research to develop novel music production software

requires a diverse context of investigation. Our overarching question is to what degree plugin

creation can be assisted by the quantification of aesthetic properties and utilisation of the

potential contained in academic music cognition literature. We are particularly interested in

areas that can yield quantifiable results when it comes to how listeners experience

responses such as aesthetic pleasure, complexity and interestingness, while listening to

musical excerpts. Also, we wanted to evaluate methodically the quality and usability of the

software that was a result of this research.

Study 1: The effect of pitch distributions in melody liking ratings

In the first study of this project we explored the effect of pitch distributions on liking ratings of

melodies, along with perceived complexity and how interesting the melodies sounded. The

central concept under investigation was the possible positive effect in liking ratings, of a pitch

distribution where the mean pitch is always at the centre of the range of the pitches in the

melodies. This idea was called the Uniformity Principle, as it corresponds to a distribution

that exemplifies the characteristics of the discrete uniform statistical distribution. The

listener’s responses to melodies that had pitches conforming to this distribution were

compared to responses based on progressively more skewed distributions, in order to test

the hypothesis of the Uniformity Principle. During this study we further explored responses

on complexity, perceived interestingness and how this data could be influenced by

demographic factors of the listeners.

Study 2: The role of working memory in the aesthetic appreciation of melodies

The second study is an expansion to the topic of melodic complexity. Our aim with this study

was to examine the effect of complexity on liking, testing the theory of an aesthetically
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optimal amount of complexity. An inverted U relationship between pleasantness and stimulus

complexity has been supported by several studies (Vitz, 1966; Berlyne, 1971; Saklofske,

1975; Farley and Weinstock, 1980; Imamoglu, 2000), and this study is an attempt to model

and test the function of complexity in the context of melodic expectation. Additionally, we

assessed listeners’ ability to understand the relationship between melodies that have

undergone inversion transformations and their original versions. By doing so we aimed at

understanding the relationship between cognitive load and liking, as well as the importance

of fulfilling melodic expectations in liking, and the interplay between the two pairs of factors.

Our results could help materialise these variables in a way that would allow their

implementation in the MIDI music generator software.

Development of the MMM Generator and evaluation study

The third phase of the project concentrated on implementing the findings, insights, and

concepts from the first two studies into a software plug-in, which we term the MMM

Generator, as a reference to the Music Mind Machine research centre of the University of

Sheffield. This software was intended to produce quality musical content for the modern

DAW-based music making process. After developing an initial version of the MMM

Generator, we used it to collect user experience data, and then proceeded with analysing it.

The purpose of the software evaluation was to see how effective we were in producing a

helpful and high-quality music composition tool by utilising the studies of this project, which

focused on quantifying aesthetic and cognitive properties of music, along with pre-existing

academic literature on the same topic, and popular music composition practices. The focus

of our investigation is on the users' perceptions of the software's usability and their general

impressions, both favourable and negative. We also gathered suggestions for improvement,

which were taken into account and resulted in an updated version of the MMM Generator

that was tailored to the demands based on users' feedback.
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1.3 General methodology

The studies that were carried out in this project shared common methods of data collection

and sample selection. A percentage of the participants of these studies was recruited from

the University of Sheffield via the email recruitment system, and University of Piraeus at

which I completed my BSc in Statistics, via Facebook. The rest of the participants were

recruited through contact via the social media platform Instagram. The majority of the data

collection happened whilst the Covid-19 pandemic had forced governments to enforce

national lockdowns, which made online questionnaires the only viable choice of data

collection. Google Forms questionnaires provided an optimal solution for this type of task,

and allowed the use of Likert scales and video embedding. Studies 1 and 2 utilised these

scales for the collection of responses on the perception of melodies. They were used as a

rating tool for the assessment of liking and perceived complexity of melodies, the degree of

melodic inversion, and so on for the variables under consideration for the two studies. It

further allowed testers of the MMM Generator plugin to work in their own music making

environment and use the software as part of their normal workflow, which was an important

benefit of collecting the data through online questionnaires. The task of the participants in

this study was to fill scale-based and free text questions on the usability and design of the

MMM Generator, the quality of the musical output, and point out general positive and

negative remarks.

For the creation of the melodic stimuli in the perception questionnaires, generation

algorithms were developed according to the variables under consideration in each study. For

the preservation of a variability in the stimuli, the generators created melodies with shapes

that confined to a code-based implementation of archetypal contours, deriving from Meyer’s

work (Meyer, 1973). In the case of the third study of the project, the main material of

consideration was the MMM Generator plugin. The user interface (UI) design of this software

was done in a way that gave focus on the direct control of the variables that were under
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consideration in studies 1 & 2. It also included a variety of features that aided in the usability

and musical quality of the MIDI output. In terms of coding, it used the algorithms that were

utilised for the creation of the stimuli of the previous studies as an initial basis, and expanded

on them. The coding of all generation algorithms in the project, as well as part of the data

analysis throughout the studies was done by using the Python 3 programming language.

The majority of data analysis on the stimuli and participant’s responses was carried out on

SPSS.

1.4 Layout of the thesis

The thesis is organised in three main parts. It contains the current introductory chapter as an

overview of the project, highlighting the motivation for its conception, the contribution of it in

the intersection of music software and cognition research, and summarising the nature and

methods of the studies. The next section consists of three chapters, each of them reporting

the three studies of the project respectively. Chapter 2 analyses the investigation on the

Uniformity Principle idea, comparing statistical distributions of pitches in melodies, and

looking into the variables of complexity and interestingness. In Chapter 3, the focus of the

exploration is on perceived complexity, and the associated notions of cognitive load and

optimally complex stimuli. Chapter 4 is devoted to the MMM Generator software and it is split

into two sections. The first part of the chapter explains the background of algorithmic

generation of music in the academic and industry fields, and describes the link between the

research under consideration in the current project with the development of the MMM

Generator plugin. The remainder of the chapter is devoted to the study of how music

producers used the MMM Generator as a part of their creative workflow, allowing us to

evaluate its quality, usefulness and points for improvement. Lastly, Chapter 5 summarises

the key findings of the project, connecting the main contributions with existing literature on
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music cognition. It also presents the discussion about limitations and suggestions for future

work on the link between cognition research and application development in the music

software industry. As a visual map, the structure of the project is represented as follows:

Figure 1: Visual map of the thesis’ structure.
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2. Study 1: The effect of pitch distributions in melody liking ratings

2.1 Introduction

Our interest in properties of melodies that can present quantifiable results, in relation to how

listeners experience aesthetic responses, constituted the motivation for this study. Such

properties include psychological principles, like Gestalt laws (Kubovy & van Valkenburg,

2001), and statistical universals (Brown & Jordania, 2013), forming a context of research that

could allow the systematic analysis of liking responses. An analysis of this type could be

subsequently used for the development of melody generation algorithms, with the purpose of

achieving positive responses by listeners. Particularly, the current study focuses on the

distributional properties of pitches, and their contribution to the appreciation of melodies.

In music cognition literature it has been shown that listeners are sensitive to the

distribution of pitches in music, and a “distributional view” regarding schematic expectations,

such as inference about the key of musical pieces, has been given academic support in the

context of tonality perception (Levitin, 2002). This idea holds that there exists a cognitive

process of comparing template distributions with the ones of a new stimulus, in order to find

which archetypal distribution matches the one of the stimulus. This procedure has been

modelled in various ways, such as the Krumhansl-Schmuckler algorithm that uses

key-profiles derived through probe-tone experiments, in order to determine the key of a

piece by examining the correlation of the piece’s profile with the template profiles

(Krumhansl & Kessler, 1982; Krumhansl, 1990). Similarly, Chew’s (2002) model uses a

3-dimensional space where each key has a characteristic point, and the finding of the key of

a passage is based on the proximity of the average position of the passage’s events to the

nearest characteristic key point. Other distributional models are based on the frequency of

pitch occurrences and their fit to specific keys, either through notation (Vos & Van Geenen,
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1996; Yoshino & Abe, 2004) or audio signal (Martens et. al, 2005). Finally, Temperley (2007)

used a Bayesian approach to construct a distributional key-finding model that calculates the

probability of occurrence of a melody, given that the melody was generated by using a

specific key. Overall, listeners seem to use pitch distributions for key detection (Temperley,

2008), and given that key is an obvious influence in deriving aesthetic value in tonal music,

there is evidence that the distribution of pitches can potentially be connected to and

influence the liking and aesthetic responses of listeners regarding a particular musical

stimulus.

Another area in the literature that focuses on statistical properties of music is the

perception of well-formedness of melodies. In this topic, a number of factors have been

found to influence or comply with the expectations of listeners and to make melodies sound

“satisfactory”. One such factor is post-skip reversal, which refers to the observation that a

melody tends to change in pitch direction after a big interval occurs. Some proposed reasons

for this phenomenon are the psychological need for “filling gaps” (Meyer, 1973; Narmour

1992), and more simply the existence of melodic range constraints. Such constraints are, for

example, the possible range of pitches that the guitar can produce due to its length, or the

range that the human voice can reach which is limited by the physiology of the vocal cords.

This explanation was tested by Von Hippel & Huron (2000) by conducting statistical analysis

of a large music dataset. They found that randomly ordered notes still show the effect of

post-skip reversal given such range constraints. Other principles include a tendency for

small intervals, declination of pitch when melodic intervals are small and rise when they are

big, and the continuation of the direction of small intervals. Their role in expectations, either

through statistical regularities (Pierce & Wiggins, 2004) or psychological properties, gives

rise to the perception of well formedness in melodies that comply to them, and changes in

these properties influence the melodies’ induced aesthetic experience, as argued by Meyer

and Narmour’s work and confirmed in the aforementioned empirical studies.

By combining the idea that listeners could be sensitive to pitch distributions and form

schematic expectations based on them (Temperley & Marvin, 2008), and evidence that
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statistical regularities interact with expectations and ease of processing of melodies

(Schellenberg et. al, 2002), we can raise the question of how these two kinds of properties

could be related. In past studies, researchers have used Zipf’s 1/f distribution for note

pitches and duration in order to generate melodies, as an attempt to understand the

listeners’ preferences. In Zipf’s 1/f function, the second most frequent observation occurs

half as often as the first, the third one occurs at 1/3 frequency, and the nth at 1/n. These

experiments on note series that are shaped according to Zipf’s distribution showed that

listeners had a preference for series that follow a distribution at 1/f, as opposed to 1/f0 and

1/f2 (Voss & Clarke, 1978). Further, 1/f power law is documented to apply in harmony (Wu

et. al, 2015), rhythm (Levitin, Chordia & Menon, 2012) and has been used to develop

pleasantness metrics (Manaris et. al, 2003).

In view of these studies we asked: Could a deliberate fine-tuning of the parameters of

pitch distributions improve ratings of liking in melodies? Do specific pitch distributions sound

better than others? Also, how do listeners link liking with other parameters such as

complexity and interestingness, and what is the role of a musical background in how

individuals perceive pitch distributions? Our study can be seen as a continuation of the

research direction that we presented, as it tests the distributional properties of melodies as

well, by generating and comparing melodies that comply with different statistical

distributions. Namely, our stimuli consisted of melodies that followed the uniform distribution,

and 3 other distributions of progressively more skewed shapes. As we are focusing on

distributions in the sense of common probability density functions, the rationale for using

uniform is that it is the only such common distribution that can be implemented in a range of

12 discrete data points and can provide meaningful deviation of values, due to its property of

giving all values the same probability of occurrence. The skewed shape distributions only

differ from the uniform in their mean values and, as such, are the best fit to enable direct

comparisons between uniform and alternative stimuli.

The melodies of the study use a number of different contours, in order to control for

the possible influence of melodic shapes in the results. This is a design aspect of the study
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that allows us to avoid a scenario where using only one shape for the melodies would

influence the results according to how the chosen shape would interact with the rest of the

variables. More broadly, the ability of perceiving contour is acquired in early childhood, and it

is an important factor in the experience of musicality (Trehub, Bull & Thorpe, 1984; Patel,

2010; Trehub, Becker & Iain Morley, 2015). In the literature of music cognition and

ethnomusicology, researchers have observed that it is possible to group melodic contours

that are frequently used in compositions into archetypes (Seeger, 1960; Meyer, 1973;

Adams, 1976; Hood, 1982). For the stimuli of this study the archetypes that were used are

gap fill (post-skip reversal), linear ascending, linear descending, arpeggio (constant up and

down motions), and random shapes.

The participants of the study had to listen to these melodies, and rate them in the

dimensions of liking, perceived complexity and interestingness. The two extra variables of

complexity and interestingness are relevant for their potential use of revealing information

about the underlying reasoning behind liking ratings. In past music research, it has been

found that interestingness may be positively correlated with pleasantness and positively

correlated with complexity when pleasantness is partialled out (Russell, 1982). Since further

research has shown a high correlation between pleasantness and liking (Ritossa & Rickard,

2004), the variables of complexity and interestingness are good candidates for showing

potential association with liking ratings.

We asked potential participants to take part in our study in order to help us with the

overall aim of it, which is the development of a better understanding of how quantitative

properties of melodies can influence people's perception of these melodies. The main

hypothesis under exploration is concerned with the idea of how a uniform distribution - based

generation of melodies could influence liking responses by participants. What we expected

to find is that the mean liking ratings of uniform melodies would be higher than those of

progressively more skewed melodies. The task of the participants involved listening to

melodies through questionnaires, and rating them according to three Likert scales on how

much they like each melody, how complex and how interesting the melody is (a sample of
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the questionnaire is presented in Appendix). We informed them that the results of the study

could help in the formation of theory about statistical regularities and their effect on the

appreciation of melodies. The study was approved by the ethics committee of the

Department of Music.

2.2 Method

2.2.1 Generation of the stimuli

Regarding the generation procedure of the stimuli used in the study, which are the melodies

of varying pitch distributions, we present and explain pseudocode in order to illustrate the

key points of the algorithm. We used 16 melodies, which consisted of 4 distributions

(uniform, and 3 progressively more skewed distributions) x 4 shapes (gap-fill, linear,

arpeggio, random). The actual programming was done in Python 3 and the integrated

development environment (IDE) that was used is Spyder (Raybaut, 2009). The generation is

split in two scripts: The first one contains the functions that do the generation and contour

shaping, and the second one is used to export the data to a MIDI file. For ease of

programming an initial script was also written that named the MIDI numbers that correspond

to notes, as the note names. Next, scales were created through exclusions of off-scale

notes, and subsequent mapping of the scales to cover the whole MIDI note range. The

remainder of this section explains the melody generation process for the stimuli of the study.

In Box 1 we show a pseudocode version of the Generate function that was used in

the creation of the stimuli. We present the case of uniformly distributed pitches, while the

remaining types of melodies use the same algorithm, just with a progressively more

off-centre target mean than the UniformMean. The LowestNote and HighestNote are

variables that take as input the lowest and the highest note that we want our melody to have,

in terms of pitch. By keeping these constant for all melodies, we make them all comparable
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for the experiment as we maintain a constant pitch range. The Scale variable is a list that

contains all banned notes, so in other words, it denotes the scale in which the notes are

generated from. Keeping the scale constant for all melodies ensures that this aspect is

controlled as well. NotesList is the list of final / approved notes of the melody (which initially

always contains two notes, i.e. LowestNote and HighestNote). Similarly, the

CandidateNotesList is the list of notes that are candidates for inclusion in the NotesList, and

it gets updated with every iteration. The LoopCounter variable inputs a note in NotesList if

after 20 repetitions, an error reducing note has still not been found in an iteration and the

necessary total number of notes has not been reached. This is done in order to avoid an

infinite loop, which can happen because sometimes, the event of getting the same mean as

the uniform one with a very small number of notes can occur. In such an occasion there can

be no optimisation, making the algorithm stuck and unable to fill the remaining slots and

reach the number of notes that are required. The number of repetitions (20) was chosen

through experimentation, to give enough tries without making the generation too slow.

FUNCTION Generate

INPUT: LowestNote, HighestNote, Scale

OUTPUT: NotesList

STEPS:
1. Initialise the following variables:

UniformMean <- MEAN([LowestNote, HighestNote])

NotesList <- [LowestNote, HighestNote]

CandidateNotesList <- [LowestNote, HighestNote]

LoopCounter <- 0

2. Set CandidateNote as a random note between LowestNote and HighestNote.

3. If CandidateNote is one of the off-scale notes, generate a new CandidateNote. Else add

it to the CandidateNotesList.

4. Measure the difference between the mean of the CandidateNotesList list and the
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UniformMean.

5. If CandidateNote reduces the difference, add it in the NotesList and go to step 7. Else

go to step 6.

6. If LoopCounter < 20, then remove CandidateNote from CandidateNotesList and repeat

from step 2 and add 1 to the LoopCounter. Else add CandidateNote in the NotesList.

7. If the mean note of the NotesList is equal to the UniformMean and the NotesList length

is greater than 3 or equal to 8, continue to step 8. Else repeat from step 2.

8. Return NotesList

Box 1: Pseudocode of the generation process of uniform melodies.

After the generation process, the Generate function returns as output the final list of notes.

This list can now be shaped in various contours in order to fit in the melodic archetypes that

will be used in the study. As an example, the gap fill contour function works as follows: It

takes as input the output of the generate function (NotesList). It then finds the lowest and

highest notes, putting the lowest first and the highest second. Finally, it sorts the remaining

notes in a descending fashion from note #3 to the end of the melody. This explanation is

further documented through the pseudocode presented in Box 2.

FUNCTION Gap fill

INPUT: NotesList

OUTPUT: NotesList

STEPS:

1. Initialise the following variables:

MinNote <- MIN(NotesList)

MaxNote <- MAX(NotesList)

MinPosition <- NotesList.INDEX(MinNote)
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MaxPosition <- NotesList.INDEX(MaxNote)

2. Switch the position of MinNote (note with the lowest pitch), with the note at position 0 of

NotesList.

3. Switch the position of MaxNote (note with the highest pitch), with the note at position 1

of NotesList.

4. Sort the notes of NotesList at positions 2 to -1 in descending order.

5. Return NotesList

Box 2: Pseudocode describing the contour shaping procedure for the gap fill shape.

The melody is then exported to MIDI through another script, where the parameters of note

durations, tempo, note velocities and file name are being set. For the design of the stimuli

we used durations of quarter notes, a moderate tempo at 120 BPM and no dynamics in note

velocities, by keeping a constant maximum MIDI value of 127. We then fed the MIDI file into

the Kontakt VST plugin by Native Instruments, and used the “Alicia’s Keys” virtual piano

library. The rendering of the final audio files was done through the Cockos’ Reaper digital

audio workstation. We extracted them to mp3 format in order to keep low file sizes and

embedded them in the questionnaire.

2.2.2 Statistical properties of generated melodies

Statistics of the generation algorithms

In order to get insights on the statistical properties of the stimuli, we conducted an analysis

on a dataset of melodies generated by the algorithms that were developed for the study. For

this reason, the analysis shares similarities to a simulation process, and it aimed to show

how the algorithm outputs stimuli that are proper for the objectives of the study. The dataset

consisted of 30 melodies generated under the uniformity rule, and 90 melodies generated by

using progressively more skewed distributions in two steps. The 60 melodies of the most

skewed distribution were split into 30 positively and 30 negatively skewed melodies. The
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melodies had their lowest and highest notes fixed and equal, in order to render comparisons

regarding the behaviour of their means possible.

