
Mechanical Properties of Metamaterials in Time

Domain: Numerical Homogenisation Approach

Ismail Hamed Ali Abuzayed

A thesis is submitted towards the fulfilment requirements

for the degree of

Doctor of Philosophy in

The Department of Civil and Structural Engineering

At The University of Sheffield

August 2022





Abstract

The mechanical behaviour of metamaterials typically depends on their microstruc-

tural configuration and composition. The design of these materials requires exten-

sive experiments or complex finite element models which tend to be numerically

demanding. In order to understand, control and optimise the macroscopic me-

chanical behaviour, in this thesis numerical homogenisation is applied to a simple

square unit cell with a single inclusion using a combination of elastic and vis-

coelastic responses on the micro level. Through a systematic analysis of unit cell

behaviour with increasingly complex microstructural configurations, it is shown

how certain macroscale constitutive laws can be obtained in a controlled and con-

trollable manner. The effective properties obtained from quasi static tests were

used to predict the homogenised dynamic response of periodic unit cells. Finally,

the concept of time homogenisation is introduced as a method of obtaining the

effective properties from the dynamic time history response of unit cells.
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Glossary

RVE: The smallest volume at which it can yield the effective properties of the

macro behaviour when analysed. It should be large enough to contain sufficient

information about the microstructure [41,47].

Unit cell: The smallest building block that a metamaterial is built by, or the

smallest microstructure that a metamaterial is built by its duplicates.

Metamaterials: meta means “beyond” in Greek, and metamaterials are ma-

terials that explicit unusual properties which cannot be found in natural materi-

als [61]; examples of such unusual properties include negative Poisson’s ratio and

negative compressiblity.

Static: response of material that has no time dependence, such as a linear elastic

RVE under constant load.

Quasi static: response of material that has time dependence, but neglected

inertial effect, such as viscoelastic RVE under constant loading.

Dynamic: response of a material where inertial effects are high and cannot

be ignored such as an RVE modeled under an impulsive loading.

xvii



Glossary xviii

Plane stress: If the stress across one plane is very small or null, that plane

can treated as a plane stress and the problem can be simplified to 2D.

Plane strain: If the strain across one plane is very small or null, that plane

can treated as a plane strain and the problem can be simplified to 2D.



Chapter 1

Introduction

1.1 Aim and Motivation

Materials were key factors in humanity’s development over history, such that ages

were named after them e.g. the stone, the bronze and the iron ages. The growth

of human activities has increased the demand for innovative materials. The initial

innovation in materials was in their composition and fabrication method; for in-

stance, the use of steel reinforcement bars in concrete structures to overcome the

weakness of concrete in resisting tension loads. Another basic example is carbon

steel, in which adding carbon to iron improves the overall strength. Modern in-

dustries, e.g. the aerospace industry, increased the demand for high-performance

materials with relatively low weight. A well known example that can fulfil such

requirements are composite materials e.g. carbon fibre and glass fibre, which tend

to have a very high strength-to-weight ratio.

With the presence of nanotechnology, the factors that influence material overall

properties at small length scales can be studied. At the same time, the develop-

ment of additive manufacturing technologies made it more feasible to manipulate

relevant properties, at small length scales, that influence the material properties.

1



Chapter 1. Introduction 2

The state of the art metamaterials allow us to alter the micro structural configu-

ration and composition. Therefore, we can achieve materials with properties that

are challenging or impossible to achive in conventional materials [97,112]. Exam-

ples of these properties include negative Poisson’s ratio1 metamaterials [13, 46],

which can be implemented in many engineering applications such as foams with

acoustic properties [89]. Another remarkable example is negative compressibil-

ity2 metamaterials [36, 77], which can be applied to develop actuators and pro-

tective mechanical devices, subwavelength lenses and acoustic shielding [36, 77].

Furthermore, strain rate dependent metamaterials, such as negative viscoelas-

tic3 behaviour [56], can be utilised to develop special medical devices and soft

robotics [56]. Design and optimisation of metamaterials can be achieved using

experimental and numerical approaches. Experimental approaches tend to give a

reliable understanding of the performance of a metamaterial. However, using ex-

perimental programs to optimise a metamaterial often leads to material wastage

and high costs. Thus numerical approaches is more suitable for optimisation as

they allow us to study and optimise different factors that influence metamaterials

properties. Metamaterials macroscopic properties are highly dependent on the

microstructural configuration, and parent materials; therefore, developing an un-

derstanding of these effects, microstructural configuration, and parent material,

for a certain type of metamaterials can be used towards optimization.

The recent fast growing and inspiring applications of metamaterials have moti-

vated this present study aiming to develop a parametric study tool to understand

1Negative Poisson’s ratio: behaviour of materials that contract transversely when com-
pressed and expand transversely when stretched [13].

2Negative compressibility: behaviour of materials that expand in at least one direction while
they are compressed in all directions [36].

3Negative viscoelasticity: materials that show less instantaneous stiffness when loaded with
higher strain rates [56].



3 1.2. Scope and Objectives

the influence of microstructural configuration and material composition on the

overall behaviour of metamaterials. In this thesis, the focus is on elastic and

viscoelastic behaviour of metamaterials.

1.2 Scope and Objectives

In this section, a summary of the scope and objectives of this thesis is presented.

First, a review of metamaterials design and optimisation methodologies will be

carried out, with a focus on the most generic methodologies that are not re-

stricted to a single microstructure or material behaviour; followed by obtaining a

methodology to model metamaterials with relatively low computational cost. In

this study all analysis has been made to 2D unit cells to simplify the problem,

where extension of this work to 3D is possible and kept for future work. Further-

more, loading scenarios were uniaxial all through this thesis; this has been con-

sidered such hat more time is given to studying different material properties and

inclusions. This methodology has then be used to develop a numerical analysis

code to study the influence of micro structure aspects and material composition

on the overall performance, leading to formulation of closed form expressions of

the effective elastic and viscoelastic properties of periodic metamaterials under

quasi static loading conditions. The effective properties from quasi static tests

were then used, along with analytical solutions, to predict the behaviour under

dynamic loading. Finally, an attempt is carried out to obtain effective properties

of periodic metamaterials from the dynamic response. The novel contributions

of this thesis, in terms of theoretical work, are the development of homogenisa-

tion in space as well as in time and the homogenisation of transient mechanical

behaviour. Furthermore, in terms of implementation, a novel contribution of this

thesis is the development of the script described in Section 3.4 that allows for

large-scale automated parameter studies.
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The objectives of this study are:

• To develop a homogenisation tool that is capable of carrying out parametric

studies of 2D unit cells.

• To study the macrostructural properties and how they are influenced by

inclusion’s size and orientation on simple metamaterials with elastic and

viscoelastic unit cells.

• To implement the concept of numerical homogenisation in time domain

dynamics and test if the response of single unit cell is enough to obtain

macro material properties from dynamic behaviour.

• To introduce the concept of time averaging to obtain effective properties of

periodic metamaterials from the dynamic response.

1.3 Thesis outline

Chapter 1: A summary of the motivation and objectives of this thesis.

Chapter 2: A literature review on the evaluation of mechanical properties of

metamaterials with an emphasis on homogenisation methods. A summary of prin-

ciples of numerical homogenisation was included along with constitutive models

of materials used in this thesis.

Chapter 3: Discussion of all the numerical work and methodology used in this

study, furthermore a discussion of challenges and limitations. The chapter starts

by presenting aspects of fine element modelling such as element types, mesh cri-

teria and time step convergence. In addition, a discussion of boundary conditions

is presented for cases of quasi static and dynamic loading conditions. Finally,

a script is presented that has been developed to perform parametric studies of

a large number of RVEs (Representative Volume Element) in a fully automated
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manner.

Chapter 4: In this chapter, a parametric study was conducted under quasi static

loading conditions for elastic, viscoelastic and composite RVEs with different in-

clusion’s area, inclination angles and aspect ratios. Closed form expressions were

found that describe the macroscale material properties in terms of the microscale

constituents.

Chapter 5: This chapter starts with a derivation of an analytical solution, under

dynamic loading, for single degree of freedom systems of Maxwell viscoelastic

and the standard solid models including inertia. Furthermore, it presents the

dynamic homogenised response of RVEs in the time domain, and compares it

with analytical obtained from quasi-static tests.

Chapter 6: This chapter introduces the time homogenisation hypothesis as a

method to obtain homogenised material properties from dynamic time domain

response of elastic, viscoelastic and composite unit cells, in which time averag-

ing was employed to lower the fluctuations of stress and strain and thus obtain

homogenised material properties with increased confidence.

Chapter 7: This chapter highlights the main findings and conclusions. In addi-

tion, a discussion of limitations and possible improvements for future research is

presented in detail.
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Chapter 2

Literature Review and

Theoretical Background

2.1 Introduction

Modern manufacturing technologies, such as additive manufacturing, have made

it possible to specify and design microstructural properties to achieve desired

macrostructural properties, which may be difficult to achieve with conventional

or natural materials [8]. The concept of metamaterials refers to materials that

are build with specified microstructure to gain desired properties on the macro

level [97]. According to the literature, metamaterials applications in engineering

roughly fall into three main fields, namely electromagnetic, acoustic and mechan-

ical applications [4].

The macro level properties of metamaterials depend on the properties of the orig-

inal material, relative density and the microstructural configuration of the unit

cell, and they can be designed using different parent materials and manufactur-

ing techniques. Typical examples of metamaterials geometries in the literature

include lattice structures such as pyramids [62], octagons [24] and re-entrant

7
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cubes [80, 81], more metamaterials micro structures can be found in Table 2.1.

Furthermore, parent materials vary from metals such as titanium [55, 64, 80, 81]

and stainless steel [37, 62, 96, 107] to polymers [38] and porous ceramics [15]. In

this thesis, the focus will be on mechanical metamaterials with particular empha-

sis on elastic and viscoelastic properties.

Table 2.1: Mechanical metamaterials micro structures [114]

In this chapter, a review of metamaterials mechanical properties evaluation meth-

ods with emphasis on homogenisation methods is presented in Sections 2.2 and

2.3. A discussion about the size of the representative volume element (RVE) is

presented in Section 2.4; a background review of the basic principles of homogeni-

sation is summarised in Section 2.5. Finally, Section 2.6 presents a review of the

relevant constitutive models.
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2.2 Metamaterials

According to the literature, the analysis of metamaterials can be summarised into

main three main methodologies, which are experimental, analytical and numeri-

cal approaches. In this section, relevant examples of each approach are presented,

along with a discussion of each approach’s advantages and limitations. Several

studies have addressed the mechanical performance of metamaterials experimen-

tally, e.g. [15, 71]. Sypeck and Wadley have used an experimental procedure to

compare open-cell periodic lattice metamaterials with stochastic cellular struc-

tures; they concluded that open-cell periodic lattice metamaterials provide higher

mechanical properties (stiffness, energy absorption, and heat exchange) compared

with stochastic cellular structures [98]. A remarkable experimental study that

addressed the dynamic behaviour of crystals metamaterial can be found in the

works of Liu et al., where they developed sonic crystals metamaterial for the

purpose of localising resonant [68]. The authors have reported that the overall

behaviour of the material shows an effective negative elastic constitutive matrix

constants under low sonic frequencies [68]. Experimental approaches can be par-

ticularly useful to identify failure modes [80]. However, experimental approaches

are not conclusive for optimisation of the metamaterial microstructure, since they

are often costly, dependent on trial and error, and subject to limitations of the

experimental set-up [58].

To overcome the limitations of experimental procedures, analytical approaches

can be utilised to design or determine the properties of metamaterials, for instance

by using structural mechanics theories based on trusses, beams [58] or plates [99].

These methods can be used to identify the initial failure properties such as the

yield strength, but they are feasible for relatively simple microstructural geome-

tries and simple material models [58]. To assess more general structural and

material properties, analytical approaches can be combined with numerical sim-
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ulations such as finite element (FE) computations. Bruno and coworkers studied

the relationship between micro and macro properties on porous ceramic, closed

cell stochastic cellular materials under uniaxial loading [15]. Their results show a

linear dependency between average micro stress and applied macro stress through

the porosity, void distribution and ratio, of the ceramic sample. Furthermore, it

was found that the average micro strain depends on the macro strain through the

morphology factor, while the microscopic modulus does not depend onmorphology

and Poisson’s ratio does not depend on porosity [15]. Furthermore, Maskery and

coworkers investigated a surface-based lattice numerically in terms of cell type,

orientation and volume fraction, resulting in general design parameters and design

criteria. The unit cell geometry was found to play an important role in deter-

mining the elastic modulus, while the effect of orientation on the elastic modulus

was found to be less pronounced [71]. In a related study, a Ti-6Al-4V titanium

alloy lattice has been studied under cyclic and fatigue loading, which demon-

strated the potential use of lattice metamaterials in dental fillings [55]. Indeed, it

has been reported by several studies that numerical modeling of metamaterials is

computationally demanding [2, 81]. Few studies have addressed optimisation of

metamaterials for specific applications and loading scenarios. Relevant examples

of such studies include auxetic metamaterials [113], buckling induced mechani-

cal metamaterials for energy absorption applications [21], lattice structures [92],

3D fabricated multi layer metamaterials for energy absorption performance [50].

These optimization methods can be utilised to optimise a specific type of metama-

terial for a specific application or loading conditions. However, these optimisation

methods exhibit a limitation on the metamaterial geometry, loading conditions,

and material models.
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2.3 Homogenisation methods

Using conventional numerical modelling techniques, such as detailed FE models,

to simulate the full metamaterial specimen usually requires high computational

cost and time. A promising alternative is homogenisation methods, which depend

on detailed modelling of a unit cell and using averaging techniques to homogenise

the results to obtain the macro mechanical properties of metamaterial. This can

lead to significant reductions in analysis time and computational cost. Further-

more, it allows researchers to study factors that influence the macro constitutive

parameters of metamaterials such as micro material properties and microstruc-

tural configuration. Thus, a better understanding of the influence of micro prop-

erties on the macro level behaviour can be gained, in which this knowledge can

be employed in optimising the microstructural configuration and material prop-

erties to achieve desired performance at macro level. Several homogenisation

schemes have been utilised to determine homogenised material properties, see

for instance the in-depth review of Kouznetsova and coworkers [60]. Another

noteworthy review that addresses the implementations and challenges of compu-

tational homogenisation can be found in the work of Geers [30]. The first, and

most basic approach of homogenisation focuses on homogenised moduli and fol-

lows the so-called rule of mixtures. This method is simple and straightforward

and can provide upper and lower bounds of the relevant properties, however, it

works only for linear material behaviour [60].

The second approach is analytical homogenisation [26,40,42,47]. In this method,

the homogenised material properties of the macrostructure are obtained from the

analytical or semi-analytical solution of a boundary problem of one inclusion in an

infinite matrix material. Several studies in the literature have employed analytical

approaches to obtain homogenised material problems. Examples of such studies

include the work of Li et al. on honeycomb sandwich plates under bending [63],
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Wang’s study on unidirectional composites [105], and Chen and Schuh study

on periodic composites [22] using an analytical homogenisation approach. Indeed

this method is self-consistent and it yields accurate results for regular geometries,

however it cannot be used to model the behaviour of cluster structures nor high

contrasts between phases [60].

A third method is asymptotic homogenisation theory [25, 28, 101]. Indeed, this

method is an expansion of displacement and stress fields utilising natural length

parameters, such as the ratio of size and distribution of heterogeneities between

microstructure to macrostructure. Effective homogenised properties can be ob-

tained using this method as well as local stress and strain values. An outstanding

implementation of asymptotic homogenisation in analysing linear elastic peri-

odic composite materials is presented in the studies of Pinho-da-Cruz et al. and

Oliveira et al. [78, 85]. However, this method is typically restricted to simple

microstructural geometries, small strains and simple material behaviour [60].

Fourthly, unit cell numerical methods rely on fitting the results of detailed mod-

elling of a microscale Representative Volume Element (RVE) to the macrostruc-

tural homogenised properties. The concept of an RVE was introduced by Hill [47]

and it is taken as a volume portion at micro-level such that the homogenised me-

chanical behaviour of the RVE is equivalent to the macrostructural mechanical

behaviour. The RVE should typically be as small as possible, but large enough

to contain sufficient details about the heterogeneities [103], further details and

discussion about RVE existence and definition are included in Section 2.4. A fun-

damental assumption in any numerical homogenisation scheme is that random

heterogeneous material is statistically homogeneous – that is, the macrostructure

behaves similarly, within user-defined levels of acceptable error, to duplicates of a

single RVE. To predict the behaviour of heterogeneous materials using numerical

homogenisation, an RVE should be defined and analysed; the results should be
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subsequently fitted in a postulated constitutive relation between micro and macro

levels. Numerical homogenisation has been utilised and developed for many ap-

plications such as polymers [103], ceramics [33] and concrete [90]. This method

allows simulation of complex microstructural behaviour and, hence, the study

of the microstructure configuration effect on the overall macroscale properties

and response. The main challenge in numerical homogenisation is establishing a

robust and versatile constitutive connection between micro and macro levels [60].

Fifthly, multiscale computational homogenisation methods have been developed

[27, 60, 72, 95, 100]. This method does not yield a closed-form expression for the

macrostructural material behaviour, but instead estimates the macrostructural

stress-strain relationship by solving, numerically, boundary value problems for

RVEs assigned to every integration point in the macrostructure. Computational

homogenisation consists of three main steps, which employ two levels of simula-

tions and have to be applied iteratively for every time step. First, an arbitrary

homogenised specimen (representing the macro level) is solved using the FEM.

Next, the strains obtained at each integration point are applied as loading to

a unique RVE corresponding to a given integration point. The last step is to

solve the RVE response and translate the obtained microscale reaction forces

into macroscale stresses for the full specimen [60]. This method is suitable to

model complex microstructures as it does not have a limitation on the number or

configuration of RVEs. On the other hand, this method is less suitable for optimi-

sation design purposes, and studying material behaviour due to microstructural

effect, as it yields a phenomenological stress-strain behaviour for the macrostruc-

ture based on microstructural solution, rather than a closed-form constitutive

law.