Regarding the distributional properties of the mean pitches of the stimuli, by

constituting the “average pitch” of each melody they are values of continuous nature, rather

than discrete (they are not MIDI pitches, but an average value of multiple MIDI pitches). In

Figure 2 it is shown that the means of the melodies that were generated by the uniformity

algorithm are at the 66 MIDI pitch which would correspond to the pitch F#4 (60 = C4, 72 =

C5). What is important here is the variation of the means of the melodies. The uniform

melodies show an absence of variation of their means, which are always at 66. The figure

shows that melodies had means ranging from 66, to 66.80. This displays the effect of the

algorithm that replaces generated notes until the melody has the particular ideal mean. At

this point it is important to ask, what difference does the “uniform generation” have to that of

a “random generation”? After all, a generator of random numbers works via a uniform

distribution, since every number has an equal probability of occurrence. We emphasise that

with the term “uniform generation” of “uniform melodies” in this project we refer to a

procedure that forces the output data to always have a mean value that is equal to the

theoretical mean value of the discrete uniform distribution, as shown in (1).

(1)
𝑙𝑜𝑤𝑒𝑠𝑡 𝑝𝑖𝑡𝑐ℎ + ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑖𝑡𝑐ℎ

2

This is different from implementing a generation procedure that uses the uniform distribution

without a forced mean, as this would simply constitute a random generation process.

Similarly, the skewed generation uses a forced mean that is at distance of discrete values

from the theoretical uniform mean. For example, in the case of step 1 skewed generator the

mean is described by (2).
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(2)
𝑙𝑜𝑤𝑒𝑠𝑡 𝑝𝑖𝑡𝑐ℎ + ℎ𝑖𝑔ℎ𝑒𝑠𝑡 𝑝𝑖𝑡𝑐ℎ

2 ± 1

The step 1 skewed generator (Figure 3) shows a slight peak of means near the

centre of the range, which is what we should expect because of the Law of Large Numbers

(Fischer, 2011). Finally, the step 2 skewed distribution generator outputs two peaks of means

that are above and below the value of the uniform means (Figure 4). This is the effect of the

generation algorithm which ensures the avoidance of a skewed melody having a mean near

the ideal uniform one. It is interesting to note that the mean of the means of the skewed

melodies is almost equal to the one of the uniform and random melodies, even though there

is zero data in that range. If we wanted to find the central tendency of such a distribution we

should consider using the median, instead of the mean. Generally, all of the generation

procedures have the same mean of means, which is expected due to the range constraints

that we set in order to have an even comparison. In conclusion, the shapes of the

distributions of the means showed what we would expect from the algorithms, and the

figures confirmed that the algorithms are working properly.
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Figures 2-4: Frequencies of means of each generator rule.

For a further representation of the distributional properties of the melodies, in Figures 5-8 we

show the distribution of pitches for each generation rule, summing all melodies generated by

each rule. In all cases, the possible pitches were chosen to be from C4 to C5 in the C Major

Scale, in order to acquire melodies that could be compared in the exact same pitch range.

The high frequency of extreme pitches in the case of highly skewed, step 2 distribution, is

the direct result of the algorithm trying to create melodies that have a mean that is not in the

centre of the range. In the case of step 1 skewed melodies, there is a more even distribution

of pitches across the specified range.
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Figures 5-8: Distribution of pitches of each generation rule.
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Iteration statistics

An important element of the algorithms was the ability to choose how many notes the

generated melodies would have. In a 4/4 rhythmic context, which is the most familiar one in

western music and thus, chosen for the experiment, having 8 notes of quarter duration

creates 2-bar melodies. This allows for a bigger variation between the stimuli compared to

single bar, 4-note melodies. Also, it maintains a balance of length without sacrificing

listenability, which could happen if we were to make them longer than that; for symmetry we

would need to have 4 bars, which, at our chosen 120 beats per minute (BPM), have a

duration of 8 seconds.

In order to observe the degree of difficulty in the formation of melodies that follow

each generation rule we analysed a dataset of 180 melodies. This dataset consisted of 30

melodies for each rule-based generation procedure (uniform, skewed with a distance of

means from the uniform mean equal to 2 notes, and skewed with a distance of means from

the uniform mean equal to 3 notes) and for each tonal mode (major and minor). Below we

present the histograms of each generation rule and each tonal mode, regarding the number

of iterations which were needed for the algorithm to create a melody that follows each rule.
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Figures 9-14: Number of iterations required for each generation rule in order to

reach a pre-specified mean target.

Through the histograms and in all cases, we can note that the more a generator tries to

approach the uniform mean, the more iterations it requires in order to produce a valid

melody. This observation indicates that while the uniform mean is at the centre of the

melodic range, it does not get realised naturally (e.g. as it is argued by Von Hippel & Huron,

2000 to be the case for the post skip reversal rule).

Also, in the case of uniform minor melodies we found a mean number of required

iterations at 143.83. This is a large outlier compared to the rest of generators, and it was

caused by the fact that the minor mode uses notes that frequently produce means at

precisely 1 semitone distance from the uniform mean. When this happens, the generator can

not find any combination of notes that could make the melody arrive to the uniform mean,

which means that it has to restart the procedure from the beginning, so it can find a melody

(of any length) that matches the desired mean. Therefore, the difficulty of this generator to

produce uniform means explains the difficulty of finding a valid melody of a specific length

(i.e. 8 notes).

Statistics of melodic archetypes

An important aspect of the experiment is the addition of specific contours in the melodies, in

order to test how different shapes interact with the generation rules and their ratings. An

intuitive thought regarding this interaction could be that contours consisting of a bigger

number of required rules for shaping depend less on the generation rules, because they

allow less variation in their shape, making the melodies of their type to sound more similar

regardless of their note distribution. For a methodologically valid approach, a theoretical

argument is not enough, which means that we had to develop a quantitative measure to

express this difference of contours in their degrees of freedom.
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For this reason we used a procedure of pairwise comparison for all contours and all

generation rules, to measure the Mean Absolute Difference (MAD) for each pair. The

generation was split into 4 progressively more skewed distributions, which is the

segmentation that we used in the experimentation. Specifically, the procedure was as

follows:

1. The melodies of the dataset were all restructured according to the archetypal shape

of gap fill. Then, a duplicate of the dataset was left unchanged, so it maintained the

random contour structure.

2. For the gap fill archetype, we did a note to note comparison between the melodies of

all generation algorithms. For example, we compared the first note of the first melody

in the uniform subset, to the first note of the first melody in the step 1 skewed

(onwards: “skewed 1”) subset. Then, the 2nd note for these melodies. The

comparison yields the absolute difference of the pitch values of the notes. After the

first pair of melodies had been compared, we calculated the sum of absolute pitch

differences for the specific pair and divided it by the number of melodies. We then

proceeded to melody #2 for the uniform - skewed 1 comparison. This procedure was

done repeatedly for every contour and every archetype in the same manner. The

procedure required 4 (generation rules) x 5 (contours) x 8 (notes per melody) x 30

(number of melodies) = 4800 comparisons and was implemented in Python.

3. The procedure essentially created variables that contained the absolute pitch

differences for each melody pair, for each contour. As an example, the variable “gap

fill uniform - skewed 1 difference” contains the absolute differences for each pair of

melodies between the uniform and skewed 1 generation algorithms. Similarly, we

created the variables “gap fill uniform - skewed 2 difference”, “arpeggio skewed 1 -

skewed 3 difference”, and so on.
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4. We calculated the sum of each of these variables. Then, we divided the sum by the

number of melody comparisons (N) that each variable contained, in order to derive

the Mean Absolute Difference (MAD) of each variable.

The results are presented in Table 1. It is worth reminding that the MAD in our case is

essentially a measure of freedom, because the more two melodies vary between different

rules while maintaining the same contour, the more this contour allows variance in its shape,

making the melody less dependent on the contour. As Table 2 shows, gap fill allows the least

freedom in shape, followed by arpeggio and by double linear contours. As expected, the

random contour shows the biggest MAD allowing the least influence of melodic shape on the

properties of the melodies.

Table 1: Mean Absolute Differences (MAD) for pairwise pitch comparisons of contour

archetypes.

Rule 1 Rule 2 Contour MAD

Uniform Skewed 1 Random 40.70

Uniform Skewed 2 Random 40.47

Uniform Skewed 3 Random 41.13

Skewed 1 Skewed 2 Random 42.30

Skewed 1 Skewed 3 Random 44.57

Skewed 2 Skewed 3 Random 43.47

Skewed 1 Skewed 2 Random 42.30

Skewed 1 Skewed 3 Random 44.57

Skewed 2 Skewed 3 Random 43.47

Uniform Skewed 1 Double Linear
Ascending

20.70
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Uniform Skewed 2 Double Linear
Ascending

22.60

Uniform Skewed 3 Double Linear
Ascending

26.53

Skewed 1 Skewed 2 Double Linear
Ascending

21.43

Skewed 1 Skewed 3 Double Linear
Ascending

26.57

Skewed 2 Skewed 3 Double Linear
Ascending

28.73

Uniform Skewed 1 Double Linear
Descending

20.70

Uniform Skewed 2 Double Linear
Descending

22.60

Uniform Skewed 3 Double Linear
Descending

26.53

Skewed 1 Skewed 2 Double Linear
Descending

21.43

Skewed 1 Skewed 3 Double Linear
Descending

26.57

Skewed 2 Skewed 3 Double Linear
Descending

28.73

Uniform Skewed 1 Gap Fill 12.63

Uniform Skewed 2 Gap Fill 14.87

Uniform Skewed 3 Gap Fill 22.00

Skewed 1 Skewed 2 Gap Fill 14.50

Skewed 1 Skewed 3 Gap Fill 22.97

Skewed 2 Skewed 3 Gap Fill 23.53

Uniform Skewed 1 Arpeggio 12.63

Uniform Skewed 2 Arpeggio 15.00

Uniform Skewed 3 Arpeggio 26.07

Skewed 1 Skewed 2 Arpeggio 14.63
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Skewed 1 Skewed 3 Arpeggio 26.23

Skewed 2 Skewed 3 Arpeggio 26.67

Table 2: Sums of Mean Absolute Differences per contour archetype.

Random 252.63

Double Linear Ascending 146.57

Double Linear Descending 146.57

Gap Fill 110.5

Arpeggio 121.23

In summary, the data generation procedures showed that the MIDI generation algorithms

operate as expected, by creating data of mean values that are aligned with the dispositions

which must be present in the stimuli. Also, we found that different melodic shapes lead to

varying freedom of note placements. This has the possible implication of a direct impact of

the pitch shapes on the strength of the effect on ratings caused by the generation

algorithms.

2.2.3 Participants

Our sample consisted of people that we approached online, through the email system of

University of Sheffield, and social media. Regarding the demographic characteristics of our

sample, we had 15 female and 13 male participants, split into 16 participants between the

ages of 18-24, 10 between 25-44 and 2 at or above 45 years. 9 of our respondents stated

that they did not have knowledge of music, while the rest had some experience either by

being self taught musicians (7) or having formal music education (12).

2.2.4 Design

Having examined the properties of the stimuli and the operation of the generation algorithms,

we present the study design that uses the aforementioned materials with the purpose of

37



understanding the influence of pitch distributions in liking ratings of melodies. In summary,

the ratings could be described approximately through an equation of the following form:

Y = a + b X1
X2 + c X3 + d X4 (3)

Where Y is the rating of liking, X1 is the generation rule used and X2 is the shape of the

melody, which could be influencing the effect of X1. Further, X3 is the perceived complexity of

the melody and X4 is the perceived interestingness.

The independent variables of the study are the degree to which the pitch distribution

conforms to uniform (four levels: uniform, skewed #1, skewed #2, skewed #3) and the

contour archetype (gap fill, linear ascending, linear descending, arpeggio, random sequence

- no fixed contour style). Dependent variables are the ratings of liking, complexity and

interestingness of the melodies. The ratings used a Likert scale with 0 as the lowest point

and 10 as the highest point. Likert was preferred to other scales for its ease of design, ease

of understanding and completion by subjects, and due to its wide use in unsupervised

settings (Stathakopoulos, 2005). Lastly, the control variables consist of the musical

background of participants (no music education, high school, graduate, postgraduate, self

taught), their age group (18-24, 25-64, 65+) and gender (male, female).

Regarding the statistical tests to be used for the study, the following design was

followed: An initial view of the data was presented through descriptive statistics, with the use

of frequencies and histogram views of the variables, in order to acquire knowledge on the

distributional properties of the data. The Lilliefors corrected Kolmogorov - Smirnov and

Shapiro Wilk tests were then used in order to examine average ratings data for normality,

and 2 sample Kolmogorov - Smirnov tests were performed in this first section of the analysis

in order to examine the influence of demographic factors in melody ratings. Additionally, the

associations between average melody ratings were tested with pairwise comparisons using

the Spearman’s Rho test. Finally, the analysis of the melody generation rules was conducted
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with signed ranked tests that reveal statistically significant differences in distributions of

related samples.

2.2.5 Procedure

The study was run by using an online interactive questionnaire that is able to reproduce

sound files, and show images. We presented various music clips of approximately 8 seconds

of duration that contained a melody played with a piano timbre. A part of the stimuli was

generated by using the uniform distribution (optimisation of the mean note value), and equal

parts of them used progressively more distant means from the uniform mean. As noted in

2.2.2, 16 melodies were used, to achieve having 1 for every shape archetype and level of

skewness. The order of the melodies in the questionnaires was random, and further, 5

different questionnaires were created to be used for each session in order to avoid possible

order bias. Further, we used 2 additional test melodies at the start of each questionnaire in

order to make this kind of stimuli sound more familiar, in order to prevent a bias of either

exaggerated bad or positive ratings towards the melodies that are presented first. For each

melody, the responders had to give these ratings after listening to it:

● Rating of the melody regarding how much the participant liked it. This is the

measurement of aesthetic appreciation.

● Rating of the melody in terms of the perceived complexity of it.

● Rating of the melody in terms of how interesting it sounded.

At the end of the questionnaire, the participants were asked if they had music education

before, their age group and their gender.
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2.3 Results

The results section is split into four parts. At first, we present the descriptive statistics of the

variables of the experiment and discuss the possibilities and limitations of the acquired data

when it comes to the degree to which they can be used to properly address the questions of

the study. We proceed with addressing the study’s aims that are related to the effect of

complexity, interestingness and demographic elements on liking ratings. Even though this

part of the analysis was complementary to the main hypothesis testing of the generation

rules, we addressed it first because it considered our dataset on a more general level. After

that, we focus on the main research question of what are the differences in liking ratings

between the uniform rule in comparison to the others. We describe the procedure of

re-coding the raw liking data to a point-system format that is suitable for the nature of the

data, and proceed with showing the results of the statistical tests that we used to address

these differences.

2.3.1 Descriptive statistics

Our sample consists of people from varying age groups, music education levels, musical

preferences and genders, and it has a size of N = 28. Initially it was 30, but the data of two

responders was excluded from the analysis because of random completion of the

questionnaire after a specific point. From the first excluded participant, there was more than

one melodic shape that had precisely equal ratings across all types of uniformity levels, and

by the second excluded participant, a variability of less than 3 points for all questions along

with a lack of ratings above 3/10 in any question.

The sample of our study, as described in 2.2.1, contains a sizable demographic

variability, which can benefit the study in the sense of discovering factors that influence the

main variables of interest, which are the melody ratings. For conducting the analysis, given

the relatively small sample size, we need to have an approximately equal split of binary
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demographic pairs that would allow the appearance of statistical significance. Therefore, for

the requirements of the study we aimed for a split of about 14 participants in each binary

variable. In the 4 variables of the dataset (age group, music education, preferred genre and

gender) we can see that there was generally an unequal split between groups, except for the

case of gender where we had 15 female and 13 male participants. However, by examining

the data we found possible recodings that were implemented, in order to aid the inference

potential of our statistical analysis. For example, in the age group variable we have 16

participants in the 18-24 group, 10 in 25-44 and just 2 in 45+. From this data we created a

new variable which differentiated between young adults (18-24) and adults (25+), and that it

has a split of 16 - 12. Similarly, with regards to music education, there were 9 responders

who stated that they do not have any knowledge of music. The other 19 had a form of music

education, either self taught (7) or formal (12), thus forming this binary distinction of

musicians and non-musicians. Finally, in the case of preferred music genres we had a big

variability and a lack of usable recoding of the categories, since no combination could

provide a meaningful separation of the dataset. Having created these new categories, we

could proceed with examining the descriptive statistics of our main points of interest: the

variables of liking, complexity and interestingness.

For these ratings we started the analysis by looking at their distributional properties

on a broad level, and specifically at the fitness of their overall average for each participant to

the normal distribution. To calculate those, we created new variables that consisted of the

average values of each variable, for each participant. For example, liking averages has an N

= 28 and every data point is the average liking rating of a participant across all the melodies

of the questionnaire. The histograms of liking, complexity and interestingness are shown in

Figures 15-17.
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Figures 15-17: Distributions of average ratings of liking, complexity and interestingness for

each participant.

By looking at the figures above we get a sense of the distributional properties of this data.

They all have a similar mean and variance. While the number of melodies is sufficient for

data analysis, it can quickly get smaller when we analyse the ratings in subgroups of age

groups, genders and music education. As a result, we need to test the data for normality so

we can decide what kinds of statistical tests we will use, that is either parametric or non

parametric tests. We ran the Lilliefors Corrected Kolmogorov Smirnov and the Shapiro Wilk

normality tests, and the results are presented in Table 3.

Table 3: Tests of normality for the distributions of liking, complexity and interestingness.

43



Kolmogorov - Smirnov Shapiro - Wilk

Statistic df Sig. Statistic df Sig.

Liking Average .156 28 .078 .934 28 .077

Complexity
Average

.103 28 .200 .974 28 .690

Interestingness
Average

.187 28 .013 .898 28 .010

As we can see from the Significance rows, we could not reject the null hypothesis for the

variables liking average and complexity average, at a 5% significance level. The H0

hypothesis for both of the tests is that the distribution is normal, which meant that in our

case, we could not reject the hypothesis that the variables liking average and complexity

average follow the normal distribution. Regarding interestingness average ratings, both of

the normality tests rejected the null hypothesis at a 5% level. Because at least one of our

variables did not follow the normal distribution, we did not use a parametric approach of

analysis. Importantly, since we had to analyse subgroups of this relatively small sample, non

parametric tests would be strongly recommended in the subsequent analyses of this data.

2.3.2 Non-parametric tests selection for the analyses of the average liking,

complexity and interestingness variables

Regarding data characteristics, since both the ratings and the demographic questions are in

discrete scales, the nature of the data is not continuous. Also, not all ratings follow a

distribution that could approximate normal, as the tests revealed. These observations are

sufficient to minimise the amount of possible tests that we can run in the analysis.

Specifically, for the reasons mentioned above we cannot execute a Multivariate Analysis of

Variance (MANOVA) test that could be a starting point. However, a test of this type would

only be helpful as an initial look into the possibility of possible significance in the mean

differences of the data. Since we wanted to look at and compare various demographic
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subgroups as a part of the exploratory analysis of the dataset, we chose to use a series of

2-samples means comparison type of test, like the t test. Other than the comparisons of

these pairs, we also performed a correlation analysis between the average rating variables

of liking, complexity and interestingness.

Having a dataset that contains non-normal distributions, especially given the small

number of data points, called for a non parametric approach. In order to work with the

statistical tests of this kind, we examined our dataset, and to what degree it conforms to the

assumptions of the non parametric equivalents of the tests that are relevant to our aims.

Specifically, we had to check the test assumptions of the independent samples Mann -

Whitney U test as the most common alternative to the independent samples t test, and of a

correlation test, such as Spearman’s Rho.

Analysis of the effect of demographic characteristics and correlations of average

ratings

When it comes to the Mann - Whitney U test, since we were interested in comparing the

means in pairs of two independent samples (e.g. liking average comparison between

younger and older participants), we wanted to ensure that the distributions of the compared

variables are of the same shape. This would allow us to interpret the outcome of the test as

a result that considers the difference between the means of the compared variables.

However, an analysis of the histograms of our variables as split by age, musical expertise

and gender, did not ensure such similarity of shapes. Under this scenario, we chose an

alternative route to the analysis on possible demographic subgroup variations of the means

of average ratings. We tested the differences between the empirical distributions of the

compared pairs, and thus, tested the probability of the compared subgroups having data that

is drawn from the same probability distribution. This, in essence, gave us the information of

whether or not the two compared demographic subgroups differ in average ratings of liking,

complexity and interestingness. The implementation of the comparisons between empirical

distributions was done with the 2 samples Kolmogorov - Smirnov test. We compared the
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distributions of liking average, complexity average and interestingness average ratings

between musicians and non-musicians, females and males, and participants that are

younger than 24 or older.

Tables 4-6: Comparisons of empirical distributions between demographic groups.

Two-Sample Kolmogorov-Smirnov Test Statistics Between Females And Males

Liking
Average

Complexity
Average

Interestingness
Average

Most Extreme
Differences

Absolute .323 .303 .359

Positive .046 .200 .077

Negative -.323 -.303 -.359

Kolmogorov-Smirnov Z .852 .798 .947

Asymp. Sig. (2-tailed) .461 .547 .331

Two-Sample Kolmogorov-Smirnov Test Statistics Between Musicians And
Non-musicians

Liking
Average

Complexity
Average

Interestingness
Average

Most Extreme
Differences

Absolute .246 .211 .181

Positive .246 .140 .181

Negative -.170 -.211 -.170

Kolmogorov-Smirnov Z .607 .520 .448

Asymp. Sig. (2-tailed) .855 .949 .988

Two-Sample Kolmogorov-Smirnov Test Statistics Between Under And Over 24 Years

Liking
Average

Complexity
Average

Interestingness
Average

Most Extreme
Differences

Absolute .417 .229 .250

Positive .417 .229 .104
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Negative -.250 -.125 -.250

Kolmogorov-Smirnov Z 1.091 .600 .655

Asymp. Sig. (2-tailed) .185 .864 .785

The Two - Sample Kolmogorov - Smirnov Test comparisons of the scale average variables

work by calculating the supremum value of the differences between the two empirical

distribution functions. The Tables 4-6 presented above show that there were no statistically

significant differences between different age groups, genders or musical expertise level.

These results held true for the average ratings of all variables (liking, complexity and

interestingness).

Correlation statistics of average liking, complexity and interestingness values

So far we have presented our analysis on the control variables and showed that we could

not reject the hypothesis that there was no significant difference between the empirical

cumulative distributions of the sub samples. These results mean that we did not find

evidence to support that age, gender or musical expertise influence the values of the

average liking, complexity and interestingness scores. Addressing factors that may be

affecting liking ratings, the next step is to approach the related research question: What is

the role of complexity and interestingness considering liking ratings? We looked at the

correlation between the three variables, with the aforementioned Spearman’s Rho test.

Regarding Spearman’s Rho test assumptions, we needed to examine whether the

pairs of variables have a monotonic relationship, in order to be able to perform the test. This

relationship can be verified through a matrix of scatter plots, as shown in Figure 18.
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Figure 18: Matrix of scatterplots between scale average pairs.

Considering that the scale averages dataset conformed to the prerequisites of our chosen

correlation test, we could now address the exploration of how complexity and interestingness

relate to liking. The Spearman's Rho tests results are shown below in Table 7.

Table 7: Correlation analysis for liking, complexity and interestingness average

ratings. Values with * indicate 1% significance level.

Spearman’s Rho Correlations (N=28)

Liking Average Interestingness
Average

Complexity
Average

Liking Average Correlation
Coefficient

1 .789 .540

Sig. (2-tailed) . .000* .003*
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Interestingness
Average

Correlation
Coefficient

.789 1 .673

Sig. (2-tailed) .000* . .000*

Complexity
Average

Correlation
Coefficient

.540 .673 1

Sig. (2-tailed) .003* .000* .

Table 7 contains pairs of comparisons between the average ratings for each participant, that

show the correlation coefficient of each pair, along with the statistical significance of the

coefficient. Liking average ratings showed a high correlation with interestingness average

(.789) and a moderate correlation with complexity average (.540). The third pair, between

interestingness and complexity average values shows a moderate to high correlation (.673).

The results of all comparisons were statistically significant at a 1% level. We could initially

conclude that participants tied how interesting the melodies sounded to them to how much

they liked them. Furthermore, we saw a degree of connection between all values, as

participants did not exhibit big variability in the three ratings within each melody item.

2.3.3 Analysis of melodic preferences between pitch distributions

In the next section of this chapter, the central focus is to present the analysis of preferences

between the generation rules that produced melodies of different pitch distributions, which

was the main subject of the study. The dataset of melodic preferences between these rules

passed through transformations, since we needed to rearrange the raw ratings of each

participant, in a way that would present each participant as a single data point. For this data

point, we would have each generation rule in the form of a variable, so we could compare

these rules through related - samples statistical testing procedures. In order to reframe the

dataset in this way, a ranking procedure was developed that compared the generation rules

according to the preferences of each participant. This procedure consisted of looking at each

melodic shape group rated by the participant, and distributing points to the generation rules

according to their relative score. For example, suppose that regarding the arpeggio shaped
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melodies the skewed #1 distribution had the highest liking ratings, followed by the uniform,

and skewed #3 and #2 had the 3rd and 4th best liking ratings. In that case, for the particular

shape skewed #1 generator would get 3 points, uniform would get 2 points, and skewed #3

would get 1 point. This process was repeated for all shapes, and the summary of points for

each generation rule resulted in the total points of the rule for the particular participant.

This dataset could now allow the comparison of the generation rules by also having

every participant act as a data point. The way to perform this analysis is to use multiple

related samples comparisons and compare all possible pairs of rules, for every participant.

Similarly to the steps taken for the demographic analysis, we also had to make sure that this

data is in accordance with the assumptions of the statistical tests. We used Wilcoxon Signed

Rank, as the most usual non parametric test for related samples testing. Therefore, we

needed to examine whether the variables follow probability distributions that are symmetrical

in nature. In particular, we were interested in the whole sample, as well as the subsamples of

musicians and non-musicians which could provide a meaningful comparison due to possible

differences in melodic perception. We tested the symmetry of distributions through boxplots,

as shown in Figures 19-20.
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Figure 19: Boxplots of all generation rules, for the whole sample of the study.

Figure 20: Boxplots of all generation rules, for the distributions of non-musicians and

musicians subsamples.
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The horizontal axis of Figure 19 represents the generation rules, and the vertical axis shows

the value of each variable represented by the boxplots. The questionnaire contained 5

melodic shapes, and for every shape, the most highly rated generation rule gained 3 points.

Therefore, the maximum possible value for a generation rule was 15. The theoretical

minimum was 0 (the rule should always be the least liked in all melodic shape scenarios). In

Figure 20, the horizontal axis represents the two subsamples of non-musicians and

musicians, while the colour of each boxplot stands for a corresponding generation rule. The

values of generation rule variables are shown on the vertical axis, like in Figure 19.

While looking for symmetry through boxplots, we must observe a median that is in

the middle of quartiles 1 and 3, and a plot of approximately equal lengths of whiskers. We

found that in Figure 19 there is no symmetry in the distributions of Skewed #1 and Skewed

#3 variables. Also, in the subsamples graphs of music education, there was no symmetrical

distribution in non-musicians. By performing a Wilcoxon Signed Rank test, we would have

difficulty interpreting the results as a difference in means, because of the asymmetrical

shapes of the distributions in comparison. Therefore, we preferred to use the paired samples

Sign test, as an alternative to Wilcoxon Signed Rank, since it does not assume

symmetrically distributed variables. This test was performed for the sample as a whole, but

also ran independently for the subsamples of musicians and non-musicians. The results of

the Sign tests are presented in Tables 8-10.

Tables 8-10: Sign comparisons between liking rating rankings for all combinations of

melody generation rules, separated by samples under consideration.

Paired Samples Sign Test (Full Sample)

Skewed1 -
Uniform

Skewed2 -
Uniform

Skewed3 -
Uniform

Skewed2 -
Skewed1

Skewed2 -
Skewed3

Skewed3 -
Skewed1

Exact Sig.
(2-tailed)

.078 .021 .005 .170 .124 .441
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Paired Samples Sign Test (Non-musicians)

Skewed1 -
Uniform

Skewed2 -
Uniform

Skewed3 -
Uniform

Skewed2 -
Skewed1

Skewed2 -
Skewed3

Skewed3 -
Skewed1

Exact Sig.
(2-tailed)

.727 1 .508 .508 .508 .180

Paired Samples Sign Test (Musicians)

Skewed1 -
Uniform

Skewed2 -
Uniform

Skewed3 -
Uniform

Skewed2 -
Skewed1

Skewed2 -
Skewed3

Skewed3 -
Skewed1

Exact Sig.
(2-tailed)

.008 .004 .004 .332 .238 1

The significance of the comparisons between melody generation rules considers the degree

to which the differences in liking ratings exist due to chance. In the full sample test, there

was a 5% significant difference between liking ratings of uniform and skewed 2 and 3.

However, when we split the sample into musicians and non-musicians, we found a notable

difference in the significance of the comparisons between the two subsamples. Musicians

showed a 1% statistically significant difference in all comparisons of the uniform melodies

with the skewed ones. On the contrary, there were no significant differences in any

comparison between the generation rules for the non-musicians subsample. This contrast

echoes the results of the boxplot graphs (Figure 20), where uniform liking ratings seemed to

be at higher values than the rest of the rules in the musicians group.

The multiple comparisons that we performed with the Sign tests yielded significant

results for musicians, which seemed to be in accordance with the idea of Uniform

distribution’s effect on melody liking ratings. We further used a multiple testing correction

test, to account for the fact that an increasing number of tests could end up with some falsely

positive results. We used Benjamini - Hochberg, a modern test that uses False Detection

Rate (FDR), which is a statistic that plays the role of p-value in the decision of how

significant the original multiple testing p-values are (Benjamini & Hochberg, 1995). The

results are presented in Table 11.
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Table 11: Multiple testing correction test for the Sign comparisons of generation rules in

musicians.

Benjamini - Hochberg Multiple Testing Correction for the Musicians Subgroup.

Skewed1 -
Uniform

Skewed2 -
Uniform

Skewed3 -
Uniform

Skewed2 -
Skewed1

Skewed2 -
Skewed3

Skewed3 -
Skewed1

False
Discovery
Rate

.012 .012 .016 .286 .286 1

After performing the Benjamini Hochberg test, the differences between uniform and all

skewed rules were retained, at a 5% False Discovery Rate. This outcome provides us with

evidence that our main hypothesis for this study holds true, that is, the mean liking ratings of

uniform melodies appeared to be higher than those of progressively more skewed melodies.

The effect was strongly present in the subsample of musicians, but not in non-musicians.

Finally, it is interesting to note that a part of the musicians (7) was made of self-taught

musicians. While the dataset is not big enough to allow us meaningful statistical analysis, a

simple view on the ratings of self-taught and formally educated musicians through boxplots

(Figures 21-22) reveals that the self-taught subgroup played at least an equal role on the

significance of our findings, compared to the formally educated one.
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Figures 21-22: Liking ratings of the generation rules by self-taught (21), and formally

educated (22) musicians.
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2.4 Discussion

In this chapter we presented a study on the effect of pitch distributions to the aesthetic

appreciation of melodies. Specifically, we tested the idea that uniform pitch distributions

could result in melodies that would be rated as more aesthetically pleasing than melodies

using more skewed distributions. Also, we examined the association of complexity and

interestingness with liking ratings, both in an overall sense and by the use of subsamples of

demographic elements.

Regarding the latter, a strong correlation between the overall ratings of

interestingness and liking was found, as well as a moderate correlation between complexity

and the other two variables. We can conclude that interestingness could be a concept that is

closely associated with liking, and that we would need further examination about how the

notion of complexity is related to liking in melodies. The association between interestingness

and liking is in accordance with scales-based studies about this topic in music (Russell,

1994) and art (Aitken, 1974). Considering the demographic subgroups analysis, we did not

find evidence of statistically significant differences between any of the subsamples in the

average ratings of liking, complexity and interestingness, as separated by age groups,

genders and level of music education. These comparisons were tests on probability

distributions, meaning that we did not find evidence against the assumption that the

subgroups rate the melodies in the same way and that any distributional differences between

the groups may have occurred by chance.

The results of the analysis regarding melodic preferences between generation rules

showed a strong statistically significant difference in liking ratings between melodies of

uniformly distributed pitches, and pitches of progressively more skewed distributions. We call

this positive effect of uniformly distributed pitches on liking ratings as the Uniformity

Principle. Notably, this was true for self taught and formally educated musician participants,

but not for non-musicians, indicating a difference in how the two groups perceive melodic
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information. Overall, we can conclude that this experiment indicates a strong likelihood that

musician participants show preference for the melodies originating from uniformly distributed

pitches, and that interestingness may be a notion that is closely associated with liking.

This outcome can be regarded as a contribution to the literature of aesthetic

preferences quantification, providing an objective rule that supports the generation of

melodies using statistical target values. As such, it can be useful in the creation of

compositional assistance tools for music making. Further, it is an addition to the studies that

support the idea that musician listeners are sensitive to and influenced by the statistical

distributions and properties of pitch. However, we could not confirm a stable link between the

complexity of melodic stimuli with liking, either linearly or as an inverted U type of

relationship. It should also be noted that the study was done through an online

questionnaire, meaning that the participants worked on an unsupervised setting and on

varying listening systems. We can not rule out a possible effect of this fact on the ratings,

and especially on the ratings and results that were non significant.
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3. Study 2: The role of working memory in the aesthetic

appreciation of melodies

3.1 Introduction

As a next step to Study 1, we focused on the notion of complexity in the context of aesthetic

appreciation of melodies, and in what ways we could quantify any possible effects of

complexity as a means to use this idea for the generation of melodic output. This step would

complete our overarching goal of creating a framework of quantified aesthetic properties.

This framework would be used as a basis, in order to create a music generating software

solution for music makers in the form of a Digital Audio Workstation plugin.

When we examine the properties of music in regard to their relation to responses of

aesthetic preference, we can find rich literature on the attribute of complexity. Specifically, it

has been observed that certain levels of it in musical stimuli can be optimal for the aesthetic

experience of listeners (Beauvois, 2007), even though complexity can be perceived

differently among individuals (Eerola et. al, 2006). An important related contribution in

musical aesthetics is that of Berlyne (1974), who examined the relationship between

aesthetic response and what he called “collative properties”, which are elements of the

stimuli such as complexity, novelty and familiarity. Subsequent research has supported

Berlyne’s theory of an “inverted U” relationship between aesthetic preference and complexity

(Gordon & Gridley, 2013; Delplanque et. al, 2019), and has further looked on areas such as

ways of modelling complexity (Marin & Leder, 2013; Eerola, 2016) and its relationship to

variables such as creative potential (positive correlation between potential and preferred

complexity level - Ziv & Keydar, 2009) and rhythmic properties (positive emotional valence

effect of syncopation induced complexity - Keller & Schubert, 2011). Elements of novelty in

music can also be seen as aiding preference in a general sense (Berlyne, 1970) but at the
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same time, multiple exposures to the same stimulus can increase enjoyable-ness according

to the mere exposure effect (Zajonc, 1968).

However, the main points of interest between the effects of novelty and repetition

overlap only on a surface level: The first notion relates to the properties which are in the

compositional structure of a musical piece or the construct of a melody, and the related

literature refers to the importance of complexity levels in the achievement of aesthetic

pleasure. Repetition of an auditory stimulus (e.g. a repeating sound), on the other hand, is

seen as an influencing variable on the level of its experienced musicality (Margulis &

Simchy-Gross, 2016; 2018). In other words, of the degree to which that sound or set of

sounds is perceived as music. Thus repetition, in the sense that it is discussed in this

chapter, is not an influencing variable of a primarily structural nature.

A concept related to complexity is that of working memory, as it is a system of limited

capacity and accountable for the processing of temporary information (Miyake & Shah,

1999). Musical complexity is specifically related to working memory both in terms of capacity

limitations (melodic memory capacity is approximately 7-12 notes - Pembrook, 1987) and of

influence in performance (Silverman, 2012). The working memory system, as modelled by

Baddeley and Hitch (Baddeley and Hitch, 1974; Baddeley, 2003), is composed of a central

executive component that supervises and controls the flow of information between itself and

the subsystem components, the phonological loop and the visuo-spatial sketchpad. The first

one is responsible for storing and manipulating verbal content, while the second element

stores visual information. In relation to music, there is debate on whether the classic

Baddeley model is accurate in depicting the processing of musical information as a

procedure of the phonological loop subsystem, or whether an extra system specialised in

music is required. Studies on the interference effect of language in tone recall, with a sample

of musicians and non-musicians, showed significant differences between interference from

language compared to music for musicians (non-significant for non-musicians), which is an

indication that there exist differences between language related and musical related memory

(Deutsch, 1970; Pechmann & Mohr, 1990; Jones & Macken, 1993; Williamson, Mitchell,
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Hitch, & Baddeley, 2010). Further experiments by Thompson & Yankeelov (2012) on musical

and verbal memory with the use of irrelevant sounds, in order to compare the performances

of musicians (at least seven years of musical training) and non musicians, reveal that the

phonological loop system could be altered to include a temporary storage element for music.

This type of memory has potential for exploration within the framework of aesthetic

preferences, as it is thought to be responsible for constantly updating harmonic expectancies

and to raise activity in Brodmann Area 44, which is implicated in music-syntactic processing,

and ventral premotor cortex (important for the processing of musical structure) brain regions

when irregular chords are perceived (Koelsch, 2006). Similarly, it can be thought of as

responsible for updating note to note expectations within a phrase (Rohrmeier & Koelsch,

2012). Therefore, by being linked to musical expectations and complexity, working memory

and its capacity limits can potentially be a factor of influence on musical aesthetic

preferences.

To the author’s knowledge, this possible connection has not previously been

researched in music cognition literature yet. More broadly in art, Sherman, Grabowecky &

Suzuki (2015) have found that appreciation of visual artworks increases when the visual

complexity level of the stimuli matches the working memory capacity of the subjects. In

music, the impact of working memory on appreciation has only been approached through the

tangent of studies on complexity and aesthetic preferences. However, a combination of

working memory with the aforementioned factors can provide a base on which the influence

of capacity-complexity relations on ratings can be analysed, informing the current literature

of quantitative studies on aesthetic preferences in music.

Modelling complexity and expectations in working memory

In order for this analysis to happen, the ideas of complexity and expectations must be

clarified and defined in the context of working memory. Under the time-based

resource-sharing (TBRS) model of working memory span, as presented by Barrouillet et. al

(2004), it is assumed that the processing and maintenance of information require attention
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as a common functional resource. Through a series of 7 experiments involving

resource-sharing tasks of elementary operations, in their article they presented conclusive

evidence regarding the above assumption, as well as they showed that working memory

span can be modelled using estimates of cognitive load.