Indeed, the microstructural configuration of metamaterials also play an impor-

tant role in the dynamic mechanical response [4, 8, 52, 75]. Several studies have
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employed different methods of homogenisation to study the dynamic behaviour

of metamaterials. A state of the art multi scale computational homogenisation

approach for metamaterials was introduced by Pham et al. and further developed

by Liu and Reina where they formulated a second-order enriched homogenisation

scheme to simulate linear elastic metamaterials [65, 84, 87]. This approach has

been widely used in the literature, for instance, Liu and Reina have employed

this approach to study resonant behaviour of elastic metamaterials and band

gaps; they have reported that employing homogenisation in modeling leads to

a fraction of the cost of modeling the macro model [66]. Other homogenisation

approaches were suggested in the literature to model metamaterials in dynamics;

for instance, Molinari and Mercier have employed the averaged velocity field and

virtual work principle to obtain a relationship between macroscopic stress and

strain rate of heterogeneous metamaterials [74]. On the other hand, Sieck et al.

have obtained a non-local expression for the effective properties of infinite periodic

acoustic metamaterials, where they have used the averaged stain and momentum

fields to obtain expressions [93]. The methods discussed in this paragraph are

powerful tools to analyse a well defined microstructure, however, the numerical

homogenisation method is more suitable to formulate a closed form constitutive

model of the macro material properties, based on microstructural configuration

and properties. Obtaining a direct relation between macro and micro properties

helps in developing knowledge about the influence of micro properties, and their

importance, on macro behaviour, and yet optimisation of these micro properties

can be carried out. in In this work, the numerical homogenisation approach will
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be applied to RVEs under static1, quasi static2 and dynamic3 loading conditions.

2.4 Representative volume element

The concept of representative volume element (RVE) refers to the smallest por-

tion of the volume that can be used to obtain the effective homogenised macro

properties; however, the RVE should be large enough to contain sufficient details

about the micro structure [41]. The spatial dimensions of the RVE differ from one

material to another, due to the level of heterogeneity, micro material behaviour,

and microstructural configuration of heterogeneities. In a general non-periodic

heterogeneous material, a study to determine the correct RVE size is essential

prior to applying any homogenisation or averaging. Analytical, statistical and

experimental procedures have been suggested and used to determine the size of

an RVE. For an overview of RVE existence and determination methodologies, the

reader is referred to [32].

In the literature, several studies have addressed RVE size determination; for in-

stance, Kanit et al. have suggested a methodology to determine the RVE size of

random composites using statistical and numerical approaches [57]. Pelissou et

al. have studied random composites, where they established a correlation factor

between RVE size required to model elastic and fracture behaviours [83]. Fur-

thermore, Mirkhalaf et al. studied the RVE size of heterogeneous polymers that

undergo a softening behaviour; they concluded side lengths equal to 5 times the

1Static: response of material that has no time dependence, such as a linear elastic RVE
under constant load.

2Quasi static: response of material that has time dependence, but neglected inertial effect,
such as viscoelastic RVE under constant loading.

3Dynamic: response of a material where inertial effects are high and cannot be ignored such
as an RVE modeled under an impulsive loading.
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average grain size is sufficient to represent the macro behaviour [73]. Koohbor et

al. have studied the RVE size of woven composites experimentally, where they

concluded that the RVE size of woven composites is dependent on strain and

loading orientation [59]. It is noted by several studies that setting a firm deter-

mination methodology of RVE size is challenging in modelling material behaviour

that undergoes localisation, such as softening behaviour and fracture [73,83].

On the other hand, determining the RVE size of periodic metamaterials is rela-

tively straightforward, since periodic metamaterials are made of duplicates of a

specific unit cell. Several studies have demonstrated that the RVE of periodic

materials can be taken as a single unit cell under quasi static loading condi-

tions [34, 49, 103]; this consideration is valid in case the RVE is used to study

homogenised effective properties. If the study aims to evaluate a phenomenon

where localisation occurs such as fracture or stress softening, more than one

unit cell might be required to obtain an RVE as shown in the following stud-

ies [76,109,110]. In this thesis, the aim of the study is to evaluate macro material

parameters of periodic metamaterials; therefore, a simple periodic metamaterial

RVE with single inclusion is considered as shown in Figure 2.1, where the effects

of the inclusion’s size, aspect ratio and inclination angle with respect to the load-

ing will be studied in the following chapters. A verification has been carried out

by a rudimentary convergence study, comparing the response of 1x1 unit cell with

that of 2x2 and 4x4 unit cells, concluding that a single inclusion unit cell can be

used as an effective RVE for various loading conditions.
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Macro level

Micro level

Figure 2.1: Representative volume element of a periodic metamaterial.

2.5 Principles of Homogenisation

In this section a brief explanation of the averaging concepts in homogenisation

theories is presented, starting by a definition of the homogenised stress and strain,

followed by the concepts of average stress and average strain theorems and final-

ising with the Hill-Mandel macrohomogeneity condition [31,47,48,60,103,111].

The volume average of a generic quantity ψ̄ is defined as [47,48]

ψ̄ =
1

Ω

∫
Ω

ψ(x, y) dΩ (2.1)

where ψ̄ is the averaged, homogenised, quantity at the macro level, while ψ(x, y)

is the quantity at the micro level, x and y are the spatial coordinates. Ω is the

volume domain of the integral, hence Ω becomes the volume of the RVE (VR).

Next, the strain is written as εij = 1
2
(ui,j + uj,i), where u is the displacement,
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the index before the comma indicates the displacement component, while the

index following the comma indicates a partial derivative with respect to the local

coordinate [47, 48].

ε̄ij =
1

VR

∫
VR

εij(x, y) dV =
1

VR

∫
VR

1

2
(ui,j+uj,i) dV =

1

2VR

∮
∂VR

(uinj+ujni) dS (2.2)

where the Gauss divergence theorem has been employed to change the volume

integral to an associated boundary integral. Here ni is the outward normal vector

of the RVE boundary ∂VR.

Substituting ui = xj ε̄ij in Equation (2.2), where xj is a vector of RVE dimensions

and ε̄ij is the averaged strain tensor, then yields

1

2VR

∮
∂VR

(xj ε̄ijnj + xj ε̄jini) dS =
1

2VR

∮
∂VR

(ε̄ikxknj + ε̄jkxkni) dS (2.3)

Equation (2.3) is turned to a volume integral as follows,

1

2VR

∫
VR

(ε̄ikδkj + ε̄jkδki) dV = ε̄ij (2.4)

This finding is called the average strain theorem which demonstrates that the

avarage strain, obtained from displacement along the RVE boundary, is equal to

the homogenised strain ε̄ij [111].

In equilibrium, the stress field σij in a complex microstructured RVE is not con-

stant over the volume of the RVE; the stress field can be written as follows
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σij = σikδjk = σik
∂xj
∂xk

= (σikxj),k − σik,kxj (2.5)

In first order homogenisation an assumption of σij,j = 0 is considered, which is

valid for RVEs in equilibrium and with zero body forces [31, 60, 111]. Therefore

Equation (2.5) is reduced to

σij = (σikxj),k (2.6)

Applying the averaging integral of Equation (2.1) and employing the Gauss di-

vergence theorem yields

σ̄ij =
1

VR

∫
VR

(σikxj),k dV =
1

VR

∮
∂VR

σikxjnk dS (2.7)

Using the equality t0i = σiknk, where t
0
i is the traction, the homogenised stress

can be written as

σ̄ij =
1

VR

∮
∂VR

t0ixj dS (2.8)

The so called average stress theorem can be verified if Equation (2.7) holds, which

states that the averaged stress over the entire RVE is equal to the stress obtained

from the boundary of the RVE [111] as follows

1

VR

∫
VR

(σikxj),k dV =
1

VR

∮
∂VR

t0ixj dS = σ̄ij (2.9)

The transition between micro to macro properties should satisfy the Hill-Mandel
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macrohomogeneity condition [31, 47, 48, 60]. The condition states that the ho-

mogenised, averaged, strain energy density is equivalent to the strain energy

density of the heterogeneous RVE; in other words the virtual work at macro and

micro levels should be equal.

The strain energy density at macro level is defined as:

U =
1

2
σ̄ij ε̄ij (2.10)

The following condition should be satisfied in order for the Hill-Mandel macro-

homogeneity condition to hold:

σ̄ij ε̄ij =
1

VR

∫
VR

σijεij dV (2.11)

It has been demonstrated that uniform traction, uniform displacement and pe-

riodic boundary conditions satisfy the Hill-Mandel macrohomogeneity condition

[31,111]-see Section 3.3 for a detailed discussion of boundary conditions for RVEs.

2.6 Review of Materials Constitutive Models

This section summarises the relevant equations of linear elasticity [7, 70], linear

viscoelasticity [12, 70, 104] and the Maxwell form of the Standard Solid Model

[12,70,104] for viscoelastic material behaviour. These constitutive equations will

be employed in the numerical parametric studies in the following chapters.

2.6.1 Linear elasticity

A 2D linear elastic plane stress constitutive equation can be written, as usual

[7, 70], as:
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σxx

σyy

σxy

 =


C11 C12 0

C21 C22 0

0 0 C23



εxx

εyy

γxy

 =
E

1− υ2


1 υ 0

υ 1 0

0 0 1−υ
2



εxx

εyy

γxy

 (2.12)

where [σxx, σyy, σxy]
T is the stress vector, [εxx, εyy, γxy]

T is the strain vector, E

represents elastic modulus and υ represents Poisson’s ratio.

If uniaxial tension is applied to a 2D elastic model in the x direction (11) via an

imposed strain vector of [εxx, 0, 0], the homogenised elastic constants C̄11 and

C̄12 can be obtained from the following expressions; where by applying a strain

vector of [1, 0, 0] C̄11 and C̄12 are equal to σxx and σyy:

σxx = C11εxx =
E

1− υ2
εxx (2.13)

σyy = C21εxx =
Eυ

1− υ2
εxx (2.14)

The macroscopic constitutive parameters Cij can be evaluated by the following

equation; while, the macroscopic stress σ̄ij and strain ε̄ij were computed using

Equations (2.3) and (2.8).

C̄ij =
σ̄ij
ε̄ij

(2.15)

From Equations (2.13) and (2.14), the macroscopic homogenised elastic modulus

Ē and Poisson’s ratio ῡ can be expressed as

Ē = Ē11 = C̄11

(
1−

(
C̄21

C̄11

)2
)

(2.16)

ῡ = ῡ12 =

(
C̄21

C̄11

)
(2.17)

The other constitutive constants can similarly be found via appropriately defined
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alternative imposed strain vectors.

2.6.2 Linear viscoelasticity

Certain types of materials exhibit changes in their behaviour over time, e.g. stress

relaxation, creep or more general strain rate dependence. Among the several

models that have been developed to represent the viscoelastic behaviour of mate-

rials, we mention Maxwell, Kelvin-Voigt, the standard linear solid model, Burgers

model and the generalized Maxwell mode [104]l.

The Maxwell model is composed of a linear spring and a linear dashpot, con-

nected in series (Figure 2.2a). Similarly, the Kelvin-Voigt model is composed

of a linear spring and a linear dashpot, which are connected in parallel. More

complex models such as the standard solid model (Figure 2.2b), which consist

of combinations of springs and dashpots, tend to give a better representation of

creep and relaxation phenomena compared with Maxwell or Kelvin-Voigt mod-

els [12, 70,104].

E

η

E 2

E1

η

(a) (b)

Figure 2.2: (a) Maxwell viscoelastic model (b) Maxwell form of the Standard
Solid model

The constitutive equation for a Maxwell-type material is written as follows:
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σ +
η

E
σ̇ = ηε̇ (2.18)

where σ is the stress, η the dynamic viscosity of the viscous damper, E the elastic

modulus of the spring, σ̇ is the stress rate, and ε̇ is the strain rate.

In stress relaxation, strain is constant over time, therefore ε̇ = 0, and ε = ε0 is

the imposed strain. Therefore, Equation (2.18) turns into a first order differential

equation with initial condition σ(τ) = E · ε0, where τ is the load duration [70].

For stress relaxation, the solution of Equation (2.18) can be expressed as follows

σ(t) = E · ε0 · e
−E
η

(t−τ) (2.19)

In creep, the stress is constant in time, therefore σ̇ = 0, and σ = σ0 is the

imposed stress. Equation (2.18) then turns into a first order differential equation

with initial condition ε(τ) = σ0/E where τ is the load duration [70].

Thus, for creep, the solution of Equation (2.18) can be expressed as follows

ε(t) =
σ0
η
(t− τ) +

σ0
E

(2.20)

The homogenised stress σ̄(t) and strain ε̄(t) can be constructed by evaluating

Equations (2.3) and (2.8) at every time instant; while the macro material proper-

ties Ē and η̄ can be evaluated by fitting the curves of σ̄(t) and ε̄(t) to Equations

(2.19) and (2.20) depending on the loading condition. This homogenisation pro-

cedure is based on the assumption that the macro and micro constitutive models

are expected to behave in a similar pattern, which motivated the use of the same

constitutive law although with different values of the constitutive coefficients.
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2.6.3 The Maxwell form of the Standard Solid Model for

Viscoelastic Material

The Standard Solid model can give a better representation of both creep and stress

relaxation phenomena. This is because the Standard Solid Model is enriched with

a parallel spring that allows it to capture infinite elastic modulus and it allows

for an exponential decay of both creep and stress relaxation. This model has two

different forms, namely the Maxwell form and the Kelvin form. The Maxwell

form of this model is constructed by connecting a linear spring element (elastic

modulus E1) in parallel with a Maxwell element (elastic modulus E2 and dynamic

viscosity η) as shown in Figure 2.2b, and this is the form that will be adopted

in this study [12, 70, 104]. This form has been chosen because it is capable of

representing the macro behaviour of composite unit cells such that the spring

represent the elastic inclusion and the spring-dashpot represent the viscoelastic

matrix.

The stress-strain relationship for the standard solid model is given as follows:

σ +
η

E2

σ̇ = E1ε+

(
1 +

E1

E2

)
ηε̇ (2.21)

When a viscoelastic material is subjected to a constant strain (i.e. a relaxation

test), we can assume ε̇ = 0, and ε = ε0 from time τ onwards. Therefore, Equation

(2.21) is reduced to

σ +
η

E2

σ̇ = E1ε0 (2.22)

The first order ordinary differential equation (2.22) can be solved with initial

condition σ(τ) = (E1 + E2) · ε0, the solution of which can be written as
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σ(t) = E2ε0e
−E2
η

(t−τ) + E1ε0 (2.23)

E1 is also equal to the long term (final) elastic modulus E∞, after relaxation,

while E1 + E2 can be defined as the initial elastic modulus E0. This allows

to reformulate the stress-strain relation in terms of micro-scale properties as a

stress-strain relation in terms of macro-scale properties:

σ(t) = (E0 − E∞)ε0e
−(E0−E∞)

η
(t−τ) + E∞ε0 (2.24)

from which follows an expression for the time-dependent elastic modulus

E(t) = (E0 − E∞)e
−(E0−E∞)

η
(t−τ) + E∞ (2.25)

When a viscoelastic material is subjected to a constant stress (creep), we can

assume σ̇ = 0, and σ = σ0 from time τ. Therefore, Equation (2.21) is reduced to

σ0 = E1ε+

(
1 +

E1

E2

)
ηε̇ (2.26)

If the first order ordinary differential equation given in Equation (2.26) is com-

pleted with initial condition ε(τ) = σ0

E1+E2
, the solution can be written as

ε(t) = σ0

(
1

E1 + E2

− 1

E1

)
e

−E1E2
(E1+E2)η

(t−τ)
+
σ0
E1

(2.27)

Similar to relaxation, E1 is equal to the long term (final) elastic modulus E∞,

while E1 + E2 can be defined as the initial Elastic modulus E0. Thus,
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ε(t) = σ0

(
1

E0

− 1

E∞

)
e

−E∞(E0−E∞)
(E0)η

(t−τ)
+

σ0
E∞

(2.28)

Similar to section 2.6.2, Equations (2.3) and (2.8) from section 2.5 can be used

to estimate the homogenised stress σ̄(t) and strain ε̄(t) at every time instant.

Indeed, fitting the homogenised stresses σ̄ and strains ε̄ to Equations (2.24) and

(2.28) can be used to obtain the macro material properties Ē0, Ē∞ and η̄. This

homogenisation procedure is based on the assumption that the Maxwell form of

the standard solid model represents the macro constitutive model, in the loading

direction, of a unit cell made up with two materials (linear elastic matrix and

Maxwell viscoelastic inclusion).



Chapter 3

Modelling methodology

3.1 Introduction

The aim of this research is to develop a programmed homogenisation tool to run

parametric studies on periodic RVE. To achieve this aim, this chapter presents the

methodology used to develop a numerical homogenisation tool for single inclusion

RVEs. With reference to Section 2.4, a single inclusion unit cell of size (1 mm × 1

mm) was chosen as an RVE (Figure 3.1). By the end of this chapter, an automated

code will be presented to run parametric studies on RVEs with different inclusion’s

aspect ratios, areas and inclination angle.

This chapter starts with RVE modeling where the Finite Element Method (FEM)

was employed. Mesh criteria, time step convergence and element formulation are

discussed in details in Section 3.2. The software package Abaqus was employed to

produce the mesh for all RVEs, while the FE analysis was performed in LS-DYNA

software package. Next, in Section 3.3, boundary conditions are discussed with

emphasis on periodic boundary conditions. A criterion of implementing periodic

boundary conditions in LS-DYNA is presented for RVEs modeled for creep and

relaxation (Section 3.3.1), while a discussion for implementation of such bound-

27
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Figure 3.1: Representative volume element (1 mm × 1 mm)

ary conditions in dynamics is proposed in Section 3.3.2. An automated code is

developed to run parametric studies on RVEs with different inclusion properties

(Section 3.4). Finally, Section 3.5 presents the methodology at which the auto-

mated code works with, in this case, its shared memory parallel computing. This

code will be used in the following chapters to study different RVEs.

3.2 Finite Element Modelling

As mentioned in Chapter 2, solving a microscale boundary value problem on an

RVE is the first step in any numerical homogenisation scheme. In this thesis,

the FEM is used to model RVEs. LS-DYNA FE software package was chosen, to

model RVEs, for a number of reasons. First, a large number of material models

are implemented in this software, which increase the freedom in choosing RVE

materials. Thus, it makes the outcome of this research easier to be used in other

studies or to be developed in the future. Furthermore, it is relatively easy to code

a script that produces LS-DYNA input files in an automated manner, as well as

interacting with high level programming languages makes it suitable to be used

by someone with elementary knowledge of programming. LS-DYNA is capable
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of running multiple independent models simultaneously thus making it suitable

for parallel computing. This feature has been employed in Section 3.5, resulting

in a significant reduction of computational cost. Nevertheless, LS-DYNA, has a

limitation of not having a meshing tool; this issue has been overcome by using a

different software package, namely Abaqus, to perform meshing jobs.

LS-DYNA is a well established FE solver, which is commonly used in studies

involving time integration. To name few: [19,67,69,86,91] have studied impact and

stress waves, while [3, 88, 94, 108] have used LS-DYNA to model the viscoelastic

response of different materials. To learn more about the development of LS-

DYNA, element formulation, material models and theoretical background of this

software, the reader is referred to [39].

The most commonly used algorithms to model a dynamic problem in FE are im-

plicit or explicit time integration schemes. Implicit time integration use an im-

plicit numerical integration method such as (Newmark, Newton Raphson, etc.);

the quantities of displacement, velocity, and acceleration of the current time step

(tn) are computed from quantities of the previous time step (tn−1). The equili-

brum is achived at every time step, therefore it is considered to be unconditionally

stable, however it is often computationally demanding, since it require matrix in-

version at every time step [10]. On the other hand, explicit time integration

commonly uses the central difference method, in which the nodal forces are used

along with a inverted mass matrix to compute accelerations. This method is

computationally less demanding due to the fact that mass matrix is diagonalised,

thus it is easier to to be inverted [10]. In this thesis, both implicit and explicit

solvers were employed in homogenising RVEs. The implicit solver was employed

to simulate RVEs under quasi static loading condition (Chapter 3), while the ex-

plicit solver was utilised to model RVEs under dynamic loading (Chapter 4). The

next Section (Section 3.2.1) presents the mesh criteria while a convergence study
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of time step is presented in Section 3.2.2; finally the choice of element formulation

has been discussed and justified in Section 3.2.3.

3.2.1 Mesh criteria and convergence

A mapped mesh was considered, where possible, while refinement has been con-

sidered for the stress concentration areas, such as the tip of the inclusion. To

obtain mapped meshes for RVEs with any inclusion, other than void, regardless

of their inclusion’s area, aspect ratio, or inclusion angle, partitions were created

inside the inclusion. The partitions divide the inclusion into a square in the mid-

dle and linear partitions over the ellipse major and minor axis (as shown in Figure

3.2a). Meshing of all RVEs was obtained using Abaqus software package, while

the automated script (Section 3.4) transfers the mesh file to LS-DYNA format.

(a) Mesh partitions (b) Mesh

Figure 3.2: Mesh partitioning criteria

Throughout this study, the boundaries of any RVE, have been divided into equal

sized mesh discretizations for each pair of parallel boundaries, e.g right and left

boundaries. Hence, periodic boundary conditions can be implemented between

boundaries as mentioned in Section 3.3. A mesh convergence study was conducted

on several RVEs. Indeed, the homogenised results show negligible differences
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(around 1%) between element sizes of 0.1 mm and 0.001 mm for a 1 mm × 1

mm RVE. This is believed to happen due to the specific smooth geometry of the

RVE inclusions, since there are no sharp edges and therefore, singularities were

avoided. The conclusion has been drawn that this problem can be considered to

be mesh independent.

3.2.2 Time step convergence

Under quasi-static loading conditions, the stability of the solution due to time

step size is of no concern since the numerical method used to obtain the solution

is unconditionally stable (implicit). However, in time dependent material models,

the accuracy of the solution is influenced by the time step size. It is essential to

use a time step that allows for sufficient solution points such that the numer-

ical homogenisation scheme yields reasonable estimates for the time dependent

parameters. A convergence study was carried out for all types of RVEs, at a

converged mesh to obtain the optimum time step size to be used for the anal-

ysis. Figures 3.3 and 3.4 show a convergence study for an RVE with Maxwell

viscoelastic material and a void inclusion; where Figure 3.3 shows the conver-

gence of elastic modulus (E), and Figure 3.4 shows the convergence of dynamic

viscosity (η). A maximum of 5 % difference, between the value of E or η and its

successor, was used as a bench mark to conclude a converged value of E or η.

Therefore, time step at that point is considered to be the converged value (in the

case shown below a time step of 10−2).
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Figure 3.3: Convergence of elastic modulus

Figure 3.4: Convergence of dynamic viscosity

Under dynamic loading conditions, the stability of the solution is highly influenced

by the time step size. In addition to the accuracy aspects discussed above, there
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are now also stability aspects to consider, since the Central Difference Method

is conditionally stable [10]. To obtain meaningful results using explicit time

integration, the time step should be smaller than the critical time step (∆t <

∆tcrit); where the critical time step for linear elements is defined as the length

of the smallest dimension of an element (l) divided by the speed of sound (c)

in the media ∆tcrit = l/c. The speed of sound in a 2 dimensional media is

given by c =
√

E
(1−υ2)ρ

, where E is the elastic modulus, ρ is the mass density

and υ is the Poisson’s ratio. The critical time step for higher order element

formulations is usually lower than linear elements, for more details, the reader is

referred to [6, 9, 51]. The mass density of RVE in static and quasi static loading

condition was taken as ρ = 7.8 × 10−7 kN·s2/m; however, the mass density has

been taken as ρ = 78 kN·s2/m in dynamic loading conditions to increase the

time step required to obtain a stable solution. This increase in mass will change

the natural frequencies of the system however the elastic modulus and dynamic

viscosity (the properties of interest in this study) are not influenced by the change

of mass density.

3.2.3 Element formulation

As the focus of this study is on 2D, plane stress1 or plane strain 2 finite elements

can be used. However the nature of our loading is uniaxial and an assumption of

zero stresses in the third direction (thickness of RVE) is made; therefore, plane

stress (referenced as EQ.12 in LS-DYNA) element formulation was employed to

solve RVEs with elastic material properties. Using a reduced integration plane

stress elements in viscoelastic RVEs resulted in an hourglass phenomena as shown

1Plane stress: If the stress across one plane is very small or null, that plane can treated as
a plane stress and the problem can be simplified to 2D.

2Plane strain: If the strain across one plane is very small or null, that plane can treated as
a plane strain and the problem can be simplified to 2D.



Chapter 3. Modelling methodology 34

in the following figure (Figure 3.5). This phenomena was reported to exist with

reduced integration elements in strain rate dependent materials by several studies

such as [14,17,20,106]. Hourglass phenomena might cause meaningless results by

allowing zero energy deformation modes. The artificial stiffness method, initially

introduced by Flanagan and Belytschk [29], can be used to reduce the effect of

hourglass. In this method, an extra stiffness is added to the elements to reduce the

hourglass due to reduced integration [29]. This method can be implemented in LS-

DYNA by the *CONTROL HOURGLASS command. However, since the nature

of this study address simple RVEs, using full integration element formulation will

not have a restrictively adverse impact on the computational cost. Therefore,

the full integration shell element formulation has been used (referenced as EQ.16

in LS-DYNA) for all viscoelastic RVEs to avoid the hourglass phenomena. The

use of shell elements is because LS-DYNA does not support full integration plane

stress elements. Since the loading is uniaxial, the rotational degrees of freedom

where clamped, therefore it acted as a fully integrated plane stress.

Figure 3.5: Hourglass in viscoelastic RVE (displacements are magnified 5 times)
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3.3 Boundary conditions

To model the response of microscale unit cells, or RVEs, four different types

of boundary conditions can be considered, namely uniform kinematic, uniform

static, mixed and periodic boundary conditions [102, 103]. Uniform kinematic

boundary conditions have an intuitive and direct link to the macroscopic strain

tensor, but tend to overestimate the stiffness of the RVE. On the other hand,

uniform static boundary conditions have a clear link to the macroscopic stress

tensor but tend to underestimate the stiffness of the RVE. To balance the two

effects of over and underestimating the RVE stiffness, mixed boundary conditions

can be used in which some edges have prescribed displacements and the other

edges have prescribed tractions.

Periodic boundary conditions avoid boundary effects and provide a better rep-

resentation of an infinite model. Therefore, these type of boundary conditions

are considered to be the best representative of a unit cell’s physical properties.

Periodic boundary conditions can be imposed to study the mechanical response

of any heterogeneous material with relatively small unit cells [103]. In the litera-

ture, periodic boundary conditions have been widely used for the homogenisation

of heterogeneous materials [31,60,103].

3.3.1 Boundary conditions under quasi-static loading

In a relaxation test, periodic boundary conditions (PBC) are established straight

forwardly as follows. Firstly, the average horizontal normal strain is realised by

imposing a displacement in the x-direction at two corner nodes of the unit cell

(C2 and C3 in Figure 3.6 a), while the y translational degrees of freedom at these

nodes are free. Also, the x and y translational degrees of freedom of the other two

corner nodes (C1 and C4 in Figure 3.6 a) are fixed. Then, multi-point constraints

are applied on the remaining edge nodes of the unit cell. In order to achieve this,
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the difference between x displacements of the right edge nodes (RN1, RN2, RN3,

. . . ) and left edge nodes (LN1, LN2, LN3, . . . ) are coupled with the horizontal

displacements of the corner node that is,

uRNi
x − uLNi

x = uC2
x (3.1)

In addition, the y displacements of the right edge nodes (RN1, RN2, RN3, . . . )

are coupled with the y displacements of the left edge nodes (LN1, LN2, LN3,

. . . ),

uRNi
y − uLNi

y = uC2
y (3.2)

Similarly, x and y displacements of the top edge nodes (TN1, TN2, TN3, . . . ) are

coupled with the x and y displacements of the bottom edge nodes (BN1, BN2,

BN3, . . . ), respectively:

uTNi
x − uBNi

x = 0 (3.3)

uTNi
y − uBNi

y = 0 (3.4)

On the other hand, in a creep test, a constant force is imposed on an external

node in the x direction, while the difference between x displacements of the right

edge nodes (RN1, RN2, RN3, . . . ) and left edge nodes (LN1, LN2, LN3, . . . ) are

coupled with this external node’s displacement in the x direction (Figure 3.6 b),

uRNi
x − uLNi

x = upx (3.5)

The degrees of freedom at the remaining nodes are coupled following a similar
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Figure 3.6: Periodic boundary conditions: (a) Relaxation (b)Creep

approach that is used for the relaxation case (Equations (3.4) and (3.5)).

Periodic boundary conditions are applied in the LS-DYNA software package using

the CONSTRAINED MULTIPLE GLOBAL command. Constraining of nodes,

and preparation of the periodic boundary conditions file was achieved by the

automated script as discussed in the following section. The script lines (of tying

nodes and writing PBC file) are presented in Appendix A.1. This script allows

modeling of RVEs with periodic boundary conditions in time domain and does

not restrict material model to be linear elastic. There is an existing tool to obtain

effective properties in the literature, this tool is called PBC Abaqus plugin tool

[79]; this tool is well developed for elastic RVEs, however it doesn’t model RVEs

in time domain or with complex material models. The results of elastic RVEs

modeled under PBC obtained using this script were verified and checked with the

PBC Abaqus plugin tool [79]. For a given linear elastic RVE, the homogenised

properties, obtained from this script and the Abaqus plugin tool [79], show a

great match with each other.

3.3.2 Boundary conditions under dynamic loading

The periodic boundary conditions implementation methodology in Section 3.3.1

depend on constraining the displacement of two nodes with a prescribed displace-
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ment of the other node. This is known as the stiffness penalty method, where it can

be visualised as a very stiff spring acting between the nodes of constraint [5, 45].

Several studies reported that the stiffness penalty method reduces the critical

time step enormously in conditionally stable time integration schemes [11, 18].

Furthermore, it has been reported by [44, 53] that the maximum eigenfrequency

is significantly increased in solutions obtained while implementing this method.

Another approach of constraining nodes is the inertia penalty method, where

an artificial mass or moment inertia can be used as a substitute to the degree

of freedom constrains as presented in [43, 54]. It can be visualized as a large

mass acting on the boundary to nullify motion (such as the inerter in mechanical

devices) [5, 45]. Using such a method results in a lower critical time step for the

analysis.

In addition to the mentioned limitations of both methods, they also tend to

”limit the motion of the relevant degree of freedom” [5]. A promising solution,

to overcome the limitations of the stiffness and inertia penalty methods, is the

so-called bipenalty method, which was initially introduced by Askes et al. [5], and

further developed by Hetherington et al. [44,45]. This method is a combination of

both the stiffness and the inertia penalty approaches as illustrated with examples

in the following studies [5, 44, 45]. To implement this approach in LS-DYNA,

a user defined element formulation subroutine is required; due to the time and

resources limitation this approach has been kept for future work.

To simulate the mechanical behaviour of RVEs in dynamics, the boundary con-

ditions shown in Figure 3.7 were considered to get as close as possible to PBC.

The top and bottom boundaries (A and B) were constrained for the vertical

movement, and the left edge (C) was constrained for horizontal movement. The

dynamic loading (P (t)) is considered to be applied horizontally on the free edge.

This could be considered as the mixed-boundary conditions option, which was
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proven to be the second-best option in statics [102,103].

P(t)

A

C

B
Figure 3.7: Proposed boundary conditions for dynamic excitation

3.4 Automated script

Once an RVE has been selected, the first step of any numerical homogenisation

scheme is to simulate the mechanical behaviour of an RVE or unit cell numerically

(using FEM in this research). Therefore, an automated script has been developed

to perform unit cell analyses, since the nature of this research requires evaluating

and optimizing different unit cells with different microstructural configurations,

loading conditions and material models. As shown in Figure 3.8, three software

packages, namely Abaqus, LS-DYNA and LS-prepost, have been employed to

create the unit cell, perform the analysis and retrieve the results.

A Matlab code has been developed such that it organizes files and transfers them

from one software package to another. The code starts with 3 for loops varying

inclusion’s aspect ratio, area and inclination angle respectively. In the first step,

Matlab generates a python script as a first output file describing the geometry
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of the unit cell, and inclusion properties. The python script will run through

Abaqus (step 2) to generate a mesh and elements description file (step 3). This

file will be called by the Matlab code and transform the formatting into LS-DYNA

format producing mesh.k and elements.k file (steps 4 and 5). The next step is

generating an LS-DYNA input file by Matlab (step 6) and calling LS-DYNA to

run the model and produce the results (steps 7 and 8). Retrieving the results

is performed by LS-prespost, therefore the Matlab code produces a script that

specifies the required results to be extracted from LS-prepost (step 9). LS-prepost

will generate the specified results file from LS-DYNA output (steps 10 and 11).

The final steps (12 and 13) are to record the results in a text file containing all

iterations. The output file produced by Matlab is a text file that presents the

configuration variables (aspect ratio, inclusion area and inclusion orientation) and

the results (homogenised material properties) in one file to be further analysed.

This code will be used to run series of different RVEs configurations and material

properties. Examples of an Abaqus python script and LS-DYNA input file are

given in Sections (A.2) and (A.3) of the Appendix respectively.
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Matlab Code  

for Asp=[ specified range]; 

for Area=[ specified range]; 

for theta =[ specified range]; 

 

1– Compute the inclusion configu-

ration specifications and write a 

python script that describes the 

RVE (to be discretized using 

Abaqus). 

 

 

2– Rearrange mesh format to ls 

dyna format. 

 

 

3– Write Ls-dyna Elements.k file 

and Nodes.k file.  

 

 

4– Write Ls-Dyna input file, with 

specified material model, loading 

conditions and boundary condi-

tions. 

 

5– Write LS-Prepost script that 

specify the required results to be 

extracted from ls dyna output file.  

6– Formulate an array for Forces 

vs Time; and find the maximum 

force. 

7– Access results.txt file, add the 

iteration number, configuration 

Python Script 

(geometry of RVE 

and inclusion  

specification)  

Mesh File (abaqus 

format) 

Mesh File (LS-Dyna 

format): elements 

file and nodes file  

LS-Dyna input file  

Results file for a 

specific  RVE (force 

vs Time) 

LS-Prepost Script: to 

specify required 

results (written in 

c++)  

Final results.txt file, includes the 

following: iteration number, inclu-

sion specifications and reaction forc-

es (to be edited by Matlab for every 

iteration) 

LS-Dyna output file  

Abaqus 

LS-Dyna 

LS-Prepost 

2

3

10

1112
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5

1

7

8

13

Figure 3.8: Flowchart for the analysis code
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3.5 Parallel computing

The nature of this research requires analysing a very large amount of RVEs to

obtain sufficient knowledge about macro structural behaviour. Therefore, imple-

mentation of the concept of parallel computing would be beneficial to lower the

analysis time and to increase the efficiency of the code by allowing many RVEs

to be analysed simultaneously (given in Figure 3.8). Parallel computing can be

implemented with different logic methodologies, such as shared and distributed

memory algorithms. For further details about parallel computing methodologies,

implementations and examples, the reader is referred to [35, 82]. In this work,

the concept of shared memory was employed such that each iteration, for a given

inclusion’s geometry properties, is performed on a different core while using a

shared memory of the system (Figure 3.9). Such approach can be applied in

MATLAB using the batch function, while specifying a command file for each

specific RVE, as shown in Appendix A.4.

... . . .  .Core 1 Core 2 Core 3 Core n

Master node

(MATLAB Code)

(RVE 1) (RVE 2) (RVE 3) (RVE n)

Shared Memory

Figure 3.9: Parallel computing architecture
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Quasi-static loading conditions

4.1 Introduction

Under quasi-static loading conditions, two main aspects influence the homogenised

properties of an RVE. These aspects are the micro structural configuration and

the constitutive material models at micro level. In a simple RVE, such as the one

mentioned in Chapter 3 (Figure 3.1), the micro structural configuration can be

assessed by the inclusion geometrical properties such as the elliptical inclusion’s

aspect ratio, area and inclination angle. Meanwhile, the constitutive material

models at micro level can be assessed by matrix and inclusion material proper-

ties. To investigate the inclusion’s geometrical effect on the response of RVE, the

codes developed in Chapter 3 were employed to run series of parametric studies.