Within the TBRS theory, complexity is seen as a direct result of the concatenation of

the elementary processes of a task (Barrouillet et. al, 2008). Also, any score differences in

working memory related tasks should be interpreted as differences in the cognitive load

resulting from the atomic constituents of the stimuli, if all other aspects of cognitive load are

constant. Therefore, by having a quantitative measure of cognitive load, we can control its

individual aspects and create a framework in which we can create a task that could explore

complexity (in the context of working memory capacity) in relation to aesthetic preferences.

Such a measure is given by Barrouillet et. al (2004), with the equation (4).

(4)𝐶𝐿 = 𝑖=1

𝑛

∑  𝑎
𝑖
 𝑛

𝑇

In which:

● CL stands for Cognitive Load

● ai is the difficulty / attentional demands of retrieval i

● n is the number of retrievals

● T is the total duration of the activity

For the creation of such a task, with which we aim to effectively address a link to aesthetic

preferences, having a quantitative measurement of cognitive load is not enough, because in

our context of music listening it involves simply the storing of contour and information about

pitch relations. As a result, the attentional requirements it has are used for accurate

representation of the incoming musical stimuli. However, this study considers the role of
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working memory (and not of passive short term memory) in the link between the complexity

of musical stimuli and the aesthetic appreciation of them. On top of making participants use

their attentional resources for the purpose of storing the aforementioned information, we

must, therefore, force a simultaneous task that requires the sharing of attentional resources

and that depends on active processing of the musical stimulus. By doing this we can explore

the impact of varying the storage related cognitive load on the performance of the active

processing task, and of the solving strategy that is being used by the subjects when attention

resources for the active processing task are scarce. By varying storage cognitive load

systematically in relation to the active processing task, we achieve the important aim of

making sure that working memory - specific parameters are utilised in the analysis. Finally, in

order to connect how the manipulation of storage related cognitive load and the limitations of

available attention influence aesthetic appreciation, the active processing task should be

based on a mechanism that is known to be connected to musical appreciation. Such a task

can be based on real time (active) formation of melodic expectations, a mechanism that is

well documented to play an important role in music related aesthetic responses (Meyer,

1956; Narmour, 1989; Schellenberg, 1997; Huron, 2006; Brattico & Pearce, 2013). In order

to model this task, we can use the variables of pitch direction and pitch intervals, which

listeners would evaluate using probabilities that are conditional on heard pitches. Overall, the

components that we manipulate are cognitive load, and the formation of melodic

expectations. The ways this is achieved are described in more detail in 3.2. Further, we will

take into account the effect of pitch grouping, that is the perception of melodic parts as

segmented into groups that are coherent in terms of their notes being in similar pitches

(Bregman, 1994). To summarise as a diagram, we can visualise the connection between

complexity, working memory and aesthetic appreciation as follows:

62



Figure 23: Connection between complexity, working memory and aesthetic appreciation.

3.2 Method

3.2.1 Design

In order to test how working memory capacity limitations may affect the perception of

aesthetic quality in melodies, in this study we used music generation algorithms that output

diatonic melodies consisting of two parts. An initial first part and a second part that is an

inversion of the first part (same contour and scale, but opposite note to note direction). This

design was incorporated in order to test if and to what degree the part will be perceived as

an inversion, and how the perception is altered by different levels of induced storage
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cognitive load from this part. The cognitive load (CL) level was manipulated by creating

second parts which varied in intervallic distances. They were either keeping the intervallic

distances of the first part (medium CL melodies, exact inversion parts), keeping

approximately only the pitch direction removing the information of note to note distances

(simpler melodies, contour-only inversions), or expanding the intervallic distances of the

initial part (higher CL melodies). What changes in the formation of expectations when

storage load is varied is that the melodies with exact inversion parts are in theory

(mathematically) complying more to the expectations created by the first melodic segment

(maintaining intervallic distances as opposed to less complex melodies). This implies a

possible preference of listeners towards the medium cognitive load melodies instead of

simpler ones, because of better fulfilment of expectations. However, in this study the

listeners report the extent of fulfilment of expectations they experience by addressing the

perceived relationship between the two segments of each melody. Thus, the preference

contrast between better fulfilment of expectations / more demanding stimulus does not clash

with our focus of study which is to analyse the extent to which cognitive load will hinder the

perception of the relationships of the two melodic segments, and what strategy, if any, do the

listeners use in absence of available attention for the active task. Further, the ratings of

aesthetic preference will be compared to the perceived fulfilment of expectations, which is

not necessarily in line with the mathematically correct realisation.

As suggested above, the removal of intervallic information can be interpreted as

creating a less complex stimulus which is less demanding for processing in working memory

(Sweller, 1994). Also, various studies by Dowling have shown that the tracking of intervals is

a difficult task for the memory to retain, since listeners are generally not able to maintain the

exact intervallic distances of melodies that have undergone transformations such as

inversion, retrogration and retrograde inversion (Dowling, 1971; 1972; Berz, 1995).

Other possible ways of modulating working memory load could be the number of

notes, or rhythm complexity. However, working with intervals makes it possible to keep only

this specific parameter free to vary. If rhythm was preferred, the prediction mechanisms in
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terms of melodic contour would not differentiate between stimuli, and in the case of number

of notes there would also be unavoidable confounding changes in intervals. In relation to the

cognitive load equation described above, the stimuli have identical number of retrievals (n),

and duration of activity (T). Therefore, their only difference is in the extra load that comes

from computational demands in the case of non single step, actual inversion parts (ai, i being

the sequential note number). Importantly, a characteristic of inverted parts is that the

inversion of contour creates difficulties in the memory representation of the first part as

related to the inverted one (Dowling, 1971). As a consequence, when we vary intervallic

distances in the inverted part, we vary the available attention of the subjects which they can

use in order to find the relation between the initial and the inverted contour. On the other

hand, manipulation of the duration of activity (T) can present a different insight to our

analysis by changing the cognitive load without changing note relations. In a part of the

study, the BPM of the stimuli are raised to a faster pace, in order to explore possible

differences in the results of expectancy fulfilment when comparing slower and faster

variations of the same melodies (keeping everything in the equation constant, except T).

3.2.2 Stimuli

For the stimuli creation, music generation algorithms were written in Python 3. The

generators produce randomly distributed notes in a given scale and pitch range, forming a

melody which is then shaped according to a quantified implementation of contour archetypes

as described by Meyer (1973). This melody forms the first part of the stimulus, as discussed

in 3.1. Another melody is then generated, and each note of the new melody follows a rule

that makes it an inverted (complementary) melody of the initial one. Suppose that Ci is the

i-th in order note of the complementary melody C, Pi the i-th note of the first part (primary)

melody P and the notes are described in terms of MIDI pitch values. The complementary

melody is, then, created according to the equation (5).
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Ci = P1 - (P1 - Pi)b (5)

Where:

● i = 2, … , n

● n = #P

● Ci ∈ S

● Pi ∈ S

● S = {0, 1, …, 127} \ {off-scale MIDI pitch values}

● b is a scaling factor of the intervallic information.

An example of this kind of melody is shown in Figure 24 (b=1) and Figure 25 (b=⅔).

Figure 24: Last four notes are the complementary part without reduction of intervallic

information (b=1).
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Figure 25: Last four notes are the complementary part with elimination of intervallic

information (b=⅔).

By using this procedure we generated stimuli that were given the contours of linear

ascending, linear descending and gap fill melodic archetypes, plus random shaped contours.

This was done in order to control for the factor of melodic shape. Examples of these shapes

are given in Figures 26-29.

Figure 26: A linear ascending melody. Each note is always at an equal or higher

pitch than all previous ones.
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Figure 27: A linear descending melody. Each note is always at an equal or lower

pitch than all previous ones.

Figure 28: A gap-fill melody. The first note is the lowest in pitch, the second one is

the highest, and the following notes form a descending linear pattern.
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Figure 29: A melody with random contour. The notes do not follow any specific order of

sequence.

In terms of code implementation, the note generation and contour shaping procedures were

identical with the ones used in Study 1. The inverted part algorithm is presented in Box 3

with pseudocode. When off-scale notes were created by the inversion, their repitching was

handled by following the idea of auditory scene analysis regarding how melodic grouping

occurs via pitch proximity (Bregman, 1994). In particular, we reduced separation when the

note had a pitch distance of 5 or less with the previous note, and increased the separation

when the distance was higher than 6. At a (middle-of-octave) distance equal to 6, the

direction of repitching was chosen at random.

FUNCTION Inversion

INPUT: NotesList, b, Scale

OUTPUT: InvertedPart

STEPS:
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1. Initialise the following variables:

InvertedPart <- []

BottomNote <- MIN(NotesList)

2. For the whole length of NotesList, for every note in position i of NotesList create a new

note in position i of InvertedPart. The new note InvertedPart[i] is created by using the

equation: InvertedPart[i] = INTEGER(BottomNote - (BottomNote - NotesList[i]))b

3. While InvertedPart[i] is one of the off-scale notes:

3.1 If InvertedPart[i] - InvertedPart[i-1] <= 5, reduce InvertedPart[i] value by 1.

3.2 Else if InvertedPart[i] - InvertedPart[i-1] >= 7, then increase InvertedPart[i]

value by 1.

3.3 Else either increase or decrease InvertedPart[i] value by 1 via random choice.

4. Return InvertedPart

Box 3: Pseudocode describing the creation of inverted parts for the stimuli of Study 2.

In relation to the study’s aims, the participants were requested to assess the amount of

exactness of inversion found in the stimuli. For the purpose of varying the difficulty of this

task, we generated stimuli on three levels of the scaling factor b. The levels were at b = 0.67

(reduced intervals), b = 1 (exact inversion), and b = 1.15 (expanded intervals). These levels

correspond to stimuli of low, medium and high level of informational complexity, respectively.

Further, in order to vary complexity without also varying the intervals, we created another set

of questionnaires. For those, the tempo of the melody was varied instead, on two levels

(slow was at 85 BPM, and fast at 120 BPM), providing the listeners with a narrow and a wide

time frame to process the melodic information. When it comes to the chosen scale, we

preferred C major as a comfortable to listen to and widely used scale. There was no change

of scales between the stimuli, since Study 1 showed no influence of the scale on any

observed statistical relationships. Finally, the melodies used hard quantised quarter notes

and had a piano timbre (Native Instrument’s “Alicia’s Keys” with the velocity of all notes set

at the maximum MIDI value of 127).
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3.2.3 Participants

A sample of 20 university music students and musicians (N = 9 females) participated in this

study, giving their informed consent to participate. The sample consisted of listeners with

exposure to either musical instrument playing experience, or music production / composition

experience. Drawing from the experience of Study 1, we recruited participants with a musical

background, because they are more likely to notice nuanced differences in the kind of stimuli

that we are using in this project. Like Study 1, this study was approved by the ethics

committee of the Department of Music.

3.2.4 Hypotheses

Participants listened to these melodies through an online questionnaire (partially presented

in Appendix). They rated how much they liked each melody, to what extent they think the

second part is an exact inversion of the first, and how complex the melody sounded. We

hypothesised that listeners would prefer the melodies of which the inverted part omits

intervallic jumps, because it will be easier to process the part and therefore infer that it is

related to the first part as the inversion of it, making the melody more sensical / less random.

Indeed, such longer than note-to-note distance relationships are thought to be a working

memory task (Rohrmeier & Koelsch, 2012), raising the question of whether or not listeners

have enough capacity to successfully process both the intervallic distances of the second

part and its relationship to the first part, and how does their capacity affect the link between

expectations and liking. Importantly, musical expectations theory would predict that an exact

inversion of the initial melodic segment would be more pleasant, by presenting a true

realisation of veridical expectations. The term “veridical” in psychology refers to the degree

to which an experience, perception, or interpretation accurately represents reality (APA

Dictionary of Psychology, n.d.). Referring to expectations and perception, it concerns the

agreement between how a particular listener perceives these factors, and how they might

theoretically be perceived by an “ideal listener”, enculturated in a particular music tradition
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(in our case, western tonal music). We are therefore presented with the questions: 1) Does

veridical perception of melodies rely on a mechanism of a probabilistic implication-realisation

procedure, or on less cognitively demanding heuristics (visible through the realisation of a

relationship only after simplification of the structure while CL is high)? 2) Does aesthetic

appreciation rely on the fulfilment of expectations as a basis, or could this be a side effect of

a reward mechanism that relates to the sense of successful completion of computational

tasks in working memory?

In relation to the first question, based on the current literature we would

expect to replicate findings that have shown the use of heuristics and encoding strategies

that are less demanding than complete reliance on analysis of statistical properties of the

stimuli. For example, Krumhansl et. al (1999) has found that familiarity with stylistic features

of the stimuli influences the veridical effects of the knowledge of that style in terms of

statistical regularities present in it. Also, when presented with familiar tunes, listeners show a

good long-term memory (LTM) retrieval of exact intervallic distances (Dowling, 1970),

meaning that they can use a strategy of encoding intervals based on LTM information.

Finally, with regard to the perception of short melodies, the contour and intervallic distances

vary in their influence on recognition, depending on the amount of delay between the

presentation of stimuli; contour was used for a short delay time and intervals for a long delay

(Dowling & Bartlett, 1981; Dewitt & Crowder, 1986). This finding suggests a procedure of

choice as to what recognition strategy should be employed for better results. In accordance

to this literature, we predict to find that differentiations in cognitive load of the stimuli will lead

to different perception of the relations between the presented melodic segments, because

the minimisation of intervallic distances of the inverted part will lead to the availability of a

contour-only analysis of the statistical similarities presented in the segments. Further, the

ease of processing induced by longer available time frames will lead to an alteration in the

perception of a similarity between segments due to more available time for analysis through

the strategy of using intervals.
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As far as the second question is concerned, we would predict, based on the literature

of musical expectations, that stimuli possessing statistical regularities and patterns of an

“exact inversion” relationship between the two melodic parts, would be more aesthetically

preferable due to better fulfilment of expectations. However, it is worth noting that the

present study intends to challenge this idea and test the aesthetic appreciation of stimuli

under several cognitive load stressing factors that intend to force listeners into using a

variety of strategies for the analysis of the intra-musical properties of the melodies. If they

tend to prefer less expectation-fulfilling stimuli and at the same time they misinterpret the

degree of present regularities in them, a possible answer to our question would be that

aesthetic appreciation depends on rewarding that derives from a perceived sense of

successful analysis of the stimulus and not simply from the stimulus providing a resolution

that was probabilistically likely to occur. To summarise the main elements of the study, we

present the hypotheses and variables below. Note that similarity of the two segments is not a

variable - the segments are considered identical when the interval size variable is set in

“exact intervals”, and the precise deviation from this when it is set in “contour only” can be

calculated with statistical parameters.

Independent variables:

● Interval size of second part (reduced, exact, expanded intervals)

● Tempo (slow, fast)

● Melodic shape (linear ascending, linear descending, gap fill, random)

Dependent variables:

● Ratings of liking.

● Ratings of perceived exactness of inversion.

● Rating of perceived complexity.

Hypotheses:
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● H0 about veridical perception and intervallic distances: Interval size of the

second part does not affect ratings of exactness of inversion for any melodic shape

and tempo (mean rating of small interval melodies is equal to the mean rating of

melodies with exact and expanded intervals).

● H0 about veridical perception and time frame: Tempo does not affect ratings of

exactness of inversion for any melodic shape and tempo (mean rating of fast

melodies is equal to the mean rating of slow melodies).

● H0 about aesthetic appreciation and veridical perception: Aesthetic appreciation

is in accordance with probabilistic expectations formed by similarity between the

melodic segments, for any melodic shape and tempo (ratings of liking are not higher

in small intervallic distances or slower tempo).

3.2.4 Data collection

The study was implemented with the use of online questionnaires that were sent to students

of the University of Sheffield via email, and other university students via social media

distribution. Structurally, the questionnaires consisted of a series of melodic stimuli. After the

presentation of each melody, the responders were asked to rate how much they liked the

melody, to what degree they think that the second part of the melody is the exact inversion of

the first part, and how complex they perceived it to be. Each one of the series presented

various melodies of the same contour archetype. The stimuli were split into questionnaires

that varied the b factor (intervallic jumps of the inverted part), and those that varied the

tempo of the melodies. Finally, the participants were asked about their age and their gender.

Conclusively, the variables under consideration are those of liking, perceived

exactness of inversion, and perceived complexity. Their role in the study is documented in

the Hypotheses section of 3.2.1. The variable of gender was also collected, in order to

control for possible effects (Christenson & Peterson, 1988; Colley, 2008). The analysis

considering these variables could possibly be implemented with a Related Samples and an
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Independent Samples way. For each of them, the dataset would have to be structured in

different ways.

3.2.5 Datasets

Related samples dataset

The first step of the related samples analysis is the reconstruction of the raw dataset of the

questionnaire, in a way that makes participants act as data points. To achieve this we

created new variables based on averaged data from the questionnaire’s Likert scales. These

variables are divided into scores of melodies with low, medium and high complexity,

mirroring the “reduced intervals”, “exact intervals”, and “expanded intervals” types of

melodies.

In the cases of questionnaires where tempo was the factor that affected complexity,

only the low and medium complexity variables were given values. Tempo is a binary factor

(slow and fast), and the choice of linking each value with the low and medium complexity

variables was decided based on the mean perceived complexity values from the raw

dataset. Slow melodies had a mean perceived complexity of 3.04, and “reduced intervals”

melodies had a mean of 3.15, making them their nearest neighbours. Similarly, fast melodies

had a mean rating of 3.56, which made “exact intervals” melodies their closest pair with a

mean of 3.53.

Table 12: Mean values of perceived complexity scales among all melodies, split by

complexity levels.

Slow tempo Fast tempo Reduced
intervals

Exact
intervals

Expanded
intervals

N of
melodies

9 9 20 20 11

Mean 3.037 3.556 3.146 3.533 3.621
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Independent samples dataset

Another approach for this analysis would be to treat the raw questionnaire responses of all

respondents as one variable, for each of the liking, exactness of inversion & perceived

complexity scales. A prerequisite for doing this is to ensure that all participants had a similar

behaviour in how they rated the scales. Specifically, it is to check that the distributions of

responses are homoscedastic and with similar central tendencies. The methods we used for

this are intraclass correlation coefficient (ICC) for testing the agreement between raters, and

homogeneity of variance examination with Levene’s Test. For the implementation of ICC, the

dataset consists of variables that each of them represent one rater’s responses for a

particular scale. For the purpose of testing the equality of variance, the dataset consists of

liking, exactness of inversion and perceived complexity variables that include all responses

from all participants. The responses are tied to a nominal Participant ID variable, in order to

allow analysis of variance testing.

Statistics of materials

Before proceeding with the results of the study, we present an analysis regarding the

distributional characteristics of the stimuli. We will look at the parameters of mean and

variance for each type of melody, as a way to assess the effect of interval sizes and tempo,

which are related to the complexity of the stimuli. This will be compared to the categorisation

of the melodies into complexity tiers based on perceived complexity scores, that was shown

in Table 12. For this analysis we generated melodies of all pitch distance (b) levels (0.67, 1,

1.15). The total number of melodies is 5040, split equally to 1680 for each b level. An initial

view of the frequency distributions of notes is shown below, for each complexity tier. The

plots consider the mean and the variance of each of the generated melodies. The numbers

shown in the histograms refer to MIDI note numbers.
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Figures 30-32: Mean MIDI note values from a pool of melodies created with the

generation script, with varying interval sizes.

It can be noted that as the b parameter increases, the mean pitch value decreases. This

happens because melodies reach to further (lower) notes as the intervals of the inverted part

get bigger. We also looked at the variances of the pitches for each b tier.