In these simulations, the RVE dimensions are 1 mm × 1 mm, the inclusion’s

aspect ratio AsR varies between 1 and 3 with 0.5 increments, the area Ar ranges

from 0.1 mm2 to 0.175 mm2 with 0.025 mm2 increments, and the inclination angle

θ varies between 0◦ to 180◦ with 10◦ increments. As the area of the RVE is 1

mm2, the value of the volume fraction of an RVE is always equal to the numeric

value of the inclusion’s area. The loading conditions in this chapter are quasi-

43
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static, all homogenised results in this chapter were obtained while implementing

periodic boundary conditions along the RVE edges. Elastic unit cells are studied

under constant prescribed displacement loading conditions. On the other hand,

unit cells that exhibit viscoelastic response are tested under creep and relaxation

conditions; macro material properties extracted from creep tests coincide with

the ones extracted from relaxation tests as shown in sections 4.3 and 4.4.

The studied properties are the homogenised elastic modulus for a linear elastic

RVE (section 4.2); while the homogenised initial elastic modulus and homogenised

dynamic viscosity were studied for viscoelastic RVEs (section 4.3). In the case of

a composite unit cell, of elastic matrix and viscoelastic inclusion, the homogenised

initial and final elastic moduli and the homogenised dynamic viscosity were in-

vestigated (section 4.4). This chapter has been summarised and published in an

open source journal paper [1].

4.2 Linear elastic RVE with void inclusion

First we consider a linear elastic unit cell with a single elliptical void (Figure 3.1)

to determine the homogenised elastic modulus Ē. Three different elastic moduli

are assumed for the linear elastic matrix: E = 105 GPa, 210 GPa and 420

GPa. Poisson’s ratio υ of the matrix material is set to null to avoid boundary

effects; furthermore, setting the Poisson’s ratio to null allow us to study the

emergent Poisson’s effect due to the inclusion. All the numerical simulations,

including mesh convergence and boundary conditions, were complemented with

correspondence to the methodology mentioned in Chapter 3.

The variation of the homogenised elastic modulus Ē vs inclination angle θ with

respect to different aspect ratios is shown in Figure 4.1. This figure shows the

results of RVEs with Ar=0.175 mm2 and E = 210 GPa . Indeed, all simulations

with different inclusion areas and elastic moduli followed the same pattern. A



45 4.2. Linear elastic RVE with void inclusion

simple method to verify the results is the so called rule of mixtures [16], where

the homogenised elastic modulus has to be between two bonds, upper bond1 and

lower bond2 as described in the footnote. In this case the upper bound is 173

GPa and the lower bound is 0 GPa; All results in Figure 4.1 fall between these

two bonds.
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Figure 4.1: Variation of homogenised elastic modulus Ē with inclusion’s incli-
nation angle θ for different aspect ratios and constant inclusion’s area Ar=0.175
mm2

Although the material model of the matrix, at micro level, was an isotropic linear

elastic, it is noted that the macroscopic constitutive model, homogenised mate-

rial properties, exhibits an anisotropic linear elastic behaviour [1]. Furthermore

Figure 4.2 shows the variation of homogenised Poisson’s ratio ῡ with inclination

1Rule of mixtures upper bound: Ē = VfEinc + (1 − Vf )EM where Ē is the homogenised
elastic modulus, Vf is the volume fraction of the inclusion and (Einc, EM ) are the inclusion and
matrix moduli.

2Rule of mixtures lower bound: Ē = EincEM

VfEM+(1−Vf )Einc
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angel. The homogenised Poisson’s ratio has been computed as described in sec-

tion 2.6.1 (Equation 2.17). It is noted that inclusions induce some Poisson’s effect

although the material model has null Poisson’s ratio.
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Figure 4.2: Variation of homogenised Poisson’s ratio ῡ with inclusion’s inclination
angle θ for different aspect ratios and constant inclusion’s area Ar=0.175 mm2

A closed-form expression (Equation (4.1)) can be obtained through fitting a

trigonometric curve to represent the variation of homogenised elastic modulus

Ē with inclination angle θ for the RVE. That is,

Ē(θ) = E

(
x0 cos(2θ) +

n∑
i=1

xi cos

(
π − 2θ

2i

)
+ C

)
(4.1)

where x0, xi, and C are constants representing configurational parameters, which

depend on the microstructure of the unit cell. In this equation, a summation of

higher-order trigonometric functions can be used to increase the degree of accu-

racy of the results. In the fundamental curve fit (i.e. neglecting the summation)
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Figure 4.3: Comparison between the FE homogenised elastic modulus Ē and its
prediction along different inclination angles θ (Ar=0.175 mm2 and AsR=3)

approximation of Equation (4.1), C is inversely proportional with both the in-

clusion area Ar and aspect ratio AsR, however x0 is directly proportional with

the inclusion area Ar and aspect ratio AsR. The values of x0 and C for different

combinations of aspect ratios and inclusion area can be found in Appendix B

(Tables B.1 and B.2).

The fundamental curve fit prediction for the variation of homogenised elastic

modulus Ē with inclination angle θ for the unit cell made of linear elastic ma-

terial with single elliptical void is presented in Figure 4.3 together with the FE

results. As one can observe from this figure, the fundamental curve fit prediction

yields accurate results. The higher order terms in Equation (4.1) very marginally

improve the prediction [1].
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4.3 Viscoelastic RVE with void inclusion

Secondly, a series of FE analyses is conducted on a linear viscoelastic 2D unit

cell with a single elliptical void. MAT VISCOELASTIC material model of LS-

DYNA, which is based on Maxwell’s standard solid model of viscoelasticity, has

been utilized to model a linear isotropic viscoelastic medium in LS-DYNA. The

input parameters for this material model are: initial shear modulus G0, final shear

modulus G∞, decay constant β and bulk modulus k. In this section, an RVE with

elastic modulus of E=210 GPa, dynamic viscosity of η = 190 GN·s/m2 and Pois-

son’s ratio of υ = 0 has been used to conduct this study. To input these material

parameters in LS-DYNA the initial shear modulus can be written as G0 =
E

2(1+υ)
.

Meanwhile, the final shear modulus G∞=0 since Maxwell viscoelastic material

doesn’t accommodate a finite long term stiffness, decay constant β = E
η

and

bulk modulus k = E
3(1−2υ)

by definition. The material parameters used in the FE

analysis are shown in Table 4.1.

Table 4.1: Linear viscoelastic material model parameters

Behaviour LS-DYNA Model G0 (GPa) G∞ (GPa) k (GPa) β(1/s)

Viscoelastic MAT VISCOELASTIC 105.00 0.00 70.00 1.10

In the numerical simulations, two different loading conditions, namely creep and

stress relaxation (both represented with the Maxwell model), are considered for

the 2D unit cell with a single elliptical void (Figure 3.1). In these simulations,

the variations of the homogenised elastic modulus Ē and homogenised dynamic

viscosity η̄ with inclination angle θ are evaluated. Evaluation of homogenised

elastic modulus and dynamic viscosity has been carried out as per the criteria

mentioned in chapter 2. The details of the numerical models such as mesh conver-

gence, time steps and element formulation were conducted with correspondence

to the methodology mentioned in Chapter 3. The time of the analysis has been
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Figure 4.4: Variation of homogenised elastic modulus Ē with inclination angle θ
using creep and relaxation tests (Ar=0.175 mm2 and AsR=3)

chosen to be sufficient to visualise the full stress relaxation behaviour.

As one can observe from Figures 4.4 and 4.5, the FE models for viscoelastic

unit cells with creep and stress relaxation (using inclusion area Ar=0.175 mm2

and aspect ratio AsR=3) show good correlation for the variation of homogenised

elastic modulus Ē and dynamic viscosity η̄ with inclination angle θ; the same

variation pattern is observed for all other inclusion area and aspect ratios. As

expected the macro material model was Maxwell linear viscoelastic; however it

exhibit an anisotropic behaviour [1].
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Figure 4.5: Variation of homogenised dynamic viscosity η̄ with inclination angle
θ using creep and relaxation tests (Ar=0.175 mm2 and AsR=3)

Similar to the linear elastic case, simple formulas are derived through curve fitting

to represent the variation of homogenised elastic modulus Ē and homogenised

dynamic viscosity η̄ with inclination angle θ for the viscoelastic 2D unit cell with

a single elliptical void:

Ē(θ) = E

(
x0 cos(2θ) +

n∑
i=1

xi cos

(
π − 2θ

2i

)
+ C

)
(4.2)

η̄(θ) = η

(
x0 cos(2θ) +

n∑
i=1

xi cos

(
π − 2θ

2i

)
+ C

)
(4.3)

The homogenised elastic modulus Ē is related to the micro elastic modulus E

(Equation (4.2)). It is noted that the constants C, x0 and xi in this equation are

the same for a linear elastic RVE, discussed in section 4.2. However, Equation

(4.3) relates the homogenised dynamic viscosity η̄ with the microscale dynamic
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viscosity η, whereby C, x0 and xi in this equation are quite different from the elas-

tic modulus equation and the fundamental fit constants (C and x0) are presented

in Appendix B (Tables B.3 and B.4).

4.4 Composite RVE (linear elastic matrix with

viscoelastic inclusion)

Next, a composite unit cell consisting of a linear elastic matrix (Material 1) with

a Maxwell viscoelastic inclusion (Material 2) is created as shown in Figure 4.6.

A parametric study is performed by varying the material properties of the in-

clusion, while the material properties of the matrix (E = 210 GPa and υ = 0)

are kept constant as shown in Table 4.2. Six different composite unit cells are

considered. In composite unit cells 1 to 3, the elastic modulus of the viscoelastic

inclusion (Einc) is varied, while keeping the dynamic viscosity η constant. On

the other hand, the composite unit cells 4 to 6 the elastic modulus Einc and the

dynamic viscosity η of the viscoelastic inclusion are varied but keeping their ra-

tio β constant. The details of the numerical models such as mesh convergence,

time steps and element formulation were conducted with correspondence to the

methodology mentioned in Chapter 3. The time of the analysis has been chosen

to be sufficient to visualise the full stress relaxation behaviour. Similar to the

parametric studies presented in the previous sections, in these simulations, the

aspect ratio AsR varies between 1 and 3 with 0.5 increments, the area Ar ranges

from 0.1 mm2 to 0.175 mm2 with 0.025 mm2 increments, and inclination angle θ

varies between 0◦ to 180◦ with 10◦ increments.



Chapter 4. Quasi-static loading conditions 52

Figure 4.6: Composite unit cell with viscoelastic inclusion

Table 4.2: Material Properties of the composite unit cells

Composite No. Material E (GPa) E∞ (GPa) η (GN·s/m2) β (1/s)

Composite Elastic E=210.00 - - -

unit cell 1 Maxwell Viscoelastic Einc=105.00 0.00 300.00 0.35

Composite Elastic E=210.00 - - -

unit cell 2 Maxwell Viscoelastic Einc=210.00 0.00 300.00 0.70

Composite Elastic E=210.00 - - -

unit cell 3 Maxwell Viscoelastic Einc=420.00 0.00 300.00 1.40

Composite Elastic E=210.00 - - -

unit cell 4 Maxwell Viscoelastic Einc=105.00 0.00 95.46 1.10

Composite Elastic E=210.00 - - -

unit cell 5 Maxwell Viscoelastic Einc=210.00 0.00 190.91 1.10

Composite Elastic E=210.00 - - -

unit cell 6 Maxwell Viscoelastic Einc=420.00 0.00 381.81 1.10

For the composite unit cells given in Table 4.2, the homogenised properties con-

sist of elastic and viscoelastic parts. Therefore, new parameters appear in the

homogenised response, Macro level, that do not exist in the linear elastic nor vis-



53 4.4. Composite RVE (linear elastic matrix with viscoelastic inclusion)

coelastic unit cells with a single elliptical void. For instance, in a stress relaxation

test (Figure 4.7), the infinite elastic modulus Ē∞ is not null for the homogenised

solution (Figure 4.7-c) compared with null Ē∞ in the inclusion (Figure 4.7-b).

Furthermore, the decay constant β has a different definition on the macro level in

comparison to its micro level properties. Indeed, the homogenised dynamic vis-

cosity, at macro level, change with the inclination angle of the inclusion while the

dynamic viscosity of the inclusion is constant at any given area and aspect ratio.

Similarly, in a creep test (Figure 4.8), an exponential growth of the strain in time

is observed, compared to a linear growth in the Maxwell viscoelastic inclusion

and constant strain in the linear elastic matrix at the micro level. Indeed, the

macro constitutive model exhibits anisotropic behaviour due to the configuration

of the inclusion [1].
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Figures 4.9 to 4.12 show the variation of the homogenised initial elastic modulus

Ē0, the homogenised infinite elastic modulus Ē∞, and the homogenised dynamic

viscosity η̄ with the inclination angle θ for the composite unit cells given in Table

2. FE analysis results show that the variation of the initial elastic modulus Ē0

with the inclination angle θ for composite unit cells 1 and 4, composite unit

cells 2 and 5, and composite unit cells 3 and 6 are identical. On the other

hand, the variation of the infinite elastic modulus Ē∞ with the inclination angle

θ is identical for the all composite unit cells, since Ē∞ depends only on the

elastic matrix properties. The variation of the homogenised dynamic viscosity

η̄ with the inclination angle θ show differences for composite unit cells 4 to 6.

The dynamic viscosity is largest for a 90◦ inclination angle, in which case the

composite behaviour resembles most closely that of a series connection between

elastic matrix and viscoelastic inclusion [1].

To verify the suitability of this test to simulate both creep and stress relax-

ation, independent studies have been conducted. The figures below show the

homogenised material model parameters (Ē0, Ē∞ and η̄) from the two tests.

These figures are extracted from combination 5 (Table 4.2) using an aspect ratio

of 3 and an inclusion area of 0.175 mm2 – but note that the same pattern was

observed in all other combinations of material and geometrical properties.
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Figure 4.9: Variation of homogenised initial elastic modulus Ē0 with the incli-
nation angle θ for the composite unit cells 1 to 3 given in Table 4.2 (Ar=0.175
mm2)
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Figure 4.10: Variation of homogenised infinite elastic modulus Ē∞ with the incli-
nation angle θ for composite unit cells 1 to 3 given in Table 4.2 (Ar=0.175 mm2)
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Figure 4.11: Variation of homogenised dynamic viscosity η̄ with the inclination
angle θ for composite unit cells 1 to 3 given in Table 4.2 (Ar=0.175 mm2)
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Figure 4.12: Variation of homogenised dynamic viscosity η̄ with the inclination
angle θ for composite unit cells 4 to 6 given in Table 4.2 (Ar=0.175 mm2)
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Figure 4.13: Variation of homogenised initial elastic modulus Ē0 with the incli-
nation angle θ for composite unit cell 5 given in Table 4.2 (Ar=0.175 mm2 and
AsR=3)

Simple formulas are derived through curve fitting to represent the variation of

homogenised infinite elastic modulus Ē∞ and homogenised dynamic viscosity η̄

with inclination angle θ for the elastic 2D unit cell with a single viscoelastic

inclusion (Figure 4.6):

Ē∞(θ) = E

(
x0 cos(2θ) +

n∑
i=1

xi cos

(
π − 2θ

2i

)
+ C

)
(4.4)

η̄(θ) = η

(
x0 cos(2θ) +

n∑
i=1

xi cos

(
π − 2θ

2i

)
+ C

)
(4.5)

The homogenised infinite elastic modulus Ē∞ depends on the elastic modulus of

the matrix E. Again, the constants C, x0 and xi in this equation are same for a

linear elastic (Section 4.2) and Maxwell viscoelastic (Section 4.3) RVEs (Tables

B.1 and B.2). However, Equation (4.5) relates the macro dynamic viscosity η̄ with
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Figure 4.14: Variation of homogenised infinite elastic modulus Ē∞ with the in-
clination angle θ for composite unit cell 5 given in Table 4.2 (Ar=0.175 mm2 and
AsR=3)
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Figure 4.15: Variation of homogenised dynamic viscosity η̄ with the inclination
angle θ for composite unit cell 5 given in Table 4.2 (Ar=0.175 mm2 and AsR=3)
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the micro dynamic viscosity η; C, x0 and xi in this equation are quite different

from of the dynamic viscosity fit parameters , Section 4.3, and presented in tables

B.5 and B.6 of Appendix B.

4.5 Summary, evaluation and applicability

This chapter study the homogenised material properties of simple elastic and

viscoelastic unit cells. The aim of this chapter to test the developed methodology

in quasi static loading conditions and understand the effect of micro structure

on macro mechanical properties. Thus, a priority was given to test more micro

structures, inclusion’s properties, while fixing material parameters. However,

the same concept apply to other materials with the same constitutive models.

More results for generalised materials are available in Appendix C. Where section

C.1 shows normalised results of elastic RVEs, where the elastic modulus was 1

GPa for aspect ratio 1. Figure C.1 shows the results of all other aspect ratios;

furthermore, Figure C.2 shows the prediction of elastic modulus using Equation

(4.1) where it shows very similar accuracy to the analysis shown in this chapter.

Similarly, section C.2 shows normalised results for viscoelastic RVEs where elastic

modulus of the matrix was taken as 1 GPa and dynamic viscosity of 1 GN·s/m2.

Coincidence of results between creep and relaxation was observed for homogenised

elastic modulus (Figure C.3) and homogenised dynamic viscosity (Figure C.4).

Finally section C.3 shows results for composite RVEs, where Figures C.5 and C.6

show the coincidence of homogenised properties between creep and relaxation

tests. The same pattern was observed comparing to the analysis presented in

this chapter. A conclusion can be drawn that this approach is applicable for any

linear elastic or Maxwell linear viscoelastic unit cell with single inclusion.
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Chapter 5

Dynamic Loading conditions

5.1 Introduction

In this chapter, the homogenised behaviour of unit cells under dynamic loading

conditions is studied. First, the principles of dynamics for the three studied unit

cell cases are reviewed and analytical solutions for the dynamic equations of mo-

tions are formulated (Section 5.2). Second, the loading conditions are discussed

and a link between analytical solution and loading cases have been developed

(Section 5.3). The numerical homogenisation scheme mentioned earlier in Section

2.5 has been employed to obtain the homogenised response of displacement with

respect to time. Boundary conditions of the studied unit cells were implemented

with accordance to methodology presented in Section 3.3.2. The results of unit

cells with linear elastic with void, viscoelastic with void, and linear elastic with

viscoelastic inclusion are presented in Sections 5.4, 5.5 and 5.6 respectively. The

accuracy of the analytical solution prediction compared with the homogenised

time domain response of displacement and velocity is discussed in detail with

possible improvement tips for future work.