78



79



Figures 33-35: Histograms of the variance of pitch values from a pool of melodies with

varying levels of interval sizes.

Similarly, Figures 33-35 show that with higher values of b, the pitches attain greater

variability. This is an observation that we expected due to the rise of pitch gaps in the

inverted part, and it is the reason why b is considered a parameter that is linked with

informational complexity. What is shown with these histograms can be further verified with

statistical testing. None of the distributions in this analysis is normal, as shown by an

assessment of normality with Kolmogorov-Smirnov tests (0% significance). Furthermore,

Kruskal-Wallis tests showed differences between the distributions at 0% significance level.

These differences can also be observed in the respective K-W boxplots, showing that the

chosen levels of complexity result in melodies that are different enough to allow meaningful

comparisons in the study.
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Figures 36-37: Kruskal-Wallis boxplots that show differences between statistical

distributions of melodic characteristics (here, mean and variance of pitch

distributions) in melodies of different interval size levels.

Finally, we can look at the pairwise comparisons tables of these distributions (13-14), to

locate precisely where the K-W differences are found.

Table 13: Pairwise comparisons of the mean distributions of each b level.

Sample 1 - Sample 2 Test
Statistic

Std. Error Std. Test
Statistic

Sig.
(Bonferroni
corrected)

1.15 - 1 1680 50.121 33.519 .000

1.15 - 0.67 -3360 50.121 -67.038 .000

1 - 0.67 -1680 50.121 -33.519 .000

Table 14: Pairwise comparisons of the variance distributions of each b level.

Sample 1 - Sample 2 Test
Statistic

Std. Error Std. Test
Statistic

Sig.
(Bonferroni
corrected)

0.67 - 1 1679.863 50.204 33.461 .000

0.67 - 1.15 -3353.433 50.204 -66.796 .000

1 - 1.15 -1673.571 50.204 -33.335 .000

As Tables 13 and 14 show, all distributions are different from each other. This points to the

mean values of mean and variance distributions being statistically significantly different

between all interval size levels. The order of the mean values of variances shows that higher

intervallic distances equaled higher variance. This effect mirrors the perceived complexity

ratings as shown in Table 12.
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In conclusion, the way we structured the dataset is in agreement with both the

complexity introduced by variance of b, and the perceived complexity of the same types of

stimuli as rated by participants. It is important to note that complexity is not a universally

identical term with variability, but in the context of this research variability is linked with

complexity, in the sense of informational complexity - richness of information (bigger number

of pitch distance values). We can now proceed to the main analysis of the responses that

were obtained from the questionnaires. The analysis is split into two ways, namely Related

Samples and Independent Samples. Each of them draws from the two relevant datasets as

discussed in the beginning of 3.2.5.

3.3 Results

3.3.1 Related samples

Correlation analysis

At the beginning of this analysis correlations between the liking, complexity and exactness of

inversion variables are explored for all melodic complexity levels. In order to decide what test

to use we inspected for outliers and the linearity of our values, as they are important

assumptions for using Pearson's r, the most common test for assessing correlations. There

were no values that surpass a distance limit of more than 3.29 sd from the mean for any

variable, so there were no outliers found.

Table 15: Descriptive statistics of Likert scales.

N Minimum Maximum Mean Std. Deviation

Simple_Liking 20 1.67 5.5 3.39 .9

Simple_ExactInv 20 1.17 6.33 4.22 1.45
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Simple_Compl 20 1.67 5 3.15 .89

Normal_Liking 20 1.83 6.34 3.58 1.11

Normal_ExactInv 20 1.67 6.34 4.33 1.35

Normal_Compl 20 2.17 6.17 3.53 1

Expand_Liking 11 2.33 5.67 3.42 .96

Expand_ExactIn
v

11 2 6 3.98 1.24

Expand_Compl 11 2 6 3.62 1.03

When testing for linearity, there appeared to be cases of nonlinear relationships between our

variables.
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Figure 38: Scatterplot matrix of all scales.

Therefore, we used the non parametric correlation test of Kendall’s Tau, instead of Pearson’s

r. After adjusting the p-values of the bivariate correlations by using the Benjamini-Hochberg

method of multiple testing correction, we found significant correlations with a False Detection

Rate of 5%, which are presented in Table 16.

Table 16: Statistically significant correlations between complexity levels for different rating

variables.

Correlation Significance Rating Variable Melodic Variables

Moderate (0.564) 5% Liking ratings Low and Medium

complexity

Moderate (0.692) 5% Liking ratings Medium and High

complexity

Moderate (0.66) 5% Liking ratings Low and High

complexity

Moderate (0.599) 1% Exactness of

Inversion ratings

Low and Medium

complexity

High (0.748) 5% Exactness of

Inversion ratings

Medium and High

complexity

Moderate (0.667) 1% Complexity ratings Low and Medium

complexity
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Table 17: Non-parametric bivariate correlations of all scales. The shown significance is before correcting for multiple testing.

Simple_
Liking

Simple_
ExactInv

Simple_
Compl

Normal_
Liking

Normal_
ExactInv

Normal_
Compl

Expand_
Liking

Expand_
ExactInv

Expand_
Compl

Simple_Liking Correlation Coefficient 1 .126 .33* .564** .361* .226 .66** .419 .457

Sig. (2-tailed) . .452 .049 .001 .031 .179 .007 .081 .057

Simple_ExactInv Correlation Coefficient .126 1 .247 -.038 .599** .181 .510* .574* .315

Sig. (2-tailed) .452 . .141 .819 .000 .280 .033 .015 .183

Simple_Compl Correlation Coefficient .33* .247 1 .236 .328* .667** .427 .343 .419

Sig. (2-tailed) .049 .141 . .159 .050 .0 .079 .154 .081

Normal_Liking Correlation Coefficient .564** -.038 .236 1 .327* .264 .692** .509* .245

Sig. (2-tailed) .001 .819 .159 . .050 .116 .004 .033 .306

Normal_ExactInv Correlation Coefficient .361* .599** .328* .327* 1 .219 .534* .748** .187

Sig. (2-tailed) .031 .000 .050 .050 . .191 .027 .002 .432

Normal_Compl Correlation Coefficient .226 .181 .667** .264 .219 1 .346 .094 .509*

Sig. (2-tailed) .179 .280 .0 .116 .191 . .153 .694 .033

Expand_Liking Correlation Coefficient .66** .510* .427 .692** .534* .346 1 .519* .135

Sig. (2-tailed) .007 .033 .079 .004 .027 .153 . .032 .578

Expand_ExactInv Correlation Coefficient .419 .574* .343 .509* .748** .094 .519* 1 .170

Sig. (2-tailed) .081 .015 .154 .033 .002 .694 .032 . .478

Expand_Compl Correlation Coefficient .457 .315 .419 .245 .187 .509* .135 .170 1

Sig. (2-tailed) .057 .183 .081 .306 .432 .033 .578 .478 .
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Comparison of distributions

Before proceeding with comparing the distributions of the questionnaire data, the shape of

the distributions was tested for normality. A Shapiro-Wilk test did not produce results that

could allow the rejection of the null hypothesis after correcting for multiple testing, for any

variable. Therefore, the comparisons of distributions were done with related samples T-tests.

With an FDR of 5%, there was a 5% significant difference in mean values between the

perceived complexity ratings in low and medium complexity melodies (0.388 higher in

medium complexity). No other statistically significant differences were found after correcting

p-values for multiple comparisons.

3.3.2 Independent samples

Comparison of distributions

ICC tells us if raters gave similar ratings for each of the scale items in the questionnaire. In

the SPSS implementation that was used in this analysis, the ICC assessment includes a

statistic that shows whether the correlation coefficient is statistically significantly different

from 0. In our case, the ICC test did not provide statistically significant results using a

consistency definition.

Table 18: Intraclass correlation coefficient of two way random effects and consistency.

Intraclass
Correlation

95% Confidence Interval F Test with True Value 0

Lower
Bound

Upper
Bound

Value df1 df2 Sig

Single
Measures

.045 -.076 .324 1.284 11 55 .258

Average
Measures

.221 -.743 .742 1.284 11 55 .258
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A more liberal approach would be to only require similar statistical parameters of the

distributions of raters’ responses. For this reason we tested the equality of variances

between participants for all scales, by using Levene’s test. The Levene Statistic was found

statistically significant at a 5% level for all three liking, exactness of inversion and perceived

complexity variables, meaning that the hypothesis of equal variances was rejected. With

these findings, it is shown that the ratings of participants do not follow the same distributions,

and putting them under the same variable would change the original distributional properties

of each independent participant’s responses.

Table 19: Levene’s test for the homogeneity of variances of responses among

participants for all Likert scales.

Levene
Statistic

df1 df2 Sig.

Liking Based on Mean 5.210 19 286 .000

Based on
Median

3.078 19 286 .000

Based on
Median and
with adjusted df

3.078 19 192.339 .000

Based on
trimmed mean

5.008 19 286 .000

ExactInv Based on Mean 1.979 19 286 .010

Based on
Median

1.589 19 286 .058

Based on
Median and
with adjusted df

1.589 19 229.441 .060

Based on
trimmed mean

2.006 19 286 .008

Complexity Based on Mean 1.926 19 286 .012

Based on
Median

1.038 19 286 .417
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Based on
Median and
with adjusted df

1.038 19 205.966 .419

Based on
trimmed mean

1.826 19 286 .020

3.3.3 Summary

To summarise, the results show a statistically significant difference between the perceived

complexity ratings in low and medium complexity melodies, meaning that the participants

linked the increase in intervallic jumps with the perception of a more complex melody. This is

also visible in the lack of correlation between low and high complexity melodies when it

comes to ratings of perceived complexity. In relation to the hypotheses of 3.2.1, the current

data does not suffice to support the rejection of any null hypothesis.

3.4 Discussion

3.4.1 Research questions

In 3.2.1 we focused on two main research questions. Namely: 1) What kind of mechanism

do listeners use in order to recognise relationships between melodic segments? 2) How do

listeners receive aesthetic pleasure from successfully recognising such relationships?

About the first question, current literature (as discussed in 3.1), allows us to expect

that the complexity of the stimuli would influence how accurately listeners recognise the

relationship between the inverted part and the initial part of the melodies. In terms of

variables, this translates to an expectation of getting results that would show the mean

exactness of inversion rating of small interval melodies to be different than the mean rating

of melodies with exact and expanded intervals, for each participant. For the tempo-altering

stimuli, the corresponding results should show that the mean rating of fast melodies is not

equal to the mean rating of slow melodies. The results of this experiment did not show
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statistically significant differences in the aforementioned pairs of means, and contrary to

what we could expect from other studies on this topic, the null hypotheses of 3.2.1 that are

related to exactness of inversion ratings cannot be rejected.

Concerning the second question, an ease of processing caused by smaller intervals

and slower tempo allowed us to anticipate that these stimuli would be perceived as more

aesthetically pleasing, which could be interpreted as an effect of permitting easier

recognition of existing patterns between the two distinct parts of the melodies. Accordingly,

the ratings of liking would be higher for melodies with small intervallic distances and slow

tempo. However, like the results for the first question, the results of related samples

comparison of the means for the liking ratings did not show a statistically significant

difference between the lower and higher complexity melodies.

Technically, when interpreting these results under the perspective of how complexity

influences ratings, we make the assumption that bigger intervallic gaps and faster tempos

lead to more complex melodies. This can be supported by the increase in data variability and

richness of information, as shown in 3.2.5. Importantly, in the present study it was found that

participants did rate the melodies with bigger intervallic gaps and faster tempos as more

complex than the simpler ones, at a 5% significance level (that is, without faster melodies

having more notes). Therefore we find that this connection can be claimed not only through

distributional properties, but also by the listener’s subjective judgements as revealed by their

responses.

3.4.2 Conclusion and further research

In summary, the findings of this study did not show that differences in the complexity of

musical material changed the recognition of patterns between musical segments. Further,

liking ratings did not differ significantly under varying complexity levels. The role of

complexity could have been different if the range of it was brought to more extreme low and

high points. Naturally, one-note melodies (lowest complexity) and chaotically complicated
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note-heavy melodies would produce, at minimum, changes in exactness of inversion ratings.

That is to say, the present study is not directly comparable to the ones concerning the theory

of an inverted U relationship between complexity and aesthetic responses. However, while

Dowling & Bartlett (1981) and Dewitt & Crowder (1986) found through a series of

experiments that intervallic information and contour influences the recognition of similarity

between melodies, this was not the case in the present study. An explanation for this

contrast is the complicated nature of the task of recognising the amount of how inverted a

melody is, since the two previous studies used exact copies of the melodies.

Overall, the findings of the current study support that intervallic information and

tempo affect the perceived complexity of melodies, with bigger intervals and higher tempos

resulting in higher perceived complexity. Further, complexity did not influence the perception

of patterns or liking ratings among listeners. More steps should be taken towards the

exploration of how cognitive load and working memory affect the aesthetic appreciation of

melodies, possibly by adding a non music related task that uses the same two mechanisms

and using a neuroimaging approach. This is a suggestion based on the idea of analysing

brain activity of an unrelated cognitive load - working memory task and comparing it with a

musical task that will use the same mechanisms. Such a design could bring insight into how

music appreciation relates to these mechanisms by means of correlating brain activity, rather

than by varying the levels of parameters during a sole musical task.
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4. Development of the MMM Generator and evaluation study

4.1 Introduction

For the third part of the project we focused on the challenge of developing a music generator

software with the use of a music cognition based framework. This approach could allow us to

tackle possible issues found in machine learning based generators, and offer an alternative

solution to gaps presented in other commercial generator plugins when it comes to user

interfaces and controls. The MMM Generator (the plugin of this project) was made possible

by using as a basis the outcomes, insights and ideas that resulted from the first two studies,

in algorithms that aim to generate useful musical material for the modern music production

industry. The algorithms were developed in the setting of an application for digital audio

workstations, in the form of a VST plugin. In this chapter we focused on presenting the

design of the generation functions, the use of academic methodology, and the utilisation of

user feedback into the process of making this software. Prior to analysing the process of

creating the software, we present an overview of the academic literature that is related to the

most common techniques and procedures in the area of music generation algorithms. Also,

we give a number of examples of commercially available VST plugins that are designed to

generate MIDI music and discuss their design and their relation to our own software.

The value of a musical tool such as this rests in whether musicians find it practically

useful. So we undertook a thorough user evaluation of it, which is introduced in the

remainder of this chapter, following the presentation of the MMM Generator. The aim of this

study was to understand the degree to which we managed to reach the aim of developing a

useful music making product that is built based on music cognition theory, and to determine

if it provides an output of high quality and usability for DAW-based producers. Doing so, by

using a combination of qualitative and quantitative assessment tools to examine the usability
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and quality of the MMM Generator, we are addressing the broader idea of how academic

literature can aid in the development of DAW plugins, either for the purposes of improving

currently available tools, or by helping with the creation of new and unique ones.

4.1.1 Music generation algorithms - literature and existing programs

With regard to music generation literature, efforts have been made with the goal of

producing aesthetically pleasing melodies, chords, rhythms and their combinations. The

principal methods that academics have used for the creation of music generators are found

in the broad framework of artificial intelligence (see for a summary Nierhaus, 2009). The

most common way is that of deep neural networks (Briot, Hadjeres & Pachet, 2017), which

researchers have incorporated in various forms. Deep networks are systems that operate in

two distinct phases. Initially, the system is trained with the use of a dataset that is

responsible for providing examples to it. The parameters of the network are tuned with a

procedure that tests its performance, as it observes statistical regularities that occur in the

raw data, and uses layers that extract progressively more abstract features based on these

regularities. After this training phase, the next main phase is the generation of output. It

involves input data that is used to initiate the generation process, and the output data which

is the outcome of the deep network’s operation.

A main approach is that of recurrent neural networks (Eck & Schmidhuber, 2002; Lyu,

Wu, Zhu & Meng, 2015; Chu, Urtasun & Fidler, 2016; Jaques et. al, 2017), which specialise

in processing long sequences of values, usually of variable length. Specifically, Long

Short-Term Memory (LSTM) RNN networks are considered the most preferred option in

music generation (Kulkarni et. al, 2019), as they take the output of the previous time-step in

a generation process and use information from it in order to create its next output, imitating

the interdependence of notes in human made musical phrases. However, a new architecture

termed as transformer has appeared, making use of the idea of an attention mechanism.

This mechanism focuses on some specific elements of the input sequence at each time
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step, and has provided even better long-term structure results than RNN in music generation

(Huang et. al, 2018). Alternatively, convolutional neural networks, which are successful in

many practical applications and specialise in processing grids of values, like time series and

pixels in images (Goodfellow, Bengio & Courville, 2016), are also used in music generation

(Yang, Chou & Yang, 2017; Lattner, Grachten & Widmer, 2018; Huang et. al, 2019), but due

to lacking the temporal depth of LSTM or transformer they are not considered as efficient.

Another important approach is autoencoders (Bretan, Weinberg & Heck, 2016; Roberts,

Engel, & Eck, 2017; Roberts et. al, 2018), a type of neural network that is used to learn

features in an unsupervised setting with unlabelled data, and is particularly efficient in

dimensionality reduction and information retrieval tasks. In music generation, they are used

for the benefit of effective high level feature extraction, and in many cases they are

combined in architectures that include LSTM networks (Fabius & van Amersfoort, 2015;

Hadjeres, Nielsen & Pachet, 2017).

Similarly, genetic algorithms, which are models designed for optimisation problems

and are inspired by the biological processes of natural evolution, have been used for

algorithmic composition, especially in earlier years of music generation (Matić, 2010;

Eigenfeldt & Pasquier, 2013; Ponce de León, Inesta, Calvo-Zaragoza & Rizo, 2016; Sulyok,

McPherson & Harte, 2016). Finally, some academics have used alternative and more strictly

mathematical procedures such as Markov models (Van Der Merwe & Schulze, 2011;

Hadjeres, Pachet & Nielsen, 2017). These models are stochastic processes that describe a

sequence of possible events, where the probability of occurrence of each event depends

solely on the state of the previous event. Case-specific algebraic and statistical models

(Drewes & Högberg, 2007; Whorley & Conklin, 2016), as well as pattern detection based

methods (Collins, Laney, Willis & Garthwaite, 2016; Conklin, 2016) have also been used as

generation approaches. The literature of music generation algorithms is, in general, based

on the training of algorithms with musical corpuses of human made compositions, and on the

utilisation of observed patterns in such human-made music.
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A domain that is close to the one of music generation algorithms, in the sense that it

is also a quantification and / or coded implementation of musical elements, is that of

computational and statistical music cognition. In that field of study the quantification process

is about the perception of musical elements, as well as the modelling of patterns formed by

such elements. The main literature of this nature is concerned with topics such as the

modelling of what melodic continuations do listeners prefer (Narmour, 1992; Krumhansl,

1997; Schellenberg, 1997), what instrumentations and frequency contents have the best

chance of becoming popular in various years (Ni, Santos-Rodriguez, Mcvicar & De Bie,

2011; Herremans, Martens & Sörensen 2014), in what ways listeners perceive musical

elements (Lerdahl & Jackendoff, 1996; Eichert, Schmidt & Seifert, 1996; Cambouropoulos,

1997; Tillmann, Bharucha & Bigand 2000; Eerola, Himberg, Toiviainen & Louhivuori, 2006;

Fritz et. al, 2013; van der Weij, Pearce & Honing 2017), and the statistical modelling of

musical properties and patterns (Werts, 1997; Margulis, 2005; Temperley, 2008; Pearce,

2018; Harrison  & Pearce, 2020).