61
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5.2 Principles of dynamics

To understand the homogenised behaviour of unit cells in dynamics, a derivation

of the dynamic equation of motion is necessary. In this section a brief summary

will be given of the dynamic response of single degree of freedom (SDoF) systems

for the three considered types of unit cells (elastic with void inclusion, viscoelastic

with void inclusion and elastic with viscoelastic inclusion). In a single degree of

freedom system, the response of the elastic unit cell with void inclusion has been

assumed to act as a spring connected to a lumped mass; while the viscoelastic

unit cell, with void inclusion, has been assumed to act as a spring connected

with a lumped mass and dashpot in series, similar to the Maxwell viscoelastic

constitutive model in quasi static loading mentioned in Section 2.6.2. On the

other hand, the elastic unit cell with Maxwell viscoelastic inclusion has been

assumed as a lumped mass connected with a spring that is connected, in parallel,

with a spring and a dashpot; similar to the standard solid constitutive model in

quasi static loading mentioned in Section 2.6.3.

Unlike quasi static constitutive models (Section 2.6), in this section, all deriva-

tions will be performed with respect to stiffnesses (k, k1 and k2) and damping

constant (c), to obtain an expression for the equation of motion with respect

to time. The formulation of the dynamic equation of motion solution for the

elastic case (Section 5.2.1) follows the methodology and derivation presented by

Chopra [23]. However, in cases of viscoelastic unit cell and elastic unit cell with

viscoelastic inclusion (Sections 5.2.2 and 5.2.3), the obtained solutions of dynamic

equation of motion were derived and formulated based on basics of Newtons sec-

ond law and following the same criteria of Chopra for spring mass system. The

solutions for three material behaviours were obtained for the cases of free vibra-

tion and constant loading. Meanwhile these solutions can be extended to simulate

the response due to a pulse loading by specifying an appropriate initial conditions,
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as shown in Section 5.3.

5.2.1 SDoF: Linear spring

In the absence of damping, the single degree of freedom of a linear elastic unit

cell can be simplified to a mass spring system as follows (Figure 5.1); where M

is the mass of the system, P (t) is the dynamic force function with time, and k is

the stiffness of a linear spring which can be determined from the elastic modulus

of an unit cell. The derivation in this section was carried out in accordance with

the methodology and formulation described by Chopra [23].

k

M

P(t)

f sFigure 5.1: Linear spring-mass model

The equation of motion can be written as:

fk(t) + fI(t) = P (t) (5.1)

where fk(t) = ku(t) is the force in the spring and fI(t) = Mü(t) is the inertial

force.

ku(t) +Mü(t) = P (t) (5.2)

Equation (5.2) is a second order ordinary differential equation. A homogeneous

solution (for a free vibration case) can be written, in the form of trigonometric

function, as follows:

u(t) = Acos(ωt) +Bsin(ωt) (5.3)
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In case the loading is a constant force (P (t) = P0) the solution is a combination

of the homogeneous solution (Equation (5.3)) and a particular solution (P0/k) as

follows:

u(t) = Acos(ωt) +Bsin(ωt) + P0/k (5.4)

The constant ω is a property of the dynamic system, therefore it depends solely

on the system properties (stiffness k and mass M).

ω =

√
k

M
(5.5)

On the other hand, the constants A and B depend on the initial conditions of

the system (of displacement u(0) and velocity u̇(0)) and the applied force P (t).

Indeed constants A and B, in the case of free vibration, can be determined by

solving Equation (5.3) with its time derivative (simultaneously) while equating

them to the initial conditions respectively. In case of free vibration, constants A

and B read as follows:

A = u(0) (5.6)

B =
u̇(0)

ω
(5.7)

In case of applied constant forces P (t) = P0, constants A and B can be obtained

by solving Equation (5.4) and its time derivative simultaneously while equating

them to the initial conditions (u(0) and u̇(0)) as follows:

A = u(0)− P0

k
(5.8)

B =
u̇(0)

ω
(5.9)

A MATLAB function was coded to obtain ODE symbolic solution, and used
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to verify the solution of this ODE (Equation (5.2)), the function can be also

used to model spring mass dynamic problem (Appendix A.5). The MATLAB

solution was found to be perfectly matching the analytical solution presented in

this section.

5.2.2 SDoF: Linear spring and a dashpot in series

The Maxwell viscoelastic model can be simplified as linear spring and a dashpot

connected in series with a mass as follows (Figure 5.2); where M is the lumped

mass of the system or unit cell and P (t) is the dynamic force function. The

stiffness of the spring k can be evaluated from the elastic modulus of a Maxwell

viscoelastic unit cell E, while c is the damping coefficient of the dashpot, which

can be obtained from the dynamic viscosity of Maxwell viscoelastic unit cell η.

kc

M

P(t)

f s

f 1Figure 5.2: Linear spring-dashpot in series model

Using Newton’s second law, the equation of motion can be written as follows:

fs(t) + fI(t) = P (t) (5.10)

where fI(t) = Mü(t) is the inertial force and fs(t) is the force in the spring

dashpot system.

fs(t) +Mü(t) = P (t) (5.11)
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Since the spring and dashpot are connected in series, at any time t, the forces

in the spring fk(t) = kuk(t) and damper fc(t) = cu̇c(t) are equal to each other

(Equation (5.12)). Furthermore, the displacement of the system u(t) is equivalent

to sum of the displacements of the spring uk(t) and the dashpot uc(t) as shown

in Equation (5.13).

fs(t) = fc(t) = fk(t) (5.12)

u(t) = uc(t) + uk(t) (5.13)

fs(t) can be written only in terms of uc(t) or uk(t); therefore, its essential to

write u(t) in terms of either uc(t) or uk(t) to have a consistent ODE with one

differential variable.

From Equation (5.12) we can obtain the following:

cu̇c(t) = kuk(t) (5.14)

Substituting uk from Equation (5.14) into Equation (5.13), we can obtain an

expression of u in terms of uc as follows:

u(t) = uc(t) +
c

k
u̇c(t) (5.15)

The equation of motion (Equation (5.11)) can be written, as follows, in terms of

uc(t) by substituting fs(t) = fc(t) = cu̇c(t) and u(t) from Equation (5.15).

cu̇c +M(üc +
c

k

...
u c) = P (t) (5.16)

Rearranging the variables, the equation of motion reads as follows:

Mc

k

...
u c +Müc + cu̇c = P (t) (5.17)



67 5.2. Principles of dynamics

The equation of motion for this system is a third order ordinary differential

equation. In case of free vibration (P (t) = 0), the following can be written

as a solution (homogeneous solution).

uc(t) = eαt(Acos(ωt) +Bsin(ωt)) + C (5.18)

The solution can be written as follows in case the force has a constant value

(P (t) = P0).

uc(t) = eαt(Acos(ωt) +Bsin(ωt)) + C +
P0

c
t (5.19)

Both solutions depend on the properties of the system and initial conditions.

Solving the characteristic equation of the ODE yield the values of α and ω as

follows:

α =
−k
2c

(5.20)

ω =

√
4M c2k −M2k2

2Mc
(5.21)

To evaluate constants A, B and C, three initial conditions are required, namely

Equations (5.22), (5.23), and (5.24) which have been written in with respect to

the initial conditions of the full system (u(0) and u̇(0)).

First, at t = 0, all the displacement is carried by the spring; therefore the the

initial displacement of the dashpot is null:

uc(0) = 0 (5.22)

Second, initial velocity of the dashpot can be obtained from Equation (5.14) as

follows, where uk(0) = u(0):

u̇c(0) =
k

c
uk(0) (5.23)
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Third, initial acceleration of the dashpot can be obtained by differentiating Equa-

tion (5.14) with respect to time as follows, while u̇k(0) = u̇(0)− u̇c(0).

üc(0) =
k

c
u̇k(0) (5.24)

Applying the initial conditions mentioned above (Equations (5.22), (5.23), and

(5.24)) to the equation of motion (Equation (5.18)), and its first and second time

derivatives, we may write the following expressions for A, B and C (for free

vibration case).

A =
2αωu̇c(0)− ωüc(0)

ω(α2 + ω2)
(5.25)

B =
(ω2 − α2)u̇c(0) + αüc(0)

ω(α2 + ω2)
(5.26)

C =
(α2 + ω2)uc(0)− 2αu̇c(0) + üc(0)

α2 + ω2
(5.27)

To obtain expressions of A, B and C in the case of constant applied force

(P (t) = P0), Equation (5.19) and its first and second time derivatives can be

solved simultaneously while equating them to the initial conditions (Equations

(5.22), (5.23), and (5.24)). The expressions read as follows:

A =
2αωcu̇c(0)− ωcüc(0)− 2αωP0

ωc(α2 + ω2)
(5.28)

B =
(ω2 − α2)cu̇c(0) + αcüc(0) + (α2 − ω2)P0

ωc(α2 + ω2)
(5.29)

C =
(α2 + ω2)cuc(0)− 2αcu̇c(0) + cüc(0) + 2αP0

c(α2 + ω2)
(5.30)

Once uc(t) is formulated, the equation of motion of the whole system u(t) can

be obtained from Equation (5.15). To verify our solution, a MATLAB function
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was coded, based on ODE symbolic solution, and used to check the solution of

this ODE (Equation (5.17)). The function can be also used to model Maxwell

viscoelastic dynamic problem (Appendix A.6). Comparing the analytical solu-

tion, presented in this section, with the MATLAB function solution, they show

a perfect match.

5.2.3 SDoF: Linear spring and a dashpot in series con-

nected in parallel with another Linear spring

The Maxwell form of standard solid model (SSM) has been modeled as a mass

connected to a spring in parallel with a spring-dashpot system (connected in

series) as shown in Figure 5.3. M present the lumped mass of the system, while

P (t) is the dynamic load function with time. k1 and k2 are the stiffnesses of the

two springs; they can be quantified from E0 and E∞ of an SSM, while c is the

dashpot damping constant, which can be evaluated from the dynamic viscosity η

of SSM. In this section, an analytical solution to solve this model under dynamic

loading is presented.

k1

k2c

M

P(t)

f 1

f 2

Figure 5.3: Linear spring-dashpot (in series) connected in parallel with a linear
spring
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The equation of motion for this system can be written as follows:

f1(t) + f2(t) + fI(t) = P (t) (5.31)

where fI(t) = Mü is the inertial force, f1(t) = k1uk1(t) is the force in the upper

spring and and f2(t) is the force in the spring dashpot system. Therefore, we

have:

f1(t) + f2(t) +Mü(t) = P (t) (5.32)

Similar to the concept of Maxwell model, f2(t) can be written as follows, since

the spring k2 and the dashpot c are connected in series:

f2(t) = fc(t) = fk2(t) (5.33)

On the other hand, the overall displacement of the second system u2(t) can be

written as a summation of the displacements of the spring uk2(t) and dashpot

uc(t).

u2(t) = uc(t) + uk2(t) (5.34)

Using the identity fc(t) = fk2(t) from Equation (5.33), where fc(t) = cu̇c(t) and

fk2(t) = k2uk2(t), we can obtain the following:

cu̇c(t) = k2uk2(t) (5.35)

Since the upper spring k1 is connected in parallel, to one bulk mass, with the

spring dashpot system, the overall displacement of the system u(t) is equal to the

displacement of the upper spring u1(t) and the displacement of the spring dashpot

system u2(t). Employing this identity with Equation (5.34) and substituting for

uk2(t) from Equation (5.35), we can obtain an expression of u(t) in terms of uc(t)
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and u̇c(t) as follows:

u(t) = u2(t) = uc(t) +
c

k2
u̇c(t) (5.36)

Substituting f1(t) = k1u1(t) = k1u(t) and f2 = cu̇c in Equation (5.32) to formu-

late the equation of motion:

k1u(t) + cu̇c +Mü(t) = P (t) (5.37)

The equation of motion of the full system can be written with respect of one

function uc(t), and its time derivatives, by substituting u(t) from Equation (5.36)

as follows:

k1

(
uc +

c

k2
u̇c

)
+ cu̇c +M(üc +

c

k2

...
u c) = P (t) (5.38)

Rearranging Equation (5.38) leads to the following expression:

Mc

k2

...
u c +Müc +

(
c+

k1c

k2

)
u̇c + k1uc = P (t) (5.39)

The equation of motion for this system is a third order ordinary differential

equation. In case of free vibration (P (t) = 0), the following can be written

as a solution (homogeneous solution).

uc = eαt(Acos(ωt) +Bsin(ωt)) + Ceγt (5.40)

On the other hand, in case of a constant force P (t) = P0 the solution can be

written as a summation of the homogeneous solution (Equation (5.40)) and a

particular solution of (P0/k1) as follows:

uc(t) = eαt(Acos(ωt) +Bsin(ωt)) + Ceγt +
P0

k1
(5.41)

The homogeneous solution dependence on properties of the dynamic system is
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presented in constants α, ω and γ. Furthermore, the initial conditions, namely

initial displacement u(0) and initial velocity u̇(0) of the system, play a role in

the homogeneous solution and they are presented in the constants A, B and C.

However the particular solution depends on the applied force P0 and the stiffness

of spring 1 (k1).

Writing mathematical expressions for the parameters α, ω and γ leads to lengthy

expressions that lack insight. Therefore, the constants R and D were defined to

write a more compact expression for α, ω and γ.

R =
1√
M

(
4M2k1 k2

4 + 8M c2k1
2k2

2 − 20M c2k1 k2
3 −M c2k2

4
) 1

2

+
1√
M

(
4c4k1

3 + 12c4k1
2k2 + 12c4k1 k2

2 + 4c4k2
3
) 1

2 (5.42)

D =
((

−8k2
3M − 72k1k2 c

2 + 36c2k2
2 + 12

√
3Rc

)
M2
) 1

3
(5.43)

The solution parameters α, ω and γ expressions can be written as follows with

respect to the system parameters (M , k1, k2 and c) and the constant D.

α = − D

12Mc
− k2

2M − 3c2k1 − 3c2k2
3cD

− k2
3c

(5.44)

ω =

√
3

2

(
D

6Mc
−

2
(
k2

2M − 3c2k1 − 3c2k2
)

3cD

)
(5.45)

γ =
D

6Mc
+

2
(
k2

2M − 3c2k1 − 3c2k2
)

3cD
− k2

3c
(5.46)

To evaluate constants A, B and C of the equation of motion solutions (Equations

(5.40) and (5.41)), three initial conditions are required, namely Equations (5.47),

(5.48), and (5.50):

First, at t = 0, all the displacement is carried by the springs k1 and k2; therefore
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the the initial displacement of the dashpot is null:

uc(0) = 0 (5.47)

Second, initial velocity of the dashpot can be obtained from Equation (5.36) as

follows, where uk2(0) = u(0):

u̇c(0) =
k2
c
uk2(0) =

k2
c
u(0) (5.48)

Third, initial acceleration of the dashpot can be obtained by differentiating Equa-

tion (5.36) with respect to time as follows:

üc(t) =
k2
c
u̇k2(t) (5.49)

By differentiating Equation (5.34), u̇k2(t) can be written as u̇k2(t) = u̇(t)− u̇c(t),

so that we can write the following as a third initial condition:

üc(0) =
k2
c
u̇k2(0) =

k2
c
(u̇(0)− u̇c(0)) (5.50)

Theses initial conditions (Equations (5.48), (5.49), and (5.50)) can be equated

(while substituting t = 0) to the equation of motion (Equations (5.40)), and

its first and second time derivatives respectively. Solving the three equations

simultaneously yields the following expressions for A, B and C (for the free

vibration case):

A =
(γ2 − 2αγ)ωuc(0) + 2αωu̇c(0)− ωüc(0)

ω(γ2 − 2γα + α2 + ω2)
(5.51)

B = −(αγ2 − α2γ + ω2γ)uc(0) + (α2 − ω2 − γ2)u̇c(0) + (γ − α)üc(0)

ω(γ2 − 2γα + α2 + ω2)
(5.52)



Chapter 5. Dynamic Loading conditions 74

C =
(α2 + ω2)uc(0)− 2αu̇c(0) + üc(0)

γ2 − 2γα + α2 + ω2
(5.53)

In the case of constant applied force P (t) = P0, equation of motion (Equa-

tion (5.41)) can be solved along with its first and second time derivatives while

equating them to the initial conditions (Equations (5.48), (5.49), and (5.50))

respectively. This gives:

A =
(γ2 − 2αγ)ωk1uc(0) + 2αωk1u̇c(0)− ωk1üc(0) + (2γα− γ2)ωP0

ωk1(γ2 − 2γα + α2 + ω2)
(5.54)

B = −(αγ2 − α2γ + ω2γ)k1uc(0) + (α2 − ω2 − γ2)k1u̇c(0)

ωk1(γ2 − 2γα + α2 + ω2)

− (γ − α)k1üc(0) + (γα2 − αγ2 − γω2)P0

ωk1(γ2 − 2γα + α2 + ω2)
(5.55)

C =
(α2 + ω2)k1uc(0)− 2αk1u̇c(0) + k1üc(0)− (α2 + ω2)P0

k1(γ2 − 2γα + α2 + ω2)
(5.56)

Similar to Section 5.2.2, the equation of motion of the whole system u(t) can be

obtained from Equation (5.36), once uc(t) is formulated. To check the analyt-

ical solution, developed in this section, a MATLAB function was coded based

on ODE symbolic solver to obtain a solution of Equation (5.39). The solution

obtained from the MATLAB functions perfectly match the analytical solution.

The MATLAB script is referenced in Appendix A.7, and it can be used model

the sdof dynamic behaviour of a standard solid model.
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5.3 Loading conditions

To examine the dynamic behaviour of linear elastic unit cell with void inclusion;

a number of unit cells have been modeled under a sudden constant loading and a

pulse force. Numerical homogenisation criteria were applied for the displacement

and velocity in time domain. To verify the suitability of numerical homogeni-

sation in dynamics, homogenised material properties, obtained from quasi-static

loading case were used to obtain analytical solutions and compare them with

the dynamic numerical homogenised time domain response. In this chapter two

dynamic loading scenarios will be considered, a sudden constant loading and a

pulse loading. In which the analytical solution of the sudden constant loading

can be obtained straight forwardly from Section 5.2.

Time

Fo
rc
e

P0

td

Figure 5.4: Impulse loading

The impulsive loading conditions can be obtained by applying a large force for a

short duration of time (Figure 5.4). Depending on the unit cell type, Equations

(5.3), (5.19) and (5.41) can be solved in the time domain (0 to td) to obtain

the analytical solution during loading time period. This is followed by solving
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Equations (5.2), (5.18) and (5.40) for post loading time (t > td), where the unit

cell vibration is considered to be free vibration beyond td. These equations are

summarised below in Equation (5.57) for elastic unit cells, Equation (5.58) for

viscoelastic unit cells and Equation (5.59) for composite unit cells. To evaluate

A, B and C, initial conditions of u(0) = 0 and u̇(0) = 0 for Equation (5.57),

while uc(0) = 0, u̇c(0) = 0 and üc(0) = 0 for Equations (5.58) and (5.59). Finally,

Ap, Bp and Cp can be evaluated using the values of displacement, velocity and

acceleration by the end of the loading period (td). These values would be u(td)

and u̇(td) for Equation (5.57), while uc(td), u̇c(td) and üc(td) for Equations (5.58)

and (5.59).

u(t) =


Acos(ωt) +Bsin(ωt) + P0/k, if t ≤ td

Apcos(ω(t− td)) +Bpsin(ω(t− td)), if t > td

(5.57)

uc(t) =


eαt(Acos(ωt) +Bsin(ωt)) + C + P0

c
t, if t ≤ td

eα(t−td)(Apcos(ω(t− td)) +Bpsin(ω(t− td))) + Cp, if t > td

(5.58)

uc(t) =


eατ(Acos(ωt) +Bsin(ωt)) + Ceγt + P0

k1
, if t ≤ td

eα(t−td)(Apcos(ω(t− td)) +Bpsin(ω(t− td))) + Cpe
γ(t−td), if t > td

(5.59)
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5.4 Linear elastic unit cell

with void inclusion Similar to Section 4.2 in chapter 4, this section present a study

of elastic unit cells with single void inclusion. However, in this section, dynamic

loading conditions will be applied to assess the homogenised dynamic response

of unit cells, and test the suitability of quasi-static homogenised properties to

represent dynamic behaviour. The dynamic loading conditions were applied as

mentioned in Section 5.3. unit cells of elastic modulus E = 3300 MPa, and the

Poisson’s ratio has been set to null, since the focus of this study is on uni-axial

loading. Boundary conditions were used with accordance to the methodology

mentioned earlier in Section 3.3.2.

A constant loading of 20 N has been used to examine the response of the unit cell

subjected to a sudden permanent loading. Meanwhile the homogenised material

properties of the unit cell under creep, quasi static conditions, has been used

to evaluate the analytical solution of the dynamic problem. The main property

required, in this case, is the homogenised elastic modulus of Ē = 1844.4 MPa

which contributes to a stiffness of k = 1844.4 N/mm. The mass in the analytical

solution has been taken asM = ρVR

2
, where ρ is the mass density, VR is the volume

of the unit cell. In this section, the mass density is taken as ρ = 78 kN·s2/m to

increase the time step required to obtain a stable solution. This increase in mass

will change the natural frequencies of the system however the elastic modulus and

dynamic viscosity (the properties of interest in this study) are not influenced by

the change of mass density. The mass is divided by 2 since while are obtaining a

homogenised solution based on a single degree of freedom model, where one half

of the total mass is assumed to be free to move while the other is assumed to be

lumped to the support.
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Figure 5.5: Displacement vs time due to a sudden constant load applied on a
linear elastic unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)
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Figure 5.6: Velocity vs time due to a sudden constant load applied on a linear
elastic unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)

Figures 5.5 and 5.6 show the time response of displacement and velocity respec-

tively. The numerical homogenised solution of an unit cell can be predicted with

good accuracy by the analytical model of single degree of freedom while using

properties obtained from quasi static tests.

To test this homogenisation approach under impulsive loading (Figure 5.4), a unit

cell was modeled while applying a pulse force (P0) of 20N, and a loading duration

(td) of 1 second. Similar to the case of sudden constant loading the analytical

solutions of displacement and velocity yield good approximation of the responses

vs time as shown in Figures 5.7 and 5.8. The figures presented in this section

were obtained from unit cells with inclusion’s area of 0.175, inclination angle of

45◦ and aspect ratio of 3. All other combinations of inclusions parameters (areas,

aspect ratios, and inclination angles) tend to yield similar accuracy.
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Figure 5.7: Displacement vs time due to an impulsive load applied on a linear
elastic unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)
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Figure 5.8: Velocity vs time due to an impulsive load applied on a linear elastic
unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)

5.5 Viscoelastic unit cell

with void inclusion In this section, Maxwell viscoelastic unit cells with void inclu-

sion have been studied under dynamic loading conditions. Similar to the previous

section, the numerical homogenised time response will be compared to the an-

alytical solution. The unit cell materials properties at micro level are elastic

modulus (E) of 3300 MPa and dynamic viscosity (η) of 1650 N·s/mm2. Simi-

lar to the quasi static case (Section 4.3), Maxwell has been modeled using the

MAT VISCOELASTIC material model in LS-DYNA. Homogenised macro level

properties under creep loading conditions while implementing boundary condi-

tions from Section 3.3.2 are Ē of 1853 MPa and η̄ of 1319 N·s/mm2. Since the

unit cells used in this study have a 1 mm boundaries, the stiffness and damping
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coefficient are equal to the numeric values of Ē and η̄ (k=1853 N/mm, c=1319

N·s/mm). Since this approach is based on a single degree of freedom, the mass

in the analytical model has been assumed to be equal to one half of the unit cell

mass.

Figure 5.9: Displacement vs time due to a sudden constant load applied on a
viscoelastic unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦).



83 5.5. Viscoelastic unit cell

Figure 5.10: Velocity vs time due to a sudden constant load applied on a vis-
coelastic unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)

Similar to the previous section, the unit cells were modeled under a sudden con-

stant loading and an impulsive loading as with accordance to Section 5.3. The

applied constant load has a magnitude of 20 N, while the pulse force magnitude

(P0) is 20N, and a loading duration (td) of 1 second. The time domain response

has been compared with the analytical solution obtained from quasi static ho-

mogenised properties. Figures 5.9 and 5.10 show the displacement and velocity

due to a sudden constant loading; the analytical solution is clearly capturing the

time response with good accuracy. Furthermore, Figures 5.11 and 5.12 show the

displacement and velocity response due to a pulse force. It is noted that the ana-

lytical solution and the numerical homogenised solution tend to yield very similar

values for the vibration period and peak displacement. A slight shift between the

analytical solution and the numerical homogenisation is believed to be due to

the absence of periodic boundary conditions in dynamics as discussed in Section

3.3.2. The figures presented in this section show results obtained from a unit cell
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with inclusion’s area of 0.175, inclination angle of 45◦ and aspect ratio of 3, while

All other combinations of inclusions parameters yield similar accuracy.

Figure 5.11: Displacement vs time due to an impulsive load applied on a vis-
coelastic unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)
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Figure 5.12: Velocity vs time due to an impulsive load applied on a viscoelastic
unit cell

with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)

5.6 Composite unit cell

(linear elastic matrix with viscoelastic inclusion) In this section, a composite

unit cell that consists of a linear elastic matrix and a viscoelastic inclusion has

been studied under dynamic loading conditions. The unit cell elastic matrix

micro properties are elastic modulus (E) of 9000 MPa, with the inclusion micro

properties elastic modulus (E) of 9000 MPa and a dynamic viscosity (η) of 1800

N·s/mm2. The homogenised macro model for this type of unit cells follows the

Maxwell form of the standard solid model, which yields, in this case, the following

homogenised properties: initial elastic modulus (Ē0) of 9000 MPa, final elastic

modulus (Ē∞) of 4610 MPa and dynamic viscosity (η̄) of 4929 N·s/mm2. These

properties have been employed in the analytical solution (mentioned in Sections

5.2.3 and 5.3), where k1 = Ēf · l, k2 = (Ēi − Ēf ) · l and c = η̄ · l, where l is

the length of the unit cell in the direction of loading. The lumped mass in the
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analytical solution has been assumed to be equal to one half of the unit cell mass,

due to the single degree of freedom assumption.

Figure 5.13: Displacement vs time due to a sudden constant load applied on an
elastic unit cell

with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦).
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Figure 5.14: Velocity vs time due to a sudden constant load applied on an elastic
unit cell

with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)

Similar to previous sections, the unit cell has been studied under a sudden con-

stant loading of 20 N. Figures 5.13 and 5.14 show the time domain response of

displacement and velocity. Furthermore, the response due to an impulsive load-

ing has been examined by modelling the unit cell subjected to a force pulse of

a magnitude (P0) is 20N, and a loading duration (td) of 1 second. Figures 5.15

and 5.16 show the time domain response of displacement and velocity due to an

impulsive loading. In both loading cases, it is noted that the period of oscillations

were captured with great accuracy by both numerical homogenisation and the an-

alytical solution. However, the accuracy of, displacement or velocity, magnitudes

at each oscillation tend to be over estimated by the analytical solution. This is

believed to occur due to two main reasons; first, the boundary conditions in these

sections were imposed with the methodology specified in Section 3.3.2, while the

use of periodic boundary conditions would improve the accuracy of prediction.

Second, the unit cells used in this section consist of 2 material models at mi-



Chapter 5. Dynamic Loading conditions 88

cro level, in which the elastic material Poisson’s ratio can be ensured to be null;

while, the viscoelastic part is specified with accordance to the material model

(MAT VISCOELASTIC), in which its required to input the material parameters

of bulk modulus, initial shear modulus, final shear modulus and a decay constant.

Applying the material parameters as bulk and shear moduli, allow us to define a

null Poisson’s ratio initially by specifying a bulk and initial shear moduli initially.

However, as time progress and the shear modulus changes while bulk modulus is

constant, therefore, the homogenised Poisson’s ratio change with time. Thus, the

homogenised response is not solely uniaxial. To test this hypothesis, the lowest

effect of Poisson’s ratio occurs when the inclusion’s inclination angle is null while

the maximum effect occurs with inclination angle of 90◦. The analytical solution

tends to yield better prediction of the numerical homogenised time response for

cases with inclination angles of null, as shown in Appendix D.1, compared with

a lower accuracy prediction for the 90◦ in as shown in Appendix D.2. To account

for the change in Poisson’s ratio, it is essential to study the anisotropic nature

of unit cell; due to the limitations of time and resources, the development of an

automated script to study the anisotropy behaviour have been kept for the future

work.
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Figure 5.15: Displacement vs time due to an impulsive load applied on an elastic
unit cell

with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)
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Figure 5.16: Velocity vs time due to an impulsive load applied on an elastic unit
cell

with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)
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5.7 Unit cell response in dynamics and effective

mechanical properties

In this section the suitability of considering a unit cell as an RVE for obtaining

mechanical properties from dynamic response will be studied. To do so, first we

will consider a single unit cell with single inclusion, inclined at 45◦ as shown in

Figure 5.17. The material of this unit cell are considered to be steel with an

elastic modulus of 210 GPa and a mass density of 7800 kg/m3.

Figure 5.17: Single unit cell with void inclusion (Ar=0.175 mm2, ASP=3 and
θ = 45◦) (dimensions 1 mm × 1 mm)

Modeling this unit cell yield a homogenised elastic modulus of Ē is 117.6 GPa.

To verify if this elastic modulus is representative of macro level in dynamics, I

consider modeling of 2 × 2, Figure 5.18a, (dimensions of 2 mm × 2 mm) and 4 ×

4, Figure 5.18b, (dimensions of 4 mm × 4 mm) with a sudden constant dynamic

load. Then elastic modulus obtained from single unit cell (Ē=117.6 GPa) will

be used along with analytical solutions from section 5.2.1 to predict the response

of the 2 × 2 and 4 × 4 models. While the mass in the analytical solution is 4

times the mass of a single unit cell for the 2 × 2 model and 16 times for the 4 ×

4 model.
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(a) 2×2 (b) 4×4

Figure 5.18: Macro models of 2×2 unit cells (a) and 4×4 unit cells

Figures 5.19 and 5.21 show the displacement vs time plots of the 2 × 2 and 4

× 4 macro levels respectively. It is noted that the prediction of the analytical

solution (using single unit cell mechanical properties) matches very well with

macro response for both models. On the other hand, Figures 5.20 and 5.22 show

the velocity vs time plots of the 2 × 2 and 4 × 4 macro levels respectively. Similar

to the displacements; velocity response of both cases can be captured with good

accuracy using the homogenised elastic modulus of single unit cell and single

degree of freedom solution.
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Figure 5.19: Displacement vs time due to a sudden load applied on an elastic
2 × 2 unit cell macro model with void inclusion (Ar=0.175 mm2, ASP=3 and
θ = 45◦)

Figure 5.20: Velocity vs time due to a sudden load applied on an elastic 2 × 2
unit cell macro model with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)
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Figure 5.21: Displacement vs time due to a sudden load applied on an elastic
4 × 4 unit cell macro model with void inclusion (Ar=0.175 mm2, ASP=3 and
θ = 45◦)

Figure 5.22: Velocity vs time due to a sudden load applied on an elastic 4 × 4
unit cell macro model with void inclusion (Ar=0.175 mm2, ASP=3 and θ = 45◦)

Given the results obtained above, the homogenised elastic modulus of a single
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unit cell (Ē=117.6 GPa) worked well in predicting the dynamic behaviour of 2 ×

2 and 4 × 4 macro levels. Thus, a single unit cell can be considered as an RVE, in

statics and dynamics, to obtain mechanical properties such as elastic modulus and

dynamic viscosity. It is noted from the analysis in this section that this approach

works very well with real engineering materials as the modeled material represent

steel properties. High computational cost in both models was observed, namely

23 minutes for the 2 × 2 model and 108 minutes for the 4 × 4 model. This is

due to two reasons, the large number of elements, and the relatively low density

which resulted in smaller time step for the explicit analysis.
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Chapter 6

Time Homogenisation

6.1 Introduction

To obtain the macro scale, homogenised, material properties from the solution of

an RVE under dynamic loading might be challenging, due to the highly oscilla-

tory response of homogenised stresses and strains. A time averaging approach is

introduced in this chapter to smoothen the stress and strain curves and thus ob-

tain the macro material properties (elastic modulus and dynamic viscosity) with

less scope for ambiguity. The so-called time homogenisation or time averaging

approach consists of averaging the space homogenised stress and strain in time

and obtaining their physical meaning from relevant constitutive models. Similar

to space averaging, the time averaging of a quantity ψ can be obtained by the

following integral (Equation (6.1)); In which ¯̄ψ is the averaged quantity in time

and space, and ψ̄ is the space averaged quantity as defined by Equation (6.2).

¯̄ψ =
1

t

∫ t

t0

ψ̄(t) dt (6.1)

ψ̄ =
1

Ω

∫
Ω

ψ(x, y) dΩ (6.2)
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In this chapter, the concept of time homogenisation is applied to elastic and

viscoelastic unit cells with void inclusions, in addition to an elastic unit cell with

a viscoelastic inclusion. It should be noted that the use of word ”homogenised”

in this chapter is refereed to averaged quantities, not effective or representative

quantities. A discussion of the physical meaning of time homogenised stress

to strain ratio is presented for the three material models. Unit cells were tested

with different loading conditions and the obtained time homogenised solution was

compared to the corresponding behaviour under quasi static loading conditions.

This approach can be employed to obtain material properties for desired dynamic

behaviour with increased confidence compared to non-time homogenised results.

6.2 Time homogenisation of linear elastic unit

cells

In a linear elastic unit cell, the homogenised elastic modulus in static loading

conditions can be obtained via Ē = σ̄
ε̄
. Conversely, obtaining the homogenised

elastic modulus from the space homogenised stresses and strain curves under

dynamic loading is much more challenging due to the vibrations in strain and

fluctuations of stress as shown in Figure 6.1. In particular, it is conceivable

that singular results for the homogenised elastic modulus are obtained in case

the homogenised strain happens to be near-zero for a particular time instant.

Time homogenisation of stress and strain curves can be used to smoothen the

fluctuations and yet obtain a reliable estimate of the homogenised elastic modulus.



99 6.2. Time homogenisation of linear elastic unit cells

(a) (b)

Figure 6.1: Space homogenised stress (a) and strain (b)

To examine the concept of time homogenisation on elastic unit cells, a unit cell of

elastic modulus 3300 MPa has been modeled under dynamic loading of pulse and

a sudden constant loading. The time homogenised elastic modulus was estimated

as follows:

¯̄E =
¯̄σ
¯̄ε

(6.3)

where ¯̄σ is the time homogenised stress and ¯̄ε is the time homogenised strain, in

which both values of ¯̄σ and ¯̄ε are obtained using Equation (6.1) taking t0 = 0 s.

As shown below in Figure 6.2, the time homogenised elastic modulus from differ-

ent loading conditions gives a reasonable estimate of the effective elastic modulus

obtained from quasi-static loading. It can be seen, in particular for the case

of a pulse load, that a certain time is required for the results to attain values

within the vicinity of the benchmark results. This is due to the fact that the

suggested time homogenisation is carried out up to the particular time instant of

the analysis and a certain lead-in time is required before results start to stabilise.
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Figure 6.2: Homogenised elastic modulus vs time due to different loading condi-
tions.