Reflecting on these trends, the framework of deep learning represents the main

approaches to music generation, with the use of neural network architectures. Advances of

recent years, including the availability of massive amounts of data and the increase of strong

and affordable computing power, have resulted in the development of projects that can learn

rules and create musical material in training settings of non “hand-picked” corpuses of

music. The big majority of projects output symbolic representations of music, but a few audio

producing systems exist too, like WaveNet (Van Den Oord et. al, 2016). Such systems have

the benefit of modelling audio signals, resulting in projects like human speech mimicking,

and offer an alternative way in music generation, e.g. by synthesising audio that is based on

a training dataset of classical piano music. However, symbolic representations have the

benefit of focusing on compositional aspects, which may be considered more essential in

music than sound. Generally, the compositional aspects of music (melody, harmony and

rhythm) have been captured in the generation procedure in a broad range of symbolic deep

learning systems, with focus that varies between systems.
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The main achievement of trending music generation research is the ability to create

output for a variety of tasks even if the stylistic rules are too complicated for a design of

manually coded rules, with the ease of a relatively generalisable creation of models if the

initial training dataset is changed. Regarding its limitations, the biggest issue is a lack of

detailed user control in the generation of output material. Since neural network models

operate in a way of feature learning, they can be guided towards specific behaviour but

cannot be controlled with perfect accuracy, which could be desired in cases where the users

know beforehand what type of musical material they want. Direction attempts with neural

networks can be made either through strategies that are based on the control of the input

data in training and generation phase, or of the outcome via altering it after the fact.

Alternatively, the generation can be controlled by actualising only outputs that conform to the

users’ requests. However, these strategies can lack in terms of the amount of data needed

for training and input, as well as in the speed of the music generation process.

4.1.2 Music generation as compositional aid

For the purpose of aiding music software users, i.e. allow them to alter core parts of the

generation process, the existing generation algorithms usually require expert knowledge of

the systems in which they are implemented (Hunt, Nash & Mitchell, 2017). Programming

environments like Impromptu (Sorensen & Gardner, 2010), Sonic Pi, Overtone (Aaron &

Blackwell, 2013) and Supercollider (Wilson, Cottle & Collins, 2011) allow the use of

generators and at the same time the change of parameters of the generation procedure, but

they are directed towards music makers who are also programmers. Likewise, frameworks

related to neural network algorithms, such as the Magenta project (Jaques et. al, 2017),

WaveNet & MuseNet (Payne, 2019), require knowledge of mathematics and advanced

computer science if one wishes to alter the generation code. Even then, these algorithms

operate in a way of training through large datasets and the parameterisation is limited to

changes in the way that the networks are trained. Moreover, the systems mentioned in this
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paragraph can be used only in their respective environments, and in most cases, they are

not implemented in the form of plugins that could be inserted in Digital Audio Workstation

tracks. This renders the tools not usable for the purposes of integration in the workflow of a

typical music production setting (meaning, music making by producers who are not also

programers, and who do not use coding in the creative process).

4.1.3 Music generation algorithms in music production

The idea of melody and music generators in music production has attracted software

developers and music makers since the early days of computers, with the first programmed

melody inside a computer being played in 1950 on the CSIR Mark 1 (Doornbusch, 2004), but

it is only in recent years that several significant developments have been made in the

commercial music software space. These products are integrated into the DAW-based music

production workflow, and don’t require computer science knowledge from the users. This

section presents some of the most notable contributions in music generation VST plugins.

The amount of projects is relatively limited, and the inclusion criteria for this list of examples

are popularity and quality. We address the products Generate (Ableton plugin rendition of

Google’s Magenta), Melody Sauce (2020), Captain Melody (2020) and Riff Generation

(2020). The projects are initially described in terms of the generation processes they use,

and their approach to user interface design. Their functionality is then analysed in order to

present possible opportunities for improvement, and our attempt at addressing these

improvements with the MMM Generator is described.

Generation mechanisms

Starting with Generate, this plugin is Google’s approach to put their music generating

machine learning algorithms in the form of a DAW-based tool. In the first few years their

results with using recurrent neural networks for melody generation sounded musical, but by

the nature of their RNN it was not possible to produce long-duration output, as the
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independence from specific rules in the generation process made the output progressively

more random sounding. However, their latest progress with using a novel, hierarchical

structure in the model (Roberts et. al, 2019) produces better results for long duration musical

output. Another product with a similar approach to generation, in the sense that it uses a

sophisticated algorithm, is Melody Sauce. A product of Evabeats, it is a melody generator

that, according to the developer, aims to provide a starting point for a melody that the user

will complete via the software’s simple controls. Its AI uses an algorithm that is informed by

mathematical analyses of common features in modern pop and EDM hit songs.

Leaning to a user control - centred approach, the company Mixed In Key developed

Captain Melody, a plugin that was released in 2018 and that appears to be one of the most

popular solutions in the new melody generation market. Since their code is not publicly

available it is not easy to understand how the note generating part of the plugin works

precisely. Behind this feature there could be a random notes generator, or an AI assisted

process. Nevertheless, the focus of Captain Melody is on the user’s options to control and

morph the melodic ideas. These controls adjust the shape of the melody, either leaving it as

is, or giving it a linear shape. Features include the choice between different types of linear

shapes (ascending / descending / ascending + descending / descending + ascending) and a

curve-like contour, a variety of strength regarding note leaps, and the fitting of the melody in

relation to chord changes. All these parameters are configurable in detail by the user, along

with further parameterisation that includes the frequency of stepwise and leap motions,

amount of produced notes, and a control of the frequency of triplets. Finally, the user can

alter the probabilities of occurrence for each of the notes in the scale. Similarly to Captain

Melody, In Session Audio developed the Riff Generation, a plugin that uses a random notes

generator and that is parameterisable by the user through a big assortment of options.

These controls are about the boundaries of the generated melody, and the user’s

preferences on scale, rhythms, sound selection, sound effects, and various other in-detail

customisations of the output.
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User interface

As seen in the previous section, some of the generators are centred around the idea of

giving users a relatively simple interface and a melody that requires relatively few manual

changes, while others support the approach of letting users shape the melody significantly

after the generation process, with a multitude of controls. Belonging in the first category,

Google has incorporporated an approach in Generate that is of a minimalistic design with

very few options. As noted, with these algorithms there is difficulty in dictating the musical

direction of the output material with great precision because of the “black box” nature of

neural networks. Concerning the shaping of the produced output, Generate provides the

user with one option, called temperature. This is a slider that essentially randomises the

produced notes by a certain amount (DuBreuil, 2020). The user can also select how many

variations the plugin will produce, with a second slider. In a similar approach, Melody Sauce

focuses on a simple, single-page user interface, even though the number of controls is

significantly higher than Generate. Central to the interface there is a section of 3x3 square

“drum pad” buttons, that when any of them is pressed, a melody is generated. Each pad

works with different algorithmic settings, but it is not clear from a UI perspective what the

changes are. Left from the pads there is a section with scale and rhythm settings, while on

the right side the user is presented with a view of the previously generated melodies along

with editing options.

While that software aims to provide a simple interface design and melodies that

require relatively few manual alterations, other manufacturers support the idea of allowing

users to influence the melody extensively after it has been generated, by using a wider

variety of controls. This is the viewpoint behind products such as Captain Melody. The user

interface for that plugin is decidedly more complex than the previous examples, featuring 4

tabs meant for various song sections, 4 further tabs in each section that are about the

shaping of the notes, and 2 tabs about technical settings. Below the sections of tabs, it

includes a piano roll editor where the MIDI melody is shown and manual edits can be

performed. At the left side of the screen the user has options that relate to various tools that
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can shape the melody, and sound options. Further, Captain Melody can be interconnected

with other generator plugins of the Captain series, allowing a fuller range of possibilities. In

like manner, Riff Generation makes considerable use of submenus and tabs as part of its

layout design, as it aims to supply music producers with an ample amount of choices

regarding the notes and sound of the generated output. Its UI features two main areas of

focus, which resemble the layout of two step sequencers. These areas change their content

depending on the tab that is activated by the user. For the upper side area there is an

assortment of 4 tabs about velocity, note duration, volume and panning for each step of the

sequencer. The lower section of the UI shows a grid of 32 x 5, that alters 5 types of sound

settings for each of the 32 time points of the sequencer. The same area becomes a menu of

5 sections of generation settings when the user presses a “generation options” button.

Analysis

The examination of the generation processes and user interfaces of that software can reveal

possible points for improvement that the current project’s MMM Generator plugin could

address. The generation mechanism of Google’s plugins is considered to be useful for

starting a melodic idea that the music producer will use as a basis when building the actual

melody of their track, and in general, as a tool to spark initial inspiration

(SadowickProduction, 2019; Kozmik Kandi, 2021). Melody Sauce, developed with a direction

reminiscent of Google’s plugins, received a mixed response from the users and it seems to

be considered as a tool that generates ideas of limited variation and quality, that serve as an

initial material to be further developed by the user (Cowby, 2018; Weaver Beats, 2019). The

same sentiment is shared about Captain Melody, in which some parts of the generated

melodies are useful for further tweaking (Qpbeats, 2019). On the other hand, Riff Generation

is thought by some users to be a powerful arpeggiator or sequencer, but to not classify as a

melody generation tool (Tatanka, 2018). In summary, the generation algorithms of current

plugins seem appealing to users who like to experiment with alternative ways of music
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creation, but they are not considered to be sufficient in providing fully ready melodies and

replace the composition process of users.

In terms of user interfaces, Google’s Generate features a minimal design with few

options, which is a good design practice that helps with its usability (Nielsen, 1994).

However, the lack of more controls means that the user cannot influence how the music

generation operates in any way other than the amount of produced melodies and the amount

of note randomisation that occurs after the fact. Also, due to the fact that the plugin is coded

as a Max/MSP package for Ableton Live, the workflow differs from how typical VST plugins

integrate with the DAW. This makes Generate less easy to use, since it outputs the MIDI to

clip slots (Hughes et. al, 2022) instead of the timeline of tracks, and it does not support

operation within the typical arrangement view of the project in Live. Likewise, Melody Sauce

is designed with simplicity as a priority, without multiple screens and with a surface level

control of the generation, i.e mainly basic rhythm and scale settings. By having the

generation buttons at the centre, the plugin achieves a good visual hierarchy that helps the

users understand the relative importance of the interface’s elements (Gordon, 2020). The

straightforward design of the aforementioned products is in contrast with the perspective

used for Captain Melody. With a reliance on heavy editing of the melody by the user, the

centrepiece of the interface is a piano roll. The various controls and tabs are around the

piano roll, without visual clues about what are the most important elements or how the

melody generation is initiated. This leaves the user with no obvious entry point to act on,

which is a bad practice as it provides no instant gratification experience for using the

software (Tidwell, Brewer & Valencia-Brooks, 2020). Finally, like Captain Melody, the Riff

Generation plugin imposes a large cognitive cost on the users due to its complicated

interface, and it does not present an hierarchical ordering of the elements. These types of

user interface designs may lead the users to refrain from using the particular plugins, in

favour of simpler ones, even if they are not equally good in terms of the quality of generated

melodies. The potential cost of time and effort when learning a complicated system can lead

music producers to accept this difference in quality if the simpler plugins are “good enough”
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for their required task, which is a behaviour described as “satisficing” (Herbert, 1956).

Therefore, the examples we examined show us that in order to provide a good user

experience, we need to address the issue of balancing clear action points and simplicity with

a versatile, musically meaningful control of the generation process.

4.1.4 Interim conclusion

In relation to the aforementioned background literature and software developments, this part

of the project utilises the approach of statistical and code based modelling of cognitive

elements, by using the results of the research that was carried out in the first and second

studies of the thesis. These elements were used in order to create a MIDI based music

generation application, and by strictly using models based on music cognition it is an

alternative method to the one used in most related research, i.e. the training of the algorithm

from a human made music corpus. The use of these models taps into the opportunity that

the rest of the presented VST plugin projects leave, by not utilising music cognitive

processes in the generation algorithms. Furthermore, this different approach is an attempt to

address the creation of a plugin that fulfils the role of a tool that outputs ready to use

melodies, instead of producing output that mostly serves the role of an initial spark of

inspiration for a human composed final melody, which is what currently published generators

are mainly used for. Concerning the user interface, the background research revealed that

current plugins present a gap between using highly sophisticated generators over which the

user has no musical control, and seemingly random notes generation combined with

complicated interfaces and a big variety of options, often not related to music generation.

The main point in the creation of this software as part of the thesis relies on the aim

of offering a solution to the task of starting a new music track according to broad artistic

directions by the user, e.g. the choice of a melodic archetype and setting of atmosphere

through choices of rhythm and chord progression types. It was implemented by using a

generator that allows the user to need relatively little control and a simple, intuitive interface.
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Building on the other VST plugins in the marketplace, we wanted to achieve simplicity that is

reminiscent of Google’s Magenta, while also allowing a fuller control of the possible outcome

as observed in projects like Mixed In Key’s Captain Melody. We attempted to accomplish this

by using results from the previous parts of this project, i.e. by embedding information about

the aesthetic impact of specific quantitative elements found in melodies. The interface was

also informed by researching user needs in the form of interviewing music producers, and by

implementing UI design literature concepts. Finally, a differentiating factor from a part of the

currently available software is that it has a direct aim to be used as a writing aid tool for

producers and does not try to blend tasks not related to efficient MIDI music generation,

such as sound designing and mixing, or the use of plugin combinations and low level control

of probabilities.

4.2 Creation of the generator

During the development of the MMM Generator we created a system of different sections

that worked together to create the musical output. Each section serves a different purpose in

the chain of the generation process and was developed according to a corresponding set of

rules, drawing from music cognition literature, the studies of the current project, and analysis

of real-life professional music production techniques. A view of the initial user interface is

presented in Figure 39.
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Figure 39: The first rendition of the user interface of the Generator. It consists of

three sections for the controls of the melody, rhythm, and structure of the output. It

also features a drag-and-drop function that puts the output into a DAW track as a

MIDI item, and a visual representation of the output in the form of a piano roll.

The first of these sections consists of a note generator that creates an initial MIDI melody

according to prespecified broad directions by the user. The next one is an interconnected

section that is responsible for the rhythmic elements of the musical output. Finally, the last

section is related to the structure of the output, and handles the chords and parameters

related to the extension of the duration of the music segment. The sections do not work in a

serial “forward only” way, but are connected and work in parallel throughout the generation
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process, transferring information between them. In 4.2.1-3 we explain at a high level how

these parts work, while we connect their development with the background research behind

them.

4.2.1 Initial notes generation

[Redacted text]
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[Redacted text]
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[Redacted text]

4.2.2 Rhythm generation
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[Redacted text]
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[Redacted text]

109



[Redacted text]

Box 4: [Redacted text]

[Redacted text]
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4.2.3 Generation and choices of structural elements

An important aspect of the MIDI generation that surrounds melody is structure, in terms of

harmony and of the development of a long duration output. We created features of harmony

by employing chord progressions. Specifically, the user has the option to add progressions

that use chords built directly below the melody on the strong beats (also called “block

chords”), or progressions that use notes that follow the exact rhythm pattern of the melody.

Figures 42-43 show MIDI piano roll examples of block chords and rhythmical chords

respectively, below a melody. The examples show music that has been created by the MMM

Generator.
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Figures 42-43: A musical output of the MMM Generator that uses block chords (42),

which play for the duration of a whole bar. In (43) there is another example that

incorporates rhythmical chords, playing with the same rhythm as the melody. The

chord changes happen at 1-bar intervals, like in the case of block chords.

[Redacted text]

The rest of the development concerned functions about secondary structural

elements of the musical output. The function of “Range” allows users to control the size of

the possible pitch range of the main melody, by setting the variable HighestNote as shown in

Box 1 at either 6, 12 or 24 semitones above LowestNote. The “Extent” function alters the

amount of notes that the generator uses in order to create the melody. It is a feature that

controls how repetitive or non repetitive the output is going to be, and it can be set to three

levels of repetitiveness. In particular, at step 7 of Box 1, the algorithm stops adding notes to

the melody if the mean pitch is at the target value, and the number of notes is greater than 3

or equal to 8. With the “Extend” function, the user can explicitly stop this initial pitch

generation process at specifically 4, 8 or 16 notes. Further, the MMM Generator also

features “Lock” buttons in each of the three sections of the user interface, as shown in

Figure 39, where the discussed functions can be identified. The “Locks” allow the user to
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keep either the contour and initial notes, or the rhythm, or the chords and structure of the

musical output that was generated, to be used in further generations. By locking a section,

any new generated music will vary all the other aspects of the generation, but it will

“remember” from the previous generation and not change what aspects exist in the section

that is locked by the user. This allows the users to build a musical output that they like in a

step by step fashion, and it is performed by storing the generation settings in temporary log

files. Finally, the “Variate” function works with an on / off switch that controls the presence or

absence of variations in the generated melody, as the structure develops. Those variations

are created by triggering via random choice one element in a list of deterministic

manipulation series, to allow a local re-shaping of parts within the melody, by using the

controls of the “initial notes generation” section (whose functionality is detailed in 4.2.1).

Finally, users can choose a major or minor scale in the key of their liking.

4.2.4 Bridging the MMM Generator to the Digital Audio Workstation

environment

During the previous sections we discussed the creation and features of the MMM Generator,

as a software that creates MIDI data according to user instructions. The context in which this

software operates is within digital audio workstations, in the form of an external sub-software

that the DAWs “see” and call it to operate inside their environment. These sub-software are

what is known as virtual studio technology plugins. For the operation of the MMM Generator

as a plugin, we used a hybrid system that incorporated a web server, where all generation

and functional algorithms are stored, and a file that is stored in the user’s computer and acts

as the VST plugin. The plugin, when loaded into the DAW, shows the interface depicted in

Figure 39 on which the user chooses their required settings. Once the user presses

“Generate”, the plugin sends a request to the server, and once the server processes the

input settings and creates the musical output, it sends it back to the plugin. This hybrid

approach was required, because the generation algorithms are coded in Python, while VST

113



plugins use the C++ programming language. Python was necessary due to a dependence

on [Redacted text]. Therefore, a server that supported the execution of Python code was

required in the process.

4.2.5 Summary of the interface design

In terms of design, the sections of the interface were structured in a way that directly

addressed the development as described in 4.2.1-4. The “Melody” section begins with

multiple choice options that allow the users to choose between melodic shape archetypes.

The Balance slider inputs the value of the “target mean” variable that was described in 4.2.1.

Next to it, Liquify is a slider that controls the effect of a randomiser algorithm that changes

the melodic shape structure of the output. Finally, Tighten controls the complexity of the

melody when it is activated, and it can further apply this change on inverse or duplicate

continuations of the melodies, depending on Tighten Mode.

The next section on the interface of the plugin is “Rhythm”, which contains a multiple

choice section relating to different rhythm types. Each choice corresponds to a different pool

of rhythm guides that suits the stated style of music. Finally, “Structure” is a section that is

responsible for harmonic and structural controls of the output. In “chords” the user can

choose between block, rhythmic and no chords. Variate, Range and Extent options control

the corresponding variables as discussed in 4.2.3, and “scale” allows users to choose a

major or minor scale in the key of their preference.

After the sections that contain controls about the parameterisation of the generation

process, the “generate” button can be used to initialise the MIDI creation. The MMM

Generator plugin achieves this by sending the user’s chosen values to the server. It then

receives MIDI data that can be played back when the user initiates playback in the DAW.