6.3 Time homogenisation of viscoelastic unit cells

The advantage of using time averaging is even more recognisable in viscoelastic

unit cells since space homogenised stresses and strains are more fluctuating with

time. In Maxwell viscoelastic unit cells, the relation between stresses and strains

is governed by a differential equation as discussed in chapter 2 (section 2.6.2);

therefore, it is not possible to write an independent mathematical expression for

each of the material parameters. However, time homogenisation can be used to

obtain expressions that are valid for specific loading conditions. To recall, the

Maxwell viscoelastic equation reads as follows:

σ +
η

E
σ̇ = ηε̇ (6.4)
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so that the ratio between time homogenised stress ¯̄σ and ¯̄ε strain yields the

following
¯̄σ
¯̄ε
=

∫ t

t0
η̄ ¯̇ε− η̄

Ē
¯̇σ dt∫ t

t0
ε̄ dt

(6.5)

The right hand side of Equation (6.5) is dependent on the loading conditions,

therefore the physical meaning of the ratio between time homogenised stress and

strain is not a material property. In this section, the solution is presented for 2

loading cases, namely a constant sudden dynamic load (equivalent to creep test

in quasi statics), and a sudden constant displacement (equivalent to relaxation

test in quasi statics). Since the time homogenised results should eliminate the

effect of inertia, an assumption has been made that the time homogenised stress

rate is null in the case of constant force. Similarly, the time homogenised strain

rate is assumed to be null in case of sudden constant displacement. In the case

of a constant force Equation (6.5) reads as follows:

¯̄σ
¯̄ε
=

∫ t

t0
η̄ ¯̇ε dt∫ t

t0
ε̄ dt

(6.6)

Substituting ε̄ = σ0

η̄
t + σ0

Ē
and its time derivative for ¯̇ε in Equation (6.6) that

yields the following:

¯̄σ
¯̄ε
=

∫ t

t0
σ0 dt∫ t

t0

σ0

η̄
t+ σ0

Ē
dt

=
η̄Ēt

Ēt2/2 + η̄t
(6.7)

In a constant displacement test, the stress rate ¯̇σ in Equation (6.5) can be written

as the time derivative of the relaxation stress i.e. ¯̇σ(t) = − Ē2

η̄
·ε0 ·e

−Ē
η̄

t. Therefore,

the resulting Equation (6.8) is the basis for a physical interpretation of the ratio

between time homogenised stress and strain for Maxwell viscoelastic unit cells

under constant displacement.

¯̄σ
¯̄ε
=

∫ t

t0
− η̄

Ē
¯̇σ dt∫ t

t0
ε̄ dt

=

∫ t

t0
Ēε0e

−Ē
η̄

t dt∫ t

t0
ε0 dt

=
η̄(1− e

−Ē
η̄

t)

t
(6.8)
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Taking the limit of t approaching zero of the right hand sides of Equations (6.7)

and (6.8) gives

lim
t→0

η̄Ēt

Ēt2/2 + η̄t
= lim

t→0

η̄(1− e
−Ē
η̄

t)

t
= Ē (6.9)

This can be viewed in Figures 6.3 and 6.4, where the ratio of time homogenised

stress to strain due to a sudden constant load is compared with a creep test, and

the time homogenised stress to strain ratio of a sudden displacement is compared

to a relaxation test. Indeed, η̄ can be estimated by fitting each figure to their

mathematical formulation i.e. Equations 6.8 and 6.7, respectively. It is noted

that there is a delay in the time homogenised response of both dynamic cases.

This delay is believed to be the result of the time that stress waves require to

propagate to the opposite support boundary. It is also noticeable that Figure 6.3

yield smother representation compared with Figure 6.4. This is believed to be

due to nature of this material model, as the space homogenised stress which is

used to generate Figure 6.4 is very noisy compared with the space homogenised

strain as shown in Section D.3 of Appendix D (Figures D.9 and D.10).

Figure 6.3: Ratio of time homogenised stress and strain vs time due to quasi
static and dynamic loading.
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Figure 6.4: Ratio of time homogenised stress and strain vs time due to quasi
static and dynamic constant displacements.

In loading conditions where neither stress rate nor strain rate can be assumed

to be null, the time homogenisation approach can be applied to the constitutive

model as follows: ∫ t

t0

σ̄ dt+
η̄

Ē

∫ t

t0

¯̇σ dt = η̄

∫ t

t0

¯̇ε dt (6.10)

To obtain the homogenised material properties using Equation (6.10) numerically,

an advanced curve fitting tool, such as neural network algorithms, should be used

to fit the right and left hand sides of the equation and equate them to each other,

thus an estimate of the homogenised material properties can be obtained.

6.4 Time homogenisation of composite unit cells

Similar to previous sections, the concept of time homogenisation is applied to

the solutions of composite unit cells, which consist of an elastic matrix and a

viscoelastic inclusion. The macro level constitutive model of such unit cells follows
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the standard solid model as follows:

σ +
η̄

Ē0 − Ē∞
σ̇ = Ē∞ε+

(
1 +

Ē∞

Ē0 − Ē∞

)
η̄ε̇ (6.11)

Since it is challenging to obtain a mathematical expression of the ratio between

stress and strain from Equation (6.11), the focus of this section will be on special

cases of constant sudden loading and constant sudden displacement. The ratio

of time homogenised stress and strain due to a sudden constant load will be

compared to a creep test. On the other hand, the ratio of time homogenised

stress and strain due to a sudden constant displacement will be compared to a

relaxation test. In a creep case the stress can be assumed to be σ0 and strain is

a function of time; therefore, ¯̄σ/¯̄ε can be written as follows:

¯̄σ
¯̄ε
=

∫ t

t0
σ0 dt∫ t

t0
ε̄(t) dt

(6.12)

where ε̄(t) = σ0

(
1
Ē0

− 1
Ē∞

)
e

−Ē∞(Ē0−Ē∞)

(Ē0)η̄
t
+ σ0

Ē∞
; therefore, the denominator in

Equation (6.12) reads as follows:

∫ t

t0

ε̄(t) dt =
Ē0η̄σ0

Ē∞(Ē0 − Ē∞)

(
1

Ē0

− 1

Ē∞

)(
1− e

−Ē∞(Ē0−Ē∞)

(Ē0)η̄
t

)
+

σ0
Ē∞

t (6.13)

Substituting Equation (6.13) back in Equation (6.12) yields the following

¯̄σ
¯̄ε
=

t

Ē0η̄
Ē∞(Ē0−Ē∞)

(
1
Ē0

− 1
Ē∞

)(
1− e

−Ē∞(Ē0−Ē∞)

(Ē0)η̄
t

)
+ t

Ē∞

(6.14)

Similarly, the sudden constant displacement is compared with the relaxation test.

In the quasi static relaxation loading conditions, the stress is given by σ̄(t) =

(Ē0 − Ē∞)ε0e
−(Ē0−Ē∞)

η̄
t + Ē∞ε0. The ratio of time homogenised stress to strain
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can be written as:

¯̄σ
¯̄ε
=

∫ t

t0
(Ē0 − Ē∞)ε0e

−(Ē0−Ē∞)
η̄

t + Ē∞ε0 dt∫ t

t0
ε0 dt

=
η̄(1− e

−(Ē0−Ē∞)
η̄

t) + Ē∞t

t
(6.15)

The initial homogenised elastic modulus Ē0 can be obtained by taking the limit

as t approaches zero of Equation (6.14) or (6.15).

lim
t→0

t

Ē0η̄
Ē∞(Ē0−Ē∞)

(
1
Ē0

− 1
Ē∞

)(
1− e

−Ē∞(Ē0−Ē∞)

(Ē0)η̄
t

)
+ t

Ē∞

= Ē0 (6.16)

lim
t→0

η̄(1− e
−(Ē0−Ē∞)

η̄
t) + Ē∞t

t
= Ē0 (6.17)

Figure 6.5 shows the ratio of time homogenised stress to strain due to a sudden

constant load and compares it with the quasi-static creep case. On the other

hand, Figure 6.6 presents the time homogenised stress to strain due to a sudden

constant displacement and compares it with the quasi-static relaxation case. In

both loading conditions the time homogenised solution seems to work very well

in approximating the quasi static response from the dynamic response.
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Figure 6.5: Ratio of time homogenised stress and strain vs time due to quasi
static and dynamic loading.

Figure 6.6: Ratio of time homogenised stress and strain vs time due to quasi
static and dynamic constant displacements.

Similar to the previous section, the other homogenised material properties η̄ and

Ē∞ can be extracted by curve fitting the time homogenised ratio curves to Equa-
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tion (6.14) or Equation (6.15) respectively. In loading conditions where the stress

and strain rates are not both null, Equation (6.18) can be used to apply time

homogenisation:

∫ t

t0

σ̄ dt+
η̄

Ē0 − Ē∞

∫ t

t0

¯̇σ dt = Ē∞

∫ t

t0

ε̄ dt+

(
1 +

Ē∞

Ē0 − Ē∞

)
η̄

∫ t

t0

¯̇ε dt (6.18)

Similar to Equation (6.10), homogenised material properties can then be obtained

via advance curve fitting tools.
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Chapter 7

Conclusion and Future Research

7.1 Summary and evaluation

Numerical homogenisation can be used to understand the macro material prop-

erties of metamaterials with relatively low cost. Unit cells with a single void or

with a viscous inclusion were modelled under periodic boundary conditions for

quasi static loading conditions. Systematic parametric studies were conducted to

investigate the effect of inclusion area, aspect ratio and inclination angle on the

macroscopic material properties. In this thesis, the extension towards dynamic

behaviour was also made; where linear elastic RVEs can be captured, with great

accuracy, using numerical homogenisation. On the other hand, viscoelastic and

composite RVEs dynamic behaviour can be captured with good accuracy. Finally,

the concept of time homogenisation was introduced as novel concept to obtain

effective material properties from the dynamic behaviour of the RVE.

The macroscopic material properties of elastic unit cells studied in this thesis

can be captured with good accuracy using trigonometric functions, whereas the

viscous unit cells show a multiplicative decomposition that consists of a linear

elastic trigonometric function and a viscous exponential decay. Unit cells with

109
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voids show a macroscale constitutive model similar to the microscale one. On

the other hand, the macroscale mechanical properties of the elastic unit cell with

viscous inclusion show an enriched constitutive model at the macro level while

using two simple models, linear elastic and Maxwell viscoelastic, for the micro

level. This enriched macroscale behaviour can be captured accurately with the

Standard Solid Model of viscoelasticity. Consistent results were obtained for creep

and relaxation tests using a nonlinear regression curve fitting tool to fit stresses

and strains with time and obtain the macroscale properties.

The analytical solution of the dynamic equation of motion can be used to sim-

ulate the dynamic behaviour of RVEs; where the spring and dashpot constants

can be obtained from quasi static homogenised material properties. The ho-

mogenised material properties of elastic RVEs can be captured from dynamic

loading response using the time homogenisation approach as shown in Chapter 6.

Similarly, viscoelastic and composite RVEs effective properties can be obtained

through time homogenisation; however, the ratio of time homogenised stress to

strain, tends to depend somewhat on the strain and stress rates. Therefore, a

distinctive expression was derived for 2 loading scenarios, which are a sudden

constant displacement, and a sudden constant force. For the general case in

which strain and stress rates are taken into account the time homogenised macro

material model can be used to obtain the effective properties from any dynamic

loading.

7.2 Potential Future Work

In this section, a discussion is presented on the potential future work along with

some thoughts on their implementation. Potential development of this research

can be made by considering 3D RVEs, where no conceptual difficulties are ex-

pected to do so. Therefore, exploring the anisotropic behaviour of RVEs and
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constructing a full constitutive matrix can be feasible. Furthermore, exploring

the suitability of numerical homogenisation with alternative micro material mod-

els, such as nonlinear viscoelasticity, and unit cell microstructure would allow us

to use this approach to study further metamaterials. In addition, consideration

of further loading conditions, such as dynamic periodic loading, would help in

understanding the behaviour of metamaterials in the frequency domain.

An improvement can be made to the homogenised solution of RVEs under dy-

namic loading, by implementing periodic boundary conditions. This can be made

by defining an LS-DYNA user-defined element formulation of the bipenalty method

as discussed in Section 3.3. A development to the time homogenisation approach

can be made by implementing the concept to the full macro constitutive models,

therefore, the concept can be used to study RVE under any dynamic loading

where stress and strain rates are not null. This is possible by programming an

advanced curve fitting tool or a neural network algorithm that is capable of fitting

multiple independent variables.
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and J. M. Mancilla. Application of grid convergence index to shock wave

validated with ls-dyna and prosair. Ing. Investig, 39(3):20–26, 2019.

[20] H. Chen and B. W. Spencer. Peridynamic bond-associated correspondence

model: Stability and convergence properties. International journal for nu-

merical methods in engineering, 117(6):713–727, 2019.

[21] Q. Chen, X. Zhang, and B. Zhu. Design of buckling-induced mechanical

metamaterials for energy absorption using topology optimization. Struc-

tural and multidisciplinary optimization, 58(4):1395–1410, 2018.

[22] Y. Chen and C. A. Schuh. Analytical homogenization method for periodic

composite materials. Physical review. B, 79(9), 2009.

[23] A. K. Chopra. Dynamics of structures : theory and applications to earth-

quake engineering. Pearson Education, Harlow, 4th ed., international ed.

edition, 2014.



Bibliography 116

[24] K. Davami, M. Mohsenizadeh, M. Munther, T. Palma, A. Beheshti, and

K. Momeni. Dynamic energy absorption characteristics of additively-

manufactured shape-recovering lattice structures. Materials Research Ex-

press, 6(4):45302, 2019.

[25] F. Devries, H. Dumontet, G. Duvaut, and F. Lene. Homogenization and

damage for composite structures. Int. J. Numer. Meth. Engng, 27(2):285–

298, 1989.

[26] J. D. Eshelby. The determination of the elastic field of an ellipsoidal in-

clusion, and related problems. Proceedings of the Royal Society of London.

Series A, Mathematical and Physical Sciences, 241(1226):376–396, 1957.

[27] F. Feyel and J. L. Chaboche. Fe2 multiscale approach for modelling the elas-

toviscoplastic behaviour of long fibre sic/ti composite materials. Computer

methods in applied mechanics and engineering, 183(3-4):309–330, 2000.

[28] J. Fish, Q. Yu, and K. Shek. Computational damage mechanics for compos-

ite materials based on mathematical homogenization. International Journal

for Numerical Methods in Engineering, 45(11):1657–1679, 1999.

[29] D. P. Flanagan and T. Belytschko. A uniform strain hexahedron and quadri-

lateral with orthogonal hourglass control. International Journal for Numer-

ical Methods in Engineering, 17(5):679–706, 1981.

[30] M. G. D. Geers, V. G. Kouznetsova, and W. A. M. Brekelmans. Multi-

scale computational homogenization: Trends and challenges. Journal of

Computational and Applied Mathematics, 234(7):2175–2182, 2010.

[31] I. M. Gitman. Representative Volumes and Multi-scale Modelling of Quasi-

brittle Materials. Thesis, Delft University of Technology, 2006.

[32] I. M. Gitman, H. Askes, and L. J. Sluys. Representative volume: Existence



117 Bibliography

and size determination. Engineering Fracture Mechanics, 74(16):2518–2534,

2007.

[33] S. Gourdin, L. Marcin, M. Podgorski, M. Cherif, and L. Carroz. Effective

elastic properties and residual stresses in directionally solidified eutectic

al2o3/yag/zro2 ceramics estimated by finite element analysis. Journal of

materials science, 52(24):13736–13747, 2017.

[34] V. V. Gozhenko, A. K. Amert, and K. W. Whites. Homogenization of

periodic metamaterials by field averaging over unit cell boundaries: use

and limitations. New Journal of Physics, 15(4):043030, apr 2013.

[35] A. Grama. Introduction to parallel computing. Addison-Wesley, Harlow,

2nd ed. edition, 2003.

[36] J. N. Grima and R. Caruana-Gauci. Mechanical metamaterials: Materials

that push back. Nature materials, 11(7):565–566, 2012.
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Appendix A

Script samples

A.1 Periodic boundary conditions function

1 %periodic boundary conditions

2 up=nod(ynod==+Lx/2); % Support Nodes

3 Do=nod(ynod==-Lx/2);

4 [length(S),length(D),length(up),length(Do)]

5 S=sortrows(([S,ynod(S)]),2);

6 D=sortrows(([D,ynod(D)]),2);

7 up=sortrows(([up,xnod(up)]),2);

8 Do=sortrows(([Do,xnod(Do)]),2);

9 fid4 = fopen('Periodic BC.k','wt');

10 sn=0;

11 for ix=[2:size(S)-1];

12 sn=sn+1;

13 cn=string(sn);

14 cm=string(D(length(D)));

15 c1=string(D(ix));

16 c2=string(S(ix));

17 fprintf(fid4,'*CONSTRAINED MULTIPLE GLOBAL\n');

129
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18 fprintf(fid4,cn);

19 fprintf(fid4,'\n3\n');

20 fprintf(fid4,cm);

21 fprintf(fid4,',1,-1.00\n');

22 fprintf(fid4,c1);

23 fprintf(fid4,',1,+1.00\n');

24 fprintf(fid4,c2);

25 fprintf(fid4,',1,-1.00\n');

26 sn=sn+1;

27 cn=string(sn);

28 fprintf(fid4,'*CONSTRAINED MULTIPLE GLOBAL\n');

29 fprintf(fid4,cn);

30 fprintf(fid4,'\n2\n');

31 fprintf(fid4,c1);

32 fprintf(fid4,',2,+1.00\n');

33 fprintf(fid4,c2);

34 fprintf(fid4,',2,-1.00\n');

35 end

36 for iy=[2:size(up)-1];

37 sn=sn+1;

38 cn=string(sn);

39 cy1=string(up(iy));

40 cy2=string(Do(iy));

41 fprintf(fid4,'*CONSTRAINED MULTIPLE GLOBAL\n');

42 fprintf(fid4,cn);

43 fprintf(fid4,'\n2\n');

44 fprintf(fid4,cy1);

45 fprintf(fid4,',1,+1.00\n');

46 fprintf(fid4,cy2);

47 fprintf(fid4,',1,-1.00\n');

48 sn=sn+1;

49 cn=string(sn);

50 fprintf(fid4,'*CONSTRAINED MULTIPLE GLOBAL\n');

51 fprintf(fid4,cn);
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52 fprintf(fid4,'\n2\n');

53 fprintf(fid4,cy1);

54 fprintf(fid4,',2,+1.00\n');

55 fprintf(fid4,cy2);

56 fprintf(fid4,',2,-1.00\n');

57 end

58 fprintf(fid4, '*END');

59 fclose(fid4);

A.2 Abaqus python script

1 # Elepse size

2 x1=0.28906

3 y1=0.28906

4 x2=-0.096354

5 y2=0.096354

6 #

7 from abaqus import *

8 from abaqusConstants import *

9 import main

10 import section

11 import regionToolset

12 import displayGroupMdbToolset as dgm

13 import part

14 import material

15 import assembly

16 import step

17 import interaction

18 import load

19 import mesh

20 import optimization

21 import job
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22 import sketch

23 import visualization

24 import xyPlot

25 import displayGroupOdbToolset as dgo

26 import connectorBehavior

27 s1 = ...

mdb.models['Model-1'].ConstrainedSketch(name=' profile ', ...

sheetSize=5.0)

28 g, v, d, c = s1.geometry, s1.vertices, s1.dimensions, ...

s1.constraints

29 s1.setPrimaryObject(option=STANDALONE)

30 s1.rectangle(point1=(0.5, 0.5), point2=(-0.5, -0.5))

31 s1.EllipseByCenterPerimeter(center=(0.0, 0.0), ...

axisPoint1=(x1, y1),

32 axisPoint2=(x2, y2))

33 p = mdb.models['Model-1'].Part(name='Part-1', ...

dimensionality=THREE D,

34 type=DEFORMABLE BODY)

35 p = mdb.models['Model-1'].parts['Part-1']

36 p.BaseShell(sketch=s1)

37 s1.unsetPrimaryObject()

38 p = mdb.models['Model-1'].parts['Part-1']

39 session.viewports['Viewport: 1'].setValues(displayedObject=p)

40 del mdb.models['Model-1'].sketches[' profile ']

41 a = mdb.models['Model-1'].rootAssembly

42 session.viewports['Viewport: 1'].setValues(displayedObject=a)

43 a = mdb.models['Model-1'].rootAssembly

44 a.DatumCsysByDefault(CARTESIAN)

45 p = mdb.models['Model-1'].parts['Part-1']

46 a.Instance(name='Part-1-1', part=p, dependent=ON)

47 p = mdb.models['Model-1'].parts['Part-1']

48 session.viewports['Viewport: 1'].setValues(displayedObject=p)

49 a = mdb.models['Model-1'].rootAssembly

50 session.viewports['Viewport: 1'].setValues(displayedObject=a)
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51 session.viewports['Viewport: ...