The arrows symbol below “generate” is a click-and-drag function that can place the MIDI

data as a MIDI item in the DAW tracks. Lastly, the generated MIDI music can be seen in
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visual form at the bottom section of the plugin, in a piano roll of relative distances between

the notes.

The plugin file and the interface code were written in C++ by [Redacted text], founder

of the music software company [Redacted text]. His contribution included the idea and

implementation of the visual representation of the generated MIDI. With his assistance, we

were able to connect the MMM Generator algorithms that are stored in the server to the

plugin interface, enabling us to use the MMM Generator in digital audio workstations. This

allowed us to perform the study concerned with the evaluation of the MMM Generator.

4.3 Evaluating the MMM Generator: Aims

Having built a prototype version of the MMM Generator plugin, we distributed it to music

producers, acquired user feedback about it, and proceeded with evaluating it. The aims

regarding plugin evaluation were to discover the degree to which we succeeded in creating a

useful and high quality music production tool, by using a music cognition literature - informed

approach. The analysis of our study focuses on user sentiment in terms of the software’s

usability, and on user’s positive and negative impressions. Further, thoughts for improvement

were collected, in order to be used for a possible updated version of the MMM Generator

that would be adapted to users’ needs.

The plugin evaluation took place with the combination of an online questionnaire and

text-interviews with music producers. In order to achieve an assessment that would answer

our aims, questions on a series of user experience and usability features were employed.

Such features are related to the ease of use, the workflow, the aid on inspiration, and fitting

the users’ purposes. Overall, we wanted to understand to what extent it is possible to

approach music production plugin development through quantifying aesthetic properties and

tapping into the potential that is found in academic music cognition literature. More
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specifically, we drew insights from the statistical properties of melodies, rhythms and

harmonies, in combination with evaluating listener’s reactions and expectations. By doing so,

we attempted to aid in the improvement of current, and the creation of new and unique

music production plugins. This study of plugin evaluation addresses our larger aim by

focusing on unsupervised remote testing of usability (Barnum & Dragga, 2001).

4.4 Method

4.4.1 Design

A mixture of quantitative and qualitative questions were used for the purpose of deriving

concrete quantifiable evaluations of the plugin, as well as qualitative insights into the

experience of it (Creswell & Plano Clark, 2011). The quantitative questions used rating

scales consisting of 10 points, evaluating statements related to the user’s experience of the

MMM Generator. By comparing to the mean point, we can evaluate whether satisfaction was

reliably positive with respect to a number of experience factors.

The qualitative questions were open-ended prompts that were non-directive, apart

from asking to evaluate positive and negative aspects of the MMM Generator, and aspects

for future development. The qualitative data analysis consisted of defining trends within key

themes that were extracted from the raw responses of participants. The focal themes

included pre-determined and emerging ones, to permit a balance between gaining insight

that is related to the research questions, and having space for unexpected responses, or

new ideas. The questionnaire is shown in Appendix.

4.4.2 Participants

Music producers over the age of 18 were contacted via the social media website Instagram,

using a combination of drawing from personal contacts and a virtual snowball sampling
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technique (Coleman 1958; Baltar & Brunet, 2012). This led to a total sample of twenty male

music producer participants. To confirm participation, they were asked to download the MMM

Generator software, read the manual that was included in the downloaded package, and

spend at least thirty minutes using it in their digital audio workstation. After this session, 16

randomly selected participants filled out a questionnaire, while the remaining 4 took part in a

free text interview via direct messaging on the Instagram platform. The study was approved

by the ethics committee of the Department of Music.

4.4.3 Materials

The online questionnaire used for the study was based on the post-study system usability

questionnaire / PSSUQ (Lewis, 1992), and was modified to suit the assessment of usability

in the context of a VST plugin. Further, free text questions were included, with the purpose of

evaluating any specific positive and negative impressions, as well as to receive ideas for

implementation in future development. These questions were adapted to be used as the

basis for the text-based interviews that were conducted with the second group of

participants, which were carried out in order to enrich the dataset. Both the questionnaire

and the free text based assessments took place after the participants used the VST plugin

version of the MMM Generator in their DAW of choice.

4.5 Results

4.5.1 Quantitative analysis

The distributions of the quantitative questionnaire data were tested against a theoretical

median equal to 5.5, in order to examine the degree to which the participants had a positive

or negative experience of the MMM Generator. These concerned ratings of usefulness,

interestingness, ease of use, uniqueness, cleanliness, speed, how creative it feels, how
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inspiring it is, to what degree it has the features the user needs, and to what degree it fits the

workflow and the purposes of the user.

The data acquired from these scales called for a non parametric approach to the

hypothesis testing (distributions of the answers being tested against the theoretical median

value), since the responses were not distributed according to the normal distribution, as it

was found with the use of a Shapiro-Wilk test for normality. Instead, the Wilcoxon Signed

Rank test was used, for the purpose of comparing the median of the distributions of our

variables with 5.5. This value was chosen as the middle value between 1 (“Very Unuseful”)

and 10 (“Very Useful”), that correspond to the two extremes of the Likert scales. Table 20

shows the multiple Wilcoxon Signed Rank tests that were performed.

Table 20: Hypothesis testing for the usability questionnaire scale items.

One-Sample Wilcoxon Signed Rank Tests

Variable Median Min Max Comparison
Value

Wilcoxon
Sig.

Adjusted
Sig.

Useful 8 3 10 5.5 .002 .007

Interesting 9 5 10 5.5 .001 .006

Easy To

Use

8 2 10 5.5 .011 .016

Unique 8 2 10 5.5 .008 .015

Creative 8 3 10 5.5 .007 .015

Inspiring 9 4 10 5.5 .001 .006

Clean 8 2 10 5.5 .007 .015

Quick 8 1 10 5.5 .012 .017

Features 6 1 10 5.5 .323 .323
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Fits

Workflow

8 2 10 5.5 .027 .033

Fits My

Purpose

6 2 10 5.5 .130 .143

Through these tests, all variables except “Fits My Purpose” and “Has the Features I Need”

were found to have a median value that was statistically significantly above the test value.

These findings held the same outcome after performing a Benjamini-Hotchberg test for

multiple testing, at a significance threshold of q < .05. In Table 21 (see Appendix), we show

the distribution of the ratings for the scale variables.

It is interesting to note that the variables had a median score of 8 or 9, showing that

the MMM Generator was perceived as a useful and high quality tool. However, ratings of

“Fits My Purpose” and “Has the Features I Need” did not give significance, which means that

not all producers needed the software. Further, by not fitting one’s purpose, it is also logical

to have a similar score in the “Features I Need” scale. A correlation analysis using Kendall’s

Tau-b was conducted in order to test this assumption, which indeed indicated a highly

significant, strong correlation between the two variables (Kendall’s Tau = .792, p < .001).

This points to the fact that even though the plugin was evaluated positively, the participants

did not specifically request it, or all of them necessarily need it. This is different from

assuming that the producers, in general, did not need it, as the contrary is highlighted

through the significantly high ratings in the various aspects of usability and output quality. As

the text data shows in the upcoming qualitative analysis section, a percentage of musicians

generally prefered to not use a "helper software" for music composition. Therefore, the

existence of these two sides did not allow significance. As the correlation reveals, if a music

producer felt that this software is not for them, they (logically) also said that it does not have

the features they need.
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4.5.2 Qualitative analysis

These qualitative responses were helpful to cross-validate the findings of the scale items

analysis, and allowed for a more detailed view behind the reasoning with which the

participants completed the questionnaire scales. The data under examination was

concerned with the general impressions of the users. The interviews aimed to gather

information regarding the general thoughts gained from the MMM Generator usage, as well

as the positives, negatives and possible improvement ideas about the MMM Generator.

Similarly, the free text data deriving from the usability questionnaire included responses from

four text-based questions: Their general first impression, what feature they found to be the

most useful, what was the least useful feature, and what would they do to improve about the

Generator given the chance.

The free text data that was gathered from the participants was examined in order to

categorise the feedback into key themes, based on the content of the responses. We used

the themes of Output Quality and User Experience that fit the objectives of our study, along

with ones that emerged during the categorisation of the responses. These themes are

described in Table 22, alongside the number of occurrences in the dataset.

Table 22: Thematic grouping and interpretation of the free text data, along with the

frequency of occurrence for each key theme.

Category of feedback Types of responses Example response Number of references

Good output quality Good melodies and
chords.

Useful.

Helps with
inspiration.

“I do use plugins
like Scaler, Riffer,
Captain Chords
when i get writers
block but these at
times just generate
random notes
which sound like a
mess. Your plugin
actually sounds
good and the

14
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melody works with
the chords which is
awesome.”

Good user experience Unique.

User friendly.

Nice.

Fast.

“Useful and fun to
work with.
Relatively intuitive,
with fast results.”

10

Helps with music

knowledge

Helps with music
knowledge.

“I personally think
that it would be
quite useful for
those who have
difficulties to make
their own melodies
and chord
progressions.”

5

Good market potential Good market
potential.

“It makes music
making possible for
almost anyone. It
can prove to be a
revolutionary
plugin.”

5

Ideas / requests Humanisation.

More styles.

“I would have liked
more options for
rhythms and
structure such as
time signature,
syncopation,
polyrhythms etc."

13

Negative feedback (all) Not intuitive.

I would not use it.

“I wouldn’t use it for
my own songs
though. I feel like
the progressions
and the melodies
are a bit generic.”

8

Overall, we got 34 positive impressions in the topics of music quality, helpfulness, user

experience and market potential. Also, there were 8 negative feedback points, of which 4

were about the labelling of the parameters and user interface, 1 about a lack of features, and

3 about the actual output. In relation to the research questions, the impressions of the

participants suggest a positive sentiment towards the usability of the plugin. This can be
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observed from the frequent mention of the plugin’s high market potential, as well as the

responses regarding the quality of the musical output. These results are in line with the

quantitative analysis, where the medians of the distributions of the scale variables of

usability were higher than the theoretical median.

4.6 Discussion

With this study we sought to find to what degree we succeeded in creating a usable music

generator by using an academic approach. Namely, by using functions that derived from

music cognition studies and literature, and by analysing the features of related music and

software. Also, we wanted to understand what is the overall quality of the generator in terms

of user experience.

The data that we acquired was split into two approaches, that is quantitative and

qualitative data collection. The results of the quantitative approach showed that the ratings

for most usability variables were statistically significantly higher than the middle value. In

particular, this outcome suggests that the generator achieves positive standards in the areas

of usefulness, interestingness, ease of use, uniqueness, cleanliness, speed, creativity and

inspiration. Similarly, the qualitative answers showed a favourable stance on the quality of

the musical output, usability and market potential. Therefore, we can conclude that the MMM

Generator satisfies the goal of being a usable plugin with a good quality standard.

The qualitative remarks of the users showed us the reasoning behind the ratings that

were gathered as quantitative data. Uniqueness, as a highly rated aspect of the software,

seemed to have been achieved by the fact that this kind of software is new in the plugin

industry, and further, the currently available products have not managed to appeal to a

considerably large number of users. This led to feedback related to the fact that some

producers had “never seen programs like this”. Another factor that we infer it added to the
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ratings of uniqueness is that the implementation was not based on AI trained models, which

would be a “black box” approach in the creation of the output, and thus it presented controls

and functionality that have not been implemented in other music generation plugins. Being

able to provide detailed music-focused controls is an added benefit of using music cognition

concepts such as archetypal contours, instead of relying on training a model to learn melodic

contours from data.

This design, by achieving a standard of music output that was received positively by

music producers, led to high usefulness ratings as well. One of them commented: “I have

noticed that the generated melodies and the matching chords are very appealing to myself

and about ~90% of the time I go inspired instantly and had the urge to create a track out of

the generated music coming from the plug-in”. This sentiment, in various degrees, was

repeated through the qualitative feedback and through the ratings of the Likert scales. The

usability of the MMM Generator is what allows it to have a good market potential, because in

the modern music business where producers undertake the role of the composer, they would

often need an aid for this role, if they find a good one. According to a participant in our study

who has produced a big number of hit pop songs in Greek music for the duration of the past

decade: “In modern music production, I think it is the future. Because the new guys are also

a bit lacking [music theory skills]. And it is what they are searching for”.

As discussed in 4.1.3, the market of music generation plugins is at a place where the

users still hold a generally negative view when it comes to their quality of output and

usability, when it comes to scenarios of wanting to use the output in a project as it is,

keeping it relatively unedited. The most positive users hold the point of view that music

generation plugins should be better seen as a secondary tool that can perhaps initiate the

creation of real musical material later on by the songwriter. However, our work can be

interpreted as a contribution to music generation software that can provide insights about

how to approach the creation of such generators. Specifically, we showed that it is possible

to utilise the existing potential found in music psychology literature, as well as the creation of

new studies that quantify aesthetic responses to music. This utilisation can lead to the

123



development of software that has the potential to surpass the weak points of non-cognition

theory - informed works, as it was shown by the high ratings and feedback on usefulness

and quality in the study. However, academic literature was not the only source of ideas for

the development of this software. A use of modern music production techniques and

songwriting theory was also implemented. Also, the current study was not designed to fully

differentiate between academic literature and music making techniques / theory regarding

the degree to which the two different domains contributed to the ratings and qualitative

feedback.

Further, our study showed that the test value was not significant in the scales “Fits

My Purpose” and “Has the Features I Need”. Similarly, the critique coming from qualitative

feedback considered primarily how the parameters were named, and the user interface.

Qualitative feedback also showed us that a percentage of the producers just felt that they do

not want to use a compositional aid of this kind, because it does not fit with how they like to

create music, which is a possible interpretation of the non significance of “Fits My Purpose”

and “Has the Features I Need”. We can conclude that the MMM Generator is not for every

musician who works in a digital audio workstation environment. Rather, it is a better fit for

users who make music that uses electronic elements, such as Electronic Dance Music, Trap,

Pop, and so on, as we recognised from the responses of the producers who were known to

have worked on these musical genres. Also, it appeared useful to people who want to

incorporate less human-like melodies into their works, either by considering the output as

generic, or as artificial, like in the case of one participant: “I love this thing already. I've been

looking for an affordable melody generation tool - primarily to help in creating electronic

tracks. Sometimes you want to create something that sounds really artificial - and this can

help with that. Though, that isn't to discount the variety this tool possesses. I prefer to use it

as a melody generation tool - but the harmony generation was good too”. A possible

explanation about this view of some responders is the absence of timing and velocity

humanisation controls, and that it does not incorporate instrument-specific motifs. Ultimately,

given that it is not possible to create a tool that will appeal to every possible workflow and
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music production style, we could only act on the user interface and parameter-labelling

critique, that was general and not dependent on specific workflow or musical genres.

Another limitation of our work relates to the fact that we used online questionnaires,

instead of an offline examination of how the participants used and evaluated the plugin.

While allowing the participants to work in their own environment certainly has benefits

related to the natural implementation of the MMM Generator to their personal DAW and

system choices, it could be interesting to have some cases of in-person, richer evaluations

of their work with it. This idea had become impossible to implement, since the study ran

through late 2020 and early 2021, in a period when full lockdown measures had taken effect

due to the Covid-19 pandemic.

As next steps to progress towards fulfilling the needs of users, we rethought the user

interface with a focus on simplicity and easy to use functionality. Specifically, the UI will now

consist only of the Scale option, and buttons that trigger pre-configured combinations of

settings, also known as presets. The buttons will be categorised in the sections Full Part

(includes extended Melody and Chords), Lead (main melody only), Bass (presets that create

bass parts), Keys (oriented towards chords), and FX (presets that output notes that are

meant to be used as starting points for the sound design of effects). Further, the UI will

include an “advanced settings” button that leads to a new screen. This option would allow

users to access the settings that were in the interface of the version of the study, giving them

the opportunity to create musical output through all possible combinations of settings,

instead of relying on the pre-configured combinations of the initial screen. With this

approach, we greatly simplify the UI and the process of generating musical output, while

keeping the quality of it at an optimal level through the use of preset configurations. At the

same time, we allow the more advanced or curious producers to fine-tune their output and

delve deeper into the possibilities of the MMM Generator.
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5. Discussion and conclusion

5.1 Introduction

5.1.1 Main research questions

This thesis was concerned with cognitive concepts related to melodic preferences, and

attempted to capture quantifiable elements of what makes melodies sound pleasing to

listeners, through the use of statistical concepts and analysis of listener preferences. By

using both new insights and drawing from literature, these elements were subsequently used

as a basis for the development of software that generates MIDI musical segments. The

thesis included two studies concerning the perception of melodies, and a study about the

user satisfaction in regards to the software. In particular, the main research questions were

as follows:

1) What is the role of statistical distributions of pitches in melodies when it comes to

liking, and how is perceived complexity and interestingness associated with liking?

2) What is the relationship between working memory load and liking ratings and how

does the fulfilment of melodic expectations affect the ratings?

3) To what degree did we succeed in creating a high-quality product that addresses the

needs of music producers? This question is asked in the context of using a

methodology of quantifying aesthetic and cognitive properties of melodies, found in

the studies of this project and past music cognition literature, and using them in order

to produce a music generator software.

In this final chapter, we summarise how these questions have been answered through the

research we conducted in the project. Also, we present the methodology that was used and

the limitations of our work, along with ideas regarding future steps.
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5.1.2 Rationale for doing this research

This research is based on the overarching aim of creating the MMM Generator, a music

production software that performs algorithmic music generation and that was developed

using insights from academic research in the area of music cognition. In order to achieve

this, we developed research questions as presented in 5.1.1, which have individual aims

focusing on the theme of each question. Specifically, Question 1 explored the perception of

pitch distributions and aimed to contribute to the topic of how they affect aesthetic and

cognitive responses to music. This question was answered through Study 1, and resulted in

main insights regarding what distributions participants preferred, which were subsequently

coded and used in the creation of music generating algorithms.

Likewise, Question 2 was concerned with the effect of working memory limitations

and fulfilment of expectations on melody liking. The aim of this question was to provide new

insights in that topic with the formation of Study 2, which examined the connection between

liking and the other variables by using pitch manipulation of the stimuli, in a similar way to

Study 1. This manipulation allowed a fine-tuned control of pitch-related cognitive load and it

constituted an approach that offered a new way of examining this topic. By doing so, it also

helped in the development of a feature that controls in detail the aspect of complexity in the

output of the MMM Generator, contributing to the overall goal of the project.

Finally, the third main research question examined the idea of combining the creation

of a commercial VST plugin with using a music - cognitive academic approach as the basis

for it. With the implementation of this idea as described in Chapter 4, we wanted to address

a considerable gap that exists in the utilisation of this non computer science based field for

plugin creation. By doing so, our aim was to address the weaknesses of current state of the

art neural network approaches, and offer interesting new opportunities and insights in music

generation. Further, we wanted to evaluate the benefits of using this approach of

development, by analysing user feedback about the plugin.
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5.2 Novel contributions

5.2.1 Addressing the research questions

The contribution of this thesis in academic literature is found in the context of music

cognition research. The aim was to find and express factors that influence the melody liking

preferences of listeners in quantitative ways. As such, it presented studies about how these

possible factors could work. Also, it contributed to the DAW plugin industry with the

development of the MMM Generator. A summary of the research questions along with the

related contributions of this project is presented in the following subsections.

Question 1: What is the role of statistical distributions of pitches in melodies when it

comes to liking, and how is perceived complexity and interestingness associated with

liking?

The role of statistical distributions of pitches in liking was explored via the comparison of

multiple pitch distributions, that were related to what was termed in Study 1 as the Uniformity

Principle: A hypothesis stating that a completely even distribution of pitches within the range

of a melody results in liking ratings that are higher than those of less even pitch distributions.

The results of the particular analysis did show strong statistical significance in the liking

differences between distributions that were created with the uniform generation rules, as

described in Chapter 2, and those that were created by progressively more skewed ones. In

particular, melodies generated from the uniform algorithm had more positive ratings than the

rest, supporting our hypothesis. Furthermore, the significance of these differences held for

the group of musician listeners, as defined by attendance of formal music education or

self-taught music skills, and not for non-musicians.

In Study 1, the secondary idea of exploring the performance of variables that are

related to liking, as perceptual properties, was also assessed. Specifically, we tested for a

possible association of complexity and interestingness ratings with the ones of liking. This

was performed both for the whole sample, and for demographic subsamples. What was
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shown in the whole sample analysis is a strong association between interestingness and

liking, and moderate associations in the complexity-interestingness and complexity-liking

pairs of comparisons. Regarding the demographic subsamples analyses, no statistically

significant associations were found within the binary split groups of age, gender or musical

experience, in any pairwise comparison of liking, interestingness and complexity. Overall, the

exploration of these variables resulted in the implication that interestingness is an attribute of

melodies that is associated with liking.

We consider the results regarding the Uniformity Principle to imply that a sense of

balance, when it comes to the distribution of pitches within the range of a melody, has a

positive impact in liking. This contribution offers a quantifiable and directly implementable

way to improve the perceived quality of melodic output in music generation algorithms in

general. Also, it offers a rule that is reminiscent of Gestalt principles, such as symmetry and

good figure, adding to the understanding of how universal psychological principles may

apply to the aesthetic appreciation of music.

Regarding its place in literature, this finding is an addition to the examination of the

sensitivity of music listeners in statistical distributions, where it has been shown that

distributions influence listener’s perception of musical features, such as the key of a

composition (Vos & Van Geenen, 1996; Yoshino & Abe, 2004), and aesthetic preferences

(Voss & Clarke, 1978; Manaris et. al, 2003). Further, it indicates that as in other areas of

music cognition (Kishon-Rabin et. al, 2001; Liu et. al, 2018; Medina & Barraza, 2019), there

are differences in how musicians and non-musicians perceive musical properties, since the

effect of Uniformity Principle was only found in the group of musician participants. Regarding

the association between interestingness and liking, we obtained a result that shows a

positive effect of curiosity in participants’ liking responses, making this another perceptual

variable that affects liking, in addition to the perception of pitch distributions. It is an outcome

that confirms the past, yet few, scales-based studies about the particular link of

interestingness and preferability in music (Russell, 1994) and art (Aitken, 1974).
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Question 2: What is the relationship between working memory load and liking ratings

and how does the fulfilment of melodic expectations affect the ratings?

In the second study of the thesis, the role of working memory regarding aesthetic responses

in melodies was explored, as a possible factor of influence in liking ratings that can be

controlled quantitatively. In particular, we investigated how accurately listeners recognise

relationships between melodic segments under varying stimuli complexity. Also, we explored

the degree to which the perception of a successful recognition of such relationships is linked

to aesthetic pleasure, by testing for differences in liking ratings between stimuli of lower and

higher perceived complexity. As pointed out in Margulis (2016), systematically studying

perceived complexity could allow us to measure how listeners process musical structure,

and how it is involved in aesthetic preferences. Study 2 is a contribution in this area of

research. Its results comprise implications about the perception of complexity as a musical

feature, and as a factor of aesthetic judgement of melodies.

Concerning the link between aesthetic judgement and perceived complexity, there

was no association found, since the comparisons of the means of liking ratings did not show

statistically significant differences between lower and higher complexity stimuli. While it is a

study not directly comparable to the literature of the inverted U relationship between

complexity and liking, due to the absence of a wide enough range of complexity levels, it

examined the same link and found no significance in the specific range. Further, the study

showed that listeners perceived changes in complexity in accordance with the design of the

study, by rating melodies with bigger intervals as more complex than the ones with smaller

intervals. This was also the case with faster melodies, which were perceived as more

complex than slower ones. We concluded that listeners were able to correctly identify

changes in complexity between the stimuli, and that complexity did not affect their

preferences. In connection with musical structure processing, the participants’ performance

in the pattern recognition task was not affected by changes in the complexity of melodic

stimuli. This is a result that does not replicate the findings of past studies with the same

hypothesis by Dowling & Bartlett (1981) and Dewitt & Crowder (1986), and that could be
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explained by the difficulty of the task of how exactly inverted a melody is (contrary to the task

in the other studies, that used exact copies of the melodies). As such, it showed that in non

extreme low and high points of complexity, there were no statistically significant differences

in liking ratings and in changes of melodic expectations.

Question 3: To what degree did we succeed in creating a high-quality product that

addresses the needs of music producers?

Developing the generator software in the context of the PhD project provided a novel

framework for plugin making, that showed the possibility and displayed an approach of

utilising music cognitive literature in the processes of creation and evaluation. It addressed

the sub questions that contribute to the answer of Question 3: 1) How can we use this

literature for the creation of a DAW plugin? 2) How can we increase the usefulness and

quality of the product by analysing the marketplace and utilising user feedback?

Our contribution regarding the first question has been a central point in the project,

and a thread that connected the perceptual studies with the creation of a music generator

plugin for the DAW environment. As it was shown in Chapter 4, the generation algorithms

that were used for the creation of the stimuli in the studies formed a basis, on which further

development took place and resulted in the finalised features of the plugin. In order for this to

happen, the design of the studies and the levels of manipulation of the cognitive variables

were created in a way that allowed the transition from the studies to a generator software. In

particular, the studies explored musical features (such as pitch distributions and complexity)

which were tested in order to find their optimal values, and results regarding hypotheses of

music-cognitive concepts. The melodies used for the scale rating tests were created with

generation algorithms that varied the values of the musical features. As a result, the MMM

Generator got its initial values and ranges of values from the data acquired by the listener's

responses, and precisely setting the values of the variables was made possible by creating

corresponding sliders on the plugin’s user interface. This way of development showed how it

is possible to explore variables of interest, study their significance in aesthetic perception of
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musical material, and use the design and results of the studies in order to develop functions

of a plugin based on them. This approach of analysis by synthesis has been used in music

software development for research purposes in the past (Friberg et. al, 2000; Friberg, Bresin

& Sundberg, 2006; Livingstone et. al, 2010; Williams et. al, 2017; Micallef Grimaud & Eerola,

2021), but not in the context of music generation, or of the plugin market.

Concerning the second question, about how to increase usefulness and quality of the

plugin, the thesis contributed in two ways. Firstly, it did so by providing ways to incorporate

theoretical knowledge and concepts in music cognition, along with modern music production

best practices, into the process of development. This approach was coupled with an analysis

of the marketplace, in order to identify how other generators functioned and what their

strengths and weaknesses are, according to user opinions and interface design literature.

The complexity of the interfaces and workflow, along with the music output quality, were

reviewed and used in order to inform the development of the MMM Generator in terms of

avoiding bad practises found in other products, and identifying gaps in the marketplace

where there was room for improvement. Secondly, as discussed in the upcoming 5.2.2

section, it provided a study that allowed the analysis of user's thoughts about usefulness and

quality, with the use of scales, open text questions and interviews. In summary, the

processes of collection and analysis of the data in Study 3 can be considered as a

contribution to the plugin industry when it comes to insights about how to approach product

development and evaluation. The rationale behind the consideration of this procedure as

contribution is based on the fact that it can be used as a generalisable framework, which

plugin companies can use for market research purposes during the developmental phase of

software creation.

Finally, an important contribution of the project in the industry is the MMM Generator

plugin, which achieved statistically significantly high ratings during its evaluation study in the

areas of usefulness, interestingness, ease of use, uniqueness, cleanliness, speed, creativity

and inspiration. Further, the responses of the open text questions showed an equally positive

evaluation regarding the quality of the musical output, as well as usability and potential in the
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DAW plugin marketplace. These results were achieved despite the fact that, as documented

via online review sources discussed in Chapter 4, users do not yet hold a positive view about

the majority of music generation products in terms of quality and usefulness in their music

production process, for the role of plugins that create ready-to-use melodies. They suggest

that our approach of using a quantitative music cognition based design along songwriting

and production techniques was successful, exceeding some of the limitations in the

development of music generation plugins regarding usability and output quality, as

evidenced by the interviews and open ended answers during Study 3. In particular, users of

all levels reported that the plugin generated melodies that sounded well-formed, in contrast

to a frequent “random note” - like output they get from other generators. The MMM generator

was especially useful in creating ideas to start a new song, by providing a good melodic and

chord progression basis, and further, users felt that it was useful due to its features that

allowed precise control of the output material.

5.2.2 Methodological contributions

With this thesis we aimed to contribute not only in cognition literature and the industry, but

also in ways that extend to broader music research methodology. Specifically, academic

concepts were operationalised and implemented in a music technology product. The steps

with which this goal was accomplished constitute a generalisable framework that can be

used for other projects that aim to perform a transition of theoretical research into its use in

industry applications. In the case of the current project, there was a separation of the

methodology into two phases. The first phase consisted of the formulation of the perceptual

studies. In the second phase, the insights from these studies were used along with past

literature and the use of music production workflow concepts, in order to develop the MMM

Generator.
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Perceptual Studies

With regards to the formulation phase, there were two main concepts that were followed and

that allowed the creation of the studies, those of conceptualising the research and of

experimenting at the initial creation stage. About the first, the primary objective was to create

studies that allowed for a quantification of aesthetic properties, as an attempt to control and

improve these properties for the MIDI creation. This objective called for a conceptualisation

of what is being investigated, in order to obtain coherency in the project and maintain a

logical structure in the controls of the MMM Generator during the second phase. The way to

maintain coherency between the studies was to examine related concepts, and use the

second study as a follow up to the first. Particularly, in Study 1 we examined the concept of

pitch distributions in liking, and in Study 2 we explored pitch intervals in relation to cognitive

load, which served as a follow up to the findings of Study 1 where an association of

complexity with interestingness and liking was found.

The second concept in forming the studies has to do with the role of experimentation

in creating initial ideas for exploration. In the broad literature there exist many choices if one

wishes to identify gaps and work on them, but the choice of topics was dictated by the

purpose of creating a music generator that used quantified and coded properties that are

related to aesthetic appreciation. The topics of research were therefore determined by the

kind of contribution that we wanted to make in the industry, as opposed to pursuing the

examination of gaps as a first step and looking for ways to implement the outcomes into a

software after the fact. In the case of the current thesis, ideas about how the statistical

properties of pitch distributions could affect liking responses (and aid in the quality of the

generated output) were initially produced through intuition, and preceded the creation of the

related study. Then, the experimentation phase included the exploration of various ways to

create a pitch generator that operated on the basis of generating through the use of

statistical distributions and their parameters. The creation of such a pitch generating

algorithm led to the possibility of systematically creating stimuli with statistical properties of

controlled values, and consequently, the development of a hypothesis about their effects on

134



liking ratings. At that point, we had substantial context that could allow us to connect these

ideas to the literature and design the study. This process highlighted the benefit of

connecting ideas from different disciplines. Namely, the connection of examining statistical

distribution properties that was borrowed from descriptive statistics, with the relationship

between the sense of balance and aesthetic appreciation from the field of music cognition.

Similarly to Study 1, an observation about how the continuation of a melody by

adding an exact inversion of itself leads to the continuation sound a bit “off key” for some

listeners, resulted in the investigation of how relationships between melodic parts can

influence aesthetic perception. The next step was to experiment with the creation of

algorithms that took a melody as input and generated altered (i.e. inverted) versions of it,

which gave us the opportunity and the design idea to create controlled deviations from initial

melodies, and systematically study the cognitive performance of listeners in understanding

the relationship between the original and the progressively more complex altered melodies.

These algorithms were then used in order to generate the stimuli of Study 2, which was

developed in the context of literature that explores the relationship between cognitive load

and liking in melodies.

Implementation of studies in the MMM Generator

The algorithms of the two studies, in terms of ways to control the melodic output and of the

settings that worked the best in terms of liking responses as revealed in the studies, were

fundamental for the development of the MMM Generator. Their consequent use in the

product, while utilising the new information gained from the studies in the process, highlights

the benefit of planning the research in accordance with the aim of a future implementation in

the development of a product. Of course, this did not rule out the employment of pre-existing

literature in music cognition that could be used in the creation of the plugin. As applied in the

generation of stimuli for the perceptual studies, our interpretation in computer code of the

archetypal melodic contours of Meyer (1973) was also used in the MMM Generator, in the

section related to shaping the melodies. Further, we were inspired by the concept of the
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inverted U relationship (Berlyne, 1971) between likings responses and the complexity of a

stimulus when choosing and limiting the lowest and highest values of the “tighten” slider,

which controlled the complexity of the melodies by affecting pitch distances.

So far we have presented the link between research and the generator software,

emphasising the significance of designing research that is made to fit the purpose of

software development of this kind, along with using past research by interpreting it in code.

However, there is not one particular way to implement the algorithms and findings of the

perceptual studies into the MMM Generator. It is crucial that the design is focused towards

the needs of the user base, which consists of both hobbyist and professional music

producers. In the plugin market it is typical to develop products that appeal to both types of

users, since hobbyists need simplicity due to a lack of expert understanding, and

professionals have the same need in order to achieve time optimisation in their workflow. For

this reason, the amount of success of the product in terms of output quality and usefulness

ultimately depends not only on the quality of the algorithms and research, but also on the

developer’s understanding and skills when it comes to contemporary music production

techniques and workflow. Further, an understanding of the existing solutions in the market

and the userbase’s perception of them is also critical, in order to identify gaps and good

practices of the competitive software offerings, as it was shown in Study 3 of the current

thesis.

Finally, an important aspect of the methodology in creating the plugin was to

incorporate feedback from the users who downloaded and used the MMM Generator in their

music making environment. In Study 3, we provided a design that includes a combination of

scales and open ended questions that were then recoded into main themes and keywords,

in order to analyse the users’ sentiment about the quality and usefulness of the software.

This process was also especially useful for examining the possibility of further improvements

of the plugin towards output quality and the users’ needs, through the use of text-based

open structure interviews, and the questionnaire’s open ended questions.

136



5.2.3 Limitations and future steps

On the subject of this project’s limitations, the main aspect is that the participants of the

studies worked in an unsupervised setting, at their own place. The completion of the online

questionnaires, interviews and tryout of the MMM Generator all happened remotely. It was a

design decision led by the fact that online remote distribution of the questionnaires allows for

a bigger dataset, as it enables more participants to join the study. As the big majority of the

data collection happened during the covid lockdown periods, it was also the only choice that

could be made so that the project could be completed.

The effect of a remote design is a possible constraint on achieving significant results,

because of the possible existence of factors influencing the accuracy of responses, under

the conditions in which the participation is taking place. In particular, an interesting outcome

is that we could not confirm a strong association between complexity and liking in the

perceptual studies. This could be caused by the design of the stimuli which did not reach

extended complexity values, in order for an inverted U relationship to appear, and also by

the remote and unsupervised setting in which the participants rated the stimuli and that could

hinder the emergence of associations under unfocused or less than ideal listening settings.

Further, as pattern recognition in Study 2 was not found to be affected by the changes in

complexity levels, the idea of how the fulfilment of expectations could affect liking was not

fully fleshed out, and it could be investigated further.

Regarding Study 3, there were cases of participants who reported that the plugin was

not working. Some of the reports could have been raised by actual incompatibility between

the plugin and the participant’s computer system, but a part of them could have been caused

by inability of the participant to properly install or operate the plugin. This was an issue

causing us to lose some users that wanted to participate in the study and that is related to

the remote nature of the design, because we could have provided better help in the testing

process if the study had been done in a supervised and local setting. Further, through this

study we did not extensively address differences between the degree to which the academic
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literature domain and the music production and songwriting domain contributed to the ratings

and impressions of the listeners towards the MMM Generator. Also, a direct comparison of

its quality and usefulness when compared to other generators in the market was not

attempted. Finally, it is worth noting that there are factors inseparable to the nature of the

study that could affect ratings. For example, when provided with a new technology,

participants may view it under a favourable light due to the element of novelty. On the other

hand, AI based music generation technology is thought to be perceived with a strong

negative bias (Shank et. al, 2022).

To sum up, the span of the thesis points to further exploration of complexity, as an

interesting direction for future research in the context of quantifying aesthetic aspects in

music, and in its potential importance in the link between melodic expectations and liking.

This direction could help to either find more results regarding optimal values for music

generation processes relating to complexity, by using different study designs, or it could

further challenge the relationship between complexity and liking that is supported in music

cognition literature. More broadly, research in the framework we presented in the project, but

beyond the aspect of pitch, could provide new ways to generate musical output and to

evaluate the ways in which listeners experience aesthetic responses to music. Such routes

could be the quantification of variables on music performance, and on rhythm complexity.

Regarding future steps in software creation, an extra direction to implementing the ones

described about the perceptual studies, would be the creation of a hybrid developmental

approach that combines the neural network techniques presented in Chapter 4 with the

approach we used for the MMM Generator in this project. This approach would be an

augmentation of the software code that would enable novel and hybrid features, along with a

broader variety of musical output in comparison to generation algorithms that are primarily

based on one of the two original approaches.
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5.3 Concluding remarks

We conclude that the thesis was successful in its aims of making a contribution to music

cognition literature, to the music software industry, and to the methodology of creating a link

between them. It showed an approach of using perceptual concepts that are related to

aesthetic responses in music, in order to draw quantifiable elements that were examined in

their effect on liking ratings of melodic excerpts. Such concepts were the processing of pitch

distributions and perceived melodic complexity, which resulted in studies that offered insights

about optimally distributed pitches (termed as the Uniformity Principle) and the association of

perceived complexity with pitch intervals and tempo.

The use of these insights, along concepts found in past literature, constituted a basis

for the development of a software that generated music parts in the context of the DAW

environment. This was achieved with a further analysis concerning music generation plugins

that are already released in the market. This analysis gave us an understanding of good

practices, and identified gaps that could be addressed by using a software development

approach presented in this thesis. A study that was conducted with the aim of understanding

the usefulness and quality of the software we developed showed highly positive results in

both of those domains. The software is currently under further development in order to be

released commercially with [Redacted text], a leading DAW plugin company. Overall, this

project provides new insights in quantitative music cognition, and a framework for

research-focused plugin development that indicates a strongly positive outlook on the

potential of using music cognition for the creation of innovative and high quality plugins.
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Table 21: Exact frequencies of respondents’ ratings in Study 3 questionnaire.

Variable Frequencies of Rating Values Median
Rating

1 2 3 4 5 6 7 8 9 10

Useful 0 0 1 0 0 1 5 3 0 6 8

Interesting 0 0 0 0 2 2 1 3 1 7 9

Easy To
Use 0 1 0 0 3 1 1 4 3 3 8

Unique 0 1 0 1 1 2 2 2 2 5 8

Creative 0 0 1 1 2 1 1 4 1 5 8

Inspiring 0 0 0 1 1 0 3 2 4 5 9

Clean 0 1 0 1 1 1 1 5 3 3 8

Quick 1 0 0 1 2 0 1 4 2 5 8

Features I
Need 1 0 2 4 1 1 0 0 4 3 6

Fits
Workflow 0 1 0 1 3 2 1 1 2 5 8

Fits My
Purposes 0 1 3 0 2 3 0 1 1 5 6
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