1'].assemblyDisplay.setValues(loads=ON, bcs=ON,

52 predefinedFields=ON, connectors=ON)

53 session.viewports['Viewport: ...

1'].assemblyDisplay.setValues(mesh=ON, loads=OFF,

54 bcs=OFF, predefinedFields=OFF, connectors=OFF)

55 session.viewports['Viewport: ...

1'].assemblyDisplay.meshOptions.setValues(

56 meshTechnique=ON)

57 p = mdb.models['Model-1'].parts['Part-1']

58 session.viewports['Viewport: 1'].setValues(displayedObject=p)

59 session.viewports['Viewport: 1'].partDisplay.setValues(mesh=ON)

60 session.viewports['Viewport: ...

1'].partDisplay.meshOptions.setValues(

61 meshTechnique=ON)

62 session.viewports['Viewport: ...

1'].partDisplay.geometryOptions.setValues(

63 referenceRepresentation=OFF)

64 p = mdb.models['Model-1'].parts['Part-1']

65 e = p.edges

66 pickedEdges = e.getSequenceFromMask(mask=('[#4 ]', ), )

67 p.seedEdgeBySize(edges=pickedEdges, size=0.02, ...

deviationFactor=0.01,

68 constraint=FIXED)

69 p = mdb.models['Model-1'].parts['Part-1']

70 e = p.edges

71 pickedEdges = e.getSequenceFromMask(mask=('[#8 ]', ), )

72 p.seedEdgeBySize(edges=pickedEdges, size=0.02, ...

deviationFactor=0.1,

73 constraint=FIXED)

74 p = mdb.models['Model-1'].parts['Part-1']

75 e = p.edges

76 pickedEdges = e.getSequenceFromMask(mask=('[#10 ]', ), )
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77 p.seedEdgeBySize(edges=pickedEdges, size=0.02, ...

deviationFactor=0.1,

78 constraint=FIXED)

79 p = mdb.models['Model-1'].parts['Part-1']

80 e = p.edges

81 pickedEdges = e.getSequenceFromMask(mask=('[#2 ]', ), )

82 p.seedEdgeBySize(edges=pickedEdges, size=0.02, ...

deviationFactor=0.1,

83 constraint=FIXED)

84 p = mdb.models['Model-1'].parts['Part-1']

85 e = p.edges

86 pickedEdges = e.getSequenceFromMask(mask=('[#1 ]', ), )

87 p.seedEdgeBySize(edges=pickedEdges, size=0.02, ...

deviationFactor=0.1)

88 p = mdb.models['Model-1'].parts['Part-1']

89 e = p.edges

90 pickedEdges = e.getSequenceFromMask(mask=('[#1 ]', ), )

91 p.seedEdgeBySize(edges=pickedEdges, size=0.02, ...

deviationFactor=0.01)

92 p = mdb.models['Model-1'].parts['Part-1']

93 f = p.faces

94 pickedRegions = f.getSequenceFromMask(mask=('[#1 ]', ), )

95 p.setMeshControls(regions=pickedRegions, elemShape=QUAD, ...

algorithm=MEDIAL AXIS)

96 p = mdb.models['Model-1'].parts['Part-1']

97 p.generateMesh()

98 a = mdb.models['Model-1'].rootAssembly

99 a.regenerate()

100 a = mdb.models['Model-1'].rootAssembly

101 session.viewports['Viewport: 1'].setValues(displayedObject=a)

102 session.viewports['Viewport: ...

1'].assemblyDisplay.setValues(mesh=OFF)

103 session.viewports['Viewport: ...

1'].assemblyDisplay.meshOptions.setValues(
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104 meshTechnique=OFF)

105 mdb.Job(name='Job-1', model='Model-1', description='', ...

type=ANALYSIS,

106 atTime=None, waitMinutes=0, waitHours=0, queue=None, ...

memory=90,

107 memoryUnits=PERCENTAGE, getMemoryFromAnalysis=True,

108 explicitPrecision=SINGLE, nodalOutputPrecision=SINGLE, ...

echoPrint=OFF,

109 modelPrint=OFF, contactPrint=OFF, historyPrint=OFF, ...

userSubroutine='',

110 scratch='', resultsFormat=ODB, ...

parallelizationMethodExplicit=DOMAIN,

111 numDomains=1, activateLoadBalancing=False, ...

multiprocessingMode=DEFAULT,

112 numCpus=1, numGPUs=0)

113 mdb.jobs['Job-1'].writeInput(consistencyChecking=OFF)

A.3 LS-DYNA input file

*KEYWORD

*TITLE

0-plastic

*CONTROL_TERMINATION

20,

*CONTROL_IMPLICIT_SOLUTION

*CONTROL_IMPLICIT_SOLVER

*CONTROL_IMPLICIT_AUTO

0,,,,,



Appendix A. Script samples 136

*CONTROL_IMPLICIT_DYNAMICS

1,

*CONTROL_TIMESTEP

1E-2,0.9,,,,200,

*DATABASE_EXTENT_BINARY

,,,1,1,1,,,

,,,,

*DATABASE_BINARY_D3PLOT

1E-3,

*DATABASE_NODFOR

1E-3,

*DATABASE_NODOUT

1E-2,

*DATABASE_BNDOUT

1E-2,

*DATABASE_SPCFORC

1E-3,

*DATABASE_GLSTAT

1E-2,

*DATABASE_MATSUM

1E-2,

*DATABASE_NODAL_FORCE_GROUP

1,

*DATABASE_ELOUT

1E-2,

*DATABASE_HISTORY_SHELL_SET

1,
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*MAT_ELASTIC

1, 0.780E+2, 6E+3,0

*MAT_006

2, 0.780E+2, 2.0E+3,3E+3,0E+3,10

*SECTION_SHELL

1,-16

1,1,1,1

*SECTION_SHELL

2,-16

1,1,1,1

*PART

1,1,1

*PART

2,2,2

*BOUNDARY_SPC_SET

2, ,1,0,0,0,0,0,

$1, ,1,0,0,0,0,0,

3, ,0,1,0,0,0,0,

4, ,0,1,0,0,0,0,

*DEFINE_CURVE

200,

0.0,0.00001

100.0,0.00001

*DEFINE_CURVE

100,

0.0,0.001
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100.0,0.001

100.05,0

*DEFINE_CURVE

102,

0.0,1

30.0,1

30.01,0

*DEFINE_CURVE

103,

0.0,0.5

30.0,0.5

30.01,0

$*BOUNDARY_PRESCRIBED_MOTION_SET

$1, 1, 2, 100,,,1E-3,,

*LOAD_NODE_SET

6,1,102,

5,1,103,

$*LOAD_NODE_SET

$3,1,103,

*INCLUDE

nodes

*INCLUDE

4elementshell.k

*INCLUDE

4nodesmesh.k

*INCLUDE

shellset

*END
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A.4 Parallel computing script

1 % For running relaxation test with single viscous inclusion

2 clear all; close all; clc;

3 lsdirec='C:\Users\ismai\Documents\dyna\ ...

4 ls-dyna smp s R101 winx64 ifort131 i=mainFile.k ...

memory=500000000 NCPU=2';

5 PathLS=['C:\Program Files\LSTC\LS-PrePost ...

4.6\lsprepost4.6 x64.exe'];

6 aspect=[1:0.5:3];

7 Area=[0.1:0.025:0.175];

8 theta=[0.000000001:pi()/20:pi()/2+0.0000001];

9 cd1=cd;

10 mkdir(cd,'results');

11 dir=fullfile(cd,'results');

12 for i=[1:length(aspect)];

13 if i>1;

14 pause(500);

15 end

16 for j=[1:length(Area)];

17 for k=[1:length(theta)];

18 clearvars -except dir i j k asp A th dir lsdirec ...

PathLS aspect Area theta cd1

19 asp=(aspect(i)); A=(Area(j)); th=(theta(k));

20 Abaqus composite(asp,A,th,dir)

21 cd(cd1);

22 ls com Relax(lsdirec,PathLS,asp,A,th,dir);

23 batch('Run')

24 cd(cd1);

25 pause(0.5);

26 end

27 end

28 end
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A.5 Analytical solution of dynamic problem (spring)

1 function [Dis,Vel] = ElasticD(M,k,displacement,velocity,P,dt,T)

2 u 0=displacement;

3 du 0=velocity;

4 syms u(t)

5 Du = diff(u,t);

6 D2u = diff(u,t,2);

7 ode = (M)*diff(u,t,2)+k*u == P;

8 cond1 = u(0) == u 0;

9 cond2 = Du(0) == du 0;

10 conds = [cond1 cond2];

11 uSol(t) = dsolve(ode,conds);

12 %formulation of equation of motion and equation of velocity:

13 u=uSol;

14 velocity=diff(u);

15 time=[0.0:dt:T];

16 %solving for motion and velocity for the time domain:

17 for i=1:length(time);

18 t0=time(i);

19 D=subs(u,t,t0);

20 Dis(i)=double(D);

21 end

22 for i=1:length(time);

23 t0=time(i);

24 VV=subs(velocity,t,t0);

25 Vel(i)=double(VV);

26 end

27 end

A.6 Analytical solution of dynamic problem (Maxwell)
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1 function [Dis,Vel] = MaxwellD(M,k,c,P,dt,T,UC, DUC, DUC2)

2 syms uc(t)

3 ode = (M*c/k)*diff(uc,t,3)+(M)*diff(uc,t,2)+(c)*diff(uc,t) == P;

4 cond1 = uc(0) == UC;

5 cond2 = Duc(0) == DUC;

6 cond3 = D2uc(0) == DUC2;

7 conds = [cond1 cond2 cond3];

8 ucSol(t) = dsolve(ode,conds);

9 uk=diff(ucSol)*c/k;

10 %formulation of equation of motion and equation of velocity:

11 u=uk+ucSol;

12 velocity=diff(u);

13 time=[0.0:dt:T];

14 %solving for motion and velocity for the time domain:

15 for i=1:length(time);

16 t0=time(i);

17 D=subs(u,t,t0);

18 Dis(i)=double(D);

19 end

20 for i=1:length(time);

21 t0=time(i);

22 VV=subs(velocity,t,t0);

23 Vel(i)=double(VV);

24 end

25 end

A.7 Analytical solution of dynamic problem (SSM)

1 function [Dis,Vel] = SSMD(M,k1,k2,c,P,dt,T,UC, DUC, DUC2)

2 syms uc(t)

3 ode=(M*c/k2)*diff(uc,t,3)+(M)*diff(uc,t,2)...
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4 +(c+(c*k1/k2))*diff(uc,t)+(k1)*uc==P;

5 cond1 = uc(0) == UC;

6 cond2 = Duc(0) == DUC;

7 cond3 = D2uc(0) == DUC2;

8 conds = [cond1 cond2 cond3];

9 ucSol(t) = dsolve(ode,conds);

10 uk=diff(ucSol)*c/k2;

11 %formulation of equation of motion and equation of velocity:

12 u=uk+ucSol;

13 velocity=diff(u);

14 time=[0.0:dt:T];

15 %solving for motion and velocity for the time domain:

16 for i=1:length(time);

17 t0=time(i);

18 D=subs(u,t,t0);

19 Dis(i)=double(D);

20 end

21 for i=1:length(time);

22 t0=time(i);

23 VV=subs(velocity,t,t0);

24 Vel(i)=double(VV);

25 end

26 end
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Homogenised properties

equations constants

Table B.1: Elastic modulus equation constant (x0) values for different Aspect
ratio and area combinations for all types of RVEs

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.000 0.052 0.091 0.124 0.153

0.125 0.000 0.060 0.105 0.142 0.175

0.150 0.000 0.067 0.117 0.159 0.196

0.175 0.000 0.073 0.128 0.174 0.215

143
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Table B.2: Elastic modulus equation constant (C) values for different Aspect
ratio and area combinations for all types of RVEs

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.766 0.757 0.739 0.719 0.699

0.125 0.723 0.713 0.693 0.671 0.649

0.150 0.683 0.672 0.651 0.627 0.602

0.175 0.647 0.635 0.612 0.586 0.560

Table B.3: Dynamic viscosity equation constant (x0) values for different Aspect
ratio and area combinations for RVEs with viscoelastic matrix and void inclusion

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.000 0.092 0.160 0.215 0.262

0.125 0.000 0.105 0.182 0.244 0.296

0.150 0.000 0.116 0.200 0.268 0.326

0.175 0.000 0.125 0.216 0.290 0.354

Table B.4: Dynamic viscosity equation constant (C) values for different Aspect
ratio and area combinations for RVEs with viscoelastic matrix and void inclusion

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 1.371 1.346 1.299 1.248 1.197

0.125 1.278 1.251 1.200 1.145 1.091

0.150 1.194 1.165 1.112 1.055 0.999

0.175 1.116 1.087 1.032 0.973 0.915
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Table B.5: Dynamic viscosity equation constant (x0) values for different Aspect
ratio and area combinations for RVEs with elastic matrix and viscoelastic inclu-
sion

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.000 -0.431 -0.818 -1.207 -1.608

0.125 0.000 -0.479 -0.903 -1.325 -1.756

0.150 0.000 -0.517 -0.971 -1.420 -1.879

0.175 0.000 -0.547 -1.027 -1.500 -1.986

Table B.6: Dynamic viscosity equation constant (C) values for different Aspect
ratio and area combinations for RVEs with elastic matrix and viscoelastic inclu-
sion

Area Aspect Ratio

1.00 1.50 2.00 2.50 3.00

0.100 0.830 0.943 1.169 1.449 1.760

0.125 0.954 1.075 1.317 1.613 1.941

0.150 1.058 1.185 1.438 1.747 2.086

0.175 1.149 1.279 1.540 1.857 2.207
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Appendix C

Normalised results

C.1 Linear Elastic
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Figure C.1: Variation of homogenised elastic modulus Ē with the inclination
angle θ for elastic unit cell(Ar=0.175 mm2)
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Figure C.2: Variation of homogenised elastic modulus Ē with the inclination
angle θ for elastic unit cell (Ar=0.175 mm2 and AsR=3)

C.2 Maxwell viscoelastic
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Figure C.3: Variation of homogenised elastic modulus Ē with the inclination
angle θ for viscoelastic unit cell (Ar=0.175 mm2 and AsR=3)
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Figure C.4: Variation of homogenised dynamic viscosity η̄ with the inclination
angle θ for viscoelastic unit cell (Ar=0.175 mm2 and AsR=3)

C.3 Composite
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Figure C.5: Variation of infinite homogenised elastic modulus Ē with the incli-
nation angle θ for a composite unit cell (Ar=0.175 mm2 and AsR=3)
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Figure C.6: Variation of homogenised dynamic viscosity η̄ with the inclination
angle θ for a composite unit cell (Ar=0.175 mm2 and AsR=3)



Appendix D

Further Dynamics Results

D.1 Linear elastic RVE with viscoelastic inclu-

sion inclined at θ = 0◦

The following figures (D.1 and D.2) present the displacement and velocity, re-

spectively, due to a constant sudden load.

Figure D.1: Displacement vs time due to a sudden constant load applied on an
elastic RVE with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 0◦).
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Figure D.2: Velocity vs time due to a sudden constant load applied on an elastic
RVE with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 0◦)

The following figures (D.3 and D.4) present the displacement and velocity, re-

spectively, due to a pulse load.

Figure D.3: Displacement vs time due to an impulsive load applied on an elastic
RVE with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 0◦)
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Figure D.4: Velocity vs time due to an impulsive load applied on an elastic RVE
with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 0◦)

D.2 Linear elastic RVE with viscoelastic inclu-

sion inclined at θ = 90◦

The following figures (D.5 and D.6) present the displacement and velocity, re-

spectively, due to a constant sudden load.

Figure D.5: Displacement vs time due to a sudden constant load applied on an
elastic RVE with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 90◦).
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Figure D.6: Velocity vs time due to a sudden constant load applied on an elastic
RVE with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 90◦)

The following figures (D.7 and D.8) present the displacement and velocity, re-

spectively, due to a pulse load.

Figure D.7: Displacement vs time due to an impulsive load applied on an elastic
RVE with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 90◦)
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Figure D.8: Velocity vs time due to an impulsive load applied on an elastic RVE
with viscoelastic inclusion (Ar=0.175 mm2, ASP=3 and θ = 90◦)

D.3 Maxwell viscoelastic RVE, space homogenised

stress and strain

Figure D.9: Space homogenised stress
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Figure D.10: Space homogenised strain


